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Abstract

An approach to three-dimensional object recognition tailored to large object sets is
presented. It varies from others in that representations encoding qualitative instead
of precise information are employed, resulting in finite-view descriptions of 3D ob-
jects. With no dimensional mismatch between image and model reference frames,
recognition occurs quickly on the basis of information immediately extractable from
images, and thus becomes feasible for large object sets.

Qualitative representations are justified because coarse information often distin-
guishes objects. Yet unique identification can not be guaranteed since qualitative
characterization does not capture fine distinctions among objects. So qualitative
recognition can be viewed as a example of indexing, where simple information is
used to quickly and cheaply eliminate dissimilar objects from consideration. With a
small number of similar objects remaining, application of more detailed and costly
procedures yielding unique identification becomes feasible.

Indexing is demonstrated on line drawings of a set of sixteen library objects. Rep-
resentations are obtained by uniformly sampling the viewing sphere. The simplicity
of resulting descriptions allows parallel matching over all known objects on fine-grain
parallel hardware. Effective indexing is demonstrated for isolated scene objects, typ-
ically resulting in little ambiguity among library objects. When multiple objects are
present, accurate object segmentation is needed to avoid increased ambiguity due to
segmentation error.
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Chapter 1

Introduction

Visual recognition takes place by comparing information extracted from imagery with

stored representations identifying known objects. Assuming unconstrained viewpoint,

the success of recognition requires that representations encode object appearance from

all possible perspectives. One approach is to store precise 3D geometric information

in an object-centered reference frame, perhaps via computer-aided design, resulting

in a conceptually compact representation implicitly encoding appearance from all

viewpoints. Serious problems result, however, the most significant being the diffi-

culty and computational expense of converting object-centered model information

and viewer-centered image data to a common domain for comparison.

Here qualitative object representations, meaning those encoding coarse instead of

precise information, are motivated. The primary advantage is that qualitative object

appearance can be captured by a finite number of views, hinting that fast recogni-

tion, without the need for conversion between object- and viewer-centered frames,

is possible. Furthermore, reduction of 3D objects into viewer-centered descriptions

greatly simplifies learning, which then becomes the relatively simple task of compiling

qualitatively different object views.

But qualitative representation is not guaranteed to result in unique identification

because encoded information may fail to capture subtle object differences. Thus a

two-stage paradigm is proposed, where qualitative recognition is used as an indexing

step designed to retrieve a small number of similar objects from a large set of known



possibilities. Unique identification could then be achieved by more detailed examina-

tion of these objects using a procedure too expensive to be applied directly to large

object sets.

This chapter serves primarily as an introduction to the qualitative approach, and

includes brief surveys of previous recognition systems and related psychophysics. The

chapter concludes with an overview of those following.

1.1 Motivation

One of the most remarkable characteristics of the human visual system is its ability

to quickly recognize large numbers of 3D objects, perhaps on the order of tens of

thousands [5]. In contrast, current work in computer vision typically considers only

one object [65], or perhaps a few very simple ones [37]. Perhaps the view is widespread

that algorithms designed for small object sets will naturally extend to solutions for

the many-object case.

But there seems to be little progress in this direction. The goal of this work is to

address the issue more directly by considering from the beginning the requirements

of large object sets in order to obtain recognition strategies more appropriate than

brute-force application of techniques designed for small sets.

The most important requirement regards computation. If recognition proceeds by

considering known objects serially, then for the sake of speed each can not require

much processing. More plausibly, recognition could occur in parallel over the set

of known objects. In theory this would allow more extensive computation for each

object. However, currently available parallel processors are relatively simple and

limited, restricting allowable computation. For example, the Connection Machine

model CM-2 parallel supercomputer uses processors having one-bit arithmetic units

and only 64K bits of memory each. Thus for parallel as well as serial implementations,

recognition using available hardware cannot require large amounts of computation

(per object).

Current 3D recognition algorithms are limited to serial implementations precisely



because their computational requirements are beyond the capabilities of available

parallel processors. Furthermore, typically recognition of at most a few objects is

attempted because consideration of each is lengthy. Several of these techniques will

be reviewed in detail in the next section, but for now it suffices to note that many

are founded on the use of object representations encoding precise 3D information in

object-centered reference frames, meaning those rigidly attached to objects [47].

Such representations present a computational bottleneck for recognition because

image information is embedded in 2D viewer-centered (retinocentric) frames, meaning

those defining spatial relations on the viewer's retina [47]. Since recognition occurs

by comparing imagery with stored object representations, information stored in 2D

and 3D reference frames must be converted to a common domain for comparison. As

will be discussed, this typically requires large amounts of computation, perhaps much

more than is required for comparison once conversion is complete.

It would seem then that object-centered representations fundamentally hinder the

performance of recognition systems. One possible remedy suggested by Grimson and

Lozano-P6rez [29, 30] and Grimson [27] is to use simple geometric constraints to ef-

ficiently prune scene interpretations, thereby restricting the number of 3D geometric

models to be considered. An alternative is to represent objects in terms of retinocen-

tric information, meaning collections of view descriptions. With this approach, there

is no need for conversion of image and model data since both are defined in viewer-

centered frames. Of course this is not a new idea: the industrial-part recognition

literature yields many such techniques [13]. However, they typically apply to heavily

constrained environments [58] involving controlled illumination and viewpoint, result-

ing in representations such as the iconic model [59, 2], which essentially consists of

images obtained at allowable viewpoints. More general applications involving arbi-

trary viewpoint are not addressed primarily due to concern that many views would

be required to capture object appearance from all possible perspectives [47, 58, 13].

But that may be exactly what is desirable, at least for parallel implementations.

Instead of relying on a single 3D object-centered representation to implicitly encode

all possible views, a collection of retinocentric descriptions could be used to implicitly
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encode 3D structure. Recognition then reduces to comparing stored view descrip-

tions with imagery. Since view descriptions are independent, each could be assigned

to a distinct processor, which would then have a lightened computational burden

because reference frame transformations would no longer be needed. Thus, instead

of assigning an object-centered representation to each processor, which is probably

not computationally feasible for any but the most trivial objects, representing objects

retinocentrically allows the computational burden to be distributed among multiple

processors, permitting recognition to occur in parallel in a manner potentially within

the computational capabilities of current parallel hardware.

Explicitly encoding viewer-centered instead of object-centered information also

helps address another important recognition issue, namely object learning. Since

representations consist of collections of view descriptions, learning simply becomes a

matter of sampling object appearance from different viewpoints.

Thus viewer-centered representations are attractive because they ease the compu-

tational burden of recognition, and because they simplify object learning. But little

has been said to this point concerning the nature of view descriptions. Assuming an

arbitrary viewpoint, all perspectives of each object must be captured by a finite num-

ber of view descriptions. This criterion rules out descriptions encoding information

which varies continuously with viewpoint. In general, precise geometric informa-

tion falls in this category and thus the iconic model as well as most other published

viewer-centered representations [13] are not appropriate. Instead, object features can

be described qualitatively, meaning here that all possible appearances are partitioned

into a finite number of distinct descriptions. A finite number of observed features,

each described qualitatively, results in a finite number of possible view descriptions.

Furthermore, feature descriptions must be stable with respect to viewpoint. Oth-

erwise, blind sampling of viewpoints is not likely to result in satisfactory object rep-

resentations, making learning impractical.

To make the notion of qualitative feature characterization concrete, consider the

machined part pictured in Figure 1-1. Such line drawings can be segmented into

collections of digitized curves, which become reasonable choices for the primitive



Figure 1-1: A digitized line drawing.

features of view descriptions. The problem is to characterize these curves such that

the number of possible descriptions is finite. Strictly speaking the curves themselves

are qualitative entities since there are a finite number of distinct digital curves possible

in any image array of finite size. But describing curves by listing constituent pixels

is not useful due to viewpoint instability.

A much more reasonable and perceptually significant approach is to code each

curve according to number of concavities. Here "concavity" refers to a curve interval

of apparently monotonic orientation variation, without regard for the direction of

variation (there is no notion of "inside" or "outside"), and possibly including corners.

Several curves with equal numbers of concavities and therefore identical qualitative

descriptions are pictured in Figure 1-2. We can reasonably expect such a description

to be quite insensitive with respect to viewpoint, as is suggested by comparing cor-

responding curves in Figure 1-3. And significantly, we shall see in the next chapter

that number of concavities is a quantity easily and robustly extracted from digitized

curves, which is not the case with many other curvature evaluation methods.

Qualitative descriptions of a quite different nature can be obtained simply by

quantizing continuous variables. In the context of line drawing analysis, such variables

might include curve length and angular separation of curves at intersections. Here

qualitative characterization provides an additional benefit, namely noise suppression



Figure 1-2: Digital curves with three concavities each.

Figure 1-3: Two views having qualitatively identical curves.



due to quantization.

To recapitulate, qualitative descriptions yield a finite number of feature classifi-

cations, allowing 3D objects to be represented by finite numbers of views. Resulting

object representations encode 3D information implicitly in terms of view descriptions,

making learning and fast recognition of large sets of 3D objects feasible.

1.2 Recognition Paradigm

Qualitative representation is justified because objects of interest often differ radically.

But ambiguity among similar objects can be expected since coarse characterization

may fail to capture subtle object differences. Thus qualitative representation is not

guaranteed to result in unique identification. Instead qualitative recognition must be

followed by a second recognition stage employing more precise object information.

Thus the recognition paradigm proposed here involves an indexing stage employing

qualitative information to retrieve a small number of grossly similar objects from the

known set, followed by a verification stage employing detailed information to yield

unique identification1 .

Two stages are proposed for efficiency. Since it involves manipulation of simple

information, indexing occurs quickly, leaving more costly verification to a significantly

reduced set of possibilities. But the burden of verification is in turn reduced because

detailed information is required to distinguish only similar objects of the known set,

and thus can be rather specific, reducing the amount of data manipulation required.

One possibility is to structure verification as a tiny expert system which applies

detailed information based on the class of objects returned by indexing [52]. Detailed

information is then applied only if relevant, thereby improving verification efficiency.

Verification will not be considered in detail in the remainder of this work. Instead

emphasis is placed on achieving effective qualitative indexing. Thus when the term

"recognition" is used, it often refers to the first stage of the paradigm.

1The reader will note the similarity between this scheme and the approach proposed by Ullman
[67], where "universal routines" applied in the absence of a priori information are used to obtain
initial classification, followed by selective application of specialized routines.



1.3 Previous Work

Recognition algorithms can be distinguished based on the extent of scene modelling

required. Recent systems using strong scene assumptions are the context-dependent

recognizers of Silberberg [60], and of Harwood, Prasannappa, and Davis [32]. Others

are discussed in the survey by Binford [6). Since context often serves to define a small

number of observable objects, such techniques circumvent the problems associated

with large object sets, and are not of interest here. Instead, the more general case

where context is unknown will be addressed.

Without scene modelling, rich object representations capable of distinguishing

objects in unknown positions and orientations become necessary. Representations

can be divided into two classes depending on whether object information is stored in

viewer-centered or object-centered reference frames [13]. Viewer-centered representa-

tions consist of collections of view descriptions, and have the advantage that compar-

ison of image and model information does not require spatial transformations. But

the recognition algorithms receiving the most attention recently use object-centered

models.

Object-centered representations are favored for several reasons [47, 13, 3, 6]. Fore-

most is the implicit encoding of all object views, enabling recognition from arbitrary

perspective. Additionally, in industrial settings computerized design procedures can

result in prior availability of such representations. The main disadvantage is the refer-

ence frame mismatch between model and image data, forcing spatial transformations

during recognition.

Roberts pioneered the use of object-centered representations with the publication

of his efforts in polyhedron recognition [56]. The input to his system consists of line

drawings of one or more objects, possibly extracted from imagery using edge detection

techniques. Since extraction of object-centered information from imagery in general

and line drawings specifically is non-trivial, matching is performed by transforming

object-centered model information to the image domain. This requires filtering a

finite number of plausible transformations from the infinity of possibilities.



Hypothesized transformations are obtained by postulating correspondences be-

tween line drawing and model points. The only points considered are endpoints

of lines forming model or drawing polygons, excluding those belonging to image

T-junctions. The technique employed requires at least four pairs of corresponding

points to allow estimation of object position, orientation, and scale (in three axes)

in a camera-centered reference frame. Model information can then be projected into

the image domain using the assumed perspective imaging model.

All possible image/model point pairings can be used, but to further reduce the

number of model transformations to be considered, only topologically equivalent

points are paired. For example, one point-matching technique requires polygons

to be classified based on number of sides. Points are paired if their surrounding

polygons match. Lists of pairs passing this test are constructed, each resulting in a

hypothesized transformation of the model under consideration.

Having obtained a finite set of plausible transformations for each model, object

matching proceeds in the image domain. First, a measure of the fit of model to

drawing points obtained by the least-squares transformation estimation procedure is

obtained, and all models whose error measures are too large are discarded. Second,

all model points are projected into the drawing, resulting in the elimination of all

models having points falling outside the boundary of the image object. All models

passing these two tests are considered valid.

Thus we see that Roberts' recognition algorithm consists of two parts. First, a

finite number of object views are guessed by postulating correspondences between

image and object features. Second, matching occurs in the image domain by compar-

ing hypothesized views to the image in question. Roberts proposed this paradigm in

1965, and it has continued to receive considerable attention [12, 35, 33, 25, 37, 38].

Consider for example Huttenlocher's recent thesis [37], which also considers poly-

hedra, as well as a limited class of curved-surface objects. In contrast to the per-

spective imaging model used by Roberts, Huttenlocher uses an approximate model,

namely "weak perspective" projection, consisting of orthographic imaging plus a scale

factor to approximate object size variation with distance under perspective projec-



tion. The work is founded on the claim that curvature zeroes of 3D space curves are

preserved under orthographic projection 2, allowing pairs of image and model edge

segments bounded by curvature zeroes to be placed in postulated correspondence

(here an image edge corresponds to a grey-scale intensity discontinuity, and a model

edge to a surface orientation discontinuity). One or two such pairs are used to hy-

pothesize object orientation and position in a camera-centered reference frame. For

each hypothesized transformation, matching takes place by projecting model edges

into the image domain. Transformations for which a "certain percentage" of model

edges match image edges are accepted.

Goad [25] considers a variation of the Roberts paradigm where viewpoint hypoth-

esis and object matching are performed iteratively instead of in discrete stages. Each

step of the iteration begins by predicting the image position of an object edge (not

previously considered) using the current viewpoint hypothesis. If an image edge is

nearby, a match is assumed, and the difference between predicted and actual position

is used to refine the viewpoint estimate. The process is repeated until enough edges

are matched to infer object identification reliably.

A popular approach using object-centered models distinct from Roberts' paradigm

employs the generalized Hough transform [1, 2]. As in Roberts' paradigm, model to

image transformations are obtained by postulating matches between image and model

features. Typically all possible pairings are checked, resulting in a large set of poten-

tial transformations. Since each usually involves six degrees of freedom (three each

for orientation and position in the camera reference frame), transformations can be

represented in a six-dimensional parameter space. Since similarity of incorrect trans-

formations is unlikely, clusters in parameter space ideally signal correct transforma-

tions. Thus, transformations are verified not by matching in the image domain, as in

Roberts' paradigm, but instead by cluster detection in parameter space [16, 65, 19, 9].

A recent example of the generalized Hough transform approach is the work of

Connolly et al. [16], which employs polyhedral object models and piecewise linear

2Although Huttenlocher provides intuitive justification for this claim [37, pages 92-93], no rigor-
ous proof is given. Certainly its validity does not extend to all viewpoints, as it is easy to imagine
situations where a 3D curvature zero disappears when viewed along its tangent.



approximations of image edges. The matching features are "vertex-pairs", each of

which consists of two vertices (edge intersections) plus two edges from one of the

vertices. The two vertices do not have to be connected by an edge. Assuming weak

perspective imaging, a single pair of corresponding image and model vertex-pairs

results in a six degree of freedom transformation of the object model into the camera

reference frame. Transformations are calculated for every pairing of image vertex-

pairs to a subset of the model vertex-pairs. The most plausible is determined by

finding clusters in the resulting six dimensional parameter space.

Roberts' paradigm and the generalized Hough transform technique together ac-

count for most recent work in arbitrary-view 3D object recognition. Both raise critical

issues regarding the generality, and suitability for large object sets, of algorithms us-

ing object-centered geometric representations. Consider for example the the necessary

step of hypothesizing object viewpoints. As we have seen, this typically requires pair-

ing image features with 3D features fixed on objects, such as those associated with

surface orientation discontinuities. However, image features do not necessarily corre-

spond to fixed 3D features. Examples include T-junctions generated by self-occlusion,

and occluding boundaries generated by smooth surfaces. These cannot be used to

hypothesize object viewpoints. Thus smooth objects cannot be identified, even in the

presence of characteristic image features3 .

Other problems appear during the viewpoint verification stage. Consider Hutten-

locher's algorithm, for example, which verifies hypothesized viewpoints by projecting

model edges into the image domain. For general objects, this requires hidden line

elimination and limb4 detection. Such calculations are lengthy: rendering of individ-

ual objects in Figure 1-4 typically takes several minutes on a Symbolics model 3650

Lisp Machine. Thus few hypothesized views of general objects can be considered

in practice, especially when considering large object sets. However, even the simple

3 Roberts' addressed only polyhedron recognition. This point is mentioned only to indicate one
of the difficulties in extending his approach to more general objects.

