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ABSTRACT

A theoretical study of water waves and current over variable depth
is performed. Multiple-scalesanalysis is used to derive the equation
governing the evolution of a 1-D wave packet. The current is assumed to
be colinear with the wave number vector and with the depth gradient. The
equation which is found is a cubic Schr6dinger equation with nonconstant
coefficients.

Some analytical properties of this equation are studied. The equation
is then solved numerically and the effect of current and depth variation
on the propagation of a solitary wave is studied.
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Introduction.

Depth variation and current both affect the propagation of waves. This

interaction is of practical importance in coastal engineering. Structures

are often constructed near a river mouth where currents may be important.

Tidal currents near harbor entrance may have considerable effects on

wave propogation and during ebb tides where waves are steepened by the

opposing current, entrance of some harbors may be hazardous for small

boats. Shoaling effect of submarine ridges may also enhance these effects.

A comprehensive study of water waves and current interaction can be found

in Peregrine (1976) [16].

In the present work our attention will be focused on small amplitude

waves moving over strong current. In this case the current affects the

waves but is not affected by the waves. We shall further assume, as is

frequently the case in nature that the current and the depth vary on

length and time scales which are much greater than the wave length and

period of the waves.

The first theoretical description of such problem was given by Longuet-

Higgins and Stewart (1960-61) [9] [10] [11] and Whitam (1962) [23]. They

introduced the concept of radiation stress: it states that energy of

waves over variable current is not conserved but is created or destroyed

because of the rate of work done by the radiation stress and the current

strain. Further extension has been made by Phillips (1966) [17] and

Bretherton and Garrett (1968) [3] who introduced the concept of wave

action.

All these studies are concerned with linear theory. In this thesis

we shall derive nonlinear extension of the equation of conservation of



wave action. We extend the method used by Djordjevic and Redekopp (1978)

[5] who studied nonlinear evolution of a wave packet moving over a variable

depth. To adapt the method of multiple-scalesto our problem we use the

approach of Mei [12] who showed that the results of linear theory, found

by using Whitam's theory of averaged Lograngian, can be derived by assuming

a WKB type expansion of the waves related quantities.

Let us first state the assumptions:

As usual in this kind of study we ignore viscosity and neglect the

interaction between water and the air above. We also ignore surface tension.

One important simplification is that we consider a one dimensional

problem. This assumption is not fundamental but is made to simplify the

algebra which, even in this case is very lengthy. By this limitation our

study is restricted to the case where the wave number k and the velocity of

the current U are colinear. Therefore all the physical quantities to

be considered are only functions of the vertical coordinate z, the only

horizontal coordinate, x and time t.

Other assumptions are concerned with the different scales appearing

in the problem:

Length scales: There are 5 scales; L, the wave length; A the

ah 1amplitude of the waves; h the averaged depth; x/h = , Lh is the

au 1
length scale of depth variation; /U = - , Lu is the length scale

u
of U variation where U is the current velocity.

Time scales: There are 2 scales; T period of the waves;

au 1
/V =-- where T is the time scale of U variations.at T uu

As usual we mean by "length scale of U variation" the length over which

U varies by O(U). As the main object of this work is to study the
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direct effect of depth variation on waves, the waves must "feel" the

bottom. In other words we are not interested in the deep water limit

h >> L. (However, even if h >> L the current can feel the depth variation

which will affect the waves indirectly.) For these reasons we take

L = O(h) = 0(1).

As usual the study is restricted to weakly nonlinear waves; this

implies the wave's amplitude to be small or, more precisely kA = 2

2~sL
E= << 1 where k = -- is the wave number. This means that the slope ofL

the waves is small. All the quantities related to the waves are 0(e) but

they vary rapidly, i.e., their length and time scales of variation are

0(L) and 0(T) which are taken as 0(i). In other words all the quantities

related to the waves can be written:

f (x,z,t) = fw (x,z,t)

The depth is assumed to vary very slowly: its variation is negligible

over one wave length. This implies Lh >> L. More precisely we assume

=0 C . The pertinent coordinate for h is then x2 = e x, i.e., h = h(x2).

Lh

The current is assumed to be strong: all the quantities related to

the current are 0(1). We also assume that it varies very slowly both in

space and time. This means: Lu >> L; T >> T. This can be a very realistic

assumption. As the variations of the current are expected to be the

consequence of the depth variation we assume that:

L 2 T 2
L Tu u

The pertinent coordinates for the quantities related to the current are

therefore:
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2 E , t 2 =E t and z (As h = 0(1) we do not allow slow variations in z.)

In the first part of this work we derive the equations governing

the evolutions of the amplitude of the waves. We first find the approxi-

mate equations of the problem at O(s3); then we solve these equations in

a formal and asymptotic sense by assuming expansions in power of a of

all the quantities related to the waves. As usual we expect some slow

variations of these quantities. This is taken into account by using

multiple scales analysis. After a very lengthy algebra we find the

equation governing the evolution of a wave packet. It is a kind of cubic

Schrddinger equation with nonconstant coefficients. We then compare

this equation with those already known in the literature: the linear limit

and the case without current.

In the second part we turn to an analytical study of the evolution

equation in the limited case where the current is stationary. We first

recall some results when the coefficients of the equation are constant.

In particular we present in Appendix B, C an account of the Inverse

Scattering theory by which our equation can be exactly solved. When the

coefficients are not constant the analytical study is much more limited.

Our results are limited to the study of an exact solution which is an

extension of the well known Stoke's waves. Certain evolution laws are

then derived which are the equivalent of the well known conservation laws

for the cubic Schradinger equation.

To find some more qualitative answers we turn in the third part to a

numerical study of the problem. It is found that a recent study in

reference [5] which is based on very stringent assumptions is not supported

by the numerical results. Finally we present some new results showing

how the envelope of a wave packet evolves when it propagates over a



region where the depth and the current both vary.
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PART I: DERIVATION OF THE EQUATIONS

1. Derivation of the Approximate Governing Equations.

In this section we will derive the approximate equations governing the

evolution of the slowly varying strong current and of the small amplitude

waves. The method is an extension of the method used in reference [12]

where the nonlinear terms have been neglected.

1.1. Equations for the current.

First we consider the current without waves; as the variables are:

S= (U (x,z,t), W (x,z,t)) (horizontal and vertical component)

c (x,t) elevation of the free surface above the undisturbed free

surface Z = 0.

As explained previously we assume that:

* = 0(1)
C* Length scale of x variation is Lx = 0(--1) for Uc, c and h. The

2
pertinent coordinate is then x2 = E x

1
* Characteristic time scale is T = 0(-2) for Uc, Cc" The pertinent

coordinate is then t2 = 2t.

* Length scale of z variation is L = 0(1). The pertinent coordinate

is then z.

With these assumptions we may write Uc = Uc(x2,Zt2) , cc = Cc(x2't2)

and h = h(x 2). It is then well known that, if the current is irrotational

or weakly rotational., then Uc and c are solutions of the Airy's equations

governing evolution of long waves. More precisely by using the results

of reference [12] we have:
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Uc(X2',zt 2) = U(x2,t2) + 0(E
4 )

Wc (x 2 ,z,t 2 ) = 0(s2)
(1-1)

Tc(X2.t2) = (x2't2)

P(x 2 ,z,t 2 ) = pg(S(x 2 ,t 2 )-Z) + 0( 4 )

Where U and C are governed by Airy's equations:

i + [(ý + h)U] = 0at ax
(1-2)

aU U-U C

at2 ax2 ax2

aW aU
Once U is found we obtain W from the continuity equation c + c

Cz 9x

and the boundary condition at the bottom W =-h' (x)Uc at Z = -h(x).

W(X2 ,z,t 2) = -x2) dZ - h'(x)U(x 2 ,t2) + 0(£ 4)

= 2 U h't 2  + 0(U4 )

= 2 (Z + h(x 2 )) - h'(x 2) U(x 2 , t + )

= W(x 2 ,z,t 2 ) + O( 4 ) (1-3)

At this point we have the equation for the current at 0(d3).

1.2. Equations for the waves.

Let us now superpose waves on the current.

U = U + utotal c

Wtotal= Wc + wtotal c

Ptotal P c + p

total = c + n

where u, w, p and n are quantities related to the waves which are

supposed to be of order E but whose typical scale of variation with respect

to x, z and t is 0(1). So we have u(x,z,t), w(x,z,t), p(x,z,t), n(x,z,t)

-12-



a a aand sx' 7 z and -7 are 0(1) when they operate on these quantities.

To get the equations governing the waves we substitute the expressions

for Utotal, Ptotal and total into the equations of motion. As the current

quantities are known up to 0(e3) we shall be able to keep the wave related

quantities to the third order in e.

i. Momentum equations and continuity equation.

If the expressions for U total and Ptotal are inserted in the inviscid

momentum equations we obtain, after using the fact that, by definition

U c Wc Pc are exact solutions of the equations of motion:

x - component of momentum equation

au c c u u u au _1 (1-4)+ ---- + -- +W-+u-+ (14)at ax az c ax caz ax az p ax

Now we use the fact that

Uc = U(x2,t2) + 0(C
4)

We = W(x2,z,t2) + 0( 4 ) where W is 0(£2)

then DU U
c 4= 0 ) ( w--c = 0(5)

a z as

therefore:
au aU au au au au 1 • + 0(aS) (1-5)

+u +U +W +u +w 1 + (5) (1-5)at ax ax az ax az P ax

z - component of momentum equation

aW aW
aw c c aw aw aw aw _ _w+u +w +U ~ +W +u +wp (1-6)at ax az c ax c az ax az Paz

Because:

awaxc aW + 0(4 ) = 0(E4 ) since W = W(x2 z,t2) where W is 0(E2)

-13-



equation (1-6) gives

aw +aW w +w aw +w i W 1 + 0(65)- +w ++Ux+W ++u + w - -- +at az ax az ax az P z

continuity equation: we have exactly

mu aw-u + = 0ax az

Let us now take -x (1-5) + ~ (1-7), yieldingax az
(2  2 = 2 a x2  2h a u + a au + U+ = aup + +_u + +a U +x2 2xat ax ax 2 ax ax 2 ax azax az ax ax

auu 2u aw u 32u + 2waw a a w U
+u + u a+ + wa + + w+ + az

ax ax x2 Dx 3z axaz azat 3z 3z 2 3z

a 2w u aw aw ~w aw a2w+z + u + + w2 z a x azx atz Sz 2

az az

Then by using (1-8)

U = U(x2 ,t2)

W = 0( 2)

and aW (4) =>Dx 3z

w - = 0()5 )

az

2W a2U + 0(E) = 0(E) =>
2 axaz

equation (1-9) can be written as

22 aau wU aw W + u au 2w au aw w 3w+ (E5)
2 2 2 x a x az ax x ax az az Dz

By further use of the continuity equation, we get

2 au aU au au aw auVp =- p 4 + 2 -- + 2axax ax 3x 3x z

which is the governing equation for p.

+ 0(E 5 ) for -h < Z < ý + n

(1-10)

-14-
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ii. Boundary conditions.

On the bottom: U total.n = 0 at z = -h(x) where n is the normal to

the depth profile at the point x. Alternatively we may write:

total + h'(x) Utotal = 0 (1-11)

As U and W satisfy this condition exactly we must have:
c c

w = -h'(x)u at z = -h(x)

Su f(x -h(x),t) af 3h f
Let us take ~ of this equation as x = -;f - h'(x) 'fDx 3x ax az

(1-12)

we get

aw _w 2u h( + uu au , 5
- h'(x) - = - h'(x) + - h'(x) - - h"(x) = - h '(x) + 0( Eax z Dx z x x(-3)

(1-13)

since h'(x) = 0(sE2) and h"(x) = 0( 4) it follows from the z-momentum

equation that:

+ ww ww +Ou- 1 au h'(x) - w U+ W + U h'(x) - U u h'(x)p az at 3x tz Dz ýx

+ aw + •w + 0(i 5 ) at z = -h(x)
where use has been made of:

where use has been made of:

(1-14)

-h(x)

aw h'(x) + 0(E5) at zaz = -h(x)

and the continuity equation for U, W.

w ýw 3
Since w, - and z are 0(E3) while W + Uh'(x)

x (1-14) gives:

equation (1-14) gives:

at the bottom,

_1 ap = -h(x)
p Dz u aux +O(t at z = -h(x)

-15-
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Since the x-component of the momentum equation gives

1 p = u + u + 2 =
p ax -t ax

h'(x) {•+ u + u D3t ax h'(x) EP + 0( 4)
p 3x

The boundary condition at the bottom then becomes

- -= h'(x) a + O(E 4) at z = -h(x) (1-16)
Dz 9x

Kinematic condition at the free surface Z = C +

The statement that a fluid particle which is on the free surface

initially stays always on the free surface can be written as:

Stotal 3_total
ýt total 3x

= W at z =  otaltotal total

By using the expression of Utotal" %total and the approximations for

U C c', (1-17) gives:

-_ + 'fl + (U + u ) '3 + " = W + w at z = + n
at 9t ax

(1-18)

Let us perform Taylor series expansion of the variotusfunctions about

z = C

*U(z = C + n) = U(z = 5) being independent of z
2

W (2 32W
*W(z = C + -) = W(z = ) + T 2z (z =  +) + 2 (z

(1-19)

Since W = 0(E2) and n = 0(E), it follows that

DW 44
Ww( + W(z = ) + ( = ) + 0(E )

2 2
Ow(z = + n) = w(z = n) +n a2 (z ) + (ztz 2

" z

(1-20)

n) +0 )

(1-21)

-16-
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-r u (z - 5 + n) -- u(z = T) + 0(E 4 ) since T = 0(( 2 ) u = 0(s)
ax ax ax

(1-22)

u(z = ( + n) = -u(z = n) + u (z = 5)ax ax ax az + 0(- 4)

By using the condition + U = W + 0( 4 ) at z = 5 andat ax

a+ aw (.4
ax az

(1-23)

(1-24)

the kinematic boundary condition at the free surface takes the form

2 2
a_ ++ +U LU w ax an - n u + a w
at ax ax Tx az ax- ax z 2 2

az

+ 0(( ) at z = (1-25)

Dynamic condition at the free surface z = G + n

Supposing the atmospheric pressue to be constant, the dynamic con-

dition at the free surface can be written as:

dPtotal
dt . =0 at z = C + rndt

Using (1-1) we have

4
Ptotal = p + g(S - z) + 0( 4 )

Therefore

dP
total a + (U + u)a + (W + w)
dt at ax

(1-26)

az

(C - z) + 0(0 4 )

where use has been made of Utotal = U + u +

Equation (1-26) then states:

(U + u) - +ax
(1-27)

0(.C4 ) W total = W + w + 0(4)total

-2p + U + +u W + w +W + , +pgat ax ax asz az

+ 0 (E4) = 0 at z = 5 + n

a +U a+u a -wat ax ax

Let us again perform Taylor series expansion about z = r for all the

quantities.

-17-
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* a U(z = C + n) = a U(z = n) since U does not depend on z (1-29)3x ax

* W(z = r + n) = W(z =

Su(z = + n) = _3x ax

xU - (z = 5 + n) + Uax

+ .a 3 T - (z = r)2 2

) + q -~- (z = 5) + 0(s 4 ) since W = 0(s 2 )

az
(1-30

u(z = ) since = 0(2) u = 0(s) (1-31ax

2
x azax 2

+ O(• = U a + U a + 2 xPax azax 2 2
az 3x

+ 0( 4 ) at z = c

)

.)

(1-32)

since U does not depend on z.

SW 3~ (z = + n) = W ) + 0(E 4 ) since W = 0(62 )az az p = 0(E)

(1-33)
2

(z = C ( = + ) = w 2 + 0(s) at z =az az az z z 2z 2

(1-34)

*u (z = + n) = u + - 2+ 0+ unt z•
ax ax +x +) a zx

(1-35)

2 2 3
S2P- (z = + n )  P + n + IL 2 + 0 () at z = 4at at ataz 2 a 2 atat at

(1-36)

The dynamic boundary condition therefore reads:

2 23 2 23
aP + a p + + a zx + U n Plk + + u + _ uat ataz 2 2 ax azax 2 2 ax ax azataz az ax

2 2

axaz az az az 2  ax az ax
2z

P9 ( + w f +T 2 a2w
2 2 = 0( 4 ) at z = C (1-37)

where use has been made of the continuity equation for the current

aW __U + 0 ( 4 )

az + 0x

-18-



2. Formal Solution of the Approximate Equations.

2.1. Method.

To solve the problem we assume, for all the quantities which are

related to the waves, an expansion in power of e. f(x,z,t) = n f (n)

n=l
(x,z,t). However, for physical and mathematical reasons we make some

assumptions on the form of the f(n): at the first order we consider

waves with frequency w and wavenumber k. As the medium varies slowly in

x and t, we expect k and w to vary slowly.
k2 _h

k = k(x2 ,t2 ) w = w(x2 ,t2 ) where x2 = x t2  2t

The variations of k and w are related by the law of conservation of waves:

---- + 0 (2-1)at ax2 2

This wave is supposed to propagate from x = -= to + =

Aexp(i (x2 ,t 2 ))+ complex conjugate.

being defined by k(x 2 ,t 2) = Ox > 0 W(x 2 ,t 2 ) =

A1+-U 1, f

, its form must be:

-Ot so we may write

\f x~_ 3 _ y\2~/ Q~ LL+ r~~2 jWu__ - u

- - 2 2

We neglect the reflected waves due to the depth variation (they are

assumed to be 0(e )).

The amplitude of the waves is expected to vary slowly in x and

the spirit of multiple scales analysis, see for instance reference

we write the amplitudes as A(x 1 ,t 1 ,z,x 2 ,t 2 ) where xl = ex t1 = Et

2 2
x2 = 2t t2 = e t. We restrict ourselves to the study of a very

1
varying wave packet of length - propagating at the very slowly vary:

velocity Cg(x 2, t 2)
x dx

A = A(X2 ,t 2 ,z,T) where T = T ( f C(xt Q

t. In

[13]

slowly

ing

2-2)

-19-
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Because of nonlinearity in the equations we expect, as usual in this kind

of problem that at 0(en) all the harmonic

exp i m. m = -n, . .. , tn

will be present for these reasons we seek an expansion of the form:

p(x,z,t) = n Pnm (x2't 2 Z',T) expi

n=l m=-n

n=l m=-n

w(x,z,t) = n n (x2,t2,z,T) expim n (2-3)

w(x,z,t) = enft 7w nm (x 2,t2 z,T) expim (
n=l m = -n

n (x,t) = n n ,(x 2 ,t 2 ,T) expim €

n m = -n

Since all the quantities are real we must have:

p, = p*n, u = u* , w = w* - n*

n,-m P*nm n,-m U*nm n,-m nm' n,-m nm

where * means complex conjugate.

We substitute these expressions for p, u, w, and n in the governing

equations and boundary conditions (6 equations). As is well known in

the method of multiple scales the following rules on the derivatives

should be noted:

i. When operating on a quantity related to the current:

a 2 a a
ax 'x at at (2-4)

2 2

-20-



ii. When operating on the mth harmonic of a quantity

related to the waves:

a ia 2a
Simk ( ) + + - (2-5)ax C axT axg 2

a 2 2 2imk a 2 a akS2 - m k ( ) + E + s 2imk + im ( )
ax g ax2 ax2

2
1 a+ (2-6)
C a•t

a-- im ( ) - + a (2-7)
at 9' at 2

As the 6 equations (1-5, 8, 10, 16, 25, 37) are valid up to 0( 3) we

expand p, u, w, n to the third order. All the equations then take the

following form:
3

esn 75 E expimo + 0() = 0 for i = 1, ... 6
n = 1 m = -n i,nm

(2-8)

Since these equations are valid for any small s and since E .
i,n,-m

E i,n,m, at each order we have 6(n + 1) equations:

E 0 i = 1,. . . 6 m = 0, 1, 2 . . . n; n = 1, 2, 3 (2-9)
inm

To see how this procedure works let us recall the form of the equa-

tions governing the waves.

(1-10) V2 p = Nonlinear terms - p au auax ax

-21-



au au 1 ap aU au(1-5) x-momentum - + U + - = Nonlinear terms - u - W -
at ax p ax ax az

xw au

(1-8) continuity -w au
az ax

(1-16) bottom boundary condition = h' (x) apaz ax

Free surface kinematic condition:

(1-25) - + U - w = Nonlinear terms - u ~- n •

Free surface dynamic condition:

(1-37) + U - pgw = Nonlinear terms - pgu - W - + pgn ax

aU ac 2As -x', W -ýx and h'(x) are all 0(e ) it is obvious that if we take the

th th F - 0 i = 1,.0..6)m harmonic of the n order of each equation (i.e., 0 i ,. . 6)inm

we obtain:

2
(1-10) => (a) (-.-m2k2) P = L.O.T2 nmaz

(1-5) -> (b) im(kU-w) u + mkp = L.O.T
nm p nm

aw

(1-8) => (c) = - iku = L.O.Taz nn

ap
(1-16) => (d) nm = L.O.T at z = -h

az

(1-25) => (e) im(kU - w) n - w = L.O.T at z

(1-37) => (f) im(kU - w) pm - nm = L.O.T at z =

Fhere L.O.T means lower order terms which only involve terms of order

lower than n.

It is now easy to describe the procedure: once the problems at

order 1, 2, . . . n - 1 are solved we solve the problem at order n in

4 steps.
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1) We solve the vertical problem (a) and (d) for pnm m = 0, . . . n

This introduces some arbitrary functions of horizontal coordinates.

2) With (b) and (c) we find u and w
nm am

3) With (e) we find n

4) (f) gives a constraint which determines the arbitrary functions

introduced at lower order.

We note in particular that the zeroth harmonics uno and nno cannot

be found at order n since their coefficients on the left of (b), (e)

vanish. We will see that uno and nno are given by using (b) and (e)

at order n + 1.

2.2. Summary of the algebra.

The method explained previously has the advantage of being systematic

and of giving us the exact degree of approximation of the solution. But

it has the disadvantage of being very lengthy. For this reason we do

not present all the algebra but only all the results at each step. For

brevity, we shall make repeated references to the equations (a), (b), .

(f) given at the end of the previous section.

oCE)

(a) + (d) give:

m = 0 p 1 0 = P10 (X2 't2,T) arbitrary function (2-10)

m = 1 p = A(x2 t2 t) cosh k(z + h)11 Ax292 cosh k(C + h) (2-11)

where A is an arbitrary function.

(b) gives:

m=0 0=0

k cosh k(z + h)
11 p A cosh k(Q + h)
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where a = - - kU

Cc) gives:

m=0

m l

Wl0 = 0

w1 ik A sinh k(z + h)
11 pa cosh k(ý + h)

(e) gives:

m 0 0 = 0

k
m = nil - A tanh k(ý + h)

pa

(2-14)

(2-15)

(2-16)

(f) gives:

m 0

m 1

0=0

a2 = gk tanh k(c

or (w - kU)2 = gk tanh k(C

It allows us to write

+ h)

+ h)

(2-17)

Anil = -g

o(e2)

(a) and (d) give:

k2 cosh 2k(z + h)
S 20  2 cosh k(ý + h)

pa
A12 + P20 (x2 ,t 2'T)

where P20 is a new arbitrary function.

A
m p D(x ) cosh k(z + h) .

m = 1 p = D(x t2' T) -i' cosh k(r + h) Cgcosh k(T + h)

(z + h)sinh k(z + h) - (C + h) tanh k(t + h) cosh k (z + h)}

(2-19)

where D is a new arbitrary function.
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cosh 2k(z + h)m = 2 P22 F(x 2 ,t 2 ') cosh 2k(ý + h)
k2A22 2

2pa cosh k(ý + h)

where F is a new arbitrary function.

(b) gives:

u l0 1 3p10
3T p(Cg - U) aT

kD cosh k(z + h)
21 pa cosh k(M + h)

ikA
p

pa(gcosh k (r + h)

Cz + h) sinh k

1 U - Cg
k a j

(z + h) + cosh k (z

m22 = k F cosh 2k(z + h)
22 p• F cosh 2k(C + h)

(c) gives:

(z + h) au10
O 20 Cg at

SW2 ikD sinh k(z + h)
21 pa cosh k(z + h)

+ h) [- (ý + h) tanh k (C + h)

(2-22

(2-23)

(2-24)

paCgcosh k(ý + h)

k(z + h) cosh k(z + h) + sinh k(z + h)

- 1 + kCg-U

ik F sinh 2k(z + h)
22 pa cosh 2k(z + h)

(e) gives:

n10  Cgm 11= 0 - Cg - U 20

I k(C + h) tanh k(C + h)

(2-25)

(2-26)

(2-27)

-25-

(2-20)

m = 1

(2-21)

I-



A
m = 21 + i -k(C + h) + tanh k(C + h)

t + h) - 2p Cg

tanh k(C + h) - 1 + 2k g
a i

m = 2 k A2k
2

n k F tanh 2k(ý + h) + 2 222 2 2 go2
2pa p go

(f) gives:

au
m10m = 0 0aT

k(C + h)

(2-28)

(2-29).

(2-30)

1m = 1 Cg = U + 2 Cp2
2k( + h) where C
sinh 2k(C + h) where Cp

where Cp and Cg denote the phase and the group velocity in the presence

of a current

3k2 cosh 2k(ý + h)

2pa 2 cosh2 k(C + h) sinh 2 k(C + h)

au10
Let us pause here to see the implications of the condition =a

(2-32)

0;

it implies:

* w20 = 0 (cf (2-24))

ap1 0• = 0 (cf (2-21))

an10
- 0 (cf (2-27))

It follows that ul0 = u1 0 (x 2 ,t 2 ), P10 = P1 0 (X2,t 2 ) and nlO0 = n10(x2,t2)

where u 1 0, p10 and nl0 are three arbitrary functions corresponding to a

current of order s. By assuming zero values far upstream Tr' - o, we take

these arbitrary functions to be zero.
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ulO = 0
P U 010 0

(2-34)

n10

w20 = 0

At this point we have only 3 arbitrary functions: A, P 20 and D.

