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ABSTRACT

A theoretical study of water waves and current over variable depth
is performed. Multiple-scalesanalysis is used to derive the equation
governing the evolution of a 1-D wave packet. The current is assumed to
be colinear with the wave number vector and with the depth gradient. The
equation which is found is a cubic Schrddinger equation with nonconstant
coefficients. ’

Some analytical properties of this equation are studied. The equation

is then solved numerically and the effect of current and depth variation
on the propagation of a solitary wave is studied.
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Introduction.

Depth variation and currentvboth affect the propagation pf waves. This
interaction.is of practical importance in coastal engineering. Structures
are often constructed near a river mouth where currents may be important.
Tidal currents near harbor entrance may have considerable effects on
wave propogation and during ebb tides where waves are steepened by the
opposing current, entrance of some harbors may be hazardous for small
boats. Shoaling effect of submarine ridges may also enhance these effgcts.
A comprehensive study of water waves and current interaction can be found
in Peregrine (1976) [16].

In the present work our attention will be focused on small amplitude
waves moving over strong current. In this case the current affects the
waves but is not affected by the waves. We shall further assume, as is
frequently the case in nature that the current and the depth vary on
length and time scales which are much greater than the wave lengtﬁ and
period of the waves.

The first theoretical description of such problem was given by Longuet-
Higgins and Stewart (1960-61) [9] [10] [11l] and Whitam (1962) [23]. They
introduced the concept of radiation stress: it states that energy of
waves over variable current is not conserved but is created or destroyed
because of the rate of work done by the radiation stress and the current
strain. Further extension has been made by Phillips (1966) [17] and
Bretherton and Garrett (1968) [3] who introduced the concept of wave
action.

All these studies are concerned with linear theory. In this thesis

we shall derive nonlinear extension of the equation of conservation of



wave action. We extend the method used by Djordjevic and Redekopp (1978)
[5] who studied nonlinear evolution of a wave packet moving over a variable
depth. To adapt the method of multiple-scalesto our problem we use the
approach of Mei [12] who showed that the results of linear theory, found'
by using Whitam's theory of averaged Lograngian, can be derived by assuming
a WKB type expansion.of the waves related quantities.

Let us first state the assumptions:

As usual in this kind of study we ignore viscosity and neglect the
interaction between water and the air above. We also ignore surface tension.

One important simplification is that we consider a one dimensiomnal
problem. This assumption is not fundamental but is made to simplify the
algebra which, even in this casé is very lengthy. By this limitation our
study is restricted to the case where the wave number k and the velocity of
the current U are colinear. Therefore all the physical quéntities to
be considered are only functions of the vertical coordinate z, the only
horizontal coordinate, x and time t.

Other assumptions are concerned with the different scales appearing
in the problem: |

* Length scales: There are 5 scales; L, the wave length; A the

amplitude of the waves; h the averaged depth; %%/h = %; ’ Lh is the

1
L
u

of U variation where U is the current velocity.

length scale of depth variation; gng = R Lu is the length scale
» Time scales: There are 2 scales; T period of the waves;
%%/U ='%- where Tu is the time scale of U variationms.
u .
As usual we mean by 'length scale of U variation" the length over which

U varies by 0(U). As the main object of this work is to study the



direct effect of depth variation on waves, the waves must "feel" the
bottom. In other words we are not interested in the deep water limit

h >> L. (However, even if h >> L the current can feel the depth variation
which will affect the waves indirectly.) For these reasons we take
L=0C) =0(). |

As usual the study is restricted to weakly nonlinear waves; this

27A

implies the wave's amplitude to be small or, more precisely kA = T

= ¢ << 1 where k =-g% is the wave number. This means that the slope of
the waves is small. All the quantities related to the waves are 0(eg) but
they vary rapidly, i.e., their length and time scales of variation are
0(L) and 0(T) which are taken as 0(1). In other words all the quantities
related to the waves can be written:

fw(x,z,t) = éf%(x,z,t)

The depth is assumed to vary very slowly: its variation is negligible
over one wave length. This implies Lh >> L. More precisely we assume

L 0(52). The pertinent coordinate for h is then x, = ezx, i.e., h = h(xz).

Lh 2

The current is assumed to be strong: all the quantities related to
the current are 0(1). We also assume that it varies very slowly both in
space and time. This means: Lu >> L3 Tu >> T, This can be a very realistic
assumption. As the vafiations of the current are expected to be the
consequence of the depth variation we assume that:

L _,2 T _ .2
T =06 F =0(")
u u

The pertinent coordinates for the quantities related to the current are

therefore:



X, =¢ 2x, t, =¢ 2t and z (As h = 0(1) we do not allow slow variations in z.)
In the first part of this work we derive the equations governing

- the evolutions of the amplitude of the waves. We first find the approxi-
mate equations of the problem at 0(83); then we solve these equations in -

a formal and asymptotic sense by assuming expansions in power of ¢ of

all the quantities related to the waves. As usual we expect some slow
variations of these quantities. This is taken into account by using
multiple scales analysis. After a very lengthy algebra we find the
equation governing ﬁhe evolution of a wave packet. It is a kind of cubic
Schrddinger equation with nonconstant coefficients. We then éompare

this equation with those already known in the literature: the linear limit
and the case without current.

In the second part we turn to an analytical study of the evolution
equation in the limited caselwhere the current is stationafy. We first
recall some results when the coefficients of the equation are constant.

In particular we present in Appendix B, C an account of the Inverse
Scattering theory by. which our equation can be exactly solved. When the
coefficients are not constant. the analytical study is much more limited.
Our results are limited to the study of an exact solution which is an
extension of the well known Stoke's waves. Certain evolution laws are
then derived which are the equivalent of the well known conservation laws
for the cubic Schr&dinger equation.

To find some more qualitative answers we turn in the third part to a
numerical study of the problem. It is found that a recent study in
reference [5] which is based on very stringent assumptions is not supported

by the numerical results. Finally we present some new results showing

how the envelope of a wave packet evolves when it propagates over a



region where the depth and the current both vary.
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PART I: DERIVATION OF THE EQUATIONS

1. Derivation of the Approximate Governing Equations.

In this section we will derive the approximate equations governing the
evolution of the slowly varying strong current and of the small amplitude
waves. The method is an extension of the method used in reference [ 12]

where the nonlinear terms have been neglected.

1.1. Equations for the current.

First we consider the current without waves; as the variables are:

ﬁ; = (Uc(x,z,t), W&(x,z,t)) (horizontal and vertical component)

Cc(x,t) elevation of the free surface above the undisturbed free
surface Z = 0.

As explained previously we assume that:

T, =0

» Length scale of x variation is Lx = Oélé) for Uc’ Ze and h. The
pertinent coordinate is then X, = szx

* Characteristic time scale is T = 0(12) for Uc’ Cc" The pertinent
coordinate is then t2 = azt.

» Length scale of z variation is Lz = 0(1). The pertinent coordinate

is then z.

] ) . + - + . —
With these assumptions we may write Uc Uc(XZ’Z’tZ)’ Cc = Cc(xz,tz)

and h = h(xz). It is then well known that, if the current is irrotational
or weakly rotational, then Uc and Cc are solutions of the Airy's equations
governing evolution of long waves. More precisely by using the results

of reference [12] we have:

-11-



4
Uc(xz,z,tz) = U(xz,tz) + 0(e)

Wc(xz,z,tz) = 0(32)

(1-1)
Lo (%g.ty) = T(X,y,t5)
4
P(xzsz,tz) = pg(C(xzstz)_z) + O(E )
Where U and ¢ are governed by Airy's equations:
2L+ [(z+mul =0
ot 9x
2 2 v
(1-2)
aU |, Uau 3T
—+t— +g= =0
Btz 8x2 sz
. , R . oW U
Once U is found we obtain Wc from the continuity equation ¢ +—S -0
3z 9x

and the boundary condition at the bottom Wc =—h'(x)Uc at Z = -h(x).

4
W (xy,2,t5) = ¢ [— [ i dz- h'(x)U(Xz,tz)] + 0™

-h(x2) 2

]

2 U ' ' 4
€ (:—3-;2(2 + h(xz)) -h (XZ) U(xz,tz)] + 0(e )

W(xz,z,tz) + 0(&4) (1-3)

At this point we have the equation for the current at 0(53).

1.2. Equations for the waves.

Let us now superpose waves on the current.

Utotal - Uc tu
Wtotal = Wc +tw
Ptotal = Pc P
Ctotal =% +n
where u, w, p and n are quantities = related to the waves which are

supposed to be of order € but whose typical scale of variation with respect

to x, z and t is 0(1). So we have u(x,z,t), w(x,z,t), p(x,z,t), n(x,z,t)

-12-



3

and~§%,-5; and 3% are 0(l) when they operate on these quantities.

To get the equations governing the waves we substitute the expressions

for ﬁ

total’ Ptotal and ¢

total into the equations of motion. As the current

quantities are known up to 0(53) we shall be able to keep the wave related

quantities to the third order in €.

i. Momentum equations and continuity equation.

If the expressions for U are inserted in the inviscid

and P

total total

momentum equations we obtain, after using the fact that, by definition

Uc’ Wc Pc are exact solutions of the equations of motion:

X - component of momentum equation

3U 8U
du du Su du du __ 13 _
et GtV t U et tu etV S, 5 3 - (1-4)
Now we use the fact that
4
U, = U(x,,t,) + 0(c")
Wc = W(xz,z,tz) + 0(54) where W is O(EZ)
then U 114
S oace®y =s- C _ ared
7z -0 Ty =00
therefore:
Bu ., 03U oBuw, 3w, du. o du_ _ 13, ;
at tu X +U 9x +W 3z +tu ox + 9z P 9x +0(e7) (1-5)
z - component of momentum equation
oW oW
v —< —c 3w w w Sw _ _1l3p -
ot +tu 3x tw 3z + T, ox + W, 9z tu X tWILTT0 3z (1-6)
Because:
oW

Y/
3§$'= %g + 0(e*) = 0(£4) since W = W(xz,z,tz) where W is 0(82)

~13-



equation (1-6) gives

Sw W odw ., o Bw ., 3w, dw_ _ 13, .5 )
8t+WBZ+UBx+WBZ+u3X+W3 DBZ+O(€) (1-7)

continuity equation: we have exactly

Ju ow _
% + —a—z' =0 ) (1-8)

Let us now take 3% (1-5) + 3% (1-7), yielding

2 2 2 ZU 2 2
%, 3% feRw waw, 3% duu, 3%, We, o 3%
3t st Toxax T 2 T xtV 2 5z TV o2
90X oz 9x ox
Jude % dwdw, o 3%, % dwaw , %W, 303w
9% ox | " .. 2 ' 9x oz 9xdz & 0zdt . 8z oz 2 " 3z ox
ax oz
+U 32‘W+ﬂ—33+r,q-——"32"’+ﬂ3"1+ ey v Bw 2y (1-9)
9xdz 3z 3z 2 3z ax Jzox z oz ¥ 2
3z oz
Then by using (1-8)
U= U(XZ’tZ)
W= 0(22)
2
B, W _ 4 _. 3% _ _ 3% by _ oo by _
and 7o+ 57 = 0(e) = i 3oz T O(ED) = 0(¢ED =
wa—z—g-=0(.€5)
9z
equation (1-9) can be written as
2 2 '
3%, 3% __ §,ouau, ,dwoW | dudu, , dwiu dwiw 5
2t T2 0 %% 3w v 2%2%2z T dxox T 2 ox oz T ez az(t 0
3x oz
By further use of the continuity equation, we get
2 __ . f w30, 3udu, , 0w au 5 B}
Vip = p{48x3x+23x8x+23x8z} + 0(e”) for -h < Z <z +n
(1-10)

which is the governing equation for p.

~14—



ii. Boundary conditiomns.

>

On the bottom: ﬁtotal'n = 0 at z = -h(x) where ; is the normal to

the depth profile at the point x. Alternatively we may write:

W +h'(x) U =0

total total (1-11) -
As Uc and Wc satisfy this condition exactly we must have:
w = -h'"(x)u at z = -h(x) (1-12)
__3_ . df(x,~h(x),t) _ _3_§ - ! 8f
Fet us take % of this equation as x = h'(x) 5, Ve set
E o e - R+ @ - B hw = - R hE) +0()
3% Bz ax €

(1-13)

gince h'(x) = O(EZ) and h"(x) = O(£4) it follows from the z-momentum

equation that:

13 _ -1 dw Vi) Q¥ _ p 34
p 02 St C ) -~ ox W o0z + U h'(x) oz v ox R Gx)
ow ow 5 - _
+ u— + w e + 0(g”) at z = -h(x) (1-14)

where use has been made of:
w = =h'(x)u at z = -h(x)

w
ax

= _%;%h'(x) + % h'(x) + O(es) at z = -h(x)

and the continuity equation for U, W.

ow

Since w, g and 35 2re O(a ) while W + Uh'(x) 0(54) at the bottom,

equation (1-14) gives:

_lp%z_— -h' (x) ——+Ug:}+0(e:4) at z = -h(x) (1-15)

-15-



Since the x~component of the momentum equation gives

_153p _ 3u du 2y -

o 39X  at +U x +0() =

v 3u 2_9} - _h® 2p 4
h'(x) e T U 3 3 Bx+0(e)

The boundary condition at the bottom then becomes

- —2—5 = h'(x) %}P; + 0(eY) at z = -h(x) (1-16)

Kinematic condition at the free surface Z = g + ¢
The statement that a fluid particle which is on the free surface
initially stays always on the free surface can be written as:

% Teotal .iitotal - W at z = ¢

ot total 9x total (1-17)

total

By using the expression of i and the approximations for

total’ Ctotal
- A .
UC, Ces (1-17) gives:

8z . 9n + 9¢+n _ = -
5t + St + (U + u) e W+ w at z z +n (1-18)

Let us perform Taylor series expansion of the variousfunctions about

zZ =73
‘U(z = ¢ +n) =U(z = ¢) being independent of z
W 2 32W
W(z=C+n) =Wiz=2)+n=—(z=¢)+3 ~—(z=17) +.
dz 2 az2
(1-19)
Since W = 0(52) and n = 0(), it follows that
3 4
Wz =r+ n) =W(z=2)+n g5 (z= 0 +0GE" (1-20)
2 .2
9 ]
wz=gHm) mwz=n) +n 2 z=n) + 22T = ) +0 €Y
“ 3z
(1-21)

-16-



By = m =8 u = o)+ 0(h) stace §2 = 0(e?) u = 0(e)
(1-22)
et =B =+ BB G- +oh @29

By using the condition at +U —5 =W + 0(a ) at z = ¢ and

3
£+ ¥ =0t (1-24)
the kinematic boundary condition at the free surface takes the form
+ 0('54) at z = ¢ , (1-25)

Dynamic condition at the free surface z = 7 + 1
Supposing the atmospheric pressue to be constant, the dynamic con-

dition at the free surface can be written as:

dP
_____dtotal ‘=0 atz=7¢+n (1-26)

Using (1-1) we have

. 4
Potay =P ¥ g(t - z) +0(g)
Therefore
4 ota1 3p 3p 3p
—5c 8t+(U+u) ax"'(w"'w)a +pg{ +(U+u)——+(W+w)-—}
(¢ - z) +0(eHh (1-27)
where use has been made of U =U+u+ 0(54) W =W+ w+ 0(24)

total
Equation (1-26) then states:

total

Let us again perform Taylor series expansion about z = { for all the

quantities.

-17-



. EE'U(Z =z +n) = %ﬁ U(z = n) since U does not depend on z (1-29)

W(z=1r7+n) =W(z= )+ n %% (z =17) + 0(54) since W = 0(62)
(1-30)

9Z

s =u(z=17+n) = I u(z = ) since I 0(52) u = 0(e) (1-31)

since U

X

9p 3 . - 3%p -
- (z=10+n)+ U(z =1%) {35 (z=2) +n (z = )

9z9xX
2 .3 2 2 3
+ﬂ——a—2—(z=C) +o(€4)=U_aE+Un_a__L+UD____a_L
2 2 39X 9z9x 2 2
3z 909X 9z 3x
4 -
+ 0(e’) at z = ¢ (1-32)

does not depend on z.

W'%g (z=1¢+n) = W'QE (z=1¢) + 0(84) since W = 0(52) p = 0(e)

oz
(1-33)
W %% (z=z¢z+n) =w %% +-%§ n gz + wn ;;R + 0(e ) at z = ¢
| (1-34)
P, = =4 2242 % 4 -
e (z=17+n) = % + 5% " 3z az un 5= + 0(e’) at z = ¢
(1-35)
. 2 (z=t¢+n) = 2y EER— +-HE-—QER— + 0(84) at z = ¢
ot ot otdz 2 azzat
(1-36)

The dynamic boundary condition therefore reads:

2 .3
3p .___2 n_3p _Jl ___Ja n __Jl__ 9p 3p 3u
3t T " 3eaz T T2 st U g P P07 o u gt "o 32
otdoz 9z 3x
2 2
3p 9p , 9p 3w 3p 3z 3p 93U
+un 9xdz tw oz * 3z 3z T own az2 + egu 3% T w 9z *oeen 5y
2 2
- pg)w +n-§K + 2 = 0(34) at z = g (1-37)
3z 2 822

where use has been made of the continuity equation for the current

oW

0z

BU + 0 (e )

-]18-



2. Formal Solution of the Approximate Equations.

2.1. Method.

To solve the problem we assume, for all the quantities which are
<
related to the waves, an expansion in power of . £(x,z,t) = Z enf(n)
n=1
(x,z,t). However, for physical and mathematical reasons we make some

assumptions on the form of the f(n): at the first order we consider
waves with frequency w and wavenumber k. As the medium varies slowly in
x and t, we expect k and W to vary slowly.
= - = 2 = 2
k = k(xz,tz) ® w(xz,tz) where Xy = €% t, =¢e't

The variations of k and @ are related by the law of conservation of waves:

3k Jw
— +— =0 (2-1)
atz 8x2

This wave is supposed to propagate from x = -= to + = , ité form must be:

Aexp(i ¢ (xz,tz))+ complex conjugate.

¢ being defined'by k(xz,tz) = ¢, > 0 w(xz,tz) = -¢,

SO we may write

=

v

¢(x2,t2) =~;2 w(xztz) and then k(xz,tz) = .

Xy, W(xy,ty) = )

We neglect the reflected waves due to the depth variation (they are
assumed to be 0(54)).

The amﬁlitude of the waves is expected to vary slowly in x and t. In
the spirit of multiple scales analysis, see for instance reference [13]
we write the amplitudes as A(xl,tl,z,xz,tz) where Xy = ex tl = gt
x, = ezt t2 = ezt. We restrict ourselves to the study of a very slowly

varying wave packet of length-% propagating at the very slowly varying

velocity Cg(xz,tz)

dx

Celxy,t,) &) (2-2)

X
A= A(xz,tz,z,r) where 1 = ¢ ( f

~19-



Because of nonlinearity in the equations we expect, as usual in this kind
of problem that at O(sn) all the harmonic
exp i m.¢ ' m==-n, « « «, tn

will be present for these reasons we seek an expansion of the form:

= +n
P(xszst) = en § an (Xz,tz,Z,T) expinr ¢
n=1 m= -n
=< +n
n .
u(x,z,t) = € uon (xz,tz,z,r) expim ¢
n=1 m= -n
« +n (2-3)
w(x,z,t) = el whm(XZ’tZ’z’T) expim ¢
n=1 m=-n
« +n
n(x,t) = % e _;- N (Xpsty,T) expim ¢
n=1 m= -n
Since all the quantities are real we must have:
= p* = % = wk = n%
pn,--m P hm? un,—m Y nm? wn,-m Y nm? nn,—m " hm

where * means complex conjugate.

We substitute these expressions for p, u, w, and n in the governing
equations and boundary conditions (6 equations). As is.well known in
the method of multiple scales ﬁhe following rules on the derivatives
should be noted:

i. When operating on a quantity related to the current:

9 3
—,—+g——;—aT:-+8-a—t; (2-4)

-20-



ii. When operating on the rnth harmonic of a quantity

related to the waves:

_9_ 1. 3 2 3
x +mk()+€c ot € 8x2 (2'5).
52 2 2 2i{mk 3 2 3 3k
e s —n KY() e ==+ € 2imk —— 4+ im —F ()
2 c 3T
ox g X2 dxy
2
+_1.2.._3_2. (2-6)
C = ot
g
] . ] 2 3
at-’ -lmm()—eaT + ¢ 5t 2-7)

2
As the 6 equations (1-5, 8, 10, 16, 25, 37) are wvalid up to 0(83) we
expand p, u, w, n to the third order. All the equations then take the

following form:

3 . |
+n
el E E expim¢+0(e4)=0fori=l,...6
n=1 m = -n

i,nm
(2-8)
Since these equations are valid for any small € and since E ip.-m -
2 H]
*

E i n.m® 3t each order we have 6(n + 1) equations:

t et ]

E =0 i=l’o.a6 m=0,l’2.o-n;n=l,2,3 (2-9)

inm
To see how this procedure works let us recall the form of the equa-

tions governing the waves.

du 3U

2 - 1 -— ———
(1-10) V°p = Nonlinear terms - p 5% Bx

-21~-



(1-5) x~momentum 2u +U Su + L3 = Nonlinear terms - u il W— 2u

ot X p 90X ax 3z
. aw Ju
(1-8) continuity 52 - " 3%

(1-16) bottom boundary condition ~%§ = h'(x) %&

Free surface kinematic condition:

_ an on _ . _ . _ .. 8% _ U
(1-25) — + U x ¥ Nonlinear terms - u % i

Free surface dynamic condition:

-37) B 9 _ = - L- _.p_ U
(1-37) s T U5 — Pev Nonlinear terms egu W + pgn 5
U rld4
AS'EE’ W, P and h'(x) are all 0(e ) it is obvious that if we take the
mth harmonic of the nth order of each equation (i.e., E; =0 i=1,. . .6)

inm

we obtain:

2
(1-10) = (a) (<=-0%? p_ =1.0.T
2 nm
9z
. imk _
(1-5) > (b) im(kU-w) u + 5 Pop = L.O.T
ow
(1-8) => (o) -—é-z“-’-'i = - imku__ = L.0.T
op
(1-16) => (d) a’z‘m = L.0.T at z = -h
(1-25) => (e) im(kU - w) M ™ Yom = L.O.T at z =7
@1-37) => (f) im(kU - w) Py — P8W . = L.0.T at z =

vhere L.0.T means lower order terms which only involve terms of order
lower than n.

It is now easy to describe the procedure: once the problems at
order 1, 2, . . . n - 1 are solved we solve the problem at order n in

4 steps.
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1) We solve the vertical problem (a) and (d) for Pop &= 0, . ..n
This introduces some arbitrary functions of horizontal coordinates.

2) With (b) and (c) we find o and LA

3) With (e) we find "om |

4) (f) gives a constraint which determines the arbitrary functions
introduced at lower order.

We note in particular that the 2zeroth harmonics L and Mo cannot
be found at order n since their coefficients on the left of (b), (e)
vanish. We will see that U, and n . are given by using (b) and (e)

at order n + 1.

2.2. Summary of the algebra.

The method explained previously has the advantage of being systematic
and of giving us the exact degree of approximation of the solution. 'But
it has the disadvantage of being very lengthy. For this reason we do
not present all the algebra but only all the results at each stép. For
brevity, we shall make repeated references to the equations (a), (b), . . .
(f) given at the end of the previous section.

0(e)

(@) + (d) give:

m=0 Pio ~© plo(xz,tz,t) arbitrary function (2-10)

- - cosh k(z + h)
ey A(xz’tz’T) cosh k(z + h) (2-11)

B
[

where A is an arbitrary function.

(b) gives:

m=0 0=0
_ _ _k cosh k(z + h)
m=1 Y11 T o A Cosh k(z + h) : (2-12)
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where 0 = w - kU

(c) gives:
m=20 WlO =0

= - _ ik sinh k(z + h)
m=1 Y11 po A cosh k(z + h)

(e) gives:

ﬁ'

= ——= A tanh k(z + h)

(f) gives:

m=20 0=0

m=1 o gk tanh k(z + h)

or (w - kU)2

gk tanh k(z + h)

It allows us to write np = Eg

0(62)

(a) and (d) give:

_ _ k% cosh 2k(z + h)

_ 2
m=0 Py, =- o2 cosh k(z + 1) |A]% + Py (xp,ty,7)

where on is a new arbitrary function.

cosh k(z + h) A

cosh k(z + h) -1 Cgcosh k(z + h)

m=1 le = D(xzstzsr)

(2-13)

(2-14)

(2-15)

(2-16)

(2-17)

(2-18)

{Fz + h)sinh k(z + h) - (z + h) tanh k(z + h) cosh k (z + h{}

where D is a new arbitrary function.
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2,2

cosh 2k(z + h) k“A
m=2 p = F(x,stn,T) -
22 2272 cosh 2k(z + h) chzcoshz K(z + h)
(2-20)
where F is a new arbitrary functiom.
(b) gives:
0 Mo 1 P10
o T o(Cg - U) ot (2-21)
ikA
m=1 a k . cosh k(z + h) T

21 - po = cosh k(z + h) _ po(gcosh k (z + h)

E(z + h) sinh k (z + h) + cosh k (z + h) [-(; + h) tanh k (g + h)

1
X

[}
oy

(e)

1,0 -Cg
o (2-22
2 ko cosh 2k(z + h)
Y22 ¥ o6 * Cosh 2k(z + h) (2-23)
gives:
0w o fz+m %0
20 Cs 3T (2-24)
. A
1 w.. = - ik sinh k(z + h) T
21 oo = cosh k(z + h) poCgcosh k(z + h)

k(z + h) cosh k(z + h) + sinh k(z + h) [:k(c + h) tanh k(z + h)

rpB=d U]} (2-25)
_ _ ik . sinh 2k(z + h) -
2 Wy = =% T cosh 2k(z ¥ B (2-26)
gives:
M0 c
- - _Cg -
0 3% Cg - U 20 (2-27)
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A
T

m=1 n =-2+i -k(z + h) + tanh k(z + h) [k(z;+h)
21 pg pUZCg

tanh k(z + h) -~ 1 + 2k —C-E—;——q]}

(2-28)
2,2
m=2 n..=—5— F tanh 2k(z +h) + &K (2-29)
22 2 2
200 P go :
(f) gives:
du .

_ 10 _ -
m=20 3 0 _ (2-30)
; —p+l 2(z + 1) | LS o
m=1 Cg=U+ 5 Cp (1 + sinh 2K(C F hz} where Cp X (2-31)

where Cp and Cg denote the phase and the group velocity in the presence

of a current
3k2 cosh 2k(z + h) 2

m=2 F = 3 3 5 A (2-32)
200° cosh” k(z + h) sinh® k(z + h) :

aulo

3T

Let us pause here to see the implications of the condition = 0;
it implies:

Woq = 0 (cf (2-24))

p
10 _ _
* 3T =0 (cf (2-21))
an
10 _ _
St =0 (cf (2-27))

It follows that uyg = ulo(xz,tz), Pig = plO(XZ’tZ) and Nig = nlo(xz,tz)

where U095 P1g and nio are three arbitrary functions corresponding to a
current of order €. By assuming zero values far upstream TV - », we take

these arbitrary functions to be zero.
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U9 = 0
P 0
10 (2-34)
N = 0
Voo = 0
At this point we have only 3 arbitrary functions: A, P,,and D.