4Limbs are collections of points whose lines of sight are surface tangents. They usually project into
image edges, making their detection mandatory in Huttenlocher's verification scheme. Since limb
location is a function of viewpoint, precomputation is not possible, as it is with surface orientation
discontinuities.



polyhedra considered by Huttenlocher require on the order of a thousand hypothe-

sized views each when in typical scenes [37, page 123], suggesting that recognition of

more complicated objects such as those in Figure 1-4 is simply not feasible. Of course

it might be argued that each view could be considered in parallel, but this would re-

quire thousands of powerful processors for each known object, making consideration

of large object sets unlikely.

To avoid the rendering bottleneck, Huttenlocher uses a representation very similar

to the characteristic view approach of Chakravarty and Freeman [11]. A characteris-

tic view is representative of a set of object views defined by isomorphism with respect

to line structure. Since object-centered positions of corresponding 3D edges are in-

cluded with characteristic views, all views in isomorphic sets can be obtained from

corresponding characteristic views without hidden line removal or limb detection. But

this assumes that there is no self-occlusion and that all image edges are projections of

object edges. When these assumptions are violated the characteristic view approach

is not applicable. For example, limbs are not surface-fixed so their projections can not

be predicted via the characteristic view approach. When present, limbs must be de-

tected at all viewpoints5 . And self-occlusion causes point visibility to vary, requiring

hidden line removal. Thus the characteristic view approach allows efficient and accu-

rate rendering only of objects without significant limbs or self-occlusion, eliminating a

huge class of objects from consideration (all objects in Figure 1-4 for example). Fast

viewpoint verification is obtained, but at the cost of severely restricting allowable

objects.

The generalized Hough transform approach performs viewpoint verification by

clustering hypothesized model-to-image transformations. However, clustering appears

to be quite costly. For example, the algorithm of Connolly et al. implemented on the

Connection Machine by Thompson and Mundy [65] requires roughly several minutes

for each model vertex-pair considered. Thus a small set of model features must be

chosen in advance, taking into consideration visibility and robustness of resulting

5 Limb position could also be estimated, but this requires 3D surface curvature to be stored with
characteristic views [68].



viewpoint estimates [50]. Even if a small set is used, the ability to handle large

object sets is questionable, as parallel recognition of all known objects is not currently

possible due. to the large number of processors required by each object 6 .

In addition to problems with generality and efficiency, recognition algorithms using

object-centered representations suffer from difficulties associated with model genera-

tion. Specifically, the above systems are not able to "learn from experience" [3]. That

is, when presented with an unknown object, they are not able to extract enough in-

formation to recognize the object if again seen from a similar viewpoint. Instead they

rely on models provided by humans'. The problem appears fundamental, apparently

due to the difficulty in forming 3D object-centered models from viewer-centered data.

Algorithms using viewer-centered representations do not suffer from these prob-

lems, at least not to the same extent. Because each object is represented by a set of

view descriptions, there is no need for a separate viewpoint hypothesis step, elimi-

nating associated object restrictions. Furthermore, recognition is not slowed by the

extraction of views from object-centered models during matching. Instead, views are

compiled during learning, which becomes trivial since representations encode appear-

ance explicitly. This is particularly useful when objects have surface markings or

other distinguishing features not related to geometry, since these are usually difficult

to include in 3D models.

Of course, the use of viewer-centered object representations is not a new idea.

They are in fact employed by most industrial vision systems [13]. However, their

application appears limited to those situations involving a small number of fixed

viewpoints. The problem seems to be that typically such representations encode

information which varies continuously with viewpoint, resulting in the need to store

an infinite number of views to capture the appearance of each object from all possible

perspectives. An example is the representation used by Schwartz and Sharir [57],

6 Detailed analyses of additional problems with the generalized Hough transform are presented
by Grimson and Huttenlocher [28].

7Although acceptable in controlled environments where all possible objects are known in ad-
vance, manual generation of a large number of objects may prove tedious, making the use of human
generated models impractical (except where they already exist, perhaps as a result of the industrial
design process).



which uses boundary curves to represent object views.

The obvious solution is to store a finite number of such views, using an error

tolerance to allow each stored view to account for the viewpoints in some non-zero

volume, hopefully resulting in a covering of all allowable viewpoints. An alternative

is to encode coarse qualitative instead of precise quantitative information, resulting

in a finite number of possible descriptions for each view feature. In each case the

result is essentially the same, namely that a finite number of stored views encodes

object appearance from all perspectives. The difference is in the relative ease and

robustness expected of information extraction in the qualitative case.

Weinshall [72] recently considered this issue in detail by studying the extraction of

depth information from pairs of corresponding points in stereo imagery. She concluded

that extraction of precise depth is much harder and less reliable than extraction of

qualitative depth, here meaning an ordering of points with respect to depth. Such

results are expected since qualitative characterization involves loss of information,

suggesting simpler acquisition and/or reduced sensitivity to noise.

Qualitative object representations are actually found quite frequently in the liter-

ature. Often cited is the "visual potential" of Koenderink and van Doorn [43], which

is founded on a topological view classification known as "aspect." Because aspect

is a qualitative description stable with respect to viewpoint almost everywhere, the

space surrounding an object can be divided into mutually exclusive open sets, each

corresponding to one of a finite number of aspects. All aspects are incorporated

into the visual potential, which is a connected graph whose nodes represent aspects,

and whose edges connect spatially adjacent aspects. The visual potential thus rep-

resents appearance from arbitrary viewpoints. In particular, any observer trajectory

corresponds to a path through the visual potential.

Applications using this style of representation include Ikeuchi and Kanade [39],

and Burns and Kitchen [8]. Ikeuchi and Kanade use aspects to automatically generate

recognition strategies, but their primary interest is not recognition speed. Instead

they are concerned with compensating for sensor effects, aspects being a convenient

representation for doing so.



The work of Burns and Kitchen is actually quite similar in scope to the present

work. Primarily both are concerned with large object sets, and conclude that object-

centered models are incompatible with the need for speed. Instead, viewer-centered

representations are employed to avoid costly transformations between image and

object-centered reference frames during recognition. But the similarity ends there.

Burns and Kitchen's most significant diversion from this work is their collective stor-

age of all view descriptions of all objects in a single hierarchical graph. The motivation

for doing so is economy of storage and matching: identical features found in several

views are stored once, and during recognition. matched once. However, the natural

parallelism implied by an independent data structure for each stored view is de-

stroyed, posing recognition as a complicated search of the collective graph, conducted

by serially seeking matches to image features. Robustness thus becomes an issue, as

missing image features could block the graph search. Furthermore, the addition of

new objects to the known set increases the size of the graph, making recognition of

any one object necessarily more expensive. Thus the loss of parallelism results both

in potentially catastrophic sensitivity to noise, and in reduced speed for larger object

sets.

Qualitative representations can also be found in the sequential pattern recognition

literature [22]. Pattern recognition in the context of the present work can loosely be

defined as identifying objects by measuring and classifying image features. Classi-

cally the feature set is considered a vector in partitioned n-space, where each subset

corresponds to a known object. Recognition proceeds by determining feature vector

membership. In single-stage classifiers, partition subsets are checked directly for fea-

ture vector presence, a potentially difficult task since large object sets could result in

complex partitions. A different approach is used by sequential pattern recognition,

which considers individual features separately. A commonly used object representa-

tion in this case is the "decision tree" [71, 63, 4], which collectively and qualitatively

represents all known objects by partitioning the domain of each feature into a small

number of subsets. Recognition proceeds by sequentially locating the partition in

which each feature lies, eliminating from future consideration known objects whose



corresponding features lie elsewhere. The procedure ends when a single known object

remains.

The motivation for using decision trees is not that their qualitative nature allows

finite-view representations of 3D objects. I am not familiar with any applications

considering arbitrary-view recognition. Instead, the simple feature partitions together

approximate the complex n-space partition, allowing classification via simple, local

decisions. Thus recognition is potentially fast, but for reasons having nothing to do

with facilitation of finite-view representations.

Decision trees can be thought of as collections of filters, each of which uses simple,

coarse information to shrink the set of possible objects. Such indexing behavior can

be found elsewhere, for example in the algorithms of Kalvin et al. [41] and Jacobs

[40]. Kalvin et al. address the recognition of 2D objects, representing objects by

their boundary curves. Recognition is performed by matching observed boundaries

to those of known objects, using the algorithm of Schwartz and Sharir [57]. Because of

the impracticality of matching all boundaries (especially when from a large library),

Kalvin et al. propose indexing via "footprints," which are mappings of boundaries

into rotationally and translationally invariant five-dimensional curves, to reduce the

number of boundaries considered. Footprint space is quantized, the resulting 5D

hypercubes storing the identities of objects with intersecting footprints. Only those

library boundaries found in hypercubes traversed by the observed boundary footprint

are considered for matching. Again we see that objects are represented qualitatively,

namely by lists of hypercubes in footprint space, to facilitate indexing.

Jacobs also considers 2D object recognition, similarly proposing indexing followed

by boundary matching. Exact boundaries are not considered, and are instead replaced

by polygonal approximations. Indexing employs segment pairs from observed bound-

ary polygons. Since five parameters determine the relationship between two segments,

each pair can be represented by a point in five-dimensional space. This space is quan-

tized, each resulting hypercube storing the library objects whose segment pairs it

contains. Indexing proceeds by selecting a segment pair from the observed boundary,

noting which library objects have segment pairs residing in the same hypercube. Only



those objects are considered for boundary matching.

To summarize this section, we have seen that most algorithms for arbitrary-view

recognition of 3D objects employ object-centered models, resulting in slow algorithms

not appropriate for objects without significant surface-fixed features. The essential

problem seems to be the dimensional mismatch between 3D object-centered represen-

tations and 2D viewer-centered data. A fairly obvious solution is to represent objects

in terms of views, eliminating the mismatch problem and allowing object recognition

based solely on appearance. This obviates the need for detectable, surface-fixed 3D

features such as surface-orientation discontinuities, and facilitates learning of new

objects. Viewer-centered descriptions have actually been used for some time, but

because precise quantitative information is often encoded, complete representation

of object appearance requires an infinity of stored views. Recently this issue has

been addressed by encoding coarse, qualitative instead of precise, quantitative infor-

mation. Coincidentally, qualitative information has frequently been associated with

those algorithms seeking speed, not via 2D representation of 3D objects, but by index-

ing, meaning the use of coarse information and simple decisions to achieve recognition

through "process of elimination." Although this may seem counterintuitive, meaning-

ful initial categorization is potentially realizable after only a small number of indexing

steps [54].

1.4 Psychophysics

In addressing all but the most trivial recognition problems, prudence dictates consid-

eration of human sensory performance. It is not that we require artificial recognition

systems to mimic mental processes, but instead because perceptual limitations may

provide algorithmic hints not available elsewhere.

Above I discuss at length certain motivations, primarily computational, for us-

ing coarse, qualitative instead of precise, quantitative representations. At least as

compelling is the imprecise nature of absolute quantitative judgments (comparisons

against metric standards in memory) made by humans [48, 5]. In his classic survey,



Miller [48] observes that for a wide range of sensory variables precision is limited to

between four and ten distinguishable alternatives. Reliable judgment of line segment

length, for example, appears limited to about eight categories.

In contrast, the precision of comparative judgments (those where two stimuli are

observed simultaneously) appears several orders of magnitude greater [5]. For ex-

ample, extremely small differences in length can be detected between two parallel

line segments simultaneously visible. It can be concluded then that the coarseness

of absolute quantitative judgments is not a result of poor sensory resolution, but

is instead due to memory limitations restricting the precision of stored quantitative

representations. Thus it is doubtful that memorization of object-centered models en-

coding precise quantitative information is possible because the brain does not appear

to allocate enough memory8 .

Note, however, that coarse categorization of quantitative information is fully con-

sistent with the notion of qualitative representation. But viewer-centered representa-

tions, although enabled by qualitative information, are not suggested directly. Koen-

derink and van Doorn provide justification by reinterpreting the results of mental

rotation experiments [43, page 216], which ironically are among the primary psy-

chophysical justifications for object-centered models [37]. In these experiments, an

observer is asked to determine whether two objects, each in a different image, are

identical. When the objects are identical, the observer's response time is reported to

be proportional to the extent of rotation required to align one view with the other,

suggesting that matching is performed via mental rotation of a 3D model. Based on

their observation that response time depends on object complexity, loosely meaning

number of aspects, Koenderink and van Doorn dispute this interpretation, suggesting

that the relevant variable may not be angle of rotation but instead the number of

aspects that must be visited in bringing one view into correspondence with the other.

In suggesting a viewer-centered interpretation, Koenderink and van Doom pro-

vide us with a plausible alternative to the common interpretation that views these

'Even if memory limitations were not suggested, the use of precise quantitative information in
recognition is implausible because absolute judgments typically require more time than recognition
itself [5].



experiments as convincing evidence of 3D object-centered mental representations 9. In

their words, "It is not necessary to suppose that the internal model of a cube is a little

cube in the head." Nor are we compelled to do so, as the well-known limits on human

absolute judgment clearly suggest that precise, quantitative sensory information is

not memorized.

1.5 Overview

The broad goal of this work is to present a recognition strategy for large object sets.

Specifically, the role of qualitative object representation is considered. Qualitative

information is suggested because it allows viewer-centered representation of 3D ob-

jects. The result is an indexing algorithm which retrieves a small number of similar

possibilities from the known object set. The algorithm is presented as follows.

Chapter 2 considers the extraction of qualitative information from line drawings

like that in Figure 1-1. Primarily curvature information is discussed due to its per-

ceptual significance and invariance with respect to scaling and rotation in the image

plane. Natural images are not considered because significant low-level vision prob-

lems exist, such as reliable extraction of edges and their junctions [53]. Consideration

of line drawings, which quite possibly serve as intermediate representations in human

vision [69, 46], allows discussion of recognition strategies without entanglement in

low-level issues.

Because qualitative representations discard information, there is no guarantee

that their use allows objects to be distinguished. Such is not the case with precise

object-centered descriptions, which essentially define represented objects. This issue

is addressed in Chapter 3, where recognition is viewed as a communication problem

using ideas from information theory [51, 23]. Specifically, qualitative descriptions

are viewed as codes required to distinguish only the set of known objects, not all

possible objects. Code selection then depends on the number of known objects as

9It is interesting to note recent results [20] which suggest that recognition delays thought to indi-
cate mental rotation may decrease with object familiarity, eventually leading to parallel consideration
of stored views as proposed here.



well as the amount of redundancy necessary to provide tolerance to noise, occlusion,

and other deformities. Thus the critical issue regarding qualitative representation

is representational capacity, meaning the number of objects distinguishable in the

presence of noise and occlusion. Assuming capacity is large compared to the size of the

known object set, good discrimination can reasonably be expected from indexing. In

Chapter 3 an upper bound on capacity as a function of a representation's constituent

features is derived.

In Chapter 4 recognition of the "large" object set pictured in Figure 1-4 is con-

sidered. These objects are taken from a mechanical drawing textbook [24, page 150]

where they serve as part of an exercise in sketching. Although sixteen objects is not

very many in human terms, it is significantly more than usually considered in the

computer vision literature, where sets consisting of single objects [65], or at most a

few simple ones[37] are the rule. For example, the 3D objects considered by Hutten-

locher consist of a cube, a five-sided wedge, and the union of a rectangular block and

a wedge. In contrast, the objects in Figure 1-4 are complicated in several ways: they

have curved surfaces, holes, and significant limbs (depending on viewpoint). There is,

however, nothing special about these objects; that is to say, there is nothing obvious

that allows them to be easily distinguished"1 . Thus they serve as a worthy test for

qualitative recognition: if similar objects can be distinguished, then success on much

larger sets involving substantially different objects can be anticipated.

In particular, identification as well as orientation estimation are considered, re-

quiring a representational capacity large enough not only to distinguish objects, but

also to distinguish the views collectively representing each object. Based on the result

derived in Chapter 3, it is shown that simple features, i.e. isolated curves classified

by concavity count, do not yield the required capacity. Instead, compound features

consisting of multiple curves encoding view structure must be used, resulting in a

new interpretation for perceptual grouping.

The resulting algorithm is so simple as to allow assignment of each stored view

'OThey were chosen in part because they are representable by the Symbolics S-Geometry geometric
modelling package [64] used here to generate arbitrary object views.



Figure 1-4: Object library considered here.
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to a Connection Machine processor, resulting in parallel (constant time) recognition

of known objects. Recognition results are presented for several one- and two-object

scenes. Not surprisingly, the use of coarse information does not usually result in

unique identification. For isolated objects, the large set of stored views of known

objects is typically reduced to one much smaller and containing the correct object as

well as similar views of others. This is acceptable, since indexing is fast and effective

enough to allow application of more costly procedures yielding unique identification

to the remaining views. When multiple objects are present, accurate object seg-

mentation is required to avoid excessive ambiguity due to segmentation error since

increased distortion lowers representational capacity.

The work is concluded in Chapter 5, where the central result is noted to be the

upper bound on representational capacity derived in Chapter 3. Since this result does

not restrict acceptable features to those associated with line drawings, the conclusions

presented regarding the application of qualitative representation to 3D recognition

are potentially quite general. Possible extensions include representations encoding

qualitative surface shape, color, or texture, in addition to edge shape.



Chapter 2

Extraction of Qualitative

Information from Digitized Line

Drawings

In the previous chapter, qualitative representation for recognition of 3D objects was

suggested. Here extraction of qualitative information from digitized (spatially quan-

tized) line drawings is considered, with primary effort directed toward curvature char-

acterization.

Encoding curvature in view descriptions is attractive due to its invariance with

respect to scale and rotation in the image plane. But spatial quantization results in

tangent orientation ambiguity and subsequent loss of curvature information. Coarse

curvature characterization recoverable from the orientation information surviving dig-

itization is required. Concavity count of digitized curves is one possibility, since it

can often be extracted in spite of orientation ambiguity.