Our principal interest is obviously to find A. At order 0( 3 )

we look for the equation governing A,P20and eventually D. It is relatively

easy to guess that these equations will be given by the dynamic boundary

condition for m = 0, 1. So we need only to compute the third order

terms which appear in these equations.

(a) and (d) we need only p31

P3 G(x,,t) cosh k(z + h) sinh k(z + h)
cosh k(c + h) - Cg cosh k(C + h)

(2-35)

-iA (z + h) sinh k(z + h) A 1A2 A cosh 3k(z + h) k
Acosh k(( + h) -A A cosh 3k(z + h)x2 cosh k(C + h) 2 p2 4 cosh3 k(+h)sinh 2k(+ h2 pa cosh k(C+h)sinh k(Q+h

2
-A (z + h) cosh k(z + h) _ (z + h) sinh k(z + h)(C + h) tanh k(h + C)

2Cg cosh k(ý + h) Cg cosh k(r + h)

2
1 (z + h) 2 cosh k(z + h) 3k +.

cosh k(C + h) (2 ax•

2

x2  tanh k ( + h) k( + h) (2-36)
x2 2

(b) we need only u20

u20 1 20 1
m0 p(Cg - U) which implies u20 p(Cg - U) 20

+ F(x 2 ,t 2 ) (2-37
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where F(x 2 ,t 2) is an arbitrary function which must be real since u20

and P20 are real.

(c) we need only w30 and w31

m w30  (z + h) au20
30 Cg 3TC

(z + h)
pCg (Cg-U)

ýP20
ST

to get w31 it is easier to use directly the z-momentum equation (1-7)

at O(3) m = 1

ik sinh k(z + h)
w31 = pa cosh k(ý + h)

(U - Cg) k sinh k(C + h)
Cgpa cosh k(ý + h)

0 k(z + h) cosh k(z + h) + sinh k(z + h)
iD paCg cosh k(C + h)

A
L TT

pCg2 a cosh k(ý + h)

(z + h) cosh k(z + h) + k (z + h) sinh k(z + h) -Y

(C + h) tanh k(C + h) [ k(z + h) cosh k(z + h) + sinh k(z + h)J

(U Cg) (z + h) cosh k(z + h) + sinh k(z + h)

k(C + h) tanh k(c + h) - 1 - k C g osh k(_ h)ý2
Scosh k(c + h) pa

k(z + h) cosh k(z + h) + sinh k(z + h) + U sinh k(z + h)

-A k sinh k(z + h) A (z + h) cosh k(z + h) k

kk kh
x22 x2

2cosh k( (z + h)2 sinh k(z + h) + cosh
2cosh k(+ + h) cosh k(c + h)

k(z + h) sinh k(z + h) + cosh k(z +

2kU

+ sinh k (z + h) -
acosh k(C + h)

h) + k(z + h) cosh k(z + h)

sinh k(z + h)
(kh)

x 2 cosh k(S + h)
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+ k (sinh k(z + h'
a cosh k(C + t2

-h x 2
Uk2  kU

a a

ik 2

22
p a (U - Cg)

kU sinh k(z + h)
a x 2 cosh k(C + h)

k (z + h) + kh

cosh k(4 + h)

sinh k(z + h)
cosh k(ý + h) P20 A

2
h cosh k(z + h)

x 2 a cosh k(c + h)

_ (kh) sinh k(z + h) sinh k(C + h)
2 cosh 2 k(C + h)

i AI2 A 3k 5  1

p3 a5 cosh3 k(C+h)sinh2 k(C+h)

cosh k(z + h) sinh 2k(z + h) + sinh 3k(z2 + h) + sinh k(z + h)

cosh 2k(z + h)

(e) we need only n20

2k
2pa

IAI2AlT (2-39)

which implies

(C + h) + 2k A12+
n20 2 20 2 A + F2 (x 2 ,t 2 )

(Cg - U) p a (Cg - U)

where F(x 2 ,t 2 ) is an arbitrary function which must be real since n20 ,

P20 are real.

(f) It is only necessary to write the kinematic condition for m = 0,1.

This will give us 2 equations governing the evolution of P20 and A. It

is important to remark that D and G which are still unknown do not appear

in these equations.

P20 IIL~ (Cg - U)
g(; + h)

2Sk Cg(Cg - U)
pa g (C + h)

C )

2 + Cg - U (1 - 82)
Cg Cg

IAI 2T
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where B = tanh k(C + h). This equation can be integrated once:

2 2 C
(Cg - U) k2 Cg(Cg - U) 2 Cg - U 2

20 - g(ý + h) pag(ý + h) Cg Cg

IA 2 + F3 (x2 ,t2 ) (2-40)

where F3 (x2 ,t2) is an arbitrary function which must be real since P20

is real.

m = 1 At this step we obtain the governing equation for A:

ylA + At + CgA 2  iyA + iy3 A12 A + iy5P20A + iy6F1A + iy7F2A = 0

(2-41)

where all the yi are real functions of x2 and t2. We will give their

expression later. By using the previous expression of P20 the equation

becomes:

ylA + At2 + 2CgAx2 A + iy3
1A I

2 A + iQA = 0 (2-42)

where Q(x2,t2) = Y6F1 + Y7F2 + Y8F3 is a real function depending on the

unknown function F. i = 1, 2, 3.

The function Q vanishes for a wave packet where A and P20 tend

to zero as T -> + w in this case equation (2-42) becomes:

ylA +At2 + CgAx2 + 2A + iy3 A I A = 0 (2-43)

. If Q # 0 but if it does not depend on t2 (this is the case if the
x2

current is stationary, see 3-2) we write A = B exp - i f Q(u)du. As Q

is real IAI = IBI ; once we know B we know the envelope of the waves.

It is obvious that the equation for B is still. (2-43).

Let us now give the expressions of the coefficients yl(x 2 ,t2),

Y2 (x2 ,t2), y3(x2 ,t2 ) which can be put, after lengthy algebra, in the

following form:
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1 3a a acg/oy + ax1 2a -at2  2 ax2

1 (Cg - U)2  - + h)
Y2 2a Cg2 (Cg - U) 2Cg

ana rr on a2 Cg - 11

(1- 82) (1 - k ( + h))

(2-44)

J.4J I -- _

k4

3 4238 2 g(4 + h) - (Cg - U)4

Cp 2 C (1 - 82 )
[4 + 4 Pu  g(+ + h)

Cg - U Cg - U (Cg- U)2 (1 - 82) 2]

2.3. Concluding remarks on the equations.

(a) The general procedure to solve the problem is as follows:

First step: given hi(x 2 ) solve the Airy's equations to find the

current:

U(x2,t 2 ) ý(x2,t 2 )

* Second step: we must solve for k(x 2, t 2 ) and w(x 2,t 2 ). For this

we use:

i. Law of conservation of waves:

ax2 + 323x2 at2

=0

ii. Dispersion relation:

(w - kU) 2 = gk tanh k(C + h)

These equations are solved with the boundary condition:

W - Wo as x 2  -

* Third step:

Once U, C, w and k are known then all the coefficients of equation
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(2-43) are known. We then solve this equation with proper boundary

conditions.

(b) One important special case corresponds to a stationary solution

to the Airy's equations. In this case U(x2) and c(x 2 ), and we can take

k(x2), W(x2) to be also stationary. The law of conservation of crests

then gives -d = 0 implying that w = constant = wo, then k(x 2) is simply

given by the equation

2
(w - kU) = gk tanh k(c + h)

o

(c) The linearized limit: the results of linear theory for a bottom

1varying on the scale 0(-) are well known; the equations are:

i. Without current: U - 0

-E +-+-xa (CgE) = 0 where E = IAI t1 = t xl  xat 1 P x=1

This is the law of conservation of energy.

By coming back to the formulation of the problem it is easy to see

that the linear limit is obtained by taking A = A(x2 ) and ignoring the

nonlinear terms. If we ignore the terms with ATT and AAl 2 A equation

(2-43) becomes:

aA aA 1 dC.- + Cg + A -= 0 (2-45)
at 2  g ax2 2Cg dx2

(As U = 0 we are obviously in the previous case (b) k = k(x2) and w = wo)

Let us take (2-45)* x A + (2-45) x A* it gives

2+ (CglAl2) = 0 which is the law of conservation of energy.
t2  2

ii. With current U # 0

In presence of a current the law of conservation of energy is replaced

by the law of conservation of wave action (cf for instance reference [12])
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aE/a
+ (Cg E/a) = 0at 1 3x

Once more if we neglect the AT and A 12 A terms in equation (2-43) it

gives

aA a A I aa A aCg/a
at2 + Cg x2  2 t2 A + -A = 0

t + ax - 2a at 2 ax
2 2 2

1 aA 1 aa
a at2 2a2 at2

A+ Cg aAa ax2
+ a Cg/a A = 02 ax2

2

if we take (2-46)* x A + (2-46) x A* it gives

IAA2/a a(Cg IAl2 ) = 0
at2  ax2

which is the conservation of wave action.
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3. Evolution Equations for Special Cases.

3.1. Case without current.

This case has already been studied in reference [5]. As indicated

in I 2.3(b) we can take k = k(x2) w = w0o.  Let U = 0 C = 0; equation

(2-43) takes the form:

Y(x 2 ) A + Cgx 2) At2 + A2 + iy'2 (x2) AT + iy3(x2)JA1
2 A = 0

(3-la)

where the coefficients y', y', y3 which depends only of x2 are:

2
y (x- 82)(1 - 8kh) 1 dCgyl(X2) = (kh)x 2 2Cg dx2  (3-1b)r2 + kh(1 - a 2Cg d2

Y-(x - 1 1 • (1 - akh) (3-Ic)2 2 Cg wkh)J.

y (x2 9 - 10k42 4 2_ 22Cg 2 [4 + 4 L (1 - 2)
Cg4p a 3 gh - Cg2

+ (1 - 82)2] (3-1d)

which agree with reference [5] where the case At2 = 0 is studied.

If furthermore the depth is constant yl(x2) = 0 and the equation

reduces to the cubic Schrddinger equation with constant coefficients with

an additional term due to the fact that variations in t2 are allowed.

3.2. Case with stationary current.

Let us first recall the Airy's equations governing the evolution of

the current.
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+ [ (C + h)U] = 0at 2  ax2

au au + + 0
at +U ax +g ax

2 2 2

In the general case the solution of these equations is not stationary.

This is certainly true if h is constant since Airy's equations with constant

depth do not admit stationary solutions (except the trivial solution

constant in x2 and t2). In this case the problem is very complicated

since k and w are functions of x2 and t2 and the coefficients of the

equation governing A depends on x2 and t2, we must first solve for w and

k and then look for a solution function of the three independent variables.

This case will not be pursued here.

Mathematically it is particularly interesting to study the case of

a stationary current since in this case, as indicated in § 2.3(b) we

can take k = k(x2) w = o = constant; the coefficients of the equation

for A are also independent of t2. So if the boundary conditions for A

do not involve t2 we can reduce the problem to a 2-D one, ignoring the

variable t2.

Physically this limitation allows us to study the effect of variation

of depth on the propagation of a wave packet in the presence of a strong

current once the stationary state for the current is obtained.

Let us examine the possibility of a stationary current.

i. If h = constant the current is stationary only if U and C

a dh
are constant everywhere. This can easily be shown by taking -at = dx = 0

2 2
In the Airy's equations the coefficients of the equation for A are then
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1 = 0

y2 = constant (3-2)

Y3 = constant

and A satisfies Ax + Y2A3 A2 A = 0 (3-3)

for the expression of y2 and y3 see (2.44).

Equation (3.3) could have been obtained by writing the equation for A,

for constant depth and without current, in a moving frame.

ii. If h is not constant then there exist certain conditions

on the depth profile for the existence of a stationary solution to the

Airy's equation. If U and ý are only functions of x2 the Airy's equations

become:

d
(1) d [ ( + h)U] = 0

dx2

which implies (5 + h)U = constant = 1 = flux at - m = U1 H1 where U1 is

the velocity and H1 the depth as x 2 0- m. The origin of the z-axis is

chosen such that G(x2) + 0 as x 2  C - m.

dU d 0(2) U d + g d- 0dx 2 dx
2 2

UH

Equation (1) gives us U =  h) If we substitute this expression in

(2) we get:

U1 H1  d(ý + h) + gd 0
( + h) dx2  dx2

which gives by integration

U12H1 1
2 2 + g+ = constant

(2 + h)
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2
U

Since as x 2 + -2 h + H1  r + 0 the constant of integration is 2

We then find the following equation for C

UI2H1 2 + 2g (C + h) 2 - U 2(C + h) 2 = 0 (3-4)

or

2 2 2

+ h 3 + + h -2 0 where h = h(x2)
H1  2gHI  HI  2gH1  .

H is, if it exists the root of this cubic equation such that C (x2)
1

is continuous and vanishes as x2  -

If we use the following dimensionless variables

L = H1L' (H1 is the typical length scale)

U = igHiU' (V[i is the typical velocity scale)

then:

= X = dimensionless total depth

h' = dimensionless depth without current (3-5)

= U1 ' = dimensionless velocity at x = -co

Dropping primes, the equation for the unknown X(x2) is:

2 2
U31  2 1

X - (h(x 2 ) +---) = 0 (3-6)

It is straight forward but tedious to study the possibility of a

solution X which must be continuous and approaches 1 as x2  -
Leaving the details to Appendix A let us give here only the results:
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if UI 2 > 3 43 then for any h > 0 we haveone solution

if U12<3 F3 and U1
2 # 1

i. if h > hc = 3 U 2

8

2
- -- (hc < 1) there is one

solution.

ii. if h < hc < 1 there is no solution

2
if U1 = 1

i. if h > hc = 1 there are two solutions

ii. if h < hc = 1 there is no solution

The important fact is that, once U1 is given, a stationary current is

possible only if the depth profile satisfies everywhere h > hc.

xc
AM P x

h

-.-10 'f or O " ;W• - #- /- 0 W
-

no stationary current

possible for x > xc

Fig. (1)

Values of hc(U1 ) are plotted on Fig.(3)
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The problem we want to study can the be summarized on the following

figure:

z

Fig. (2)

This is the only problem we will now consider.

Assuming the boundary conditions for A to be independent of t2 let

us now give the dimensionless equation satisfied by A(x 2,T).

* The length scale is H1

* The time scale is H1  It means in particular that the dispersion

g

relation can be written in dimensionless variables:

(27/T - kU) 2 = k tanh (kX)

A
* The dimensionless amplitude is A' = (A has the dimension of

pgH1
a pressure)

* The velocity scale is gH1

Then in dimensionless variables the equation for A' is (primes will be

dropped):
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y(x 2 )A + A + iY2 (x 2 ) A + iy3 (x2) 12 A = 0 (3-7a)

where the dimensionless coefficients are

1 dCg/o
Y1(x2) 2(Cg/a) dx (3-7b)

2 (x 2) 2Cg Cg 2 1 (Cg - U)2  - 2) (1 - kX) (3-7c)
Cg(C

_ k 102 + 94 2(Cg - U)2Y3(x 2) = (
4CgC 2 X - (Cg - U)2

[4 + 4 (- 2 ) X (1 - 2) 2 (3-7d)
Cg - U Cg - U (Cg - U)2

where all the variables are dimensionless, X = + h
H1

To solve the problem for A(x2 ,T) we must prescribe boundary con-

ditions. It is known (cf part II) that for the cubic Schridinge equation

with constant coefficients ut + i vuxx + iv uj2 = 0 (u(x,t)) the

problem is well posed if we specify:

u(x,t = 0) = f(x)

boundary conditions as x -+ -

+
For instance u and all its derivatives vanish as t + - C. So the

boundary conditions we choose are obviously

I A(O,t) = f(T)

+ boundary conditions as T + -+

=2 x
Since x2 = x and T = Cg(x2) - t) it follows that

2 0 Cg(x 2)
T= - t when x = 0. The boundary condition at x2 = 0 is simply giving

A as a function, (slowly varying) of time.



PART II: ANALYTICAL STUDY

In this part we only study a problem which does not involve t2

(stationary current and boundary conditions independent of t 2 ). The

initial value problem is then:

1 (x2)A + Ax2 + 2(x2) ATT + iy3 (x2) IA 2 A = 0

A(0,t) = f(T) given
(0-1)

+
+ conditions as T - 0

1. Study of the Equation when the CoAffiiepnts nrP Cnnstnt.

1.1. Generalities.

When the depth is constant the coefficients y2, y3 are constant and

yl = 0. The equation we have to solve is the cubic SchrSdinger equation

with constant coefficient. Problem (0-1) becomes:

Ax 2 + iy A1 + iy2 IA12 A = 0

A(0,T) = f(T) (1-1)

+
+ condition as T -

This cubic Schrbdinger equation which appears in many other contexts

involving nonlinear dispersive waves has been studied a lot since more

than 10 years. It has been shown that the method found by Gardner and

Miura (1967) reference [6] to solve the K.d.V equation ut - 6uux

+ u = 0, governing the evolution of nonlinear dispersive unidirectional

waves in shallow water, can be extended to this equation. This result,

due to Zhakharov and Shabat was first found for the case yl y2 > 0 (1972)

reference [28] then for the case yly2 < 0 (1973) reference [29]

with different boundary conditions as v - ± w for the two cases.

The method used is the so-called Inverse Scattering method, whose
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domain of application includes the modified K.d.V equation (ut + 6u2ux

+ uxxx = 0) the sine Gordon equation (uxt = sin u) the sinh Gordon

equation (Uxt = sinh u) and other non linear P.D.E. This method essentially

reduces the nonlinear problem to a linear one which is still non trivial

but which can be studied in the limit T *+ x 2 + m x 2 = cT.

For a very good review of this method, in a rather general frame-

work, see for instance Ablowitz, et al. (1974) reference [1].

Here we will recall some well known special solutions to the cubic

Schr6dinger equation (to be called C.S.E. for brevity). In Appendix B

and C we will give the details of the inverse scattering method as it

applies to this equation.

1.2. Some special solutions of the cubic Schridinger equation.

The form of the special solutions of the C.S.E. depends on the sign of

yly2 . If there is no current it is a classical result that:

* if kh > 1.363 ylY2 > 0 (deep water)

* if kh < 1.363 yl 2 < 0 (shallow water)

The following exact solutions of the C.S.E. can be found in

references [28], [29], [7], [14] and [19].

(a) y1Y 2 > 0 We take without loss of generality yl > 0 y2 > 0

i. Stoke's waves: A = A(x 2) = a0 exp - i(a 2 y 2 x 2 + )

(1-2)

It is well known that this solution is linearly unstable to long

waves disturbances (Benjamin Feir instability reference [2]).

ii. Cnoidal waves:
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ACx 2 ,) = a0 cn aoY21 exp i(w 2 x2) (1-3)

2 22
where m = 2 + 2 and c is a Jacobian elliptic function.

Y2 a
o

iii. Soliton and multisoliton:

When m -> 1 the cnoidal wave becomes:

A(x 2 ,T) = a sech a T ) exp( 2 x 2 ) which is a particular

F L2yl
case of the general soliton solution.

2 Y2
exp i [((2/y 1 - a ) x2 -/yl + ]

A(x 2 ,') = a (1-4)

cosh a y2 (T - 0 - 2x 2)

FL2yl
Whose envelope JAI = a sech a y2  (T - - 2Cx) is a solitary wave

1
propogating in the x2T plane, at the velocity ,9 or, in the x,t plane,

-1
at the velocity Vs = Cg(l - 2g)l

As we shall see later, the soliton is a particular case of the

multisoliton, or N-solitons solution which is an exact solution of the

C.S.E.; the exact expression of the multisoliton is messy but it has the

property to break down as v c i x2 o+ ±o into N individual solitons

with different speed and amplitude, with an exponentially small correction.

A(x 2,) an expi 2 2 anT

sech an  y2  (T Tn - 2nx)

2yI
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T 24nx 2 + V V fixed

An observer traveling at the speed V will see, as t + oo an
s

individual soliton with exponentially small corrections.

* A special limit of the N-soliton is the case of bounded solitons.

In this case two or more of the individual solitons have the same speed.

They cannot separate. This solution has the property to be periodic

in x2 .

The exact expression of the N-bounded soliton in the special case

where N = 2 and 1l = 42 = 0 is (reference [19]):

A(x, T) = 2 exp(i -) S co

icosh 4 yl T + 4 cosh Y T

It is important to remark that all

boundary condition:

A and all its derivatives - 0

(b) y1l 2 < 0 without loss of

sh 3J T + 3 exp 4ix2 coshylT x

+ 3 cos 4x2  (1-5)

these soliton solutions satisfy the

as T + ~

generality we take yl > 0 y2 < 0

i. Stoke's waves:

A = A(x2 ) = a exp - i(a2 2x2 + 2 ) (1-6)

It is well known that this solution is linearly stable to side-band

disturbances.

ii. Cnoidal waves:

A(x2 T) = a sn(a -y 2  r/m) exp i(w2 x 2 )

2TiT.,

(1-7)
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W2 -1
where m = -(1 + 2) and Sn is a Jacobian elliptic function.

yl a

iii. Envelope-hole soliton:

if m - I1 the previous solution becomes

A(x 2 ,T) = a tanh(a -y2  T ) exp(-iy2 a 2x 2) (1-8)

which is called the phase jump solution. This is a special case of the

envelope-hole soliton (reference [7]).

1/2
A(x 2 ,T) = a(l - A sech X) expi (Ov - Kx + a(X)) (1-9)

2

where:
x2 - x -t/Vg

X =

V = -2Ty 0
g 2

(1- 2  1/2= ~ - (1 - A )
VT A
go

(1-10)

2 2 3-A 2 1/2K=-~ Y1 +a Y2 2 ) - (1- A2 )

2  2

-1 • 2 2 2
a(X) = sin A tanhX/(l - A sech x)

It is easy to see that if we take the limit

A- 1

Q+ 0
with OT = constant

T - ++ O0 J
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in (1-10) and noting that:

(X) = Arcsin sign (X) x C+1) = sign (x) x Land (1 - A2sech2X)l/ 2
2 2

= Itanh xl

the envelope hole soliton reduces to the phase-jump

A(x2,) v a tanh(a 2 r ) exp - i(Y 2 a2x 2 - r/2)

We remark that as T + ±

r - + m A(x 2 ,T) " a exp - i(y2a2x2 - 7/2)

2 2
c o - = A(x 2 , ) %-a exp - i(y2a2x2 - 7/2) = a exp - i(a 2 yx2 + 7/2)

As Tr + and - oo the phase jump soliton behaves like Stoke's waves but

with a phase jump of Tr between + and - c.

2. Study of the Equation when the Coefficients Are Not Constant.

The problem we are interested in is the following (cf Fig. (2) of

section 1-3-2).

Zone (I) x < 0 h = H1 U = U1 5 = 0

Zone (II) 0 < x < L h = h(x) U = U(x) ý = 5(x)

Zone (III) x > L h = H2  U = U2  =

* In regions I and II where h is constant the coefficients of the

equation governing A are constant. We can then apply the Inverse

Scattering method to solve the problem.

given ACx2 = x ,t) x < 0 we can find by IST A(x2,T) for - 2< x2 < 0

given A(x2 = x1 ,-) x1> s2L we can find by IST A(x2,T) for x 2  2L

In region II where the depth varies the coefficients are not
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constant and the IST does not apply. The main problem is, given A(x = 0,r)

find A(x = L,T). At present this goal can only be achieved numerically.

This will be the object of part III. However, it is possible to find

some analytical results which can be useful in themselves or for checking

the numerical results.

2.1. A particular solution.

(a) Expression of the solution: When the coefficients yl to y3 are

only functions of x2 but not t2 an exact solution of equation (I-(2-43))

is possible which is the generalization of Stoke's waves for a constant

depth.

Let us recall the equation

yl(x2)A + Ax + iy 2 (x2)A + iY3 (x 2 ) 1A12 A = 0 (2-1)

We look for a solution which is only function of x2. The equation is

then:

(x 2 )A + d + iy 3 (x 2) 1A1 2 A = 0 (2-2)
2

Let us write A = B(x 2 ) exp(- j x2 1 (u)du). The equation for B is
o

dB + iY3 (x 2 ) exp (-2 l()du) B 2 B = 0 (2-3)

d2

Let us now write B = b0 expif(x 2) where b0 is a constant and f(x2 ) is

real then f is one solution of

x2 2
i f'(x2 ) + iY3 (x 2 ) exp (-2 f yl(u)du) b0 = 0 (2-4)

o

f(x 2 ) = -b 2  x23(v) exp (-2 1 v yl(u)du) dv -

o o

with 0 being an arbitrary constant.
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A is then given by

A(x2) b exp(- x2

Sx 2

Yl(u)du) exp -i 02 f 2
o

V

Y3 (v) exp(-2 f yl(u)du)dv
o

(2-5)

1 d Cg/ d In(Cg/a)
since l = 2Cg/ dx2 d x 2

we get

exp(- f
o

y1 (u)du) = go (x2air() a

Define the local amplitude b(x2) by
x2

b(x 2) = b exp - f x2 1(u)du

we get

b(x2)
b Cg

a
FO0

Using this result (2-5) may be written as:

A(x 2 ) = b(x 2 ) exp - i f2 Y3 (v)b
2 (v)dv

(2-6)

(2-7)

Therefore on a slowly varying bottom h = h (x2) the Stoke's waves

amplitude transform according to the linear law (2-6) while the phase

changes according to the nonlinear law for a constant depth if the local

depth is used.

