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Chapter 1

Introduction

1.1 Problem Description

In a number of applications, introduction of speech models provides im-

proved performance. For example, in applications such as bandwidth com-

pression of speech, introduction of an appropriate speech model provides

increased intelligibility at low bit rates when compared to typical direct

coding of the waveform. The advantage of introducing a speech model is

that the highly redundant speech waveform is transformed to model param-

eters with lower bandwidth. Examples of systems based on an underlying

speech model (vocoders) include linear prediction vocoders, homomorphic

8
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vocoders, and channel vocoders. In these systems, speech is modeled on

a short-time basis as the response of a linear system excited by a periodic

impulse train for voiced sounds or random noise for unvoiced sounds. For

this class of vocoders, speech is analyzed by first segmenting speech using

a window such as a Hamming window. Then, for each segment of speech,

the excitation parameters and system parameters are determined. The ex-

citation parameters consist of the voiced/unvoiced decision and the pitch

period. The system parameters consist of the spectral envelope or the im-

pulse response of the system. This class of speech models is chosen since

the excitation and system parameters tend to vary slowly with time due to

physical constraints on the vocal tract and its excitation sources. In order

to synthesize speech, the excitation parameters are used to synthesize an

excitation signal consisting of a periodic impulse train in voiced regions or

random noise in unvoiced regions. This excitation signal is then filtered

using the estimated system parameters.

In addition to the lower bandwidth of the model parameters, speech

models are often introduced to allow speech transformations through mod-

ification of the model parameters. For example, in the application of en-

hancement of speech spoken in a helium-oxygen mixture, a nonlinear fre-

9



quency warping of the spectral envelope is desired without modifying the

excitation parameters [281. Introduction of a speech model allows separa-

tion of spectral envelope and excitation parameters for separate processing

which could not be directly applied to the speech waveform.

Even though vocoders based on this class of underlying speech models

have been quite successful in synthesizing intelligible speech, they have

not been successful in synthesizing high quality speech. The poor quality

of the synthesized speech is, in part, due to fundamental limitations in

the speech models and, in part, due to inaccurate estimation of the speech

model parameters. As a consequence, vocoders have not been widely used in

applications such as time-scale modification of speech, speech enhancement,

or high quality bandwidth compression.

One of the major degradations present in vocoders employing a sim-

ple voiced/unvoiced model is a "buzzy" quality especially noticeable in

regions of speech which contain mixed voicing or in voiced regions of noisy

speech. Observations of the short-time spectra indicate that these speech

regions tend to have regions of the spectrum dominated by harmonics of

the fundamental frequency and other regions dominated by noise-like en-

ergy. Since speech synthesized entirely with a periodic source exhibits a

10
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"buzzy" quality and speech synthesized entirely with a noise source ex-

hibits a "hoarse" quality, it is postulated that the perceived "buzziness" of

vocoder speech is due to replacing noise-like energy in the original spectrum

with periodic buzzy" energy in the synthetic spectrum. This occurs since

the simple voiced/unvoiced excitation model produces excitation spectra

consisting entirely of harmonics of the fundamental (voiced) or noise-like

energy (unvoiced). Since this problem is a major cause of quality degra-

dation in vocoders, any attempt to significantly improve vocoder quality

must account for these effects.

The degradation in quality of vocoded noisy speech is accompanied by a

decrease in intelligibility scores. For example, Gold and Tierney [7] report a

DRT score of 71.4 (Table 1.1) for the Belgard 2400 bps vocoder in F15 noise

down 18.7 points from a score of 90.1 for the uncoded (5 kHz Bandwidth, 12

Bit PCM) noisy speech. In clean speech, a score of 86.5 was reported for the

Belgard vocoder, down only 10.3 points from a score of 96.8 for the uncoded

speech. They call the additional loss of 8.4 points in this noise condition the

"aggravation factor" for vocoders. One potential cause of this "aggravation

factor" is that vocoders which employ a single voiced/unvoiced decision for

the entire frequency band eliminate potentially important acoustic cues for

11



distinguishing between frequency regions dominated by periodic energy due

to voiced speech and those dominated by aperiodic energy due to random

noise.

Table 1.1: DRT Scores

Another important piece of information in Table 1.1 is that for clean

speech, the DRT score remains about the same when an all-noise excitation

is used in the Belgard Vocoder. However, for noisy speech, the DRT score

drops about 5 points with the all-noise excitation. This indicates that the

composition of the excitation signal can be important for intelligibility,

especially in noisy speech.

As will be discussed in Section 1.2, in previous approaches to this prob-

lem the voiced/unvoiced decisions or ratios control large contiguous regions

of the spectrum. These approaches are too restrictive to adequately model

12

Vocoder Clean Speech F15 Noise

Uncoded 96.8 90.1

Belgard: 2400 bps 86.5 71.4

Belgard: Noise Excitation 86.4 66.3
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many speech segments, especially voiced speech in noise.

Inaccurate estimation of speech model parameters has also been a ma-

jor contributor to the poor quality of vocoder synthesized speech. For

example, inaccurate pitch estimates or voiced/unvoiced estimates often in-

troduce very noticeable degradations in the synthesized speech. In noisy

speech, the frequency of these degradations increases dramatically due to

the increased difficulty of the speech model parameter estimation prob-

lem. Consequently, a high quality speech analysis/synthesis system must

have both an improved speech model and robust methods for accurately

estimating the speech model parameters.

1.2 Background

A number of mixed excitation models have been proposed as potential solu-

tions to the problem of "buzziness" in vocoders. In these models, periodic

and noise-like excitations are mixed which have either time-invariant or

time-varying spectral shapes.

In excitation models having time-invariant spectral shapes, the excita-

tion signal consists of the sum of a periodic source and a noise source with

13



fixed spectral envelopes. The mixture ratio controls the amplitudes of the

periodic and noise sources. Examples of such models include Itakura and

Saito [14], and Kwon and Goldberg [15]. In the excitation model proposed

by Itakura and Saito, a white noise source is added to a white periodic

source. The mixture ratio between these sources is estimated from the

height of the peak of the autocorrelation of the LPC residual. Results

from this model were not encouraging [17]. In one excitation model im-

plemented by Kwon and Goldberg, a white periodic source and a white

noise source with the mixture ratio estimated from the autocorrelation of

the LPC residual are reported to produce "slightly muffled" and "hoarse"

synthesized speech.

The primary assumption in these excitation models is that the spectral

shapes of the periodic and noise sources is not time-varying. This as-

sumption is often violated in clean speech. For example, inspection of the

speech spectra in mixed voicing regions such as a typical /z/ (Figure 1.1)

indicates that low frequencies exhibit primarily periodic excitation and the

high frequencies exhibit primarily noise-like excitation. However, inspec-

tion of speech spectra in almost completely voiced regions such as a typical

/a/ (Figure 1.2) indicate that a periodic source with a nearly fiat spectral

14
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Figure 1.1: Spectrum of a /z/ Phoneme

envelope is required. Similarly, speech spectra in completely unvoiced re-

gions such as a typical /t/ (Figure 1.3) indicate that a noise-like source

with a flat spectral envelope is required. These observations indicate that

periodic and noise sources with time-varying spectral shapes are required

and help to explain the poor results obtained with the excitation models

having time-invariant spectral shapes.

In excitation models having time-varying spectral shapes, the excitation

signal consists of the sum of a periodic source and a noise source with

time-varying spectral envelope shapes. Examples of such models include

Fujimara [5], Makhoul et al. [17], and Kwon and Goldberg [15].
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Figure 1.2: Spectrum of a /i/ Phoneme
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Figure 1.3: Spectrum of a /t/ Phoneme
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In the excitation model proposed by Fujimara, the excitation spectrum

is divided into three fixed frequency bands. A separate cepstral analysis

is performed for each frequency band and a voiced/unvoiced decision for

each frequency band is made based on the height of the cepstrum peak as

a measure of periodicity.

In the excitation model proposed by Makhoul et al., the excitation sig-

nal consists of the sum of a low-pass periodic source and a high-pass noise

source. The low-pass periodic source was generated by filtering a white

pulse source with a variable cut-off filter. Similarly, the high-pass noise

source was generated by filtering a white noise source with a variable cut-

off high-pass filter. The cut-off frequencies for the two filters are equal and

are estimated by choosing the highest frequency at which the spectrum is

periodic. Periodicity of the spectrum is determined by examining the sepa-

ration between consecutive peaks and determining whether the separations

are the same, within some tolerance level.

In a second excitation model implemented by Kwon and Goldberg, a

pulse source is passed through a variable gain low-pass filter and added to

itself, and a white noise source is passed through a variable gain high-pass

filter and added to itself. The excitation signal is the sum of the resul-

17
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tant pulse and noise sources with the relative amplitudes controlled by a

voiced/unvoiced mixture ratio. The filter gains and voiced/unvoiced mix-

ture ratio are estimated from the LPC residual signal with the constraint

that the spectral envelope of the resultant excitation signal is flat.

In these excitation models, the voiced/unvoiced decisions or ratios con-

trol large contiguous regions of the spectrum. The boundaries of these

regions are usually fixed and have been limited to relatively few (one to

three) regions. Observations by Fujimara [5] of devoiced" regions of fre-

quency in vowel spectra in clean speech together with our observations

of spectra of voiced speech corrupted by random noise argues for a more

flexible excitation model than those previously developed. In addition, we

hypothesize that humans can discriminate between frequency regions dom-

inated by harmonics of the fundamental and those dominated by noise-like

energy and employ this information in the process of separating voiced

speech from random noise. Elimination of this acoustic cue in vocoders

based on simple excitation models may help to explain the significant in-

telligibility decrease observed with these systems in noise [7]. To account

for the observed phenomena and restore potentially useful acoustic infor-

mation, a function giving the voiced/unvoiced mixture versus frequency is

18
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desirable.

One recent approach which has become quite popular is the Multi-Pulse

LPC model [1]. In this model, Linear Predictive Coding (LPC) is used to

model the spectral envelope. The excitation signal consists of multiple

pulses per pitch period instead of the standard LPC excitation consisting

of one pulse per pitch period for voiced speech or a white noise sequence

for unvoiced speech. With this model the original signal can be recovered

by using one pulse per sample and setting the excitation signal to the LPC

residual signal. However, coding the excitation signal for this case would

require a prohibitively large number of bits. One method for reducing the

number of bits required to code the excitation signal is to allow only a

small number of pulses per pitch period and then code the amplitudes and

locations of these pulses. The amplitudes and locations of the pulses are

estimated to minimize a weighted squared difference between the original

Fourier transform and the synthetic Fourier transform. This estimation

procedure can be quite expensive computationally since the error criterion

must be evaluated for all possible locations of each pulse introduced. One

drawback of this approach is that the pulses are placed to minimize the fine

structure differences between the frequency bands of the original Fourier

19



transform and the synthetic Fourier transform regardless of whether these

bands contain periodic or aperiodic energy. It seems important to obtain

a good match to the fine structure of the original spectrum in frequency

bands containing periodic energy. However, in frequency bands dominated

by noise-like energy, it seems important only to match the spectral envelope

and not spend bits on the fine structure. Consequently, it appears that a

more efficient coding scheme would result from matching only the periodic

portions of the spectrum with pulses and then coding the rest as frequency

dependent noise which can then be synthesized at the receiver.

