An Analysis of Service Oriented
Architectures

by
Rajiv Ramaratnam

B.S. Bangalore University, (1989)
M.S. University of Denver (1992)

Submitted to the System Design and Management Program
in Partial Fulfillment of the Requirements for the Degree of
Master of Science in Engineering and Management
At the
Massachusetts Institute of Technology

June 2007

© 2007 Massachusetts Institute of Technology
All rights reserved

Signature of Author

System Design and Management Program
March 2007

\
Michael A. Cusumano, Sloan Distinguished Professor of Management
Thesis Supervisor
Sloan School of Management

7T N e~ N N
Certified by

Patrick Hale - L —

Director

System Design & Management Program

SSAGTUSE TS W] e 8 &

OF TECHNOLOGY '
FEB 05 2008 BARKER

LIBRARIES

O U ION .o er ettt e e et e e s eeatesesbana e s sartasseentnsersennseeanenanes 5

TWED SEIVICES ..oiiiiiiiiiiiieiteeie ettt ettt et sbe e e eas b e e e et e e senbeesaeseaenasbeae 8
SOA GIOWEN Lottt e ettt e ete e bee s eeeabeeeabeebneebeaeennbeennnas 9
SUIMIMIATY <. etveeiie ettt b e sttt e s ebb e b e sbe et e e bt e et eesea e bt e san e e bt e ebeseabeeabbe s 9
History of Service Oriented Architectures...........oouviiiiiiiiriiiiiie it 10
INEEWOTKINE «..oiieeiiiie ettt ettt e et e bt e et e et e e s e e eanteeesmseenannen 10
Remote Procedure Calls............ooviieiieriiiiioiieiieiteie ettt e eia e ees e 11
Client Server APPHCAIONSviiveeeet et tee et ette et esteeeeeeeteeseeneeeeeessneeasneeraeesnns 11
Object oriented Programming........cccoveeiieiiimieietiiteriieeiiee st erineeieesreseveeseeeseeesrneenseeees 12
CORBA (Common Object Request Broker Architecture)............eecevrveiveeneveneerennen. 13
COM and DCOM.......ccoiiiiiiriiiieeniie e SR 14
JAVA Lot et e e e et e e st e e s s abat e s e e raaeeseas 15
N ET ettt e et et b ettt e st e st eh e ettt ne e ere e enne 16
XML (Extensible Markup Language)......ccccccvveeeieeimiiieeiicrenererrreeineessreesenecessnnee 16
SO AP et et e et e et ae e e st eeee e e e e e e nrarnann 17
Recurring THEMESoovueeriieiiiiieeece ettt e e 17
The Evolution of Service Oriented ArchiteCtures........ccoocceeivvieriiiiiniiiiiceicenecee 20
Technologies of Service Oriented ArchiteCturescooevvvveveciincinrieeievrececceceee 21
RPC ettt et e ettt e nhe e e st e ee e e nse e e re e s 21
WED SEIVICES ntiieiiiiie ettt st s s e e ssmne s saneesenne 21
XML (Extensible Markup Language).......cc.ccooeiveiniineriinniiniiie et 23
Hypertext Transfer Protocol (HTTP)......cccoiiiiiiiiiiiiiiiiiiicicic e 24
SOAPccene.. et teeutesteeuesteseebesastintenteeeiteteettenteesteete et raett e beetee st bt eebeentaeteaebe e et ansraan 26
WSDL (Web Service Description Language).........c.coeeiiiieiirinieienenieniiercenee e 27
UDDI (Universal Description, Discovery and Integration)...........cccoocvecieriniiiecnneennn. 31
The UDDI INQUITY AP ...ttt et eb e e 33
The UDDI Publishing API........ooiii et 36
Representational State Transfer (REST) SOAS oot 37
SUIMIMATY .tttitireteee ettt e e e e s tere s e es s b s sn s aarete e e s s e e sstmaeeresssessatnaaaseeseeesesanssnsnn 38
Technical Benefits 0f SOA ..ot 39
RIS ... ittt ettt ettt e ettt e e e s b et e e be e e s bt s e e bt e aa et e b e e ate s et e et ee e neees 39
COMPOSItE APPHCAIONS. ...cuveieieiieiietieiee it ce ettt et e st e st sateebeanaeeebeeabseeeabeenaies 40
Flexibility and AZIlIEYc.ooeeoieieen ettt et 40
ENcCapsSulationcoooiiiiiiieeirree ettt e 40
StandardizZationc.ooviioierii et 41
INtErOPETADIIIEY ..ottt e 41
Interoperability within an Organization........c.c..coeoveeveeccreniniecneernenecoeeierreeeeens 4]
Interoperability across OTganiZatioNSccueereeerereiietreieeiieseeseeeneeseeeveessseaesneees 41
Semantic Interoperability.........cooovivirieiiiiinii et 42
Incremental DeploOYMENt.......ccoveviioriniirieiciiiiieiciree ettt s 42
ADSETACHION ...ttt sttt ettt e ste e et e e s e e st e e e e saeeeresesteenmaeemtaeenne e anessenen 42
Real Time Information...........coioiiiiiiiiiii et e e e e 43
Advantages t0 DevVelOPer... ..o s 43
SOA SECUTILY ..ttt et ettt st st b e s b s ssn e saesonanssnane e 45
SECULTLY ISSUES ©.einniiietieteiteii ettt ettt st st st seb e ae e san et enessmnee s 45

Authentication and AUTROTIZATIONoeerreee ettt eee s e etaeeeeeerieseeennaas 45

Confidentiality and INtEEIILYceoveerieceiiieeiertee ettt et 46
Denial of SErvice AttaCKS ..ov.vivreriieiiircie e 47
Auditing and RePOrting.......c..ococeevueeereriireiieiieecencereiers st ee st et e e seee e s 47
Security Policy and ProviSIONINGcccceevveriieiriiinieeireesree e erreeeneenee e 47
Federation and Identity Managementcoovvvivniiniicniieninniennn e 48
GOVEITIANICE ..eiiieiiitieiiii et e et e e et rtee st e e e ettt e sebbb e e e e saabbaeesabrbanesessanbaaecasenrranas 48

An Overview of SOA Security SOIIONSc.oooiiiiiiiiiiiniiiiiii 48
SUMMIATY et ettt et e e s et es s ae s s btaa e s e tbaeaeaeenae 50
SOA GOVEIMIANCEuvvveeieeieeeieeeiteeaeitee sttt eseasetaeateeeeaaaebtaeseasasbaeseaastbaeaesaesessaesaansanenean 51
RUIES ANA POLICIES ...vvivviiieet ettt ettt ettt et e it et eabe e esaeebe e neenes 51
TOLETANCE. ..vvveeiiieieire ettt et ettt e eat e e e bbb e et e e st e e et e e et e e neae e nbneeean 52
Tracking, Reviewing and Improving Polices.oocociriiiiinciiiiiiiiciiieenec e 53
Domain vs. Departmental GOVEINANCEccueiveuiiierieieeieieetrrieee et eve e e 54
SUMIMATY 1ottt e ee et et s e e e esa e e eaaae s e s ne e smeaesaneeennnie 55
SOA N INAUSIIY .ottt ettt e et e b e e e e eetnbeeeneeeenns 56
IBM’s Efforts to Push SOA ..ottt 56
SUN"S SOA ET OIS ..oieirieiieieeiteeie ettt ettt e s e e et e e et e enaeesabeeeennnees 57
Oracle and SOAo et e e e 57

S AP e e ettt e e n e n e ettt e ettt ea e e e bt e e ean e esbae e beesbeeenas 58
ALCCEONTULC c.niiiriieeeee ettt e s e re e sttt mea e s e e aeae e s s s s ms et e e e seseeessesantnannneseeeenans 59
IMIECTOSOTE ...t itiiie ettt et e et e st e st ee e e e e mtme e ea e rnneee e 59
Current Industty SOA AdOPHONociiriariie ittt eae e 60
Examples of SOA used in BUSINESSES ..coovieevreiiiiiiiiiiiiienieecirereeeeee et eee e 62
SUMIMATY ..ottt e b b sas s ebessent e e sae s saeeesrasenaaeenneas 63
The Business Case for SOAottt et 64
Why AdOopt t0 SOAT ...ttt 64
Pushing SOA Adoption in an Organization.........c.cceeeveeceeeieenecnieniieneesreecreenrereesneenns 67
Accenture’s SOA Readiness Model.........ccoooiiiiiiiiiiiiiiiic e 67

The Champion’s SEOTY ...c.veeereeveeirerrenee ettt st et estes e ere e s abe e s st eesebeeesanaee s 68
Vendor ConSIACIAIONS.eoveviverrieeeeeerie et eeareeiiee st ae et cesaeneeennersoiies s nsseebaeaense 69
COSt CONSIACTALIONSvieriieeiirerirreeire e eeeetreee et stiree e e siree s e sanreeesemaeeessabeneeas 70
Roles for SOA Infrastructure Providers.......c...cooeeiiiniiniincinnieieeeecececeeenec 70
SUIMIMATY .1ttt ettt s e s a e stb s b e e s bt s e e rnbs s s abe s srnneesrnaesernnee s 71
SOA RISK ANALYSIS c1eeviieiitiicetiiet it ettt e e sieeibe st eeeses et anbeaaeesbeessbesbbenseebeearesasenes 72
Inherent SOA RISKSvivuiiiiireiiececcie et 72
SECUTTY RISKS Leiiiiiieiiee ettt 72
SOA Implementation RISKSccceoriiiiiie ot 75
SUITHTIATY ... eeveetiesee ettt ettt et b e bt e s ae e be s ses e sanesbe e sateesabeesbecssbecenaeeenaesnnnessanan 77
The FUTUIE OF SOA ..ottt ettt ettt rab et eett e e st e eat e esseesaneeennaes 78
Enterprise SErvice BUS......ocooiiiiiiiiei ettt 78
SINATT CHIENES.eeiiiieiiiveereer ettt ettt et aeeeasaeser s e saeesbe s saneas 80
Open Source and SOA ...t 81
Grid Computing and Web Servicesc.cooveiviiiiiiiiiiiiiiicii s 82
SOA aANA M2M ...ttt et e et st e bt e e s s 83
SUIMITIATY ..ottt st et e et sre e sba e sna e e s e e ae s sre s e aaeaneeanaeeraneens 84

Introduction

Corporations all across the globe and of vartous sizes rely on their IT systems for
business processes, reduction of process lifecycle and management of resources.

These systems house several applications for internal sales, purchasing, finance, HR and
so on. In any such typical organization, IT systems are a heterogeneous mix of hardware,
operating systems and applications. Many of these applications run on different operating
systems like Windows systems, Linux and Unix systems, etc.

Oftentimes there is a need to consolidate data or access data from several such systems.
The diversity among systems and applications makes these tasks difficult, time
consuming and tedious.

Furthermore, there is also a need for synchronization of data across systems and
applications to ensure that the data is accurate and up-to-date. The heterogeneous nature
of systems and applications lead to high levels of redundancy of data, making data
maintenance a huge overhead for organizations.

Today’s organizations must also adapt to changes in environments both external and
internal to them. Such changes could be changing market conditions, reorganization,
change in business strategies within a company, addition or changing suppliers,
partnerships, mergers and acquisitions and so on. There is also a growing need for
integration across enterprise boundaries to facilitate fast and seamless collaboration
between partners, customers and suppliers. All such needs entail changes to existing IT
systems within an organization in a timely manner.

There is thus a growing need for integration of such systems for consolidated decision
making, accurate, up-to-date system information, better performance and system
monitoring. IT Systems must also be flexible to respond to changes in the environments
of their organization.

Enterprise Application Integration is a process that aims to bring about such integration.
The need for integration goes beyond the boundaries of an enterprise. Further, to
successfully compete today, businesses need to be flexible. This means that their IT
systems need to be able to keep pace with dynamic business conditions.

It is evident that any solution for multiple IT systems to integrate with each other and to
provide flexibility, they must be able to communicate and coordinate activities in a
standard way. For almost two decades, many companies have tried to use CORBA,
DCOM and similar technologies but have had little success. None of these technologies,
for many reasons have become global technologies.

The arrival of standards like HTTP and HTML helped linking together millions of
humans across the internet but proved inadequate to link together computer systems.
Moreover, internal and cross enterprise integration and coordination bring with them,
security implications as both involve information exchange between organizational

entities. As we will see later, the traditional methods of securing applications with
firewalls prove inadequate for application security.

One insight that has come from failed attempts to consolidate and coordinate IT systems
is that such efforts cannot be limited to 1T alone. Decision making on how
interdepartmental and inter-enterprise data must data must be exchanged must be made
by leaders and opinion shapers at each level or division of the organization.

It is the goals of internal and external enterprise integration, flexibility of business
processes, and enterprise data security that has led more and more organizations to adopt
to Service Oriented Architectures (SOA).

The adoption, implementation and running of a SOA does not simply invoive IT
department heads to design and create a new architecture for the enterprise. It involves a
holistic understanding of the nature of the entire enterprise, its business and internal
processes, the corporate strategy for the enterprise, an understanding of the business
processes of the enterprise, its partners, suppliers, subsidiaries, etc.

Such an undertaking is beyond the scope of a single department or division of the
enterprise. The creation and running SOA architecture thus involves the coordination of
all parts of the enterprise.

Service oriented architectures abstract business processes and do not abstract
software functionality.

So, how can organizations benefit by adopting to SOA?

e A SOA can help an organization consolidate its data and eliminate and data
redundancy. It can help leverage its existing assets like mainframe data and allow
seamless data communication between disparate systems and applications. SOAs
can also leverage existing applications through reuse. Besides the reuse of
existing systems and their data, an SOA can also facilitate building of new
functionality from existing systems in lesser time. Thus SOAs helps efficient
building on existing 1T infrastructure and leveraging IT investment of a
corporation.

e With nimble and flexible SOA systems, businesses can adopt to changing market,
business and regulatory conditions and help the organization deliver efficiently
and effectively to market needs.

e By bringing together different parts of the enterprise to make decisions on the
operation of the SOA, an organization can help IT personnel better understand the
their business and the operations of each of its divisions. The divisions of a
corporation, in turn, can also have a say on how the SOA system has to function.

e Such a coordination of efforts within an organization can thus enhance a firm’s
investment in IT. [T systems can thus cater optimally to the needs of all divisions
within the organization and to the organization as a whole.

e IT systems can build new functionality relatively easily and can respond to new
market or business environmental challenges.

We can thus define a SOA as follows:

A Service Oriented Architecture is an IT architectural style, typified by loosely
coupled, invokable software functional units (services) to enable supporting the
requirements of applications or persons. An SOA is language, platform.

It is often assumed that SOAs consists of only web services, but in reality SOAs may or
may not use web services. The key to an SOA 1s a set of independent services with
defined interfaces that can be called to perform tasks in a standard way. An SOA may be
implemented in REST, RPC, DCOM, CORBA or Web Services.

Among these technologies, web services and REST are the most popular ones used to
implement SOAs. The question of which is better is an ongoing debate among the
proponents of the respective technology. By and large, most corporations implement their
SOAs through web services.

As described above, Service Oriented Architectures are composed of loosely coupled
invocable software functional components called services. The loosely coupled nature of
services makes them independent. Thus any user of a service need not be concerned with
how the service is implemented and must only be aware of how they operate and how
they ought to be used.

Typically services abstract business functions of an organization or a business unit within
an organization. This means that while designing and implementing a service, careful
decisions must be made on the level of granularity for the service.

The functionality of services implemented within an SOA is typically invoked through an
interface for the service that is typically placed in a well defined location. The interface
of a service defines the parameters required to use functionality of a service and also
defines the format the output of the service. The contributor of the service and its
interface is usually called the producer and a user of the service is a consumer. The
provider and consumer of a service are usually software applications or components of a
software application.

The invokable nature of services enables consumers to be agnostic of the physical
location of the service. The service could thus be local or remotely located to the
consumer.

The service could be part of the same application as the consumer or be located remotely
on the corporate intranet or even on a partner or supplier’s system. This aspect of web
services also facilitates removal of barriers to outsourcing of application maintenance for
an organization,

Further the management and workings of a service fall under the responsibility of the
system providing the service and not the consumer that invokes the service.

While there are many definitions for Service oriented architectures, OASIS an
international non-profit consortium to drive the development, convergence and promotion
of e-business standards has charted a reference model to “guide and foster the creation of
specific service-oriented architectures, and to publish a reference model for SOA” . The
reference model was approved as an OASIS Standard in October 2006'.

The Oasis Reference Model provides an overview of SOAs and guidelines on how they
must be implemented and how they ought to work. However, all the descriptions and
examples of SOAs in the reference model are too broad and generic. Independent
implementers of SOAs just based on this model are bound to come up with architectures
incompatible with one another.

The language and platform independent of SOAs gives them enhanced flexibility in
implementing services. However, to facilitate access to them and efficiently use their
functionality, their interfaces must be well defined, well documented and adhere to
certain standards.

Further, clear separation of business logic (interfaces) and implementation is a major
imperative for services in an SOA. This is one of the reasons for web services to have
gained popularity in most large corporations today.

Web Services

As described above, web services are the most popular of technologies used to implement
SOAs. The Web Services Interoperability Organization (WS-I), is an organization
composed of almost all major software vendors to establish and promote web services.

Unlike generic SOAs, web services, by definition must adhere to strict guidelines
outlined in the Basic Profile 1.0% a standard specification from WS-1. WS-I aims to
provide interoperability among software modules on different operating systems that
have been built by different programming tools.

" hitp://en.wikipedia.org/wiki/OASIS_SOA Reference Model
2 http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html

Using a mechanism called UDDI, web services provide a standard way to locate, catalog,
provision and deliver service functionality. UDDI thus allows easy maintenance and
monitoring of services by clearly separating business logic and the underlying technology.

UDDI also encapsulates related functionality of services allowing consumers to
effectively and efficiently use them. We will look at web services and UDDI in more
detail in the third chapter, ‘Technologies of Service Oriented Architectures’.

SOA Growth

While Gartner estimates that most application growth by 2010 will be in SOA, IDC
predicts that spending in SOA will reach 33.8 Billion in 2010°.

Summary

SOA is an IT architectural model that has gained widespread acceptance in industry
today. It allows reuse of existing IT assets, quicker development of newer software,
standardized access to IT functionality for users and applications within an organization
or across corporate boundaries.

SOAs make businesses flexible and streamline their processes effectively via services.
SOA architectures can quickly adapt to changing market conditions and can thus enable
service providers(producers) quick access to more revenue. By facilitating reuse of
existing functionality, they can reduce IT spending and risks by eliminating cycles of
development and testing.

In the following chapters, we will look at the Historic evolution of SOA, the technologies
used to build SOAs, (particularly web services), the technological benefits of SOAs and
the security aspects of SOA. We will then look at the benefits SOAs provide to
enterprises and the state of SOA adoption in industry at this time.

Next, we will build a business case for why enterprises must adopt SOA. We will then
look at the risks associated with SOA adoption and how one must plan contingency
measures associated with these risks.

We will then look at the future of SOA in industry and look at the numerous pathways
that SOA technologies can take.

This thesis is intended as a manual for business leaders and architects considering
adoption of SOAs in their organizations or enhancing existing SOAs in their firms to
bring in more value from their IT investments.

* http://'www.fool.com/investing/value/2006/09/18/soa-the-new-software-bazaar.aspx

History of Service Oriented Architectures

Tracing the origins of Service Oriented Architecture is a daunting task. Many factors
contributed to the arrival of Service Oriented Architectures. These include, application
development, on early computers, networking, the client server architectures, object
oriented programming and component technologies, the standards wars, arrival of the
internet, and advances in enabling technologies.