20
Our principal interest is obviously to find A. At order“O(és)

we look for the equation governing A,onand eventually D. It is relatively
easy to guess that these equations will be given by the dynamic boundary
condition for m = 0, 1. So we need only to compute the third order

terms which appear in these equations.

(a) and (d) we need only P31

cosh k(z + h) sinh k(z + h)

m=1 Py; = G(x,T,t) cosh k(z + h) iDr (z + h) Cg cosh k(z + h)
(2-35)
sinh k(z + h) 2 3 kﬁ
AL (2 Sy |A] A 3 cosh 3k(z + h) 57— 5
2 p"0 cosh k(z+h)sinh“k(

(z + 1)% cosh k(z + h) _ (z + h) sinh k(z + h)(z + h) tanh k(h + 7)

-A
B Zng cosh k(z + h) ‘ng cosh k(z + h)
—iA 1 (z + h)2 cosh k(z + h) ok +
cosh k(z + h) 2 3x2
+ (z + h) cosh k(z+h)£—(;+h) + (z + h) sinh k(z + h)
2
22 canh k (3 + ) MC—”Q] (2-36)
b4 9 X
2 2
(b) we need only U,
Ju oP
_ 20 __1 20 L _ 1
m=20 P 5(Ca = 1) e which implies Uyg = olCe =) on
+ Flxy,t,) (2-37
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where F(xz,tz) is an arbitrary function which must be real since Uy

and on are real.

(¢) we need only 2T and W31

P
= -1 9U20 _ _ (z+ h) 20
m=0 Wy = Cg (z +h) =7 pCg(Cg-U) ot

to get w3l it is easier to use directly the z-momentum equation (1-7)

at 0(53) m=1

- _ ik sinh k(z +h) _ iD k(z + h) cosh k(z + h) + sinh k(z + h)
31 pc cosh k(z + h) T paCg cosh k(g + h)

w

_ (U - Cg) k simh k(g + h)} iy A
Cgpo cosh k(z + h) pcgzo cosh k(z + h)

2
(z + h) cosh k(z + h) + E;Sg—i—hl sinh k(z + h) - ‘
(z + h) tanh k(z + h) [ k(z + h) cosh k(z + h) + sinh k(z + h)]

-(U - Cg) %‘ [f (z + h) cosh k(z + h) + sinh k(z + h)
cosh k(z + h) po

(k(<:+h) tanhk(i;+h)-1-kUc‘C)],

[k(z + h) cosh k(z + h) + sinh k(z + h) + % U sinh k(z + h)]

_ k sinh k(z +h) __A + cosh k(z + h) k
At2 poz cosh k(z + h) 0o [(z h) cosh k(z + h) %

kk kh
b4

2 2 . x
(z + h)® sinh k(z + h) +

2
+ 2cosh k(z + h)

cosh k(z + h)

{F(z + h) sinh k(z + h) + cosh k(z + h%-&{}iz + h) cosh k(z + h)

2kU
X

2 (kh) sinh k(z + h)

+ sinh k (z + hj} Gcosh k(z + 0) x, cosh k(z + h)
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k (sinh k(z + h)) ky sishk(z+h) _ .y h2cosh k(z + h)

g \cosh k(z + h) to o X, cosh k(z + h) X, 0 cosh k(z + h)
2 kx (z + h) + kh
gy WL W 2 *2 (cy  Sizh k(z + h) sinh k(g + h) :I
X, o o cosh k(z + h) Xy coshz k(z + h)
e 2 . 5
+ ik sinh k(z + h) P A-1i IAIZ A 3k 1
pzoz(U - Cg) cosh k(z + h) 20 9305 cosh3k(§+h)sinh2k(c+h)

2

{-3- cosh k(z + h) sinh 2k(z + h) +% sinh 3k(z + h) + sinh k(z + h)
cosh 2k(z + h)}

(e) we need only n

20
m=0 (u-c)an2°= ¢+ 1 p, -2 |a|? (2-39)
' &) 3t p(T-Cg) 207 "2 T
which implies
Nyo = (5.3 0) 2 P ¥ 3 > ja]% + Fy(xysty)
(e = 1) p7c (Cg -~ U) ,

where F(x2’t2) is an arbitrary function which must be real since UnE

on are real.

(f) It is only necessary to write the kinematic condition for m = 0,1.
This will give us 2 equations governing the evolution of on and A. It
is important to remark that D and G which are still unknown do not appear

in these equations.

5P 2 2
m=0 20 ), -0 ( __k Cg(Cg-U)
It g(z + h) poc g (¢ + h)

C
P Ceg - U _ 2 2
25t 0g a - 89 IAIT
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where B = tanh k(¢ + h). This equation can be integrated once:
(cg - 1)° 2 cg(c cg(Cg -'U) p Cg - - g2
P20 { g(z ¥ h) po g(C gy 2t T S -

| 2 (2-40)
1A]% + Fo(x,,t,) :
where F3(x2,t2) is an arbitrary function which must be real since P20

is real.
= ] At this step we obtain the governing equation for A:
A + Atz + Cgsz + iy,A + 13?3 a]? A+ 1y.PygA + 1y FiA + iy F,A = 0
(2-41)
where all the y; are real functions of X, and tz. We will give their
expression later. By using the previous expression of on the equation

becomes:

. . 2 coa
viA + Atz + chx2 +iy,A  + iy [A[" A+ i0A =0 (2-42)
where Q(xz,tz) = y6F1 + y7F2 + y8F3 is a real function depending on the
unknown function Fi i=1, 2, 3.

+ The function Q vanishes for a wave packet where A and P

20 tend
to zero as T -+ + » in this case equation (2-42) becomes:
yjA+ A +CgA  +iyA o+ 1y3|A| A=0 (2-43)

2 2
« If Q # 0 but if it does not depend on t2 (this is the case if the
current is stationary, see 3-2) we write A = B exp - 1 IXZQ(u)du. As Q
is real |A| = |B| ; once we know B we know the envelope of the waves.
It is obvious that the equation for B is still (2-43).
Let us now give the expressions of the coefficients yl(xz,tz),
yz(xz,tz), y3(x2,t2) which can be put, after lengthy algebra, in the

following form:
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1 30 , o 3Cg/a
Y17 "% at, T2 ex,
2
- + 2
y, =0 )y 8EED g 1 - gk (g +h)
Cg (Cg - 1) .
| (2-44)
4 2
vy =g {9 - 108" + 98" - 2g° (BN 7
2 2
Cp c (1 - 89)
+
4 o + 4 Ag —5 +8C hlé a - gH?
g B (Cg - 1)

2.3. Concluding remarks on the equations.

(a) The general procedure to solve the problem is as follows:

+ First step: given h(xz) solve the Airy's equations to find the
current:

Ulx,,ty)  o(x,,t,)

» Second step: we must solve for k(xz,tz) and m(xz,tz). For this

we use:
i. Law of conservation of waves:
oW ok
_+_ =0
ax2 at2

ii. Dispersion relation:
( - KU)% = gk tanh k(z + h)
These equations are solved with the boundary condition:
w > w, as x, > -
* Third step:

Once U, Z, w and k are known then all the coefficients of equation
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(2~-43) are known. We then solve this equation with proper boundary
cpnditions.

(b) One important special case corresponds to a stationary solution
to the Airy's equations. In this case U(xz) and c(xz), and we can take A
k(xz), w(xz) to be also stationary. The law of conservation of crests
then gives gﬁ; = 0 implying that w = constant = Wy then k(xz) is simply

given by the equation

(w - k)% = gk tanh k(z + h)

(c) The linearized limit: the results of linear theory for a bottom

varying on the scale 06%) are well known; the equations are:

i. Without current: U = 0
JE 9 2
“r + 75— (CgE) = 0 where E = |A]
Btl Bxl

tl=].lt X1=1.1X

This is the law of conservation of energy.

By coming back to the formulation of the problem it is easy to see
that the linear limit is obtained by taking A = A(x,) and ignoring the
nonlinear terms. If we ignore the terms with Arr and |A|2 A equation

(2-43) becomes:

EIN 24 1 dcg , _ _
3t2 + Cg 8x2 + 2Cg dx2 A=0 (2-45)

(As U = 0 we are obviously in the previous case (b) k = k(xz) and y = “o')

Let us take (2-45)* x A + (2-45) x A* it gives
2]al® . » 2
et 3 (Cg|A|“) = 0 which is the law of conservation of energy.
2 2
ii. With current U # 0
In presence of a current the law of conservation of energy is replaced

by the law of conservation of wave action (cf for instance reference [12])
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SE/d_ , 3 (cg /o) = 0
Btl axl

Once more if we neglect the ATT and |A{2 A terms in equation (2-43) it

gives
9A JA 1 3o o 3Cg/o
— + Cg == A+ A
Btz ax2 20 8t2 2 ax?_
or

if we take (2-46)* x A + (2-46) x A* it gives

31al%/o EI( al%/0) _ 0

Btz sz

which is the conservation of wave action.
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3. Evolution Equations for Special Cases.

3.1. Case without current.

This case has already been studied in reference [5].

As indicated

in § 2.3(b) we can take k = k(xz) w=w. Lt U=0 ¢ =0; equation

(2~43) takes the form:

' 1 oy 2, _
y(xy) A +—-—-———Cg(x2) Atz +A_ +iy', (x) A+ iy.(x,) lal“A=0

2

where the coefficients yi, yé, yé which depends only of X, are:

(1-8@ -gkh) _ 1 dcg

y](xy) = (kh)

X) 8 + kh(l - 82) 2Cg  dx,

- - —L - &h -
Y2(%) = - 3a6z {1 - Gg2 @ Bkh)}

4 2, 2
Vi) = g {9 - 108° + o5t - 2
- Cgbp~o7B gh - Cg

+ -8 1 _ g9
2
Ce

e

C
P

Cg

;

(3-1a)

(3-1b)

(3f1c)

CP 2
thge -89

(3-1d)

which agree with reference [5] where the case At2 = 0 is studied.

If furthermore the depth is constant yl(xz) = 0 and the equation

reduces to the cubic Schrédinger equation with constant coefficients with

an additional term due to the fact that variatioms in t2 are allowed.

3.2. C(Case with stationary current.

Let us first recall the Airy's equations governing the evolution of

the current.
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P]
= *+ 3;{—[(C+h)U]=0

2 2

U U oL
— +U+—+g +0
atz 3x2 sz

In the general case the solution of these equations is not stationary.
This is certainly true if h is constant since Airy's equations with constant
depth do not admit stationary solutions (except the trivial solutién
constant in X, and t2). In this case the problem is very complicated
éince k and w are functions of X, and t, and the coefficients of the
equation governing A depends on x, and t2, we must first solve for w and
k and then look for a solution function of the three independent variables.
This case will not be pursued here.

Mathematically it is particularly interesting to study the case of
a stationary current since in this case, as indicated in § 2.3(b) we
can take k =-k(x2) w=w = constant; the coefficients of the equation
for A are also independent of tye So if the boundary conditions for A
do not involve t2 we can reduce the problem to a 2-D one, ignoring the
variable ty.

Physically this limitation allows us to study the effect of wvariation
of depth on the propagation of a wave packet in the presence of a strong
current once the stationary state for the current is obtained.

Let us examine the possibility of a stationary current.

i. If h = constant the current is stationary only if U and z

2L _dh
ni— =

t2 dx2
In the Airy's equations the coefficients of the equation for A are then

are constant everywhere. This can easily be shown by taking =0
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y, = constant (3~2)
¥4 = constant

e . 2, _ -
and A satisfies sz + iyZArT + iy, |A| A=20 (3-3)

for the expression of y, and ¥4 see (2.44).
Equation (3.3) could have been obtained by writing the equation for A,
for constant depth and without current, in a moving frame.

ii. If h is not constant then there exist certain conditions
on the depth profile for the existence of a stationary solution to the

Airy's equation. If U and ¢ are only functions of Xy the Airy's equations

become:

@ G L@+ wul =0

which implies (g + h)U = constant = ¢l = flux at - = = UlHl where Ul is

the velocity and Hl the depth as Xy > = . The origin of the z-~axis is

chosen such that c(xz) + 0 as Xy > = @,

@ v gde

—— +g 0
dx2 dx2

U.H
Equation (1) gives us U = ?%?%%57 . If we substitute this expression in

(2) we get:
2. 2
! , de+my Lo 4o
(z + h) dx2 & dx2

which gives by integration

11 1
2
(¢ + h)

+ g¢ = constant
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U 2

Since as Xy > - h » H1  + 0 the constant of integration is-jf-.

We then find the following equation for ¢

Ulelz +2g z(z + h)? - U12(; +m)2 =0 (3-4)
or
2 2 2
3 U U
g+b)\’ [, "1 \fz+n) . 1 _ -
( H1 Hl + Zng Hl } + Zng 0 where h h(xz}

EL%%ll is, if it exists the root of this cubic equation such that (xz)
1

is continuous and vanishes as Xy > - @

If we use the following dimensionless variables

L= HlL' (H1 is the typical length scale)

U

V/gﬂlU' (v/ng is the typical velocity scale)

then:

£+ h

= X = dimensionless total depth

%' = h' = dimensionless depth without current (3-5)

1 g
ol

1 = dimensionless velocity at x = -~

1

Dropping primes, the equation for the unknown X(xz) is:

2 2
3 Uy oo U
X - (h(xz) +-—-2—~) X +—2— = 0» (3-6)

It is straight forward but tedious to study the possibility of a
solution X which must be continuous and approaches 1 as X, +> = o,

Leaving the details to Appendix A let us give here only the results:
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if Ul2 > 3 /3 then for any h > 0 we have one solution

2

. 2
if Ul <3 /3 and U1 # 1
3/ 2 Ulz
i. if h > he =3 Ul - 5 (he < 1) there is one
8
solution.

ii. 1if h < he < 1 there is no solution

2 _
if Ul =1

i, if h > hc = 1 there are two solutions
ii. 4if h < hec = 1 there is no solution
The important fact is that, once U1 is given, a statiomary current is

possible only if the depth profile satisfies everywhere h > hc.

T W—)x

no stationary current

possible for x > xc

Fig. (1)

Values of,hc(Ul) are plotted on Fig. (3)
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The problem we want to study can the be summarized on the following

figure:
z
X
>
s 0 T T - 1
' ‘--\C(\X) . (;2_ ol
' e m =~
1m0 ! h,
3
by : h(x) U(x) . U,
Ul =0 , :
‘ f’/'["l’,/’
]
)
'
[ ] ey
r’/fl"///(l//l "l//"'/'
Fig. (2)

This is the only problem we will now consider.

Assuming the boundary conditions for A to be independent of t

2 let

us now give the dimensionless equation satisfied by A(xz,r).

*+ The length scale is Hl

+ The time scale is Hl It means in particular that the dispersion
,/.g_

relation can be written in dimensionless wvariables:

(27/T - kU)% = k tanh (kX)

The dimensionless amplitude is A' = A

pgH,

(A has the dimension of

a pressure)

+ The velocity scale is ng

Then in dimensionless variables the equation for A' is (primes will be

dropped):
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Figure 3. Critical depth as a function of the current at -«



: . 2, _
yl(xz)A + sz + 1y2(x2) A+ 1y3(x2) |A]© A =0 (3-7a)

where the dimensionless coefficients are

1 dCg/o

1169) = TCeTo) Tax, (3-7b)
1 (cg - )2 X 2
2(%0) = Tocs T3 1-—=—, a-89 -0l (3-7¢)
. Cg (Cg - U)
2 2
Y3(X2) = ____I;T 9 - 1032 + 934 -2 E_(_g.g__.q)_. 9
ACng g X-(Cg -1
CP : CP 2 X 2,2
4 -5 *4— (1-8)+—=—, @-289)71, (3-7d)
g Cg - U (Cg - U)
' . . \ z+h
where all the variables are dimensionless, X = i
1

To solve the problem for A(xz,r) we must prescribe boundary con-
ditions. It is known (cf part II) that for the cubic Schrddinger equation
with constant coefficients u_ + i vu_ + iv |u|2 u=0 (u(x,t)) the
problem is well posed if we specify:

u(x,t = 0) = £(x)

boundary conditions as X - te
For instance u and all its derivatives vanish as t -+ b o, So the
boundary conditions we choose are obviously

A(0,7) = £(1)

I +
+ boundary conditions as T > - «

b:d
dx

Ce(x,)

T = - ¢t when x = 0. The boundary condition at Xy = 0 is simply giving

Since x, = c2x and t=¢ (f

2 - t) it follows that

A as a function, (slowly varying) of time.



PART II: ANALYTICAL STUDY
In this part we only study a problem which does not involve t2
(stationary current and boundary conditions independent of tz). The

initial value problem is then:

. . 2 _
yl(XZ)A + sz + 1y2(x2) Art + 1y3(x2) IA[ A=0

A(0,T) = £(71) given (0-1)

+ conditions as 1T + T
1. Study of the Equation when the Coefficients are Constant.

1.1. Generalities.

When the depth is constant the coefficients Yys Y5 are constant and
vy = 0. The equation we have to solve is the cubic Schrddinger equation

with constant coefficient. Problem (0-1) becomes:

. . 2, -
sz + 1y1ATT + 1y, |A|“A=0

A(O,7) = £(1) (1-1)
A +
+ condition as T > =
This cubic Schrodinger equation which appears in many other contexts
involving nonlinear dispersive waves has been studied a lot since more
than 10 years. It has been shown that the method found by Gardner and
Miura (1967) reference [6] to solve the K.d.V equation u,_ -~ 6uu

t
+ U = 0, governing the evolution of nonlinear dispersive unidirectional
waves in shallow water, can be extended to this equation. This result,
due to Zhakharov and Shabat was first found for the case Y1 Yy > 0 (1972)
reference [28] then for the case V1Y, < 0 (1973) reference [29]

with different boundary conditions as v > * » for the two cases.

The method used is the so-called Inverse Scattering method, whose
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domain of application includes the modified K.d.V equation (ut + 6u2ux

+ U = 0) the sine Gordon equation (uxt = gin u) the sinh Gordon
equation (uxt = sinh u) and other non linear P.D.E. This method essentially
reduces the nonlinear problem to a linear one which is still non trivial
but which can be studied in the limit T + = Xy, > @ Xp=CT.

For a very good review of this method, in a rather general frame-
work, see for instance Ablowitz, et al. (1974) reference [1].

Here we will recall some well known special solutions to the cubic
Schrédinger equation (to be called C.S.E, for brevity). In Appendix B

and C we will give the details of the inverse scattering method as it

applies to this equation.

1.2. Some special solutions of the cubic Schr&dinger equation.
The form of the special solutions of the C.S.E. depends on the sign of

Y195 If there is no current it is a classical result that:

- 4if kh > 1.363 Y1Y9 > 0 (deep water)

- 1if kh < 1.363 ¥1¥, < 0 (shallow water)

The following exact solutions of the C.S.E. can be found in

references [28], [29], [7], [14] and [19].

(a) Y199 > 0 We take without loss of genmerality y; > 0 y, > 0
i, Stoke's waves: A = A(xz) =a_ exp - i(aozyzx2 + ¢)
(1-2)
It is well known that this solution is linearly unstable to long
waves disturbances (Benjamin Feir instability reference [2]).

ii. Cnoidal waves:
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T
ACXZ’T) =a,cn ao/ Zg_ m ] exp i(m2 X5) (1-3)
2y1

w
where m = 2 +-§g-—% and c, is a Jacobian elliptic function.
2 a
o

iii. Soliton and multisoliton:

e When m - 1 the cnoidal wave becomeg:
ia‘y :
A(xz,r) = a sech.(aJ Yo T ) exp( 3 2 xz) which is a particular
2y1

case of the general soliton solution.

y
exp i [(CZ/Y]_ - 3_-2- a%) Xy = tly;t+ ¢ ]

A(XZ,T) =a (1-4)

cosh a Yo (t - ro.- 2cx2)
V 25,

Whose envelope |A| = a sech a /yz (t - T, - 2zx) 1s a solitary wave
2y1
propogating in the X,T plane, at the velocity'%z, or, in the x,t plane,

at the velocity V_ =Cg(l - ZEC)_l

As we shall see later, the soliton is a particular case of the
multisoliton, or N-solitons solution which is an exact solution of the
C.S.E.; the exact expression of the multisoliton is messy but it has the
property £o break down as v > * = X, > * » jinto N individual solitonms

with different speed and amplitude, with an exponentially small correction.

2 vy
X 2 2 n
A(xz,r) v a expi (Egz'- 7 3, ) Xy = §Z'T + ¢§}

sech a ZZ (t - Ty = ZCnxz)
2y1 .
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T = chxz +V V fixed

An observer traveling at the speed vs will see, as t -~ * » an
individual soliton with exponentially small corrections.

* A special limit of the N-soliton is the case of bounded solitons.
In this case two or more of the individual solitons have the same speed.
They cannot separate. This solution has the property to be periodic
in X,.

The exact expression of the N-bounded soliton in the special case

where N = 2 and Ly =%, =0 is (reference [19]):

X

A(x,T) =22 exp(d 520 cosh 3V[§1 T+ 3 exp 4ix2 cdsajr;l Ty X
v, |
-1
cosh 4Jf§1 T+ 4 COShV[;I T+ 3 cos 4x2:} ' (1-5)

It is important to remark that all these soliton solutions satisfy the
boundary condition:
A and all its derivatives - 0 as T + + «

(b) y,¥, < 0 without loss of generality we take y, >0 vy, <0
172 1 2

i. Stoke's waves:
A=A, =a exp - i(azy X, + ¢) (1-6)
2 272
It is well known that this solution is linearly stable to side~band
disturbances.
ii. Cnoidal waves:

A(xz;r) = a sn(a =¥, t/m) exp i(wz xz) (1-7)
2y,
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where m = -(1 + 2) and Sn is a Jacobian elliptic function.

iii., Envelope-hole soliton:

+ if m - 1 the previous solution becomes

A(xz,r) = a tanh(a / -y, T ) exp(—iyzazxz) (1-8)
2yl

which is called the phase jump solution. This is a special case of the

envelope~hole soliton (reference [7]).

2 o 172 o
A(xz,r) = a(1l - A"sech“Y) expi (v - Kx + o(x)) (1-9)
2
where:
Xy -X, - t/Vg
X = T
0
v ——Zﬂyl
§=0-@-a% 12
Vt A
g o
(1-10)
2
2 2 3 -A 2, 1/2
K=-Qy, +a vy, ( 5 ) - (1 -A )'?fﬁ-
0
a2 - _ 2
2 2,2
4y2 Q Y17 A

alx) = Sigl {% tanhy/(1 - a2 sechzx)l/z;}

It is easy to see that if we take the limit
A-~>1
Q>0

with ©T = constant
o
T, + o«
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in (1-10) and noting that:

2

o(x) = Arcsin {%ign () x (}l)} = gign (yx) x %-and (1-A sechz)()l/2

= |tanh x|

the envelope hole soliton reduces to the phase—jump

. X 2
A(XZ,T) " a tanh(a ] =Yy T ) exp - 1(y2a X, - m/2)
2yl

We remark that as T - = =

R 2
T >+ A(xz,r) N oa exp - 1(y2a X, = m/2)
T > - o A(x,,T) n-a exp - i( azx - /2) = a exp - i(a 2 + 7/2)
2° xP Y92 % P 2 ¥¥2

As T - + and - » the phase jump soliton behaves like Stoke's waves but

with a phase jump of m between + and - =,

2. Study of the Equation when the Coefficients Are Not Constant.

The problem we are interested in is the following (cf Fig. (2) of
section I-3-2).

Zone (I) x<0 h=H U= =0
Zone (II) 0 <x <L h=h(x) U=710U® z = (%)

Zone (III) x >L h

i
)
c

1]
(o]

« In regions I and II where h is constant the coefficients of the
equation governing A are constant. We can then apply the Inverse

Scattering method to solve the problem.

given A(x2 XO,T) X < 0 we can find by IST A(xz,r) for - o< Xy < 0
given A(x2 = xl,t) x,> szL we can find by IST A(xz,r) for X, > azL

+ In region II where the depth varies the coefficients are not

-47-



constant and the IST does not apply. The main problem is, given A(x = 0,t)
find A(x = L,T). At present this goal can only be achieved numerically.
This will be the object of part III. However, it is possible to find

some analytical results which can be useful in themselves or for checking

the numerical results.

2.1. A particular solution.’

(a) Expression of the solution: When the coefficients Y1 to'y3 are
only functions of X, but not t, an exact solution of equation (I-(2-43))
is possible which is the generalization of Stoke's waves. for a constant
depth.

Let us recall the equation

2, _ .
y; (x))A + sz + 1y, (xy)A . + 1y,(x,) |aA|©A=0 (2-1)

We look for a solution which is only function of X,. The equation ié

then:
yq (xm)A + Td% + iy, (x,) IAJZ A=0 , (2-2)
2
X

Let us write A = B(xz) exp (- f 2 yl(u)du). The equation for B is
o

dB , X2 2
E’_‘_z—+ iy4(x,) exp (-2 £ y;(@)du) [B]® B =0 (2-3)

Let us now write B = bo expif(xz) where bo is a constant and f(xz) is

real then f is one solution of
_ ) 2
1£'(x,y) + iy5(x,) exp (-2 £ y;(u)du) b " =0 (2-4)

X
£(x,) = -boz £ 2y3(V) exp (-2 { v yp(u)du) dv - ¢

with ¢ being an arbitrary constant.
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A is then given by
X X v
2 2 2
A(xz) = bo exp(~ f yl(u)du) exp -1i o f y3(v) exp (-2 f yl(u)du)dv
o o o '

+ 4,] (2-5)

1_dcg/o _ d1n(Cg/o)

2Cg/o dx2 d X,

since Vl(u) =

we get

: xz
(- 'y, (u)du) = [Cg, Cg .
oo [ = [ag / /:w

Define the local amplitude b(xz) by
b3
2

b(xz) = b° exp - £ yl(u)du

we get

Cg _
b(x,) / C =b / 0
2 ;8_ o -o,—o— (2-6)

Using this result (2-5) may be written as:

X
A(xz) = b(xz) exp - i'£ 2 y3(v)b2(v)dv (2-7)

Therefore on a slowly varying bottom h = h (xz) the Stoke's waves
amplitude transform according to the linear law (2-6) while the phase
changes according to the nonlinear law for a constant dgpth if the local
depth is used.

In the special case of a constant depth vy, = 0 yq = constant and

, 2 (9=
A=Db exp- 1(b, Y 3%,y +¢) (2-8)
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(¢) Linear Stability of the Solution: it is well known that Stoke's
waves for the cubic Schrddinger equation with constant coefficients:

A

. . 2, .
<2 +_J.}»ATT +iv |[A|©A =0 are

i. Linearly unstable for Av > 0 which corrresponds to deep
water for which envelbpesolitons exist.

ii. Linearly stable for Av < 0 which corresponds to shallow
water for which envelope solitons do not exist but envelope-hole soiitons
exist.