Following a discussion of previous line drawing research, the orientation problem

is discussed in detail, leading to an algorithm for extraction of concavity count. The

chapter concludes with comments regarding application to line drawings.



2.1 Previous Work: Line Drawing Analysis

Line drawings have enjoyed significant attention in the computer vision literature since

the publication of Roberts' paper [56] in 1965. This work, discussed in more detail

in the previous chapter, considered recognition of line drawings possibly extracted

from imagery. Because geometric models were matched to the drawings, location

and orientation of identified objects were estimated, resulting in reconstruction of 3D

scenes.

Other attempts at 3D interpretation of line drawings followed, including the work

of Guzman [31], Clowes [14], Huffman [36], and Waltz [70]. Guzman attempted to

segment line drawings into separate objects without using object models, instead re-

lying on heuristics to group line drawing regions. Because of dependence on heuristics

instead of mathematical rigor, Guzman's algorithm fails on relatively simple drawings

[58]. In an attempt to introduce rigor, Clowes and Huffman, in independent research,

considered constraints on the vertices of trihedral polyhedra resulting in a well-known

theory for labeling the concavity 1 of polyhedral edges in line drawings. Waltz [70]

extended this work to a larger class of drawings, including those with lines due to

shadows.

Heuristic attempts at interpretation of scenes containing curved objects followed

[10, 44]. But in rigorously generalizing edge labeling to objects with C3 surfaces,

Malik [46] perhaps extends these ideas to their limit.

Simply stated, the principle behind line drawing labeling techniques is propaga-

tion of constraints itemizing possible configurations of convex and concave edges at

junctions. Constraint propagation among vertices requires uniform convexity (or con-

cavity) along each edge. However, it is possible for curved objects to exhibit edges

whose convexity changes, for example the corner joints of many picture frames. Thus

it appears that edge labeling algorithms, although of theoretical interest, are quite

limited in their potential for practical 3D interpretation.

Although it has been suggested that 3D interpretation must precede line drawing

1"Concavity" here refers to the angle between polyhedral faces forming edges.



recognition [62], the view taken here is that prior interpretation is not required.

Instead 2D descriptions are relied upon, avoiding the rather strict surface limitations

imposed by constraint propagation, thus allowing consideration of a much larger class

of objects. But 2D descriptions must be such that finite-view representations of 3D

objects result, accomplished here by encoding qualitative information such as curve

concavity count. In order to extract concavity count, evaluation of tangent orientation

must first be addressed.

2.2 Orientation Bounds of Digitized Curves

2.2.1 Digitization Model

Extraction of tangent orientation along plane curves is required for evaluation of cur-

vature, which defines shape, an obviously important visual attribute. Unfortunately

the predominance of imaging devices (both biological and man-made) with spatially

discrete sensors results in digitization of almost all curves of interest. Orientation

estimation, or for that matter extraction of any curve information, then requires

modelling of the digitization process.

The traditional model is that curves are digitized via uniform spatial sampling,

allowing coordinates of activated grid elements (pixels) to be interpreted as if located

on underlying continuous curves. Various curve fitting techniques for characterizing

digitized curves such as spline methods [58] are based on this assumption. This model

is of course is not accurate, as uniform sampling of a region containing a zero-area

curve will most likely result in nothing. Compensation is achieved via techniques

not requiring interpolants to intersect pixel coordinates, such as B-spline methods

[2, 58] and methods involving least-squares fitting of parameterized curve models

[58]. When direct calculation of tangent orientation or curvature is desired, numeric

differentiation [18] is also used.

An alternative model implies that a grid element belongs to a digitized curve only

if intersected by the original continuous curve, in agreement with standard graphics



Figure 2-1: A five pixel configuration. The two rays illustrate the orientation range
of lines intersecting all pixels.

algorithms for digitizing known curves [21]. Not surprisingly, its implications are

quite different from those of the sampling model. Consider for a moment the problem

of extracting tangent orientation along a continuous curve after digitization. Since

orientation at a given point on the continuous curve is obtained by performing a

limiting operation on linear approximations within point neighborhoods, we might

analogously consider pixel neighborhoods along the corresponding digital curve. In

the case of a square grid, the natural neighborhood shape is n x n square, with n odd

to center the neighborhood on pixels of interest. Now within a given neighborhood

there will be a configuration of pixels intersected by the original continuous curve. If

n is much smaller than the radius of curvature of this curve, linear approximation is

valid in the neighborhood. The resulting line defines orientation: the problem is to

deduce it from the activated neighborhood pixels.

But consider the pixel configuration in Figure 2-1, which could correspond to the

pixels from some digitized curve within a 5 x 5 neighborhood. The two rays indicate

the orientation range of lines intersecting (and therefore activating) the pixels. There

is no way to distinguish among these orientations. All are equally valid in the sense

that each corresponds to a line accounting for the activated pixels. Thus in discussing

orientation of digital curves, we must speak of intervals instead of single values. This

uncertainty is a direct result of loss of information due to digitization, a phenomenon

not directly accounted for by models interpreting pixel coordinates as curve samples.

Thus we have another hint at the plausibility of qualitative view descriptions. Dig-

itization loses orientation information, the resulting uncertainty manifested in bounds

on orientation instead of precise values. Curvature in the standard sense can not be



determined unless injection of additional information, for example parametric curve

models, takes place. Instead curvature must be characterized coarsely as discussed

later. But first a procedure for calculating the orientation bounds of arbitrary pixel

configurations is derived.

2.2.2 Orientation Range Calculation

To evaluate the orientation range for a given pixel configuration, all straight lines

traversing the configuration must be determined. Thus the problem is to determine

a set of necessary and sufficient conditions for straight line intersection of each pixel

that is convenient for calculation of orientation bounds. The approach taken here is to

define the necessary pixel order for straight line traversal of an arbitrary configuration,

and the necessary and sufficient conditions for straight line intersection of consecutive

pixels, resulting in a set of necessary and sufficient conditions for traversal of the entire

configuration.

For the discussion which follows, pixels are defined as the interiors of the closed

square regions covering the xy plane in Figure 2-2, each identified by the coordinates

of its lower left hand corner. Furthermore, configurations of interest are assumed to

consist of finite numbers of 8-connected pixels. Since pixels are disjoint, the order in

which the pixels of a linear configuration (i.e. a configuration traversed by at least one

straight line) are visited by a given traversing line is unique modulo traversal direction.

Thus, a linear configuration can be represented as a sequence S = {pi, ... , PN }, where

pi = (xi, yi) is the ith pixel defined for a given traversing line, and pi = pj iff i = j

due to pixel convexity. Next the ordering of pixels in S will be determined for all

traversing lines.

In order to establish the traversal order through a linear configuration, first note

that every subset of the configuration must also be linearly traversable, including

those defined by the 3 x 3 neighborhoods centered on each pixel. Because the in-

terior of the 3 x 3 square enclosing each neighborhood is convex, the pixels within

such neighborhoods form contiguous subsequences of S. And since configurations of

interest are assumed 8-connected, the pixels in S occurring immediately before and
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Figure 2-2: Pixels are defined here as the interiors of the regions delineated by a
square grid, each identified by the coordinates of its lower left-hand corner.

after the center pixel of such a neighborhood must lie in the neighborhood. Thus, the

traversal order through each neighborhood defines the order for the entire configura-

tion. Clearly, the problem of ordering arbitrary linear configurations reduces to that

for all linear 3 x 3 neighborhoods.

At this point it is unknown whether the pixel configuration inside a given 3 x 3

neighborhood is linear. But there is a rather strong constraint that can immediately

be used to substantially prune the set of 256 possible neighborhoods (with center pixel

activated). Consider the diagonal pixel pairs shown in Figure 2-3. Any straight-line

intersecting both pixels in Figure 2-3(a) must have positive slope. Similarly, the pair

in Figure 2-3(b) requires negative slope. Thus at most one of the pairs in Figure 2-3

can belong to a given linear configuration. Every 3 x 3 neighborhood containing at

most one of these pairs is tabulated in Figure 2-4. Although it will later be shown

that the diagonal pair constraint is not only necessary, but also sufficient for 3 x 3

neighborhood linearity, all that is assumed now is that the linear 3 x 3 neighborhoods

are a subset of those in Figure 2-4.

To determine the pixel order implied by linear traversal of 3 x 3 neighborhoods,

observe from Figure 2-4 that such neighborhoods have at most two pixel clusters

in their outer layers, containing at most two pixels each. If it can be shown that

the center pixel of those neighborhoods containing two outer layer clusters must lie

between the two clusters in S, then ordering 3 x 3 neighborhoods can be reduced to

ordering the pixels in outer-layer clusters. Although intuitively obvious, a rigorous
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(a) (b)

Figure 2-3: Inconsistent pixel pairs: (a) implies positive slope, whereas (b) implies
negative slope.

proof follows.

First consider the case where a neighborhood has an outer-layer cluster consisting

of a single pixel, as in Figure 2-5. Figure 2-5(a) and its three 90 degree rotations

represents those cases where the outer-layer pixel (marked "a") has the same x or y

value as the center pixel, and Figure 2-5(b) and its rotations represents those where

the outer-layer pixel (marked "b") occupies a corner of the neighborhood. In both

figures, the numbered pixel locations represent the possible locations of pixels in the

other outer-layer cluster, as determined from Figure 2-4.

Consider Figure 2-5(a) first, assuming without loss of generality that the center

pixel c follows the outer pixel a in S. If pixel 1 is activated, it cannot occur before a

because then all pixels following a would have x-values less than that of c. Assuming

it follows a, pixel 1 cannot precede c, because all pixels following it then would have

y-values larger than that of c. Thus pixel 1, if present, must follow c. Using similar

arguments, the same conclusion can be drawn for pixels 2, 4, and 5. If pixel 3 is

present then it cannot precede a because then all pixels following a would have x-

values less than that of c. Assuming it follows a, it cannot precede c, because all pixels

following it must then have x-values greater than that of c. Thus all numbered pixels

in Figure 2-5(a) must follow c, so in this case the center pixel must lie in S between

the two outer-layer pixel clusters. The same conclusion can be similarly drawn for

the 90 degree rotations of Figure 2-5(a).

Now consider Figure 2-5(b), also assuming that the center pixel c follows the outer

pixel b in S. Pixels 6 and 7 must follow c for the same reasons as given for pixel 1
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(a) (b)

Figure 2-5: 3 x 3 neighborhoods containing two outer layer clusters, one of which
contains a single pixel denoted by a or b. The numbered locations in each case
indicate the possible locations of pixels belonging to the other cluster.

above, replacing pixel a with b in the argument. And, using the argument given in

discussing pixel 3, we can conclude the same for pixel 8. Thus, here also the center

pixel must reside between the outer-layer clusters in S, the same being true for the

90 degree rotations of Figure 2-5(b).

To complete the proof, consider the case where at least one of the outer-layer

clusters has two pixels, as represented by Figure 2-6, its reflection about the center

pixel x-value, and their six 90 degree rotations. The numbered pixel locations again

represent the possible locations of pixels in the other outer-layer cluster as determined

from Figure 2-4. From the analysis given for Figure 2-5(a), we can immediately

conclude that the center pixel c lies between pixel a and the other cluster. The same

can be concluded for pixel b from the analysis given for Figure 2-5(b). Clearly a and

b must lie on the same side of c in S, completing the proof that the center pixel of a

linear 3 x 3 neighborhood must reside in S between the outer-layer pixel clusters.

Thus the order in S of the pixels in a 3 x 3 neighborhood is determined by the order

of the pixels in the outer layer clusters. Consider the ordering of two-pixel clusters

as in Figure 2-6 since the single pixel case is trivial. Assuming that the center pixel

follows pixels a and b in S, we can conclude immediately that a cannot precede b,

because then all pixels following b would have y-values less than that of c. Similar

reasoning holds not only for Figure 2-6, but for its reflection about the center pixel

x-value, and their six 90 degree rotations. Thus for two-pixel clusters, the pixel with
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ac 3

5 4



Figure 2-6: A 3 x 3 neighborhood containing two outer layer clusters, one of which
contains two pixels, here denoted by a and b. The numbered locations indicate the
possible locations of pixels belonging to the other cluster.

the same x- or y-value as the center pixel must lie between the corner pixel and center

pixel in S.

We now have two rules for ordering the pixels in 3 x 3 linear neighborhoods:

1. The center pixel is ordered between the outer-layer

pixel clusters.

2. In two-pixel outer-layer clusters the pixel with the

same x- or y-value as the center pixel is ordered

between the corner pixel and center pixel.

Using these rules we can derive the pixel order required by linear traversal of any

3 x 3 neighborhood. The results are presented in Figure 2-4, where center pixels are

given index 0 to enable direction reversal by simply negating indices.

Having established the required pixel order for linear traversal of any linear 3 x 3

neighborhood, ordering of an arbitrary linear configuration can be performed by tiling

the neighborhoods in Figure 2-4. But a much simpler approach is to use the two rules

derived above directly. Consider for example the pixel configuration in Figure 2-

7(a). We begin by finding the two end-pixels, which are the only pixels whose 3 x 3

neighborhoods contain only one outer layer cluster. These pixels are labelled in

Figure 2-7(a) assuming that the traversal direction is from left to right. Next, the

pixels inside the 3 x 3 neighborhood centered on the first pixel are labelled using rule

2. We consider next the 3 x 3 neighborhood of pixel 3 in Figure 2-7(c), where pixel

4 is trivially labelled using rule 1. Next the neighborhood of pixel 4 is considered,
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L12
Figure 2-7: The procedure for determining the pixel order implied by linear traversal.
(a) First label the end-pixels to establish a traversal direction. (b) Then label pixels
2 and 3 by applying rule 2 to the 3 x 3 neighborhood of pixel 1. (c) Next label pixel
4 by considering the neighborhood of pixel 3. (d) Repeat until pixels are exhausted.

yielding pixels 5 and 6, and so on, until all of the pixels are labelled. The final result

is shown in Figure 2-7(d).

Because arbitrary linear pixel configurations can now be ordered, we can proceed

with the orientation question. As mentioned above, the goal is to determine a set

of necessary and sufficient conditions for straight-line intersection of each pixel in

a given configuration which is convenient for orientation calculation. One approach

is to form a collection of pixel pairs containing all pixels from the configuration of

interest, for each pair writing a set of necessary and sufficient conditions for straight-

line intersection. Simultaneous consideration of these conditions results in the set

of traversing lines. Since a linear configuration can be represented as a pixel se-

(a)
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Figure 2-8: Possible pairs of 8-connected pixels. The darkened segments represent
necessary and sufficient conditions for linear traversal.

quence S = {P, ... ,PN}, where pi = Pj iff i = j, collections with the minimum

number of pairs can be simply constructed as follows. If N is even, then the pair

collection is {(pl, p2), (P3, P4), ,(PN-1,pN)}. If N is odd, then the collection is

{(pl, P2), (p3,4), ... , (PN-2,PN-1), (PN-1,PN)}. These minimal collections have an

additional advantage, namely that the pixel pairs are 8-connected, reducing the num-

ber of cases that need be considered to the four in Figure 2-8.

To determine the necessary and sufficient conditions for linear traversal of these

pairs, assume for the moment that x1 : XN. Because the x-intervals in pi and PN then

are disjoint, no vertical line can traverse the configuration, allowing us to represent

traversing lines in the standard form y = mx + b, where m is the slope and b is the

y-intercept. The strategy is to obtain bounds on m from the pixel pairs, leading to

bounds on orientation.

Consider first the case where paired pixels have identical y-values, as in Figure 2-

8(a). Clearly, any line intersecting pixel (xo, y,) and ray x = xo + 1, y Ž> yo + 1 has

positive slope, and thus is characterized by y > yo + 1 for x > xz + 1, eliminating

the possibility of intersection with pixel (xo + 1, yo). Similarly, any line intersecting

pixel (xo, y,) and ray x = xo + 1, y • yo is characterized by y < yo for x > Xo + 1,

also ruling out intersection with pixel (xo + 1, yo). Therefore, any line traversing both

pixels must intersect the indicated open segment of x = xz + 1. Since any non-vertical

line intersecting this segment must intersect both pixels, the following is a necessary



and sufficient condition for traversal of the pair in Figure 2-8(a) by y = mx + b:

yo < (x0 + 1)m + b < yo + 1 (2.1)

The above suggests that if possible the conditions for linear traversal of the other

three pixel pairs should also be expressed in terms of linear inequalities in m and

b, allowing the bounds on slope m for any linear configuration to be obtained via

solution of two linear programs, one minimizing cost m, the other minimizing cost

-m. With this in mind, consider the pixel pair in Figure 2-8(b). Using arguments

similar to those for the preceding pair, we can conclude that it is necessary and

sufficient for any traversing line (m # 0) to intersect the indicated open line segment,

or equivalently,

X0o < [(yo + 1) - b]/m < xz + 1 (2.2)

In order to convert to a form linear in m and b, the sign of m must be determined.

This can be done easily because if the configuration from which the pair was drawn is

linear, yl # YN, so the necessary sign of m is the same as the sign of (yN-Yl)/(XN -X )

since we have assumed zx 1  XN . Thus, if (YN - Yl)/(XN - xl) > 0,

x 0m + b < yo + 1 < (xo + 1)m + b (2.3)

and if (YN - y1)/(XN - x1 ) < 0,

(Xo + 1)m + b < yo + 1 < xom + b (2.4)

To prove sufficiency, note that inequality 2.3 implies both m > 0 and inequality 2.2.

Similarly, inequality 2.4 implies both m < 0 and inequality 2.2.