Networking

Networking as a discipline predates even the earliest computers and can be traced to the
early telecommunication machines, and then to the calculation machines. The 60s saw
major evolutions in networking. One was a linked network of teletypes and computers
developed by ARPA in 1962. In 1964, timeshared systems to enable distributed users to
access large computer systems were developed in Dartmouth and MIT. Kleinrock, Baran
and Davis, each produced mechanisms for packet switching between computers during
this time.

The first ARPA node went live at UCLA in 1969. UCLA, UCSB and the University of
Utah were now a connected using 50 kbits/circuit. In 1978, the International Packet
Switched service was formed by The British Post Office, Western Union International
and Tymnet. This network grew across Europe, Australia and North America in the
following years.

The IP protocol was developed by DARPA in the 1970s.While IP enabled transfer of
information across LANS, i1t was not ideal for exchange of packets across computer
systems. Thus a protocol to exchange data, TCP was also in development at DARPA.
Kahn and Cerf, both employees of DARPA would soon develop a TCP/IP a common
network protocol that used both TCP and IP. TCP/IP allowed work over preexisting
networks, and thus allowed ease of growth.

The National Science Foundation (NSF) foundation of the United States would then
produce the first TCP/IP network, NSFnet at the beginning of 1983. After the network
was commercially opened in 1985, computers called gateways were used to connect other
networks like Usenet, Bitnet and Janet to the NSFnet.

A large private network that allowed dial-up access then joined these networks in the 90s.
This network then began to be called the internet.

Tim Bernes Lee created HTML, a mechanism that allowed publication and receipt of data
in 1991 at CERN (The European Organization for Nuclear Research). Two years later
CERN publicized the internet as the ‘World Wide Web’ and the first Mosaic internet
browser.

10

The modern day internet is governed by joint contracts and by protocols about how data
is to be exchanged over it. In addition to TCP and IP, it includes an application protocol
to specify the format of data exchanged by applications.

Remote Procedure Calls

The evolution of the application protocol ied to the need for Remote Procedure Calls. A
Remote Procedure Call (RPC) is a protocol that allows a program on one computer to call
a software module on the same computer or on another computer. It enabled a
programmer to write the same code irrespective of whether the called module resided on
the same machine as the calling module or if the called module resided on a different
machine.

It was first described in 1976 in RFC 707. Early implementations of RPC were done by
Xerox’s ‘Courier application in 1991 and a UNIX implementation on Appolo Computer’s
Network Computer System (NCS). The latter became the basic for the Distributed
Computing model by OSF. RPC was subsequently adopted by Microsoft and used under
the covers of its DCOM architecture. It would also be adopted in the evolution of
CORBA by OMG. Unfortunately the evolution of multiple varieties of RPCs led to
several incompatibilities among them.

Client Server Applications

In this paradigm, computing is spread across two entities the client and the server,
typically on separate machines .Client Server communication mechanisms are typically
established by RPCs. The server does the heavy computing like generating processing,
storage and retrieval of data, etc. The client usually is used to display, format or edit data.

A typical client server communication model works as follows. The client sends a
message to a remote or local server requesting it to execute a procedure. The client sends
all the data required by the server as part of its requesting message to execute the
procedure. The server processes data from the request and furnishes the client with a
response message that contains results of the executed procedures. There are many
protocols that can be used in the client server model. As described above, the
incompatibility among RPC mechanisms forced clients and servers to be locked into a
specific RPC technology. This often resulted in a ‘tight-coupling” among servers and
clients.

11

Object oriented Programming

Object oriented programming (OOP) is a programming technique that ‘abstracts’ models
from the real world. By ‘abstracting’ real world entities as containers of information
called objects OOPs can provide functionality such as modularity, inheritance,
polymorphism and encapsulation.

Modularity is a cohesive grouping of procedures and data. Modularity enables
encapsulation (data hiding) and thus hides design. This helps changing the internal
implementation of a module without having it affect the external workings of the module.
Modularity thus allows the clear separation of implementation from the interface of the
module.

Inheritance is a generalization or an ‘is-a’ hierarchical relationship between objects. For
instance, ‘Stick Shift Car can be a generalization of an object Car’. This implies that
Stick_Shift Car is a specific case of the object ‘car’ and may inherit all the properties of
the object ‘Car’. Stick_Shift Car is a derived object from the base object car.

Stick Shift Car is an inheritance of the object-type car.

Polymorphism is the means of allowing derived objects respond to the methods of the
same name as the parent object. For instance, a drive () method called on a
Stick_Shift Car object may operate differently from the drive () method on the base
object ‘Car’

The earliest traces of Object Oriented programming can be seen in the 60s with PDP 11
developed at MIT (1963) and Simula 67. In 1970, Xerox PARC developed Smalltalk an
object oriented language that used objects and messages. In the 1990s, C++ an extension
of C became immensely popular, helped by the growing popularity of Graphical User
Interfaces.

Object Oriented Programming became even more popular, fuelled by the growing
popularity of video games. Object oriented features were added to many existing
languages like ADA, Lisp, Basic and Pascal.

Another evolution that arose from the growing popularity of object oriented methodology
were design patterns, design by contract and modeling languages like UML.

In the 90s, many technologies evolved from traditional object oriented methodology,
each attempting to use the strengths and eliminating the weaknesses of most object
oriented technologies. Four of the most common component technologies are CORBA,
COM/DCOM, Java and .NET

12

CORBA (Common Object Request Broker Architecture)

CORBA was one of the earliest attempts to solve the interoperability issue among
heterogeneous systems. When the Object Management Group (OMG) introduced
CORBA 2.0 in 1997, developers could use its standardized protocol and C++ and Java
mapping to implement communication among heterogeneous applications. It was touted
as “a vendor-independent architecture and infrastructure that computer applications use
to work together over networks.*”

CORBA uses a protocol called 1IOP (Internet Inter-ORB Protocol), an efficient protocol
where a client can make a request to a server and then allowing the server to call back the
client on the same connection.

A CORBA application is a software entity (object) and communicates with other objects
through an OMG IDL, to a CORBA object request broker (ORB). A client object
typically specifies the operation it wishes to perform on a server object through the IDL.
Every object in CORBA has its own unique reference. CORBA objects written in
different programming languages can communicate through the IDL. In distributed
environments, a client can call a server on another machine, through its ORB. In this case
the ORB enables requesting and sending of the information to another remote machine
communicating with the ORB on the remote machine. The CORBA communication
between a client and an object is shown below. °

Cli Obhject
tert Implemertation
IIZI;:I IOL
St Skelpton
Request E
Object Request Broker

Figure 1: & wquest passing from client to
chject inplemertation

Capwighe D 2000 O #4 sompeerns Chaug

* hitp://www.omg.org/gettingstarted/corbafaq.htm
3 Source: Object Management Group.

13

As the internet began exploding, however, CORBA did little to cooperate with popular
web technologies like HTTP, Java and EJB. OMG tried to push for a component model
for CORBA but this turned out a disaster and faced numerous compatibility problems
with other technologies.

Further, Microsoft never adopted COBRA and was pushing its own DCOM Model. The
late 90s also saw the emergence of XML as a silver bullet for the entire computing
industry. Microsoft jumped on this bandwagon by collaborating with Developmentor and
publishing SOAP, an internet protocol to provide interoperability. SOAP was passed to
W3C and became a standard for distributed communication,

According to an article by Chris Britton and Peter Bye, Iformatit.com,

“.. possibly the major reason that CORBA never took off was the rise of component
technology [like Java and COM]. "0

COM and DCOM

Early in 1991, Microsoft introduced OLE (Object Linking and Embedding), a technology
to link and embed one application within another. Changes made in one application
would automatically reflect in the other.

For instance, an excel document could either be linked to or embedded within a word
document. OLE was messy and a large consumer of memory and other resources. With
further improvements, Microsoft evolved OLE to form the basis of a programming model
called Component Object Model (COM).

Programs wanting to use COM components could look it up in the system registry, a
stable feature in Microsoft Windows Operating systems like Windows 95 and Windows
2000. The registry was a database modeled as tree structured directory used to look up
COM components and system information on the respective computer housing the
operating system. In the late 90s, a lot of applications were built with COM.

COM had the limitation in that it could only allow communication between applications
within the same operating system. Microsoft thus provided DCOM as an extension to
COM to enable lookup and use of COM objects on other Windows operating systems on
a network by accessing the registry of another system.

The registry in Microsoft Windows systems however, became a major security threat.
The registry contained application information about COM components that included the
actual physical location of the application on the hard drive. Many viruses often exploited
this vulnerability of windows systems causing great threats to such systems and their

® hitp://www.informit.com/articles/artic le.asp?p=345781 &rl=1

14

stability. This was one of the reasons that Microsoft discontinued the use of the registry
in their NET framework, the successor to DCOM

Java

Sun presented Java, an object oriented programming language in the mid 90s. After years
of unsolved programmer woes with languages like C and C++, Java was aimed to relieve
the programmer from problems embedded in the nature of the languages themselves.

Java introduced the notion of a virtual machine (VM), a software abstraction of an actual
machine. The Java applications themselves reside on and operate within the boundaries

of this virtual machine. The VM is a pure software module with a strict set of
specifications. Programs written with Java code are converted to Java Byte Code in a VM.

A Virtual Machine itself was a layer on top of the operating system of a computer. As the
specifications of the VM are strict, the same Java program written on one operating
system would run on another which runs another operating system, as this only entails
moving the program across two VMs that both operated on Byte code. The code within
the VM converts the Byte code to machine code specific to the respective operating
system that houses the VM.

This approach provides numerous advantages like providing a Sandbox for Java
applications and thus provides security from malicious code. The VM performs thorough
checks on the application to ensure that that the security of the local machine of the VM
is not compromised.

To make the job of programming easier as compared to other languages like C and C++,
Java eliminated rarely used, hard to use features in its implementation and added simpler
features to make programming and linking programs of an application less confusing.
Developers of Java also made great strides in making Java more humanly readable, and
facilitate maintenance of code written by several programmers.

Java does not incorporate many C++ features like user-defined operator overloading and
multiple inheritance with classes. Java replaces this multiple inheritance among objects
with the concept of an interface and thus eliminates confusion caused by polymorphism.

Being a pure object oriented language; Java prohibits the creation of functions that exist
outside of a class. It facilitates distributed client-server programming through strict
encapsulation, data hiding and abstraction making code cleaner and more portable.

In addition to checking for malicious code, the java compiler also rigorously checks the
types of all data in the code, the legality of class-casts and checks if all arrays are within
bounds. Java also eliminates one of the biggest bugbears in C++, pointers. C++

programmers have long been haunted by pointer errors and Java totally eliminates them.

15

The removal of pointers in Java eliminates the possibility of a program either
intentionally or accidentally, to modify another object's memory.

Java has several other security features like the inability of Java programs called applets
to make connections across the network. Information thus cannot be stolen and sent to a
remote computer. Further, Java uses class loaders that ensure that programs and applets
cannot access other parts of the system unless they are explicitly given permission to do
s0. The class loader also ensures that assumptions made about code placed in a
namespace will always be true. Java is thus one of the most popular programs used for
distributed computing used today. It provides numerous libraries and pre built packages
to help the programmer.

.NET

Released first in 2002, Microsoft. NET was Microsoft’s retaliation to the growing
popularity of Java. It is an extension that can be added to Windows Operating Systems to
enable them to run newer Windows programs. Like Java, it provided large libraries of
code to target common issues. .Net programs run in a Common Runtime Environment
(CLR), a feature, no doubt inspired by Java’s virtual machine. Like the virtual machine
the CLR provides libraries with security mechanisms, memory management and
exception handling. The CLR allows programming in a number of languages like Visual
Basic.NET, C#, C++.NET and so on.

XML (Extensible Markup Language)

The coming of HTML helped in the rapid growth of the Internet. Documents and images
could be shared by individuals anywhere in the world. However, HTML had inherent
flaws. One of them was its inability to differentiate between the presentation of data and
the data itself. XML developed originally Sun Microsystems, thus emerged as a solution
to this flaw and other limitations of HTML.

XML, in addition to transmitting information could also interpret the information. The
greatest value added feature of XML was the fact that each information subject sent
through XML, be they stationary bills, tennis scores or medical information have its own
‘Vocabulary’. As described as in the article by John Markoff’ in 2000, “XML designers
began to glue together entire industries with their vocabularies”. Microsoft too realized
the value of XML and promoted its own technology built on XML, SOAP. XML became
one of the key technologies that formed the basis of SOA. We will look at HTML n
greater detail in the next chapter.

! hitp://w ww . nviimes.com/library/tech/00/06/biztech/technology/07mark.html

16

SOAP

SOAP was first conceived by Microsoft in 1998 When the first version of SOAP was
introduced in 1998, there was no agreed upon methodology to describe XML structures
or data.

The older systems assumed a Microsoft COM-like system for remote communication.
Dave Winter, immediately released a XML-RPC specification as a superset of the SOAP
specification. The next phase of SOAP came at the end of 1999 and illustrated how to
model typed references and arrays in the W3C XML Schema type system.

The post 2001 Post SOAP era saw the stabilization of the XML schema. With this
stabilization came the formation of a working group. SOAP today forms the backbone of
web services, one of the most popular ways to build SOAs. In the next chapter we will
look at the SOAP syntax in greater detail.

Recurring Themes

As we trace the history of computing and SOA specifically, we see the following themes
re-emerge in different manifestations from time to time.

Loose coupling

Interfacing problems between discorporate software modules have plagued IT systems
almost for ever. Loose coupling offers a way out of such woes.Loose coupling is a
feature of two or more software modules by which each communicating module specifies
a specific explicit way for other modules to interact with it. Further the modules make no
assumption about how other modules of the coupling interact. With more diversity of
platforms, operating systems and languages, it is clear that software modules need to be
designed to allow loose coupling.

The best working definition for loose coupling can be found on ViewPoint.”

“Loosely coupled is an attribute of systems, referring to an approach to designing
interfaces across modules to reduce the interdependencies across modules or components
— in particular, reducing the risk that changes within one module will create
unanticipated changes within other modules. This approach specifically seeks to
increase flexibility in adding modules, replacing modules and changing operations within
individual modules.”

http://www johnhagel.com/view20021009.shtml

17

Encapsulation

This is an old concept that can be traced back to one of the main goals behind object
oriented programming. Encapsulation of similar functionality within a software module
makes it easier to understand and more intuitive for a programmer using that module.
Encapsulation helps draw a clear line between implementation and the interface. Data
hiding and abstraction are key benefits of abstraction. Encapsulation facilitates the
process of loose coupling and helps keeps software systems modular.

Interoperability, LLanguage and Platform independence

Interoperability is the ability of software and hardware systems to work in conjunction to
accomplish tasks and to have the ability to share data. For interoperability between
systems, they must be able to transmit and receive data in such a way that they
understand each other’s communication mechanism. They must also be able to
comprehend the format used by one another to represent data. Interoperability is one of
the key necessities that led to the development of the TCP/IP protocol and the ASCII
character set.

Another key factor of interoperability is that terminology used in one system or software
must not be misinterpreted on another system. Builders of interoperable systems must
ensure that there is no ambiguity among commonly used terms (Author, composer,
creator) and must offer documentation with strict definitions of each term.

Language independence is yet another recurring need that keeps returning from time to
time. When interacting software modules are built using different programming
languages, it is necessary that each module expose access to the functionality it provides
in a language neutral way. The functionality provided by a module must also be usable by
other modules written with either the same language or another programming language.

Reuse

Reuse is another recurring theme in the evolution of software systems. It refers to the use
of a software entity built to accomplish a task be used with little or no modification to
accomplish the same task or another task even in an entirely different context. System
development done over time has proved that effective use of reuse reduces significant
development and testing efforts in extending existing systems or building newer systems.

The motivation to reuse existing code has led vendors like Sun and Microsoft to provide

their development tools with extensive pre built libraries that programmers can easily
incorporate to build new components or applications.

18

Simplified deployment

Deployment is the process of installing one or more modules of a system at a certain site
to make it operational at that site. When a system is composed of more than one
component, deployment usually involves installation of the system component in a strict
sequence to enable the components interact with each other in the correct fashion.
Deployment also refers to updating software systems with newer versions, security packs
and bug fixes.

As software applications grow in size and complexity, deployment becomes more
complex and cumbersome. Improper deployment of systems can cause enormous wastage
of effort and time and can delay or impeded the operation of critical systems.

The need for standardized deployment is thus another recurring theme in the evolution of
software systems. The coming of the J2EE architecture is a major step towards such
standardization.

With all J2EE compliant app servers like Tomcat, Weblogic and websphere, Java web
applications are packaged as a war file (web archive files) and all other supporting
complied java components are packaged as jar files.

Software built for the enterprise must be easily deployable in the shortest time frame and
cause very little interruption of service. This is yet another recurring theme in IT today.

Security and Access Control

The need for security and access control has been revisited over and over in IT and 1s
more important today than ever before. Security issues range from issues of data privacy
protection, access control and malicious attacks on personal and enterprise systems.

These are just some of the recurring needs of software systems that led to the evolution of
Service Oriented architectures.

Standardization

As IT infrastructure becomes more and more complex, marked by a mix of operating
systems, devices from multiple vendors, the rise of Linux and Windows based systems,
standardization of networking protocols, applications and software becomes more and
more necessary.

Adhering to standards facilitates interoperability, reduces costs, simplifies corporate
systems and promotes uniformity. Standardization reduces the need for specialized skills
among employees of a corporation. It also facilitates transfer of information and proper
coordination within and across corporate borders.

19

The Evolution of Service Oriented Architectures

Earlier in this chapter, we saw the evolution of popular technologies and emergent
themes in software systems. It was clear that one vendor or architectural model could not
address all needs across organizations. Some reasons for the lack of a comprehensive
system were the limitations of existing technologies. The other reason for this limitation
was political. The larger corporations have long been involved in a heated war about
promoting their own software solutions and standards and in the process caused much of
the heterogeneity that exists in enterprise toady

All these factors led to the evolution of Service Oriented Architectures OR SOA. The
term “SOA” was first used in a 1996 research paper by Gartner analyst Yefim V. Natis.”
SOA was thus an evolution in IT that happened to address all the recurring needs of
computing, to consolidate the knowledge gained from previous technologies, leverage
advantages of existing technologies and mitigate the risks of system malfunction in all
systems. Service Oriented Architectures are not tied to any one technology but provide
many options to build robust, interoperable systems. The next chapter will examine the
technologies used to build SOAs and will focus on Web services in particular.

® hitp://objectwebeon06.objectweb.org/xwiki/bin/download/Main/DetailedSession/A-Trenaman-SOA. pdf

20

Technologies of Service Oriented Architectures

A Service Oriented Architecture is merely an architectural style characterized by loosely
coupled components. It makes no dictates on the underlying technology used to
implement it. Moreover, the reference model provided by OASIS is so general that it can
be implemented by a variety of technologies.

Indeed SOAs can be built on RPCs Jini, CORBA or other technologies. However, most
SOAs today are built through web services and REST. Web Service and REST have
gained broad acceptance as they are standards based and allow for more interoperability.
Web Service Specifications are mandated by WS-I an organization formed by most
leading IT vendors. This allows for building SOAs without being tied to a certain vendor.

In this chapter we will examine some popular standard technologies used for
implementing web services.

