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Abstract

Aerodynamic Design of Moveable Inlet Guide

Vanes for Active Control of Rotating Stall

by

Peter D. Silkowski

Submitted to the department of Aeronautics and Astronautics on

December 18, 1989 in partial fulfillment of the requirements for

the degree of Master of Science in Aeronautics and Astronautics

This thesis describes an analysis of moveable inlet guide vane operation for use in active

control of rotating stall in axial flow compressors. The results indicate that blade deflections

needed (in degrees) are approximately one half of the sensed axial velocity disturbance (in

percent). Models were developed for the blade row, the control perturbations launched by

the moving blades, and the compressor. These models were used in a parametric study which

showed that from a control wave launching point of view, airfoil camber and mean flow turning

of the cascade are unimportant, whereas fraction of blades moved and solidity are the key

parameters. Furthermore, the compressor model lead to the result that the more in phase the

blade misstaggering is with the velocity disturbance, the more effective the control is. These

results were then used to design and build an inlet guide vane row of 12 blades for testing as a

stall control device.

Thesis Supervisor: Edward M. Greitzer

Title: Professor of Aeronautics and Astronautics



ACKNOWLEDGEMENTS

The author would like to thank the following:

Professor Greitzer for his guidance and patience

Professor Epstein and Dr. Guenette for their help with hardware.

Dr. Tan for help in general.

Professor Yamasaki for his help with the unsteady work.

Bob Haimes for his computing knowledge.

All of the students in the GTL, especially my very understanding roomates Earl, Rob, and

Bill.

And my parents, Daniel and Loretta Silkowski, and my sister Angelica, for all of their

support.

This research was supported by the Air Force Office of Scientific Research under contract

AFOSR-87-0398.

I



Contents

1 INTRODUCTION 8

1.1 Introduction ....................................... 8

1.2 Background ....................................... 8

2 Modelling the Overall Flowfield and the Compressor 12

2.1 Compressor Model ........................ .. ....... .... .... 12

2.2 Modelling the Upstream and Downstream Flowfields ................ . 14

2.3 Evaluation of V(0), ( )and - ( )  ........ . ........... . .. . 17

2.4 Determining the Required Inlet Guide Vane Stagger Profile . . . . . . . . . . . . 19

3 Steady potential calculation of aa32a-3

3.1 The New Term, 33.1 The-New.Term ....... ... ...... ......... 32'a- .
3.2 Calculation of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Choice of Geometry .................................. .. 36

4 Unsteady Potential Calculations 45

4.1 Setting up the Equations ............... . .. . . . . . . . ....... 45

4.2 Test Comparrisons ....... ... ..... ... .. .. ... .......... 46

4.3 Results . . . . . . . . . . . .. . . ....... . . . . . . . . . . . . . . . . . . 47

5 CONCLUSION 50

5.1 Results ................. ......................................... 50

5.2 Future W ork ......... ............ . . .......... . 50



A Unsteady Potential Calculations 53



List of Figures

1.1 Inception of rotating stall [2] ............................. 11

2.1 Calculated compressor speedlines with a 10 degree opening and closing of igv's . 22

2.2 Baseline compressor, calculated and actual, speedlines [20] ............. 22

2.3 Speedlines of restaggered machine ........... . . . . ....... .. 23

2.4 Parabolic fits ... ... ... ... .. .... ... ... ... ... ... ... 23

2.5 for igv=15 . . . . . . . . . . . . . . . . . . .  .  . . .  . . . . . . . . . . . . . .  24

2.6 Percent change in stability boundary, with R as a parameter and "yig, = 15 . . . 24

2.7 Percent change in stability boundary, with B as parameter and -ig, = 15 ..... . 25

2.8 Continuous case ............... . . ................. 26

2.9 Misstagger profile before multiplication by factor, DGd.,- 2Gan for 8 moveableDGcont - Gldi.

blades out of 48 total, with a = 1.0. DG=maximum amount of blade mistagger. 26

2.10 Stagger ratio profile with first Fourier coefficient G 1=--zl•6S 6 1. DG=maximum

amount of mistagger ....... ...... .. .................. .. 27

2.11 Stagger ratio profile with first Fourier coefficient Gi=z|•~811. Note a = .5 and

therefore the spike widths are half of the previous figure's . ............ 28

2.12 Stagger ratio profile with first Fourier coefficient Gi=zJlS|S¢ 1., on-off scheme . 29

2.13 Changing both magnitude and phase of enveloping, discretized, function by

changing both spike heights and spike locations for F=2, P=j. ........... 30

2.14 Changing both magnitude and phase of enveloping, discretized, function by

changing spike heights only, and not spike locations for F=2, P= * ........ 30



2.15 Maximum mistaggering ratio required to achieve a given G 1 = z|6|S61. 48 total

blades. Asymptotes to 1 .............. . . ................ . 31

3.1 Comparrison of results with Hawthorne [27] . .................. .. 38

3.2 Standard cascade arrangement and flow .2 chord downstream, for 36 circular arc

airfoils, with a mean cascade turning of 10 deg., and 9 blades mistaggered in a

cos. pattern of amplitude DGdi,, = 4 deg ....................... . 39

3.3 48 blades, 8 moveable, a = 1.0 with mean turning subtracted out ......... . 40

3.4 ' vs fraction of blades that are moveable. 48 total blades with a = 1.0 ..... . 41