In the special case of a constant depth yl = 0 y 3 = constant and

A = b exp - i(bo0 3x2 +4) (2-8)
0 ~ x
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(_c Linear Stability of the Solution: it is well known that Stoke's

waves for the cubic Schr6dinger equation with constant coefficients:

A + iAA + iv A 12 A = 0 are

i. Linearly unstable for Xv > 0 which corrresponds to deep

water for which envelopesolitons exist.

ii. Linearly stable for Xv < 0 which corresponds to shallow

water for which envelope solitons do not exist but envelope-hole solitons

exist.

This is the so-called Benjamin Feir Instability (reference [2]). This

result can be extended to the solution found previously. The proof is

as follows:

We consider the equation yl(x 2 )A + Ax2 + iY2(x 2 )AT + iY3 (x2 ) AI12 A = 0

As in (a) we write A = exp( - f x
2 yl(u)du) B. If we furthermore write

0
B = b exp i 0 where b and 0 are real. By taking real and imaginary part

the equation is equivalent to:

bx2 - 2y2(x2)bT% - Y2 (x2)b O•= 0
(2-9)

bOx 2 + Y2 (x 2 )b T - Y2 (X2 )b 2 + Y3 ' (x 2 )b 3 = 0

x2
where Y3' (x) = Y3 (x 2) exp (-2 Yl(u)du) (2-10)

0

Let T = W the equations for W and b are after some algebra:

b 2  (X2 3(b 2 W) =
a 2  2y2(x2  T = 0

(2-11)
W+ a 2(X bbr W2) 3  )b2 } = 0

ax2 DTr Y2 2 ) b +y3 '(x2
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The Stoke's waves solution satisfies:

b = b 0 = constant{ is independent of r =>W = 0

Let us consider the linear stability of these Stoke's waves; for this

we superpose to the original solution b = b, W = 0, a small disturbance

b' << 1i, W' << 1i, we plug in the equations and linearize in b', W'.

The equations for b' and W' are then

2bobx' - 2y2 (x2)b0 W' = 0

W ' + 2 (x 2 ) b' + (x )2b b = (212)
x2 b rr 3  2 0  0

Then we assume disturbance of the form:

b' = b exp i(f(x 2) - QT)

(2-13)

W' = W exp i(f(x 2 ) - QT)

The problem we want to study is: if one disturbance which is periodic in

T ( Q real) is given, will it be amplified in x2? This will be the case

if Real (if(x 2 )) is positive. Note that T = 0(1) corresponds to

x

f X - t = 0() which is much smaller than x. Hence (2-13) may beCg E
assumed. If we plug the expression for b' and W' in the equations we find:

n 2
i2b0 f'(x 2)b + iy2 (x2)b0  2 W = 0

3 bd f't (x 2 ) + i 2 (x2 ) - 2y 3 '(x 2 ) iQ b = 0
0

The linear homogeneous system has a nontrivial solution if and only if

the coefficients determinant is zero:

-51-



2 2 2 2 3 I C 2)Cf'C (x2) ) =2 2y2 x2) 2 0 { } (2-15)

2b2 Y2(x2 )

x2
As Y3'(x 2) Y3(x 2) exp - 2 f yl(u)du, y3 and Y3 ' have the same sign.

0

We find the same results as for constant coefficients:

i. If y3 (x2)Y2 (x2) < 0 then for any 0 f'(x 2) is real, f(x2)

is real the disturbance will not be amplified in space.

ii. If Y3(x2)Y2(x2) > 0 then if Q is sufficiently small

f'(x2)2 < 0 => f'(x 2) 2 a + ib => if(x2) may have a positive real

part => There is some amplification along the x axis. (But the amplifi-

cation may be limited if f(x2) is bounded, which is not the case for

constant coefficientswhere f(x2) = Kx2.)

Case i. is always stable.

Case ii. may be unstable.
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2.2. Evolution laws.

When the coefficients are constant it is well known that the cubic

Schr6dinger equation admits an infinite number of conservation laws, i.e.,

it is possible to construct an infinite number of Pn' P n = 1, 2, . . .
P n n

depending on A and its derivatives, such that x-- + - = 0 (O2-16)
2

If A and all its derivatives vanish at r = ± = it gives the infinite

number of conserved quantity:

ax Pdr = 0 => = Pn(X2 x) dr = constant (2-17)

These conservation laws are physically important since they express

the conservation of mass, energy .... Mathematically the existence of

an infinite number of conservation laws seems to be strongly related to

the fact that the evolution equation is solvable by the Inverse Scattering

Method.

When the coefficients are not constants it is no longer possible to

have these conservation laws but we can find their equivalent,- which we

call evolution laws since, for the first at least, they allow us to

follow the evolution of certain quantities. Here we only derive the first

three evolution laws by guessing their form (for this we use obviously

the conservation laws for the cubic Schr5dinger equation with constant

coefficients).

To simplify the algebra we make the following transformations

A = exp(- f yl(u)du) W and B(x 2 ,t) = B(x,r) where
0

x2

x = f Y1(u)du
0
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Then it is easy to check that B is solution of

B + i B + iv(x) IB 2 B = 0
x TT

Y3 (x 2 (x)) x 2 (x)
where v(x) = exp -2 f yl(u)du

Y2(x2(x)) 0

(2-18) (E)

is easier to study the evolution laws on this equation which will also

called (E) for convenience.

(a) First evolution law: Energy equation

simply take (E) B* + (E)* B where * means complex conjugate.

Then

B B* + B *B + i { B B* - B * B } + iv(x) IBj - iv(x) IBi 4 = 0
x X TT TT

<=> IBI 2 + i {(B B*) - B B* - [(B*B) - (B*B )]} = 0 (2-1
X T ( TT T T T l

3B2 (B B*- B*B)
+ i = 0 this is really a conservation law for B;

9)

if we assume B + 0 and B - 0 as T - + 0 this equation gives by inte-

gration:

1+

IBI2 dT = 0 or f
-- O

IB(x,r) 12 dr = constant

This gives for A, and after using 13-7:

+00

C (x 2) IA(x 2 ,T) 2 d T = constant

To find the next evolution laws the algebra is still very simple but more

messy. Let us give only the initial step and the result.

(b) Second evolution law: if we consider (E) B* + (E)* BT, we

obtain
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1 t2 + iv(x) B4
(B*B. -B*B) + (B~B - B*Bx) + ix } = 0

This is still a conservation law for B. If we assume once more B - 0

B - 0 B + 0 r -+ ± we have
T X

+ o
f (B*B - B*B) dT = constant or (2-22)

T T
CO

x2  +.
exp(2 f yl(u)du) f { A*(x 2 ,-) A (x 2 ,T) - A*(x 2 ,T)A(x 2 ,T)} dT

0 -0

= constant (2-23)

which is still an evolution law for A

(c) If we consider (E)B * - (E)*B we get:
x x

S2 B(x) 9II 4

a- (BxB * + Bx* - - IB 2T + 2 x9 = 0 (2-24)

Since v is function of x this expression is no longer of the form of a

conservation law for B; no corresponding evolution law for A can be

found.

One consequence of relation (2-24) is that the method used by Mei,

reference [12] to study the evolution of the soliton of KdV equation

moving over variable depth,is no longer possible. In this method it is

assumed that as the depth changes the soliton, which is given at x = 0

by A(O,T) = a2 sech2 aT, see reference [8 ], conserves its shape, i.e.,

at the end of the depth change the profile is given by A = b sech2K(T-T0).

b and K are then found by using two evolutions laws. If we try to do

the same for the cubic Schridinger equation, i.e., if we assume at the

end of depth variation a sech profile A = b sech K-T it is not possible

to find b and K by using evolution laws. Indeed the first one gives us
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2

- the second nothing (since A is real A* A - A*A = 0 so 2-23 gives
K T t

0 0). Since there are no other evolution laws we have only one relation

for the two unknown b and K.

One important consequence of the first evolution law:

The first evolution law can be written as:

+ W
S(x 2) IA(x2 r 2 dr = constant

It is well known result of linear theory that, when the waves propagate

against the current, the shoaling coefficient CA can become zero. This

happens when the current is such that the following relation is satisfied:

(see for instance reference [12] chapter 2)

C
U(x2) = _-

As C depends on k which depends on U, this is an implicit relation for
p

U. The place where U = - p is called a caustic, at which our nonlinear
2

theory predicts:

jf IA(x2,) 2 d =

which is the extension of the linear result:

IA(x2) I = at the caustic

Obviously near the caustic our nonlinear theory fails. To study the waves

near the caustic a localized study using inner variables is needed. Some

attempt has been done in this field, see for instance Smith reference [21].
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PART III: NUMERICAL STUDY.

In this part we want to solve quantitatively the problem described

in section 1-3-2 which is summarized in Figure (2):

x < 0 h = h constant U = U = 0

0 < x < L h = h(x 2 ) U = U(x 2 ) = (x 2 ) stationary current

x > L h = h = constant U = 2U = 2

x < 0 will be called region (1); x > L region (2);

the following notation: GI. means value of the fu

(i = i, 2)

1. The Finite Difference Method.

1.1. Preliminary:

The procedure is as follows:

i. Specify the dimensionless parameter

* dimensionless velocity of the current at -

* dimensionless period T

* dimensionless depth profile for x < 0

for x > 0

ii. Solve for the dimensionless total

X from the cubic equation:

in addition we will use

nction G in the region i

the problem

u

h= 1

h = h(x2) to be given

depth, i.e., solve for

2 2
X -(h(x 2 )+ X + = 0

such that X(x2 ) is continuous and approaches 1 as h(x2) + 1.

iii. Solve for the dimensionless wave-number k from

(C - Uk) 2 = k tanh k X
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where w =-  and U = -
T X

In general this equation has two roots; we choose arbitrarily to take

one (we have always taken the smallest one).

1.2. Method used to solve the cubic Schrddinger equation.

The problem we have to solve is:

Ax2 = 1 (X2 )A + iy2(x 2 )ATT + iY 3 (x 2 ) A 12 A = 0

on D = { 0 < x2 < + o ; - < r < -o }

A(x 2 = 0;T) = f(T) given

+ condition at infinity; for instance A(x2,t) + 0 as I- +

First we restrict the infinite domain D to a finite one DF = { 0 < x2 < x0;

-TO < T < T } where we have in particular to choose T0 sufficiently large

since we will write the conditions at T = + = , at = _+ TO

We use to solve the equation a finite difference method. If 6x2 and 6r

are the width of the discretisation intervals, if x0 = (N - 1) x2 and

T0 = (J - 1)6T then, the unknowns are:

An = A((n-1)6x2 ; (j - J)ST) = A(xn; rj) (1-4)

wh= , . . . N (for n = 1 x = 0; for n = N xn = x 0 )
where f

S1, 2J - 1 (for j = 1 = -To; for j = 2J - 1 Tr. = + r)

Now for simplicity we shall write J for 2J - 1.

n
To compute A. we use an implicit scheme of Crank-Nicholson type for

integration in x2 and centered second order differencing inT; this scheme

is known to be unconditionally stable for the linear case with constant

coefficient; it has already been used in reference [27] for the nonlinear
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case with constant coefficient and is stable for reasonable 6x2 and 6T.

The error due to discretization is 0(6x22  2

The equations for A.n are (Yi(n) = yi ((n - 1)6x2) Yi(xn))

A n+l A n yl(n + 1) + Yl(n) n 2(n + 1) + y2(n)
W 2 +A.j 2

2 2

n+l n+ 1-2A + A.
1 -1

r

2 (Sr)2

n n nA - 2A. + A.

2(6T) 2

Y3(n + 1) + Y3(n) n+1 2 n+l IAj 2
+2 " 3 3

+12 A + n

where the nonlinear term .n+l is given by:
J

S+l j + Sx2 { -Yl(n)Ajn n

- i3(n) I A1nb2 An }

The finite difference equation can be written as

n n nA
A y' - 2A + Aj-S+1 2 -1

- iy 2 (n)( CaT)2

(1-6)

n+l i6x 2
j+l 2 (S) 2

(y 2 (n + 1) + Y2 (n)) + A.n+l 1 + x 2 (n + 1 ) +y l (n)
3 2 2

y2 (n + 1) + Y2 (n)

(6M)2

Y3 (n+ 1) + Y3 (n)
+ i 2

(Y2(n + 1) + Y2 (n))
= A

j

Y3 (n + 1) + Y3 (n)+i

6x2 yl(n + 1) + Yl(n)
2- 2

IAnI 2j

n+l
3+1

(1-5)

-i

n+l iax2
j-1 2(T) 2

y2 (n + 1) + Y2 (n)(- i
(T)>2

An+1 2
j



6 2  y 2 (n + 1) + y 2 (n) n n
2 )2  (A2 + A. j) (1-7)

If the conditions at IT I + m are A(x,T) + O we have then Am = 0 = Ajm

m = , . . . N; the system for A. n is then:

22n A3n+l + 82
n A2n+l = w2 n

(1-8)
n n+1 n A.n+l n n+l n

SA. + A. + j A = w for j = 2, . . . J - 2

n n+l n n+l n
- A + Y A = WJl-1 J-1 J-1 J-2 wJ-1

for n = i, . . . N - 1

n n n n n
where a. , 8. , y. , w. are known once A. j = 1, . . . J are known.

J J J J J

The procedure is then straight forward:

1
i. We know A. j = 1, . . . J (initial data at x = 0) we

2
can then solve for A. j = 1, . . . J

3
ii. Next we solve for A. j = 1i, . . . J etc. . . till we have

N
A. j =l, . . . J

Remark: if the initial data f(T) = A(x2 = 0;T) is even in T then

as T appears in the equation as A , it is obvious that the solution

aA
A(x2 ,T) is even in r; by imposing at T = 0 the condition 3 (x2;T = 0) = 0

we can solve the problem for T > 0 only.

1.3. Inversion scheme to solve the linear matrix equation.

The linear system is of the form:

a A2 + 1A1  = W1  (1-9a)

jAj+.A + j.A.j + yAj1 = w (1-9b)

a jA + YIJ-A1 = w (1-9c)



We solve it by the method explained in reference [18]. We introduce

intermediate variables xj and y. such that

A+ = x. A. + yj (1-10)

i. By plugging in the equation (1-9b) we find the recurrence

relation:

Yj w. - cjyj
x. = yi = .1(1-11)

Xj-1 Yj-1(cj.x. + S.) (a.x. + Sj)

_J wJ
ii. The equation for j = J gives x j_ yJ-

J-1 SJ J-1 j

(1-12)

by using i. we have then xj,yj for j = 1, . . . J - 1

iii. The equation for j = 1 gives us

w1 - il1
Al = (1-13)

alX2 + a1

We have then by Aj+ = Ajxj + yj, all the Aj

1.4. Check of the numerical results.

a The program has been checked by taking a constant depth. In this

case the equation is the cubic Schr6dinger equation with constant coefficients.

Some exact solutions are known which permit us to check the numerical

results.

Two cases have been studied. The soliton solution and the 2-bounded

soliton solution (cf reference [19]). The results are shown on Figure (1)

and (2) on which we plot the envelope of the waves as a function of x2 andT .
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2 2 T
i. In Figure (4) the inital profile is A(0,T) 2 sech

which is a soliton. The exact solution (cf II 1-2) indicates that there

should not be any deformation of the envelope. This result is found

numerically.

For this example we have taken U = 0.4, T = 3. h = 1 everywhere and

studied the envelope for:

x2 = 0 to 9

T = 0 to 5

ii. In Figure (5) the initial profile is

2 T
A (0,t) = - sech

The exact solution is then (cf reference [19]) two-bounded solitons which

is a periodic function of x2 whose form is well known (cf references [19],

[27] or [12]). The numerical results give this exact solution.

In this example we have taken U = 0.4 T = 3 h = 1 everywhere and

studied the envelope for:

x = 0 to 4.2

T = 0 to 5

When the coefficients are not constant we checked our numerical
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results by using the first evolution law (11-2-2)

f JA(x 2 ) 12 d.T = constant

In all the numerical results which are presented here this law is

satisfied within a few percent.

2. Numerical Results.

2.1. Variation of the coefficients.

It is important before doing any numerical study to examine the

variations of the coefficients of the equation, the wave number and the

shoaling cdefficient-R as the free parameters vary. In particular we

must first know the sign of y2y3 . We have conducted a numerical study of

these terms. The numerical values are given in Appendix D for the

following cases:

U = 0., 0.4, 0.8, 1.2, 1.6 and T = 3., 5., 7. as h varies from

h to h +1c c

The results may be summarized as follows:

a Without current: As h increases, k decreases y2 is always positive,

Y3 is negative in shallow water: kh < 1.363 and positive in deep water:

kh > 1.363. This result is well known.

* Effect of the current: Here y2 is always positive, y3 can be

either positive or negative. From the numerical examples we have studied

we conclude that

y3 is positive if k(C + h) > (k(? + h))0

Y3 is negative if k(C + h) < (k(C + h)) 0

(k(4 + h))0 , 1.36

e r



Furthermore in the range of variation of h studied we have as h

increases:

i. If U < 1 (i.e. in physical variable U < gH1 )

k(ý + h), y2 .y3 increase while Cg and C decrease.

ii. If U > 1

k(i + h), y2sy3 decrease while Cg and C- increase.

Let us make the following remarks on these results:

-- If we compare these results for U > 1 and U < 1 it seems that to

be consistent we should have, when U = 1, k(G + h), y2,y 3, Cg and

constant as the depth varies. This is not the case. The reason is that

when U = 1 the Airy's equations which, for a stationary current, reduce to

a cubic equation for the total depth, admit two solutions (See Appendix D).

Mathematically it is not possible to choose between these two solutions.

Physically we can choose one by arguing that U is slightly smaller or

slightly greater than 1.

-- One interesting conclusion is the following:

If U < 1 y3 increases as h increases; y3 is negative in shallow water and

positive in deeper water. Furthermore Y3 increases with the depth.2)
.7

When y3 is positive we know that K = fY3
F2y2

characterizes the steepness

of a soliton A = a sech af 3  (T -TO). So, in this case, for a given
2Y 2

amplitude a soliton is flatter in shallow water than it is in deeper

water. If U > 1 Y3 and Y3 decreases as h increases, the opposite
2y

2

results hold.
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The general influence of the current, which is quite strong, can be

seen in table (1) where we give some values of the coefficients k, Cg,

2 yY 3 and K = 3 for h = i.
2y 2

On Figure (7) we give the curves y3 as a function of k(ý + h) for

3 different cases. The intersection of the curves at y 3 = 0 k(Q + h)

= 1.363 is quite clear.

On Figure (8) we give the curves K = Y3 as a function of h for

2Y2

different cases. The very strong effect of the period can be seen by

comparing curve (1) (T =3.) with curve (2) and (3) (T = 5.).

2.2. Study of the amplitude of the waves.

The transition zone 0 < x < L is always chosen to be a cosine curve,

i.e., h = 1 + dh i - cos -1
L

I I

1 Figure (6-a)

1 + dh dh > 0

dh

4-- L - /-

dh< 0 Figure (6-b)
dh < 0



T = 3.

Cg/ok Cg K

U=0. 4.38 0.239 0.114 19.9 253 2.52

U=0.1 3.17 0.386 0.217 4.76 61 2.53

U=0.2 2.54 0.531 0.335 1.99 22.1 2.35

U=0.3 2.15 0.675 0.466 1.03 9.68 2.16

U=0.4 1.88 0.818 0.61 0.59 4.8 2.016

U=0.8 1.297 1.36 1.293 0.109 -0.26 *

U=1.2 1.02 1.872 2.12 0.03 -0.9 *

U=1.6 0.836 2.34 3.1 0.01 -1.09 *

T = 5.

k Cg Cg/o K

1.69 0.457 0.364 3.36 4.72 0.83

1.4 0.63 0.566 1.17 0.387 0.406

1.22 0.792 0.782 0.53 -0.96 *

1.08 0.941 1.01 0.276 -1.49 *

0.98 1.083 1.25 0.157 -1.74 *

0.729 1.59 2.36 0.028 -1.95 *

0.584 2.05 3.7 0.008 -1.94 *

0.49 2.49 5.28 0.003 -1.91 *

T = 7.

Cg Cg/c Y2k

1.03 0.66 0.746 -2.48 *

0.905 0.816 1.01 0.322 -2.75 *

0.81 0.958 1.30 0.162 -2.820 *

0.734 1.1 1.61 0.09 -2.825 *

0.67 1.21 1.93 0.054 -2.807 *

0.51 1.68 3.44 0.01 -2.71 *

0.413 2.12 5.27 0.003 -2.64 *

0.347 2.54 7.45 0.001 -2.6 *

Table (1) Values of k, Cg, Cg/o (shoaling coefficient) y 2,y 3 and K =P y

L _i_

- --

(when Y3 > 0) for h = 1
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As we will see, even for a very limited range of initial profile

A(x2 , T) very different comportments are found. It is not our goal to do a

systematic study of all the possible cases; we will only try to find the

typical features that can occur. As the important parameters of the

problem are the coefficients of the equation and especially the sign of

Y2 Y3, it is easy by using Appendix D and the few plots 
we have drawn, to

see, given some physical parameters, U, T, depth profile, what should be

the qualitative evolution of the envelope of the waves.

2.2.1. Study of the fission of soliton when y 2y 3 > 0 everywhere.

We consider the case where the depth profile and U1 are such that

y 2y 3 > 0 everywhere. At x = 0 we assume A(0,T) to be of the form of a

soliton:

A(0,t) = a sech pa3 1 (T - r0  exp i (Tr + p)
2y 2

(2-1)

We choose a = 0 (soliton with zero velocity) and without loss of generality

take TO = ý = 0. We want to study the effect of the depth variation and of

the current on the propogation of the soliton. In particular we want

to know what will become of the inital soliton in region 2. (An oscillatory

signal decreasing as (x 2 )-1/2? a soliton? a multisolitons?)

(a) The D-R theory.

In reference [5] Djordjevic and Redekopp studied analytically the

problem of the evolution of a soliton moving over a slowly varying depth

without current. To solve this problem they made very strong assumptions.

We will check numerically if these assumptions are correct. Their work

will be referred as the D-R theory.

Let us first explain the method they used and which needs no modification

if there is a current.
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x 2 (x) x 2
If we write A(x 2 ,r)= exp( - f Yl(u)du) P(x,T) where x = f -y 2 (u)du

the equation for P(x,T) is:

Y3(x2) x2 2iP + P - ) exp (-2 0f yl(u)du) P12 P (x 2 = x 2 (x))
Y1 (x2 ) 0

(2-2)

In region 1 and 2 where the coefficients are constant the solution of

this problem is related to the Zakharov Shabat eigen-value problem (cf

Appendix B-C).

u + iXu- q.v1 1

v T - iXv -qi*u
1/2

Swhere3 1/2
where.q i(T) = 2 Ii2 Y

(2-3)

x2 ix = f 0
exp ( f yl(u)du) P(x2i,T) where 21

0 x22 L

At x = 0 A is a soliton => P = po sech(KT).

Where

K = P
( 2

(2-4)
Y3 ) 1/2

2 1

Djordjevik and Redekopp made the assumption that at x - L P conserves its

original shape.

P(2 LT,) = po sech K(T - TO ) (2-5)

this assumption means that if in region (1) A = p0 sech (po y2 1 1/2

Then just after the transition

x2 1 Y31 13
A = exp(- f Yl ( u ) d u ) P0 sech (po 2 1

0 Y2

( T- T0)) at x2 = L

(2-6)
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1/2
i ~e. A~2 L$T) = [ C 11) (a

· · ··- a C9 12):~" (

It is easy to verify that this expression satisfies the first two

laws.

Let us introduce the following integral/ :

+= 
12

C = f A 2(EL,, 12 dT

Since f= u , D-R theory (2-8) would give:I cosh u

1 /2
a7 1 1 2 2y2

2 Y2

Sech P Y3Y 113 1/2

P0 sech2P0 2

(2-9)

When q(T) = a sech K(T - T0 ) the Zakharov-Shabat eigen-value problem

with potential q is exactly solvable (cf Appendix B and reference [19]).

In particular the number of discrete eigen-values with positive real parts,

i.e., the number of solitons which will emerge for x2 + 0 , is the largest

a 1 Iinteger smaller thana +! . If we assume that P(2 L,t) = po sech K(T - TO)

then in region (2) the associated Zakharov-Shabat eigen-value problem has

the potential:

13/2 2

q 2(T) Y2 exp(- 0 1 (u)du) p0 sech K(T - T0 )
01/2

= P 2 y 2 12  12 sech K(T - T ' sech K(T - T

(2-10)

K = p0  2Y3
( Y2 j2Y

1) 1/2 (in region (1) we have a soliton)
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The final number of soliton in region (2) will be

N = largest integer 1 Y3  C Ij I 2 I 12

(2-11)

In the next section we shall use our computed results to check the

assumption (2-5) of D-R theory.

(b) Numerical results: let us first discuss the few examples we

have studied and then compare them with the prediction of the previous

model.

Before giving the results it is important to notice that in all the

numerical examples which are worked we have limited the dimensions of the

matrix A(k,j) (cf section 1-3) such that I xJ i 1000. For this
max max

reason, and since we need sometimes a very fine discretization it is not

possible to study the amplitude for very large i. So the plots are not

always very easy to interpretate since the asymptotic state (x2 ÷ + 2 )

is not obtained.

Let us also notice that the necessary fineness of the discretization,

and so the length on which we solve the equation depends strongly on the

physical parameters we choose. On all the plots the broad line shows

the end of the region of depth variation.