This is the so-called Benjamin Feir Insﬁability (reference [2]). This
result caﬁ be extended to the solution found previously. The proof is
as follows:

We consider the equation yl(xz)A +A L+ iyz(xz)ATT + iys(xz) |A|2 A=0
As in (a) we write A =Vexp( - fxé yl(u)du) B. If we furthermore write
B=Dbexp i¢ where b and ¢ arg real. By taking real and imaginary part

the equation is equivalent to:

be = 2Y2<x2)bf¢r - Yz (.Xz)b ¢TT =0

(2-9)
- 2 ! 3 =
Boga T Yo (xpdb o = ¥p(xpdb 9.7 + 337 (xp)b” = 0
X2
where y3'(x2) = y3(x2) exp (=2 f yl(u)du) (2-10)
0
Let ¢T = W the equations for W and b are after some algebra:
2
3b AW
2 T2 T 70
(2-11)
b
w3 T ' 24y 2
ox, © {yz(":z)( b WZ) +y3 "} =0
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The Stoke's waves solution satisfies:
b = bo = constant
¢ is independent of T =>W =0
Let us consider the linear stability of these Stoke's waves; for this
we superpose to the original solution b = %f W = 0, a small disturbance
b' << 1, W' << 1, we plug in the equations and linearize in b', W'.
The equations for b' and W' are then

_— 2 0
2bnb 2y, (x,)by" W' = 0

0 x2
2-12
i w202 et =0 o
x2 b TT - Y3 Xy 0t
Then we assume disturbance of the form:
b' = b exp i(f(xz) - Q1)
(2-13)
W' = W exp i(f(xz) - Q1)

The problem we want to study is: if one disturbance which is periodic in
T ( Q real) is given, will it be amplified in x2? This will be the case

if Real (if(xz)) is positive. Note that T = 0(l) corresponds to

X

f %g’— t = OG—%) which is much smaller than x. Hence (2-~13) may be

assumed. If we plug the expression for b' and W' in the equations we find:
kel 2 -~
i2b, £'(x,)b + iy, (x,)b," Q@ W = 0
0 0]
2 272 (2-14)

o -3 b o vy 0o
it f (xz) +1iQ yz(xz) bo 2y3 (XZ) ib =0

The linear homogeneous system has a nontrivial solution if and only if

the coefficients determinant is zero:
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2

Q ¥, (x,)
€ )% = 27, %8y @8 (— - 3(x f } (2-15)
2 vy
| Zbo 272
X2
As y3'(x2) = y3(x2) exp - 2 é yl(u)du, Y3 and y3' have the same sign.

We find the same results as for constant coefficients:

. . 1 Py

i. If y3(x2)y2(x2) < 0 then for any Q f.(xz) is real, f(xz)
is real the disturbance will not be amplified in space.

ii., If y3(x2)y2(x2) > 0 then if Q is sufficiently small

»f'sz)Z <0 = f'(xz) = a * ip => if(xz) may have a positive real
part => There is some amplification along the x axis. (But the amplifi-
cation may be limited if f(xz) is bounded, which is not the case for
constant coefficientswhere f(xz) = sz.)

Case i. is always stable. -

Case ii. may be unstable.
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2.2. Evolution laws.
When the coefficients are constant it is well known that the cubic
Schrédinger equation admits an infinite number of conservation laws, i.e.,

it is possible to comstruct an infinite number of P Qn n=1,2, ...

Pu 3%

depending on A and its derivatives, such that T + 5= =0 (2-16)
2
If A and all its derivativesvanish at T = + «» it gives the infinite

number of conserved quantity:

o oo

-— f Pdr =0 => f Pn(xzsx) dt constant (2-17)

Y

These conservation laws are physically important since they express
the conservation of mass, energy . . . . Mathematically the existence of
an infinite number of conservation laws seems to be strongly related_to
the fact that the erolution equation is solvable by the Inverse Scattering
Method.

When the coefficients are not constants it is no longer possible to
have these conservation laws but we can find their equivalent, which we
call evolution laws since, for the first at least, they allow us to
follow the evolution of certain quantities. Here we only derive the first
three evolution laws by guessing their form (for this we use obviously
the conservation laws for the cubic Schrédinger equation with constant
coefficients).

To simplify the algebra we make the following transformatiomns

b
it

X9 n o
exp (- f yl(u)du) B and B(xz,r) = B(x,t) where
0

X2
X = f yl(u)du
0
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Then it is easy to check that B is solution of

B, +iB__+ive [8]°B =0 (2-18) (E)
Y3 (x,(x)) Xg (%)
where v(x) = ——— exp -2 f yl(u)du

it is easier to study the evolution laws on this equation which will also
be called (E) for convenience.
(a) First evolution law: Energy equation
We simply take (E) B#* + (E)* B where * means complex conjugate.
Then

; . 4 4 _
B B* + B *B + 1 { B_B* - B _*B}+ iv(x) |B]™ - iv(x) |B] =0

2 ,
= i % - * = % — (B% = -
<=> |B|X +1 {(BB*) - BB* - [(BB)_ (8% )1} = 0 (2-19)
alBlz a(BTB* - B§B)
ox + i = 0 this is really a conservation law for B;
aT

if we assume BT > 0 and B~ 0 as T + & « this equation gives by inte-

gration:
3 T2 e 2
= [ IB|®dtr=00r [ |B(x,1)|° dt = constant (2-20)

This gives for A, and after using I3-7:

Cg (xz) f IA(XZ,T)lZ d T = constant (2-21)

To find the next evolution laws the algebra is still very simple but more
messy. Let us give only the initial step and the result.
(b) Second evolution law: if we consider (E) B? + (E)* Bf, we

obtain

~54—



3 3,1 , 2 . iv(x) (o144
37 (B*B_ - BXB) + 5= { 5 (BB - B*B ) + il |7+ == [B]* } =0

N

This is still a conservation law for B. If we assume once more B - 0
B_»~0 B >0 1> * « we have
T X
+ «©

f (,B*BT - BﬁB) dt = constant or (2-22)

X9 +co
exp (2 g yl(u)du)_ i { A*(xz,r) AT(XZ’T) - A?(XZ,T)A(XZ,T)} dt

= constant (2-23)

which is still an evolution law for A

(¢) 1If we consider (E)Bx* - (E)*wae get:
4
3 3 2, vx) 3|t _
dT (BxBr* + BX*BT) T ox IBTI = 9% =0 (2-24)

Since v is function of x this expression is no longer of the form of a
conservation law for B; no corresponding evolution law for A can be
found.

One consequence of relation (2-24) is that the method used by Mei,
reference [12] to study the evolution of the soliton of KdV equation
moving over variable depth, is no longer possible. In this method it is
assumed that as the depth changes the soliton, which is given at x = 0
by A(0,T) = a2 sech2 at, see reference [ 8], conserves its shape, i.e.,
at the end of the depth changeAthe profile is given by A = b secth(T-To).
b and K are then found by using two evolutions laws. If we try to do
the same for the cubic Schrddinger equation, i.e., if we assume at the

end of depth variation a sech profile A = b sech Kt it is not possible

to £find b and K by using evolution laws. Indeed the first one gives us
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2

o'

the second nothing (since A is real A¥ A - A*A_r =0 so 2-23 gives

o R

= 0). Since there are no other evolution laws we have only one relation
for the two unknown b and K.

One important consequence of the first evolution law:

The first evolution law can be written as:

+
E%‘(xz) f IA(xz;T)l 2 dt = constant
-

It is well known result of linear theory that, when the waves propagate
against the current, the shoaling coefficient %5 can become zero. This
happens when the current is such that the following relation is satisfied:

(See for instance reference [12] chapter 2)

C
- __p
Utx,) 7

As CP depends on k which depends on U, this is an implicit relation for
C

U. The place where U = - _E

2

is called a caustic, at which our nonlinear

theory predicts:

+ @ )
f |A(x2,t)| dT =

which is the extension of the linear result:

IAsz)I = o« at the caustic
Obvidusly near the caustic our nonlinear theory fails. To study the waves
near the caustic a localized study using inner variables is needed. Some

attempt has been done in this field, see for instance Smith reference [21].
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PART II1: NUMERICAL STUDY.
In this part we want to solve quantitatively the problem described
in section I-3-2 which is summarized in Figure (2):

x<0 h-= h1 = constant U = Ul z=0

0<x<L h= h(xz) U= U(xz) =2z (xz) stationary current

x>L h= h2 = constant U = UZ L= 2

X < 0 will be called region (1); x > L region (2); in addition we will use

the following notation: Gli means value of the function G in the regiom i

1=1, 2)

1. The Finite Difference Method.

1.1. Preliminary:
The procedure is as follows:

i. Specify the dimensionless parameter of the problem

dimensionless velocity of the current at — » u

* dimensionless period T

* dimensionless depth profile for x <0 h=1

for x > 0 h

h(xz) to be given
ii. Solve for the dimensionless total depth, i.e., solve for

X from the cubic equation:

2 2

3 s 2
X - (h(x2)+12‘— X +2‘:2- =0 (1~-1)

such that x(xz) is continuous and approaches 1 as h(xz) - 1.

iii. Solve for the dimensionless wave-number k from

(w - Uk)2 = k tanh k ¥ (1-2)
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where w= 2T and U = =
T X

In general this equation has two roots; we choose arbitrarily to take

one (we have always taken the smallest one).

1.2. Method used to solve the cubic Schrédinger equation.

The problem we have to solve is:

(a

X

. ) 2,
2 = V1 (A + iy, (x,)A  + iy,(xy) |A]“A=0

2

< onD={0<x, <+® 3 ~0<T<=~-o]}
A(x2=0;r) = f(t) given

(+ condition at infinity; for instance A(XZ,T) -+ 0 as |'r| >

First we restrict the infinite domain D to a finite one DF ={0<« Xy < X43

—1:0 <T< 1‘0 } where we have in particular to choose T sufficiently large

since we will write the conditions at T =« , at T = % T

We use to solve the equation a finite difference method. If 5x2 and §t

are the width of the discretisation intervals, if Xy = N-1) X, and

Ty = (J - 1)6t then, the unknowns are:

n . — . -
Aj A((n—l)6x2, G - NDét) = A(Xn’ Tj) _ (1-4)
n=1,...N (forn=1 xn=0;forn=N xn=x0)
where
ij=1, .. .27 -1 (forj=1 "Tj=—'to;forj=2J-l ‘l'j=+T°)

Now for simplicity we shall write J for 2J - 1.

i

To compute Ajn we use an implicit scheme of Crank-Nicholson type for
integration in X, and centered second order differencing in.t; this scheme
is known to be unconditionally stable for the linear case with constant

coefficient; it has already been used in reference [27] for the nonlinear



case with constant coefficient énd is stable for reasonable <Sx2 and €T,
The error due to discretization is 0(6x22,6"c2).

. n _ _ -
The equations for AJ. are (yi(n) = yi((n 1) ze) yi(xn))

AT DAty D) +y (@ y,(n + 1) + y,(n)
3 i 1 1 n, . 2 2
+ A, + 1
éx 2 J 2
2
+1
AT n+l n+1l n n n
+1 - + A, " - .+ A,
J 2A1 AJ-1+ AJ+l ZAJ =
2(57)2 2(57)2
y3(n + 1)+ y3(n) n ntl;2 , ntl n2 n
+ i A A, + (A A, ¥r=0 1-5
2 | h| | J | 3 | 3 (1-5)
where the nonlinear term anﬂ' is given by:
n n n
A - 2A, + A
Yntl _ ,n _ n_ . i+1 | i=-1
A AT+ 8x) { -y (AT - 1y, () 50y2
R n;2 n
- iy, (n) IAj | Aj } (1-6)

The finite difference equation can be written as

w1 105 @@ D ty@) oy [1 . zefyl(n +1) 4y, (@)

A"
I+ 5 (51)2 2 2 2
vy, + 1) +y,(n) yo (ot 1) + y,(n)
oy 12 ) 2 41 23 . 3 '2@4—1[ %:‘ +
(87) J
4ot idx, (y,(n + 1) + y,(n)) _ o [ ) §x, { ¥y + 1) + y, ()
I asm? 2 3 2 2

=1 + 1

Yyl + 1) +y,(n) y3(@ + 1) + y5(0) A nlz}J
(s1)2 2 :



) x, y2(n + 1) + yz(n) 0

n
- = @z +a) (1-7)
2(6T)2 2 j+1 j-1
If the conditioms at §T| > o are A(x,t) » 0 we have then Alm =0 = AJm
m=1, . . . N; the system for Ajn is then:
qzn A3n+l + an A2n+l - Wzn
(1-8)
n ,n+l n , ntl n ,n+l n . '
. A + B, A, + v, A, = for =2, . ..J3-2
3 %+ TR A 5 i S 3T
n ,ntl n ntl _ n
By Ag-1 t Y3o1 A2 T Vg
forn=1, . . . N-1
where ajn, Bjn, yjn, wjn are known once A.jn ij=1l, . . . J are known.

The procedure is then straight forward:

i. We know Ajl j=1, . . .

2 5=1,...3

Next we solve for Aj3 3

can then solve for Aj
ii.

1, ... J

Remark: 4if the initial data f(t)

as T appears in the equation as ATT, it

A(xz,T) is even in t; by imposing at 1 =

we can solve the problem for T > 0 only.

1.3. Inversion scheme to solve the

The linear system is of the form:

a8y + By4y =W

A, .+ BA. + v.A, =W,
Ubiar T8t Ao T
Bibs * Ao =Yy

J (initial data at x = 0) we

. J etc.

=1, .. . till we have

A(x2 = 0371) is even in T then

is obvious that the solution

0 the condition %% (XZ;T =0) =0
linear matrix equation.
(1-9a)
(1-9b)
(1-9¢)



We solve it by the method explained in reference [18]. We introduce

intermediate variables xj and yj such that

A,.. =x. A, + 7. 1-10
41 %5 % 73 (1-10)

i. By plugging in the equation (1-9b) we find the recurrence

relation:
~Ys w, - Q.y.
¥y-1 7 Yi-1 = — (1-11)
o,x. + B, a,x, + B,
(ogxy + By (ayx; + 85
ii. The equation for j = J gives X;_1 =~ %% Vi1 =-§%
(1-12)
by using i. we have then xj,yj for j=1, . . . J-1
iii. The equation for j = 1 gives us
W, = O.X
P S e (1-13)
a.x, + B
1™2 1

We have then by A. = A.x., + yv., all the A,
VR4 T BF T Ty 3

1.4. Check of the numerical results.

* The program has been checked by taking a constant depth. In this
case the equation is the cubic Schrddinger equation with constant coefficients.
Some exact solutions are known which permit us to check the numerical
results.

Two cases have been studied. The soliton solution and the 2-bounded
soliton solution (cf reference [19]). The results are shown on Figure (1)

and (2) on which we plot the envelope of the waves as a function of X, and T .
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T
i. In Figure (4) the inital profile is A(O,t) = Z h(g—- )

sec
{;; RO

which is a soliton. The exact solution (c¢f II 1-2) indicates that there
should not be any deformation of the envelope. This result is found
numerically.

For this example we have taken U = 0.4, T = 3, h = 1 everywhere and

studied the envelope for:

x2 0 to 9

T

0 to 5

ii. In Figure (5) the initial profile is

A (0,7) = —g'sech Z
{73 Jzyz

The exact solution is then (cf reference [19]) ‘two-bounded solitons which
is a periodic function of X, whose form is well known (cf references [19],
[27] or [12]). The numerical results give this exact solution.

In this example we have taken U = 0.4 T=3 h =1 everywhere and

studied the envelope for:

0 to 4.2

"
]

0 to 5

T

» When the coefficients are not constant we checked our numerical
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results by using the first evolution law (II-2-2)

cg T° 2
35 / |A(x2,1)| dt = constant
-=Q0
In all the numerical results which are presented here this law is

satisfied within a few percent.

2. Numerical Results.

2.1. Variation of the coefficients.

It is important before doing any numerical study to examine the
variations of the coefficients of the equation, the wave number and the
shoaling cdefficient-gg as the free parameters vary. In particular we
must first know the sign of Y,¥3e We have conducted a ﬁumerical study of
these tefms. The numerical values are given‘in Appendix D for the
following cases:

v =0., 0.4, 0.8, 1.2, 1.6 and T = 3., 5., 7. as h ﬁaries from

hc to hc +1
The results may be summarized as follows:

* Without current: As h increasgs, k decreases Y, is always positive,
Y3 is negative in shallow water: kh < 1.363 and positive in deep water:
kh > 1.363. This result is well known.

« Effect of the current: Here Yy is always positive, Y3 can be
either positive or negative. From the numerical examples we have studied

we conclude that

Y3 is positive if k(z + h) > (k(z + h))o

¥4 is negative if k(z + h) < (k(g + h))0

(E(g +0)y ~ 1.36



Furthermore in the range of variation of h studied we have as h
increases:
i. If U<1 (i.e. in physical variable U < Jng )

k(Z + h), ¥,,¥4increase while Cg and (—:% decrease.

ii. IfU>1

k(?; + h), ¥9i¥3 decrease while Cg and Eg- increase.
Let us make the following remarks on these results:

~—- If we compare these results for U > 1 and U < 1 it seems that to
be conmsistent we should have, when U = 1, k(z + h), Y55¥3s Cg and %
constant as the depth varies. This is not the case. The reason is that
when U = 1 the Airy's equations which, for a stationary current, reduce to
a cubic equation for the total depth, admit two solutions (See Appendix D).
Mathematically it is not possible to choose between these two solutioms.
Physically we can choose omne by arguing that U is slightly smaller or
slightly greater than 1.

—— One interesting conclusion is the following:
IfFU <1 Y3 increases as h increases; V3 is negative in shallow water and

positive in deeper water. Furthermore Z§_ increases with the depth.
2y
2

When y3 is positive we know that K = ’y3 characterizes the steepness
2y2
of a soliton A = a sech a‘ Z_.}_ (T —To). So, in this case, for a given
2y2 |
amplitude a soliton is flatter in shallow water than it is in deeper

water. If U > 1 3 and ZQ decreases as h increases, the opposite
2y
2

results hold.



The general influence of the current, which is quite strong, can be

seen in table (1) where we give some values of the coefficients k, Cg,

%&: Yos Y3 and K = _Z; for h = 1.
2y2

On Figure (7) we give the curves vy as a function of k(z + h) for
3 different cases. The intersection of the curves at vy = 0 k(g + h)
= 1.363 is quite clear.

On Figure (8 we give the curves K = Z} as a function of h for
2y
2

different cases. The very strong effect of the period can be seen by

comparing curve (1) (T =3.) with curve (2) and (3) (T = 5.).

2.2. Study of the amplitude of the waves.

The transition zone 0 < x < L. is always chosen to be a cosine curve,

ji.e., h =1+ dh {l—cosm{}

Figure (6-a)

dh > 0

Figure (6-b
1+ dh dh < 0 8 ( )

P




T = 3 T = T=17.

k Cg Ccglo Y2 Y3k k Cg Cg/o Y2 Y3 K k Cg Cg/o Y2 Y3
U=0. | 4.38 |0.239 |0.114 | 19.9 ] 253 [2.52 |1.69] 0.457] 0.364] 3.36 | 4.72 [0.83 [|1.03 [0.66 0.746 | -2.48
U=0.11 3.17 |0.386 | 0.217 [4.76 | 61 [2.53 |1.4 | 0.63 | 0.566 | 1.17 | 0.387{0.406}{0.905/ 0.816{1.01) 0.322 | -2.75
U=0.2| 2.54 |0.531 [{0.335({1.99 | 22.152.35 }1.22 | 0.792| 0.782 ] 0.53 | -0.96} * 0.81 |0.958/1.30/ 0.162 | -2.820
U=0.3|2.15 |0.675 | 0.466 {1.03 {9.68 |2.16 §1.08 | 0.941| 1.01 | 0.276] -1.49| * 0.734{1.1 |1.610.09 |-2.825

=0.4 {1.88 [0.818 {0.61 |0.59 | 4.8 [2.016§0.98 | 1.083 | 1.25 |0.157| -1.74| * 0.67 |1.21 |1.93[0.054 | -2.807
U=0.8 | 1.297{1.36 |1.293 |0.109{-0.26f * §0.729/1.59 | 2.36 |0.028/-1.95]| * 0.51 |1.68 |3.44{0.01 |-2.71
U=1.2 {1.02 |1.872}|2.12 |0.03 [-0.9| * }0.5842.05 |3.7 0.008|-1.94 | * 0.413}2.12 }5.27/0.003 |-2.64
U=1.6 {0.83612.34 |3.1 0.01 |-1.09{ * §0.49|2.49 |5.28 [0.003] -1.91 * 0.347]2.54 |7.45]0.001 |-2.6
|
Table (1) Values of k, Cg, Cg/o (shoaling coefficient) Y V3 and K = Y3 (when Yq > 0) for h =1

2y2
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As we will see, even for a very limited range of initial profile
A(xz,r) very different comportments are found. It is not our goal to do a
systematic study of all the possible cases; we will only try to find the
typical features that can occur. As the important parameters of the
problem are the coefficients of the equation and especially the sign of
Yy Y3 it is easy by using Appendix D and the few plots we have drawn, to
see, given some physical parameters, U, T, depth profile, what should be
the qualitative evolution of the envelope of the waves.

2.2.1. Study of the fission of soliton when Yo¥5 > 0 everywhere.

We consider the case where the depth profile and U1 are such that
?2y3 > 0 everywhere. At x = 0 we assume A(0,t) to be of the form of a

soliton:
1/2

3
73
A(0,t) = a sech _ Ipl (tr - TO) exp 1 a(t + ¢)
Zy2
(2-1)
We choose o = 0 (soliton with zero velocity) and without loss of generality
take To = ¢ = 0. We want to study the effect of the depth variation and of
the current on the propogation of the soliton. In particular we want
to know what will become of the inital soliton in region 2. (An oscillatory

signal decreasing as (xz)-l/z?

a soliton? a multisolitons?)

(a) The D-R theory.

In reference [5] Djordjevic and Redekopp studied analytically the
problem of the evolution of a soliton moving over a slowly varying depth
without current. To solve this problem they made very strong assumptions.
We will check numerically if these assumptions are correct. Their work
will be referred as the D-R theory.

Let us first explain the method they used and which needs no modification

if there is a current.



x2Cx) X,

If we write A(xz,r)= exp( - f yl(u)du) P(x,T) where x = f -yz(u)du
0 0

the equation for P(x,T) is:

Y3(Xz) xz 2
- exp (-2 OI Yl(u)du) [p|“ P (xz = xz(x))

iP_ + P =
x TT
¥q ()
(2-2)
In region 1 and 2 where the coefficients are constant the solution of
this problem is related to the Zakharov Shabat eigen-value problem (cf
Appendix B-C).

u_ + ilu - q.v
T i

- = (2-3)
V. iiv = -qi*u
1 73 M2 "2t X1 =0
where .q.(Tt) =| & —— |i exp ( f v, (u)du) P(x,.,T) where
i 2 1 21
) 0 X, = €L
22
At x = 0 A is a soliton => P = P, sech(Kt).
Where : 1/2
K= }: _Zé_ . ’ (2_4)
Po ( 2 Yy | 1

Djordjevik and Redekopp made the assumption that at x = L P conserves its
original shape.

P(€2L,T) =Py sech K(r - To) (2-5)

Y3 ) 1/2

this assumption means that if in region (1) A = Py sech (PO(% T)

2 Y, I 1
Then just after the tramsition

X, L Y3 1/2 )
A = exp(~ f yl(u)du) Py sech (po 5 |1 (t - TO)) at x, = ¢ L

0 y
2 (2-6)
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1/2 g 1/2
L.e., AL = {(_& | )( Cg IZ)} Po sech { Pg (2_;2 ll) (r = 79

(2-7)
It is easy to verify that this expression satisfies the first two evolution
laws.

Let us introduce the following integral(/?:

+ o .
C/q = | IA(EZL,T) |2 dt (2-8)
e d
Since u = 7 , D-R theory (2-8) would give:
_£ cosh u
1/2

A-=x)(e& (= )(ﬁ I) (2-9)

g Y\cg | 2/ y 1 :

2

When q(Tt) = a sech K(t - TO) the Zakharov-Shabat eigen-value problem
with potential q is exactly solvable (cf Appendix B and reference [19]).
In particular the number of discrete eigen-values with positive real parts,
i.e., the number of solitons which will emerge for X, > @, is the iargest
integer smaller than % + —% .

then in region (2) the associated Zakharov-Shabat eigen-value problem has

If we assume that P(EZL,T) = Py sech K(1 - ro)

the potential:

v 1/2 EZL
qz(r) =’<§ y3 12 exp (- f ¥4 (w)du) Py sech K(t - 14)

1/2 '
{2 7, 2 (% Il)( )} sech R(T - 7p) = py" sech K(7 - =

(2-10)

Y4 1/2
K=1p — |' (in region (1) we have a soliton)
0\ 2y, "1
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The final number of solitomn in region (2) will be

y y 1/2
N = largest integer 3 (—2' ]> Ce | ]) 2 | 2) +3

(2-11)

In the next section we shall use our computed results to check the
assumption (2-5) of D-R theory.

(b) Numerical results: 1let us first discuss the few exampleé we
have studied and then compare them with the prediction of the previous
model.

Before giving the results it is important to notice that in all the
numerical examples which are worked we have limited the dimensions of the
matrix A(k,j) (cf section 1-3) such that Imax XJmax v~ 1000.  For this
reason, and since we need.sometimes a very fine discretization it is not
possible to study the amplitude for very large % So the.plots are not
always very easy to interpretate since the asymptotic state (x2 >+ )
is not obtained.

Let us also notice that the necessary fineness of the discretization,
and so the length on which we solve the equation depends strongly on the
physical parameters we choose. On all the plots the broad line shows
the end of the region of depth variation.

* Discussion of the plots: we have taken as initial data:

g q )
—= sech| —m//™—— 1
,/y3(0) (\’ 2y,(0)

This is a soliton, with zero velocity, for region (1). We have plotted

A(0,T) =

lA(xz,T)l over the region of depth variation. Five cases have been

~74=



worked out:

——in Figure (9) T=3 L =0.5 q=05 and dh = -0.6. The soliton

travels from deep to intermediate depth. We have studied A(xz,r) for
X, = 0 to 0.5
T =0¢to5

The result is clearly the disintegration of the soliton. It is-interesting
to notice that as the depth decreases the profile becomes flatter and flatter.
(In this example the relative error on the integral test (1-4) is 0.2%.)

-~ in Figure(10) U=0 L =0.5 q=5 T=15 and dh = 0.2. The
soliton propagates in water of intermediate and increasing depth. The
result is that the profile becomes more péaked as the depth increases.
(Relative error on the integral test is 37Z.) _

—— in Figure (1) T =5 L =0.3 q= 5 and dh = 0.2. The depth
increases very fast. We have studied A(xz,r) for

x, = 0 to 0.3 |
T =0¢to5
The characteristic form of the two-bounded solitons appears. (Relative
error on the integral test is 57%.)
ii. in Figures 12), (13), (14) U =0.4 T =3 and q = 2.

—— in Figure (12) L =1 dh = -0.1. The soliton travels into de-
creasing depth. We studied A(xz,T) for

X, = 0 to 5.6

T =0 to 5
The result as in Figure (9) is the disintegration of the soliton. (Relative
error on the integral test is 0.04%.)

-~ in Figure (13) L = 1. dh = 0.1. The soliton travels into
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Figure (13)



Figure (14)



increasing depth. We studied A(xz,r) for

X, = 0 to 2.8

T =0¢to5

The result is as in Figure (10) that the profile becomes more peaked .
as the depth increases. A new soliton with parameters adapted to region (2)
seems to emerge. (Relative error on the integral test is 0.64%.)