3.5 Summary of trends .. ....................... . .. ....... . 41

3.6 Attenuation of control wave by fixed blades, shows that fraction moveable is

more important than solidity. Moving 12 of 24 and 12 of 12 total blades. ..... 42

3.7 Inverse of fig(3.4) compared to fig(2.15) ................... .... 42

3.8 Diffusion area ratio A---- for NACA 0012 blades . . . . . . . . . . . . ... . 43Amin.

3.9 Percent change in stability boundary, with R as parameter and yig, = 0 .... . 44

3.10 Percent change in stability boundary, with B as parameter and -yig = 0 .... . 44

4.1 Cascade vorticity distribution ... . . . . . . . . . . .... . . . . . . . . 48

4.2 Analytical model ....... ... .. ... ... .. ........... 48

4.3 Unsteady - vs. reduced frequency, asymptoting towards steady value . . . . . 49

5.1 Compressor dimensions .... ................ ............ .... 52

5.2 Hardware arrangement . . ............................... . 52

A.1 Shed vortex for Kelvin's thereom [21] . ................. .. . . . . 56



Chapter 1

INTRODUCTION

1.1 Introduction

In many regards, engineering is the science of tradeoffs. For example, in aircraft wing design

some aircraft such as the F-14, F-111, and B-1, with their variable sweep wings, are adaptable,

and thus are able to fly much closer to the optimal geometric configuration at all phases of

the flight envelope, with a trade for increased weight and complexity accompanying the swing

wing. Another example of tradeoffs in engineering is that of performance for safety margin,

such as the F-16 trading dynamic stability for lower induced drag. This thesis will investigate

the possibility of trading performance for complexity, and thus obtaining better performance

by operating in a normally unstable region, through adaptable geometry, active control.

1.2 Background

Much as the entire aircraft can have different instabilities, for example dutch roll, phugoid,

and short period motion, so can the engine with its instabilities of rotating stall and surge.

Whereas surge is considered a system, or "global" instability, rotating stall is a higher frequency

"local" instability. Rotating stall consists of a region or regions of blockage rotating around the

circumfrence at a fraction of rotor speed. In these regions of blockage, "the blades are severely

stalled" and "typically there is negligible net throughflow, with areas of local reverse flow" 1

These regions of reversed flow can lead to melting of the blades, and the motion of the blades

1Reference 2 pg. 135



through the stall cells can cause "large vibratory stresses in the blades" 2. In rotating stall,

"the flow at any local position is quite unsteady; however the annulus averaged mass flow is

steady with the stall cells serving only to redistribute this flow" 3. Although the averages may

be steady, they may also be at a much lower value than for the unstalled case, thus representing

a loss in engine performance. The most detrimental stall cell configuration is that of a single

cell, [1], and as a result, in the models to come, only waves of first harmonic will be considered.

One explanation for the development of rotating stall is given by the simple model in

fig.(1.1),[2], where a flow perturbation has caused the angle of incidence of flow on the blade

to be too large leading to separation and partial blockage of the blade channel. As a result

of this blockage, flow is diverted causing the next blade to stall and the previous blade to

unstall or have its angle of incidence decrease. In this way the stall cell propagates around the

circumference of the machine. The resulting flow blockage leads to a decrease in stage pressure

rise. The original flow perturbation that triggers events, in this model, can either be internal, for

example from non-symmetric tip clearance or burner instability or convected into the machine

in the form of inlet distortion, caused by poor inlet design, aircraft maneuvers, etc. The goal of

an active control scheme is to operate in the linear arena of these small perturbations, catching

the problem at its inception, and then controlling it with control perturbations that are small

relative to the power levels of the engine. Such strategies have already been demonstrated for

surge by Pinsley [18] and Gysling [19].

This thesis investigates the problem of launching these control perturbations and evaluating

their effectiveness. In order to accomplish this task a model used by Epstein, Ffowcs Williams,

and Greitzer, [4], is extended to include the effects of control wave launching. Methods for

predicting the new term that arises in this extension to the model are discussed and then used

2 Reference 2 pg. 134

3Reference 2 pg. 135



to perform a stability analysis. Models of the inlet guide vane row are developed and used to

determine how best to physically implement this control. Finally, this information is used in

designing and constructing hardware for testing.



Direction
stall prop,agation

A

Blade row

Figure 1.1: Inception of rotating stall [2]
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Chapter 2

Modelling the Overall Flowfield and the

Compressor

2.1 Compressor Model

Previous analytic models for rotating stall, inlet distortion, and compressor behavior have

lead to the general result that growth or decay of disturbances is related to the slope of the

compressor characteristic. In particular, decay occurs for P <0, growth for A >0 , with

the peak, or zero slope area of the characteristic, (P-PtlO)-=O , often taken as the criterion

for the onset of rotating stall and thus the stability boundary. Moveable inlet guide vanes

were chosen as the control perturbation launching mechanism in this analysis because of the

relatively low technical risk and promise shown in previous work, ([7], [20], [16] and [4]).