Discussion of the plots: we have taken as initial data:

A(0,T) = sech q
SY3(0) Yech 2(0)

This is a soliton, with zero velocity, for region (1). We have plotted

IA(x 2 ,T)I over the region of depth variation. Five cases have been
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worked out:

i. U=0

--in Figure (9) T = 3 L = 0.5 q = 5 and dh = -0.6. The soliton

travels from deep to intermediate depth. We have studied A(x2,-T) for

2 = 0 to 0.5

: = 0 to 5

The result is clearlythe disintegration of the soliton. It is interesting

to notice that as the depth decreases the profile becomes flatter and flatter.

(In this example the relative error on the integral test (1-4) is 0.2%.)

-- in Figure(10) U = 0 L = 0.5 q = 5 T = 5 and dh = 0.2. The

soliton propagates in water of intermediate and increasing depth. The

result is that the profile becomes more peaked as the depth increases.

(Relative error on the integral test is 3%.)

-- in Figure (i• T = 5 L = 0.3 q = 5 and dh = 0.2. The depth

increases very fast. We have studied A(x2,r) for

x2 = 0 to 0.3

T = 0 to 5

The characteristic form of the two-bounded solitons appears. (Relative

error on the integral test is 5%.)

ii. in Figures (12), (13), (14) U = 0.4 T =3 and q = 2.

-- in Figure (12) L = 1 dh = -0.1. The soliton travels into de-

creasing depth. We studied A(x2,r) for

x2 = 0 to 5.6

T =0 to 5

The result as in Figure (9) is the disintegration of the soliton. (Relative

error on the integral test is 0.04%.)

-- in Figure (13.) L = 1. dh = 0.1. The soliton travels into

-75-



TI

x 2

rigure k9)



-77-



Figure (11)

-78-



Figure (12)

-79-



x
2

Figure (13)

,·Rii4f -d1-~4 -`



0
1



increasing depth. We studied A(x2,T) for

2 = 0 to 2.8

T=0 to 5

The result is as in Figure (10) that the profile becomes more peaked.

as the depth increases. A new soliton with parameters adapted to region (2)

seems to emerge. (Relative error on the integral test is 0.64%.)

--in Figure (14) L = 0.3 dh = 0.5. The depth increases very rapidly

We studied A(x2,T) for

x2 = 0 to 0.85

T= 0 to 5

In this case the deformation of the initial soliton is very important. The

characteristic shape of two-bounded solitons (cf Figure (5)) becomes apparent.

(Relative error on the integral test is 1.7%.)

a Comparison with the model: we use two criteria to compare the

numerical results with the prediction of the model explained in (a).

i. Comparison of the shape: the sech profile is not always a

good approximation of the actual profile at the end of the region of depth

variation. On Figure (14) in particular one can clearly see two peaks in

the profile.

ii. Comparison of the area: it is easy to compare the numerical

value of

= 0 IA(x2,T) [ dT at the end of the region of depth variation

with these given by formula (2-9). The results are the following:



Uq model relative
numerical (formula 2-9 error %

T=3 dh=-0.6 30.65 18.70 -38%
U=0

T=5 dh= 0.2 7.35 8.29 15%

U=0.4 dh=-0.1 3.52 3.162 -10%
dh= 0.1 3.02 3.63 20%

T=3 dh= 0.5 3.002 4.25 41%

Table (2)

In these results we have normalized A such that Y3 (0) = 1.

The conclusion is clearly that the prediction of the model is not good,

especially when the envelope at the top of the transition is not a single

soliton.

2.2.2 Study of the fission of two-bounded solitos (y 2y 3 > 0 everywhere)

In this section we study theevolution of two -bounded solitonswhose

shape is given on Figure (5). The initial profile is:

2
A(0,') = sech and U = 0.4 T = 3

y3(0) 2y2(0)

-- in Figure (15) L = 1

A(x2 ,T) for

2 = 0 to 2.85

T = 0 to 5

dh = -0.1 (the depth decreases). We studied

The result is clearly the disintegration of the original solitons. (Relative

error on the integral test is 0.1%.)

-- in Figure (16). L = 0.5 dh = 0.1 (the depth increases). We studied

A(x2,rT) for
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S2 
= 0 to 

1.42

T = 0 to 5

The result is not easy to interpretate (we would have to solve for x2

much larger). It seems however that the initial two bounded solitons are

conserved but the oscillatory tail may be of some importance. (Relative

error on the integral test is 0.85%.)

2.2.3. Evolution of a sech profile when y2y3 < 0 everywhere.

When y2y3 < 0 everywhere, if we impose A(x,T) + 0 as T + I

we know that any initial profile A(x,T) will evolve into an oscillatotry tail

1
decreasing as- as x2  + = This result is quite clear on Figure (15)

(16).

In Figure (17) we have taken U - 1.6 T = 3 L = 1. dh = -0.2. The

initial profile is

2 T
A(0,T) = sech

3(0) 2y2 (0)

The envelope is studied for

x2 = 0 to 1.83

= 0 to 1

In Figure (.18) we have used the same values as in Figure (17) except

T = 5 and

2 2 r

A(n0,T) = sech

In both cases the integral check is exactly respected.
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Conclusion of the study.

Some interesting features can be deduced from the previous plots.

Let us first summarize them when y2y3 > 0 everywhere.

If the current U is smaller than 1 (in physical variable U < gH1)

it was pointed out in section (2-1) that for a given amplitude a soliton

is flatter in shallow water than it is in deeper water. For this reason

the following results could have been expected:

-- The effect of increasing depth is to steepen any initial profile.

Furthermore as it moves over a region of depth change, a soliton is trans-

formed into a new soliton, more peaked with its parameters adapted to the

new depth. If the depth change is sufficient the initial soliton can

fission (see Figure (14) where two bounded solitons emerge after depth

change).

--On the other hand the effect of decreasing depth is to flatten any

initial profile. In this case a soliton disintegrates. This result is

consistent with the fact that if the depth decreases sufficiently, y3

becomes negative and then, in region (2), any profile disintegrates,

1
the final result being an oscillatory tail decreasing asx

If U is greater than 1, it was pointed out in section 2-1 that for

a given amplitude a soliton is flatter in deep water than it is in shallow

water. For this reason it is expected that in this case the effect of

increasing depth is to flatten the initial profile and the effect of de-

creasing depth to steepen it. However, as can be seen on Table (2) in

Appendix D, when U is greater than 1, y3 which decreases with increasing

depth, can be positive and hence solitons can exist, only for very small

period. (There is only one case where y3 is positive with U > 1i, it is
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when T = 1 and h very near he, see Table (3).) For this reason we did not

study this case.

When y 2y 3 is negative everywhere the numerical results show clearly

the disintegration of any initial profile. This is predicted theoretically

when the coefficients are constant; the fact that the depth varies does

not affect qualitatively this behavior. We have checked numerically that

this result holds even when y3 changes sign as the depth varies, provided

that y 3 is positive in region (1) and negative in region (2).

Another interesting feature is that, in all the examples studied, the

velocity of the eventual solitons emerging in region (2) is always the

same as these of the initial soliton, i.e., 0.

To conclude, let us remark that although the number of examples

studied is limited, quite characteristic features appear: they show

clearly the very drastic effect of current and depth change on the propa-

gation of a wave packet. To have more decisive conclusions it seems

necessary to study the amplitude of the waves on a much longer length,

i.e., x 2 >> 1. Furthermore different initial profile should be tried

and it would be of particular interest to study the effect of waves

propagating against the current.
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Appendix A: Condition for a steady current over variable depth.

We showed (in 1-3-2) that X = + h = dimensionless total depth in
H1

presence of a current is, if it exists, the solution of the cubic equation:

2 2U U3  (h+ x2 2 1X -(h +*-) X+2-2 0
which is continuous and approaches 1 as h -+ 1.

* Let us write the equation in the following form:
23 2 2 2 h 2  2 US -(1 + a)X 2 + a  (- 1)X where a  1

H1 2

The left hand side has the root 1; it can be written as:

L.H.S - (X - 1)(X - X2 )(X - X1)

X a2 2 0

X >1 <=> U1 > 1

X2 < 1 <=> U1 < 1

if U1 = 1 then X2 = 1

As U is adimensionalized by gHI the critical value is gH1 in physical

variables.

It is then easy to see what can be the different cases:

A 'j



(1) U1 > 1

a ) h > H1

LHS: (x-l)(x-xl) (x-x2)

C+h
H1

,: h-H1

H 21

t

bo) h < H1

+h : admissible root
1

RHS: h = h

)(x-x 1 ) (x-x 2

x

1 2
x

RHS: h < h
c

2It is obvious that for a fixed there is a critical depth h for which,
c

if h < hc there is no root which possessed the desired properties.

(2) If UI < 1 the figure is of the same kind but x2 < i1. Here also if

h < H1 h must be, for a2 fixed such that h > hc.

(3) If. U = 1 then x2 = 1 and hc = 1; if h < H1 there is obviously no

solution:
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2
LHS (x-l) (x-x I )

-H1  2
1 2

x h > H
H1

issible roots

x

1

RHS: h < H1

no admissible root

* Let us find hc:

we study the case h > 0 everywhere; the equation for x is then

y(x)- x 3 - (a2 + b 2 )x 2 + a2

2

h2 U 1
b2  h

H1

y' (x) = 0
x=0 y(0)= a2 >0

2 2
x (a + b2 ) > 03

all depends on the sign of y 2 (a2 + b)) Y indeed

x= 2 (a 2+b2)3

>0

=0
x
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22 2
we want to have yC( Ca + b )) < 0.

It is easy to show that hc is given by the equation

22 2 2  4 (a2 b 2 ) 3
y( (a + b) = 0 <=> a - (a =0

2 hc= 2 2
<=> b = = 3 27a -a

1 4

hc 3 U12 U 1

H1  3 3 l 2

8 5

-96-



Appendix B: Inverse Scattering Theory for C.S.E.

In this Appendix we explain how the Inverse Scattering Theory (IST)

is used to solve the cubic Schrddinger equation:

iu t + uxx + x uj2 u = 0 where X = constant > 0 (B-la)

For later convenience we transform this equation by taking v = u;

the equation for v is then:

iv t + xx + 2 2 v = (B-lb)

When the depth is constant equation (1-2-43) can be reduced to equation

(B-la) if y 2y 3 > 0; by using the following transformation:

x = -t

T =TY2 x

A= 2 v

7 3

We shall briefly explain at the end of this section what the differences

are when X < 0 (which correspond to y2y3 < 0).

The papers on which this section is based are: Zakharov and Shabat

references [29] when X > 0 and [30] when X < 0, and Ablowitz, et al.,

reference [1].

(a) Principle of the method: Ablowitz et al., showed that IST

can be considered as the generalization for nonlinear problems of the

method using fourrier transform to solve linear PDE. Let us therefore

first recall some of the features of the fourrier transform method for

the following linear PDE with inital conditions:
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= - iwC-i ) u(x, t) (B-2)

f~)

f (X)

w(k) is the dispersion relation.

To solve problem (B-2) we take the fourrier transform in x of u(x,t):

+ =
Q(k,t) f= u(x,t) e dx (B-3)

From d(x,O) we know i(k,0)

+ =+00 -ikx
u(k,0) = f f(x)e dx (B-4)

By using equation (1-12) it is easy to see that u is the solution of the

problem:

(k, t) = -iw(k) ^(k,t)
(B-5)

{(k,0) = f(k)

As k appearsas a parameter in (1-15) it is easy to solve for a(k,t).

u(x,t) is then obtained by the inverse fourrier fransform theorem:

+ co
u(x,t) = - (k,t) eikxdk (B-6)

The problem is then solved. Let us summarize the three steps of the method.

i. We map at each time u(x,t) to its fourrier transform

iCk, t). As we know u(x,0), we know i(k,O).

ii. Knowing the equation governing u(x,t) we deduce the

equation governing f(k,t). This equation must then be solved for '(k,t).



iii. At any time t we have only to invert the mapping process

of step i.

The IST proceeds exactly like this to solve a nonlinear PDE but

the mapping process is much less obvious: instead of mapping u(x,t) into

its fourrier transform we have to associate the equation to an eigen-value

problem depending on the unknown function u(x,t) and in which the time

t plays the role of a parameter. Since we know u(x,O), we can solve

this eigen-value problem at t = 0. In fact we do not need to have the

complete solution of the associated eigen value problem at t = 0 but

only some information on this solution. The information is contained in

the so-called scattering data. This step which corresponds to step i. in

the linear problem is called the direct scattering problem.

The procedure is then the same as in the linear problem: knowing the

scattering data at t = 0 we use the equation governing u(x,t) to enable

us to follow the scattering data in t. This corresponds to step ii.

The crux of the method is to find the proper, eigen-value problem for which

this process is possible.

The last step corresponding to iii. is how to deduce u(x,t) from

the scattering data at t. This is the so-called inverse scattering

problem. According to the inverse scattering problem it is sufficient

to have the scattering data for the reconstruction of u(x,t). (Exactly

as in the linear theory: to reconstruct u(x,t) it is sufficient to

know its fourrier transform.)

Before being more precise let us make two remarks:

Remark 1: The parallelism between the IST and fourrier transform

methods is not only a parallelism in the procedure. Ablowitz et al.

-99-



showed II] that in the linear limit, i.e., when u(x,t) is small in

a certain sense (when u << 1 the nonlinear equation iut + uxx + X ut2 u = 0

reduces to iut + uxx = 0) all the formulas of IST reduce to fourrier

transform formulas.

Remark 2: The difficult and crucial step is to find the associated

eigen-value problem for which, knowing the equation governing u, it is

possible to follow the scattering data in t. Till now there is no systematic

way to find the associated eigen value problem for a given nonlinear equation.

This has been done to a large extent by guessing.

(b) application to the cubic Schridinger equation:

The problem to be solved is:

iut + ux + 2 1u1 2 u = 0 (1)

u(x,0) = f(x) (2) (B-7)

u(x,t) and all its derivatives vanish as x + co (3)

The mapping process: direct scattering problem.

Let us associate with equation (B-7) the following eigen-value problem

for v1 (x,t) and v2 (x,t)

Vlx + i v1 = u(x,t)v2
(B-8a)

V2x - iyv 2 = -u*(x,t)v2

which can be written in the following form:

i - -iu

Lv = v where L a= and v = (B-8b)
-iu* i 2

In this problem ý may be considered as a parameter; t appears also as a
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parameter; u(x,t) which is the unknown solution of (B-7) is called the

potential of the eigen-value problem which we shall call the Zakharov-

Shabat eigen-value problem. Regarding (B-8) the following results hold

(see Appendix c for proof):

Theorem 1: if u satisfies f lu(x,t)l dx < + o* (so it satisfies

in particular B-7(3)) then:

i. If C is real there exist 4 solutions to problem (B-8)

0 1 -- 4 = 2 = which have the
¢2 . -1 2 1-l

following asymptotic behavior

S 1 e-ix and 1 eC as x + -

(B-9)

S( OeX and e( i - as x + +

(All these solutions are function of x and depend on i and t as parameters:

f(x; ,t))
These solutions are the Jost functions of the problem.

Furthermore it is easy to show that (4,I) and (', ) form 2 sets of inde-

pendent solutions. As one linear system of 2 equations of first order

admits only 2 independent solutions we must have:

#(x; ,t) = a(C,t) i(x;C,t) + b(c,t) *(x; ,t)

-= -a * + b" T (B-10)

we say that CeIR is an eigen value belonging to the continuous spectrum

ii. If C is complex and ImC > 0 it is still possible to define
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p and * as solutions of (B-8) satisfying (B-91. Furthermore lim e ix
x x + . W(x)

exists. We define a(ý,t) for ImC > 0 by this limit. In view of (B-9)

a(G,t) is just a transmission coefficient. 4,# and a are analytic

functions for ImC > 0. So a(C,t) has a finite number of zeros with

ImC > 0. These zeros Ck k = 1, . . . N are called the discrete eigen-

values. Also, if C = Ck then *(x;Ck,t) and 4(x;Ck,t) are dependent, i.e.,

there exists bk(t) such that 0 = bk*.

The solution ý is called a bound state. In general b (C,t) is not

defined for C complex so we can not write bk = b(Ckt). However, if

u. satisfies more stringent conditions as x -+ ± (for instance u(x,t)

has a compact support) then it is possible to define b for C complex.

In this case bk(t) = b(k0,t).

We now explain what we mean by scattering data.

Definition: the scattering of data of problem (B-8) are a(r,t)

for ý in the upper half plane, i.e., Im4 > 0, b(ý,t) (for ý real), ,

b.(t) (for j = 1, . . .N)

The first step of the method is then: knowing u(x,0) find the

scattering data at t = 0. This step is obviously much more difficult

than in the linear case where we had only to take the fourrier transform

of the inital data u(x,0); the Zakharov Shabat eigen-value problem

(B-8) is exactly solvable only for very few potentials u(x,0) = f(x).

Among these potentials, one which is particularly interesting is u(x,0) =

A sech x. This case is studied in detail in reference [19]. But even

when (B-8) is not exactly solvable the method provides a lot of quali-

tative results.
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-Evolution of the scattering datas with t:

The next step is to follow the scattering data with t. This is

possible because we have chosen (B-8) especially for that. The following

results hold (see Appendix C for proof).

Theorem 2: if u(x,t) satisfies equation (B-7(1)) (+ conditions as

x > + '  ) the scattering data of problem (B-8) have the following properties:

i. .j is independent of time, i.e., if C = ~j is a discrete

eigen value at time t1 then it is also one at any time.

ii.

a(C,t) = a(C,0)

2b(c,t)Q b(C,0) exp (4iý2t2 (B-11)bj it) = b (0) exp (4i2 t)

The equivalent of step ii. is then achieved.

* The inverse scattering problem:

The last step is: knowing the scattering data at t by (B-11), find

u(x,t) the potential which creates these scattering data. This is a

highly mathematical problem involving integration in the complex plane.

The following results hold: (see Appendix C for proof).

Theorem 3: If the scattering data for (B-8) are a(C,t) (for C in

the upper half plane) b(ý,t) (for ý real), j. and bj(t) (j = 1, . . . N)

then the potential u(x,t) of B-8) is obtained as follows:

i. Solve the following system of 2N + 2 linear integral equations

for ýl(X;C,t), * 2 (x;",t) for ý real, Pl(x;ýk,t) Y2 (x;Mk,t) k = 1, . . . N:
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i 'xi X *x +00k d' b(', t) ( t)e
m0 a( C' ,t) ( '- 2*)

N

bj (t) (x; . ,t)e

- a ,

j = 1

k = 1, ...N

k-i Lx 1 +I 'b*( ,t) 0, -i0'x
I1 (x; k,t)e - 2i k d*( ) 2 *(x; ,t)e

- m a*(•(',t)(Q'-Ck)

b *(t)

j=1

2" *(x; j,t)e

2 k ]j*

i x
2 *2(x; ,t)e
2

N

+ i +o dC'b(C',t)l(x ; ' , t)e i 1'  ( x ,te:x

= 1 + i p _ it b(C,t) ei•x
T a(- ,t)(2 a(,t)

bk(t) (x;Ckt ) ikx

for C real
k = 1 a '(Qkt) ((k- )

In all these equation x and t may be considered as parameters.

We use the following notations: - f* = complex conjugate

* = principal value of the integral

a' = d (a is an analytic function in the upper half plane)dý

(B-12)
continued on next page

-it*x

1i*2*(x; ',t)e

I~



(B-12) continued

-icx 1 + d+'b*(',t) 2*(x;C',t)e

91(x; ,t)e 2·--i ,

k= 1

for C realbk*(t) ý2*(x; kt) -ic k*X
e

a'*(Ck't) (Ck* -

In all these equations x and t. may be considered as parameters.

We use the following notations:

* f* = complex conjugate
+00

* = principal value of the integral

* a' = da (a is an analytic function in the upper half plane)
dC

+ 1 b*((x;C icx

2 a*(ý) 2"



u(x,t) = -2

ii. u(x,t) is then given by:

NN -i k *x
bk *(t)e

a'*(;k,t)
k= 1

+ 0O_ r f C

(x; kt)

b*(9',t)
d _a*(',t) 42 *(x;c',t) e

By simply taking fourrier transform with respect to ý of equations

(B-12) it is possible to give another formulation of the inverse scattering

problem using integral equations of Marshenko type (both formulations have

their advantages).

Theorem 3 bis: If we know the scattering data a(C,t) (for C in

the upper half plane), b(C,t) (for C real) y., b (t) (j = 1, . . . N) we

obtain the potential u(x,t) of B-8) by:

i. Solving the 2 integral equations of Marchenko type for

Kl(x,y,t), K2 (x,y,t):

(a) K (x,y,t) = F*(x+y,t) + f K2*(x,s,t)F*(x+y,t) ds

(b) K2*(x,y,t) = - I +Kl(x,s,t)F(x+y,t) ds for y > x

+ 0

(B-14)

where the kernel of these equations (x,t) is:
N

bk(t) ickx 1 +* b(r,t) icx
F(x,t) = -i -k(t) e 2r+ af , e

a(C k,t )  
-

k= 1

ii. then u(x,t) is given by:

u(x,t) = -2Kl (x,x, t)

dý (B-15)

(B-16)

-106-

(B-13)
-iS'x



Let us make two comments on these results:

i. They hold when the 1k are simple zeros of a(C) (i.e.,

a' (k) ~ 0) and when a(Q) / 0 for C real. => all the discrete eigen

values have a non-zero (positive) imaginary part.

ii. To solve the inverse scattering problem it is sufficient

to know: a(C,t), b(C,t) (for ý real), k,' a'(ýkt) bk(t) (for k = 1, . . .N)

At this point it may seem that we have not really made any progress: we

have only reduced the original nonlinear PDE to two nontrivial linear

problems. We shall show in the next section how to use theorem 2 and

2 bis to study the solution of our problem.

(c) Study of the solution by using IST:

Soliton and multisoliton solution.

If the initial data f(x) is such that at t = 0 the scattering data

satisfy b(C,O) = 0 for r real then by using (B-11) b(ý,t) = 0 for any t.

The equations of inverse scattering (B-12) and (B-13) reduce to a linear

system of 2N equations.

N

-i. x bk*(t) *2*(X;ýk't) -iCk*X
+l(x;jjt)e e = 0 j = i, . . . N

1 a'*(ýk-t) •j k*)
k= 1

N

iýj *x bk(t) l(x;5cjt) ickx
2*(X;jt)e + e = j = 1, N

a'(2kt) (kj*)

(B-17)

N

bk*(t) -i k*X
u(x,t) = -2i bk*(X;ý kt)e (B-18)

a,*(ý0kt) (B-18)

k = 1
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in which we have:

bk(t) = bk(0) exp 4i 2t

a( ,t)= a(,O0)

We get 1 (C,t) and 2 (C,t) for C real by B-12 c and d. But these infor-

mations are useless in our problem.

i. One soliton solution: It is the particular case when f(x)

is such that there is only one discrete eigen value (n = 1) =0 O

+ in where no > 0.

The system (B-17) becomes:

-iXc b *(0) -i(c *x + 4C *2 t) 2 *(X;Co,t)
" 0 1(X;;ot) + e = 0

a'*(oC, 0) 2in°

ito*x b (0) i(4ox + 4 t)>l(x;,t)
e 2*(x;o ,t) + e = 1o a' (To,0) 2ino

(B-19)

bo *( 0 ) -i(co*x + 44 *2 t)
u(x,t) = -2i e 2*(X;To,t)

a'*( o,0)

It is just a matter of elementary algebra to check that the solution is:

exp -4i(. - n )t - 2i x + i
u(x,t) = 2)t - i (B-20)

cosh 2n (x - x + 4X t)

where

1 _ _o
x e1 n 2 ° - = -2 a r g Xo 2n 2n 0

(B-21)

X = o(0)

a(4 ,0)
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(B-20) represents a soliton (cf II-(1-4)) of amplitude 2 Im 0° and speed

4 Real ýo where Co is the only discrete eigen value of the Zakharov

Shabat eigen-value problem.

ii. N soliton solutions: when u(x,O) is such that there are

N different eigen values in the upper half plane - 1 + inl 1 2

.. .. . # N N + N, we must consider system (B-17) (B-18). The

study of this system does not present major difficulties but it is par-

ticularly tedious. All the details are given in reference [29] in

which it is proved in particular that system (B-17) is not degenerate so

that it has a unique solution. If the exact form of the solution which

can be expressed by using determinants, is not easy to interpretate,

the asymptotic form of the solution can be worked out relatively easily:

-- If all the eigen-values have different real parts X. an observer

moving at the velocity -4 . will see:

as t + - o one individual soliton of amplitude ni with parameter

as t + + = the same soliton but with phase parameters xo ,'

As t + - * there are N solitons, the slowest is at the front, the

fastest at the rear; as t * + 0 there are still N solitons but now the

slowest is at the rear, the fastest at the front. For each soliton the

effect of the interaction is a change of phase 4 and origin x . One

important feature is that this interaction is only a pair wise interaction:

the final result of the interaction of one soliton with all the others

is found by considering the sum of the phase and origin shift for all the

interaction between pairs of solitons.

-- If all the eigen values have the same real part then the solitons
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will not separate. We have bounded solitons. It can be easily shown

by considering the expression of the solution in its determinant form

that the bounded solitons contain, in time, all the frequencies wg = 4(ri 2

-nj2).

* Oscillatory tail: When the initial data f(x) is such that there

is no discrete eigen values, it is easier to study the solution with the

Marchenko equations (B-16) to (B-18). In this case (B-17) becomes

+m icxf(x t) f2-• b( ,t)
fx,t) = - a(,t) e d (B-22)

by using (B-16b), (B-16a) becomes

Kl(x,y,t) = F*(x + y,t) - f f K (x,u,t)F(y + u,t)F*(s + y,t) duds
XX

(B-23)

As b(Ct) = b(10) exp 4i2 t (B-24) becomesa C,t) a (C, 0)

i + ig( )
F(x,t) =  f b 0) e d

2' r a(,0) e d
- (B-24)

g(C) = 4 2t + Cx
For large t this integral can be studied by the method of stationary

phase by considering what will be seen by an observer moving at the

velocity c. Once an asymptotic approximation of F is found one can find

an approximate solution of (B-23) for large t. The algebra is very

lengthy but the result is, qualitatively, quite simple:

u(x,t) , 0(1 t7-1/ 2 ) as t - + o

The contribution from the continuous spectrum is very different from that

of the discrete spectrum, and is similar, for large time to the classical

results obtained in linear theory, for the long time evolution of a
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wave packet (cf for instance reference [12] chapter 2).

