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Abstract

We present the design, implementation and deployment of a wearable computing research
platform for measuring and analyzing human behavior in a variety of settings and ap-
plications. We propose the use of wearable sociometric badges capable of automatically
measuring the amount of face-to-face interaction, conversational time, physical proximity
to other people, and physical activity levels using social signals derived from vocal features,
body motion, and relative location to capture individual and collective patterns of behav-
ior. Our goal is to be able to understand how patterns of behavior shape individuals and
organizations. We attempt to use on-body sensors in large groups of people for extended
periods of time in naturalistic settings for the purpose of identifying, measuring, and quan-
tifying social interactions, information flow, and organizational dynamics. We deployed this
research platform in a group of 22 employees working in a real organization over a period of
one month. Using these automatic measurements we were able to predict employees’ self-
assessment of productivity, job satisfaction, and their own perception of group interaction
quality. An initial exploratory data analysis indicates that it is possible to automatically
capture patterns of behavior using this wearable platform.
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Chapter 1

Introduction

The study of human behavior has always intrigued social scientists interested in enhanc-

ing organizational effectiveness and individual well-being in the workplace. Organizational

behavior is a multidisciplinary field that seeks knowledge of behavior in organizational set-

tings by systematically studying individual, group, and organizational processes. Some of

the questions it tries to answer are: How can goals be set to enhance people’s job perfor-

mance? How may jobs be designed so as to enhance employees’ feelings of satisfaction?

Under what conditions do individuals make better decisions than groups? What can be

done to improve the quality of organizational communication? How can leaders enhance

the effectiveness of their teams? [35]

According to Bowditch [23], some of the behavioral skills necessary for effective managerial

performance are: communicating with peers, subordinates, and bosses; obtaining and shar-

ing information; running meetings; allocating resources to different groups; and handling

conflict within or between teams. Understanding of management processes, often referred

to as organizational behavior, requires the study of people, groups, and their interactions

in organizations. Advanced information and manufacturing technologies such as computer

networks and mobile communication devices are revolutionizing the ways in which organi-

zations operate and people perform their jobs.

In this thesis we propose the use of wearable electronic badges to automatically collect
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and analyze unconscious social signals and context information, with the purpose of study-

ing individual and group behavior in organizational settings. We set the foundations for

developing the technology that will enable social scientists to automatically measure indi-

vidual and collective patterns of behavior, predict human behavior from unconscious social

signals, identify social affinity among individuals working in the same team, and enhance

social interactions by providing feedback to the users of this platform.

1.1 Synopsis

This thesis provides a detailed description of the design process and implementation of a

wearable computing research platform for measuring and analyzing human behavior in a

variety of settings and applications. We present initial exploratory results that show that it

is possible to measure several aspects of human behavior using this platform. The thesis is

organized as follows: Chapter 1 describes the research problem, chapter 2 gives an overview

of the background and previous work related to the research topic, chapter 3 presents a study

on activity recognition accuracy across common locations for wearable sensors, chapter 4

describes the proposed hardware platform, chapter 5 presents experimental results and

exploratory data analysis, and finally chapter 6 presents the conclusions and future work.

1.2 Problem Statement

Social interaction can take on several forms, face-to-face interaction being one of the most

frequent and important of them [41]. As a result of the digital revolution, people can

now communicate with others over long distances using mobile telephones, e-mail, instant

messaging clients, video conferencing, and other forms of digital media. However, little has

been done to exploit the fact that people already carry with them wearable electronic devices

such as mobile phones, PDAs, MP3 players, digital watches, radio frequency ID (RFID)

badges, and the like. These devices have the necessary computational power to process and

16



analyze information about their users’ behavior. These body-worn sensor networks mean

that we can potentially know who talks to whom, and even how they talk to each other.

Even though some devices already incorporate sensors capable of capturing context infor-

mation, we believe that there is no single platform capable of measuring a wide range of

variables such as the amount of face-to-face interaction, non-linguistic social signals, loca-

tion, physical proximity to other people, and context information to facilitate the study

of human behavior. We propose a new research platform composed of a wearable elec-

tronic badge and a mobile phone, capable of measuring human behavior by capturing and

analyzing the aforementioned social signals for a variety of applications.

1.2.1 Research Problem

How can we automatically collect and analyze social signals that are characteristic of human

behavior in large groups of people over extended periods of time?

Standard methods to measure and evaluate human behavior, such as surveys, often suffer

from subjectivity and memory effects. In [65] Pentland envisioned a device that could

accurately and continuously track the behavior of hundreds of humans at the same time,

recording even the finest scale behaviors with great accuracy. Such a device would replace

expensive and unreliable human observations with automated, computer-mediated ones.

In this thesis we attempt to create such a device. We believe that the automatic discovery

and characterization of face-to-face communication and social interaction would allow us to

gather interaction data from large groups of people. This could potentially remove two of

the current limitations in the individual analysis of human behavior: the number of people

that can be surveyed and the frequency with which they can be surveyed.

It has been demonstrated that the effectiveness of similar automatic methods of measuring

and predicting human behavior can be evaluated following a social psychologist perspective:

the test for the ability to automatically measure social signals would be the ability to

17



predict outcomes from thin slice observations of human interactions [28]. To demonstrate

the effectiveness of our tool, a series of experiments in collaboration with other researchers

has been planned and one has been carried out. For details on these experiments refer to

chapter 5.

1.2.2 Research Hypothesis

Some characteristics of human behavior can be automatically measured and analyzed by

using a wearable electronic badge capable of capturing social signals derived from speech,

body motion, proximity to other people, relative location, and face-to-face interaction.

1.2.3 Research Assumptions

Every person participating in our experiments will wear a badge around their neck every day

while they are at work. The badge will record different speech features, without recording

the content of conversations in order to maintain privacy, measure the amount of body

motion, record relative location using fixed base stations as reference points, capture face-

to-face interactions with other participants wearing the badge, and estimate proximity to

other participants via periodic Bluetooth scans.

1.2.4 Research Methods

• While various hardware platforms have been developed in the past, we are unaware of

any commercial device capable of measuring the social signals of interest and making

them available for research purposes. Therfore, a new small form factor wearable

electronic badge will be designed and manufactured.

• Several tests will be performed to assess the functionality of the hardware.

• Several user studies will be carried out in real organizations to gather data and analyze

individual and group behavior.
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• Participants will be asked to answer a short survey at the end of the day that will

allow us to correlate our automatic measurements with their own perceptions.

1.3 Motivation

We believe there is a need for automatic tools to measure individual and group behavior in

the social sciences. Researchers often rely on surveys and human observers to study human

behavior. This is often expensive and time consuming. Therefore, we have decided to build

an experimental research platform that could prove useful and effective in the assessment

of human behavior. We predict there will be a large demand for such tools in different

research communities and later on in the consumer market for self-monitoring devices.

In [61] we presented the design of the first prototype of a “Star Trek”-like wearable com-

municator badge as part of the research platform proposed in this thesis. Three hundred

of these badges have been manufactured to date. These badges will enable people working

in large organizations to communicate, find information, and interact in more efficient and

intelligent ways. The badge should be able to perform speech analysis using a microphone

and state-of-the-art micro-power electronics. It will be used as a push-to-talk system and

will be capable of playing audio messages and reminders through a speaker. An accelerom-

eter will allow us to study how people move and behave throughout the day: Are they

walking to a meeting? Are they talking to someone? Are they sitting in front of their com-

puters? An infrared (IR) sensor will be used to capture face-to-face interactions and study

social networks. A 2.4 GHz radio transceiver will send and receive information from base

stations distributed along a specific area, as well as determine proximity to other badges.

A Bluetooth module will enable it to interface with cell phones, PDAs, portable computers,

and other Bluetooth-enabled sensors and devices.
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1.4 Scope of Research

We are developing a technology to study human behavior and enhance communication be-

tween humans by using physical information from speech, body motion, proximity sensing,

and location, among others. We would like to bring this technology to real organizations

with the long-term goal of redefining managerial practices in order to increase productivity,

efficiency, and facilitate the flow of information. During the time frame of this thesis work

we performed several feasibility studies in real organizations to recognize potential improve-

ments, enhancements, and problems that the system might present in terms of functionality,

performance, user acceptance, and privacy concerns.

We designed, implemented, and deployed the necessary hardware and software infrastruc-

ture for collecting and analyzing data from several individuals over extended periods of time

(at least one month) in different settings. The purpose of these studies was to validate the

functionality and performance of the system.

The main contributions of this thesis work are: 1) The design and implementation of a

wearable sociometric badge. 2) The search for an optimal configuration of sensors’ place-

ment on the human body to perform daily activity recognition and capture social signals.

3) The experimental deployment of this research platform. 4) An initial exploratory data

analysis to assess the functionality of this platform.

1.5 Proposed Approach

As we begin to deploy hundreds and even thousands of wearable sensors on regular workers,

hospital patients, and the general population, the question shifts more toward a balance

between what information can be gained and their broad, immediate user acceptance. In [62]

we studied human activity recognition using wearable sensors in different parts of the body.

We found that the best global activity classification performance was achieved when using

three accelerometers placed on the chest, hip and wrist. However, we also found that it is

possible to obtain similar results using only two accelerometers placed on the chest and hip.
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We are convinced that a minimal system formed by the combination of an electronic badge

worn around the neck and a mobile phone carried by the user is the best type of platform

that would allow us to study human behavior in organizational settings over extended

periods of time.

We propose the use of a new badge that has a small form factor, is comfortable to wear over

long periods of time (at least eight hours a day), and has a long battery life. To achieve

this, the badge was designed for very low power wake-up directly from sensor stimuli. In

addition to some of the main features offered by previous badge platforms, the sociometric

badge is also capable of:

• Measuring physical activity levels and recognizing common daily human activities (sit-

ting, standing, walking, and running) in real time using a single 3-axis accelerometer

and unsupervised learning methods similar to the one presented in [38]. This range of

activities could be expanded by adding a mobile phone containing an accelerometer [6].

• Detecting when the user is participating in a conversation and extracting speech fea-

tures in real time to measure non-linguistic social signals and identify the social context

while ignoring the words themselves in order to assuage privacy concerns [67].

• Interacting with the user through voice commands, a push-button, and a tri-directional

switch to find resources and information in a timely fashion.

• Communicating with radio base stations in the 2.4 GHz radio band for sending and

receiving information to and from different badges. The base stations could either

be other badges placed at fixed locations or compatible radio base stations, such as

the Plug sensor network developed in the Responsive Environments group at the MIT

Media Laboratory [46].

• Measuring the received signal strength (RSSI) from other radio transceivers to perform

indoor localization using triangulation algorithms.

• Communicating with Bluetooth enabled cell phones, PDAs, and other devices to study

the user’s behavior and detect people in close proximity [40].

• Capturing face-to-face interactions using an IR sensor [26].

We believe our proposed approach to capture social signals and measure human behavior
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has several advantages over existing methods such as direct observation by humans, the

use of pervasive cameras to videotape social interactions, or the use of surveys. Direct

observation of humans by humans is expensive and limited to a few people per observer,

and observers do not always agree. Deploying pervasive cameras is extremely expensive

and their range of measurement is constrained to a particular place. The use of surveys is

subjective, inaccurate and time consuming. In contrast, the ability to automatically capture

not only visible characteristics of human behavior such as face-to-face interactions, relative

location, and motion but also the underlying psychological processes that occur during

social interactions in hundreds of people, at the same time and with a single unobtrusive

tool, represents a great advantage.

1.6 Sample Application Scenarios

We have envisioned several applications scenarios for the sociometric badges:

Sensible Organizations. Organizations will become truly sensible when they start de-

ploying hundreds or thousands of wireless environmental and wearable sensors capa-

ble of monitoring human behavior, extracting meaningful information, and providing

managers with group performance metrics and employees with self-performance eval-

uations and recommendations [15]. Sensible Organizations is a new concept of social

sensor network technologies that will help improve organizational practices. A socio-

metric badge could potentially measure, analyze, and reveal organizational dynamics

by closely looking at interactions and social behavior among employees of an organiza-

tion [77]. Companies using this research platform could have a better understanding

of how they work and how they can improve their daily routines in order to increase

productivity, innovation, and job satisfaction.

Personal sales coach. Recent experiments in the Human Dynamics group at the MIT

Media Laboratory have shown that it is possible to measure how persuasive a person

is being when talking to others, how interested a person is in a conversation, how much
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attention a person is paying to someone, and how effective someone is at negotiating

by measuring different voice features and body motion [73]. The sociometric badges

could be used to track individual and global sales performance in retail stores and give

advice on how to interact with clients more effectively. Sales representatives today

lack sufficient feedback on their selling capability. Top performing sales representatives

usually have good communication skills, exhibit a lot of enthusiasm and energy, and

form a personal bond with their clients. The sociometric badge could be used as a

personal sales coach device allowing sales representatives and managers to reflect on

their own performance and improve their sales skills.

Health care. The sociometric badge could also be used in a variety of health care monitor-

ing applications, such as depression state tracking, elder care, triage in the emergency

room, weight loss monitoring, and others. Sung et al. [74] showed that non-invasive

behavioral measures such as voice features and body motion are correlated with de-

pression state and can be used to classify emotional state and track the effects of

treatment over time. The sociometric badge could be used as a self-monitoring device

to extract speech features, body motion, and social interaction information and alert

the user or their family members of early symptoms of depression. A device with a

similar form factor and capabilities as the sociometric badge could be used to monitor

daily activities of the elderly. Capable of detecting falls and behavioral changes, the

badge could automatically alert a family member or a doctor of a potentially danger-

ous situation. One last example in the health care domain is in the area of weight loss

monitoring. Using the badge and a mobile phone could be useful for keeping track of

energy expenditure, food intake, and daily routines.

Hospitals. The badge could also be used as a push-to-talk system in hospitals. Doctors

and nurses need to be in continuous communication and perform tasks that require

the use of both hands. If they wore a badge that knew the location and context

of each person inside the building, doctors and nurses could be easily accessible at

all times. They could potentially obtain information in the right place and at the

right moment. One example of a commercially available push-to-talk system is the
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Vocera communications system, already widely accepted and used in hospitals [72].

The technology used in the sociometric badge could potentially augment the current

functionalities of such systems.

Children and Learning. Classroom behavior and social interactions of children could

also be studied using this wearable platform. How much attention are students paying

to the teacher? How much does each student participate in a class? How do children

socialize? Using an automatic tool could help behavioral scientists answer questions

like these.