--in Figure (1.4) L = 0.3 dh = 0.5. The depth increases very rapidly

We studied A(xz,r) for

0 to 0.85

1]

%2

T 0 to 5
In this case the deformation of the initial soliton is very important. The
characteristic shape of two-bounded solitons (cf Figure (5)) becomes apparent.
(Relative error on the integral test is 1.7%Z.)

* Comparison with the model: we use two criteria to compare the
numerical results with the prediction of the model explained in (a).

i, Comparison of the shape: the sech profile is not always a

good approximation of the actual profile at the end of the region of depth
variation. On Figure (14) in particular omne can clearly see two peaks in
the profile.

ii. Comparison of the area: it is easy to compare the numerical

value of

v/f = f lA(xz,T)[ dt at the end of the region of depth variation

<«

with these given by formula (2-9). The results are the following:



qu model relative
numerical (formula 2-9 error %
T=3 dh=-0.6 30.65 : 18.70 -38%7
U=0
T=5 dh= 0.2 7.35 8.29 15%
U=0.4 dh=-0.1 3.52 3.162 -107%
dh= 0.1 3.02 3.63 - 20%
T=3 dh= 0.5 3.002 4,25 41%
Table (2)

In these results we have normalized A such that y3(0) = 1.
The conclusion is clearly that the prediction of the model is not good,
especially when the envelope at the top of the transition is not a single

soliton.

2.2.2 Study of the fission of two-bounded solitons(y2y3 > 0 everywhere)
In this section we study theevolution of two -bounded solitonswhose

shape is given on Figure (5). The initial profile is:
2

T
sech
[750 27,00

-— in Figure (15) L =1 dh = -0.1 (the depth decreases). We studied

A(0,T) =

and U = 0.4 T=3

A(xz,t) for

X 0 to 2.85

2
0 to 5

T
The result is clearly the disintegration of the original solitons. (Relative
error on the integral test is 0.1%.)

—— in Figure (16). L = 0.5 dh = 0.1 (the depth increases). We studied

A(xz,r) for
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X, = 0 to 1.42

T =0 to 5
The result is not easy to interpretate (we would have to solve for x,
much larger). It seems however that the initial two bounded solitons are

conserved but the oscillatory tail may be of some importance. (Relative

error on the integral test is 0.85%.)

2.2.3. Evolution of a sech profile when Yo¥g < 0 everywhere.
When y2y3 < 0 everywhere, if we impose A(x,7T) * 0 as T > = =

we know that any initial profile A(x;r) will evolve into an oscillatory tail

decreasing as

1
. V2

In Figure (17) we have taken U=1.6 T=3 L =1, dh

as x, > + This result is quite clear on Figure (15)

-0020 The

initial profile is

2 sech

T
J173@] {27,(®

The envelope is studied for

A(0,T) =

X, 0 to 1.83

T

0 tol

ird

In Figure (18) we have used the same values as in Figure (17) except

T =5 and
2 2 T

J173O] e J27,(0)

In both cases the integral check is exactly respected.

A(0,T) =
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Conclusion of the study.
Some interesting features can be deduced from the previous plots.

Let us first summarize them when Y93 > 0 everywhere.

1)

it was pointed out in section (2-1) that for a given amplitude a soliton

If the current U is smaller than 1 (in physical variable U < /gH

is flatter in shallow water than it is in deeper water. For this reason
the following results could have been expected:

~~The effect  of increasing depth is to steepen any initial profile.
Furthermore as it moves over a region of depth change, a soliton is trans-
formed into a new soliton, more peaked with its parameters adapted to the
new depth. If the depth change is sufficient the initial soliton can
fission (see Figure (;4) where two bounded solitons emerge after depth
change).

--0n the other hand the effect of decreasing depth is to flatten any
initial profile. 1In this case a soliton disintegrates. This result is
consistent with the fact that if the depth decreases sufficiently, Y3

becomes negative and then, in region (2), any profile disintegrates,

the final result being an oscillatory tail decreasing af/%= .
2

If U is greater than 1, it was pointed out in section 2-1 that for
a given amplitude a soliton is flatter in deep water than it is in shallow
water. For this reason it is expected that in this case the effect of
increasing depth is to flatten the initial profile and the effect of de-
creasing depth to steepen it. However, as can be seen on Table (2) in
Appendix D, when U is greater than 1, 3 which decreases with increasing
depth, can be positive and hence solitons can exist, only for very small

period. (There is only one case where Y3 is positive with U > 1, it is

-89~



when T = 1 and h very near hc, see Table (3).) For.this reason we did not
study this case.

When Yo¥3 is negative everywhere the numerical results show clearly
the disintegration of any initial profile. This is predicted theoretically
when the coefficients are constant; the fact that the depth varies does
not affect qualitatively this behavior. We have checked numerically that
this result holds even when Y3 changes sign as the depth varies, prorided
that Y4 is positive in region (1) and negative in region (2).

Another interesting feature is that, in all the examples studied, the
velocity of the eventual solitons emerging in region (2) is always the
same as these of‘the initial soliton, i.e., O.

To conclude, let us remark that although the number of examples
studied'is limited, quite characteristic features appear: they show
clearly the very drastic effect of current and depth change on the propa-
gation of a wave packet. To have more decisive conclusions it seems
necessary to study the amplitude of the waves on a much longer length,
i.e., X, >> 1. Furthermore different initial profile should be tried
and it would be of particular interest to study the effect of waves

propagating against the current.
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Appendix A: Condition for a steady current over variable depth.

We showed (in I-3-2) that X = Eﬁ;;h = dimensionless total depth in
1

presence of a current is, if it exists, the solution of the cubic equation:

2 2
ki U
B -+ K+ =0

which is continuous and approaches 1 as h =+ 1.

+ Let us write the equation in the following form:

2
3 2992 4 a2 =

X" -1+ a”)X" + a " 1)X2 where az = U1

1 2

The left hand side has the root 1; it can be written as:

LHS=X-1X - Xz)(X -X

X- - a2 - \/a4 + Za2 <0

1)

1 2
oy
X=32+\/a4+2a2>0
2 2

It is easy to show that

X2 > 1 <=> Ul > 1

XZ <1 <=> Ul <1

if U1 = 1 then X2 =1
—
As U is adimensionalized by\/gH1 the critical value is\/ng in physical

variables.

It is then easy to see what can be the different cases:



A
) Ul >1
LHS: (x-1) (x-x,) (x-x
a®) h > Hy 1 2/ h-H;
X
H1 2
z +
Hl = admissible root
M +h
Eﬁ— : admissible root
1
o) . - - -
b)) h< Hl LHS: (x-1)(x xl)(x X,

oo o o emons

> X

RHS: h < h
_ c

It is obvious that for a2 fixed there is a critical depth hc for which,

if h < hc there is no root which possessed the desired properties.

If Ul

h must be, for a2 fixed such

< 1 the figure is of the

2)

h < Hl

If U

(3) = 1 then %, = 1 and hc

1 2

solution:

same kind but X, < 1. Here also if
that h > hc.

1l; if h < Hl there is obviously no
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« Let us find hc:

h-H

iy

L x2 h > Hl

RHS:

two admissible roots

LHS (x—l)z(x-xl)

RHS: h < Hl

no admissible root

we study the case h > 0 everywhere; the equation for x is then

y(x) =
2.0
2
R
1
y'(x) =0

2

x3 - (a2 + b2)x2 +a“" =0

2

0 v(0) = a’ >0

-%-(a2 +1b2) >0

all depends on the sign of yé% (a2 + bz)) =¥ indeed

y
/|l
2
y = a
y' =0 N x%(a2+b2)
. N
— ‘/ O/ °
y <0
y' =20
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we want to have-y(r% (az + bz)) < 0.

It is easy to show that hc is given by the equation

y(%(a2+b2))=o <=> a --‘2‘7(a2+b2)3

<> \/"’
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Appendix B: Inverse Scattering Theory for C.S.E.

In this Appendix we explain how the Inverse Scattering Theory (IST)
is used to solve the cubic Schrodinger equation:

iut + L. + ¥ lul2 u =0 where ¥ = constant > 0 (B-la)
For later convenience we transform this equation by taking v = / X ug

2
the equation for v is then:
2 :
ivt+vxx+2|v| v=0 (B-1b)

When the depth is constant equation (I-2-43) can be reduced to equation

(B-1la) if Y9¥q > 0; by using the following transformation:

x, = -t
A=[2 v
73

We shall briefly explain at the end of this section what the differences
are when ¥ < 0 (which correspond to Yo¥3 < 0).
The papers on which this section is based are: Zakharov and Shabat

references [29] when ¥ > 0 and [30] when x < O, and Ablowitz, et al.,

reference [1].

(a) Principle of the method: Ablowitz et al., showed that IST
can be considered as the generalization for nonlinear problems of the
method using fourrier transform to solve linear PDE. Let us therefore

first recall some of the features of the fourrier transform method for

the following linear PDE with inital conditions:
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augi,t) = - iw( -i %;Q u(x,t) (8-2)

u(x,0) = £(x)

w(k) is the dispersion relation.

To solve problem (B-2) we take the fourrier transform in x of u(x,t):

+ e
ack,t) =-fw u(x,t) e - dx (B-3)
From d4(x,0) we know d(k,0)
e
G(k,0 = [ f(x)e T dx (B-4)

-

By using equation (1-12) it is easy to see that G is the solution of the

problem:

= -iw(k) d(k,t)
(B-5)

8(k,0) = £(k)

As k appearsas a parameter in (1-15) it is easy to solve for da(k,t).

u(x,t) is then obtained by the inverse fourrier fransform theorem:

+ o« A :
u(x,t) ='§% f d(k,t) elkxdk . (B-6)

The problem is then solved. Let us summarize the three steps of the method.
i. We map at each time u(x,t) to its fourrier transform

dk,t). As we know u(x,0), we know 4(k,0).
ii. Knowing the equation governing u(x,t) we deduce the

equation governing i(k,t). This equation must then be solved for G(k,t).



iii. At any time t we have only to invert the mapping process

of step 1i.

The IST proceeds exactly like this to solve a nonlinear PDE but
the mapping process is much less obvious: instéad of mapping u(x,t) into
its fourrier transform we have to associate the equation to an eigen-value
problem depending on the unknown function u(x,t) and in which the time
t plays the role of a parameter. Since we know u(x,0), we can solve
this eigen-value problem at t = 0. In fact we do not need to have the
complete solution of the associated eigen value problem at t = 0 but
only some information on this solution. The inférmation is contained in
the so-called scattering data. This step which corresponds to step i. in

the linear problem is called the direct scattering problem.

The procedure is then the same as in the linear problem: knowing the
scattering data at t = 0 we use the equation governing u(x,t) to enable
us to follow the scattering data in t. This corresponds to step ii.

The crux of the method is to find the proper, eigen—-value problem for which
this process is possible.

The last step corresponding to iii. is how to deduce u(x,t) from

the scattering data at t. This is the so-called inverse scattering

problem. According to the inverse scattering problem it is sufficient
"to have the scattéring data for the reconstruction of u(x,t). (Exactly
as in the linear theory: to reconstruct u(x,t) it is sufficient to
know its fourrier transform.)

Before being more precise let us make two remarks:

Remark 1: The parallelismvbetween the IST and fourrier transform

methods is not only a parallelism in the procedure. Ablowitz et al.
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showed [1] that in the linear limit, i.e., when u(x,t) is small in
a certain sense (when u << 1 the nonlinear equation iut tu + xlulz u=0

reduces to iut tu = 0) all the formulas of IST reduce to fourrier
transform formulas. |

Remark 2: The difficult and crucial step is to find the associated
eigen-value problem for which, knowing the equation governing u, it is
possible to follow the scattering data in t. Till now there is no systematic

way to find the associated eigen value problem for a given nonlinear equation.

This has been done to a large extent by guessing.

(b) application to the cubic Schr¥dinger equation:
The problem to be solved is:
+2 |ul?u=0

iut + (1)

u
XX

ux,0) = £(x) (2) (B-7)

u(x,t) and all its derivatives vanish as x - + » (3)
* The mapping process: direct scattering problem.
Let us associate with equation (B-7) the following eigen-value problem

for vl(x,t) and vz(x,t)

Vi + inl = u(x,t)v2
(B-8a)
Vou = inz = —u*(x,t)v2
which can be written in the following form:
1-52 ~iu
| x V1
Lv = v where L = 3 and v = ( (B-8b)
-iu* -i— v
ox 2

In this problem 7 may be considered as a parameter; t appears also as a
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parameter; u(x,t) which is the unknown solution of (B-7) is called the
potential of the eigen-value problem which we shall call the Zakharov-
Shabat eigen-value problem. Regarding (B-8) the following results hold
(see Appendix c for proof):

+ ®

Theorem 1: if u satisfies [ l[ux,t)| dx <+ » (so it satisfies

-

in particular B-7(3)) then:

i. If ¢ is real there exist 4 solutions to problem (B-8)

¢ - ¢, * " - by*
1 2 =1L Y = 2 which have the

¢=

-©-
[
<

following asymptotic behavior
¢"'(é)e-lcx and?'\'(_g) e asx - o
(8-9)
w'\:(g)elcx andam(g)') e-'i?;x as x > + »
(A1l these solutions are function of x and depend on ¢ and t as parameters:

These solutions are the Jost functions of the problem.

Furthermore it is easy to show that (¢,$§ and (w,$§ form 2 sets of inde-
pendent solutions. As one linear system of 2 equations of first order

admits only 2 independent solutions we must have:

0(x35,t) = a(z,t) P(x;z,t) + b(z,t) V(x;z,t)
T=-ay+d I (8-10)
we say that Ze|R is an eigen value belonging to the continuous spectrum

)

ii. If 7 is complex and ImZ > 0 it is still possible to define
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igx

¢ and y as solutions of (B-8) satisfying (B-9). Furthermore lim e 5 (x)

X+ +

exists. We define a(z,t) for Imgz > O by this limit. In view of (B-9)
a(Z,t) is just a transmission coefficient. ¢,y and a are analytic
functions for ImZ > 0. So a(z,t) has a finite number of zeros with
Imz > 0. These zeros Ck k=1, . . . N are called the discrete eigen-
values. Also, if ¢ = (5 then w(x;ck,t) and ¢(X;Ck,t) are dependent, i.e.,
there exists bk(t) such that ¢ = b ¥. '

The solution ¢ is called a bound state. In general b (z,t) is not
defined for ¢ complex so we can not write bk = b(Ck;t). However, if
u. satisfies more stringent conditions as x + + » (for instance u(x,t)
has a compaét support) then it is possible to define b for 7 complex.

In this case bk(t) = b(Ck,t)-

We now explain what we mean by scattering data.
Definition: the scattering of data of problem (B-8) are a(z,t)
for ¢ in the upper half plane, i.e., Img > 0, b(z,t) (for ¢ real), Cj’

by(t) (for § =1, ...N)

The first step of the method is then: knowing u(x,0) find the
scattering data at t = 0.  This step is obviously much more difficult
than in the linear case where we had only to take the fourrier transform
of the inital data u(x,0); the Zakharov Shabat eigen-value problem
(B-8) is exactly solvable only for very few potentials u(x,0) = £(x).
Among these potentials, one which is particularly interesting is u(x,0) =
A sech x. This case is studied in detail in reference [19]. But even
when (B-8) is not exactly solvable the method provides a lot of quali-

tative results.
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*Evolution of the scattering datas with t:

The next step is to follow the scattering data with t. This is
possible because we have chosen (B-8) especially for that. The following
results hold (see Appendix C for proof).

Theorem 2: if u(x,t) satisfies equation (B-7(1)) (+ conditioms as
x > * @ ) the scattering data of problem (B-8) have the following properties:

i. ;j is independent of time, i.e., if T = ;j is a discrete
eigen value at time ty then it is also one at any time.
ii.
a(z,t) = a(z,0)
b(z,t) =b(z,0) exp (4iz’t) (B-11)
by(t) = b,(0) exp (41c°t)
The equivalent of step ii. is then achieved.

* The inverse scattering problem:

The last step is: knowing the scattering data at t by (B-11), find
u(x,t) the potential which creates these scattering data. This is a
highly mathematical problem involving integration in the complex plane.
The following results hold: (see Appendix C for proof).

Theorem 3: If the scattering data for (B-S) are a(g,t) (for ¢ in
the upper half plane) b(g,t) (for ¢ real), Cj and bj(t) G=1, .. . N
then the potential u(x,t) of B-8) is obtained as follows:

i. Solve the following system of 2N + 2 linear integral equations

for v, (x;2,t), Y,(x;5z,t) for ¢ real, ¥ (x5%,,t) ¥,(x5Z,,t) k=1, . . . N:
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~40T-

ig, *x +% ' ¢ iC'X
b* (x5 ,t)e RS +§1-1i - - 'b(g ") V(52 tle
=% a0 (-5 *)
-i X “+c0 s 1
1 de'b* (' ,t) . -ig'x
lpl(x, ;k’t)e = P { & 2 wz*(x, C'at)e -

© a*(g',t)(¢'-g)

i © dz'b 1ghx
b ¥ (x5 ,t)e " j,_‘L aa PR D O e _%Mﬁl
2 . e a(C"t)(C'"C) a(C:t)
- b, (t) ‘Pl(x;ck,t) eiz;kx
k=1 2@, (g-o

In all these equation x and t may be considered as parameters.

We use the following notations: -+ f#* = complex conjugate

. 412

-C0

a' = da (a is an analytic function in the upper half plane)

g

principal value of the integral

ig.x

bj(t) ¥ 1(X;Lj:t)e

a'(g,t) (g-g*)
0 (s

-ig.%x

bj*(t) ¢2*(x;Cj,t)e

1 a'*(cj,t) (ck—cj*)

i
wl(X;C’t)e o

for ¢ real

(B-12)
continued on next page
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(B-12) continued

ig'x
-irx o dT'b* (L', t) Y, * (x50 ,t)e irx
_ ! 2" (K3, 1 b*(x) ,
lpl(x’c’t)e - 2mi + 2 a*(c) wz*(x:C9t)e

-o a*x(g',t) (¢' -7)
N

+ E bk*(t) q’z* (X;Ck’t) e"iCk*X

a'*(g, ,t) (g, * - )
K= 1 k k

In all these equations x and t. may be considered as parameters.
We use the following notatiomns:

» f#* = complex conjugate
+ o
. f = principal value of the integral

- 00

for ¢ real

« a' = gé-(a is an analytic function in the upper half plane)

T dg



ii. u(x,t) is then given by:

N .
-1ig, *x
bk*(t)e
u(x,t) = =21 ——— wz*(x;ck,t)
a'*(g,,t)
k=1
L + ® b*(z',t) -ig'x
= | «pr!
-7 @ mmn e e (8-13)

By simply taking fourrier transform with respect to Z of equafions
(B-12) it is possible to give another formulation of the inverse scattering
problem using integral equations of Marshenko type (both formulations have
their advantages).

Theorem 3 bis: If we know the scattering data a(z,t) (for z in
the upper half plane), b(Z,t) (for ¢ real) Cj’ bj(t) G=1, . . . N) we
”obtain the potential u(x,t) of B-8) by:

i. Solving the 2 integral equations of Marchenko type for

Kl(x9y’t) ’ Kz (xay’ t) H

-+
(8) K (x,y,t) = Fr(xty,t) + [ K *(x,s,t)F*(xty,t) ds
X

+ o for y > x

() Ry*(x,y,t) = - [ K, (x,8,t)F (xty,t) ds
* (B-14)
where the kernel of these equations (x,t) is:
N

b, (t) iz, x +° b(g,t) izx

F(x,t) = -1 k e k +%T—r f —_— e dz (B-15)
a(z,t)
a(ck’t) hated
k=1
ii. then u(x,t) is given by:

u(x,t) = —2K1(x,x; t) (B-16)
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Let us make two comments on these results:
i. They hold when the g, are simple zeros of a(z) (i.e.,
a'(;k) # 0) and when a(Z) # 0 for § real. => all the discrete eigen
values have a non-zero (positive) imaginary part.
ii. To solve the inverse scattering problem it is sufficient
to know: a(Z,t), b(z,t) (for z real), ;k’ a'(ck,t) bk(t) (for k=1, . . . N)
At this point it may seem that we have not really made any progressi we
have only reduced the original nonlinear PDE to two nontrivial linear
problems. We shall show in the next section how to use theorem 2 and
2 bis to study the solution of our problem.
(c) Study of the solution by using IST:
e Soliton and multisoliton solution.
If the initial data f(x) is such that at t = 0 the scattering data
| satisfy b(z,0) = 0 for ¢ real then by using (B-11) b(z,t) = 0 for an& t.
The equations of inverse scattering (B-12) and (B-13) reduce fo a linear

system of 2N.equations.

N
-igf.x b, *(t) Yo *(x3Z, ,t) -iCk*X
o j + k 2 Tk’ = j =
¢1(x,cjt)e 2Rzt (% ° 0 j=1, . .. N
k J ’k
k=1
N
iz, *x b, (t) ¥, (x32,,t) 1z, x
by*(x3g,t)e I+ % L3 ™™ 21 3=1,...N
a'(gy,t) (g -g.%)
k=1 I
(B-17)
N
bk*(t) —i;k*x
u(x,t) = =21 — Y, *(x37, ,t)e _
a'*(Ck,t) 2 k (B-18)
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in which we have:

_ .2
bk(t) = bk(O) exp 4iz"t

a(zg,t)= a(z,0)
We get ¢l(§,t) and wz(c,t) for ¢ real by B-12 ¢ and d. But these infor-
mations are useless in our problem.
i. One soliton solution: It is the particular case when £f(x)
is such that there is only one discrete eigen'value (n=1) go = Ao

+ i > 0.
ing where U 0

The system (B-17) becomes:

. ) 2 .
-ig x bo*(O) -1(Co*x + 45 *7t) wz*(x,co,t)
e % UGmnn) +—— e —~—— =0
a'*(z_, 0) 2in
. 2
17 *x b_(0) 1Egx +45,70) § (xsz,t)
e o lp *(x-c t) +_o_._____. e _i____.c_).__.. = l
2" (X38:8) *+ T 03 2in,
(B-19)
© b _*(0) -1z *x + 4z _*%t)
u(x,t) = =2i =—— & Vo* (%32 5t)

a'*(co,O)

It is just a matter of elementary algebra to check that the solution is:

exp {-41(A02 - noz)t - Zixox + i¢}
u(x,t) = 2n (B-20)
°©  cosh 2no(x - x, + 4kot)

where 2
[A,]
o 2no ln 2n ¢ = -2 arg Xo

(o}
X, = /b, 0
a(z_,0)

b
L]

(B-21)
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(B~20) represents a soliton (cf II-(1-4)) of amplitude 2 Img, and speed
4 Real Co where ;o is the only discrete eigen value of the Zakharov
Shabat eigen-value problem.
ii. N soliton solutions: when u(x,0) is such that there are.
N different eigen values in the upper half plane 81 =g + inl # Zy
Fo0 . # iy = AN + ing, we must consider system (B-17) (B-18). The
study of ﬁhis system does not present major difficulties but it is par-
ticularly tedious. All thé details are given in reference [29] in
which it is proved in particular that system (B-17) is not degenerate so
that it has a unique solution. If the exact form of the solution which
can be expressed by using determinants, is not easy to interpretate,
the asymptotic form of the solution can be worked out relatively easily:
—- If all the eigen-values have different real parts Ajan observer
moving at the velocity -4 Ai will see:
as t - - = one individual soliton of amplitude ny with parameter
Ai, X, ¢
as t + + » the same soliton but with phase parameters xo', ¢'

As t * - * there are N solitons, the slowest is at the front, the
féstest at the rear; as t > + ® there are still N solitons but now the
slowest is at the rear, the fastest at the front. TFor each soliton the
effect of the interaction is a change of phase ¢ and origin X,. One
important feature is that this interaction is only a pair wise interaction:
the final result of the interaction of one soliton with all the others
is found by considering the sum of the phase and origin shift for all the

interaction between pairs of solitomns.

-- If all the eigen values have the same real part then the solitons
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will not separate. We have bounded solitons. It can be easily shown
by considering the expression of the solution in its determinant form
that the bounded solitons contain, in time, all the frequencieswg = 4(ni2
2
-n.).
j )
» Oscillatory tail: When the initial data £(x) is such that there

is no discrete eigen values, it is easier to study the solution with the

Marchenko equations (B-16) to (B-18). In this case (B-~17) becomes’

e ictx
_ 1 b(z,t) _
£(x,t) = 5= {m ‘ai(_c-?t_) e dz (B-22)

by using (B-16b), (B-1l6a) becomes

o 4o
Ky (x,5,8) = F¥(x + y,t) = [ [ K (x,u,0)F(y + u,t)F*(s + y,t) duds
X X »
(B-23)
b(g,t b(z,0 )
hs agz,tg B a%é,o; exp 4iz"t (B-24) becomes
+ ig(z)
- 1L b(z,0)
(B-24)

g(T) = 4t + Ix

For large t this integral can be studie& by the method of stationary
phase by considering what will be seen by an observer moving at the
velocity c¢. Once an asymptotic approximation of F is found one can find
an approximate solution of (B-23) for large t. The algebra is very
lengthy but the result is, qualitatively, quite simple:

u(x,t) v 0([t|—1/2) as t > £
The contribution from the continuous spectrum is very different from that
of the discrete spectrum, and is similar, for large time to the classical

results obtained in linear theory, for the long time evolution of a
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wave packet (cf for instance reference [12] chapter 2).

+ For more general initial data b(Z,0) # 0 for Z real and there are
some discrete eigen values. The problem is much more complicated and
has been less studied. One can find for instanrce in reference [20]
the detailed asymptotic study of the case where there is only one discrete
eigen value. The expected result is that, for large time, an observer
will see:

-1/2)

i. an oscillatory tail decreasing as 0(|t|
ii. If he travels at the velocity of one soliton, i.e., if
he travels at the velocity —4Aj where Cj =) 3 + inj is one discrete

eigen value of problem (B-8) he will see a soliton of amplitude 2n.,.

(d) Some remarks on the case ¥ < 0
In this case (cf Appendix C ) the associated eigen-value problem

we have to consider is:

Vix + J.Cv1 = u(x,t) v,
(B-25a)
- 1 = *
Vo = 1V, =u (x,t)Vl
r v 1.£L— - iu
ﬁv = v where v = 1 t = 3x (B-25b)
v . ., 0
2 iu* i—

9xX

If we look for solutions which wvanish sufficiently fast as t -+ + » , all
the previous method can be applied with some minor changes due to the fact
that we have u* instead of -~u* in (B-8). The fundamental difference is
that problem (B-25 is self-adjoint, so it does not admit complex eigen-
values. As the solitons are associated with discrete eigen-values with

positive imaginary parts, they cannot exist in this case. The important
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consequence is that, if we impose u(x,t) -+ 0 as t -~ *+ » , any initial
data u(x,0) = f(x) will, for large t, evolve into an oscillatory tail

decreasing as 0(lt|.l/2

) without any solitons.

