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Abstract

Rapid growth of the Internet and multimedia applications, combined with an increasingly
ubiquitous deployment of wireless systems, has created a huge demand for providing en-
hanced data services over wireless networks. Invariably, meeting the quality-of-service re-
quirements for such services translates into stricter packet-delay and throughput constraints
on communication. In addition, wireless systems have stringent limitations on resources
which necessitates that these must be utilized in the most efficient manner. In this the-
sis, we develop dynamic rate-control and scheduling algorithms to meet quality-of-service
requirements on data while making efficient utilization of resources. Ideas from Network
Calculus theory, Continuous-time Stochastic Optimal Control and Convex Optimization are
utilized to obtain a theoretical understanding of the problems considered, and to develop
various insights from the analysis.

We, first, address energy-efficient transmission of deadline-constrained data over wire-
less fading channels. In this setup, a transmitter with controllable transmission rate is
considered, and the objective is to obtain a rate-control policy for transmitting deadline-
constrained data with minimum total energy expenditure. Towards this end, a deterministic
model is first considered and the optimal policy is obtained graphically using a novel cu-
mulative curves methodology. We, then, consider stochastic channel fading and introduce
the canonical problem of transmitting B units of data by deadline T over a Markov fading
channel. This problem is referred to as the "BT-problem" and its optimal solution is ob-
tained using techniques from stochastic control theory. Among various extensions, specific
setups involving variable deadlines on the data packets, known arrivals and a Poisson arrival
process are considered. Using a graphical approach, transmission policies for these cases
are obtained through a natural extension of the results obtained earlier.

In the latter part of the thesis, a multi-user downlink model is considered which consists
of a single transmitter serving multiple mobile users. Here, the quality-of-service require-
ment is to provide guaranteed average throughput to a certain class of users, and the
objective is to obtain a multi-user scheduling policy that achieves this using the minimum
number of time-slots. Based on a geometric approach we obtain the optimal policy for a
general fading scenario, and, further specialize it to the case of symmetric Rayleigh fading
to obtain closed-form relationships among the various performance metrics.

Thesis Supervisor: Eytan Modiano
Title: Associate Professor
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Chapter 1

Introduction

Communication technology has advanced rapidly over the last few decades, from point-

to-point telegraphic services to modern wired-telephone and computer networks, and now

expanding to wireless systems. While the earlier telephone systems were designed primarily

for voice communication, present day communication networks handle a large volume of data

traffic which is expected to further grow exponentially, fuelled by the rapid growth of the

Internet and multimedia applications. Data services are expected to expand beyond email

and web-data transfers to more enhanced services such as video and real-time multimedia

streaming, delay-constrained file transfers and Voice-over-IP (VoIP) [1]. To deliver these

services there are various wireless data systems under development that include, for example,

1xEV-DO/HDR [3], 3G/4G and WiMAX systems. Applications involving delay constraints

also arise in other communication systems such as sensor and mobile ad-hoc networks. For

example, in real-time monitoring scenarios using sensor networks, the data collected by

the sensor devices must be transmitted back to a central processing node within a certain

fixed time-interval. Invariably, providing such enhanced Quality-of-Service (QoS) translates

into stricter delay and throughput requirements on communication, thus, introducing new

problems and challenges in addressing these concerns.

As compared to the wire-line networks, communication over wireless channels inher-

ently involves dealing with time-varying and stochastic channel conditions and scarcity of

resources. Time-varying channel conditions arise due to a variety of reasons, most common

being multi-path fading, shadowing and weather conditions in case of satellite communica-

tion [4,5]. Due to the time-varying nature of the channel gain and interference from other



sources, the signal-to-noise power at the receiver fluctuates over time which translates into

a time-varying rate at which data can be reliably received for a certain bit-error probability.

In addition to the channel variability, wireless systems also have more stringent limitations

on resources such as battery energy, bandwidth etc., and therefore it necessitates that these

must be utilized in the most efficient manner.

In this thesis, we develop dynamic rate-control and scheduling algorithms to meet

quality-of-service requirements on data while making efficient utilization of resources. We

adopt a theoretical viewpoint and obtain optimal solutions under various setups, utiliz-

ing techniques from Network Calculus [50-53], Continuous-time Stochastic Control the-

ory [63-65] and Convex Optimization [66}. In Chapters 2, 3 and 4, we consider a point-to-

point wireless link model and treat various formulations in which the objective is to minimize

the total transmission energy expenditure when packets have strict deadline constraints. In

Chapter 5, we consider a wireless down-link model where there is a single transmitter serv-

ing multiple mobile users and the objective is to obtain a multi-user scheduling policy that

minimizes the total time-slot utilization while providing throughput-rate guarantees.

For the remainder of this chapter, we delve into a more detailed overview of the prob-

lems addressed in the thesis, outline the related work in the literature and describe our

contributions. Finally, we conclude the chapter with an outline of the thesis.

1.1 Deadline-Constrained Energy-Efficient Rate Control

1.1.1 Problem Overview

Energy consumption is an important concern in wireless system design [2,8-13,21,22,26-

28,41, 48] and minimizing the total energy expenditure has numerous advantages in terms

of efficient battery utilization for mobile devices, increased lifetime of sensor devices and

mobile ad-hoc networks, and better utilization of limited energy sources in satellites. Since

in most scenarios the energy spent for transmission constitutes the bulk of the total energy

expenditure, it is imperative to minimize this cost to achieve significant energy savings.

The work presented in Chapters 2, 3 and 4, addresses energy-efficient transmission of data

over a wireless channel with deadline constraints. Broadly speaking, we consider a point-to-

point wireless link model with strict deadline constraints on data transmission and utilize

dynamic rate-control to minimize the total transmission energy cost. A schematic diagram



transmitter channel

data packet queue receiver

Figure 1-1: A schematic diagram of the system model for the deadline-constrained, energy-
efficient, data transmission problem

of the setup is shown in Figure 1-1.

To understand how transmission energy expenditure can be minimized using rate con-

trol, we need to look at the power-rate function. The power-rate function defines the

relationship that specifies the amount of transmission power required to reliably transmit

at a certain rate. Two fundamental aspects of this function, which are exhibited by most

encoding/communication schemes and hence are common assumptions in the literature are

as follows [4,8-13,21,22,27,29,32,39,401. First, for a fixed bit-error probability and channel

state, the required transmission power is a convex function of the data rate, as shown in

Figure 1-2(a). This implies, from Jensen's inequality, that transmitting data at low rates,

over a longer duration, is more energy efficient as compared to high rate transmission.

Second, the wireless channel is time-varying which shifts the convex power-rate curve as a

function of the channel state as shown in Figure 1-2(b). As good channel conditions require

less transmission power, one can exploit this variability over time by adapting the rate in

response to the channel conditions. Thus, we see that by adapting the transmission rate

intelligently over time, energy cost can be reduced.

Modern wireless devices are equipped with channel measurement and rate adaptation

capabilities [3,4,6,7]. Channel measurement allows the transmitter-receiver pair to mea-

sure the fade state using a pre-determined pilot signal while rate control capability allows

the transmitter to adjust the transmission rate over time. Such a control can be achieved

in various ways that include adjusting the power level, symbol rate, coding scheme, con-

stellation size and any combination of these approaches; furthermore, in some technologies

the receiver can detect these changes directly from the received data without the need for

an explicit rate change control information [7]. In present systems, the transmission rate
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Figure 1-2: Transmission power as a function of the rate and the channel state; (a) fixed
channel state, (b) variable channel state.

can be adapted very rapidly over millisecond duration time-slots [3,4,6], thereby, providing

ample opportunity to utilize rate adaptation to optimize system performance.

Summarizing, for a given transmitter-receiver pair with rate-adaptation capabilities and

the above mentioned power-rate function characteristics, the goal of this research work is

to seek the transmission policy that minimizes the energy expenditure while ensuring that

the strict QoS constraints are met. Throughout the thesis, the terms transmission policy

and rate-control policy will be used interchangeably and they refer to the transmission rate

to be selected for data transmission at a certain time.

1.1.2 Related Work

Transmission power and rate control are an active area of research in communication net-

works in various contexts. Power control in cellular CDMA networks has been studied

extensively, but with the primary motivation of mitigating interference and addressing the

"near-far" problem [4,33-35]. Adaptive algorithms for network control have been studied

in the context of network stability [36-40,42-45], wherein, various notions of stability are

addressed, but the primary goal is to ensure that the queue sizes do not grow to infinity.

Scheduling and power control have also been considered in the context of average through-

put [46,49,75-77], average delay [8,9,27-29] and packet/call drop probability [30-32]. How-

ever, this body of literature considers "average metrics" that are measured over an infinite

time horizon and hence do not directly apply for delay constrained/real-time data. Fur-

thermore, with strict deadline constraints, adapting the transmission rate simply based on

steady state distributions does not suffice and one needs to take into account the system

Power, P



dynamics over time, thereby, introducing new challenges and complexity into the problem.

Recent work in this direction includes [10-13,20-22,26. The works in [10-12,26] studied

various offline formulations for energy-efficient data transmission by assuming complete

knowledge of the future arrivals and the channel states, and then devised heuristic online

policies using the offline optimal solution. Thus, in this body of work, the sample path was

assumed known for the optimization problem therein. The authors in [13] studied several

data transmission problems using discrete-time Dynamic Programming (DP) [61], however,

the problems that we consider in this work become intractable using this methodology due

to the large state space in the DP-formulation or the well-known "curse of dimensionality".

In [21], the authors considered packet deadlines and transmission over a time-invariant (non-

fading) channel and used filtering techniques to obtain the energy efficient policy, while, the

formulation in [22] allowed energy recovery when the transmitter is in the idle state. As

we see later, the generalized formulation that we consider in Chapter 2 recovers back the

results in [10,21] as special cases.

Job scheduling with deadlines has also been considered in the Operations Research

literature. Recent relevant work here includes [23-25] which deal with scheduling of jobs

(or packets) with hard deadlines, where the service rate is fixed and the goal is to maximize

the number of packets that get served. However, the difference in the system model for our

case is that the service rate (transmission rate) is controllable and there is a power cost

associated with using a particular service rate; furthermore, there is no dropping of packets

and the goal is to minimize the total energy cost of transmission.

1.1.3 Contributions

We consider two different setups for the rate control problem - the Deterministic Setup

and the Stochastic Setup. In Chapter 2, we consider the deterministic setup in which all

time-variability in the system is known in advance and the goal is to seek the optimal off-

line solution. Here, we describe the data flows in and out of the transmitter queue using

cumulative curves, namely, the Arrival Curve and the Departure Curve; and model the

quality-of-service (QoS) constraints using a new notion of a Minimum Departure Curve.

Using this framework, we obtain the optimal policy for a general formulation that incor-

porates a wide set of QoS constraints in the problem, hence, some of the earlier results

in the literature can be recovered as special cases from our general formulation. We also



present a graphical visualization of the problem that provides an intuitive and easy way to

understand the optimal minimum-energy transmission policy.

In Chapters 3 and 4, we consider the stochastic setup and begin in Chapter 3 with the

following canonical problem (which is referred to as the "BT-problem") - the transmitter

has B bits of data in the queue which must be transmitted by deadline T over a time-

varying and stochastic channel. The channel state is modelled as a Markov process. And,

the objective is to obtain the optimal transmission policy that minimizes the expected total

energy expenditure. We consider two different formulations here - first in which there is no

maximum power limit and the deadline constraint is a hard constraint, and second in which

there is an average short-term power limit and the data left in the queue at time T incurs a

penalty cost. Using a continuous-time formulation and techniques from Stochastic Optimal

Control [63-65] theory and Lagrangian Duality [66,68], we obtain the optimal transmission

policy for both these setups. From the closed-form structure of the optimal policy, various

useful insights into the data transmission problem and results under special scenarios are

also obtained. These are further discussed in detail in that chapter.

Finally in Chapter 4, we extend the above results to more generalized scenarios. First,

we consider the variable deadlines setup where the packets in the transmitter queue have

distinct individual deadlines and the goal is to serve these packets over a stochastic channel

with minimum energy. Second, we consider the arrivals with a single deadline case, where

there is a stream of known packet arrivals and a single deadline by which all the data

must depart. Using the cumulative curves framework as discussed in Chapter 2 and a

decomposition approach, we obtain a transmission policy through an intuitive and a natural

extension of the previous results. This policy is shown to be optimal under a specific class

of channel models. Using the above results, we also obtain an online energy-efficient policy

for the case of arbitrary and unknown packet arrivals to the queue with individual packet

deadlines. Lastly, we consider a stream of Poisson packet arrivals to the queue and a

single deadline by which they must all be transmitted. In this setup, we obtain an energy-

efficient transmission policy in closed-form, and also highlight the various insights that can

be drawn from it regarding the effect of statistical knowledge of the packet arrivals on energy

expenditure.

We have presented part of the results from Chapter 2 in [14,15], from Chapter 3 in [18,19]

and from Chapter 4 in [14,16,17].
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Figure 1-3: A schematic diagram of the system model for the multi-user scheduling problem.

1.2 Multi-user Scheduling with Throughput-rate Guarantees

1.2.1 Problem Overview

As mentioned earlier, wireless communication inherently involves dealing with time-varying

channel conditions. To mitigate the effects of channel fading, much of the early research fo-

cus in cellular networks was to use a variety of diversity techniques such as time interleaving

of data, frequency hopping and using power-control in CDMA systems [4]. However, with a

single base-station serving multiple mobile users one can take advantage of channel fading

by utilizing another form of diversity, which is referred to as Multi-user Diversity [4,80

or Opportunistic Scheduling [75-79]. The main idea behind this technique is that with

multiple mobile-users experiencing independent fading, at any given time there will some

users with good channel conditions, and the base-station can then select the "best user" for

transmission based on achieving certain required objectives.

In this part of the thesis, presented in Chapter 5, we address multi-user scheduling

for Quality-of-Service (QoS) traffic that require a certain guaranteed throughput-rate. We

consider a single server that represents the base station transmitting to multiple users that

represent the mobile handsets. The system operates in a time-slotted manner and in each

time-slot the base station can serve only one user. This setup is referred to in the literature

as the Wireless Downlink Scenario, where "downlink" refers to the communication link

from the base-station to the mobile user. A schematic diagram of the setup is shown

in Figure 1-3. We further assume that the set of users are divided into two classes: (i)

throughput-rate guaranteed, QoS users and (ii) "best effort" (BE) users. The QoS users

in the system represent session applications such as FTP, high data-rate web-browsing,



throughput-constrained data transfers etc., which require the base station to provide a

certain long-term data rate on the downlink. In contrast, the BE users represent on-the-fly

applications such as email transfers, low priority and latency tolerant data transfers etc.,

which do not have rate requirements and are short-lived. The goal of this work is to design

a scheduling policy that provides the required throughput rates to the QoS users with the

least time-slot utilization and maximizes the remaining fraction of time-slots assigned for

the BE class.

1.2.2 Related Work

Downlink scheduling is an active area of research in wireless systems and has been studied

in different contexts. The work relevant for our study includes [37-39,75-79). In [37-39],

the authors studied the problem within the context of queue stability, wherein, the goal

was to ensure that the queue sizes do not grow to infinity. The work in [75] studied

opportunistic scheduling under a utility maximization framework and presented various

formulations with different objective functions. In [76], the authors considered the objective

of maximizing the minimum throughput-rate among a set of users and obtained the optimal

policy for that setup, while in [77] the framework was extended to include a dynamic user

population. In [78], the authors assumed multiple simultaneous transmissions employing

spread spectrum and considered fairness constraints while in [79] the authors presented

algorithms for scheduling users with average delay considerations.

1.2.3 Contributions

As mentioned earlier, we consider a setup where the set of users are divided into two classes

- the QoS users which are guaranteed certain throughput-rates and the BE users which form

the low-priority service. The goal is to obtain a multi-user scheduling policy that serves the

QoS users with the least time-slot utilization and maximizes the remaining fraction of slots

allocated to the BE class. To solve the problem, we adopt a geometric approach and show

that the optimal policy satisfies a special structure. The geometric analysis is valid for a

general fading model, and hence, is applicable for a wide set of scenarios. Specializing the

results to case of Rayleigh fading, we obtain closed-form formulas that relate the achievable

throughput-rate guarantee of the QoS users as a function of other system parameters, thus,

providing closed-from relationships to understand the various system tradeoffs. Analytical



comparison between the optimal policy and the random-scheduling policy also shows that

gains on the order of ln(N) can be achieved, where N is the number of QoS users. We have

presented part of the results from Chapter 5 in [73,74].

1.3 Thesis Organization

The rest of the thesis is organized as follows. In Chapters 2, 3 and 4, we consider in detail

the various setups for the energy-efficient transmission rate control problem, as described

briefly in Section 1.1. The deterministic case for this problem is treated in Chapter 2 while

the stochastic setup is presented in Chapters 3 and 4. In Chapter 5, we consider in detail

the multi-user scheduling problem with throughput-rate guarantees as discussed briefly in

Section 1.2. Finally in Chapter 6, we conclude the thesis.
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Chapter 2

Deadline-Constrained Data

Transmission - Deterministic

Setup

2.1 Introduction

Delay constraints and energy-efficiency are important concerns in wireless data transmission,

and as discussed in Chapter 1, these concerns arise frequently in real-time data commu-

nication. In principle, without energy concerns, strict deadline constraints can always be

met by transmitting at high rates, albeit, incurring high transmission energy expenditure.

When the transmitter has energy limitations, then as discussed in Chapter 1, one can utilize

transmission rate-control to minimize the energy cost. More specifically, since transmission

power is a convex function of the rate, data should be transmitted at low rates but ensuring

that the deadline constraint is met. And furthermore, as transmission power also depends

on the underlying channel state, the rate should be adapted in response to the channel

variations.

In this part of the research work, presented in Chapters 2, 3 and 4, we address the

question of optimal rate control to serve deadline-constrained data with minimum energy

expenditure. We begin in this chapter by considering a deterministic setup, where the time-

variability in the system is assumed known in advance. The problem is formulated over a

finite-time horizon using a cumulative curves approach and its optimal policy is obtained.



As will be evident later, such an approach provides an appealing graphical visualization

of the problem and the optimal solution. The formulation also generalizes the problems

considered in [10,21] which can be obtained as special cases, as further discussed later.

The rest of the chapter is organized as follows. In the next section, Section 2.2, we

present the data flow and the transmission model. In Section 2.3, we consider the time-

invariant power-rate function while in Section 2.4 the results are generalized to incorporate

the time-varying power-rate function. Finally, in Section 2.5, we conclude the chapter and

summarize the results.

2.2 System Model

We consider a continuous-time setup and assume that the rate can be varied continuously

over time. Clearly, such a model is an approximation of a communication system which

operates in discrete time-slots. However, the assumption is still justified since in practice

the time-slot durations are very short on the order of 1 msec [3], and much smaller than

packet delay requirements which are usually on the order of 100's of msec. An advantage

of such a model is that it makes the problem mathematically tractable and also provides

a simple and intuitive graphical visualization of the optimal solution. In fact, the results

obtained here can be applied to a discrete-time system in a straightforward manner by

simply evaluating the solution at the slot boundaries.

2.2.1 Data Flow Model

To describe the flow of data into the system, we utilize a cumulative curves methodology

[50, 51, 53]. This model applies to a general setting where data could arrive in packets

(packetized model) or in a continuum of bits (fluid model). Let A(t), D(t) and Dmin(t)

denote the arrival curve, departure curve and the minimum departure curve respectively.

These curves are assumed right-continuous functions and are defined as follows.

Definition 1 (Arrival Curve) An arrival curve A(t), t > 0, t E R, is the total number of

bits that have arrived in time interval [0, t].

Definition 2 (Departure Curve) A departure curve D(t), t > 0, t E R, is the total

number of bits that have departed (served) in time [0, t].
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Figure 2-1: Data flow model: (a) Fluid arrival model, (b) Packetized arrival model

In case of a fluid arrival model, A(t) is a continuous function, whereas, for a packet

arrival model it is a piecewise-constant function as depicted in Figure 2-1. To ensure that

the transmitter does not transmit more than the data that has arrived to the queue, we

require that D(t) A(t). We refer to this as the causality constraint. Now, to model the

quality-of-service constraints we introduce a new notion of a "minimum departure curve"

which is defined as follows.

Definition 3 (Minimum Departure Curve) Given an arrival curve A(t), a minimum

departure curve Dmin(t) is a function such that Dmin(t) 5 A(t),Vt > 0, and is defined

as the minimum cumulative number of bits that if departed by time t would satisfy the

quality-of-service requirements.

The function Dmin(t) can be viewed as the constraint function, so that in order to

satisfy the QoS requirements the departure curve D(t) must satisfy D(t) Dmin(t). Thus,

in a compact way the QoS and the causality constraints can be expressed as, Dmin(t) <

D(t) 5 A(t), Vt. Note that the definition of Dmin(t) hides the implicitly assumed service

discipline (the order in which data is served), as the above model looks at the data flow

in a cumulative sense. Through a few illustrative examples, we show next that a number

of commonly used QoS constraints with an appropriate service discipline can be modelled

within this framework.

Delay Constraint: Consider an arrival curve A(t) and a constant deadline constraint d on

all the data. It is clear that by setting, Dmin (t) = 0, t E [0, d) and Dmin (t) = A(t - d), t > d,

and following an earliest-deadline-first service discipline, the deadline constraints will be

satisfied. Thus, here, Dmin(t) is simply a time-shifted version of A(t) as shown in Figure 2-
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Figure 2-2: QoS Examples: (a) Packet deadline constraint of d, (b) Buffer constraint of B.

2(a). Generalizing this, suppose now that the data has variable deadlines and these deadlines

are in the increasing order in which the bits arrive. Consider first a packet arrival model

and let {t} denote the arrival epochs, {d"} the deadlines and {bf} the sizes of the packets.

Then, Dmin(t) is a piecewise constant function with jumps at times {tf = t' + dA} and the

sizes of the jumps being {bi'}. Similarly, for a continuous data arrival model, let d(t) be the

general deadline function, where d(t) is the deadline for data arriving at time t. Assuming

that h(s) A s + d(s) is a monotonically increasing function, the minimum departure curve

is Dmin(t) = 0, t E [0, d(0)) and Dmin(t) = A(h 1l(t)), t > d(0).

Buffer Constraint: Consider a buffer constraint of B, i.e. the queue size must not exceed

B Vt > 0. For an arrival curve A(t) and a departure curve D(t) the buffer size at any time t

is given by b(t) = A(t) - D(t). Since b(t) 5 B, we have D(t) max[A(t) - B, 0}. Following

a first-come-first-serve service discipline, it is easy to see that the minimum departure curve

must be Dmin(t) = max[A(t) - B, 0] as shown in Figure 2-2(b). It is easy to incorporate a

time varying buffer constraint B(t) as well.

Service- Curve Constraint: The notion of service curves forms an integral part of network

calculus theory [53}. Given a service curve 0(t) and an arrival curve A(t), the minimum

departure curve can be obtained as Dmin(t) = A(t) @9 0(t), where ® is convolution in the

min-plus algebra.

Thus, we see that a wide variety of QoS constraints can be abstracted by constructing

the appropriate minimum departure curve.

time time



2.2.2 Transmission Model

Let P(t) denote the required transmission power to reliably transmit at rate r(t) at time t.

We assume the following power-rate relationship,

P(t) = g(r(t), t) (2.1)

where the function g(r, t) is a convex, increasing function with respect to the first argument

(rate) and g(r, t) 2 0 for r > 0, Vt. The relationship in (2.1) is a general transmission

model for most encoding schemes and has been widely studied in the literature in various

forms [9-13,21,22,27,32]. As a well-known example, the Shannon formula for the power per

bit gives the following relationship, P = NoW(2 1 W - 1); in case of other coding schemes

the Shannon formula gives a lower bound on the power per bit.

Given the relationship in (2.1), the transmission energy expenditure of a departure curve

D(t) over time interval [0, T] is given by,

E(D(t)) = j g(D'(t), t)dt (2.2)

where D'(t) is the derivative at time t; it gives the transmission rate at that instant' and

the term g(D'(t), t) gives the instantaneous transmission power.

Throughout the paper, our focus will be on the time interval [0, T] for some finite T, and

with finite deadline constraints. Thus, we deal with energy minimization over a finite time

interval rather than considering an infinite time horizon, as done in much of the literature

on power-rate adaptation which studies average performance metrics. Since a departure

curve specifies the transmission rate and vice-versa, we will use the terms departure curve

and transmission policy interchangeably.

2.3 Time-Invariant Power-Rate Function

We first consider the case of a time-invariant power-rate function where P(t) is only a

function of r(t), i.e. P(t) = g(r(t)). Such an assumption models a static or a slow fading

wireless channel where over [0, T] the channel gain does not change appreciably over time.

This is a good model for wireless LAN settings and fixed wireless network scenarios.

'At points of non-differentiability D'(t) is taken as the right-derivative.



2.3.1 Problem Formulation

Consider an arrival curve A(t) and assume that this curve is known over the interval [0, T].

Based on the QoS requirements, one can construct the minimum departure curve Dmin(t) as

discussed in Section 2.2. Now given A(t) and Dmin(t) curves, a departure curve D(t) is said

to be admissible if it satisfies both the causality and the QoS constraints; i.e. Dmin (t) <

D(t) A(t), t E [0, T]. The energy minimization problem is to obtain the admissible

departure curve with the least energy expenditure. Mathematically, this can be stated as

follows,

min E(D (t)) g(D'(t))dt (2.3)
D(t) Jo

subject to Dmin(t) 5 D(t) 5 A(t), t E [0, T]

D(t) E F (2.4)

Without loss of generality, we take Dmin(0) = 0, Dmin(T) = A(T), where the last equality

simply states that all the data must depart by T. For admissibility, we also need the

technical requirement that D(t) belongs to the set F, where F consists of all non-decreasing,

continuous functions with bounded right-derivative for all t E [0, T] and with D(0) = 0. For

set F, the non-decreasing assumption follows from the cumulative nature of the departure

curves, the continuity assumption is natural as any discontinuity would imply instantaneous

transmission of non-zero amount of data which is practically infeasible and finally, the

bounded right-derivative assumption ensures that the rate and the energy cost in (2.3) are

finite 2. Furthermore, if one makes the natural assumption that there is no data that arrives

and needs to be transmitted instantaneously, then, admissible departure curves exist.

2.3.2 Optimality Properties

Consider first the following simple example - the transmitter has B units of data that must

be transmitted by a deadline T. We refer to this as the "BT-problem". This example sheds

important insights into the problem and will also serve as a building block for the general

problem.

2Thus, we assume that D'(t) < M,Vt E [0, T], VD(t) E I, where M is chosen large enough such that finite-
energy practical policies are all included. The curves A(t) and Dmin(t) are also assumed right-continuous
with bounded right-derivative for all t E [0, T].



BT-problem: The two curves A(t) and Dmin(t) for this problem are as follows. Since

there are no new arrivals and the queue has B units of data to begin with, the arrival curve

is A(t) = B, Vt E [0, T]. Further, there is no minimum data transmission requirement

until the deadline T, at which point all the data must have been sent; hence, we get

Dmin(t) = 0, t E [0, T) and Dmin(T) = B. The admissibility criterion specialized to this

case thus becomes 0 < D(t) < B and D(T) = B. We claim that the optimal policy is

constant rate transmission at rate B/T, i.e. (DQt)'(t) = A and DPt(t) = At, t E

where D (t) denotes the optimal departure curve. To see why this is true consider the

following integral version of Jensen's inequality.

Lemma 1 Let f(t), p(t) be two functions defined for a < t < b such that a < f(t) 0 and

p(t) > 0, with p(t) # 0. Let $(u) be a convex function defined on the interval a < u < /;

then

0 fa f)p(t)dt fa $(f)p(t)dt(25
b p(t)dt b p(t)dt

with strict inequality if $() is strictly convex and a # b, a # /3.

Proof: See [84].

Now, consider an admissible departure curve D(t) and make the following substitution

in the above lemma, p(t) = 1, $() = go, f( = D'(), a = 0 and b = T. This gives,

DI D(t) dt < fo g (D'(t)) dt(26
f dt ) f dt

g (DT ())T f g(D'(t))dt (2.7)
T 0

g(B/T)T < jog(D'(t))dt (2.8)

The left hand side in (2.8) is the total energy cost of the constant rate transmission policy

at rate BIT, while, the right hand side is the total cost of any other admissible departure

curve. The inequality in (2.8) thus proves the optimality claim.

Remark 1 : The result for the BT-problem is fairly intuitive given the convexity property

of the power-rate function. Its practical implication is interesting as it says that for the

time-invariant case there is no gain achieved by a complex variable-rate policy; in fact,

a constant rate policy suffices. Another observation is that when g(-) is strictly convex



the inequality in (2.8) is strict and the constant rate policy is the unique optimal policy.

Whereas, for the case of a linear power-rate there is equality in (2.8) and all policies have

the same cost.

We now consider the general setup and assume without loss of generality that A(t) >

Dmin(t), 0 < t < T. Otherwise, if at some time te there is equality, the problem can be

divided into two sub-problems over time intervals [0, te] and [te, T] and each can be solved

independently. The first result, Theorem I, is a generalization of the result for the BT-

problem and it gives a criterion for the optimality of a departure curve.

Theorem I (Optimality Criterion) Let D(t) be an admissible departure curve and L(t)

be a straight line segment over [a, b] that joins points D(a) and D(b), 0 < a < b < T. If

L(t) satisfies Dmin(t) L(t) A(t), and, L(t) # D(t), the new departure curve Dnew(t)

constructed as,

Dnew(t) = D(t), t E [0, a)

= L(t), t E [a,b]

= D(t), t E (b, T]

satisfies, E(Dnew(t)) E(D(t)), where the inequality is strict if g(.) is strictly convex.

The above theorem states that if there exists any two points on the curve D(t) that can

be joined by a straight line without violating the admissibility constraints, replacing that

part of D(t) with the straight line can only lower the energy cost. The implication of this is

that whenever admissible, it is optimal to transmit at a constant rate. A schematic diagram

depicting this is given in Figure 2-3. Henceforth, the criterion that along a departure curve

there does not exist any two points that can be joined by a distinct admissible straight line

will be referred to as the "Optimality Criterion".

Proof: First note that since L(t) is admissible, the new curve Dnw(t) is also admissible.

Consider,

E(Dnew(t)) - E(D(t)) = E(L(t)) - j g(D'(t), t)dt (2.9)

Over the interval [a, b], we know from the result for the BT-problem that L(t) has the least

energy cost among all departure curves that would transmit (D(b) - D(a)) amount of data

in time (b - a). Hence, from (2.6)-(2.8), we get, E(L(t)) - fa g(D'(t), t)dt < 0 and the
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Figure 2-3: Figure for Theorem I: (a) an admissible departure curve D(t) and (b) the new
curve Dn'"(t).

result follows.

Remark 2 :(Linear power-rate function) An interesting special case arises when the

power-rate relationship is linear, i.e. P = nr where n > 0 is a constant. In this case, the

inequality in Lemma 1 becomes an equality from which it follows that all departure curves

have the same energy cost. Thus, with a linear power-rate curve it does not matter, in

terms of energy cost, how the data is transmitted as long as the QoS constraints are met.

However, even in the special case of linear power-rate function, we will see next that the

departure curve that satisfies the optimality criterion has appealing properties that make

it a right candidate for the optimal transmission policy.

Henceforth, we consider the more interesting case of strictly convex g(.) function. The

next result shows that the optimal departure satisfying the optimality criterion is unique.

Theorem II (Uniqueness) Consider the optimization problem in (2.3) with g(-) being

strictly convex. Let D(t) be an admissible departure curve that satisfies the optimality

criterion, then, D(t) is unique and it minimizes the energy cost in (2.3).

Proof: Appendix A.1. U

Throughout now, we will denote the admissible departure curve satisfying the optimality

criterion as DOP(t) and later in Section 2.3.3 give an algorithm for constructing D pt(t).

We now present the various properties of DPt(t) and start by characterizing the points in

time at which the optimal rate changes, i.e. points at which the slope/right-derivative of
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Figure 2-4: Example showing violation of Lemmas 2-4. The dotted line shows that D(t)
does not meet the optimality criterion.

DOtP(t) changes, either continuously or in a discrete step. Denoting any such point as to,

the following results follow3.

Lemma 2 At to, DPt(t) either intersects A(t) or it intersects Dmin(t); i.e. we have

DOPt (to) = A(to) or DPt (to) = Dmin(to). Note, if there is a discontinuity in A(t) at to

(jump point for packetized data) then DPt (to) = A(to).

Lemma 3 Suppose that at to we have DYPt(to) = Dmin(to), then, the slope change must be

negative.

Lemma 4 Suppose that at to we have D*Pt(to) = A(to) (or A(to)) then the change in slope

must be positive.

The observations in the above lemmas are straightforward and can be easily understood

from Figure 2-4. Point t = a corresponds to a point of rate change and it violates Lemma 2.

It is easy to see that around t = a the optimality criterion is violated since an admissible

straight line segment exists (the dotted segment around t = a in the figure). Similarly,

points t = b and t = c correspond to a violation of Lemmas 3 and 4 respectively.

Among other properties, the optimal departure curve DPt(t) has the least maximum

transmission-power requirement and the shortest length metric. We first discuss the minimal

maximum-power requirement of DPt(t) which states that among all admissible departure

3The notation f(x+) means limn-+ f(x + En) and f(x~) means limn....., f(x - En) with en > 0, En -+ 0.



curves, if we look at the maximum instantaneous power requirement over time, then, D"pt(t)

has the least such requirement.

Theorem III (Minimal Maximum Power) Given any admissible departure curve D(t),

the optimal departure curve DoPt(t) satisfies,

max (DoPt)'(t) < max D'(t) (2.10)
telo,T) te[O,T)

Equivalently, maxtE[0,T) Popt(t) _< maxtE[O,T) P(t), where P(.) denotes the power expenditure

over time.

Proof: See Appendix A.2 U

Remark 3 : The above theorem is very significant if we impose an additional maximum

power constraint in (2.4). In this case, the problem is first solved without the power con-

straint. If the optimal solution satisfies the maximum power constraint, we are done; oth-

erwise from Theorem III it follows that there does not exist any other admissible departure

curve that can satisfy the power constraint and the constrained optimization problem has

no solution. Thus, we see that D P(t) is the unique curve that satisfies the QoS constraints

with both the least total energy cost and the least maximum power requirement.

Theorem IV (Shortest Length) The optimal departure curve D)Pt(t) has the shortest

length among admissible departure curves. Specifically, it minimizes the metric,

len(D(t)) = j (1 + (D'(t))2 )dt (2.11)

Proof: Since DPt(t) minimizes the integral in (2.3) for a convex increasing function

g(-), the result follows by replacing g(r) with g(r) = (1+ r 2 ).

2.3.3 Optimal Policy

In the last section, we presented the optimality criterion and the various properties of the

optimal curve. We now construct the optimal departure curve DOPt(t). However, before

giving the algorithmic description, it is instructive to consider a very insightful visualization.

This graphical picture provides a simple and intuitive way to understand DoPt(t) and is

described next.
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Figure 2-5: String visualization for the optimal curve, (a) string lying between A(t) and
Dmin(t); (b) DJPt(t) as taut string.

String Visualization: Consider a string restricted to lie between A(t) and Dmin(t)

(i.e. visualize A(t), Dmin(t) curves as hard boundaries for the string). Tie one end of the

string at the origin and pass the other end through Dmin(T). If we now make the string

tight, its trajectory gives the optimal departure curve4 .

Intuitively, when the string is in the tight condition it cannot be made tighter between

any two points along its curve. This means that the optimality criterion must be satisfied,

because otherwise, the construction in Theorem I would make the string tighter thereby

leading to a contradiction. By the uniqueness result, it then follows that this must be

the optimal curve. Figure 2-5 is an illustration showing a general A(t), Dmin(t) curve and

the corresponding D9Pt(t) visualized as a tight string. Note that depending on the shape

of A(t) and Dmin(t) curves, the curve DoP(t) could consist of segments of constant-rate

transmission and/or segments where the rate is varying continuously over time; see for

example Figure 2-7(b), where over time [a, b] and [c, d] the curve Do*t(t) has a continuous

rate change.

Examples: Using the above string visualization, we now present a few illustrative

examples for which the optimal solution can be obtained in closed-form. Among these, the

first two examples have been studied earlier in the literature [10, 21] and their solutions

were obtained using a discrete-optimization approach which was mathematically tedious.

By re-formulating the problems within our framework, the solutions can be obtained easily

from the graphical picture.

4 This observation was pointed out by Rene L. Cruz



Example 1 [101: Consider N packets of unit size arriving in time [0, T) with known inter-

arrival times Ti,.., TN-1 and the first packet arrival at time 0. The deadline constraint is

that all the packets must depart by time T (common deadline), where T > (-71 +.. + rN-1).

Let TN = T - Ti. The curves A(t) and Dmin(t) for this problem are depicted in

Figure 2-6(a). From the string visualization it is easy to see that the optimal curve consists

of piecewise linear segments with increasing slopes and the points at which the slope changes,

the optimal policy just empties the buffer. The optimal curve DOpt(t) can be constructed

as follows. Let Ti be the jump points of the A(t) curve then, Ti = '_1 T-l, i = 1, ... , N - 1

and let TN = T. Denote As as the cumulative amount of data arrived to the queue just

before time T (the total data in the first i packets). Now, starting at time 0, consider the

straight line segments that join the points (0, 0) (origin) and (Ti, Ai) (jump points of A(t)).

From among these, choose the segment with the minimum slope, i.e. the segment having

slope equal to the minimum over i of ( A. Denoting the minimizing index as 7r, the first

segment of DOPt(t) is constant-rate transmission with rate A from t = 0 until t = T,.

Starting at T, the procedure is repeated by shifting the origin to this point. Thus, the

slopes of the linear segments denoted as {8i, .., sq} can be computed recursively as follows.

Take 1 = 1, To = 0, Ao = 0 and initialize m = 1, we then have,

sm = min A Am) (2.12)
iEJlm,..,N} Ti - T(lm-1)

lm+1 = 1 + arg min A i - Am-l) (2.13)
iE{lm,..,N} (Ti - T(jm- 1)

The above iteration stops when lm+1 = N + 1. Intuitively, the optimal policy follows a

constant rate transmission until points where the future arrivals are such that relative to

the deadline constraint, the transmission rate must be higher.

Example 2 [211: Consider M data packets in the buffer at time 0 and no new arrivals.