Retail stores. Often times customers need to find someone capable of answering their

questions or helping them find a product in retail stores. One could potentially know

when employees are available to talk to customers or when they are busy already

talking to someone if they wore a sociometric badge [40].

In this thesis we will focus on collecting data from individuals participating in different

studies with the purpose of giving them feedback on their overall behavioral patterns, such

as the amount of time they spend in conversations, the number of people with which they

interact face-to-face everyday, and how much they tend to move relative to their peers.

We compare individual patterns of behavior with the group average in order to maintain

privacy.
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Chapter 2

Background and Previous Work

2.1 Electronic Badges

Wearable badges are common devices that employees wear in large organizations to identify

themselves to others or to gain access to certain locations or information. The Active Badge

developed at Xerox PARC in 1992 was one of the first attempts to augment inanimate name

tags with electronics. Containing only a small microprocessor and an IR transmitter, this

badge could broadcast the identity of its wearer and trigger automatic doors, automatic

telephone forwarding, and computer displays [78].

More complex badge platforms have been developed after the Active Badge, several of

them at the MIT Media Laboratory and some others in different research labs. In 1996, the

Thinking Tags [22], developed at the MIT Media Laboratory, were the first computationally

augmented name tags that were capable of displaying how much two people at a conference

or meeting had in common simply by lighting LEDs of different colors depending on how

many questions the participants had previously answered the same. Two years later they

evolved into the Meme Tags [21], allowing conference participants to electronically share

brief ideas or opinions through a large LCD screen. This system further evolved into the

nTAG System, a commercial solution to improve, measure, and automate meetings and

events [7].
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Figure 2-1: The SocioMeter.

The wearable sensor badge developed at Philips Research Labs in 1999 [31] was capable

of detecting simple pre-ambulatory activities using an accelerometer. The iBadge [64] was

designed to be worn by children to capture interactions with teachers and common classroom

objects. It was run by an Atmel ATMEGA microcontroller, a Digital Signal Processor

(DSP), and contained a 2-axis accelerometer, a light sensor, a pressure sensor, a temperature

sensor, a microphone, and a Bluetooth module. It weighed 65 grams and the battery lifetime

was on average 4 hours and 30 minutes.

A more recent example is the SocioMeter, a wearable sensor package designed at the

MIT Media Laboratory to measure face-to-face interactions between people with an IR

transceiver, a microphone, and two accelerometers [27]. This badge was used to learn social

interactions from sensory data and model the structure and dynamics of social networks.

However, due to its size and weight, users reported feeling somewhat uncomfortable while

wearing it. Figure 2-1 shows a picture of the SocioMeter. A more detailed description is

given in section 2.3.

The UbER Badge [43] is the most recent research platform developed at the MIT Media

Laboratory for facilitating interaction in large groups of people. This badge has both radio

frequency (RF) and IR communication, a 5 x 9 LED display capable of presenting graphics

and scrolling text that users in the vicinity can read, an on board microphone for 12-

bit audio sampling, a 12-bit audio output available at a headphone jack, a pager motor
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Figure 2-2: The UbER badge.

for vibratory feedback, 3 inboard processors, capacity for up to 256 MB of flash memory,

provisions for connecting LCD displays, and connectors that allow a variety of different

sensors to be integrated. It measures 11 x 12 cm and weights 170 grams. Its average

current consumption is 100 mA and batteries last for about 15 hours of continuous usage.

Figure 2-2 shows a picture of the UbER badge.

The best known commercially available badge system is the 802.11-based Vocera Commu-

nications System [10]. With it, users interact through wearable badges that can be clipped

to coat pockets, worn as pendants, or carried in holsters. The system architecture centers

on a server that maintains voice dialing phrases, badge session identifiers, e-mail addresses,

telephone numbers, and names. The Vocera badge provides a voice-controlled user interface

and enables instant, hands-free conversations among people throughout the workplace. It

weighs 53.9 grams and measures 10.6 x 3.5 x 1.5 cm. The standard battery (Li-ion 600

mAh) lasts for 2 hours of talk time and 44 hours of standby time, and it is rechargeable

through a single bay or 8-bay charger. This platform is already used by thousands of people

in hospitals, retail stores, and service organizations [72].
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2.2 Context Awareness

Context-aware computing is an enabling technology for adapting different functions in

computer-aided devices to new situations. The development of context awareness for mobile

devices requires recognition and extraction of implicit context information from the usage

situations and environment of a device. Context information is provided for applications

and services, which adapt their appearance and functions accordingly. The main challenge

in sensor-based context-aware computing for mobile devices is how to define and carry out

context recognition from sensor signals to facilitate the use of context information in mobile

applications [49].

According to Lehtonen [44], context can be defined as an abstract description of a real-

world situation and context-aware application as an application that can change its behavior

according to the situation. Different variables can be used to discriminate context and they

can be anything from physical to social, for example temperature, light intensity, or the

number of people in the vicinity. After the variables have been identified it is necessary to

find the right sensors that can measure the variables with sufficient accuracy and minimal

cost. The next task is to find algorithms that recognize the context with maximum certainty.

Different approaches to make environments and devices more intelligent have been proposed.

These include proactive computing, pervasive computing, tangible user interfaces, affective

computing [68], and wearable computing. In all these approaches the system should be

able to use information about the user and the situation in order to make the interaction

between the user and the system more fluent.

Cakmakci et al. [24] propose a statistical approach, which could scale down to microcon-

trollers with scarce resources, to model simple contexts based on raw sensor data. They

characterize each context with samples of sensor data taken from each context to estimate

probability densities corresponding to contexts. Once they have an estimate for the density

characterizing a context, they proceed to compute the probability of being in a certain

context given sensor data.

Mayrhofer et al. [56] have proposed an architecture to recognize and predict user context
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by utilizing multiple heterogeneous sensors. They stated that context recognition and pre-

diction should be embedded in mobile devices with limited resources. In addition, they be-

lieve that learning and adaptation should happen on-line without explicit training phases,

and that user intervention should be kept to a minimum with non-obtrusive interaction

paradigms.

The area of context-aware computing is relevant to the wearable computing platform pre-

sented in this thesis since the variables captured by the sociometric badges (amount of

speech, proximity, body movement, and face-to-face interaction) are directly related to the

user’s context. Knowing when a person is speaking tells us something about their avail-

ability and interruptability. Knowing when a person is sitting, standing or walking is also

useful to determine their daily activity patterns. The same can be said about proximity

to other people and face-to-face interaction time. Combining these variables and studying

the correlations with other objective measurements could prove useful in predicting future

behavior and performance metrics in the case of organizational applications.

2.3 Socially-Aware Systems

Pentland has proposed that social signals are particularly powerful for analyzing and pre-

dicting human behavior [66, 67]. He found that after a few minutes of analyzing social

signals within conversations it was possible to predict who would exchange business cards

at a meeting; which couples would exchange phone numbers at a bar; who would come

ahead in a negotiation; who was a connector within a workgroup; and a range of subjective

judgments.

In [66] Pentland developed texture-like measures for four types of non-linguistic social sig-

nals: activity level (how much time a person takes in a conversation), engagement (how

involved a person is in a conversation), variation in prosodic emphasis, and mirroring (oc-

curring when one person unconsciously copies another participant’s prosody and gesture).

The Human Dynamics research group at the MIT Media Laboratory has developed several
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socially aware platforms to measure different aspects of social context. We describe some

of these platforms next:

The SocioMeter

Choudhury [26] performed the first successful experiments in learning communication pat-

terns by equipping a group of people with SocioMeters. She explored methods for computa-

tionally modeling the underlying social network structure and integrated speech processing

methods to demonstrate that it was possible to extract information about people’s patterns

of communication. Our sociometric badges were inspired by the SocioMeter concept and we

try to take further steps in the directions proposed by Choudhury: comparing face-to-face

interaction with other communication channels, adding value for the users by providing

feedback, and improving the form factor of the device.

VibeFones

The VibeFone application is mobile social software that uses location, proximity and tone of

voice to gain a sophisticated understanding of people’s social lives by mining their face-to-

face and phone interactions. It was used in several applications such as automatic charac-

terization of social and workplace interactions, a courtesy reminder for phone conversations,

and a personal trainer for dating encounters. This application augments traditional means

of gathering social interaction data (surveys or ethnographic studies) and speech data. The

mobile phone platform is highly conducive to collecting long-term continuous data and

sampling the user for training labels [48].

Social Motion

In this application two types of sensors were used: proximity sensors and motion sensors.

By proximity sensors, Gips [34] refers to RF scanners capable of detecting other devices

within a fixed proximity and IR transceivers capable of detecting when two similar devices
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are facing each other. Gips showed that these sensing modalities can be incorporated into

current mobile devices without disrupting the usage patterns and form factors to which

people have grown accustomed. He also demonstrated that these sensor signals contained

the information necessary to infer the underlying social structure of groups of people about

which no information is known a priori by identifying groups of friends taking part at

a career fair, team membership of students participating in a treasure hunt game, and

company affiliation of visitors attending a conference [34].

2.4 Human Activity Recognition

Previous work in human activity recognition using accelerometers has shown that it is

possible to classify in real time several postures and activities. In [29], the authors developed

a two-layer model that combined a Gaussian mixture model with first-order Markov models

to classify a range of activities including sitting, walking, biking, and riding the subway.

A single three-axis accelerometer placed on the torso was used. Similarly, Van Laerhoven

augmented a pair of pants with an accelerometer to register what the wearer was doing and

anticipate their behavior [75].

In [47] the authors combined data from accelerometers and microphones placed in different

body locations to classify activities performed in a wood shop with 84.4% accuracy. They

modeled most of the activities using single Gaussian hidden Markov models (HMMs). The

number of hidden states to model each activity was selected through visual inspection.

Kern and Schiele investigated the acquisition of context information from audio and accel-

eration sensors [39]. They developed a model that uses personal and social interruptability

of the user to decide both whether or not to notify the user and to decide which notifica-

tion modality to use. Motion classification was achieved using two-state ergodic HMMs to

describe each class (sitting, standing, walking, walking upstairs, walking downstairs, and

running), achieving 91.9% accuracy.

Several algorithms to classify twenty different physical activities from data acquired using
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five biaxial accelerometers were evaluated in [17]. Activity recognition was performed using

decision tables, instance-based learning, C4.5 decision tree, and näıve Bayes classifiers with

an overall recognition rate of 84% (decision trees having the best performance). They

showed that acceleration of the dominant wrist is more useful in discriminating their set of

activities than that of the non-dominant wrist and that acceleration of the hip is the second

best location for activity recognition.

The authors of [51] used decision trees to classify six different activities with a single ac-

celerometer, placed on six different body positions commonly used for wearing electronic

devices. They achieved accuracies ranging from 16.7% to 92.8% depending on the position

of the accelerometer and the features used.

In chapter 3 we present a study on activity recognition accuracy across common locations for

wearable sensors. We find the classification accuracy of a single accelerometer placed in three

different parts of the body and evaluate whether there would be a significant improvement

in recognition accuracy if multiple accelerometers were added. We wish to determine if a

single accelerometer placed on the chest could yield good results when classifying common

daily activities, as well as if adding a second accelerometer on the hip (which could be

incorporated into a mobile phone) would improve the results.
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Chapter 3

Human Activity Recognition Using

Accelerometers

The development of miniature sensors that can be unobtrusively attached to the body or can

be part of clothing items, such as sensing elements embedded in the fabric of garments, have

opened countless possibilities for monitoring individuals over extended periods of time [20].

Being able to automatically recognize human motion patterns using unobtrusive wearable

sensors can be useful in monitoring the elderly in their homes and keeping track of their daily

activities and behavioral changes. This could lead to a better understanding of numerous

medical conditions and treatments. Other applications of human activity recognition range

from context aware computing to physical training, physical rehabilitation, and military

applications such as intelligent outfit design for soldiers.

In this chapter we study different configurations of accelerometer placement to classify hu-

man activities that are frequent in at least one of these application areas. Modeling human

activities using hidden Markov models (HMMs) trained with different features derived from

accelerometer signals has proven effective [17,29,45,47,51,58]. HMMs are capable of model-

ing important properties of gestures such as time variance and repetition. They also handle

noise due to sensors and imperfect training data by providing a probabilistic framework [47].
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We chose to model eight different activities using HMMs and continuous Gaussian observa-

tion vectors based on the previous work on activity recognition described in section 2.4. We

compare the activity classification accuracy of four different configurations of accelerome-

ter placement on the human body, and determine the location of the accelerometer that

gives the largest amount of information about each activity, as well as the accelerometer

configuration that results in the best activity recognition accuracy. We find the number of

hidden states that best models each activity by achieving the lowest test error using K-fold

cross-validation.

Three subjects were asked to wear the set of accelerometers and perform the following

sequence of activities: sit down, run, duck, walk, stand, crawl, lay down (on the chest), and

perform small hand movements (while standing). The data collection process was repeated

three times for each subject. 90 seconds of data were collected for each activity and labeled

according to the start and stop times of each activity performed. The data was divided

into nine datasets (three datasets per subject) and an HMM was trained for each activity

using eight datasets and tested on the ninth dataset. Each sequence in the test dataset was

classified according to the HMM that resulted in the maximum likelihood. This process was

repeated nine times, each time using different training and test sets to obtain the K-fold

cross-validation classification accuracy and test errors.

In the following sections we describe the data collection process and the accelerometer

calibration procedure that we followed. We also show how to find the number of hidden

states that best models each activity. Our results show that it is possible to improve

the classification accuracy using different configurations of accelerometer placement and

modeling each activity with a different number of hidden states.

3.1 Data Collection and Processing

Three wireless accelerometers (MITes: MIT Environmental Sensors) [59] were placed on

different parts of the body: right wrist (A1), left hip (A2), and chest (A3). We selected

these particular locations on the basis of lengthy discussions with potential user groups
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concerning their general acceptance of wearable sensors, and because existing devices that

are already worn on those parts of the body (i.e. watches, mobile phones, and electronic

badges) may incorporate accelerometers in the near future.

Each subject was asked to perform eight different activities in a predefined order. The start

time and stop time of each activity was recorded and the data was labeled according to these

timestamps. This process was repeated three times for each subject giving a total of nine

datasets (three datasets per subject). The order of the activities performed by each subject

was: 1) sitting, 2) running, 3) ducking, 4) walking, 5) standing, 6) crawling, 7) lying down,

8) small hand movements. The data collection process was repeated three times for each

subject. 90 seconds of data were collected for each activity and labeled according to the

start and stop times of each activity performed. The data were divided into nine datasets,

each of them containing 80 observation sequences of one-second duration. An HMM was

trained for each activity using eight datasets (640 observations) and tested on the ninth

dataset (80 observations).