Proceeding to Figure 2-8(c), note immediately that any line traversing this pair

must have positive slope. Since any line intersecting either

1. ray x = xo, y Ž yo + 1 and pixel (xo, yo), or

2. ray x = xo + 1, y ! yo + 2 and pixel (xo + 1, yo + 1), or



3. ray x = xo + 1, y < Yo and pixel (xo, y,), or

4. ray x = xo + 2, y 5 yo + 1 and pixel (xo + 1, yo + 1)

has negative slope, we have the following necessary conditions for traversal by line

y = mx + b:

xom + b < yo + 1

yo < (xo + 1)m + b < yo + 2 (2.5)

yo + 1 < (xo + 2)m + b

To prove sufficiency, consider three cases:

1. (xo+1 l)m+b= yo + 1

2. yo < (xo + l)m + b < yo + 1

3. yo + 1 < (xo + 1)m + b < yo + 2

Since the first and third expressions in 2.5 imply that m > 0, we see immediately

that both pixels are traversed if (xo + 1)m + b = yo + 1. If yo < (xo + 1)m + b < yo + 1,

y = mx + b obviously intersects pixel (xo, yo). Letting x* denote the value of x where

y = mx + b intersects y = yo + 1, and combining the third inequality in 2.5 with

(xo + 1)m + b < yo + 1, results in (xo + 1)m + b < x*m + b < (xo + 2)m + b, implying

that xo + 1 < x* < xo + 2. Since m 7 0, we can conclude that pixel (xo + 1, yo + 1)

is traversed as well. Finally consider the case where yo + 1 < (xo + 1)m + b < yo + 2.

Immediately we see that y = mx +b intersects pixel (xo + 1, yo + 1). Defining x* in the

same fashion, and combining the first inequality in 2.5 with yo + 1 < (xo + 1)m + b,

results in xzm + b < x*m + b < (xo + 1)m + b, implying that xo < x* < xo + 1. Since

this implies intersection of pixel (xo, yo), we conclude that 2.5 defines a set of sufficient

as well as necessary conditions for traversal of the two pixels in Figure 2-8(c).

The necessary and sufficient conditions for the pixel pair in Figure 2-8(d) are



yo < zxm + b

yo -1 < (x + )m + b < yo +1 (2.6)

(xo + 2)m + b < yo

Having established the conditions for linear traversal of the pixel pairs in Figure 2-

8 in terms of linear inequalities in m and b, the slope bounds of an arbitrary linear

pixel configuration can be obtained by solving two linear programs [61, 66], one each

to minimize and maximize m. Consider for example the configuration in Figure 2-7,

which has already been ordered. Decomposing the pixel sequence as discussed pre-

viously results in the pair collection {(pl,p2), (p32,p4), (P5, 6), (p7, 8), (p8,p 9)}. The

necessary and sufficient conditions for linear traversal of the configuration are ob-

tained by collecting the conditions for individual pairs given in inequalities 2.1, 2.3,

2.4, 2.5, and 2.6. Assuming without loss of generality that pixel 1 has coordinates

(0, 0), we have:

1 1 0

-1 -1 -1

2 1 1

-2 -1 -2

-3 -1 -2

4 1 > 2

-4 -1 -3
5 1 2

-5 -1 -4

6 1 3

-6 -1 -4

Combining this matrix inequality with cost functions m and -m results in two linear

programs, each of which can be solved by standard techniques such as the simplex

method [61, 66] to respectively minimize and maximize m. The result is 2/5 < m <

3/4.

obtained in a similar fashion. They are:



Conversion of slope bounds to orientation bounds is straightforward, except if

X1 > XN and yi = YN. Letting 0 denote orientation angle, if xl < XN or yl : YN we

have:

Tan-l(xN - xl,minf(xN - xl)) < 0 < Tan-1 (zN - xl,m•su,(XN - xl))
(2.7)

(x 1 < XN or Y1 # YN)

where mnf and ms,,, denote respectively the infimum and supremum of possible

slopes, and Tan-1(x, y) is the inverse tangent of y/x accounting for the sign of x and

defined such that -7r < Tan- 1 (x, y) < r. The above expression maintains continuity

of 0 with respect to m because if (XN - xl, m(XN - X1 )) sits on the branch cut of

Tan - 1' then 21 > XN and m = 0, requiring yl = YN. If xl < XN or Yl # YN, (XN -

Xl, m(xN- Xi)) cannot cross the branch cut as m varies over the interval (mj,f, ms,p),

thus there is no problem with continuity of the inverse tangent function. If on the

contrary xz > xN and yl = YN, the branch cut is crossed since 0 E (mit,, msup) when

Yl = YN. This is a result of the requirement that all pixels have identical y-values in

a linear configuration where yl = YN, which can be verified by assuming the contrary,

i.e. that there is a pixel pr(l < m < N) such that ym # YN. If Ym < YN, then any

line intersecting pi and pm implies yn UmY < YN for n > m, prohibiting intersection

with PN. Similarly, Ym > YN implies that y,, > ym > UN for n > m. Thus, if a given

configuration is linear, and yl = YN, then all pixels share the same y-value and are

traversable by horizontal straight lines (m = 0). Therefore, if Xl > XN and yl = YN,

(XN - 21, m(xN - 21)) crosses the branch cut of Tan-', requiring corrective addition

of 27r to the expression defining the supremum of 0 to correct for the discontinuity in

Tan- 1 :

Tan-1(xN - x, rminf(XN - x1 )) < 0 < Tan-l(xN - xI, mI,,(XN - zx)) + 27x

(x1 > XN and yl = YN)
(2.8)

Concluding the example based on the pixel configuration in Figure 2-7, recall that

the traversal direction there was arbitrarily chosen so that x1 < xN. Applying 2.7,



we get .3805 < 0 < .6435, where 0 is measured in radians.

So far, we have not considered the orientation bounds of linear configurations

having xl = XN. Since the pixels in such a configuration must have identical x-

values, the bounds can be easily calculated by rotating the bounds (80,, O',, ) of a

horizontal configuration having the same number of pixels, ordered such that x-value

increases with the pixel index. Then if yj < YN,

, + 7/2 < 0 < 0' + r/2 (2.9)

and if yl > YN,

0,, -f /2 < < up - r/2 (2.10)

Before presenting an application, let us pause to summarize the procedure for

calculating orientation bounds discussed above. Given an arbitrary 8-connected pixel

cluster, the first step is to determine whether each of the 3 x 3 neighborhoods centered

on configuration pixels belongs to the set presented in Figure 2-4. This can be deter-

mined simply by checking against the presence of both diagonal pairs in Figure 2-3.

If not all neighborhoods satisfy the diagonal pair constraint, then the configuration

can't possibly be linear. If all neighborhoods satisfy the constraint, the next step is

to order the configuration pixels based on the neighborhood pixel ordering implied

by linear traversal. If there are N pixels in the configuration, and xl = XN, then the

configuration is linear iff all pixels have identical x-values. In this case, the orientation

bounds can be obtained using inequalities 2.9 or 2.10. If xL1 : XN, then the neces-

sary and sufficient conditions for traversal of pairs of consecutive pixels, as defined

in inequalities 2.1, 2.3, 2.4, 2.5, and 2.6, are collected. Together these form a set of

necessary and sufficient conditions for traversal of the entire configuration. Since the

conditions are in the form of linear inequalities in slope and y-intercept, the extrema

of the slope can be obtained by solving two linear programs via an efficient algorithm

such as the simplex method[61, 66]. If there is no line which satisfies the conditions,

the conclusion is of course that the configuration is not linear.

And one final note before proceeding. The 3 x 3 pixel neighborhoods in Figure 2-4



represent all neighborhoods not including both of the diagonal pairs in Figure 2-3.

Thus, if the configuration within a given 3 x 3 neighborhood is linear, it must belong

to Figure 2-4. What is not immediately obvious is whether each neighborhood in

Figure 2-4 is in fact linear. Using the above approach for determining orientation

ranges, this can be verified. Therefore, we can conclude that a 3 x 3 neighborhood is

linear if and only if both of the pixel pairs in Figure 2-3 are not present.

2.3 Curvature Description of Digitized Curves

The calculation of curvature along a continuous curve requires evaluation of tangent

orientation at each point. This is done by considering the orientation of linear curve

approximations in neighborhoods of points of interest, taking the limit as the neigh-

borhood size approaches zero. For digitized curves we are confined to neighborhoods

of pixels, the natural neighborhood shape for a square grid as in Figure 2-2 being

square with odd side length to center the neighborhood on pixels of interest. But

in this case, instead of a single orientation associated with each neighborhood, there

is an interval corresponding to the lines traversing the pixels inside. Since this in-

terval grows as neighborhood size is decreased, a different kind of limiting scheme is

required.

A quite reasonable approach under the circumstances is to start with an M x M

neighborhood and reduce its size until the pixel configuration inside is linear, using the

resulting orientation interval in evaluating curvature. An advantage of this approach

is that the orientation bounds of linear neighborhoods size M and below can be

computed in advance (using the procedure just discussed) and retrieved when needed2 ,

resulting in fast calculation of curvature descriptions including number of concavities

2Walters [69] proposes representing line drawings in p-space, which consists of three dimensions,
two corresponding to the image plane, the other indicating tangent orientation. Because orientation
intervals can be expressed in p-space, we might consider the stated orientation evaluation technique
as means of generating this representation. But orientation information would then be available
only at pixels with linear neighborhoods, defeating one of the important features of the p-space
representation, namely the ability to represent multiple orientations found at nonlinear locations
such as line intersections.



and bounds on total curvature 3.

We shall consider digitized curves derived from continuous curves having radii of

curvature much larger than the pixel size. This implies that the continuous curves are

approximately linear within 3 x 3 neighborhoods, yielding digitized curves containing

in all likelihood a great majority of pixels with linear 3 x 3 neighborhoods. I shall

refer to such pixels as 3-linear. Since the ordering of pixels within linear 3 x 3

neighborhoods has been determined, a curve exclusively containing 3-linear pixels

can be ordered in exactly the manner discussed for linear pixel configurations above.

Curvature can then be assessed by calculating the orientation bounds at each pixel

in accordance with this ordering. Thus we consider first those curves containing only

3-linear pixels, followed later by discussion of the more general case where nonlinear

3 x 3 neighborhoods are present.

The first step then toward describing curvature along a given 3-linear curve is

to order the pixels. The next step is to calculate the orientation intervals along

the curve in accordance with the established pixel ordering. We begin by finding

the starting and ending orientation ranges. To obtain the starting range, we could

consider neighborhoods of the first pixel. But these would not contain very many

pixels, so to determine a more precise range we shall use the following approach.

Recalling that the maximum neighborhood size to be considered is M, we find the

first pixel in the curve whose M x M neighborhood does not contain the first pixel, and

subtract one from its index. If the configuration within the resulting neighborhood

is linear, the orientation range obtained with respect to the predetermined pixel

ordering is the starting range. If the neighborhood is not linear, the neighborhood

size is reduced by 2 until a linear neighborhood is found. The procedure is the

same for the ending orientation range, except the index of the last neighborhood not

containing the last pixel is incremented. In the discussion which follows, s and e

denote respectively the indices of the pixels corresponding to the starting and ending

orientations, and we assume that s < e since s > e implies the curve is linear.

3The total curvature of a given curve is the the total change in orientation noted as the curve is
traced. For example, the total curvature of a circle is 2r.



The orientation ranges for the pixels between s and e are calculated as follows.

Starting with neighborhood size M, the neighborhood at a given pixel is tested to

determine if it is linear. If so, the orientation range obtained with respect to the

ordering of the curve is associated with that pixel. If the neighborhood is not linear,

the neighborhood size is reduced by two until linearity is achieved. Since all the pixels

are assumed to have linear 3 x 3 neighborhoods, all pixels between s and e will have

non-empty orientation ranges, resulting in a sequence of orientation intervals.

When considering curvature along continuous curves, the branch of the orientation

function occasionally has to be changed to ensure continuity. Here we find ourselves

in a similar situation: if the orientation bounds along the curve are to meaningfully

describe the relative orientation between different pixels of the curve, compensation

has to be made for the branch cut of the orientation function. This can be done

by minimizing the distance between orientation intervals at consecutive pixels via

translation by multiples of 2r. To be precise, let (O(i)in,, O(i)sup) and (O(i +1);f, O(i +

1),,,) denote respectively orientation ranges at pixels i and i + 1. If the distance

between the two intervals is zero, then no adjustment is necessary. If O(i + 1),,p <

O(i)1i,, then ((i + 1)if, 0(i + 1),,,) must be translated by 27r until the distance is

minimized. Similarly, if O(i + 1)if > O(i),,p, then (O(i + l)ij, ,0(i + 1),,,) must be

translated by -2r until the distance between the two intervals is minimized. The

orientation ranges must be treated in this way starting with i = s, and progressing

along the orientation interval sequence until the ending interval is corrected.

Having compensated for the branch cut in the orientation function, we can im-

mediately obtain bounds on the total curvature C of the digitized curve in question.

Since the starting and ending orientation ranges are respectively (0(s)inf, O(s),,,) and

(O(e);,t, O(e),,,), we simply have

0(e)i,n - O(s),,, < C < 0(e),,, - 0(s);,f (2.11)

To determine an estimate for number of concavities, note that concavity is sig-

nalled by disjoint orientation intervals (see Figure 2-9). The number of concavities



Figure 2-9: Disjoint orientation intervals signal concavity (here M=3, elsewhere
M=9).

can thus be estimated by moving along the curve, determining if the orientation

range of the current pixel is consistent with those noted previously. If not, concavity

is detected. In more detail, let R(i) denote the orientation range to be compared to

the orientation interval at pixel i + 1, obtained by combining the orientation con-

straints at the previous pixels. Starting with i = s, let R(i) = (O(s);•,f,O(s)S•,). If

R(i)n(O(i+1)inf , (i+1),,,) is nonempty, set R(i+1) = R(i)n((1 + 1)inf, (i+1)s3 p),

and proceed to the next pixel.

If however the intersection is empty, then a concavity is detected. In this event,

we record the detection in sequence D, which is initially empty. If (O(i + 1)inf, O(i +

1)U,,) > R(i), then a symbol representing positive curvature, say "+", is appended

to D, but only if the previous symbol is not "+". If the previous symbol is "+", then

there is no point to adding another, since the two symbols correspond to the same

detected concavity. If (0(1 + 1);nf, O(i + 1),,,) < R(i), then a symbol representing

negative curvature, say "-", is similarly appended to D. To continue, we reset R(i +

1) = (O(i + 1);if,0(i + 1),,,), and proceed to the next pixel.

After considering all orientation ranges in this way, from pixels s to e, the length

of D represents the number of intervals along the curve where curvature of a given



sign was found, and can be interpreted as the number of concavities detected4 . We

can coarsely describe the shape of a 3-linear curve with this concavity count, signed

by the first symbol in D to indicate the curvature sign of the first concavity detected.

Concavity count is similar in flavor to the codon representation[34, 55], which is

another qualitative shape description designed to provide initial indexing for recog-

nition. Codons are intervals of curves bounded by curvature minima and classified

by number of contained curvature zeroes. Curves are represented by lists of con-

stituent codons. Concavity count is derivable from codon representations, however

the converse is false since concavity count does not encode curvature extrema. Thus

concavity count is less informative than representation via codons.

To this point nothing has been said concerning selection of maximum neighbor-

hood size M. As M increases, lines traversing linear neighborhoods must intersect

more pixels, yielding tighter orientation bounds and better concavity count estimates.

However M can not be increased arbitrarily since the number of corresponding linear

neighborhoods which must be stored grows with M. In order to explore the trade-

off between orientation ambiguity and number of stored neighborhoods, all linear

neighborhoods of sizes 3, 5, 7, and 9 were tabulated and their orientation bounds

calculated.

The major difficulty in doing so was the number of different pixel neighborhoods of

given size m, namely 2m2 -1 (since we are interested only in neighborhoods whose cen-

ter pixels are activated). As m increases, exhaustive search for linear neighborhoods

becomes inappropriate. In order to avoid exhaustive search, pruning is required. Ef-

fective reduction is realized by recalling that all subsets of linear configurations must

also be linear. Thus it is necessary to consider only size m configurations whose size

m - 2 neighborhoods are linear (see Figure 2-10), allowing prospective configurations

of size m to be obtained by tiling linear neighborhoods of size m - 2. Compilation

of linear neighborhoods proceeds iteratively starting with m=5, the results for m=3

having been obtained previously (see Figure 2-4).

4 Here the term "concavity" is independent of any notion of "inside" or "outside." Instead it refers
to a curve interval of monotonic orientation variation, independent of the direction of variation.



Figure 2-10: Subsets of linear neighborhoods must be linear. Thus all size 3 neigh-
borhoods of the pictured size 5 linear neighborhood are linear, and can be found in
Figure 2-4.

In order to evaluate the variation in orientation ambiguity with respect to m, see

Figure 2-11 where the minimum and maximum orientation range sizes over all linear

neighborhoods for each value of m are plotted. Note that orientation ambiguity

decreases slowly in the vicinity of m=7 and 9, suggesting that large increases in

m are required to significantly reduce uncertainty. But Figure 2-12 suggests that

each increase in m results in an order-of-magnitude increase in number of linear

neighborhoods. Thus close to m=7 and 9 it appears that small decreases in ambiguity

are accompanied by huge increases in number of linear neighborhoods, implying that a

reasonable compromise between ambiguity and linear neighborhood count is obtained

by choosing M=7 or 9. Thus in all that follows M is set to 9.