1.3 Thesis Outline

In Chapter 2, our new Multi-Band Excitation Model for high quality mod-

eling of clean and noisy speech is described. This model allows a large

number of frequency bands to be declared voiced or unvoiced for improved

modeling of mixed voicing and noisy speech. In Chapter 3, methods for es-

timating the parameters of this new model are developed. These methods

estimate the excitation and spectral envelope parameters simultaneously so

that the synthesized spectrum is closest in the least squares sense to the

20
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original speech spectrum. This approach helps avoid the problem of the

spectral envelope interfering with pitch period estimation and the pitch

period interfering with the spectral envelope estimation. Chapter 4 dis-

cusses methods for synthesizing speech from these model parameters. In

Chapter 5, we apply the MBE Model to the problem of bit-rate reduction

for speech transmission and storage. Coding methods for the MBE Model

parameters are presented which result in a high quality 8 kbps vocoder.

High quality 8 kbps vocoders are of particular interest in applications such

as mobile telephones. The 8 kbps MBE Vocoder is then evaluated using the

results of informal listening as a measure of quality and Diagnostic Rhyme

Tests (DRTs) as a measure of intelligibility. Finally, Chapter 6 discusses

additional potential applications and presents some directions for future

research for additional quality improvement and bit-rate reduction.

The objective of this thesis was to develop a better speech model for

speech segments containing mixed voicing and for speech corrupted by

noise. These speech segments tend to be degraded by systems using exist-

ing speech models. These degradations take the form of "buzziness" in the

synthesized speech and a severe decrease in DRT scores for noisy speech.

This objective was met through development of the Multi-Band Excita-

21
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tion Model which allows the spectrum to be divided into many frequency

bands, each of which may be declared voiced or unvoiced. When applied

to the problem of bit-rate reduction, the MBE Model provided both qual-

ity and intelligibility improvements over a more conventional Single Band

Excitation (SBE) Vocoder (1 V/UV bit per frame). In informal listening,

the MBE Vocoder didn't have the "buzziness" present in the coded speech

synthesized by the SBE Vocoder. An 8 kbps speech coding system was

developed based on the MBE Model that provided a 12 point average DRT

score improvement over the SBE Vocoder for speech corrupted by additive

white noise. In addition, the average DRT score of the 8kbps MBE Vocoder

was only about 5 points below the average DRT score of the uncoded noisy

speech.

22
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Chapter 2

Multi-Band Spectral Excitation

Speech Model

2.1 Introduction

In Chapter 1, the need for a new speech model capable of overcoming the

shortcomings of simple speech models for mixed voicing or in voiced regions

of noisy speech was discussed. In the following section, our new Multi-Band

Excitation Model is described for high quality modeling of clean and noisy

speech.

23
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2.2 New Speech Model

Due to the quasi-stationary nature of a speech signal s(n), a window w(n)

is usually applied to the speech signal to focus attention on a short time

interval of approximately 10ns - 40ms. The windowed speech segment

sw(n) is defined by

Sw(n) = w(n)s(n) (2.1)

The window w(n) can be shifted in time to select any desired segment of

the speech signal s(n). Over a short time interval, the Fourier transform

Sw(w) of a windowed speech segment s(n) can be modeled as the product

of a spectral envelope H,(w) and an excitation spectrum Ew(w) .

S (w) = H (w) IE(w)I (2.2)

As in many simple speech models, the spectral envelope IL, (w) is a smoothed

version of the original speech spectrum ISw(w) 1. The spectral envelope can

be represented by linear prediction coefficients [19], cepstral coefficients

[25], formant frequencies and bandwidths [29], or samples of the original

speech spectrum [3]. The representational form of the spectral envelope

is not the dominant issue in our new model. However, the spectral enve-

lope must be represented accurately enough to prevent degradations in the

24
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spectral envelope from dominating quality improvements achieved by the

addition of a frequency dependent voiced/unvoiced mixture function. An

example of a spectral envelope derived from the noisy speech spectrum of

Figure 2.1(a) is shown in Figure 2.1(b).

The excitation spectrum in our new speech model differs from previ-

ous simple models in one major respect. In previous simple models, the

excitation spectrum is totally specified by the fundamental frequency w0

and a voiced/unvoiced decision for the entire spectrum. In our new model,

the excitation spectrum is specified by the fundamental frequency wo and a

frequency dependent voiced/unvoiced mixture function. In general, a con-

tinuously varying frequency dependent voiced/unvoiced mixture function

would require a large number of parameters to represent it accurately. The

addition of a large number of parameters would severely decrease the util-

ity of this model in such applications as bit-rate reduction. To reduce this

problem, the frequency dependent voiced/unvoiced mixture function has

been restricted to a frequency dependent binary voiced/unvoiced decision.

To further reduce the number of these binary parameters, the spectrum

is divided into multiple frequency bands and a binary voiced/unvoiced pa-

rameter is allocated to each band. This new model differs from previous

25
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Fig. 2.1(b) - Spectral Envelope

Fig. 2.1(c) - Periodic Spectrum Fig. 2.1(d) - V/UV Information

Fig. 2.1(e) - Noise Spectrum Fig. 2.1(f) - Excitation Spectrum

Fig. 2.1(g) - Synthetic Spectrum

Figure 2.1: Multi-Band Excitation Model - Noisy Speech

26
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models in that the spectrum is divided into a large number of frequency

bands (typically twenty or more) whereas previous models used three fre-

quency bands at most 5]. Due to the division of the spectrum into multiple

frequency bands with a binary voiced/unvoiced parameter for each band,

we have termed this new model the Multi-Band Excitation Model.

The excitation spectrum IE (w)l is obtained from the fundamental fre-

quency w0 and the voiced/unvoiced parameters by combining segments of

a periodic spectrum IPw(w)l in the frequency bands declared voiced with

segments of a random noise spectrum in the frequency bands declared un-

voiced. The periodic spectrum IPw(w) is completely determined by w0. One

method for generating the periodic spectrum IPw(w)l is to take the Fourier

transform magnitude of a windowed impulse train with pitch period P. In

another method, the Fourier transform of the window is centered around

each harmonic of the fundamental frequency and summed to produce the

periodic spectrum. An example of IPw(w)l corresponding to w0 = .0457r

is shown in Figure 2.1(c). The V/UV information allows us to mix the

periodic spectrum with a random noise spectrum in the frequency domain

in a frequency-dependent manner in representing the excitation spectrum.

The Multi-Band Excitation Model allows noisy regions of the excitation

27
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spectrum to be synthesized with 1 V/UV bit per frequency band. This is

a distinct advantage over simple harmonic models in coding systems [21]

where noisy regions are synthesized from the coded phase requiring around

4 or 5 bits per harmonic. In addition, when the pitch period becomes small

with respect to the window length, noisy regions of the excitation spectrum

can no longer be well approximated with a simple harmonic model.

An example of V/UV information is displayed in Figure 2.1(d) with

a high value corresponding to a voiced decision. An example of a typical

random noise spectrum used is shown in Figure 2.1(e). The excitation spec-

trum IEw(w) I derived from ISw(w)l in Figure 2.1(a) using the above proce-

dure is shown in Figure 2.1(f). The spectral envelope IHw (w) I is represented

by one sample IAml for each harmonic of the fundamental in both voiced

and unvoiced regions to reduce the number of parameters. When a densely

sampled version of the spectral envelope is required, it can be obtained

by linearly interpolating between samples. The synthetic speech spectrum

ISw(w)l obtained by multiplying IEw(w)l in Figure 2.1(f) by IHw(w)l in

Figure 2.1(b) is shown in Figure 2.1(g).

Additional examples of voiced, unvoiced, and mixed voicing segments

of clean speech are shown in Figures 2.2 - 2.4. For voiced speech segments

28



(Figure 2.2), most of the spectrum is declared voiced. For unvoiced speech

segments (Figure 2.3), most of the spectrum is declared unvoiced. For

speech segments containing mixed voicing (Figure 2.4), regions contain-

ing periodic energy (harmonics of the fundamental frequency) are marked

voiced and regions containing noise-like energy are marked unvoiced.

Based on the examples of Figures 2.1 - 2.4, it can be seen that some

regions of the speech spectrum are dominated by harmonics of the funda-

mental frequency while others are dominated by noise-like energy depending

on noise and speech production conditions. To account for this observed

behavior, frequency bands with widths as small as the fundamental fre-

quency should be individually declared voiced or unvoiced. This was the

motivation for the Multi-Band Excitation Model.

It is possible [9] to synthesize high quality speech from the synthetic

speech spectrum IS (w)-. To use the above model for the purpose of devel-

oping a real time mid-rate speech coding system, however, it is desirable to

introduce one additional set of parameters in our model. Specifically, the

algorithm [8] that we have developed to synthesize speech from S. (w) is an

iterative procedure that estimates the phase of S.(w) from S(w)[ and then

synthesizes speech from [S(w) and the estimated phase of S (w). This
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Fig. 2.2(a) - Original Spectrum

Fig. 2.2(c) - Periodic Spectrum

Fig -NsS Im
Fig. 2.2(e) - Noise Spectrum

Fig. 2.2(d) - V/UV Information

Fig. 2.2(f) - Excitation Spectrum

Fig. 2.2(g) - Synthetic Spectrum

Figure 2.2: Multi-Band Excitation Model - Voiced Speech
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Fig. 2.3(a) - Original Spectrum

Fig. 2.3(c) - Periodic Spectrum

Fig. 2.3(e) - Noise Spectrum

\aVYl,9 k

Fig. 2.3(b) - Spectral Envelope

A K
i

I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~i 
Fig. 2.3(d) - V/UV Information

Fig. 2.3(f) - Excitation Spectrum

Fig. 2.3(g) - Synthetic Spectrum

Figure 2.3: Multi-Band Excitation Model - Unvoiced Speech
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Fig. 2.4(a) - Original Spectrum

Fig. 2.4(c) - Periodic Spectrum

Fig. 2.4(e) - Noise Spectrum

Fig. 2.4(d) - V/UV Information

Fig. 2.4(f) - Excitation Spectrum

Fig. 2.4(g) - Synthetic Spectrum

Figure 2.4: Multi-Band Excitation Model - Mixed Voicing
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algorithm requires a delay of more than one second and a fairly accurate

representation of Sw(w)l. In applications such as time scale modification

of speech where these limitations are not serious and determining the de-

sired phase of Sw(w) is not easy, the algorithm that synthesizes speech

from ISw((w) has been successfully applied. In applications such as real

time speech coding, however, a delay of more than one second may not

be acceptable and furthermore, the desired phase of S (w) can be deter-

mined straightforwardly. Due to the above considerations, we introduce an

additional set of model parameters, namely, the phase of each harmonic

declared voiced. We have chosen to include the phase in the samples of the

spectral envelope A, rather than the excitation spectrum IEw(w) for later

notational convenience.