* For more general initial data b(C,O) # 0 for C real and there are

some discrete eigen values. The problem is much more complicated and

has been less studied. One can find for instance in reference [20]

the detailed asymptotic study of the case where there is only one discrete

eigen value. The expected result is that, for large time, an observer

will see:

i. an oscillatory tail decreasing as 0( tl-1/2)

ii. If he travels at the velocity of one soliton, i.e., if

he travels at the velocity -4Xj where j =X j + inj is one discrete

eigen value of problem (B-8) he will see a soliton of amplitude 2n..

(d) Some remarks on the case X < 0

In this case (cf Appendix C ) the associated eigen-value problem

we have to consider is:

ivlx + icv 1 = u(x,t) v2
(B-25a)

V2x - icv 2 = u*(x,t)v1

or

v - iu
Lv = ýv where v = L (B-25b)

v2 iu* i 2ax

If we look for solutions which vanish sufficiently fast as t - + o , all

the previous method can be applied with some minor changes due to the fact

that we have u* instead of -u* in (B-8). The fundamental difference is

that problem (B-25 is self-adjoint, so it does not admit complex eigen-

values. As the solitons are associated with discrete eigen-values with

positive imaginary parts, they cannot exist in this case. The important
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consequence is that, if we impose u(x,t) -+ 0 as t ->+ ± , any initial

data u(x,O) = f(x) will, for large t, evolve into an oscillatory tail

decreasing as 0(ItI-1/2) without any solitons.

However, using the fact that when X < 0 permanent waves (Stoke's

waves) are stable, Zakharov and Shabat studied this case with different

boundary conditions as t + + o : they take lu(x,t) I - constant as

t c+ o . In this case, (B-25) is still the right eigen-value problem to

consider, the direct and inverse scattering problems are totally modified.

The results are however qualitatively the same as when X > 0 but the

soliton is now replaced by the envelope hole soliton whose expression is

given in Part II (1-9).
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Appendix C: Proof of Theorems 1, 2, 3 of Appendix B

Proof of theorem 1:

To simplify the notations we do not write explicitly the dependence

on t and C. We consider system (B-8)

vlx + icv1 = u v 2

V2x -icv2 = -u* v1
+ 0

and assume f lu(x) dx < + " (C-1)

x 2iC(z - y)
Let us consider for ImC > 0 M(x,y) = -u*(y) f e u(z) dz

y
(C-2)

All the results of the inverse scattering problem are consequences of

the following lemma.

Lemma: If ImC > 0 and if u satisfies (C-1) then the following

integral equation (which is defined on the spaceclf of regularfunctions such

that e icx(x) is bounded as x -+- - o).

icx x icy

e p(x) = 1 + f M(x,y) e i (y) dy (C-3)

admits a unique solution s~e4 . Furthermore this solution satisfies:

i. 4(x) ~ e - i cx as x -+ - = (trivial)

ii. 4(x) is an analytic function of C if ImC > 0

iii. ýei cx is bounded as x + + o

We will not give here all the details of the proof which uses the

classical arguments of Neumann series.

The existence of the solution is proven by considering the sequence:

eicx (n)(x) = 1 + fx M(x,y) e i cy m(n-1)(y) dy (C-4)
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By taking the limit n + c of this expression, it is obvious that the

limit of this sequence if it exists satisfies the integral equation. The

limit of this sequence is also given by the sum of the Neumann series (if

it converges)

x x
e i. x  (x) = 1 + j M(x,y) dy + f M(x,y) dy jY M(y,u) du + . .

-CO -O 00

(C-5)
+

Under the assumption ImC > 0 and f Ju(x) I dx < + = . This series is

absolutely convergent. This proves the existence and the boundedness of

the solution. If Imk > 0 one may differentiate term by term up to any

order with respect to C, the result is still an absolutely convergent

series. This proves the analycity of the solution.

Let us now consider ) =( where *1 and $2 are defined by:

01 is solution of (C-3)

02 is given by ei x 0 2 (x) = - f e2 iC(x - y ) u*(y)eicy 1 (y)dy

(C-6)

If Irn > 0 it is always possible to define ý2in this way. As e iY1(y)

is bounded as x + + = it is easy to check that eicXO(x) is also bounded

as x -+ . We have obviously V(01)e - i x as x a - and by simply

plugging into (B-8) it is easy to check that =( 1 satisfies (B-8)

2
(i.e., (C-3) + (C-6) is equivalent to (B-8)+specified boundary conditions

as x + - c). Furthermore as 41 is an anlytic function of C for Ihn > 0,

so is 02.

At this point we have proven the existence of ý for ImC > 0 and its

analycity for lun > 0. We can do exactly the same for 4. Now it is

obvious by simply looking at the eigen value problem (B-8) that
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f = 2(c,x)is an eigen function for C then:

Sf2*(~*,x)
=) is an eigen function for C* (C-7)

-f *2(* x)

When ý is real r = C* and we have proven the existence of the four

functions 4, , ,, -. Furthermore, as an immediate corollary of the results

on 4 and :

* and P are defined for ImC < 0 and are analytic functions of C for

Imc < 0. (C-8)

The independence of (4',W) and (4,4) can be proven by considering the

Wronskian

W(v,w) = v1 2 -V 2'1

If v and w are solutions of (3-8) with the same C, then it is just a:

matter of algebra to check that: dW
dx 0 which implies W = C = constant

(C-10)

Then obviously

i. if C = 0 v and w are linearly dependent

ii. if C # 0 v and w are linearly independent

By considering the values of the Wronskian of (4,T) and (, *) as x

we have W(4,T) = 1 = W(TP) hence (c, ) and (~,J) are two sets of

independent solutions.

Let us now define a(C) for C > 0 by:
+ i0

a() = lim (ei•x 1(x)) = 1 + f M(x,y) e• Y4(y) dy (C-11)
x -+ + 00 -00

The integral is convergent at + = since eicX (x) is bounded as x - + o

Since 0, is an anlytic function if ImC > 0, so is a. It is obvious that
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this definition of aC() for ImC > 0 coincides with these given when C

is real by equation (B-10). As a is analytic for ImC > 0 it has only a

finite number of zeros in its analycity region. (This is a general result

on analytic functions.) We call these zeros k k = 1, . . . N

Let us prove that if k = Sk then 0(4k,x) = bk (ýk,x). For this

we have only to prove that W(O,P) = 0.

Let us consider W(O,M) when C = k and as x + +

ikxk as x + + 0
* as a(Ck) = 0 => lim 1ie = 0 but 42 ~ e

x +> +-CO
=> 01*2 + 0 as x - + o

* obviously e i 2 (x) is bounded as x - + + . Furthermore the

equivalent formula of (C-6) for P shows that ei Px 1 (x) + 0 as x + +

Hence

021 = 2e i x e-icx I1 0 as x 4 + w

It follows that

W(,9) = 1i2 - 2• + 0 as x + + o => W(0,4) = 0

All the results of theorem 1 are then proven.

To be able to solve the inverse scattering problem we need some more

technical results:

*first we need the analycity properties to remain valid on the real

axis. -It is not difficult to see by considering the Neumann series giving

#, that this property will be satisfied if the following conditions on u

are required.

+ 00

f Ix n u(x) dx < + m for any n (C-12)
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Second we need some asymptotic expression for p, 4 and a for large

r. Let us prove the formula for "1. By partial integration it is easy

to see that when
oy = ta fe x 2i?(z-y) u*(y) fe2iC(x-y) I

M(x,y) = -u*(y) f e u(z) dz " - -- 1 e u(x) - u(y)

2iý (

(C-13)+ 0(l/C2)

If we use this expression in the Neumann series for 1 we have

icx x x y
1ie  = 1 + f M(x,y) dy + f M(x,y)dy f M(y,u) du + .

x x 2iC(x-y)
S+ dy u(x) f u*(y)e dy + 0( 1

By using once more integration by parts, the last term is shown to be

1
0( i), so we have:0

x
e i Cx  1 + 2i- flu(y) 12dy + 0()2iý _0

The same kind of manipulations give the following results:

2e i ýx - u*(x) + 0(- )
S21x 2

+=
ei x  1 - flu(y) 2 dy + 0

x

- ix 1 1Se - u*(x) + 0(-)
2 2iC 2

+ d
a + i fu(y) 12dy + 0(- )

--C 00 r2

(a)

(b)

(c)

(d)

(e)

(C-14)

Proof of theorem 2:

We use the method explained in reference [1] this method proceeds

in the inverse way: given one eigen value problem, find the equations

which can be solved by this problem.
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v
Let us consider the following eigen value problem for v =v

2

SVlx + ivv 1 = q(x,t)v2

V2x - i 2 = r(x,t)v 1

which can be written

v = My with M = -
x r

(D-la)

q
ic)

(D-lb)

r and q are for the moment two unknown functions such that r and q -+ 0 as

t - ± = . All the results of the previous theorem, in which q = -r*, can

with some minor changes, be extended to this problem.

We wish to find the evolution equations for q and r such that the two

following properties are satisfied.

i. the discrete eigen values of (D-1) are constant in time

ii. it is possible to follow the scattering datas of (D-l) time

To satisfy ii. we insist that the time evolution of v is governed by:

vt = Nv
A= A(x,t)

N = C(x,t)

B(x,t)

D(x,t)
(D-2)

There is a compatibility condition between D-1 and D-2 this condition is:

v = Mtv + Mvt = (Mt + MN)v = v = NxV + Nv = (Nx + NM)v

which gives

Nx - Mt + NM - MN = 0 (D-3)

If we insist on i., i.e., t = 0, equation D-3 can be written

Ax = qC - rB (a)

Bx + 2iCB = qt - 2Aq (b) (D-4)

Cx - 2iCC = rt + 2Ar (c)

D = -A + d(t) where d(t) is an arbitrary function of t.
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In general these inhomogeneous equations will

q and r satisfy certain relations. These are

want to find.

A broad class of solutions of D-4 can be
N N

A = a(n)(x,t)f B =B

n 0
n= 0

have a solution only if

the governing equations we

easily found by writing:

b (n)(x,t)n

N

S= c(n)(x,t)n (D-5)

n = 0

If we insert D-5 into D-4 and identify all the power of C we find:

a(N) is an arbitrary function of time; b(N) = c(N) = 0; b(i), C(i) are

found by considering the Ci + 1 term in D-4 b and c; a ( i ) , which is

always defined with an additive arbitrary function of time, is found by

considering the Ci term in D-4a; the Co terms in D-4 b and c give the

sought evolution equations. If N = 3 it is easy to see that the corres-

ponding equations are:

i (3) 1 i (2) 2rot + q aT3 a  q 1=-6qrqx + -~ a q {- 2qr -

i (3)1 (2) I 2qr20 - r +-a rx-6qrr - 2 a rxx -
O t 4 xxx x xx

.a (1) q- 2a(0)qiala q -_ 2a Oq

ia(l)r + 2a(O)r
x

(D-6)

a(0), a(1), a(2), a ( 3 ) are arbitrary functions of t; the corresponding

values of A, B and C are not useful in this general case.

If we take a (0 ) = a ) = a ( 3 ) = 0 a(2) = -2i and r = -q* equations D-6

a and b arecomplex conjugate and reduce to:

qt - iqxx - 2ijq12 q = 0 which is the cubic Schrddinger equation
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The corresponding values of A, B, C are

A =-2iC2 + ilqI 2

B = 2q - iqx (D-7)

C = -2q* - iqx* = B*

At this point the results are: if q is solution of the cubic Schr6dinger

equation iqt + qxx + 2 1q 2 q = 0 then the eigen value problem D-1 with

r = -q* has the following properties:

i. The eigen values are constant

ii. The time evolution of the eigen functions is given by D-2

Remark: if we had taken r = +q* instead of -q* the result would have been

that the governing equation which can be solved by D-1 (with r = q*) is

iqt + xx - 21q12 q

It is now easy to follow the evolution of the scattering datas in t.

Let us first remark that as x +- - B - 0, C - 0, A -> A = -2iC2

so D-2 becomes

1lt A H v1
as x - = (D-8)

v2t --A_)v 2

which behaves as 0 e as x - - m does not satisfy D-8; it is

because by choosing A, B, C and D we have in fact imposed some kind of
A (_t

boundary conditions on v. It is obvious that it is ý e which satisfies

D-8 and the D-2. We can write D-2 as

t =  
(D-9)

C -A - A_

ae
but = a(C,t) p + b(C,t)1 p beiicx as x -+ + o ; this implies, by taking

the limit of D-9 as x - + o



at = A(+) - A)) a + B (+) b

b t = C(t) a - (A(+) + A(_)) b

2 2icx
where A = lim A(ý,x,t) = A () -2iC B = lim B(C,x,t) e

x + + 0 x +co

= o = c H

so D-10 gives:

aIt = 0 => a(5,t) = a(T,0)

bt =-4ic2 b => b(~Ct) = b(C,0) exp 4iC2t

Proof of theorem 3:

To simplify the notations, we do not write explicitly the t dependence:

* Let us first establish equations A-14.

For ý in the upper half plane it is possible to define ý (C',x) and

a(W',x). Let us consider the following integral:

I = d' (',x) ie'x (E-l)

'KR a (C') (C5 - 0)

in which Ihna < 0 and aKR is a contour in the upper half plane, which

contains all the zeros of a(C)

Real ý
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R-++ fI•'=R

IMn' > 0

"i'x

da' 1(c',x) ei'x
a(C') (C' -C)

= 27i

S(k,x) e 2i=- 2·ri

N
= 27ri

k= 1 a'(COk(c k - 0)

residus

N ickx
bk (Sk,x) e.

k = 1 a'( k)(k- )

(E-2)
where we have used:

i. Cauchy theorem

ii. expression of the residus when Ck are simple zeros of a

iii. the definition of bk

From C-14 we have:

icx

l1e

icx

22e

1+ 1
2ic f lu(y) 2dy + 0(-)

as 1~1 +
1 1,+ u*(x) + 0-). ,

and a(ý) -- 1 as I +

It is easy to see that the integral along the half circle gives

i7T(" as R -+

Now by using the fact that on the real axis # = ai + bT we have proved:
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1) + C O C',x) iT'x
i3 0 + f dC' e

N

2i bk (k,x)

a'(ýk - )

k=l 1

+ f ib'x+ Cd' b(C') ý(' 2x) e+ f a(C' )  ( C - e)
--00

(E-3)

Now we evaluate the integral on 4 by using the fact that 4 can be

defined in the lower half plane: we consider the following contour:

Imc

Real ý

RK'
Ai

By Cauchy theorem we have:

ic'x

3KR?
6 ed ' '(C',x) e

W•- 0)

iix + = i('x
=2in T(c,x) e = f dC' ( (,x) e

-CO W• - 0)

+ f d

I 'I = R
Imý < 0

i•'x 
(E-5)

(, _ e

iV'x
By using the asymptotic expression C-14 for 7 (C',x)e it is easy to

show that the integral on the half circle gives again i7 (0)

We have then proved:

for Imý < 0
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CC (,x) e i cx  1i d+ ' b(O') J~ ('ix) eic'x
f d0a(C') (e- 0

N bk k, x) ei kx

k 1a'(ck) (k- )  (E-6)

_*2 *(c*,x)
If we take C = r* and use the fact that 4(C,x) = (cf C

equation E-6 is nothing else but B-12a and B-12b*.

At this point we have 2 N integral equations for the 2N + 2 unknown

l(CkVx)q,ý1(k,x) k = 1, . . . N and 1(C,x),42(ý,x) for C real.

We need two more integral equations which are obtained by using the

same procedure as to establish E-6 but we have to be more careful since

for ý real I (cf E-l) is singular for 5' = .

This problem is solved by considering the principal values of the

integrals:

if we consider the following contours:

i8

Su()d f u(e)id' + f u( ') d. - u( ) (E-7)f io (W - O )
aaKe I 0I aKImý > 0

f 0i8e iide u " u(d) - iT u(0 (E-7)
Te Ee0 ( -•0)
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where 4 um) d = principal value of the integral = lim f u(Q)d(
0 - EO E + 0 -0

The consequence is that in all the previous algebra we have to replace when

necessary

/ u(C) d by 4 u(C) dC - iiu(C0)(C -C0) ( o -r0) (E-8)

This gives equation B-12 (c) and (d)

* Let us now establish equation B-13

Let us recall C-14 which gives the asymptotic expansion of * (C,x) for

large C

dy
+ 0 ) for Imc < 0

I

But by using E-6 for large ý we find

P (C,x) ei
k1 1 l

bk0 (k,x) e

a' ( )

1
+

icx
By equaling the two first terms in the asymptotic expansion of i (C,x)e

Can asymptotic expansion is unique) we find as i = )1X b*

uCx) = -2i k
k = 1 abk 2 k,x)e
k = 1 a'*(ck )

-ick*X + b* -i 'x

- _f d' b C2*('),x)e
- 0 a*(r')

which is B-13

We also find an equivalent equation for f
x

practical to study the envelope of the multi-solitons.

lu(x)12 dy which is more
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Appendix D

In this appendix we give the numerical values of =th total free

surface elevation; k wave number; C group velocity in the fixed frame;

C /a , shoaling coefficient; y2 and y3 the coefficients of the equation.

All these numbers are given for:

U = 0., 0.4, 0.8, 1.2, 1.6; T = 3., 5., 7.; and:

U = 0.95, 1., 1.05; T = 1., 1.5

and h increases linearly from hc' to hc + 1; hc is the critical depth for

a given current (if U = 0 we take arbitrarily hc = 0.5).
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**4*WAVES OVER AN UNEVEN i;OrTOM**•*

0.5400100 0.5fSOOE+00
0.70901:+00 0.F2 00C400
0.-1I:'0.F. 401 0.10GO1+01
0. 1 2 )OC. +01 f).

0. 1 O: ·~

0.6200E+00
SO.or00F+00
0. 11 03E+01
0.13,10E+01

P.:RpO:?. T= 0. 3000E+01
WA'VENUMBER:

0.44)13E+01 0.4437E4-+01 0.4423E+01
0.43i'GEi*01 0.4393E+01 0.43'JIE-t01
0.43.18E+01 0.4387E+01 0.43U7E+01
0.43;37E+0 1 0.43 87E+-01 0.43837E+01
0. 43l16E04- 1

GROUIP VELOC.IN FIX.FRA.:
0.2•5:l'l0 O0 0.25,01 +00 0.2. 7 4 00
0..24 L.1091. 100 .24 0.241 0.1 .00
0.23:)1E -00 0.2391E+00 0.2390E+00
0. 23';1ME-00 0.2388E+00 0.2398E+00
0.23_8E-00

CG/SIGMA,COEF.OF EQUATION Y2,Y3:
0.1209E-00 0.1194E+00 0.1182E+00
0.1154E+00 0.1150E+00 0.114EE+30
0.1142E+00 0.1142E+00 0.1141E+00
0.11-40E+00 0.1140E+00 0.11:40E+00
0.1140E+00
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0.2575E+03 0.2606E+03 0.2636E+03
0.2737E+03 0.2758E+03 0.2777E+03
0.2041E+03

PERIOD.T 0.5000E+01
WAVENUMBER:

0.19942+01 0.1•47E+01 0.1907E+01
0.1707E4+01 0.1764L+01 0.1744E-01
0.16M4E+01 0.1673F+01 0.1603E+01
0.1632E401 0. 1526E+01 0.1621E+01
0.169."5,E+01

GROUP 'r,,.-J.NI FIX.FRA.:
0.47481E+±O .4766E+00 0.4773E+00
0.4729E+00 0.4706E'-00 0.4660E+00
0.4557E+00 0.4524E.-00 0.4492E+00
0.4370E+00 0.4341E+00 0.4314E+00
0.42'E+100

C3/SIGMA,COEF.OF EQUATION Y2,Y3:
0.3778E+00 0.3793E+00 0.3798E+00
0.3763E+00 0.3745E+00 0.3724E+00

0.1871E+01
0.1 727E+01
0.1654E+01
0.1616E+01

0.4772E+00
0.4651E+00
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0.2310E+03
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0.16)97r101
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0.160BE+01

0.47,18E+00
0.4569E+00
0.439UE+00
0.4242E+00

0.3779E+00
0.36.1E+00

,.- %
Il·l-···rurrrr! ·r·-r· l·-···-r·TV -·r· ~ .~-r r~.rrc
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0.3626E+00 0.3600E+00
0.3477E+00 0.3455E+00
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0.2804E401 0.2933E+01
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0.3322E+01
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0.34125E C+01
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-0.4084E+01
0.3310E+01
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0.3524'E-00
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0.3067E+01
0.33 19)E 01
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GROUP VFLOC.IN FIX.FRA.:
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* **WAVES AND STRONG CURRENT OVER AN UNEVEN BOTTOM****

UINF= 0.4000E+00

DEPTH PROFILE:
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0.1214E+01
0.1454E+01
0. 1694E+01
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0. 68 39400
0.1C17E- 01
O. 126iFE+01
0. 15,11E+01
0. 1790O4 o1

0.7524E+00
0. 10J3EL01 I
0.13529L+01
0.1582E+ 01

0.81 ?GE+00
0.1109E+01
0.1371E+01
0.1624E+01

P (R!OD. T=- 0. 3000o+01
WAVEN UMEBER:

0. 16l5E*401 0.1050 01 0.1717E+,0
0. 18 '7!. 01 0. 1932: . 01 0.193.7 01
0.20.C01 0.129. 01 0.21' - I101
0.22/0 401 0. "". 01 0.2321E+01
0.2,1171+401

(;;,'UP VELOC. I N Fix. RI'A.:
0.110PE+01 0.1031io01 0.9677E+00
0.1380C(.C 0 0.7779E 00 0.75 1GE+00
0.G 7 1 t(,400 0.655910 0.64 19'+0
0.59 •5i+400 0.58:59 E'00 0.5769E+00
0.541:1 E400

C;/S;IGMA,fC0EF.OF EQUATION Y2,Y3:
0.96S:E++0O 0.86C03E+00 0.77 8E+00
0.59:32400 O.56F.UE3E+0 0.5427E+00
0.4656E100 0.4E11E400 0.43,2E+00
0.393(,E+03 0.3870E400 0. 3 7 0SjE+00
0.35: 3-2+00
0.219E+00 0.28740000 0.36 4E÷+00
O.G1"1E+00 0.6617E'00 0.7074E+00
0.349FE+00 0.8798-E+00 0.9083E+00
0.1028Er01 0.1061E+01 0.1095E+01
0.12 8E+01

-0.302dE+01 -0.1025E401 0.5391E+00
0.499:-,F-01 0.6003E+01 0.7052E+01
0.1131E+02 0.12,2E+02 0.1351E+02
0.1907EF02 0.1`3.23L+02 0.2040E+02
0.25t0C+02

P E 1r)r) D. T= 0.5000E+01
WAVENU:ABER:

0.92192400 0.9403E200 0.95-23F+00
0.9875F *0 0  0.9937E400 0.9995E+00
0.1020E+01 0.1025E+0 I 0.1030E+01
0.1049E+01 0.1053E 01 0.1058E+01
0.1077f+01

G.....P VELOC.IN FIX.FRA.:
0.127GF+01 0.12263E+01 0. 118E+4-01
0.1074E+01 0. 1051E t-01 0.102. E+01
0.9472E+00 0.9293E+00 0.9122E+00
0.8490E+00 0.8348E+00 0.8211E+00
0.7723E+00

CG/SIGMA,COEF.OF EQUATION Y2,Y3:
0.1779E+01 0.1623E+01 0.1506E+01
0.1237E+01 0.1190E+01 0.!147E+01
0.1009E+01 0.9801E+00 0.95.30E+00
0.8625E+00 0.8430E+00 0.8244E+00
0.7602E+00

0.8683E+00
0.11 54E+01
0.1415E+01

0.1GGGE+01

0.1779E+01
0.2C001E+01
0.21 W1O 101
0.231!:; +01

0.9197E+00
0.720,E+00
0. G216E+t00
0C.5685E+00

0.7216E+00
0.c200E +00
0.4259E+00
0.3713E+4-00

0.4312E+00
0.7480E+00
0.937C8E400
0.1131E+01

C.1735E+01
0.8093E+01
0.14G06E+02
0.2157E+02

O.SG43E+00
0.1005E+01
0.103U5E+01
0.1063E+01

0.115E5+01
0.1007E+01
0.89£50E+00
O.G081EO00

0.1423E+01
0.1108E+01
0.92;j3E+00
0.8069E+00

0.9210E+0·0
0.1199C+01
0.1457E+01
0. 1707E01

0. 1821E40l I
0.20 35E 01I
0.22 1 • -0
0.237E 01E1

0.87GOE+00
0.7074 E+00
0.6167E+00
0.560GE+00

0.6721E+0,1
0.4997E+00
0.4150E+00
0.3642E+00

0.4977E+00
0.7852E+00
0.9668E+00
0.1 169E+01

0.2890E+01
0.9161E-01
0.1578E+02
0.2274E+02

0.9733E+00
0.1010E+01
0.1039E+01
0.1067E+01

0.1126E+01
0.98GOE0+00
0.S790E+00
0.7956E-00

0.1350E+01
0.1072E+01
0.9050,+00C
0.7904E+J00

0.961M4E+00
0. 12.172E-01
0. 14"E 4(01

0.13 ,9E+01
0.20,..TF401
0.22.13E+01
0. 23 J3E4 01

0.84092E+00
0. 6817E+00
0. 60'.,7E00
0.5532E400

0.637'3E+00
0.4819E+00
0.49019E+00
0.3577E+00

0.551'GE400
0.891 5E+00
0.9970E+00
0. 1207E+01

0.3917E+01
0.1022E+02
0.1693E+02
0.2391E+02

0.9805E+00
0.1015E+01
0.1014E+01
0.1072E+01

0.1100E+01
0.96;;5E+00
0. e636E+.00
0.783SE+00

0.1292E+01
0.1039E+01
0.3130+1 +0
0.7750E+00
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0.G802E-01 0.8782E-01
O. 1,355C 10o0 0.20'-;cE+00
O.' 13"000 0.33!, 1E+00
0.-1:3 ';) 0L 0 O00 .15 /-E4 00

0. 4 933E-01
0. 1G t24 00

0.41 I00t.00
0.52'.'': 9 0

-0.74 12,r o01
-0. 16 O"F-. 011
-0. 1517E1O00
0. 6,•251.: 00
0. -12 V21 0 !