The number of samples that we obtained after collecting each dataset was different for each

accelerometer. Therefore, it was necessary to perform a linear interpolation to resample

the data and get the same number of samples from each accelerometer. We resampled each

accelerometer at f ′
s = 50 Hz. Figure 3-1 shows dataset 1 (subject 1) after resampling each

accelerometer. Blue rectangles enclose the acceleration data from the three axes correspond-

ing to the different activities performed by each subject in the order previously specified.

3.2 Accelerometer Calibration

The range of values for the signals recorded by each accelerometer in the three axes varied

from 0 to 399. This range corresponds to acceleration values between −2g and +2g. To

normalize the signals a calibration procedure is necessary to obtain the absolute value of

gravity, |~g|, and the zero gravity point ~g0 = (gx0 , gy0, gz0).
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Figure 3-1: Acceleration data recorded from the three different accelerometers: right wrist (top),
left hip (middle), chest (bottom). Dataset 1, (subject 1) after resampling.

To obtain these values the three accelerometers were placed together and slowly rotated in

all directions. The Euclidean distance di from the ith sample point ~ai = (axi , ayi, azi) to the

zero gravity point is:

di =
√

(axi − gx0)2 + (ayi − gy0)2 + (azi − gz0)2. (3.1)

The zero gravity point is obtained by minimizing the variance of this distance

~g0 = argmin
~a

σ2
d , (3.2)

where

σ2
d =

1
n

n∑

i=1

(di − µd)2, (3.3)

and

µd =
1
n

n∑

i=1

di, (3.4)
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which corresponds to the absolute value of gravity, |~g|

|~g| = µd. (3.5)

The data recorded from each accelerometer was then normalized as follows:

~a′i =
~ai − ~g0

|~g| (3.6)

3.3 Feature Extraction

Each dataset is composed of raw acceleration data in the x, y, and z axes from each

of the three accelerometers. The mean and variance in acceleration for each axis was

calculated over 200-millisecond time slices and one-second-long observation vectors were

formed by grouping five time-slices. These features have been successfully used in [19]

and [39]. Other commonly used acceleration features that could also be explored include

correlation coefficients, fast Fourier transform coefficients, energy, entropy, root mean square

value, among others.

3.4 Human Activity Modeling Using HMMs

Hidden Markov models are typically used for speech recognition and many other applica-

tions of machine learning and pattern recognition. An HMM is a stochastic signal model

that represents the probability distributions over a sequence of observations. The HMM

assumes that the observation at time t was generated by some process whose state St is

hidden from the observer. It also assumes that the state of this hidden process satisfies the

Markov property; that is, given the value of the previous state St−1, the current state St is

independent of all the states prior to t − 1 [33].

Following [69], an HMM is characterized by:
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1) N , the number of states in the model. Although the states are hidden, there is often

some physical significance attached to the states of the model. In this application, we

model the different body postures of each activity with different hidden states. We denote

the individual states as S = {S1, S2, ..., SN} and the state at time t as qt.

2) M , the number of distinct observation symbols per state. The observation symbols

correspond to the physical output of the system being modeled, which in this case are formed

by the features extracted from the sensor readings. We denote the individual symbols as

V = {v1, v2, ..., vM}.

3) The state transition probability distribution A = {aij}, where

aij = P [qt+1 = Sj |qt = Si], 1 ≤ i, j ≤ N. (3.7)

4) The observation symbol probability distribution in state j, B = {bj(k)}, where

bj(k) = P [vk at t|qt = Sj ], 1 ≤ j ≤ N

1 ≤ k ≤ M. (3.8)

5) The initial state distribution π = {πi} where

πi = P [q1 = Si], 1 ≤ i ≤ N. (3.9)

We can specify the complete set of parameters for an HMM as λ = (A,B, π). Given a

number of observations, there are three problems that we might want to solve [11]:

1) Given a model λ, we would like to evaluate the probability of any given observation

sequence O = {O1O2...OT}, namely P (O|λ).

2) Given a model λ, and the observation sequence O, we would like to find out the state

sequence Q = {q1q2...qT}, which has the highest probability of generating O, namely, we

want to find Q∗ that maximizes P (Q|O, λ).
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3) Given a training set of observation sequences, X = {Ol}L, we would like to learn the

model that maximizes the probability of generating X , namely, we want to find λ∗ that

maximizes P (X |λ).

In this work, we are interested in solving problems (1) and (3). Given a training set of

labeled observation sequences (features extracted from the acceleration readings in the x, y,

and z axes from three accelerometers placed on different parts of the body), corresponding

to each of the activities that we want to classify, we first want to estimate the model

parameters λ for each activity (problem 3). Given a new set of observations we would like

to classify each sequence according to the model that gives the maximum likelihood for that

particular sequence (problem 1).

Figure (3-2) shows how we model each observation sequence as a 5-state left-right HMM with

continuous Gaussian observation vectors and 2 hidden states. Each observation vector is

formed by combining the mean and variance in the x, y, and z axes from each accelerometer.

Figure 3-2: HMM representation of an observation sequence using the three accelerometers.

An HMM was trained for each class (λ1, λ2, ..., λC), where λc indicates the learned HMM

model for class c, and C = 8 is the total number of classes, using the labeled data from 8
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datasets as training dataset Tk. The ninth data set was used as the validation dataset Vk.

The HMM toolbox for Matlab developed by [60] was used to train and test the different

models. The log-likelihood of each model was calculated for each observation sequence in

the ninth dataset, and each observation sequence Ol = {Ol
1O

l
2...O

l
T} (with T = 5 time

slices) in the validation dataset Vk = {Ol}L was classified according to the model that gave

the maximum likelihood.

The probability of Ol given a model λc is obtained by summing the joint probability of O

and Q over all possible state sequences q:

P (Ol|λc) =
∑

∀Q

P (Ol|Q, λc)P (Q|λc), (3.10)

P (Ol|λc) =
N∑

i=1

αT (i). (3.11)

Equation (3.11) has been written in terms of the forward variable αt(i), defined as the

probability of observing the partial sequence {O1O2...Ot} until time t and being in state Si

at time t, given the model λc,

αt(i) ≡ P (O1O2...Ot, qt = Si|λc) (3.12)

The likelihood that an observation sequence belongs to a particular model is calculated as

follows:

`(λc) =
L∏

l=1

P (Ol|λc), ∀c (3.13)

L(λc) =
L∑

l=1

log P (Ol|λc), ∀c (3.14)

Combining equations (3.11) and (3.14):

L(λc) =
L∑

l=1

log
N∑

i=1

αT (i), ∀c (3.15)
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The final classification is obtained as

Ĝ(Ol) = argmax
c

L(λc). (3.16)

The classifier Ĝ takes values in the class set G = {1, 2, ...C}.

This process was repeated K = 9 times using k-fold cross-validation. The following sections

describe the average cross-validation test error and classification accuracy per class for the

4 different possible configurations of accelerometer placement shown in table 3.1.

Configuration
C1 C2 C3 C4

Right wrist YES YES YES
Left hip YES YES YES
Chest YES YES YES

Table 3.1: Accelerometer configurations.

3.5 K-fold Cross-validation

The entire dataset X was divided into K = 9 equal-sized parts, Xk, k = 1, ..., K. To generate

each pair of training and testing sets we kept one of the K parts out as the validation set

Vk, and combined the remaining K − 1 parts to form the training set Tk. Doing this K

times, each time leaving one of the other K parts out, we obtained the K pairs:

V1 = X1 T1 = X2 ∪ X3 ∪ · · ·XK

V2 = X2 T2 = X1 ∪ X3 ∪ · · ·XK

VK = XK TK = X1 ∪ X2 ∪ · · ·XK−1

41



3.6 Confusion Matrix

Our error calculation is based on the C ×C confusion matrix. With C = 8 different classes

(corresponding to each of the activities that we want to be able to discern).

Predicted Class
True class Yes No

Yes TP: True Pos FN: False Neg
No FP: False Pos TN: True Neg

Table 3.2: Confusion matrix.

The class confusion matrix is a C ×C matrix such that its entry (i, j) contains the number

of instances that belong to class i but are assigned to class j. Ideally, all off-diagonals should

be 0, for the case of no misclassification.

We define the accuracy per class c as the proportion of instances correctly classified in each

class as

accuracyc =
|TP|c

|TP|c + |FN|c
(3.17)

Under 0/1 loss we define the error rate for each class c as:

errorc =
|FP|c + |FN|c

|FP|c + |FN|c + |TP|c
. (3.18)

3.7 Results

Figure 3-3 shows a comparison of classification accuracy when using a single accelerometer

for activity classification. We are able to discern activities such as sitting (66.05% accuracy)

and walking (65.68% accuracy) using only accelerometer A1 (right wrist). Accelerometer A2

(left hip) plays the most important role when classifying activities such as running (97.78%

accuracy), crawling (69.26% accuracy), and lying down (87.04% accuracy). Accelerometer

A3 (chest) is important for classifying activities such as ducking (75.8% accuracy) and

standing (77.78% accuracy).
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Figure 3-3: K-fold cross validation accuracy comparison using a single accelerometer.

Figures (3-4) to (3-7) show the average cross-validation test error per class using the different

configurations listed in table 3.1. Each box has lines at the lower quartile, median, and upper

quartile values. Lines extending from each end of the box show the extent of the rest of the

data. Outliers are data points beyond the ends of the whiskers.

3.7.1 Configuration C1

This configuration of accelerometer placement achieves a low test error on activities such

as running, standing, and performing small hand movements. The action of ducking is

usually confused with sitting since it might involve the action of sitting during the process

of ducking. The action of sitting gets also confused with ducking. Walking is sometimes

confused with standing or running since different subjects might walk at different speeds,

and usually standing is followed by walking. Crawling is confused with lying down and vice

versa, since both activities are not mutually exclusive.
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Figure 3-4: K-fold cross validation test error per class (configuration C1).

Classified Sitting Running Ducking Walking Standing Crawling Lying Hand

as⇒ down mvt

Sitting 76 0 9 1 0 0 0 0
Running 0 86 0 1 0 0 0 0
Ducking 23 0 61 1 0 0 0 0
Walking 0 2 0 73 11 0 0 0
Standing 0 1 0 6 77 0 0 2
Crawling 0 0 0 3 0 72 10 1

Lying down 1 0 0 3 0 10 69 2
Hand mvt 0 0 0 0 0 1 0 81

Table 3.3: K-fold cross validation confusion matrix for configuration C1.

3.7.2 Configuration C2

This configuration achieves a low test error rate for the activities of sitting, running, and

standing. Ducking is still mainly confused with sitting, and walking is confused with stand-

ing. Crawling is confused with lying down, and vice versa.
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Figure 3-5: K-fold cross validation test error per class (configuration C2).

Classified Sitting Running Ducking Walking Standing Crawling Lying Hand

as⇒ down mvt

Sitting 81 0 3 1 0 0 1 0
Running 0 83 0 1 0 2 1 0
Ducking 11 0 58 2 3 2 0 9
Walking 0 1 0 67 18 0 0 0
Standing 3 0 0 1 81 0 0 1
Crawling 0 0 1 0 0 59 24 1

Lying down 0 0 2 0 1 11 65 6
Hand mvt 6 0 1 0 1 2 6 66

Table 3.4: K-fold cross validation confusion matrix for configuration C2.

3.7.3 Configuration C3

This configuration achieves low test error on classifying the activities of sitting, running,

and standing. We can see that the lack of an accelerometer on the wrist causes an increase

in the test error when trying to classify walking and small hand movements. The activities

of crawling and lying down are still confused with each other.
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Figure 3-6: K-fold cross validation test error per class (configuration C3).

Classified Sitting Running Ducking Walking Standing Crawling Lying Hand

as⇒ down mvt

Sitting 82 0 1 0 0 0 0 3
Running 0 87 0 0 0 0 0 0
Ducking 5 0 79 0 0 0 0 1
Walking 1 1 0 53 28 0 0 3
Standing 1 1 0 0 84 0 0 0
Crawling 0 0 0 0 0 63 22 1

Lying down 0 0 0 0 1 8 73 3
Hand mvt 0 1 1 0 36 0 0 44

Table 3.5: K-fold cross validation confusion matrix for configuration C3.

3.7.4 Configuration C4

We can observe that using the three accelerometers in configuration C4 achieves a lower test

error in most of the activities compared to other configurations. It achieves the best results

when classifying activities such as sitting, running, standing, and small hand movements.

Crawling and lying down are still confused for each other but in fewer instances.
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Figure 3-7: K-fold cross validation test error per class (configuration C4).

Classified Sitting Running Ducking Walking Standing Crawling Lying Hand

as⇒ down mvt

Sitting 84 0 0 2 0 0 0 0
Running 0 86 0 1 0 0 0 0
Ducking 14 0 70 1 0 0 0 0
Walking 0 0 0 73 13 0 0 0
Standing 0 0 0 1 82 0 0 3
Crawling 0 0 0 0 0 79 6 1

Lying down 1 0 0 1 0 8 74 1
Hand mvt 0 1 0 0 0 0 0 81

Table 3.6: K-fold cross validation confusion matrix for configuration C4.

3.8 Average Classification Accuracy

Figure 3-8 shows the average classification accuracy per activity when combinations of two

and three accelerometers were placed in the four different configurations described in table

3.1. Table 3.7 shows a comparison between the classification accuracy obtained when a

single accelerometer (A1 to A3) was used, and the classification accuracy obtained when

multiple accelerometers were used (C1 to C4).

Our results show that it is possible to recognize some of the most common activities using
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Figure 3-8: K-fold cross validation accuracy comparison for the four different configurations of
accelerometer placement.

a single accelerometer on the chest (A3) with 62.45% average accuracy. Adding a second

accelerometer on the hip or the wrist improved our classification accuracy by approximately

20%. Adding a third accelerometer improved the global classification accuracy by an addi-

tional 10%.

3.9 Finding the Optimum Number of Hidden States

The results presented so far were obtained by modeling each activity with an HMM having 2

hidden states. However, we think that classification results could be improved by modeling

each activity with a different number of hidden states. In some cases, 2 hidden states might

not be enough for capturing the different stages of a particular activity, especially when the

activity involves different movements and body positions.