Let the ith packet have b2 units of data and a deadline di, i = 1,.., M. Let dM = T and

B = 1i b2. The packets in the queue are served in the earliest-deadline-first order and for

this case, the A(t) and Dmin(t) curves are shown in Figure 2-6(b). Note that the structure

of this problem is the reverse of Example 1 and in some loose sense one can regard these

problems as "duals" of each other. The string interpretation gives the optimal policy but

now the piecewise linear segments have decreasing slopes. Let T = d., and B = >2i b,
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Figure 2-6: Curves A(t), Dmin(t) and Df *(t) for Examples 1 and 2.

then, T3 denotes the deadlines of the packets and B3 denotes the cumulative data in the

first j packets. Starting at time 0, consider the straight line segments that join the points

(0, 0) (origin) and (Tj, B3 ) (jump points of Dmin(t)). From among these choose the segment

with the maximum slope, i.e. the segment having slope equal to the maximum over j of

(). Denoting the maximizing index as ir, the first segment of D Y*(t) is constant-rate

transmission with rate g from t = 0 until t = T1. Starting at T., the procedure is repeated

by shifting the origin to this point. Algebraically, these slopes {si, .., sq are obtained as

follows. Take li = 1, To = 0, Bo = 0 and initialize m = 1, we then have,

s= j4m (~- j 1 )(2.14)

IElm--M bj-i~m1

lm+1 = 1 + arg max B3 -B 1 )(2.15)

The above iteration stops when lm+1 = N + 1.

Example 3 :Consider a stream of N packet arrivals of size B with a constant inter-arrival

time r. Each packet has a deadline d before which it must depart (Figure 2-7(a)). Such an

arrival stream is a good model for applications which generate packets at regular times (or

with a small variance), e.g. voice data. The solution is obvious from the figure and is given

as follows. If d < r, the solution is trivial and the packet must be transmitted before the

next arrival. If d > T, the optimal curve is a straight line with slope NB/(d + (N - 1)r).

We now proceed to present an algorithm for constructing the optimal departure curve

for the general case.
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Figure 2-7: Curves A(t), Dmin(t) and DOPt(t) for (a) Example 3 and (b) Continuous data
flow.

Construction of the Optimal Departure Curve: The main idea behind constructing

the optimal curve, DoPt(t), is to obtain its segments in a recursive fashion. To proceed, we

first present definitions of the various terms used in the algorithm later. The first definition

concerns a tangent and is defined as follows.

Definition 4 A tangent to Dmin(t) at t = to is a line passing through (to, Dmin(to)) and

slope D'in (to).

In the above, D,';n(to) is taken as the right-derivative. A similar definition holds for a

tangent to A(t) as well.

Next, we need the notion of intersection of curves. Since the data model includes

piecewise constant functions (packet arrival model) that have discontinuities, we need to

define what it means for such curves to intersect. Consider a line L(t) of non-negative

slope starting from an admissible point (to, a); where, admissibility of a point means that

Dmin(to) < a < A(to) and 0 < to < T.

Definition 5 Starting at to, L(t) intersects Dmin(t) if for some point i > to, called the

point of intersection, one of the following holds: (a) either L(i) = Dmin(i) or, (b) the

function L(t) - Dmin(t) changes sign at i (here i is a discontinuity point).

Intuitively, the above definition means that the straight line L(t) crosses the curve

Dmin(t) at i. A similar definition holds for intersection with A(t). We now define what it

means for the straight line L(t) to intersect a curve first.



Definition 6 We say that L(t) intersects Dmin(t) first, if L(t) intersects Dmin(t) curve at

t (> to) and L(t) < A(t),t E (to, ) (that is, L(t) does not intersect A(t) in (to, i)).

Similarly, we say that L(t) intersects A(t) first if L(t) intersects A(t) at i and L(t) >

Dmin(t),t E (to, 1).

Given the above definitions, we now obtain the slope of the optimal segment of Dpt(t)

starting at an admissible point. To proceed, consider an admissible point (to, a) and consider

straight lines with non-negative slopes starting at this point. Among these, choose those

lines that starting at (to, a) remain admissible for some finite duration. In other words,

consider straight lines L(t) for which there exists an E > 0 (e could depend on the chosen

L(t)) such that L(t) is admissible for t E [to, to + E), i.e. Dmin(t) <; L(t) < A(t), for

t E [to, to + E). Denote this set as F. Intuitively, the slopes of the lines in F are the possible

admissible slopes that D Pt(t) can have. Note that the set F depends on the starting point

(to, a) but to make the notations simple we drop the explicit dependence. The following

lemmas summarize the properties of the set F.

Lemma 5 The slopes of the lines in F lie in a continuous interval.

Proof: See Appendix A.3. U

For A(to) > Dmin(to), the set F has the following three possibilities: (i) If Dmin (to) <

a < A(to), due to right-continuity of the curves all points in a small region around a

are admissible. Hence, all lines with slopes lying in [0, oo) belong to the set F. (ii) If

a = Dmin(to), all lines with slope less than the tangent at Dmin(to) (say slope c) are not

admissible while lines with slope greater than the tangent are admissible. If the tangent

itself is admissible, the slopes of F lie in [c, oo); else they lie in (c, oo). (iii) If a = A(to),

lines with slopes less than the tangent at A(to) belong to F. If the tangent is admissible,

the slopes of F lie in [0, 11; else the slopes belong to [0, 1). Finally, at to = 0 if we have

A(0) = Dmin(0), the set F consists of lines with slopes lying between the tangents to each

curve.

Lemma 6 The lines in F must intersect A(t) first or intersect Dmin(t) first.

The above lemma is straightforward since L(t) will eventually at some time cross either

the A(t) or the Dmin(t) curve. Now, let the set F be partitioned into a set of lines that

intersect A(t) first and those that intersect Dmin(t) first. Denote these sets as FA and FDm
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Figure 2-8: Example depicting A(t), Dmin(t) and the constructed D(t).

respectively. The following result states that the slopes of the lines in FA and FDm lie in

non-overlapping continuous intervals.

Lemma 7 (a) Let LD(t) E FDm then any L(t) E F that has slope less than L' intersects

Dmin(t) first. (b) Let LA(t) E FA then any L(t) E F that has slope greater than L'

intersects A(t) first.

Proof: See Appendix A.4. U

The above lemma has the following implications. First, the slopes of the lines in FA

and FDm lie in non-overlapping continuous intervals which we denote as SA and SDm re-

spectively. Second, the slopes in FA are greater than in FDm- The line with slope 3, at the

boundary of the two intervals5 is given as,

30 = inf SA = sup SDm (2.16)

The equality of inf and sup above follows from the continuity property in Lemma 5. If

either SA or SDm is empty, it is neglected. We call 3e the optimal slope and the line with

slope 30 the optimal line. It is denoted as L. Simply stated, Lo is the least slope line that

intersects A(t) first, or the maximum slope line that intersects Dmin(t) first. Using this line

L, we can now construct the optimal departure curve as illustrated next in the following

algorithm.

5A case of singularity occurs at to = 0 if A(O) = Dmin(O), A'(0) = D'min(O), then, both the sets SA, SDm
are empty. Here, simply define fl. = A'(0).



To begin with, we have D t(0) = 0. The segments of DOPt(t) are now constructed in

a recursive fashion starting at (0, 0). Let to denote a generic time instant, where to = 0 in

the first iteration.

1. Obtain 0 as in (2.16) and the optimal line L,.

2. If Lo is not tangent to Dmin(t) (or A(t)) at to, obtain the first instant ti such that,

(a) Lo(ti) = Dmin(ti) (QoS constraint is just met); or (b) L(ti) = A(ti) or Lo(ti) =

A(ti) (buffer is just empty). Let DPt(t) = Lo(t), t E (to, ti).

3. If L, is tangent to Dmin(t) (or A(t)) at to then let ti = min{t, T} where i is the

first instant6 at which the corresponding tangent is no more the optimal line. Let

D2 t(t) = Dmin(t) (or A(t)), t E (to, ti)].

If ti = T terminate; else repeat the above steps with the new starting point as (ti, DOPt(t 1)).

The correctness and optimality of the above algorithm is shown in Appendix A.5.

As an example, consider A(t) and Dmin(t) shown in Figure 2-8 for which the algorithm

executes as follows. Start at the origin (0,0) and note that Li is the optimal line as defined

above and ti is the first instant at which it equals Dmin(t). Thus, segment L1 from t = [0, t1]

is the first part of the optimal curve. Note that lines with slope greater than L' intersect

A(t) first and lines with slope less than L' intersect Dmin(t) first. The line Li is the

one with slope at the boundary (as defined in (2.16)). Next, starting from the new point

(ti, Dmin(ti)), L 2 is the optimal line and t 2 is the first instant such that L 2(t 2) = A(t-).

The segment L 2 from t = [ti, t 2] forms part of the optimal curve. The segment L3 is also

obtained in a similar fashion and it is the last segment as t = T is reached. Finally, for the

case when A(t) and Dmin(t) are piece-wise constant functions, the optimal departure curve

D Pt(t) is piecewise linear and the algorithm presented above can be further specialized

to obtain the slopes directly by only looking at the jump points of the two curves. The

algorithm for this is presented in Appendix A.6.

2.4 Time-varying Power-Rate Function

In the previous section, we considered the time-invariant power-rate function case and

utilized a cumulative curves methodology to obtain the optimal solution. The framework

6 If i = to, the interval [to, ti is just the point to; in this case, obtain ti as in step 2.



provided a graphical visualization of the problem and the optimal solution. In this section,

we generalize those results and consider a time-varying power-rate function, i.e. the function

P(t) is given as P(t) = g(r(t), t). Thus, for a fixed time to, the amount of power required

to transmit at a certain rate r is governed by the convex function g(., to), but now, this

convex function could be different at different times.

2.4.1 Problem Formulation

The problem formulation remains the same as given in Section 2.3.1 with the data flows

being described using cumulative curves and the objective is to obtain the minimum energy

departure curve. Mathematically, the optimization problem is given as,

T

min E(D(t)) = g(D'(t), t)dt (2.17)
D(t) 1

subject to Dmin(t) D(t) 5 A(t), t E [0,T]

D(t) E F

In the above formulation, we assume that g(r, t) as a function of r is a strictly convex,

increasing and continuously differentiable function for all t. We also assume that g(r, t) is

a deterministic function of time t E [0, T] and piecewise continuous in t.

The above formulation provides a general framework to model various scenarios involving

time-variability in the system. It generalizes the problem in Section 2.3.1 to include time-

dependent parameters in transmission arising due to phenomena such as beam-forming,

antenna patterns etc. Since it models a more general power-rate cost function, one can

also introduce an artificial cost for control purposes; for example, by imposing a high cost

over certain intervals one can control the times over which data should be transmitted.

Finally, it also models scenarios where we have a time-varying channel but the channel gain

is predictable or known over time.

2.4.2 Optimality Properties

We proceed as in Section 2.3 by first considering the BT-problem and then extending the

results to general A(t) and Dmin(t) curves. As in the time-invariant case, the BT-problem

provides useful insights into the problem and also plays an important role as a building

block.



BT-problem: Consider the BT-problem where the transmitter has B units of data in the

queue and a deadline T by which this data must be transmitted using minimum energy. The

following lemma gives the optimal solution for this problem; its proof is based on results

from the theory of Calculus of Variations.

Lemma 8 The optimal transmission rate rt (t) for the BT-problem is given by,

rOPt (t) = max(O, r*) (2.18)

where r* is the unique positive value that satisfies Tg(r, t) \r=r- = k and k is a positive

constant such that h r (t)dt = B.

Proof: See Appendix A.7.

As examples to understand the above solution, we first specialize (2.18) to two specific

forms of g(r, t), namely, the Monomial class and the Exponential class of functions. The

general solution is then explained later.

Example 4 : (Monomial Class) Let g(r, t) = r, n > 1, c(t) > 0, be the class of

positive monomial functions with c(t) representing the channel gain or the time-dependent

parameter. For any positive constant k, NyIr=r. = k, gives, r* = n . Since k

and c(t) are positive, we have r* > 0, Vt, and from (2.18) we get rPt (t) kct) )n'. The

value of k such that the deadline constraint is met is obtained from, f r (t)dt = B, which
B T1

gives, knT = -, where y = f0 (c(t)/n)-i dt. Substituting back in rP (t) thus gives,

r** t(t) = - -- (2.19)

Example 5 :(Exponential Class) Let g(r, t) = cr-l , a > 1, c(t) > 0, be the class of

exponential functions with c(t) being the time-dependent parameter. Note that taking a = 2

and c(t) = Ih(t)12 gives the Shannon formula for the power per bit. For the exponential

case, r*,t) a) = k,gives,

r m ln(k) - nknia)/c(t)))
r (t) = max 0, Ink nlna/9) (2.20)



This is the well-known "water-filling" solution over time [49] but now with deadline con-

straints. Lastly, the value of k such that the deadline constraint is met is obtained from

fg max (0, In(k)-h in~a) c(t))) dt = B.

Re-examining (2.18) we see that the optimal rate is such that the partial derivative of

g(r, t) with respect to r at the positive value r* equals a constant k, for all t. The value

of this constant is chosen such that the deadline constraint at T is met. We refer to the

constant k as the "marginal cost" for the BT-problem. For positive rate, since the marginal

cost (or the first-derivative of g(r, t) with respect to r) is the same for all t, it implies

that for the optimal solution infinitesimal changes in the rate would not change the total

energy cost. This observation is intuitive since otherwise, we could decrease the rate over

the intervals when the marginal cost is high and correspondingly increase the rate over the

intervals when the marginal cost is low, thereby, reducing the total energy cost and violating

the optimality claim. Now, for all t such that r*Pt(t) = 0 we must have jg(r, t)Ir=0 > k.

This means that at all such times, the marginal cost is high and it is relatively costly to

transmit the data, hence, the optimal policy chooses a zero rate.

As compared to the time-invariant power-rate function case, clearly, the optimal rate

now is not constant over time. However, interestingly, the marginal cost though is constant.

Thus, the constant slope property translates here into a constant marginal cost property.

As a check, if we remove the time-dependence in g(r, t), then r* is the same for all t. This

gives rPt(t) = r* and from f T rOPt(t)dt = B, we get r* = . Thus, the optimal solution is

constant-rate transmission in conformity with the result in Section 2.3.2. The solution in

(2.18) also has an interesting monotonicity property with respect to the marginal cost k.

This is presented in the lemma below.

Lemma 9 Let roP(t) be given by (2.18) for some k > 0 and D*~t(t) = ft r*P(s)ds. Then,

D*t(t) is monotonically non-decreasing in k, unique for a given value of k and zero through-

out for k = 0. Furthermore, for DPt(T) = B > 0, there is a unique positive value of k that

achieves it.

Proof: Let ki, k2 be two positive values such that 0 < k1 < k2. Let rop'(t), ropt(t)

be the corresponding optimal rate functions as given in (2.18). Suppose at time t, we have

r'" (t) > 0, then, due to strict convexity yg(r, t) is an increasing function of r and since

k2 > ki the unique r* value for k2 must be greater than for k1. This gives, ropt(t) > r*p(t).



If instead at time t, we have rgt(t) = 0, then, r%'t(t) can be either 0 or positive. Thus,

we see that r t(t) > rp(t), Vt, with equality only if both are zero. This shows that

DO (t) is non-decreasing in k. For a given k value, the uniqueness of D'4t (t) follows

since r* is unique. Now suppose k = 0, then, since g(r, t) is increasing in r we have

Yg(r, t) ;> 0, Vr. Also, as before yg(r, t) is an increasing function in r, thus, there is

no positive r* such that 8g(r,t)|,=r = 0 (= k as taken). This gives rP (t) = 0 and

DaPt(t) = 0, Vt. Lastly, suppose DaPt(T) = B > 0 and let ki, k2 be two distinct k values such

that A[ rk,(s)ds = i rg(s)ds = B. Without loss of generality assume k2 > k1 . From the

earlier arguments we know that whenever rop(t)> 0, we have r't(t) > rt (t). Since B > 0,

an interval exists over which rt(t) > 0. Thus, we see that LT rt(s)ds < { rt(s)ds,

which leads to a contradiction, hence there is a unique k value that achieves DPt(T) = B.

Consider now the setup with general A(t) and Dmin(t) curves. Theorem V below gives

the optimality criterion for this case and is a generalization of Theorem I presented ear-

lier. It states that if there exists any two points on an admissible departure curve that

can be replaced with a constant marginal-cost solution without violating the admissibility

constraints, the new departure curve obtained will have a lower energy cost. The no-

tation, "constant marginal-cost curve over interval [a, b] between [B1,B 2|" will refer to

the departure curve, L(t), obtained using the solution in (2.18) as follows: L(a) = B 1,

L(t) = L(a) + fa r(s)ds, t E [a, b], where r(s) = max(0, r*) and marginal-cost k chosen such

that L(b) = B 2. From Lemma 9, this value of k and the corresponding L(t) are unique.

Theorem V (Optimality Citerion) Let D(t) be an admissible departure curve and L(t)

be the constant marginal-cost curve over [a, b] between [D(a), D(b)], 0 < a < b < T. If L(t)

is admissible, i.e. Dmin(t) L(t) A(t), and, L(t) # D(t), the new departure curve D(t)

constructed as,

D(t) = D(t), t E [0, a)

= L(t), t E [a, b]

= D(t), t E (b, T]

satisfies E(D(t)) < E(D(t)), where E(-) is as given in (2.17).



Proof: First note that since L(t) is admissible, the new curve D(t) is also admissible.

Consider,
b

E(D(t)) - E(D(t)) = E(L(t)) - jg(D'(t), t)dt (2.21)

From Lemmas 8 and 9, we know that L(t) is the unique curve, that has the least energy

cost among all departure curves that would transmit (D(b) - D(a)) units of data over time

interval [a, b]. Thus, E(L(t)) f g(D'(t), t)dt, which completes the proof. U

From the above theorem, we see that whenever admissible segments of the optimal

departure curve follow the constant marginal cost curve. This property translated into con-

stant rate (straight line) segments in the time-invariant power-rate function case, as outlined

earlier in Theorem I. Thus, we see that the pictorial representation and the properties from

the time-invariant case apply here in terms of constant marginal costs. Lastly, as illustra-

tive examples for the time-varying case, we re-visit Examples 1 and 2 in Section 2.3.3 and

obtain the departure curve that satisfies the optimality criterion. The algorithms presented

are obtained by translating the respective ones from the time-invariant case, where instead

of constant-slope segments we will be constructing constant marginal-cost segments.

Example 6 : Consider the setup in Example 1 where there is a stream of N packet arrivals

and a deadline T by which all the data must depart. The curves A(t) and Dmin(t) for this

problem are depicted in Figure 2-6(a) with the same notations as used in that example.

To obtain the departure curve satisfying the optimality criterion proceed as follows. Start

at time 0; let {ki}, i = 1, ... , N, be the marginal costs to meet each of the (T, Ai) points

individually, i.e. ki is the marginal cost associated with optimally transmitting A bits over

time [0, Ti]. Let kmin be the minimum among {ki} and imin the corresponding index of

the minimizing jump point. The first segment of DOPt(t) is then the constant marginal

cost solution between [0, Timin] with marginal cost kmin. Now, starting at (Tm,n Aim,,,)

repeat the algorithm by shifting the origin to this point and considering the jump points

beyond Tm,, i.e. considering all i such that Ti > Tmin . Finally, the algorithm stops when

Timn = T.

Example 7 : Consider the setup in Example 2 where the queue has M data packets

with the ith packet having bi bits and a deadline di, i = 1,.., M. For this problem, the

curves A(t) and Dmin(t) are shown in Figure 2-6(b) with the same notations as used in



that example. As in the previous example, the departure curve satisfying the optimality

criterion is constructed as follows. At time 0, let {ky }, j = 1, . . ., M be the marginal

costs to meet the (Tj, Bj) points, i.e. kg is the marginal cost associated with optimally

transmitting B bits over time [0, T]. Let kmax be the maximum among {kj} and Jmax

be the corresponding index of the maximizing jump point. The first segment of D"Pt(t) is

then the constant marginal-cost solution between [0, Tma] with marginal cost kmax. Now,

starting at (TM , Bjma.) repeat the algorithm by shifting the origin to this point and

considering the jump points beyond Tjma. The algorithm finally stops at the step when

Tjma = T.



2.5 Chapter Summary

In this chapter, we considered the deterministic setup for the deadline-constrained energy-

efficient data transmission problem. We presented a finite-time horizon formulation where

the objective was to obtain the minimum-energy transmission policy with hard deadline or

other QoS constraints on the data. The data flow model was setup using three cumulative

curves - the arrival curve A(t), the departure curve D(t), and the minimum departure curve

Dmin(t). The arrival curve modelled the cumulative amount of data arrived to the queue,

the departure curve modelled the cumulative amount of data departed from the queue, and

the minimum departure curve modelled the cumulative minimum amount of data that must

depart to satisfy the quality-of-service constraints. Under this framework, the optimization

problem reduced to obtaining the minimum energy departure curve that satisfied the arrival

and the QoS constraints.

We considered both the time-invariant and the time-varying power-rate function. In

the time-invariant case, the graphical visualization of the problem provided an intuitive

understanding of the optimality properties and the optimal departure curve, D Pt(t). As

outlined in Section 2.3.3, the optimal departure curve can be visualized as a taut string lying

between the A(t) and Dmin(t) curves. It was also shown that DoPt(t) not only minimizes the

total energy expenditure but it also has the least maximum instantaneous power requirement

and the shortest length among admissible departure curves. In the time-varying power-rate

function case, the corresponding optimality criterion was obtained and it was shown to be

based on a constant marginal-cost property.

The formulation considered in this chapter generalizes the work presented in [10, 21].

Hence, the problems considered in those works can be re-formulated within the cumulative

curves framework of this chapter, and the solutions can be obtained in a simpler way

through the graphical picture. Having considered the deterministic case, we next consider

a stochastic setup in Chapters 3 and 4 which involves a stochastic and time-varying fading

channel.
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Chapter 3

Stochastic Setup - "BT-problem"

3.1 Introduction

Communication over a wireless channel inherently involves dealing with channel variations

that arise due to multi-path fading and other similar effects; however, the effect of channel

fading on data transmission depends on the time-scale of this variability [4, 5]. In slow

mobility environments, such as fixed wireless LAN's with non-mobile or slowly moving users,

the time-scale of channel variations is much larger as compared to the time-scale of packet

deadlines. Thus, in this case, data communication takes place over a virtually time-invariant

channel. In scenarios of higher mobility, the time-scale of channel variations is much shorter

and a network-layer data packet would then need to be transmitted over multiple fade states

of the channel. As discussed in Chapter 1, since the power-rate function depends on the

underlying channel fade state, clearly, to achieve energy efficiency the transmission rate

must be adapted dynamically over time in response to the channel variations.

In this chapter and the next, i.e. Chapters 3 and 4, we focus on such scenarios where the

channel fluctuates on a time-scale shorter than the packet deadlines. Our main focus in this

chapter will be on the canonical "BT-problem", where the transmitter queue has B bits of

data and a single deadline T by which this data must be transmitted. The channel state

varies stochastically over time and is modelled as a Markov process. The transmitter can

control the transmission rate over time and the expended power depends on both the chosen

rate and the present channel state. The objective is to obtain a transmission policy that

minimizes the expected energy expenditure while meeting the deadline constraint. As we

see later in Chapter 4, the solution to the BT-problem helps build towards many important



generalizations involving variable deadlines and packet arrivals.

In the previous chapter, we observed that the optimal solution under a deterministic

setup has a very elegant description using a graphical visualization. We also observed that

under the time-invariant channel setup the optimal policy to transmit B bits of data by

deadline T was to transmit at a constant rate B/T (see Section 2.3.2). With a stochastic

channel, clearly, a constant transmission rate does not suffice and the rate must be further

adapted in response to the channel variations. Intuitively, when the channel is in a "good"

state the transmission rate must be increased while in a "bad" state it must be decreased.

In this chapter, we obtain the optimal rate-control policy and discuss the various interesting

insights that can be drawn from its functional form.

The rest of this chapter is organized as follows. In Section 3.2, we describe the trans-

mission and the channel model. In Section 3.3, we address the BT-problem when there

is no limit on the instantaneous maximum transmission power, while, in Section 3.4, we

consider the setup when there is a short-term average power limit. Finally, in Section 3.5,

we conclude the chapter and summarize the results. The proofs for the various results in

this chapter are presented in Appendix B.

3.2 System Model

As assumed in Chapter 2, we consider a continuous-time model of the system where the

rate can be varied continuously in time. Clearly, such a model is an approximation of a

communication system that operates in discrete time-slots; however, the assumption is jus-

tified since, in practice, transmission-rate can be adapted over time-slots of 1 msec duration,

while, in comparison packet deadlines are usually on the order of 100's of msec [3,4,6]. A

significant advantage of such a model is that it makes the problem mathematically tractable

and yields simple solutions, whereas, the alternative discrete-time optimization setup (eg.

discrete-time Dynamic Programming) is intractable, computationally intensive and would

only yield numerical solutions without much insights. In fact, the results obtained here using

the continuous-time model can be applied to the discrete-time system in a very straightfor-

ward manner, by simply evaluating the solution at the time-slot boundaries, as done for the

simulation results. We now describe the transmission model followed by the Markov model

for the channel state process.
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Figure 3-1: Modulation scheme considered in [40] as given in the table. The corresponding
plot shows the least squares monomial fit, 0.043r2.67 , to the scaled piecewise linear power-
rate curve.

3.2.1 Transmission Model

Let ht denote the channel gain, P(t) the transmitted signal power and Prcd(t) the received

signal power at time t. As discussed in Chapter 1 (see Section 1.1), the required received-

signal-power for reliable communication, with a certain low bit-error probability, is convex

in the rate [4, 8-13, 21, 22, 27, 29, 32, 39, 40]; i.e. Prcd(t) = g(r(t)), where g(r) is a non-

negative, convex and increasing function for r > 0. Since the received signal power is given

as Pred(t) = Iht| 2P(t), the required transmission power to achieve rate r(t) is given by,

P(t) = r(t)) (3.1)
c(t)

where c(t)Ajht2. The quantity c(t) is referred to as the channel state at time t. Its value

at time t is assumed known either through one-step channel prediction or direct channel

measurement, but it evolves stochastically in the future. As an example of (3.1), with

optimal channel coding the well-known Shannon capacity formula gives the power per bit

as, P NoW(,rW [67]; other examples can be found in [9,10]. It is worth emphasizing

that while we defined c(t) as |ht| 2 to motivate the relationship in (3.1), more generally, c(t)

could include other stochastic variations in the system and (uncontrollable) interference

from other transmitter-receiver pairs, as long as the power-rate relationship obeys (3.1)1.

'For example, let I(t) be the interference power from other sources. Treating this as gaussian noise, the
reliable communication rate, r(t), for transmit power P(t) is given by, r(t) = W log 2 (1 + N , where
No is the thermal noise power per unit bandwidth and W is the total bandwidth. Re-arranging and defining
c(t) = Nht I we get, P(t) where g(r) = 2 r/W 1.

modulation bits/symbol SNR/symbol
2 PAM 1 0.25 d2

4 QAM 2 0.50 d2

16 QAM 4 1.25 d2

64 QAM 6 5.25 d2



In this work, our primary focus will be on g(r) belonging to the class of Monomial

functions, namely, g(r) = kr", n > 1, k > 0 (n, k E R). While this assumption restricts

the generality of the problem, it serves several purposes. First, mathematically it leads to

simple optimal solutions in explicit-form and insightful observations that can be applied in

practice. Second, most importantly, for most practical transmission schemes, the function

g(.) is described numerically and its exact analytical form is unknown. In such situations,

one can obtain the best approximation of that function to the form kr" by choosing the

appropriate k, n and then applying the results thus obtained. For example, consider the

QAM modulation scheme considered in [40] and reproduced here in Figure 3-1. The table

gives the rate and the normalized signal power per symbol, where d represents the minimum

distance between signal points and the scheme is designed for error probabilities less than

10-6. The plot gives the least squares monomial fit to the transmission scheme and one can

see from the plot that for this example the monomial approximation is fairly close. Third,

monomials form the first step towards studying extensions to polynomial functions which

would then apply to a general g(.) function using the polynomial expansion. Under a more

restrictive setting in Section 3.3.3, we also study the class of Exponential functions, namely,

g(r) = k(ar - 1), a > 1, k > 0 (a, k E R). Finally, without loss of generality, throughout

the chapter we take k = 1, since any other value of k simply scales the total energy cost

without affecting the results on the optimal transmission policy.

3.2.2 Channel Model

We consider a general first-order, continuous-time, discrete state space Markov model for

the channel state process. Markov processes constitute a large class of stochastic processes

that exhaustively model a wide set of fading scenarios, and there is substantial literature on

these models [54-59] and their applications to communication networks [27,58-60]. In fact,

in [54-57] and the body of literature referenced therein, first-order Markov models have

been proposed for various commonly studied fading scenarios such as Rayleigh, Rician and

Nakagami fading. In this work, we do not restrict attention to a specific fading scenario

but rather assume a fairly general Markov model, as described in detail next.

Denote the channel stochastic process as C(t) and the state space as C. Let c E C denote

a particular channel state and {c(t), t > 0} denote a sample path. Starting from state c,

the channel can transition to a set of new states (# c) and this set is denoted as Jc. Let



Ace denote the channel transition rate from state c to Z, then, the sum transition rate at

which the channel jumps out of state c is, Ac = Eac Ac6. Clearly, the expected time that

C(t) spends in state c is 1/Ac and one can view 1/Ac as the coherence time of the channel

in state c.

Now, define A A supe Ac and a random variable, Z(c), as,

Z /(c)A /c, with probability Ace/A, Z E c (3.2)
1, with probability 1 - Ac/A

With this definition, we obtain a compact and simple description of the process evolution

as follows. Given a channel state c, there is an Exponentially distributed time duration with

rate A after which the channel state changes. The new state is a random variable which is

given as C = Z(c)c. Clearly, from (3.2) the transition rate to state a E Jc is unchanged at

Aca, whereas with rate A - Ac there are indistinguishable self-transitions. This is a standard

Uniformization technique and there is no process generality lost with the new description

as it yields a stochastically identical scenario [86].

Other technical assumptions in the channel model are as follows. The channel state

space, C, is assumed to be a countable space and C C R+. The states c = 0, 00 are excluded

from C since each of this state leads to a singularity in (3.1). The set Jc, Vc, is a finite subset

of C. Transition rate A, Vc, is bounded which ensures that A defined as the supremum is

finite. For all c, the support of Z(c) lies in [z1, Zh], where 0 < z1 < zA < oo. This ensures

that C(t) does not converge to 0 or oo, a.s. (almost surely), over a finite time interval.

Example: As an example, consider a two-state channel model with states b and g denot-

ing the "bad" and the "good" channel conditions respectively. The two states correspond

to a two level quantization of the channel gain square (i.e. Ih(t)|2). If the measured channel

gain square is below some value, the channel is labelled as "bad" and c(t) is assigned an

average value cb, otherwise c(t) = cg for the good condition. Let the transition rate from

the good to the bad state be Agb and from the bad to the good state be Abg. Let -y = Cb/cg,

and using the earlier definition, A = max(Abg, Agb). For state cg we have,

Z (c) = -y, with probability Agb/A

1, with probability 1 - Agb/A



queue c(t) 0 B

x(t)
B server

time
0 T

Figure 3-2: Schematic description of the system for the BT-problem.

To obtain Z(cb), replace -y with 1/I and Agb with \bg in (3.3).

3.3 BT-problem

As a recapitulation, the BT-problem is to transmit B bits of data by deadline T. The

channel state is stochastic and the objective is to obtain a rate-control policy that minimizes

the expected energy expenditure while meeting the deadline constraint. We assume that

there is no power limit and given a particular channel state the transmitter can transmit

at any non-negative rate. While this assumption simplifies the mathematical exposition,

the convexity of the power-rate curve does impose a "soft" power limit since higher rate

transmissions incur a rapidly increasing power expenditure. Thus, the optimal policy would

tend to avoid high-power transmissions; furthermore, in case of a practical implementation

one can modify the optimal policy by simply restricting its rate to the maximum allowable.

To further explore the issues arising out of power-limits, we consider a formulation involving

short-term power limits which is presented later in Section 3.4.

We now discuss in detail the optimal control formulation for the BT-problem, obtain

the optimal policy and discuss the insights that can be drawn from it.

3.3.1 Optimal Control Formulation

Let x(t) denote the amount of data left in the queue at time t. The system state can

then be described as (x, c, t), where this notation means that at the present time t, the

amount of data left is x(t) = x, and the channel state is c(t) = c. Let r(x, c, t) denote the

chosen transmission rate for the corresponding system state (x, c, t). Since the underlying

channel process is Markov, it is sufficient to restrict attention to transmission policies that

depend only on the present system state [651. Clearly then, (x, c, t) is a Markov process. A

schematic diagram of the system is depicted in Figure 3-2.
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Figure 3-3: System evolution over time for the BT-problem.

Given a policy r(x, c, t), the system evolves in time as a Piecewise-Deterministic-Process

(PDP) [63] as follows. It starts with x(0) = B and c(0) = co (co E C). Until ri, where

ri is the first time instant after t = 0 at which the channel changes, the buffer is reduced

at the rate r(x(t), co, t) (throughout the thesis, the terms "queue" and "buffer" are used

interchangeably). Hence, over the interval [0, Ti), x(t) satisfies the ordinary differential

equation,
dx(t)

dt = r(x(t),co,t) (3.4)

Equivalently in integral form, x(t) = x(O) - foi r(x(s), co, s)ds, t E [0, 1]. Then, starting

from the new state (x(ri), c(ri), T1), until the next channel transition we have, dx(t)

-r(x(t), c(ri), t), t E [T1, -2); and this procedure repeats until t = T is reached. A schematic

diagram of the process for a particular channel sample path is depicted in Figure 3-3.

A transmission policy, r(x, c, t), is admissible for the BT-problem, if it satisfies the

following,

(a) 0 < r(x, c, t) < oo, (rate must be non-negative)

(b) r(x, c, t) = 0, if x = 0 (no data left to transmit) and,

(c) x(T) = 0, almost surely (a.s.), (deadline constraint)

Additionally, another technical requirement is that r(x, c, t) be locally Lipschitz contin-



uous in x (for x > 0) and piecewise continuous in t which ensures that the ODE in (3.4)

has a unique solution [69].

Consider now an admissible transmission policy r(-) and define a cost-to-go function,

Jr(x, c, t), as the expected energy cost starting from state (x, c, t), t < T. Then,

Jr(x, c, t) = E [ g(r(x(s), c(s), s))ds (3.5)
[f c(s)I

where the term within the brackets is the total energy expenditure obtained as the integral

of the power cost over time. The expectation above is taken over {c(s), s E (t, T] } and

conditional on the starting state x(t) = x, c(t) = c. Define a minimum cost function,

J(x, c, t), as the infimum of Jr (x, c, t) over the set of all admissible transmission policies.

J(x, c, t) A inf Jr(X, c, t), r(x, c, t) admissible (3.6)
r(x,c,t)

Thus, now, stated concisely the optimization problem is to compute the minimum cost

function J(x, c, t) and obtain the optimal policy r*(x, c, t) that achieves this minimum cost.

3.3.2 Optimality Conditions

A standard approach towards studying continuous-time problems is to investigate their

behavior over a small time interval. In the context of the BT-problem, this methodology

is summarized as follows. Suppose that the system is in state (x, c, t). We first apply a

transmission policy, r(x, c, t), in the small interval [t, t + h] and thereafter, starting from the

state (x(t + h), c(t + h), t+h) we assume that the optimal policy is followed. By assumption,

the energy cost is optimal over [t + h, T], hence, investigating the system over [t, t + h] would

give conditions for the optimality of the chosen rate at time t. Since t is arbitrary, we obtain

formal conditions for an optimal policy.

Following the above approach, we now present the details of the analysis. Consider

t E [0, T) and a small interval [t, t+h], where t+h < T. Clearly, from Bellman's principle [63]

the value function J(x, c, t) satisfies,

J(x, c, t) = min fE [t+h1g(r(x(s), c(s), s))ds + EJ(Xt+h, ct+h, t + h) (3.7)
r(-) t it c(s)

where Xt+h, ct+h is a short-hand notation for x(t+h) and c(t+h) respectively. The expression



within the minimization bracket in (3.7) denotes the total cost with policy r(-) being followed

over [t, t + h] and the optimal policy thereafter. This cost must be clearly no less than the

cost of applying the optimal policy directly from the starting state (x, c, t). Thus for an

admissible policy r(.) we obtain,

J(x, c, t) E h g(r(x(s), c(s), s))ds + E [J(Xt+h, ct+h, t + h)] (3.8)
t c(S)

E[J(xt+h, Ct+h, t + h)] - J(x, c, t) + E j 9-g(r(x(s), c(s), s))ds > 0 (3.9)

Dividing (3.9) by h and taking the limit h 1 0, we obtain,

E ft+h 9(r(x(s),c(s),s))dsS C(S) g(r) (.0
h c(310)

where, r, denotes the transmission rate for the policy at time t, i.e. r = r(x, c, t).

EJ(xt+h,ct+ht+h)-J(x,c,t) A ArJ(x, c, t), then taking this limit in (3.9) and

using (3.10) we get,
1

ArJ(x, c, t) + -g(r) > 0 (3.11)
C

The quantity A'J(x, c, t) is called the differential generator of the Markov process

(x(t), c(t)) for transmission policy r(.). Intuitively, it can be viewed as a natural general-

ization of the ordinary time derivative for a function that depends on a stochastic process.

An elaborate discussion on this topic can be found in [63-65]. For the process (x(t), c(t)),

using the time evolution in (3.4), the quantity A'J(x, c, t) can be evaluated as,

BJ(x, c, t) J(x, c, t)
A'J(x, c, t) = - r(x, c, t) + A(Ez[J(x, Z(c)c, t)] - J(x, c, t)) (3.12)

where Ez is the expectation with respect to the Z variable as defined in (3.2). A heuristic

computation for ArJ(x, c, t) is given in Appendix B.12; for a detailed explanation see [63].

Now, in the above steps from (3.8)-(3.11), if policy r(.) is replaced with the optimal

policy r*(-), equation (3.11) holds with equality and we get,

1
A'* J(x, c, t) + 1g(r*) = 0 (3.13)

C

Thus, we see that for a given system state (X, c7 t), the optimal transmission rate r* is that



value of r that minimizes (3.11) and the minimum value of this expression equals zero. This

gives,

min + ArJ(x, C, t)] = 0 (3.14)

Substituting ArJ from (3.12), we get a partial differential equation (PDE) in J(x, c, t) which

is also referred as the Hamilton-Jacobi-Bellman (HJB) equation. This is the Optimality

Equation for the BT-problem.