Before proceeding to an example, we consider the mechanics of linear neighbor-

hood retrieval. First note that only neighborhoods completely traversed are of inter-

est, meaning those containing two outer-layer clusters. Thus only 48 size 3 neighbor-

hoods need be stored even though 65 are pictured in Figure 2-4. Second, neighbor-

hoods must be represented in a standard form for lookup. Canonical representations

are obtained by simply translating neighborhoods so that center pixels have coordi-

nates (0,0). Third, the number of stored neighborhoods can be reduced substantially

by appealing to 8-way symmetry (90 degree rotations plus 90 degree rotations of re-

flection about x-axis). Thus the respective neighborhood counts for m=3, 5, 7, and

9 (which are all needed if M = 9) are reduced from 48, 816, 9968, and 105956 to 9,

111, 1272, and 13321. Finally there is the issue of parallel versus serial implemen-

tation. Since each neighborhood is an independent entity, each can be assigned to



Figure 2-11: Bounds on orientation ambiguity (in degrees) as a function of neighbor-
hood size m.

3 5 7

Figure 2-12: Logarithm (base 10)
neighborhood size m.
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a different processor in a parallel computer, allowing simultaneous consideration of

all stored neighborhoods. Alternatively, neighborhoods could be represented in tree

structures (one for each neighborhood size) whose nodes represent pixel coordinates

to facilitate fast retrieval on a serial machine. The latter was chosen since my parallel

implementation using 4K processors of a Connection Machine model CM-2 parallel

supercomputer configured for 16K virtual processors5 resulted in performance about

thirty times slower than tree search on a Symbolics model 3650 Lisp Machine.

To illustrate the performance of the shape description procedure discussed above

we consider two curves, both pictured in Figure 2-13. In both cases the assumed

direction of travel is from left to right. The first example involves curve (a), and

demonstrates the effectiveness of the procedure in detecting subtle curvature. The

calculated bounds on total curvature are -. 3070 < C < .1419, but more importantly

the signed concavity count is -2, indicating that two concavities were detected, the first

having negative curvature. The second example involves curve (b), and demonstrates

the ability of the procedure to classify a jagged collection of pixels as being linear,

in spite of the curvature sensitivity demonstrated in the previous example. The

procedure yields a concavity count of 0, which is correct since the curve was generated

by a straight line.

To extend the above procedure to those curves containing pixels which are not 3-

linear is trivial. In this case the curves are segmented into 3-linear segments bordered

by clusters of pixels which are not 3-linear. All that needs to be done is to order the

3-linear segments consistently, and append the sequences of raw orientation ranges

obtained for each segment accordingly to form one large sequence of ranges. This

range sequence can then be handled exactly as the sequence obtained from a purely

3-linear curve would be, first by compensating for the orientation branch cut, and

then by extracting the bounds on total curvature and the concavity description. In

this way we completely ignore the clusters containing pixels which are not 3-linear,

which is debatable since such clusters can signal corners. However, their ability to

do so is clouded by many misses and false alarms, suggesting that if necessary other

5The number of virtual processors must be a power of 2.



(b)

Figure 2-13: Examples considered in text.

means for detecting corners should be found.

2.4 Application to Line Drawings

2.4.1 Segmentation

Application of the above techniques to digitized line drawings as in Figure 2-14 re-

quires segmentation into curves. This can be accomplished via curve tracing initiated

at curve ends. In order to detect curve ends two situations must be addressed, namely

isolated termination and termination at junctions.

Terminations at junctions of three or more digitized curves are easily detected

since branching occurs there. Thus neighborhoods of junction pixels can not be

ordered in a manner consistent with linear traversal. Since 3 x 3 linear neighborhoods

result in consistent ordering, detection of junction pixels is performed by searching

for nonlinear 3 x 3 neighborhoods. As discussed earlier, this reduces to detection

of neighborhoods containing both diagonal pairs in Figure 2-3. Because junction

pixels can appear in groups (see Figure 2-15), junction pixel clusters (8-connected)

(a)



Figure 2-14: Sample digitized line drawing used to demonstrate extraction of curva-
ture information.

are assumed to represent individual junctions6 .

The junctions found in Figure 2-14 are boxed in Figure 2-16. Note that all 3-

junctions are found. Two 2-junctions (corners) are found as well (labelled "a" and

"b"). But one is missed (labelled "c"), and one false corner is found (labelled "d").

This illustrates the difficulty in finding corners via nonlinear 3 x 3 neighborhoods as

discussed above, and is consistent with the fact that corners are orientation disconti-

nuities and are thus not preserved in a straightforward way by digitization.

Given a set of detected junctions represented by junction pixel clusters, the next

step is to find the end pixels of intersecting lines. This is accomplished by finding

those 3-linear pixels whose 3 x 3 neighborhoods suggest consecutive ordering with

junction pixels (see Figure 2-15 where end pixels are labelled "1"). Detection of

these pixels occurs quickly since only 3 x 3 neighborhoods of junction pixels need be

searched.

Isolated termination pixels are found as discussed previously for the pixel config-

uration in Figure 2-7. Terminating pixels are signalled by linear 3 x 3 neighborhoods

having single outer-layer clusters. The drawing in Figure 2-14 does not contain any

isolated terminations.

6 Note the contrast between multiple pixel junctions of digitized curves and single-point junctions
of continuous curves.



Figure 2-16: Junctions detected in line drawing in Figure 2-14.

Figure 2-15: A magnified junction. Vertex pixels contain diagonals. Curve pixels are
numbered assuming direction of travel is away from junction.



With the end pixels of curves known, tracing occurs by ordering pixels as in

Figure 2-7. Tracing initiates and terminates at end pixels. A minor complication

arises when closed curves without detected junctions, as is the case for two of the

three closed curves in Figure 2-14, are present because they do not have end pixels.

In order to extract these curves presence of 3-linear pixels not belonging to previously

detected curves must be checked. If one is found, extraction of a closed curve begins

there. The process repeats until all pixels are accounted for, requiring three steps to

find two closed curves in Figure 2-14 and to verify that no others are present.

The major computational expense in segmenting line drawings is finding junc-

tion pixels and isolated terminations, and checking for closed curves not containing

detected junctions. The former involves only examination of 3 x 3 neighborhoods,

specifically detection of those containing opposing diagonal pairs and those containing

single outer-layer clusters. The later requires simple detection of activated pixels as-

suming removal of junction pixels and pixels belonging to previously detected curves.

Thus the problem is not due to excessive computation at each pixel, but instead to

the large number of pixels that must be considered. For example, the size of the array

containing Figure 2-14 was 512 by 387 pixels, meaning that 198144 pixels had to be

checked to find terminations and junctions, and to find closed curves.

Because required operations at different array elements are independent, parallel

implementation is suggested. And since such operations require little computation,

implementation on fine-grain hardware is feasible. Thus detection of junction pixels,

isolated terminations, and closed curve pixels was implemented on a model CM-2

Connection Machine configured as a 2D grid of processors, one for each array element.

The improvement in performance over serial array scanning on a Symbolics model

3650 Lisp Machine is substantial. Consider for example the processing of the array

containing the line drawing in Figure 2-14. Because the size of this array was 512 by

387 pixels, 8K processors of the Connection Machine were configured as a 512 by 512

grid of virtual processors. Each array element was assigned to a virtual processor.

The time required for detection of junctions and terminations decreased from 191

seconds for serial array scanning to 1 second for the parallel implementation. The



time required for extracting curves decreased from 68 seconds to 8 seconds due to

replacement of serial with parallel search for closed curve pixels. The total time

required for segmentation dropped from 260 seconds for the serial implementation to

10 seconds for the parallel implementation.

2.4.2 Intermediate Representation for Recognition

Once line drawings are segmented, curve description can proceed. Above two descrip-

tors whose coarseness is consistent with the loss of information due to digitization are

considered, namely bounds on total curvature and concavity count. Since we are inter-

ested in qualitative descriptions (those resulting in a finite number of classifications),

only concavity count will be employed. Bounds on total curvature could be converted

to a qualitative description via quantization, but that will not be considered.

Extraction of concavity count from segmented curves occurs exactly as stated

above, with one minor complication. Because of the difficulties discussed previously

in detecting corners via nonlinear 3 x 3 neighborhoods, the interpretation of junctions

associated with two curve ends (belonging to one closed or two open curves) is unclear.

Thus in processing the drawing in Figure 2-14 whose detected junctions are pictured in

Figure 2-16, junctions a, b, and d are ignored and their associated curves combined

(except for junction d, which is associated with a single closed curve). Concavity

count extraction from combined curves occurs exactly as stated above for curves

whose pixels are not all 3-linear.

The results for Figure 2-14 are pictured in Figure 2-17, where the signed concavity

counts determined for each curve are indicated along with their assumed directions

of travel. The time required for calculation of all concavity counts was 56 seconds.

Thus the total time required for processing the line drawing in Figure 2-14 was 316

seconds for the serial implementation and 66 seconds for the parallel implementation.

In considering the richness of representations based on qualitative feature charac-

terizations in the remaining chapters, it is concluded that view descriptions encoding

only concavity count of constituent curves are inadequate. Instead additional in-

formation regarding view structure is required. Specifically the relationships among



Figure 2-17: Signed concavity counts for curves in indicated directions.
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Figure 2-18: Angular ordering of curves at a junction is obtained by traversing its
bounding rectangle in the clockwise direction. The clockwise ordering found here is
a--+b-+c.

curves at vertices is exploited. Salient information already calculated includes the

starting and ending orientation bounds of curves. Additional information required

includes the angular ordering of curves at vertices, which can be extracted by noting

the order of curves encountered as bounding rectangles for junctions are traversed in

the clockwise direction (see Figure 2-18).

An intermediate view description from which structural information required for

recognition can be extracted is then a graph structure whose edges encode curve

information (concavity count, and starting and ending orientation ranges) and whose

nodes encode the clockwise sequence of curves at junctions. Such descriptions can be

viewed as data-reduced versions of line drawings obtained by coarsely describing line

drawing entities.

2.5 Conclusion

We have seen that spatial quantization of continuous curves results in orientation

ambiguity. Any pixel configuration generated by a straight line actually corresponds

to an open interval of possible orientations. Thus to describe the curvature of a

digitized curve, we must refer to a range of orientations at a particular pixel instead



of a single value. With this limited information, curvature descriptions are necessarily

coarse. One discussed at length above is concavity count.

In order to describe line drawings, segmentation into curves must be accomplished.

This is easily performed by finding junctions and terminations at which curve tracing

can be initiated. Because segmentation requires spatially independent operations over

line drawing arrays, execution can be accelerated via parallel implementation.

Once segmentation is complete, extraction of curvature information from line

drawings can proceed. Here extraction of concavity count from constituent curves

has been emphasized. The issue addressed by the remainder of this work is whether

such coarse information can result in effective recognition. In the next chapter the

ability of representations constructed from qualitative information to distinguish ob-

jects is considered.



Chapter 3

Capacity of Qualitative

Representations

View descriptions encoding qualitative information (such as curve concavity count)

discard information, possibly resulting in identical descriptions for different objects.

Thus the primary issue regarding qualitative representation is ability to distinguish

objects of interest. To address this concern recognition is viewed here as a communi-

cation problem. Specifically, view descriptions are interpreted as object identity codes

which must be rich enough to allow reliable decoding in the presence of distortion

(possibly due to occlusion or imperfect object segmentation). In this chapter rich-

ness is measured by capacity, meaning the maximum number of decodable objects.

An upper bound on capacity as a function of a description's constituent features is

obtained, indicating a trade-off between uniqueness and allowable distortion. If this

value is very large compared to the number of objects to be recognized, unknown ob-

jects will likely be identified with little ambiguity. However, distortion can be great

enough to result in a value too low to yield effective recognition. In this case different

descriptive features or additional recognition steps using different information must

be employed, as discussed in the next chapter.



As noted in Chapter 1, object-centered representations result in slow recognition of

restricted object classes because of the dimensional mismatch between 3D object-

centered and 2D image reference frames. An alternative is to use viewer-centered

object representations based on qualitative description of observed features. Because

a finite number of qualitatively described view features results in a finite number

of possible view descriptions, object appearance can be captured in a finite number

of views. However this also implies that the number of distinguishable objects is

finite. Thus when considering the infinite variety of conceivable objects, sharing of

view descriptions among different objects is inevitable, signifying loss of information

which eliminates the possibility of unique recognition. In this case arbitrarily precise

view descriptions, meaning those recording arbitrarily small changes in appearance,

must be used.

But we need not concern ourselves with this situation. Although interested in

recognition of large object sets, the reference is human performance where recog-

nizable sets are considerably smaller. Biederman [5] for example estimates 30,000

readily distinguishable objects. Assuming finite object sets, the qualitative approach

can result in different view descriptions for different objects, eliminating the need for

arbitrarily precise descriptions. Clearly the important issue is not loss of information

with respect to infinitely large object sets, but whether remaining information can

distinguish objects in finite sets of interest.

Essentially recognition is being viewed here as communication, which classically

is posed as the problem of transmitting symbols belonging to a finite set [51, 23]

from one place to another. In general, a communication system can be decomposed

into three basic components, namely a coder, channel, and decoder as in Figure 3-1.

Simply stated, the role of the coder is to produce representations which need only

contain enough data to allow discrimination by the decoder. Ideally coders are chosen

to minimize the average amount of data needed per symbol to maximize transmission

3.1 Recognition as Communication
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Figure 3-1: Communication system model.

rate. Assuming no channel noise, the minimum amount of data', usually measured

in bits, depends only on the number of symbols and their relative frequencies. But

because channels (cables, radio links, etc.) are typically noisy, coders must generate

additional data to provide symbol representations with the redundancy2 required for

noise tolerance.

Similarly, view descriptions can be interpreted as codes which when decoded yield

object identity. Thus they need only contain sufficient data for discrimination by the

recognizer. View descriptions must be kept small not for the sake of transmission

speed, but instead because the computational burden of recognition can be expected

to increase with the amount of data present. Clearly the minimum amount of data re-

quired depends on the number of known objects, as well as the redundancy necessary

for tolerance to distortion (due possibly to occlusion or imperfect object segmenta-

tion).

In order to make the analogy between recognition and communication explicit,

consider Figure 3-2 where recognition is structured as the communication system in

Figure 3-1. There the transmitted symbols are object identities, the coder implements

imaging physics, and the channel medium is light. The goal of the observer is to

decode imagery to obtain object identity.

We are concerned with the flow of information within the observer in order to min-

imize the computational burden of recognition. Thus view descriptions used by the

observer when matching stored object descriptions to image contents must not contain

excessive amounts of redundant data. A certain amount of redundancy is of course

needed to counteract image distortion due to noise and occlusion. But redundancy in

1This value is the entropy of the transmitted symbols.2An example of redundant data is the parity bit used in serial communication systems.
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Figure 3-2: Recognition structured as a communication problem. Imaging physics
codes object identity for transmission via light to the observer, which must decode
the received image to obtain object identity.

excess of the amount needed to handle expected distortion yields unnecessarily large

view descriptions resulting in wasted computation during matching.

The view description used could of course be the raw image received by the ob-

server. But it appears that images contain huge amounts of redundancy, unnecessary

except in extreme viewing conditions involving unusual levels of object image dis-

tortion. For example, humans can recognize most objects from their line drawings

(projected depth and surface orientation discontinuities), suggesting that color, in-

tensity, and texture data are unnecessary when such information is available. In fact,

Biederman presents experimental data indicating that line drawings can be recognized

almost as fast as color images [5, page 55].

Thus it appears prudent for the observer to perform data reduction on incoming

imagery to strip away superfluous redundancy. This is pictured in Figure 3-3, where

the observer has been decomposed into a data reducer, internal channel, and recog-

nizer. Here it will be assumed that line drawing extraction takes place within the

reducer in accordance with Biederman's results. But more importantly, we shall as-

sume that line drawings are further reduced via qualitative description. The relevant

point for the remainder of this chapter is that the final product of the data reducer is

a qualitative view description. The information being qualitatively categorized is not

really of concern: here line drawing information is used, but that does not exclude

other types (for example color).

In terms of communication, the data reducer must produce qualitative descrip-

tions which encode images in a manner which allows objects to be distinguished by

the recognizer, which acts as a decoder. Qualitative view descriptions are passed

noise



distortion due to:
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2. imperfect segmentation
3. imperfect reduction
4. light channel noise
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Figure 3-3: Recognition system from Figure 3-2 with observer decomposed into a
data reducer, internal channel, and recognizer.

to the recognizer, which contains representations of the objects to be recognized.

Since qualitative description allows object representation in terms of finite numbers

of views, the role of the recognizer is to match observed view descriptions corrupted

by the internal channel to those stored, thereby decoding view descriptions to yield

object identity. The internal channel is primarily conceptual, serving mainly as a

means of representing view description distortion in a communication framework. As

mentioned previously, possible sources of distortion include occlusion and imperfect

object segmentation. Additional distortion could be caused by imperfect data reduc-

tion and noise to the light channel, which is now represented as noise to the internal

channel for conceptual unity. And although not an example of distortion, object

views yielding previously unseen descriptions will be modeled here as such to allow

unified consideration of all factors resulting in deviation of observed from stored view

descriptions.

Because distortion is possible, recognition is not guaranteed to yield unique iden-

tification unless qualitative view description provides sufficient redundancy for dis-

tortion tolerance. But this may not be possible since similar objects are often distin-

guished by fine details not captured by coarse characterization. Thus it is not possible

to guarantee in advance that an arbitrary object set is distinguishable. Instead the

approach taken here is to provide enough redundancy so that substantially different

objects can be distinguished in the presence of distortion, allowing ambiguity when



considering similar objects. This approach is in accord with the strategy for handling

large object sets outlined in Chapter 1, which suggested using coarse information to

greatly reduce the set of possible objects, followed by a second recognition step using

more detailed information to distinguish similar objects. Here we shall not address

the second step, instead concentrating on the use of coarse information to index into

large object sets, hopefully resulting in a small number of possibilities for the observed

object.