The model for the compressor must address the unsteadiness associated with the relative

motion of the rotor, stator, and flow disturbance traveling around the annulus. A compressor

model which accounts for this effect was used by Epstein, Ffowcs Williams, and Greitzer [4] and

will be extended here to include the effect of the control wave launching. The basis of the model

is the assumption "that the compressor pressure rise in unsteady flow can be found from the

axisymmetric flow performance together with a correction to account for flow unsteadiness" 1

For example, in the stator

AP 8¢
pU2  F() - 'S (2.1)
pU2  at

where

'Reference 1 pg. 373



be

SUcos
2  (2.2)

F , (O) represents the steady state performance, while r represents the inertia, and -• the

unsteady acceleration of the fluid in the blade row. Similarly, for the rotor

AP U (2.3)
= F=r() - rr( + (2.3)PU2 t r 80

where the term

u0a¢rr - (2.4)
r 00

represents the unsteadiness due to the relative motion of the rotor and flow disturbance. An

inlet guide vane row is similar to that of the stator except that the pressure rise is written in

terms of static to total

Pe -Ptri e
pU 2 -Pt = Fig,() - Tigva (2.5)
PU 2  at

Summing these three contributions to pressure rise, and defining A = r, +

and ',...(4) = Fig,(€) + Fr(¢) + F,(¢) results in

() P - P = s.() A rp (2.6)pU 2  "0 U at

For small amplitude flow perturbations the compressor can be expressed in linearized form as

SP, - SPt ,. 8 q•, 865 rp 86MPU-Ae -8tn = s6- (O) (2.7)
pU2  30 W U -t

In this investigation of control perturbations caused by moveable inlet guide vanes, the

compressor model must be expanded to include these perturbations. For a compressor with

moveable inlet guide vanes, the steady state pressure rise through the machine is not only a

function of 4, but also a function of flow angles, and therefore -, inlet guide vane stagger angle.

For example, in steady flow with flat plate airfoils assuming no separation, and high solidity,

such that flow angle equals blade stagger angle around the entire circumference of the machine,



the Euler Turbine equation gives pressure rise as a function of - and 0 as opposed to a function

of 4 only.

Pt= 2[1 - k(tanBe + tan-y)] (2.8)
P

Similarly then, (,.'.(€) is really T,,(, 7) and hence 8%., is given by S',..= ~6 + ~ .

Equations (2.6) and (2.7) become

(€) = ,.8.(,7) - A o80 U at (2.9)

( 8.) = r + 61 - A a8 (2.10)a•,) 80 U at
the resulting model for the compressor.

2.2 Modelling the Upstream and Downstream Flowfields

In addition to the pressure rise model developed for the compressor, it is assumed that the

machine is of high hub to tip ratio so that the problem becomes 2-D in 0,z space. In this 2-D

space, the compressor is "unwraped" as a cascade from 0 to 27r, or similarily, as an infinite

cascade arrangement with period 27r. Furthermore, the compressor is considered to operate in

a constant area duct far enough away from any other components of the engine, to prevent

coupling. Addressing the upstream flowfield first, far upstream, the flow is steady, and parallel.

There is nothing to cause streamline curvature, hence static pressure is constant with 0. In

addition, the flow upstream is irrotational, and assuming inviscid flow, it remains irrotational

up to the compressor face from Kelvin's thereom.

In the neighborhood of the compressor, there is a possibility for unsteady effects as a result

of the relative motion of the rotors and stators. However, upon a closer inspection of the rotor,

modeled as a row of moving vortices, representing the bound vorticity of the loaded rotor airfoils,

it can be seen that the effects on v, Pt, and P die off as er, away from the compressor in both

the upstream and downstream directions. The compressor then is not a passive player in the



system, but instead does send out small disturbances of its own, u', v' enZ/r, to redistribute

the flowfield entering the machine [2].

It is convenient to cast the problem in terms of a perturbation stream function, VCu. Conti-

nuity is then automatically satisfied, and irrotationality becomes Laplace's equation V 24' - 0.

Solving this equation, subject to the exponential boundedness condition discussed above, results

in

C, = Anein(e- at)+nz/r (2.11)

The upstream flow field is then represented as U = U + u', V = v', P = P + p and

u 1 a in -Anein(e-at)+nz/r (2.12)
r 90 r

v - 9 n Anein(O-at)+nz/r (2.13)
x r(2.13)

Writing Euler's equation in terms of these mean and perturbation quantities

dP - u , - v' d
x= - P[ ( + u) + (U + u)- ( + + U) + -(U + u')] (2.14)az at aX r TO

then expanding, keeping only first order terms, subtracting the mean flow equation, and noting

that au 0 and therefore 9u = 0 from continuity, results in
ap' ax' -au'
SP[ + U _- 

(2.15)
dx at ax

which can be written in terms of total pressure

8pt _ u' 8= -p - (p' + plu') (2.16)
dx at ax

Finally, V2pt = 0 from the divergence of Crocco's equation, and therefore, Pt is of the form

Bnein(O-at)+nz/r

Downstream, the flow is isentropic and inviscid. However, after passing through the com-

pressor, the flow now has a rotational and an irrotational part. The irrotational portion

of the downstream flowfield is solved in the same manner as for the upstream, resulting in



PIrd = Inein(e-at)- nz/r. The rotational part is solved for as follows. Using Kelvin's Thereom

again, for 2-D inviscid flow gives = 0 ,which after expansion and linearization gives

at +  = 0 (2.17)

with solution w' - ein(O-at+ ). This vorticity is then used in Poisson's equation, V2 4d = -WI,

which has solution

Cd = Inein (O- at)- nz/r + Rnein(O-at+ )  (2.18)

d n [Inein(-at)-nz/r + Rnein(e-at+-)] (2.19)
r

Vd I nein(e-at)-nz/r - Rnein( -ot+#) (2.20)
r U

By combining the linearized 2-D equations of motion it can be seen that the pressure

perturbation must satisfy Laplace's equation, V 2p' = 0 with solution p' = Cnein(O-at)-nz/r, [6].