Figure (3-9) shows the cross-validation training and test errors as a function of model

complexity (number of hidden states) for the eight classes using configuration C4 of ac-

celerometer placement. We can observe how the training error decreases as the number of
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Class A1 A2 A3 C1 C2 C3 C4
Sitting 58.40% 66.05% 63.21% 88.52% 94.44% 95.56% 97.78%

Running 80.86% 97.78% 96.54% 98.89% 95.43% 100.0% 98.89%

Ducking 23.46% 42.72% 75.80% 72.10% 67.90% 92.72% 82.72%

Walking 65.68% 41.73% 54.44% 84.32% 77.28% 61.11% 84.20%

Standing 69.75% 68.77% 77.78% 90.00% 94.44% 97.65% 95.56%

Crawling 45.93% 69.26% 57.65% 84.20% 69.26% 73.58% 91.98%

Lying down 43.21% 87.04% 41.98% 81.11% 76.42% 86.05% 87.16%

Hand mvt 56.30% 53.51% 32.22% 98.77% 79.85% 55.28% 98.77%

Global 55.45% 65.86% 62.45% 87.24% 81.88% 82.74% 92.13%

Table 3.7: Classification accuracy comparison.

hidden states for modeling each activity is increased, while the test error decreases up to a

minimum value (at Qmin), and then it starts to increase due to possible overfitting of the

models to the training data.

Table 3.8 shows the cross-validation accuracy when modeling each activity with 2 hidden-

state HMMs and when using the number of hidden states, Qmin, that gives the minimum

test error for configuration C4 of accelerometer placement. We can see that there was an

improvement in classification accuracy in four of the activities (walking, standing, lying

down, and small hand movements). There was no change in classification accuracy for

running and ducking, and there was a decrease in classification accuracy for sitting and

crawling. Based on these results, we choose the number of hidden states, Qopt, that best

models each of the activities studied in this chapter.

Class Q = 2 Qmin Var Qopt

Sitting 97.78% 93.33% -4.45% 2
Running 98.89% 98.89% 0% 2
Ducking 82.72% 82.72% 0% 2
Walking 84.20% 88.64% +4.44% 4
Standing 95.56% 96.67% +1.11% 4
Crawling 91.98% 86.29% -5.69% 2

Lying down 87.16% 87.26% +0.1% 4
Hand mvt 98.77% 99.01% +0.24% 5

Table 3.8: Classification accuracy variation and optimal number of hidden states.
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(a) Class 1 (sitting) Qmin = 4, Qopt = 2 (b) Class 2 (running) Qmin = 2, Qopt = 2

(c) Class 3 (ducking) Qmin = 5, Qopt = 2 (d) Class 4 (walking) Qmin = 4, Qopt = 4

(e) Class 5 (standing) Qmin = 4, Qopt = 4 (f) Class 6 (crawling) Qmin = 6, Qopt = 2

(g) Class 7 (lying down) Qmin = 4, Qopt = 4 (h) Class 8 (hand mvt) Qmin = 5, Qopt = 5

Figure 3-9: Cross-validation training and test errors as a function of model complexity (number of
hidden states) for each activity using configuration C4 of accelerometer placement.
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3.10 Remarks

In this chapter we studied human activity classification using wearable accelerometers and

modeled eight different activities (sitting, running, ducking, walking, standing, crawling,

lying down, and performing small hand movements) using hidden Markov models with two

hidden states and continuous Gaussian observations. We compared the performance of four

different configurations of accelerometer placement: (C1) right wrist and left hip, (C2) right

wrist and chest, (C3) hip and chest, and (C4) right wrist, left hip, and chest; in terms of

activity classification accuracy and average test error using K-fold cross-validation. We

found that the best global classification performance was achieved when using configura-

tion C4 (92.13%), although it might be possible to obtain similar results using only two

accelerometers following configuration C1 (87.24%).

We showed that the global classification accuracy that can be achieved using a single ac-

celerometer is around 60% and determined the activities that are best classified with each

accelerometer placed on a different part of the body. Increasing the number of hidden states

for modeling activities such as sitting, running, ducking, and crawling did not increase the

classification accuracy (and in some cases it even decreased), so modeling these activities

with two hidden-state HMMs seems to be appropriate. On the other hand, activities such

as standing, crawling, lying down and small hand movements can be better modeled with a

higher number of hidden states. We are convinced that a minimal system formed by a wear-

able badge and a mobile phone can achieve fairly good results in daily activity recognition

(80%).
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Chapter 4

Hardware Design

4.1 Initial Requirements

When designing portable electronic devices the functionality must be clearly defined, fo-

cused, and bounded [36]. The primary function of the sociometric badges is to automatically

collect social signals derived from speech, motion, proximity, and face-to-face interaction

over extended periods of time. As a secondary function, the user should be able to interact

with the device by issuing voice commands or pressing a push-button. During the planning

phase of the project we evaluated the feasibility of designing and manufacturing several

hundred sociometric badges capable of measuring the aforementioned variables. Figure 4-1

shows a strawman drawing by Joseph Paradiso during a one-hour brainstorming session

with several students from the Responsive Environments group and visiting scientists from

Hitachi Japan.

During the brainstorming session the basic requirements of the system were specified:

• Each sociometric badge should be able to detect whether the user is speaking or not

by using a set of four analog band-pass filters capable of extracting different speech

features (such as amplitude, energy, and entropy) in each of the four frequency bands

and estimate voice pitch based on these features.
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Figure 4-1: Strawman drawing.

• Detect when two badges are facing each other in order to measure the user’s face-to-

face interaction time.

• Detect when the user is moving or stationary in order to automatically switch between

different power consumption modes.

• Communicate with base stations in the 2.4 GHz frequency band in order to transfer

data.

• Store data onboard and transfer it wirelessly when the user is in close proximity to

base stations.

• Connect with mobile phones via Bluetooth.

• Play audio messages through a speaker.

• Provide visual feedback to the user using either a liquid crystal display (LCD) or light

emitting diodes (LEDs).

• Enable the user to use the badge as a push-to-talk system and interact with it using

voice commands.

54



• Have a long battery life so that the user doesn’t need to recharge it for at least one

day.

• It must be small and comfortable to wear over extended periods of time.

Another constraint was the cost of the badges. Section 4.18 details the resources that were

available for this project. The goal was to build several hundred badges with an original

estimated cost of $150 per badge. The final cost was $250 per badge including battery,

charger, memory card, and custom enclosure. Three hundred sociometric badges were

manufactured in total.

In the following sections we describe the choice of electronic components used in the socio-

metric badges.

4.2 Functional Description

All the circuits were designed to work with a 3.3 V single supply. A voltage reference

equal to one half of the supply voltage is required. Therefore, a micro-power bias voltage

generator using an ultra low power, rail to rail output operational amplifier (OP281) with

a supply current of 4 µA per amplifier is used.

The output of an omni-directional micro electro mechanical systems (MEMS) microphone

(SPM0103-NE3) is connected to the non-inverting input of a micro-power single-stage non-

inverting operational amplifier (AD8542), with a high-pass filtering cut-off frequency of

85 Hz realized via its feedback loop. The amplified microphone signal is then applied to

an array of micro-power single-op-amp Sallen-Key band-pass filters that divide the speech

frequency spectrum into four octaves: f1 from 85 to 222 Hz, f2 from 222 to 583 Hz, f3 from

583 to 1527 Hz, and f4 from 1527 to 4000 Hz. These frequency bands were selected in order

to achieve a constant quality factor Q =
√

2/(4−K) in each of the filters (where K = 2.58

is the gain of each filter). A diode-capacitor peak detector is used after each band-pass filter

to obtain the spectral envelope in each frequency band. These four spectral envelopes are
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applied to the analog-to-digital converter (ADC) on the microcontroller, and are used to

extract different speech features and segment audio into speaking and non-speaking regions.

A 3-axis MEMS accelerometer (ADXL330) is used to detect when a person is moving and to

distinguish several common activities such as sitting, standing, walking, or running. An IR

transceiver module (TFDU4300) is used to detect when two people are facing each other.

All sensor electronics are powered up only when a significant sound is detected (indicating

a possible conversation) or the accelerometer detects significant motion. A bridged-output

audio power amplifier (SSM2211) drives an electromagnetic speaker on the badge to play

back messages and reminders.

The main processing unit is an ARM microcontroller (AT91SAM7S256). A 2.4GHz radio

transceiver (CC2500) and a class 2.0 Bluetooth module (BR-46AR) have been incorporated

for enabling wireless communications with fixed base stations and other Bluetooth-enabled

devices. A microSD memory card socket has been included for storing data when the user

is out of range of a fixed point or when the badge is used as a self contained sensor package.

The badge is powered by a 950 mAh lithium-polymer battery rechargeable through USB.

In addition, data can also be transferred through the USB port. Figure 4-2 shows a block

diagram of the badge.

4.3 Form Factor

Figure 4-4 shows the front 4-4(a) and back 4-4(b) views of the first prototype’s assembled

printed circuit board (PCB). Figure 4-5 shows the front 4-5(a) and back 4-5(b) views of the

final prototype’s assembled PCB. The dimensions of the printed circuit board (PCB) are

4.2 x 8 cm. Two design iterations were made with a few changes between the first prototype

and the final version. The 2.4 GHz radio transceiver’s daughter board was moved from the

back of the PCB to the front in order to have both radio antennas facing out when the badge

is worn and to avoid blocking the radio signals with the wearer’s body. The microSD card

socket was moved to the back of the PCB in the final prototype to allow for the relocation
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Figure 4-2: Block diagram.

of the radio board. The microphone was placed on a daughter board perpendicular to the

badge board in order to orient it towards the wearer.

The placement of each sensor in the sociometric badges was chosen to optimally capture

the signals listed in section 4.1. The shape of the badge is similar to some commercially

available products that people already wear around the neck using a lanyard [3, 5, 10].

The dimensions of the badge inside the plastic enclosure (as shown in figure 4-6(a)) are 4.5

x 10 x 2 cm and the total weight including the battery is 110 grams. Figure 4-6(b) shows

the author wearing the final prototype.

The enclosure was designed and manufactured by Toolless Plastic Technologies [9]. It is

formed by three plastic layers that snap together. Figure 4-7 shows the three layers of the

enclosure.

4.4 Voltage Regulator

Both lithium batteries evaluated in section 4.16 maintain an average voltage of 3.7 V during

most of their discharge cycle, going from a maximum voltage of 4.2 V when fully charged to
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Figure 4-3: Size comparison between unassembled PCB and business card.

(a) PCB front view. (b) PCB back view.

Figure 4-4: First prototype’s assembled PCB.
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(a) Final PCB front view. (b) Final PCB back view.

Figure 4-5: Final prototype’s assembled PCB.

(a) Wearable sociometric badge. (b) The author wearing a sociometric
badge.

Figure 4-6: Final prototype inside enclosure.
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Figure 4-7: Middle, back and front layers of the badge enclosure.

a recommended minimum voltage of 3 V. However, all the electronic circuits in the badge

require a direct current (DC) power supply that can maintain a fixed voltage while supplying

enough current. Therfore, a voltage regulator designed to automatically adjust the amount

of current flowing (so as to maintain a constant output voltage) is required. Table 4.1

shows the different voltage regulators that were evaluated. Based on the maximum peak

current that the speaker could draw and a tradeoff between a low dropout voltage that will

maximize the battery life and the output voltage noise the MAX1793 low-dropout, low-IQ,

1 A linear regulator by Maxim Integrated Products was selected.
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Part Supply Voltage Maximum Output Regulated Dropout Supply Shutdown Supply Output Noise Size Cost Output

Number Range (V) Current (mA) Voltage (V) Voltage (mV) Current (µA) Current (µA) (µVrms) (mm) (US$) Type

MAX1793 2.5 - 5.5 1000 1.25 - 5.0 210 @ 1A 125 0.1 115 4.9x4.3x1.1 $1.50 16pin TSSOP

MAX8869 2.7 - 5.5 1000 0.8 - 5 200 @ 1A 500 0.1 150 4.9x4.3x 1.1 $1.65 16pin TSSOP

MAX1792 2.5 - 5.5 500 1.25 - 5 130 @ 500mA 80 0.1 115 2.93x2.95x1.1 $1.15 8pin µMAX

MAX604 2.7 - 11.5 500 3.15 - 3.45 240 @ 200mA 15 2 250 5x1.75x4 $1.68 8Pin SO

MAX1806 2.25 - 5.5 500 0.8 - 4.5 175 @ 500mA 210 0.02 300 2.95x4.78x0.94 $1.40 8pin µMAX

TI REG103 2.1 - 15 1000 3.3 115 @ 500mA 1000 0.5 33 6.55x3.55x1.8 $2.50 8pin SOIC

TI TPS76833 3.65 - 10 1000 3.3 350 @ 1A 85 1 55 4.5x5.1x 1.2 $0.90 8pin SOIC

ADP3338 2.75 - 8 1000 3.3 190 @ 1A 30,000 0 95 6.5x3.7x1.7 $1.40 3pin SOT-223

ADP1716 2.7 - 5.5 1000 3.3 259 @ 500mA 650 0 450 3.2x3.2x0.95 $0.96 8pin MSOP

LT3028 1.8 - 20 500 1.8 - 20 320 @ 500mA 30 < 0.1 20 5x3x0.75 $3.78 16pin TSSOP

Table 4.1: Linear voltage regulators comparison.
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The MAX1793 low-dropout linear regulator (LDO) operates from +2.5V to +5.5V and

delivers a guaranteed 1A load current with a low 210 mV dropout. The high-accuracy

(±1%) output voltage is preset at an internally trimmed voltage of 3.3 V. An internal

PMOS pass transistor allows a low 125 µA supply current, making the MAX1793 ideal

for battery operated portable equipment. Other features include a built-in reset output,

low-power shutdown, and short-circuit and thermal overload protection. The MAX1793 is

available in a 1.5W, 16-pin power TSSOP package, which is 30% smaller than a SOT223

package and only 1.1 mm high [52]. Figure C-3 shows the schematic diagram of the voltage

regulator and battery charger.

4.5 Biasing Circuit

A voltage reference equal to one half of the supply voltage is required. Figure C-2 shows

the design of a micro-power bias voltage generator using the OP281 ultra low power, rail

to rail output operational amplifier by Analog Devices with a supply current of 4 µA per

amplifier. The two 1 MΩ resistors generate the reference voltage while drawing only 1.65

µA of current from a 3.3 V supply. A capacitor connected from the inverting terminal to the

output of the op amp provides compensation to allow for a bypass capacitor to be connected

at the reference output. This bypass capacitor helps to establish an alternate current (AC)

ground for the reference output. The entire reference generator draws less than 5 µA from

a 3.3 V supply source.