-0. 4001+01
-0. 98t 2 I 1 ,.00
0. 14t22E+00
0. 11 0CC40 0

P-['R100). 1" 0. "CO,: 01
V.'AVENIIMI (R:

0. 6474E+00 0.6770E+00 0.6633r+00
0.67'335+00 0.F,742L.00 0.6748IC~E+00
0.6750•400 0. 6748E100 0.6745E+00
0.6729+0 6725+00 0. G751E00 0.G721E+00
0. 6701G+00

G'NOUP VtLOC. IN rIX.FRA.:
(.) 13"I *,1 0O, " ,0E.0, 0O 0.127.9E4011

0.1213F1701 0.1200 01 0.11817E+01
0.1142E+01 0.1131E+01 0.112tE+01
0.10i1E401 0. 1072E+01 0.1002E+01
0. 102 GE401

CS-SIGMA,COUF.OF EQUATION Y2,Y3:
0.2579E+01 0.2361E4-01 0.2235E+01
0.1917E+01 0.1863E+01 0.1815E+01
0.16G1C001 0.1629E4-01 0.1600CE01
0. 14 9 ,(1o1 0. 14 73E+01 0. 1451E+01I
0.1372L-+01
0.1794E-01 0.2447E-01 0.3126E-01
0.5655E-01 0.6309E-01 0.6971E-01
0.9045E-01 0.1033E400 0.1101E+00
0.1377E-00 0.1446E+00 0.1517E+00
0. 174E+00

-0.1017E+02 -0.7358E+01 -0.5614E+01
-0.2617:K+01 -0.22G9r.E+01 -0.1953E401
-0.1132r401 -0.9'2'E400 -0.8739,400
-0.51167L00 -0. .150411+00 -0.3893E+00
-0.1970E+00

-0.54 01-0. 152,3',_,. 01-(lt')J!. 10

-0. 82H7.r:-03
0. 75 l 00

0.10.31E+00
0 . 22-' 7 4E+00
0. 3ýt;;.I 400

-0. I1 '32F -01

-0. 3L1' t. 00
0.2315E+00

0.6671E+00
0.67'52!400
0.6741E+003
0.671";'.f400

0.12GOE401
0.1 175E+01
0.1111 E t01.
0.1053E+01

0.2135E+01
0.1771E+01
0.1571,r+01
0.1430E+01

0.3740E-01
0.7631E-01
0.11705+00
0.1586E+00

-0.4548E+01
-0. 4 1 C" PIO 1

-0.7G;:.t+00t
-0.334717+00

*:**WAVES AND STRONG CURRENT OVER AN UNEVEN BOTTOM**+*

UINF= 0.8000E+00

DEPTH PROFILE:
0.1013E+01 0.1053E+01 0.1093EA+01 0.1133E+01
0.1253r401 0.1293E+01 0.1333E+01 0,1373E+01
0,14931-+01 0.1533E+01 0.1573E+01 0.16135+01
0.1733E-'+01 0.1773E+01 0.1813E5+01 0.1853E+01
0.1973E+01

MEAN FREE SURF.DUE TO THE CURRENT:
0.1032.E+01 0.111! O01 0.1185E+01 0.1246E+01
0.1413E+01 .4 0.1.13E+01 .1 T 1513E+01 0.1561E+01
0.1702E+01 0.1748E-01 0.1793E+01 0.1838+1CI

Oi11 73E+01
0, 1413E+01
0.1653E+01
0.1893E+01

0.1305E+01
0.1610E+01
0.1682E+01

0.125GE400
0. 2 " '7 EE-t- 0
0.37'iq 7400
0.4931100

-0.210j qI0+."0 i
-0 .•,21!.1. 00
0.40U3E+00
0.10013 1-+01

0.G700E+00
0.6753E+00
0.6738E+00
0.67 13E+00

0. 1342" '011
0. 1 1.G4E+0 1
0.1101E+01
0.1044E+01

0.20486E+01
0.1731E-01
0.1545E+01
0.1410E+01

0.4391E-01
0.8304E-01
0.1240E+00
0.1656E+00

-0.3723E4+07
-0.1474E+01
-0.6730C 00
-0.2 U 42:! . 00

0.1213E+01
0.14' 3E+01
0.1693E+01
0.1933E+01

0.1359E+01
0.165GE+01
0.1927E+01

~1- -~1-~-~- ~I--1 -- II~~~`--- -- IC~-~` ~- ~----- - --------.- -- ------ 9-·nsrc·~lrrm~Elrc~yr~~rr~~rpnr ~J~Fr·rr.tlrr nr~·ri:~r~·~mmnrr~,~~no~iaR r
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0.14,17F+00
0.27'05: ; "0

0. 50'., +00

-0.2017E,01
-0.33:' 3.4 00

0. 11 ' I" 01

0.6720[+00
0.67,3E+00
0.67335E~00
0.670".E+00

0.12:"7E+01
0. 11'33;E+01
0.10":)1E+01
0. 1035E+01

0.19r00E+01
0. 167'E+01
0. 150OE+ 01
0.1391E+01

0.5007E-01
0.8971 E-01
0.13Q1.0E+00
0.172 1E+00

-0.31 34E+01
-0. 129-0E+01
-0.5900..400
-0.2391E5+00



0.1970E+01 0.2014E+01 0.2057E+01
0. 22 28E+01

PERIOD. T - 0.3000E+01
WAVENUMBER:

0.13;GE+01 0.1365E+01 0.1407E+-1
0.1537E+01 0.15G5E+01 0.1593LE-"'1
0.1695E+01 0.1719E+01 0.1742Er01
0. 1829E+01 0.1850E+01 0.19870.+01
0.1917E+01

GROUP VELOC.IN FIX.FRA.:
0.1331E+01 0.1245E+01 0.1179E+01
0.1009E+01 0.9796E+00 0.9522E+00
0.8666E+00 0.8494.E+00 0.8333E+00
0.7794E400 0.7678E"00 0.75G8E+00
0.71 83+00

C3/SIGMrA,COEF.OF EQUATION Y2,Y3:
0. 1239E4+01 0.11 17E+01 0.1030E+01
0.8247E400 0.7910E400 0.7605E+00
0.667fE0O0 0.6495E+00 0.632GE+00
0. 57 71 4 0.5646E 00 0.5537E+00
0.51,11W:-. 00
0 .'1211E+-00 0.15 2GE+00 0.17 -I 9E--00
0.25:'FE+00 0.27 ? 00 0.2879E+00
0.33 l.E +00 0. 34 '.bE+OO 0 . 35U6EE+00
0.4041E+00 0.4173E0CO 0,4311E+00
0.4919E+00

-0.20,3E-01 0.5915E+00 0.1102E+01
0.2816E+01 0.3227E+01 0.3654E+01
0.5335E+01 0.5-334E4-01 0.6291 . E+01
0. 81r13E+01 - 0.8551E+01 0.9140E+01
0.1114r+02

PP-RIOD. T 0.5000E-01
WAV rNUM UBER:

0.73'•+,r00 0.7514E+00 0.7639E+00
0. 791385E400 0.8055E+CO 0.8122E+00
0.83,2 ;7!00 00 0.84 27E400 O. 84r .'1E+00
0.8704)400 0.8757E+00 0.8811E+00
0.3020E ~00

GROUP VELOC.IN FIX.FRA.:
0.15,;E+01 0. 15'i E+01 0.1455E+01
0. 1311 .0 1 0.1 : '2 1 01 0. 12'",-1EV+01
0.11 -, I .C1 0.11 3 c, • 0.11 14E+01
0. 1010E-01 104+01 0.1024E+01 0. 1COE+01
0.95; IJE+00

C'3/SIGMA,COEF.OF EQUATION Y2,Y3:
0.2285E+01 0.20990•-01 0.1964E+01
0.1629E-01 0.1571E+01 0.1516E+01
0.1340E+01 0.1303E+01 0.1269E+01
0.1152E-01 0.1127E+01 0.1103E+01
0.1019E+01
0.3223E-01 0.4237E-01 0.5222E-01
0.900,CE-01 C.• 9 70 E-0 1  0.109E.+00
0.1434E+00 0.1561E+00 0.167LE+00

0.2100E+01

0.1442E+01
0.1620E+01
0.176ýt401
0. 1830E+01

0.1127E+01
0.9279P400
0.8185E+00
0.7466E+00

0. -15E+400
0.73Y.3[+00
0.6171E+00
0.54 3•+00

0.2029E+0b
0.3004E.+00
0.3676E+00
0.4453E+00

0.1544E+01
0.4075E+01
0.6752E+01
0.9627E+01

0.7738E+00
0.81837E+00
0.8540E+00
0.8SG3E+00

0.1414E+01
0. 122L1.01
0.1094E101
0.9927E+00

0.1861E+01
0.14GGE+01
0.1237E+01
0.1080E+01

0.6151E-01
0.1192E+00
0.1770E+00

0.2143E+01

0.1476E+01
0.164GE-+01
0.1787E+01
0.1910E+01

0.1082E+01
0.9054E+00
0.8046E+C0O
0.7367E+00

0.9092E+00
0.7093E+00
0.6027E+00
0.5333E+00

0.2241E+00
0.3124E+00
0.3795E+00
0.4602E+00

0.1982E+01
0.4512E+01
0.7219E+01
0.1013E+02

0.7829E+00
0.8250E+00
0.8595E-00
0.8916E+00

0.137CE+01
0.12C02E01
0.10 76E+0 I
0.9782E+00

0.1772E+01
0.1420E+01
0.1207E+01
0.1059E+01

0.7115E-01
0.1291E+CO
0.18(2E+00

0.21(86E+01

0.1597E+01
0.1G6;E+01
0.1 90E+01
0.19291E+01

0.1044E-01
0.885'3E+00
0.7915E+00
0.7273E+00

0.861•3E+00

0.6877E00O
0.5802E+00
0.52"'I:4 00

0.2425E+00
0.32 3.r,400
0.391tE+00
0.4758E+00

0.239.E+01
0.491 1E+01
0.7692E+01
0.10'3E+02

0.7909E+00
0.8310E+CO
0.G5 1 E+00
0.896;UE-00

0.1343E+01
0.11791+01
0.1057C 401
0.96-12E+00

0.1697E+01
0.1379E+01
0.1171:E+01
0.1039E+01

0. 803-E-01
0.1387,4 00
0.)19KJE;C0
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0.20 .10 +00 0.21 2';E+ 0 00 .220E +00 .0. 228E +00
0.2513'[400

-0.1741E+401 -0.1301Eo01 -0.1011E+01 -0.0.;'. .-00O
-0.391.E+00 -0.2935.-+00 -0.2034E4-00 -0.1231-E00
0.8204E-01
0.4141 E+00
0.7072E100

0. 134 E400
0.46-12r+00

0.201 lE+O0
0.51 39E+00

0.2568E+00
0. 562-E+-00

0.23CGE+00 0.24H1E+00

-0.6G401e+00
-0. .*)"20c" -01
0.3104EI-00
0.6! 08E+Q0

-0.5072 +00
C.1'' U3U-01
0.3~ 4 rE+00
0.5-u:; E+00

P. IOD. T 0. 7", C0!,,. I"..' 01
W.1VENUMI3ER:

0.5137E400 0.52 19E--00 0.5279E+00
0.54•IE400 0.5441E+00 0.54 62E+00
0.5579E400 0.5542E+00 0.5555E+00
0.5601I400 0.5612E+00 0.5623E+00
0. 56-3E+00

G:!Cr' VELOC.IN FIX.FRA.:
0.17 I7E401 0.1622.7 +01 0.15U8E+01
0. I i'Or o 01 0. 147i th0 0. 14 '~?.+ 01
O. 130::·r.'01 0.1370E+01 0.13 5E+01
0.12"9E+01 0.1285E+01 0.1272E+01
0.122'E+01

C.;/STG-YA.COEr.OF EQUATION Y2,Y3:
0.333?E.•01 0.3103-101 0.2933E+01
0.2523E+01 0.2452E+01 0.2385E+01
0.2172E+01 0.2127E+01 0.205SE+01
0.1937Ej-01 0.1905E+01 0.1873E+01
0.1730E+01
0.1193E-01 0.1560E-01 0.1914E-01
0.32"-E -01 0.36C3E-01 0.3955E-01
0 .539'3E-01 0.57 56E--01 0.61 21E-0 I-
0.7617E-01 0.8037E-01 0.8429E-01
0.9996E-01

-0.2442E+01 -0.1583E+01 -0.1527E+01
-0.8253E+00 -0.7265E+00 -0.6399E+00.
-0.39i3E+00 --0.3530E+00 -0.3141E+00
-0.1887E+00 -0.1632E+00 -0.1397E+00
-0.60rj2E-01

0.5323E+00
0.5431E-,00
0.5568E+00
0.5632E+00

0.15CCE+01
0'. 143 +E 01
0.1340E+01
0.1259E+01

0.2906E+01
0.2326E+01
0.2045E+01
0.1843E+01

0.2245E-01
0.4305E-01
0.6504E-01
0.8816E-01

-0.1264E+01
-0.5672E400
-0.27132E+00
-0.1182E+00

0.530G0E00
0.5498E+00
0.5579E+00
0.5642E+00

0.1534E+0 I
0.14 I171• 1
0. 132tE+01
0. 1246E+0 1

0.2696E+01 i
0.2270E+01
0.2007E+01
0.1814E+01

0.2588E-01
0.4665E-01
0.6863E-01
0.9209!-01

-0.1094E+01
-0.5030E-+00
-0.2456E+00
-0.9778E-01

0.53'1IE+00
0.5511E+00
0.55ý!?E+00
0.56W52E+00

0.1512E+01
0.140 11. i01
0.1312E+01
0.1 23 E+01

0.2605E+01
0.2220E+01
0.1971E+01
0.17U7E+01

0.2921E-01
0.5021E-01
0.7257E-01
0.9602E-01

-0.9477E+00
-0.4479E+00
-0.2157E+00
-0.7874E-01

**v*WAVES AND STRONG CURRENT OVER AN UNEVEN BOTTOM****

UINF= 0.1200E+01

DEPTH PROFILE:
0.1014E+01 0.1054E+01 0.1094E+01 0.1134E+01
0.1254E+01 O.1294Ei-01 0.1334E+01 0.1374E+01
0.149, E+01 0.1534E+01 0.1574E+01 0.1614E+01
0.1734E+01 0.1774E+01 0.1814E+01 0.1854E+01
0.1974E+01

MEAN FREE SURF.DUE TO THE CURRENT:
0.9736E+00 0.9164E+00 0.8767E+00 0.8437E+00
0.7755E+00 0.75G8E+00 0.7403E+00- 0.7249E+00
0.68^3E+O0 0.6753E+00 0.6643E+00 0.6544E+00
0.:. * L-O0 0.6203E+00 0.6121E+00 0.6049E+00
0.5840E+00

;"C

0.1174E+01
0.1414E+01
0.1654E+01
0.1894E+01

0.8173E+00
0.7117E+00
0.6456E+00
0.5972Et00

0.1214E+01
0.14-14E401
0.1694E+01
0.1934E+01

0.79'3E+00
0.690shE+00
0.63CS3E+00
0.5906E+00
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-0.45 qtj+ 01
-O.G942E+0Of
-0.93!00+01
-0.1208E+02

-0.49841E001

-0.9737E*-01

-0.53'17E+01
-0.76 ) 7E+01
-0.1025E+C2

-0.5755E401
-0.81 UUE+01
-0.10G7E+02

-0.G127E+01
-0. 85 7YGE+C 1
-0.110-1E+02

-0.65'IE+ 01
-0.89"7' E+01
-0.11 1GE+02

PERIOD. T= 0.7000E+01
WAVENUMBER:

0.4090E+00 0.3996E+00 0.3924E+00
0.3715E+00 0.3672E+00 0.3632E+00
0.3494E+00 0.3464E+00 0.2433E+00
0.3327E+00 0.3304E+00 0.3279E+00
0.3189E+00

GOUPL VELOC.IN FIX.FRA.:
0.2147E+01 0.2207E 01 0.2233E+01
0.2393E+01 0.2423E+01 0.2451E+01
0.2554E+01 0.2577E+01 0.2631E+01
0.26:36E+01 0.2706E+01 0.27208E+01
0.2806E+01

C3/SIGMA,COEF.OF EQUATION Y2,Y3:
0. 54157E401 0.5896go01 0.6250E+01
0.7415E401 0.7683E4-01 0.7938E+01
0. 890(1E:401 0.9134E+01 0.9375E+01
0.1026E+02 0.1047E+02 0.1070E+02
0. 11 81+02
0.2719E-02 0.2080E-02 0.16,5E-02
0.9100E-03 0.7998E-03 0.7111E-03
0.4718E-03 0.4298E-03 0.3891E-03
0.2837E-03 0.2619E-03 0.2443E-03
0.1837E-03

-0.29)0E+01 -0.3567E+01 -0.4145E+01
-0.t62)9E+01 -0.6832E+01 -0.7302E+01
-0.9519÷L.+01 -0.1009E+02 -0.1052E+02
-0.1297E+02 -0.133!E102 -0.1420E+02
-0.17119E402

0.3861EE+00
0.3594E+C0
0.3405E+00
0.3256E+00

0.2295E+01
0.2479E+01
0.2623E+01
0.2747E+01

0.6584E+01
0.8192E+01
0.9601 E+01
0.1092E+02

0.1392E-02
0.6332E-03
0.3593E-03
0.2285E-03

-0.4685E+01
-0.7864E+01
-0.1121E+02
-0.14U8E+02

0.380GE+0 0
0.356tEE+00
0.3380E+00
0.3232E+00

0.2331E+01
0.2504E+01
0.2644E+01
0.2768E+01

0.6880E+01
0.8423E+01
0.9611E+01
0.1115E+02

0.1192E-02
0.5745E-03
0.3349E-03
0.2133E-C3

-0.5275E+01
-0.8426E1-01
-0.11 92E+02
-0.1579E+02

4 4-WAVES AND srTRONG CURRcNTr OVER AN UNEVEN BOTlOr,cl1r:

UINT= 0.1600E+01

DEPTH PROFILE:
0.8120E+00 0.8520E+00 0.8920E+00 0.9320E+00
0.1032E+01 0.1092E+01 0.1132E+01 0.1172E+01
0.1232E+01 0.1332E+01 0.1372E+01 0.1412E+01
0.1532E-101 0.1572E+01 0.1612E+01 0.1652E+01
0.1772E+01

MEAN FREE SURF.DUE TO THE CURRENT:
0.1195E+01 0.1130E+01 0.1084E+01 0.1050E+01
0.9698E+00 0.9486E+00 0.9293E+00 0.9119E+00
0.8650E+00 0.0531E+00 0.8403E+00 0.8288E+00
0.7972E+00 0.7871E+00 0.7779E+00 0.7696E+00
0.7448E+00

PERIOD.T= 0.3CCOE+01
WAVENUMBER:

0.9221E+00 0.8947E+00 0.8746E+00 0.8590E+00

0.9720E+00
0.1212E+01
0.1452E+01
0.1692E+01

0.1013E+01
0.8954E+00
0.8174E+00
0.7609E+00

0.1012E+01
0.12'.2E+01
0.1492E+01.
0.1732E+01

0.9927E+00
0.?807E+00
0.8073E+00
0.7526E+00

0.8448E+00

0.37'"9 E+00
0.3526E+00
0.33'..14E00
0..3211; 00

0.23(;3E+01
0.2529E+01
0.2665E+01
0.27147E+01

0.71't1E+01
0.8669E+01
0.1007E+02
0.1136E+02

0.1035E-02
0.5157E-03
0.3062E-03
0.1948E-03

-0.57'.GE40 1
-0.88HE+401
-0.1224E+02
-0.1SG1E+02

0.8329E+00



0.382 16E400 0.81 20E+00 0.00?aOCi00
0.7707E+00 0.7G10E 000 0.7572E+00
0.7338E+00 0.72 82L+00 0.7231E+00
0.70 10E+00

GrCOUP VELOC.IN FIX.FRA.:
0.2035E+01 0.21 30[+01 0.2203E+01
0.2404E+01 0.2442E401 0.2479E+01
0.2611E+01 0.2639E+01 0.26G8E+01
0.2771E+01 0.279GE+01 0.2820E+01
0.2908E+01

CS/SIGMA,COEF.OF EQUATION Y2.Y3
0.23G8E+01 0.2573E+-01 0.2740E+01
0.3260E+01 0.3369E+01 0.3479E+01
0.3804E+01 0.3993E+01 0.4089E+01
0.4459E+01 .0.45 54E+01 0.4644E+01
0.4996E+01
0.25,15E-01 0.2029E-01 0.1t 99E-01
0. 10151-01 0.9174E-02 0.8301E-02
0.5018E-02 0.5334E-02 0.4974E-02
0.37";5E-b2 0.3503E-02 0.328GE-02
0. 2591 E-2

-0.4234E400 -0.6095E+00 -0.7803E+00
-0.12,1GE+01 -0.1352E+01 -0.14C3E+01
-0.1893E+01 -0.1995E+i01 -0.2106E+01
-0.2532E+C1 -0.2644E+01 -0.2756E+01
-0.31 39E+01

PERIOD. T= 0. 50000E+01
WAV:lUiMrABER:

0.53082E00 0.51 85E+00 0.5091E+00
U.4829E+00 0.4779E=-00 0.4731E+00
0.4531E+00 0.4525E+00 0.44 89E+00
0.4359E400 0.4328E+00 0.4299E+00
0. 4192E+00

GROUP VELOC.IN FIX.FRA.:
0.2252E+01 0.2324E+01 0.2380E+01
0.25 30Vt4 01 0.25 70E -01 0.2601+-01
0.2711E+401 0.2735U[+01 0.2 7 (,+01
0.28 39E+01 0.2872E4E01 0.2892E+001
0. ?tlr7 u01

C ;/SIGMA,COEr .OF1 EQUAl ION Y2,Y3
0.41 27E+01 0.44.17E 0 01 0.4708E+01
0.5531_o01 0.5706E+01 0.5883E+01
0.,35'.0 1. 01 0.6704.1 i01 0.G8658 E+01
0.'74,t1[140c1 0.7621E',10 0.7707E 01
0. (33'14( 01
0.68 )0E-02 0.5364E-02 0.4420E-02
0.25'16E-02 0.2287E-02 0.2056E-02
0.1416E-02 0.1304E-02 0.1200E-02
0.8976E-03 0.8349E-03 0.7812E-03
0.60GEE-03

-0.1040E+01 -0.1259E+01 -0.1450E+01
-0.2126E+01 -0.2281E+01 -0.2440E+01
-0.3102E+01 -0.325-1E+01 -0.3424E+01
-0.4115E+01 -0.4293E+C1 -0.4470E+01

0.7"',1,1-op00
0.7511E+00
0.7184E+00

0.2260E+01
0.2514E+01
0.2695E+01
0.2341E+01

0.2880E+01
0.3585E+01
0.4182E+01
0.4727E+01

0.1471E-01
0.7558E-02
0.4627E-02
0.3099E-02

-0.8883E+00
-0.1569E+01
-0.2212E+01
-0.2861E+01

0.5016E+00
0.4685E+00
0.4455E+00
0.4273E+00

0.2425E+01
0.2630E+01
0.'27,3E+01
0.2911E+01

0.4929E+01
0.5052E+01
0.7015E+01
0.790-IE401

0.3779E-02
0.18G3E-02
0.1115E-02
0.7340E-03

-0.1618E+01
-0.2607E+01
-0.3599E+01
-0.4622E+01

0.787!.7[+00
0.7449E+00
0.7134E+00

0.2314E+01
0.2548E+01
0.27225+01
0.2864E+01

0.3017E+01
0.3691 1+01
0.4278E+01
0.4819E+01

0.1282E-01
0.689-jE-02
0.4297E-02
0.2907E-02

-0.1015E+01
-0.1679E+01
-0.2323E+01
-0.2970E+01

0.4946E+00
0.4641E+00
0.4420E+00
0.4245E+00

0.24GSE+01
0.2658-Et01
0. 2807:Et0 1
0.2932E+01

0.514(E+011
0.6223E401
0.7172Er-01
0.1053£+0!