As with the upstream flow, far enough downstream, the static pressure is again constant with

0. Finally, assuming constant leaving angle at the exit implies u= Olat compressor exit from

continuity, and then equation (2.15) gives ap= -put compressor eit
ax "- - 'at compressor exit-

The upstream, and downstream flowfields are matched across the compressor. The com-

pressor is assumed to have close axial spacing, so that there is no crossflow in the 0 direction,

and u = u, = ud. Substituting in for the various terms in the compressor equation

a_._ a_,. a_ ra (S.1

=s(€) = 6- + 8-y - a (2.21)9- 8a 80 U at
where 54 = }-, and -y = 0 for the control off baseline case, results in

2ria _a r# .v2rio - - + ri. (2.22)u a8 u

U -- Ur + iai

Defining the stability boundary at ui=O, zero temporal growth rate, the two resulting equations

are

real =z4 0= (2.23)



UAn
imaginary ar = U (2.24)

2r + rlun

As stated earlier, the stability boarder is at the peak of the characteristic.

With control, solving the system of equations in the same manner, gives

2ria a0 8 rp8- = 68 + 5s - AinS1  + ina6b (2.25)U - Y7 U

Assuming a linear control scheme of Sy = z5b results in

2ria _ a8 rL .- = - +  z - Ain+ ina (2.26)U ao a8 U

Again, solving for the stability boundary, with a = ar and z = Zr + izi

real =- + zr = 0 (2.27)

SU(An - " zi)
imaginary =4 a.r =--- (2.28)

2r + rpn

If a(n), - ((4) and •( ) are all known, then these two equations can be solved to find the

stability boundary, and stall cell propagation speed.

2.3 Evaluation of 0(0), -( ) and ()

These three terms are required to solve the stability boundary equation. Starting with

('), a first guess at this value could be estimated by taking the derivative of the equation

(2.8) which results in 2 =--4sec2 y. However, a more accurate method would be to look at

different compressor characteristics, for different stagger profiles and at a given 4 calculate __

from the discrete defenition of derivative

4(2.29)
7 272 - 71

fig.(2.1).



To carry out such work, a code written by Chen based on [12] to calculate compressor

performance was modified, and used, resulting in 0(4), fig.(2.1,2.2). The code does not agree

well with data, and in particular, the characteristic does not peak over, as in the actual case. In

other words, the loses at low 0 associated with the separation and stalling of the blades, are not

well accounted for. However, this peak of the characteristic, and lower values of 4 are precisely

the areas of interest here. Because of the inaccuracy in this region, the differencing procedure

was carried out experimentally, with measurements taken on the MIT single stage compressor at

three different inlet guide vane stagger settings by Schulmeyer, the baseline, fig(2.2), and inlet

guide vane restaggerings of ±7.50 fig (2.3). Here, the characteristics peak over as expected, but

there are not many points to the left of the peak, and the characteristics all start to coalesce

at the peak, causing - to approach 0. To fill in this missing information, parabolas were

fit to the characteristics, by fitting a quadratic through two points of the characteristic, and

matching slopes at the peak, fig.(2.4). The two common points were chosen near the peak

again since this is the region of interest. Using these three curve fits for 0(4), -( ) can

be found for the baseline, fig.(2.5), jig, = 150, case from the definition of discrete derivative

mentioned above, and 9(€) from direct differentiation. Substituting, in the stability boundary

equation (2.27), results in an equation for Ostability boundary with z as a parameter. Solutions for

several values of z are plotted in fig(2.6,2.7). From this plot, it is seen that control is effective,

8s.b.-control on < Cs.b.-control off whenever zr > 0, in other words, the more in phase -y and 6t

are, the more effective is the control for a given magnitude of z.



2.4 Determining the Required Inlet Guide Vane Stagger Pro-

file

Let the flow disturbance, 8€, and blade mistagger profile, -y, be represented by Fourier

series, 86 = E 8,nein( -Ot), S6 = E Gnein (o- a t ). To estimate 7 as a function of 0 it was

assumed that each blade controlls the zone of its maximum projection onto the r,0 plane, ie.

half chord below the blade to half chord above it in the form of a step function, and stagger is

defined over the entire 1 chord area, and equal to its value on the blade. Between these zones

stagger is defined as 0.

Then from the control law 87 = z6S, Gn = z60, for all of the harmonics, and one can

determine the mistagger profile, 8y, required for control of a given perturbation, 6S, with

parameter z. Recalling that only waves of first harmonic will be looked at, the question arises

as to what dy profile will give the first Fourier coefficient. Basically, this is a problem in

representing a continuous wave in discrete fashion, and an important parameter will be the

degree of discreteness, or discrete/continuous ratio which is best represented by the solidity,

and fraction of blades moved. The limiting case as solidity approaches infinity, and all blades

are moveable will be referred to as the continuous case.

For analysis, will consider a cosine, one harmonic, 64 perturbation. Then 80 = |101cos(O) =

1601 E S6nein(O-at) , with 5q1 known from Fourier decomposition of the unit cosine wave. In

the limiting continuous case, the maximum mistaggering required, DGmont., is zltS1 and from

87 = z8o, G1 = zl58418 1 fig.(2.8). On the otherhand, when a discrete case like fig.(2.9) is

Fourier transformed it has a first Fourier coefficient, Gldisc., that is not necessarily the same as

the required Glco,,.. However, since Fourier series representation is linear, the required Glcot.

can be achieved using this discrete representation, if the spikes are altered by the factor Glron,.
Gldisc.