RPC

Remote procedure call (RPC) is a mechanism through which a program or software
module on one computer can communicate and interact with a program on another
computer. By using RPC, a programmer avoids the need to explicitly code the interaction
between the modules. When used with object oriented technologies, RPC is often referred
to as Remote Method Invocations (RMIs) or Remote Invocation. As mentioned in the
previous chapter, many flavors of RPC exist today that are not entirely compatible among
each other.

This means that software modules that implement RPCs need to be locked in with a
certain vendor. Software modules using RPC to communicate to one another have to be
tightly coupled with each other.

Systems that implement software communication through RPCs can easily violate the
loose coupling aspect of Service Oriented Architectures. As RPCs often need a language
specific interface, they are not a popular choice in building SOAs. The WS-I

Basic Profile'” disallows the use of RPCs to build web services.

Web Services

' http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04- 16.html

21

Web Services are among the most popular ways to implement an SOA. Though the term
‘web service’ can have several connotations, the WS- Basic Profile'' describes it to have
a very specific definition:

“A web service is a software application that conforms to the Web Service
s o : . 2
Interoperability Organization’s Basic Profile 1.0

Web Services are built of the following standard technologies:

e XML: XML forms the basis of all web service technologies. In fact, SOAP,
WSDL and UDDI, the technologies to build web services are all XML-based.
XML is the key protocol to describe the message payload.

e HTTP, the protocol of the internet is used by web services to send and receive
messages. Often web services may use HTTPS, a more secure form of HTTP to
send or receive confidential messages.

e SOAP is a standard XML-Based protocol to exchange XML data. Web Services
exchange data using SOAP over HTTP.

e Web Service Description Language (WSDL) is an XML-Based format used to
describe a web service, the functionality the web service externally provides, the
protocols supported by the web service and the format requirements of a message
to communicate with the web service.

e Universal Description, Discovery and Integration (UDDI) is an XML-based
registry database that an XML provider could use to describe the web service and

allows users to locate a web service.

The figure'* below shows the interactions among the component technologies of web services.

" hitp://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-1 6.html

3 <i 3 . o . 5
13 gource: http:/en.wikipedia.org/wiki/Image: Webservices.png

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with
no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texls.

Subject to disclaimers.

22

Sroker
g a " Ve
[’ws‘;"_BEﬁj WS, *”z_:i-i_',’_
: sSoAP
Bervice Seaervige
ea ey Prowicter

To summarize, XML is the protocol used to describe web service data, SOAP is the
communication mechanism, WSDL is the language used to describe the functionality
provided by the service, and UDDI is the registry to enable publishing of the web service.

The service provider publishes a description of a service on a UDDI registry provided by
a service broker. A service requester looks up the description of a service through a
UDDI registry. It uses the information provided in the registry to communicate with the
service provider. The communication between the requester and the provider is done
through SOAP messages.

XML (Extensible Markup Language)

XML is the basic building block of web services. All technologies used in web services
are built on XML and the W3C XML Schema. XML can best be described as a meta-
language, a language used to describe the format of other languages. In its essence, it is a
set of rules through which one can describe XML Markup Languages.

The XML language describes a sct of tags, generally paired and used to organize and
describe text. The pair of tags are usually a start tag and an end tag. Any entity within
these tags is an element. XML documents also may contain an optional declaration that
declares the version of the document.

A Simple XML Example
The snippet below is an example of a simple XML document

<9xml version="1.0" encoding="UTF-8" 7>
<!--
Author: Rajiv Ramaratnam

--=

<note>

23

<to>My daughter</to>
<from>Dad</from>
<heading>Happy Birthday</heading>
<body>Many happy returns!</body>
</note>
In the above example,
e The 1™ line <?xml version="1.0" encoding="UTF-8” 7> is the xml declaration.

Comments in the document are enclosed between the<!—and --> signs.

‘My daughter’ and ‘Dad’ represent elements.

‘My daughter’ is enclosed between start and end tags, <to> and </to> respectively.
‘Dad’is enclosed between start and end tags, <from> and </from> respectively.

Hypertext Transfer Protocol (HTTP)

HTTP is a mechanism to convey information on the World Wide Web. It is the most
common protocol to send and receive HTML pages on the internet. It is request/response
protocol for Clients and Servers and is usually sent on TCP/IP. Typically data, pictures
and control messages are sent and received using HTTP by browsers on computers.

Typically a HTTP Client establishes a connection through a Transmission Control
Protocol (TCP) through a port with a remote server or host. The server responds by a
status line indicating that the request was processed successfully or with an error message
and some usually a supporting message of its own. It may also send along other
information.

HTTP allows for request and response messages. Both of them are composed of an initial
line, some optional header lines and then the body of the message. The body can contain
text or a query or the results of a query.

There are three common HTTP requests, a GET command to request resource, a POST to
put data on a server for processing or a HEAD to send to send additional data as part of a
request. The initial line of a HTTP request is used to specity the type of request. The
following is an example of a GET message: ”

GET /my directory/my subdir/file.html HTTP/1.0

The HEAD message is similar to the get message and uses the same format. Here is an
example.

Headerl: a_ value, another value

Below is a post message:

POST /my directory/my subdir/data.cgi HTTP/1.0

24

From:
User-Agent:

rajiv@ramaratnam.com
HTTPTo0l/1.0

Content-Type: application/x-www-form-urlencoded

Content~Length: 32

argl=Test&argZ2=flies

The response has 3 parts, separated by spaces. The first part specifies the HTTP version,
a status number that gives the result of the request, and a line called the reason phrase
describing the status code. Here is an example of the response.

HTTP/1.0 200 OK

The table below shows the most common responses.

Status Code

Reason Phrase

Comments

200 OK

The request succeeded, and
the resulting resource (e.g.
file or script output) is
returned in the message
body.

The request was
successfully processed by
the server.

404 Not Found

The requested resource
doesn't exist

The server could not find
the requested page.

301 Moved Permanently

The requested page has
been permanently moved to
another location.

302 Moved Temporarily

The requested page has
been temporarily moved to
another location.

303 see Other (HTTP l.]
only)

The resource has
moved to another
URL (given by the
Location: response
header), and should
be automatically
retrieved by the
client. This 1s often
used by a CGI script
to redirect the
browser to an
existing file.

This message tells the
requester that the resource
is elsewhere and that it can
be accessed by the path
specified by ‘Location’

25

500 Server Error An unexpected server error. | This usually means that the
The most common cause is | server encountered and

a server-side script that has | error while trying to furnish
bad syntax, fails, or the request.

otherwise can't run
correctly.

For more information on the HTTP Protocol, see RFC 19451

SOAP

Originally an acronym for Simple Object Access Protocol, SOAP 1.1 is XML based
standard protocol used for messaging. It is used primarily to communicate between two
applications (A2A). It is also used in B2B communication.

A SOAP XML document is a SOAP message and is used as a payload for other network
protocols. Web Services can use either one way to two way (Request/Response)
messaging. SOAP messages are commonly exchanged via HTTP and sometimes via
SMTP (Simple Mail Transfer Protocol) or FTP (File Transfer Protocol).

A SOAP message is similar to the traditional postal service. The root element or the main
element of a SOAP XML document is a Envelope element. Envelope may contain an
optional Header element and must have a Body element.

An XML document may also contain an XML namespace, a qualified name for an
element or attribute. It provides the location that describes the document that describes
the elements and attributes the namespace belongs to.

Here is an example of how a client might format a SOAP message requesting product
information from a web service by a (no-existing)wholesale stationary store. The client
needs to know which product corresponds with the 1D 122212:

<soap:Envelope xmlns:scap="http://schemas.zxmlsocap.org/soap/envelope/">
<soap:Body>
<getProductSpecifications
xmlns="http://products.my stationary store.com/ws">
<productID>122212</productID>
</ getProductSpecifications >
</soap:Body>
</govap:Envelope>

" http:/ftp.ics.uci.edu/pub/ietf/http/rfc 1945 html

26

Here is a possible response to the above request.

<soap:Envelope xmlns:socap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
< getProductSpecificationsResponse
xmlns="http:// products.my stationary store.com/ws”>
< getProductSpecificationsResult>
<productName>Cross Classic</productName>
<productID>122212</productID>
<description>
Black Cross Fountain Pen
</description>
<WholeSale Price>30.50</WholeSale Price >
<Available>true</ Available >
</ getProductSpecificationsResult >
</ getProductSpecificationsResponse >
</soap:Body>
</socap:Envelope>
It describes a product, a Cross Pen in this example as a response to
the information request on product ID 122212.

WSDL (Web Service Description Language)

As mentioned before, one of the key advantages to using Service Oriented Architectures
is loose coupling. This means that external functionality provided by software
components that are used by other software components must be well known. The
functionality, data and protocols provided by such a component must be well documented
and must be easily understood to all other systems and individuals using that component.

To describe the Web Service, a standard XML format, WSDL has been adopted by the
Web Services Community. In essence, a WSDL file describes how a web service can be
used. Technologies like JAX-RPC or other tools within IBM Websphere or

Microsoft NET can use a WSDL file to generate network stubs or interfaces using a
WSDL. AS WSDL is highly modular, one can use its artifacts(XML tags) to describe
more than one Web Service.

A WSDL file must include the following to a service:

» An interface definition outlining all the functions a web service provides, and the
parameters needed by them and the format of the results each function provides
after it has done its processing.

o The format and structure of the data shared by requesting and response messages.

o Information with regard to the transport protocol used for the messages

o Information on how to locate the service.

The WSDL document contains seven key elements: types, import message, portType,

operations, binding and service. All of these are described in a definitions element, the
root element of the WSDL document.

27

The definitions: This is the root level element of the entire WSDL document and
envelopes the entire WSDL file.

The types element: All complex data types that are used within a WSDL document must
be declared inside this element.

The import element: WSDL definitions from other WSDL files can be included using
this element. This element lists all other WSDL files used in the respective WSDL file.

The message element: This element describes all the data types used in the message
payload while accessing a service. The payload can have simple XML data types,
complex data types and datatypes within the fypes element or types from files specified in
the import element

The portType and operations clements: These elements are used to define the web
service interface and all the external functions described within the web service.

The binding element: This element is used to map out the portType and operation
elements to a certain protocol

The service element: This element maps the binding to an internet address.
The documentation: This element provides textual information on the WSDL document.

The following is an annotated example of a WSDL file".

<?xml version="1.0"7?>

<l—— root element wsdl:definitions defines set of related services -->
<definitions name="StockQuote"
targetNamespace:"htLp://example.cmm/ﬁtockquotc.wsdl“

xmlns:tns="http://example.com/stockquote.wsdl"
xmlns:xsdl="http://example.com/stockquote.xsd"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

<!-- wsdl:types encapsulates schema definitions of communication
types; here using xsd -->
<wsdl:types>

<1-- all type declarations are in a chunk of xsd -->
<xsd:schema targetNamespace="http://example.com/stockquote.xsd“
xmlns:xsd="http://www.w3.0rg/2000/10/XMLSchema">

<1—-- xsd definition: TradePriceRequest [... tickerSymbol
string ...] -->

15 Source : http://www.w3.0rg/2001/03/14-annotated-WSDL-
examples.html#xsd ns example com_stockquote
Used with permission of author, Eric Prud’hommeaux

28

<xsd:element name="TradePriceRequest">
<xsd:complexType>
<xsd:all>
<xsd:element name="tickerSymbol" type="string"/>
</xsd:all>
</xsd:complexType>
</xsd:element>

<!'—— xsd definition: TradePrice [... price float ...] -->
<xsd:element name="TradePrice">
xsd:<complexType>
<xsd:all>
<xsd:element name="price" type="float"/>
</%sd:all>
</xsd:complexType>
</xsd:element>

</xsd:schema>
</wsdl:types>

<!-- request GetLastTradePricelnput is of type TradePriceRequest --
>
<wsdl:message name="GetLastTradePriceInput">
<wsdl:part name="body" element="xsdl:TradePriceRequest"/>
</wsdl:message>
<!-- request GetlLastTradePriceOutput is of type TradePrice -->
<wsdl:message name="GetLastTradePriceOutput">
<wsdl:part name="body" element="xsdl:TradePrice"/>
</wsdl:message>
<1-- wsdl:portType describes messages in an operation -->
<wsdl:portType name="StockQuotePortType">
<l-- the value of wsdl:operation eludes me -->
<wsdl:operation name="GetLastTradePrice">
<wsdl:input message="tns:GetLastTradePriceInput"/>
<wsdl:output message="tns:GetLastTradePriceOutput"/>
</wsdl:operation>
</wsdl:portType>
<!-- wsdl:binding states a serialization protocol for this service
-—>
<wsdl:binding name="StockQuoteSoapBinding"
type="tns:StockQuotePortType">
<!-- leverage off soap:binding document style @@E€(no wsdl:foo
pointing at the soap binding) -->

<soap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http"/>

<!-- semi-opague container of network transport details classed

by soap:binding above Q@@ -->

<wsdl:operation name="GetLastTradePrice">

<!-- again bind to SOAP? @EE -->

29

<soap:operation
soapAction=“http://example.com/GetLastTradePrice"/>

<!-- furthur specify that the messages in the wsdl :operation

"" use SOAP? RERER -->
<wsdl:input>
<soap:body use="literal"/>
</wsdl:input>
<wsdl :output>
<soap:body use="literal"/>
</wsdl:output>
</wsdl:operation>
</wsdl:binding>

<1—-— wsdl:service names a new service "StockQuoteService" -->
<wsdl:service name="StockQuoteService">
<wsdl:documentation>My first service</documentation>

<!—— connect it to the binding "StockQuoteBinding" above -->
<wsdl:port name="StockQuotePort"
binding="tns:StockQuoteBinding">

<!-- give the binding an network address -->
<soap:address location="http://example.com/stockquote"/>
</wsdl:port>
</wsdl:service>

</wsdl:definitions>

SOAP Message Embedded in HTTP Request

POST /StockQuote HTTP/1.1

Host: www.stockquoteserver.com
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn

SOAPAction: "Some-URI"

<socapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<soapenv:Body>
<m:GetlLastTradePrice xmlns:m="Some-URI">
<m:tickerSymbol>DIS</m:tickerSymbol>
</m:GetLastTradePrice>
</soapenv:Body>
</soapenv:Envelope>

Here is a SOAP request message, based on the above WSDL file.

POST /StockQuote HTTP/1.1

Host: www.stockquoteserver.com
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn

SOAPAction: "Some-URI"

<soapenv:Envelope
xmlns:soapenvz"http://schemas.xmlsoap.org/soap/envelope/">

30

<soapenv:Body>
<m:GetLastTradePrice zxmlns:m="Some-URI">
<m:tickerSymbol>MY STK</m:tickerSymbol>
</m:GetlLastTradePrice>
</soapenv:Body>
</soapenv:Envelope>

Here is a SOAP response message for the above request, based on the above WSDL file.

HTTP/1.1 200 OK
Content~-Type: text/xml; charset="utf-8"
Content-Length: YYYYY

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<soapenv:Body>
<m:GetlastTradePriceResponse xmlns:m="My URL">
<m:price>1000.5</m:price>
</m:GetlLastTradePriceResponse>
</soapenv:Body>
</soapenv:Envelope>

UDDI (Universal Description, Discovery and Integration)

UDDI is the standard XML format for providing a data model to store information on
organizations and their web services. UDDI facilitates identification and characterization
about businesses and their Web Services. This 1s done through a registry service that
catalogs enterprises and the web services offered by them. The UDDI registry is a
database that contains information about organizations and the technical requirements
needed to access their web services.

UDDI registries offer access to their data through SOAP based web services. A UDDI
registry can be setup for internal use within an organization or externally in the web
marketplace. The UDDI Business Registry is jointly run by Microsoft, IBM, NTT and
SAP under an umbrella organization called the UBR Operators Council. Any
organization can register its business in the registry and web services or peruse the
registry for free.

The following XML structures are provided by UDDI for organizations to represent
themselves and to detail the services they provide using UDDI.

The businessEntity element: This element provides information on an organization that
is listing its services in the registry.

The businessService element: This element represents a service provided by an
organization,

31

The bindingTemplate element: This element maps and binds a web service to its tModel.

The tModel element is a abstraction of either a XML technology or a number system.
The numbering system represented by a tModel may be US Tax IDs or a D-U-N-S
numbers. The XML technology may be SOAP or WSDL or similar technology.

A publisherAssertion is a mapping of the the relationship between two business entities.
The following is an example'® of a UDDI database entry.

“<serviceDetail generic="2.0" operator="SYSTINET" xmlns="urn:uddi-org:api_v2">
<businessService businessKey="9a26b6e0-c15f-11d5-85a3-801eef208714"
serviceKey="860¢cca90-c16d-11d5-85ad-801eef208714">
<name xml:lang="en">DCAmail</name>
<description xml:lang="en">Get credit assessment by email</description>
<bindingTemplates>
<bindingTemplate bindingKey="19274a50-c16f-11d5-85ad-801eef208714"
serviceKey="860eca90-c16d-11d5-85ad-801eef208714">
<description xml:lang="en">The address to which you should send the name
and address of your credit report target</description>
<accessPoint URLType="mailto">mailto:DCAmail@democredit.bar</accessPoint>
<tModellnstanceDetails>
<tModellnstancelnfo
tModelKey="uuid:93335d49-3efb-48a0-acea-eal 02b60ddc6">
<description xml:lang="en">The smtp protocol is used when sending
information</description>
<instanceDetails>
<overviewDoc>
<description xml:lang="en">Describes how to use this
service</description>
<overviewURL>http://www.creditdemo.bar/DCAmail/howto</overviewURL>
</overviewDoc>
</instanceDetails>
</tModellnstancelnfo>
<tModellnstancelnfo
tModelKey="uuid:25ddf051-c164-11d5-85a6-801eef208714">
<description xml:lang="en">The namespace in which our credit numbers
are used.</description>
</tModellnstancelnfo>
</tModellnstanceDetails>
</bindingTemplate>

16

Source:
http://209.85.165.104/search?q=cache:CfT vlu6vsd):sern.ucalgary.ca/courses/CPSC/547/W2002/slides/ud
di-wsdl.ppt+uddi+simple+example&hl=en&gl=us&ct=clnk&cd=9

32

</bindingTemplates>
<categoryBag>
<keyedReference keyName="Personal credit agencies"
keyValue="841416"
tModelKey="uuid:db77450d-9fa8-45d4-a7bc-04411d14e384"/>
<keyedReference keyName="Credit agencies"
keyValue="8414"
tModelKey="uuid:db77450d-9fa8-45d4-a7bc-04411d14e384"/>
<keyedReference keyName="Netherlands"
keyValue="NL"
tModelKey="uuid:4e49a8d6-d5a2-4fc2-93a0-0411d8d19¢88"/>
<keyedReference keyName="France"
keyValue="FR"
tModelKey="uuid:4e49a8d6-d5a2-4fc2-93a0-0411d8d19¢88"/>
<keyedReference keyName="Belgium"
keyValue="BE"
tModelKey="uuid:4e49a8d6-d5a2-4fc2-93a0-0411d8d19e88"/>
<keyedReference keyName="Business credit agencies"
keyValue="841417"
tModelKey="uuid:db77450d-9fa8-45d4-a7bc-04411d14e384"/>
<keyedReference keyName="Luxembourg"
keyValue="LU"
tModelKey="uuid:4e49a8d6-d5a2-4fc2-93a0-0411d8d19e88"/>
<keyedReference keyName="Germany, Federal Republic of"
keyValue="DE"
tModelKey="uuid:4e49a8d6-d5a2-4fc2-93a0-0411d8d19e88"/>
</categoryBag>
</businessService>
</serviceDetail>

The UDDI Inquiry API

UDDI requires support for SOAP 1.1 over HTTP. It uses a request response paradigm.
There are two sets of operations associated with the Inquiry API. They are the find
operations and the get operations. One uses the find operations when one needs to search
the registry and get operations when one needs to get the data associated with an entry.
The find operations are listed below:

1. find_business finds businessEntity based on specific criteria.