However, using the fact that when X < 0 permanent waves (Stoke's
waves) are stable, Zakharov‘and Shabat studied this case with different
boundary conditions as t ~ + » : they take [u(x,t)| - constant as
t >+ o, In this case, (B-25) is still the right eigen-value problem to
consider, the direct and inverse scattering problems are totally ﬁodified.
The results are however qualitatively the same as when x > O but the

soliton is now replaced by the envelope hole soliton whose expression is

given in Part II (1-9).



Appendix C: Proof of Theorems 1, 2, 3 of Appendix B

?roqf‘of theorem 1;

To simplify the notations we do not write explicitly the dependence

on t and %. We consider system (B-8)

le + icv1 =u v2

Vox T 1EVy = -u¥ vy
4 o
and assume | [u(x)] dx < + = (c-1)
X 2iz(z - vy)
Let us consider for Imz 2 0 M(x,y) = -u*(y) f e u(z) dz

y
(C-2)
All the results of the inverse scattering problem are consequences of
the following lemma.
Lemma: If Imgz > 0 and if u satisfies (C-1) then the following
integral equation (which is defined on the space0@(of regular functions such
iCx¢

that e (x) is bounded as x -+ - «).

igx X icgy
e  0(x) =1+ [ My e ¢(y) dy (C-3)

-0

admits a unique solution ¢e?¥, Furthermore this solution satisfies:
i. ¢(x) ~ e—iCx as x + - o (trivial)
ii. ¢(x) is an analytic function of ¢ if Imz > O
iii. ¢ei;x is bounded as x + + »
We will not give here all the details of the proof which uses the

classical arguments of Neumann series.

The existence of the solution is proven by considering the sequence:

. X ,
e15¥ ¢(n)(x) =1 + f M(x,y) ey ¢(n—l)(y) dy (C-4)

-0
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By taking the limit n -+ «® of this expression, it is obvious that the
limit of this sequence if it exists satisfies the integral equation. The
limit of this sequence is also given by the sum of the Neumann series (if

it converges)

1 X x
e1tx o(x) =1+ f M(x,y) dy + f M(x,y) dy fy M(y,u) du + . . .

.
© -

(Cc-5)

+ =

Under the assumption Imf > 0 and f lu(x)l dx < + « , This series is
-0

absolutely convergent. This proves éhe existence and the boundedness of
the solution. If ImZ > O one may differentiate term by term up to any
order with respect to 7, the result is still an absolutely convergent
series. This proves the analycity of the solution.

¢
lswhere ¢l and ¢2 are defined by:

Let us now consider ¢ =(¢
2

¢1 is solution of (C-3)

. X .. .
¢, is given by ett* ¢,(x) = - i QZIC(X_Y) u*(Y)el§Y¢l(Y)dY
- ® (C-6)

If Img > 0 it is alwéys possible to define ¢2in this way. As eiCy¢1(y)

izx

is bounded as x + + » it is easy to check that e "¢ (x) is also bounded

18X o x + = » and by simply

%1
2

as x ++ © , We have obviously ¢N(é)e-

plugging into (B-8) it is easy to check that ¢ =( ) satisfies (B-8)

(i.e., (C-3) + (C-6) is equivalent to (B-8)+specified boundary conditions
as x - - »), Furthermore as ¢l is an anlytic function of z for Imz > O,
so is ¢2.

At this point we have proven the existence of ¢ for Img > 0 and its
analycity for Img > 0. We can do exactly the same for . Now it is

obvious by simply looking at the eigen value problem (B-8) that
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fl(_c,x))
f = fz(C,x) is an eigen function for z then:
_ £, %(c*,x)
f= is an eigen function for z* (c-7)
-fz*(C* x)
?
When C is real 7 = r* and we have proven the existence of the four

functions ¢, $, Us E Furthermore, as an immediate corollary of the results
on ¢ and ¢ :

3 and _ll-l- are defined fbr Imz < 0 and are analytic functions of ¢ for
Img < 0. (c-8)

The independence of (,§) and (¢,75) can be proven by considering the
Wronskian

Wv,w) = VW, = VoW
If v and w are solutions of (3-8) with the same z, then it is just a:

matter of algebra to check that: d4W

ix - 0 which implies W = C = constant

(c-10)

Then obviously
i. if C =0 v and w are linearly dependent
ii. if C# 0 v and w are linearly independent
By considering the values of the Wronskian of ($,¢) and @ F) as x
we have W(_¢,71>-) =1 = W(tp:l-ll.) hence (¢,$) and (q;,—q,') are two sets of
independent solutions.
Let us now define a(z) for ¢ > 0 by:
a(@ = lin @ ) =1+ [ ey ) oy (c-11)
X >+ ® -

The integral is convergent at + « since elcx¢(x) is bounded as x > + =

Since ¢, is an anlytic function if Img > 0, so is a. It is obvious that
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this definition of a(g) for Imf > O coincides with these given.when z
is real by equation (B-10). As a is analytic for Imz > 0 it has only a
finite number of zeros in its analycity region. (This is a general result
on analytic functions.) We call these zeros Ck k=1, . . . N

Let us prove that if { = , then ¢(Ck,x) = bkw(;k,x). For this
we have only to prove that W(¢,¥) = 0.

Let us consider W(¢,y) when ¢ = Ty and as x > + »

iz, x iz, x -
» as a(ck) =0 => lim ¢le k" . 0 but wz noe k™ as x » +

X > +-x

=> ¢lw2 +0as x>+

* obviously eic¢2(x) is bounded as x >+ + » ., Furthermore the
equivalent formula of (C-6) for ¥y shows that e wl(x) +*0as x>+ =
Hence

b4 e—iCx

¢2wl=¢zelc Wl‘*Oasx++°°

It follows that

W(o,¥) = 610, = 0¥ >0 as x >+ => W(p,¥) =0
All the results of theorem 1 are then proven.

To be able to solve the inverse scattering problem we need some more
technical results:

first we need the analycity properties to remain valid on the real
axis. -It is not difficult to see by considering the Neumann series giving
¢, that this property will be satisfied if the following conditions on u
are required.

+ =

i |x|® u(x) dx < + = for any n

(c-12)
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*+ Second we need some asymptotic expression for ¢, ﬁ'and a for large
Z. Let us prove the formula for ¢l. By partial integration it is easy

to see that when
x 2iz(z-y) u*(y) | 2iz(x-y)
M(x,y) = ~u*(y) [ e u(z) dz v - e u(x) - u(y)
- 2iz

+0/ch) | (C-13)

If we use this expression in the Neumann series for ¢1 we have

izgx X p:4 y
¢le =1 + f M(x,y) dy + f M(x,y)dy f M(y,u) du + . . . .
x X 2iz(x~y)
1 2 . 1
V1455 _Ofo lu(y) |“dy - -2—1-5 u(X)_cJ; u®(y)e dy + 0( ?)

By using once more integration by parts, the last term is shown to be

O(-lzﬁ, so we have:
4
itx 1 2 1
b7 V14 g [lue)|Tay + 0D (a)

The same kind of manipulations give the following results:

izx 1 1
e v g w0 063 (b)
— irx 1
Ve - 317 flu<y>[ dy + 0(3) ()  (C-14)
X C
— 1ix 1 % 1
wze v 71z ¢ (x) + O(gz) ()
T
an 1+ 5 _O{Iucy)I dy + 0(?) (@)
Proof of theorem 2:
We use the method explained in reference [1] this method proceeds

in the inverse way: given one eigen value problem, find the equations

which can be solved by this problem.
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v

1
Let us consider the following eigen value problem for v =(V )

2
Vi + inl = q(x,t)v2
(b-1a)
Vou = icv2 = r(x,t)v1
which can be written
—lc q
v. = Mv with M = (D-1b)
X .
r iz

r and q are for the moment two unknown functions such that r and q -~ 0 as
t > % o, All the results of the previous theorem, in which q = -r*, can
with some minor changes, be extended to this problem.
We wish to find the evolution equations for q and r such that the two
following properties are satisfied.
i. the discrete eigen values of (D-1) are constant in time
ii. it is possible to follow the scattering datas of (D-1) time

To satisfy ii. we insist that the time evolution of V is governed by:
A(x,t) B(x,t)
v, = Nv N = (D-2)
C(x,t) D(x,t)
There is a compatibility condition between D-1 and D-2 this condition is:
v
xt

= Mtv + MVt = (Mt + MN)v = Vg = NXV + vi =(NX + NM)v

which gives
N - M +NM-MN=0 (D-3)

If we insist on i., i.e., Ly = 0, equation D-3 can be written

AX = qC - B (a)
B, + 2iZB = q_ - 2Aq (b) (D-4)
Cx - -2izC = r, + 2Ar (c)

D = -A + d(t) where d(t) is an arbitrary function of t.



In general these inhomogeneous equations will have a solution only if
q and r satisfy certain relations. These are the governing equations we
want to find.

A broad class of solutions of D-4 can be easily found by writing:

N . N
A = z a™(x, )2 B = Z b ™ (x,6) 2
n=20 n=0
N
Cc = z c(n>(x,t)z;n (D-5)
n=0

If we insert D-5 into D-4 and identify all the power of [ we find:

L0 pM L @ | (D (D)

is an arbitrary function of time; c are
(1)

found by considering the ci +1 term in D=4 b and c; a

, which is
always defined with an additive arbitrary function of time, is found'by
considering the z' term in D-4a; the z° terms in D-4 b and ¢ give the

sought evolution equations. If N = 3 it is easy to see that the corres-

ponding equations are:

0=aq, +% NE) {qmm_qu} . % . {qxx_ zqzr} _ ia(l)qx_ 22@¢  (a)

0= T, +Zi 3(3) {rm-6qrrx} - % a(z) {rxx- 2qr2} - ia(]‘)rx-!- 2a(0)r (b)

(D-6)
A0 LW @ L 3)

, a , 4 , & are arbitrary functions of t; the corresponding
values of A, B and C are not useful in this general case.

(@ GO 3(3) =0 a(z) =-21i and r =

If we take a = a = = -q* equations D-6

a and b arecomplex conjugate and reduce to:

q - iqxx - 2i|qf2 q = 0 which is the cubic Schrodinger equation
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The corresponding values of A, B, C are

2122 + 1]q |?

A

B

2q - iq (D-7)

C = _Zq* - iqx* = B*

At this pofnt the results are: 1if q is solution of the cubic Schr&dinger
equation iqt + C. + 2lq(2 q = 0 then the eigen value problem D-1 with
r = -q* has the following properties:

i, The eigen values are constant

ii. The time evolution of the eigen functions is given by D-2
Remark: if we had taken r = +q* instead of -q* the result would have been

that the governing equation which can be solved by D-1 (with r = g*) is
. 2
-2 3
iq, + q., - 2[q|%q
It is now easy to follow the evolution of the scattering datas in t.

Let us first remark that as x > -« B >0, C >0, A ~» A(_) = —21;2

so D-2 becomes

as x > - « (D-8)
—A(_)v2

1 ,
¢ which behaves as(o) e 1tx as x > - © does not satisfy D-8; it is

because by choosing A, B, C and D we have in fact imposed some kind of
A, \t
-

boundary conditions on v. It is obvious that it is ¢ e which satisfies

D-8 and the D-2. We can write D-2 as

A=Ay B

(D-9)
C -A - A
=)

_ ae 15X
but ¢ = a(z,t) y + b(g,t)p V| izx as x >~ + © ; this implies, by taking

the limit of D-9 as x - + =



a, = CAC+) - A(r)) a+ B(+)b

(D-10)
by =Crpya= (Agy AL D
. . 2 . 2icx
where A = lim A(Z,x,t) = A -2ic B = 1im B(g,x,t) e .
) X >+ o =) +) X+ +
= 0= Sy

so D-10 gives:

a_=0=> a(z,t) = a(z,0)

—4ic2b => b(zg,t) = b(z,0) exp 4i¢:2t

o
]

Proof of theorem 3:
To simplify the notations, we do not write explicitly the t dependence:
+ Let us first establish equations A-14.

For ¢ in the upper half plane it is possible to define ¢ (z',x) and

a(z',x). Let us consider the following integral:

L= § dz' ¢ (z',x)
®ra (¢ (@ -1

ig'x (E-1)

in which ImZ < 0 and SKR is a contour in the upper half plane, which

contains all the zeros of a(z)

A Img

&/ -» Real g

Na'td
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as R+ + =

I+ lim /

az'

N

R >4+ x lc'

= R
Imz' > 0

P}
9(',x) e T F

a

2mi E

k =

1

where we have used:

(z")(z' -1

iz, x
k
¢ (Ck,X) e

iz'x
d?._',' ,._(}-‘-"x) e
a(zg") (¢' -0

= 27i residus

N iz, x
) bkw(ck,x) e.
= 2’"’1 —————

a'(5) (5 - ©

Cauchy theorem

ii.

iid.

the definition of b

From C-14 we have:

igx
¢le

icx
9 e

1
vl o+ 7ic

+-—;— u*(x) + 0(15)

2i

4

¢

and a(z) ~ 1l as |g| + =

k=1 a'(ﬁk)(Ck - C)

(E~2)

expression of the residus when Ty are simple zeros of a

k

[ uty) [Pay + 0
bl g

as |g| » =

It is easy to see that the integral along the half circle gives

1
im o/ as R >

Now by using the fact that on the real axis ¢ = ay + by we have proved:
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- (z' - 0

2mi _—
a' (g ) (g = 2)

e bCZ') W(L',x)

1 +o  3(g',x) ig'x
im + [dgt ——— e

a(z"') (¢' -

) ©

Now we evaluate the integral on E.by using the fact that ﬁ-can be

defined in the lower half plane:

‘? Img

C'

By Cauchy theorem we have:

Tt i‘:'x
d;l w(c ,X) e
) (¢'- )
¥ (g',x) iz'x
SRR L
lz'] =R
Img <0

= 2im ¥(g,x) e

> Real ¢

izx + 1 i
= fdcl q)- (Z; !X) e

00

iz'x

By using the asymptotic expression C-14 for ¥ (z',x)e

show that the integral on the half circle gives again in(

We have then proved:

for Img < 0

(' - o)

ig!

X

(E-3)

we consider the following contour:

T'x

(E-5)

it is easy to

)



— . + » . . Ly 1
U (L,x) enF = E%I' [ az b(z) _w(gl,x) ic'x +(’ )

- a(z") (g'- o) 0
N iCkX
ZEEE; a'(g, ) (g, - 0 (E-6)
k=1 & K
— bo*(g*,x)
If we take £ = r* and use the fact that y(z,x) = (ef C
“¥,*(g*,%)

equation E~6 is nothing else but B-12a and B-12b%.

At this point we have 2 N integral equatiomns for the 2N + 2 unknown

wl(gk,x),wl(;k,x) k=1, .. . N and wl(;,x),wz(;,x) for ¢ real.

We need two more integral equations which are obtained by using the
same procedure as to establish E-6 but we have to be more careful since
for ¢ real I (cf E-1) is singular for z' =1 .

This problem is solved by considering the principal wvalues of the
integrals:

if we consider the following contours:

2¢ / 2¢
—> —>
m e J ' — \’:
C
4 5 0
0 % 3K
1 1 1
f u(e)de' _ f u(chde' I u(g'dze! [ ag () +
gt - g [GEEEN Z9) (¢' - co)
s¥e 3Ke |gt-z|=¢ 3Ke
Img > O
0 u(z +€eie)
-;Jl——————— seleide -+ f -ELEL——— dc - im u(zg,) (E-7)
i8 0
€e e>0 0
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where % u(e) dz = principal value of the integral = lim u(z)ds
€

The consequence is that in all the previous algebra we have to replace when

necessary
ult) u(z) . -
| By e v F oy & - imdy) (e-8)
oK

This gives equation B-12 (c) and (d)

+ Let us now establish equation B-13
Let us recall C-14 which gives the asymptotic expansion of E'(c,x) for
large ¢

oo,
[ Juxm|® dy
X

. 1
T (z,x) er%% m( )+—l— +0(=) for Imz < 0
, o) ¥ 71z 2

u*(x) z

But by using E-6 for large ; we find

N iz, x

' k
i 1 b, (g, ,x) e + ir'x
- izx 1 E k' ok _ 1 dz'b(z') '
¥ (C:x) e '\‘(0) + z a'(Ck) 2Tl —fw a(c') v(z',x)e
k=1

+0(3) (E-9)
:

— izx
By equaling the two first terms in the asymptotic expansion of ¥ (g,X)e

)
(an asymptotic expansion is unique) we find as ¢ =('¢1 )
2
N

b, * -ig, *x + o -ig'x
E k k *(z')
u(x) = -21 by*(z, ,x)e - %- [ a'z b (% by* (2" ,x)e
T Ay e )

which is B-13
+ o 2
We also find an equivalent equation for f ]u(x)| dy which is more
X
practical to study the envelope of the multi-solitons.
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Appendix D

In this appendix we give the nuﬁerical values of cth= total free
surface elevation; k wave number; Cg group velocity in the fixed frame;
Cg/c » shoaling coefficient; Yy and Yy the coefficients of the equation..
All these numbers are given for:

Uu=20., 0.4, 0.8, 1.2, 1.6; T = 3., 5., 7.3 and:

U=0.95, 1., 1.05; T=1., 1.5

and h increases linearly from hc to he + 1; hc is the critical depth for

a given current (if U = 0 we take arbitrarily hec = 0.5).
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0.11432+00
0.1192E400

0.1140E+00°

0.2224€+02
0.1870C%C2
0.1950L+02
0.1976E402

0.2211E+03
0.2532E+4C3
0.2715E+403
0.282¢E+03

0.1812E+01
0.1697E+01
0.16GLE+01
0.1608E+01

0.474BE+00
0.4555E+00
0.4393C+00
0.4242E+00

C.3779E+00
0.36L1E+00
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0.362GE+00
0.34775400
0.33%59E+00
0.2894E401
0.311QFE401
0.337%L+01
0.3428E+01
0.3322E+01
~0.14135E402
0.GYNIE+0Q0
0.4951E401
0.70141£+401
0.8344L+01

PERIOD. T=

. 0.3600C+00

0.345%E+00

0.2933E+01
0.3203C401
0.3397¢+01
0.3420E+01

L91TEHO!
17238401
.53780+01
LT274E+4014

QO OO

WAVENUMBER:

0.13178401
0.113GE+01
0.1030E+01
0.€6G22E+00
0.916G0E+00

0.1279:z+01
0.1114E+01
0.1017E+01
0.9532L+00

0.3574E+00
0.3433E+00

0.2977E+01
0.32449E+401
0.34 140401
0.3408E+J1

~0.6607E+01
0.2578E+01
0.57GHE+01
0.7522E4+01

0. 7000E+01

0.12494E+D1
0.10958+01
0.1004€+01
0.94419E+00

GRCUP VFEFLOC.IN FIX.FRA.:

0.S5E83TE+00
0.64722E400
0.663CE400
0.66325+400
0.6631E400

C3/S1IGMA,COLF ,OF EQUATION Y2,Y3:

0.6559€+20
0.71733£409
0.7336E+00
0.743%5+00
C.733BFE+09
0.7374E400
0.72A30+00
0.743ZL+00
0.7216E+00
0.0132E+00
~0.257E+02
~0.67250401
~0.22718401
~0.R74G1+00
¢.39320-01

0.€6001E+GO
0.6457E400
0.6 A8E+CD
0.6680Z+00

0.6655E+00
0.71S3E+409
0.74032+00
0.7442E+00

0.7323E+00
0.7302E4C0
0.7526c+00
0.78756+400

-0.1979E+C2
~0.5619¢&+C1
~-0.1¢31E+01
-0.51 63400

0.6102E+00
0.650CE+C0
0.660L2E+00
0.5674E+00

0.5798E+00
0.7245E+C0
0.74228+00
0.743532+00

0.7291E+00
0.7320E+00
0.7587E+00
0.7933E+00

~C.1565E+02
-0.46688+01
~-0.1571E+01
~0.3795E+00

0.3021E401
0.3289F401
0.3425E+01
0.3391E+01

~-0.4084E+01
0.331CE+C1
0.61158+01
Q.77502E+01

0.1213E+01
0.1077E+01
0.9927E+00
0.93708403

0.5192E+00
0.63431E+00
0.6573E+00
0.6667E+00

0.6399E+00
0.7291C+00

0.7433E+09 -

0.7427E+400

0.7271E400
0.73%8E4+CO
0.7631E+400
0.7999E400

-0.1253E+402
-0.3893c+01
~0.1296E+401
-0.2577E+00

*'l*WAVES AND STECNG CURRENT OVER AN UNEVEN

UINF=

0.4C0CE+00

DEPTH PROFILE:

0.7744E400
0.1014E+01
0.1254C+01
0.1424E+01
0.1734E+01

0.81434E400
0.1051E+01
~0.1294e+01
0.18C0aE+01

0.8544E+00
0.1083E+01
0.1334E+01
0.1574E+C1

0.8914E+00
0.1133E+01°

0.1374E+01
0.1614E+01

MEAN FREE SURF.DUE TO THE CURRENT:

0.3524E+00
0.3304E+00

0.3067E+01
0.3319E+01
0.3431:2101
0.3372E+01

-0.2122€E+01
9.3933C+01
0.6A0IEI0
0.7976E+01

0.1185C+01
C.,10H0E+01
0.9816E+00

- 0.9293E+00 .

0.6271E+0Q0
0.6573E+00
0.6G79€+00

0.6657€+00

0.69862+00
0.7322E+)0
0.7341E+00
0.7417E+0¢C

0.72GRE+00
0.7397E+00
0.7695E+00
0.805BE+00

~0.1013E+02
=0.3250E+01
=0.1052E+01
~0.1498E+00

BOTTOM:=* % «x*

0.9344E+00
0.1174E+CH
0.1414E+01
0.1654E+01

0.3500E+00
0.33706E+00
0.

3115E4+01
0.33200+401
0.34:3F 010
0.3347E+01

~0.55%1E+400

0.447713%+01
0.6737E+01
0.8140E+01

0.1179E+01

0.1C!SE+0}
0.2717E4C0
0.922%C+00

C.6311E+C0
C.8600E+00
0.668€E+00
0.661%€E+00

0.704%F+00
0.72:CE+0D
0.741%E+00
0.7404E+00

0.7270E+00 °
0.7419E400
0.77%5E+00
0.8170E+00

-0.E250E+01
-0.2717E+01
-0.6538E+00

~0.5236E-01

QC.9713E+00

0.1212E+01
0.14%3E+01
0.1694E+01



0.68395+400
0.1C17E+01
0.12046E+01%
- 0.1511E401
0.1790F401%

PERIOD, T=

0.7524E+09
0.106G3E+01
C.1320C+01
0.1502E+021

WAVIMUN BER?

0.16251401
0.18171 401
0.20498L+01
0.22:00401
0.24170401

0.1685¢701
0.19326401
O 0120001
0.0

0. 3000E+01

0.815GE+D0
0.110GE+D
0.1371E+01
0.1624E+01

0.1717E+T
0.1957F+01°
0.21%7L401
0.2321E+01

GROUP VELOC,IN FIX.FRA.:

0. 1197 E+0D1
0.8C.L+CO
0.G71¢L+CO0
0.595%7+0C
0.59:51E400

C3/SIGMA,COEF (OF EQUATION v2,Y3!

9GIBE+0Q
59320400
6565100
93GE+00
5135400
0.2100E400
0.G6121€+400
0.342F£+C0O
0.1028E+01
0.1248E:01
-0.3024E401
0.4933E4+01
0.1131£402
0.19075402
0.2510C+02

o

0.
0.
0.
0.
0.

LW b

PERIND, T=

0.10315401
0.7779E+00
0.6550¢400
0.58592+00

0.8603t+00
0.5683E+00
0.4511E+0¢
0.3870c+0¢C

0.2873E+00
Q.€51T7E<Q0
0.8798:+00
0.106G1E+01

~0.1025E+401
0.6C0O3E+01
0.1242E4C2
0.1323¢c+02

WAVENUIABER:

0.9219L400
0.9875F4+00
0.1020E+01
0.1045E+401
0.1077T+01

0.92303e+00
0.93371400
0.1025E+401
0.1053e+01

0.500CE+0H

0.9677E400
0.751GE+00
0.6419%4+00
C.57GVE+00

0.778LE+400
0.5427E+00
0.43122€+400
0.37385E+00

0.3645E+00
0.7074E+00
0.9083E+00
0.1093E+01

0.53°1E+00
0.7052E+01
0.1351E+02
0.20490E+02

0.9543F+00
0.990GE+00
0.1030E+01
0.109BE+01

AOUP VELOC.IN FIX,.FRA.:

0.1270F4CH
0.1074E£+401
0.947CE+00
0.8420E400
0.7723E+090

CG/SIGMA,COEF ,OF EQUATION Y2,Y3:

0.1779E+01
0.1237E+01
0.1C09E+01
0.8625E+00
0.7602E400

0.1226E+40¢
0.10%1E+01
0.9293c+00
0.834BE+00

0.1523E+01
0.1190€+01
0.9801E+00
0.84302+C0

0.11A8%E+01
0.1028E+01
0.9122E+00
0.8211E+00

0.1506E+01
0.1147E+01
0.25.32E+00
0.8244E+00

0.86H33€E+00Q
0.1 153E+01
0.14150+01
0.156GCE+01

0.1779E+01
0.2C01E+01
0.211H457401
0.231GE+01

0.9197E+00
0.72855400
0.620:6L+00
C.5GB5E+00

0.7216E+00

0.€200E+00

0.4259E+400
0.3713E+00

0.4312E+400

0.7480E+00
0.937RE+Q0Q
0.1131E401

C.1735E+01
0.8C23E+01
0.1468E+02
0.2157E+02

0.6GA3E+00
0.1C05%E+01
0.1035L+01
0.10S3E+01

0.1422E+01
0.1108E+01
0.9233E+00
6.5089E+00

0.92103E+499
0.119350+01
0.14%7E+01
0.1707E+GT

0.1821E+01
0.20435E401
0.22156 101

C.2570E+01

0.87G0E+00
0.70742E+00
0.61G7E+00
0.560CE+00

0.6721E+G2
0.4997E+CJ
0.415CE+QD
0.3642E+00

0.4377E+N0
0.7852E+00
0.9665E+Q0
0.11GIE+O1

0.2890E+CH
0.9161E+0
0.1578E+02

0.2274E+02

0.9733E+00

0.1010E+0!

0.1039E+01
0.106G7E+01

0.1126E+01

0.98G0E+0Q0
0.8790E+00
0.7956E+00

0.1350E+01
0.1072E+01
0.9050%+C0
0.79C4£+30

0.96RIE+00
0.1242E-01
0.149%E401
SOVTARESQ

0.13 .QE+01 -

0.200GE+01
0.22.13E401
0.23%3E401

0.8402€+00
0.5847E+00
0.60%7E400
0.55.32€400

0.6373£+00
0.4819E+00
0.4979E+00
C.3577E+C0

0.55%GE+00

0.814H5E+00 .