Multiplying by this factor results in fig. (2.10), which shows that the maximum amount of blade



deflection for this particular discrete case is roughly six times that needed in the continuous

case DGis 6. Similar calculations were performed for fig.(2.11,2.12) which when Fourier

decomposed, all have G 1 = z16016€ 1. For a fixed number of blades, the spacing is also fixed

and therfore solidity and chord are proportional. As solidity changes, the size of the zone

influenced by each blade will also change proportionally. This explains why the spike widths in

fig(2.10,2.11,2.12) differ by a factor of 2.

This factor, G t., is a complex number, Fe i , and therefore can involve a change in both
Gldise.

magnitude and phase of the original dy profile. However since the location of the blades is fixed,

this phase shift of the function cannot be accomplished by translating the plot ±P degrees,

fig(2.13). Instead, both changes are accomplished by altering spike heights only, fig(2.14), and

no shifting of spike locations is required. This is demonstrated for F=2, P=- in fig(2.13,2.14).

Therefore, for any discrete configuration and required Go the ratio = DG, = di Gl

=-(max. mistagger disc.)/(max. mistagger cont.) will create the correct d-y(O) profile to acheive

the required Glcont-

Two cases were examined. In the first case the moveable blades were either in an "on"

or "off' position , and in the second case, the magnitude of blade mistagger was variable.

Runs were done for 48 blades at a solidity of .5 and 1. Some results of this analysis are seen

in fig.(2.10,2.11,2.12) displaying the various -& profiles required for control. Figure(2.15) is

a summary of these calculations, which basically confirms that for a given desired wave form

Glo,,nt., the maximum amplitude of discrete turning, DGdis,, decreases as the fraction of blades

moved increases, or as solidity increases. The two and four blade cases have the same value

because the four blade case degenerates to the two blade case, since for the cosine distribution,

two of the blades are at 7r/2 and 37r/2 and hence their misstagger, d-y=O. These relations hold

independent of the value of the common factor z 260.

For example, consider the case of z = Re'B - 1 and 60 = 1% of mean flow. From fig.(2.6,2.7)



A 0, .. =-.056 and from fig.(2.4) 0s.b.-control off=.4 , so = .38, and 8S=.0038. If only
e.b.-control off

half of the blades are moveable, fig.(2.15) gives the factor = DG- ,- =1.98. It has been shownDGcont.

that DG, the maximum required discrete mistaggering, is the product of this factor and the

continuous value, z68I|, resulting in DG=.43 degrees. Therefore, to keep the compressor stable

to a 1% 80 perturbation at a 4 of .38, requires a maximum blade deflection of roughly half a

degree, which is allowable.
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Chapter 3

Steady potential calculation of 9

3.1 The New Term, a

In the previous analysis, the perturbation pressure rise was represented by the term S) =

S-y, with -y treated as a step function. As mentioned earlier, the pressure rise through the

machine actually depends on flow angle, and stagger angle implicitly since flow angle is a

function of blade stagger, 0 = 0(0, a(o)). Modelling this effect through the compressor will

then alter the term •0S-y of the compressor equation (2.10) to -1b8a = a '9 8 "y. The term, aa

represents the relationship between blade stagger and flow angle. Making this change in the

compressor equation leads to

___ a•, , ar AS¢ r~iaSq6X(€) -- . a. 8 + " a" -a (3.1)
ao aa a-Y a U at

Letting Sa = z86 and again defining the stability boundary at ai = 0

real -+ Zr = 0 (3.2)

U(An - Z (i)imaginary =i Ur =t a (3.3)
2r + run

basically the same equations as before, except that now for a given z and S6 the required

stagger profile is not zb8 as before but z6q(2-). Letting Sa = E anein(O-at), and 6a = zS6,

the question then becomes once again, for a given z and sensed 86, how do the blades need to

be arranged. In other words, what is the relationship, a, between blade movement and flow

angle?



3.2 Calculation of (9

To find an estimate for this term, a potential flow code based on vortex singularity method

[10],[22] was written. In this method, the airfoils are replaced by a distribution of a finite number

of discrete vortices along the camber line. Use of complex potentials [11] allows straightforward

conversion to an infinite 2-D steady cascade, of periodic geometry. The chosen period of this

infinate cascade is 0-21r, the unwrapped compressor.

Several basic text books, such as [22],[21] discuss this modeling of airfoils in potential flow

fields. The geometry of the airfoil is built up around the camber line. The thickness is added

by a distribution of sources and sinks, and the required airfoil circulation is modeled as a vortex

sheet along the camber line. Because the thickness distribution does not really affect the flow

turning, only thin airfoils are considered. The vortex sheet distribution on each airfoil is found

by solving Neuman boundary condition equations of no flux through the airfoil, and satisfying

the Kutta condition of Pu = P1, -YTE = 0, at the trailing edge.