One way to characterize the redundancy present in a view description is to de-

termine its capacity, meaning the number of views that can be unambiguously repre-

sented in the presence of distortion3 . Ideally, view descriptions having capacity much

larger than the object set of interest should be used, suggesting that if ambiguity

occurs, it will involve only a small number objects(except in unusual cases).

3.2 The View Histogram

Before considering the calculation of capacity, the exact nature of qualitative view

descriptions must be defined. Because they are obtained by selecting a set of fea-

tures and describing them in a manner which results in a finite number of possible

categories, qualitative view descriptions can take the form of histograms whose bins

represent qualitative categorizations and whose counts represent number of occur-

rences. For example, consider the line drawing in Figure 2-17. If the chosen features

are constituent curves, they can be qualitatively characterized via concavity count as

discussed in the previous chapter. In particular, concavity counts should be unsigned

since a given curve can be plausibly traversed in either direction. Additional catego-

rization is obtained by noting whether curves are open or closed. The resulting view

histogram is presented in Figure 3-4.

3View description capacity is so-called because of its similarity to the notion of communication
channel capacity, which is the maximum number of distinct messages that can be transmitted over a
noisy channel without confusion. View description capacity can be thought of as the capacity of the
internal channel in Figure 3-3, restricting message coding to the qualitative view characterization
produced by the data reducer. Strictly speaking, though, channel capacity is a quantity independent
of the particular message coding technique used.
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Figure 3-4: View histogram for drawing in Figure 2-17 assuming features are con-
stituent curves categorized according to closure and concavity count.

In order to discuss view histogram capacity, the distortion to be tolerated must

be quantified. This requires specification of a metric for view histograms. Because

histograms with n bins can be represented as n-dimensional points, one possibility

is to choose the Euclidean metric. But this choice is not particularly meaningful.

Instead we might consider choosing a metric whose corresponding norm indicates in

some fashion the complexity of described object views. One measure of complexity

is simply the number of observed features, which is the sum of histogram bin counts.

This corresponds to a metric d(h,g) defining the distance between histograms h and

g defined by

d(h,g) = Z lhi - gil (3.1)
i=1

where hi and gi are the ith bin counts of h and g respectively. Note that as desired

the size of histogram h specified by JIhll = d(h, 0) is

Ilhll= Zh, (3.2)
i=1

3.3 Capacity of View Histograms

Let histogram h be distorted as discussed above to yield perturbed histogram h.

Here distortion will be measured by d(h, h). Assuming maximum distortion t, all

histograms g such that d(h,g) < t must be associated with h to guarantee correct

matching of h with h. Consider for example the case where n = 2, as pictured in

I

i
I
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Figure 3-5: Error region for t = 2. Distortions of histogram h = (2,4) can lie
anywhere within the indicated boundary.

Figure 3-5. The indicated point represents histogram h. Since the only constraint on

distortion is d(h, h) < t, h can lie anywhere within the indicated region. Thus the

recognizer must associate all view histograms within the error region with h in order

to avoid missing correct matches.

Now consider the situation in Figure 3-6, where the error regions of two distinct

histograms intersect. Since the histograms in the intersection can correspond to both

h and h', ambiguity results. Thus the capacity of a view histogram representation,

meaning the number of view histograms unambiguously decodable in the presence of

distortion, is the maximum possible number of histograms having mutually disjoint

error regions. More specifically, since a finite number of view histograms are required

to represent any object, histogram size will be bounded if considering a finite object

set. Assuming the maximum histogram size is M (ljhl| < M), all unperturbed view

histograms must lie in the region indicated in Figure 3-7 (for n = 2). The problem is

to determine the maximum number of histograms in that region whose error regions

are mutually disjoint. This can be done approximately by noting that the error

regions of all histograms indicated in Figure 3-7 must lie completely inside the region

in Figure 3-8. Thus an upper bound on view histogram capacity can be obtained

simply by dividing the area of the region in Figure 3-8 by the area of the error region

in Figure 3-5.
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Figure 3-6: Overlapping error regions result in ambiguous assignment of histograms
in intersection.

h
2

10

rrol h
0 2 4 6 8 10

Figure 3-7: Region defined by Ilhll < M (M = 8).
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Figure 3-8: Error regions for histograms in shaded region must lie completely within
dashed boundary (t = 2, M = 8).

First consider the error region. In the general case where view histograms have

n bins (qualitative classification yields n categories), the error region is actually an

n-dimensional solid, and we are concerned with its volume. In order to calculate

volume it suffices to consider the error region centered at the origin, summing the

volumes residing in each n-dimensional octant. Specifically we need only consider

the octant in which all coordinates are positive (quadrant 1 when n = 2) because by

symmetry all other volumes will be equal. Let W,(t) denote this volume, defined by

hi... h, 2 0 and I|hl| = JU 1 hi < t. Then

W,(t) = J dh, 0 dh,_,.. --- dh (3.3)

It is easy to prove that

,(t) = (3.4)

Proceeding by induction, first assume n = 1. Then

W 1(t) = dh1 = t

0

6
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2

O

h2

101 2·

.



in agreement with equation 3.4. Now assume that 3.4 is valid for n = nl -1 (nl > 1).

Then if n = nl,

tA1 "_ 2n1- 1 hi

W,1 (t) = dhjh dhnl -1 Z -h dhi

(t - h)n-1 dh
J (n, - 1)! u

tnl

nj!

also in agreement with 3.4. Thus 3.4 is true for all n > 1. Note that since there are

2" n-dimensional octants, with W,(t) indicating the volume contained in each, the

total volume T,(t) of the error region is

(2t)"
Tn(t) - (3.5)n!

Now consider the region in Figure 3-8. Again this will be an n-dimensional solid

in the general case where view histograms have n bins. To calculate the volume of

this solid, we again consider the volume residing in each n-dimensional octant. But

in this case volume will not be identical for all octants. Specifically, the volume in a

given octant will depend on the number of positive coordinates present. Assume for

a given octant that m and only m positive coordinates are present, where 0 < m < n.

Without loss of generality assume these coordinates are labelled hi ... hm. In this

case octant volume is defined by hi... hm 0, hm+l ... h, _ 0, -t < Ei=m+1 h , and

jlhil = Em1 hi - Eý"m+ hi < M + t. Letting Vn,m(M, t) denote this volume, we have

Vn,m(M, t) J dhn dhn-,_
nt 

+t-hn

• "dhm+l dhm I +h dhm=m
0 + m hi JO6

... s dh, (3.6)



1 n n . .
V,m(M, t) = - (M + t)n E t-iM

n! (i=m+l i

for all m > 0 and n > m.

First assume n > m. Then for m > 1 the innermost

together equal W,(M+t+•!=m+l hi) (see equation 3.3).

becomes

m integrals in equation 3.6

Employing 3.4, equation 3.6

0 0 0 (M + t + En•" hi)m
Vn,m(M, t) = dh, dhn- 1 ._ . . (m+ h m

t t-h -t-i=m+2 hi m!

(3.8)
Coincidentally this is also correct if m = 0 because then the innermost integrand is

1. Proceeding by induction over n, first let n = m + 1. Then

Vm+l,m(M, t) = (M + th+)dhm+

=M du

(m +1 ((M + t)m+l - Mm+l)
(m + 1)!

in agreement with

Then if n = nl,

Vn,,m(M, t) =

3.7. Next assume 3.7 is valid for n = nl - 1 where nl > m + 1.

odh, t dh, -1-t (t+hn1 )

0 (M + t + hi +i=m+l hi) dhm+
-(t+h,•)-hnl --1 hi m!

= Vn,i -,m(M, t + h, )dhn,

= (M + t + h.,)"1-1
1-t (n, )

ni-1

-
i=m+1

l-1) (t + hnl)nl--iMi) dh n,

(3.7)

Without too much difficulty it can be shown that
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(nni-iI1-1

- . M (t + hn)ni-i-dh,
i=m+l i t

1 _ (M + t)"' - Mnl n,-1 ni - 1M tn -i
= - E Mi -

(n -- )! ni i=m+ i nl - 2

1 ni (1 1 -'

- 1 (M + t) ( M)i _ •it)nl! i=m+l

in agreement with 3.7. Thus 3.7 is valid for all m > 0 and n > m.

The proof is completed by considering n = m. Note from equation 3.6 that in this

case Vm,m(M, t) is equivalent to Wm(M + t), so that

(M + t)m

Vm,m(M,t) =
m!

in agreement with 3.7. Thus the validity of 3.7 is extended to all n > m where m > 0.

Now consider the total volume V,(M, t) of the region in Figure 3-8 generalized

to n dimensions. First note that since there are n-dimensional octants with

m positive coordinates, and Vn,m(M, t) is the volume contained in each, the volume

contributed by such octants is Vn,m(M, t). Total volume can be obtained by

summing over m:

V,(M,t) = E Vn,m(M, t)

S n) (M + t)" - t"-'M'
na=lO m i=M +1 i

Recall that an upper bound on histogram capacity C,,(M, t) is obtained by dividing



the volume of the region in which the error region must lie by the volume of the error

region. Thus

V,(M,t)
C,(M, t) n<

Tn(t)

= ( 2t 1 t-M t
m=O m i=m+1 Z

S2+ +1 E
2m=0 m T

" -
1 - i=m+1 Mt

Note that the last expression depends on M and t only in terms of their quotient.

Labeling this expression C,(M/t) to distinguish it as an upper bound on C,(M, t),

further reduction is possible by replacing (_L + 1)n by its Binomial Theorem expan-

sion:

M 1 nn
Cn t t

Sm i=0i=+l

which yields

cn= () ) (•  (3.9)m=0 M i=0 Z
Of course an exact expression for capacity would be preferable to the upper bound

given by Cn, but there appears to be no straightforward method for deriving one. In

particular, a volume-packing method for spaces of arbitrary dimension would be re-

quired, capable of taking into account location of error volumes exclusively at discrete

points. Thus, in the remainder of this work C, will be used as an indication of view

histogram capacity.

As stated above, the goal is to choose features whose qualitative categorizations

result in a histogram capacity much larger than the object set to be recognized. Of

importance is not only the number of categories resulting from qualitative description

(n), but also the ratio of histogram size to distortion denoted by Mit. This quantity

can in a sense be regarded as a signal to noise ratio, which in agreement with intuition



Figure 3-9: Nine histograms with mutually exclusive error regions (t = 2,M = 8).

decreases capacity when decreased itself. In other words, increasing distortion with

respect to histogram size results in progressive deterioration of the recognizer's ability

distinguish objects, as demonstrated in the next chapter.

Above the role of redundancy in providing tolerance to view distortion was dis-

cussed. In order to further explore the notion of view histogram redundancy consider

the case where t = 2 and M = 8 as in the figures accompanying the text above. For

this case equation 3.9 yields an upper bound on capacity of 11, which appears to be a

reasonable estimate since at least 9 histograms with mutually exclusive error regions

can be found (see Figure 3-9). Thus at most 11 objects can be distinguished. Now

consider the distortion-free case, where every histogram can represent a distinct ob-

ject. When M = 8 there are 1+2+...+9 possible histograms, allowing representation

of 45 objects. Since there is at least a factor of four decrease in number of distinguish-

able objects when distortion is present, roughly 2 bits of histogram data must be used

for distortion tolerance. And as distortion increases the amount of redundant data

needed will increase, reducing the data available for actually distinguishing objects,

thus increasing recognition ambiguity.



3.4 Conclusion

The significant result of this chapter is the upper bound on view histogram capacity

given by equation 3.9. Because it is not likely that stored view histograms will be

nicely distributed in histogram space as in Figure 3-9, we can reasonably expect that

capacity must be much larger than the object set of interest if qualitative recognition

is to provide reasonable resolution. Thus one of the main goals of the next chapter

is to seek out features yielding view histograms with large capacities, and evaluate

resulting recognition performance.

The mechanics of recognition to be employed there essentially have already been

discussed. The general idea is to compare view histograms constituting stored object

representations with those from observed objects. If the difference between an ob-

served histogram h and stored histogram h defined by d(h, h) is less than maximum

tolerable distortion t, then the object to which h belongs is considered a possibility

for the viewed object.

To be more precise, view histograms will be obtained by sampling the viewing

sphere of each object in Figure 1-4. Thus each will represent the appearance of an

object as seen from a small patch on its viewing sphere. If recognition is then posed as

the problem of distinguishing view histograms instead of objects, recognition results in

orientation estimation in addition to identification. This approach requires histogram

capacity to be much larger than the total number of views sampled for all objects of

interest, as discussed next.



Chapter 4

Selection of Features

In the previous chapter an upper bound on view histogram capacity was obtained.

The significance of capacity is that it in a sense measures representational richness.

Large capacity histograms can distinguish many objects even when distorted (by

imperfect segmentation, for example). The goal here is to choose features whose

histogram capacity is much larger than the object set of interest, hopefully resulting

in little recognition ambiguity.

The features considered consist of line drawing curves whose extraction and qual-

itative classification (via concavity count) were described in Chapter 2. It is shown

that simple features consisting of individual curves do not yield sufficient capacity.

Instead curves must be grouped into compound features whose qualitative description

results in significantly increased capacity.

The performance of high-capacity histograms in distinguishing objects is demon-

strated on scenes containing one and two objects. When a single object is present,

recognition typically results in little ambiguity, meaning that observed histograms fall

in the error regions of a small number of stored histograms. With multiple objects,

reliable segmentation is needed to prevent segmentation error from enlarging error

regions to the point where ambiguity becomes unacceptable.



Figure 4-1: Object 15 as modeled.

4.1 The Object Set

Of interest in this chapter are the objects in Figure 1-4, which were taken from a

mechanical drawing textbook [24]. Admittedly this is not a very large set by human

standards, but it is much larger than those typically encountered in the recognition

literature, which typically contain one object, or perhaps a few quite simple ones (see

Chapter 1).

These objects were chosen primarily for three reasons. First, they are not trivial

geometrically. They have holes and curved surfaces, and none are convex. Second,

even though complicated they are similar enough to avoid discrimination by trivial

test. For example, counting number of holes would not be an effective recognition

strategy. Thus they present a reasonable proof-of-concept test for recognition based

on coarse, qualitative information: if similar objects can be distinguished, then success

can be anticipated for much larger sets containing substantially different objects. And

third, the objects can be modeled by the Symbolics S-Geometry 3D geometry package

[64], used by the author to generate object views from arbitrary viewpoints'1 .

Models are exact duplicates of the objects in Figure 1-4 with one exception: the

recessed hole in object 15 was not modeled because of difficulties in doing so with S-

Geometry construction tools. Instead it was replaced by a single hole as in Figure 4-1.

Since S-Geometry can handle only polyhedra, curved surfaces are approximated

1Hidden line removal was performed with code supplied by the author.



Figure 4-2: Polyhedral approximation of object 15.

as in Figure 4-2. But approximating facets are small enough so that planar approxi-

mation is not discernible in line drawings considered.

4.2 The Viewing Sphere

As mentioned previously, qualitative object representations are obtained by collecting

view histograms obtained at sampled viewpoints. The approach taken here is to

sample a given object's viewing sphere, which contains the object at its center and

defines all viewpoints at a certain distance. The observer is assumed to reside on the

sphere, its lens pointed toward the center. The size of the viewing sphere is identical

for every object, yielding the scale shown in Figure 4-3 for the 50mm focal length

used during sampling.

To discuss viewpoint sampling a viewing sphere coordinate system must be de-

fined. To do so, first associate with each object a rigidly-attached 3D coordinate

system oriented as in Figure 4-4 for the object attitudes shown in Figure 1-4. For a

particular object, let the origin of its coordinate system lie roughly at the centroid

of its bounding box (the one having faces parallel to the coordinate planes). With

the origin defining the center of the viewing sphere, position on the sphere can be

specified by latitude and longitude defined as follows. First let the equator of the

viewing sphere reside in the x-z plane, with latitude defined such that the intersec-



Figure 4-3: Object scale during viewpoint sampling. Image size is 512 x387 pixels.

Figure 4-4: 3D coordinate system assumed for objects in Figure 1-4.

tion of the sphere and the positive (respectively negative) y-axis occurs at +90 (-90)

degrees latitude. Furthermore, let longitude be defined such that it increases in the

counter-clockwise direction when the viewing sphere is viewed from above on the pos-

itive y-axis, with the intersection of the sphere and the positive z-axis occurring at 0

degrees longitude.

The sampling pattern chosen allows samples to represent viewing sphere patches

of roughly equivalent area. The basic idea is to sample latitude parallels in a manner

such that the number of samples obtained is proportional to the cosine of latitude.

To be more precise, assume e viewpoint samples are obtained from the equator via

uniform sampling, resulting in a longitude sampling interval there of 2ir/e radians.

The number of longitude samples taken from a parallel of latitude 0 is then F[ cos()]1

(N[] rounds its argument to the next higher integer), resulting in approximately the

same inter-sample distance found at the equator, namely 2'r/e (normalized for viewing

sphere radius 1). If the sampled parallels are separated by latitude intervals of 27/f

radians, each viewpoint sample then accounts approximately for a viewing sphere



Figure 4-5: The Sinusoidal projection. Parallels and meridians are marked at 45
degree intervals.

patch of normalized area (27r/1)2 .

In the following sections it will prove useful to represent the viewing sphere

schematically. Specifically the distribution of viewpoints whose view descriptions

are captured by the above sampling of the viewing sphere will be of interest. In

order to represent different regions on the viewing sphere equally, an area-preserving

projection 2 of the viewing sphere is indicated. Here the Sinusoidal projection will be

employed, as pictured in Figure 4-5. The Sinusoidal projection is convenient because

of its similarity to the viewing sphere sampling strategy described above. In particu-

lar, projected parallels are uniformly spaced, their length varying with the cosine of

latitude.