The OP281 and OP481 are dual and quad ultra-low power, single-supply amplifiers featuring

rail-to-rail outputs. Each operates from supplies as low as 2.0 V and are specified at +3

V and +5 V single supply as well as ±5 V dual supplies. Fabricated on Analog Devices’

CBCMOS process, the OP281/OP481 features a precision bipolar input and an output

that swings to within millivolts of the supplies and continues to sink or source current all

the way to the supplies. The output’s ability to swing rail-to-rail and not increase supply

current, when the output is driven to a supply voltage, enables the OP281/OP481 to be

used as comparators in very low power systems. This is enhanced by their fast saturation
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recovery time. Propagation delays are 250 ms. The OP281 dual amplifier is available in

8-lead SOIC surface-mount and TSSOP packages. The OP481 quad amplifier is available

in narrow 14-lead SOIC and TSSOP packages [12].

4.6 USB Battery Charger

Present-day lithium chemistries are typically 4.1V to 4.2V when the cells are charged to

their maximum-rated capacity. Typical prismatic lithium-ion (Li+) and lithium-polymer

(Li-Poly) have capacities of 600 mA to 1900 mA. The preferred charge profile for both Li+

and Li-Poly cells is to start the charge with a constant charge current until the cell voltage

reaches the rated voltage. When this occurs, the charger then regulates the voltage across

the cell. These two regulation states are called constant-current (CC) and constant-voltage

(CV) charging. Therefore, this type of charger is usually referred to as a CCCV charger.

When the CCCV charger is in CV mode, the current into the cell begins to drop. For typical

charge rates, between 0.5C and 1.5C, the transition between CC and CV mode occurs when

the cell has accepted about 80% to 90% of its full-charge capacity. Once the charger is in

CV charging mode, it monitors the cell current. When it reaches a low threshold (milliamps

or tens of milliamps), the charger terminates charge [55].

The USB interface specification includes the ability to power devices. One way to use USB

power is to charge batteries. Since many portable devices, like MP3 players and PDAs,

exchange information with PCs, device convenience is significantly enhanced if battery

charging and data exchange take place simultaneously over one cable. Combining USB

and battery-powered functionality gives rise to a whole range of “untethered” devices, such

as removable web cameras, that operate whether or not they are connected to a PC. In

many cases, it is no longer necessary to include an awkward AC adapter. All USB host

devices, like PCs and notebooks,can source at least 500 mA, or five “unit loads” per USB

socket. In USB terminology, “one unit load” is 100 mA. Self-powered USB hubs can also

supply five unit loads. Bus-powered USB hubs are guaranteed to supply only 1 unit load

(100 mA). According to the USB specification the minimum available voltage from a USB
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host or powered hub at the peripheral end of the cable is 4.5V, while the minimum voltage

from a USB bus-powered hub is 4.35V. These voltages allow very little headroom when

charging lithium batteries, which typically require 4.2V, making charger dropout extremely

important. All devices that plug into a USB port must start out drawing no more than 100

mA. After communicating with the host, the device can determine if it can take the full

500 mA. Power is taken from pins 1 (+5V) and 5 (GND) on the series mini-B receptacle.

Once connected, all USB devices must identify themselves to the host. This is called

“enumeration”. In the identification process, the host determines the power needs of the

USB devices and gives, or withholds the confirmation for the device to increase its load

from 100 mA maximum to 500 mA maximum [54].

The USB battery charger selected for the badge is the MAX1555 by Maxim Integrated

Products. It charges a single-cell lithium-ion (Li+) battery from both USB and AC to USB

adapter sources. It operates with no external FETs or diodes, and accepts operating input

voltages up to 7V. On-chip thermal limiting simplifies PC board layout and allows optimum

charging rate without the thermal limits imposed by worst-case battery and input voltage.

When the MAX1555 thermal limits are reached, the charger does not shut down, but

progressively reduces charging current. The MAX1555 features a CHG output to indicate

charging status. The CHG output signal is connected to a red LED that turns on when the

battery is charging, and off when the battery is fully charged.

With USB connected, but without DC power, charge current is set to 100 mA. This al-

lows charging from both powered and unpowered USB hubs with no port communication

required. However, the circuit was designed so that the charging current is set to 280 mA

by connecting both pins 1 and 4 to the USB (+5V) pin. No input-blocking diodes are

required to prevent battery drain. The MAX1555 is available in 5-pin thin SOT23 packages

and operates over a -40◦C to +85◦C range [53]. This circuit charges the battery whenever

the device is docked to USB or plugged into the AC to USB adapter. At the same time

the system load is always connected to the battery, in this case through a simple linear

regulator (MAX1793), which can supply up to 1 A. If the system continuously draws that

amount of current while the battery is charging at 280 mA from USB, the battery will still
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Figure 4-8: Badge’s side view: miniUSB port, tri-directional switch, and microSD card socket.

discharge since the load current exceeds the charge current. However, the peak load current

occurs only for a fraction of the total operating time, so as long as the average load current

is less than charging current, the battery will still charge. Figure 4-8 shows the miniUSB

port in the badge.

4.7 Microphone Daughterboard

A microphone daughter board containing a MEMS microphone and a pre-amplifier circuit

was designed and placed perpendicular to the main badge board, with the microphone

facing the wearer. Figure 4-9 shows a picture of the microphone daughter board.

The amplified “Mini” SiSonic SPM0103NE3 [42] microphone from Knowles Acoustics was

selected because it represents a low-cost, high-performance alternative to traditional electret

microphones (ECMs). Manufactured from poly-silicon, this microphone takes advantage of

semi-conductor manufacturing processes that result in a robust microphone that yields a

high degree of repeatability, stable acoustic performance, and flexibility for future design

enhancements [4]. Table 4.2 shows a comparison of the different MEMS and electret micro-

phones that were considered.
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Part Supply Voltage Output Signal to Noise Directivity Current Sensitivity Maximum Input Size Cost Design

Number Range (V) Impedance (Ω) Ratio (dB) Consumption (mA) dB) Sound Level (dB) (mm) (US$) Type

Knowles Acoustics

SPM0103NE3 1.5 - 5.5 < 100 59 omni 0.100 - 0.350 -22 @1kHz 115 1.5x4.72x3.76 $4.25 MEMs
Knowles Acoustics

SPM0103ND3 1.5 - 5.5 < 100 59 omni 0.100 - 0.350 -22 @1kHz 115 1.5x4.72x3.76 $4.73 MEMs
Knowles Acoustics

SPM0102NE3 1.5 - 5.5 < 100 59 omni 0.100 - 0.250 -42 @1kHz 115 1.5x4.72x3.76 $6.50 MEMs
ICC MEU

627PD-02-704 0 - 10 < 100 > 35 uni 0.5 -22 @1kHz NA 6x2.7 <$10.00 Electret
Panasonic

WM-G10BX 0 - 10 < 2.2k > 58 omni < 0.5 -44 ± 3 NA 4x1 $2.52 Electret
Panasonic

WM-G10BT 0 - 10 < 2.2k > 58 omni < 0.5 -46 ± 3 NA 4x1 $3.00 Electret
Panasonic

WM-E13U 0 - 10 < 2.2k > 58 omni < 0.5 -43 ± 4 NA 6x1.3 $3.00 Electret
Panasonic

WM-55A103 0 - 10 < 680 > 60 uni < 0.5 -47 ± 4 NA 9.7x5.0 $2.52 Electret
Panasonic

WM-G15C 0 - 10 < 2.2k > 60 omni < 0.5 -44 ± 3 NA 4.0x1.5 $2.52 Electret

Table 4.2: Microphones comparison.
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Figure C-4 shows the schematic diagram of the microphone and it’s amplifier circuit. The

gain of the microphone’s internal non-inverting operational amplifier (op-amp) is defined in

the manufacturer’s datasheet [42] as:

G = 1 +
R1

R2 + R3
(4.1)

with internal resistors R1 = 22 kΩ and R2 = 2.4 kΩ and external resistor R3 = R1M = 1.6

kΩ, G = 6.5.

The high-pass-filter corner frequency is:

fHPM
=

1
2π(R2 + R3)C1

(4.2)

with C1 = C4M = 0.47 µF, fHP = 84.65 Hz.

The microphone’s pre-amplified output is then fed into an AD8542 non-inverting micro-

power op-amp (U3A) with a gain of:

GM = 1 +
R4M

R3M
= 1 +

75
4.02

= 19.65 (4.3)

and low-pass cutoff frequency of:

fLPM
=

1
2πR4MC2M

=
1

(2π)(75× 103)(470× 10−12)
= 4515Hz. (4.4)

Finally, the amplified signal (Voice*) is connected to the microcontroller’s analog-to-digital

converter (ADC) and to the input of the band-pass filter bank described in the following

section.

In telephony, the usable voice frequency band ranges from approximately 300 Hz to 3400

Hz. The bandwidth allocated for a single voice-frequency transmission channel is usually

4 kHz, including guard bands, allowing a sample rate of 8 kHz to be used as the basis of

the pulse code modulation system. The voiced speech of a typical adult male will have a
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Figure 4-9: Sociometric badge’s microphone daughter board.

fundamental frequency from 85 to 155 Hz, and that of a typical adult female from 165 to

255 Hz. Thus, the fundamental frequency of most speech falls below the bottom of the

“voice frequency” band as defined above. However, enough of the harmonic series will be

present for the missing fundamental to create the impression of hearing the fundamental

tone [16].

4.8 Band-pass Filter Bank

The speech frequency spectrum (85–4000 Hz) was divided into four frequency bands: f1

from 85 to 222 Hz, f2 from 222 to 583 Hz, f3 from 583 to 1527 Hz, and f4 from 1527 to

4000 Hz in order to achieve a constant quality factor Q = 1 and constant gain K = 2.58 in

each of the filters.

Four unity-Q single-op-amp Sallen-Key band-pass filters were designed following the proce-

dure described in appendix A. By setting C = 22 nF, RA = 1 kΩ, and the four frequency

bands shown in table 4.3, the value of R and RB for each of the filters was determined.

Table 4.3 shows the low-pass (fL), high-pass (fH), and center (f0) frequencies, as well as

the bandwidth (BW), quality factor (Q), and RC characteristics of each of the filters.
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Filter fL fH f0 BW Q RC R

1 85 222.63 137.56 137.63 0.9995 0.001636199 74372.67
2 222.63 583.10 360.30 360.47 0.9995 0.000624706 28395.74
3 583.10 1527.21 943.67 944.12 0.9995 0.000238515 10841.59
4 1527.21 4000 2471.61 2472.79 0.9995 9.10658E-05 4139.35

Table 4.3: Band-pass filter bank parameters.

A diode-capacitor peak detector with time-constant τ = 1/f0 is used after each band-pass

filter to obtain the spectral envelope in each frequency band. These four spectral envelopes

are applied to A/D inputs on the microcontroller and are used to extract different speech

features and segment audio into speaking and non-speaking regions. Figure C-5 shows the

schematic diagram of the four band-pass filters and peak detectors.

4.9 2.4 GHz Radio Transceiver Daughterboard

A radio transceiver daughter board designed by Mathew Laibowitz in the Responsive En-

vironments group at the MIT Media Laboratory was incorporated into the badge. The

radio board is based on the 2.4 GHz Chipcon CC2500 transceiver, a low cost single chip 2.4

GHz transceiver designed for very low power wireless applications. It is integrated with a

highly configurable baseband modem that supports various modulation formats and has a

configurable data rate up to 500 kbps. It’s key features are [25]:

• Frequency range: 2400-2483.5 MHz.

• High sensitivity (101 dBm at 10 kbps, 1% packet error rate).

• Programmable data rate up to 500 kbps.

• Low current consumption (13.3 mA in RX, 250 kbps, input 30 dB above sensitivity

limit).

• Programmable output power up to +1 dBm.

• Very few external components. Completely on-chip frequency synthesizer, no external

filters or RF switch needed.
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Figure 4-10: CC2500 radio daughter board mounted on the sociometric badge’s main board.

• Ideal for multi-channel operation.

• Suitable for frequency hopping systems due to a fast settling frequency synthesizer.

• Separate 64-byte RX and TX data FIFOs.

• Efficient SPI interface. All registers can be programmed with one “burst” transfer.

• Digital RSSI output.

• Wake-on-radio functionality for automatic low-power RX polling.

Figure 4-10 shows the CC2500 radio board attached to the sociometric badge.

4.10 Bluetooth Module

Bluetooth technology enables short-range wireless voice and data communications. This

wireless technology is especially appropriate for cable replacement and for use with portable

devices in pervasive computing applications. At the baseband level, when two devices
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establish a Bluetooth link, one acts in the role of master and the other in the role of

slave. The master device determines the frequency hopping pattern and the phase for the

hopping sequence (based upon its clock). All slaves communicating with a given master

hop together in unison with the master. The master role generally is assumed by the device

that initiates the communication. The master-slave relationship is necessary in Bluetooth

low level communications but in general devices operate as peers. For a detailed description

of the Bluetooth specification refer to [57].

Each sociometric badge has been provided with a Bluetooth module that enables it to

communicate with mobile phones and other Bluetooth-enabled devices. Several commercial

modules were considered and the BlueRadios BR-C46AR class 2 module was chosen because

of its small size, low price and ease of use. The BlueRadios serial radio modems can be

configured, commanded, and controlled through simple ASCII strings over the Bluetooth

RF link or directly through the hardware serial UART. Its main features are [18]:

• Dedicated PCM voice channel for audio applications.

• UART baud rate speeds: 1200bps up to 921.6Kbps, and customizable.

• 10 meter (33 feet) range.

• Software adjustable transmitter power from short to long range.

• Low power consumption (50mA TX, 40mA RX, 1.4mA idle mode, and 30uA deep

sleep).

• Small-form factor SMT radio modem.

• Operating temperature range: −40 to +85◦C.

• Secure and robust communication link

Figure C-9 shows the schematic diagram of the Bluetooth module and its connection with

the microcontroller’s UART.
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4.11 Infrared Transceiver

Radio frequency is not the only form of wireless communication. Infrared technology is used

in devices such as notebook computers, PDAs, and electronic remote controls. Infrared

wireless communication makes use of the invisible spectrum of light just beyond red in the

visible spectrum. In particular, one standard method for IR communication is specified

by the Infrared Data Association (IrDA) [2]. This method is commonly used with mobile

phones and notebook and handheld computers. Infrared largely requires line-of-sight paths

while RF can penetrate many objects.

The TFDU4300 IR transceiver by Vishay Semiconductors was selected for this application.