( g(r) BJ(x, c, t) _BJ(x, c, t)
m I + - r + A(Ez[J(x, Z(c)c, t)] - J(x, c, t))= 0 (3.15)

rE[O,oo) c 4t Ox

The boundary conditions for the above PDE are, J(O, c, t) = 0, and J(x, c, T) = 00, if x > 0.

The last condition follows due to the deadline constraint of T on the data.

While the above analysis gives the optimality equation, an important caveat is that it

assumes J(x, c, t) to be sufficiently smooth. Therefore, additionally, we also need converse

arguments to verify that having a solution of (3.15) indeed gives the optimal solution. These

technical details and the verification theorems are presented in Appendix B.1.

3.3.3 Optimal Transmission Policy

We have, so far, presented general results on the optimality condition for the BT-problem.

We, now, give specific analytical results for the optimal policy and discuss some of the

insights that can be drawn from it. However, before proceeding further a few additional

notations regarding the channel process are required. Let there be total m channel states

in the Markov model and denote the various states c E C as c1, c2 , ... c. Given a channel

state ci, the values taken by the random variable Z(ci) (defined in (3.2)) are denoted as

{zij}, where zij = cj/c'. The probability that Z(c) = zij is denoted as pij. Clearly, if there

is no transition from state c' to c3, pij = 0. Also, without loss of generality we take the

multiplicative constant k = 1 in the function g(r) = kr" since any other value of k simply

scales the total cost in (3.5) but the optimal policy results remain the same.

Theorem VI Consider the BT-problem with g(r) = r", n > 1, n E R and a Markov

channel model. The optimal policy, r*(x, c, t), and the minimum cost function, J(x, c, t),



are given by (note, (x, c, t) E [0, B] x C x [0, T)),

x"
r*(x,cilt) = X t= 1,...,7m (3.16)

J(x, c , t) = c(f(T- t)) 1 i = 1, ... , m (3.17)

The functions { fi(s)}T are the solution of the following ordinary differential equation

(ODE) system with the boundary conditions fi(0) = 0, f(0) = 1, Vi 2,

fl (s) + 1 Afi(s) A M Pik (fi(s))"
n-i s)k=z1+ -kEs- ) (3.18)n - 1 n - 1 Ek=1k (fk(s))"!--1

fl(s) + 1 Afm(s) A m Pmk (fm(s))(
n - 1 n - 1 zmk (fk(s))"~1

Proof: See Appendix B.2. U

The results in the above theorem can be interpreted as follows. From (3.16), the optimal

rate given x amounts of data left, channel state c' and time t, is M(-, where the function

fi(s) is associated with the channel state c'. The corresponding minimum expected cost

starting from state (x, c, t) is cif(Tt)n1. The boundary condition fj(0) = 0 is due to the

deadline constraint, since at the deadline (T - t) = 0 and we have J(x, ci, T) = oo, if x f 0.

In full generality, the ODE system in (3.18)-(3.19) can be easily solved numerically using

standard techniques (e.g. ODE solvers in MATLAB) and as shown in Appendix B.2, the

system has a unique positive solution. Furthermore, this computation needs to be done

only once before the system starts operating and {fi(s)} can be pre-determined and stored

in a table in the transmitter's memory. Once {fi(s)} are known, the closed form structure

of the optimal policy in (3.16) warrants no further computation. At time t, the transmitter

simply looks at the amount of data left in the queue, x, the channel state, ci, and using the

appropriate fj(-) function it computes the transmission rate as -

The solution in (3.16) provides several interesting observations and insights as follows.

At time t, the optimal rate depends on the channel state c' through the function fi(T - t)

and this rate is linear in x with slope fiTT7. Thus, as intuitively expected, the rate is
2For numerical evaluation of the ODE solution, the two boundary conditions can be combined by taking

a small e > 0, letting fr(s) = s, s E [0, e], Vi and then using an initial-value ODE solver to obtain
{ff(s)}, s >,E.



proportionately higher when there is more data left in the queue. Furthermore, we can

view the quantity M(-1 as the "urgency" of transmission under the channel state ci and

with (T - t) time left until the deadline. This view gives a nice and intuitive separation

form for the optimal rate:

optimal rate = amount of data left * urgency of transmission

Due to the boundary condition, as t approaches T, fi(T - t),Vi goes to zero, thus, as

expected, the urgency of transmission, , increases as t approaches the deadline.

Interestingly, if we set A = 0 (no channel variations) then, fi (T - t) = T - t, Vi and

r*(x, c, t) = -t. Thus, with no channel variations the optimal policy is to transmit at

a rate that just empties the buffer by the deadline. This observation is consistent with

the results in Chapter 2 and also conforms with previous results in the literature for non-

fading/time-invariant channels [10,21]. We refer to this transmission scheme as the "Direct

Drain" (DD) policy.

Simulation Example: Consider the two state channel model with states "bad" and

"good" as described in Section 3.2.2. Let g(r) = r2 (i.e. n = 2) and for simplicity take

Abg = Agb = A. Denoting -y = cb/cg, we have, Z(cg) = -y, w.p. 1, and Z(cb) = 1/Y, w-P. 1.

Denoting fb(s), fg(s) as the respective functions in the bad and the good states, we have,

f ,(s) = 1 + Af(s) - A(fb(s))2  (3.20)
fg(s)

f'(s) = 1+ Afg(s) - g9 (s))2  (3.21);s yf7b(s)

Figure 3-4 plots these functions, evaluated using MATLAB, for T = 10, A = 5,7 = 0.3.

First, as expected fg(T - t) 5 fb(T - t), Vt, which implies that given x units of data in

the buffer and time t, the rate ) is higher under the good state than the bad state.

Second, fg(T - t) < T - t < fb(T - t), where the function, T - t, gives the rate, T_-,

corresponding to the direct drain (DD) policy. Thus, the optimal policy both spreads the

data over time and adapts the rate in response to the time-varying channel condition and

this adaptation is governed by the respective functions {fi(-)}.

We now present illustrative simulation results to compare the performance of the optimal

policy with the direct drain (DD) policy in terms of the energy expenditure. As stated
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Figure 3-4: fb(T - t) and fg(T - t) plot for the bad and the good channel respectively.
Other parameters include, g(r) = r 2 , T = 10, A = 5, -y = 0.3.
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Figure 3-5: Expected energy cost for the optimal and the direct drain (DD) policy.

earlier, the DD policy transmits at a rate sufficient to just empty the buffer by the deadline.

For the simulations, we consider the two-state channel model with cg = 1, Cb = y and take

g(r) = r 2. We let, T = 10 and partition the interval [0, 10] into slots of length dt = 10-3,

thus, having 10, 000 time slots. The transmission rate chosen in each slot is obtained by

evaluating the respective policies at the time corresponding to the start of that slot. A

channel sample path is simulated using a Bernoulli process, where in a slot the channel

transitions with probability Adt and with probability 1 - Adt there is no transition. At

each transition the new state is E = Z(c)c, which for the two-state model amounts to jumps

between the two states. Expected energy cost is computed by taking an average over 104

sample paths.

0.3



Figure 3-5(a) plots the energy costs of the two policies as A is varied with y = 0.3 and

B = 10. When A is small the channel is essentially time-invariant over the deadline interval

and the two policies are comparable. As A increases, the optimal policy has a substantially

lower energy cost than the DD policy since it adapts to the channel fluctuations; whereas,

the DD policy which does not adapt incurs high energy cost during the bad channel states.

In Figure 3-5(b), y is varied with A = 5 and B = 10. As y decreases the good and the bad

channel quality differ significantly and the optimal rate adaptation leads to a substantially

lower energy cost with an order of magnitude difference as compared to the DD policy.

Constant Drift Channel: Theorem VI gives the optimal policy for a general Markov

channel model. By considering a special structure on the channel model which we refer to

as the "Constant Drift" channel, two specialized results can be obtained. First, we obtain

the f(-) function in closed form for the Monomial class (g(r) = r"), and second, we obtain

the optimal policy for the Exponential class (g(r) = r - 1).

In the constant drift channel model, we assume that the expected value of the random

variable 1/Z(c) is independent of the channel state, i.e. E[1/Z(c)] = #, a constant. Thus,

starting in state c, if Z denotes the next transition state we have E = E [ '. I #

This means that if we look at the process 1/c(t), the expected value of the next state is

a constant multiple of the present state. We refer to # as the "drift" parameter of the

channel process. If # > 1, the process 1/c(t) has an upward drift; if 3 = 1, there is no

drift and if # < 1, the drift is downwards. As a simple example of such a Markov model,

suppose that the channel transitions at rate A > 0 and at every transition the state either

improves by a factor u > 1 with probability pu, or worsens by a factor 1/u with probability

Pd (= 1 - pu). Thus, given some state c > 0 the next channel state is either uc or c/u, and,

E[1/Z(c)] = pu/u + upd. Here, the drift parameter # = pu/u + upd.

There are various situations where the above model is applicable over the time scale

of the deadline interval. For example, when a mobile device is moving in the direction of

the base station, the channel has an expected drift towards improving conditions and vice-

versa. Similarly, in case of satellite channels, changing weather conditions such as cloud

cover makes the channel drift towards worsening conditions and vice-versa. In cases when

the time scale of these drift changes is longer than the packet deadlines, the constant drift

channel serves as an appropriate model.



The next theorem, Theorem VII, gives the optimal policy result for the constant drift

channel model for the monomial class of functions while Theorem VIII later gives the result

for the exponential class.

Theorem VII Consider the BT-problem with g(r) = r", n > 1, n E R and a constant

drift channel with drift #. The optimal policy, r*(x, c, t), and the minimum cost function,

J(x, c, t), are,

r*(x, c, t) = - (3.22)
f (T - t)

x"
J(x, c, t) = c(f(T - t))"- (3.23)

where f(T - t) = (1 - exp(-~ _ (T - t))).

Proof: See Appendix B.6. U

The closed-form expression of f(-) above provides an interesting and intuitive observa-

tion related to the parameter fl. Suppose that the present channel state is c, then for a

fixed rate r, the expected power cost in the next channel state is (E [ = (# p) which

is # times the present cost !. This means that for higher values of parameter 3, theC

channel on every transition drifts in an expected sense towards higher expected power cost

or worsening conditions and vice-versa as 3 decreases. Hence, as expected, the urgency of

transmission 1/f(t) is an increasing function with respect to #, since for larger # values

it becomes more energy efficient to utilize the present channel conditions. Interestingly,

when 3 = 1, the expected future power cost does not change and in this case the optimal

policy reduces to the direct drain (DD) policy, i.e. r* (x, c, t) = T'; (where we have used

L'Hopital's rule to evaluate f(-) for 3 = 1). Thus, we see that the direct drain policy is

optimal both under no channel variations and under a constant drift channel with 3 = 1.

Theorem VIII Consider the BT-problem with g(r) = o' - 1, a > 1 and a constant drift

channel with drift 3. The optimal policy, r*(x, c, t), is the following,

Case 1: # > 1,

2xA(0-1) 0 X< < A(,6-1)(T-t) 2

r*(x, c, t) = 2ina ' - 2n a (3.24)
SA(--1)(T-t X A(-1)(T-t)2

IT-t 21na I - 21na



Case 2: 0 < 3 < 1,

01 0 < X <A1-0)(T-t)2

r*(x, c, t) = A(-)Tt 1a(3.25)
) (1-)(T-t) > A(1-#)(T-t)

2

T-t na - 21na

Proof: See Appendix B.7. U

From above, we see that the optimal rate function has a different functional form than

the monomial case. However some of the natural properties of the rate function hold true in

this case as well - it is monotonically increasing in x, increasing as t approaches the deadline

and also increasing in f#.

3.4 BT-problem with Short-term Power Limits

In the previous section, Section 3.3, we considered the BT-problem without an explicit

power limit constraint. The transmitter was allowed to choose any transmission rate, al-

though, due to convexity of the power-rate function the required transmission power in-

creased rapidly with the rate. In this section, we turn our attention to the case when there

are explicit short-term power limits. We consider the setup where the average transmission

power spent over a short time interval must be less than some amount P. With this con-

straint, clearly, there is a restriction on the average amount of data that can be transmitted

over a certain time interval, thus having the possibility of data left in the queue at T. To

minimize the leftover data we apply a penalty cost on it. The objective now is to obtain a

rate control policy that minimizes the expected energy expenditure plus the penalty cost

imposed on the leftover data.

To address the power-constrained problem, we consider, as before, a continuous-time

stochastic control formulation and in addition utilize lagrange duality techniques [66,68] to

obtain the optimal policy. These details are described in the following sections.

3.4.1 Problem Formulation

As in Section 3.3.1, let x(t) be the amount of data left in the queue at time t and let

(x, c, t) denote the system state, where, as before, this notation means that at time t we

have, x(t) = x and c(t) = c. Let r(x, c, t) denote a particular transmission policy. Given a



policy r(x, c, t), the system evolves in time as a Piecewise-Deterministic-Process (PDP) as

described earlier in Section 3.3.1. We are given x(O) = B and c(O) = co. Until -ri, where 71

is the first time instant after t = 0 at which the channel changes, the buffer is reduced at

the rate r(x(t), co, t). Hence, over the interval [0, ri), x(t) satisfies the ordinary differential

equation,
dx(t )
dt = -r(x(t), co, t) (3.26)

Equivalently, x(t) = x(0) - fo' r(x(s), co, s)ds, t E [0, -ri]. Then, starting from the new

state (x(ri), c(ri), ri), until the next channel transition, we have, d = -r(x(t), c(ri), t),

t E [r1, r2); and this procedure repeats until t = T is reached.

At time T, the data that missed the deadline (amount x(T)) is assigned a penalty cost of

for some r > 0. This peculiar cost can be viewed in the following two ways. First,

it simply represents a specific penalty function where r can be adjusted and in particular

made small enough 3 so that the data that misses the deadline is small. This will ensure

that with good source coding, the entire data can be recovered even if x(T) misses the

deadline. Second, note that is the amount of energy required to transmit x(T)

data in time r with the channel state being c(T). Thus, r is the small time window in which

the remaining data is completely transmitted out assuming that the channel state does not

change over that period. In fact, viewing T + r as the actual deadline, r then models a

small buffer window in which unlimited power can be used to meet the deadline, albeit, at

an associated cost.

Let the interval [0, T] be partitioned into L equal periods4 and denote P as the short-

term expected power constraint at the transmitter. Then, over each partition the power

constraint requires that the expected energy cost, E [f ' g(r(x(s), c(s), s))ds], is less than

P(T/L), i.e. we require,

[/E g(r(x(s), c(s), s))] PT
E _ C(S) dsJ < -- k = 1, ... , L (3.27)

kS1)T) - L

Note that T/L is the duration of each partition interval and [(k 1)T, k) is the kth interval,

k = 1, ... , L. Clearly, by varying L the duration of the partition interval can be varied and

3For a strictly convex g(-) function, making r smaller increases the penalty cost.
4Extensions to arbitrary sized partitions is fairly straightforward and such a generality is omitted for

mathematical simplicity.



the power constraint can be made either more or less restrictive.

Let <D denote the set of all transmission policies, r(x, c, t), that satisfy the following

requirements,

(a) 0 < r(x, c, t) < oo, (non-negativity of rate)

(b) r(x, c, t) = 0, if x = 0 (no data left to transmit) 5 .

We say that a policy r(x, c, t) is admissible for the BT-problem with power constraints, if

r(x, c, t) E <b and additionally it also satisfies the power constraint as given in (3.27).

Denoting the optimization problem as (1), it can now be summarized as follows,

(P) inf E g(r(x(s), c(s), s))ds +
r(-)E L c(s) c(T)

subject to E [i g(r(x(s), c(s), s))ds] < -

E g(r(x(s), c(s), s))ds < --

The expectations above are conditional on (Xo, co) 6, the starting values at t = 0. For the

analysis, we will keep the general notation xo but its value in our case is simply xo = B.

Note that problem (1) as stated above has at least one admissible solution since a policy

that does not transmit any data and simply incurs the penalty cost is an admissible policy.

Furthermore, as shown in Appendix B.11, this simple policy has a finite cost and hence the

minimum value of the objective function above is finite.

3.4.2 Optimal Policy

In order to solve problem (P), we consider a lagrange duality approach. The basic steps

involved in such an approach are as follows: (a) form the lagrangian by incorporating

the constraints into the objective function using lagrange multipliers, (b) obtain the dual

function by minimizing over the primal space, and (c) maximize the dual function with

respect to the lagrange multipliers. Finally, we need to show that there is no duality gap,

that is, maximizing the dual function gives the optimal cost for the constrained problem.

5 As before, to ensure that (3.26) has a unique solution, we also require that r(x, c, t) be locally Lipschitz
continuous in x (x > 0) and piecewise continuous in t.

6 To avoid being cumbersome on notation, we will throughout represent conditional expectations without
an explicit notation but rather mention the conditioning parameter whenever there is ambiguity.



There are, however, important subtleties in problem (P) which make it non-standard. First,

the domain of the rate functions r(-) is a functional space which makes (1) an infinite

dimensional optimization, and, second, (1) is a stochastic optimization and by this we

mean that there is a probability space involved over which the expectation is taken. We

now present the technical details of the various steps mentioned above.

Dual Function

Consider the inequality constraints in (P) and re-write them as follows,

[[/p g(r(x(s), c(s), s))l PT
E dsj - -- <0, k=1,...,L (3.28)

(k-1)T c(s) L -

Let P = (vi, ... , vL) be the lagrange multiplier vector for these constraints and since these

are inequality constraints, the vector P must be non-negative, i.e. vi 2 0, ... , vL > 0. The

Lagrangian function is then given as,

c/ ((-) +g" ()___ g(r(-)) PT

(r(-),) = E dg(r()), + ]+( vk (E ds -) (3.29)o C(S) c(T7) (1 C(S) L

Re-arranging the above equation, it can be written in the form,

[/T (1+ v(s))g(r(.)) rg(XzT)) PT
R(r(-), V) = E ds + -T (vi + ... + vL)-- (3.30)

[o C(S) c(T) I-L

where v(s) takes the value uk over the kIh partition interval, i.e. v(s) = vk, s E [(k-1)T kT

The Dual function, denoted as 1(P), is defined as the infimum of the lagrangian function

X(r(.), P) over r(x, c, t) E <b. Thus, we have,

1C(P) = inf W (r(-), P) (3.31)
r(-)E<>1

A point to note here is that the policies r(x, c, t) over which the above minimization is

considered do not have to satisfy the power constraints, though, the other requirements

still apply. This is because the short term power constraints (violation) have been added

as a cost in the objective function of the dual problem. A well-known property of the dual

function is that for a given lagrange vector P > 0, the dual function L(P) gives a lower



bound to the optimal cost in ('). This standard property is referred to as Weak Duality

and it applies in our case as well. Let J(xo, co) denote the optimal cost for problem (P)

(i.e. the minimum value of the objective function) with (xo, co) being the starting state.

We then have the following result.

Lemma 10 (Weak Duality) Consider problem (7) and let (xo, co) be the starting state

at t = 0. Then, for all V > 0, we have, L(P) <; J(xo, co).

Proof: See Appendix B.8.

We next proceed to evaluate the dual function L(Fl) by solving the minimization problem

in (3.31).

Evaluating the dual function: The approach we adopt to evaluate the dual function is to

view the problem in L stages corresponding to the L partition intervals and solve for the

optimal rate functions in each of the partitions with the necessary boundary conditions at

the edges. An immediate observation from (3.30) is that the effect of the lagrange multipliers

is to multiply the power-rate function g( with a time-varying function (1+ v(s)). Thus,

the difference over the various intervals is in a different multiplicative factor to the cost

function, which for the kth interval is, 1+ v(s) = 1+ vk. Intuitively, the lagrange multipliers

re-adjust the cost function which causes the data transmission to be moved among the

various time-periods. For example, if uk > v1, then it becomes more costly to transmit in

the kth period than the lth period and this has the effect of (relatively) increasing the data

transmission in the lth period.

Since (3.31) involves a minimization over r(-) for fixed lagrange multipliers F/, the second

term in (3.30), i.e. (LVLPT is irrelevant for the minimization and we will neglect it

for now. Define,

Hvr(x, c, t) A E [ 1 +lV(Sg(rO)ds + 7  (3.32)
[i C(s) c(T)

Hv(x, c, t) A inf Hv(x, c, t) (3.33)
r(-)E.(

where the expectation in (3.32) is conditional on the state (x, c, t). In simple terms,

Hr(x, c, t) is the cost-to-go function starting from state (x, c, t) for policy r(-) and Hv(x, c, t)

is the corresponding optimal cost-to-go function. Relating back to (3.30), Hv(xo, co, 0) is the

expectation term in (3.30) and Hv(xo, co, 0) is the minimization of this term over r(-) E (b.



Clearly from (3.30) and (3.31), having solved for H,(x, c, t), we then obtain the dual function

as simply,

C(0) = Hv(xo, co, 0) L( +... + VL)PT (3.34)
L

Finally, in the process of obtaining H,(x, c, t), we also obtain the optimal rate function

that achieves the minimum in (3.33). Comparing equations (3.32) and (3.33) with (3.5)

and (3.6) respectively shows that the two problems are similar except that we now have

a time-varying power-rate function (1 + v(s)) 9) and a terminal cost imposed at time T.

Thus, to solve this problem we can follow a similar line of argument as done earlier and the

steps are detailed below starting with the optimality equation.

Consider the kth partition interval so that t E [(k-1)T, U ) and a small interval [t, t + h),

within this partition. Let some policy r(.) be followed over [t, t + h) and the optimal policy

thereafter, then using Bellman's principle (63] we have,

H,(x, c, t) = min E jt'h (1+ k)g(r(x(s),c(s), ds + EH.(xt+h, Ct+h, t + h) (3.35)
r(-) c(s)

where Xt+h is short-hand for x(t + h) and the expectation is conditional on (x, c, t). The

left side of the equation above denotes the cost if the optimal policy is followed right from

the starting state (x, c, t), whereas, on the right side the expression within the minimization

bracket is the total cost with policy r(.) being followed over [t, t + h] and the optimal policy

thereafter. Removing the minimization gives the following inequality,

H,(x, c, t) ; E t+h (1 + k)g(r(x(s), c(s), s)) E[H(Xt+h, ct+h t + h)] (3.36)

Rearranging, dividing by h and taking the limit h 1 0 gives,

A'H,(x, c, t) + (1 + vk)g(r) > 0 (3.37)
C

Eft+h ((1+vk)g(r(-)) ds

The above follows since E 't (1+vk)g(r) where r is the value of the

transmission rate at time t, i.e. r = r(x,c,t). The quantity ArH,(x,c,t) is defined

as Ar H, (x, c, t)A limhjo EH,(Xt+h,ct+h -H,(x,c,t) , and, as stated earlier in Section 3.3.2,

ArH,(x, c, t) is called the differential generator of the Markov process (x(t), c(t)) for policy

r(.). In our case, using the time evolution as given in (3.26), it can be evaluated as [63-65],



Ar H,(x, c, t) = -H(x,c,t) rOH(x,c,t) + A(Ez[H(x,Z(c)c,t)} - H,(x,c,t)) (3.38)
at ax

where Ez is the expectation with respect to the Z(c) variable; Z(c) is as defined in (3.2).

Now, in the above steps from (3.36)-(3.37), if policy r(-) is replaced with the optimal policy

r*(.), equation (3.37) holds with equality and we get,

Ar* H,(x, c, t) + (1+V)g(r*) 0 (339)
C

Hence, for a given system state (x, c, t), the optimal transmission rate, r*, is the value that

minimizes (3.37) and the minimum value of this expression equals zero. Thus, over the kth

partition interval with t E [(k-1)T, k), we get the following Optimality Equation,

[(1 + v')g(r)
min + ArH(x, c, t)= 0 (3.40)

rE[0,oo) c

Substituting ArH,(.) from (3.38), we see that (3.40) is a partial differential equation in

H,(x, c, t), also referred to as the Hamilton-Jacobi-Bellman (HJB) equation.

min (1+Vk)gr) + H - rH + A(Ez[Hv(x, Z(c)c, t)] - Hv(x, c, t)) = 0 (3.41)
reooo) I c Ot Ox

The boundary conditions for H,(-) are as follows. At t = T, Hv(x, c, T) = -i--, since

starting in state (x, c) at time T, the optimal cost simply equals the penalty cost. At each

of the partition interval t = kT/L, we require that Hv(.) be continuous at the edges, so

that the functions evaluated for the various intervals are consistent.

We now solve the above optimality PDE equation to obtain the function Hv(x, c, t),

and the corresponding optimal rate function denoted as r*(x, c, t) (the subscript v is used

to indicate explicit dependence on the lagrange vector P). Theorem IX summarizes the

results while an intuitive explanation of the optimal rate function is presented later. As

in Section 3.3.3, we consider m channel states in the Markov channel model and denote

the various states c E C as c , c2, ... C, '. Given a channel state ci, the values taken by

the random variable Z(ct ) (defined in (3.2)) are denoted as {zij}, where zij = c3/c. The

probability that Z(c2 ) = zig is denoted as pij. Clearly, if there is no transition from state c'



to c3, Pij = 0.

Theorem IX (BT-problem with Power Constraints) Consider the minimization in

(3.33) with g(r) = r", (n > 1, n E R). For k = 1,..., L and t E [(k-l)T, k) (kth partition

interval), we have,

r,(x, c2 , t) = ffk(T - t) 1, .. ., m (3.42)

ct , ) = (1 +uk )x"H,(x, c6, t) = .1 _ ,kX i = 1, ... , 7m (3.43)
ci(fik(T - t))n-l'

For a fixed k, the functions {fk(s)}I , s E (L-k)T (L-k+1)T are the solution of the

following ordinary differential equation (ODE) system,

sf (s) 1 A mIp:i (fy(s))" (3.44)
= 1+ -i n - 1 zig (f (s))"- 1

Affk(s) _ A pm (fyk(s))(

n - 1 n - 1 zmj (fJ(s))n-(

The following boundary conditions apply: if k = L, f L(O) = r(1+v L)$T,Vi and if k =
1

1, .. ,L - 1, fk (L -k) = ____ f + -k)T ,Vi. The dual function in (3.34) is

then given as (let co = c3, for some j E {1, ... ,m)

= (1+ vi)Xn (vi +--- + vL)PT (3.46)
c (fl(T))n-1 L

Proof: See Appendix B.9. U

The above solution can be understood as follows. For each partition interval, k, there

are m functions {ff:(s)}Ti corresponding to the respective channel states. The subscript

in the notation for f refers to the channel state index while the superscript refers to the

partition interval. Now, given that the present time t lies in the kth interval, the optimal

rate function has the closed form expression _T as given in (3.42), while H(-) is as

given in (3.43). The functions {f fi(s)}_ 1 for the kth- interval are the solution of the ODE

system in (3.44)-(3.45) over s E (L-k)T (L-k+1)T with the initial boundary condition



given as f fk+1 (Lpk) , Vi. This ensures that H,(x, c, t) is

continuous at the partition edges, t = T. For the Lth interval the boundary condition is,

f['(0) = r(1 + vL)n, Vi; this ensures that at t = T, Hv(x, c', T) = _. X = ____1

same as the penalty cost function for g(r) = r" (as required).

The functions {ff(s)} can be evaluated starting with k = L and initial boundary con-

dition fA(0) = r(1 + VL) , to obtain {ff(s)}I 1 over s E [0, [] (Note that s = T - t as

required in (3.42), and since over the Lth interval t E ~ T) this gives s = (T - t) E

(0, fl). Then, consider k = L - 1, and using the earlier mentioned boundary condition ob-

tain {ff'-1(s)}I 1 , s E [i, []. Proceeding backwards this way, we obtain all the functions

{fjk(s)}i,k-

A comparison of the optimal policy in (3.16), obtained earlier in Section 3.3.3, with

the optimal rate function in (3.42) shows that the two forms are fairly identical. The ODE

system here is exactly the same as before except for a different set of boundary conditions. In

fact, if we take P -+ oo and -r -+ 0, the lagrange vector F1 = 0 and the solution here becomes

the same as obtained earlier. This observation is intuitive since the problem in (3.33) is

identical to that considered earlier in Section 3.3 except that now there is a penalty cost at

t = T and the power-rate function has the multiplicative factor (1 + uk) coming from the

lagrange multipliers. Finally, since the ODE system in (3.44)-(3.45) is identical to that in

(3.18)-(3.19) (except for different boundary conditions), it can be easily solved numerically

using standard techniques (e.g. ODE solvers in MATLAB). Also, as shown in Appendix B.9,

the solution is unique and positive.

Constant Drift Channel Model: As considered in Section 3.3.3, we now specialize

the result in Theorem IX to the case of Constant Drift channel model. Under this model,

the assumption on the channel process is that the expected value of 1/Z(c) is independent

of the channel state. Thus, E[1/Z(c)] = # (a constant), where # is the drift parameter.

For a detailed explanation on the model, refer Section 3.3.3. Interestingly, as before, we

can analytically solve the ODE system in (3.44)-(3.45) for this channel model and obtain a

closed form result. This is summarized below.



Theorem X Consider the minimization in (3.33) with g(r) = r" and the constant drift

channel model with parameter i. For k = 1,..., L, t E [(k-)T, kT), we have,

H, (x, c, t) (1 + vk)X" (347)
c(fk(T - t))n-1

x
,,c, t) = fk(T - t) (3.48)

Let 7 = , then 7

1 L-k-1 1+
fk(T -t) = r(1+vk) e- -(Z El+ x

(e~(-t)-(j+1)2:) _ e-((T-t)-j) + ( -

The dual function in (3.34) is given as,

(1+vI)x" (v1 +...+vL)PT (3.50)
co(f l(T))n-1 L

Proof: See Appendix B.10. U

Strong Duality

In Theorems IX and X, we fixed a lagrange vector P and obtained the dual function L(P),

and, the optimal rate function that achieves the minimum in (3.33). Now, from Lemma 10,

given a lagrange vector P > 0, the dual function is a lower bound to the optimal cost

of the constrained problem P. Thus, intuitively, it makes sense to maximize 'C(P) over

P > 0. Theorem XI below states that strong duality holds, i.e. maximizing C(P) over P > 0

gives the optimal cost of 1, and, furthermore, the optimal rate function r* (x, c, t) for the

constrained problem P is the same as r,*(x, c, t) obtained in Theorem IX with P = P* (P* is

the maximizing lagrange vector).

As in Lemma 10, let J(xo, co) be the optimal cost of (1) with initial state (xo, co) at

t = 0, where xo E [0, oo), co E C. For the BT-problem, xo = B and co is the initial channel

state; note that the starting state is known and fixed for the optimization in (P).

7For k = L the summation term in (3.49) is taken as zero.



Theorem XI (Strong Duality) Consider the dual function defined in (3.31) for F > 0,

we then have,

J(xo, co) = max L (P) (3.51)
r/>o

and the maximum on the right is achieved by some P* > 0. Let r*(x, c, t) denote the optimal

transmission policy for problem (P), then, r*(x, c, t) is as given in (3.42) for P = P*.

Proof: See Appendix B.11. N

For the maximization in (3.51), the dual functions are given in Theorems IX (general

markov channel) and X (constant drift channel). It can also be shown using a standard

argument that the dual function is concave [661 which makes the maximization much sim-

pler since there is a unique global (and local) maxima. Using a standard gradient search

algorithm the vector F/* can be obtained numerically as done for the simulations in Sec-

tion 3.4.3.

Optimal Policy for (P)

Summarizing, the optimal policy for problem (7) is obtained by combining Theorems IX

and XI and is given as follows. For k = 1, ... , L and t E [(kL1)T, ) (kth partition interval),

x
r*(x, ci, t) = r*.(x, c, t) - , i =1 ... m (3.52)

fil(T - t)

where the functions {ff(s)} are evaluated with P = i7*. As mentioned earlier, the com-

putation for F1* and {fk(s)} needs to be done offline before the data transmission begins.

In practice, if the transmitter has computational capabilities, these computations can be

carried out at t = 0 for the given problem parameters, otherwise, the F/* and {fk(s)} can be

pre-determined and stored in a table in the transmitter's memory. Having known {fik(s)},

the closed-form structure of the optimal policy as given in (3.52) warrants no further com-

putation and is simple to implement. At time t, the transmitter looks at the amount of

data left in the buffer, x, the channel state, c, the partition interval k in which t lies and

then computes the transmission rate as simply _
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Figure 3-6: Total cost comparison of the optimal and the full power policy.

3.4.3 Simulation Results

In this section, we consider an illustrative example and present energy cost comparisons

for the optimal and the Full Power (FullP) policy. In FullP policy, the transmitter always

transmits at full power, P, and so given the system state (x, c, t) the rate is chosen as follows,

P = (r(x,c,t)) => r(x, c, t) = g-(cP) = (cP)'/", for g(r) = r". The simulation setup is

as follows. The channel model is the two-state model as described earlier in Section 3.2.2,

with parameters Abg = 1, Agb = 3/7, cg = 1 and Cb = 0.2; thus, A = max(Abg, Agb) = 1

and y = Cb/Cg = 0.2. It can be easily checked that with the above parameters, in steady

state the fraction of time spent in the good state is 0.7 and in the bad state it is 0.3. The

deadline is taken as T = 10 and the number of partition intervals as L = 20. The power-rate

function is g(r) = r 2 and the value of r in the penalty cost function is taken as 0.01, which

is 0.1% of the deadline; thus, a time window of 0.1% is provided at T. To simulate the

process, the communication slot duration is taken as dt = 10-3 implying that there are

T/10- 3 = 10,000 slots over the deadline interval. For each slot, the transmission rate is

computed as given by the corresponding policy and the total cost is obtained as the sum of

the energy costs in the slots plus the penalty cost. Expectation is then taken as an average

over the sample paths.

Figure 3-6 is a plot of the expected total cost of the two policies with the initial data

amount B varied from 1 to 10. The value of P is chosen such that at B = 5, even with bad

channel condition over the whole time-period, the entire data can be served at full power.

This implies, P = 41(5/T) 2 = 1.25 (5/T is the rate required to serve 5 units in time T).



Thus, B < 5 gives the regime in which full power always meets the deadline and B > 5

is the regime in which data is left out which then incurs the penalty cost. It is evident

from the plot that the optimal policy gives a significant gain in the total cost (note that

the y-axis is on a log scale) and at around B = 1, FullP policy incurs almost 10 times the

optimal cost. Thus, dynamic rate adaptation can yield significant energy savings.



3.5 Chapter Summary

In this chapter, we considered the problem of transmitting data with strict deadline con-

straint, over a wireless fading channel, with minimum energy expenditure. Specifically, the

setup consisted of a wireless transmitter with B bits of data in the queue and a single dead-

line T by which this data must be transmitted. The channel gain varied stochastically over

time and was modelled as a general Markov process. The objective was to obtain a trans-

mission policy that minimized the expected energy expenditure while meeting the deadline

constraint. We referred to this as the "BT-problem". To address this problem, we adopted

a continuous-time approach and utilized ideas from stochastic control theory and lagrange

duality to obtain the optimal solution. As we see later in the next chapter (Chapter 4),

the solution to the BT-problem can be utilized towards many important generalizations

involving variable deadlines and packet arrivals.

In Section 3.3, we considered the BT-problem without any explicit maximum power

limit. For the monomial class of power-rate functions, the optimal transmission policy

under a general Markov channel model was obtained in Theorem VI. It takes the simple

form,
x

r*(x, ci,t) = (3.53)
fi(T - t)

or more intuitively as,

optimal rate = amount of data left * urgency of transmission

The functions fi (s) are easily computed numerically as the solution of a certain system

of ordinary differential equation and, as discussed in Section 3.3.3, this computation needs to

be carried out offline. In fact, the pre-computed {fi(s)} can be stored in the transmitter's

memory, in which case, during the system operation the transmission rate over time is

obtained directly from the above formula. Under a special structure on the channel model,

which we referred to as the constant drift channel, the optimal transmission policy was

obtained in closed-form for the monomial as well as the exponential class of power-rate

functions. These results were presented in Theorems VII and VIII.

In Section 3.4, we considered the BT-problem with short-term average power con-

straints. The optimal policy in this case is presented in Theorem IX and it takes the



form,

r*(x, ci, t) = (3.54)
f (T - t)

Thus, in this case as well, the optimal policy has a similar form except with a different

set of functions {fjk(s)}. As before, these functions can be obtained as the solution of a

particular system of ordinary differential equation and this computation needs to be carried

out offline.

In the next chapter, we build upon the work presented so far and consider various

extensions to the BT-problem. The ideas presented in Chapters 2 and 3 provide important

tools to address these generalizations; more specifically, the cumulative curves methodology

presented earlier in Chapter 2 and the solution to the BT-problem obtained in this chapter

will be utilized to address the problems in the next chapter.



Chapter 4

Stochastic Setup - Variable

Deadlines and Arrivals

4.1 Introduction

In the previous chapter, we studied the canonical problem of transmitting B units of data

by deadline T over a time-varying and stochastic channel, utilizing minimum energy. The

optimal transmission policy for this problem was obtained using stochastic control tech-

niques and various insights were also deduced from its functional form. In this chapter, we

widen the scope of the energy minimization problem and consider various extensions of the

BT-problem incorporating variable deadlines as well as packet arrivals to the queue.

We begin in Section 4.2 by formulating a general problem within the cumulative curves

framework and then specialize it to two different setups as follows. The first setup is the

variable-deadlines case where the transmitter has M packets in the queue, each packet has

a distinct deadline associated with it and the goal is to transmit this data over a fading

channel with minimum energy. In the second setup, we consider a stream of packet arrivals

to the queue with known inter-arrival times and a single deadline T by which this data must

be transmitted; the goal, as before, is to minimize the transmission energy expenditure. For

both the setups, the graphical picture obtained from the cumulative curves lends itself into

a very natural decomposition of the problem in terms of simpler BT-problems. Based on

this decomposition, a transmission policy is obtained and is shown to be optimal for the

class of constant drift channel model. Finally, an energy-efficient transmission policy is



constructed for the case when packets could arrive arbitrarily and there is no information,

statistical or otherwise, of the arrival process. This policy is referred to as the BT-Adaptive

policy and simulation results are presented to illustrate its performance in terms of the

energy expenditure.

Lastly, in Section 4.3, we study energy-efficient data transmission under a stochastic

packet arrival model and consider the following problem. The transmitter queue has a

stream of packets that arrive according to a homogeneous Poisson process and the goal is to

transmit this data by a common deadline using minimum energy. As we see in that section,

knowledge of the packet arrival statistics has an influence on the optimal transmission

policy. And as intuitively expected, to take into account (expected) future packet arrivals,

the transmitter chooses a rate higher than that required to just empty the present data in

the buffer by the deadline.