In Figure 4-6 an example of sampling the viewing sphere as discussed above is

presented. The views so obtained are structured in a manner reminiscent of the

Sinusoidal projection.

4.3 Unstable Viewpoints

Accidental viewpoints occur when view topology is unstable with respect to observer

position on the viewing sphere. They are always found when object surfaces line up

with the viewer's line of sight because then infinitesimal travel can result either in

surface exposure or occlusion.

Because accidental viewpoints occupy a zero-area subset of the viewing sphere,

2An area-preserving projection is one in which the relative areas of different regions are preserved.

-180-135'-90--45---0 -45-90--135-180
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Figure 4-6: Views obtained by sampling the viewing sphere of object 3 (f = 12).
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they are not of concern if the imaging sensor is spatially continuous. But in our

case the imaging sensor is spatially discrete, which causes instability on the viewing

sphere to spread to viewpoints in the vicinity of accidental viewpoints. Consider

for example the effect on a planar face. As the face approaches alignment with the

viewer, foreshortening causes face boundaries to interact in a manner that yields an

unstable configuration of false curves and junctions, as demonstrated in Figure 4-7.

The result is an unstable region of non-zero area on the viewing sphere. The extent

of the unstable region will be indicated in Section 4.5, but for now it suffices to note

that it can be significant.

This is of concern when evaluating the number of viewpoint samples needed to

capture the appearance of a 3D object from all perspectives. One possible approach

for doing so is to increase the number of samples until new view descriptions are no

longer found. Such would be reasonable approach if viewpoint instability was limited

to a zero-area region of the viewing sphere. But in our case it is not, so we can expect

the fraction of view descriptions corresponding to unstable viewpoints to increase with

the number of viewpoints tested, forcing storage of a great many descriptions varying

from those obtained at stable viewpoints in a not particularly significant manner.

Instead the approach taken here is to choose what appears to be a reasonable number

of samples and set the distortion tolerance t discussed in the last chapter to take into

account that certain observed view descriptions may not exactly match those stored

in the recognizer. Specifically the number of equatorial samples f used will be 24,

resulting in 188 viewpoint samples for each object as plotted in Figure 4-8. Selection

of t will be discussed in a later section.

4.4 Recognition Strategy

The representation used for recognition of each object in Figure 1-4 will consist of

view histograms obtained at the viewpoints specified in Figure 4-8. Thus there will

be a total of 16 x 188 = 3008 stored histograms, each corresponding to an object and

orientation. The histograms are determined by qualitative characterization of selected



Figure 4-7: Base faces of object 9 approach alignment with the viewer (from top
down). Note the creation of false junctions and curves due to interaction of digitized
face boundary curves.
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Figure 4-8: Dots indicate sampling of viewing sphere used in generating representa-
tions for the objects in Figure 1-4. There are 188 samples, corresponding to e = 24.

features. Here features will consist of segmented line drawing curves as discussed in

Chapter 2. Simple features will consist of single curves described qualitatively via

unsigned concavity count and closure. Compound features will consist of 2 curves

meeting at line drawing junctions, serving to introduce information regarding line

drawing structure.

Because object representations encode coarse information, we can not expect

recognition to distinguish similar objects. But confusion among many objects is

not acceptable, so the goal here is to associate unknown object views with a small

number of stored histograms, resulting in ambiguity among only a few different ob-

jects. To uniquely identify an unknown object, a second recognition stage employing

more precise object information could be applied to the small number of remaining

possibilities. As discussed in Section 1.2, recognition then involves an indexing stage

employing coarse information to reduce the object set to a small number of similar

possibilities, followed by a verification stage employing detailed information to obtain

unique identification. This two-stage paradigm is proposed for reasons of efficiency.

Since it involves manipulation of simple information, indexing occurs quickly, leaving

time-consuming verification to a greatly reduced set of objects.

The verification stage will not be addressed here. Instead emphasis will be placed

on achieving adequate discrimination from indexing. Thus the goal of the next sec-

tion is to find line drawing features whose qualitative categorization results in view

histogram capacity much larger than the number of stored histograms constituting

object representations. Since each stored histogram is associated with an object and

a viewpoint, this will result in little ambiguity regarding not only identity, but orien-
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tation as well.

Before proceeding to a discussion on capacity, let us reconsider the procedure

described in the previous chapter for associating an observed view histogram h with

stored histogram h. There the association was made if d(h, h) was less than tolerable

distortion t where t was assumed constant for all h. This is not particularly reasonable

since it assumes that views containing a few features will be distorted to the same

extent as those containing many. Instead a more intuitive approach is to make t

proportional to the number of view features present, namely jIhlI. Thus in all that

follows h will be associated with h if d(h, h) < k JIhlJ, or alternatively if

d(h, h)d < k (4.1)

The left-hand term of this inequality will be known as the relative distortion for

histogram h.

A relatively small fraction of stored view histograms will be significantly affected

by this modification because the objects in Figure 1-4 are of roughly the same com-

plexity, meaning that most views contain similar numbers of curves3 . Then approx-

imately speaking we expect Ilhll to be constant for most stored views, resulting in

constant distortion tolerance t = k I1hil, and therefore approximate validity of his-

togram capacity upper bound C, defined in 3.9. To rewrite 3.9 in terms of k note

that since M was defined in Chapter 3 as the maximum stored histogram size, we

can let M = Ilhll in this case, resulting in M = = I Substituting into 3.9 we get

t1 1 h n k 1 '

Cn( (4.2)

C, as defined in 4.2 will be used in the next section as an indication of histogram

capacity.

3 An exception is object 5, which in the view shown appears considerably simpler than the others.



The goal here is to find line drawing features whose histogram capacity is much larger

than the total number of stored histograms, namely 3008. First to be considered are

features consisting of single curves, qualitatively characterized according to closure

and concavity count as discussed in Section 3.2. To apply the upper bound defined

in 4.2, values for k and n are required.

First consider n. In the course of deriving 4.2 in the last chapter, it was implicitly

assumed that the counts in n histogram bins exhibit significant variation, specifically

over the range [0, M]. If violated, the actual region in which histograms are restricted

is less than that assumed, resulting in an unreasonably high capacity estimate from

4.2. Thus a satisfactory approach in setting n is not to automatically choose the

number of qualitative categories found during viewpoint sampling. Instead some

provision must be made for preventing bins whose counts exhibit inadequate variation

from contributing to n.

The variation measure used here will be entropy [51, 23], which is defined as

follows. Letting probability measure P be defined on sample space S = {wi,., I W },

entropy H of S is defined as

m

H(S) = - P(w;) log P(w;) (4.3)
i=1

If the base of the logarithm in this definition is 2, entropy is measured in bits.

In our case S is the set of counts observed for a particular histogram bin during

viewpoint sampling, and P is defined such that all sampled viewpoints for all objects

are given equal weight. Thus the probability of a given bin count is the number of

stored histograms where it occurs divided by the total number of stored histograms

(3008).
Entropy is a particularly good measure of variation in this case because it takes

into account relative frequency. Noting only which bin counts are found is not satisfac-

tory. For example, it is possible that counts for a particular bin are found throughout

[0, Mi, although tightly concentrated at only one value. Then the variation for this

4.5 Capacity Evaluation
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Figure 4-9: Bin entropies (in bits) for qualitative curve classification.

bin does not significantly expand the histogram region, and should not be included

in n. In agreement, the bin count entropy for this case is approximately zero.

In order to exclude bins whose counts exhibit little variation, a lower threshold on

entropy must be specified. Here a value of 1 bit is used, as would be obtained if only

2 equiprobable bin counts were found, which is considerably less than M considering

that histogram size (number of curves) is typically close to 10 or higher for the library

objects.

Thus only bins whose entropy is at least 1 bit contribute to n. In Figure 4-9 the

entropies for all bins are plotted in decreasing order. This information is presented

in tabular form in Table 4.1 to show the correspondence between curve category and

entropy. Since only 4 of 13 categories have entropy of at least 1 bit, we shall use

n = 4 in calculating histogram capacity.

Now consider k, the maximum tolerable relative distortion. We first address the

situation where unknown object views are not distorted. In this case the only possi-

ble discrepancy between observed and stored view histograms is due to insufficiently

dense sampling of the viewing sphere, resulting in incomplete collection of view his-

tograms. As discussed in Section 4.3, no attempt is made to capture all possible view

histograms when object representations are compiled. Instead the strategy is to sam-

ple the viewing sphere as specified in Figure 4-8, adjusting the distortion tolerance to

capture additional viewpoints. To be precise, a viewpoint is considered captured if its

histogram resides within the error region of a stored histogram, allowing association

£
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Category Index Concavities Closure Entropy (bits)
0 0 open 4.015
1 1 open 3.790
2 1 closed 1.858
3 2 open 1.345
4 3 open 0.983
5 3 closed 0.144
6 5 open 0.098
7 2 closed 0.050
8 4 open 0.029
9 4 closed 0.027
10 7 open 0.024
11 5 closed 0.008
12 7 closed 0.004

Table 4.1: Curve classification entropies.

with the corresponding viewing sphere sample.

Determining a plausible value for k thus requires evaluation of the extent of the

viewing sphere captured as a function of k. The approach used here is to densely

sample the viewing sphere, determining which viewpoints are captured for various

values of k. To choose a uniformly acceptable value for k, this procedure should

be applied to all library objects. This is not practical here, though, because dense

sampling just one object involves considerable time due to lengthy hidden line removal

required at each viewpoint. Instead, just one object is considered, namely object 9,

with the hope that results so obtained are reasonably representative.

Dense sampling employed 120 equatorial samples, resulting in 4614 viewing sphere

samples, or 25 times the number used for object representation. Figure 4-10 contains

the Sinusoidal maps of captured viewpoints for various values of k (the map labelled

k = 0 represents viewpoints whose histograms are present in the stored set). Note

the banding that takes place about the equator and the -90, 0, +90, and 180 degree

meridians in the plots for smaller values of k. This is a direct result of viewpoint

instability as discussed in Section 4.3. There it was noted that instability occurs

when planar faces are nearly aligned with the viewer. Because the dominant faces



of object 9 are parallel to the coordinate planes in Figure 4-4, significant alignment

takes place in the vicinity of the equator for faces parallel to the x-z plane, near the

0 and 180 degree meridians for faces parallel to the y-z plane, and near the -90 and

+90 degree meridians for faces parallel to the x-y plane. Thus the banding seems

to indicate large differences between histograms in these regions and those stored

primarily due to viewpoint instability in the vicinity of accidental viewpoints.

It is not reasonable to require that the entire viewing sphere be captured because

of the large values of k required by unstable viewpoints. Specifically, viewpoints away

from unstable regions are captured by k = .20., whereas several unstable viewpoints

remain free at k = .35. In fact, the value of k required for capture of all densely-

sampled viewpoints is 2.0. Since our upper bound on capacity decreases rather sharply

as k increases, here some of the unstable views will be conceded in favor of reduced

recognition ambiguity elsewhere by choosing k = .20. This represents a departure

from the earlier stated requirement of representing object appearance from all per-

spectives, although not too unreasonable in light of human difficulties in recognizing

accidental views.

With n = 4 and k = .20, our upper bound on capacity 04(5) is 318. Since the

number of stored viewpoints is 3008, we have no hope of achieving effective viewpoint

indexing in this case. Histograms based on single-curve view features categorized

according to concavity count and closure simply do not have the required capacity,

even when recognition of accidental views is conceded.

In order to boost capacity several strategies are possible. Noting that our upper

bound increases with n, we might expect a finer curve categorization to yield satis-

factory capacity. But care must be taken here since increased fineness may force an

offsetting increase in k due to decreased classification robustness.

An alternative approach which preserves curve classification coarseness is to group

curves, thereby increasing the number of feature categories combinatorially4 . Con-

sider for example pairs of curves. If classified via classification of constituent curves,

4 Biederman [5] similarly suggests using grouping to increase the number of objects representable
by 3D "components".
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Figure 4-11: Adjacent curves at line drawing junctions form compound view features.
cl and c2 are signed concavity counts for curve travel in the indicated directions.

the number of pair categories is the number of curve categories squared.

But care must be taken in forming pairs. It is not satisfactory for example to

simply collect all possible pairings from views because resulting histograms can then

be derived from corresponding single-curve histograms, and therefore contain no ad-

ditional information. More informative view descriptions can be obtained by pairing

only intersecting curves, thereby encoding information regarding line drawing struc-

ture. Such an approach is taken here, first by ordering the curves at each line drawing

junction in the clockwise direction as discussed in Section 2.4.2, then by pairing con-

secutive curves as in Figure 4-11.

Assuming constituent curves are labelled 1 and 2 to indicate clockwise order-

ing, a given pair can be categorized according to signed concavity counts cl and c2 ,

calculated assuming direction of travel away from the curve junction'. Additional

classification is obtained via qualitative description of angle 0 separating curves 1

and 2, in particular indicating whether 0 is less than 7r, possibly 7r, or greater than

7r. This evaluation is made on the basis of the starting orientation ranges obtained

during concavity count calculation for curves I and 2, as discussed in Chapter 2.

Letting (01,min, 1,m.,) and (02,m.in, 2,mo.) denote these ranges, we have 0 < 7r if

9 1,maz - 0 2,min < 7, 0 > r if O1,min - 0 2,ma > xr, and 0 is possibly Ir otherwise.

sRecall from Chapter 2 that the sign of a signed concavity count indicates whether the first
detected concavity in the assumed direction of travel has positive or negative curvature.
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Figure 4-12: Bin entropies (in bits) for qualitative classification of curve pairs.

In considering histogram capacity for curve pairs so classified we proceed in exactly

the same manner as discussed for the single-curve case. We first consider bin entropies

for the histograms obtained as a result of viewing sphere sampling. In Figure 4-12 is

a plot of the entropies in decreasing order, indicating that only 18 of 165 histogram

bins have entropy of at least 1 bit. Thus n is set to 18. The corresponding feature

classifications are listed in Table 4.2.

To determine a reasonable value for k, captured viewpoint maps for various values

of k are presented in Figure 4-13. Note again the banding that takes place about the

equator and the -90, 0, +90, and 180 degree meridians, especially for k = .20 and .30.

It seems to be a bit more pronounced than in the single-curve case, perhaps because

grouping as well as curve classification are disrupted in the vicinity of accidental

views.

It appears that viewpoints away from the unstable regions are captured by k = .4.

With n = 18 and k = .40, our upper bound on capacity C 1s(2.5) is 7.5 x 108, well in

excess of the number of stored histograms (3008) as desired. Thus histograms based

on the above categorization for curve pairs should be able to discriminate object views

much more effectively than those based on single curves, resulting in better indexing.

This is demonstrated in the next section.



Category Index cl c2  0 Entropy (bits)
0 0 0 < 7r 3.671
1 -1 1 < r 2.766
2 0 1 < 7 2.759
3 -1 0 < 7r 2.752
4 1 -1 > r 2.471
5 -1 -1 < r 2.159
6 1 1 < 7r 2.157
7 0 -1 < r 2.037
8 1 0 < 7r 2.017
9 0 0 r 1.977

10 1 -1 7r 1.759
11 1 -1 < r 1.689
12 0 -1 > 7 1.352
13 0 1 7r 1.344
14 -1 0 T- 1.343
15 1 0 > r 1.340
16 0 -1 - 7r 1.288
17 1 0 7r 1.286

Table 4.2: Classification entropies above 1 bit for curve pairs.
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Figure 4-13: Captured viewpoint maps for two-curve view histograms (black dots
indicate capture).
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4.6 Examples

4.6.1 Implementation

In Chapter 1 much significance was placed on obtaining a recognition algorithm ca-

pable of considering known objects simultaneously, at least in its initial stages when

objects dissimilar to observed objects are eliminated from further consideration. The

indexing algorithm defined by inequality 4.1 realizes this goal because of its simplic-

ity. It implies that, an unknown object view is matched to a sampled viewpoint if

the relative distance between corresponding histograms is small enough. Since calcu-

lation of relative distance is a trivial operation, parallel implementation on fine-grain

hardware is possible by assigning every sampled histogram to a distinct processor.

For the examples which follow, parallel implementation employed 3008 processors of

a model CM-2 Connection Machine.

4.6.2 Isolated Objects

We initially consider the case where single objects are observed. Our first example

demonstrates the potential of indexing via high-capacity histograms. The view to be

recognized is in Figure 4-14. It was observed from the viewing sphere of object 7 with

focal length equivalent to that used during histogram sampling. When indexing based

on single-curve histograms is attempted, 56 sampled viewpoints corresponding to 11 of

16 library objects are retrieved. In contrast, indexing based on two-curve histograms

results in retrieval of only 2 views, both associated with the correct object as shown

in Figure 4-15. Thus histogram capacity correlates nicely with indexing ambiguity,

as expected.

Furthermore, indexing is fast as a result of parallel implementation, requiring for

the two-curve case .05 seconds of Connection Machine processing. The corresponding

time for serial consideration on a Symbolics model 3650 Lisp Machine is 5.5 seconds,

for a two order of magnitude difference.

The next example demonstrates the robustness of qualitative description to per-



Figure 4-15: Results of two-curve histogram indexing for the view in Figure 4-14.

Figure 4-14: View of object 7 from its viewing sphere using a focal length of 50mm.



Figure 4-17: Result of two-curve indexing for view in Figure 4-16.

spective effects. We consider the object view used in the previous example with focal

length reduced from 50mm to 25mm, as in Figure 4-16. In this case indexing based

on single-curve histograms returns 74 sampled viewpoints, again corresponding to 11

objects. But two-curve indexing returns a single view of the correct object, pictured

in Figure 4-17. The decrease in ambiguity is similar to that observed in the previous

example. And halving the focal length compared to that used for histogram sampling

does not seem to hinder performance.