2. find relatedBusiness finds publishingAssertion that match the given criteria.

3. find service find businessService that match the given find criteria.

4. find binding finds bindingTemplate entries that match the given find criteria.

5. find_tModel finds tModel entries that match the given find criteria..
Example:

33

To search for a company, say Acme, we would create a query within a SOAP envelope'”:

<find_business generic="1.0“ xmlns="urn:uddi-org:api">
<pame>Acme</name>

</find_business>
The response for this query could be:
<businessList generic="1.0"
operator="Acme Corporation"
truncated="false"
xmlns="urn:uddi-org:api">
<businessinfos>
<businesslnfo
businessKey="0076C468-EB27-42E5-DC09-9955CFF462A3">
<name>Acme Corporation</name> |
<description xml:lang="en">
Produce food for toones to keep them in shape
</description>
<servicelnfos>
<servicelnfo
businessKey="0076B468-EB27-42E5-AC09-9955CFF462A3"
serviceKey="1EFE1F71-2AF3-45FB-B788-09AF7FF151A4">
<pame>Web services for smart toons</name>

</servicelnfo>

“Source: The original example was found at
http://209.85.165.104/search?q=cache.CfT_viufvs4l:sern.ucalgary.ca/courses/CPSC/547/W2002/slides/ud
di-wsdl.ppt+uddi+simpletexample&hl=en&gl=us&ci=clnk&cd=9. It was changed slightly here.

34

<servicelnfo
businessKey="0076B468-EB27-42E5-AC09-9955CFF462A3"
serviceKey="8BF2F51F-8ED4-43FE-B665-38D8205D1333">
<name>Electronic Toon Business Integration Services</name>
</servicelnfo>
<servicelnfo
businessKey="0076B468-EB27-42E5-AC09-9955CFF462A3"
serviceKey="611C5867-384E-4FFD-B49C-28F93A7B4F9B">
<name>Volume Licensing Select Program</name>
</servicelnfo>
<servicelnfo
businessKey="0076B468-EB27-42E5-AC09-9955CFF462A3"
serviceKey="A8E4999A-21A3-47FA-802E-EESOA88B266F">
<name>UDDI Web Sites</name>
</servicelnfo>
</servicelnfos>
</businessinfo>
</businessInfos>
</businessList> *
The get operations are listed below:
get businessDetail gets businessEntity entries.
get businessDetailExt gets BusinessEntityExt entries.
get_serviceDetail gets BusinessService entries.

get BindingDetail gets bindingTemplate entries.
get_tModelDetails gets tModel entries.

s W=

35

The UDDI Publishing API

Organizations use the publishing API to add, change or delete information in a UDDI
registry. The UDDI publishing API requires HTTPS (HTTP over SSL 3.0) for secure
authentication. There are four basic types of UDDI operations. These include,
authorization operations, save operations, delete operations and get operations. UDDI
also specifies fault messages when something goes amiss.

Authorization Operations

Before one can publish to a UDDI registry, she has to enroll with a UDDI operator. For
this, one must go to an operator website, fill out a form about the organization she
represents and choose a user-id and password.

Once enrollment is complete the operator can use the user-id and password to login into
the registry and add, modify or delete entries in the UDDI registry. There are two
authorization operations:

1. get authToken logs one into the registry.
2. discard authToken logs one out of the registry.

Save Operations

Save operations enable one add or update information in the registry. They include:
1. save business, used to add or update one or more businessEntity entries.
2. save_service, used to add or update one or more businessService entries.
3. save binding, used to add or update one or more bindingTemplate entries.
4. save tModel, used to add or update one or more tModel entries.
5. add_publisherAssertion, to add one or more publisherAssertion entries.
6. set_publisherAssertion, to update one or more publisherAssertion entries.

Delete Operations

Delete operations enable deletion of information from the UDDI registry.
1. delete business, deletes one or more businessEntity entries.
2. delete_service, deletes one or more businessService entries.
3. delete binding, deletes one or more bindingTemplate entries.
4, delete_tModel, hides one or more tModel entries.
5. delete_publisherAssertion, deletes one or more publisherAssertion entries.

Get Operations

Get operations are used to get summary data about data structures published by the client.
1. get assertionStatusReport gets a summary of public assertion enfries.
2. get publisherAssertion gets a list of publisherAssertion entries. RE
3. get registeredInfo gets an abbreviated list of businessEntity and tModel entries.

36

Representational State Transfer (REST) SOAs

In SOAs implemented with web services, services abstract business processes. Web
services are agnostic to the resources the processes act upon. A service could be exposed
as a service or vice versa. REST SOAs, as we will see, use the concept of a resource.

REST was first introduced by Roy Fielding to describe the web architecture. It is an
alternative to using the typical Web Service model described above. REST or RESTfull
Web services mimic the HTTP protocol by using the typical HTTP commands, GET,
DELETE, POST and PUT. Unlike web services that focus on sending and receiving
resources, REST focuses on interacting with resources and changing their state. A REST
resource is represented through a URI (Uniform Resource Locator). Services and Service
providers in REST are resources themselves, but consumers may or may not be resources.

With rest, all interfaces are limited to the four HTTP commands GET, DELETE, POST
and PUT.

e The HTTP GET command is used to by a consumer to get the representation of a
resource.
The HTTP DELETE command deletes a resource representation

e THE HTTP POST command could with update an existing representation of a
resource or create a new representation of a resource.

e The HTTP put command is used to create a new representation of a resource.

The messages sent must be in an XML schema language like XMLSchema, W3C or
RELAXNG. One can encode a simple message using URL encoding.

Resources in REST are identified using URIs. REST does not use RPCs to send
messages. All messages are in the context of a resource. A typical rest message may
be to change a state within a resource.

REST directly works with the data structure of the resource, unlike web services that
would call a function to work on a resource or data. For instance, a REST resource
type Stock, may have a number of exposed URIs. If http://my_potfolio/mystock

is one such URI, one would use the PUT or POST command to create an entry and
then use GET to retrieve the record. REST would make an XML call to a resource
called StockID. A web service in turn would use a SOAP request message getStock
Price with a parameter StockID.

REST is agnostic of the underlying representation of the data and can support any
number of tiers of an application, distributed or client server model. To be REST

37

compliant, an application must support a HTTP GET operation. REST by nature is
simple, asynchronous and event driven.

REST defines no standards in representing a Resource. Its messaging model is a simple
combination of XML and HTML. The lack of standards in REST is often seen as a
drawback in the SOA community. However, some believe that its simplicity will make
REST a more common choice in building SOAs. Web services in turn have the
disadvantage of being more complex but are more robust than REST applications.

The Amazon Affiliates network, the Linkshare network and the Google AdSense
network are all examples of REST services. In all three of the above mentioned, a
website builder needs to add a snippet of code provided by any of them into their
website.

The website becomes part of a larger network of affiliates and can display products and
goods from this network. The website can then get paid for all the sales generated for the
respective network through its referrals.

The argument for and against using REST, as a choice instead of using web services is
an ongoing discussion in the SOA community. As web services allow flexibility to build
interfaces, REST proponents believe, they, web services do not lend themselves to
scalability, reliability and the ability to cache intermediate results in the midst of an
interaction. It is hard to determine if a web service SOAP request represents the fetching
or the updating of a resource.

The asynchronous nature of REST and its inherent simplicity makes it less than ideal for
reliability of service, transactions and selective encryption of data in a message. Web
services provide the ability to carry messages via several transport protocols in their path,
thanks to the header architecture of SOAP messages. REST on the other hand is tied to
HTTP.

There are advantages and disadvantages of both types of architecture but builders of
SOAs could possibly build an SOA with a combination of both.

Summary

In this chapter we have covered some of the key technologies used to implement SOAs.
Web services are the most popular technologies used to build SOAs but REST
implementations are also gaining popularity. It is not the intent of this chapter to provide
a comprehensive description of these technologies but to provide a basic understanding of
how SOAs can be implemented. In the next chapter we will look at the technical benefits
of implementing SOAs.

38

Technical Benefits of SOA

In the last chapter, we gained an understanding of some of the important technologies to
implement a SOA. In this chapter we will look at the advantages offered by SOA from an
development perspective. If used properly, SOAs can be a boon to architects and
developers of IT systems. The following are some of the technical and architecting
benefits of SOA:

Reuse

As mentioned earlier, the loose coupling aspect of SOA software modules promotes reuse.
Reuse is beneficial to organizations in the following ways:

¢ By eliminating of redundancy in code, reuse facilitates code maintenance.

¢ By eliminating duplication of efforts, reuse eliminates cycles of development and
QA. As SOA is designed to facilitate coordination across different parts of the
organization, organizational departments can work together to avoid duplication
of programming efforts and thus be beneficial to each other and to the
organization as a whole.

e As reused software modules have been tested before, it helps corporations reduce
the risk of adding bugs during new development.

¢ When existing reusable components are well documented and cataloged in an
organization, developers can quickly build new functionality from pre-built
components.

¢ All of the above points mean that the organization becomes quicker in adding new
robust functionality and large cost savings in software development.

Reusable software must be heavily tested for robustness and all possible boundary
conditions that could cause it to behave abnormally.

It must be stressed that the workings of reusable software components must be
documented in detail. This means that the documentation must warn the potential for the
software module to malfunction if it does so, under extreme conditions.

Further, when components are reused, they must be treated as black boxes and that no

assumption is made about their underlying implementation. It must also be ensured that
software components work as documented.

39

Composite Applications

As mentioned before, for components of systems to be loosely coupled, the functionality
of the components must be made explicit. SOA systems draw a clear line between
implementation and interface. As we saw in the previous chapter, SOA systems built with
web services make their interfaces explicit through a WSDL file.

This allows components built using heterogeneous tools and residing on different
platforms to interact among each other. SOA systems help build composite applications
through the use of interfaces.

One can harness the power of old existing software components with newer components
which may be built with newer tools to provide the customer a composite application that
incorporates the functionality of both, old and new systems.

Much of the woes that are experienced while trying to integrate applications,
implementation and testing are eliminated through the use of interfaces. The use of
interfaces also allows building of systems with components irrespective of where they are
located.

Flexibility and Agility

The loose coupling aspect if SOA, wherein the invoker of a service is agnostic about the
location or the underlying implementation of the service introduces a high level of
flexibility of choice. To create a service component, one has the freedom of choosing
from a variety of technologies and platforms. One could build a composite system by
choosing the best tool and the most optimal platform while building a system component.

This benefit allows choosing the best platform or geographic location for a service.
Computing intensive algorithms can be deployed where price/performance is optimal for
that activity. One can also optimize other system parameters like network traffic to make
a system robust and reliable.

Encapsulation

Traditional object oriented programming focused more on the encapsulation of objects
based on related functionality. However, SOA prescribes the use of encapsulation around
business processes.

40

A system encapsulating based on business processes can offer functionality from
components is disparate parts of an organization, different geographical locations or from
more than one organization. Organizations can thus exhibit greater efficiency when they
present their business processes through SOA.

Standardization

As the invocation interface to SOA takes a standard form, a programmer creating a new
service need not have to understand the technologies used by underlying services. This
reduces the skill requirements in the development organization, leading to cost reductions.

Interoperability

SOA allows interoperability from several dimensions. From a software systems
standpoint, interoperability addresses the ability for different system to work together.
SOA implementations using REST and web services allow this type of interoperability.
When users are thrown into the mix, interoperability means that in addition to having the
ability for disparate systems to work together, there is no likelihood data of the system is
misinterpreted or not understood either by a system or user.

Interoperability within an Organization

As we saw above, SOA allows interoperability between heterogeneous software
components built on different platforms, using different technologies to communicate
with one another without too much programming overhead or developmental costs.

Interoperability across Organizations

The location transparency aspect of SOA components allows the partners, suppliers or
customers of an organization use the services if the organization without being aware of
where these services are located and how these services are implemented. Conversely, an
organization may use its partners’ service by being agnostic about its implementation.
This improves process efficiency and promotes automation across the enterprise value
chain.

41

Semantic Interoperability

Semantic interoperability means that data can be understood unambiguously by users and
software and that it can be processed in a meaningful way. For example, in the software
world, words like ‘Platform’ and ‘System’ often have many interpretations.

Systems using SOA can be built in such a manner that they only work with data they can
comprehend. The loosely coupled nature of SOA also allows scaling the architecture to
accommodate more diverse data and to handle it in an efficient and flexible manner.

UDD], a facet of web services provides a taxonomy of terms concepts, categories and
keywords to help creators of web services to describe their lingo unambiguously.

Incremental Deployment

Loose coupling of components allows for incremental deployment. In large corporate
systems it is commonplace to replace components of the system with newer components
or with different components.

If the interfaces of components are well defined, then newer or different systems that
implement and exhibit the same functionality can be used easily to replace the existing
component without hindering the operation of the system for large periods of time. Time
and frustration spent in fixing integration problems are also minimized if careful
consideration is paid to backward compatibility in the development of newer systems.

The newer component could be at a totally different location and use different underlying
technology from the older component.

Abstraction

Abstraction in SOA involves hiding the complexities in implementation of business
processes through simple, clear easy-to understand interfaces. SOA focuses on sharing of
business processes and knowledge both within and outside the boundaries of an
organization,

When the service is delivered with the end customer (consumer) in mind, it exhibits an
interface that the consumer of the service can easily understand. Users of a service need
not understand all the intricacies of the workings of the service and can simply use the
service to extract its benefits.

42

Real Time Information

One of the key requirements of organizations today is the need for the most up-to-date
information for the runnings of their business processes. Systems that provide real time
data must go beyond periodic retrieval of data from different places but must also present
the data to consumers in a less ambiguous way.

Factors that influence real time include:

Business process awareness. SOA helps define service as abstractions based on business
awareness. It can present data in the most relevant format to a consumer

Data availability: SOA can pull data from disparate sources, be they databases or files. A
well-architected SOA exhibits data from multiple sources in the same uniform way.

Work flow and Transaction Processing: By exposing, abstracting and combining
business processes SOA applications can orchestrate simple and composite workflows
built from multiple components and also incorporate transaction processing to provide
accurate data with minimal human intervention

Analysis and Reporting: While not directly lending themselves for analysis or reporting,
SOA applications can be used to aggregate and report the data they processes in an
optimal fashion.

Advantages to Developer

Implementing SOA offers several advantages to developers. The biggest of these is that
SOA allows developers to focus on business logic and implement functionality using a
platform and a tool of their expertise without getting bogged down with logistics issues
required by the systems or the data. As services have a well-defined interface that is
independent of implementation, developers are free to use any programming language
they feel comfortable with. Using multiple vendor products can help developers take
advantage of unique features provided by each of them in building the system.

The loosely coupled aspects of SOAs make developers more efficient. If a certain
component needs to be upgraded, the developer can make build a newer version of the
component with the required enhancements and bring it online with minimal disruption to
the overall operation of the system. This makes the organization as a whole more
responsive to the changes in its environment.

Another side effect is that having a well-defined contract enforces good programming
and design practices. Developers can save time and reduce the risk of adding bugs by
using pre-built reusable services as building blocks. They can create flexible loosely
coupled systems that can adapt to changing business conditions. Using deployed,

43

documented, tested and internally certified components saves, time and effort to reinvent
the wheel. Time saved can be spent on other efforts of the business.

A combined industry effort called SOA Blueprints, helps organizations build applications
using SOA. SOA Blueprints creates a common vocabulary to discuss SOA 1n an
architecturally unambiguous way allowing implementations to be built from a variety of
tools and technologies.

44

SOA Security

The security of corporate IT systems today is of more paramount importance than ever
before. They must safeguard their sensitive data and also protect their systems from
damage. These threats can come from both, within and outside the corporation.

Threats to corporate systems include attacks from malicious users who may try to steal or
access confidential information, or bring down a corporate system. Corporations must
also guard against espionage, virus and worm attacks through their own intranet and the
internet.

For most corporations today, the primary security gatekeeper was the firewall. A user
trying to access information from a company must first authenticate herself through a
firewall. However, tirewalls have several limitations:

It is very restrictive with its all-or nothing policy. A user who authenticates successfully
can access any resource within the corporate network. This means than resources need to
be separately protected from unauthorized users even some who have authenticated with
the firewall successfully. In short, it is hard to enforce a corporate security policy through
a firewall.

With SOA systems the entity that has to access a resource or data i.e. the consumer, need
not be a human and thus such systems need a different authentication system.

Thirdly, with most SOA systems being implemented through web services, the primary
protocol use to send and receive messages is SOAP. By design, SOAP message is
designed to move across firewalls, as they invariably travel on HTTP and HTTPS.
Hackers could thus send malicious messages and cause damage to corporate systems or
steal data on them. There is thus a need for more sophisticated security systems In this
chapter, we will look at some security issues that are inherent in SOA systems and some
of the technologies available to address these needs.

Security Issues

The following are some of the security issues that must be addressed in a SOA
environment.

Authentication and Authorization

From an SOA system context, authentication is the process by which the system verifies
the identity of an entity (user or application) that wants to access and use the system. As
mentioned earlier, older systems used VPNs and firewalls to authorize users. Typically

45

users authenticated themselves with the system by providing a username and a password.
This mechanism that is clearly inadequate for SOA systems.

Authorization is the process by which system verifies if the entity wishing the use of a
system resource has the appropriate permissions to use it. To authorize use of resources
within a large company, the company must have a sophisticated authorization mechanism
in place.

As we saw above, a VPN or firewall is not adequate for SOA authentication. VPNs and
Firewalls cannot verify the identity of the consumer who could be a human or an
application.

Further, authorization mechanisms provided for HTTP web applications are also not
adequate for SOA authorization. Corporations need a mechanism to assign policies to
consumers of SOA services. The loosely coupled nature of web services mandates the
necessity of a corporate security policy that is both strict and flexible. Security becomes
even more of a problem when SOA builders seek to reuse applications or build composite
applications.

Confidentiality and Integrity

»

SOA systems may send and receive messages within and across corporate boundaries.
SOA confidentiality is vitally important and entails that messages that are sent to, from
and within the SOA system remain private between the sender and the receiver of the
message and that no one is snooping on the messages sent. Malicious hackers have often
stolen or eaves dropped on confidential data sent with and across company borders. SOA
systems thus need a message scheme that ensures the privacy of both senders and
receivers.

Integrity of SOA systems entails that messages send and received within and across SOA
systems have not been tampered with while on transit. Malicious hackers could also pose
as the receiver or sender of a message and send false messages to a receiver or accept
unauthorized messages from a sender. Thus there is a need for a reliable encryption
mechanism that ensures that messages send from SOA systems can be verified for their
authenticity and that the sender can verify the authenticity of the receiver of its message

Privacy and Integrity are two more aspects of SOA security. Privacy is the ability to
conduct business without eaves dropping and integrity is the ability to have confidence
that messages are not tampered with during transit. Hackers often listen in on messages
and modify messages during transit for reasons of mischief or crime.

In addition to using HTTPS to encrypt the messages sent and received by SOAs,

corporations may use other security mechanism like signatures, keys, certificates to
ensure privacy and integrity. '

46

Denial of Service Attacks

Corporate systems today are also prone to Flooding or Denial of Service (DoS) attacks.
In both cases, a corporate system receives a tirade of messages and then crashes due to
the overload. In some cases, this may happen inadvertently as more users and
applications are accessing the website. In other cases, the intent of the sender is to cause
harm. The sender could continuously send messages to deliberately bring it down.