0.927CE+00
0.1207E+01

0.3917E+01
0.1022E+02
0.16V3E+02
0.2391E402

0.280%E+CO
0.1015E+01
0.1043E+01
0.1072E+01

0.1100E+01
0.9645E400
0.2615E+00
0.7835E+00

0,1292E+01
0.1039E+D1
0.88308+C0
0.77%08+00
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0.4933E-01
0.16526400
0.292000 00
0.41 34400
0.9523 400
L =0LTAAT 0
=0.1602 01
=0.1517E+00
0.6100LL 00
0.12520101

PIRIOD, 1=

0.6802:z-01
0.1355L+00
0.31 3098200
0.434%00+00

—0.53447101
=0 1263101
-0.82877~-03

D.7TH 0T VO

VAVENUMUBER:

0.6474E4+00
0.C713E+00
0.67%05400
0.67200+00
0.670GE+00

0.6S70C+00
0.6742L+00
0.6744E+00
0.67258+40Q

0.87G2E-01
2.201%G:C+00
C.33H1E4+00
0.4572E400

-0.40018401
-0.2821L 00
0.1422E+00
0.8600L400

0.7C0081 01

0.5633F+CO
0.674HE+00
0.6745E+00
0.G721E+J0

GROUP VELOCT.IN FIX.FRA.:

0.13391401
0.1213E+01
0.1132E+401
C.10:11E401
0.102GE401

C%/51GMA,COCF .OF EQUATION Y2,Y3:

0.2579€401%
0.1917E401
0.16G4C+01
0.143Gr 101
0.1372€+401
0.1794E-01
0.5655E~01
0.961%E~01
0.1377E400
0.17342E£+00
=0.10178+02
~0.2817L+01
=0.1123°7401
~0.5167L+00
~0.1270:400

0.1200E+01
0.1200l+01
0.1131E401
0.1072e+0C1

0.2381E+01
0.1863c+01
0.1629E+01
0.1473€+01

0.2447E~01
0.6309e-01
0.1033&+00
0.1446E4+00

-0.7358£+01
-0.22068C+01
=0.9G21£409
=0.45%04+00

0.127VEO)
0.11B7E+01
0.112tE+C1
" 0.10G2E+01

0.2235E+01
0.1815%+01
0.16C0E+0O1
0.1451E+01

0.3126E-01
C.6971E-01
0.11C1E+00
0.1517E+00

-0.5613E+01
=0.1953E+401
-0.8739E+00
-0,3843C+00

tat
LATLLESQ0

=0.3167T+01
-0,V 3BIL4 00
0.2315£+00
0.9GINE400

0.6571E+00
0.6752L+00
0.5741E+02
0.67150400

0.12G0E401
0.1175E+01
0.1111E+01
0.1053E+01

0.213%E+01
0.1771E+01
0.1571F+01
0.1430E+01

0.374CE-01
0.7631E-01
0.1170E+00
0.1586E+00

-0.4598E+01
—0.1604E4 01
=0.7GLG+00
~0.3347L+00

*+++WAVES AND STRONG CURRENT OVER AN UNEVEN

UINF=

0.8000E+00

CEFTH PROFILE:

0.1C13E+01
0.12537401
0.1433¢401
0.17338+01
0.1973E+01

0.1053E+01
0.1293E+01
0.1532E+01
0.1773E+01

0.1093E+01
0.1333E+01
0.15373E+01
0.1813€+01

0.1133E401
0.1372E+01
0.1513E+01
0.1853E+01

MEAN FREE SURF.DUE TO THE CURRENT:

0.1032&+01
C.1413E+01
- 0.1702E+01

0.11137:01
O.i-:x,-.;:;fOl
0.1748E+01

0.1185E+01
0.1513E+01
0.1723E+01

0.121CE+01
0.15615+01
0.18382+019

0.1258E+40C0
0.2492E+CQ
0.37749€+00
0.4931L+CO

~Q.24000 491
“~Q. 0210000
0.40U3E+00
0.106G54+01

0.G700E+CO
0.6753E+CO
0.67328BE+0Q0
0.6713E+00

©0.1242E:01

0.11GAE+C
0.1101E4+01
0.1044E+01

0.2048E+01
0.1731E+01
0.1545E+01
0.1410E+01

0.4291E-01
0.8304E-01
0.1240E+00
0.1656L+00

~0.3723E+01
~0.1473E+01
-0.67320E400
=0.2842E+00

BOTTOM* % v«

0.1173E+01
0.1413E+01
0.1653E+01
0.1893E+01

0.13C5E+01
0.1610E+01
0.1832E+01

0.1417¢+4+00
0.27050. 70
0.395%0 150
0.%013+00

~0.2017E+014
~0.33238400
0.5211C400
0. 115308400

0.6720{+00
0.67%3C+00
0.6733E400
0.6709€+C0

0.1227€401
0.11LGE+01
Q.10%91E401
0.1035€+01

0.19110E+01
0.162%E401
0.1500E401
0.1391E+01

0.5007E-01
0.8971E-014
0.1329E+00
0.1721E+00

-0.3133€E+01
=0.1292E+01
=0.5%00E+00

=0.2321C+00 .

0.1213E+01
0.14"3E+01
0.1623E+01
0.1933E+01

0.1359€+01
0.165GE401
0.1527E+01
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0.1970E+01

0.2228E+01 -

PERIND. TS  0.3000E+01

0.2014E+01

WAVENUMBER:

0.1316E+01
0.1537E+01
0.1695€+01
0.1820E401%
0.19.17E+01

0.136SE+01
0.15G5E+01
0.1719E+01
0.1850E401

0.2057E+01

0.1407E401
0.1593:-01
0.1742E+01
0.187CE+01

GROUP VELOC.IN FIX,FRA.:

0.1331E+01
0.1002E+01
0.86566E+00
0.7794E+400
0.7183E+00

C5/51GMA,COEF .QOF EQUATION v2,Y3:

0.1239E+01
0.8247E£400
0.667RE4D0
0.97G70+49
0.5118400
0. 1211E+00
0.2592F+00
¢.331%E+00
0.4041E+400
0.4919E+00
=0.204335-01
0.2B816F+01
0.532%£+01

0.818%E+01 -

0.1114F+02

PERIOD, T

0.1245£+01
0.97965+00
0.8493£+00
0.7678C+00

0.1117E+C
0.7310E+400
0.6495E+C0
0.5G648¢C +00

0.152G6€+00
0.274a0E+400
0.34%58+00
0.4173E+¢C0O

0.5915£+00
0.3227E401
0.5334E+01
0.8651E+01

0.50C0E+01

WAVENUMBER:

0.739%E400
0.7498%(+00
0.825984C0
0.8704E400
0.3020£-+00

G.7514C+00
0.8B03SE+CO
0.8427g+400
0.8757&+00

0.1179E+01
C.9522E+900
0.8332E400
0.75GBE+00
0.1030E+01
0.7605E+00
0.632CE+CO
0.5537€E+00

0.1729E+00
0.2879E400
0.3%UEGE+00
0.4311e+C0

0.1102E+401
0.36%54E+01
0.6291E+01
0.9140E+01

0.7639E+00
0.8122E+00
0.83CAE400
0.8B11E+00

CROUP VELOC.IN FIX.FRA.:

0. 1556E+01

C. 13111401

0. 1155 F401
0.10410E+01
0.9%0KE+00

0.15°GE+01
0. 19128401
0.11350+CH
0.1024E+01

0.1455E+01
0.12'+1€+01
C.1114E+0
0.1COEE+D1

C5/S1GMA,COEF .OF EQUATION Y2,Y3

0.2285E+01
0.162¢E+01
0.134CE+01
0.1152E-01
0.1012E+01
0.3223E-01
0.902CE-01
0.1434E+00

o

.2092E+01
L1571E+01
.13C32+01
LT 27E+01

LA370€-01

0
0
0
0.4237:-0t
c
0.1%61E+400

.196G4E+01
15 1GESO01
.1269E+01
.11C3E+01

QOO0

.5222E~-01
.109ZE+00
.16 76E+00

oOcCco

0.2100E+01

0.1442E+01
0.1620E+01
0.1765%5+401
0.1820L+01

0.1127E+01
0.9279E+00
0.8185E+00

0.74GGE+00 -

0.95155+00
0.7333€£400
0.6171E+00
0.5432€+00

0.2029E+00
0.3004E4+00
0.3678E+00
0.4453E+00

0.1544E+01
0.4075E+01
0.6752E+01
0.9627E+01

0.7738E+00
0.8187E+09

| 0.8540E+00

C.88u3E+00

0.1414E401
0. 1271401
0.1095C+01
0.9927E+00

6.18G1E+01
0.14G6E+01
0.1237E+01
0.1GE0E+01

0.2143E+01

0.1476E+C1
0.164GE+01
0.1787E+01
0.1910E+01

0.1082E+01
0.9054E+00
0.804€6E+09
0.7367E+00

0.9092E+00
0.7093E+00
0.5C27E+00C
0.5333E+00

0.2241E+C0:

0.3124E+00
0.3793E+00
0.4502E+00

0.1982E+01
0.4512E+01
0.7219E+01
0.1013E+02

C.78B29E+00

-0.82Z0E+00

0.8%93E+00
0.8916E+00

0.137CE+01
0.1202C+0)
0.107GE+QO1

0.97G2E+CO

0.1772E+01
0,1420E+01
0.1207E+01
0.1059E+01

C.7115E-01
0.1291E+CQ
0.18E2E+GO

0.2185E+01

0.1527€+01
0.1671E+01
0. 1508E+01
0.192GE+01

0.1044E+01
0.88,3E+00

0.791%E+00

0.7273E+00

0.8613E+00
0.6877€+00
0.5892¢£+00
0.5273£4100

0.242%E+00
0.323%0400
0.391E+00
0.475BE+00

0.2395E401
0.4914C+01
0.7892E+401

0.1063E+02

0.7909E+00
0.8210E+4CO
0.8G6%1£+00
0.89G8E+00

0.13493C+01
2.1179E+01
0.1057E401
0.9€-12E+09

0.306%35-01

0.1387E450
0.19:324¢0

I R



=0.3931E+400
-0.18B7€+400
-0.6032:-01

~0.3538E+00
~0.1632E+00

0.2090C+00 0.212GE+00 0.22C2E+00
0.2513C400
=0.17410401 =0.1301E401 ~0.1011E+01
-0.3916E+00 -0.20358400 ~C.2034E+00
0.8204E-01 0.1434E400 0.2011£+00
0.4141E400 0.4G6422+00 0.5139E+00
U.T072€400 :
PIRIOD. T= 0. 7CONE 01
WAVLNUMBER:
0.5137E400 0.52198400 0.5279E+00
0.541BE400 0.5441C+00 C.5462E+00
0.5520E400 0.55428400 0.55%5E400
0.5G01€400 0.5612E+00 0.5623E+00
0.5632E+00
GRCUi VELOC.IN FIX,FRA.:
0.1067E+401  0.16226+01  0.1588E+01
0.147¢T401  0.1471£101  0.14%7E+01
0. 13581401 0.1370E+01  0.13%SE+01
0.1298E+01 0.12B5E+01 0.127ZE+01
0.1222E+01 ,
£3/31GV¥A,COEF .OF EQUATION Y2,Y3:
0.33732E+01 0.31038+01 0,2933E+401
0.2523E+0t 0.2352E+01 0.23B5E+01
0.21725401 0.21272+%1 0.20¢5E+01
0.1927E+01 0.1Q05E+01 0.,1873E+01
0.1730E+01
0.1192E-01 C©.1560E-01 0.1914E-01
0.323tE-01 0.36C3E-01 0.3955E-01
0.533CE-01 0.5756E-G1 0.6128E-01 .
0.7617€-01 0.8037E-01 0.8429£-01
0.9936E-01
~0.2442€401 -0.1383E401 -0.1527E+01
-0.8253E+00 -0.72GSE+00 ~0.6399E+00.

-0.3141E+00
~0.13¢7E+0Q0

0.2289E+00

-0.806G%C+00
=0.123GE+0D
0.25G2€+400
0.5621E+400

0.5323E+00
0.5431¢+00
0.55CG3E+00
0.5632E+400

0.15GCE+01
0. 143%E4+01
-0.1340E+01
0.125CE+01

0.2906GE+01
0.2326E+01
0.2045E+401
0.1843E+01

0.2245%E-01
0.430%E-01
0.63504E-01
0.8816E~01

=0.1284E+01
-0.5572E+00
=0.2782E+00
-0.1182E+CO

"+4rsWAVES AND STRONG CURRENT OVER AN UNEVEN

UINF=

0.1200E+01

DEPTH PROFILE:

0.1014E+401
0.1254E401
0.1499E401
0.1734€£401
0.1974E+01

0.1054E+01
0.1294E+01
0.1334E+01
0.1774E+401

0.1094E+01
0.13343E+01
0.1574E+01
0.1814E+401

0.11342E+01
0.1374E401
0.1614E+01
0.1853€+01

MEAN FREE SURF.DUE TO THE CURRENT:

0.9736E+00
0.7755E+00
0.6853E400
0.7 ¢+00
0.5830E400

0.91524E+00
0.75G8E+00
0.6753E+00
0.8203&E+C0

0.8767E+00

0.7403E+00 .

0.6643E+00
0.56121E+00

0.8437E+00
0.7249E+00
0.G6544E+00
0.€029E+00

0.23CGE+00

~-0.6491%+00
=0.4920i-01
0.3104E+00

0.8108E+C0

S3GLE+00
5498E+00
5

0.
0.
0.5579C+09
0.

0.1534E401
0. 1417042}
0.132GE+01
0.1246E+01

0.269GE+01
0.2270E+01
0.2007E+01
0.1314E+01

C0.2588E-01

0.466G%E-01
0.€EBG3E-01
0.920¢E-01

=0.1094E+0"
-0.5030E+Q0
=0.2456E+00
-0.9778E-01

BUOTTOM« x %«

0.1174E+01
0.1414E+01
0.1654E+01
0.1894E+01

0.8173E+00
0.7117gE+00
0.6456E+00
0.59725+00

0.2471E400
L

—o.sovvc+oo

L1823E-01
o IE4HE400
0.G5U2E+00

0.5391E+00
0.5511E+00
0.5511E+00
0.56%2E+00

0.15120+01
0.1401L+01
0.1312E+01

0.1232E+01

0.2605E+401
C.227CE+D1
0.1971£+01

0.1787E+01

0.2921E-01

0.5021E-01 -

0.72G7€E-01
0.960ZE-01

~0.9477E+C0

-0.4479E+00 .

=0.215%E+00
-0.7874E-01

0.1218E401

0.14%3E401
0.1694E+401

0.19332E+01

0.79%3E+00
0.693%E+00
0.63C3E+00
0.5905E+00

-132-



PERIOD. T-

WAVENUMBER:

0.9977E+00
0.8L15C+00
0.8257E400
0.7234E+00
0.74131F+00

0.9662+00
0.8727E:00
o.8180L+C0O
0.7775E4+00

0. 3000E+01

0.9447E+400
0.867°CE+00
.0.3101E400
0.7712€E400

GROUP VELOC.IN FIX,FRA.:

0.1912E+01
0.22735+01
0.2453E+01
0.2G16E+01
0.2753E401

-20030401
.23028+401
. 24912401
.2641E+01

Qooo

0.2071€401 .

0.2338E+401
0.2519E401
0.26065E+01

C53/S1GMA,COEF .OF EQUATION Y2,Y3:

0.2212E+01
0.3116£+01
0.3785E+01
0.43B2E+01
0.4958£401
0.2816E-01
0.1003E-01
0.5338E--02
0.3231E-02
0.2161E-02
-0.1038E+01
=0.2791£401
=0.42741 401
=0.5803¢E401
~0.7409E401

0.2419E+01
0.32ze01
Q.38 Ty
C. 84 7de+81

0.2193E-01
0.8872E-02
0.4894E-02
0.30588~-C2

-0.1451E+01
-0.3042E+01
~0.4521E+01
-0.6G039E+01

0.258%E+01
0.3354E+01
0.3922E+01
0.457€E+01

0.1799E-01
0.7933E-02
0.4477E-02
0.2835€E-02

-0.1752E+01
-0.3291E+01
-0.478B4E+01
-0.G329E+01

PERIOD. T= (.5000E+01
WAVENUMBER:

0.5786GE400
0.5225£400
0.4995E+00
0.46GUE+00
0.4471£400

0.5642€+00
0.5162E+00
0.4203E400
0.463%E+400

55246+00
5109%E+00
4819E+00
5

0.
0.
0.
0.4598E+00

GROUP VELOC.IN FIX.FRA.:

0.203%E401
0.2352E+01
0.2533E+01
0.2671E+01
0.2734E+01

0.21558+01
0.2394E+01
0.256572+01
0.2691E£+01

0.2207E+01
0.2424E+01
0.25832E+01
0.2713E+01

C3/SIGMA,COEF ,OF EQUATION Y2,Y3

0.3837E401
0.5270L+01
0.6337L401
0.7322E+01
0.823EL+01
0.7236L-02
C.2426t-02
0.1252€-02
0.763€5-03
0.4936E-03

0.41GiC+CH
0.5461£+01
0.6512C+CH
0.7473E+01

0.5513E~-02
0.2137e-52
0.1151E-02
0.7089E-03

0.2421E+01
0.5649E+01
0.6685E+401
0.764CE+01

0.4470E-02
0.190CE~02
0.1042%E-02
0.6572E-03

0.2130E+01
0.2372E+01
0.2545E401
0.2687E401

0.2739E+01
0.34G7E+01
0.4022E+01
0.466GBE+01

0.1506E-01
0.7120E-02
0.4124E-02
0.2651E-02

-0.2033E+01
~0.3%44E+01
-0.503%€E+01
~0.6587E+01

0.5430E+00
0.5050E+00
0.477GE+00
0.456GE+00

0.22%3E+01
0.24%4E+01
0.2605E+401
C.2733E+01

REE+01

132E+01
BITE+OT
TETE401

€
8

U N

0.
0.
0.
0.
0.3708E-02
0.1699£-02

0.968351-33
0.6133E-03

0.9101E+00C
0.8421E400
0.796G5E+00
0.7595E+00

0.2180€+01
0.24Q02E+01
C.25069E+0!
0.2710E+0!1

0.2875E+01
0.3571E+C1
0.41845+01
0.4771E+01

0.1296E-01
0.64G7E-02
0.3828E-02
0.2461E-02

-0.2301E+01
~0.3773E+01
~0.5278E+01
=0.6872E+01

0.53592E+00
0.5001E+00
0.4742E+00
0.4532€+00

0.22945401
0.24€CE+01
0.2626E+01
0.2755E+01

0.43825+01
0.59uIEL01
0.6398E+01
0.796ZE+31

0.31C3E~02
0.1535E~02
0.39652~03
C.58E0E~03

0.89:8E+00
0.83:0£+00
0.79000+C0
C.7544E+00

0.2223E+01
0.2434€+CH
0.2593€E+01
0.2731E401

0.2998E+01
0.3680E+01
C.42B1E+01
0.4803E+401

0.1135E-01

0.58G2E~02
0.3546E~02
0.2307E~02

-0.2545E+01
-0.4032E+01
-0.5528E+01
~0.7133E+01

0.529E+00
0.49:2E400
0.470%E+400
0.4502€+400

0.5078F+01
0.617HE+01
0.7157€£4+01
0.81128401

0.27G1E-02
C.1338E~0C2
0.8234€-03
0.53734E-03

~0.2124E+01 ~0.2602E+01 -0.3023E+01 ~0.3437E+01 -0,383.1C+01 -0.4211E+01

-133-



~0.4541 401

-0.4984a¢401

-0.53L7E+01

-0.6912E+401 =0.72852L+01 -0.7697E+01
~0.9300+C1 =-0.9737E+01 =-0,1025E+C2
~0.1208E402 ’

PYRIOD.T= 0.7000E+01

WAVENUMBER: .
0.4090E400 0.3996£+00 0.3924E£+00
0.37156+00 ' 0.3672E+00 0.3632E+00
0.3424E400 0.34G4E+00 ©.2433E+00
0.3327E400 0.3304E+Q0 0.32795E+00

0.3182E+00

GR0UP VELOC.IN FIX.FRA.:

0.2147z401
0.2333E+01

~0.1709F402

0.2207e~01
0.2423E+01

0.2253E+01
0.2451E+01

0.2554€+401 0.2577€+01 0.2601E+01
C0.2646E+01 0.270GE+01 0.2728E+01
0.2806GE+01 .
C5/SIGMA,COEF .OF EQUATION Y2,Y3
0.5457E+01 0.5896T+01 0.62505+01
0.7415C+401 0.768B3E+401 0.7938E+01
0.890GL401  0.92134Z+01 0.9375E+91
0.102GE+02 0Q.1047E+402 0.1070E+02
0.115%8E402
0.2749€E~-02 0.20B80E-C2 0.16RSE-02
0.9100E-03 0,799Y8E~03 O0.7111E-03
0.4718E-03 0.4298:-03 0.3891£-03
0.28375-03 0.2619:~03 0.24433E-03
0.1867£-03
~-0.2223CE401 -0.3567E+01 ~0.4145E4+01
~0.6229E401 -0,683ZE+01 -0.7352E+01
~0.9520EL+01 ~0.10095+02 -C.10352E+02
=0.1297C402 -0.1331E+02 ~0.1420E+02

~0.57%%E+01
~0.8188BE+01
~0.1067E+4+02

0.38G1E+00
0.3524E+4C2
0.3405E+00
0.3256E+00

0.22G85E+01
0.2479E+01
0.2623E+401
0.2747E+01

0.6583E+01
0.8192E+01
0.9601E+01
0.1032E+02

0.1392E~C2
0.6332€-03
0.3593E-03
0.2285E-03

~0.4685E+01
-0.78364E+01
~0.1121E+02

~0.14U8E+02.

¢4 OWAVES AND STRONG CURRINT OVER AN UNEVEN

UINi =

0.1600£+M

DEPTH PROFILE:

0.8120E+00
D.1052E+401
0.12)2E+01

0.38520E+0C
0.1092£+01
0.1332E+01

0.8920£+00
0.1132E+01
0.1372E+01

0.9320E+00
0. 1172E+01
0.1412E+01
0.1652E+01

0.1050E+01
C.29119E+00
0.R2BBE+00
0.769%E+00

0.1532¢+01 0.1572E+01 0.161Z2E+01
0.1772E+01

MEAN FREE SURF.DUE TO THE CURRENT:
0.1125E+01 0.11308+01 0.1084E+01
0.9638E+00 0.948GE+00 0.9293E+00
0.8650E+00 0.85315+00 0.8B403E+00
0.7972E+00 0.7871E+00 0.777SE+00
0.744E8E+00 ’

PERIOD.T= 0.3CCOE+01

WAVENUMBER:
0.9221E+00 0.8947€+00 0.8746E+00

0.859CE+20

-0.G127E+01
-0.8%7GE+C1
-0.11C1E+02

0.38CGE+00
0.3561E+00
0.3380E+00
0.3232E+00

0.2331E+01
0.2504E+01
Q.2644E+01
0.2768E+01

0.698CE+01
0.8423E+01
0.9611E+01
0.1115E+02

0.1192E-02
0.5745E-03
0.3348E~C3
0.2133€E-C3

-0.5275E+01
-0.8426E+01
-0.1192E+02
-0.1579E402

BOTYQR: ¢ 4

0.9720E+00
0.1212E+01
0.1452E+01
0.1692E+01

0.10135+01
0.89543E+00
0.317<E+C0Q
0.7609E+CO

0.8443E+00

~0.G571E+01
~0.8970F+01
-0.1161E+02

0.37%9E+00
0.3525E+00
0.33.42400
0.32114:00

0.2363E+01
0.2529E+401
0.26G5E+01
0.27137E+01

0.7151E+01
0.8650E+01
0.1002E+02
0.113GE+02

0.103%E~02
0.51%7E-03
0.3062E-03
0.1948E~03

~0.57.GE+0!
-0.888GE+401
=0.1224€+02
=C.1561E+02

0.1012E+01
0.124.28+01
0.14V2E4+01.

0.17325+01

0.9927E+00
0.%807E+00
0.3073E+00
0.7526E+00

0.8322€+00



0.8216E£400 0.8120€+00 0.802GL+00
0.7707E+00 - 0.7GA0E+CO 0.7572E400
0.7332L+400 0.72862E400 0.7231E400
0.7010E+00
GnrQouP VELOC.IN FIX.FRA.!
0.203%E401 0.21307+01 0.22703E+01
0.2404E+01 0.2442C+01 0.2479€E+01
0.2611E+01 0.2639c+01 2.260GBE+01
0.2771E+0% 0.27SGE+01 0.2820E+01
0.2908E+01 : ’
CG/SIGMA,COEF .OF EQUATION Y2,Y3
0.23GBE+01 0.2573E+01 0.2740E+01
0.32530E+01 0.33G2E+01 0.347YE+01
0.3894E+01 0.3990E+01 0.4089E+01
0.4452E+01 .0.4554£+01 0.4544E+01
0.499GE+01
0.2545e~-01 0.2023€E-01 0.1G679E-0!
0.1015¢~01 0.9174E-02 0.8301E-02
0.5C018E~02 0.5384E-02 0.4974E-02
0.273%E-02 0.3503E-02 0.328GE-02
0.25931E-C2
~0.4234E+400 -0.6095E+00 -0.7GC3E+00

~0.121GE+01
-0.1893E+01
~CG.2532E+C1
-0.3129E401

PERICD, T=

-0.1352e+01
-0.1995€E+01
~0.2644E+01

WAVITTIMBER:

0.53982+00
0.4829t+C0
0.4531£400

0.4350E400"

0.4132E+C0

0.5185£+00
0.47 7SE+00
0.4525E+00
0.4328E+00

~0.14E3E+01
~0.2106E+01
~0.275CE+01

0. SCC0E+01

0,5031E+00
0.4731E+00
0.4598E+00
0.4299E400

GROUP VELOC.IN FIX.FRA.:

0.22325401
0.2% 31098101
0.2711C04+01
.28 166401
Q.2671Fi 01

Ci/SIGMA,COET [ QF

0.4127E401
0.5531E+01
0.5550F+01
C.7455E401
0.831484 01
0.68)0t~02
0.2516E-02
0.1416E-02
0.8976E~03
0.6050E~03
-0.1C40E+01
-0.2126E+01
~0.3102E+01
~0.4115E+01

0.2324E+01
0.25 70E 01
0.27250C+01
0.2872E+01

LAEATERON
.57065+01
LB7 038101
LTO21EH0)

[oNeRolle

.5364£-02
.2287€-02
.13042-02
0.8349:-03

[« Mo e

~0.1253&+01
~0.2281E+01
~0.3254E+01
~0.42933E+C1

0.2380E+01
0.2601E+01
0.276G0E+01
0.2822E+01

EQUATION Y2,Y3

0.470CE+01
0.5883E+01
0.08CGHE+01
0.776G7E+01

0.4420E~02
0.205GE-02
0.12008-02
0.7812E-03

~0.1450E+01
=-0.2430E+01
~0.2424E+01
=0.4670E+C1

0.70100400
0.7511E+00
0.7184E+00

0.2260E+01
0.2514€+401
0.2

0.2841E+21

0.238QE+01
C.3S85E+01
C.4182E+01
0.4727E+01

.1471E~-01
.7THHBE~02
LAG27E-02
.3C099E-02

00090

-0.8823E+00
-0.156%E+01
-0.2212E+01
-0.2361E+401

.501GE+00
.46BSE+00

QOO

.A273E+00

.2425E+01
L2630€E+01
L2PBRE+0
L2911E401

OCOO

.4922E+01
.COS2E+01
LT015E+01
L7904E401

3779£-02
.185643E-Q2
LA11%E-02
.7T340E-03

D000 COooOo

-0.161BE+01
~-0.2¢07E+01
=0.3599z+01
~0.4622E+01

2
5
BOSE+0T
8

.445%E400 |

0.78L7L400
0.7449E400
0.7134E+00

0.2214E+01

0.2548E+401
0.2722€+01
0.28G1E+01

0.3017E+01
0.3621z+01
0.4278E+01
0.4819E+01

0.1282E-01
0.6895E-02
0.4297E-02
0.2907E~02

=0.1015E401
~0.167SE+01
~0.2323E+01
=0.2970E+401

0.494GE+00
0.4541E+00
0.4420E+00
0.4245€E+00

- 0.24GSE+01

0.26SEE+OH
0.2807E+0!
0.2932E+01

0.514CGE+01.