4.2 Cumulative Curves Generalization

The cumulative curves framework was first introduced in Chapter 2, where we studied the

energy minimization problem under a deterministic setup. In this section, we re-visit that

methodology but also introduce stochastic channel fading into the picture. The underlying

system model for the setup remains the same as considered in the previous chapters; how-

ever, for completeness we briefly re-state the model here and then proceed to the problem

formulation.

4.2.1 System Model

Consider a wireless transmitter where the transmission rate can be controlled over time. Let

P(t) denote the transmission power, Ih(t) 12 the channel gain square and r(t) the transmission

rate at time t. We then have (see Section 3.2),

P(t) = g(r(t)) (4.1)
c(t)

where c(t) A Ih(t) 12 is referred to as the channel state and g(-) is a convex increasing function

with g(r) > 0, r > 0. The channel state c(t) is assumed to be a general continuous-time,

discrete state-space, first-order Markov process, as considered previously in Chapter 3; the



technical details and the notations for the channel model can be found in Section 3.2.2. For

most analytical purposes, we assume that g(r) belongs to the class of Monomial functions

and takes the form g(r) = kr", k > 0, n > 1 (n, k E R).

The data flow to the queue is described in terms of three cumulative curves - the arrival

curve A(t), the departure curve D(t) and the minimum departure curve Dmin(t). The

arrival curve, A(t), denotes the cumulative amount of data arrived to the queue by time

t; the minimum departure curve Dmin(t) denotes the minimum cumulative amount of data

that must depart by time t to satisfy the deadline (or other QoS) constraints; and finally,

the departure curve D(t) denotes the cumulative amount of data departed by time t using

a particular transmission policy. Clearly, to ensure that only the data that has already

arrived to the queue is transmitted we require D(t) 5 A(t) (causality constraint) and to

satisfy the QoS constraints we need D(t) ;; Dmin(t). Thus, a departure curve must satisfy

Dmin(t) D(t) 5 A(t). For more details on the cumulative curves framework, the reader

is referred to Section 2.2.1.

4.2.2 Problem Formulation

Consider a time interval [0, T], and, let A(t) be the arrival curve and Dmin(t) the minimum

departure curve over this period. Given these two curves, the objective is to obtain the

optimal transmission policy such that the departure curve for it satisfies Dmin(t) D(t) 5

A(t) a.s. (almost surely) and the expected energy expenditure is minimized'. We now

present the details of the stochastic optimal control formulation for the energy minimization

problem.

Optimal Control Formulation: Let the system state be denoted as (D, c, t), where

the notation means that at the present time t, the cumulative amount of data that has

been transmitted is D(t) = D, and the channel state is c(t) = c. Let r(D, c, t) denote

a transmission policy, and as before, given such a policy, the system evolves in time as a

Piecewise-Deterministic-Process (PDP) (see Section 3.3.1). It starts with the initial state

D(0) = 0 and c(0) = co (co E C). Until ri, where r1 is the first time instant after t = 0

at which the channel changes, data is transmitted at the rate r(D(t), co, t). Hence, over

'Note that while A(t) and Dmtn(t) are assumed known, the actual departure curve D(t) would depend on
the underlying channel sample path, if the transmission policy adapts the rate with the channel variations.



t E [0, ri), D(t) satisfies the differential equation,

dD(t) = r(D(t), co, t) (4.2)
dt

Equivalently, D(t) = D(0) + fot r(D(s), co, s)ds, t E [0, ri]. Then, starting from the new

state (D(ri), c(ri),-T1) until the next channel transition, we have dD(t) = r(D(t), c(r), t),

t E [Ti, -2); and this procedure repeats in time.

A transmission policy, r(D, c, t), is admissible, if it satisfies the following:

(a) 0 < r(D, c, t) < oo, (non-negativity of rate), and,

(b) Dmin(t) D(t) 5 A(t), t E [0, T], almost surely, (deadline and causality con-

straints)2

Consider now an admissible transmission policy r(D, c, t) and define a cost-to-go func-

tion, Jr (D, c, t), as the expected energy expenditure starting from an admissible state

(D, c, t), i.e. (D E [Dmin(t), A(t)], c E C, t E [0, T)). Then,

Jr(D, c, t) = E [ft ()g(r(D(s), c(s), s))ds] (4.3)

where the above expectation is taken over {c(s), s E (t, T]} and conditional on the starting

state D(t) = D, c(t) = c. Define a minimum cost function, J(D, c, t), as the infimum of

Jr(D, c, t) over the set of all admissible transmission policies.

J(D, c, t) = inf Jr(D, c, t), r(D, c, t) admissible (4.4)
r(D,c,t)

As in the case of the BT-problem, the optimization problem is to compute the minimum

cost function J(D, c, t) and obtain the optimal policy r*(D, c, t) that achieves it.

Following Section 3.3.2, the optimality Hamilton-Jacobi-Bellman (HJB) equation can

be obtained directly by noting that the process evolution remains the same as the BT-

problem except that for convenience we now use the cumulative data transmitted, D(t), as

the state variable instead of the amount of data left, x(t), as done earlier. Thus, following

2As before, to ensure that (4.2) has a unique solution, we also require that r(D, c, t) be locally Lipschitz
continuous in D and piecewise continuous in t.



the arguments of Section 3.3.2, it is easy to see that the HJB equation is given as,

min g(r) + J(D, c, t) + rJ(D, c, t) +A(Ez[J(D Z(c)c, t)] - J(D c t)) = 0 (4.5)
rE[O,oo) C at OD [

The above formulation deals with a general setup involving arbitrary arrival and min-

imum departure curves. An analytical solution of the above in general is difficult due to

the complexity of the boundary conditions imposed on the cost function. However, there

axe various specific setups that can solved for the optimal transmission policy under special

scenarios and these are treated in the following sections. In fact, as we see later, an initial

intuition for the transmission policy for these problems can be obtained from their ana-

logues in the deterministic setup (without channel fading), which were considered earlier in

Chapter 2.

Re-visiting the BT-problem: As a first example, let us re-visit the BT-problem con-

sidered in Section 3.3 and re-phrase it in terms of the cumulative curves. For the BT-

problem, we have A(t) = B, t E [0, T] since the queue has B bits in the beginning at time

0 and no more data is added. The minimum departure curve is given as Dmin(t) = 0, t E

[0, T), Dmin(T) = B, since until the deadline t < T there is no minimum data transmission

requirement, while at T the entire B bits must have been transmitted. A schematic diagram

of the curves is given in Figure 4-1(a). Using the results from Section 3.3.2 and noting that

D = B - x, we get,

B-D
r*(D,ci,t) = f ,(T-t)7 i=1,...,m (4.6)

(B -D)"
J(Dc, t) = . t _n, i = 1, ... , m (4.7)

ei (fi (T - t))n

where the functions {fi(s)} are the solution of the ordinary differential equation system as

given in (3.18)-(3.19). Similarly, using the results from Section 3.4, one can also re-phrase

the optimal solution for the BT-problem with short-term power limits.

4.2.3 Variable Deadlines Setup

Consider the variable deadlines setup where the queue has M packets that are arranged

and served in the earliest-deadline-first order. Let by be the number of bits in the jth

packet and T be the deadline for this packet; assume 0 < Ti < T2 < ... < TM. There
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Figure 4-1: Cumulative curves for (a) BT-problem, (b) Variable deadlines case.

are no new arrivals and the objective is to obtain a transmission policy that serves this

data over the time-varying channel with minimum expected energy cost while meeting

the deadline constraints. In terms of the cumulative curves, the setup is visualized as

depicted in Figure 4-1(b). Let Bj denote the cumulative amount of data in the first j

packets; we then have By = Ei= bl. The cumulative curves for the problem are then

given as follows: A(t) = BM, Vt, since a total BM bits are in the queue at time 0 and

no more data is added. The curve Dmin(t) is a piecewise-constant function with jumps at

times T, i.e. Dmin(t) = 0, t E [0,7Ti); Dmin(t) = B, t E [Tj,Tj+1), j = 1, ... ,M - 1,

and Dmin(TM) = BM. The optimal control formulation for the problem is as given in

the previous section (Section 4.2.2), while the optimality HJB equation is given in (4.5).

The boundary conditions are, J(BM, c, t) = 0 and J(D, c, Tj) = 0c, if D < By, j =

1, ... , M. The second condition follows from the deadline constraints, since, as t approaches

Tj the cost function becomes unbounded if the required cumulative amount BJ has not been

transmitted.

Before proceeding further, consider the analogue of the above problem in the determin-

istic case without channel fading. This was treated in Example 2 in Chapter 2, where the

optimal departure curve was deterministic and as given in Figure 2-6. In functional form,

this optimal solution can be re-phrased as follows. Consider the system state (D, t) and

look at the straight line segments that connect the points (t, D) and (Tj, Bj) (jump points

of Dmin(t)) for all {j : Bj > D, T > t}. The optimal rate is then the maximum value



among the slopes of these line segments, i.e.

Bj- Dr*(D, t) = max Bj-D(4.8)
j:Bj !D,Tj >t Tj - t

Note that in the above, each term T _t gives the optimal rate to transmit B - D bits of

data by time T - t, under no channel fading.

Now utilizing the intuition from above and a natural decomposition of the variable

deadlines problem in terms of multiple BT-problems, we can obtain a transmission policy

under channel fading. This policy is later shown to be optimal under the constant drift

channel model. A visual comparison of the two diagrams in Figure 4-1 suggests the following

approach. First, instead of viewing the problem in terms of individual packets we can

visualize it in terms of the cumulative amounts as {B Tj},_ 1 constraints; that is, a total of

By bits must be transmitted by deadline T (j = 1, ... , M). Clearly, each Bj T constraint

is like a BT-problem except that now there are multiple such constraints that all need to

be satisfied. For every time t and channel state c, we know the optimal transmission rate

to meet each of the B3T constraint individually (assuming only this constraint existed),

thus, to meet all the constraints a natural solution is to simply choose the maximum rate

among them.

More precisely, the transmission policy is described as follows. Let the system be in

state (D, c, t) where (D E [Dmin(t), BM], c E C, t E [0, TM]) and consider a particular

Bj T constraint. Using the optimal rate function in (4.6), the rate function to satisfy an

individual BjT constraint, for channel state c, is given as _ J ); since (B - D) is the

amount of data left and (T - t) is the time left until the deadline T. Let f(D, c, t) denote

the transmission rate for our proposed policy, then f(-) is the maximum value among the

rates for all the BjT constraints for which (Bj : D and T t). Thus, we get,

f(D, c', t) = max B-D(4.9)
j:(Bj3 D,Tt) fi(Tj - t)

where, as before, the functions {ft (s) }T are the solution of the following ODE system with

the boundary conditions fi(0) = 0, fj(0) = 1, Vi,

Afi(s) A '" Pik (fA(s))"
fj(s) =+ - E - k()) i = 1,...,m (4.10)

n -1 n - 1zi(fsy-



For the policy in (4.9), clearly, by construction, all the BTj constraints are satisfied since

at all times we choose the maximum rate among those needed to meet each of the remaining

constraints. The rate function r(.) is also non-negative, locally Lipschitz continuous in D

and piecewise-continuous in t. Hence, the policy in (4.9) is admissible and the departure

curve obtained using (4.9) satisfies Dmin(t) D(t) 5 A(t), a.s., t E [0, TM]- Furthermore,

since the policy in (4.9) is based on the BT-solution, it inherits all the properties of that so-

lution. The ODE system in (4.10) is identical to the BT-case, hence, as before the functions

{fj(s)}Tj can be obtained numerically using a standard ODE solver. This computation

needs to be done only once before the system starts operating and the functions {fi(s)} can

be pre-determined and stored in a table in the transmitter's memory. Once the {fi(s) } are

known, the online computation is minimal. At time t, the transmitter looks at the cumula-

tive amount of data transmitted, D, the channel state, c', and then using the corresponding

fi(.) function it simply computes the maximum among a set of values as given in (4.9).

The transmission policy in (4.9) applies for a general Markov channel model and under

the specialization to a constant drift channel, it is in fact the optimal policy as shown in

the following theorem. For a definition of this channel model, see Section 3.3.3.

Theorem XII (Variable Deadlines Case) Consider the variable deadlines problem with

g(r) = r", n > 1, n E R and the constant drift channel model with parameter 3. The optimal

rate, r*(D, c, t) for Dmin(t) D < A(t), t E [0, Tm) is given as,

r* (D, c, t) = max 3  (4.11)
j:(Bj D,Tjt) f(T - t)

where, f(s) = (1 ~ exp(- -s

Proof: See Appendix C.1.

Finally, as a corollary to Theorem XII it is easy to see that under no channel fading,

which corresponds to setting A = 0 in the above channel model, the function f(s) reduces

to, f(s) = s, and we recover back the result in (4.8).

4.2.4 Arrivals with a Single-Deadline Setup

In this section, we consider the case of packet arrivals with a single-deadline where the setup

is as follows. There are M packet arrivals to the queue with the first packet arrival at time
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Figure 4-2: Cumulative curves for the arrivals with a single deadline case.

To = 0 and the rest arriving at times {Tj} 1, where 0 < Ti < T2 < ... < TM_1. Let bj be

the number of bits in the jth packet. The deadline constraint is that all of the data must be

transmitted by time T > TM-1. This problem has motivations in a sensor network scenario

where the data collected at certain times must be transmitted to a central processing node

within a particular time-interval. Clearly, minimizing the transmission energy cost here

translates into a higher lifetime of the sensor node.

In terms of the cumulative curves, the picture is as follows. Let Aj denote the cumulative

amount of data arrived in the first j packets; this is given as Aj = E1 bl. The arrival curve

A(t) is then a piecewise-constant function with jumps at times T as depicted in Figure 4-2;

i.e. A(t) = Aj+ 1, t E [Tj,Tj+ 1), j = 0,...,M - 1, and A(TM) = AM (for notational

convenience we define, TM A T). The minimum departure curve is Dmin(t) = 0, t E

[0, T); Dmin(T) = AM since for t < T there is no minimum data transmission requirement

while at T the entire AM bits must have been transmitted.

From Figure 4-2, we see that the cumulative curves picture can be viewed as a "dual"

of the variable deadlines case. Earlier, we had constraints from Dmin(t), but now there

are constraints from the arrival curve A(t) and a final deadline constraint at time T. Once

again, to gain some intuition, let us look at the analogue of the above problem in the

deterministic case. This is presented in Example 1 in Chapter 2. Given a system state (D, t)
Al-the optimal solution under no channel fading is to compute the slopes, , corresponding

to the straight line segments that connect the points (t, D) and (T, A3 ), for all {j : A3 >

DT j t}. The optimal rate is then the minimum value among these; i.e. r*(D, t) =



. A4-Dmin{j:A,>D,Tjt} T,-t

Now, utilizing the intuition from above and a similar reasoning as in the variable dead-

lines case, we can obtain a transmission policy as follows. First, note that a constraint

A3T (j = 1, ... , M - 1), requires that no more than Aj bits must be transmitted before

time Tj, while AMTM requires that the queue must be empty by time TM. Starting from

some system state (D, c, t) and without considering other constraints, emptying the buffer

by time T (i.e. transmitting A3 bits by time T) is equivalent to a BT-problem with B = Aj

and T = T, and from (4.6) the rate for this is given as _D). Now, to ensure that none

of the AjT constraints are violated, i.e. not more than Aj bits is transmitted by time Tj, a

natural solution is to choose the minimum rate among them. More precisely, let f (D, c, t)

denote this policy we then have,

(D,c, t)= m 3 , i=1 ... m (4.12)
j:(A3 >D,Tjt) fi(T - t)

By construction all the arrival constraints are satisfied since at all times we choose the

minimum rate among those needed to meet the AjT points. Furthermore, for t > TM_1, f(-)

reduces to choosing a rate that meets the AMTM constraint, hence, the deadline constraint

is also satisfied. The rate function f(.) is also non-negative, locally Lipschitz continuous in

D and piecewise-continuous in t. Thus, the policy in (4.12) is admissible and furthermore,

as in the variable deadlines case, we can also show that it is optimal for the constant drift

channel model.

Theorem XIII (Arrivals with Single Deadline) Consider the arrivals with a single

deadline problem with g(r) = r", n > 1, n E R and the constant drift channel model with

parameter 3. The optimal rate, r*(D, c, t), for Dmin(t) 5 D < A(t), t E [0, TM) is,

r*(D, c, t) = min A-D(4.13)
j:(Aj>D,Tjt) f(T - t)

where f(s) = (n-1))(1 - exp(-,(7 1 ) s)).

Proof: See Appendix C.2.

As in the variable-deadlines case, setting A = 0 which corresponds to no channel fading,

recovers back the previous result obtained in the deterministic setup.



4.2.5 Arbitrary Packet Arrivals - BT-Adaptive Policy

Consider now an arbitrary stream of packet arrivals to the queue with each packet having a

distinct deadline by which it must depart. Suppose that there is no information, statistical

or otherwise, of the packet arrival process. Under this scenario, the transmitter chooses a

transmission rate based solely on the data amount in the queue and the various deadlines.

To address this problem, we utilize the solution for the variable-deadlines case and present

an online transmission policy, referred to as the "BT-Adaptive" (BTA) policy. Later, we

give numerical results comparing the energy expenditure of the BTA policy with a non-

adaptive scheme.

BT-Adaptive (BTA) Policy

Consider packet arrivals to the queue with each packet having a distinct deadline associated

with it. Assume that the arrivals occur at discrete times, then clearly, at the instant im-

mediately following a packet arrival, the transmitter queue consists of (a) earlier remaining

packets with their deadlines and (b) the new packet with its own deadline. Re-arranging the

data in the earliest-deadline-first order we can view the queue as consisting of a total amount

BM of data with variable deadlines, identical to the case considered in Section 4.2.3. Not

assuming any knowledge of the future arrivals and using (4.9), we have an energy-efficient

policy to empty the transmitter buffer. As this policy is followed, at the next packet arrival

instance the above procedure is then simply repeated. Summarizing, the BTA policy is as

follows,

BT-Adaptive policy: Transmit the data in the queue with the rate as given in (4.9); at

every packet arrival instant re-arrange the data in the earliest-dead line-first order to obtain

a new set of BjT values by including the new packet and its deadline; re-initialize D to

zero and follow (4.9) thereafter.

Note that the BTA policy is not based on any specific arrival process, hence, an in-

teresting feature of it is that it is robust to changes in the arrival statistics and can even

accommodate multiple deadline classes of packet arrivals to the queue.



Simulation Results

In this section, we present simulation results to illustrate the performance of the BT-

Adaptive policy. For comparison purposes we consider a policy that can be easily im-

plemented in practice and refer to it as the "Head-of-Line Drain" (HLD) policy. In HLD

policy, the data in the queue is arranged in the earliest-deadline-first order and the packets

are served in that order. At time t, let Ht be the amount of data left in the head-of-the-line

packet and TH be the amount of time until its deadline, then the rate chosen is rt = H.
TH

Thus, the transmitter serves the first packet in queue at a rate to transmit it out by its

deadline, then moves to the next packet. in line and so on. At every packet arrival instant,

the data in the queue is re-arranged in the earliest-deadline-first order taking into account

the new packet and its deadline and the above policy is then repeated.

The setup is as follows. The queue has packet arrivals and each packet has a deadline

associated with it. On each simulation run, the total time over which the packets arrive and

the system is operated is taken as L = 10 seconds. This interval [0,10] is partitioned into

10, 000 slots, thus each slot is of duration dt = 1 msec. The channel model is the two state

model, described in Section 3.2.2, with the parameters, cg = 1, cb = 0.2, bg = Agb = A = 50.

Thus, the average time spent in a state before the channel transitions is 1/50 seconds, or

20 msec. A channel sample path is simulated using a Bernoulli process where in a slot the

channel transitions with probability Adt; otherwise there is no transition. For simplicity,

the packet arrival and the channel state transitions occur only at the slot boundaries. For

both the BTA and the HLD policies, the rate chosen in a slot is obtained by evaluating the

respective policies at the time corresponding to the start of that slot. We take the function

g(r) = r 2. Energy cost per slot is 2 and the total expected energy cost is obtained as an
C

average of the total cost over the set of simulated sample paths.

We first consider a Poisson packet arrival process with each packet having 1 unit of data

and a deadline of 200 msec. Figure 4-3(a) is a plot of the expected energy cost, plotted on

a log scale, versus the packet arrival rate. Note that a packet arrival rate of 10 implies that

the average inter-arrival time of a packet is 1/10 sec. or 100 msec. As is evident from the

plot, the BTA policy has a much lower energy cost compared to the HLD policy and as the

arrival rate increases the two costs are roughly an order of magnitude apart. This can be

intuitively explained as follows. When the arrival rate is low, most of the time the queue
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Figure 4-4: Energy cost versus packet deadline for Poisson arrival process.

has at most a single packet. Hence, both policies choose a rate based on the head-of-line

packet with the BTA policy also adapting the rate with the channel state. As the arrival

rate increases and due to the bursty nature of the Poisson process, the queue tends to have

more packets. The BTA policy then adapts based on the channel and the deadlines of

all the packets in the queue, whereas, the HLD policy chooses a rate based solely on the

head-of-line packet. The energy efficiency of the BTA policy is not just in an average sense

but even on individual sample paths. This is shown in Figure 4-3(b) for 50 sample paths for

arrival rate of 10 packets/second. As seen in the figure, the BTA policy has a lower energy

cost over individual sample paths as well.
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In Figure 4-4, the packet arrival process is Poisson with rate 10 but now the packet

deadline is varied. Clearly, as seen in the figure, the energy cost decreases as the packet

deadline increases since lower transmission rates are required to meet the deadlines. Also,

as the deadline increases the energy cost difference between the BTA and the HLD policy

increases. This is because with a larger delay constraint there is more room for the adaptive

techniques employed in the BTA policy to have a greater effect.

In Figure 4-5, we consider a Uniform packet arrival process where now the inter-arrival

time between packets is uniformly distributed between 50 and 150 msec. The deadline for

each packet is taken as 200 msec while the packet size is varied. First, as expected, the

energy cost for both the policies increases with the packet size and second, the BTA policy

has a much less energy cost compared with HLD policy even when the arrival process is

less bursty as compared to the Poisson process.

4.3 Stochastic Arrivals

In the last section, we considered two different setups for the case of packet arrivals to the

queue. First in which the packet arrival information was known in advance, and second in

which no such information was assumed. In the latter case, the transmission rate is chosen

based solely on the data in the buffer and the channel state, while from the results in the

former case (see Section 4.2.4) it is clear that knowing the packet arrival information affects

the optimal minimum-energy transmission policy. Thus, intuitively, it is quite expected

that in the case of stochastic packet arrivals, statistical knowledge about the future packet



arrivals should affect the transmission rate being chosen. To understand this behavior

analytically, we now consider a deadline-constrained data transmission problem with a

Poisson arrival process. For the sake of simplicity, we assume that there is no channel

fading, thus, the stochastic variations in the system arise only from the packet arrivals.

We consider the following setup: The transmitter has a stream of packet arrivals ac-

cording to a homogeneous Poisson process, there is no channel fading and there is a single

deadline by which all the data must be transmitted. The objective is to minimize the

(expected) transmission energy expenditure while ensuring that the deadline constraint is

met. We now present in detail the optimal control formulation for the problem and give

the transmission policy results following it.

4.3.1 Optimal Control Formulation

Consider a time interval [0, T) and a stream of packet arrivals according to a homogeneous

Poisson process with rate ( and packet size B. The arrivals occur in time [0, T) and the

deadline constraint is that all this data must depart by time T + ro; where ro > 0.

Let the system state be defined as (x, t), where, x(t) = x, denotes the buffer size at time

t. Let r(x, t) denote a transmission policy and given any such policy, the buffer x(t) evolves

in the following way,

dx = -r(x, t)dt + Bdq (4.14)

Equation (4.14) above3 can be understood by viewing dx as the change in the buffer size

over a small interval dt. The term dq is the poisson differential and can be viewed as equal

to 1 with probability (dt, in which case B gets added to the buffer, and 0 with probability

1 - edt. We say that a policy r(x, t) is admissible if it satisfies the following, (a) r(x, t) 2 0

(non-negativity of rate), and, (b) x(t) 2 0 (non-negativity of buffer size).

Consider now an admissible transmission policy r(x, t) and let Jr(x, t) be the expected

energy cost starting in some state (x, t), x > 0, t < T. Taking the power-rate function from

(4.1) as P(t) = g(r(t)), where we have taken c(t) = 1, Vt, gives,

Jr(x, t) = E [j g(r(x(s), s))ds + rog ( T) (4.15)

alt is a formal representation of x(t) = x(O) + fo -r(x, -r)dr + fo Bdq where the integral is defined sample
path-wise. See [63,64], [88] chap 1.



The expectation above is taken over the poisson arrival process {q(s), s E (t, T)}. The first

term within the bracket is the total transmission energy cost over (t, T] for the policy r(x, t)

and the second term is the terminal energy cost at time T. The terminal cost is the amount

of energy needed to empty the buffer at time T by the deadline T + ro, using transmission

rate x(T)/ro. Define a minimum cost function J(x, t) as the infimum of Jr(x, t) over the

set of all admissible policies.

J(x,t) A inf Jr(x,t), r(x,t) admissible (4.16)
r(x,t)

The optimization problem is to compute the minimum cost function J(x, t) and obtain the

optimal policy r* (x, t) that achieves it. Specifically, the minimum cost starting at time 0,

is then given as J(xo, 0), where xo is the initial amount of data in the buffer at time 0.

The Hamilton-Jacobi-Bellman (HJB) equation for the above problem can be obtained

using an identical set of arguments as in Section 3.3.2. However, the difference now is that

the differential generator, Ar J(x, t) A limhlo EJ(xt+h~t h)J(xt), for the process (x, t) takes

the form [63,64,871,

=BJ(x, t) &J(x, t)
ArJ(x, t) = - r(x, t) a ) + ((J(x + B, t) - J(x, t)) (4.17)

Using the above, the HJB equation then takes the following form (V x > 0, t E (0, T)),

{, OJ(x, t) _BJ(x, t)
min) E g(r) + + - r ' +(J(x + B, t) - J(x, t)) =0 (4.18)

rE[0,oo 19t ax

The optimal transmission rate r* for a given system state (x, t) is the value of r that achieves

the minimum in (4.18). The boundary conditions on J(x, t) for the partial differential

equation in (4.18) are as follows. For the boundary (x = 0,0 ; t < T) we get the following

condition from the analysis in Appendix C.3,

g(0) + 'J(0, t) + ((J(B, t) - J(0, t)) = 0 (4.19)
19t

The boundary condition for (x > 0, t = T) is simply the terminal energy cost equal to

emptying the buffer by the deadline T + ro and is given as,

J(x, T) = rog(x/ro) (4.20)



4.3.2 Constraint Relaxation

An analytical solution to the partial differential equation in (4.18) with the boundary con-

ditions in (4.19) and (4.20) is difficult to obtain. Therefore, we consider a relaxation of the

problem where we ignore the boundary condition in (4.19) and solve the PDE without it.

In terms of the original problem, this relaxation corresponds to ignoring the non-negativity

constraints on x(t). Thus, the relaxed solution is infeasible for the original problem but it

can be made feasible by setting r(x, t) = 0, if x = 0, which would ensure that once empty

the buffer does not become negative. Later in this section, we present a comparison of the

relaxed solution with the optimal solution, obtained numerically by solving the PDE using

a finite-difference method (see Figure 4-7). Indeed, we see from that comparison that the

relaxed policy is very close to the optimal solution.

We now proceed to solve for a particular solution of (4.18) with only the boundary

condition in (4.20). Consider first the class of exponential power-rate functions, namely

g(r) = ar - 1, a > 1. Let us take the solution r(x, t) to be of the form,

r(X, t) = X - + ft)(4.21)

where f(t) is a function that needs to be determined. Using the first-order derivative

condition for the minimization in (4.18) gives J(Xt) = g'(r(x, t)). Integrating gives,

J(x, t) = af(t)(T + ro - t)a T+0ot + c(t) (4.22)

where c(t) is the constant of integration that depends on t. Incorporating the boundary

condition in (4.20) we get,

f(T) = 0 and c(T) = -ro (4.23)

Next, substituting J(x, t) and r(x, t) from (4.22) and (4.21) respectively, into (4.18), we

require that the PDE be satisfied. This entails,

c'(t) - 1+ af(t)(T + ro - t) In(a)aT+ f'(t) - f(t)a o -1 =0 + ln(a)a
T +ro- t In)\/

(4.24)

Since the above equation holds for all values of x the coefficients must equate to zero.
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Figure 4-6: Plot of f(t) for T = 10, ro = 1, ( = 1, B=1 and g(r)=er -1.

Thus, we get the following set of ordinary differential equations (ODE).

c'(t) = 1 (4.25)

1(t) _f__W/+f'(t) - ' 0 _t + ln(a T+0 - 1) = 0 (4.26)

Combining (4.25) and (4.23) we get c(t) = t - T - ro while f(t) can be obtained from the

following lemma.

Lemma 11 Let f(t) satisfy the ODE in (4.26) and the boundary condition f(T) = 0, then,

denoting 3t = T + o - t, the function f(t) is given as,

ft)=W n B ln(a) (T - t) + (n)2- InT))

/n) (BIln(a))" 1 14.

+ ft =3n!(n - 2) (ro2 n_2 (4.27)

Proof: Appendix C.4

An illustrative plot of the function f(t) for g(r) = er - 1, T = 10, 7o = 1, ( = 1 and

B = 1 is shown in Figure 4-6.

The solution thus obtained by combining (4.27) and (4.21) satisfies r(x, t) > 0, if x > 0

but does not satisfy r(x, t) = 0, if x = 0. However, a feasible solution can be easily
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constructed as follows.

r(x, t)= T+ o-t + f (4.28)
0, if x = 0

We refer to the above policy as the Relaxed Policy (RP). The closed-form structure of the

RP policy provides some interesting and intuitive insights. First, the transmission rate at

time t for buffer size x equals x/(T + TO - t), which is the minimum constant rate required

to serve x amounts of data by time T + To, plus an additional rate f(t). This is natural as

there is anticipation of future arrivals and the convexity of the cost function dictates that

these (expected) future arrivals should be taken into account. This is because transmitting

at a uniform average rate has a less total energy cost as compared to transmitting at a

lower rate and then increasing the rate later on. Second, f(t) depends on the underlying

function g(.) (as observed by the dependence on a). The intuition behind this is that if g(.)

has a very fast increasing slope then it is beneficial to reduce the buffer at a higher rate,

as future data arrivals close to the deadline will incur a lot of energy expenditure. Third,

r(x, t) depends on time t through T - t. This observation is intuitive and follows from the

fact that the Poisson process is memoryless and the future arrival statistics depend only on

the remaining time.

Thus far, we have assumed g(r) = ar - 1, a > 1. Proceeding as above, we can also

obtain solutions for other convex functions as well. One such example is g(r) = r2 . For

this function, the above methodology leads to a very intuitive solution and for which f(t)

is given as,
_ B(T -t)

f(t) = (4.29)
T + -ro - t

Note that (B(T - t) is the expected future amount of data to arrive and T + ro - t is the

time left. Thus, the excess rate can be interpreted as the rate required to drain the expected

future amount of data in the remaining time.

To understand how the RP policy compares with the optimal solution, we present an

illustrative numerical comparison, where the optimal solution is obtained by numerically

solving (4.18) with the boundary conditions in (4.19) and (4.20), using a finite difference

method. The partial differentials are approximated with a finite difference and the functions

are evaluated starting from the boundaries. For a rigorous treatment on such techniques,
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Figure 4-7: (a) Comparison of expected energy cost for RP and Optimal policy. (b) Com-
parison of rate at t = 0 as a function of the buffer size x.

the reader is referred to [88]. We now give the details of the numerical computation.

The set of equations for the numerical evaluation are as follows. First, from the boundary

conditions, we have, J(x, T) = -rog(x/to), x > 0 and {g(0)+aJ,0+t) +(J(B, t)-J(O, t))} = 0.

From (4.18), the first-order derivative condition for the minimization gives g'(r*(x, t)) =

al't while the PDE takes the form jg(r*(x, t)) + a ,t - r*(x, t)a ,jt) +((J(x+B, t) -

J(x, t)) = 0. Approximating the partial differentials with finite differences, these equations

become,

g/(r* (x, t)) = J(x, t + 3t) - J(x - Jx, t + 6t) (4.30)
3x

J(0, t) = g(O)St + (otJ(B, t + 6t) + (1 - (6t)J(0, t + 3t) (4.31)

(r*/x + 1/St)J(x, t) = g(r*) + ({J(x + B, t + 6t) - J(x, t + Jt)}

J(x - cx, t) J(x, t + it) (4.32)
x St

where Sx and ot are the step sizes for x and t respectively. Starting at t = T, we have

J(x, T) = rog(x/-ro). Now iterating backwards, each time decrementing t by ot, we can

evaluate J(0, t), r*(x, t) and J(x, t), for x = (Sx, .., B). For the purposes of this simulation,

we used the following parameters in the numerical evaluation; T = 10, ro = 1, B = 1,

g(r) = exp(r) - 1, Jx = 0.01, it = 0.02. Figure 4-7(a) compares the optimal energy cost

evaluated numerically with the expected energy cost for RP at t = 0 and with x0 = 1. The

expected energy cost for RP is obtained using simulations as explained later in Section 4.3.3.

As we see from the plot, RP performs very close to the optimal and the two energy costs
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have a very small difference.

Figure 4-7(b) compares the optimal rate and the RP rate (Equation 4.28) as a function

of the buffer size for t = 0 and ( = 1. As seen from the figure, at moderate buffer sizes

the two rates are fairly close to each other and in fact converge as x increases, but at

very low buffer values the optimal rate is reduced as the boundary x = 0 is closer and the

boundary effect becomes prominent. The asymptotic (large x) convergence of the two rates

is quite intuitive since the buffer non-negativity constraint becomes less important for large

x. Thus, we see that the RP and the optimal rate tend to differ only for small values of

buffer size and the effect of this on the energy consumption is minimal.

4.3.3 Simulation Results

From (4.28), we see that the relaxed policy takes into account the future arrivals in comput-

ing the transmission rate. To understand how this policy compares with a non-anticipative

policy which does not take into account the arrival statistics, we present an illustrative

simulation example in this section. We consider the Direct Drain (DD) policy in which the

transmission rate at any time t is chosen as x(t)/(T - t + ro). Thus, in this policy the

transmitter simply looks at the buffer size, x(t), and chooses a rate that would empty the

buffer by the deadline.

In the simulation setup, we consider the following parameters. T = 10, ro = 1, B =

1, g(r) = exp(r) - 1 and the initial buffer size xo = 1. The time interval [0, T = 10] is

divided into discrete intervals of length dt = 10~3; thus, having 10, 000 time slots. The

arrival rate ( is varied between ( = 0.2 - 1.6 in steps of 0.2. The Poisson arrival process is

simulated using a Bernoulli model. In each time slot an arrival occurs with probability (dt

and there are no arrivals with probability 1 - edt. At the beginning of each time slot the

buffer size x and the time t is known. The rate of transmission in that slot for RP is chosen

from (4.28)4 while the rate of transmission for DD policy, as mentioned earlier, is chosen as

T-t+70 . The same set of sample paths are applied to both the policies and the energy cost
is computed as j' 10- 3 (exp(r,) - 1) + (exp(x(T)) - 1) (note ro = 1). The average is then

taken over a set of 104 sample paths.

Figure 4-8 compares the expected energy expenditure of the two policies for the set of (
4 1f x is very small then the rate chosen might make the buffer go negative. In this case the rate is simply

taken as x/10-3.
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considered. As shown in the gain plot, RP significantly outperforms DD policy and in fact

the curve is upward sloping. Figure 4-9(a) plots the energy expenditure for the first 100

sample paths for ( = 1. It is clear from the figure that RP has lower energy cost than DD

policy for almost all sample paths. Thus, even on a sample path comparison RP performs

better. Finally, Figure 4-9(b) compares the average buffer size at time t of the two policies

for ( = 1. As seen from the figure, RP tends to have a more uniform and much smaller

average buffer size as compared to DD policy. Observe that for ( = 1, on average one

packet arrives in unit time and starting from xo = 1, RP tends to transmit at that rate in

an average sense. As DD policy does not adjust the rate in anticipation of the arrivals, it

transmits at low rates initially and hence the buffer tends to increase. Then, as the deadline

gets closer the rate increases and the average buffer size drops. And, this results in a much

higher total energy cost.
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4.4 Chapter Summary

In this chapter, we considered various extensions of the deadline-constrained energy-efficient

data transmission problem, from the canonical BT-problem treated earlier in Chapter 3.

The cumulative curves methodology and the solution to the BT-problem provided impor-

tant tools to address the various generalizations considered here. In fact, the graphical

visualization of the problems, combined with the intuition gained through the deterministic

setup in Chapter 2, yielded the transmission policies in a very natural way, and these were

also shown to be optimal for the constant drift channel model.

First, in Section 4.2.3, we considered the variable deadlines setup. Here, the transmitter

queue has data with individual packet deadline constraints and the goal was to transmit the

data over a fading channel with minimum energy while meeting the deadline constraints.

Based on a graphical decomposition of the problem into multiple BT-problems, we obtained

a transmission policy which takes a very simple form and is given as,

B -- D
r(D, c', t)= max ,i = 1, ... , m (4.33)

j:(B3 >D,Tjt) fi(Tj - t)

The above policy was shown to be optimal for the constant drift channel model (Theo-

rem XII). It draws its intuition from the analogous problem in the deterministic setup con-

sidered in Chapter 2, where the optimal policy was to choose the maximum slope straight-

line segment among those that meet the BjT constraints.

In Section 4.2.4, we considered the following setup. There is a stream of packet arrivals

at known inter-arrival times and a single deadline constraint by which the data must be

transmitted. The goal as before is to transmit the data over a fading channel with minimum

energy while meeting the deadline constraint. Using the graphical visualization of the

problem and the intuition from the analogous setup in the deterministic setup, we obtained

a transmission policy which was shown to be optimal for the constant drift channel model

(see Theorem XIII) and is given as,

A -- D
r(D, c, t)= min i = 1, ... m (4.34)

j:(A,>D,T, t) fi(T - t)

We then considered the case of arbitrary packet arrivals to the queue without any arrival

information. Each arriving packet had a deadline by which it must depart and the goal was
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to transmit the data over a fading channel while meeting the deadline constraints. In this

case, we obtained the BT-Adaptive policy (BTA) and showed through simulations, that

BTA has a much lower energy cost as compared to the Head-of-Line drain policy.