It is a low profile (2.5 mm) IR transceiver module that contains a PIN photodiode, an IR

emitter, and a low-power control IC in a single package. It operates from 2.4 V to 5.5 V

and covers an extended IrDA low power range of close to 1 m, or a typical remote control

range of 12 m. It has a low supply current of < 12 mA and a power shutdown mode current

of < 5µA [76]. Therefore, it is ideal for battery operated applications. Figure C-8 shows

the schematic diagram for this IR transceiver.

4.12 Speaker

Each sociometric badge contains a square plastic micro-miniature low profile speaker that

measures 40 mm x 40 mm and weights only 9 grams (S150SLA-R5W by International

Components) [37]. Its maximum rated power is 1 W and its frequency response goes from

500 to 10,000 Hz. It is driven by a low distortion audio power amplifier (SSM2211 by

Analog Devices). The SSM2211 is a high performance audio amplifier that delivers 1 W

rms of low distortion audio power into a bridge-connected 8 Ω speaker load. Battery life is

extended by using shutdown mode, which typically reduces quiescent current drain to 100

nA [13]. The SSM2211 is a low distortion speaker amplifier that can run from a 1.7 V to

5.5 V supply. It consists of a rail-to-rail input and a differential output that can be driven

within 400 mV of either supply rail while supplying output current of 350 mA.
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Figure C-12 shows the schematic diagram of the speaker driven by the SSM2211. Pins 4

and 3 are the inverting and non-inverting terminals to the internal op-amp A1. Pin 2 should

be connected to pin 3 for use in single-supply applications. The output of A1 appears at

pin 5. A second op-amp, A2, is configured with a fixed gain of AV = −1 and produces an

inverted replica of pin 5 at pin 8. The SSM2211 outputs at pins 5 and 8 produce a bridged

configuration output to which the speaker is connected. The SSM can be configured for

gain much like a standard op-amp. The gain from the audio input to the speaker is

AV = 2 × R2S

R1S
= 2 × 43

20
= 2.15 (4.5)

The 2 x factor comes from the fact that pin 8 has the opposite polarity from pin 5, providing

twice the voltage swing to the speaker from the bridged output configuration. C3S is a

coupling capacitor which creates a high-pass filter with a corner frequency of

fHS
=

1
2πR1SC3S

=
1

2π(20, 000)(1× 10−6)
= 8Hz. (4.6)

C4S is a coupling capacitor that prevents DC current from flowing through the speaker.

This capacitor forms a low-pass filter with R2S and the corner frequency is

fLS
=

1
2πR2SC4S

=
1

2π(43, 000)(150× 10−12)
= 24, 675Hz. (4.7)

4.13 3-axis Accelerometer

A 3-axis accelerometer (ADXL330 by Analog Devices) is used to measure body motion and

energy expenditure. The ADXL330 is a small, thin, low power accelerometer with signal

conditioned voltage outputs on a single integrated circuit. It measures acceleration with

a minimum full-scale range of ±3 g [14]. Figure C-7 shows the schematic diagram and

capacitor selection (Cx = Cy = Cz = 0.22µF) to set the signal bandwidth to 25 Hz in each

of the three axes. Table 4.4 shows the characteristics of different accelerometers. We chose
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the ADXL330 because it was the least expensive 3-axis accelerometer available at the time

and its bandwidth is high enough to measure human acceleration.
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Part Supply Voltage Current per Number Range Sensitivity Bandwidth Turn on Size (mm) Cost per Output

Number Range (V) Axis (mA) of Axes (kHz) Time (ms) Axis (US$) Type

ADXL330 1.8 3.6 0.06 3 ±3 g 300 mV/g 0.55 1 4x4x1.45 $1.82 Analog
ADXL320 2.4 6 0.25 2 ±5 g 174 mV/g 2.5 20 4x4x1.45 $1.88 Analog
ADXL321 2.4 6 0.25 2 ±18 g 57 mV/g 2.5 20 4x4x1.45 $1.88 Analog
ADXL322 2.4 6 0.25 2 ±2 g 420 mV/g 2.5 20 4x4x1.45 $1.88 Analog
ADXL323 1.8 5.25 0.09 2 ±3 g 300 mV/g 1.6 1 4x4x1.45 $1.75 Analog
AXDL311 2.4 5.25 0.2 2 ±2 g 174 mV/g 6 4 5x5x2 $2.12 Analog
ADXL202 3 5.25 0.3 2 ±2 g 12.5 %/g 6 1-5 5x5x2 $2.13 PWM
ADXL210 3 5.25 0.3 2 ±10 g 4.0 %/g 6 1-5 5x5x2 $4.25 PWM
ADXL213 3 6 0.35 2 ±1.2 g 30.0 %/g 2.5 20 5x5x2 $4.85 PWM
ADXL204 3 6 0.25 2 ±1.7 g 620 mV/g 2.5 20 5x5x2 $6.00 Analog
ADXL203 3 6 0.35 2 ±1.7 g 1000 mV/g 2.5 20 5x5x2 $6.00 Analog
ADXL103 3 6 0.7 1 ±1.7 g 1000 mV/g 2.5 20 5x5x2 $7.75 Analog
SD 1210 5 7 1 ±5 g 800 mV/g 0.4 N/A 9x9x3 $120.00 Analog

ST LIS2L0xAL 2.4 5.25 0.43 2 ±2 g 1 V/g @ 5V 2 N/A 5x5x1.6 $7.25 Analog

Table 4.4: Accelerometers comparison.
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4.14 AT91SAM7S256 ARM Thumb Microcontroller

The AT91SAM7S256 is a low pin-count Flash microcontroller based on the 32-bit ARM7TDMI

RISC processor. It features 256K bytes of embedded high-speed Flash with sector lock ca-

pabilities, a security bit, and 64K bytes of SRAM [1]. It was chosen as the main processing

unit for the sociometric badge because of its extensive peripheral set that includes a USB

2.0 Full Speed Device Port, USARTs, SPI, SSC, TWI and an 8-channel 10-bit ADC. The

design of the Lug board [8] by Mark Feldmeier in the Responsive Environments group at the

MIT Media Laboratory was used as a starting reference. Figure C-1 shows the schematic

diagram of the microcontroller and its peripherals. For details about the firmware used

with the sociometric badge refer to appendix B. Appendix D describes the peripherals

configuration.

4.15 MicroSD Card Socket

The badge was provided with a microSD card socket that allows it to write and read

data to and from a microSD memory card. Secure Digital (SD) cards are flash-based

memory cards based on a nine-pin interface (clock, command, four data lines, and three

power lines) designed to operate in a low voltage range. The SD card interface allows for

easy integration into any design, regardless of the microprocessor used. It also offers an

alternate communication protocol based on the serial peripheral interface (SPI) standard

[70]. Currently available microSD cards include up to 2-GB of data storage. Figure C-

10 shows the schematic diagram of the microSD card socket and its connection to the

microcontroller’s SPI bus. Figure 4-11(a) shows a picture of the microSD card before being

inserted into the socket, and figure 4-11(b) shows a picture of the card after being inserted.
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(a) MicroSD card before being inserted. (b) MicroSD card after being inserted.

Figure 4-11: Final prototype inside enclosure.

4.16 Battery

Two batteries by Ultralife Batteries were considered and tested. Table 4.5 shows the char-

acteristics of the 930 mAh UBC001 lithium-polymer battery used with the badge. Figure

4-12 shows the dimensions of this battery, and figure 4-13 shows the charge/discharge char-

acteristics provided by the manufacturer. Table 4.6 shows the characteristics of the 1.7

Ah UBP001 lithium-ion battery originally considered. Figure 4-14 shows the dimensions

of this battery, and figure 4-15 shows the charge/discharge characteristics provided by the

manufacturer. The lithium-polymer battery was preferred over the lithium-ion one due to

it’s significantly smaller size and lighter weight.

4.17 Current Consumption Estimation

Table 4.7 shows a current consumption estimation for the main components in the socio-

metric badge. The average current for each component can be calculated as

Iavg = D × Imax + (1 − D) × Ishutdown , (4.8)
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Figure 4-12: UBC001 lithium-polymer battery dimensions.

Figure 4-13: UBC001 lithium-polymer battery manufacturer charts.
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Figure 4-14: UBP001 lithium-ion battery dimensions.

Figure 4-15: UBP001 lithium-ion battery manufacturer charts.
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Attribute Description
Voltage Range: 3 to 4.2 V
Average Voltage: 3.7 V
Nominal Capacity: 930 mAh @ C/5 Rate @ 23◦C
Max. Discharge: 2 C continuous
Pulse Capacity: Varies according to pulse characteristics, temperature,

cell history and the application
Energy: 3.4 Wh
Energy Density: 156 Wh/kg, 296 Wh/I
Weight: 22 Grams
Cycle Life: > 300 cycles @ C/5 to 80% of initial capacity
Memory: No Memory Effect
Operating Temp.: −20◦C to 60◦C
Storage Temp.: −20◦C to 60◦C
Self-Discharge: < 10% per Month
Exterior/Housing: Laminated Foil
Terminals/Connector: 30 AWG Wire: Red (+), Black (-)
Safety: Material Safety Datasheet - MSDS014.
Transportation: Excepted from Regulations
Protection Circuit Module: Over Voltage Limit: 4.285 +/- 0.025 Volts
Under Voltage Limit: 2.3 +/- 0.07 Volts
Over Current Protection: 2.0 A
Max. Quiescent Drain: < 6µA
Charging: Maximum charge rate at C/2 to 4.2 Volts in a temperature

range of 0◦ to 45◦C. Hold at 4.2 Volts until current
declines to C/10.

Table 4.5: UBC001 lithium-polymer battery specifications.

where D is the duty cycle or percentage of time each component is active, Imax is the

maximum current each peripheral can draw at any point in time, and Ishutdown is the

current each component draws in shutdown mode.

Considering that the Bluetooth module, the RF transceiver, and the LEDs would be active

only 10% of the time (duty cycle = 0.1), and the speaker only 2% of the time (duty cycle

= 0.02), the battery life using the average current would be:

Battery life =
Capacity

Total average current
=

930mAh
33.615mA

= 27.66 hours. (4.9)
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Attribute Description
Voltage Range: 3 to 4.2 V
Average Voltage: 3.7 V
Nominal Capacity: 1.7 Ah @ C/5 Rate @ 23◦C
Max. Discharge: C Rate continuous
Pulse Capacity: Varies according to pulse characteristics, temperature,

cell history and the application.
Energy: 6.5 Wh
Energy Density: 176 Wh/kg, 382 Wh/I
Weight: 41 Grams
Cycle Life: > 500 cycles @ C/5 to 80% of initial capacity
Memory: No Memory Effect
Operating Temp.: −20◦C to 60◦C
Storage Temp.: −20◦C to 45◦C
Self-Discharge: < 10% per Month
Exterior/Housing: PVC Shrink Wrap
Terminals/Connector: 24 AWG Wire: Red(+), Black (-)
Safety: Material Safety Datasheet - MSDS092.
Transportation: Excepted from Regulations
Protection Circuit Module: Over Voltage Limit: 4.25 +/- 0.03 Volts
Under Voltage Limit: 2.3 +/- 0.03 Volts
Over Current Protection: 1.8 A - 3.0 A @ Room Temp.
Max. Quiescent Drain: < 100µA
Charging: Maximum charge rate at C to 4.2 Volts in a temperature

range of 0◦ to 45◦C. Hold at 4.2 Volts until current
declines to C/20.

Table 4.6: UBP001 lithium-ion battery specifications.

If all components were in shutdown mode the battery life would be:

Battery life =
Capacity

Total shutdown current
=

930mAh
0.8335mA

= 46 days and 11.76 hours. (4.10)

81



Device Function Shutdown current (mA) Maximum current (mA) Duty cycle Avg current (mA)
ADXL330KCPZ Accelerometer 0.35 0.35 1 0.35

OP281 Op-amps (1) 0.003 0.005 1 0.005
OP481 Op-amps (4) 0.012 0.02 1 0.02
AD8542 Op-amps (1) 0.08 0.09 1 0.09
AD5432 DAC 0.0004 0.005 1 0.005

MAX1793 Voltage regulator 0.016 0.2 1 0.2
SSM2211 Audio power amplifier 0.0001 9.5 1 9.5

AT91SAM7S256 Microcontroller 0.08 10 1 10
BR-C29A Bluetooth module 0.03 50 0.1 5.027

SPM0103NE3 Microphone 0.1 0.35 1 0.35
TFDU4300 IR Transceiver 0.005 0.12 1 0.12

CC2500 RF Transceiver 0.157 21.5 0.1 2.291
MLS25070-2100-19 Speaker 0 282.84 0.02 5.657

HSMM-C170 LEDs 0 66 0.1 6.6
Total 0.8335 440.98 33.615

Table 4.7: Current consumption estimation.

82



(a) Badge with lithium-polymer bat-
tery.
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(b) Battery discharge test.

Figure 4-16(b) shows the discharge graph for the lithium-polymer battery and the regulated

voltage on a badge running the firmware used in the experiment described in chapter 5.

4.18 Resources

Budget

• $77,593 USD budget provided by the MIT Media Laboratory for prototyping and

manufacturing a set of wearable electronic badges for the Sensible Organizations re-

search collaboration with Hitachi, Co (MIT Media Lab Sponsor).

• $1,500 USD worth of components donated by Analog Devices, Inc.

• 5 Windows Mobile Smart-phones provided by Motorola, Inc.

Costs

• The cost of raw materials and assembly for manufacturing a set of 100 badges is ap-

proximately $250 USD per badge. Appendix E contains the detailed bill of materials.

• $1,500 USD personal desktop computer used for electronic design and as a program-

ming station.

83



• $300 USD CrossStudio for the ARM integrated development environment (IDE) for

building, testing, and developing ARM applications.

• $195 USD CrossConnect for the ARM JTAG to USB programming cable.

4.19 Remarks

Several tests were performed to assess the functionality of the design. We present a list of

design goals that were met and of possible improvements that could be made:

• It is possible to detect when the user is in a conversation using the microphone and

analog band-pass filter bank, however a unidirectional microphone might be a better

option if one only wants to detect the wearer’s voice.

• The IR transceiver works well up to one meter and within an angle of ±15◦. Multiple

IR transceivers could be added to cover a wider angle.

• The 3-axis accelerometer was useful to detect when the users were active. The use

of a piezoelectric vibration sensor was also considered, however, its size was a major

constraint and therefore it was not included. A gyroscope could also be included to

measure the exact orientation of the badge.