0.6223€401
0.7172£+01
0.80V3E+01

0.3264€E-02
0.1593£~02
0.1033E-02
0.6896E-03

-3.17935+01
~0.2772E+01
~0.37E3E+0G1
-0.4833E+(1

0.77a27100
Q.7399E+400
0.708EE+00

0.3138E+01
0.379CE+01
0.43G7E+01
0.4S09E+01

0.11239€-01
0.6313E-02

0.4022E-02

0.2735€~-02

=0.1129E+01
~0.1783E+01
-0.2425E+01
~0.3084E+401

0.4848E+00

0.4602E+00

0.4390E+00
0.4218E+00

0.25043E+01

0.2684F+01

L2800
0.2G42€E+01

0.5314AE+0Y

C.6382E+Q1
0.731%T+01
0.82008+91

0.287HE-02
0.15%0E-02

0.961%E-03

0.644%%E-03

-0,19%BE+01
~0.2931E+01
-0.3954E+01
~0.4970E+01
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S15GE4+01

P RIOB. T= 0.7C00E~O1
WAVENUMBER:
0.37438+00 0.3564E+00 C€.36C3E+00
0.342BE+00 0.3394E+00 0.3351E+00
0.3248E+00 0.3220E+00 0.3194E+00_
0.3195E+00 0. 308“E¥oo 0.30063E400
0.2938E+00
. GROUP VELOC.IN FlX FRA,:
0.23340+01  0.2395I+0% 0.2443E+01
D.25357401  0.7613E+Ct  0.2641E401%
0.2743C+01 0.27G5E+01 0.27895401
0.28/aC+01  0.289%E+01 0.2915E40!
0.2390F401 :
C3/SIGMA,COEF .OF EQUATION Y2;Y3:
0.5234L+01  O0.€Z20E+01 0.CG67SE+01
0.77)6E+01  0.80382+01 0.8247£+01
0.92920401  0.94150401  0.96378401
0.10170C+02 0.10G9E+02 0.10839E+02
0.1 300402
0.2800E-02 o.: 40E~-02 0.1677E~-02
0.9620F-03 O. a 621E-03 0.773GE-C3
0.5313£-03 0.4%04E-03 0.4522E-03
0.33510-03 O©. 3 0S5E-03 0.2918E~03
0.2251:-03
~0.1431E+01 =0.1723E+01 -0.1978E+01

~0.29D7E+01
=0.42445+01
~0.5574E+01
=0.7037€+01

-0.3114E+01
~0.44832+01
-~0.5845E401

~0.3325E+01
-0.4743E+01
-0.6151E401

0.3552F+00
0.3320E+00
0.3171E+09D
0.3044E+00

0.2482E+01
0.260:7E€+01
0.25810E+01
0.2933E+0Q1

=0.2219E+01
~0.3507E+01
-0.4906E+01
~0.€407E+01

0.3507E+00
0.3300E+00
0.3147E+00
0.3025E+00

0.2520E+01
0.2694E+01
0.2833E+C1
0.23528+01

0.727CE+01
0.87%0F+01
0.1008E+02
0.1129E+02

0.1227g-02
0.6372E~03
9.3862E~03
0.2557E~03

=-0.2456E401
~0.3803E+01
~0.5181E+01
-9.657€E+01

C.3407E+00
0.3273E+400
0.31236499
0.3005E+00

0.25%3C+C1
C.2716E+01
0.28%3E+01
0.2972E+01

0.75%1E+01
0.897C£401
0.1023E+02
0.1149E+02

0.1090E-02
0.58456E~03
0.3524E-93
0.2408E~03

=0.26832E+01
-0.4047E+01
-0.5385E+01
~0.6854E+01
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$H4sWAVES AND STROMG CURRUNT OVER AN UNCVEN BOTTOM+ 4+

UINF=

0.9-000 Q0

DUPTHH PROFILE & .

0.1038E+01
0.1278BE401
0.1518E+01
0. 174L0E401
0.1998E401

MEAN FREE SURF.DUE

0.1147E+01
0.15390401
0.1835E+01
0.2108E+01
0.2359E+01

0.1078BE401
0.1318E+01
0.1558E+01
0.179RE4+01

0.1233E+0.4
0.1591E+C1
0.1B8B2E+01
0.2152E+01

0.1118E+01
0.135BE+01
0.159BE+Q1
0.193BE+01

0.1305€E+01
0.1642E+0
0.192BE+01
0.2196E+01

PCRIOD.T= 0.1000E+01

WAVENUMBER ¢
0.20705+01 0.2173E+01 0.2257E+01
0.2519€+01 0.2575F+01 0.2629E+01
0.2824E+01 0.2863E+01 0.2313E+01
0.3078E+0! O0.3117E+401 0.3136E4+01
0.3303E+01

GROUP VELOC.IN FIX.FRA,.:
0.1201E+01 ©0.11256+01 O0.1C71E+01
0.9342£+00 0.9099E+00 0.8878E+00
0.B152E+00 O0.B001E+00 0.7858E+00
0.7356E+00 0.7246E+00 0.7141E+00
0.67G1E+00

CGJ/SIGMA,COEF ,OF EQUATION Y2,Y3
0.B420E400 0.7670C+00 0.7148E+00
0.58493E+00 O.S5G71E+00 0.5477E+00
0.46%1E+00 0.4724E+00 0.4604E+00
0.4193£400 0.4104E+00 0.4020E+00
0.3721E400
0.16576+00 0.1850E+00 0.2010E+00
0.2651E+400 0.233GE+03  0.3032E+00
0.392%E400 O0.41GUE+0N  0.4424E400
0.5517E400 0.5807£+00 0.6103E+00
0.73%0E+00
0.5494E+401 0.7335E+01 0.9032E+01
0.15G3E+402 ©0.1733E+02 0.1904E+02
0.2622E+02 0.2807E+02  0.299BE+02
0.3796E+02 0.4003E+02 0.4212E+02
0.5090E+02

PERIOD.T= 0. 1500E+01

WAVENUMBER: :
0.1252E+401 0.1298E+01 0.1336E+01
0.1458E401 0.1485E+01 0.1511E+01
0.1606E+01 0.1627E+01 0.16849E+01

0.1731E+01
0.1840E+01

0.1750E+01

0.1769E+01

C.115BE401
G, 1398E+01
0.1638€+01
0.187BE+01

TO THE CURRENT:

0.136G9E+01
0.1692E+01
0.1374E+01
0.2240E+01

0.2331E+01
0.2680E+01
0.2955E+01
0.3194E+01

0.1028E+01
0.8674E+00
0.7722E+00
0.7032E+00

0.6746E+00
0.5299E+00
0.4422E+00
0.3939E+00

0.216CE+00
0.3241E+400
0.4GB37E+00
0.6407€+00

0.1068E+02
0.20798402
0.3193E+02
0.4429E+02

0.1370E+01
0.1536E+01
0.1670E+01
0.1787E+01

0.1198E+01
C.'A3LE+OY
0.1678BE+01
0.1918E+01

0.1428E+01
0.1741€+01
0.2019E+01
0.2283E+01

0.2397E+01
0.2729E+01
0.2997€+01
0.3231E+01

0.9925E+00
0.8488E+0Q0
0.7594E+00
0.6943E+00

0.6417E+00
0.5138E+00
0.4387E+00
0.38G3E+0Q0

0.2314E400
0.3458E+00
0.4955E+00
0.6716E+00

0.1231E+02
0.2256E+02

0.3390E+02
0.4646E+02

0.1401E+01

0.1559€E+01
0.1691E+D1
0.1805E+01

0.1238E+01
0.1478F 401
0.1744%i+01
0.19%0E+01

" 0.1485E+01

0.1788E+01

‘0.20G4E+01

0.2326E+01

0.2451E+01
0.2777E+01
0.3018BE+01
0.32G7E+01

0.9613€E+00
0.8316E+400
0.7472E+00
0.6850E+00

0.6123E400
0.4990E+400
0.4237E+00
0.37920E+400

0.2478BE+00
0.3685E+00
0.5233E+00
0.7029E+00

0.1398E+02
0.243%E4+02
0.3591E+02

0.4864E+02

0.1431E+01
0.1583g+01
0.1711E+01
0.1823E+01
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GROUP VELOC.IN FIX.FRA.:

*+++WAVES AND STRONG

UJINF=

0.1000E+01

DEPTH PROFILE:

0.1040F+01
0.1280F+401
0.187. 7401
0.17.4528401
0.2000C0+01

0.1080E+01
0.1320E+01
0.15GCE+01
0.1800E+01

0.13BB8E+01 0.1302E+01 0.1237E+01
0.10G3E+01 0.1038E+01 0.1011E+01
0.9237E+00 0.90634E+00 0.8900E+00
0.B342E400 0.8222E+C0 . 0.8102E+00
0.7706E+00 :

" CG/SIGWMA,COEF .OF EQUATION Y2,v3
0.1313E+01 O0.1190E+401 0.1103E401
0.89.43r+00 0.8591E+C0 0.8280E+C7
Q.7310E+00 0.7120€6+00 0.6912C+00
0.G3.1GE+00 0.6219E+400 0.6G100E+00
0.5GH1E+00 ’
0.10%0E+00 0.1293E+400 0.1495E400
D.2076E+00 0.21B5L+00 0.2255E+00
0.2639E+00 0.2722E400 0,287 459
0.3183E+00 0.32BGE+00 0,3394E+00
0.380LYE+QO -

0.2193F+00 0.6331E+00 0.1070E+01
0.247¢+01 0.275S8BE+01 0.3093E+01
0.4474E401 0.4824E401 0.5185E+01
0.6677E+01 0.7059E+401 0.7444E+01
0.9027E+01

0.1036E+01
0.799VE+00
0.6777E400
0.598HE+00

0.16G7E+00
0.2379E400
0.2897E+400
0.3506E+00

0.1423E+01
0.3432E+01
0.9552E+01
0.7837E+01

CURRENT OVER AN UNEVEN

0.1120E+01
0.13GOE+01
0.1600E+01
0.1840E+01

0.1160E+01
0.140CE+01
0.1G405+01

0.1880E+01

MEAN FREE SURF.DUE TO THE CURRENT:

0.11E1E+01%
0.15B0E+01
0.1878E401
0.2152E401
0.2414E401

PrLRIOD. T=

0.1270E+01
0.1633C+01
0.1925E+01
0.2190C+0)

0. 1000E+01

WAVENUMBER:

0.2038E+01
0.2477€4+01
0.2773C401
0.3021 401
0.32390+01

0.2140E+01
0.2532E+01
0.2 Vv7E+Q 1
0.3059:+01

0.1344E401
0.168B4E+01
0.1971E401
0.2241E401

0.2223E+01
0.2584E+01
0.2836GOE+01
0.309GE+01

GROUP VELOC.IN FIX.FRA,:

0.1221E+01

0.9526E+00
0.8323E+00

0.7523E400

0.G92CE+00
CG/SIGMA,COEF .OF EQUATION Y2,Y3:

0.8623E+00

0.11445+01
0.9279€E+00Q

0.8B175E+00

0.7412E+00

0.7851E+00

0.1089E+01
0.9059E+00
0.803CE+00
0.7304E+C0

0.7321E400

0.1408E+01
0.1734E+01
0.2017E+01
0.22B4E+01

0.2294E+01
0.2633E+401
0.2901E+01
0.31330+C1

0.1047E+01

0.8855E+00 -

0.7594E400
0.7203E+00

0.6921E+00

0.1141E+01
0.9634E+900
0.8604E+00
0.7897E+00

0.9814E+00
0.7749E+20
0.6625E+00
0.5879E+4+00

0.1819E+00
0,24G8E+00

0.2988E+00 .

0.3622E+00

0.1762E+01
0.3774E+01
0.5921E+01
0.8232E+01

BOTTOM¥ %+

0.1200E+01
0.1440E+01
0.1680E+01
0.1920E+01

0.1469E+01
0.1783E+01
0.200G7E+01

0.2328E+01

0.2360E+01
0.2682E+01
0.2942E+01
0.3169L+0C!

0.101C0E+01
0.86G6E+00
0.7764E400
0.7105E+00

'0.6584E+00

0.1102E+01
0.9422£+00

- 0.8470E+00

0.7800E+00

0.9343€E+00
0.7521€+00
0.6481E400
0.5778E+00

0.19%5E+00
0.25%3E400
0.3083E+00
0.3743E+00

0.2097E+01
0.4118E+01
0.6293E+01
0.8626E+01

0.1240E+01
0.14980E+01
0.1720€+01
0.13GOE+01

0.1525E+01
0.1831E+01
0.2107€E+01
0.2371E+0%

0.2420E+01
0.2728£+01
0.2932€E+01
0.3204E+01

0.9799E+00
0.8490E+40C0
0.7641E+00
0.7011E+00

0.6303E+00
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0.50%,E400 0.58 2336400
0.5002L4+00 0.4871E+00
0.43208E+00 0.4238E+00
0.384%£400 .
0.1540E+00 0.1726E4+00
0.246G9E+00 0.2642E+00
0.3515E400 O0.3872E+00Q
0.51105400 0.5375£+00
0.G7WME+00
0.526G7E+01 0.702%E+01
0.1476E+02 0.1634E+02
0.2454E4+02 0.252BE+02
0.3%12E+02 0.3733E+02
0.4737E+02

PERIOD.T= 0.1500E+01

WAVENUMBER:

0.1232E+01
0.1423GE+01
C.1579E+014
0,1702E+01
0.1802E+01

0.1279E+01
0.14G2E+01
O.1GRIE+OY
0.1721E401

.5537E+00
.1748E+00
.4151E+00

QOO

.1874E+00
.2823E+00
.4107E+00
.5647E+00

SO O0oQ

0.8631E+01
0.1792E+4C2
0.28BC6E+02
0.3929E+02

0.1317E+01
0.1487E+01
0.1622E+01
0.1739E+01

GrOUP VELOC.IN FIX.FRA.:

0.140u54014
0.10:E+01
0.9417E400
CLHS13E400
0.786G3E+00

C5/SIGMA,COEF .OF EQUATION Y2,Y3:

0.13490E+01
0.91G1E+00
0.7513C400
0.6537E+00
0.58%1E+00
0.99H9E-01
0.1217E400
0.24%.55400
0.2963E400
0.36005400
0.257CE+CO
0.23217+01
0.4277E+01
0.6204E+01
0.8477€+401

*+ ++WAVES AND STRONG

UINF=

0.1320F+01
0.1056E+01
0.9240C+00
0.8393E+00

0.1213E+CH
0.8804+00
0.7318E+00
0.6401E+00

0.1228E+00
0.2042€E400
0.2535E+00
0.305%E+00

0.6955E+00
0.2634E+01
0.4561E+401
0.6640E+401

0.1050E+01

DEPTH PROFILE:

0.1038E+01
0.1278E+01
0.151BE+01
0.1758E+01
0.1998E+01

0.1078E+01
0.1318€E+401
0.1558E+01
0.1798E+01

0.1255E+01
0.1022E+01
0.9075E+00
0.B277E+00

0.1126E+01
0.8492E+00
0.7137€4+00
0.6279E+00

0.1415E+4+00
0.2132E+400
0.2615E+00
0.3159E+00

0.10G0E+01
0.2942E+01
0.4398E+01

0.7C01E+01

0.5458E400
0.4G634E+00
0.4009E+090

0.2012E400
0.30!{SE+CO
0:43497E+00
0.5924E+00

0.1015E+02
0.1953E+02

-0.298B4E+02

0.4125E+02

0.134%E+01
0.1511E+01
0.1643E+01%
0.1757E+01

0.1203E+01
0.1C04E+01
0.8922E+00
0.8168E+00

0.1059E+01
0.8210E+Q0
0.6970E+00

0.61G4E+00

0.1571E+00C
0.2218E+00
0.2697E+00
0.3264€E+00

0.13E4E+01
0.3259E+01
0.5237E+01
0.7367E+01

CURRENT OVER AN UNEVEN

0.1118E+01
0.1358E+01
0.1598E+01
0.1838E+01

0.1158E+01
0.1398E+01
0.163BE+01
0.1878E+01

0.5233C+00
0.4527E+00
0.3991E+00

0.21%2E+00
0.3217€£+00
0.4595E+00
0.6206E+00

0.1170E+02
0.2118E5+02
0.3168BE+02
0.4325E+02

0.13BOE+O1
0.1535E+01
0.1663£+01
0.1775E+01

0.1158E+01
0.9913E+00
0.8778E+00
0.8064E400

0.1003E+01
0.7955E+00
0.6814E+00
0.6055E+00

0.1711E+00
0.2300E+00
0.27E2E+00
0.3371E+00

0.1704E+01
0.3580E+01
0.5581E+01
"0.7732E401

BOTTOM##s»

0.1198E+01
0.1428E+01
0.1678E-01
0.1918E+01

0.5140E+00
0.4425E+00,
0.3916E+00

0.2308BE+0Q0
0.3479E+00

.0.4812E+400

0.63495E400

0.1321E+02
0.22a7E+02
0.33c3E+02
0.4529E+02

0.1409E+01
0.1558E+01
0.1682€E+01
0.1792E+01

0.1120E+01
0.95065E+00,
0.BG12E400
0.79G4E+00

0.95GGE+00
0.7722E+00
0.66GHE+00
0.59.0E+00

0.18712E+00
0.2379E+00
0.2871E+00

0.34B4E+00

0.2012E+01
0.3904E+01
0.5930E+01
0.8103E+01

0.1238E+01
0.1478E+01
0.1718E+C1
0.19532+01
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MEAN FREE SURF.DUE TO THE CURRENT:

0.8811£+00
0.G931E+00
0.61%5E+00
0.5617E+00
0.5211E400

PERIOD. T=

0.8312€+00
0.6812€+00
0.6047E+00
0.5539E+00

WAVENUMBER:!

0.1630E+01
Q.tansE401
0.1223E+01
0.1224E+401
0.11G5E+01

0.15G7E+01
0.1383C4+01%
0.12833E+01
0.1213E+01

0.7937E+0C0
0.665GE+00
0.5953E+400
0.5463E400

0.1000E+01

0.1522E+91
0.1363E+01
0.1270E+01
0.1202E+01

GROUP VELOC.IN FIX.FRA.:?

0.1678E+01
0.207GE+01
0.2304E401
0.2478C401
0.2G26E+01

0.1778L+01
0.2120E+01
0.2337E+0"
0.2508E+C3

0.1855E+01
0.2161E+01
0.2367E+01
0.2530E+01

CG/SIGMA,COEF ,OF EQUATION 'Y2,Y3

0. 1390E+01"

0.2017E+01
0.2413E401
0.290C0E401
0.330%E+01
0.6724E~-01
0.2670E-01

0.14uGL-01 .

0.2015E-02
0.59%0E-02
0.37255400
-0.2216E+01
~0.401GE+01
~0.562E401
-0.7432E+01

0.1529€+01
0.21€CE+O01

.2559€+01
0.2971E+01

0.5470E-01
0.2381E-01
0.13029E-01
0.8355€E-02

-0.297SE+00
-0.256G1E+01
-0.4313E+01
~0.5982E+Ct

0.1644E+01
0.2181E+01
0.2627E+01
0.303%E+01

0.4590E-01
0.2136E~-01
0.1226E-01
0.7791€E-02

-0.7925F+00
=0.28GR7+01
-0.4579E+01
-0.6273E+01

PELRIOD.T= 0.1500E+01

WAVENUMBER: :
0.101%E401 0.1007€+01 0.9795E+00
0.91LI1E400 0.90277+00 0.8911E+00
0.8524F4+00 0.8435E+C0 0.8358E+00
C.80725400 O0.RD03E+20 0.7940E+00
C.77041100 :

GrROUP 'VELOC.IN FIX,FRA.!
0.18L,7E+01, 0.194%E+01 0.2011E+01
0.211QE+01 0.2237€+01 0.2273E+01
0.237GE4+01 0.2425E+01  0.2451E+01
0.2519€E+401 0.2574E+0f 0.2596€E+01
0.2683E+01

CZ/SIGMA,COEF .OF EQUATION Y2,Y3
0.21a5C4+01 0.2°777+01  0.2518E+01
C.30GOE+01 0.2, 5%E+01 0.3300E+01
0.3741E+01 0.3852E+01 0.3952E+01

0.4458E+01

0.4354E+01

0.4556E+01

Iy

0.7625E+00
0.6515E+400
0.5812r+00
0.5405E+00

0.1484E+01
0.1335E+01
0.1257E+01
0.1193E+01

0.1923E+01
0.2200E+01.
0.2397E+01
0.2552E401

0.1752E+01
0.22G0E+01
0.2699€E+01
0.3099E+01

0.3905E-01
0.1928E-01
0.1129E-01
0.73125-02

=0.1228E+01
~0.3159E+01
-0.4871E+01
-0.6534E4 01

0.9592F+00
0.88CLL 100
0.82€80E+00
0.788B4E+00

0.2059E+01
0.23C6E+01
0.2477E+01
0.2617E+01

0.2675E+01
0.3414E+01
0.4057E+01
0.4647E+01

0.737SE+00
0.62910+00
0.5781E+00
0.5336E+00

0,1454E+01
0.1329€+01
0.1247E+01
0.1183E+01

0.1980E+01
0.2235£+401
0.2422E+0
0.2578E+0!

0.1847E+01
0.2333E+01
0.2761E+01

0.3170E+01

0.3324E-01
0.1755E-01
0.1052E-01
0.6799€E-02

-0.1602E+01
~0.3440E+01
-0.5113E+01
~0.6847E+01

0.9424E+400
0.8709C+00
0.8214E+00
0.78290E+00

C.2118E+01
0.233G5+01
0.2500E+01
0.2640E+01

0.28B14E+01
0.3521E401
0.4149E+01
0.4752E+01

0.7172£400
0.62CGE+00Q
0.5695E+00
0.5273E+400 -

0.1479E+01
0.1312E401
0.1235E+01
0.1174E+01

0.2029E+01

.2272E+01
0.24%1E+01
0.2602€+01

0.1932E+01
0.2411E+01 "
©.2833£+01

0.3236GE+01

0.3006E~01
0.1591E-01
0.9711E-02
0.63G5E~02

~0.1927E+01
~0.373BE+01
=0.5413E+01
~0.7140E+01

0.92R3E+00
0.8611E400
0.8140E+00
0.77G3E+00

0.21%9E+01
"0.23C3E+01
.0.2575E+01
‘0.26G1E+01

0.2937E+01
0.3635E+01
C.4254E+01
0.4850E+01

~140-



LA 00
L 2903F-01
LQgast-02
LH0701-02
.30440-02
L19G5vE-02
.1612E+01
.4047E+01
.6237E+01

.B502E+01

«1101E+02

[eNeReoRe]

-0.
.4403E+01
-0.

-0

L2258E-01
SBGT3E-02
.A504L-02
.28 10E-C2

2108E+01

6G30E+01

.B923E+01

0.1830E-01
0.7097€-02
0.4226£-02
0.2614£-02

-0.2531E+01
~-0.477BE+01
-0.7002E+01
-0.9349E+01

0.1515E-01
0.64130t-02
0.3360:0-02
0.2443E-02

-0.2946E+01
-0.5134E+01
~0.7373E+01
~0.9699E+C1

0.1290E-01
0.6213t-02
0.3580E-02
0.2263E-02

-0.3327E+01
-0.5499E+01
~0.7720E+01
-0.1014E+02

LA124E-01
.55815-02
.329%E-02
.21120-02

[eNeNe Nl

~0.368B1E+01
-0.5878E+01
-0.8120E+01
=0.1057E+02

-141-



Appendix E: Computer Program (CMS)



o000

oO0O0n

10

11

COMPLEX A(71,140)
DIMENSION H{51),XHI(51),KA(51),Y1(50),Y2(50),Y3(50)

$,CGG(50),ERR(140)

REAL KA,KAA, L

A=AMPL ., ;H=DEPTH; XHI=TOTAL DEPTH(WITH CURRENT)
KA=wAYE NUMBER;Y1,Y2,Y3=COEF.OF EQUA.GOVER.A:
CGG=GROUP VI LOC.IN FIXED FRAME;
ERR=CONSERVED QUANTITY(FIRST EVOLU.LAW)
NA=140

JA1=35

JA=2+J A1

NA AND JA ARE DIMEN.OF MATRIX A(AMPLIT.)
NAV=50

NA1=50

DH1=-0.1

DH2=0.

JJ=0 . -
NAV,NA1,DH1, DH2,Jd ARE PARAM.OF DEPTH PROFILE
L=0.5 :

DX=L/FLOAT(NAV=-1)

JAA=10

T=3.

TETA =1.

OME=2. +3.14159/T

DTO=TETA/FLOAT(JAA)

L=LENGTH(IN X2 ADIM.VARIA.)OF 20Q.0F DEPTH CHANGE
AMPL. IS STUD.FOR X2=0,TQ NA*L

T=ADIM.PERIOD

DX,DTO ARE WIDTH OF DISCR.INTER

UINF=0.4

X=(UINF*%2)/2,

HC=(X/4.)+*0.3333

HC=3.*HC-X

CALL DEPTH(NAV,NA1,JJ,DH1,DH2,H)

DO ¢ 1=1,NAV

HH=H(T)

IF(UINF.LE.Q.0001) GO TO 10

CALL MEAFS(HH,UINF,XHII)

XHI(1)=XHII

GO 10 11

XHIT=H(I)

XHI(])=XHI]

CALL WAVENU(OME,UINF, XHll LKAA)

KA(I)=KAA

CONTINUT

KA{NAV +1 ) =KA (NAV)

XHI(NAV+ 1 )=XHI{NAV)

CALL COEFF(NAV,XHI,KA,H,UINF,OME,DX,Y1,Y2,Y3,CGG,XX)
Y21=Y2(1)

CALL INIT(VA,JA1,DTD,Y21,A,1S, ERR)

GIVES INITIAL FROFJILE AT X2= 0.