When corporate systems are brought down due to flooding or DoS attacks, their inability
to operate could mean diminished ability to conduct business which in turn could mean
lesser revenue for the company.

Corporations must build security to guard against DoS to their SOA systems by
monitoring the network traffic for abnormal loads. Their security systems must provide
the ability of administrators to take precautionary or emergency measures in a timely
manner. They must also ensure that their systems have enough failover and round robin
ability to ensure that their systems can handle a large load of incoming messages.

Auditing and Reporting

Auditing and Reporting are key to running of a reliable SOA system. An SOA system
must have an audit log to give administrators a feel for the performance of the system and
security. Logs help in diagnosing problems and also provide a clear sense of
accountability in case a problem emerges and helps ensure that the problem and its threat
are eliminated from the system.

A good SOA security system must be able to diagnose and report on problems or
concerns and alert the responsible parties to take diagnostic, precautionary or remedial
measures.

Security Policy and Provisioning

As mentioned earlier, to allow access to resources, SOA systems must have a mechanism
to authenticate and authorize users and applications that interact with them. This involves
identifying the user or application and then establishing if the user or application could
conduct the required operation (accessing or modifying a resource) on the system.

An ideal security system must provide the ability to centrally manage the SOA system
within a corporation, establish policies for users and applications and allow the ability to
delegate administration of sub systems of the SOA to a certain department or part of an
organization.

47

Ron Schmelzer and Jason Bloomberg suggest that '®, “enterprises must institute policies

that apply to their entire enterprise network (including participants invited from outside)
and administer that security in a tiered, hierarchical fashion with a centralized root
administrator. Departments or other organizational groups may then have their own
administrators, but those administrators must in turn be administered by a more senior
admin at a higher level within the enterprise.”

Federation and Identity Management

Identities of entities, be they users or applications have to be managed across
interdepartmental and inter-organizational boundaries, ie: across domains. This means
establishment of security authentication and authorization polices, managing user profiles
across multiple user stores which are often heterogeneous and the ability to handle
multiple networking protocols and compatibility across heterogeneous security
environments. A security platform for an SOA system must be able to tackle all these
issues and also support SOA standards. In addition to supporting SAML , WS Security
and other newer technologies, a security platform must also support existing standards
like ODBC, JDBC, LDAP and coordinate security functions among them

Governance

The governance of SOA systems requires the need for integrity in their data towards
internal standards, external regulations and corporate stakeholders. In a sense in
encompasses almost all the issues outlined above and more: security policy, auditing and
reporting measures.

A well governed SOA must be able to provide data that can withstand the scrutiny of an
audit .The next chapter had been dedicated to SOA governance.

An Overview of SOA Security Solutions

We saw that conventional security mechanisms used for web application security are
clearly adequate for SOA. SOA systems implemented through web services use SOAP
which my design can traverse firewalls through HTTP and HTTPS. SOAP transmission
is also vulnerable to buffer overflows and thus is susceptible to denial of service attacks.
Further the loosely coupled nature of SOA enables not only user-system interaction but
interaction between distributed applications located in different systems, which could be
housed in different corporations. It thus becomes a challenge to enforce sccurity policies

'® http://expertanswercenter.techtarget.com/eac/expertAnswer/0,295208,sid63 gcil022062,00.html

48

which must encompass not only users but applications and traversing inter and intra
corporate boundaries. As we saw in the earlier chapters, there are multiple ways to
implement SOA and thus security solutions for SOA must be able to handle a variety of
messaging mechanisms and network protocols

If security policies are too tight, they could defeat the loose coupling advantages of SOA
systems. Leniency on the other hand, can result in compromising security of a firm.
While a single silver bullet is impossible for SOA, both corporate management and IT
must coordinate efforts in enforcing a balanced corporate security policy and be aware of
the available technologies to built such a security infrastructure.

The complex security requirements of SOA and specifically Web Services are driving a
new set of security standards as follows:

Web Services Federation Language: This is a mechanism that allows subject identities
with policies shared across web services. Web services can ‘broker’ trust among
different security zones using WS Federation Language.

Security Assertion Markup Language(SAML): SAML from Oasis allows exchange of
authentication and authorization information between disparate systems and protocols. It
is has an XML based format thorough which a subject can send security information
through assertions. A subject could be a human or an application. Assertions are
information with regard to authentication and authorization policies and decisions made
by the subject. SAML is more advantages than HTTP cookies, since SAML tokens,
unlike cookies, can work across DNS domains and enforce Single-Sign-on in
heterogeneous systems. They also allow for federation of subject identities across
multiple business environments.

WS Security Language: Earlier in this chapter, we saw how the privacy ntegrity and
confidentiality of messages in SOAs can be compromised through snooping or the
addition of bogus messages. WS-Security from Oasis offers an XML based signature
mechanism, encryption specifications for messages with message digests and XML
signatures to ensure the authenticity, privacy and integrity of SOAP messages sent and
received by web services

WS Trust Language: The WS Trust language extends the security language to define
the format for issuing of security tokens that contain subject credentials, etc. within
domains that have trust relationships

WS Security Policy is a framework that allows web services to declare their constraints
and requirements. These constraints and assertions are declared through assertions

WS Security Conversation Language: This is a layer of security built over WS-Security

and WS-Policy. It is aimed at authentication and the sharing of security contexts. It helps
enable secure communication.

49

XML Encryption: This is a W3C extension which can be used to encrypt XML data.
The result of the encryption is an XML element that contains the data encrypted between
XML tags defined in the encryption specification.

XML Signature: This is a combined specification from W3C and IEFT. It defines the
XML rules and syntax for digital signatures in XML. It helps ensure message and subject
authentication and helps verify the integrity of XML messages exchanged between
systems.

Extensible Access Control Markup Language (XACML) presented by OASIS i1s
another XML specification to define authorization and access policies to specify subjects,
rights and conditions.

These standards are in varying levels of completion and as a result, security providers
have implemented proprietary solutions that are independent or in varying levels of
conclusion. There are also proprietary solutions for authentication and authorization of
users from multiple directories, user provisioning, single sign on, etc.

Eric Koch’s blog on IT toolbox'’, mentions that SOA security requirements are often
complex and that the standards described above are still immature to handle them.
According to Koch, the requirements are further complicated with the need for security of
legacy systems. He proposes that there is a firm argument case to consider commercial
security packages as the infrastructure for identity management within the SOA.

Companies like Oblix and Netegrity(now part of Computer Associates) provide several
commercial packages to perform functions like single sign on between LDAP and SQL
databases, supporting SAML, WS Security, etc and user profiling, centralized security
policy administration and synchronization of data across directories. These packages are
built to minimize system degradation while performing security functions

Summary

Planning and preparing for SOA security threats goes far beyond awareness of possible
threats. Architects and analysts must consistently prepare for possible ways that the
security of the enterprise could be compromised. In a chapter on risks, I outline some
oversights that organizations can make with respect to security. Managers must be aware
of these pitfalls and use all the expertise and creativity in the organization to avoid them.

' hitp://blogs.ittoolbox.com/eai/business/archives/soa-security-architecture-11431

50

SOA Governance

SOAs can integrate multiple departments within a corporation, multiple partnering
companies which have heterogeneous applications, platforms, operating systems and data
stores to coordinate and synchronize activities and share data.

In addition to leveraging existing corporate assets, SOAs must be flexible, scalable robust
and responsive to the business environment, reconfigurable and secure. For all of this to
happen and to ensure maintenance of SOA efficiency their management and execution
must be monitored and governed.

SOA governance thus deals with continuous monitoring, decision making and the
enforcement of policies and procedures to SOA systems. It also helps assign
accountability for the operation of a certain facet of the SOA to a certain individual or

group.

According to an article by Phillip Windley in InfoWorld®, the big payoff of business
agility and other benefits from SOA have more to do with policies and procedures than
the quality of code.

Jason Bloomberg in an article on ZapThink®' rightly asserts that SOA goes beyond the he
governance of SOA and is the governance of [T. For companies that rely on IT for their
operation SOA governance is the governance of their corporate policies. The process of
governance must be considered from the early stages of the design process of the SOA.

Rules and Policies

During the design process, all parties involved in creating, using or benefiting from the
SOA must be brought together to initially establish rules and policies. Rules and policies
must be then documented and enforced. Over the lifetime of the SOA the rules and
polices must be carefully assed for their utility value and modified or eliminated as
necessary. Governance and policy establishment is an ongoing process.

During the design process, the exercise of establishing policy helps create crisp interfaces
and delineation of process boundaries across subsystems that make the SOA.

A white paper22 on SOA governance on weblayers.com gives a good example of SOA
polices for a medical organization:

20 http://'www.infoworld.com/article/06/01/19/73698 04FEsoagov_1.html

2 http://www.weblayers.com/gen/whitepapers/Introduction_to_SOA_Governance.pdf

51

“Policies might start at the business level with regulatory compliance issues:

* Patient name and contact information may not be transmitted as clear text

» Each message must carry information to uniquely identify the message source,
destination, timestamp, and transaction ID, to meet mandatory archiving rvequirements

This is could be followed by specific policies for information security like:

* Messages must contain an authorization token

* Password element lengths must be at least 6 characters long and contain both numbers
and letters

» Every operation message must be uniquely identified and digitally signed

There might be lower-level technical policies that ensure architectural strength:

* Do not use RPC Encoded web service operations

*» Do not use Solicit-Response style of operations

* Do not use XML ‘anyAttribute’ wildcards

If any one of these three sets of policies is not followed, the impact on company
operations and bottom line can be lethal.”

Governance and architecture go together in the effectiveness of an SOA. Architects who
build systems for the organization are more aware of the constraints within the system.
Operators and users of the system are more aware of how to use the system and thus
systems work predictably and the risk of malfunction due to operator error is also
eliminated. Testers also are more aware of how to test and debug the SOA. This also
facilitates the process of extending the system to incorporate new functionality.

SOA governance not only impacts the SOA system and its usage, but enforces
companywide adherence to policies forcing paradigm shift in behavior of employees. As
employees work together and jointly create corporate policies, procedures and their
rational are better understood by all parties.

Tolerance

In another article titled ‘A degree of tolerance for SOA’> Windley states that governance
comes with its own issue. One need is for modularized IT systems with unprecedented
agility but it is impossible to foresee every variation or every possible future scenario.

The answer to this, Windley suggests is to have tolerance - carefully laid out rules and
formal change management. In some instances, the creativity of web developers must not
be stifled by an architectural committee. In their book, Design rules”, Carliss Baldwin
and Kim Clark warn that governance that is overly strict on developers can drive value
out of SOA.

3 http://www.infoworld.com/article/06/01/19/73741_04FEsoagovloose_1.html
 http://www.amazon. com/exec/obidos/ASIN/0262024667/infoworldcom-20

52

As mentioned, the design phase of an SOA must bring together all parties of an
organization who are in some way associated with it. It is also important that meetings for
design are properly moderated and a compromise is reached with any prickly policy issue.

Tracking, Reviewing and Improving Polices

Governance involves constant tracking, reviewing and improving of existing conditions.
These include reviews of:

Policies: Policies must be carefully reviewed. How are they enforced? Are they being
followed? Are they in line with the strategic objectives of the company? If new policies
are to be enforced, how will they impact the respective system module and rest of the
system? Are there exceptions to a certain policy?

Functionality: Proper governance mandates ensuring that services implement
functionality in line with their core competencies. Are the interfaces in line with the
functionality they deliver?

Security: Are the services offered by the SOA secure? Can the security of the system be
compromised? Are security policies and lines of controls adequate to avoid security
breaches? Are there process flows that could have security holes into the system?

Dependencies within the System: How will a change made to a unit or subsystem of the
SOA impact other parts of the system? How will it affect business operations of the
domain or organization?

Consolidation of Functionality: When functionality within a service or service set has to
be consolidated, the consolidation must be invisible to the end consumer who interacts
with the service interface. It must be ensured that new or existing policies are in place
when the consolidated services are operational.

Consolidation of Processes: When processes need to be consolidated within a service or
service set, it must be ensured that backward compatibility is preserved if the individual
processes are still used. Such implementations must thus conform to enterprise policies
with respect to design, development, implementation, testing, deployment and
maintenance.

53

Domain vs. Departmental Governance

Conventional IT management divided up management of IT systems by the departments
within an organization. SOA governance is divided among organizational groups based
on a business process called domains

Individuals within a domain group are responsible for maintaining services that deliver
functionality based on the business process. They are responsible for the maintenance and
monitoring of the services design of the service interfaces and formatting of results from
computations performed by their services. Those intending to use the services of a
domain must collaborate with members of the domain group and create a written
agreement that elaborates on the use of the domain.

The maintenance of a domain requires the following functions

Domain Leaders or Leader who is responsible for deciding the key high level purpose
of the domain, the functions it is responsible for and its future directions. This person or
persons works closely with upper management and carefully monitiors the domain
operation from the perspective of the entire company. This person or group must
constantly seek to maximize the returns from their SOA subsystem.

Domain Business Experts who identify functions that the domain can perform through
its services that will benefit the company as a whole. These individuals must work
closely with IT personnel to decide on the feasibility of their business vision an in
directing them on how the service ought to be implemented

Business and Development Liaisons: These are individuals who understand both, the
business functions of the domain and organization and the technology that implements
the domain services, at least at a high level. They are responsible for translating business
processes into technical specifications. They work closely with architects and developers
in designing the SOA.

Developers: These are the architects and programmers who implement the services.
They must insure that all specifications have been taken into account in the design and
the system works as it was designed.

Testers: These are people who rigorously test out the system for usability and
performance manually and by using tools.

Administrators: These are system specialists who are responsible for creating and

enforcing SOA policies. They continuously monitor the system for usage patterns;
diagnose system problems and alert responsible parties as necessary.

54

Summary

Like security SOA Governance is a holistic process that must involve all parts of an
organization. SOA Governance is one of the most challenging, but significant aspects of
SOA adoption and implementation. Some of the complexity of SOA governance comes
from the very nature of SOA itself as we will see later in the chapter on SOA risks.

55

SOA in Industry

Most large IT vendors are pushing SOA tools in the marketplace. In this section, we will
look at several SOA initiatives from some of the major players. We also look at SOA
adoption for different needs and the growth of SOA in industry.

IBM’s Efforts to Push SOA

According to an article on Mortley fool,”

“Bridging software and services is IBM (NYSE. IBM), who wants SOA to lift growth of
its 316.8 billion software business from 4% to 6%. For services, IBM says it has done
1,800 assignments for 1,000 clients, and is training 90,000 consultants in SOA.”

IBM’s SOA propositions include the following:
Free trials on SOA Development tools

Big Blue’s efforts to push large corporations to adopt to its infrastructure and consulting
services include free trails of its application server, Websphere and its development tools
to enable SOA implementors build prototypes of applications.

As developers in firms test out and learn SOA tools, enterprises would be more likely to
use 1BM in building their SOA infrastructure.

Ready for IBM

IBM promotes a ‘Ready for IBM validation’ as a potential goal for its customers. The
customers will recetve this certification when they achieve certain IBM specified SOA
standards and when a certain number of their employees have reached some educational
milestones.

Z System Access

The Z system is IBM’s mainframe computer. IBM promotes it as a single alternative to
distributed computing as a means for enterprises to reduce costs. To help corporations
make this system their central internet server, IBM offers tools and initiatives to offer the
Z system’s computing power through web services.

In addition to housing and running corporate web applications, the Z system supports
integration of email, and media applications on DB2 Viper, IBM’s database.

One Z system development tool generates COBOL code from languages like Java or PL1
to allow flexibility in language for mainframe web development. The Z server offers
powerful tools to support web applications, transaction processing and order shipment
delivery status. Further, corporations can secure their web transactions with IBM’s

25 http://www.fool.com/investing/value/2006/09/18/soa-the-new-software-bazaar.aspx

56

security solution, the Tivoli identity manager. All systems used within an enterprise can
be housed in a single System Z mainframe computer using web services.

In October 1996, IBM and Oracle together announced an initiative to ensure
compatibility Oracle enterprise tools to run on System Z.

Sun’s SOA Efforts

Sun Microsystems is another of the big players who offer SOA infrastructure solutions.
These include

Sun’s SOA Readiness Stages

Sun’s version of SOA readiness includes for steps, Discovery, Analysis, Working
Sessions and Findings. In the discovery stage Sun’s consulting services research a
customer’s current business processes. In the analysis stage, Sun consultants look for
opportunities where their SOA infrastructure can add value or mitigate weaknesses in the
customer’s business processes. ‘

The consulting services then work with the customer to explain how Sun can bring value
to the customer through its SOA infrastructure. This is the working Sessions stage.
Finally, Sun provides the customer with a detail report that includes a strategy for the
customer to migrate to SOA.

Project Kitty

Along with business partners BEA and Oracle, Sun released its SOA initiative at the
2004 June JavaOne Conference. Titled Project Kitty, the initiative included a Java
Enterprise System, Java SOA development tools and Sun’s SOA readiness Stages
described above. These tools enable building of open, robust and extensible SOAs using
the Java programming language.

Oracle and SOA

Oracle is yet another industry giant pushing its own SOA initiatives. These include the
following:

Oracle Fusion
In January 2006, Oracle released its Fusion Middleware Suite that it claims can work
with both Oracle and non-Oracle SOA applications. Just as it did with its previous E-

Business suite Oracle is banking on broad based offering on a wide range of offerings
capable of running on a variety of different platforms.

57

Oracle SOA 2.0

One of the most ambitious SOA infrastructure initiatives to date is what Oracle calls the
‘next generation version’ of SOA. At the Java One Conference, in San Francisco, in May,
2006, Steve Harris, the head of the Fusion middleware group, described 2.0 as a
combined SOA and event driven architecture®. The event driven part of 2.0 provides the
ability for the system to external events and notifications

This move has not been well received by all. In response to the announcement of 2.0,
Mark Little®” said

"I expected more of Oracle on this one! Giving an architectural approach a version
number is crazy: it makes no sense at all!"

Little goes on to say,
"Where does it say that SOA is all about clients and servers?”

Macehiter Ward-Dutton, a consulting firm had an online petition® to oppose Oracle in
making such changes to the SOA model.

SAP

Germany based SAP, a competitor to Oracle and another titan in Enterprise applications,
was the largest investor in SOA for 2006 according to Mortley Fool”. Shai Agassi, a
senior executive for SAP joined the firm when SAP acquired Top Tier, an Israeli
software portal.

Agassi heads SAP’s software development and is the Tour De Force behind SAP’s SOA
initiative. SAP acquired Netweaver and as a result made its flagship product SAP
integration enging in 2002. SAP is thus trying to brand itself as a SOA Business
Integration infrastructure vendor for large organizations.

Unlike Oracle’s Fusion which is more open and supports integration with components
with non- Oracle applications, the SAP’s SOA platform is more catered to SAP and SAP
partner build applications.

28 http://www.infoworld.com/article/06/05/17/78420_HNs0a20_1.html

7 http://www.webservices.org/weblog/mark_little/soa_2 0_ignorance

* http://www.mwdadvisors.com/resources/stop-the-madness.php

http://www.fool.com/investing/value/2006/09/18/soa-the-new-software-bazaar.aspx

58

Accenture

Accenture, is a global IT consulting firm that according to Motley Fool®® invested$450M
on a SOA research lab. The company provides a SOA readiness model which will be
described in the next chapter.

Microsoft

Microsoft’s attitude toward SOA over the last couple of years has been interesting to
observe.