• The CC2500 2.4 GHz transceiver is functional and it allows us to transfer data between

badges and base stations containing a similar radio transceiver. The radio board could

be replaced with a ZigBee radio such as the Chipcon CC2430 or a System on a Chip

(SoC) such as the Chipcon CC2511 (these options were not available at the time the

badge was designed).

• The microSD card socket was functional when storing data onboard and transferring

it via USB to a computer.

• The Bluetooth module is functional and several applications using mobile phones are

being developed [40].
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• The speaker is the peripheral that consumes the most power and the largest com-

ponent as well. It could be excluded in designs that do not require the push-to-talk

functionality.

• It was decided not to include an LCD on the badge because the user would not be

able to easily read the display. Based on previous experience only people facing the

user are able to read the display [43]. Two LEDs indicate when the badge is powered

on and when the battery is charging.

• The battery lasts approximately one day using the current power management scheme.

The battery life can be extended by implementing power saving modes on the micro-

controller to put other peripherals into power saving mode when they are not being

used.

• Users reported feeling comfortable when wearing the badge for a period of one month

(eight hours a day).
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Chapter 5

Experimental Results

We deployed the research platform described in chapter 4 for a period of one month (20

working days) in the marketing division of a bank in Germany that consisted of 22 employees

distributed into four teams. Each employee was instructed to wear the badge every day

from the moment they arrived at work until they left the office. The employee pool has

exactly the same number of men as women, but all of the managers are men. The division

contains four functional teams consisting of either three or four employees. Each of these

teams is overseen by a manager, who is in turn supervised by a mid-level manager. These

mid-level managers are responsible for two teams, and they report directly to the division

manager. The division’s organizational chart is shown in figure 5-1. We treated the mid-

and division-level managers as a single team in the analysis.

The bank division itself also has a very interesting physical layout. The division is split

across two floors and some teams are co-located in a single room while others have employees

from multiple teams in them. In fact, one of the reasons this division took such an interest

in the experiment was to determine precisely what effect this physical organization had on

the interactions that occur within the division.

The objective of the experiment was to use data collected using our wearable sociometric

badges to correlate temporal changes in social interaction patterns (including amount of
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Figure 5-1: Organizational chart.

face-to-face interaction, conversational time, physical proximity to other people, and phys-

ical activity levels) with performance of individual actors and groups. We obtained e-mail

logs as well as self-reported individual and group performance data as part of a case study

on the impact of electronic communications on the business performance of teams [63]. This

data gave us a very detailed picture of the inner operations of the division.

5.1 Experimental Procedure

Two kinds of badges were deployed in this experiment. The first were the badges worn by

individuals. These badges logged IR receptions (containing the transmitting badge’s ID)

every time they were facing other badges, Bluetooth devices’ IDs, raw and bandpass filtered

audio sampled at 8 kHz and averaged over 64 samples so that the raw speech signal could

not be reconstructed, and motion data using the accelerometer. Each badge transmitted

its own ID via IR every two seconds and was detectable over Bluetooth every ten seconds.

The badges are only able to record a limited number of Bluetooth IDs every five seconds,

so not every device that is within range is logged. We also had the blue LED blink once

a minute as a cue to denote that the badge was operational. The second type of badge
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Figure 5-2: Base station placement.

we had were base stations deployed throughout the bank to roughly track the location of

interaction events as well as subjects. Figure 5-2 shows a base station placed on a wall.

Fourteen of these base stations were distributed across two floors of the bank’s building

and were continually discoverable over Bluetooth. A central computer was used for data

collection and was placed in the division’s conference room, where employees could easily

retrieve their badges when they arrived and plug them into a USB hub before they left for

the day. This operation allowed data to be automatically transferred via the badge’s USB

port and uploaded to a server in our laboratory once a day while at the same time allowed

the battery in the badge to be recharged.

At the end of each day employees were asked to respond to an online survey that included

the following questions:

• Q1. What was your level of productivity today?

• Q2. What was your level of job satisfaction today?

• Q3. How much work did you do today?

• Q4. What was the quality of your group interaction today?
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Each question could be answered according to the following scale: (1 = very high) (2 = high)

(3 = average) (4 = low) (5 = very low). Each person had to enter their badge number when

they answered the survey. The following exploratory analysis on face-to-face interaction,

proximity, speech, and e-mail was done in collaboration with Benjamin Waber, Taemie Kim,

and Akshay Mohan in the Human Dynamics group at the MIT Media Laboratory.

5.2 Face-to-Face Interaction

Methodology

IR can be used as a proxy for the detection of interactions between people. In order for

another badge to be detected through IR, the badges must have a direct line of sight to each

other with a distance of less than one meter. Therefore the badge wearers must be standing

roughly facing each other (±15◦). This range is also a limitation, since if both wearers

are turned slightly to the side but are engaged in a conversation, detection will not occur.

Similarly, if there is an occlusion between the badges, say a computer monitor or a hand,

detection will not occur. We can assume that if there are a number of detections between

individuals in a short period of time they are indeed involved in face-to-face interaction.

Results

Analysis of IR data yielded interesting results on interaction within teams. Different rooms

exhibited different communication patterns in this regard (p < 0.05) but the difference

across teams was striking (p < 0.01). It appeared that there were approximately three types

of teams: those with high intra-team communication (one team), those with a moderate

amount (one team), and many with low communication (three teams).

Interestingly, teams that had more members tended to have more intra-team interaction,

noting that these results were normalized by the number of team members. The hypothesis

suggested by this finding is that individuals have to achieve a certain level of connectedness

that is a function of team size, so that those on lager teams have more intra-team com-

munication. There was a clear dichotomy between teams with higher communication and
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those with lower communication. The former were teams that were project and product

intensive, which naturally require intra-team collaboration, while the latter was involved in

individual tasks, support roles, and control roles. These tasks intrinsically require a looser

social structure since workers have little need for intra-team communication to accomplish

their goals.

We were also able to identify features of face-to-face interaction that are significantly cor-

related with the survey data. In particular, the number of unique people that an individual

interacted with over the course of the day was moderately correlated with question Q1

responses (r = 0.19, p = 0.01), while the total amount of time spent in face-to-face commu-

nication was correlated with the responses for questions Q1, Q2, and Q3 (r = 0.27, 0.22,

0.31, p = 0.0008, 0.006, 0.0001, respectively).

These findings reinforce the intuition that productivity and overall happiness is positively

related to the amount of face to face interaction that one engages in. We can also explain this

correlation by noting that when individuals are happy and productive, they tend to engage

with a larger number of people. Conversely, when people are unhappy and unproductive

they tend to withdraw. Looking at causality in the other direction, it may be that interacting

with many individuals simply makes one feel happier and more productive.

5.3 Proximity and Location Using Bluetooth

Methodology

The badge can detect other Bluetooth devices in close proximity in an omni-directional

fashion. In the past, this functionality has been used to identify location, behavioral pat-

terns, and social ties [30]. We take a similar approach to using Bluetooth technology. In

our experiment Bluetooth was able to determine approximate location from base stations

and other mobile badges within a 10-m distance. If a person is detected in a 10-m distance,

this does not necessarily mean that they interacted with each other. However we can posit

that the person was in a close range, easily reachable for face-to-face interaction.
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Initially we hypothesized that Bluetooth detections could be used to recognize office level

locations and conversational groups. However, the large range of the Bluetooth receivers

made this task extremely difficult, limiting the resolution of our data. Using the 2.4GHz

radio receiver of the badge, we corrected this problem in the next version by exploiting the

received signal strength from other badges.

The limitations of our current Bluetooth data have caused us to take a different approach to

the analysis. Since closer devices are detected more often, we used a probabilistic method to

determine what other badges were in the area. We chose to say that a badge was detected

for a 5-minute time-frame only if the badge was detected for more than 30% of the time-

frame, which accounts for the limited Bluetooth detection rate. We defined a person as

easily reachable when a person was detected for over 30 minutes a day.

Results

The number of people easily accessible was significantly different between the people on

different floors. People on the second floor had on average 4.08 people easily reachable per

day while people on the third floor had 15.3 (p < 0.01). This same trend held for inter- and

intra-team communication (both p < 0.01) and for inter- and intra-room communication

(p < 0.001 and p < 0.01 respectively). We can posit that people on the third floor were

more stationary, making them more available to others on their team and in their room.

This might be a result of the type of work people are engaged in since most people on the

third floor had a job description that required them to be present in their office, resulting in

high Bluetooth detection rates. Our notion of accessibility, however, fails to capture the fact

that mobile individuals would likely come into contact with more people than stationary

individuals. Thus, it may be more appropriate to say that the people on the third floor are

more reachable for planned interactions, while those on the second floor are more reachable

for serendipitous interactions.
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5.4 Physical Activity

Methodology

The 3-axis accelerometer signals were sampled at fs = 250 Hz. This sampling frequency

should be able to capture the range of human movement and could be as low as 30 Hz

since 99% of the acceleration power during daily human activities is contained below 15 Hz

[50]. The range of values for the accelerometer signals varies between −3g and +3g, where

g = 9.81 m/s2 is the gravitational acceleration. To normalize the signals, the calibration

procedure described in section 3.2 was followed.

The acceleration Signal Vector Magnitude (SVM) provides a measure of the degree of move-

ment intensity that includes the effect of signal variations in the three axes of accelera-

tion [38]. The SVM is calculated on the normalized ith acceleration sample as follows:

SVMi = |~a′i| =
√

a
′2
xi

+ a
′2
yi

+ a
′2
zi

(5.1)

To distinguish between periods of activity and rest the average SVM was calculated over

one-minute segments:

SVM(k) =
1

fsT

fsTk∑

i=1+fsT (k−1)

SVMi (5.2)

where T = 60 is the time segment (in seconds) over which the average SVM is calculated,

and k = 1...K is the number of minutes each person was wearing the badge during the

day. When the badge is static and not being worn SVM(k) ≤ 1, since only the component

of gravitational acceleration is detectable. Individual daily activity level was defined as

SVMd = 1/K
∑K

k=1 SVM(k), where K is the number of minutes that the person was wearing

the badge, and d is the date.
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Results

We say that a person is in a high activity level when their activity level is one standard

deviation above the mean value of everyone wearing the badge at the same time. A person is

in a low activity level if their activity level is one standard deviation below that mean value,

and they are in a regular activity level if their activity level is within one standard deviation

of that mean value. Figure 5-3(a) shows the daily activity level graph for a person who was

highly energetic throughout the duration of the experiment, and figure 5-3(b) shows the

daily activity level graph for a person who was almost always below the average activity

level.

Even though no significant difference was found in the activity level patterns of employees

grouped by team or by floor, we found that the percentage of time a person is in a low

activity level during the day is negatively correlated (r = −0.202, p = 0.01) with that

person’s individual perception of productivity (Q1). A low activity level could mean the

person is sitting in their office and not moving too much or walking around. If the percentage

of time a person is sitting working in their office increases, so does their individual perception

of productivity.

5.5 Speech Analysis

Methodology

Objective social signaling measures based on non-linguistic vocal attributes to determine so-

cial context have been developed within our research group [67]. We take a similar approach

here to characterize the interaction between individuals and determine the percentage of

time that an individual is engaged in a conversation.

The audio signal was sampled at fs = 8000 Hz, then it was passed through an array of four

band-pass filters and peak detectors to obtain the spectral envelopes for each frequency

band. These five values derived from the raw audio signal and the filter envelopes were

averaged over 64 samples (8 milliseconds). The averaging ensured that one cannot determine
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(a) Highly active person
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(b) Highly passive person

Figure 5-3: Comparison of daily activity levels for a highly active person and a highly passive person.
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the content of the conversation or identify the speaker from the data. Offline analysis of the

stored data was done to determine time segments when an individual was in a conversation.

The audio was divided into frames and variation in amplitude calculated for each frame,

where a frame here means 32 milliseconds of audio with an overlap of 16 milliseconds,

corresponding to four and two samples of the averaged signal, respectively. This variation

in amplitude for each frame was used to determine whether the individual was involved in

a conversation during the given frame using a decision tree designed by Akshay Mohan.

Results

We were able to determine the percentage of total time when the individual was engaged

in a conversation with respect to the total time duration for which the badge was worn.

In our analysis we distinguish between conversation time and speaking time: conversation

time being when any of the individuals involved in a conversation was speaking. No signif-

icant difference was found in speaking patterns of employees grouped by team or by floor.

However, the daily percentage of speaking time was correlated with the number of differ-

ent people with whom employees interacted every day based on IR detection (r = 0.23,

p = 0.004).

5.6 E-mail

Methodology

E-mail has been frequently used to measure social ties between individuals [71]. Not only

is it easy to measure, but in the modern workplace employees are interacting with each

other more and more frequently through e-mail. This data is also easily quantifiable, since

we know exactly who sent an e-mail to whom and when. Since it only captures digital

interactions, it was unclear whether this accurately represented “real world” interactions.

In general, large scale unidirectional e-mails have little value when analyzing one-on-one in-

teraction. Therefore we only considered reciprocated e- mails when examining relationships

between individuals.
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Results

In the case of e-mail communication, we found that the amount of e-mail exchanged between

individuals varied by floor (p < 0.0005), with people on the third floor sending consider-

ably less e-mail than individuals on the second floor. This same trend held for inter and

intra-team communication (p < 0.001). This is a very interesting result since in contrast

to proximity, these results did not hold at the room level. That is, when individuals were

grouped into rooms there was no significant difference in the amount of e-mail communi-

cation. However, when looking at e-mail communication within a room, there was a large

difference between rooms (p < 0.0001). One room had over double the average e-mail

communication of all other teams.

We can view these results as implying that individuals on the second floor have tasks that

require high e-mail communication, while those on the third floor require a lower level of

e-mail to work effectively. Although individuals tended not to interact too often with in-

room others, there was a significant exception. We could infer that this room had a more

asynchronous work flow, where individuals needed to work on critical tasks in real time and

exchanged trivial information only when free time was available.

When we look at how people communicate within their teams, however, we get another

facet of the overall picture. Managers communicated more with their team than regular

employees (p = 0.01), exchanging on average 7 more e-mails with members of their team.

This may be because managers must coordinate the various members of the team.

5.7 General Findings

We first determined whether a relationship existed between each of the different measure-

ments that can be automatically obtained with the badge on a daily basis (table 5.1) and

each of the four survey questions described in section 5.1 to determine the degree of prob-

ability that a linear relationship existed between them. Table 5.2 shows the significant

correlation coefficients that were found.
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x1 Percentage of time in each activity level
x2 Percentage of speaking time
x3 Number of people with whom a person

interacted face-to-face
x4 Total face-to-face interaction time
x5 Average face-to-face interaction time

per person met
x6 Number of easily reachable people

in a 10-m radius
x7 Number of e-mails sent

Table 5.1: Automatically measured variables.