CALL SOLUT(NA,NA.,dA,DX,DTO,Y1,Y2, Y3 15,4, ERR)
IF IP=0 WE WANT ONLY NUM. RES.:IF IP 1 WE WANT PLOT
IP=1

IF(IP.EQ.0) cCALL IMPRES(UINF,HC,T,JA,NA,NAV,0X,DT0,H,KA,X

FRA00010
FRA00020
FRA00030
FRA00040
FRA00050
FRAOO0GO
FRAD00O70
FRA00080
FRA00090
FRA0D100

"FRAOQ110

FRA00120
FRA00130
FRA00140
FRA00150
FRAOO160
FRA00170
FRA00180
FRAQO190
FRA00200
FRA00210
FRA00220
FRA00230
FRA00240
FRA00250
FRA00260
FRAQC270
FRA00280

FRA00290

FRA00300
FRA00310
FRA00320
FRAOV330
FRA00340
FRAQ0350
FRA003GO
FRA0Q370
FRAQ0380
FRA00390
FRAG0400
FRA00410
FRAG0420
FRAO0A30
FRAQ0AA0
FRA00450
FRA00460
FRA00470
FRAOO4E0

"FRAOCA90

FRAO0S00
FRAOQS10
FRA00520
FRAQ0S530
FRA00540
FRAQ0S550

e wws



100

10

200

12

11

13

10

SHI,XX,Y1,Y2,Y3,CGG,A,1S, ERR,J)
IF(IP,EQ.1) CALL DESSIN(NA,JA,A)
sT0P
END
SUBROUTINE DEPTH(NAV,NA1,JJ,DH1,DH2,H)
DIMENS ION H( 1)
IF(JU.NE.Q) GO TO 10
1F JU=0 STEPS;IF JJ NOT EQ.0 JJ ONDULATION OF AMPL.DH1
NA2="AV-NA1
1F(NA2 .EQ.O0) DH2=DH1
IF NA2=0 t STEP OF HIGH DH1;IF NO 2 STEPS OF HIGH DH1, DH2
DO 1 N=1,NAV
IF(N.GT.NA1) GO TO 100
R=FLOAT(N-1)*3,14159/FLOAT(NA1~1)
H{N)=1.+DH1* (COS(R)~1.)/2.
GO TO 1
R=FLOAT(N-NA1)+3.14159/F LOAT(NA2)
H(N)=1.-DH1+ (DH2-DH1)*(COS(R)-1.)/2.
CONTINUE
GO TO 200
DO 2 N=1,NAV
R=2.¥FLOAT(JUJ)*FLOAT(N=1)*3.14159/FLOAT(NA1-1)
H(N)=1.-DH1+ (COS(R)=1.)
CONTINUE
H{NAV+ 1) =H{NAV)
RETURN
END
SUBROUTINE MEAFS(HH,UINF,XHII)
EPSI=0.001
A2=(UINF#**2) /2,
X2=(A2+%2)+4 . A2
X1=(A2=SQRT(X2))/2.
X2=(A2+SQRT(X2))/2.
DELT=0.25%*ABS(1.,~X2)
IF(DELT.LE.0.05) DELT=0.05
XHII=1.
N=0
2=HH-1 .
ER=ABS (Z)
IF(ER.LE.EPSI) CO TO 20
PTE=2. % (HH=1)-{i.=X1)*{1.=-X2)
IF(HH.LT.1.) GO TO 1
IF(UINF.GY,1.) GO TO 10
GO TO 11 ‘
IF(UINF.LT.1..AND.Z1.LE.O.) DELT=DELT/2.
IF(UINF.GE.1. . AND.21.GT.0.) DELT=DELT/2.

N=N+1

IF(H.c..520) GO TO 20
XHI1=XnII+DELT

GO 70 14

IF(UINF.LT.1..AND.Z1.GT.0.) DELT=DELT/2.
IF(UINF.GE.1..AND.Z1.LE.O.) DELT=0ELT/2.
N=N+1

IF(N.GT.S5GC) GO TO 20

XHIT=XHII-DELT

rrac0bGo
FRAQOS70
FRAOOSHO

- FRAQOO0590 -

FRAOOG00
FRAODG10
FRAG0620
FRAOO0G30
FRAO0640
FRA00650
FRAQQGG0
FRAQ0670
FRA00680
FRAOCG90
FRAOO700
FRAOO710
FRAOO720
FRAQQ0730
FRAOO740
FRAOO0750
FRAOO760
FRAOC770
FRA0C078Q
FRAOO790
FRA00800Q
FRAQOB10
FRAO0820
FRA0QB830
FRAOOBA4Q
FRAQCEB50
FRAOOB60O
FRAQO0S70Q
FRAOOB80
FRA0Q0890Q
FRAQO300
FRAQO0910
FRAQ0C920
FRAQQ930
FRAQ0940
FRA00250
FRA00960
FRAQO970
FRA00980
FRAOC390
FRAQO1GCO0
FRAO1010
FRAO1020
FRAQIC30
FRAG1040
FRA01050
FRAO1060
FRAQ1070
FRAG1Q80
FRAO1090
FRAO1100



14

17

15

19

16
16

20

F 3
=2 . :
Z=(XHIT-1,)* (XHII-X1)+(XHII=X2)
Z= (MU= 1. )+ (XH1T+92)-2
ER=AS(2)
1F(ER. LE.EPSL1) GO TO 20
1F(Z.GE.O..AND.UINF.LT.1.) GO 10 12
IF(Z.LE.O. ., AND.UINF.LT.1.) GO 7O i3
IF(Z.LE.O..AND UINF.GE.1.) GO TO 12
IF(Z.GE.0..AND.UINF.GE.1.) GO TO 13
GO 10 20
IF(UINF.GT,1.) GO TO 15
GO TO 16
IF(UINF.GE.1 .AND.(21.GT.0..0R.PT1.LE.0.)) DELT= DELT/2.
IF(UINF.LT.1 . AND.Z1.LE.0.AND.PT1.LE.0.) DELT= DELT/2.
N=N+1
1F(N.GT.500) GO TO 20 ..
XHIT=XHII+DELT
GO 7O 18
IF(UINF.GE.1 .AND.Z1.LE.0.AND.PT1.GT.0,) DELT=DELT/2. .
IF(UINF.LT, l .AND.(Z1.GT7.0..0R,PT1.GT.0.)) DELT=DELT/2.
N=N+1 .
IF(N.GT.500) GO TU 20
XHII=XHI1~-DELT
21=2
PT1=PTE

z (XHIT=1.)* (XHII=X1)*(XHII~-X2)

=(HH-1.)*(XHILl**2)=2Z
ER=ABS(Z) _
IfF(E® - EPSI).GO TO 20
PTE=2. ¢ (nH~1 . )4 XHII=(XHII=X1)* (XHII=X2)~(XHII=1.)*(2.%XNI

SI-X1~Xx2)

IF((2.GT.0..0R.PTE.LE.O.).AND. UINF.GE.1.) GO TO 19
IF(Z.LE.O..AND,PTE.GT.0. .AND.UINF.GE.1.) GO TO 17
IF(Z.LE.O..AND.PTE.LE.O. .AND.UINF.LT.1.) GO TO 19
IF((Z.GT.0..0R.PTE.GT,.0.).AND. UINF.LT.1.) GO TO 17
RETURN ° :
END
SUBROUTINE WAVENU(OME,UINF,XHI I, KAA)
REAL K1,K2,KAA, K1 INF,K2INF
£¥S1=0.0001

1=1.
X2=1,
X3=0.
IF Xt=1.(RES.-1.),X2=1.(RES.0.),X3=0.(RES.1.),WE STUD.THE
SMALLEST(RES .LARGEST)ROOT =~
UN=UINF/XHI1
N=0
APPROX I .PLAC .OF ROOTS
Ki=14,
Ki=K1/2,
FMG=(QOME*%2) /K1~2. *UN*OME+(UN* #2) K1 ~TANH(K1*XHII)
PTE=UN**2-(OME/K1 ) #+2=-XHI1/((COSH(K1*XHI[) )*»2)
IF(FMG.LE.O0. .OR.PTE.GT.0.) GO 10 1
DELT=K1
K2=K1

FRAQI1 1O
FRAD1120"

FRAO1130

FREO1140
FRAO1150
FRAO1 160
FRAO1170
FRAQ1180
FRAO1190
FRAO1200
FRAO1210
FRAQ1220
FRA01230
FRAC1240
FRAO1250
FRAO1260
FRAO1270
FRAO1280
FRAO1290
FRAO1300
FRA01310
FRAO1320
FRAO1330
FRAD1340

-FRAO1350

FRAQ1360
FRAO1370
FRAO1380
FRAQ1390
FRAO1400
FRAO1410
FRA01420
FRA01430
FRAQ 1440
FRAO1450
FRAQ14G0

" FRAOC1470

FRAQ1440
FRAO01490

" FRAD1500
FRAQ1510

FRA01520

- FRAQ1530

FRA01540
FRAQ1550
FRAO1560
FRAO1570
FRA01580
FRAO1590
FRAO1600
FRAO1610
FRAO1620

FRA01630 .

FRA01640

. FRAO1650



- =9%1-

2 FMG=(OME++2) /K2-2, *UN*OME+(UN* %2) *K2~TANH( K2 XHI 1) ~ FRAO16G0

IF(FMG.LE.O.) GO TO 10 FRAQ1LTO
PTE=UINF++2~ (OME/K2)**2=-XHII/( (COSH(K2¢XHII))*+2) ] FRAQ15080
IF(PTE.GT.0.) GO TO 11 , ! FRAQi1690
K2:=K2+DELT : FRACL700
GO 10 2 © FRAO1710
1 DELT=DELT/2. , . : . FRA01720
K2=K2-DELTY . FRAO1730
GO 10 2 . " FRAO1740
10 K11NF=K2-DELT i FRAQ1750
FMG=1., - FRAQG1760
IF(X1.GE.0.) GO TO 131 ) FRAQ1770
12 K2=K2+DELT : FRAO1780
FMG=OME**2/K2-2, *UN*OME+ (UN%*2 ) #K2~-TANH(K2#*XHII) FRAQ1790
IF(FMG.LE.O0.) GO TOD 12 FRAO1800
K2INF=K2 . FRAO1810
AT THIS PT.THE 2 ROOTS ARE K1(K2)BETW. KI1INF AND K1INF4DE - " FRAOQ182¢
LT. (K2 INF) _ FRAQ1830
131 K2=X2+ K1 INF+X3*K2INF ’ ' FRAO1840
GO TO 130 : FRA01850
13 IF(FM] .LE.O.) DELT= DELT/2. : . FRAQ1860
130 K2=K2+X1+DELT " - FRA01870
N=N+1 FRAQ1880
IF(N.GT. 50) GO TO 1000 _FRAQ1890
GO TO 15 FRA01900
14 1F(FM1 .GT.0.) DELT=DELT/2. ‘ : FRAO1910
K2=K2~- X1*DELT FRA01920
N=N+1 FRAO1930
IF(N.GT.50) GO TO 1000 _ FRAO1940
15 FM1=FMG FRA01950
FMG=(OME**2) /K2-2, *UN*OME+(UN* %2) *K2-TANH( K2*XH11) FRAO1960
ER=ABS (FMG) . FRAO1970
IF(FMC.GE.O. .AND.ER.GT.EPSI) GO TO 13 FRAO1980
IF(FMG.LT.0. .AND.ER.GT.EPSI1) GO TU 14 FRA01990
KAA=K2 FRAC2000
1000 RETURN i : . FRA02010
END ' FRAQ2020
SUBROUT INE COEFF(NAV XHI KA ,H,UINF,OME,DX,Y1,Y2,Y3,CGG,XX) - FRAD?2030
DIMENS ION XHI(1),KA(1), Y1(1) ¥Y2(1), Y3(1) H(l) LGG(t) FRA02040
REAL n\ KX1, KX, KH ) _ FRA02050
DO 1 N=1, NAV _ FRA02060
UN:UlNF/XHI(N) _ : FRA02070
C=-Uli+ (OME/KA(N)) " FRA02080
KX=KA(N)*XHI (N) = . FRA02090
BET=TANH(KX) : FRA02100
CO=COSH{KX) ’ . FRAO2110
S1=5INH(KX) FRA02120
CGM=C*0.5*(1.+KX/(SI*CO)) FRAC2130
CG=CGM+UN o FRAO2140
CGG(N) =CG FRA02150
Y2(N)-|.-XHI(N)*(1.-BET*BET)*(1.-BET*KX)/(CGM**2) . FRA02160
Y2(N)=Y2(N)* (CGM*+2}*KA{N) /(2. *C*{CG**3)) FRA02170
Y3(N)=4.*((C/CGM)**2)+4, *C/(CGM*CD*C0)+XHI(N)/((CGM*CO‘CO)ttz) FRAO2180
Y3(N)==2.#Y3(N)+((BET*CGM)*+2) /(XHI(N)~(CGM+#2))+9.-10.9¢ FRA0Z2190

SBET**2)+9.*(BET**4) FRAQ2200



=LY~

e XeXgl

100

Y3(N)=KA(N)*Y3(N)/(4.*%CG+C*({(C*BET)**2})
XX=ABS (Y3(1))

IF(N.GT.1) Y3(N)=Y3(N)/XX

KX1=KA (N+1)* XHI(N+1)

CG105=0.5%( 1 .+KkX1/(SINH(KX1)*COSH{KX1)))/KA(N+1)
CG105=CGIOS+UINF/ (XHI(N+1)* {OME~UINF¥KA{N+1)/XHZ (N+1)))
Y1(N)=(CGIDS-CG/(C*KA(N)))/DX
Y1(N)=Y1(N)/(CGI10S+CG/C*KA(N))

CONTINUE

LY3(1)=Y3(1) /XX~

Y3(N) IS NORMALI.SUCH THAT ABS(Y3(1))=1.
RETURN ]

END :
SUBROUTINE INIT(JA,JA1,DTO,Y21,A,1S,ERR)
COMPLEX A(71,1) :

DIMENS ION ERR(1)

15=1

IF IS=1 INIT.PRQF,SYMET.IN TO

IF 1S=1 GIVE A AT X2=0 FOR TO=~-DTQO TO JA*DTO
1IF 15=0 INIT.PROF.NOT SYMET.IN TO

Q0=2.

W=QO/SQRT{2.%Y21)

JA2=UA +1

E=0.

DO 1 I=1,JA2

R=FLOAT(1-2) °

A(T,1)=CMPLX (QO/COSH(W*R*DT0),0.)
1IF(1.LE.2) GO TO 1
E<E+CABS(A(],1))**2+CABS(A(I~1,1))**2
CONTINUE .
ERR(1)=E*DTD/2.

RETURN

ENRD :
SUBROUTINE SOLUT(NA,NAV,JA,DX,DTO,Y1,Y2,Y3,15,A,ERR)
CGMPLEX AL(200),BE(200),GA(200),W(200),X(200),Y(200),
SA(71,1) :

DIMENSICN Y1 {1),Y2(1),Y3(1),ERR(1)

IF IS=0 A IS NOT SYMET.IN TO

IF 1S=1 A IS SYMET.IN TO

JA1=JA—1

YY=0.

KK=3-1S

DOt 1=2,NA

E=0.

A{JA+1,1)=CMPLX(0.,0.)

IF(I5.£Q.0) A(1,1)=CMPLX(0.,0.)
IF(1.GT.NAV) GO TO 100

Yit1=Y1(I-t)

¥222=Y2{i-1)

Y333=Y3(1-1)

Yit=(Y1(I-1)+Y1(1))/2.
Y22=(Y2(I-1)+v2([))/2.
Y33=(Y3(I-1)+Y3(1))/2.

Go 1O 101

IF(I.GT.(NAV+1)) GO TO 10t

FRA02210
FRAO222Q
FRAO2230
FRAQ2240
FRA02250
FRA02260
FRAQ2270
FRAQ2280
FRA02290
FRA02300
FRA02310
FRA02320
FRA02330
FRA02340
FRAQ2350
FRAQ2360
FRAQ2370
FRA02380
FRA0239Q
FRAD2400
FRAQ2410
FRAD2420
FRAQ2430
FRA02440
FRA02450
FRA02460
FRA02470
FRAOQ2480
FRAO2490"
FRA02500

- FRAQ2510

FRA02520
FRA023530
FRA02540
FRAQ2550
FRAQ02560
FRAD2570
FRAC2%80
FRAQ2390
FRAOZ2600
FRA02G10
FRA02620
FRA02630
FRA02640
FRA02GS0
FRAQ26GGO

"FRAG2570Q

FRAO2680
FRA02::9D
FRAG27CO
FRAQ2710
FRAOZ720
FRAG2730
FRA02740
FRAD2750



-8yv1-

. 101

103

501
502

504
503

Y111=0.

Y222:Y 2(NAV)

Y3337 J(NAV)

Y11=0,

Y¥22=Y222

Y33=Y333

DO 2 JU=1,JAl

S=CABS (A(J+1 ,1-1))

AL(J)=CMPLX(0.,Y22+DX/(2,¢(DTO*+2)))

GA(J)=AL(J)
W(J)=A(J+1,I=1)*CMPLX(1.-DX*Y11/2,.,DX*Y22/(DTO*%2)-Y33+Sx
SS*DX/2.) ’
W(J)=W(J)=(A(U+2,1I-1)+A(JU,I-1) )*AL(J)
BE(J)=A(J+1,I-1)+CMPLX(1.~DX*Y111,0X*2. *Y222/(DTO**2) Y33
$3+515+DX)

BE(J)=BE(J)-(A(U+2,I-1)+A(J,1~ 1))*CMPLX(0..Y222*DX/(DTO#¢
$2))

S=CABS (BE(J) )

BE(J)=CMPLX( 1, +DX*Y11/2..-DX*Y22/(DTC*t2)+DxtY33*S*S/2 )
CONTINUE

X(JA=1)=-AL( JA=1)/BE(JA-1)

Y(JA=-1)=W({JA~ 1)/BE(dA—1)
DO 3 J=3,UA

K=JA+1=d

X(K)==AL(K)/ (GA(K)*X(K+1)+BE(K))

Y(K)=(W(K)~ GA(K)*Y(K+1))/(GA(K)#K(K+1)+BE(K))

CONTINUE

IF(1S.EQ.0) A(2,I)=(W(1)-GA(1)*Y(2))/(GA(1)*X(2)+BE(1))

IF(IS.EQ.1) A(1,I)= (X(2)*Y(1)+Y(2))/(1.-X(Q)*X(1))

DO 4 J=KK,JA

A(J,1)=A(J-1,1)rX(U=1)+Y (J=1)

1F(J.LE.2) GO TO 4

E=E+CABS(A(J,1))*+*2+4CABS(A(U~1,1))*»2

CONTINUE

1F(I.GT.NAV) GO TO 103

YY=YY+Y1(1)+Y1(I~1)

ERR(1)=0.5+DTO«E*EXP(DX*YY)

CONTINUE

RETURN

END

SUBROUTINE IMPRES(UINF,HC,T,JA ,NA,NAV,DX,DTO,H, KA, XHI, XX,
SYt,Y2,Y3,CGG,A,IS,ERR,J)

lMENSIGN H(1) B(1), XHI(1) Y1(1),Y2(1),Y3(1), CGG(1) ERR(1)

COMPLEX A(71,1)

REAL KA(1)

IF(J.GT.1) GO TO 2000

1F(UINF.LE,0.0001) WRITE (6,501)

IF(UINF.GT.0.0001) WRITE (6,502)

FORMAT (5X,' ****WAVES OVER AN UNEVEN BOTTOM#*#x' /)

FRAOQ”GO

FRA02770
FRAO2700
FRA027Y0
FRAO2800
FRA02310
FRA02820
FRA02830
FRA02340
FRAO2850
FRA02860
FRA02870
FRA02880
FRA02890
FRA02900
FRA02910Q
FRA02920
FRA02930
FRA02940
FRAQ2950
FRA02960
FRAG2970
FRA02980
FRA02990
FRA03000

" FRA03010

FRA03020
FRA03030
FRA03040
FRA03050
FRA030G0
FRA03070
FRA03080
FRA03090
FRA03100
FRA03110
FRA03120
FRAO3130
FRA03140
FRA03150
FRA03160
FRA03170
FRA03180
FRA03190

" FRA03200

FRA03210
FRA03220
FRA03230
FRA03240

FORMAT (/,5X,'**+*WAVES AND STRONG CURRENT OJER AN UNEVEN BQTTOM**FRAO32

S+t ,/)

IF(UINF.GT.0.0001) WRITE (6,503) UINF
FORMAT (/,5X,'PERIOD.T=',E12.4)
FORMAT (5X,'UINF=',E12.4,/)

WRITE (6,507) -

FRA03260
FRAQ3270
FRA03280
FRA03290
FRAQ3300



B S0 AN

507
508
509
2000
520

510

St1

- -

FORMAT (5X,'DEPTH PROFILE:')

WRITE (6,508) (H(K),K=1,NAV)

FORMAT (6E12.4) _
IF(UINF.GT.C.0001) WRITE (6,509}

FORMAT (5X,'MEAN FREE SURF,DUE TO THE CURRENT:')
IF(UINF.GT.0.,0001) WRITE (6,508) (XHI(K),K=1,NAV)
WRITE (6,504) T

WRITE (6,520)

FORMAT (SX.'WAVENUMBER")

WRITE (6.508) (KA(K),K=1,NAY)

WRITE (6,510)

FORMAT (5X,'GROUP VELOC.IN FIX,FRA.:')

WRITE (6,508) (CGG(K),K=1,NAV)

WRITE (6,511)

FORMAT (5X,'CG/SIGMA,COEF.OF EQUATION Y2,Y3:')
WRITE (6,508) (Y1(K),K=1,NAVY)

WRITE (6.508) {Y2(K),K=1,NAV)

WRITE (6,508) (Y3(K),K=1,NAV)

Ju=0

" 1F(JJ.EQ.0) GO TQ 1000

513

514

515

1000

WRITE (6,513)

FORMAT (/5X, 'AMPLIT.OF WAVES(*SQRT(XX)):',/)
JA1=JA+1 , .
1SS=15+1

DO 1V J=1,NA, 20

DD 2 L=1,UA1

B(L)=CABS(A(L,J))

CONTINUE

WRITE (6,514) d

FORMAT (2X,'X=X(',12,')')

WRITE (6,508) (B(K),K=15S,UA1)
WRITE (6,515) J,ERR(V)

FORMAT (5X,'QUANTITY CONSER.EN(',13,')=',E12.4)
CONTINUE : :
RETURN

END ‘

SUBROUTINE DESSIN(NA,UA,A)

COMPLEX A(71,1) :

DIMENS ION B8(71,140),5H(302),5v(302)
JA1=JA+1

DO 1 I=1,NA

DD 2 J=1,JA1

B(J,1)=CABS(A(J,1))

CONTINUE

CONTINUE

BMAX=8 .

10IM=y A1

JDIM=NA

ISTART =2

1DELT=1

1STOP=50

JSTART =1

JUDELT=2

JSTOP=NA

CALL PLOTS(120,1DUM2,08)

FRA03310
FRA03320
FRA03330
FRAD3340
FRAO3350
FRAO33G0
FRA03370
FRA03380
FRA03390
FRA03400

" FRAO3410

.

FRA03420
FRA03430
FRA03440
FRA03450
FRA03460
FRA03470
FRA03480
FRA03490
FRA03500
FRA03510
FRA03520
FRA03530
FRA03540
FRA03550
FRA03560
FRA03570
FRA03580
FRA03590
FRA03600
FRAO3610
FRA03620
FRA03630
FRA03640
FRA03G5Q
FRAD3660
FRA03670
FRA036G00
FRAD3G90
FRA03700
FRAO3710
FRA03720
FRA03730
FRAC3740
FRACJI750
FRA03760
FRAO3770
FRAD3780
FRAO3790
FRA03800
FRA03810
FRAQ3820
FRA03830
FRA03840
FRAO3850



TUS LT

CALL PLOT3D(B,BMAX,0,,IDIM,UDIM,ISTART,IDELT,ISTOP,USTART
S,UDELT ,JSTOP,1,45.,45.,SH,SV, ' EVOL.OF 2 B.SOLITONS',20,
50.0,0.0,0.0) .

CALL ENDPLT(12.,0.,999)

RETURN

END

FRA038G0
FrRA03d70
FRAO3B8C
FRA0O3890
FRA03900
FRA0391C



List of Figures and Captions.

Figure
Figure
Figure

Figure

Figure

Figure
Figure

Figure

Figure

Figure

)
(2)
3)
4)
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(6)

@)

(8

9)

10)

Definition sketch.

Definition sketch.

Critical depth as a function of the current at - «

Envelope of a soliton for comstant depth A(0,T) = w sech (2 ’y

U=0.4 T=23; |A| is plotted for X, = 0 to 8.5

Envelopevof two bounded solitons

2 sech,({gg T) U=0.4 T=3;
2y2

4.2 T =0 to 5.

Definition sketch.

y3 as a function of k(z + h) for

t=5; (3 U=0.8 T = 5.

K= I3
2y2

T=3; 3 U=0.4 T-= 3,

as a function of k for (1) U =0

T

|A| is plotted for x

3

Zy2

T =.O to 5.

2

for constant depth A(0,T1) =

=0 to

(1) U-0.4 T=3; (2) U=0.4

5; (2) U = 0.8

Evolution of the envelope of a soliton moving over decreasing

depth; A(0,T) = 5 sech (5 Y3
2y,

L = 0.5; |A| is plotted for X,

T) U=0 T=3 dh = -0.6

=0 to 0.5

T=0 to 5.

Evolution of the envelope of a soliton moving

depth; A(0,t) = 5 sech (5{ Y3
272

L = 0.5; |A| is plotted for X,

-151~-

) U=20

=0 to 0.5

T

T

over increasing

5 dh

0 to 5.

0.2

‘)



Figure (11)

Figure (12)

Figure (13)

Figure (14)

Figure (15)

Figure (16)

Evolution of the envelope of a soliton moving over increasing

depth; A0, T) = 5 sech (5 { Y4 T U=0 T=5 dh =0.7
2y2
L = 0.3; |A| is plotted for X, =0 to 0.3 71=0 to5.

Evolution of the envelope of a soliton moving over decreasing

depth; A(0,T) = 2 sech (2 ¥y T ) U=0.4 T=3 dh=0.1
2y2

L =1; |A| is plotted for x, = 0 to 5.6 T =20 to 5.

2

Evolution of the envelope of a soliton moving over increasing

depth; A(0,T) = 2 sech (2| ¥y tT) U=0.4 T=3 dh =0.1

3
2y2

L =1; |A]| is plotted for x, = 0 to 2.85 1t =0 to 5.

2

Evolution of the envelope of a soliton moving over increasing

depth; A(0,T) = 2 sech (2 i y3 T ) U=0.4 T=3 dh=0.6
2

72
L = 3; |A| is plotted for X, =0tol 1 =0 to5.
Evolution of the envelope of two bounded solitons moving

over decreasing depth; A(0,t) = 2 sech ( y3 T) U=0.4

T

(]
w
[al
=g

]

-0.1 L =1; |A| is plotted for x, = 0 to 2.85

T 0 to 5.

Evolution of the envelope of two bounded solitoms moving over

increasing depth; A(0,T) = 2 sech (‘ V3 T Y U=0.4 T=3
2y2

dh = 0.1 L =0.5; |A| is plotted for x, = 0 to 1.42 1 =0

2

-152-

to 5.



Figure (17) Evolution of a sech profile when 3 <0

a(0,T) = 2 sech ( T7) U=1.6 dh=-0.2 T=3

73
2y2
L = 1; |A] is plotted for X, =0tol.9 tT=0tos5.
Figure (18) Evolution of a sech profile when vy < 0
A(O,t) = 2 sech (2 Y, ) T=5 dh=0.2 L=1;
2y, 4

|A| is plotted for x, =0 to 1.9 T =0 to 5.

2

-153-