An article on internetnews.com in February 2005 talked about somc collaboration
between Sun and Microsoft in pushing SOA®'. It also spoke of Sun offering federated
identity management on between Microsoft, Linux and Solaris systems. Was Sun
planning to team with Microsoft against IBM?

Microsoft also teamed up with Oracle, IBM and Sun in October 2005 for a new initiative
with the OASIS standards body to standardize web service protocols to make it easier for
architects to build SOAs™

In October of 2006, Microsoft for the first time, broke its silence on SOA and renamed its
Business Process and Integration Conference for BizTalk partners, on this week, to "SOA
and Business Process Conference" to add itself to the SOA bandwagon.

Microsoft pushed its SOA approach under the title, ‘the Real World Approach to
SOA’* .An article by Joe Kendrick on ZDNet summarized Microsoft’s philosophy.
Unlike IBM or Sun, Microsoft proposed a strategy of solving one business problem at a
time rather than a grandiose top-down approach for the entire enterprise.

An interview with John deVadoss™, director of Architecture Strategy, Microsoft appears
on Microsoft’s website. According to deVadoss’

"The fundamental problem with the big-bang mega approaches to SOA is that they
almost always end up being out-of-sync with the needs of the business.”

Further, deVadoss goes on to say,

30 http://www . fool.com/investing/value/2006/09/18/soa-the-new-software-bazaar.aspx

*! http://www.internetnews.com/bus-news/article.php/3467551

*2 hitp://www.itbusinessedge.com/item/?ci=7875

*3 http://www.itjungle.com/two/two 101 106-story04.html

* http://www.microsoft.com/presspass/features/2006/0ct06/10-04SOA .mspx

59

"Customers and partners realize that big-science projects don’t create value for the
business,"

So here is Microsoft’s approach in a nutshell, according to de Vadoss,

"We are proving that it is the incremental, iterative, real-world approach that helps you
correct your course and deliver value to the business in a meaningful way."

Microsoft’s roadmap of current and ongoing investments®’ according to deVadoss,
includes a new guidance on how to deliver an Enterprise Service Bus (ESB) functionality
to simplify and accelerate the development of SOA. Further, customers could take
advantage of IBM midrange and mainframe solutions using via BizTalk adapter for Host
systems.

Further, Microsoft’s Office Application Strategy made possible by the new platform
capabilities in the 2007 Microsoft Office System enables customers to realize the ‘Real
world’ value of SOA.

Current Industry SOA Adoption

An article®® by Mark Brunelli, news editor, SearchOracle.com talks about industry
adoption of SOA. Forrester Research interviewed 53 early adopters and concluded that
most are proceeding with caution. According to the article, the most telling fact is that
most are not sure whether to standardize on an application platform provider like SAP or
Microsoft or a middleware provider like IBM or Oracle.

The article mentions that Forrester analyst Wang believes that it may not be a question of
deciding which vendor’s approach is best, but a question of figuring out how many SOA
systems can be supported by the respective . Large companies may need to support
several SOA systems. Wang sees a lot more interoperability in the future.

The article also mentions that according to Anne Thomas Manes, a vice president and
research director in the Burton Group, companies adopting to SOA expecting a project
completion in 15 months are seeing its benefits in 6 months. Anne cautions that these
benefits are from integration from web services and that this is not the same as SOA.

As mentioned in the article,
“SOA, Manes explained, is about identifying replication, eliminating duplicate

implementations of functionality and ultimately removing application silos so that all
systems share what they need to share at the core level.

3 hitp://www.microsoft.com/presspass/features/2006/0ct06/10-04SOA.mspx
3% hitp://searchoracle.techtarget.com/originalContent/0.289142 sid41 g¢il209435.00.html

60

According to a Aberdeen Group benchmark report’” in June 2006, from than 120 IT and
business professional surveyed, 90% of the companies are adopting or have adopted to
SOA. However, this has come at a price high integration costs and customization
challenges.

Kastner, vice the author of the report mentions that SOA is seen as a real technology step
forward with large companies leading the way.

According to the report, enterprises are taking three approaches to SOA adoption.

These include, a ‘Lite’ version adopted primarily by small companies which uses simple
web services, built with open source tools and adhering to industry standards. The second
approach used by large companies is the ‘Enterprise’ version which is a more complex
SOA and for critical applications.

Midsize companies adopt a ‘ERP’ version which primarily consists of SOA extensions to

ERP software. The figure below from the Aberdeen Group™®, shows the usage issues of of
different types of SOAs in application silos across the companies they surveyed.

Figurel: Application Silos

Application Integration Stumbling Blocks

No flexibility in business process
integration/manipulations

Can't obtain deep-enough business
intelligence reporting and queries

High integration costs prevent
new investments in needed features

Monolithic application architecture
forces costly and complex changes

Can't manage or implement
real time business processes | | | . | —

0% 10% 20% 30% 40% 50% 60%
% of respondents

Source AberdeenGroup, June 2006

The figure below, also from the AberdeenGroup™ shows the extent of SOAs deployed in
middleware among the companies surveyed.

7 http://www.dmreview.com/article_sub.cfm?articleld=1059636

* hitp://www.dmreview.com/article_sub.cfm?articleld=1059636

61

Figure 2: Deployed SOA Middleware

SOA Middleware Presently Deployed

1
Application server software 82%
ESB (enterpnise service bus) B4% |

1
XML accelerators 55% ‘
SOA metadata repository/registry 46 |

Mainframe applications 36%
i 5
oA securry RN %+ |
SOA management & governance _ 36% |
0% 10% 20% 30% 40% 50% 60% 70% 80% 90%
Seurce AberdeenGrowp June 2004

Examples of SOA used in Businesses

The following are some of the ways companies, educational institutions and other
organizations today use SOAs to increase their effectiveness.

Consolidate Offerings

Many financial institutions and hospitals provide numerous online services using SOAs.
These include application processing from legacy systems, consolidated offerings from
several heterogeneous back end systems, etc.

Managing Data
Financial Institutions, government agencies like NASA., ete. use SOAs to facilitate access,

online searching and other operations on large quantities of data. SOAs enable uniform
presenting of different types and formats of data through a standard interface.

62

Online Transactions and Workflow Applications

SOA s today help organizations routinely process millions of daily transactions and also
enable presenting workflow applications like online questionnaires and application forms.
Customers are guided smoothly through clearly laid out screens through the questionnaire
or application. SOAs can significantly reduce transaction management costs for
organizations.

Customer Support and Management

Companies today use SOAs to serve customers. Many use SOAs to provide services from
legacy systems. Others replace older systems with SOA frameworks from new state of
the art systems. In addition to providing credit card management and online support,
some SOAs also provide online customer warranty management.

Partner Services
Many companies use SOAs to present integrated offerings or offerings they licensed from
their partners or 3™ parties using SOAs and thus leverage themselves to the customer.

Bringing Applications Online Sooner

With the ability to build SOAs quickly with powerful development tools, companies can
easily build SOAs to build new applications and then use them for tasks like inventory
management, order billing, etc and so on.

Improving Processes and Enhancing Agility

By allowing companies to form relationships with partners, agents and suppliers,
companies invest in SOAs to become more efficient in their business process and can
differentiate themselves from their competition in speed, quality and performance.

Summary

In this chapter we have looked at how SOA initiatives by major industry players and how
organizations have implemented SOAs to create and add value to their business processes.
As more organizations adopt to SOA we are bound to see more creative applications of
SOA to contribute value to organizations. The next chapter goes into detail as to why
organizations must adopt to SOA.

63

The Business Case for SOA

Earlier, we saw some of the technical benefits SOA offers architects and engineers.
However, we only scratched the surface with respect to the benefits of SOA. SOA is a
means of adding value to not just 1T systems but to the entire enterprise. Leaders of all
parts of the enterprise like Business Analysts, Finance, and Human Resources must
collectively collaborate with the IT department to extract maximum value from an
enterprise. Here [will present the business case as to why corporations must adopt to
SOA. I will also offer ways in which SOA proponents can push for it within the
organization. [will also prescribe models of SOA that organizations can choose to adopt
based on their own business processes.

Why Adopt to SOA?

The following are some of the advantages gained from adopting to SOA.
Increased Output from Pre-existing Systems

SOAs can standardize the access and communication for both older systems like
mainframes and newer servers. Companies that provide data from such systems to their
customers can leverage themselves by building an SOA infrastructure around the older
systems. By doing so, they can let more consumers access their systems. On the flip side,
they can retrieve data from more systems and thus leverage themselves from more
producers. SOAs can coordinate and facilitate communication among heterogencous
operating systems, platforms, applications and even infrastructures.

Flexible, Maintainable, Economical, Scalable Infrastructure

As mentioned in an article by Kishore Channabasavaiah, Kerrie Holley & Edward
Tuggle‘w. SOAs can incorporate old and new systems and thus make the underlying
infrastructure a commodity. SOAs can mitigate risk through the reuse of proven existing
components and subsystems thus reducing costs and efforts. Reuse also eliminates
redundancy of code and thus makes maintenance a breeze. For developers it reduces
programming efforts. SOAs can be easily made scalable to deliver value from both
existing assets and from new development or even through the incorporation of and
external partner’s asset. The use of SOAs also makes it easy to modify existing
functionality to suit new business needs.

“ hitp://www .looselycoupled.com/opinion/2004/chann-case-infr0927.html

64

Quicker Product and Service Delivery

When a SOA is established within a firm, with a set of well defined governance rules,
adding new functionality becomes easier. Reuse also adds to quicker developmental time.
As a result, firms can bring their offerings online sooner. Further, with SOAs deployment
of services also becomes a lot faster.

Focus on Enhancing Business Process

Unlike prior technologies, SOAs focus on business processes and not on the
programming model. Everyone in the organization is thus focused on the business
processes and thus a company can enhance their offerings by examining their processes
in the SOA, feedback from all corners inside them and from feedback from their
customers.

Process Automation and Improved Data Access

Processes like inventory and supplier management can easily be automated with SOAs.
As SOAs facilitate coordination of multiple systems, companies may have quicker access
to data they need for their operations. As a result they can make better informed decisions
sooner,

Enhanced Operations

SOAs force inter-organizational and interdepartmental cooperation, communication and
coordination. Thus they force a behavior change in the organization as a whole. Such
behavior change and better communication can increase operational efficiency, and
reduce costs.

Companies can selectively exhibit their operational model to supply chain partners and
thus help suppliers understand and improve their ability to serve them. Usage of web
services or other services can grant companies an opportunity to expand into new market
segments. They could thus increase the scope of existing partnerships and mergers or
create entirely new ones. An SOA can also give the offerings of a company more
visibility.

Furthermore, by observing the case histories of their customers and suppliers, firms can
avoid dealing with corporations or individuals with questionable pasts. They could also
track the authenticity of credit card payments and save themselves legal overhead. SOAs
can also provide audit trails of online transactions.

65

More Choices of Technologies

The standardized nature of web services has brought more vendors in the market. Some
vendors offer powerful tools to quickly build powerful web services while others offer
entire infrastructures that could be customized to suit a firm’s needs. As SOAs grow in
popularity, the price of such tools and infrastructures are bound to drop due to
competition, offering companies more choice at lower cost.

In addition to development tools web services can also offer options of leasing
applications like CRMs or ERPs and using their services without investing money in
buying them.

Adapting to Changing Market Conditions

By providing the ability to deploy services quickly, facilitated communication and
quicker access to market data, SOAs can help companies adapt quickly to changing
market conditions like sales opportunities, etc.

Market Segment Specific Benefits

SOAs can offer benefits to different market sectors based of the need of each sector. For
example, in the financial sector, SOAs can service more users and grant them access to
financial data from numerous sources. They can also help secure financial transactions
and reduce costs of such services

In the retail sector, SOAs can provide access to more suppliers and consumers or
enhance communication between different players in the supply chain. In warehouses
they can help track inventory and status of shipments. Further, players on the supply
chain will have timely access to supply and demand data. Suppliers can track a
company’s internal inventory quantities of material they supply online and can arrange
for replenishments without additional communication

In the healthcare sector, SOAs can provide confidentiality of data, and help patients
access more providers and make cost comparisons. Patients and doctors can have quicker
access to data, test results and patient insurance information.

Integration of Disparate Systems

Within a company, SOAs can bring together data from different types of databases,
spreadsheets, CRM and ERP applications. They can standardize access to heterogeneous
systems and standardize presentation of data in different formats. They can also
coordinate data among purchase, inventory and sales systems. All of this translates into
improved efficiency and reduced cost for the company.

66

Pushing SOA Adoption in an Organization

So how does one push SOA Adoption in the enterprise?

The adoption of SOA by an organization needs a buy-in first from the IT department,
upper management and last but not the least, a buy-in or at least a reluctant ‘yes’ from
other stakeholders in the organization.

Usually, this effort is championed from someone in IT who has respect all over the
organization. This person must sell the fact that an SOA is simply not a new IT system
but an infrastructure that will require a paradigm shift in operations from all departments
within the operations.

The champion must first push for a pilot project which has well defined goals in terms of
output and cost savings. The question now becomes “How can organizations estimate
their readiness for SOA adoption?

Accenture’s SOA Readiness Model

Analogous to CMM’s capability and maturity model that helps evaluate the maturity of a
company’s software process, Accenture has developed a four level SOA capability and
progress Model®*'.

Level 1: The Planning Stage

Companies at this stage have not adopted to SOA. This is the time senior management
must be sold on the SOA vision. At this stage it is important understand the business
processes and operations of the respective company. Then management with the help of
internal or external expertise must carefully assess how SOA can leverage the company’s
business processes and assets.

Next, the organization can prepare for SOA transformation from both a business and
technical perspective. From a technical standpoint, this may mean assessing the
company’s in-house expertise, technologies and investing in SOA tools. From an
enterprise standpoint preparation involves bring together opinion shapers from different
parts of the environment and look for a possible project that could quickly demonstrate
the value of SOA.

' http://www.intelligententerprise.com/showArticle.jhtm1?articleID=196601079

67

Level 2: The Early Deployment Stage

Companies at this level have a few SOA projects launched or deployed. They are just
commencing the process of giving out their offerings as web services. They may also be
in the process of consolidating and encapsulating their services as combined offerings.

Level 3: The Design of Services Architecture Stage

At this stage, firms are looking at SOAs from a business strategy perspective. They focus
on offering their services as business processes and are now using sophisticated SOA
tools for their development methodology. The focus has now shifted to looking at SOAs
as an extension of the business rather than just an extension of IT.

Level 4: Industrialization of SOA

Companies in this stage have a mature SOA methodology. SOA is part of the company’s
DNA. They have or have the capability to have SOAs that operate across corporate
boundaries, with security mechanism like federated identities. In addition to their own
offerings, these companies may have services that internally or externally offer services
from their partners. Their IT is robust and thus ‘predictive’ and as a result their operations
are both efficient, timely and effective.

Though this model is not universally accepted, it offers a good framework for tracking
SOA transitions and progress for companies. Like SEI, one would like to see an
organization like Oasis grade companies on their progress of SOA adoption. This would
also be an incentive for corporations to transition and enhance their SOA readiness.

The Champion’s Story

Here are some suggestions for a SOA champion to sell SOA to an organization. As
mentioned earlier, SOA can leverage all aspects of a firm’s operations. A champion for
SOA usually is an IT veteran with industry wide respect. However, to force SOA
adoption, he or she might need a buy in not only from the CEO but also from CIOs CFOs
and COOs.

Earlier in this chapter, we examined several reasons as to why a company must adopt to
SOA. The champion can use many of these reasons to build a case to upper management
to push SOA. It would be to the advantage of the champion if the CFO is an IT proponent
and if the CIO has an understanding of how the existing IT services add to the company’s
operations

e The champion can use any of the reasons given earlier to higher management to
create a case for SOA. However, he or she must tie the arguments for SOA with

68

tangible benefits like reduced operational costs in actual estimates. However, the
champion must also push for the intangibles like easy access to information, less
reliance on IT personnel and real time information.

¢ Secondly the champion can push for a small pilot project where progress and
benefits are visible and easy to understand.

¢ Another important part of the sales pitch is to tell the CEO or CFO that they will
be the heroes who with SOA can expand operations for the firm, increase
efficiency build organization cooperation or even create mergers and acquisitions
which are strategic wins for the company.

e Further the champion can elaborate on governance and describe a ‘dashboard’
which an executive could use to control her domain.

e Finally the champion must sum up a strategy with a timeline on achieving various
milestones of SOA progress using the SOA model described above.

e The champion must also elaborate on the new skills that need to be internally
honed or externally bought to leverage the footing of the company’s operations.

Vendor Considerations

With so many major players like SAP, IBM, Oracle and Microsoft offering SOA services,
how does a firm pick a vendor? In the last chapter we looked at many SOA solutions
offered by these companies. Should they go with a pure services company like IBM or
should they select a company with product suites and services like Oracle or Microsoft?

It depends on several factors. Firstly, companies adopting to SOA must first look at their
own businesses processes and their existing level of IT in-house to handle the business.
Further they must look at their own IT systems, hardware and software. They must also
decide on how quickly they plan to make a transition to SOA.

This exercise will give them an idea of how much they might have to invest in hardware,
software and in hiring personnel. If a company already has some level of services or
product or services or some service agreement with a major vendor what would it cost the
company if the company decided to use this vendor’s infrastructure? Are they happy with
the level of service they currently receive?

Can the firm leverage its operations and business processes by going with another

vendor? These are questions that must be answered through a careful cost-benefit
analysis.

69

Cost Considerations

While SOAs can bring TCOs and yield large ROIs for corporations, their implementers
will need factor in the following expenses.

Planning and Design Costs: SOA architecture requires planning, resources, hardware,
and acquisition of software development tools and hiring or reallocation of personnel. All
costs associated with these moves must into the SOA project budget.

Implementation Cost: Implementing, testing and deployment the system brings
associated costs.

Support and Staff Training Costs: These are costs associated with the system, training
staff on using the system, setting up and maintaining governance and security policies,
ete.

Licensing costs: These may be costs associated in licensing software for development or
security or simply using services from an SOA which is external to the company.

Other costs: These are other costs associated with running of the SOA.

Roles for SOA Infrastructure Providers

Up till now, we have looked at reasons why companies must adopt to SOA to optimize
their business processes and some of the considerations that come up while they adopt to
SOA. However, some IT companies can look for opportunities to help companies that
would like to provide services without the overhead of an SOA infrastructure. Such IT
companies could also offer the services of others in combination with the services they
provide themselves to leverage their offerings. Further, they could offer lookup services
to help consumers look up information on services or companies providing services. We
will now look at some of the roles that companies can play in providing SOA services.

Content and Service Providers

Companies in Content Provider roles can either act as a content provider, consolidating
data from many sources like news broadcasts from several worldwide agencies or
financial data from worldwide stock exchanges, etc. Other organizations and companies
could publish their own content as services.

As a service provider a company could either bring out functionality it implements as

services or host, license and resell services provided by other companies and act as
‘internet middlepersons’ for other companies

70

The services in both cases, content and business services can be sold as a set of individual
services or as a consolidated group of dedicated services.

Registry Management Providers

We saw earlier how web service providers can publicize their offerings as UDDI
Registries. Registries also allow providers to classify their services based on taxonomy.
Consumers of web services can locate and use the services of a company through a UDDI.
Many large vendors set up UDDI registries, which are large database servers allowing
providers to publish their services on them.