Finally, in Section 4.3, we studied a problem involving stochastic packet arrivals to the

queue. We considered a stream of Poisson packet arrivals to the queue and a single deadline

by which all this data must be transmitted. The objective is to transmit the data within

the deadline constraint and minimize the energy expenditure. Using an optimal control

formulation and a relaxation of the boundary condition, we obtained in closed-form the

transmission policy that satisfies the HJB equation. We referred to it as the Relaxed Policy

and is given as follows,

+ t+ f(t), if X > 0
r(x, t) = 0 " if > 0 (4.35)

0,if x = 0

Thus, we see from the above equation that the transmitter chooses a rate to empty the

buffer by the deadline plus an additional rate f(t) which accounts for the (expected) future

packet arrivals. Finally, we presented simulation results comparing the relaxed policy with

the direct drain policy and these results showed that substantial gains can be achieved in

the energy expenditure.
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Chapter 5

Multi-user Scheduling with

Throughput-rate Guarantees

5.1 Introduction

In Chapters 2, 3 and 4, we studied energy-efficient transmission rate-control with hard

deadline (or other strict Quality-of-Service) constraints on data. Such a setup applies to

scenarios involving real-time data communication, where there are stringent restrictions

on maximum packet delays. However, in addition to such applications, there are other

services where instead of hard latency requirements, a more appropriate quality-of-service

metric is the long-term throughput rate; these include, for example, file-transfers (FTP),

web-browsing etc. In this chapter, we study a multiple-user setup involving long-term

throughput rate as the quality-of-service metric. The goal here is to develop a multi-user

scheduling algorithm that provides the required throughput rates using minimal time-slot

utilization.

The setup for this chapter is as follows. There is a single server that represents the

wireless base station transmitting to multiple users that represent the mobile handsets.

The system operates in a time-slotted manner and in each time-slot the base station can

serve only one user. This setup is referred to in the literature as the Wireless Downlink

Scenario, where "downlink" refers to the communication link from the base-station to the

mobile user. We further assume that the set of users axe divided into two classes: (i)

throughput-rate guaranteed, QoS users and (ii) "best effort" (BE) users. The QoS users
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in the system represent session applications such as FTP, high data-rate web-browsing,

throughput-constrained data transfers etc., which require the base station to provide a

certain long-term data rate on the downlink. In contrast, the BE users represent on-the-fly

applications such as email transfers, low priority and latency tolerant data transfers etc.

which do not have rate requirements and are short-lived. The goal of this work is to design

a scheduling policy for the users, that provides the required throughput rates to the QoS

users with the least time-slot utilization and maximizes the remaining fraction of time-slots

assigned for the BE class.

Since we are concerned with a wireless channel, the communication rate at which the

base station can reliably transmit to the various users fluctuates over time. Furthermore,

at any given time-slot, the different users also have different rates among them and the

transmitter can take advantage of this diversity to decide which user to transmit to based

on certain required objectives. In the literature, such an approach is referred to as Multi-

user Diversity [4,80] or Opportunistic Scheduling [75-79]. Clearly, if the goal is to simply

maximize the sum throughput, the transmitter must always select the user with the high-

est communication rate in that time-slot. While this simple policy maximizes the total

throughput, to achieve throughput-rate guarantees for multiple users one needs to look into

more sophisticated scheduling algorithms.

The contents of the chapter are organized as follows. In Section 5.2, we present the sys-

tem model and the problem description. In Section 5.3, we present a geometric approach to

the problem and obtain the optimal policy through it. The throughput results for Rayleigh

fading are presented in Section 5.4 and simulation results comparing the optimal and the

random scheduling policy for Rayleigh and Nakagami fading are presented in Section 5.5.

Finally, Section 5.6 summarizes the work in this chapter.

5.2 System and Problem Description

5.2.1 System Model

As mentioned earlier, we consider the wireless downlink scenario, namely, communication

from the base station (the transmitter) to the mobile handsets (the receivers, also referred

to as users) in a time-slotted system. There are multiple users in the system, each user

experiencing time-varying channel condition. The channel state of a user remains constant
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for a single time slot but changes over multiple time slots. We assume that the channel

stochastic process is stationary and ergodic. This assumption does not preclude channel

correlations over time and among the users, thus allowing the possibility of channel states

over multiple time-slots to be dependent. At the beginning of a time-slot, the transmitter

knows the channel state of each user for that particular slot'. In a time-slot, it serves at

most one user with full power P. Since the users have different channel conditions the

rate of communication per time slot to the users is variable. Clearly, the transmitter can

exploit this variability and select the appropriate user for transmission in a time-slot based

on some performance measure. The above system models a TDMA system and the recently

proposed 1xEV-DO data system [3] and is a commonly used model in the literature for the

wireless downlink [75-79].

Let F = {ri} denote the vector of communication rates to the users in a generic time-

slot, say for example the kth time-slot. This means that if user i is chosen to be served in

time-slot k, the throughput for that user in that slot is simply ri. We will refer to ri as the

"channel rate" for user i and F as the "channel rate vector". The transmitter has knowledge

of F at the beginning of slot k but does not know this vector for future slots. In the kth

time-slot, Y is a particular realization from the set comprising all possible channel rate

vectors, whose probability distribution depends on the stochastic model of the underlying

channels' states; and it is assumed to be a stationary process. A scheduling policy, denoted

as rk(y), is a rule that specifies which user the transmitter serves in time-slot k given that

the channel rate vector in that slot is F. A stationary scheduling policy, denoted r(F), is one

that depends solely on i but does not depend on the time index. Clearly, such a policy can

be represented as a map from the set of channel rate vectors to the user index; namely, each

F is mapped to a unique user index. As the underlying processes are stationary, we restrict

attention in this work to stationary scheduling policies and such a restriction suffices.

5.2.2 Problem Description

The set of users in the system are divided into two service classes: (i) throughput rate

guaranteed (QoS) users and (ii) "best effort" (BE) users. As mentioned earlier, QoS users

represent session applications that require the base station to provide a certain data rate on

the downlink, whereas, the BE users represent low priority data transfer applications which

'This is a simplifying assumption that models one step channel prediction
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do not have a rate requirement and are short-lived. The number of BE users is assumed

large and being short-lived it changes rapidly over time. In such a setup, the objective at

the base station is to provide the throughput rates to the QoS users with the least time-slot

utilization so that the remaining fraction of time-slots allocated for serving the BE class

is maximized 2. The scheduling problem now is to obtain a rule that assigns time-slots

dynamically over time to meet the above objective.

Let there be N QoS users in the system and denote the channel rate vector for these

users as Y = (ri,... , rN). Let Xi (F) denote the throughput per time-slot of user i. We

have3,

X(F M J ri, if P(r) = i (i.e. user i selected) (5.1)
0, otherwise

The expected throughput per time slot is E[Xi(F)]. Under stationarity of the scheduling

rule, it is easy to see that Xi(F) is stationary and ergodic and that E[Xi(f)] equals the

long term time-average throughput per slot (called throughput rate) of user i. Let R =

(R1, .., RN) be the guaranteed throughput rates to the QoS users. We will assume that Rk

is feasible and by feasibility we mean that there exists at least one scheduling policy that

achieves the throughput rates, i.e. E[Xi(f)] Ri, Vi = 1, .., N for some policy.

Let Ii(!) be the indicator function for selection of user i,

i() = if L(F)=i (5.2)

0, otherwise

With this notation we can re-write Xi(F) as Xi(!) = riIi(F). The optimization problem can

now be formally stated as follows,

N

min Z E[Ii(F)]
i=1

subject to E[rJi(f)] > Ri, i = 1, .., N (5.3)

2We assume that among the BE users a greedy algorithm is used to share the slots that are allocated for
the BE class. With a large population of BE users there is a high probability of at least one user experiencing
good channel condition. Thus, maximizing the time-slot allocation is then equivalent to maximizing the sum
total throughput of BE users.

3For notational simplicity, explicit dependence of Xi(.) on F is not indicated. Also, since the service of
BE users is simply the fraction of allocated time-slots to that class, their channel rate vector is not required
for the optimization.
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The expectation above is taken over the joint distribution of the channel rate vector, F,

for the N QoS users. Note that minimizing EN E[Ii(F)] is equivalent to maximizing

1 - EN E[Ii(f)] which equals the fraction of time-slots available for the BE users. We

assume that R > 0, i.e. (Ri > 0, .., RN > 0). If some Rk = 0, we can neglect that user

and the problem reduces to N - 1 dimensions. We also assume that R is away from the

boundary of the set, which is characterized later, comprising all feasible throughput rate

vectors. This assumption is solely to simplify the mathematical exposition by avoiding the

limiting conditions at the boundary and does not affect the results presented throughout

the chapter.

5.3 Optimal Policy

The QoS users experience different time-varying channel conditions, hence, intuitively the

optimal policy must exploit this variability giving preference to users with better channel

conditions. This would ensure a high throughput per slot and would lead to a fewer fraction

of time-slots being utilized to provide the throughput guarantee. However, simply choosing

the best user is not sufficient since the throughput requirements of the QoS users and their

channel statistics might be very different which necessitates that these parameters must

also be taken into account.

Let Q be the set comprising all possible channel rate vectors, F; we have Q C R+N. Let

the joint probability density function be f(F) 4 so that the probability of a subset Z c Q

is given as fz f(Y)dr. We assume that f(Y) is such that subsets with zero volume in Q (or

individual points) have zero probability, thus, excluding point mass distributions. Since a

scheduling policy maps F E Q to a unique user index, we will represent a scheduling policy

as a partition of the set Q into N + 1 regions denoted as Z1 , .., ZN, Zf . In a particular

time-slot, if the channel rate vector F lies within region Zi, user i is selected for service

whereas if F E Z1 , no QoS user is selected and the slot is used to serve the BE users. The

problem thus reduces to choosing these regions optimally to minimize the objective function

and to satisfy the throughput rate constraint, fz. rif(F)dr > Ri, i = 1, ... , N.

To eliminate uninteresting partitions the following technical assumptions are made. The

set Q can be partitioned into a finite set of components, where, each component is a con-
4 To avoid excessive notations, F, depending on the context denotes both a random vector and a particular

realization for a generic time-slot.
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Zf region

Figure 5-1: The Zf region for N = 3, threshold vector i= (al, a2, a3 ) and Q = R+N. Note
that Z 1 = {F : 0 < ri 5 aj, Vi = 1, ... , N}.

nected set with non-zero volume and every point of this set is arbitrarily close to an interior

point. Such an assumption removes the trivial point/zero volume sets. A scheduling pol-

icy is a partition as above and each region Zi is a finite union of the component sets of

the partition. Further, we assume that for set Q, non-zero volume sub-sets that have zero

probability have already been removed as their mapping plays no role in the optimization.

In the rest of the chapter, the notation F -+ Z (Y 74 Z) means that there is a neigh-

borhood around F that is mapped (is not mapped) to region Z and the probability of this

neighborhood is non-zero. Formally, F - Z implies that there exists e > 0 such that all

r E 0, fli - F|| < f =>' i E Z and fJ_, FI<f(r)di > 0; where the norm | is the Eu-

clidean distance norm in RN. The following two lemmas give the properties of the optimal

Zi,..., ZN, Zf regions. The first lemma deals with the region Zf and it states that if F is

mapped to Zi, all rate vectors with the ith component larger than ri cannot be mapped to

ZI.

Lemma 12 Under the optimal policy, suppose F = (r1,.., rN) -* Zi then i = (f 1,.., (fi >

ri), .. , N) 74 f -

Proof: Appendix D.1

A careful observation of Lemma 12 yields a special structure on Zf as follows. Let ai be

the infimum value of the first component among all vectors F -- Z1 ; i.e. ai = inf(F-zI) ri.

Now, any r -+ Zf must be such that f1 ai; otherwise Lemma 12 will be violated. As this

holds for all Zi, an optimal policy has constants {aj} where ai = inf(r-z)ri such that if
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ri 5 aj, Vi, then T E Zf. The region Zf is shown in Figure 5-1. This implication is quite

intuitive as it suggests that when the channel rate vector of the QoS users is below some

threshold vector (bad channel conditions), the QoS users must not be scheduled and the

slot must be used to serve the BE users.

The vector a depends on the required throughput vector R for the QoS users and the

density function f(Y). Given that R does not lie on the boundary of feasible throughput

rates, it follows that d is at least a positive vector (ai > 0, ... , aN > 0) and the region

Zf = {F | F E Q, ri ajVi} is not null (non-zero probability). We now proceed to obtain

the structure of the regions Zi, i = 1, ... , N.

Lemma 13 Consider regions Zi, Z3 , j # i and the corresponding thresholds ai, aj. Suppose

Y V Z5 and satisfies,
r- r -
L > rj (5.4)
ai a3

then under the optimal policy F 74 Zj

Proof: Appendix D.2 U

The above lemma states that if the weighted comparison of ith and jth component of F

is in favour of the ith component (user i), it is not optimal to serve user j. The weights are

the inverse values of the corresponding components of the threshold vector 5. The above

implication is intuitive as condition (5.4) means that in some sense user i has a better

channel condition than user j and hence serving user j is not optimal. Combining the

above two lemmas, we obtain the following geometric structure for the optimal policy.

Theorem XIV (Optimal Structure) Consider a channel rate vector F = (r1,...,rN),

then, under the optimal policy there exists a threshold vector a with the following structure.

1. Y - Zf if it satisfies,

ri < ai, Vi = ,. ,N (5.5)

2. F - Zi, (i = 1, ... , N) if it satisfies,

r r-
- > L, Vj=1,...,N,j i (5.6)
a > a(
ri > ai (5.7)
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Z2 r/a -ra2
r2/a2 =0r/a

ZZ

ri

r a Z r/a = rs/

Figure 5-2: Optimal policy structure for N = 3, threshold vector A = (ai, a2, a3) and

= R+N. The Zi regions are top truncated pyramids.

3.

j rif(Y)dr = Ri, Vi = 1,..., N (5.8)

Proof: Conditions 1 and 2 follow from Lemmas 12 and 13. Condition 3 states the

obvious requirement that for optimality the throughput constraint must be met with equal-

ity; since, otherwise the excess fraction of slots that lead to a throughput above Ri can be

assigned to the BE users. 0

The set of Y that lie on the boundaries for which there is equality in (5.5) and (5.6) can

be mapped to any Zi without affecting optimality. It can also be observed that the set of

conditions in Theorem XIV are exhaustive and map every F E Q to a unique user index.

Thus, given a, we have a unique partition of Q into regions Z 1 , ... , ZN, Zf. In Figure 5-2,

we present a geometric picture of these regions for N = 3. As seen from the figure the Zi

regions are top truncated pyramid-like (see, for example the light shaded Z 2 region) and it

can be verified that in this region, (5.6) is satisfied.

Next, we present the sufficiency argument by proving that a scheduling policy of the

form as in Theorem XIV minimizes the objective function in (5.3) and hence is optimal.

First, observe that a scheduling policy outlined in Theorem XIV can be re-written in a
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simplified way as a maximum weighted rule (with ties broken arbitrarily) as follows,

Zf (serve BE class) , if ri <; ai, Vi = 1, .., N (5.9)

argmaxi ,otherwise

where {ai} are such that E[riIi] = Ri,Vi = 1, ... , N.

Theorem XV (Sufficiency) Consider the optimization problem in (5.3) and let R be

feasible, then, policy r defined in (5.9) is optimal.

Proof: Appendix D.3. U

Thus, Theorem XIV states that the optimal policy must satisfy certain conditions which

impose a weighted comparison structure on it and conversely, Theorem XV completes the

argument by stating that a policy with that structure is optimal.

The results presented so far for the optimal policy assumed that R was feasible, that

is, it assumed that the optimization problem in (5.3) had a solution and the throughput

rate R could be guaranteed by some scheduling policy. We now go back and characterize

the set of all such feasible throughput rate vectors. Let H denote this set; we claim that

the interior of II is generated by considering each threshold vector & > 0 and obtaining the

corresponding A that can be achieved for the policy in (5.9) for that particular a. To see

why this is true consider the following. Given any & > 0, we first construct a policy as given

in (5.9). Since this is a valid scheduling policy the corresponding A with R- = E[ri1i] is

feasible, hence, H must at least include all such R. Now, conversely, pick a feasible R in the

interior of H, then, from Theorem XIV we see that a scheduling policy can be re-mapped

to have the optimal geometric structure or equivalently there exists a > 0 for which the

policy in (5.9) is optimal.

For a given R, we know from (5.8) that the threshold vector & for the optimal policy

is chosen such that f,. rif(F)dr = Ri, i = 1, .., N. This can be solved using numerous

techniques of finding the positive root of a non-linear vector equation. In practice, however,

the density function f(F) may not be known apriori in which case the vector R can be

adjusted in real time using stochastic approximation algorithms, similar to those outlined

in [75,76]. For a comprehensive treatment of stochastic approximation algorithms see [83].

We now consider the special case of Rayleigh fading in the next section and obtain explicit
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expressions for various system metrics.

5.4 Dimensioning

In this section, we apply the general results obtained in the last section to a Rayleigh

fading scenario. From a practical perspective while such a fading model might be restrictive,

nevertheless, from a systems viewpoint the closed form formulas obtained provide important

tradeoff limits between the allocation of resources to the QoS and the BE users and can

be used as a first cut calculation in system design. For other fading distributions a similar

analysis can be carried out, albeit, closed form expressions may not always be possible and

certain quantities would need to be evaluated numerically, as done in Section 5.5 for an

illustrative Nakagami fading scenario.

To proceed, we consider the following specializations to the earlier model. The users

experience independent identically distributed (i.i.d) flat Rayleigh fading, hence, |hi2 is

Exponentially distributed, where |h| is the magnitude of the channel gain/fade state. The

rate per time slot of a user is assumed proportional to the fade state (square magnitude); i.e.

r = k(|h|2 P), where k is a constant and P is the transmission power. A linear power-rate

relationship is a good model in various scenarios such as the low SNR regime in which most

CDMA systems operate, ultra-wideband transmission and fixed modulation schemes and

has been studied earlier in the literature [81]. As r is proportional to 1h| 2, the distribution

of r is also Exponential and is given as f(r) = e-/P/p, r > 0 where y = E[r] is the average

throughput rate of a user if it is served in all the time-slots. Lastly, we take the guaranteed

throughput rate the same for all N QoS users, namely, R = (R, ... , R).

5.4.1 Throughput Characterization

Let -y denote the fraction of time-slots allocated to the BE users. We first obtain the

threshold vector in terms of -y as follows. Due to symmetry in f(F) and R, clearly, the

regions Zi, i = 1, .., N are identical, hence, the {ai}'s for the optimal policy are equal and

the threshold vector is given as 5 = (a, .., a). Now, the threshold value a in terms of -y is as

follows.
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Lemma 14 Let -y be the fraction of time-slots allocated to the BE users, then the threshold

value a for the optimal policy is given by,

a = y ln i _1/N (5.10)

Proof: From Theorem XIV, the region Zf is given as Zf = {: 0 < ri < a, Vi =

1, ... , N}. By ergodicity, the probability of this region equals y and by the i.i.d channel

assumption, f(f) = fJi fi(ri) = ]7I f(ri). Thus we get,

j j... f d (5.11)

Evaluating the integrals for the exponential distribution gives,

'Y = ( 1 - e-a/yp N (5.12)

Re-writing the above expression gives the result in (5.10). M

Observe from (5.10) that -y = 0 => a = 0 which agrees with the fact that y = 0 (no slot

for the BE users) implies Zf is null and similarly, y = 1 => a -+ oo which agrees with the

fact that -y = 1 (all slots for the BE users) implies Zf = R+N

Now, using the optimal structure of region Zi we can obtain an expression for the

required throughput rate R in terms of the threshold value a.

Lemma 15 Under the optimal policy, the throughput-rate guarantee, R, for a given thresh-

old value a is given by,

N-1 N - 1) e-(k+1)a/ (

R = (-) + (5.13)1
k=O

Proof: Given a threshold vector a = (a, ... , a), the region Zi is given as, Zi = {f

a < ri < oo, 0 < r 5 ri, j # i}. As R = E[riIi] we get,

R = L n j rif(ri)dri fl f(ry)drj (5.14)
a 0 0i
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where f(r) = fl; fi(ri) = 17; f(ri) by the i.i.d assumption. For the exponential distribution,

(5.14) simplifies to,

R = e--I dri (5.15)
a p

Using the binomial expansion, (1 - e-ri/A)N- 1  1 (N-1)(_)ke-kr/, (5.15) can be

solved to get (5.13). 0

Note from (5.13) that R is monotonically decreasing in a, hence there is a one to one

relationship between R and a. Stated equivalently, given a certain R value, there is a unique

threshold a > 0 that achieves it. Eliminating a from (5.10) and (5.13) we obtain a unified

relationship among the system quantities: (i) Throughput rate R, (ii) Fraction of time-slots,

-y, allocated to the BE users (iii) Number of QoS users, N, and (iv) The average channel

condition, y, of the users.

Theorem XVI Under the model assumptions stated earlier with N QoS users in the system

and -y E [0, 1] fraction of time-slots allocated to the BE users, the maximum throughput rate

R for each QoS user is given by,

R N-1 N - 1) -_~ ln(1 -y11/N)y ( k k + 1 + (k + 1)2 ( (5.16)
k=O

Proof: The result follows from Lemmas 14 and 15. U

From (5.16), we see that R depends linearly on t, thus as expected, for a given N, fy,

the throughput guarantee is higher if t is increased. Now, re-phrasing (5.16), theoretical

limits for various performance measures can be deduced as follows.

Maximum Throughput Rate: By setting -y = 0, we can obtain the maximum through-

put rate Rmax(N) for each QoS user when no slots are allocated for the BE users. This is

given as,
N-1N-11

Rmax(N) = y (Nk 1)(_1)k(k + 1)2 (5.17)
(k=0

Figure 5-3 is a plot of R/p versus N for different y values. The function Rmax(N)/p is the

topmost curve corresponding to -y = 0. As Rmax(N) is monotonically decreasing in N, its

maximum value is at N = 1 and equals Rmax/ = 1. This is expected as the maximum
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Number of users, N

Figure 5-3: Plot of R/p versus N for the optimal policy for various -y values.
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Figure 5-4: Plot of R/p versus -y for values of N = 1, 2, 4,8, 14.

rate achievable when all the slots are assigned to just one QoS user equals E[r] (= p).

Maximum Number of QoS Users: Fix a value of Ro and -y, the maximum number

of QoS users such that throughput of each is at least Ro is given by,

Nmax(Ro, 7) = max (R > Ro)
N

(5.18)

Obviously if the values of R0 , -y are such that there is no integer N > 1 that achieves

it, the system values in this case are infeasible. Figure 5-4 is a plot of R/t versus y for

various values of N. Infeasibility arises when (-y, Ro/p) point lies above the N = 1 curve

(in Fig. 5-4).

Maximum Value of -y: Given R and N, the value of -y that solves the equation in
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(5.16) gives the maximum fraction of slots that can be allocated to the BE users. Figure 5-4

with its axes inverted gives a plot of -y versus R/I for different N.

5.4.2 Comparison with Random-scheduling Policy

To understand how much gain can be achieved, we present an analytical comparison of the

optimal policy with the random scheduling policy. The random policy assigns a time-slot

to the BE users with probability -y and to the QoS users with probability 1 - -Y. Among

the QoS users the slot is then randomly assigned to one of the users with equal probability

1/N. Clearly, this policy does not exploit the varying channel conditions for scheduling the

users. Due to the random nature of the assignment each QoS user gets (1 - y)/N fraction of

time-slots and since the users have statistically identical channel conditions, the throughput

rate of each QoS user, denoted R,., is given as,

(1 - (519
R,. = pt' 7 (5.19)N

Let us now fix a value of -y for both the optimal and the random policies, i.e. under

both policies, ^y fraction of slots are assigned to the BE class. Let R P, R,. denote the

corresponding throughput rate provided to each QoS user. Then, as shown below, the gain

defined as R*P/R, is on the order of ln(N). To show this result, we need the following

lemma.

Lemma 16 For any -y E (0, 1), we have the following relationship5

In 1 1 = E(ln(N)) (5.20)

Proof: Appendix D.4

5The following notation is followed: (i) f(N) = O(g(N)) means that there exists a constant c and integer
No such that f(N) _< cg(N) for all N > No, (ii) f(N) = E(g(N)) means that f(N) = O(g(N)) and
g(N) = O(f(N))
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Theorem XVII The throughput gain of the optimal policy as compared to the random

policy, defined as RPt/Rr, for y E (0,1) satisfies the relationship,

= O(ln(N)) (5.21)

Proof: Appendix D.5 U

Observe that as N -+ oo the throughput rate per QoS user for both the optimal and

the random policy tends to zero. Equation (5.19) states that Rr decreases as 1/N whereas

(D.24) in Appendix D.5 states that by using the optimal policy R*Pt decreases more slowly

as ln(N)/N. Hence, we get a gain on the order of ln(N). The above logarithmic behavior

can be attributed to the exponential distribution of the rate under Rayleigh fading and

while such channel statistics are simplified models, in practice one could expect gains along

these orders for moderate QoS user population.

5.5 Simulation Results

To validate the theoretical results derived in the earlier sections, we present simulation

results obtained for two fading distributions, Rayleigh and Nakagami. The setup for the

simulations is as follows: we consider a time duration of 10 seconds and divide it into 10,000

slots, thus, each time-slot is of length 1 millisecond. For the sake of simplicity, the QoS users

all experience i.i.d channel fading. We assume a linear relationship between the channel

rate and the fade state (squared magnitude); i.e. r oc Jh12. Thus, for Rayleigh fading the

rate, r, at which data can be transmitted in a slot is Exponentially distributed with density

f(r) = * r > 0; while for Nakagami fading, r has a Gamma distribution given as

f(r) = M r e-mr/p, r > 0, where m is the fading parameter [82]. The mean channel

rate, pL, for each user is taken as, i = 800 Kbits/sec for both the distributions. At each

time-slot, a random vector of channel rates for the QoS users is drawn from the respective

distribution. Given this channel rate vector, the particular scheduling policy decides which

QoS user to serve or to allocate the slot to the BE class. In the former case, the chosen

QoS user, say user i, receives a throughput rate of ri while for the others the throughput

rate is 0 in that slot. In the latter case, all QoS users get a 0 throughput in that slot.
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Figure 5-5: Running time-average of throughput rate for Rayleigh fading with 3 QoS users,
R = 200 Kbits/sec.

We simulate the optimal, the random, the greedy Time Division Multi-Access (TDMA)

and an opportunistic scheduling policy studied in [80] which we refer to as "Opportunistic

Proportional Fair" (OPF) policy. In case of the optimal policy, the scheduling decision is

taken as given in (5.9) where the threshold vector a is computed using the formulas in

Section 5.4. The random policy makes a scheduling decision as described in Section 5.4.2.

For the greedy TDMA and the OPF policy the scheduling decision is taken as follows. Let

Tk denote the running time-average of the throughput rate for the kth QoS user. At the

beginning of each time-slot, consider all QoS users for which Tk < R where R is the required

throughput guarantee. In the greedy TDMA policy the user with the maximum channel

rate is selected whereas for the OPF policy the user that maximizes the metric rk/T is

selected. If for all QoS users Tk > R, the slot is allocated to the BE class.

We first numerically validate the theoretical results obtained in Section 5.4. We con-

sider Rayleigh fading with 3 QoS users each having a throughput rate guarantee of R =

200 Kbits/sec. Figure 5-5 gives a plot of the running time-average of throughput rate

under the optimal policy. As can be seen from the plot, the long-term required rate is

achieved very quickly in time within almost a second and is maintained thereafter within

a close range. Thus, within a very short time interval the required throughput rate can

be provided to the QoS users. A similar trend is observed when the parameter values are

varied. In Figure 5-6, we fix y = 0.3, i.e. the BE class is assigned 30% of the slots. The

figure gives a plot of the simulated throughput gain R"Pi/R,. as a function of N; where

RoPt, R,. is the throughput rate of each QoS user under the optimal and the random policy
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Figure 5-9: Comparison of the fraction of slots utilized by the random, OPF, TDMA and
optimal policies.

respectively. In conformation with the result in (5.21), we see from the plot that R-r grows

logarithmic in N. We next consider Nakagami fading with the fading parameter m = 0.6.

In Figure 5-7, we fix y = 0.3 and plot the running time-average of the throughput rate

for the optimal policy with 3 QoS users. For the case of Nakagami fading, (5.11) becomes,
ma1

fo ' tm-e-tdt = 'ykf(m) from which the optimal threshold a is evaluated numerically by

finding the root of the above non-linear equation. The long-term rate provided to each QoS

user in this case is R = 494 Kbits/sec. Again as before, the throughput rate is achieved

very quickly in time and is maintained thereafter within a close range. In Figure 5-8 we

compare the throughput gain of the optimal policy versus the random policy. As seen from

the plot the optimal policy achieves a substantial gain in throughput even with Nakagami

distribution. In fact, the gain is higher now because the Gamma distribution with m = 0.6

has a larger variance than the Exponential with the same mean. As a result, the optimal

policy which opportunistically exploits rate variations gives a higher gain in comparison to

random assignment.

We now present simulation results that compare the performance of the optimal, ran-

dom, TDMA and OPF policies. We consider 3 QoS users with Rayleigh fading and the mean

channel rate of each QoS user, t = 800 Kbits/sec. Figure 5-9 plots the total fraction of

slots utilized by the QoS users under each policy versus the throughput rate requirement of

each QoS user. The quantity, (1- total fraction of slots used by QoS users), is the time-slot

allocation to the BE class. First, as expected the random policy has the worst performance

and utilizes the maximum time-slots to provide the throughput rate guarantees. Since the
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OPF, TDMA and optimal policy exploit the channel variations and opportunistically sched-

ule the users, the time-slot utilization is lower as compared to the random policy. The OPF

policy performs worse than the TDMA policy which is expected since the TDMA policy by

being greedy has a high throughput per slot and hence utilizes fewer time-slots. Finally,

as expected the optimal policy uses a substantially lower fraction of time-slots than all the

policies.
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5.6 Chapter Summary

In this chapter, we addressed the issue of downlink scheduling over a wireless channel

incorporating the QoS and best-effort services. We considered a set of N rate-guaranteed

users and the objective was to serve these users with the least time-slot utilization, thereby,

maximizing the time-slot allocation to the BE users. Using a geometric approach, we

obtained the optimal policy which is given in a compact form as,

Zf (serve BE class) , if ri 5 ai, Vi = 1, .., N (5.22)

argmaxi I , otherwise

Equivalently, the optimal policy also solves the problem of maximizing the rate guarantee

for the QoS users given that a certain fraction of time-slots must be allocated to the BE

users. Under a symmetric Rayleigh-fading setup, we specialized the optimal policy results

to obtain analytical expressions for the various performance metrics. We also presented

an analytical comparison with the random-scheduling policy and showed that throughput

gains on the order of ln(N) can be achieved by exploiting multi-user diversity. Finally

simulation results showed substantial gains achieved by the optimal policy as compared to

other well-known policies in the literature.
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Chapter 6

Conclusion

In this thesis, we developed dynamic rate-control and scheduling algorithms to meet quality-

of-service requirements on data using minimum resource utilization. Two different setups

were addressed, first involving energy-efficient transmission of data with strict packet-

deadline constraints, and second, involving multi-user scheduling to provide throughput-rate

guarantees with minimum time-slot utilization.

In the first setup, we considered a wireless link model with data packets having strict

deadline constraints, and presented dynamic rate-control algorithms to minimize the to-

tal transmission energy expenditure. A novel framework based on cumulative curves was

presented which provided an intuitive and appealing visualization of the problem and the

optimal solution. For the deterministic case where the data arrival information is known in

advance, the optimal solution had a neat representation as a "stretched string". Stochastic

channel fading was also addressed by first introducing the canonical problem of transmitting

B bits of data by deadline T over a Markov fading channel. This problem was referred to

as the BT-problem and its optimal solution was obtained in closed-form using a stochastic

optimal-control formulation. Various insights from the optimal policy were discussed and an

extension involving average power limit was also treated. Further, we utilized the solution

of the BT-problem and the cumulative curves framework to obtain optimal solutions under

different scenarios involving variable packet deadlines and arrivals. These were obtained

through a natural and intuitive decomposition approach.

In the second setup, we considered a wireless down-link model and addressed the issue

of multi-user scheduling. Here, the quality-of-service requirement was to provide an average
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throughput to a certain class of users, referred to as the QoS users, and the objective was to

obtain a multi-user scheduling policy that achieves this with the least time-slot utilization.

Using a geometric approach, we obtained the optimal policy and further specialized it to

the case of symmetric Rayleigh fading to obtain closed-form relationships for the various

performance metrics. These relationships provided interesting tradeoffs between the various

system parameters as well as facilitated analytical comparison of the optimal policy with

the random-scheduling policy.

The formulations considered in this thesis have a wide range of applicability in wire-

less data, ad-hoc, satellite and sensor networks, especially for applications involving time-

constrained data communication. The theoretical approach that we adopted provided sim-

ple optimal solutions for the various setups, it facilitated a fundamental understanding of

the issues involved and highlighted the interplay between packet deadline constraints and

minimizing the transmission energy expenditure. Various analysis methodologies, such as

the cumulative curves framework and the stochastic optimal control techniques, also pro-

vide unique approaches in addressing other problems in wireless networks. The work in

this thesis and the methodologies presented therein, thus, open up new research possibil-

ities into addressing issues related to packet deadlines and quality-of-service for broader

communication networks.
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Appendix A

Proofs for Chapter 2

A.1 Proof of Theorem II - Uniqueness

Let us assume that the admissible departure curve satisfying the optimality criterion, D(t),

is not unique. Let Di(t) and D2(t) be two such distinct curves. From the boundary

conditions we have D1 (0) = D2 (0) = 0 and D1 (T) = D2 (T) = Dmin(T). Since D1 (t) #

D2 (t) the two curves must differ over some time interval in [0, T]. Let t = a be the first

instant at which the two curves differ and t = b be the first time instant after t = a at

which they are equal again. Note that b < T as at time T, D1(T) = D2(T). Without loss

of generality let Di (t) > D 2(t), t E (a, b). From the admissibility of the two curves we have,

Dmin(t) 5 D2 (t) < D1(t) A(t), t E (a, b) (A.1)

By assumption, since both curves D1 (t) and D2(t) satisfy the optimality criterion, Lem-

mas 2-4 apply for points of slope changes. As D1 (t) is strictly greater than Dmin(t) in

t E (a, b) it follows from Lemmas 2-4 that its slope cannot decrease in (a, b). This implies

that D1 (t) is convex in (a, b) (it could be linear as well). Similarly as D2 (t) is strictly less

than A(t) in t E (a, b), its slope cannot increase and hence it must be concave in (a, b). It

is clear that starting with Di(a) = D2(a) and having Di(t) convex and D2(t) concave in

t E (a, b), the two curves cannot be equal again at t = b which leads to a contradiction.

Finally, if both curves are linear in (a, b) with equality at t = a and t = b, then this violates

the assumption that D1 (t) 0 D2 (t), t E (a, b).

To show that D(t) minimizes the energy cost in (2.3), we proceed as follows. Let
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B denote the space of continuous functions defined on [0, T] with the supremum norm,

||fi = sUPte[o,TI f(t); this space is then a Banach space [70]. Let Q denote the set of all

admissible departure curves, we then have Q C B. First, we claim that Q is a convex set. To

see this, consider Di(t), D2 (t) E Q and let D3(t) = xD1(t) + (1 - x)D 2(t), x E [0, 1]. Since

D1 (t), D2 (t) are continuous, non-decreasing and have bounded right-derivative, it is easy to

see that D3 (t) also has these properties. Further, we also have xDmin (t) 5 xD1 (t) 5 xA(t)

and (1 - x)Dmin(t) (1 - x)D 2(t) 5 (1 - x)A(t), which gives, Dmin(t) 5 D3 (t) A(t);

thus, the causality and the QoS constraints are also satisfied. Next, we show that Q is

compact. To see this, consider a sequence of admissible departure curves {Dn(t)} 1. Since

D'(t) 5 M, VD(t) E Q, we have, IDn(t 2) - Dn(ti)| 5 Mjt 2 - til, which makes the sequence

of functions {Dn(t)} form an equi-continuous family of functions. From [70] (Thm. 7.25,

pg. 158), it then follows that there is a subsequence that converges in the supremum norm.

Thus, this limit function is continuous and since Dn(t) satisfies the causality and the QoS

constraints for all n, it is satisfied by the limit function as well. Hence, the limit function

lies in 9 and we see that Q is compact. Now, consider the energy cost function E(D(t)) as

given in (2.3) with g(-) being strictly convex. We next show that E(D(t)) is also strictly

convex. Consider D 1(t), D2 (t) E Q and let D3(t) = xD1(t) + (1 - x)D 2(t), x E [0, 11. Then,

E(D3(t)) fo"g(xD'(t)+(1 - x)D'(t))dt < f (xg(D'(t)) + (1 - x)g(D'(t))) dt. Thus, we

see that, E(D 3(t)) < xE(Di(t)) + (1 - x)E(D 2(t)). From above, we see that (2.3) involves

an optimization of a strictly convex functional over a compact convex set. Thus, it has a

unique minimizer in Q [66]. From Theorem I, the necessary condition for any admissible

departure curve to be the minimizer is that it must satisfy the optimality criterion and since

such a curve is unique, it must be the optimal solution.

A.2 Proof of Theorem III - Minimal Maximum Power

Consider an admissible departure curve D(t) E I that is not optimal. Let [a, b] be the

interval over which the optimality criterion is violated. Then, based on the construction

in Theorem I we obtain a new curve D(t) that is also admissible. The line segment L(t)

between [a, b] in b(t) always has a slope that is less than the maximum slope of D(t)

between [a, b). As b(t) = D(t), t g (a, b), the overall maximum slope of D(t) cannot exceed
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that of D(t).

max b'(t) 5 max D'(t) (A.2)
tE[O,T) te[O,T)

If D(t) = DOPt(t) then we are done. If not then repeat the process for D(t) now. For g(.)

strictly convex, the energy expenditure strictly decreases at each iteration. Thus, we obtain

a sequence of curves with decreasing energy metric that is lower bounded by the optimal

cost. As the optimal curve that achieves the lower bound is unique, it follows that the

above sequence eventually converges to DOPt(t). The result then follows from a repeated

application of (A.2).

A.3 Proof of Lemma 5

Take two lines L1 (t), L 2(t) E F with slopes si, s2 respectively. Without loss of generality,

let si > S2. Let el and e2 be the respective durations over which they are admissible. Take

e = min[ei, E2], then, over [to, to + E) we can view L1 (t), L2 (t) equivalently as new A(t) and

Dmin (t) respectively. Any line with slope s such that S2 s < si is then admissible for

duration E and hence belongs to F.