The sets of parameters that we use in our model, then, are the spec-

tral envelope, the fundamental frequency, the V/UV information for each

harmonic, and the phase of each harmonic declared voiced. The phases of

harmonics in frequency bands declared unvoiced are not included since they

are not required by the synthesis algorithm. From these sets of parameters,

speech can be synthesized with little delay and significant computational

savings relative to synthesizing speech from ISw(w)[ alone. The synthesis

33

_ __^_I·_� ·I ·I_ _��·_I _�XI� _ ·_ ___ _·_I 1 ·�__1^_11�__1_1111111_1_1_1_1_�



of speech from these model parameters is discussed in Chapter 4.
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Chapter 3

Speech Analysis

3.1 Introduction

In Chapter 2, the Multi-Band Excitation Speech Model was introduced.

The parameters of our model are the spectral envelope, the fundamental

frequency, V/UV information for each harmonic, and the phase of each

harmonic declared voiced. To obtain high quality reproduction of both

clean and noisy speech, accurate and robust methods for estimating these

parameters must be developed. In the next section, existing methods for

estimating the spectral envelope and fundamental frequency are discussed.

The inadequacies of these existing techniques led to the development of an
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integrated method (Section 3.3) for estimating the model parameters so

that the difference between the synthetic spectrum and the original spec-

trum is minimized. Obtaining an initial fundamental frequency using this

method can be quite expensive computationally. An alternative formula-

tion in Section 3.4 is used to substantially reduce the computation required

to obtain the initial fundamental frequency estimate to the order of an

autocorrelation pitch detection method.

In Section 3.5, we calculate the fundamental frequency bias associated

with minimizing the least-squares error criterion for a periodic signal in

noise. We then normalize the error criterion by the calculated bias to pro-

duce an unbiased error criterion. This unbiased error criterion significantly

improves the system performance for noisy speech.

In Section 3.6, the required pitch period (or fundamental frequency)

accuracy is determined for accurate estimation of the voiced/unvoiced in-

formation in the Multi-Band Excitation Model. An efficient procedure for

obtaining this accuracy based on the earlier sections of this chapter is then

described.

Finally, in Section 3.7, a flowchart of the complete analysis algorithm is

presented and discussed.
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3.2 Background

In previous approaches, the algorithms for estimation of excitation parame-

ters and estimation of spectral envelope parameters operate independently.

These parameters are usually estimated based on some reasonable but

heuristic criterion without explicit consideration of how close the synthe-

sized speech will be to the original speech. This can result in a synthetic

spectrum quite different from the original spectrum.

Previous approaches to spectral envelope estimation include Linear Pre-

diction [19] (All-Pole Modeling), windowing the cepstrum [25] (smoothing

the log magnitude spectrum), and windowing the autocorrelation function

[2] (smoothing the magnitude squared spectrum). In these approaches,

the pitch period often interferes with the spectral envelope estimation pro-

cedure. For example, for speech frames with short pitch periods, widely

separated harmonics in the spectrum tend to cause pole locations and band-

widths to be poorly estimated in the Linear Prediction method. Methods

that window the cepstrum or autocorrelation function obtain a poor enve-

lope estimate for short pitch periods due to interference of the peak at the

pitch period with the spectral envelope information present in the low time
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portions of these signals.

Previous approaches to pitch period estimation include the Gold-Rabiner

parallel processing method [6], choosing the minimum of the average mag-

nitude difference function (AMDF) [30], choosing the peak of the autocor-

relation of the Linear Prediction residual signal (SIFT) [18], choosing the

peak of the cepstrum [24], and choosing the peak of the autocorrelation

function [27]. In these approaches, the spectral envelope often interferes

with the pitch period estimation procedure. For example, methods that

choose the peak of the cepstrum or autocorrelation function often obtain

a poor pitch period estimate for short pitch periods due to interference of

the spectral envelope information present in the low-time portions of these

signals with the pitch period peak. Ross et al. [30] remark in their descrip-

tion of the AMDF pitch detector that the limiting factor on accuracy is the

inability to completely separate the fine structure from the effects of the

spectral envelope.

In one technique for compensating for the spectral envelope before pitch

detection (SIFT), a spectral envelope estimate (produced by Linear Pre-

diction) is divided out of the spectrum (inverse filtering). In this approach,

the spectrum is whitened" in an attempt to reduce the effects of the spec-
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tral envelope on pitch period estimation. However, this technique boosts

low energy regions of the spectrum which tend to be dominated by noise-

like energy which reduces the periodic signal to noise ratio. Consequently,

although performance is improved by reducing the effects of the spectral

envelope, performance is degraded by the reduction in the periodic signal

to noise ratio.

In our approach, the excitation and spectral envelope parameters are

estimated simultaneously so that the synthesized spectrum is closest in the

least squares sense to the spectrum of the original speech. This approach

can be viewed as an analysis by synthesis" method [27].

3.3 Estimation of Speech Model Parameters

Estimation of all of the speech model parameters simultaneously would

be a computationally prohibitive problem. Consequently, the estimation

process has been divided into two major steps. In the first step, the pitch

period and spectral envelope parameters are estimated to minimize the

error between the original spectrum IS,(w)l and the synthetic spectrum

]S,(w)l. Then, the V/UV decisions are made based on the closeness of fit
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between the original and the synthetic spectrum at each harmonic of the

estimated fundamental.

The parameters of our speech model can be estimated by minimizing

the following error criterion:

= G(w)[ISw(w)I - ()]dW (3.1)

where

= IH(w) w(w) l lEw (w)l (3.2)

and G(w) is a frequency dependent weighting function. This error criterion

was chosen since it performed well in our previous work [8]. In addition,

this error criterion yields fairly simple expressions for the optimal estimates

of the samples Aml of the spectral envelope Hw(w) . Other error criteria

could also be used. For example, the error criterion:

& = 2 | Gr(W) IS(w) - .(w) I dw (3.3)

can be used to estimate both the magnitude and phase of the samples Am of

the spectral envelope. These envelope samples are the magnitudes (Equa-

tion (3.1)) or magnitudes and phases (Equation (3.3)) of the harmonics

for frequency bands declared voiced. These samples of the envelope are
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sufficient for synthesizing speech in the voiced frequency bands using the

algorithm described in Chapter 4. For frequency bands declared unvoiced,

one sample of the spectral envelope per harmonic of the estimated fun-

damental is also used. This sample is obtained by sampling a smoothed

version of the original spectrum S,(w) . During synthesis, additional sam-

ples of the spectral envelope in unvoiced regions are required. These are

obtained by linearly interpolating between the estimated samples in the

magnitude domain.

3.3.1 Estimation of Pitch Period and Spectral Enve-

lope

The objective is to choose the pitch period and spectral envelope param-

eters to minimize the error of Equation (3.1). In general, minimizing this

error over all parameters simultaneously is a difficult and computationally

expensive problem. However, we note that for a given pitch period, the best

spectral envelope parameters can be easily estimated. To show this, we di-

vide the spectrum into frequency bands centered around each harmonic of

the fundamental frequency. For simplicity, we will model the spectral enve-

41

__I_�.�_IL1·.-_l.- -.l-I-LI�YICIL··-·Y-Y··�·YII� l--IIX-·lll _1�1-_1111_· 111_· �.-�--·111_1�11_1--



lope as constant in this interval with a value of A,. This allows the error

criterion of Equation (3.1) in the interval around the mth harmonic to be

written as:

1E = ' |G(w)IS. (w) - lAmi E E.(w) II2d (3.4)

where the interval

frequency centered

is minimized at:

The corresponding

(3.3) is:

[am, b,] is an interval with a width of the fundamental

on the mth harmonic of the fundamental. The error m

fa G(w) jSE(w)l jE(w)dw
eAm = of" G(w) I E. (w) 12 d (3.5)

estimate of Am based on the error criterion of Equation

A fab G(w)S.(w)E*(w)dw (3.6
Am - (3.6)

fm m G(w) IE.(w)I dw

At this point, we could obtain estimates of the envelope parameters Am

from Equation (3.5) or Equation (3.6) if we knew whether this frequency

band was voiced/unvoiced. If the frequency band contains primarily peri-

odic energy, there will be energy centered at the harmonic of the fundamen-

tal with the characteristic window frequency response shape. Consequently,

if the periodic spectrum IP,(w) I is used as the excitation spectrum E,(w) 
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in this band a good match will be obtained. If the frequency band contains

primarily aperiodic energy, there will be no characteristic shape. Aperiodic

energy in the frequency band is perhaps best characterized by a lack of a

good match when the periodic spectrum IPw(w)l is used as the excitation

spectrum. Thus, by using IPw(w)l as the excitation spectrum at this point,

the voiced/unvoiced (periodic/aperiodic) decision can be made based on the

modeling error in this frequency band. After making the voiced/unvoiced

decision the appropriate spectral envelope parameter estimate can be se-

lected. For a voiced frequency band, the following estimates are obtained

by substituting I[P(w)l for IEw(w)l in Equation (3.5) and Equation (3.6)

IAI = f G(w) IS(w) ( IPw(w) I dw (37)A =1 (3.7)
fM I G(w) IP(w)I2dw

f. G(w) Pw()d (3.8)

An efficient method for obtaining a good approximation for the periodic

transform Pw(w) in this interval is to precompute samples of the Fourier

transform of the window w(n) and center it around the harmonic frequency

associated with this interval.

For an unvoiced frequency band, we model the excitation spectrum as

idealized white noise (unity across the band) which yields the following
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estimate:

G(w) IS(w) dw
IAm = r G(w)(3.9)

This estimate reduces to the average of the original spectrum in the fre-

quency band when the weighting function G(w) is constant across the band.

Since the unvoiced spectral envelope parameters are not used in pitch pe-

riod estimation, they only need to be computed after the final pitch period

estimate is determined.

For adjacent intervals, the minimum error for entirely periodic excita-

tion E for the given pitch period is then computed as:

E E )m (3.10)

where Em is Em in Equation (3.4) evaluated with the AmI of Equation (3.7).

In this manner, the spectral envelope parameters which minimize the error

E can be computed for a given pitch period P. This reduces the original

multi-dimensional problem to the one-dimensional problem of finding the

pitch period P that minimizes E.

Experimentally, the error E tends to vary slowly with the pitch pe-

riod P. This allows an initial estimate of the pitch period near the global

minimum to be obtained by evaluating the error on a coarse grid. In prac-
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tice, the initial estimate is obtained by evaluating the error for integer

pitch periods. In this initial coarse estimation of the pitch period, the high

frequency harmonics cannot be well matched so the frequency weighting

function G(w) is chosen to de-emphasize high frequencies.

If the pitch period of the original speech segment is 40 samples, the as-

sociated normalized fundamental frequency is .025. We define normalized

frequency as the actual analog frequency divided by the sampling frequency

so that the normalized fundamental frequency is just the reciprocal of the

pitch period in samples. Integer multiples of the correct pitch period (80,

120, ... ) will have fundamental frequencies at integer submultiples of the

correct fundamental frequency (.0125, .00833, ... ). Every nt h (second, third,

... ) harmonic of the nt h submultiple (.0125, .00833, ... ) of the correct pitch

period will lie at the frequency of one of the harmonics of the correct fun-

damental frequency. For example, Figure 3.1 shows the periodic spectrum

IPw(w) I for pitch periods of 40 and 80 samples. Since every second harmonic

of a fundamental frequency of .0125 are at the harmonics of a fundamental

frequency of .025, the error will be comparable for the correct pitch pe-

riod and its integer multiples. Consequently, once the pitch period which

minimizes is found, the errors at submultiples of this pitch period are
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compared to the minimum error and the smallest pitch period with com-

parable error is chosen as the pitch period estimate. This feature can be

used to reduce computation by limiting the initial range of P over which

the error is computed to long pitch periods.