0.3264E-02
0.1693E-02
0.1033E-02
0.6896E-03

-0.1793E+01
-0.2772E+01
-0.3786E+01
-0.483*3E+C1

.0.77.25? '00
0.7394E+00
0.7030CE+00

0.23;,0E4-01
0.2579E+01
0.2746E+01
0o. 28BPGE+01

0.3138E+01
0.37~'CE+01
0.43G7E+01
0.4909E+01

0.1139E-01
0. 6313E-02
0.4020E-02
0.2735E-02

-0.1129E+01
-0.1784E+01
-0.2425E+01
-0.3084E+01

It

0.48!19E+00
0.4602E+00
0.4390E+00
0.4218E+00

0.2504E +01
0.26'45+01

0.28'.'9E*01
0.29tL.2E+01

0.53[4-E01
C.6382Ec01
0.7311.'E+0
0.U200E401

0.2878E-02

0. 15'CE-02
0.9645E-03
0.6455E-03

-0. 19!VE+01 i
-0.2931E+01
-0.3954E+01
-0.4090E4+01
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-0.51 ,GC+01

0 .PIOD. T= 0.7000E,-01
W.VNUM B E R:

0.3713Ec100 0.3.3.3603EE+00
0.3428E+00 0.3394E+00 0.3351E+00
0.32,15E+00 0.3220E+00 0.3194E+00
0.31 5E+00 0.3083E40 0.30 G3E+400
0. 2)')38E +00

*GROUP VELOC.IN FIX.FRA.:
0. 23 34- ,,-01 0.23 5 Z + 0 0.2443E+01
0.25 15F4r(1 0.7613E+01 0.26411E401
0 .27 13E+01 0.27G6E+'01 0.27892E+01
0.28/ ,cE+01 0.2i395E4-01 0.2915E+01
0.29 "./ :i GO FE4- 3 1

C.;/SIGMA,COEF.OF EQUATION Y2;Y3:
n. 5239r1:+01
0.7 7 )LE+01
0 921')2EJ 01
0.10 17"+Q02
0.I s ['V 02
0. 2G6 t!E--02
0.9620E-03
0.5313E-03
0.33'51 1-03
0.22,1E-03

-0.1431E+01
-0.2907E+01
-0.4244E+01
-0.5074rE01
-0.7037E+01

0.E' 20E+01
0.,0 3F=E+01
0.94 1 !r 01
0. 10G9E4-02

Q. 20 40E-02
0.8621E-03
0.4'9 04E-03
0.31 05E-03

-0.17 23E+01
-0.3114E+01
-0.44 83E+01
-0.58 45E+01

0. 675E+01
0.82.32E+01
0.9637E401
0. 10 i19E,02

0.1677E-02
0.7736E-03
0.4522E-03
0.291SE-03

-0.197SE+01
-0.33 2E -01
-0.4748E+01
-0.6151E+01

0.3553F+00
0.3320E+00
0.3171E+00
0.3044E+00

O. 24833E01
0. 26 67E C0 1
0.28 10E+01
0.2933E401

0.6975E+01
O.e51EE+01
0.98,17E+0 1
0.11 C8E-02

0.1435E-02
0.700'E-03
0.41.32E-03
0.2749E-03

-0.2219E+01
-0.3557E+01
-0.4906E+01
-O.G407E+01

0.3507E+00 0.34ti7F+00
0.3300'E+00 0.3273E400
0.3147E+00 0.312"?+03
0.3025E+00 0.3006E+00

0.2520E0-01 0.25'1;3VE+01
0.2694E+01 0.2716E+01
0.2833E+01 0.28';3E+01
0.2952E--01 0.2972E+01

0.7270E+01 0.75,1E401
0.8750E+01 0.897CE+01
0.1006E-02 0.10'4-E4-02
0.1129E+02 0.11,19E+02

0.1237E-02 0.10,0OE-02
0.6372E-03 0.5841GE-03
0.3662E-03 0.3594E-03
0.25,57E-03 0.240;3E-03

-0.245GE+01 -0.26;84E401
-0.3803E+01 -0.40.17E+01
-0.5181E+01 -0.5385E+01
-0.6576E+01 -0.6834E+01
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10+3EZB'O0
L0+3~ LL'0
L0+3,zS 10
10+3ICEL'0

Z0+3v'oel0
ZO+3165GCO
Z0+3-iCvZt0
ZO+386et'0

00+36ZOLO
O0+3CEZ4G'O
00+35tr90'0

00+38LPO'O

00+306L•'o
00+3L4~'0O
00+30661 '0
00+3CE 9"0

00+3C989"0
00+3ZLOL'O
00+39 e8'0
00+3CI196"0

SO+3L!~C 'O
10+38COC-'0
L0+3LLL'O
10+3t0oz'O

L0+39zcz'0
t0+3 0t7., '0
10+3682 1'0

.0+30ý6t'0
1O+38czt'O

L0+308L'0
LO+D369'O0
10+369SS'0
10+3O7 L '0

Z0+39090'0
-0+306CC'0
Z0+399GZZ0
z0+31IML 0

00+391IL9"0
00+3G960'0
00+389t*'0
00+3VPICZ10 00+3ti C'0

00+3c98V'0

00+38CLt'O
O0+3Ltv9"0

00+3Ect69'0
00+3t6SL'0
00+3se~8 '0
00+35S66'0

10+3 4CC'O
10+3L66*'0
10+36ZLZ'O
t0+3L6C'0

LO+3C4B*'O
10+36t0*'0
t0+3tL*'O0
t0+3Sbt? 0

I 0-30 16t 0
10+38VML'0
t0+3~~&t' V0
10+306til4

LO+3LBLI1O
LO+30OL9L'O
to-i39cs 1 90 L0+39•0 "'0
O+3tOLE'O

Z0+362ob'0
ZO+3C6I'OC
ZO+26LOZ'O
z0+3890V'0

00+3z0p9"0

00+3090 '0

00+36C6C'0
00+3ý7d' *0
O0+36t7S'O
00+39G0L9'0

00+36C0L'0
00+3•LL'O
00+3vL98"0
t0+38z60'0

10+3061 Co
L0+3556z'0
L0+30099*0
L0+3LcZ9'0

L0+30tV?"
L0+3tL.6"
t0+3Z691"
L0+369cg"

10+38L±0"
I0+38C9V
t0+3 8i c '

t0f30+.12 ;'

0
0
0
0

.0+300aO I 0
,0+369L t 0 LO+305GL0 0O+3tCL t0
L0+36t•'9V0 ,0+3L91"0 1.0+3909t,0
LO+3L ~V"0 '0+3S8t '"0 LO+387 -"0
LO+39SCC'O t0+386Zt'0 10+3e;c•0

:U38 I4jN3AVM
LO+300 "0 =.L '001i3d

Z0+30609'0
Z0+3 I ,"0 60+3COO0V'0 0+396LC"0
Z0+3866Z;'0 0+3_08e'0 ,0+3,Z92'0
Z0+3tO06t.0 0+3CCL."0 Z0+3EC9"0
t0+3ZC06"0 0+3cSCC•LO t0+3'6t0"0

00+30GCL'O
00+3C0 9"0 00+3L08-"0 00+3LI S" 0
00 3vt't'' 0 60+317f) it' 0 00+ " 6C0*
00+3zcOE"0 L0 +3.iced 0 00,+3)1S9." 0
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LO+3Ecl&"0 t0+36986"0 1O+3t,48"O
10+36ý9•"0 L0+3GLGZ'O L0+361S•"0
.0+3L.5Z"0 LO+3CtLIZ'0 0+OLOZ0'0

J U3 VJlnN3AVM
0+3rK'00 *0 =100IU•d

t0+396 Z'0
t0+38•61*'0
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LO+~390C4 0O

10+3eG L'0
10+3ZO~t'o 10+316GI'0
r0+3E Z 1 '0

40+3Oi C 0'
10.+300 1&i*0
L0+39C aI'0
LO+6CSI1 'O
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0 t0+3036S'0 10-•-3 I"'0 10+311!G'0
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GROUP VELOC.IN FIX.FRA.:
0.1388E+01 0.1302E+01 0.1237E+01
0.10O .3E+01 0.1038E+01 0.1011E+01
0.9237E+00 0.9064E+00 0.8900E+00
0.8342E400 0.8222EC00 .0.810 9 E+00
0.7706E+00

CG/SIGMIA,COEF.OF EQUATION Y2,Y3
0. 3133E+01 0.1190E+01 0.1103E+01
0.09.1'37+00 0.85iS91E+4CO 0.8200E+CO
0.7310E400 0.71t0E+00 0.694?2 :. •-•' 0
0.G3-16E+00 0.6219E+00 0.61001E+00
0.56131E+00
0.10':.OE+00 0.1293E+00 0.1495E+00
0.2076E+00 0.21 lvt- 00 0.22;5I-+00O
0.2639E+00 0.2722E+00 0.28JC lc"
0.31813E+00 0.328EE+00 0. 33 94 E-0O
0.380 .;E+00
0.21 t3F400 0.6931E+00 0.1070E+01
0.242:F-; 01 0.2758E+01 0.3093E+01
0.4474E+01 0.4824E+01 0.5185E+01
0.6677E+01 0.7059E+01 0.7444E+01
0.9027E+01

0.1 1 "E+01
0.9"•,' E+00
0.8747E+00
0.8000E+00

0.1036E+01
0.79' )9E+00
0.6777E+-00
0.59•36E+00

0.1667E+00
0.237 91[ 4 0
0.2897E+00
0.3506E+00

0.1423E+01
0.3432E+01
0.5552E+01
0.7837E+01

0.1 t41E+01
0.9634E+00
0.8604E+00
0.7897E+00

0.9814E+00
0.7749E+00
0.6625E-00
0.5879E+00

0.1819E+00
0,24G0E+00
0.29U8E+00
0.3623E800

0.1762E+01
0.3774E+01
0.5921E+01
0.8232E+01

0.1102E+01
0.942?E -00
0.8470E+00
0.7300E+00

0.9343E+00
0.7521E+00
0.641[1E+00
0.577UE+00

0.1955E+00
0.25'K3E+00
0.3083E+00
0.3743E+00

0.2097E+01
0.4118E+01
0.6293E+01
0.8626E+01

*4**WAVES AND STRONG CURRENT OVER AN UNEVEN BOTTOM****

UINF= 0.1000E+01

DEPTH PROFILE:
0.1040E+01 0.1080E+01
0.1280r+01 0.1320E+01
0.15:,.'+01 0.15G0E-'01
0.17.•3E401 0.1800E+01
0.20OE+01

0.1120E+01
0.1360E+01
0.1600E+01
0.1840E+01

MEAN FREE SURF.DUE TO THE CURRENT
0.11lF1E+01
0.15810E+01
0. 187.1E401
0.2152E[-01
0.24141E+01

0.1270E+01
0.1633E+01
0.1925E+01
0.219 c-0 1

0. 1344E+01
0. 1684E+01
0. 1971E+01
0.2241E401

0.1160E+01
0.1400E+01
0.10 140+.01
0.1880E+01

0.1408E+01
0.1734E+01
0.2017E+01
0.2284E+01

0. 1200E+01
0. 1440E+01
0.1680E+01
0.1920E+01

0.1469E+01
0.1783E+01
0.20rE 401:
0.2328E+01

oO
0.1240E+01 ,-
0.1400E+01 I
0.1720E+01
0.1900E+01

0.1525E+01
0.1831E+01
0.2107E+01
0.2371E+01

PERIOD. T= 0.1000E+01
WAVENUMUER:

0.2038E+01 0.2140E+01 0.2223E+01
0.2477E+01 0.2532E+01 0.2584E+01
0.27 73'[401 0.201 17E+01 0.2860E+01
0.3011':01 0 0.309GE+01
0.3239r. +01

GROUP VELOC.1N FIX.FRA.:
0.1221E+01 0.1144E+01 0.1009E+01
0.9526E+00 0.9279E+00 0.9059E+00
0.83.29,r+00 0.8175E+00 0.8030E+00
0.7523E+00 0.7412E+00 0.7304E+00
0.6920E+00

CG/SIGMA,COEF.OF EQUATION Y2,Y3:
0.8623E+00 0.7851E+00 0.7321E+00

0.2294E+01
0.2633E+01
0.2901E+01
0.31331+01

0.1047E+01
0.8855E+00
0.7894E+00
0.7203E+00

0.2360E+01
0.2682E+01
0.2942E+01
0.31 69L 00 1

0.1010E+01
0.8666E+400
0.7764E+00
0.7105E+00

0.6921E+00 '0.6584E+00

0.2420E+01
0.2728E+01
0.29132E+01
0.3204E+01

0.9799E+00
0.8490E+00
0.7641E+00
0.7011E+00

0.6303E+00
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LO+38c8L '0 10+396S L * 10+386S1'0
C+381L'O0
10+381 I'0

10+38661 '0
10+386L30 L0+368L1"0
10+38GS110 10+33819v0
10+38LCLO 10t+38LZL'0
10+38L010 00+380vl"0

•31II07 d Hid3O

10+30SO0'0 dNIA

***WC0IOS N3A3Nn NV 3A0 1N3uvo3 ONOtIS ONV S3AVM**o*

10+3£018'0
L0+30£6S'0
Lb+3V06C'0
10+3zt1o'0

O0+3POP'O
O0+31LB*'O
00+36LEZ''0
00+3t.18 1'0

00+30ý6S '0
00- 3H:3 99' 0
O0+3eLL'O
00+300GS6"0

00aKT3•.5L'0

00+39096'0

0+30 t1'0

10+3Z6L1 '0
10+3Z[891'0
t0+39Gt '0
10+360tL'0

IO+3£ZELL'O.
10+31899'0
10+308s98'0
10+30OLL'O

00+3LCL'0O
00+3~8LZ'O
00+300C'0
00+311L 1'0

00+39909'0
00+3:~ I 89*'0
00+3996L'0
10+3C00 "0

00+3t908'0
00*3±LL8'0
00+3CI86'0
10+3891s'0

10+3GLLW'O
t0+3E991'0
10+39ES*'0
10+30081'0

t0+3LOEL'O
t0+3LCZS'O
10+36SZE'0
tO10+3V'38'O

00+3P9Z8'0
00+3L69V'0
00+38t1*'0
00+31L91s'0

00+31019'0
00+30L69"0
00+301i8'O
t0+3690L'0

00+39 18'0
00+3)68'0
10+3t001'0
L0+3COZ*'0

O10+3LGLI'O

10+31 9V'0
10+360CI'O

SO+3LLtB'O
10+310L'O 10+30P99'0 10+31f•:IZ9'0
0+3868Eb'0 L 0+3191'?0 1O+3L~i,"0
10+36o16'0 10+3tc9*'0 0+T1heE'O
10+3090' 0 00+3GcS69' 0 01 .'0

00 609£'0
00+3691C'O 00÷36GOC*O 00+.-iO6e,•0
00+36t 9'0 O0+3•£5"'0 00+1-i J9'Ot0

00+3i•£•o' 00+3•t3zL*'0"0 00+36i.!0"
00+3stp,0 00+38V0Z " 10-b36166"0

00+3 1 "A'O
00+36L-9'0 004310t9'O 00+0tCG"9'0
00+3LELL'.O 00+3L•EL*O 00]3CI SL'O
00+36 6V8'0 00-tý;08"'0 00+309t6'0
L0+39ZL 1'0 10+j£03I'0 10+3Ot-'C 0

;CA'ZA NOI±VA03 JO* 0303'VlJ0OIS/fý;
0U+36£L '0

00+3LL;8"0 004-3£6E"'0 00+i3•.aL'~",3

00+3SL06'0 00-]3vG'o6" 00+.Lt'b"0
L0+360L'O0 10+39So.~'0 L0•T3c01 '0
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:*'V-JXII NI'3013A dfdOD
0+3.08L '"0

10+36£LL 0 L0+3tZZto0 LO+3BOL 0
10+3ZZ9L'"0 .00+-,:0 dI0 1036LS'"0
LO+3L8 "L't0 0+3Z9t• 1'0 tO+39tt•&'"0
10+3L1 1'0 10t+6LZI'0 LO+3L'OCI"0

: U38 v'n3f3AVM
L0+300t"0 "-l"'OId3d

Z0+36eSV'0

z0+3.clo'0
Z0+3L be'0

00+3,6t•9'0
0 0+38L.- a I? * 0' 00+36LVC'0

00'380c•'0

00+ý968'O
00'0+30lvP'*0
00+3015''0

Z0+t389 18'0 t0+3891"'0 ZO+AG tC'O

eo+30LItV.

00+3·90 Z9"'0
00+39G69'O
00+3L1it'0
00+3a1qi2'0

00+3 1668'0
O003LZGV'O
00f)]± P 9 s '0

Z0+39s It"0
Z0+3L86*'0
~0+3E86L 'O
t0+39 101 '0 ZO+3cGt*Ot

00+3t601'0

00+39 OC'0
00+310i'0

00+'36J0P'0
00+3690'0

00+381;s''0

e0+36Z6C'0
$0+3908i'0
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0 0'+3 L 1.: 3 S 1 0
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MEAN FREE SURF.DUE TO THE CURRENT:
0. 88I11E+ 400
O.G 8.1E+ 00
0.615 rE+00
0.5617E+00
0.5211E400

0.031 2E+00
0.68 1 2E 00
0.6047E+00
0.5539E+00

0.7937E+00
0.6656E+00
0.5953E+00
0.5469E400

0.7625E+00
0.651GE+00
0.589'÷E00
0.540GE+00

0.7375E+00
0,6392!1+00
0.5781E+00
0.5336E+00

0.7172E+00
0.62G5E+00
0.56 9 5E+00
0.5273E+00

PERIOD. T= 0. 1000E+01
W AV ErJ-UMI ER !

0.1630E+01 0.1567E+01 0.1522E+01 0.1484E+01
0.1Il';LE401 0.1383E+01 0.1363E+01 0.1345E+01
0. 12ý130E+0 1 0. 12133E+01 0.1270E+01 0. 1257E+01
0.1224E+01 b.1213E+01 0.1202E+01 0.1193E+01
0. 51SE4001

GROUP VELOC.IN FIX.FRA.:
0.1678E+01 0.1778E+01 0.1855E+01 0.1923E+01
0.207GE+01 0.2120E+01 0.2161E+01 0.2200E+01.
0.2304E+01 0.2337E0'- 0.2367E+01 0.2397E+01
0.2417E401 0.2505,E+•(1 0.2530E+01 0.2552E+01
O. 2G2GE+01

CG/SIGMA,COEF.OF EQUATION Y2,Y3:
0.13-90E+01 0.1529E+01 0.1644E+01 0.1752E+01
0.2017E+01 0.2100E+01 0.2181E+01 0.22GOE+01
0.24;.3E401 0.2559E+01 0.2627E+01 0.2699E+01
0.290qE401 0.2971E+01 0.3039.E+01 0.3099E+01
0.3305E- -01
0.67L;4E-01 0.5470E-01 0.4590E-01 0.3905E-01
0.26:0E-01 0.2381E-01 0.2136E-01 0.1928E-01
0.14'!,C-01 0.13?9E-01 0.1226E-01 0.1129E-01
0.3015E-02 0.8355E-02 0.7791E-02 0.7312E-02
0.59 50E-02
0.3725E+00 -0.2975E+00 -0.7925F+00 -0.1228E+01
-0.2216E+01 -0.2561E+01 -0.286•.+01 -0.3159E+01
-O.401tE401 -0.4313E+01 -0.4579E+01 -0.4871E40~
-0.5G6'2E-101 -0.5989E+C -0.6273E+01 -0.6534E&01l
-0.74.13 E+01

0,1454E+01 0.1479E+01
0.1329E+01 0.1312E401
0.1247E+01 0.1235E+01
0.1183E+01 0.1174E+01

0.1980E+01 0.2029E+01
0.2235E+01 0.2272E+01
0.2422E+01 0.2451E+01
0.2573E+01 0.2602E+01

0.1847E+01 0.1932E+01
0.2333E+01 0.2411E+01
0.2761E+01 0.2833E+01
0.3170E+01 0.3236E+01

0.33?4E-01 0.3006E-01
0.1755E-01 0.1591E-01
0.1052E-01 0.9711E-02
0.6799E-02 0.63U5E-02

-0.1602E+01 -0.1927E+01
-0.3440E+01 -0.3736E+01
-0.5119E+01 -0.5413E+01
-0.6847E+01 -0.7140E+01

PI:RIOD. T 0. 1500E+01
WAVENUM 3ER:

0.1 015. 01 0.1002E+01 0.9795E+00
0.91', 1E400 0.90 2';'+0 0.8911E+100
0.852'IE400 0.8435E+00 0.8358E+00
0.S0;'":.0"' 0.0O03E+00 0.7940Ei00
0.77 ;';i O0

G'ULIUP VELOC.IN FIX.FRA.!
0. 1857E+01 0.1945E+01 0.2011E+01
0.21"9E+01 0.2237E+01 0.2273E+01
0.239G;E+01 0.2425E+01 0.2451E+01
0.25,19E+01 0.2574E+01 0.2596E+01
0.2683E+01

C./SIGMA,COEF.OF EQUATION Y2,Y3:
0.21 -16F401 0. ý:" ..... '- 0.2518E+01
0.3060E+01 0.3, 2E+01 0.3300E+01
0.3741E+01 0.3852E+01 0.3952E+01
0.4354E+01 0.4458E+01 0.4556E+01

0.9592F+00
0.BUCl.4 100
0.8280 E+00
0.7884E+00

0.2059E+01
0.2306E+01
0.2477E+0 1
0.2617E+01

0.2675E+01
0.3414E+01
0.4057E+01
0.4647E+01

0. 8709E+00
0.82 4E+00
0.7820E+00

C.2118E+01
0.2331E+01
0.2500E+01
0.2640E+01t

0.2814E+01
0.3521E+01
0.4149E+01
0.4752E+01

0.92934E+00
0.061E400
0.8140E+00
0.77(3E+00

0.2159E+01
0.23c8E+01

.0.2575E+01
0.2601E+01

0.2937E+01
0.3635E+01
0.4254E+01
0.4850E+01
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0.490; 1 f 01
0 . 2 C, r3E-0 1
0.9 ,0!U! -02
o. ;Ojrl -02
0. 304l,4:-02
0. 191;UE-02
-0.1612E+01
-0.40.1?E+01

-0.6237E+01
-0.8502E+01
-0.1101E+02

0.2253E-0 1
0. 6 *I;E• -02
0. ,16 0OL-02
0.2 I10E-C2

-0.2108E+01
-0.4403E+01
-0.6G30E+01
-0.8923E+01

0. 1830E-01
0.7G')7E-02
0. 42 26E--02
0.26 14E-02

-0.2531E+01
-0.4778E+01
-0.7002E+01
-0.9349E+01

0.15! 5E-0 1
0. 6!iGOE-02
0.3d';!,E -02
0.24,13E-02

-0.2946E+01
-0.5134E+01
-0.7373E+01
-0.9699E+01

0. 1290E-01
0.6213E-02
0.356L6E-02
0.2263E-02

-0.3327E+01
-0.5499E+01
-0.7720E+01
-0.1014E+02

0.1i?2E-O0
0.550Ft-02
0.32%)'5E-02
0.21412L-02

-0.3681E+01
-0.5878E+01
-0.8120E+01
-0.1057E±02
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COMPLEX A(71,140)
DIMENSION H'51),XHI(51),KA(51) ,Y1(50),Y2(50),Y3(50)

S,CGG(50),ERR(140)
REAL KA,KAA,L

C A=AMPL,;H=DEPTH;XHI=TOTAL DEPTH(WITH CURRENT);
C KA=V;AVE NUMBERi;Y1,Y2,Y3=COEF.OF EQUA.GOVER.A;
C CGG-GROUP VELOC.IN FIXED FRAME;
C ERR=CONSERVED QUANTITY(FIRST EVOLU.LAW)

NA- 140
JAI=35
JA=2jA1l

C NA AND JA ARE DIMEN.OF MATRIX A(AMPLIT.)
NAV=50
NAI=50
DHI=-0 1
DH2=0.
Jd=O

C NAV,NA1,DH1,DH2,JddJ ARE PARAM.OF DEPTH PROFILE
L=0.5
DX=L/FLOAT(NAV-1)
JAA=10
T=3.
TETA =1.
OME=2.t3.14159/T
DTO=TETA/FLOAT(JAA)
L=LENGTH(IN X2 ADIM.VARIA.)OF ZO.OF DEPTH CHANGE
AMPL.IS STUD.FmR X2=O.TO NA*L
T=ADIM.PERIOD
DX,DTO ARE WI.DTH OF DISCR.INTER
UINF=0 .4
X=(UINF**2)/2.
HC=(X/4.)*'0.3333
HC=3.* HC-X
CALL DEPTH(NAV,NA1,JJ,DH1,DH2,H)
DO I I=1,NAV
HH=H14( I)
IF(UINF.LE.0.0001) GO TO 10
CALL MEAFS(HH.UINF,XHII)
XHI(I)=XHII
GO TO 11

10 XHII=H(I)
XHI(I)=XHII

11 CALL WAVENU(OME,UINF,XHII,KAA)
KA I)=KAA

1 CONTINUlI
KA(NAV+1)=KA(NAV)
XHI(NAV,;)=XHI(NAV)
CALL COEFFINAV,XHI,KA,H,UINF,.OME,DX,Y1,Y2,Y3,CGG,XX)
Y21=Y2(1)
CALL INIT(JA,JA1,DTO,Y21,A,IS,ERR)
GIVES INITIAL PFROFiLE AT X2=Q.
CALL SOLUT(NA,NA. .jA.DX,DTO,Y1,Y2,Y3,IS,A,ERR)
IF IP=0O WE WANT ONLY NU.M.RES.: IF IP=1 WE WANT PLOT
IP=1l
IF(IP.EQO0) CALL IMPRES(UINFHC,T,JA,NA,NAV,DX,DTO,H,KA,X

4' ' ;'· ·. ·'