A.4 Proof of Lemma 7

(a) Let i be the point at which LD(t) intersects Dmin(t) first. By definition, LD(t) <

A(t),Vt E (tot). The proof now follows in two parts. First, we show that any line in

F with slope less than L', must intersect Dmin(t) at or before i and second that this

line does not intersect A(t) in (to, ). Consider L(t) E F with slope less than L' , then,

L(t) < LD(t),Vt > to. Hence, at time i we have L(i) < LD(i) = Dmin(i). If instead,

t is the discontinuity point for Dmin (t), then, LD(t) - Dmin (t) changes sign at t and so

L(t) - Dmin(t) must have changed sign earlier at t < t. Thus, we see that L(t) must

intersect Dmin(t) at or before i. Next, since L(t) < LD(t) < A(t) in t E (to, i), the line

L(t) cannot intersect A(t) first. This completes the proof of part (a) in the lemma. Along

similar lines as above part (b) follows.
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A.5 Proof of optimality of the algorithm

From Theorem II we know that D*Pt(t) is unique. Hence it suffices to prove that (a) at

every iteration one of the steps of the algorithm is satisfied and (b) the constructed curve

satisfies the optimality criterion.

Proof of claim (a): At every admissible point (to, a), #0 is defined as given in (2.16).

Line Lo is either tangent to A(t) (orDmin(t)) or not. If it is not tangent then by Lemma 6

it must intersect either A(t) or Dmin(t) first, and step (2) of the algorithm is then satisfied.

If LO is the tangent, step (3) is followed. Finally, the new point (ti, y) obtained from the

algorithm is also admissible.

Proof of claim (b): Let De(t) denote the constructed curve. It is obvious from the

construction that at all points where the slope changes Lemma 2 is satisfied. We next show

that Lemmas 3 and 4 are also satisfied. Let to be the starting instant at some iteration. Let

step 2 be satisfied at to, then, the sets FDm and FA are non-empty. Suppose L" intersects

Dmin(t) first, i.e. at ti (as in the algorithm) we have L0 (ti) = Dmin(ti). Also, suppose that

Lo(ti) 5 A(tij). From the chosen ti in step 2, it is clear that L0 (t) < A(t) in (to, ti]. Thus,

if we pick a line Li E FA with slope close to L', (= #6), then Li would intersect A(t) beyond

ti. More precisely, there exists an e > 0 such that Li E FA with slope #% < L' < fl + e

intersects A(t) first at t > ti. Now, it follows that at the next iteration, starting from time

ti, the new set FA must at least contain all lines with slopes in (i3#,, 10 + e), hence, the

optimal line starting at time ti cannot have slope greater than 0, (,% here refers to the

optimal slope for the iteration at to). Thus, we see that Lemma 3 is satisfied at ti.

Similarly, if at to step 2 is satisfied but ti is such that we have L0(ti) = A(ti)(or A(ti)),

then, using a similar argument as above it can be seen that starting from time ti, the new

set FDm must at least contain all lines with slopes in (#l, #,, - E). Hence, the optimal line

starting at time ti cannot have slope less than f30 and now Lemma 4 is satisfied at ti. Note,

that if at ti we have LO(ti) = Dmin(ti) = A(ti), it does not matter how the slope changes

beyond ti.

Now, suppose instead that step 3 is satisfied at to then LO is tangent to Dmin(t)(orA(t)).

If L0(t) is tangent to Dmin(t), over t E [to, t1] we have LO(t) = Dmin(t). We claim that

the curve Dmin(t) over t E [to, t1] must be concave. To see this, suppose instead that

there exists [t1, i 2], to < t 1, i 2 < t1 , such that the curve Dmin(t) is strictly convex. Then,
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at ti the tangent cannot be the optimal line; this is because, a line with slope greater

than the tangent will be in the set FDm for point ti and the tangent slope would not be

the maximum over FDm. Thus, L(t) must be concave over t E [to, ti] which shows that

Lemma 3 is satisfied over the entire interval [to, ti]. Furthermore, using the argument from

the preceding paragraphs it also follows that on the next iteration, starting at ti Lemma 3

will be satisfied. Using an analogous argument as above, it is easy to see that if L0 (t) is

tangent to A(t), it is convex over t E [to, ti] and Lemma 4 is satisfied.

Thus, from the above, we see that starting at (0, 0), at every iteration of the algorithm

(every constructed segment of Dc(t)) Lemmas 2-4 are satisfied. This implies that around

every point where the slope of De(t) changes we cannot construct an admissible line segment,

hence, Dc(t) satisfies the optimality criterion.

A.6 Algorithm for constructing DOPt(t) when A(t) and Dmin(t)

are piecewise constant functions

Consider A(t) and Dmin (t) as piecewise-constant functions. Let the arrival curve A(t) be

denoted as,

A(t) =- {t', A'}& ,O < tl < t 2 < ... < tN = T (A.3)

where {ti}N-1 are the jump points of the curve A(t), A' is the cumulative data just before

time t' (the value of A(t) just before the jump), tN is taken as the final time T and AN is

the value at T. Similarly, denote the Dmin(t) curve using subscripts as,

Dmin(t) {ty, BJ}ti , 0 < ti < t 2 < ... < tM = T (A.4)

where {ty}f=1 are the jump points of the curve Dmin(t), By is the minimum data that must

depart by time tj (the value of Dmin(t) at the jump) and tM is taken as the final time T.

By the assumption Dmin(T) = A(T), we have, AN = BM.

Arrange the jump times {ti}, 1 and {tj}f 1 of A(t) and Dmin(t) respectively in increas-

ing order with ties broken arbitrarily. Denote this arranged sequence as {7rP},NJM. For

any p, if 7rp is a jump point of A(t), denote i(p) as the corresponding index of this jump

point within A(t) curve. Similarly, if 7rp is a jump point of Dmin(t), denote j(p) as the

corresponding index of this jump point within Dmin(t) curve. Denote the output vector of
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slopes and times as 9 and t respectively. Vector 9 contains the slopes of the piecewise-linear

segments of DOPt(t) curve and i contains the times when the last segment stops and the new

segment starts, i.e. the lh line segment has slope s(l) (lth entry) and is over time interval

[t(l - 1), t(l)], where we take t(O) = 0.

The following algorithm obtains the vectors 9 and i by looking at the jump points

{ r,}N +M sequentially. Explanations about the various steps are given later. To begin, E

and i are taken as empty vectors.

1. Initialize p = 1, t, = 0, V, = 0, rA = oo (or some large value), rD = 0, IA = ID

IK = I, = 0.

2. If ir, is a jump point of A(t) curve and Ai(,'_- < r^, Update: IA =<p) I, = p

r 

U 

= 

= p(P) 

-V

If 7r, is a jump point of Dmin(t) and _ * 2 rD, Update: ID = j(p), Ir = p,
tjwp-ts

rD = jp-,
tjxp)-t-

3. If rD rA and ir, is a jump point of A(t) curve, append rD to 9 and tID to i, Update:

tS = tr, V = BID, p = I, rA = oo, rD = 0.

If rD rA and 7r, is a jump point of Dmin(t) curve, append rA to 9 and tfA to t,

Update: t, = tIA' V, = AIA, p = I, rA = oo, rD = 0-

4. Increment p = p + 1 and repeat steps 2-4. Stop if p = N + M + 1.

The variables (t,, Vs) represent the start time and value respectively at each recursive

step of the algorithm (the origin point) and initialized to (0, 0). The variable rA keeps track

of the minimum slope value, among straight line segments between (ts, V) and (ti, A') (the

jump points of A(t) curve); it is initialized to a high value for computational purposes.

The variables JA, I keep track of the indices involved for the minimizing point. The

corresponding variables for Dmin(t) are rD which keeps track of the maximizing slope over

the jump points of Dmin(t) curve and ID, I, are the corresponding indices.

In Step 2, depending on whether the jump point 7rp belongs to A(t) or Dmin(t) curve the

corresponding variables are updated. In Step 3, the condition rD r^ is checked. If true

and if the present jump point 7r, belongs to A(t) curve, it implies that the line segments with

slopes lying in [rA, rD) intersect the Dmin(t) curve first; whereas, line segments with slope

greater than rD intersect the A(t) curve first. Thus, from (2.16) the optimal slope fl, is rD
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and hence the line segment with this slope is appended to the optimal curve constructed

so far. Similarly, if rD rA is true and if the present jump point ir, belongs to Dmin (t)

curve, it implies that the line segments with slope lying in [rA, rD] intersect the A(t) curve

first; whereas, line segments with slope less than r^ intersect the Dmin(t) curve first. Thus,

here the optimal slope #,, is rA and the line segment with this slope is appended to the

optimal curve. Finally, in Step 3, the variables p and (t8, V,) are also updated to represent

the endpoint of the chosen line segment. The algorithm then repeats in a similar manner

starting from the new point (t., V).

A.7 Proof of Lemma 8

As presented in Section 2.3.2, the two curves A(t) and Dmin(t) for the BT-problem are,

A(t) = B, Vt E [0, T], and Dmin(t) = 0, t E [0, T), Dmin(T) = B. The admissibility

criterion is 0 < D(t) < B and D(T) = B. Re-phrasing the BT-problem as a calculus of

variations problem we get [71],

min E(D(t)) = g(r(t), t)dtr(t) foI
subject to D'(t) = r(t), D(T) = B

r(t) 2 0, t E [0, T] (A.5)

Uisng [71], the Hamiltonian for the above is, H(D, r, t) = g(r, t) + A(t)r, and from Pontrya-

gin's maximum principle (which is also a sufficient condition in our case due to convexity) the

optimal value r*Pi(t) satisfies, rOPt(t) = arg maxr>o H(DoPt, r, t) = arg maxr>o (g(r, t) + A(t)r).

We also have, i(t) = - = 0, which implies A(t) = constant. Taking k = -A(t) as the con-

stant and substituting back in the roPt(t) equation, we get, r*Pt(t) = arg maxr o (g(r, t) - kr).

The solution to this maximization is as given in (2.18). Since, g(r, t) is strictly convex and

increasing in r, we have that r* is unique. Finally, to satisfy the deadline constraint we

require that the value of k must be such that fL' r*Pt(t)dt = B.
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Appendix B

Proofs for Chapter 3

B.1 Verification Theorem for the BT-problem in Section 3.3

In Section 3.3, we obtained heuristically the optimality equation as given by (3.15). To

present a rigorous argument we need to verify that a solution of (3.15), i.e. functional

forms J(x, c, t) and r*(x, c, t) that satisfy (3.15) with the required boundary conditions,

indeed give the optimal solution for the BT-problem. However, the standard verification

theorems in [63] that provide conditions to check for the optimality of the solution to

the HJB equation do not directly apply for the BT-problem. This is because the non-

standard boundary condition x(T) = 0 leads to a singularity in J(x, c, t) at t = T (since,

J(x, c, t) . 00, if x > 0). To overcome this technical difficulty and obtain a verification

theorem for the BT-problem, we consider a particular relaxation and take appropriate limits

as discussed next.

Consider the following modification to the problem. Instead of emptying the buffer by

time T, extend the deadline to T+-rk for some rk > 0. In the interval [T, T+kr] the channel

does not change and whatever data, x(T), left at time T is transmitted out at the constant

rate x(T)/r. Thus, now the system runs over time [0, T] and the data left at T has a

terminal energy cost of emptying it in the next -rk interval. This terminal cost is given as,

rk 9
hk(x(T), c(T)) =-r (B.1)

c(T)

We now consider a sequence {rk}' such that rk 1 0. This gives a sequence of modified

problems which we denote as {Pk} and the corresponding minimum-cost functions are
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denoted as {Jk(x, c, t)}.

Note that the relaxation does not change the system dynamics over time but only affects

the terminal cost applied to the leftover data at time T. In the BT-problem, we had an

infinite cost on any data left at T but now each problem {Pk} has a smooth function

hk (x(T), c(T)) associated with it. Clearly, then, the optimality equation for each Pk is the

same as (3.15) except that the boundary conditions for the PDE now become Jk(0, c, t) =

0 and Jk(x, c, T) = hk(x, c). The admissibility of a policy for problem Pk includes the

constraints required for the BT-problem with the exception of x(T) = 0 which is no longer

a necessary requirement. Furthermore, from the increasing and convexity properties of g(r),

it is easy to see that for a fixed (x, c), hk(x, c) = 0, if x = 0,Vk and hk(x, c) (k-> 7ci)

x > 0. Thus, as we look at the modified problems Pk with large values of k (smaller values

of rk), there is an increasingly higher penalty cost applied to the data left at time T. And as

k -> oo, this penalty cost goes to infinity; thus, in the limit we have a situation equivalent to

the BT-problem. The rest of the proof delves into the technical details involved in taking

the limits. Specifically, we show that having obtained the optimal cost function for the

modified problem Pk and then taking the limit k -> c0 gives the optimal solution for the

BT-problem.

We will use the notation I to denote the set of all admissible policies for problem Pk

(note that for all Pk, the set P is the same since the problems only differ in the terminal

cost function hk(-, -)). The cost-to-go function for a policy r(-) for problem Pk will be

denoted as J(x, c, t); i.e. J(x, c, t) = E fT g(r(x(c(s) ds + hk(x(T), c(T))]. We start

with Lemma 17 which gives the verification result for problem Pk. It states that a solution

of the PDE equation (3.15) satisfying the relevant boundary conditions indeed gives the

minimum cost function and that the transmission policy obtained from the minimizing r in

(3.15) is the optimal policy.

Lemma 17 (Verification Result for Pk) Let Jk(x, c, t) defined on [0, B| x C x [0, T],

solve the equation in (3.15) with the boundary conditions Jk(0, c, t) = 0,Vc E C, t E [0, T)

and Jk(x, c, T) = hk(X, c). Let r* (x, c, t) be an admissible policy for Pk such that r* is the

minimizing value of r in (3.15) for jk(x, c, t). Then,

1. Jk (x, c, t) Jk (x, c, t), Vr(-)EF
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2. r* (x, c, t) is an optimal policy, jk (x, c, t) is the minimum cost function and,

Tg(r* (x(s), c(s), s +
Jk(x, c, t) = E [ t  c(s) ds + hk(x(T), c(T))J (B.2)

Proof: See [63], Chap III, Theorem 8.1. U

Now, define the function J(x, c, t)A limk-.oo Jk(x, c, t). The next theorem shows that

this limit exists and if it satisfies (3.15), it is the optimal solution for the BT-problem. We

will use the notation F in the theorem to denote the set of all admissible policies for the

BT-problem.

Theorem XVIII (Verification Thm. for the BT-problem) Consider (x, c, t) E [0, B x

C x [0, T) and define J(x, c, t)A limkoo Jk(x, c, t). Let J(x, c, t) satisfy the HJB equation

in (3.15) and r*(x, c, t) be an admissible policy for the BT-problem such that r* is the

minimizing value of r in (3.15) for J(x, c, t). Then,

1. J(x, c, t) < J,(x, c, t), V r(-) E F

2. r*(x, c, t) is the optimal policy, J(x, c, t) is the minimum cost function and,

J(x, c, t) = E [ g(r*(x(s), c(s), s))ds (B.3)
t c(s)I

Proof: We divide the proof into various steps each giving arguments for the various

claims in the theorem statement.

Step 1: The limit, J(x, c, t) = limk_., jk (x, c, t) exists and is finite

Consider the relaxed problem Pk and the corresponding minimum cost function Jk(X, C, t).

We now make two claims, first that Jk(x, c, t) is non-decreasing in k for each (x, c, t) and

second that Jk(x, c, t) is bounded for all k. These two claims are proved as follows. First,

note that the sequence Tk is decreasing and hence hk(X, c) is monotonically point-wise in-

creasing in x with increasing k. Fix an admissible policy r(.) E f, then for every channel

sample path the total energy cost is higher as k increases because the terminal cost is higher.

Hence, for all r(-) E f the expected energy cost increases with k; taking the infimum over

r(.) proves the first claim. To prove the second claim consider a simple policy, 7r(.), that
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empties the data at a constant rate by time t, where t < t < T. For such a policy,

J,(x, c, t) = E K x/(i ) ds = g - E ds
it c(s) t - t [ c(s)

) *0 (f -t (A1# t))' e-'\ f)

~~t - t Ec(zI)j j!

S tg ( e z e < oo

The inequality above follows by first conditioning that the channel makes j transitions over

[t, 1], taking c(s) = (zl)ic, where (zl)jc is the worst possible channel quality starting with

state c and making j transitions, and finally taking expectation with respect to j (number

of transitions, j, is Poisson distributed with rate A(i - t) and zj > 0 is the least value

that any Z(c) can take). Since, jk (x, c, t) < J,(x, c, t),Vk, the bounded-ness claim follows.

Combining the above two claims (non-decreasing and bounded), we see that the point-wise

limit J(x, c, t) = limk-+oo Jk(x, c, t) exists.

Step 2: Result 1 stated in the theorem, i.e. J(x, c, t) <_ Jr(x, c, t), V BT-admissible policies

From the notation considered, F denotes the set of admissible policies for the BT-

problem and If the set of admissible policies for problems {Pk}. We have F C F because a

policy that empties the data by the deadline is clearly an admissible policy for the modified

problems {Pk} in which case such a policy simply incurs zero terminal energy cost. Thus,

for all r(.) E F, x(T) = 0 and the terminal energy cost is zero. This gives for all k,

Jk (X, c, t) = Jr(x, c, t), V r(.) E F (B.4)

where Jr(-) above is defined in (3.5). From Lemma 17 we know that,

Jk(x, C, t) <; Jrk(X, c, 0), V r(-) E f ->D (B.5)

Thus from (B.4) and (B.5) we have,

Jk(x, c, t) <_ Jr(x, c, t), V r(-) E F (B.6)

Since the above inequality holds for all k, taking limits we get,

142



J(x, c, t)A lim Jk(x, c, t) <; Jr(x, c, t), V r(-) E F (B.7)
k-+oo

Step 3: Result 2 stated in the theorem

From the theorem statement, we know that J(x, c, t) satisfies (3.15) and r*(x, c, t) is an

admissible policy for the BT-problem. Now, using Dynkin's formula, [63], on J(x, c, t) for

policy r*(-) we get V r, t < - < T,

J(x, c, t) = EJ(x, cr, r) - E Ar* J(x,, c,, s)ds (B.8)

= EJ(x,, c7 , -r) + EJ g(r*(xs, c,, s) ds (B.9)
( t cS

> E J g(r*(x,, c., s)) ds (B.10)

where we have used x8, c, as short-hand notations for x(s) and c(s) respectively. The

equality in (B.9) follows since r* is the minimizing value in (3.14) which gives A'* J(x, c, t) +

g(r*) = 0 or equivalently ,g(r*(xs, c,, s)) = -Ar*J(xS, c8, s). The inequality in (B.10)

follows since J(.) is non-negative. Since the above holds for all r < T, taking limits and

using the Monotone Convergence theorem we get,

J(x, c, t) > E g(r*(x,,7 c, s))ds (B.11)
Jt c,

Combining the above inequality with that in (B.7) shows that we have equality for policy

r*(x, c, t), i.e. J(x, c, t) = E fT 9('*(,''"9)) ds. This completes the proof that J(x, c, t) isC's

the minimum cost function and r*(.) is the optimal policy. U

B.2 Proof of Theorem VI - BT-problem

To prove optimality, we check all the conditions required in the verification results of Ap-

pendix B.1 and proceed as follows. We first consider the relaxed problem Pk and obtain the

optimal solution by verifying the conditions in Lemma 17. Then, we take the limit k -- oo

and check the conditions required in Theorem XVIII. These limits give us the optimal

solution for the BT-problem.
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Step 1: Optimal solution for the modified problem Pk

Let us suppose that the functional form for the optimal rate r% (x, c, t) is given as,

rk(x, c1, 0) ff (T - t), i = 1, ..., 7m (B.12)

Assuming this functional form we now obtain the minimum cost function Jk(x, c, t). To

proceed, note that r*(-) must be the minimizing value of r in (3.15). Thus, using the first-

order condition for the minimization (i.e. first derivative with respect to r equal to zero)

we get, V(x, c, t) E (0, BI x C x [0, T),

a g(r) +Jk(x, ci, t) _ OJk(X, c, t) +0
Or c Ot+ A(Ez[Jk(x, Z(ci)ci, t)] - Jk(x, ci, t))) 0

(B.13)

This gives, ax c'A ' and upon integration with the boundary condition

Jk (0, ci, t) = 0, we get,

Jk (XCi t) = x , = 1, . m (B.14)
ci(fi'(T - t))"-1'

In order for the functional forms in (B.12) and (B.14) to be the optimal solution we

need to satisfy the conditions in Lemma 17.

- First, the boundary condition Jk(x, c, T) = hk(X, ci) = ,requires,

fk(0) =Irk, Vi = 1, ...,I m (B.15)

The other boundary condition Jk( 0 , ci, t) = 0, Vi, t, is also satisfied as can be easily checked.

- Second, Jk(-) and r* (-) must solve the PDE equation in (3.15) for all values of the system

state (x, c, t) E ([0, oo) x (c,..., c,) x [0, T)). That is, we require,

g(rk(x,ct)) Jk(x,ct) r[(x, ci, t)8J (x7t)+A(Ez[Jk(x, Z(ci)ci, t)]-Jk(x, ci, t)) = 0
c + at kx

(B.16)

144



Substituting (B.12) and (B.14) in the equation above, we get,

X + -x"(1 - n)(ff)'(T - t) x nx"~ 1

ci(fik(T - t))+ ci(f, (T - t))n fi(T - t) c(f, (T - t))n-1

1 ziyc' (fjk(T - t))n- 1  ci(fk(T - t))n-1

Cancelling out n, simplifying the above and setting s = T - t gives the ODE system,

(f)'(s)=1 A \ l(.p (f{(s))" Vi = 1,..., m (B.17)
n - 1 n - 1 zij (f3 (s))n-1

Thus, from above we see that for r* (-) and Jk(.), as given in (B.12) and (B.14), to satisfy

the optimality PDE equation in (3.15) we require that the functions {fk(s)}! 1 satisfy the

above ODE system with the boundary conditions in (B.15). The question that remains is

whether a set of positive functions exist that solve the ODE system in (B.17). The following

lemma shows that indeed such a set exists and also that these functions are unique.

Lemma 18 (Existence and Uniqueness of the ODE solution in (B.17)) The ODE

system in (B. 17) with the boundary conditions fik (0) = 1, Vi, rk > 0, has a unique positive

solution for s E [0, T|.

Proof: See Appendix B.3. U

Thus, we see that jk(x, ci, t) as given in (B.14) solves (3.15) with the minimizing rate

function r*(x, c, t) as given in (B. 12). This rate function is a valid transmission policy as

it satisfies all the admissibility requirements for problem Pk: that is, r* > 0, (r* = 0 for

x = 0), r*(x, c, t) is locally-Lipschitz-continuous in x and continuous in t. From Lemma 17,

it then follows that Jk(X7 ci, t) and r*(x, c', t) are the optimal solution for problem Pk.

Step 2: Optimal solution for the BT-problem (taking limk_.oo in the Step 1 results)

Consider (x, c, t) E [0, B] x C x [0, T) and the limit J(x, c, t) = limk_.oo jk(x, c, t). From

Theorem XVIII we know that this limit exists and using (B.14) we obtain,

J(x, ci, t) = lim Jk (XciA , t) = =1,..., m (B.18)
k-+oo ci(fi(T - t))"~'l
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where we define,

fi(s) A lim fr(s), s E [0, T], Vi (B.19)
k->oo

Note that since the limit function J(x, c', t) is positive and bounded for all t e [0, T), the

function fi(s) is positive for all s > 0.

For optimality we now check the conditions required in Theorem XVIII. First, we need

to show that J(.) as obtained in (B.18) satisfies the HJB equation in (3.15). Substituting

the above form of J(x, c', t) in (3.15) and using the first-order condition for the minimization

we get, aJ(X',t) = g'(r*(x,cit)) which gives,

r*(x, e, t) = ,tI i = 1,...,I m (B.20)

Furthermore, to satisfy the PDE equation we require (see the steps presented in Step 1),

fj(s) -1+ Af1(s) A Pu (f,(s)) , Vi = 1, ... , m (B.21)
n - n - 1 z j (fj(s))"-'

Thus, equivalently, in order to prove that J(x, c, t) satisfies the HJB equation, we need

to show that the functions {fi(s)} as defined in (B.19) satisfy the above ODE system

with the boundary conditions fj(0) = 0 and fj(0) = 1, Vi. These boundary conditions

follow by taking the limit k -+ oo in f,'(s); specifically, fk(0) = rk -> 0 and (ffk)'(0) =

(1+ A - X ZM 1 i -> 1 (Note that as k -+ oo, rk 1 0). The following lemma shows

that this is indeed true and {fi(s)} as defined in (B.19) satisfy the ODE system in (B.21)

with the above mentioned boundary conditions; furthermore {fi(s)} are also the unique

solution of that ODE system.

Lemma 19 The functions {fi(s)}, s E [0, T] as defined in (B.19) are the unique solution

of the ODE system in (B.21) with the boundary conditions ft (0) = 0 and fj(0) = 1, Vi.

Proof: See Appendix B.4.

Finally, we check the admissibility of policy r* (X, c, t) as given in (B.20). To see this,

note that the rate r* is non-negative and is zero when x = 0, r*(x, c, t) is locally-Lipschitz-

continuous in x and continuous in t. The policy r*(-) also satisfies the deadline constraint

x(T) = 0 since the boundary condition, fj(0) = 1, Vi, implies that very close to the deadline

T, the policy behaves as r*(x, c, t) = T-;; thereby emptying the buffer by the deadline.
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B.3 Proof of Lemma 18 - Existence and Uniqueness of the solution

to the ODE in (B.17)

To ease the notations, let us abstract the ODE system in (B.17) as follows. Let xi(s)A ff(s),

aA-, A bij (n 1z then (B.17) can be re-written as,

z'i(s)=1 + azi (s) -E bij 7 1 Vi = 1, ... ., m (B.22)=1

where for pij ;> 0, (A, zij) > 0 and n > 1, we have, a > 0 and bij E [0, oo). Thus, we now

have to find a vector of functions R(s)A(xi(s),.. . , xm(s)) such that each xi(s) satisfies the

equation in (B.22) with the initial condition i(O) = (Irk, ... , r) (since fik(O) = -r, Vi).

Let us define Gi(i(s)) A 1+ axi(s) - Em_1 b2 , (, then, in a very compact form we

get,

:' = (i(s)) (B.23)

where i'(s) denotes the column vector (x'(s),...,x'(s)) and a(-) denotes the column

vector (G1(),...,Gm(-)). Now consider the open positive orthant and denote it as U,

thus, U = (xi > 0, ... , xm > 0). For i E U, each Gi(i) is a continuously differentiable

function. Hence, G(i) is continuously differentiable which means that it is locally Lipschitz

continuous in i over the set U. Therefore, starting with i(0) = (rk, ... , rk) E U, the ODE

in (B.23) has a unique local solution i(s) that lies in U [69]. The only question now remains

is whether the local solution leaves the open positive orthant, i.e. whether R(s) V U for

some finite s > 0. And the answer is no; the local solution remains inside U, which then

proves the claim that the ODE in (B.23) has a unique positive solution for all s > 0. To

prove the last requirement that i(s) E U, Vs > 0, we proceed as follows.

First, since G(i) is locally Lipschitz continuous in R, a unique local solution that lies in

U exists for the ODE in (B.23). Suppose now that 0 < so < oo is the first instant at which

for some i, we have xi(so) = 0 or xi(so) = oo, i.e. so is the first instant at which i(s) leaves

the positive orthant U. Over the interval s E [0, so) we have,

Z (s) = 1+axi(s) - Zbij x(s)- (B.24)
j=1 Xj(s)n1

< 1+ ai(s) (B.25)
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From (B.25) above we get,

xi(s) < (1 + ark)eas - (B.26)
a

Thus, each xi(s) is bounded above by an exponential function that goes to infinity only

when s -- > oc, and this exponential function is given as (1+a-r)e--1

We now compute the lower bound on the functions {xi(s)}. Let xe(s) take the smallest

value among {xi(s)} over an interval [0, si], si so; this is true since xi(s) are continuous

functions and if a certain function takes the smallest value, it will remain the minimum over

some interval. We then have, xj(s)/xj(s) 1, Vj = 1,...,m over s E [0, si]. This gives,

x =(s) 1+ ax(s) - Ebij i (B.27)

> - Eb _ x1 (B.28)

-X -x(s)ZEbIj j (S) ' (B.29)
j=1
m

> -x () Zbi, (since x (s)/xj(s) 1, Vj) (B.30)
j=1

= -cxj(s), (taking cl = Em bij) (B.31)

From (B.31) above we get,

xe(s) rke~"cl (B.32)

Thus, xl(s) is bounded below by an exponential function that goes to zero only when s -> oo.

Using a recursive argument starting with s = sl and following the new minimum function,

it follows that over the interval [0, so) all functions {xi(s)} are lower bounded by rkesema,

where cmax = max=1,...,m CI.

From the arguments above we therefore deduce that the unique local solution, R(s),

is upper and lower bounded by two respective positive exponential functions. Hence, the

local solution never leaves the set U. Thus, by contradiction so cannot be finite and it then

follows that the ODE in (B.23) has a unique positive global solution, R(s), for all s > 0, i.e.

we have a unique R(s) E U, Vs > 0 that satisfies (B.23) with i(O) = (rk, . .. , T).
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B.4 Proof of Lemma 19 - Functions {f t (s)} are the unique solu-

tion of the ODE system in (B.21)

We know from Lemma 18 that frk(s) is a continuously differentiable function, hence, (fk)'(s)

exists for all s E [0, T] and from (B.17) it is given as,

(ft)(s)- A + fj (s) Vi = 1,... m (B.33)
n - 1 n - 1 zij(fs)

Take the limit k - oo in the above equation and denote this point-wise limit as hi(s), i.e.

hi (s) A limk-,oo(fik)'(s). The limit exists since fik(s) is pointwise convergent for all i (see

Step 2 of Section B.2). Thus, we get,

hi(s) = 1+ AIs) n-1~ (f()) n s E (0, T] (B.34)
n - 1 n -1 zij (s))"-1

= 1, s=0 (B.35)

To prove the lemma, we need to show that fi(s) as defined in (B.19) satisfies f (s) = hi(s).

To do this, we use the following result [70] (Thm. 7.17, pg. 152).

Lemma 20 [70] Suppose {fn} is a sequence of functions, differentiable on [a, b] and such

that {fn(xo)} converges for some point x0 on [a, b]. If {f' } converges uniformly on [a, b],

then {fn} converges uniformly on [a, b], to a function f, and f'(x) = limn_,o f'(x), (a <

x < b).

For our case, for all i, {fk(s)} 4 forms a sequence of differentiable functions on [0, T]

and f,'(s) converges point-wise to fi(s). We show in Lemma 21 below that (ffk)'(s) has a

uniformly convergent subsequence over s E [0, T]. Considering this subsequence, combined

with Lemma 20 above (for our case, the sequence {f'} in Lemma 20 is the uniformly

convergent subsequence {(f21 )'(s)} and the limit function f is fi(s)), we obtain, fj(s) =

hi(s) = 1 + _ - ;\ Z'" _P (from (B.34)). Thus, this proves that fi(s) is

differentiable over [0, T] and is a solution of the ODE in (B.21) with fj(0) = 0 and fi'(0) = 1.

Lemma 21 (Uniform convergence of (f2k'(s)) The functions {(ff)'(s)} 1 have a uni-

formly convergent subsequence on s E [0, T] for all i.

Proof: See Section B.5. U
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We now prove uniqueness using a contradiction argument. Suppose that the solution is

not unique and let j(s) = (fi(s), .. ., fm(s)) and y(s) = (y1(s), . .. , ym(s)) be two solutions

with fi(0) = 0, fj(0) = 1, y (0) = 0, yj(0) = 1, Vi = 1, ..., m. We first show that if we

look at s close to 0, the two solutions Y(s) and f(s) are in the positive orthant and close

to each other. Start at s = 0 and consider e > 0, then by the mean value theorem [70] we

have, yi(e) = Ey (7)) with q E (0, e). By the continuity of the derivative, we further have

yi(E) = E(y (0) + tj(E)) = E(1 + Ti(E)), where -yj(E) E-+ 0 and this holds for all i. Thus for E

small enough we must have Y(E) > 0; in other words there exists a Z such that for all 0 < e < Z

the solution y(e) is in the positive orthant. Similarly, since Y(s) = (fi(s),..., fm(s)) is also

a solution, the above set of arguments hold for it as well and we have, f(E) > 0. From above

we also see that I y(e) I I < -yy (e), where -yy(E) --~ 0 and a similar inequality holds for If(E)

as well. Thus, Iy(e) - Y(e)II < IY(e)II + IIF(E)II < (yy (E) + yf (e)).

Now, pick e E (0, Z) and consider the two solutions of the ODE over time 8 E [e, T]

starting from the initial state y(E) and i(e) respectively. Following the proof of Lemma 18

(Appendix B.3), we see that starting from an initial state in the positive orthant, the ODE

has a unique solution that lies in the positive orthant. Furthermore, from [69], the solution

is continuous with respect to the initial conditions. Thus, in simple terms, this implies that

starting with close enough initial conditions the two solutions y(s) and f(s) must be close

enough for all S E [E, T]. Mathematically, for any ( > 0, there exists an e E (0, Z) such that

maxs[E,Tj Iy(s) - Y(s)II < C. By taking C going to zero, we see that yF(s) and f(s) cannot

be distinct over s E [0, T] and this completes the proof.

B.5 Proof of Lemma 21 - Uniform convergence of (ff)'(s)

We prove the result as follows: First, we show that I (f2'f)'(s) is bounded for all s E [0, T]

and all i, k and then use this result to show a uniformly convergent subsequence for fk(s)
(fk(8))nl

and n-1, Vj on s E [0, T]. Using the relationship in (B.33) the result of the lemma
(fill(s))'

then directly follows.
(fk (3))n 

fklS)

To proceed, consider first the term % and for ease of notation set Hy (s) 1 .
(fjk(a))n-' 3i -

We now prove that H (s) is positive and bounded for s E [0, T] by showing that the vector

(fe (s), ... , fk(s)), s E [0, T] lies within a conic set in the positive orthant.

Let zi(s)A f(s), a ', bijA (nizp', then in a more generic form (B.33) can be written
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z'i(s) = + axi(s) - b ,(S Vi = 1, ..., )M (B.36)
3=1

where for pij > 0, (A, zij) > 0 and n > 1, we have, a > 0 and bij E [0, oo). Consider the

following set,

< xi , Vi I (B.37)
x- 6

where 0 < 6 < 1 is appropriately chosen as presented later. Let H denote the set of all

those values of (xi, ... , xm) in the positive orthant that satisfy the relationship in (B.37)

(we also include the origin in R). Graphically, H looks like a conic region and it consists of

all straight lines with bounded slopes lying in [6,1/6].

We now show that for an appropriately chosen 6, the gradient vector at the boundaries

of set H points inwards into the set. Without loss of generality consider the hyperplane

boundary defined by the constraint - = 6 or x - 6xj = 0. The vector F with componentsX1

ej = 1, el = - 6, eq = 0, Vq : i, 1 is normal to this plane and points inwards into the set.

Consider the dot product of the gradient vector (X'(s), ... , x'(s)) with E and denote it as

w. Using (B.36), we then have,

W 1+ axi(s) - Ebi 1  -6 1az xI (S)
=1 X(S)g (=1)

= (1-6)+E -bij6 1 + 6b _ , (since xi(s) = 6xi(s))

But since R(s) is within H (at the boundary), it also satisfies 6 < - j, Vj. Using these

inequalities in the equation above we get,

w > (1 - 6) + (-bj6x(s) + 6bijz(s)) (B.38)
j=1

= (1-6) + (z6n1bij Sxj(s) - bij )xj(s) (B.39)
(j=1 (j=1

Now, xl(s) is a continuously differentiable function over the compact interval [0, T]. Hence,
x(s) is bounded over [0, T] (and this applies for all k) [70] (Thm. 4.15, pg. 89). But, we
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know that fjk(s) is positive and monotonically non-increasing in k. This follows from Step 1

of the proof of Theorem XVIII, where for a fixed (x, c, t), Jk(x, c, t) is non-decreasing in

k and from (B.14) this translates into the non-increasing property for ffk (s), Vi. Hence,

by taking k = 1 and by considering a maximum bound over {fi}',, we have xl(s) < M,

where the bound M > 0 is independent of k and 1. Using this in the above equation we get,

W > 1 -6+ ( 6"~1bij xI(s) - ( bij 6M (B.40)
(j=1 (j=1

= 1+ ( 6n-lblj 6xj(s) - 1+ bijM 6 (B.41)
(=1 j=1

> 1-6 1 +M bij , (since xj(s) >0) (B.42)
1=1

Now taking 0 < 6 < 1 we get w > 0 (note that 1 is a positive number)._+ wege 1+M ET1 bij

Thus, since the dot product is positive, the gradient vector points inwards into the set h

at that particular boundary. Repeating this argument over all i, 1 pairs and taking 6 as,

0 < 6 < mini (1+M ), b.)' shows that the gradient vector at all the boundaries points

inwards into the set N. Thus, since the initial vector, (x1(0),... , xm(0)) = (-r, .. . rk) lies

in H and the gradient vector points inwards into h at all the boundaries, it proves that the

solution vector (x1(s),... , xm(s)) E h for all s E [0, T]. Rephrasing the above statement,

the set X as defined in (B.37) is such that the functions (fe(s), ... , ffk(s)) lie inside R for

all k and s E [0, T]. Once we have this set R, we can now bound the derivative (ff)'(s), Vk.