To accurately estimate the voiced/unvoiced decisions in high frequency

bands, pitch period estimates more accurate than the closest integer value

are required (See Section 3.6). More accurate pitch period estimates can

be obtained by using the best integer pitch period estimate chosen above as

an initial coarse pitch period estimate. Then, the error is minimized locally

to this estimate by using successively finer evaluation grids and a frequency

weighting function G(w) which includes high frequencies. The final pitch

period estimate is chosen as the pitch period which produces the minimum

error in this local minimization. The pitch period accuracies that can be

obtained using this method are given in Section 3.6.

To obtain the maximum sensitivity to regions of the spectrum contain-

ing pitch harmonics when large regions of the spectrum contain noise-like

energy, the expected value of the error E should not vary with the pitch pe-

riod for a spectrum consisting entirely of noise-like energy. However, since

the spectral envelope is sampled more densely for longer pitch periods, the
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Figure 3.1(a) - Periodic Spectrum (Period=40)
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Figure 3.1(c) - Overlayed Periodic Spectra (Periods=40 and 80)

Figure 3.1: Pitch Period Doubling
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expected error is smaller for longer pitch periods. This bias towards longer

pitch periods is calculated in Section 3.5 and an unbiased error criterion

is developed by multiplying the error E by a pitch period dependent cor-

rection factor. This correction factor is applied to the error E in Equation

(3.10) prior to minimizing over the pitch period.

To illustrate our new approach, a specific example will be considered.

In Figure 3.2(a), 256 samples of female speech sampled at 10 kHz are dis-

played. This speech segment was windowed with a 256 point Hamming

window and an FFT was used to compute samples of the spectrum ISw(w)l

shown in Figure 3.2(b). We use the property that the Fourier transform

of a real sequence is conjugate symmetric [26] in order to compute these

samples of the spectrum with a 256 point complex FFT. From the FFT,

255 complex points (samples of the Fourier Transform between normalized

frequencies of 0 and .5) and 2 real points (at normalized frequencies of 0

and .5) are obtained. After the magnitude operation, there are 257 real

samples of the spectrum between and including normalized frequencies of

0 and .5. Figure 3.2(c) shows the error E as a function of P with G(w) = 1

for frequencies less than 2 kHz and G(w) = 0 for frequencies greater than

2 kHz. The error E is smallest for P = 85, but since the error for the sub-

48



Fig. 3.2(a) - Speech Segment Fig. 3.2(d) - Original and Synthetic
(non-integer P)

Fig. 3.2(b) - Original Spectrum Fig. 3.2(e) - Original and Synthetic
(Integer P)
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Fig. 3.2(c) - Error vs. Pitch Period

Figure 3.2: Estimation of Model Parameters
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multiple at P = 42.5 is comparable, the initial estimate of the pitch period

is chosen as 42.5 samples. If an integer pitch period estimate is desired,

the error is evaluated at pitch periods of 42 and 43 samples and the integer

pitch period estimate is chosen as the pitch period with the smaller error.

If non-integer pitch periods are desired, the error E is minimized around

this initial estimate with G(w) chosen to include the high frequencies. A

typical weighting function G(w) which we have used in practice is unity

from 0 to 5 kHz. Figure 3.2(d) shows the original spectrum overlayed with

the synthetic spectrum for the final pitch period estimate of 42.48 sam-

ples. For comparison, Figure 3.2(e) shows the original spectrum overlayed

with the synthetic spectrum for the best integer pitch period estimate of

42 samples. This figure demonstrates the mismatch of the high harmonics

obtained if on,, integer pitch periods are allowed.

Pitch track models can also be incorporated in this analysis system. For

example, if the pitch period is not expected to change very much from one

frame to the next, the error criterion can be biased to prefer pitch period

estimates around the estimate for the previous frame. A pitch track model

can also be used to reduce computation by constraining the possible pitch

periods to a smaller region. In regions of speech where the normalized error
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obtained by the best pitch period estimate is small, the periodic synthetic

spectrum matches the original spectrum well and we can be relatively cer-

tain that the pitch period estimate in these regions is correct. The pitch

track can then be extrapolated from such regions with our analysis method

with the pitch track model incorporated.

Many pitch tracking methods employ a smoothing approach to reduce

gross pitch errors. One problem with these techniques is that in the smooth-

ing process, the accuracy of the pitch period estimate is degraded even for

clean speech. One pitch tracking method which we have found particularly

useful in practice for obtaining accurate estimates in clean speech and re-

ducing gross pitch errors under very low periodic signal to noise ratios is

based on a dynamic programming approach. There are three pitch track

conditions to consider: 1) the pitch track starts in the current frame, 2)

the pitch track terminates in the current frame, and 3) the pitch track con-

tinues through the current frame. We have found that the third condition

is adequately modeled by one of the first two. We wish to find the best

pitch track starting or terminating in the current frame. We will look for-

ward and backward N frames where N is small enough that insignificant

delay is encountered (N = 3 corresponding to 60ms is typical). The al-
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lowable frame-to-frame pitch period deviation is set to D samples (D = 2

is typical). We then find the minimum error paths from N frames in the

past to the current frame and from N frames in the future to the current

frame. We then determine which of these paths has the smallest error and

the initial pitch period estimate is chosen as the pitch period in the cur-

rent frame in which this smallest error path terminates. The error along

a path is determined by summing the errors at each pitch period through

which the path passes. Dynamic programming techniques [22] are used to

significantly reduce the computational requirements of this procedure.

3.3.2 Estimation of V/UV Information

The voiced/unvoiced decision for each harmonic is made by comparing the

normalized error over each harmonic of the estimated fundamental to a

threshold. When the normalized error over the mth harmonic

m f= G(w) IS_(w)l 2 dw

is below the threshold, this region of the spectrum matches that of a pe-

riodic spectrum well and the mth harmonic is marked voiced. When m

is above the threshold, this region of the spectrum is assumed to contain
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noise-like energy. After the voiced/unvoiced decision is made for each fre-

quency band the voiced or unvoiced spectral envelope parameter estimates

are selected as appropriate.

In practice, these computations are performed by replacing integrals of

continuous functions by summations of samples of these functions.

3.4 Alternative Formulation

By using a weighting function G(w) which is one for all frequencies or by

filtering the original signal, the error criterion of Equation (3.3) can be

rewritten as:

= 2 -S(w) -(w (3.12)

In Section 3.3, the synthetic transform Sw(w) is the product of a spectral

envelope and a periodic spectrum. Equivalently, the synthetic transform

can be written as the transform of a periodic signal:

M

Sw(w) ,= AmW(w-mwo) (3.13)
m=-M
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where M is the largest integer such that Mwo is in the frequency band

[-7r, r] and W(w) is the Fourier transform of the window function:

00

W(w) = : w(n)e- i " (3.14)
n=-00oo

Equation (3.13) can be written in vector notation as

LS() = wTa (3.15)

where

and

a- =

W(w + Mwo)

W(w + (M - 1)wo)

W( - Mwo)

A-M

A-M+1

AM

(3.16)

(3.17)
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In this notation, the error criterion of Equation (3.12) can be expressed as:

E = f IS(w) 12d - bHa - aHb + aHRa (3.18)

where

R = 21 w*wTd (3.19)

and

b = w*'S(w)dw (3.20)

With this formulation, for a given fundamental frequency w0 , minimizing

the error criterion of Equation (3.12) results in the harmonic amplitude

estimates Am being the solution to the following linear equation:

Ra = b (3.21)

Using these amplitude estimates reduces the error of Equation (3.18) to:

= - I S,(w)l2dw-aHRa (3.22)

which is equivalent to:

£ = 2 I ISw(w) dw - I f w() dw (3.23)

It should be noted that the synthetic transform §S(w) of Equation (3.23)

has been optimized over the harmonic amplitudes A, and is therefore con-
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strained to be evaluated at the optimal harmonic amplitudes for any partic-

ular fundamental frequency. We wish to minimize this error over all possible

fundamental frequencies. This is equivalent to maximizing the second term

over the fundamental frequency, since the first term is independent of fun-

damental frequency. This second term can be expressed independent of the

harmonic amplitude estimates by applying Equation (3.21):

IQ = 2 J Sw(w)| dw = aHRa -= bH R - lb (3.24)

The window frequency responses are orthonormal if

X fw*wTdw = R = (3.25)27r ,

where I is the identity matrix. In order for orthonormality to hold, the

window must be normalized so that

00

w(n)1 = 1 (3.26)
n=-oo

The window frequency responses are approximately orthonormal when the

sidelobes of the window are small and the fundamental frequency is larger

than the width of the main lobe so that the main lobes of window fre-

quency responses at adjacent harmonics don't interact. For approximately
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orthonormal window frequency responses, we have R - 1 - I which yields:

bb (3.27)

This approximation allows I to be expressed in the time domain as

co X0 M

*: E E W 2(n)(n)W2'(k)s(k) E -jwom(n-k) (3.28)
k=-oo n=-c0 m=-M

For w 0M = r, this simplifies to

00 00 00

, ' P S 5 w 2 ,(n)s(n) 2 (n- kP)s(n- kP)= P E q(kP) (3.29)
k=-oo =-oo k=-oo

where +(m) is the autocorrelation function of w 2 (n)s(n):

00

+(m) = E w2(n)s(n)w2(n - m)s(n - m) (3.30)
n=-00

Thus, maximizing Ti is approximately equivalent to maximizing a function

of the autocorrelation function of the signal multiplied by the square of the

analysis window. This technique is similar to the autocorrelation method

but considers the peaks at multiples of the pitch period instead of only

the peak at the pitch period. This suggests a computationally efficient

method for maximizing Ti over all integer pitch periods by computing the

autocorrelation function using the Fast Fourier Transform (FFT) and then

summing samples spaced by the pitch period. It should be noted that in
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practice, the summations of Equation (3.29) are finite due to the finite

length of the window w(n). Although this is a pseudo maximum likelihood

pitch estimation method as in Wise et al. [33], it differs in that it is a

frequency domain formulation rather than a time domain formulation. One

advantage of this formulation is that a non-rectangular analysis window is

allowed. For a rectangular window, the result given by Equations (3.29)

and (3.30) reduces to the result given in Wise et al. [33].

More accurate pitch period estimates can be efficiently obtained by

maximizing

\ P 0 d(LkP]) (3.31)
k=-oo

over non-integer pitch periods where L[x is defined as the largest integer

not greater than x. Higher accuracy is obtained in this method due to the

contributions of the peaks at multiples of the pitch period in the autocor-

relation function.

Figure 3.3 shows a comparison of error versus pitch period for two dif-

ferent computation methods for a segment of speech with a pitch period

of approximately 85 samples (The pitch period was determined by hand).