To solve this problem computationally the vortex sheet I(x) is replaced by discrete vortices

Pi(xi) at specific stations, xi. r, = 0 is known from the Kutta condition, but the other n-

1 vortex strengths must be determined from the n-1 no flux equations. The points midway

between the discrete vortices were choosen as the locations at which to employ the no flux

condition. Because the compressor is unwrapped into an infinite cascade of period 27r, the

complex potential for an infinite row of vortices of spacing 27r will be used from [11].

iF 7rz
w - logsin (3.4)

27r a

r sin(h)•
Uinduced = s = -PGJ(n) x F(n) (3.5)

2a cosh(Ž.) - cos(2 y)

F sinh(2 -
x

)
indu ed nh() QGJ(n) x P(n) (3.6)

2a cosh( 'a) - cos( 2 a )

where

X - Xsource - Xfield Y = Ysource - Yfield a = 27rr (3.7)



1 sin( 2 a)
PGJ(n)= aa (3.8)

2a cosh(2!) - cos(2 ')

1 sinh ( 21 )
QGJ(n) = as (3.9)

2a cosh( Q) - cos( 2J-)

The two geometric configurations used were flat plates and circular arcs. Once the misstag-

ger profile has been established, the locations of the discrete vortices, and the no flux control

points are all known, and the induced velocity at any point is

nb x nvpb

Vinduced = -PGJ(n)F(n)7+ QGJ(n)F(n)J (3.10)
n=1

where n ranges from 1 to nvpbxnb=number of vortices per blade x number of blades. In

addition to the induced velocity the freestream velocity is

Vo, = Voo cos(ai) + Voo sin(ai)j (3.11)

Hence, the total velocity at a given point is

Utotal = Voo cos(ci) + Uinduced (3.12)

Vtotal = Voo sin(ai) + vinduced (3.13)

The no flux equations become Vtota i n=0O or Vinduced - n' = -Vo - n'. This is represented as the

matrix equation

Enbx" Vb(-pGJ(n)n, + QGJ(n)ny)

nb x nvpb

S(n)

By leaving P(T.E.) out of the calculation, it is implicitly set =0 satisfying the Kutta condition.

Using a standard gaussian elimination routine on the equation AB=E gives B = A-'E. If the

vortex strengths are known, the velocity anywhere can be calculated via eqn.(3.12,3.13).

i
-V00n

I



The completed code was checked in several ways, such as fig.(3.1) comparing results for k,

(lift on an airfoil in a cascade)/(lift on an isolated airfoil), with Hawthorne [27], calculating

flux through the blade, and calculating over a region larger than 3600 degrees to check peri-

odicity. Fig.(3.2) shows the basic set up of the cascade, for the particular case of 36 circular

arc airfoils at a solidity of 1.8 with mean cascade turning of 10 deg., and 9 moveable blades,

misstaggered in a cosine pattern of amplitude DGdi,,. = 4' . The flow angle distribution at .2

chord downstream is also plotted. Flow angle distributions at 1 and .2 chord downstream and

the stagger profile of the blades with the mean turning subtracted out are plotted in fig(3.3)

for 48 blades, with solidity of 1, and 8 blades moveable. Figure(3.3) graphically illustrates

the 2 relationship. Quantitatively this relationship, 0, is the nondimensional magnitude of

the created control wave, magnitude of Sa wave __ 2 As was done earlier with the stagger
max. amount of misstagger - DGd

profiles, this parameter will also be compared to the continuous, infinite solidity, case giving

aa
a- disc. (3.14)
aa
55 cont.

since a_ =1.a79 cont.

Running the same case as in fig.(2.15) leads to the results of fig.(3.4). This code was then

used in a parametric study to investigate the influence of solidity, fraction of blades moved,

mean turning of the cascade, and geometry, flat plate vs. circular arcs, on the a, 4J G 1

relation. Fig.(3.5) summarizes this study showing the effect of these parameters on -. As

expected, 2 approaches 1 as the geometry approaches the continuous case. It is seen that

the fraction of blades that are controllable, and the solidity, are far more important than the

specific geometry of the blades, such as flat plates, circular arcs, amount of mean turning of

the cascade, etc. This is to be expected , since as stated earlier, solidity, and fraction of blades

moved are the two parameters that measure how close to the continuous case any other case is.

Figure(3.5) shows that the fraction of blades which are moveable, has the most effect. This

point is also made clear by fig.(3.6) which compares moving half of the blades at a given solidity



to moving all of the blades at half that solidity. The fact that 2 actually increased from .416

to .608 shows that increasing the fraction of blades moved more than offsets the loss from

decreased solidity. The fixed blades thus attenuate the signal of the moveable ones. It should

also be noted that fig. (2.15) is then the inverse of fig.(3.4), as is shown by fig.(3.7), since the

ratio of maximum blade misstaggers can be re- written in terms of flow angles using the a

relationship, giving

DGdisc. ( Sa)dise. 1Dads. - ( s. _ 0_) _ 1 (3.15)
DGcont.- (a•t. .adisc. - ace

.9."cont. 197disc.

with 6Cdisc. = SQeont. = Z6S = 8adesired and oa - 1.d7 cont

The discrepancy in fig.(3.7) is due to the fact that the first analysis had assumed = 1 and

in so doing used a control wave of square pulse components, instead of triangular components

with 9 a function of the fraction of blades moved, as in the current analysis. Finally then,

with half of the blades moveable -2-=.43 from fig.(3.4), and for the example from earlier of a

1% flow perturbation, the maximum blade misstaggering, DG= S•a = .50. , which is again a

reasonable amount of blade turning.