Af__ (s A z pa___
|(fk) (s)I = 1 + A2 '() - 1 - f()f

< 1 + fy s) +A 1 A p (f (s))"
n - 1 n- i 1_ z 3 ( s))"-

Pu 1 3f()Th .M

1+ M + n 1 -- M, since, - =-r; f(s) M

< K, (where 11= 1 + nM + n 1r M max( 1i)

where the bound M is independent of i, k, s. Thus, we have that {fk (s)}, Vs E [0, T], i, k

have a bounded derivative.
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Uniform convergence of fr (s): First, note that since (fk)'(s) is bounded, hi (s) as defined

in (B.34) is bounded over s E [0, T] for all i. We now show that fi(s), Vi (as defined in

(B.19)) is continuous over s E [0, T]. Pick s E (0, T), then,

lim (fA(s + E) - fA(s)) = lim lim fik(s + E) - lim f( (B.43)e-0e->0 (k-+oo k--oo i(.3

= ~ i clim (fik(s + E) - fk (s)) (B.44)
,E-+0 (k--oo

Since f2'(s) is differentiable, from the Mean Value Theorem [70], f2k(s + E) - f1k(s) =

e (ff)'(((E)), where ((E) E [s, s + E]. Substituting this in the equation above gives,

lim (fi(s + e) - fA(s)) = lim lim ((fk)'(((E))) (B.45)
E-+0 6--+0 (k--oo i(.5

= lim Ehi((e)) = 0 (B.46)
e-+0

The last equality above follows since hi(() is bounded. By using a similar argument as

above for s = 0, T and looking at the limits from the right and the left respectively, we

see that fi(s) is continuous at the boundaries as well. Thus, this proves that fi(s) is

continuous over s E [0, T]. Now from the proof of Theorem XVIII we know that jk (X, c, t) is

monotonically non-decreasing in k and using (B.14) this implies that fA (s) is monotonically

non-increasing in k for a fixed s. Thus, fk (s) is a monotonically non-increasing sequence in

k which converges point-wise to a continuous function fi(s) over the compact interval [0, T].

From [70] (Thm. 7.13) it follows that fk (s) converges uniformly to fi(s) on s E [0, T].

Uniform convergence of : We first show that H (s) over s E [0, T] is continu-

ously differentiable with bounded derivative as given below,

OH ' (s) n(fk(s))n- 1  (+ - n)(f1 (s))f

Os (f(s))n- ( (f (s))n

H (s) nj (B4
g on-1 + (1 - n) k (B.48)

i, (where M = ir_ + (1 - n)) (B.49)

It now follows that IHf,(s) - Hk'(s')| 5 Mjs - s'I, where s, s' E [0, T]. Since the bound

M is independent of s, k, i, j, the functions {H 2 (s)}0o, form an equicontinuous family of

functions for every i, j pair. It then follows [70] (Thm. 7.25, pg. 158) that Hi, (s) =(13 (.))n -

153



has a uniformly convergent subsequence that converges to the point-wise limit (f .

From (B.33), (ff)'(s) is a linear combination of the terms fr(s) and ( . We

have shown that each of them has a uniformly convergent subsequence, thus, it follows that

{(fk)'(s)} contains a uniformly convergent subsequence over s E [0, T), Vi.

B.6 Proof of Theorem VII - Constant Drift Channel, Monomial

Case

The proof for this result is identical to that of Theorem VI but now we can evaluate the

functions {fi(s)} in closed form. To see this, start with problem Pk and suppose that for all

channel states the function fk (s) is the same, i.e. fk (s) = fk (s). The ordinary differential

for fk(S) then becomes,

(fk)'(S) = 1+ Afk-() A fk (s) (B.50)
n - n - 3 zij

Afk (S)= 1- (#W-1) (B.51)
n - 1

where E, = E[1/Z(c)] = #, Vi, by the constant drift channel assumption. The solutionzij

to the above ODE with the boundary condition fk(0) = rk is given as,

fk(S) = 1 - exp(-A(3 _ 1)3)) + rk exp(- ), s > 0 (B.52)
A(# - 1) n - 1 n - 1

From Lemma 18 the above function is the unique solution of the ODE in (B.51) and it

can be easily checked that the functional forms r*(x, c, t) = -) and jk(x, c, t) =

c T)__ satisfy the conditions in Lemma 17. To obtain the solution for the BT-

problem, we take the limit (k -+ oo) which gives the optimal solution in (3.22) and (3.23)

with f(s)A limk-o fk() = ~ (1 - e _~ )

B.7 Proof of Theorem VIII - Constant Drift Channel, Exponen-

tial Case

A direct non-constructive proof for showing optimality is to plug the functional forms given

in the theorem statement into the PDE equation in (3.15) and check if it satisfies the
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equation. However, such a proof would not reveal how the particular functional form can

be obtained. To present a constructive proof, we utilize discrete dynamic programming

and proceed as follows. From the steps in Appendix B.1, we first solve for the optimal

functions, {Jk(x, c, t), r*(x, c, t)}, of the relaxed problem Pk, take the limit rk 1 0 and

verify the conditions of Theorem XVIII. Now, to solve problem Pk, we consider a discrete

approximation of the time interval [0, T] with step size dt. Using dynamic programming

(DP), we obtain the optimal policy and the minimum cost function and take the limit

dt -+ 0. Thus, there are two limiting operations involved, first dt --+ 0 to solve for the

optimal functions for problem Pk and then -r 1 0 to solve for the optimal functions for the

BT-problem. We treat the two cases, 3 ;> 1 and # < 1 separately.

Case 1: 3 > 1. Consider a discrete approximation of time with step size dt > 0.

Starting at time T and recursing backwards, let [T - jdt, T - (j - 1)dt], j > 1 denote

the jth stage and V (x, c) the corresponding cost-to-go function starting with x amounts of

data and channel state c. Denote the jih stage optimal transmission rate as rj (x, c). Let

V denote the terminal energy cost over [T, T + Tk], then, Vo(x, c) = hic(x, c) = (a/1)

The first step DP recursion is,

V1 (x, c) = min {, + (1- Adt)Vo(x - rdt, c)+ AdtEz(Vo(x - rdt, Zc))} (B.53)
o<r<x/dt c )

The constraint 0 < r < x/dt follows from the non-negativity of the rate and the buffer

respectively. Substituting Vo(.) and using standard lagrangian techniques, it is easy to

show that the above minimization has the following solution. Let p = 1 + Adt(# - 1),

(p > 1, since 3 > 1),

x - + k in p X > di in p

ri(x, c) =Tk+dt (rk+dt)In a ' - In a (B.54)
X 0 < X < dtlInp

ri+dtari(x,c) _ (dt+psk) X > at in p

V(x, c) = cC - In a (B.55)
(ari(x,c- 1), 0 < x < dnP

Following the DP recursion for the next stage, we get,

V2 (x, c) = nm - 1)dt + (1 - Adt)VI(x - rdt, c)+ AdtEz (V(x - rdt, Zc))} (B.56)O~r~xdt I C
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Now, to solve the above minimization, first assume x - rdt > dt inP. Substituting the corre-Ina

sponding form of Vi(-) into (B.56) and solving the minimization by standard differentiation,

the optimal rate can be obtained as r = rk+2dt + "2. With this optimal r, sub-k2t (Trk±2dt) Ina ti pia ,sb

stituting in x - rdt > diinP, we get the threshold, x > 3tIn p. Note that for the above
- n a - In

threshold rdt < x, thus, buffer non-negativity constraint is also satisfied. Next, assume

x - rdt < dt " P, and substitute the relevant form of V1(.) into (B.56). Proceeding as before,

we get, r = + IP. Using this r in x - rdt < dtI"P and the buffer non-negativity con-weetr=2dt +Ina In andtebfe

straint x - rdt > 0 we get the threshold on x as, dtInp < X < 3dtinp. Finally, for x < diin,Ina - - Ina Ina

all the data is drained in the second stage and the rate is r = L. Thus, the solution of the

minimization in (B.56) is,

x + (2rk+dt) In p > 3dt In p
rk+2dt (-rk+2dt)ina - " a

r2(x, c) = x + inp dtInp < X < 3dtlnp (B.57)
2dt 2lna In a - In a

.L X < dI n p

+2dt 2(x1 c) _(dt+pdt+p
2 k) 3dt in pSc c - Ina

V2 (x, c) = 2dtar2 (x,c) - (dt+pdt) di In p < 3dtinp (B.58)
c c In a - In a

dt(ar2(xc) - ) < dtinp
c in a

Continuing the DP recursion, the solution for the jth stage is,

x T+ jd + (j2+ 2) dt) in p > j(j+1)dtinp

rj(x,c) = rk+jdt k+jdT in a 21na (B.59)
x (j-i) In p (j-i)(j-i+1)dtlnp < X (j-i+1)(j-i+2)dtinp

(j-i+1)dt 21na 21na - 2In a

(Tk+jdt ar2(x,c) - (1+p+...+p3-1 )dt+plrk X > j(j+1)dtinp

V(x, c) = c - 21na (B.60)
(j-i+1)dt r2(x,c) _ (1+p+...+pri)dt (j-i)(j-i+1)dtinp < X < (j-i+1)(j-i+2)dtlnp

c c ' 21na - 2ina

where i = 1,...,j. Now, take the limits, dt -- 0, jdt -+ (T - t). Under this limiting

operation, we have j in p -+ A(fl -1) (T - t). Applying these limits we get (let, ( = A(O - 1)),
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rk*(X, C, t) =

Jk(x, c, t) =

0 < x <

x ( _(T-t)(k+ ) X ((T-t)2

Tk+T-t rik+T-t) In a - 2lna

2x in ae 2 x(na + 1- -e (x<(T-t)2
c ( (Ck e C >1- 21na

((T - t + rk)ar;(x,c,t) _ (1+(Ck)eCT-t)-1 x > (T-t)2

c ) I - 21na

The function jk(x, c, t) given in (B.62) is continuously differentiable, satisfies the HJB

equation in (3.15) and the boundary conditions for problem Pk. The policy r* (x, c, t) is

admissible and is the minimizing r for the HJB equation. Thus, by Lemma 17, (B.61) and

(B.62) form the optimal solution for Pk. To obtain J(x, c, t) take the limit -rk 10 in (B.62).

This gives,

J(x, c, t) =
((-t X__> C(T t)2

1~ 2 xlnaev/2x~ln a +1-eV'2xConc a < 2 I

1((T - t)aT+-t n) a eC(Tt)-) 
c( - 21n a

(B.63)

Taking limits in (B.61) gives r*(-) as in (3.24), i.e.

2xA(/3-1)

r*(x, c, t) = "" '

x A(fi-1)(T-t)
T-t 2ina

0 < x < A\(f-1)(T-t)2

A(#-1)(T-t)
2

21na

To check optimality, we need to verify the conditions of Theorem XVIII. It is easy to check

that J(x, c, t) in (B.63) satisfies the HJB equation with r*(-) the minimizing value. Policy

r*(.), satisfies the admissibility criteria including the deadline constraint, since, the rate

r*(x, ct) >T7",Vx > 0, t<T.

Case 2: 0 < # < 1. The result follows using the same methodology as in the previous

case and is omitted here for brevity. The function J(x, c, t) in this case is (let, q = A(1 - P)),

e-o(T-o 2x In a e'/2xg inca 1-eV2x in \

J(x, c, t) = { c ( _ ?aVT-t) + )

((T - t)aT- n+ * -a~1)

while r * (x, c, t) is as given in (3.25), i.e.

<x< i(T-t
2 In a

X > 77(T-t)2
- 2ln a
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0J 0 < x < A(1-#)(T-t)2
r*(x, c, t) = 21na (B.65)

x A(-)T X > A(1-#)(T-t)2
T-t 2lna ' - 2lna

B.8 Proof of Lemma 10 - Weak Duality

Consider a policy f(-) that is admissible for problem (P), i.e. f(-) E <D and f(-) satisfies

the power constraints in (3.27). Note that problem (?) has at least one admissible solution

since a policy that does not transmit any data and simply incurs the penalty cost is an

admissible policy. Now, fix a lagrange vector P > 0. Since f(.) is admissible, using (3.27)

we get,

[kE j g( (x8)c(s) s)), ds PT) : 0, k = ,. . L (B 66)

From (3.29) it directly follows that,

RM.(), ) J((), zo, co) (B.67)

T 1gxT)1-where, J(F(.), zO, co) = E [fo -yg(f(x(s), c(s), s))ds + .-j) Now, since F(-) E <D,

using (3.31) we clearly have, L(P) X((-(), P) and plugging in (B.67) above we get,

L(P) < J(f;(-), zo, co) (B.68)

Since the above holds for all admissible f(.), taking the infimum of the right-side of the

inequality above, over the set of admissible policies for problem (P) gives,

L(P) inf J(f(-), Xo, co) = J(xo, CO) (B.69)
f() admissible

B.9 Proof of Theorem IX - BT-problem with Power Constraints

Consider first the Lth partition interval, i.e. k = L and suppose that we start with the

system state (x, c, t) lying in this interval. Note that the system state space for this interval

is (x, c, t) E [0, B] x C x (L 1 1)T T) and over this period, equations (3.42) and (3.43) take
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the form,

r*,(x, c, t) = f(T-t) = 1, ... , m (B.70)

1 + Lz

H, (x, c, t) = _( ,)n i = 1, ... , m (B.71)
ci(fiL(T -t))" 1'

The cost function over this period is, P(r, c) = (1 + vL)(,-, and the optimality equation

is given as in (3.41) with vk = vL. Over this period, a direct comparison shows that

the minimization problem in (3.33) is identical to the relaxed BT-problem considered in

Appendix B.1, hence, Lemma 17 applies in the following form.

Lemma 22 Consider the Lth partition interval and let H,(x, c, t) defined on (x, c, t) E

[0, B]xCx [(L1), T], solve the equation in (3.41) with the boundary conditions H,(0, c, t) =
0 L Thea,

0and H, (x , c, T ) = * . Then,

1. H, (x, c, t) 5 H, (x, c, t), V r(-) E (D

2. Let r,*(x, c, t) E (P be such that r* is the minimizing value of r in (3.41), then, r,*(x, c, t)

is an optimal policy, Hv(x, c, t) is the minimum cost-to-go function and,

[T g(r*(x(s), c(s), s)) rg )
Hv(x, c, t) = E [ftds + (B.72)

c(s) c(T) (.2

By verifying the requirements in the above lemma, we now show that (B.70) and (B.71)

are the optimal solution for the Lth interval. First note that g(r) = r" and from the

boundary conditions on fe (s) in Theorem IX, we have f[ (0) = -r(1 + vL) I, Vi. Using this

it is easy to check that the boundary conditions Hv(0, c, t) = 0 and Hv(x, c, T) = areC

satisfied.

Now, substituting (B.70) and (B.71) into the PDE equation in (3.41) gives,

(1 + VL)X" -(1 + vL)X"(1 - n)(ff)'(T - t) _ n(1 + VL)x'

ci(f+ (T - t))" ci(fi (T - t))" fjL(T - t) ci(fi (T - t))n-1

+A Pij (1+ vL)x" -A (1+ VL)x0
1 zijci (ff (T - t))n-1 ci(f2L(T - t))n-1

Cancelling out (1+V )", simplifying the above and setting s = T - t gives the following
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ODE system (note, t E (Lyl)T, T] implies that s = (T - t) E [0, T/L]),

(ff (s))' = 1 + Af7(s) p (f(s))" , i=1, ... , m (B.73)
n - 1 n - 1 z j (fi(s))n-1

Thus, from above we see that for r,*(-) and H,(-) as given in (B.70) and (B.71) respectively to

satisfy the optimality PDE equation we require that the functions {ffr(s)} 1, s E [0, TIL],

satisfy the above ODE system with the boundary conditions fL (0) = r(1+ vL)l , Vi. The

following lemma shows that indeed such a set of positive functions exists and also that they

are unique.

Lemma 23 (Existence and Uniqueness of the ODE solution in (B.73)) The ODE

system in (B. 73) with the boundary conditions fL(0) = r(1 + vL)b , Vi, has a unique

positive solution for s E [0, T/L].

Proof: The proof is identical to that in Appendix B.3

This completes the verification that H, (x, c, t) and r* (x, c, t) satisfy the optimality PDE

equation. Furthermore, it is easy to check that the rate r* as given in (B.70) is the minimiz-

ing value of r in (3.41) (take the first derivative with respect to r and set it to zero). The

admissibility of r*(x, c, t) follows by noting that the functional form in (B.70) is continuous

and locally Lipschitz in x, continuous in t and satisfies r,*(0, c, t) = 0. Thus, we have verified

all the requirements in Lemma 22 and this proves that (B.70) and (B.71) give the optimal

solution over the Lth partition interval.

Now, consider the (L - 1)th partition interval, i.e. k = L - 1. The system state space

for this interval is (x, c, t) E [0, B] x C x (L-2)T, (L-1)T) and over this period, equations

(3.42) and (3.43) take the form,

r,*(x, c, t) = _ t ,) i= 1,. .. ,m (B.74)
fi- (T -t

(1+ vL 1)x"H.(x, c', t) = _i(f,(T t))n' i = 1, ... , m (B.75)

Suppose that we start with a system state in this (L -1)th partition interval. Once we reach

the Lth interval, i.e. t = (L-1)T we know from the preceding arguments that (B.71) gives

the minimum cost and (B.70) gives the optimal rate to be followed thereafter. Thus, for
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the optimization over the (L - 1)th interval, we can abstract the Lth interval as a terminal

cost of H, (x, ci, (L - 1)T/L) = (VL)X- applied at t = (L-1)T The minimizationC'(fiL(T/L)n-' ' aple tt- L L

problem in (3.33) over the (L - 1)th interval is therefore identical to that over the Lh interval

(discussed earlier) except that we now require H,(x, c, (L - 1)T/L) = ci(1T/ )"_n. Using

(B.75), this boundary condition translates into fjL-1 = (lt-1 n1fiL( ) ,Vi (as

outlined in the Theorem IX statement). Now, following an identical set of arguments as

done for the Lth partition interval, it is easy to check that (B.74) and (B.75) give the optimal

solution over the (L - 1)th interval.

Finally, recursively going backwards and considering the partition intervals k = L -

2, L - 3, ... , 1, it follows that (3.42) and (3.43) with the boundary conditions as presented

in the theorem statement give the optimal solution.

B.10 Proof of Theorem X - BT-problem with Power Constraints

and Constant Drift Channel

The proof for this theorem is identical to that of the general case in Theorem IX except that

now the functions {fk(s)} can be evaluated in closed form. Therefore, to avoid repetition

we only present the details regarding the functions {fk(s)}. As before, start with the Lh

partition interval and suppose that for all the channel states the ff'(s) function is the same,

i.e. f'(s) = fL(s). The ordinary differential for fL(s) then becomes,

(fL)'(s) = 1+ \L () _ fL(s) ' (B.76)
n - 1 n - 1.zij

= 1- L(s -1) (B.77)
n - 1

where E, 2 = E[1/Z(ci)} = #, Vi, by the constant drift channel assumption. The solution

to the above ODE evaluated over s E [0, TIL} with the boundary condition fL(0) = r(1 +

vL) n is given as (let 77 = A(_-)),

fL() = -r( + vL) n -'s + 1 (1 - s) (B.78)
77

Clearly, for k =L, equation (3.49) is the same as (B.78) above (set s = T - t).
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Now, consider the (L - 1)th partition interval and following the same argument as for

the LIh partition interval, it is easy to see that f L-1(s) satisfies the same ODE as given in

(B.77). This ODE must now be evaluated over s E [!, fl with the following boundary

condition,

fL-1 (T) = (1 vL-1 L(T)
L) 1+v ( L)

= r(1 + vL-1) - (1+vL1 -
rq1 1+ vL

Evaluating the ODE with the above boundary condition gives f L- (s) as follows,

y 1+vLfL(S) = TF(1 + VL-l' 1) (1+VL1I)n S-1(~(S)-e7s

(B.79)

Again for k = L - 1, equation (3.49) is the same as (B.79) above with s = T - t. Recursing

backwards and following the same steps as earlier, it can be shown that fk(s) can be written

in the general form as given in (3.49).

B.11 Proof of Theorem XI - Strong Duality

The optimization problem (P) as stated earlier is given as,

(P) min E [ g(r(x(s), c(s), s))ds + T (B.80)
r(-)e> L o c(s) c(T)

sb t E g(r(x(s), c(s), s)) 1 PTsubject to EI ds< K-- k=1, . .. , L
[J(k) T  c(s) - L

Before proceeding to show strong duality holds, we first interchange the expectations and

the integrals and re-write the above problem in a standard form as in [66]. But to do that,

we need the following. Let I[a,b] (s) be the indicator function for the interval s E [a, b]; it is

defined as,

( 1, if s E [a, b]

0, otherwise
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Also define,

K' A g(r(x(s), c(s), s)) z + o - fo' r(x(t), c(t), t)dt) jITT+TI(S) (B.82)
Kr ,)c(s) 7[,-(s +) c(T) IrTr()(.2

Let F(r(.)) denote the total cost for policy r(-) (i.e. the objective function in (P)). From

(B.80), it is given as,

F(r(.)) = E g(r(x(s), c(s), s))ds + (B.83)
[Jo c(s) c(T)

Using (B.82), we then have,

F(r(.)) = E [j Kr(s)ds] (B.84)

For any policy r(-) E 4, it is clear that Kr(s), s E [0, T + r] is a collection of non-negative

random variables which depend on the underlying channel stochastic process. Hence, using

Fubini's theorem [85], we can interchange the expectation and the integral which gives,

F(r(.)) = j E[K'(s)]ds (B.85)

Similarly, we can interchange the expectation and the integral for the power constraint

inequalities in (B.80). Thus, we can now re-write the optimization problem (P) as,

min F(r(.)) (B.86)
r(-)E4

gkT sc~) s) PT
subject to E s ds - - <0, k=1, ... , L

J- y c(s) I L

where F(r(.)) is as given in (B.85). Now, having written the optimization problem (P) in

the above form, the strong duality result in [66] (Theorem 1, sec. 8.6, pp. 224) gives the

results as stated in Theorem XI which then completes the proof. However, as a final step

we need to verify the technical conditions required in [66]. These are presented below with

a description of the technical requirement and the proof of its validity in our case.

(1) F(r(.)) is a convex functional over r(-) E

Consider two policies r1(x, c, t), r 2(x, c, t) E 4D and let 0 < a < 1. Let r(x, c, t) =
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ari(x,c,t) + (1 - a)r2(x,c,t); since rl(.),r2(-) E 4 it is easy to check that f(.) also lies in

. Now,

g(f(x(s), c(s), s)) XO - fj' F(x(t), c(t), t)dt 1
K (s) c(s) I[,T (s) + g r c (T)[TT+r](s)

g (ri(x(s), c(s), s)) IT](s) +g xo - fOT ri(x(t), c(t), t)dt c(T)[TT+-r](S)

+(1 -a) sg(r2(X(s), c(s), s)) 1Eo,I (s) + g xO - fOT r2 (x(t), c(t), t)dt 1 '[TT+TI (s)+( )Cs) ((s) s)+grc(T)[T+-(s

= aKr (s) + (1 - a)K2 (s)

where the inequality above follows since g(r) is a convex function of r. Thus, Kr(s) is a

convex functional over r(-) E 4 and this implies that E[Kr(s)] is a convex functional. It

then directly follows that F(r(.)) is a convex functional over r(-) E (.

(2) Let Gk(r(-)) = E g~r x(s),c s),) ds - , k = 1,. L, then, Gk(r(-))

is a convex functional over r(-) E (D. The proof for this is identical to the previous case.

(3) Minimum cost for problem (P) is finite

To see this consider the simple policy which does not transmit any data and only incurs

the terminal cost. The expected total cost for this policy is given as,

total cost = E [g /)r] = rg (-) E [c'T)

o r9 1:z( 1 ( AT )j e-AT

r ( cz j=O 3-

T l -o \- T
= gI g eIe~ < o

cor

The inequality above follows by first conditioning that the channel makes j transitions over

[0, T], taking c(T) = (zi)jco, where (zl)ico is the worst possible channel quality starting

with state co and making j transitions, and finally taking expectation with respect to j

(number of transitions, j, is Poisson distributed with rate AT and zj > 0 is the least value

that any Z(c) can take). Since there exists an admissible policy with a finite cost, it follows

that the minimum cost over all admissible r(-) is finite.

(4) Let Gk(r(.)) = E g(r(x(s),c(s),s)) ds - E- , k = ... , L, then, a policy
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r(-) E (D exists such that Gk(r(.)) < 0, Vk (the interior-point policy). Take r(-) as the policy

that does not transmit at all and only incurs the terminal cost.

B.12 Computation of ArJ(x, c, t) given in (3.12)

From the definition of the differential generator, we have,

ArJ(x, c, t) = lim EJ(xt+h, Ct+h, t + h) - J(x, c, t) (B.87)
4o0 h

To compute ArJ(x, c, t) we first evaluate the term EJ(xt+h, ct+h, t + h). Consider the

Markov model for the channel process obtained after the uniformization, as discussed in

Section 3.2.2. Pick a small h > 0, then, over the period [t, t + h], the channel state does not

change with probability 1 - Ah, there is a single channel transition with probability Ah in

which case the new state is given as j = Z(c)c, and with probability o(h) there are more

than one transitions. Thus, we get',

EJ(xt+h, c+h, t+h) = (1- Ah)J(xt+h, c, t+h)+ AhEz[J(xt+h, Z(c)c, t+h)]+o(h) (B.88)

Using the Taylor series expansion we get,

BJ(x, c, t) BJ(x, c, t)

J(xt+h, c, t + h) = J(x, c, t) + h t + dx c, + o(h) (B.89)

But, from the process evolution as given in 3.4, we get dx = -r(x, c, t)h, and the above

equation becomes,

J(Xt+h, C, t + h) = J(x, c, t) + h ' ' - hr(x, c, t) 'J(x, c, t) + o(h) (B.90)

Similarly, as above, we can evaluate J(xt+h, Z(c)c, t + h) which is given as,

J(xt+h, Z(c)c, t+h) = J(x, Z(c)c, t) +h J(x, Z(c)c, t) -hr(x, Z(c)c, t) +o(h)
t Ox

(B.91)

'For this heuristic computation, we will assume that a channel transition, if it occurs, takes place at time
t itself and the channel state is then retained over the entire period [t, t + h].
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Substituting (B.90) and (B.91) in (B.88) and keeping only upto first-order terms in h, we

get,

EJ(xt+h, Ct+h, t + h) = J(x, c, t)+h'9 j~" C t)- hr(x, c, t) aJ(x, c7 t)

+Ah (Ez[J(x, Z(c)c, t)] - J(x, c, t)) + o(h) (B.92)

Substituting (B.92) in (B.87) and taking the limit gives the result in (3.12).

166



Appendix C

Proofs for Chapter 4

C.1 Proof of Theorem XII - Variable Deadlines Case

To elucidate the steps involved, we first consider the two packet case (M = 2), and then

extend it to the general scenario for any value of M.

Two Packet Case: The proof outline is as follows. We first start with the functional

form for r*(D, c, t) as given in (4.11), obtain the minimum cost function J(D, c, t) and check

that these satisfy the HJB equation in (4.5). While this simply constitutes a check that the

HJB equation is satisfied, to finally complete the optimality proof, we consider a sequence

of relaxed problems {Pk} along similar lines as done in Appendix B.1 and then take the

appropriate limits. We begin first with the verification that the given rate functional satisfies

the HJB equation.

Step 1 - Verifcation of the HJB Equation: Start with the rate function in (4.11) and

consider first the state space (D, c, t) E [B1, B2] x C x [Ti, T2). Thus, we are looking at time

t > Ti and all admissible D values over this time. Starting from any (D, c, t) in this state

space, clearly, the problem is identical to the BT-problem, where (B2 - D) bits remain

in the buffer and these need to be transmitted in time (T2 - t). From Theorem VII, the

optimal rate function is given as, r* (D, c, t) = . In conformation, over this state

space the rate function in (4.11) also reduces to the same form. Thus, over this state space

the policy given in (4.11) is trivially the optimal policy. The corresponding minimum cost

function is given as,
_(B 2_-D)

J(D, c, t) ( 2 - )(C.1)
c(f (T2 - t))"~1(C1
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f (T-t ) f (T1- )0

Bi B

f -)f(T 2 -t)

f (Ti -0)

0 B1  B 2  D 0 B B1  B2 D
(a) (b)

Figure C-1: Proof of Theorem XII for the two packet case, (a) case AB 2 _ fT -0 and
(b) case B :a B

Next, consider the state space (D, c, t) E [0, B2] x C x [0, T1); thus now we are considering

the region 0 < t < T1 and all admissible D values over this time which are [0, B2]. Fix

a value of t and channel state c, then, as a function of D the rate r*(-) in (4.11) has the

following two possibilities (Note that at D = 0, we have r*(0, c, t) = max _ , Ba_ )).

1. Suppose B2 ' ( B-t. For a fixed t, we see that both B D and B 2 D aeSpoef(7T2-) ff(Tit- f(t are0

linear in D. Figure C-1(a) gives a schematic picture of the two curves and from the

figure it is clear that since B2 > B1, the two curves do not intersect over D E [0, B2].

Thus, in this case the maximizing function for all D E [0, B2] is B2~_ and so,

r*(D, c, t) =

2. Suppose B_ ; B . In this case, the two functions - and B-D are

plotted in Figure C-1(b). From the figure it is clear that since B1 < B2 the two

curves must intersect at some 5 E [0, B1] which satisfies -_ -_B . This
B(TB-7)N

gives, B = and we get r*(Dc,t) = - for D E [0,B5, and
f(T1 -t) f(T2 -t)

r*(D, c, t) = - for D E [5,7 B21.

Define,

0, if B, < B

B(t) = 1 B,2_ t (C.2)
Tj-) f(T ), otherwise

f(T1 -t)~ f(T 2 -t)
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Using the above definition, the rate function can be written in the following form,

r*(D, c, t) = f D2 - 5(t) D B 2  (C.3)
B , D (DT<5(t)

The above compact form covers both cases 1 and 2 above - for the first case B(t) = 0 and

for the second case we get B(t) as required. Note that for the constant drift channel, since

the function f(-) is the same for all the channel states, the intersection point B(.) as defined

in (C.2) depends only on time t and not on the channel state

In order for the HJB equation to be satisfied, the rate function r* (D, c, t) above must

be the minimizing value in (4.5). Using the first-order condition for the minimization then

gives, JD_ g(* (D,c,t)) Integrating this with respect to D and using the boundary

condition J(B2, c, t) = 0, we obtain,

c(B 2-D0'1 B(t) <D <B2

J(D, c, t) = - D (C.4)
(Bi-D)" (B2-B(t)) _ 0 D < B(t)

c(f (T1-t))"- c(f (T2-t))-T c(f (T1 -t))n- 170 <Bt

It is easy to see that J(D, c, t) in (C.4) is continuous at the boundary D = B(t). It is also

continuously differentiable with respect to D including at the boundary D = B(t) and this

can be checked directly. Furthermore, for values of B(t) > 0, the function B(t) is contin-

uously differentiable with respect to t and this implies that J(D, c, t) is also continuously

differentiable in t. Finally, at the boundary t = T1, we have B(t) = B1 and this makes (C.4)

consistent with (C.1) for D > B 1. To verify that the HJB equation is satisfied, we now only

need to check that r*(D, c, t) and J(D, c, t) as given in (C.3) and (C.4) respectively, satisfy

the following PDE,

g(r*(D, c, t)) + J(D, c, t) +r*(D, c, t)dJ(D, c, t) +A(E.[J(DZ(c)ct)I-J(D t)) =0

c + 9( cc D t)c),)
(C.5)

where in the above equation, g(r) = r".

Consider first D E [B(t), B21, then, from (C.4) we have J(D, c, t) = c( T2-D-- and

from (C.3) we have r*(D, c, t) = B 2 - . The differentials are =-n(B2 -D '- 8 -

f (T2 -t) Th8Dfrnt~ r c(f(T 2 -t))n- , &

'For the general Markov channel model this is not true and hence some of the steps in this proof, following
this stage, do not apply in that setting.
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(-1)(B TD) (T 2 -t) . Substituting these in the left hand side (LHS) of (C.5) and simplifying

it then gives,

(B 2 - D)

S c( f(T 2 - )"

(n - 1)(B 2 - D)"f'(T2 - t)
c(f(T 2 -t))"

(B 2 - D) n(B 2 - D)"-1

~ f(T2 t) Cyf(T2 - t))"~

(B 2 - D)

c(f(T2 - t))n-1

(n - 1)(B 2 - D)

c(f(T2 - t))n

=0

(f'(T2 -
t) - 1

(C.6)

t)))

(C.7)

The last equation above follows since f'(s) = 1 - _1 f(s). Thus, we see that (C.5) is

satisfied over D E [B(t), B 21. If b(t) = 0 then we are done. So, now let us suppose that

B(t) > 0.

Consider D E [0, b(t)), then, from (C.3) we have r*(D, c, t) = B-D and from (C.4) we
f (Ti-t0

have J(D, c, t) = Q(c, t) + H(D, c, t), where for simplicity of exposition, we define Q(c, t) =

(B 2 -B(t)) _ (B-B(t))n and H(D, c, t) (B -D)1 Substituting this in the left
C(f (T 2 -t))i o -(f (T,-t)) n - 1 C(f(Ti-0)

hand side of (C.5) we get,

LHS = (Q(c t) + A(Ez[Q(Z(c)c, t)] - Q(c, t)) +

g(r*(D, c, t))
c

+ OH t) + r* ( D, c, t) H(D, c, t) + A(Ez[H(D, Z(c)c, t)] - H(D, c, t))
t DD

Using identical steps as in (C.6)-(C.7) the terms within the second bracket above equal

zero. Now consider the term within the first bracket. Let Q(c, t) = Q2(c, t) - Qi(c, t),

where Q2(c

0Q 2(c, t)
at

, t) = (B 2 t))n-T and Qi(c, t) = c(B B( t)). We have,

+ A(Ez[Q 2(Z(c)c, t)]-Q2(c, t)) = ( - 1)(B 2  t))
C(f (T 2 - W

5'(t)f (T 2 - t)n

(B 2 - 5(t))(n - 1)

(n - 1)(B 2 -5(t))n

c(f(T 2 -t))

A(# - 1)f(T 2 - t)
n - 1

b'(t)f (T 2 - t)n

(B 2 - B(t))(n - 1)

The last equality above follows since f'(s) = 1 - f(s). A similar expression as above

is obtained for the term Qi (c, t). Combining the two then gives,
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- f(T2 -



OQ(c, t) (n -1)(B 2 -B(t))" ( 5'(t)f(T2 -t)ni+
+ A(Ez[Q(Z(c)c, t)] - Q(c, t))= ~( - (B2  (t) )n + 1

19t c( f(T2 - t))" (B2 - b (t)) (n - 1)

(n - 1)(B 1 - b(t))" ( 5'(t)f(T - t)n
c(f(T1 - t))" (B1 - b(t))(n - 1)

(sc B1 - B(t) _ B2 -b(t)

' f(T 1 - t) f(T 2 - t)

This completes the verification that the functions in (C.3) and (C.4) satisfy the PDE equa-

tion in (C.5). We now complete the optimality proof by considering a sequence of relaxed

problems and taking the appropriate limit as outlined next.

Step 2 - Verification of Optimality: To verify optimality, we view the problem in two

stages - first, over the state space (D, c, t) E [0, B2] xC X [0, T1) (transmission over time-period

[0, T1]) and second over the state space (D, c, t) E [B1, B2] x C x [T1, T2) (transmission over

time-period [T1, T2]). As mentioned in Step 1 of the proof, over the state space (D, c, t) E

[Bi, B2] x C x [T1, T2), the problem is identical to the BT-problem, where (B2 - D) bits

remain in the buffer and these need to be transmitted in time (T2 - t). The rate function in

(4.11) reduces to r*(D, c, t) = B~_ and this has been shown to be the optimal policy; see

Appendices B.1 and B.6. Thus, the optimality of r*(D, c, t) and J(D, c, t) over the second

stage follows directly from that of the BT-problem.

Now consider the first stage, i.e. the state space (D, c, t) E [0, B 2] x C x [0, T1). This

stage corresponds to transmission over time-period [0, T1]. Once we reach time t = T1,

we know from the preceding paragraph the optimal policy to be followed thereafter in the

second stage. Thus, for the optimization over the first stage, we can abstract the second

stage energy cost as a terminal cost incurred at time T1 given the particular terminal state.

Specifically, the terminal cost function is given as, h(D, c) = c((2 )) -, D E [B1, B2]

(since this is the minimum (expected) energy cost required to transmit the remaining (B 2 -

D) bits by time (T2 -T 1)), and h(D, c) = oo, D E [0, B1) (since there is a deadline constraint

of T for the first B1 bits, and an infinite penalty cost is incurred if D < B1). Since this

is a non-continuous terminal cost function, we cannot directly apply standard verification

results to show optimality. To circumvent this problem, we consider a sequence of relaxed

problems {'Pk}, where the hard deadline constraint on the B 1 bits is relaxed and instead a
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sequence of smooth terminal cost functions is assigned, which monotonically converge to the

required function above. This is analogous to the steps followed earlier for the BT-problem

and they are outlined below.

Consider a sequence of numbers {r-}r 1 , where rk > 0 and rk 1 0. Define a sequence of

functions {fk(,) lo 1, where each fk(s) satisfies the ODE, (fk)'(s) = 1 - -10_-1) fk(s) with

the initial condition fk(0) = rk. Thus,

=(n-i1) A(#_- 1)sA(_-1)

fk(s) = 1 - exp(- ) + rk exp(- Apl 1)), S>0 (C.8)
A(# - 1) n - 1 n - 1

Consider now a sequence of relaxed problems, {IPk}, over the state space (D, c, t) E [0, B 2] x

C x [0, T1). Each problem Pk is identical to the BT-problem in terms of the system dynamics

except that at time T1, instead of the hard deadline, a terminal cost is assigned. This

terminal cost function is denoted as hk(D, c) and is taken as follows,

(B 2 -D)" 3k(T1) < D < B2
hk(D, c) = c(f)(T2-T1))"-1' _ (C.9)

(B1 -D)" (B2-SkT1  (Bi-Bk(T1))n 0 < D <Sk(T1 )
c(f,(o))"-1 +c(f,(T2-Tn))"-1 cyfk(0))n-I 0 D1

where in the above equation, the function Sk (t), t E [0, Ti] for the relaxed problem Pk is

correspondingly defined as,

0 , if B _ < B
Bk (t) = i B1 _7 -t) (C. 10)

1k t otherwise
f k(TI -)~fW(T2- t)

Note that since fk(o) = -rk, as we consider larger values of k then rk goes to zero and 5k(T1 )

converges to B 1 while fk (s) converges to f(s). Thus, we see that the terminal cost function

hk(D, c) converges to the desired function as mentioned earlier.

For the relaxed problem Pk the system operates as follows. Given a transmission policy,

denoted as rk(D, c, t), the system starts with D(0) = 0. As this policy is followed, at time T1,

the terminal cost hk(D(T), c(Ti)) is incurred and the system stops. Also, during the period

t E [0, Ti], if D(t) = B 2 then all the data has been transmitted and there is no terminal cost

incurred. Thus, we see that the relaxed problem Pk is a well-posed, continuous-time control
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problem with smooth terminal cost functions. Consider now the following rate function,

r*(D, c, t)= max B -D (C.11)
j:(By 2D,Tj3 t) fk(T - t)

and the following minimum cost function which is denoted as Jk(D, c, t),

-(B2-D)" jpk(t) < D < B,
jk t) c(f k(T2 -t))n:-'-

( B- C(fB(T2 -t))"' - C(fk(Ti-t))"r-l1 0 ; D < 53k(t)

Following an identical set of arguments as done in the first step of this proof, it can be

seen that the above functions satisfy the HJB equation (note that the functional forms are

analogous to those earlier except with fk(s) replacing f(s) and Sk(t) replacing 5(t)). It

is also easy to see that the minimum cost function also satisfies the boundary conditions,

i.e. it equals the terminal cost function hk(D, c) and also equals zero for D = B 2. Using

the standard verification result, outlined earlier in Lemma 17, it can be seen that the rate

function in (C.11) gives the optimal transmission policy for the relaxed problem Pk.