The first method computes the error using the frequency domain approach

given by Equation (3.10). The secon' lethod computes the error using
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Figure 3.3: Comparison of Error Computation Methods

the autocorrelation approach described by the following equation:

co 00

E >, w (n) (n) - P E 4(kP) (3.32)
n=-oo k=-oo

As can be seen from the figure, these two methods achieve approximately

the same error curves. After estimating the pitch period using the au-

tocorrelation domain approach, the spectral envelope parameters and the

voiced/unvoiced parameters can be estimated as described in Section 3.3.1

and Section 3.3.2 for this specific pitch period.
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3.5 Bias Correction

As discussed in Section 3.3 the expected value of the error of Equation

(3.1) or Equation (3.3) is smaller for longer pitch periods since more free

parameters are available for matching the original spectrum. This effect

can be seen in Figure 3.3 as a general decrease in the error for larger pitch

periods. To demonstrate this bias, we will calculate the expected value of

the error E of Equation (3.12) for a periodic signal p(n) in white noise d(n):

s(n) = p(n) + d(n) (3.33)

where

E[d(n)] = 0 (3.34)

and

E[d(n)d(m)] = a26(n - m) (3.35)

The only constraints on the periodic signal p(n) are that it has pitch period

P so that

p(n + kP) = p(n) (3.36)

where k is an integer.

Using Equation (3.23), the expected value of the error of Equation
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(3.12) evaluated at the optimal amplitude estimates for a given pitch period

P is then:

E[6I=E [1 I Sw(w) dW] -E[ f', I-(()12 d] (3.37)

The first term in Equation (3.37) can be expressed in the time domain as:

E [2f Sw(w)1 2 dw =EL00
=-oo

(3.38)

For a window w(n) normalized according to Equation (3.26) this reduces

to:

+ 00=2+ Or2

n=-oo
w (n)p2 (n)

The second term in Equation (3.37) is the expected value of IQ of Equation

(3.24) which can be written as:

E [] P > o w2(n)w(n- kP)E [s(n)s(n - kP)
k=-oo n=-oo

(3.40)

For s(n) consisting of the sum of a periodic signal p(n) of period P and

white noise, Equation (3.40) reduces to:

E [T] _ a 2 P EI w4(n) +P E
n=-oo n=-OO

w (n)p2 (n)
o0

E w 2 (n - kP)
k=-oo

For slowly changing window functions, the following approximation can be

made:
00

P , w 2 (n-kP) 
k=-oo

E W2(n) = 1
n=-oo
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This approximation reduces Equation (3.41) to:

E [K] t 2P E w[(n) + E w 2(n)p2 (n) (3.43)
n=-oo n=-oo

By combining Equation (3.39) and Equation (3.43) a good approximation

to the expected value of the error E of Equation (3.12) is obtained:

E [TEe t r21-P w4(n)' (3.44)

To determine the accuracy of the bias approximation given by Equa-

tion (3.44), error versus pitch period curves were computed for 100 differ-

ent white noise segments and averaged together. This average error curve

is shown in Figure 3.4 together with the bias approximation of Equation

(3.44). As can be seen from the figure, the bias approximation is very close

to the average error curve.

An unbiased error criterion is desired to prevent longer pitch periods

from being consistently chosen over shorter pitch periods for noisy periodic

signals. In addition, a normalized error criterion that is near zero for a

purely periodic signal and is near one for a noise signal is desirable. The

following error criterion is unbiased with respect to pitch period and is
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normalized appropriately:

&B ( -P = w4(n)) f. ISw(w)l12 (3.45)

It is important to note that the error criterion of Equation (3.45) is inde-

pendent of the noise variance a 2 so that estimation of the noise variance is

not required. In addition, similar results can be seen to apply for colored

noise by first applying a whitening filter to the original transform S,(w)

and then removing it from the final result.
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3.6 Required Pitch Period Accuracy

In Section 3.3.2 we described a method for estimating the voiced/unvoiced

decisions for each harmonic by comparing the normalized error over each

harmonic of the estimated fundamental to a threshold. The normalized

error for each harmonic contains contributions due to the difference between

the estimated harmonic frequency and the actual harmonic frequency as

well as the contribution due to noise in the original signal. In this section,

the required pitch period accuracy to prevent differences in the estimated

and actual harmonic frequencies from dominating the normalized error is

determined.

The normalized error between a harmonic of a perfectly periodic signal

at normalized frequency f and a synthetic harmonic at estimated normal-

ized frequency f depends on the difference A f between the two frequen-

cies. When the frequency difference Af is near zero, the normalized error

of Equation (3.11) is near zero. When the frequency difference Af is large,

the normalized error approaches one. Normalized error versus frequency

difference is shown in Figure 3.5 for a 256 point square root triangular

window. Figure 3.6 shows an expanded version of Figure 3.5 for small fre-
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quency differences. By listening to the synthesized speech, a good threshold

for the Voiced/Unvoiced decision was determined to be approximately .2.

Consequently, to prevent the normalized error from being dominated by an

inaccurate pitch period estimate, by referring to Figure 3.6 we find that

the maximum harmonic frequency difference should be smaller than about

.001. The pitch period accuracy required to achieve a maximum harmonic

frequency difference of .001 is shown in Figure 3.7.

The number of harmonics M of a normalized fundamental frequency fo
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between normalized frequencies of zero and .5 is:

(3.46)
I 2fo

So, the frequency deviation of the highest harmonic

damental of fo and an actual fundamental of fo is:

Af = [, (fo- o)

In terms of pitch periods, Equation (3.47) becomes:

AP

2P

for an estimated fun-

(3.47)

(3.48)

where AP is the difference between the actual and estimated pitch periods

and the approximation comes from ignoring the floor function in Equation

(3.47).

Figure 3.8 shows the smallest maximum harmonic frequency deviation

attainable (AP = .5) for a pitch detector which produces integer pitch

period estimates. This figure clearly shows that the maximum harmonic

frequency deviation significantly exceeds our desired value of .001 if only

integer pitch periods are used. In addition, shorter pitch periods have

significantly larger maximum harmonic frequency deviations than longer

pitch periods.
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In order to determine the accuracy of the autocorrelation domain method

described in Section 3.4 and the frequency domain method described in

Section 3.3.1, an experiment was conducted in which these techniques were

used to estimate the pitch period of 6000 different synthesized periodic

segments. The experiment consisted of generating 100 periodic segments

for each of 60 different 2 sample intervals with center periods of 20 to 120

samples. The pitch periods of the segments were uniformly distributed in

the 2 sample interval. The phases of the harmonics were random with a

uniform distribution between -?r and r. The magnitudes of the harmonics
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decreased linearly to zero at a frequency of half the sampling rate.

The maximum deviation and standard deviation of the pitch period es-

timates are shown in Figure 3.9 and Figure 3.10 for the autocorrelation

domain and frequency domain methods. The corresponding maximum

07

0.

O.

la 0.

0.

v 0.

Pitch Period (Samples)

Figure 3.9: Pitch Period Deviation for Autocorrelation Domain Method

deviation and standard deviation of the frequency of the highest harmonic

(in the normalized frequency range of 0 to .5) of the estimated fundamental

are shown in Figure 3.11 and Figure 3.12 for the autocorrelation domain

and frequency domain methods. These figures show that for this test,

the frequency domain method provides pitch period estimates that are

approximately 10 times more accurate than the autocorrelation method.
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Figure 3.12: Frequency Deviation of Highest Harmonic for Frequency Do-

main Method

From Figure 3.11, it can be seen that the maximum harmonic frequency

deviation for the autocorrelation method of approximately .003 is larger

than our desired value of .001. The frequency domain method is capable

of more than sufficient accuracy with a maximum harmonic frequency de-

viation near .0002. However, the autocorrelation method is significantly

more efficient computationally due to the possibility of FFT implementa-

tion. Consequently, we use the computationally efficient autocorrelation

domain method to obtain an initial pitch period estimate followed by the

more accurate frequency domain method to refine the initial estimate.
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3.7 Analysis Algorithm

The analysis algorithm that we use in practice consists of the following

steps (See Figure 3.13):

1. Window a speech segment with the analysis window.

2. Compute the unbiased error criterion of Equation (3.45) vs. pitch

period using the efficient autocorrelation domain approach described

in Section 3.4. This error is typically computed for all integer pitch

periods from 20 to 120 samples for a 10kHz sampling rate.

3. Use the dynamic programming approach described in Section 3.3.1

to select the initial pitch period estimate. This pitch tracking tech-

nique improves tracking through very low signal to noise ratio (SNR)

segments while not decreasing the accuracy in high SNR segments.

4. Refine this initial pitch period estimate using the more accurate fre-

quency domain pitch period estimation method described in Sec-

tion 3.3.1.

5. Estimate the voiced and unvoiced spectral envelope parameters using

the techniques described in Section 3.3.1.
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Figure 3.13: Analysis Algorithm Flowchart
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6. Make a voiced/unvoiced decision for each frequency band in the spec-

trum. The number of frequency bands in the spectrum can be as large

as the number of harmonics of the fundamental present in the spec-

trum.

7. The final spectral envelope parameter representation is composed by

combining voiced spectral envelope parameters in those frequency

bands declared voiced with unvoiced spectral envelope parameters in

those frequency bands declared unvoiced.
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Chapter 4

Speech Synthesis

4.1 Introduction

In the previous two chapters, the Multi-Band Excitation Model parameters

were described and methods to estimate these parameters were developed.

In this chapter, an approach to synthesizing speech from the model pa-

rameters is presented. There exist a number of methods for synthesizing

speech from the spectral envelope and excitation parameters. The following

section discusses several applicable methods and selects one for generating

the voiced portion of the synthesized speech and a second for generating

the unvoiced portion of the synthesized speech. The details of our speech

75

..II�II -(-C--l·l �II- · Ill�·B�I-�Y-----·-----·I-II_-I_^--LLI_. _-I·. --�·IIII1YIII^·�--·lPLI·--- - I_ I�-



synthesis algorithm are then presented in Section 4.3.

4.2 Background

Speech can be synthesized from the estimated model parameters using sev-

eral different approaches. One approach is to generate a sequence of syn-

thetic spectral magnitudes from the estimated model parameters. Then,

algorithms for estimating a signal from this synthetic Short-Time Fourier

Transform Magnitude (STFTM) are applied. In a second approach, a syn-

thetic Short-Time Fourier Transform (STFT) is generated. Then, algo-

rithms for estimating a signal from this synthetic STFT are applied. In a

third approach, the synthetic speech signal is generated in the time domain

from the speech model parameters.

A synthetic STFTM can be constructed from the Multi-Band Exci-

tation model parameters by combining segments of a periodic spectrum

in regions declared voiced with segments of a noise spectrum in regions

declard unvoiced to generate the excitation spectrum. The noise spec-

trum segments are normalized to have an average magnitude per sample

of unity. A densely sampled spectral envelope can be obtained by inter-
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polating between the samples (IAI) of the spectral envelope. We have

used a constant value set to A,J in voiced regions and linear interpola-

tion between adjacent samples (IAml) in unvoiced regions. The excitation

spectrum is then multiplied by the densely sampled spectral envelope to

generate the synthetic STFTM. Nawab has shown [23] that a signal can be

exactly reconstructed from its STFTM under certain conditions. However,

this algorithm requires the STFTM to be a valid STFTM (the STFTM

of some signal). Due to the modeling and synthesis process, the synthetic

STFTM is not guaranteed to be a valid STFTM. Consequently this algo-

rithm cannot be successfully applied to this problem. Another algorithm,

developed by Griffin and Lim [81 for estimating a signal from a modified

STFTM has been successfully applied to this problem for the applications

of analysis/synthesis and time-scale modification for both clean and noisy

speech [9]. However, this algorithm is quite expensive computationally and

requires a processing delay of approximately one second. This process-

ing delay is unacceptable in most real-time speech bandwidth compression

applications.