3.3 Choice of Geometry

The final inlet guide vane configuration consisted of 12 NACA .0009, uncambered airfoils,

all moveable, at a solidity of .6, equally spaced about the annulus. The geometry of the

individual blades was based on the fact that there was not much difference between flat blades

and circular arc blades, at least from a control wave launching point of view, fig.(3.5). The

overall configuration, solidity, and number of moveable blades resulted from a desire to increase

the value of kstability boundary, concerns about separation caused by diffusion in the regions of

moveable blades fig.( 3.8), and the fact that fixed blades only reduce the fraction of moveable

ones, and attenuate the control signal. Experimental testing of the compressor with no inlet

guide vanes by Schulmeyer, showed that the reduced solidity would not significantly increase



the stall cell speed, which was roughly 12 Hz. For this geometry, the value of a, as mentioned

before is .608, and the compressor is now on the yig, = 0' speedline. Using this new speedline,

and corresponding " function in the stability analysis developed earlier results in fig(3.9,3.10).

From these plots it is seen that for the earlier example the maximum amount of blade deflection

required for a 1% disturbance is roughly .360.
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Chapter 4

Unsteady Potential Calculations

4.1 Setting up the Equations

To check the final design for reduced frequency effects, a code was written to include un-

steadiness from the inlet guide vane motion. The method used was once again a mean camber

line point vortex singularity, infinite cascade method based on [8],[9],[10]. However, in this case

instead of solving Neuman boundary conditions for the strengths of the vortices, Cp results of

the double linearization code by Namba and Toshimitsu [9] were converted into bound vorticity,

"yb. Because the circulation on the airfoils is changing with time, a vortex sheet wake is shed

as a consequence of Kelvin's thereom, and must be included in the flow calculations. Following

Whithead and Namba [9],[8] the amplitude of vibration is assumed small and the resulting vor-

tex sheet of sinusoidal strength does not distort or curl up, but convects at free stream velocity

as a 2-D vortex sheet. This shedding of a vortex sheet is developed by Whithead [8], fig.(4.1),

with result

bound vorticity = -Yb(X,t) = -beiwt free vorticity = -yf(z,t) = f eiwt (4.1)

gives

7f ( Uf)elut x x x (4.2)

where

* = : XL.E. < < < T.E. (4.3)

X* X= T.E. T.E < X

and

AP(x) = -pU'Yb(x) (4.4)



The Kutta condition is satisfied by having 7b, AP -- 0 at T.E.

The rest of the cascade is created by the time phase shift from blade to blade specified by

the interblade phase angle. Therefore, for the infinate cascade of period 12 blades, the inter

blade phase angle is 300. With this geometry and the expressions for all the vorticity "yb and

-i the problem can be discretized by letting Fi = yidx and solved in the same method as the

steady case, using Lamb's [11] infinite row of vortices potential for both Fb and rf . Whereas

before, in the steady case, there was only -yb on the airfoil, now there is 'b on the airfoils, and

yf on the airfoil and off of it in the wake. However, in this case, the number of columns of

infinite vortices and hence equations is infinite since the wake goes out to infinity. The wake has

an asymptotic effect on the flow field, and hence neglecting the wake a relatively far distance

away from the calculation point, does not effect the answer, and makes the number of equations

finite and the problem solveable.

4.2 Test Comparrisons

Calculations were carried out to check that there was no flux through the blades. Further-

more, wake density, defined as the distance between discrete vortices modelling the continuous

sheet, was altered as was wake length, and both had asymptotic effects as expected. As a result

of this study, six chord lengths of wake, and a density of a vortex every .1 chord were choosen.

Furthermore, the integrated values of C, and Cm were compared with those of Whitehead [8].

Also, an analytical solution can be obtained for v, the y velocity component at the point (x0 , Yo).

Modelling the sinusoidal strength vortex wake as "ysin(x) fig.(4.2) then from the potential for

a point vortex

U = Fr 0sin(x) dx (4.5)r 2r dz (4.5)2r -- 2 [(xo - z)2 + (yo - y)2]



and using angle relations to obtain expressions for the y-cartesian component,

0o - x) sin(x) x0 - x
v = 28( )(r )dz (4.6)r o 27r r

at x0 = 0

v = dx = -- e (4.7)
V 00 xsin(x)d = -yo (4.7)

Again, results of this calculation exhibited asymptotic behavior with values of Vcode,-VnaltiVcal
Vanalytical

of only 2 percent.

4.3 Results

As a final test, calculations of the choosen geometric configuration of 12 blades at a solidity

of .6 were done, for the zero and non-zero interblade phase angle cases and checked against

the steady code results as reduced frequency approaches 0, fig.(4.3). Once again, the unsteady

result a= .590 asymptotes to the steady result 9a = .608 as reduced frequency decreases,

and the number of vortices per blade increases. Therefore, for the expected reduced frequency

of roughly .5, unsteady effects from the blade motion may cause a change in by a factor

of roughly .7, and hence for the 1% disturbance from earlier, the maximum blade deflection

becomes .5.
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Chapter 5

CONCLUSION

5.1 Results

This thesis has been a preliminary investigation into the launching of control perturbations

in the compressor via inlet guide vane movement. The fraction of blades that are moveable was

found to be the most important parameter governing control wave launching. Solidity was of

less importance, with mean turning of the cascade, and camber of the airfoil having an even

smaller effect on control wave launching. Several different analytic tools have been developed

to show that the maximum blade mistaggering required to create such control perturbations is

not prohibitive. All the models show that for 1% flow perturbations, blade movements on the

order of only .50 are needed, and initial testing of epoxy blades has acheived this at 100 Hz.