Now consider the limit k -+ oo, then, Jk(D, c, t) converges to J(D, c, t) (given in (C.4))

and r* (D, c, t) converges to r* (D, c, t). Utilizing the result of Theorem XVIII (an analogous

version as stated below), the optimality of J(D, c, t) and r*(D, c, t) for the first stage of the

two-packet problem follows.

Theorem XIX (Two Packet Case): Consider (D, c, t) E [0, B2] x C x [0, T1) and define

J(D, c, t) A limk_,.o Jk(D, c, t). Let J(D, c, t) satisfy the HJB equation in (4.5) and let

r*(D, c, t) be an admissible policy for the first stage of the two-packet problem, such that r*

is the minimizing value of r in (4.5). Then,

1. J(D, c, t) < Jr(D, c, t), V r(.) admissible (where Jr(D, c, t) denotes the cost-to-go

function for that policy)

2. r*(D, c, t) is the optimal policy and J(D, c, t) is the minimum cost function

Proof: The proof is identical to that of Theorem XVIII. U

The requirements of the above verification theorem are satisfied. First, from Step 1 we

know that J(D, c, t) and r*(D, c, t) satisfy the HJB equation. The function J(D, c, t) also

satisfies the boundary condition, i.e. J(D, c, T1) = h(D, c), D E [B1, B 2] (where h(D, c)
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gives the optimal cost for the second stage). The rate function r* (D, c, t) is admissible; to

see this note that it is non-negative and locally Lipschitz-continuous in D. Furthermore,

the deadline constraint of T for the B 1 bits is also satisfied. This is because from the

BT-problem we know that ~ is an admissible rate function that meets the required

deadline constraint. Here, since r*(D, c, t) is chosen as the maximum among B1-D andf(Vi -t0

f 2- the transmission rate selected ensures that at least B 1 bits have been transmitted

by time T1 (almost surely).

General M Packet Case: The proof for the general M packet case is a direct ex-

tension of the ideas presented in the two-packet case. To proceed, consider the state

space (D,c,t) E [BL-1,BM] x C x [TL_1,TL) where L = 1,...,M (let B0 = 0 and

To = 0). Thus, we are viewing the problem in M stages where the Lth stage corresponds

to looking at time TL_1 ; t < TL and all admissible D values over this time period

which are D E [BL-1, BMI. Over this state space the rate function r*(.), from (4.11), is

given as, r*(D, c, t) = maxj=L,...,M - Thus, we need to only look at rate values for

j= L,..., M.

Now in the above state space, fix a value of t and c. Then, as in the two-packet case, the

rate r* (-) as a function of D is a piecewise linear curve with at most M - L +1 segments. To

see this, first note that _f-D , Vj, is a linear function of D (with t fixed) and we also have

BL < ... < BM. From Figure C-1, we see that in the two packet case if B 2 D becomes the

maximizing function then it remains the maximizing function for all D values thereafter. In

the general M packet case, this observation translates in the following way: if _D is the

maximizing function then for all D values thereafter the functions B~_ , p < j cannot

be the maximizing function, and only functions B~_t with p > j can replace it as the

maximizing function. Thus, we see that each function plays the maximizing role at most

once and further that the indices j of these maximizing functions must be in increasing

order. This implies that r* (.) is piecewise linear with at most M - L +1 segments and takes

the following general form: function B~_ is maximum over D E [BL-1,5 (t)), then,

function BL+1D is maximum over D E [5L(t), bl+1(t)) and so on, where {i(t)}MZ1 are
f (TL+ 1 -0 )=

the rate change points. Note that BL(t) could be equal to BL_1 which covers the case in

which B is not the maximizing function for all D E [BL-1, BM]. Similarly, 5L+1(t)

could equal B(t) and so on.

Mathematically, the rate change points can be defined as follows. Let Iijq(t) denote the

174



pairwise intersection points for the Lth stage, then (see the example of two-packet case),

( BBg
BL-1, B1y,_, < B '7_,

b L(t) = p-BL-1 _B-BL-1) ff

f(T,- 1 otherwise
f(Tp-t) f(Tq-t)

(C.13)

where in the above q > p, {p, q = L,... , M}. Using this, we have for, 1 = L,..., M - 1,

(take BL-1(t) = BL-1)

BI(t) = max D3_1(t), min I'(t) (C.14)
q=l+1,..., IM /

We can now write the rate function r*(D, c, t) for (D, c, t) E [BL-1, BM] x C x [TL-1, TL) in

the following form,

r*(D, c, t) =

B D

7M~1-0

BL-D

BM-1(t) <D < BM

BM- 2 (t) <D < BM-1(t)

BL_1 < D < bL(t)

Using a(D ct) _ _'(r*(D,c,t)) and integrating with respect to D with the boundary condi-

tion J(BM, c, t) = 0, gives,

(Bm-D)'

c(f +TL- 
t-1,

<(BK -D)" + M-1 (Bi+1-5y (t))n (By -5f;j(t)) n
c(f (TK -t))n-1 j=K (c(f (Tj+1-t))n-1 c(f (Tj -t))"-i, 

M-1(t) <_ D < BM

fK-1 ...(t) < D < 5 K(t)

I (f(T-t))" + - tj=L (.(Bj+B15( t ))" (B;-;(( t))n BL -5D <.BL(t)(f (TL -t))"-i + j=L \ cWfTj+1-0))"-1 COf(T, -t))"-i 1 -

(C.16)

The above functional form is for the Lth stage, i.e. over state space (D, c, t) E [BL-1, BM) x

C x [TL-1, TL). It can be checked directly that the function J(D, c, t) in (C.16) is continuous

in D and t; it is also continuously differentiable and is consistent at the boundaries of the

various stages L = 1, ... 7M. Due to the similarity of its functional form with that of (C.4),

it can also be seen that following an identical set of steps as outlined in the two-packet
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J(D, c, t) =



case, the functions J(D, c, t) and r*(D, c, t) satisfy the HJB equation in (C.5). Finally, the

verification of optimality follows in an identical manner as the two-packet case, where each

stage is considered separately in a recursive fashion starting from the last stage. Since these

results are the same as outlined in the two-packet case, the steps have been omitted here

to avoid repetition.

C.2 Proof of Theorem XIII - Arrivals with Single-Deadline

The proof for this case follows a similar methodology as presented in Appendix C.2 for the

variable-deadlines scenario. We start with the functional form for r* (D, c, t) as given in

(4.13), obtain the minimum cost function J(D, c, t) and verify that these satisfy the HJB

equation in (4.5). Finally, we verify optimality by viewing the problem in multiple stages.

To elucidate the steps we begin by first considering the two-packet case and then extend it

to the general M packet scenario.

Before proceeding further, we first verify that the transmission policy in (4.13) is admis-

sible. For any D E [Dmin(t), A(t)], c E C, t E [0, TM], the rate function r*(D, c, t) is clearly

non-negative. Furthermore, since each of the function A -Dis locally-Lipschitz-continuous

in D and r*(.) is a minimum among a set of finite number of such functions, r*(-) is also

locally Lipschitz continuous in D. Similarly, it is also piecewise continuous in t. Finally, by

construction all the causality constraints are satisfied since at all times we choose the min-

imum rate among those needed to meet the AjT points. Thus, the departure curve never

exceeds the arrival curve (almost surely). Furthermore, for t > TM-1, r*(D, c, t) reduces to

choosing a rate that meets the AMTM constraint, hence, the single deadline constraint is

also satisfied. .

Two Packet Case: We begin with the two-packet case and first verify that the pro-

posed policy satisfies the HJB equation.

Step 1 - Verification of the HJB Equation: Consider first the state space (D, c, t) E [0, A2] x

C x [T1, T2); thus, we are looking at time t > T1 and all admissible D values over this time-

period. Starting from (D, c, t), clearly, the problem is identical to the BT-problem with

B = (A 2 - D) and T = (T 2 - t). The optimal rate function from (4.6) is therefore given

as, r*(D, c, t) = In conformation, the rate function in (4.13) over this state space

also reduces to the same form. Thus, over this state space the policy in (4.13) is trivially

176



A,> '' Al
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Figure C-2: Proof of Theorem XIII for the two packet case, (a) case A > i andFigure~~ f( 2 t (Ti-t)

(b) case 1 < .

the optimal policy and the corresponding minimum cost function over this state space is,

J(D, c, t) = (A2 - D) (C.17)
c(f(T2 - t))--1

Next, consider the state space (D, c, t) E [0, A1] x C x [0, T1); thus now we are considering

the region 0 < t < T1 and all admissible D values over this time which are [0, A1]. Fix a

value of t and c, then, as a function of D the rate r*(D, c, t) in (4.13) has the following two

possibilities. Note that at D = 0, we have r*(0, c, t) = min Al_ ,A? .

1. Suppose A > Ait For a fixed t, we see that both A - and A2~_ are linearFor~~~~ aif(-t f(T 2 -t)

in D. Figure C-2(a) gives a schematic picture of the two curves and from the figure it is

clear that since A2 > A1, the two curves do not intersect over D E [0, A1]. Thus, in this

case the minimizing function for all D E [0, Ai] is and so, r*(D, c, t) =

2. Suppose A2  A_. In this case, the two functions A-_ and A-D ae

plotted in Figure C-2(b). From the figure it is clear that since A1 < A2 the two

curves must intersect at some A E [0, Ai] which satisfies A- = A2-. Thisf (Ti t0 f(TM-t0
As Aqg

gives, A = 21 1t * and we get r*(D, c, t) = A 2 D for D E [0, A] and
f(T 1 -t) f(T 2 -t)

r*(D, c, t) = - for D E [A, A1 ).

Define,

07 if A'

.A(t) = l 0,f(T (C.18)
1_ l~* 1___-* , otherwise

f(T 1 -t) f(T 2 -t)
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Using the above definition, the rate function can be written in the form,

A2-D ,0 < D < Z(t)
r*(Dc,t) )7~ (C.19)

A D), A(t) < D < A1

Note that the above compact form covers both cases 1 and 2 above - for the first case

A(t) = 0 and for the second case we get A(t) as required. Furthermore, for the constant

drift channel, since the function f(-) is the same for all the channel states, the intersection

point A(.) as defined in (C.18) depends only on time t and not on the channel state.

For r* (D, c, t) to satisfy the HJB equation, it must be the minimizing value of r in (4.5).

Using the first-order condition for the minimization then gives, J(Dc,t) _ _ 9'(r*(D,c,t))
TD_ C

Given r*(D, c, t) as in (C.19), we can obtain J(D, c, t) by integrating with respect to D.

But to do that we first obtain the boundary condition at D = A1 as follows. Note that since

we are looking at t < T1, if D = A1, it means that the transmitter queue is empty and hence

the transmission rate must be zero until the next packet arrival instant, which happens at

time t = T1. Since the transmission rate is zero until T1, no energy cost is incurred over the

time period [t, T1). Now starting at time t = T1, with D = A1 and channel state c = cl, the

optimal cost-to-go is given as e(f _T _1 (this follows from (C.17)). Thus, the optimal

cost-to-go starting from time t onwards is then given as,

J(A1, c , t) = E [ H (C.20)
c(T1)ct)c

where in the above equation H A2 -A i) and the channel states c E C are denoted as

{c'}. Let,

pj (i, t) = probability that {c(Ti) = c9} starting in state c' at time t (t < T1)

Using the above notation and denoting zij = c2/c, we can re-write (C.20) as,

J(A, ci, t) = 1 i E tH (C.21)

Now, using the boundary condition in (C.21), the differential equation, iJ(D c,t) _ _'(r*(D,c,t))

evaluates as follows,
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{c ci(f(1))"-1 + I E Pzt H, A(t) D < A1

(A2-D)" (A1-A(t))" (A2 -A(t))" + 0 < D < A(t)
ci(f(T2 -t))n-1 ci(f(TI-t)) - c(f(T2 -t))n-l c' j zi 3  -

(C.22)

It is easy to see that J(D, c', t) in (C.22) is continuous at the boundary D = A(t). It is also

continuously differentiable with respect to D including at the boundary D = A(t) and this

can be checked directly. Furthermore, for values of A(t) > 0, the function A(t) is contin-

uously differentiable with respect to t and this implies that J(D, ci, t) is also continuously

differentiable in t. Finally, as t -> T1, we have A(t) -+ A1 and this makes (C.22) consis-

tent with (C.17) for D < A1 (since, pj(i, T1) = 1 for j = i, and, pj(i, T1) = 0 otherwise).

Thus, we see that J(D, c, t) in (C.22) satisfies the technical requirements of continuity and

differentiability and the boundary conditions. We now need to check that r*(D, c, t) and

J(D, c, t) satisfy the following HJB equation as given in (4.5), i.e.,

g(rc(D, c, t c, t) +r*(D,c0) J(D, c, t) + A(Ez[J(D, Z(c)c, t)]- J(D, c, t)) = 0

(C.23)

where in the above equation, g(r) = r".

The functional form of J(D, c, t) in (C.22) is closely related to that in (C.4), except

for the additional term I Ez H. Thus, we can utilize the proof in Appendix C.1 forCZ zij

this case as well. Consider first D E [A(t), A1], then, from (C.22) we have J(D, ci, t) =

K(D, ci, t) + L(c', t), where, K(D, c, t) A ( -D) and L(c , t) A 1 ("t)H. Sub-

stituting this into the left hand side of (C.23) gives,

LHS (L(c= 't) + A(Ez[L(Z(c )c?,t)] - L(c,t))) + (r*(D cit))
8t ci

+ aK(De7t) + r*(D, ci, t) OK(DIcelt) + A(Ez[K(D, Z(c)c, t)] - K(D, c', t))}

Using an identical set of arguments as in Appendix C.1, it can be seen that the terms within

the curly bracket above equal zero. Thus, to verify that (C.23) is satisfied we only need to

show that the terms within the first bracket equal zero. Similarly, for D E [0, A(t)], we can

utilize the results in Appendix C.1 and it can be seen analogously that to verify (C.23) is

satisfied, we need to show a similar result.
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We now proceed to verify that (at + A(Ez[L(Z(ci)cit)] - L(ci,t))) equals zero.

First, using the Chapman-Kolmogorov equations we get,

pj(i, t) = (1 - Adt)pj (i, t + dt) + Adt Epikp,(k, t + dt) + o(dt)
k

where {pij} denote the transition probabilities among the various channel states obtained

after the uniformization (as considered in Section 3.2.2). Taking the limit dt - 0 in the

above equation, we get,

dp(i =t) Apj(i, t) + A Epikpj(k, t) (C.24)
dt k

Consider now N which can evaluated as follows,

OL (c, t) 1 p t) H (C.25)

-p ) HC- A ( Pik H (C.26)
3 3 k

The first term on the right-hand side of the equation above is easily seen to be AL(ci, t),

whereas the second term is AEz [L(Z(c )c', t)]. To see this, consider,

AEz[L(Z(c')c, t)]=AZPik (kj H (C.27)
k j i

=A E Z 1pEIpj(k, t) H, (since, ck = cizik) (C.28)
.C ZikZkj

k j

=A 1 Z PikPj(k,t) H (C.29)
j k

where the last equality above follows from z = Zikzkj and interchanging the two sum-

mations. The interchange is valid assuming that from every state the channel can jump

to a finite number of new states, in which case, the summations are over finite number of

non-zero terms. Thus, from (C.26) and (C.29), the required verification result follows. This

completes the proof that the functions in (C.19) and (C.22) satisfy the HJB equation in

(C.23).
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Step 2 - Verification of Optimality: To verify optimality, we view the problem in two

stages - first, over the state space (D, c, t) E [0, A1] x C x [0, T1) (transmission over time-period

[0, T1]) and second over the state space (D, c, t) E [0, A2] X C X [Ti, 7T2) (transmission over

time-period [T1, T2]). As mentioned in Step 1 of the proof, over the state space (D, c, t) E

[0, A2] x C x [Ti, T2), the problem is identical to the BT-problem, where (A2 - D) bits

remain in the buffer and these need to be transmitted in time (T2 - t). The rate function in

(4.13) reduces to r*(D, c, t) = f 2-_ and this has been shown to be the optimal policy; see

Appendices B.1 and B.6. Thus, the optimality of r*(D, c, t) and J(D, c, t) over the second

stage follows directly from that of the BT-problem.

Now consider the first stage, i.e. the state space (D, c, t) E (0, A1] x C x [0, T1). This

stage corresponds to transmission over time-period [0, T1]. Once we reach time t = T1,

we know from the preceding paragraph the optimal policy to be followed thereafter in the

second stage. Thus, for the optimization over the first stage, we can abstract the second

stage energy cost as a terminal cost incurred at time T1 given the particular terminal

state. Specifically, the terminal cost function is given as, h(D, c) = _-D) , D E

[0, A1] (since this is the minimum (expected) energy cost required to transmit the remaining

(A2 - D) bits by time (T2 - T1)). Thus, for the first stage the system starts with D(O) = 0

and the chosen transmission policy is followed until time T1 at which point the terminal

cost h(D(Ti), c(Ti)) is incurred. Also, during the period t E [0, T], if D(t) = A1 then

all the data has been transmitted and for an admissible policy the transmission rate must

be zero until T1. Having formulated the problem in the above form, the verification of

optimality of r*(D, c, t) and J(D, c, t) as given in (C.19) and (C.22) respectively, follows

from the following standard result. This is an analogous version of Lemma 17.

Lemma 24 (Two-Packet Case) Consider the first stage of the two-packet problem. Let

J(D, c, t) and r*(D, c, t) defined on [0, A1] x C x [0, T1], solve the equation in (4.5) with the

boundary condition J(D, c, T1) = h(D, c). Let r*(D, c, t) be an admissible policy such that

r* is the minimizing value of r in (4.5). Then,

1. J(D, c, t) <; Jr(D, c, t), V r(.) admissible.

2. r*(D, c, t) is an optimal policy and J(D, c, t) is the minimum cost function.

Proof: See [63], Chap III, Theorem 8.1. U
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In Step 1, we have shown that r*(D, c, t) and J(D, c, t) as given in (C.19) and (C.22)

respectively, satisfy the HJB equation and that r* is the minimizing value of r. Policy

r*(D, c, t) is an admissible policy as argued in beginning of the proof. Hence, the above

lemma applies and this completes the proof of optimality.

General M Packet Case: The proof for the general M packet case is a direct exten-

sion of the ideas presented in the two-packet case. To proceed, consider the state space

(D, c, t) E [0, ALI X C X [TL-1, TL) where L = 1,...,M (note To = 0). Thus, we are viewing

the problem in M stages where the Lth stage corresponds to looking at time TL_1 < t < TL

and all admissible D values over this time period which are D E [0, AL]. Over this state

space the rate r*(.), from (4.13), is given as, r*(D, c, t) = minj=L,...,M A-). Thus, we

need to only look at A3 T constraint points for j = L, ... , M.

Now in the above state space, fix a value of t and c = c. Then, as in the two-packet case,

the rate function r*(-) as a function of D is a piecewise linear curve with at most M - L + 1

segments. To see this, first note that A -- D , Vj, is a linear function of D (with t fixed) and

we also have AL < ... < AM. From Figure C-2, we see that in the two packet case, if A-D

becomes the minimizing function, it remains as the minimum function for all D E [0, Ai].

In the general M packet case, this observation translates in the following way: if A(-D

is the minimizing function, then for all D values thereafter, the functions ) P > i

cannot be the minimizing function, and only functions -D with p < j can replace it as
f (TP t)

the minimizing function. Thus, we see that each function plays the minimizing role at most

once and further that the indices j of these minimizing functions must be in decreasing

order. This implies that r*(.) is piecewise linear with at most M - L + 1 segments and

takes the following general form: function - is minimum over D E [0, A,(t)), then,

fTm-i_) is minimum over D E [A(t), A2(t)) and so on, where {A(t)}IL are the rate

change points. Note that A(t) could be equal to 0 which covers the case where Am-D is
f (TM -t)

not the minimizing function for D E [0, ALI. Similarly, A2(t) could equal A 1(t) and so on.

Mathematically, the rate change points can be defined as follows. Let dpq(t) denote the

pairwise intersection points, then (see the example of two-packet case),

- f(Tq t) <f(T-t) .C30
5,pq(t) = {A, A, (C.30)

\f(Tg-t) f(Tp-t), otherwise
1 1 

G(Tg-t) -f(Tp-t))
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where in the above p > q, {p, q = L, ... ,M}. Using this, we have for, 1 = 1,..., M - L,

(take Ao(t) = 0)

Ai(t) = max (Ai_(t), (C.31)

We can now write the rate function r*(D, c, t) for (D, c, t) E [0, ALI X C X [TL-1, TL) in the

following form,

AM1-Dct -fTM -t)'

O < D < A(t)

A(t) < D < A 2(t)

AM-L(t) <D < AL

Using aJ '© =) _ g'(r* (D,ct)) and integrating with respect to D we obtain J(D, ci, t).

The corresponding boundary condition is J(AL, ci, t) = '- HL, where as in the

two-packet case, pj' (i, t) denotes the probability that c(TL) = ej starting in channel state

ci at time t < TL, and, gives the cost-to-go starting in state D = AL, c = c and

t = TL. The term HL abstracts the numerator term and its exact form is not necessary for

the analysis; however the point to note is that HL does not depend on the channel state

which only appears in the denominator (see the two-packet case as an example). Thus, we

get,

J(D,c)=

(AL-D 'n

(AK-D)"

c(f(T-t))"-i

{Am -D)"
ci(f(TM-tj"-1

1pL (ilt)-

+p j HL, AM-L (t) _<- D < AL

+K-1 (Aq-m-q(t)"n (A+1-Am-( t))"
Sq=L cf(T -t))- ~ c(f (t)

+-1 ' -1 H L, E M-K) -- D < EM-K+1M '3

E M-1 ( Aq- u--q(t)" _ ( Aq+1-Zm-q( t)"n
+ q=L ci ( Tq- -i c(f (Te+1-t)n-i

+1 Ej z "HL, 0 <; D < Zi(t)

The above functional form is for the L&h stage, i.e. over state space (D, c, t) E [0, ALI X C x

[TL_1, TL). It can be checked directly that the function J(D, c, t) in (C.33) is continuous
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in D and t; it is also continuously differentiable and is consistent at the boundaries of the

various stages L = 1,. . ., M. Due to the similarity of its functional form with that of (C.22),

it can also be seen that following an identical set of steps as outlined in the two-packet case,

the functions J(D, c, t) and r*(D, c, t) satisfy the HJB equation in (C.23). Finally, the

verification of optimality follows in an identical manner as outlined for the two-packet case,

where each stage is considered separately in a recursive fashion starting from the last stage.

Since these results are the same as presented in the two-packet case, the steps have been

omitted here to avoid repetition.

C.3 Boundary Condition for the Poisson Arrivals Problem

Consider time t < T and suppose that x = 0. To satisfy the buffer non-negativity con-

straints, we must have, r(x, t) = 0 when x = 0. Thus, until the next packet arrival instant,

the transmitter chooses a transmission rate of zero. Now, starting at the boundary point

(x = 0, t < T), let -y > t be the first packet arrival instant after t. Let r = -y A T, where

A denotes the minimum operation. Consider 6 > 0 and let i = t +6, then, from Bellman's

principle we can write J(0, t) as,

J(0, t) = E [i g(0)ds + J(xiA,, i A r) (C.34)

where g(0) is the power cost for rate 0 (for most practical purposes, g(0) = 0) and J(xA,, tA

r) is the optimal cost starting from time iA r onwards. Using the indicator functions I(rsi

and I(-r>) = 1 - I(r-si to condition on the respective events we can re-write (C.34) as,

J(0,t) E g(O)ds + J(x;,I)) I(r>)] + E [(Ig()ds + J(x,, -r) I(-si)](C.35)

E [J(x, f)] - +(,t 11
g(0)+ t) + E [h(i, r)I(r.,.j = 0 (C.36)

where h(i, r) = J(xT,r) - J(x;, i) - f g(0)ds. Consider the event r < t, then, as 6 . 0,

Eh(i, T) -+ 0 and -(t= -D . Hence, the third term in (C.36) goes to zero. Also in the

limit 5 1 0, the second term is the differential generator as in (4.17) with x = 0 and r = 0.
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Thus we get the boundary condition,

OJ(0, t)g(0) + (t + ({J(B, t) - J(0, t)} = 0

C.4 Proof of Lemma 11

We can re-write (4.26) as,

d {(T - t +ro) B

-t ((T - t + ro)f(t)) = naT+ro-- 1) (C.37)

B
Taking a Taylor series expansion of aT+-t - 1 and using the Monotone Convergence

Theorem we get,

(T - t + ro)f(t) = 00 - n( ) "~n dt + c (C.38)

where c is the constant of integration. Integrating each term and substituting f(T) = 0 we

get the result. The series term in (4.27) which is denoted as Sm has non-negative terms

and hence is non-decreasing. For t < T, Sm 5 E" (Brn(,,) (Bln(a))-r ) m

7r2 exp(B ln(a)/ro). Thus the series is convergent.
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Appendix D

Proofs for Chapter 5

D.1 Proof of Lemma 12

The proof is based on a contradiction argument where we begin by supposing that for the

optimal policy there is a r- -+ Zf with ri > ri. By re-mapping the regions we will show

that the objective function in (5.3) decreases, thus, contradicting the optimality claim and

proving r- 74 Zf.

We are given that j -+ Zi, hence, there is a neighborhood of j, which we denote as S1,

that is mapped to Zi, i.e. Si E Zi and S1 = { I : E 0, 1|iR - F11 < &1} for some J1 > 0.

Further, by assumption f -+ Z1 , there is a neighborhood of fr given as, S2 = { E | ' E

0, I - fl < 62} for some 62 > 0, such that S2 E Zf.

Now re-map the regions as follows. Map S1 => Zf and S2 => Zi. To ensure the new

mapping is feasible we must satisfy the QoS rate constraint for user i which entails the

following equality.

J xif(i)dk = jI xf(i)dk (D.1)

The left side above is the throughput achieved over region S2 under the new map and the

right side is the throughput lost by re-mapping Si to Z1 . A set of 61, 62 > 0 exist that satisfy

(D.1); to see this note that the integral over any region {Sk}2 1 is a positive, continuous

function with respect to ok, non-increasing as ok decreases and tends to zero as ok 1 0.

Hence, starting with the largest 61, 62 values (that satisfy the S 1, S 2 definition) and then

decreasing these values one can obtain {1, 62 > 0} such that each integral above is positive

and the two are equal. Now, viewing 62 as a function of 6 I, it's clear that if a solution exists
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for some 6o then for all 61 6' a solution exists by the continuity and decreasing property

of the integrals. We now proceed by choosing J1 o1.
Using the First Mean Value theorem, [841, we can take the xi outside the integrals as

follows, fS1 xif(R)dR = (ri + ei) fS1 f(R)dR and fS2 xif(R)di = (fi + c2) fS2 f(R)dR, where

the {e12=i depend on {_k 1 or equivalently on 61 (as J2 depends on J1 through (D.1)).

With this, we can re-write (D.1) as,

(Vi + E2) j f(c)dR = (ri + E1) L f(R)dR (D.2)

Now, looking at the objective function in (5.3), the change in its value due to the re-map

equals the probability of region S2 (added from Zf to Zi) minus the probability of region

S1 (removed from Zi). Thus,

AJ= - f(R)d:+ f(R)dic
J S1 J S2

= +(E2 - f(R 12 (D.3)
\ri + El ) j g2

Let c = fi - ri, then, c > 0 (since by assumption ^i > ri). Using the First Mean Value

theorem, we also have Ek -- 0 as 6k -+ 0. Thus, for any c we can scale J1 to be small

enough such that - 1) > 0. Further, since the integral in (D.3) is the probability of

S2 which is strictly positive (regions with zero probability are uninteresting and have been

removed from Q), we finally get, AJ < 0. This completes the contradiction argument.

D.2 Proof of Lemma 13

The proof is based on a contradiction argument. To begin, consider F g0 Zf and suppose

that for the optimal policy, Y -+ Z3 such that,

a > r(D.4)
a2  aj

We now give a re-mapping of the regions such that the objective function in (5.3) decreases

or equivalently the probability of Zf region increases, thus, proving that the earlier mapping

cannot be optimal.

As the lemma involves only the ith and jth component, we will focus only on these
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Fig. (a): Original mapping Fig. (b): New mapping

Figure D-1: Figure showing the mappings for the proof of Lemma 13.

components. Let R E 11 denote a generic rate vector. Since by assumption I -+ Zy, there

is a neighborhood around Y given as S1 = { I t E Q,| 15 - Y|I < 51} for some 51 > 0,

such that Si E Zj. Next, since the optimal policy satisfies Lemma 12 (its violation would

make the policy non-optimal to start with) we know that ai is the infimum value of the ith

component among R -> Zi. Thus, there exists a point in1 with mi = a and a region around

I1, denoted S2, that maps to Z; i.e. S2 E Zi and S2 = {| I1 E Q, 0 < (xi - mi) < 52} for

some 32 > 0. Finally, since R does not lie on the boundary of feasible throughput vectors

the region Zf is not null. Hence, there exists A with nj = a3 > 0 and a region around fl,

denoted 53, that maps to Z; namely, S3 E Zf and S3 = {I I R E 1 ,0 < (n3 - xj) < 63}

for some 33 > 0. The regions SI, S2,S3 are depicted in Figure D-1(a).

Now re-map these regions as follows. Map Si => Zi, S2 => Zf and S3 => Zj as shown

in Figure D-1(b). To ensure the new mapping is feasible we must satisfy the QoS rate

constraints for user i and user j, which entails the following equalities.

j xif(5)dR = xif(5)dR (D.5)

/ xjf()d1 = j x f(5)dR (D.6)

Equation (D.5) matches the throughput lost for user i due to the re-map of S 2 => Z1 and the

throughput gained by S1 => Zi, while (D.6) gives a similar equality for user j. To see why a

set of {3k}3= exist that solve the above equations, note that the integral over any region Sk

is a continuous, positive function of 5k, decreasing (or non-increasing) as ok decreases and
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tends to zero as 6 k 1 0. Hence, starting with the largest 61 (that satisfies the Si definition),

decrease it until a 52 is obtained that solves (D.5). By the non-nullity of Si, S2 and the

above property of the integrals such a solution 61, 62 > 0 exists. Similarly obtain a 61, 63

that solves (D.6). Finally, taking 6i as the minimum of the two solutions, re-obtain 62,63

such that both (D.5) and (D.6) are satisfied. Now, viewing 62, 63 as functions of J1, it's clear

that if a solution exists for some 0f, then, for all 61 6 JO a solution exists by the continuity

and decreasing property of the integrals. We now proceed by choosing 61 < 6.

Using the First Mean Value theorem, [84], we can re-write the above integrals as,

(ai + 62) f(i)dR = (ri + ei) f(R)dR (D.7)

(aj + C3) jf(R)d = (r + e4)L f(R)dR (D.8)

where the {Ek} above depend on the {k} or equivalently on J1 (as 62,63 depend on J1

through (D.5) and (D.6)). Next, looking at the objective function in (5.3), the change in its

value due to the re-map equals the probability of region S 3 (added from Zf to Z3 ) minus

the probability of region S2 (removed from Zi). Thus,

A J = -jf()d + j f(R)di

= -( rE rj+C4 f()di: (D.9)ai+ E2 aj +63/ JS1

Let c-=- , then, from (D.4) we have c > 0. From the First Mean Value theorem weai aj

also have EA -+ 0 as 6 k -+ 0. Thus, for any given c we can scale 5i to be small enough such

that f _ a E > 0. Further, since the integral in (D.9) is the probability of Si which

is strictly positive, we finally get AJ < 0. This completes the proof.

D.3 Proof of Theorem XV

We will prove optimality of policy F, defined in (5.9), by showing that for any other feasible

policy f we have E 1 E[I} EN1 E[i] where Ii(f) and fi(f) are the indicator functions

for the respective policies. We know that policy F satisfies the throughput rate constraints

with equality, i.e. E[rij] = R. If F does not, it is trivial to prove that F cannot be optimal.

Now, suppose f also satisfies the rate constraints with equality, i.e. E[rili) = R, then, the
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objective function for policy f can be re-written as,

N N N

E [ii]=[ E[] - (E[riilJ - R) (D.10)

where {ai} is the threshold vector for policy r. Note that the second term in (D.10) is zero.

Re-arranging (D.10) we get,

N [NN

JE[fi) = E 1 -- f + R,(D.11)
i=1 i=1 i=1a

For any vector r we have the following two cases.

Case 1: Suppose ri ai, Vi, then, policy r does not choose any QoS user (Equation

(5.9)) and I =0,Vi = 1,..., N. Now, since ri ai, we have (1 - .) 0, Vi. This implies

that whether IP chooses or does not choose a QoS user we have the following inequality,

Ni N ( i
1- 0-(D.12)

z=1 i=1 a

Case 2: Suppose ri > ai for some index i. Let j be the chosen user for policy 1, then,

from (5.9) we see that rj /aj has the maximum value. Thus, (1 - r) <(1 - i), Vi and also

(1 - L) < 0. Again irrespective of what I chooses,

N N
1 ri 2 1- ) Ii (D.13)

From (D.11), (D.12) and (D.13) we get,

N [ N (1 r)I]+N Ri N

E[fI) > E 1 - E + = EE[Ii)
i=1 .=' i=1 L=

where the last equality follows from (D.10) replacing Ii with Ii. This completes the proof.
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D.4 Proof of Lemma 16

To prove the lemma we need to show the following two relationships, ln(1/(1 - YN))=

O(ln(N)) and ln(N) = O(ln(1/(1 - yN))). We begin by proving the first relationship.

Since -y E (0, 1) and N > 1 is a positive integer, we have 0 < yN< 1. Taking a power series

expansion of we get,
(1-- IV

In ( ) = ln(1+71/N+...+y (N-1)/N + 7 (+ 1/N +2 . D

1 + 7Y1/N + 7(N-1)/N
= In ((D.15)

In NY = ln(N) - ln(1 - y) (D.16)

abov folows sic 1 yD.

The inequality above follows, since y < 1 = ( 1/N + + 7 (N-1)/N) < N; thus we get

ln(1/(1 - yN)) = O(ln(N)). To prove the reverse relationship, i.e. ln(N) = O(ln(1/(1 -

-N))), proceed as follows. Using the standard inequality, ln(N) 1 + 1 + ... + , we

get,

71n(N) + N-
2/N N/N

< 71N N - 1 (since 0 < y < 1)

< In I (D.17)
21 - )

where the last inequality above follows by truncating the power series expansion of - ln(1 -

yN). Thus, ln(N) < Iln(1/(1 - -yN)) which gives ln(N) = O(ln(1/(1 - yN))).

D.5 Proof of Theorem XVII

Starting with (5.16) we can write it as,

-R n i N-1 'N -1 (-1)k(1 - 7)(k+1) N-1 i- (1 - )(k+1)

RN ( z) N + -(N ) N
- = ) _ n k k + 1 k= k (k + 1)2

k=0 k=0
(D.18)
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Consider the first term in (D.18) above; it can be evaluated as follows. Let a = (1 - -N),

then, since -y E (0,1) we have a E (0, 1).

N( N - 1)k a(k+1) N1 N - 1 a - X dz
k=O k=O

(1-z)-d (D.19)

1 -(1 -a)N -y_
N -- N(D.20)N N

Equality (a) above follows by interchanging the summation and the integral and using the

Binomial expansion. Thus, we get, ln (u) ~jNiJ (N-1) (_l)kat ) = n (1) !-=. Now,

consider the second term in (D.18) and proceed as follows. First, since (D.20) holds for all

a, we get the identity, _-01 (N-1) kxzk+1) 1-(1-X)N . Dividing both sides by x and

integrating from 0 to a, gives,

aN-1 N-1 )k Xk * 1-(1-x)N)d

fok k +1 0 Nz
k=O

N-1 (N - 1) -1kak+1 fa i_ (i_X) ) d
k=0 k (k +1)2 0 Nx

< dx = a = (1 --y) (D.21)

The inequality above follows by noting that 1-(l-X)N is positive, monotonically non-increasing

over x E [0, 1], for fixed N > 1, and has a maximum value equal to 1 at x = 0. To show

the monotonic behavior of - -l)N , we claim that its derivative with respect to x is al-

ways non-positive for all x E [0, 1]. To prove this, first note that the derivative is given as
xN(-X)N-1 -(1-(-x)N). Now set 1 - x = y then, we need to show N(1 - y)yN-1 <l yN

which is equivalent to showing (1 - yN)/(I - y) NyN-1. But note that (1- /yN)/(1 y)
1+ y + y2 + .. + N-1 > yN-1 +-+ N-1, since we replaced all the terms with yN-1, which

is the smallest term as y E [0, 1]. This verifies the claim.

N h-.N-1 (N-1\ ljkak+ 1 \ N ( 1  N--Oo - ln(y)

Equation (D.21) further gives, ko k k 7i T) ) N o -y

(which is finite for 0 < -y < 1) and since IN (1 - 7 k) is monotonically non-decreasing in

N with a finite limiting value, it is bounded for all N. 'To see the monotonic behavior
1 1/N -- 71/N In(1/-y)

differentiate w.rt N, which gives ~ ~1_N . To show that this is positive we need to
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show that -y1/N(+ln((l/'y)1/N)) < 1. Using ln(x) 5 x -1 we get, -y1/N(+1+ln((1/')1/N

'y1/N(11,y)1/N = 1, hence the above is true. Thus, we get,

N N- N - 1) -1ak+1 ln(1/'y)
1 - -y (k=O k (k + 1)2 - _-

Now, using the above simplifications we can re-write (D.18) as,

-y In N N1 N - 1 -lkak+1 (D.23)
y N a +1 - y E k (k + 1)2

For y E (0, 1), the first term within brackets above, grows as ln( ) = E(ln(N)) (using

Lemma 16) whereas the second term is bounded (from (D.22)). Hence, for large N, R *I

can be expressed as,
RWP _ 1 - 7E (In(N)) (D.24)

y N

From (5.19) and (D.24) we get the result in (5.21),
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