The previous two examples are unusual in that indexing exhibits insignificant

ambiguity. Typically a greater number of views are retrieved,' often corresponding to

Figure 4-16: View of object 7 with focal length reduced from 50mm to 25mm.
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Figure 4-18: View of object 3 from viewing sphere with 50mm focal length.

more than one object. Consider for example the view of object 3 in Figure 4-18. In

agreement with the previous examples single-curve indexing is ineffective, yielding 73

views of 11 objects. As expected, two-curve indexing performs much better, but this

time with increased ambiguity. Specifically, 8 views of two objects are retrieved, as

pictured in Figure 4-19. But the views retrieved of object 3 are quite similar to each

other, and to the three views of of object 16 present. Thus ambiguity is increased,

but since like views are retrieved, performance of indexing is as desired.

We now consider the behavior of indexing when object views are in the vicinity

of accidental viewpoints. Figure 4-20 contains such a view of object 7. As discussed

earlier we can not expect indexing to succeed here because tolerable distortion was

set too low to capture all unstable viewpoints. In fact, two-curve indexing fails to

retrieve any views of any objects.

4.6.3 Multiple Objects

So far we have considered only isolated objects. When multiple objects interact in

the field of view, two approaches are possible. The first simply assumes bound p on

the number of objects present, and without prior object segmentation attempts to

match observed view histograms with all possible combinations of up to p sampled

histograms. Because view histograms for scenes containing multiple isolated objects



Figure 4-19: Results of two-curve histogram indexing for view in Figure 4-18.

Figure 4-20: Nearly-accidental view of object 7 from viewing sphere with 50mm lens.
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Figure 4-21: Object 8 partially occluding object 4.

are equivalent to the sum of histograms for individual objects, sampled histograms

can be combined by summing, assuming distortion tolerance is large enough to handle

the effects of occlusion. But combinatorially this approach is not very attractive. And

because view histograms must be assigned to combinations of p sampled histograms

with little ambiguity, histogram capacity must be much larger than the number of

these combinations, namely the number of stored histograms raised to the pth power.

Because of the huge increase in required capacity, this approach is not expected to

work very well. As an example, consider the two-object view in Figure 4-21. With

p = 2, the number of viewpoint pairs retrieved by two-curve indexing was in excess

of 65,000.

Apparently, qualitative indexing requires prior segmentation of non-isolated ob-

jects. Thus the second approach assumes that segmentation has been attempted. The

important issue then is the accuracy required of segmentation for successful index-

ing. To address this issue we consider three examples simulating successive degrees of

segmentation error. First consider the view in Figure 4-22, which is assumed by the

recognizer to contain only one object. Actually it contains two, with object 8 heavily

occluding object 4. The small visible portion of object 4 simulates segmentation er-

ror. Figure 4-23 contains the results of two-curve indexing, indicating that distortion

due to the minimal segmentation error in this case is handled nicely.



Figure 4-22: Segmentation error simulated by occluding object 4 with object 8.

Figure 4-23: Results of two-curve indexing applied to drawing in Figure 4-22.
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Figure 4-25: Results of two-curve indexing applied to drawing in Figure 4-24.

Now consider Figure 4-24, which represents a small increase in segmentation er-

ror. The viewpoints retrieved by indexing are presented in Figure 4-25. Note that

increased distortion due to segmentation error results in significant viewpoint error

in views corresponding to object 8.

Finally consider Figure 4-26, which represents increased segmentation error dis-

tortion primarily due to partial appearance of the hole in the base of object 4. Seven

viewpoints were retrieved by two-curve indexing, only one corresponding to object

8. As pictured in Figure 4-27 this view is substantially different from the observed

view. Thus the performance of indexing appears to decline rapidly with increased

103
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Figure 4-24: Increased segmentation error simulated by increased exposure of object 4.
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Figure 4-26: Appearance of hole in base of object 4 significantly increases distortion
due to segmentation.

segmentation error.

One solution to this problem might be to simply increase distortion tolerance in

order to retrieve more similar viewpoints. But it appears that the required tolerance

is too large to result in acceptable indexing ambiguity, even for a moderate amount

of segmentation error. For example, of the 72 stored histograms closest to the view

in Figure 4-26, only the view cited belongs to object 8.

Obviously distortion can not be allowed to grow to the point where capacity

becomes insufficient. But the big problem here is that view features are quite sensitive

to segmentation error, particularly because extraction of object curves is disrupted

by intersection of spurious curves.

Thus if view features insensitive to segmentation error cannot be found, success

of qualitative indexing depends on reliable object segmentation. This perhaps is the

major obstacle regarding application of indexing to real images of cluttered scenes, one

frankly that does not exist for recognition techniques using object-centered models.

In contrast, these techniques produce scene segmentation instead of requiring it.
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Figure 4-27: Two-curve indexing applied to Figure 4-26 retrieves only one view of
object 8.

4.6.4 Additional Information

Significant ambiguity can sometimes result in spite of large histogram capacity. For

example, two-curve indexing applied to the view of object 14 in Figure 4-28 results in

retrieval of 24 sampled viewpoints, with 13 corresponding to object 14, 7 to object 13,

and 4 to object 9. Thus it appears that the view histogram for Figure 4-28 resides in a

rather congested region of histogram space. A possible solution is to employ a second

indexing step based on alternate information to further filter retrieved viewpoints.

One source of information yet to be exploited is curve length'. In order to be

used as part of a qualitative description scheme it must be quantized to yield a

finite number of curve descriptions. Furthermore, it must be normalized somehow to

provide scale independence. If we are interested in qualitative description of curve

pairs, then these two requirements are easily satisfied.

Assuming line drawing curves are paired as described above, qualitative descrip-

tion based on length can be obtained by replacing concavity counts cl and c2 with

qualitative length descriptions dl and d2 obtained as follows. First let Lm indicate

the maximum of curve lengths L 1 and L2 . Then division by Lx normalizes L 1 and

6Here lengths of digitized curves were obtained by summing lengths of segments obtained via
recursive linear approximation [2, pages 234-235].
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Figure 4-28: View of object 14 from viewing sphere with 50mm lens.

L 2. Assuming q quantization intervals, the quantization interval in which normalized

lengths reside can be determined by rounding up the product of q with each. Thus

normalized and quantized length description di for curve i is obtained as follows:

rLi
d = q- (4.4)

In order to successfully apply this manner of qualitative pair description to the

indexing problem, a value for q yielding large histogram capacity must be determined.

Here q = 4 is used since it can be shown to yield an upper bound on capacity of

the same order of magnitude as that obtained from the previously considered pair

classification scheme.

To do so, first consider histogram bin entropies. From the plot in Figure 4-29,

we see that all 21 bins have entropy greater than 1 bit (category entropies are listed

in Table 4.3). Thus we set n = 21. Now consider the captured viewpoint maps in

Figure 4-30. It appears that views away from accidental viewpoints are captured by

k = .50. Thus our upper bound on capacity in this case is C21(2.0) = 1.8 x 109,

compared to 7.5 x 10s for the previous pair classification scheme.

In applying our new pair classification scheme to the view in Figure 4-28, indexing

results in ambiguity similar to that found for classification based on concavity count.
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Figure 4-29: Bin entropies (in bits) for qualitative length classification of curve pairs.

Category Index d1 d2  0 Entropy (bits)
0 4 4 < r 3.566
1 1 4 < r 2.908
2 4 1 < 7r 2.905
3 2 4 < r 2.896
4 4 2 < r 2.889
5 3 4 < 7r 2.691
6 4 3 < 7r 2.671
7 4 1 , r 1.946
8 1 4 , r 1.943
9 4 4 - r 1.631
10 4 4 > r 1.608
11 2 4 r 1.564
12 4 2 -r 1.526
13 4 1 > 7 1.506
14 4 2 > 7r 1.502
15 2 4 > 7r 1.484
16 1 4 > 7r 1.449
17 3 4 > 7 1.354
18 3 4 , 7r 1.337
19 4 3 - n 1.335
20 4 3 > 1.321

Table 4.3: Entropies for length-classified curve pairs.
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k = .30

Figure 4-30: Captured viewpoint maps for view histograms based on qualitative
length description of curve pairs. (black dots indicate capture).
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Figure 4-31: Results of two-stage indexing for view in Figure 4-28 using pair descrip-
tions based on curvature and length.

Specifically, 15 view samples are retrieved, of which 7 correspond to object 14, 4 to

object 15, 3 to object 9, and 1 to object 11. But what really is of interest here is the

intersection of the views retrieved for the two classification schemes. These views are

presented in Figure 4-31, indicating no remaining ambiguity regarding object identity.

Thus we see that two indexing steps, one applied to the results of the other, can be

used to reduce ambiguity to an acceptable level.

4.7 Conclusion

We have seen that qualitative information when properly encoded results in effec-

tive indexing of the objects in Figure 1-4. In particular, view descriptions encoding

only concavity counts and three-way angular categorizations (less than ir, possibly

7r, or greater than ir) yielded good results, which might seem surprising since this

information is quite coarse.

That such simple information is so effective in distinguishing objects (and view-

points) is explained via consideration of representational capacity, meaning the max-

imum number of objects unambiguously representable in the presence of distortion.

Assuming capacity is much larger than the number of items to be distinguished,

effective indexing can be expected.
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In considering capacity, the dependence of representation on number of objects to

be distinguished becomes explicit. Since capacity increases with number of feature

categories, it is not prudent to specify object representations without regard for the

number of objects to be recognized because simpler representations involving fewer

feature categories could be sufficient.

In our case capacity was not sufficient initially because qualitative characteriza-

tion of line drawing curves yielded too few categories. In order to increase the number

of feature categories in a manner which preserved the coarseness of extracted infor-

mation, grouping was employed, demonstrating its usefulness as a mechanism for

increasing representational capacity'. In particular, curves were grouped into pairs,

yielding much higher capacity than provided by single-curve features. As expected,

indexing using curve pairs was far superior, in general resulting in little ambiguity.

However, large capacity is not a guarantee against unacceptable ambiguity. When

this occurs, several indexing steps can be cascaded to avoid time-consuming verifica-

tion of a large number of views. This technique was demonstrated by considering an

example where indexing based on curvature description of curve pairs yielded unsat-

isfactory results. As desired, a second indexing step based on length description of

pairs resulted in unique identification.

Consideration of scenes involving multiple objects suggested that object segmen-

tation is required by qualitative indexing. Furthermore, it appears that segmentation

must be quite accurate in order to preserve histogram capacity. Thus application

of qualitative indexing to real images is conditional upon the development of robust

object segmentation techniques.

7Previous work has employed grouping, but typically as a pruning technique for the feature
correspondence problem [49, 45].
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Chapter 5

Conclusion

A review of the previous chapters is given, followed by elaboration of some of the

more important issues addressed.

5.1 Review

The use of qualitative information in visual object recognition is attractive for several

reasons. Most important is the ability to capture qualitative appearance in a finite

number of views. With no dimensional mismatch between image and model data,

the computationally intensive task of converting to a common reference frame for

matching is eliminated, allowing recognition to proceed with reduced computational

effort. Learning is similarly simplified, since qualitative object representations consist

of collections of view descriptions directly encoding object appearance.

But because qualitative characterization can fail to capture fine distinctions among

objects, unique identification can not be guaranteed. Instead the best we can hope

for is that objects are indexed by qualitative information, allowing retrieval of a small

number of similar objects for further consideration by schemes employing more precise

information.

Thus a general framework for recognition inspired by consideration of qualitative

information was proposed. Instead of applying computationally expensive detection

algorithms to library objects uniformly, a two stage algorithm was suggested involving
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initial application of fast and cheap indexing, followed by more detailed and therefore

expensive verification of remaining objects.

In this framework it is obviously of great importance for indexing to yield very

selective results, so that only a few objects need to be considered for verification. Thus

the primary issue regarding qualitative representation is ability to distinguish objects

of interest. This issue was addressed in Chapter 3 via consideration of representational

capacity, defined as the maximum number of objects unambiguously representable in

the presence of view distortion. Assuming capacity is much larger than the number

of items to be distinguished, effective indexing can be expected.

Determining an exact value for capacity is difficult, so an upper bound on capacity

as a function of expected view distortion and number of qualitative feature categories

was derived. As expected, this result indicates capacity decreases with increasing

distortion. It also suggests that capacity increases with number of feature categories.

In applying these ideas to the objects in Figure 1-4, the initial features considered

were line drawing curves segmented at junctions. In Chapter 2 qualitative charac-

terization of digitized curves was considered, resulting in derivation of an algorithm

for reliable extraction of concavity count in spite of orientation uncertainty due to

spatial quantization.

Resulting view descriptions were considered in Chapter 4, where capacity evalua-

tion yielded an insufficient value. To increase capacity, grouping was used to increase

the number of feature categories in a manner which preserved feature classification

coarseness. In particular it was demonstrated that indexing via curve pairs is much

more effective than via single curves. Typically, indexing of the object set in Fig-

ure 1-4 in this manner yielded only a few sampled viewpoints corresponding to one

or just a few objects.

However, performance was not uniformly acceptable. In spite of high representa-

tional capacity, it is possible for indexing to result in significant ambiguity. Instead

of proceeding immediately to intensive verification, additional indexing steps using

alternate sources of information can be used to achieve desired selectivity. This was

demonstrated by cascading two indexing steps, one corresponding to qualitative cur-
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vature description, the other to qualitative length description. Indexing in this case

can be thought of as a sequence of filters, each using different information to exclude

objects from further consideration, in a sense reducing ambiguity through "process

of elimination."

The results cited above concern isolated scene objects. When multiple objects are

present matters become complicated, especially when occlusion is present. In this

case it was concluded that qualitative indexing requires object segmentation. And

if view features are sensitive to segmentation error, as was the case with the line

drawings considered here, segmentation must be accurate and reliable. This perhaps

indicates the primary difficulty in applying qualitative indexing to real images.

5.2 Representation

The core of this work is Chapter 3, where recognition is viewed as a communication

problem. By interpreting view descriptions as codes for object identity, object rep-

resentation becomes a function of the number of objects to be recognized. Thus the

representation problem is moved from the domain of philosophical speculation where

the type and structure of information that should be encoded is of concern, to a more

pragmatic plane where any information is acceptable as long as it results in sufficient

representational capacity.

This of course does not represent revolutionary thought. In practice one is much

more likely to find representations encoding coarse information such as number of

holes, rather than the precise representations currently in vogue in the literature.

But the primary contribution here has been to formalize the analysis of qualitative

information in an attempt to predict its effectiveness in distinguishing objects of

interest. The major payoff was the correct but surprising suggestion made by capacity

analysis that coarse description of curve pairs results in view descriptions capable not

only of distinguishing objects, but object viewpoints as well.



With few exceptions (eg. [15]), the object learning problem has been neglected in the

computer vision literature. To my knowledge, current recognition systems are not

capable of generating representations of realistic objects from input imagery. More

specifically, they are not able to "learn from experience" [3], meaning that if presented

with an unknown object, they are not able to extract enough information to recognize

it if seen again from a similar viewpoint. Instead these systems depend on models

provided by humans.

For systems employing 3D object-centered models, the problem is directly at-

tributable to difficulties associated with forming object-centered representations from

viewer-centered data. No such difficulties exist for qualitative representations, which

consist of collections of view descriptions. "Learning by experience" is thus trivially

enabled, allowing representations for the objects in Figure 1-4 to be obtained simply

by describing appearance at various viewpoints.

5.4 Generality

The results presented here regarding application of coarse information to the object

recognition problem apply to any feature class that can be qualitatively categorized.

For illustrative purposes line drawings were examined, with features consisting of

extracted curves classified primarily by concavity count and categorized angular sep-

aration. But the analysis in Chapter 3 regarding capacity of qualitative view descrip-

tions does not exclude other object attributes, for example color, surface shape, or

texture. All that is required is qualitative description of feature classes of interest.

Then capacity can be examined and manipulated in exactly the manner discussed in

Chapter 4.
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In Chapter 4 an example considering the effects of imperfect object segmentation

was presented with the result that segmentation error, small in terms of image area,

significantly disrupted qualitative indexing. The reason was that introduction of spu-

rious junctions caused faulty extraction and description of view features. Sensitivity

with respect to segmentation error therefore is expected since introduction of false

junctions is a phenomenon independent of segmentation error area.

This represents a serious problem for qualitative indexing. Since qualitative rep-

resentation depends on categorization of discrete features, any disruption of feature

segmentation is bound to have a serious if not catastrophic effect. But it is probably

worth overcoming since the results presented for isolated objects indicate that in-

dexing is potentially an extremely valuable tool for increasing recognition speed and

effectiveness.

In considering solutions to the sensitivity problem several options exist. One is to

attempt to isolate segmentation error by performing hierarchical indexing. That is,

parts identified by indexing on primal features could be used to index into the object

library. In so doing, a certain amount of part misidentification could be tolerated,

thus compensating for localized segmentation error. But this approach requires a

repeatable procedure for extracting parts, representing a significant drawback.

Another approach is to use features of small spatial extent, thus reducing the

chance that any one would be affected by segmentation error. For example, curves

could be divided at regularly spaced intervals, resulting in smaller curves less likely

to contain spurious junctions.

Finally, we might simply consider trying to find feature classes such that spurious

features are not created by segmentation error. One possibility is to consider surface

patches, which do not suffer from the same difficulties as curves.

Consideration of these sensitivity-reduction techniques, as well as others if they

exist, is required to avoid reliance on extremely reliable segmentation techniques

which currently do not exist. Thus their development can be considered a prerequisite
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for practical application of the indexing scheme proposed in this work.
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