A synthetic STFT can be constructed from the Multi-Band Excitation

model parameters by combining segments of a periodic transform in re-
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gions declared voiced with segments of a noise transform in regions declard

unvoiced. The noise tranform segments are normalized as in the previous

paragraph and a densely sampled spectral envelope is generated. The phase

of the samples in voiced regions is set to the phase of the spectral envelope

samples A,. The weighted overlap-add algorithm [8] can then be used to

estimate a signal with STFT closest to this synthetic STFT in the least-

squares sense. One problem with this approach is that the voiced portion

of the synthesized signal is modeled as a periodic signal with constant fun-

damental over the entire frame. When small window shifts are used in the

analysis/synthesis system, a fairly continuous fundamental frequency vari-

ation is allowed as observed in the STFTM of the original speech. However,

when large window shifts are used (as is necessary to reduce the bit-rate

for speech coding applications) the large potential change in fundamental

frequency from one frame to the next causes time discontinuities in the

harmonics of the fundamental in the STFTM.

A third approach to synthesizing speech involves synthesizing the voiced

and unvoiced portions in the time domain and then adding them together.

The voiced signal can be synthesized as the sum of sinusoidal oscillators

with frequencies at the harmonics of the fundamental and amplitudes set
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by the spectral envelope parameters. This technique has the advantage of

allowing a continuous variation in fundamental frequency from one frame

to the next eliminating the problem of time discontinuities in the harmonics

of the fundamental in the STFTM. The unvoiced signal can be synthesized

as the sum of bandpass filtered white noise.

4.3 Speech Synthesis Algorithm

A time domain method was selected for synthesizing the voiced portion of

the synthetic speech. This method was selected due to its advantage of

allowing a continuous variation in fundamental frequency from frame to

frame. A frequency domain (STFT) method was selected for synthesizing

the unvoiced portion of the synthetic speech. This method was selected due

to the ease and efficiency of implementation of a filter bank in the frequency

domain with the Fast Fourier Transform (FFT) algorithm. Speech is then

synthesized as the sum of the synthetic voiced signal and the synthetic

unvoiced signal.

As discussed in the previous section, voiced speech can be synthesized
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in the time domain as the sum of sinusoidal oscillators:

v (t) = Z A(t) cos(O,(t)) (4.1)

The amp :de function Am(t) is linearly interpolated between frames with

the amplitudes of harmonics marked unvoiced set to zero. The phase func-

tion 0,(t) is determined by an initial phase bo and a frequency track w,(t).

em.(t) = wm.(i)d + Xo (4.2)

The frequency track wm(t) is linearly interpolated between the mth har-

monic of the current frame and that of the next frame as follows:

w,(t) = mwo(O) (S + mwo(S) + Awt (4.3)
S S

where wo(O) and wo(S) are the fundamental frequencies at t = 0 and t = S

respectively and S is the window shift. The initial phase 0o and frequency

deviation AWm parameters are chosen so that the principal values of Om(O)

and Oe(S) are equal to the measured harmonic phases in the current and

next frame. When the mth harmonics of the current and next frames are

both declared voiced, the initial phase 0o is set to the measured phase of

the current frame and Awm is chosen to be the smallest frequency deviation

required to match the phase of the next frame. When either of the har-

monics is declared unvoiced, only the initial phase parameter 0o is required
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to match the phase function ,(t) with the phase of the voiced harmonic

(Aw,m is set to zero). When both harmonics are declared unvoiced, the

amplitude function A,(t) is zero over the entire interval between frames so

any phase function will suffice.

Large differences in fundamental frequency can occur between adjacent

frames due to word boundaries and other effects. In these cases, linear

interpolation of the fundamental frequency between frames is a poor model

of fundamental frequency variation and can lead to artifacts in the synthe-

sized signal. Consequently, when fundamental frequency changes of more

than 10 percent are encountered from frame to frame, the voiced harmon-

ics of the current frame and the next frame are treated as if followed and

preceded respectively by unvoiced harmonics.

The unvoiced speech has been generated by taking the STFT of a white

noise sequence and zeroing out the frequency regions marked voiced. The

samples in the unvoiced regions are then normalized to have the desired

average magnitude specified by the spectral envelope parameters. The syn-

thetic unvoiced speech can then be produced from this synthetic STFT

using the weighted overlap-add method. It should be noted that this algo-

rithm can synthesize the unvoiced portion of the synthetic speech signal on
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a frame by frame basis for real-time synthesis.

4.4 Speech Synthesis System

A block diagram of our current speech synthesis system is shown in Fig-

ures 4.1 through 4.4. First, the spectral envelope samples are separated into

voiced or unvoiced spectral envelope samples depending on whether they

are in frequency bands declared voiced or unvoiced (Figure 4.1). Voiced

V/UV
Decisions

Separate
Voiced/Unvoiced
Envelope Samples

vOlcea envelope
Samples

Unvoiced Envelope
Samnies

Figure 4.1: Separation of Envelope Samples

envelope samples in frequency bands declared unvoiced are set to zero as

are unvoiced envelope samples in frequency bands declared voiced. Voiced

envelope samples include both magnitude and phase whereas unvoiced en-

velope samples include only the magnitude.
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Voiced speech is synthesized from the voiced envelope samples by sum-

ming the outputs of a bank of sinusoidal oscillators running at the har-

monics of the fundamental frequency (Figure 4.2). The amplitudes of the

Figure 4.2: Voiced Speech Synthesis

oscillators are set to the magnitudes of the envelope samples with linear in-

terpolation between frames. The phase tracks of the oscillators are adjusted

to match the phases of the envelope samples.

Unvoiced speech is synthesized from the unvoiced envelope samples by

first synthesizing a white noise sequence. For each frame, the white noise

sequence is windowed and an FFT is applied to produce samples of the

Fourier transform (Figure 4.3). A sample of the spectral envelope is esti-

mated in each frequency band by averaging together the magnitude of the

FFT samples in that band. This spectal envelope is then replaced by the

unvoiced spectral envelope generated from the unvoiced envelope samples.

This unvoiced spectral envelope is obtained by linear interpolation between
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Unvoiced Envelope
Samples

White Noise Unvoiced

Figure 4.3: Unvoiced Speech Synthesis

the unvoiced envelope samples. These synthetic transforms are then used

to synthesize unvoiced speech using the weighted overlap-add method.

The final synthesized speech is generated by summing the voiced and

unvoiced synthesized speech signals (Figure 4.4).
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Voiced

Unvoiced

Figure 4.4: Speech Synthesis
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Chapter 5

Application to the Development

of a High Quality 8 kbps Speech

Coding System

5.1 Introduction

Among many applications of our new model, we considered the problem

of bit-rate reduction for speech transmission and storage. In a number of

speech coding applications, it is important to reproduce the original clean

or noisy speech as closely as possible. For example, in mobile telephone
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applications, users would like to be able to identify the person on the other

end of the phone and are usually annoyed at any artificial sounding degra-

dations. These degradations are particularly severe for most vocoders when

operating in noisy environments such as a moving car. Consequently, for

these applications, we are interested in both the quality and intelligibility of

the reproduced speech. In other applications, such as a fighter cockpit, the

message is of primary importance. For these applications, we are interested

mainly in the intelligibility of the reproduced speech.

To demonstrate the performance of the Multi-Band Excitation Speech

Analysis/Synthesis System for this problem, an 8 kbps speech coding sys-

tem was developed. Since our primary goal is to demonstrate the high

performance of the Multi-Band Excitation Model and the corresponding

speech analysis methods, fairly conventional and simple parameter coding

methods have been used to facilitate comparison with other systems. Even

though simple coding methods have been used, the results are quite good.

The major innovation in the Multi-Band Excitation Speech Model is the

ability to declare a large number of frequency regions as containing periodic

or aperiodic energy. To determine the advantage of this new model, the

Multi-Band Excitation Speech Coder operating at 8 kbps was compared
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to a system using a single V/UV bit per frame (Single Band Excitation

Vocoder). The Single Band Excitation (SBE) Coder employs exactly the

same parameters as the Multi-Band Excitation Speech Coder except that

one V/UV bit per frame is used instead of 12. Although this results in a

somewhat smaller bit-rate for the more conventional coding system (7.45

kbps), we wished to maintain the same coding rates for the other parameters

in order to focus the comparison on the usefulness of the V/UV information

rather than particular modeling or coding methods for the other parame-

ters. In addition, this avoids the problem of trying to optimally assign these

11 bits to coding the other parameters and the subsequent multitudes of

DRT tests to evaluate all possible combinations.

5.2 Coding of Speech Model Parameters

A 25.6 ms Hamming window was used to segment 4 kHz bandwidth speech

sampled at 10 kHz. The estimated speech model parameters were coded

at 8 kbps using a 50 Hz frame rate. This allows 160 bits per frame for

coding of the harmonic magnitudes and phases, fundamental frequency, and

voiced/unvoiced information. The number of bits allocated to each of these
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parameters per frame is displayed in Table 5.1. As discussed in Chapter

Table 5.1: Bit Allocation per Frame

4, phase is not required for harmonics declared unvoiced. Consequently,

bits assigned to phases declared unvoiced are reassigned to the magnitude.

So, when all harmonics are declared voiced, 45 bits are assigned for phase

coding and 94 bits are assigned for magnitude coding. At the other extreme,

when all harmonics are declared unvoiced, no bits are assigned to phase and

139 bits are assigned for magnitude coding.
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Parameter Bits

Harmonic Magnitudes 139-94

Harmonic Phases 0-45

Fundamental Frequency 9

Voiced/Unvoiced Bits 12

Total 160



5.2.1 Coding of Harmonic Magnitudes

The harmonic magnitudes are coded using the same techniques employed by

channel vocoders [11]. In this method, the logarithms of the harmonic mag-

nitudes are encoded using adaptive differential PCM across frequency. The

log-magnitude of the first harmonic is coded using 5 bits with a quantiza-

tion step size of 2 dB. The number of bits assigned to coding the difference

between the log-magnitude of the mIh harmonic and the coded value of

the previous harmonic (within the same frame) is determined by summing

samples of the bit density curve of Figure 5.1 over the frequency interval

occupied by the mth harmonic. The available bits for coding the magni-

tude are then assigned to each harmonic in proportion to these sums. For

example, Figure 5.2 shows the number of bits assigned to code each har-

monic of a coded fundamental frequency of .01 (normalized frequency). The

coded value of the fundamental is used so that the number of bits allocated

to each harmonic can be determined at the receiver from the transmitted

coded fundamental frequency. The number of bits assigned to each har-

monic in Figure 5.2 is, in general, non-integer. For a non-integer number

of bits, the integer part is taken and the fractional part is added to the bits
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Figure 5.1: Magnitude Bit Density Curve
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Figure 5.2: Magnitude Bits for Each Harmonic
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assigned to the next harmonic. The quantization step size depends on the

number of bits assigned and is listed in Table 5.2.