Companies could get into this business and thus help catalog names business and contact
imformation for content providers and information about the services they provide.
Sophisticated Registries called brokers can provide search tools for consumers to locate a
service based on some criteria. They can also act as gateways in describing the usage
policies of the services provided by a company

Summary

In this chapter, we have looked at the business case for SOA, some recommendations for
pushing for SOA adoption in an organization and some of the business considerations
that must be made while moving forward with SOA adoption. In the next chapter we will
consider the major risks that come with SOA adoption and look for ways to mitigate
these risks.

71

SOA Risk Analysis

While it may in the best interest of most organizations to adopt to SOA, the success of an
SOA requires a continuous process of understanding the risks inherent in the system as
well as the risks that arise from the continuous evolution of the system. We will look at
the generic risks of SOA and then look at some of the risks that arise from the inherent
nature of the SOA model. We will also look at the risks of certain types of SOA
implementation.

Inherent SOA Risks

As we saw earlier, the very nature of SOA and Web services cause some of their
weaknesses

¢ All web service communication mechanisms, SOAP, UDDI, WSDL, etc are XML
based and thus can traverse firewalls and VPNs. None of them have built in
security as part of their specification. Without any added security, exposed
transactions are accessible to anyone who can access the internet. It is thus the
responsibility of the implementer to use an appropriate security solution.

e Adding security like simple encryption can defeat the advantages gained by loose
coupling. Implementations of SOAs must thus strike a balance between flexibility
and security. Otherwise, encryption mechanisms can force tight coupling between
producer and consumer, which means that changes on the producer side will
warrant changes in consumer side.

o If security solutions are not made scalable, enhancements to security or to the
system can be expensive and labor intensive.

¢ Foreseeing security threats and use cases for all scenerios in large SOAs with
several loosely coupled components can be almost impossible and thus requires
carefully proper risk contingency and usage planning. Systems must also be
monitored for new use cases and security threats

Security Risks

We have looked at SOA security issues and technologies devoted to addressing those
issues in SOAs. However, security contingency measures need an understanding beyond
possible security threats and solutions. Enterprises must approach security from a much

72

broader enterprise context. Here are some oversights that can happen when a company
transitions to SOA.

Failing to understand Security Threats

Firms that are transitioned to SOA, or those who just have made the switch often
fail to understand that they must confront security issues aimost from scratch. As
mentioned earlier, SOA because of its inherent nature brings to the forefront new
security threats. Most corporations and their IT personnel are not aware of these
risks.

Traditional methods of having a firewall could give corporations a false sense of
security to corporations. As mentioned earlier, SOA messages are built to travel
over HTTP or HTTPS, bypassing firewalls and thus allowing hackers to attack
systems and access confidential information. It is the job of the implementers to
make it clear to the organization that security is most important for the SOA and
that everyone’s input must be considered in planning contingency measures.

Furthermore corporations must use the right measures to monitor the effectiveness
of security Just keeping track of reported security bugs is not enough to validate
security of an SOA. Corporations must also focus on the usage patterns of their
interfaces to check for security threats.

Underestimating importance of Security

Many firms fail to see the significance of security measures to their SOAs and
often do not budget adequately for them. Some smaller firms that offer services
simply do not have the money to put a security mechanism in place. As a result,
their systems are vulnerable to Hackers and even inadvertent user access to
sensitive information. Security issues must be brought forth and addressed right
from the proof of concept and design phases.

Pushing the envelope

This 1s a malaise that exists at several levels in many corporations. Executives
who may have a gut feeling about possibility of security threats often fail to
question the effectiveness of their corporate security threats. They console
themselves that IT has taken care of these issues. As a result important security
considerations simply slip through the cracks.

Often IT folks whose expertise is primarily in software, do not want to confront

security threats to switches, routers, bridges and other hardware equipment as it is
outside their comfort zone. They must work together with hardware specialists

73

and system administrators to monitor and evaluate security systems, both for
hardware and software.

Sometimes a product team may simply abandon security issues to meet deadlines
on their deliverables. This could leave security vulnerabilities which are simply
time bombs waiting to be ignited.

Many firms that use third party tools and technologies to implement their security
solutions rely on those vendors to handle security issues. This could prove
dangerous as no SOA vendor or administrator can plan for all possible security
threats. Security of SOAs is everyone’s business.

Another incarnation of this passing of blame is to rely on security standards. As
we have seen, many of these security standards are still in incomplete states of
development and thus leave SOAs vulnerable to threats.

Failing to Monitor Effectiveness of Security Continuously

Many organizations fail to realize that Security Risk assessment and risk
management is an ongoing process. While most security threats occur on
hardware devices, hackers are constantly trying newer and cleverer ways to break
into both software and hardware systems. An investigation of hardware security
precautions is not enough for security.

Similarly merely investing in software security solutions is also inadequate. All
people within the organization must brainstorm all possible usage patterns of their
services, with ach service used singly and in combination with other services to
check for possible vulnerabilities.

Also constant monitoring of usage patterns and access logs of SOA servers must
be part of the SOA governance policy. All parties in any way associated with
security must seek to understand security issues which may even be outside their
sphere of influence.

Security evaluation must be done from as many diverse sources within and
outside the system.

Inadvertent Security Risks

Many vendors offer tools that make it very east to build web services. This means
that developers could build web services around legacy and older systems without
adequate knowledge of their operations or their vulnerability to threats when
exposed as web services. As a result new threats are created, compromising the
security of the system. Whenever a new service or set of services are added as

74

part as a corporate offering, security issues must be brought up and evaluated with
them.

SOA Iimplementation Risks

Some of the risks associated with SOA implementations include:
Easy Basic Implementation Risks

There are many tools from Microsoft and other Java tools that can be used to
create basic services, consumers of services and so on with very little code writing
from the programmer. With such a tool, the programmer simply moves through a
sequence of screens choosing one or more options as she goes along. The SOA
Tool creates code based on the programmer’s choices creates code and then at the
end, creates a framework that the programmer can enhance. While these tools do
provide a basic framework, they do not automatically make production level
services for enterprises.

The ease of using such tools to create basic SOAs which are nothing more than
prototypes causes developers to be complacent and as a result, the end service
created may not be optimal in terms of performance, flexibility, reliability and
security.

Standards Risks

As SOAs can be built as web services, RESTFUL services and so on, there 1s no
single SOA standard and this can cause interoperability problems among SOAs.
Though some aspects of web services exist, many of them are not comprehensive
enough to guarantee security or interoperability among them.

Often, tight deadlines, feature creep and other factors can push developers to
abandon adherence to them.

Vendor Choice Risks

Many large vendors offer SOA solutions to the enterprise. Companies must not
base their choice of vendor simply based on a vendor’s reputations. A company
must carefully evaluate how well the vendor model can handle the company’s
business model and processes. Also consideration must be paid for level of
support, stability and lifetime of the vendor company and SOA product.
Companies must also asses the effectiveness of the contract they have with the
vendor.

New Technology Risk

75

Companies transitioning to SOA must realize that they are creating a new layer of
software and processes over their existing infrastructure. This means that they
must deal with the new complexities of architecture, governance and security,
management and so on. They must anticipate problems arising from deployment,
lifecycle and change management and so on. As SOAs can interact with entities
within and outside corporate boundaries they may have dependencies on external
factors to run effectively.

Interaction and Coordination Risks

SOA brings together almost all departments in an organization. Many projects
must be brought into a single architecture and this process involves coordination
of technical and business groups. This coordination of several separate efforts to
a single architecture is a monumental task that must be approached diligently and
carefully.

Going overboard with Services

It is possible that some of a firm’s business offerings may be optimally
implemented via services. Service providers

must be comfortable in offering only a subset of their business functions as
external services. Firms must implement services based on ROI, capability to add
provisions for security breaches and in line with their governance policies.

Making Assumptions on Underlying implementation

Consumers must carefully adhere to service contracts and never make
assumptions on the underlying implementation of a service. This could lead to
interoperability problems. Further, the underlying implementation is subject to
change at any point without any notice from the service provider. Developers
must make the usage of the service clear and explicit in their contracts.

Too Fine Grained Services

In an attempt to enhance reuse, developers and architects may make even internal
pieces of a system as a service. Services must be designed for the external
customer must be kept lean, precise but powerful. Sometimes within an
organization, developers may decide to treat every possible interface as a service.
This may be overkill and also cause additional unnecessary maintenance overhead
for the organization.

76

Focus on Programming Models instead of Business Processes
Services must abstract business processes and not programming models like

object or RPC style models. Such an implementation could lead to tight coupling
defeating the very purpose of having SOAs.

Summary

In this chapter we looked at some important risks considerations for Organizations that
use or plan to adopt SOAs. It must be reiterated that careful risk analysis is the
differentiating factor in the ultimate success or failure of an SOA.

77

The Future of SOA

Earlier, we saw that a study by the Aberdeen group has concluded that SOA adoption has
now reached 90% in industry. In 2004, Gartner predicts that by 2007, most companies
would have adopted SOA for both new applications and as an interface to legacy

applications*?.

It is certain that companies must change their view of applications and develop new skill
sets and tools to adopt an SOA strategy. Areas like security and the ability to handle large
transactions still pose some of the biggest obstacles to industry wide option.

. R 3 . . .
In an interview*® with Forbes magazine, author and business consultant John Hagel
describes web services as

“.. a disruptive technology in that the early adoption is not disvuptive at all--it simply
offers the promise of doing what you already do cheaper, faster and more flexibly. The
disruptive part comes after adoption because the technology now creates the option of
restructuring businesses and moving to very different operating practices. This will take
years if not decades to play out in full form, but we are already seeing early illustrations
of the potential.”

Hagel mentions in the same article that at least half of SOA implementations are
happening outside the US. He also mentions that many national and state governments
are adopting to SOA to lower the cost of information aggregation on websites and to
enable the storage of information on diverse websites. The DoD, he says is also an early
adopter and uses web services to increase flexibility to deploy military resources in
response to targeted threats.

SOA adoption has taken on a multiple set of innovative and futuristic paths. Many of
them have been through synthesis with newer and existing technologies. We will now
look at some of the evolutions of SOA.

Enterprise Service Bus

An enterprise service bus is a layer of software abstraction over one or more systems that
serves as a standards based event driven, messaging engine. It provides a framework
which allows multiple systems to be integrated with it to form a distributed messaging
system. ESBs are XML based, operating system and programming language agnostic.
They are distributed and thus have no centralized rule engine.

2 http://news.zdnet.com/2100-3513_22-5415942 html
 hitp://www.forbes.com/home/2002/12/09/120%hagelchat.htm]

78

Unlike traditional architectures, the ESB is build on functionality that can be
componentized into smaller parts and deployed in a distributed fashion. Architects can
use the EDB to send messages and alerts under certain situations without any
programming.

ESB do not include SOA functionality but an SOA can be implemented on its basic
framework. It can support many transport mechanisms and when an SOA is implemented
within it, the transport protocols of the SOA can be clearly separated from the services
offered by the SOA. Many commercial ESB developers include SOA functionality to
leverage their sales.

The key benefits of ESBs are that they allow faster and cheaper accommodation of
existing systems, standards adherence, flexibility and scalability. Further, they allow for
configuration rather than integration coding.

The ESB also has some disadvantages. One is that it requires a mandatory messaging
model. This means that disparate systems must adhere to some messaging standards.
Versioning problems on messaging models can actually make ESB components tightly
coupled. Some ESB implementations may need more hardware.

ESBs rarely give back the ROIs on their early projects. For effective running of ESBs
organizations actually need a pre existing well-run governance policy..

According to a report™ by the Aberdeen Study Group, ESBs have been adopted by about
64% of organizations today. The graph below shows the various modes of usage of ESBs.

ESB Adoption Drivers (Multiple Choice)

Management of
IT complexity |

Speed of IT
implementations

Technology simpifications 9%
and consolidation of
Legacy middieware softvare 35%

1

Alignment with 55%
the business 6%
|

Re-usage of appicatons 55%
via Web Services 6%
0% 10% 20% 30% 40% 50% 0%
mm BIC W AM Seurce AberdeenGroup June 2008

“ hllp://www.dmreview.com/articIe_sub.cfm'?articleld= 1059636

79

Smart Clients

The last few decades have seen the multifold increase of power in desktop systems,
thanks to powerful processors from companies like Intel and AMD. The combinations of
processing power, the power of the web and the evolution of web services has evolved
another emergent technology, Smart Clients. Smart Clients harness the power of the
desktop and couple it with the power of the internet. Smart Clients can also be used with
non-computer internet devices like PDAs and cell phones.

Harness Localized Processing Power

As mentioned above, Smart Clients can utilize the untapped power of the desktop or
laptop or device and use internal hardware like memory to accomplish tasks. They can
also interact with software within the device or other applications that are specific to the
context of the task they perform, When the desktop, laptop or device is not connected to
the internet, the smart client can do house keeping tasks and work on optimizing
performance with caching of data or effective connection management.

Web Access

When the desktop is online, a smart client can request data or processing from a remote
web service and also be capable pf deploying or updating applications automatically as
necessary. They can be configured to deploy external applications based on certain
permissions or security mechanisms.

In addition, Smart clients can also use SOAs to provide security mechanisms, and
configuration of access policy for applications. Combined with SOAs, Smart Clients can
enrich the user experience and increase the response time with caching and asynchronous
data fetching.

Device Specific Customization

Smart clients can be made machine or device specific. This means that when they work,
they can take advantages of the unique features of the device where they run.

SOAs provide the ability to draw a clear line between business logic and the front end.
They provide a uniform interface to access data. Smart Clients that reside on a variety of
devices can seamlessly connect to SOAs to access data or to perform computations.

Performance, Scalability and Robustness
The traditional client-server model broke up tasks so that all heavy processing was done
at the server end. However, the smart client paradigm has shifted some of the heavy work

to the client side and thus enables use of the untapped power of the desktop. Thus
distributed applications can divide tasks in an optimal fashion between front and back

80

ends, thereby improving their performance. In conjunction with SOAs, smart clients
allow applications to be more robust, flexible and scalable.

Open Source and SOA

The open source movement has gained ground in corporations today. Linux has been an
operating system of choice for many corporations in the server space and in the
embedded market. JBoss and Tomcat application servers and Mysql databases are other
open source success stories and 70% of all web servers used today are Apaches.

Open Source and SOA are compatible in many ways. For instance, one of the main goals
of both is reuse although they approach reuse in different ways. Another SOA goal is to
provide the end user with the best possible solution to address his or her need. The theory
of ‘many heads’ works with open source SOA as it will involve a large programming
community working to offer the end user with optimal solutions. True to the goals behind
SOA, Open Source developers strive to make their code as flexible, robust and adaptable
to the end user. Also open source software is almost always intended to be backward
compatible with their previous releases. This aspect of open source will add value to
SOAs as it 1s a means of maintaining interoperability.

Open Source has spread into the SOA space and we now do have open source registries
and SOA development packages. Examples of open source SOA tools are JBoss and
Logic Blaze for ESB and SOA related software. The JBoss bundle is called the JBoss
Enterprise Middleware Suite (JEMS). The JEMS offering includes Hibernate, Apache
Tomecat, JBoss, JBoss Portal, Messaging, Cache and an Application Server. The JBoss
Eclipse development environment enables development and testing of SOA applications.
So does open source SOA pose a threat to commercial software?

SOA systems in large organizations act as a framework to facilitate coordination,
management, performance and interoperability and communication. Traditionally,
providers of such solutions like CRM and ERP vendors have formed close alliances and
relationships with their customers and by offering support services.

In his article, Is Open Source SOA Software Ready for Prime Time?, Eric Koch warns
that forming such partnerships will be a challenge for SOA. He goes on to propose that if
open source must threaten commercial software, it must give more value added benefits.
He believes that if a company wants to make a profit out of open source SOA, it must
adopt a model similar to one like Red Hat uses with Linux distribution.

Though Linux is free to acquire and install, it takes a lot of overhead to deploy, support,
manage and maintain. Red Hat distributes Linux with customer support, training and
other services like bug fixes, etc. Red Hat thus becomes the vendor of choice for
companies using open source Linux. This is the model that Koch proposes for open
source. A company can thus make its revenue by bundling open source SOA and offer
Support services.

81

Firstly, Open Source SOA systems and development tools are still in their infancy in
comparison to their commercial counter parts. In his article, Koch warns that it would
presently be 30% more costly to install and maintain a open source solution than going
with a commercially purchased solution. However, the ROI attained through an open
source SOA would be 200% higher. In essence Koch maintains that there is added value
for companies to use open source one they overcome the initial cost factor.

Grid Computing and Web Services

Grid computing is a computing paradigm where computers distributed across a network
act as a single virtual entity to distribute tasks and enable parallel computing when
possible. As a result, the single virtual computer can solve large complex computational
problems by breaking them down into sub tasks and thus enable higher performance.

There is no centralized control in this model and computation is distributed. The
computers in the grid must use standardized protocols and interfaces to enable
interoperability among heterogeneous machines and optimize performance through
efficient use of available resources. This is where web services become important to grid
computing.

As early as February 2002, an article by Tom Sullivan of Infoworld® talks about Sun’s
efforts to combine grid computing and web services. The product, Technical Compute
Portal, is composed of the iPlanet Portal, Sun's Grid Engine, and Sun ONE (Open
Network Environment). Sun One is build on web services and allows resource access and
communication though them. The processing power of the system comes from the grid
dengine while iPlanet provides the standardized interface.

In an article on Techtarget.com, titled ‘The future is grid computing and Web services as
one*®’, Aneet Shah mentions that at the Finexpo City Technology Strategies conference
in February 2004, JP Morgan and UBS had a session where they explained how they are
using grid computing and Web services together. Shah goes on to say,

“They are reporting positive returns from early small-scale implementations of Web
services and Grid computing, raising expectations for wider uptake in new application
areas across the enterprise.”

While organizations today continue to adopt both Grid computing and SOAs, Aneet
suggests that the next logical step would be to harness the power and capability of grid
computing as part of a service oriented architecture.

He goes on to say,

“ http://www.infoworld.com/articles/hn/xml/02/02/15/0202 1 Shnsunonegrid.html
% http://searchwebservices.techtarget.com/originalContent/0,289142,5id26_gci949511,00.html

82

“However there are still many challenges that need to be overcome to make this an
industry-wide strategy. Some challenges that will need to be considered over the next few
years are. improving and developing interoperability standards across the distributed
resource management space while there are operational grids are being implemented
and the general computing environment is evolving rapidly; complete migration to a Web
service-orientated architecture is still a while away; and finding applications that can
efficiemly utilize both of them. *

Services used within the grid called Grid services and must adhere to guidelines specified
in the Open Grid Services Infrastructure (OGSI) specification(www.ggf.org/ogsa-wg).

The specification extends the WSDL and WS-Security formats and provides standardized
formats to name, locate, create and manage the lifecycles of grid services. Grid services
like web services use SOAP for their communication.

According to Grimshaw, Grid Service conventions are not superficial in their function
and address fundamental issues in distributed computing relating to how to name, create,
discover, monitor and manage the lifetime of stateful services.

In his article ‘Introducing Open Grid Services’, Savas Parastatidis'’ mentions that in June
2003 that “the Global Grid Forum (GGF) adopted the Open Grid Services Infrastructure
(OGSI) specification (www.ggf.org/ogsa-wg) as a GGF standard”

He goes on to say that OGSI is essential to the Open Grid Computing vision as it is the
foundation on top of which the building blocks of future Grid applications will be placed.
Those building blocks, the Grid services, are being defined by various GGF working
groups, with the Open Grid Services Architecture (OGSA) working group orchestrating
the entire process.