In light of these results and those of Garnier [26], for rotating stall precursor sensing, it does

seem quite feasible to control rotating stall in its linear perturbation range with moveable inlet

guide vanes.

5.2 Future Work

The next locigal step is to actually try to carry out this control on a real machine. Presently,

a proof of concept experiment is being assembled at M.I.T. The experiment will be run on the

low speed single stage compressor. This machine has an outer diameter of 23.25 in. and an

inner diameter of 17.5 in. fig.(5.1). The blading will consist of an inlet guide vane row of 12

blades, the uncambered NACA .0009 airfoils described earlier, 44 rotor blades with solidity

of 1.02 and 45 stators with solidity 1.05. The rotor is driven by an electric motor at a range



of speeds 0 - 3000 r.p.m. This is the same compressor used by Garnier [26] and Schulmeyer

[20], and further documentation can be found there. A new inlet guide vane ring was designed

and built, [29], with provisions for 24 blades, measurement ports, and mounts for actuators

and related subsystems fig.(5.2). A full complement of 26 NACA .0009 airfoils were also made.

In order to maximize control frequency, and speed for a given actuator, it was desireable to

have blades of low moment of inertia. To acheive this, the blades were made out of epoxy

cast about a metal spine. The moment of inertia was Iz. = 1.195 x 10-5kg m2 (compared to

Izz = 2.933 x 10-5kg m2 for solid aluminum [24]). To drive these 12 blades, Paduano [23] has

designed a system consisting of 12 Pacific Scientific 4VM62-200-1 D.C. motors with a torque to

inertia ratio=2.67 x 105s-2, along with amplifiers, and an air cooling system, all controlled by a

80386 processor. Also in the control loop is a data acquisition system to check flow angles and

rates. The locating system for the blade actuators uses optical encoders good to roughly a tenth

of a degree. Shake down tests of the motors with the mounted epoxy blades has demonstrated

the band width of the servos to be roughly 90Hz. Initial tests will involve measurements of the

flowfield downstream of the inlet guide vanes to compare with the predictions of the codes. Stall

cell speed will be checked, several speed lines obtained, and finally, control will be attempted

by oscillating the blades.



Figure 5.1: Compressor dimensions
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Appendix A

Unsteady Potential Calculations

Following the work of Whithead [8], from Kelvin's thereom = - 0 so F about a curve of

fixed identity stays constant, and convects with the fluid. Hence, from fig(A.1) it can be seen

that if the bound vorticity, -Ib has changed during the time interval t 2 - tl , the only way for

r to stay the same is if an element of free vorticity, Arf = -AFb, is formed. Assuming an

element of bound vorticity at (x, 0), -b - "b(x)dxei wt fig(4.1) where yb(x) = ~  Au, this time

changing Yb will lead to a shed vortex sheet of sinusoidal strength fig(4.2). Furthermore, since

this vorticity is freely convecting, there is a distinct time, displacement relationship and phase

shift.

AX = UAt = x 1 - x (A.1)

rf(x2,t) = rf(xl,t - At) = rf(zl,t - ) -+ rfP(2)ewt = rf(xl)eiw(t- ) (A.2)

Therefore in relation to -Yb(x)dx at (x,0)

rf(x,t) = (constant)eiw(t- ) (A.3)

Returning to Kelvin's thereom, in a short time interval St , the change in Fb,

AFb = rSt = iwYb(x)dxe"wtSt (A.4)

and since

Af f = -AFb Af =-iW-Yb(x)dxe wtSt = rf (A.5)

because rf = 0 for t < 0. This gives the magnitude of the constant in eqn.(A.3). The local

sheet strength -y(xl) is distributed over the convected distance

UAt = Ax -- 'f(xi, t) = A U b()d eiw(t-)) (A.6)



To obtain the complete value of 7I the contributions form all the other -ybdx must be

included.

y 1(x, t) = Z f 7b(x )dxe(U) (A.7)

Letting

b b(, t) = 7be C t

-iwL.E.

7f(x, t) = -fe iwt

'lb(xl)e'U(x,-z)dxl

x* -= X : L.E. < X < XT.E. (A.10)

x XT.E. XT.E. < X

A differentil equation relating -Tb and 7f can be obtained by differentiating (A.9) with respect

to x over the blade surface, using Leibinitz's rule

dx:+ U + 7) = o0 (A.11)

By applying the linearized Euler equation on both the upper and lower surfaces of the airfoil

d 8a
( Ua+ )(ueiwt)at a•

a(
++ U-)[ (ui - U)ex)e

remembering that AU = 7total = 7f + 7b

D D
a + U +a /Y b) =

1 ap iwt

p dsx

1 (P, - Pu) eiwt
p dx

1 dAP

p Dx

gives

where

(A.8)

(A.9)

(A.12)

(A.13)

(A.14)

-- • rn . 2..•-



iw(Yf + b) + U aazx
+ Ua-8z

1 APp --p ax (A.15)

and using equation (A.11) gives.

S+ = - U7baz (A.16)

Integrating this equation with one of the limits off of the airfoil, and using the fact that AP =

-b = 0 off of the airfoil gives

U-Yb =-P -- AP(x) = -pUb(x) (A.17)

The Kutta condition is satisfied by having "Yb, AP -- 0 at T.E.

1 dAP

p 8X
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