Q1 Q2 Q3
x1 -0.20

(0.01)
x3 0.19

(0.01)
x4 0.27 0.22 0.31

(0.0008) (0.006) (0.0001)
x5 0.22 0.20 0.24

(0.005) (0.01) (0.002)
x6 0.20

(0.01)

Table 5.2: Correlation values (significance value p).

A multilinear regression was fit to model questions Q1, Q2, and Q3 using the variables that

were significantly correlated with each of them. Question Q1 (perception of productivity

level) was modeled as a function of x1, x3, x4, and x5, obtaining r2 = 0.11 (p = 0.001) and

regression coefficients b0 = 2.5384, b1 = −0.0067, b3 = 0.0155, b4 = 0.0006, b5 = −0.0004.

Question Q2 (job satisfaction) was modeled as a function of x4, x5, and x6, obtaining

r2 = 0.09 (p < 0.005) and regression coefficients b0 = 2.4962, b4 = 0.0005, b5 = 0.0006,

b6 = 0.1535. Finally, Question Q3 (perception of work load) was modeled as a function

of x4, and x5, obtaining r2 = 0.1 (p = 0.0002) and regression coefficients b0 = 2.5904,

b4 = 0.0012, b5 = −0.0038. These results imply that while we can account for a respectable

percentage of the variation in responses, we must go to a finer level of analysis to find the

important factors underlying this data.

Over the whole month, proximity from being in the same room, floor, or team had a high
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negative correlation with the number of e-mails exchanged between people (r = −0.55, p <

0.01). This has powerful implications for previous work that has used e-mail communication

as a proxy for the social network of an organization, since these two are in fact negatively

related.

We can attribute this to several factors. First, if you are in close proximity to another

individual, it makes more sense to interact with them in the real world rather than send

them an e-mail. Second, proximity information also picks up on informal relations, while

in this particular organization e-mail is used mainly for business purposes. This is because

if you spend a lot of time with someone you are more likely to be their friend and therefore

less likely to send an e-mail to them. This result points towards the necessity of having

face-to-face interaction information in order to have a full view of the social network.

If we group people by floor, we see that people on the second floor had lower Bluetooth

counts and higher e-mail counts than people on the second floor (mean = 4.08, 15.08),

p < 0.01 and (mean = 96.4, 37.7), p < 0.001, respectively. Hence we can posit that people

on the third floor are more stationary, staying in their office most of the time, allowing for

predictable face-to-face communication and mitigating the need for e-mail. On the other

hand, people on the second floor are more mobile, often out of their office, requiring them

to use more asynchronous communication channels such as e-mail. This result suggests

that while serendipity is important, it causes an individual to be less available for face-to-

face communication, thus increasing e-mail exchanges. It would be interesting, however, to

examine which way the causality actually goes. With only the e-mail count, we would have

seen a continuous pattern in the individuals. However Bluetooth detection allows us to see

another dimension of how people interact with each other, verifying the limits of using only

e-mail as a measure of social interaction.

Supporting the high negative correlations between proximity and e-mail activity, we discov-

ered that betweenness in the daily IR social network had a moderately negative correlation

with daily e-mail activity (r = −0.19, p < 0.05). This is an intuitive finding since we

would expect these socially powerful individuals to be able to call up information through

face-to-face interaction rather than through asynchronous e-mail. Their central position in
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the network also ensures that they will be privy to a large amount of information, further

decreasing the need for e-mail communication.

We also found interesting correlations between an actor’s betweenness in the daily IR social

network and their daily physical activity. Average activity level had a moderate negative

correlation with betweenness (r = −0.2, p = 0.01), and percent of time in a high activity

level mirrored this relationship with betweenness (r = −0.18, p < 0.05). Not surprisingly,

percent of time in a low activity level also showed a moderately strong correlation with

betweenness (r = 0.25, p < 0.005).

These results are almost counterintuitive. They imply that those individuals who are the

most critical to the network over short periods of time are in fact the least active. One

explanation for this is that what makes an actor central is not that they are seeking out

other actors but that other actors are physically coming to them. This would occur over the

course of a day and not a month because who holds critical information may be different

from one day to the next. Since central individuals are in a position of power, they would

most likely be sitting or in a comfortable physical position due to their status, while others

coming to them would be standing and gesturing so that the more powerful other will be

encouraged to impart the desired information. We will need to examine the annotated

meeting data over the month in order to gain a better understanding of this phenomenon,

although it appears that causality in the other direction is unlikely.
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Chapter 6

Conclusions and Future Work

We have presented the design, implementation, and deployment of a wearable computing

research platform for measuring and analyzing human behavior in a variety of settings.

We demonstrated the use of sociometric badges capable of measuring social signals derived

from vocal features, body motion, relative location, proximity, and face-to-face interaction

to capture individual and collective patterns of behavior. We deployed this system in a

group of 22 employees in a real organization over a period of one month.

Using these automatic measurements, we predicted employees’ self-assessment of productiv-

ity, job satisfaction, and their own perception of group interaction quality. Our exploratory

analysis of face-to-face interaction time and physical proximity to other people indicated

that people in different rooms and teams exhibit different patterns of communication be-

havior (p < 0.01). We found interesting results involving different communication channels

and behavior patterns. An important finding was that physical proximity to other people

was strongly negatively correlated with e-mail communication (r = −0.55, p < 0.01). We

believe that the results from the exploratory data analysis done in this thesis need to be

further validated by designing and executing several tests to prove that several aspects of

human behavior can be automatically measured using sociometric badges.
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6.1 Future Work

Some elements that were left for future work since they were beyond the time frame of this

thesis are:

• An in-depth analysis of the band-pass filters’ characteristics needs to be done in order

to be able to calculate a variety of speech features (such as energy and entropy) based

on the spectral envelopes.

• A robust algorithm that accurately detects face-to-face interaction and that does not

only depend on the IR transceiver’s line of sight must be formulated.

• The necessary algorithms to perform activity and context recognition in real time

must still be implemented.

• A triangulation algorithm needs to be implemented in order to perform user localiza-

tion in real time using the received signal strength indicator (RSSI) values currently

captured by the badge’s radio transceiver.

• A file system to read and write data in a FAT16 format to the microSD card would

enable the user to transfer data without the need of a USB cable.

• Transferring voice over Bluetooth needs to be implemented in order to enable the

push-to-talk functionality.

• The use of different power saving modes in the microcontroller and peripherals should

increase the battery life.

• More user studies need to be done in order to determine how comfortable the badge

is and if further modifications need to be made.

All sensing and processing units included in the sociometric badges will be available in

smaller sizes in the near future. Even though the current form factor was accepted by

most of the people participating in our studies and they didn’t report feeling uncomfortable
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when wearing the badge, a truly unobtrusive version should be extremely light weight and

almost imperceptible to the user. The technology to build such a device already exists. The

badges that were manufactured during the course of this thesis work will be used for research

purposes and to further validate the measurements that can be made automatically.

6.2 Future Experiments

Team Performance. (May 2007) Each spring all first-year students in a Master of Public

Policy program spend two weeks in and exhaustive study of a particular policy issue.

Through readings and briefings by experts on the subject in question, each team of

students develops and presents a professional analysis of the policy problem. This year,

a group of 140 students participating in this exercise will wear sociometric badges. We

expect to be able to identify behavioral patterns of high and low performing teams,

as well as team formation processes.

Using Technology to Improve Call Centers. (May - June 2007) During a period of four

weeks we will deploy our system in a call center facility to monitor a group of 30 people.

The goal is to identify potential problems, user acceptance, and provide feedback to

the users.

SCALE: Spontaneous Collaboration Assistant and Linking Engine. (June 2007) A company

specializing in solving the problems of human performance in today’s complex socio-

technical systems will conduct a small pilot study of the SCALE system. They will

provide a small focus group of senior executives and staff with the SCALE software

and our wearable electronic badges to study physical interactions and communications.

The long-term goals of this project are to integrate:

• Text mining of digital documents and communications to construct an organi-

zational model of members’ areas of knowledge/work and existing collaboration

relationships,

• Data mining of physical interactions between people to augment the model of

organizational knowledge and collaboration,
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• Social network analysis to identify new productivity-enhancing opportunities for

spontaneous collaborations between members of the organization.

This company is a leader in the design of organizations, user-centered technology and

training systems that make individuals and teams more effective.
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Appendix A

Band-pass Filter Design

A.1 The Band-pass Response

Following [32], the standard form of all second-order band-pass functions is H(jω) =

H0BPHPB(jω), where H0BP is called the resonance gain, and

HBP (jω) =
(jω/ω0)/Q

1 − (ω/ω0)2 + (jω/ω0)/Q
. (A.1)

To express selectivity quantitatively, the concept of bandwidth is introduced:

BW = ωH − ωL, (A.2)

where ωL and ωH are the −3-dB frequencies, that is, the frequencies at which the response

is 3 dB below its maximum. One can prove that

ω0 =
√

ωLωH . (A.3)

The resonance frequency ω0 os the geometric mean of ωL and ωH , indicating that on a

logarithmic scale ω0 appears halfway between ω0 and ωH . The narrower the bandwidth,
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Figure A-1: Band-pass KRC filter.

the more selective the filter. However, selectivity depends also on ω0, therefore a prosper

measure of selectivity is the ratio ω0/BW . This value is called the quality factor of a filter:

Q =
ω0

BW
. (A.4)

A.2 Band-pass KRC Filters

The circuit of figure A-1 consists of an R-C stage followed by a C-R stage to synthesize a

band-pass block, and a gain block to provide positive feedback via R3. This feedback is

designed to bolster the response near ω/ω0 = 1.

The transfer function of the filter is given by Vo/Vi = H0BP HBP , where HBP is given in

equation A.1, and

ω0 =

√
1 + R1/R3√
R1C1R2C2

, (A.5)

H0BP =
K

1 + (1− K)R1/R3 + (1 + C1/C2)R1/R2
, (A.6)

Q =

√
1 + R1/R3

[1 + (1 − K)R1/R3]
√

R2C2/R1C1 +
√

R1C2/R2C1 +
√

R1C1/R2C2

. (A.7)

One can vary R1 to tune ω0 and RB to adjust Q. When Q >
√

2/3, a convenient choice is

R1 = R2 = R3 = R and C1 = C2 = C, in which case the filter expressions reduce to:

ω0 =
√

2
RC

, (A.8)
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H0BP =
K

4 − K
, (A.9)

Q =
√

2
4 − K

. (A.10)

The corresponding design equations are:

RC =
√

2/ω0, (A.11)

K = 4 −
√

2
Q

, (A.12)

RB = (K − 1)RA. (A.13)

107



108



Appendix B

Microcontroller’s Firmware

Several people contributed to the development of the AT91SAM7S microcontroller’s firmware.

Joshua Lifton from the MIT Media Laboratory Responsive Environments group developed

the base code for using the microcontroller and its peripherals. Akshay Mohan, Benjamin

Waber, Taemie Kim, and Christopher Moh from the Human Dynamics group created the

necessary firmware to program the sociometric badge with the main data collection appli-

cation used in the experiment described in chapter 5. This firmware can be downloaded

from the MIT Media Laboratory’s CVS repository:

http://mlforge.media.mit.edu/projects/communicator/
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Appendix C

Schematic Diagrams and PCB

Layout
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Figure C-1: Microcontroller and peripherals.
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Figure C-2: Biasing circuit.
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Figure C-3: Voltage regulator and battery charger.
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Figure C-4: Microphone with amplifier.
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Figure C-5: Band-pass filter bank and envelope detectors.
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Figure C-6: Envelope detectors’ amplifiers.
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Figure C-7: Accelerometer.
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Figure C-8: IrDA transceiver.
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Figure C-9: Bluetooth module.
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Figure C-10: microSD card socket.
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Figure C-11: Digital-to-analog converter.
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Figure C-12: Electromagnetic speaker with audio power amplifier.
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Figure C-13: Badge PCB top layer layout.
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Figure C-14: Badge PCB bottom layer layout.
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Figure C-15: Microphone PCB top layer layout
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Figure C-16: Microphone PCB bottom layer layout.

127



128



Appendix D

Microcontroller’s Peripherals

Input/Output Configuration

Table D.1 contains the list of peripherals used with the AT91SAM7S256 microcontroller

and the PIO controller configuration. Bold text indicates whether peripheral A or B is

being used.
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I/O Line Peripheral A Peripheral B Comments
PA0 PWM0 TIOA0 Green LED
PA1 PWM1 TIOB0 Blue LED
PA2 PWM2 SCK0 Push button
PA3 TWD NPCS3 MicroSD chip select
PA4 TWCK TCLK0
PA5 RXD0 NPCS3 Bluetooth TX
PA6 TXD0 PCK0 Bluetooth RX
PA7 RTS0 PWM3 Bluetooth CT
PA8 CTS0 ADTRG Bluetooth RT
PA9 DRXD NPCS1
PA10 DTXD NPCS2
PA11 NPCS0 PWM0 CC2500 chip select
PA12 MISO PWM1 CC2500 MOSI
PA13 MOSI PWM2 CC2500 MISO
PA14 SPCK PWM3 CC2500 SPCK
PA15 TF TIOA1
PA16 TK TIOB1
PA17 TD PCK1 AD0 Voice
PA18 RD PCK2 AD1 Accelerometer X
PA19 RK FIQ AD2 Accelerometer Y
PA20 RF IRQ0 AD3 Accelerometer Z
PA21 RXD1 PCK1 IrDA RX
PA22 TXD1 NPCS3 IrDA TX
PA23 SCK1 PWM0
PA24 RTS1 PWM1
PA25 CTS1 PWM2 SEL1 (selector switch)
PA26 DCD1 TIOA2 SEL2 (selector switch)
PA27 DTR1 TIOB2 CC2500 IO2
PA28 DSR1 TCLK1 RST (charger)
PA29 RI1 TCLK2 EN (speaker)
PA30 IRQ1 NPCS2 CC2500 IO1
PA31 NPCS1 PCK2 DAC chip select

Table D.1: Microcontroller’s peripherals configuration.
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Appendix E

Bill of Materials
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Figure E-1: Bill of materials (part 1)
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Figure E-2: Bill of materials (part 2)
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Figure E-3: Bill of materials (part 3)
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Figure E-4: Bill of materials (part 4)
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Figure E-5: Bill of materials (part 5)
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