SOA and M2M

The field of Machine to Machine (M2M) also commonly referred to as the Pervasive
Internet is involved in bringing online machines and peripherals of everyday use. These
could include HVAC systems, Music or Movie disks, house keys, cardio monitors, bar
codes on merchandise, etc.

It raises the possibility of connecting such devices to intranets and internet, to enable the
monitoring of performance, receiving alerts on critical entities, and to control and
manipulate them.

Manufacturers can them monitor the performance of their equipment, doctors and
medical personnel can receive alerts from hospital devices situated in a different place.

“7 http://webservices.sys-con.com/read/39827.htm

83

Building administrators could contro! the temperatures of remotely located buildings, etc.
Remote control of devices could be done via a computer or a personal device.

An article® titled ‘Moving SOA onto the Plant Floor’ by Tom Kevan mentions that it is
difficult to evaluate the benefits of SOA in industrial production environments as
software vendors have concentrated on applications for industries that have a high
volume of data movement like Financial institutions. Vendors supplying software for
plant-floor systems have been slow to adopt this technology.

The article goes on to say that temperature control system vendors like Rockwell and
Siemens are all bringing such products into the market. These products will be SOA
enabled to allow their monitoring and control over the net.

The article further says that the growing presence of software called Sensor middleware
may make SOA’s ROI more visible. Augusta Systems’ SensorBridge allows rapid
integration of sensor assets into existing data systems. Rockwell’s FactoryTalk integrator
allows manufacturers to connect to business systems. Sensicast’s Sensinet Gateway
combines wireless sensors with legacy systems.

This is yet another growing field that is still very much in its infancy. SOA may be the
key to building intelligence in everyday devices and creating endless possibilities,

Summary

This chapter provided an overview of some growing fields that use SOA. The growing
popularity of SOA in organizations will create more widespread use of SOA technologies.
Many innovators will use SOA to create and deliver value in a multitude of new
applications and in other industry segments.

“8 http://www.sensorsmag.com/sensors/article/articleDetail.jsp?id=393403

84

Conclusion

In this thesis, I have introduced Service Oriented Architectures, described its evolution,
and then described the most popular technologies used to implement SOA. Further I have
built both a technical and a business case for SOA adoption. I have also presented an
overview of the current state of SOA today in the corporate world and presented how
some key proponents of SOA have proposed their models for SOA adoption. Finally,

I examined a few possible future paths in the evolution of these technologies.

It is worthwhile for any architect or business analyst to read the chapters on SOA risks,
security and governance before embarking on SOA adoption. As mentioned earlier, the
goal of this thesis is to introduce the reader to SOA and outline its advantages. It 1s not
intended to be a how-to model.

Here are some key takeaways from my analysis.

e SOAs have evolved from some of the best aspects of existing technologies and
from other common computing themes that have repeatedly reoccurred from time
to time.

e Web Services are the most common types of SOAs implemented. Web services
are XML based and include SOAP, WSDL, UDDI technologies. They offer a
standardized format for providers to register their services and for consumers to
lookup and use the services provided by providers.

e SOAs provide benefits both from a technical and a business standpoint.

e Most of the research on SOA reveals that companies adopting to SOA can realize
measurable gains through relatively small investments in a short timeframe.

e SOA adoption and subsequent architectural decisions must be made by all key
departments within a company. SOA is not for the IT department alone.
Corporations choosing to adopt to SOA must educate all major department
(Marketing, Sales, Accounting, Finance, Human Resources, 1T) heads and
opinion shapers on SOA, its potential benefits and risks.

¢ The chapter titled ‘The Business case for SOA” explains the benefits, vendor and
cost considerations that companies must evaluate while adopting to SOA. Some
companies may choose to deliver SOA services. The same chapter also describes
two roles a corporation can take delivering SOA. These include Content and
Service providers and Registry management providers. Companies must carefully
examine their own business model and choose one or more roles for themselves
that fit this model.

&5

The chapter titled ‘The Business case for SOA’ also provides some
recommendations for SOA champions and evangelists on how to sell SOA to
upper management. SOA proponents can use some of the advantages of SOA
mentioned here and blend it with the advantages to their own respective business
model SOA brings in making their case.

The same chapter also describes how corporations must choose a vendor based on
their business needs. This 1s a vital decision and must be decided based on the
company’s business model, the robustness and flexibility of the vendor
architecture (based on available reports/reputation of the vendor) the level and
quantity of the service and support provided by the vendor. Can the architecture
of the vendor be nimble and flexible enough for the changing nature of your
company’s business? The chapter ‘SOA in Industry’ describes the offerings of
some of the large SOA infrastructure vendors. This chapter can be used this as a
starting point for company decision makers in researching the infrastructure most
appropriate for their respective line of business.

The SOA architecture adopted by a corporation must be evaluated based on the
company’s current business model and its future directions of growth. Can the
model be customized to adopt to future business directions like partnerships,
mergers, acquisitions and other changes that can happen to the respective
organization? Can it be adopted to include new suppliers or new services from
existing suppliers? How quickly can the system access new data in a timely
fashion? How can it leverage existing assets of the organization?

While a corporation must plan on an overall SOA strategy applicable for entire
organization, it is wise to start small with a pilot project where an ROI value can
be estimated before hand and subsequently evaluated once the SOA is operational.
This strategy would help key players make financial estimates on value created
and earned by an SOA as well as the technical challenges, risks and security

issues associated with SOA.

As SOAs are implemented and enhanced, corporations must give due
consideration on the functionality that they wish to provide as services. It may
wise to keep certain functionality as it is for a number of business or security
reasons.

Functionality of services provided by a firm must be based on the core
competencies of the firm, leveraging existing assets, reusable and redundant
functionality and consolidation of resources.

Before an SOA goes live, all heads in the organization must work together with
IT to establish company wide governance policies and evaluate security threats to
the system. A reliable reporting and auditing system must be in place to report on
all relevant activities carried on in the context of the SOA and to alert the
respective authority when critical situations arise.

86

e After an SOA 1s live, it must be constantly evaluated for risks and security threats.
It must also be evaluated for compatibility with the latest SOA standards..

o Corporations implementing SOA must also set and update policies and procedures
on how the systems must be used. This is an ongoing process and needs to be
addressed each time there is a business or architectural change in the operations of
a corporation. A live policies document in a well defined location ensures that
everyone within a corporation 1s on the same page with respect to governance.

SOA 1is not a silver bullet for corporate business processes. However, a well run

corporation with good business processes can leverage itself tenfold with a modest
investment through a well planned and managed SOA implementation.

87

References

Books

J2EE Web Services, Richard Monson-Haefel, Addison Wesley
Introduction

http://www.xml.com/pub/a/ws/2003/03/04/security.html
http://www.xml.com/pub/a/ws/2003/09/30/s0a.html
http://www.webmethods.com/Products/SOA/Why
http://h71028.www7.hp.com/enterprise/cache/329751 -0-0-225-121.htm006C
http://en.wikipedia.org/wiki/Service-oriented_architecture
http://www.xml.com/pub/a/ws/2003/09/30/soa.html
http://www.looselycoupled.com/opinion/2004/chann-soa-in fr0630.html
http://bobbreedlove.com/tech/soahistory.html

http://www looselycoupled.com/opinion/2004/chann-soa-infr0630.html
http://www-1 28.ibm.com/developerworks/webservices/library/ws-improvesoa/
http://objectwebcon06.0bjectweb.org/xwiki/bin/download/M ain/DetailedSession/A-

Trenaman-SOA.pdf

http://www.oasis-open.org.fcmnmittccs/download.phn/ 19679/s0a-rm-cs.pdf
http://en.wikipedia.org/wiki/OASIS_SOA_Reference Model
http://www.ws-1.org/about/Default.aspx
http://www.fool.com/investing/value/2006/09/1 8/soa-the-new-software-bazaar.aspx

SOA History

http://en.wikipedia.org/wiki/Internet
http://en.wikipedia.org/wiki/Computer_networking
http://bobbreedlove.com/tech/soahistory.html
http://www.computerhistory.org/exhibits/internct_history/

HTTP

http://en.wikipedia.org/wiki/HTTP (HTTP)

RPC

http://en.wikipedia.org/wiki/Remote_procedure call
http://tools.ietf.org/html/rfc707

Object Oriented Technology

http://en.wikipedia.org/wiki/Abstraction

88

http://en.wikipedia.org/wiki/Abstract_object
http://en.wikipedia.org/wiki/Type_polymorphism
http://en.wikipedia.org/wiki/Inheritance_%28computer_science%29
http://en.wikipedia.org/wiki/Polymorphism_%28computer_science%29
http://en.wikipedia.org/wiki/Object-oriented _programming

CORBA

http://acmgueue.com/ modules.php?name=Content&pa=showpage&pid=396&page=1
http://www.auditmypc.com/acronym/I1OP.asp (I110OP)

Component Technologies

http://www.informit.com/articles/article.asp?p=345781 &rl=1
http://objectwebcon06.objectweb.org/xwiki/bin/ download/Main/DetailedSession/A-

Trenaman-SOA.pdf

Microsoft Technologies: (COM /DCOM)

http://www-128.ibm.com/developerworks/library/co-tmline/ index.html (DCOM)
http://www.informit.com/articles/article.asp?p=345781 &rl=1
http://msdn2.microsoft.com/en-us/library/6zzy7zky(VS.80).aspx
http:/'/www.samspublishing.com/library/contcnt.asp'.’b:\/isuu! C PlusPlus&seqgNum=22
1&rl=1

Microsoft.Net History
http://en.wikipedia.org/wiki/. NET_Framework
Java

http://ei.cs.vt.edu/~history/Y oumans.Java.html

XML

http:/www.nytimes.com/library/ tech/00/06/biztech/technology/07mark.html

SOAP
http://webservices.xml.com/pub/a/ws/2001 /04/04/soap.html
Loose Coupling

http://en.wikipedia.org/wiki/Loose_coupling
http://www.johnhagel.com/view20021 009.shtml

89

Encapsulation

http://www.cs.cmu.edu/People/clamen/OODBM S/Manifesto/htManifesto/node5.html
Interoperability and Language Independence

http://www.webopedia.com/TERM/I/ interoperability.html
http://Whatis.com
http://safari.informit.com/013046130X/ch02levisccd
http://en.wikipedia.org/wiki/Cross-platform

Reuse

http://en.wikipedia.org/wiki/Code_reuse

Deployment

http://en.wikipedia.org/wiki/Software_deployment

Standardization
http://www enterprisenetworksandservers.com/ monthly/art.php?2135

Evolution of SOA

hl‘tp:/f"obicc[wcbcnn()ﬁ.ohjcct\\-’ch.org./xwiki:’hin/dm\-'nluad.ﬁ’Muin,-“Dctai1cdScssmn/A—
Trenaman-SOA.pdf

XML Origins

http://www.nytimes.com/library/tech/00/06/ biztech/technology/07mark.html

Technologies of Service Oriented Architectures

http://en.wikipedia.org/wiki/Service-oriented architecture

Web Services

http://en.wikipedia.org/wiki/Web_service
12EE Web Services , Richard Monson-Haefel, Addison Wesley
http:/f’en.wikipedia.org/wiki/Service—oriented_architecture

HTTP
http://www.jmarshall.com/easy/http/

90

SOAP
http://en.wikipedia.org/wiki/SOAP

WSDL

http://209.85.165.104/search?q=cache:C{T vl ubvsdl:sern.ucalgary.ca/courses/CPSC/547

/WZOOZ/SIides/uddi-wsdl.ppt+uddi+simplc+cxamplc&h1:(111&glzus&ct:clnk&cdﬂ)
http://www.w3.0rg/2001/03/1 4-annotated-WSDL-examples.html

REST

http://www.xml.com/pub/a/ws/2003/09/30/soa.html
http://www.zapthink.com/report.html?id=ZAPF LASH-2006712

http://cxpertanswcrcentcr.techtargct.com/cac/knowledgcbascAnswer/O,ZQS 199.51d63 gci

083966.00.html

Technical Benefits of SOA

http://www 1 .webmethods.com/PDF/The_Business_Case_for SOA .pdf
http://www,ftponline.com/ca/maguzine/wintchOOG/fcaturcs/lbcncl-;/
http:/'/www.soa.com/index.php/scction/solutions/intcropcrahilim
http://iuva.sun.com/dcvclopcrftechnicalArticlcs/WCbScrviccs/sou/indcx.htm]

Reuse

http://www-128.ibm.com/developerworks/ webservices/library/ws-reuse-
soa.html?ca=der-InxwRcuseSOA

Encapsulation
http://msdn.microsoft.com/isv/solution/crm/soa/default.aspx
Interoperability

http://www- | 28.ibm.com/developerworks/webservices/| ibrary/ws-soa-seminterop.html

Abstraction

http://blogs.cio.com/node/179

Real Time Information

http://msdn.microsoft.com/isw’so]ution/crm/soa/default.aspx

g1

Benefits to developers
http://www.j2eegeek.com/blog/2005/10/01/ beaworld-2005-soa-keynote-panel-discussion/
Jini and SOA

http://dev2dev.bea.com/blog/ clarkrichey/archive/2005/07/the_ultimate_so.html
SOA Security

http://www.aspnews.com/strategies/article.php/11296_3613041 3
http:f’/expcrtanswcrccnter.tcchtamet.com/cuc/expcrtAnswcr/O.ZQS 208.51d63 2c¢11022062,
00.html

http:/www.pesg.com/soa/security.html
http://cxpcrmnswcrcentcr.lcchturgct.c0m/cac/cxDcrtAnswe1'/(),295208,5id63 ocil 022062,
00.html

http:f/blogs.iltoolbox.com/eai/busincss/arch1vcs/soa-sccu1'i1y—arc.hitccturc— 11431
http://www.cigital.com/papers/download/bsi | 2-soa.doc.pdf
http:f‘f’msdn.micmsoft.com,f\\!cbscrviccs/wcbscrviccs/underslanding/’snccs/dc‘r'mllt.asnx'.’pu
l1=/library/en-us/dnglobspec/html/wssecurspecindex.asp

An Overview of security solutions

http://blogs. ittoolbox.com/cai/business/archives/soa-security-architecture-11431
http://www.xml.com/pub/a/ws/2003/03/04/security. html?page=2
http://xml.coverpages.org/saml.html
http://download.boulder.ibm.com/ibmdl/pub/software/ dw/specs/ws-fed/WS-Federation-
V1-1B.pdf

http://www-128.ibm.com/developerworks/I ibrary/specification/ws-secon/
http://specs.xmlsoap.org/ws/2005/07/ securitypolicy/ws-securitypolicy.pdf
http:/www.w3.org/ TR/xmldsig-core/

http://blogs.ittoolbox.com/eai/business/archives/ soa-security-architecture-11431

SOA Governance

http://www-128.ibm.com/developerworks/ webservices/library/ws-soa-govern/
http://www-306.ibm.com/software/solutions/soa/gov/
httr)://www.zapthink.com/rcpm‘t.htm1‘.’id:ZAPFLASH— 10272004
http://m'chivc.infoworld.com/t‘cports/(MSRsoasmv.html
http://www.infoworld.com/article/06/01/19/73698_04F Esoagov 1.html
http://www.weblavcrs.com/gcn/whitepaDers/lntroduulion to SOA Governance.pdf

92

SOA in Industry

http://www.fool.com/investing/value/2006/09/18/soa-the-new-software-bazaar.aspx
http://blogs.zdnet.com/service-oriented/?p=508
http://news.zdnet.com/2100-3513 22-5415942.html

IBM’s SOA Initiative

http://www.infoworld.com/article/06/05/07/78113_HNibmsoamainframe_1.html
http://news.com.com/IBM-+pulls+partners+into+SOA+push/2110-1011_3-5766540.html
http://www.crn.com/sections/breakingnews/breakingnews. jhtml?articleld=193104528&ci
d=CRNBreakingNews

Sun’s SOA initiative

http://www.sun.com/smi/Press/sunflash/2004-06/sunflash.20040628.9.xml

Oracle SOA

http://www.oracle.com/technologies/soa/soa-suite.html
http://www.eweek.com/article2/0,1895,1910378.00.asp
http://www.infoworld.com/article/06/05/17/78420_HNsoa20_|.html
http://www.webservices.org/weblog/mark_little/soa_2_0_ignorance

Microsoft and SOA

http://blogs.zdnet.com/service-oriented/?p=423
http://www.microsoft.com/presspass/press/2006/oct06/10-04PragmaticSOAPR.mspx
http://www.ebpml.org/ms_-_soa.htm
http://blogs.zdnet.com/service-oriented/?p=725
http:/www.internetnews.com/bus-news/article.php/346755 1
http://www.infoworld.com/article/06/10/04/HNmsesbsoa_1.html
http://www.microsoft.com/presspass/features/2006/0ct06/10-045SOA.mspx

The Business Case for SOA

http://www.looselycoupled.com/opinion/2004/chann-case—infr0927.html

http:/www-12 8. ibm.com/developerworks/webservices/library/ws-arc2.html
http://www.investni.com/index/develop/ebusiness/cbusiness_web services/cbusiness we
b services what are the benefits.htm

http://www.sun.com/products/soa/industry.jsp
http://www.webservicesarchitect.com/content/articles/clark02.asp
http://www.intelligententerprise.com/showArticle.jhtml?articleID=196601079
http://www.mega.com/index.asp/l/en/c/solution/p/it-architecture-governance/p2/service-
oriented-architecture

http://www.codeproject.com/webservices/BPI_with_Web_Services.asp

Pushing SOA in the organization
http://searchoracle.techtarget.com/originalContent/0,289142,sid41_gcil1209435 ,00.html

http://www.intelligententerprise.com/showArticle.jhtml?articleID=1 96601079
http://www 1 .webmethods.com/PDF/The_Business_C ase_for SOA.pdf

Pricing Models
http://www.webservicesarchitect.com/content/articles/clark02.asp

SOA Risk Analysis

http://pluralsight.com/blogs/tewa [d/archive/2005/03/04/6336.aspx
http://www.cigital.com/papers/download/bsil 2-soa.doc pdf

Risks from Loose coupling
http:.-".fw'\.vxx'.aspncws.com,’slratcgics/:\rlic1c.php/?oﬁ 13041

Risks of not using a business registry
http://www ebizq.net/topics/soa/features/5652.html
Security Risks

http://www.cio.com/blog_view.html?CID=20038
http://www.cio.com/archive/110106/col_key.html

Implementation Risks
http://www.weblayers.com/gcn/whitepapers/lntroduction)to_SOA_Govemance.pdf
The Future of SOA

http://news.zdnet.com/2100-3513 22-5415942.html
http://www .forbes.com/home/2002/12/09/1 209hagelchat.html

ESB
http://en.wikipedia.org/wiki/Enterprise_service_bus
Smart Clients

http://msdn.microsoft.com/isv/solution/crm/soa/default.aspx

04

Grid Computing

http://en.wikipedia.org/wiki/Grid_computing
http://www.infoworld.com/articles/hn/xm1/02/02/15/02021Shnsunone erid.html
http://searchwebservices.techtarget.com/original Content/0,289 142 .51d26 £¢i949511,00.ht
ml

http://webservices.sys-con.com/read/39829.htm
http://webservices.sys-con.com/read/39827.htm

M2M

http://www.maya.com/web/what/papers/harbor_infofuture sept2005.pdf
http://www.bpm-today.com/story xhtml?story_id=0120007JU1 TO

SOA and Open Source

http://blogs.ittoolbox.com/cai/business/archives/is—opcn-source-soa-software-rcady-for-
prime-time-11046
http://www.thbs.com/tech_docs/final whitepapers/Role%200f%%200pen%20Source-

SOA.pdf

95

96