FRA00010
FRA00020
FRA00030
FRA0040
FRA00050
FRA00060
FRA00070
FRA00080
FRA00090FRAODIOO
FRA0.0 100
FRA00110
FRA00120
FRA00130
FRA00140
FRA00150
FRA00160
FRA00170
FRAO0180
FRA00190
FRA00200
FRA00210
FRA00220
FRA00230
FRA00240
FRA00250
FRA00260
FRA00270
FRA0028O
FRA00290
FRA00300
FRA00310
FRA00320
FRA00330
FRA0340
FRA00350
FRA00300
FRA00370
FRA00380
FRA00390
FRA00400
FRA00410
FRA00420
FIA00430
FRA00440
FRA00450
FRA00460
FRA00470
FRA00480
FRAOC49.0
FRA00500
FRAOQ510
FRA00520
FRA00530
FRA00540
FRA00550
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SHI,XX,Y1,Y2,Y3,CGG,A,IS,ERR,J)
IF(IP.EQ.1) CALL DESSIN(NA,JA,A)
STOP
END
SUUROUTINE DEPTH (NAV,NA1 ,JJ,DH ,DH2,H)
DIMENS ION H( 1)
IF•dJ.NE.O) GO TO 10

C IF JJ=O STEPS;IF JJ NOT EQ.0 JJ ONDULATION OF AMPL.DHI
NA2=NA V-NA 1
IF(NA2.EQ.O) DH2=DH1

C IF NA2=0 I STEP OF HIGH DH1;IF NO 2 STEPS OF HIGH DH1,DH2
DO 1 N=1,NAV
IF(N.GT.NA1) GO TO 100
R=FLOAT(N-1)*3.14159/FLOAT(NAl-1)
H(N)=1.+DHI*(COS(R)-1.)/2.
GO TO 1

100 R=FLOAT(N-NA1)*3.14159/FLOAT(NA2)
H(N)=1.-DH1+(DH2-DH1)*(COS(R)-1.)/2.

1 CONTINUE
GO TO 200

10 DO 2 N=1,NAV
R=2.*FLOAT(JJ)*FLOAT(N-1)*3.14159/FLOAT(NAl-1)
H(N)=1 .-DH1*(COS(R)-1.)

2 CONTINUE
200 H(NAV+1)=H(NAV)

RETURNJ
END)
SUDROUTINE MEAFS(HH,UINF,XHII)
EPSI=0.001
A2=(UINF**2)/2.
X2=(A2**2)+4.*A2
X1=(A2-SQRT(X2))/2.
X2=(A2+SQRT(X2))/2.
DELT=0 .25*ABS(1 .- X2)
IF(DEL T LE.0 .05) DELT=0.05
XHII=1.
N= 0
Z=HH-1.
ER=ABS(Z)
IF(ER.LE.EPSI) CO TO 20
PTE=2.*(HH-1)-- .- X1)*(1.-X2)
IF(HiH. LT.1.) CO TO 1
IF(UINF.GT,1.) GO TO 10
GO TO 1.1

12 IF(UINF.LT.1..AND.Z1.LE.0.) DELT=DELT/2.
IF(UINF.GE.1..AND.Z1.GT.0.) DELT=DELT/2.
N=N+1
IF(N. .C .00) GO TO 20

11 XHII=XiiI+DELT
GO TO 14

13 IF(UINF.LT.1..AND.Z1.GT.0.) DELT=DELT/2.
IF(UINF.GE.1..AND.Zl.LE.0.) DELT=DELT/2.
N=N+1I

IF(N.GT.50C) GO TO 20
10 XHII=XHII-DELT

FRAO00GO
FRA00570
FRAOO5HO
FRA00590
FRA00600
FRAO0610
FRA00620
FRA00630
FRA00640
FRA00650
FRA00660
FRA00670
FRA00680
FRA00690
FRA00700
FRA00710
FRA00720
FRA00730
FRA00740
FRA00750
FRA00760
FRAO0770
FRA00780
FRA00790
FRAO0800
FRA00810
'FRA00820
FRA00830
FRA00840
FRAO0850
FRA00860
FRAO0870
FRA00880
FRA00890
FRA00900
FRA00910
FRA00920
FRA00930
FRA00940
FRA00950
FRA0960
FRA00970
FRA00980
FRA00990
FRAO1CO
FRA01010
FRA01020
FRA01030
FRA01040
FRA01050
FRA01060
FRA01070
FRAO1080
FRA01090
FRA01100
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S 14 A=Z -
Z=(xHI I-i. )* (xHIlI-XI )l*(XHI I-X2)
Z=(llfi- I.)*(XH1 **12)-Z
ER=AI3S (Z)
IF(ER.LE.EPSI) GO TO 20
IF(Z.GE.O..AND.UINF.LT.1.) GO TO 12
IF(Z.LE.0..ANO.UINF.LT.1.) GO TO 13
IF(Z.LE.O..AND.UINF.GE.1.) GO TO 12
IF(Z.GE.O..AND.UINF.GE.1.) GO TO 13
GO TO 20

1 IF(UINF.GT,1.) GO TO 15
GO TO 16

17 IF(UINF.GE. 1 .AND.(ZI.GT.O..OR.PT1.LE.0.)) DELT=DELT/2.
IF(UINF.LT.1 .AND.Z1.LE.0 .AND.PT1.LE.O.) DELT=DELT/2.
N.=N+1
IF(N.GT.500) GO TO 20

15 XHI I=XHII+DELT
GO TO 18

19 IF(UINF.GE.1.AND.Z . LE.0.AND. PT1.GT.0.) DELT=DELT/2 .
IF(UINF.LT, .ANO.(ZI.GT.0..OR.PT1.GT.0.)) DELT=DELT/2.
N=N+1
IF(N.OT.500) GO TO 20

16 XHI I=XHI -.DE LT
18 Zl=Z

PT1=PTE
Z=(XHII-1. )*(XHII-X1)*(XHI-X2 )
Z=(HH-1.,)*(XHII ,-2)-Z
ER=AS (Z)
IF(EP . EPSI) GO TO 20
PTE=2. •tH-0- .)I*XHII-(XHI I-X )*(XHII-X2)-(XHI-1.)*(2.*XHI

SI-Xi-x2)
IF((Z.GT.0..OR.PTE.LE.0.).AND.UINF.GE.t.) GO TO 19
IF(Z.LE.O..AND.PTE.GT.O..AND.UIN.GGE.1.) GO TO 17
IF(Z.LE.O..AND.PTE.LE.0 .AND.UINF.LT.1.) GO TO 19
IF((Z.GT.0..OR.PTE.GT.O.).AND.UINF.LT.1.) GO TO 17

20 RETURN
END
SUBROUTINE WAVENU(OME,UINF,XHII,KAA)
REAL K1,K2,KAA,KIINF,K2INF
ElSI=0 .0001
X1=1 .
X2=1.
X3=0.

C IF X1=.1.(RES.-1.),X2=1.(RES.0.),X3=0.(RES.1.),WE STUD.THE
C SMALLEST(RES.LARGEST)ROOT

UN=UINF/XHI I
N=O

C APPPROXI.PLAC.OF ROOTS
K1=14.

1 KI=K1/2,
FMG=(OME**2)/K1-2.*UN*OME+(UN**2)*KI-TANH(KI*XHII)
PTE=UN**2-(OME/K1 )**2-XHII/((COSH(K1*XHII))**2)
IF(FMG.LE.0..OR.PTE.GT.0.) GO TO 1
DELT=K 1
K2=K1

FRA0I110
FRA01120
FRfAO1i30
FR[I01140
FRAOt0SO
FRA01160
FRAGO170
FRAO1180
FRA01190
FRA01200
FRA01210
FRA01220
FRA01230
FRAI1240
FRA01250
FRA01260
FRA0t270
FRA01280
FRA01290
FRA01300
FRA01310
FRA01320
FRA01330
FRA01340
-FRA01350
FRA01360
FRA01370
FRA01380
FRA01390
FRA01400
FRA01410
FRA01420
FRA01430
FRA01440
FRA01450
FRA014GO
FRA01470
FRA01480
FIAO01490
FRA01500
FHAO01510
FRA01520
FRA01530
FRA01540
FRAU01550
FRAO1560
FRA01570
FRA01580
FRA01590
FRA01600
FRA01610
FRA01620
FRA01630
FRA01640
.FRA01650
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2 rMG=(OME*+2)/K2-2,.UN*OME+(UN**2)*K2-TANH(K2*XHII)
IF(FMG.LE.0. ) GO TO 10
PTE=UINF *2-(OME/K2)**2-XHII/((COSH(K2*XHII))**2)
IF(PTE.GT.O.) GO TO 11
K2=K2+DELT
GO TO 2

11 DELT=DELT/2.
K2=1(2- DELT
GO 10 2

10 KIINF=K2-DELT
FMG=1.
IF(X1.GE.O.) GO TO 131

12 K2=K2+OELT
FMG=OME**2/K2-2.*UN*OME+(UN**2)*K2-TANH(K2*XHII)
IF(FMG.LE.O.) GO TO 12
K2INF=K2

C AT THIS PT.THE 2 ROOTS ARE KI(K2)BETW. KIINF AND KIINF+DE
C LT.(K2INF)
131 K2=X2*KIINF+X3*K21NF

GO TO 130
13 IF(FM1 .LE.0. ) DELT=DELT/2.
130 K2=K2+X1*DELT

N=N+1
IF(N.GT.50) GO TO 1000
GO TO 15

14 1F(FM1.GT.0.) DELT=DELT/2.
K2=K2-X*DOELT
N=N+1
IF(N.GT.50) GO TO 1000

15 FM1=FMG
FMG=(OME**2)/K2-2.*UN*OME+(UN**2)*K2-TANH(K2*XHII)
ER=ABS(FMG)
IF(FMC.GE.O..AND.ER.GT.EPSI) GO TO 13
IF(FMG.LT.O..AND.ER.GT.EPSI) GO TO 14
KAA=K2

1000 RETURN
END
SUBROUTINE COEFF(NAV,XHI,KA,H,UINF,OME,DX,Y1,Y2,Y3.,CGG,XX)
lIMENS' ION XHI(1) ,KA(1),Y (I) ,Y2(1),Y3(1),H(1),CGG(1)

REAL KA.KX1,KX,KH
DO i N=I,NAV
UN=UINF/XHI(N)
C=-U4+ (OME/KA(N))
KX=KA(N)*XHI(N)
BET=TANH(KX)
CO=COSIH(KX)
SI=SINH(KX)
CGM=C*0.5*(1.+KX/(SI*CO))
CG=CGM+UN
CGG(N)=CG
Y2(N)=1.-XHI(N)*(1.-BET*BET)*(1.-BET*KX)/(CGM**2)
Y2(N)=Y2(N)*(CGM**2)*KA(N)/(2.*C*(CG**3))
Y3(N)=4.*((C/CGM)**2)+4.*C/(CGM*CO*CO)+XHI(N)/((CGM*CO*CO)**2)
Y3(N)=-2.*Y3(N)*((BET*CGM)*v2)/(XHI(N)-(CGM**2))+9.-10.*(
SBET**2)+9.*(BET**4)

FRAO GO0
FRAO 170
FHAO1u600
FRAOi690
F AOt1700
FRA01710
FRA01720
FRA01730
FRA01740
FRA01750
FNA01760
FRAQ01770
FRA01780
FRA01790
FRA01800
FRA01810
FRA01820
FRA01830
FRA01840
FRA01850
FRA01860
FRA01870
FRA01880
FRA01890
FRA01900
FRA01910
FRA01920
FRA01930
FRA01940
FRA01950
FRA01960
FRA01970
FRA01900
FRA01990
FRAC2000
FRA02010
FRAO2020
FRAO2030
FRA02040
FRA02050
FRA02060
FRA02070
FRA02080
FRA02090
FRA02100
FRA02110
FRA02120
FRAO2130
FRA02140
FRA02150
FRA02160
FRA02170
FRA02180
FRA02190
FRA02200
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Y3(N)=KA(N)*Y3(N)/(4.*CG*tC((C*BET)**2)) FRA02210
XX=ABS(Y3(1)) FRA02220
IF(N.GT.1) Y3(N)=Y3(N)/XX FRA02230
KXI=KA(N+1)'*XHI(N+1) FRA02240
CG10S=O.5*( .+KX1/(SINH(KX1)*COSH(KX1)))/KA(N+1) FRA02250
CG1OS=CGtOS+UINF/(XHI(N+1)*(OME-UINF*KA(N+1)/X•1i(N+1))) FRA02260
Y1(N)=(CG1PS-CG/(C*KA(N)))/DX FRA02270
YI(N)=Y1(N)/(CGIOS+CG/C*KA(N)) FRA02280

1 CONTINUE FRA02290
.Y3(1)=Y3(1)/XX FRA02300

C Y3(N) IS NORMALI.SUCH THAT ABS(Y3(1))=1. FRA02310
RETURN FRA02320
END FRA02330
SUBROUTINE INIT(JA,JA1,DTO,Y21,A,IS,ERR) FRA02340
COMPLEX A(71,1) FRA02350
DIMENSION ERR(t) FRA02360
IS=1 FRA02370

C IF IS=1 INIT.PROF.SYMET.IN TO FRA02380
C IF IS=1 GIVE A AT X2=0 FOR TO=-DTO TO dA*DTO FRA02399
C IF IS=O INIT.PROF.NOT SYMET.IN TO FRAO2400

QO=2. FRA02410
W=QO/SQRT(2.*Y21) FRA02420
JA2=JA+1 FRA02430
E=O. FRA02440
DO 1 I=1,JA2 FRA02450
R=FLOAT(I-2.) FRA02460
A(I,1)=CMPLX(QO/COSH(W*R*DTO),O.) FRA02470
IF(I.LE.2) GO TO I FRA02480
E=E+CABS(A(I,1))**2+CABS(A(I-1 ,1))**2 FRA02490

1 CONTINUE FRA02500
ERR(1)=E*DTO/2. FRAO2510
RETURN FRA02520
ENrO FRA02530
SUBROUTINE SOLUT(NA,NAV,JA,DX,DTO,YI,Y2,Y3,IS,A,ERR) FRA02540
COMPLEX AL(200),BE(200),GA(200),W(200),X(200),Y(200), .FRA02550

SA(71,1) FRA02560
DIMENSION Y1 (1),Y2(1),Y3(1),ERR(1) FRA02570

C IF IS=0 A IS NOT SYMET.IN TO FRAO2580
C IF IS=1 A IS SYMET.IN TO - FRA0ý290

JA=JA-1 FRA02600
YY=0O. FRA02610
KK=3-IS FRA02620
00 1 I=2,NA FRA02630
E=O. FRA02640
A(jUA+t,I)=CMPLX(0.,0.) FRAO25G0
IF(IS. Q.0) A(I,1)=CMPLX(O.,0.) FRAO2GGO
IF(I.GT.NAV) GO TO 100 FRAO2G70
Y111=YI(I- ) FRAO260O
Y222=Y2',-1) FRAO2C9O
Y333=Y3(I-I) FRAO27CD
Y11=(Y1(I-1)+YI(I))/2. FRA02710
Y22=(Y2(1-1)+Y2(I))/2. FRAO2720
Y33=(Y3(I-1)+Y3(I))/2. FRA02730
GO TO 101 FRA02740

100 IF(I.GT.(NAV+I)) GO TO 101 FRAO2750
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Y111=0 . FRAO27 GO
Y:':'22 Y 2(NAV) FRA02770
Y:333 Y 3 (NAV ) FHAO02780
Y 1-0. FRA02790
Y22=Y222 FRA02800
Y33=Y333 FRA02810

101 DO 2 J=l,JA1 FRAO2020
S=CABS(A(J+1,I-1)) FRAO2830
AL(J)=CMPLX(O.,Y22*DX/(2,*(DTO**2))) FRA02840
GA(J)=AL(J) FR.102850
W(J)A(J+1, I-1 )*CMPLX(1.-DX*Y1 1/2.,DX*Y22/(DTO**2)-Y33*S* FRA02860

SS*DX/2.) FRA02870
W(J)=W(J)-(A(J+2,I-1)+A(J,I-1))*AL(d) FRAO2880
BE(J)=A(J+I,I-1)*CMPLX(1.-DX*Y11I,DX*2.*Y222/(DTO**2)-Y33 FRA02890

S3*StS* DX) FRA02900
BE(J)=BE(J)-(A(J+2,I-1)+A(d,I-1))*CMPLX(O.,Y222*DX/(DTO** FRA02910

52)) FRA02920
S=CABS(BE(J) ) FRA02930
BE(J)=CMPLX(1.+DX*Y1I/2. ,-DX*Y22/(DTO**2)+DX*Y33*S*S/2.) FRA02940

2 CONTINUE FRA02950
X(JA-1)=-AL(JA-1)/BE(JA-1) FRAO2960
Y(JA-1 )=W(JA-1)/BE(JA-1) FRA02970
DO 3 J:3,dA FRAO2980
K=JA+I -J FRA02990
X(K)=-AL(K)/(GA(K)*X(K+1 )+BE(K)) FRA03000
Y(K)=(W(K)-GA(K)*Y(K+1))/(GA(K)*X(K+1)+BE(K)) FRA03010

3 CONTINUE FRA03020
IF(IS.EQ.0) A(2,I)=(W(1)-GA(1)*Y(2))/(GA(1)*X(2)+BE(1)) FRA03030
IF(IS.FQ.1) A(1,I)=(X(2)*Y(1)+Y(2))/(1.-X(2)*X(1)) FRA03040
DO 4 J=KK,JA FRA03050
A(J,1)=A(J- 1,I)*X(J-1)+Y(J-1) FRA03060
IF(J.LE.2) GO TO 4. FRA03070
E=E+CABS(A(J,I))**2+CABS(A(J-1,I))**2 FRAO3080

4 CONTINUE FRA03090
IF(I.GT.NAV) GO TO 103 FRA03100
YY=YY+Yi(I)+Yl(I-1) FRA03110

103 ERR(I)=0.5*DTO*E*EXP(DX*YY) FRA03120
1 CONTINUE FRA03130

RETURN FRA03140
END FRA03150
SUBROUTINE IMPRES(UINF,HC.,T, )A,NA,NAV,DX,DTO,H,KA,XHI,XX, FRA03160

SY1 ,Y2, Y3,CGG,A,IS,ERR,d) FRA031 70
DIMENSION H(1),B(1),XHI(1),Y1(1),Y2(1),Y3(1),CGG(1),ERR(1) FRAO3180
CQOMPLEX A(71,1) FRA03t90
REAL KA(1) FRA03200
IF(J.GT.1) GO TO 2000 FRA03210
IF(UINF.LE.O.0001) WRITE (6,501) FRA03220
IF(UINF.GT.O.0001) WRITE (6,502) FRA03230

501 FORMAT (5X,'****WAVES OVER AN UNEVEN BOTTOM****',/) FRA03240
502 FORMAT (/,5X,'****WAVES AND STRONG CURRENT OVER AN UNEVEN BOTTOM**FRA03250

S*4*',/) FRA03260
IF(UINF.GT.0.0001) WRITE (6,503) UINF FRA03270

504 FORMAT (/,5X,'PERIOD.T=' ,E12.4) FRAO3280
503 FORMAT (5X,'UINF=',E12.4,/) FRA03290

WRITE (6,507) FRA03300
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.

507 FORMAT (5X,'DEPTH PROFILE:')
WRITE (6,508) (H(K),K=I,NAV)

508 FORMAT (6E12.4)
IF(UINF.GT.0.0001) WRITE (6,509)

509 FORMAT (5X,'MEAN FREE SURF.DUE TO THE CURRENT:')
IF(UINF.GT.0.0001) WRITE (6,508) (XHI(K),K=1,NAV)

20.00 WRITE (6,504) T
WRITE (6,520)

520 FORMAT (5X,'WAVENUMBER:')
WRITE (6,508) (KA(K),K=1,NAV)
WRITE (6,510)

510 FORMAT (5X,'GROUP VELOC.IN FIX.FRA.:')
WRITE (6,508) (CGG(K),K=1,NAV)
WRITE (6,511)

511 FORMAT (5X,;'CG/SIGMA,COEF.OF EQUATION Y2,Y3!')
WRITE (6,508) (Y1(K),K=1,NAV)
WRITE (6,508) (Y2(K),K=1,NAV)
WRITE (6,508) (Y3(K),K=l,NAV)
dd=0
IF(JJ.EQ.0) GO TO 1000
WRITE (6,513)

513 FORMAT (/5X,'AMPLIT.OF WAVES(*SQRT(XX)):',/)
JA1 =JA+1
ISS=IS+1
DO 1 J=1,NA,20
DO 2 L=1,JA1
B(L)=CABS(A(L,J))

2 CONTINUE
WRITE (6,514) d

514 FORMAT (2X,'X=X(',I2,')' )
WRITE (6,508) (B(K),K=ISS,JAI)
WRITE (6,515) J,ERR(J)

515 FORMAT (SX,'QUANTI.TY CONSER.EN(',I3,')=',E12.4)
.1 CONTINUE
1000 REIURN

END
SUBROUTINE DESSIN(NA,JA,A)
COMPLEX A(71 ,1)
DIMENSION B(71,140),SH(302),SV(302)
JAI=JA+1
DO 1 I=1,NA
DO 2 J=1,JAI
B(J,I)=CABS(A(J,I))

2 CONTINUE
1 CONTINUE

BMAX=8.
IDIM= J A
JDIM=NA
ISTART=2
IDELT= 1
ISTOP=50
JSTART=t
JDELT=2
JSTOP=NA
CALL PLOTS(120,IDUM2,08)
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CALL PLOT3D( B,BMAX,O.,IDIM,JDIM,ISTART,IDELT,ISTOP,JSTAIRT
S,JDELT,JSTOP,1,45.,45.,SH,SV,' EVOL.OF 2 13.SOLITONS',20,
SO.0,0. 0,0.0)
CALL ENDPLI(12.,0.,999)
RETURN
END

FRAO3860
FRA03 070
FRAO3880
FRA03890
FRA03900
FRAO391C

-"ULbli5T'n-~·~- '\7; :I_~(:-Si~):;U1Yii.PC·~~: (.r.lrXT:rl)5-·l1 .-_Sn· :IrTryCryr~p·c·l~~~~·rurlr,.rlm·nrm;ylv : .:*Zec.FI1· ' p



List of Figures and Captions.

Figure C1)

Figure (21

Figure (3)

Figure (4)

Figure (5)

Definition sketch.

Definition sketch.

Critical depth as a function of the current at -

Envelope of a soliton for constant depth A(0,t) = w sech (2f 3 J )

12y 2. 2

U = 0.4 T = 3; IAI is plotted for x 2 = 0 to 8.5 T = 0 to 5.

Envelope of two bounded solitons for constant depth A(0,T) =

2 sech TU = 0.4 T = 3; IAI is plotted for x2 = 0 to
2Y2

Figure (6)

Figure (7)

Figure (8)

Figure (9)

Figure (10)

4.2 T = 0 to 5.

Definition sketch.

Y3 as a function of k(C + h) for (1) U - 0.4

t = 5; (3) U = 0.8 T = 5.

K = Y3 as a function of k for (1) U = 0 T

y2
T = 3; (3) U = 0.4 T = 3.

Evolution of the envelope of a soliton moving

depth; A(0,T) = 5 sech (5 y3  ) U = 0 T

2

L = 0.5; JAI is plotted for x2

Evolution of the envelope of a

depth; A(0,T) = 5 sech (5 y3

F27

T = 3; (2) U = 0.4

= 5; (2) U = 0.8

over decreasing

= 3 dh = -0.6

= 0 to 0.5 T = 0 to 5.

soliton moving over increasing

)U = 0 T = 5 dh = 0.2

L = 0.5; IAI is plotted for x 2 = 0 to 0.5
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r = 0 to 5.



Figure (11) Evolution of the envelope of a soliton moving over increasing

depth; ACO,T) = 5 sech (5 y T3 ) U = 0 T = 5 dh = 0.7

2y2

L = 0.3; IAI is plotted for x 2 = 0 to 0.3 T

Evolution of the envelope of a soliton moving

depth; A(0,T) = 2 sech (2 y3  T ) U = 0.4

2y2

L = 1; jAI is plotted for x 2 = 0 to 5.6 r =

Evolution of the envelope of a soliton moving

depth; A(0,T) = 2 sech (2 T3 ) U = 0.4

2y2

L = 1; IAI is plotted for x 2 = 0 to 2.85 T

Evolution of the envelope of a soliton moving

depth; A(0,r) = 2 sech (2 y3 r ) U = 0.4

1 2y

L = 3; IAI is plotted for x 2 = 0 to 1 T = 0

Evolution of the envelope of two bounded soli

over decreasing depth; A(0,r) = 2 sech ( y3
2y

T = 3 dh = -0.1 L = 1; IAI is plotted

T = 0 to 5.

Evolution of the envelope of two bounded

increasing depth; A(0,T) = 2 sech Cy
2y• 2

= 0 to 5.

over decreasing

T = 3 dh = 0.1

0 to 5.

over increasing

T = 3 dh = 0.1

Figure (12)

Figure (13)

Figure (14)

Figure (15)

for x 2 = 0 to 2.85

solitons moving over

T ) U = 0.4 T = 3

dh = 0.1 L = 0.5; JAl is plotted for x 2 = 0 to 1.42 T = 0 to 5.
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= 0 to 5.

over increasing

T = 3 dh = 0.6

to 5.

tons moving

T ) U = 0.4

2

Figure (16)



Figure (17) Evolution of a sech profile when y3 < 0

aCO,t) = 2 sech ( -3 T) U = 1.6 dh = -0.2 T = 3
2

L = 1; IAI is plotted for x2 = 0 to 1.9

Figure (18) Evolution of a sech profile when y3 < 0

A(0,T) = 2 sech (2 -y 3 T) T =5 dh

IAI is plotted for x2 = 0 to 1.9

T = 0 to 5.

= 0.2 L = i;

T = 0 to 5.
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