Table 5.2: Quantization Step Sizes

5.2.2 Coding of Harmonic Phases

When generating the STFT phase, the primary consideration in high qual-

ity synthesis is to generate the STFT phase so that the phase difference

from frame to frame is consistent with the fundamental frequency in voiced
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Bits Step Size (dB) Min (dB) Max (dB)

1 8 -4 4

2 6.5 -9.75 9.75

3 5 -17.5 17.5

4 3 -22.5 22.5

5 2 -31 31

6 1 -31.5 31.5

7 0.5 -31.75 31.75

8 0.25 -31.875 31.875
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regions. Obtaining the correct relative phase between harmonics is of sec-

ondary importance for high quality synthesis. However, results of informal

listening indicate that incorrect relative phase between harmonics can cause

a variety of perceptual differences between the original and synthesized

speech especially at low frequencies. Consequently, the phases of harmon-

ics declared voiced are encoded by predicting the phase of the current frame

from the phase of the previous frame using the average fundamental fre-

quency for the two frames. Then, the difference between the predicted and

estimated phase for the current frame is coded starting with the phases of

the low frequency harmonics. The difference between the predicted and es-

timated phase is set to zero for any uncoded voiced harmonics to maintain a

frame to frame phase difference consistent with the fundamental frequency.

An example of phase coding is shown in Figures 5.3 through 5.6 for a frame

of speech in which all frequency bands were declared voiced. The phases of

harmonics in frequency regions declared unvoiced do not need to be coded

since they are not required by the speech synthesizer.

The difference between the predicted and estimated phase can be coded

using uniform quantization to code the first N harmonics between -r and

7r. For the 8 kbps system, the phases of the first 12 harmonics (starting
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Figure 5.3: Estimated Harmonic Phases
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Figure 5.4: Predicted Harmonic Phases

94

4

2

.S

cx10

9

0

-2

-4

A

2

-2

-4

I ·LII^-·IUIIII^I�-...�- IC- I^·III�P-..L--I ..�ll�··-·�Li --II.------·--� Ill·�ll-IIIIIIIIPIII�*IIIIP-··-LLI�·I�--

Is

-- --. --T--



/A

Frequency (kHz)

Figure 5.5: Difference Between Estimated and Predicted Phases
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Figure 5.6: Coded Phase Differences
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at low frequency) were coded using approximately 13 levels per harmonic.

This coding method is simple and produces fairly good results. However, it

fails to take advantage of the expected concentration of the phase differences

around zero for consecutive voiced harmonics.

To show the distribution of phase differences for several frequency bands,

six speech sentences were processed and the composite histograms gener-

ated. The phase differences accumulated were the difference between the

predicted and estimated phase of the harmonics that were declared voiced

in consecutive frames. As indicated in Figures 5.7 through 5.9, the phase

differences tend to be concentrated around zero especially for low frequen-

cies. For higher frequencies, the distribution tends to become more uniform

as the phases of the higher frequency harmonics become less predictable.

Several methods are available for reducing the average number of bits

required to code a parameter at a given average quantization error. In

entropy coding [31], the parameter is uniformly quantized with L quanti-

zation levels and a symbol yi is assigned to the ith quantization level. The

minimum average achievable rate to code these symbols is given by the
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Figure 5.9: Phase Difference Histogram (1.0 - 1.5kHz)

entropy:
L

H(y) = - P(y) log 2 P(y,) (5.1)
i=l

In entropy coding, the number of bits assigned to the symbol yi is:

Bi -log 2 P(yi) (5.2)

so that shorter code words are used for more probable symbols. The approx-

imation occurs in Equation (5.2) since - log2 P(y,) may not be an integer

value. The resulting variable length code achieves an average rate close to

the entropy. Constructive methods exist [13] for generating optimum vari-

able length codes. The problem with entropy coding is that if a number of
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improbable events occur closely spaced in time, a large delay is required to

transmit the code words which can result in unacceptably long pauses in

the synthesis end of a speech coding system in addition to requiring a large

data buffer.

In Lloyd-Max quantization [16], [20], nonuniform quantization is used

to minimize the average quantization error for a given number of quantiza-

tion levels. An equal number of bits is then used to code each level. This

coding method has the advantage of having fixed length code words. How-

ever, parameter values with low probability are often coded with a large

quantization error.

An L level Lloyd-Max quantizer is specified by the end points xi of each

of the L input ranges and an output level yi corresponding to each input

range. We then define a distortion function

L i+l

D=Z L f(x - Yi)P()dx (5.3)
i= 1 ( .

where f(z) is some function (we used f(z) = x2 ) and p(z) is the input

amplitude probability density. The objective is to choose the xi's and the

corresponding yi's to minimize this distortion function. Several iterative

methods exist [16], [20] for minimizing this distortion function.
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Table 5.3 shows the reduction in quantization error in dB for a 13 level

Lloyd-Max quantizer over a 13-level uniform quantizer. As expected, sig-

Table 5.3: Quantization Error Reduction

nificantly more improvement is obtained for the more predictable lower

frequencies.

Due to the improved performance of the Lloyd-Max quantizer over a

uniform quantizer and the advantage of fixed length code words over en-

tropy coding, the Lloyd-Max quantizer was employed in the 8 kbps MBE

Coder.
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Freq (kHz) Improvement (dB)

0.0 - 0.5 4.4

0.5 - 1.0 3.2

1.0 - 1.5 1.7

1.5 - 2.0 1.6

2.0 - 4.0 0.95
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5.2.3 Coding of V/UV Information

The voiced/unvoiced information can be encoded using a variety of meth-

ods. We have observed that voiced/unvoiced decisions tend to cluster in

both frequency and time due to the slowly varying nature of speech in the

STFTM domain. Run-length coding can be used to take advantage of this

expected clustering of voiced/unvoiced decisions. However, run-length cod-

ing requires a variable number of bits to exactly encode a fixed number of

samples. This makes implementation of a fixed rate coder more difficult.

A simple approach to coding the voiced/unvoiced information with a

fixed number of bits while providing good performance was developed. In

this approach, if N bits are available, the spectrum is divided into N equal

frequency bands and a voiced/unvoiced bit is used for each band. The

voiced/unvoiced bit is set by comparing a weighted sum of the normalized

errors of all of the harmonics in a particular frequency band to a threshold.

When the weighted sum is less than the threshold, the frequency band is

set to voiced. When the weighted sum is greater than the threshold, the

frequency band is set to unvoiced. The sum is weighted by the estimated
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harmonic magnitudes as follows:

Ek= IAn |.m (5.4)

where m is summed over all of the harmonics in the kth frequency band.

5.3 Coding- Summary

The methods used for coding the MBE model parameters are summarized

in Figures 5.10 through 5.13. The fundamental frequency is coded using

uniform quantization (Figure 5.10).

Figure 5.10: Fundamental Frequency Coding

The estimated phases are coded by predicting the phases of the current

frame from the coded phases in the previous frame using the coded fun-

damental frequency (Figure 5.11). The difference between the predicted

phases and the estimated phases are then coded using Lloyd-Max quan-

tization. Only the phases of the M lowest frequency harmonics declared
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Estimated

Figure 5.11: Coding of Phases

voiced are coded since these appear to be more important perceptually.

The phases of harmonics declared unvoiced are not coded since they are

not required by the synthesis algorithm and the bits allocated to them are

used to code the magnitude samples.

The magnitude samples are coded by coding the lowest frequency mag-

nitude sample using uniform quantization. The remaining magnitudes for

the current frame are coded using adaptive differential PCM across fre-

quency (Figure 5.12). The number of bits assigned to coding each mag-

nitude sample is determined from the coded fundamental frequency by

summing a bit distribution curve as described in Section 5.2.1.

The V/UV information is coded by dividing the original spectrum into

N frequency bands (N = 12 for the 8 kbps system). The error (closeness of
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Fundamental

Coded Magnitude

Figure 5.12: Coding of Magnitudes

fit) is determined between each frequency band of the original spectrum and

the corresponding frequency band of the synthesized all-voiced spectrum

(Figure 5.13). A threshold is then used to set a V/UV bit for each frequency

Figure 5.13: Coding of V/UV Information

band. When the error for a frequency band is below the threshold, the all-

voiced synthetic spectrum is a good match for the original spectrum and

this frequency band is declared voiced. When the error for a frequency band
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is above the threshold, the all-voiced synthetic spectrum is a poor match

for the original spectrum and this frequency band is declared unvoiced.

The 8kbps MBE Coder was implemented on a MASSCOMP computer

(68020 CPU) in the C programming language. The entire system (analy-

sis, coding, synthesis) requires approximately 1 minute of processing time

per second of input speech on this general purpose computer system. The

increased throughput available from special purpose architectures and con-

version from floating point to fixed point should make these algorithms

implementable in real-time with several Digital Signal Processing (DSP)

chips.

5.4 Quality- Informal Listening

Informal listening was used to compare a number of speech sentences pro-

cessed by the Multi-Band Excitation Speech Coder and the Single Band

Excitation Speech Coder. For clean speech, the speech sentences coded

by the MBE Speech Coder did not have the slight buzziness" present in

some regions of speech processed by the SBE Speech Coder. Figure 5.14

shows a spectrogram of the sentence He has the bluest eyes" spoken by a
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male speaker. In this spectrogram, darkness is proportional to the log of

He has the bluest eyes

Figure 5.14: Uncoded Clean Speech Spectrogram

the energy versus time (0 - 2 seconds, horizontal axis) and frequency (0 -

5 kHz, vertical axis). Periodic energy is typified by the presence of parallel

horizontal bars of darkness which occur at the harmonics of the funda-

mental frequency. One region of particular interest is the /h/ phoneme in

the word "has". In this region, several harmonics of the fundamental fre-

quency appear in the low frequency region while the upper frequency region

is dominated by aperiodic energy. The Multi-Band Excitation Vocoder op-

106

^1_11 -1 I·· I---�-�C--�-·----
��_ __�____�I1I ili_^_llllll��LIII -_--LI. 1.-11_--1�1 1111-141�- -.---�^----··1--·111WI�-I -^--



erating at 8kbps reproduces this region quite faithfully using 12 V/UV bits

(Figure 5.15). The SBE Vocoder declares the entire spectrum voiced and
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He has the bluest eyes

Figure 5.15: MBE Vocoder - Clean Speech Spectrogram

replaces the aperiodic energy apparent in the original spectogram with har-

monics of the fundamental frequency (Figure 5.16). This causes a "buzzy"

sound in the speech synthesized by the SBE Vocoder which is eliminated by

the MBE Vocoder. The MBE Vocoder produces fairly high quality speech

at 8 kbps. The major degradation in these two systems (other than the

"buzziness" in the SBE Vocoder) is a slightly reverberant quality due to
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He has the bluest eyes

Figure 5.16: SBE Vocoder - Clean Speech Spectrogram
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the large synthesis windows (40 ms triangular windows) and the lack of

enough coded phase information.

For speech corrupted by additive random noise (Figure 5.17), the SBE

Coding System (Figure 5.19) had severe buzziness" and a number of

voiced/unvoiced errors. The severe "buzziness" is due to replacing the

He has the bluest eyes

Figure 5.17: Uncoded Noisy Speech Spectrogram

aperiodic energy evident in the original spectrogram by harmonics of the

fundamental frequency. The V/UV errors occur due to dominance of the

aperiodic energy in all but a few small regions of the spectrum. The
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voiced/unvoiced threshold could not be raised further without a large num-

ber of the totally unvoiced frames being declared voiced. The noisy speech

sentences processed by the Multi-Band Excitation Speech (for example, see

Figure 5.18) Coder didn't have the severe "buzziness" present in the Single

Band Excitation Speech Coder and didn't seem to have a problem with

voiced/unvoiced errors since much smaller frequency regions are covered

by each V/UV decision. In addition, the sentences processed by the MBE

He has the bluest eyes

Figure 5.18: MBE Vocoder - Noisy Speech Spectrogram

Vocoder sound very close to the original noisy speech.
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He has the bluest eyes

Figure 5.19: SBE Vocoder - Noisy Speech Spectrogram
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5.5 Intelligibility - Diagnostic Rhyme Tests

The Diagnostic Rhyme Test (DRT) was developed to provide a measure

of the intelligibility of speech signals. The DRT is a refinement of earlier

intelligibility tests such as the Rhyme Test developed by Fairbanks [4] and

the Modified Rhyme Test developed by House et al. [12]. The form of the

DRT used here is described in detail in Voiers [32].

The DRT consists of listening to a sequence of words spoken by the

same speaker. Each of the words spoken is one of a set of two rhyming

monosyllabic words. The listener must then choose which of the two words

was spoken for each word in the sequence. The DRT word pairs were

chosen so that only the initial consonant differs in order to minimize the

effects of context. One DRT consists of 192 test words in addition to some

filler words spoken by a single speaker and corresponds to approximately

7 minutes of speech. The DRT score is adjusted to remove the effects of

guessing so that random guessing would achieve a score of zero on average.

No errors in a DRT corresponds to a score of 100.

The DRT was employed to compare uncoded speech with the 8 kbps

Multi-Band Excitation Vocoder (12 V/UV bits per frame) and the Single
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Band Excitation Vocoder (1 V/UV bit per frame). Two conditions were

tested: 1) clean speech, and 2) speech corrupted by additive white Gaussian

noise. Based on the informal listening in the previous section, we expect

the scores for the two vocoders to be very close for clean speech since only

a slight quality improvement was noted for this case. For noisy speech,

the MBE Vocoder provides a significant quality improvement over the SBE

Vocoder which leads us to expect a measurable intelligibility improvement.

The noise level was adjusted to produce approximately a 5 dB peak signal

to noise ratio in the noisy speech. However, since amplitudes of the words

on the DRT tapes differed significantly from each other, the SNR varied

substantially from word to word. In these tests, we are interested in the

relative performance of the vocoders in the same background noise which

makes the noise level uncritical.

The DRT scores presented for clean speech (Table 5.4 and Figure 5.20)

and noisy speech (Table 5.5 and Figure 5.21) were generated from three

male speakers and 10 listeners. Figures 5.20 and 5.21 are bar graphs that

show the average DRT scores and one standard deviation above and below

them. Each of the 18 DRT tests taken by each listener was generated from

an original set of 3 DRT tests (one for each speaker) by randomly rearrang-
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l=Uncoded 2=MBE 3=SBE

Figure 5.20: Average DRT Scores - Clean Speech

l=Uncoded 2=MBE 3=SBE

Figure 5.21: Average DRT Scores - Noisy Speech
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Table 5.4: DRT Scores - Clean Speech

ing the word pair order for each test to prevent memorization by listeners.

The listeners were inexperienced initially and were given 4-6 practice DRT

tests until they became comfortable with the tests and produced reliable

scores. The scores presented in the tables were computed by eliminating

outliers in the original listeners' scores and then computing the mean and

an estimate of the standard deviation of this mean assuming a Gaussian

density for the listener scores. Outliers were eliminated by computing the

average of the scores and removing the two scores furthest from the average.
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Speaker

System Type CH JE RH Average

Uncoded Mean 97.6 95.7 97.3 96.9

S. D. .36 .50 .55 .28

8 kbps MBE Mean 93.5 91.4 95.8 93.6

S. D. .90 1.1 .69 .53

Conventional Mean 93.4 91.7 95.1 93.4

S. D. .84 1.1 .51 .49



Table 5.5: DRT Scores - Noisy Speech

The remaining 8 scores were then used to estimate the mean and standard

deviation. Since the relative DRT scores are of primary interest, Tables 5.6

and 5.7 show the mean and standard deviation of the difference between

the listeners' DRT scores for uncoded speech and speech processed by the

two Vocoders.

For clean speech, as expected, several points are lost going from uncoded

to coded due to lowpass filtering inherent in the vocoders and degradations

introduced by coding. Also, the intelligibility scores are approximately the
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Speaker

System Type CH JE RH Average

Uncoded Mean 56.5 43.6 54.9 51.7

S. D. 1.8 1.8 2.1 1.1

8 kbps MBE Mean 56.7 40.6 51.4 49.6

S. D. 1.8 2.0 1.7 1.1

Conventional Mean 49.6 35.0 47.1 43.9

S. D. 1.5 2.2 1.8 1.1
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Table 5.6: DRT Score Differences - Clean Speech

same for the MBE Vocoder and the SBE Vocoder.

For noisy speech, the MBE Vocoder performs an average of about 6

points better than the SBE Vocoder while performing only about 2.6 points

worse than the uncoded noisy speech. This demonstrates the utility of the

extra voiced/unvoiced bands in the Multi-Band Excitation Vocoder.
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Speaker

Systems Type CH JE RH Average

Uncoded Mean 3.3 4.3 1.4 3.0

- 8 kbps MBE S. D. .95 1.0 .58 .50

Uncoded Mean 3.4 4.0 2.2 3.2

- SBE S. D. 1.0 .72 .65 .46

8 kbps MBE Mean .1 -. 26 .78 .2

- SBE S. D. .64 .44 .51 .31



Table 5.7: DRT

5.6 DRT Scores

Score Differences

- RADC

- Noisy Speech

DRT test tapes for each of the conditions tested in the previous section were

submitted to RADC for independent evaluation. The DRTs performed by

RADC employed experienced listeners in a fairly controlled environment.

The resulting DRT scores are presented for clean speech in Table 5.8 and

Figure 5.22. The DRT scores are presented for noisy speech in Table 5.9 and

Figure 5.23). Figures 5.22 and 5.23 are bar graphs that show the average

DRT scores and one standard deviation above and below them.
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Speaker

Systems Type CH JE RH Average

Uncoded Mean .4 3.8 3.5 2.6

- 8 kbps MBE S. D. .4 2.2 1.5 .90

Uncoded Mean 9.6 8.4 7.8 8.6

- SBE S. D. 1.6 2.1 1.2 .97

8 kbps MBE Mean 8.8 4.9 4.3 6.0

- SBE S. D. 1.2 1.5 1.6 .83
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Figure 5.22: Average RADC DRT Scores - Clean Speech

l=Uncoded 2=MBE 3=SBE

Figure 5.23: Average RADC DRT Scores - Noisy Speech
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Table 5.8: RADC DRT Scores - Clean Speech

The RADC DRT scores confirm the trends noted in the previous sec-

tion. For clean speech, the RADC DRT scores are slightly higher than

those presented in the previous section due presumably to experienced lis-

teners. Somewhat fewer DRT points are lost going from uncoded speech

to coded speech than in the previous section. As in the previous section,

the intelligibility scores for clean speech are approximately the same for the

MBE Vocoder and the SBE Vocoder.

For noisy speech, the RADC DRT scores are significantly higher than
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Speaker

System Type CH JE RH Average

Uncoded Mean 98.2 96.6 98.7 97.8

S. D. .33 .55 .38 .30

8 kbps MBE Mean 97.0 94.4 97.1 96.2

S. D. .54 .39 .33 .35

SBE Mean 96.9 94.1 96.9 96.0

S. D. .44 .55 .81 .44
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Table 5.9: RADC DRT Scores - Noisy Speech

those presented in the previous section, probably due to experienced listen-

ers, although the same trends are preserved. The MBE Vocoder performs

an average of about 12 points better than the SBE Vocoder while per-

forming only about 5 points worse than the uncoded noisy speech. This

confirms the utility of the extra voiced/unvoiced bands in the Multi-Band

Excitation Vocoder.
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Speaker

System Type CH JE RH Average

Uncoded Mean 67.5 52.6 69.3 63.1

S. D. 1.3 1.6 1.5 1.8

8 kbps MBE Mean 60.8 48.7 64.5 58.0

S. D. 1.4 1.4 1.8 1.6

SBE Mean 50.3 37.9 49.9 46.0

S. D. .94 2.3 1.8 1.6
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Chapter 6

Directions for Future Research

6.1 Introduction

In this thesis, we have considered in detail only the application of the Multi-

Band Excitation Model to high quality speech coding. Some additional

potential applications are discussed in Section 6.2. Improvements to the

Multi-Band Excitation Speech Coding System can be made in a number of

areas. Two areas of major importance are further improvement in quality

and additional bit-rate reduction. Section 6.3 proposes some techniques for

achieving these goals.
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6.2 Potential Applications

Since the Multi-Band Excitation Model separately estimates spectral en-

velope and excitation parameters, it can be applied to problems requiring

modifications of these parameters. For example, in the application of en-

hancement of speech spoken in a helium-oxygen mixture, a non-linear fre-

quency warping of the spectral envelope is desired without modifying the

excitation parameters [28].

Other applications include time-scale modification (modification of the

apparent speaking rate without changing other characteristics) and pitch

modification. Since the Multi-Band Excitation Model appears to provide an

intelligibility improvement over a system employing a single voiced/unvoiced

decision for the entire spectrum, this model may prove useful for the front

ends of speech recognition systems.
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6.3 Improvement of the Speech Coding Sys-

tern

The quality of the Multi-Band Excitation Vocoder could be improved by

elimination of the slightly reverberant quality of the 8 kbps vocoded speech.

This degradation is due to the long synthesis windows (40 ms) used to ac-

complish the 50 Hz frame rate and the lack of enough coded phase infor-

mation.

One approach to improving the quality and/or lowering the bit-rate

would be to predict much of the phase information from the magnitude

information. Since speech is often close to a minimum phase system ex-

cited by a periodic signal, a certain amount of phase information should be

predictable from samples of the magnitude at the harmonics of the funda-

mental frequency. Since noise energy often dominates the signal in some

frequency regions, this problem needs to be formulated as a best fit prob-

lem. For example, find the minimum phase signal which provides the best

fit to the coded magnitude and several of the coded phases. A solution to

this problem would allow the remaining phases at the receiver to be pre-

dicted from the coded phases and the coded magnitudes. If necessary, the
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difference between the predicted phases and the actual phases could also

be coded at the transmitter.

A second approach to improving the quality and/or lowering the bit-rate

would be to take advantage of frame to frame correlation of the magnitude

information. Speech usually consists of regions of slowly time-varying spec-

tral magnitude bounded by short regions which change much more rapidly.

One method for taking advantage of this would group frames into blocks

and allocate more bits to rapidly varying sections of the block and fewer

bits to more slowly varying sections. The blocks could be made fairly short

(100-200ms) to avoid excessive coding and decoding delay.
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