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Abstract
Understanding the structure of materials, and how this structure affects their

properties, is an important step towards the understanding that is necessary in order to
apply computational methods to the end of designing materials to fit very specific needs.
Such needs include specific optical and mechanical properties. In polymers, the ability to
easily create orientation through a variety of processes allows the production of materials
that, while chemically similar, exhibit a wide variety of optical and mechanical
properties. The ability to illuminate the connections between structure and optical or
mechanical properties depends on the ability to reliably interpret a wide variety of
experimental measurements. I assert that thermodynamic consistency and energy
minimization is an integral part of this endeavor; reliable analyses of structure and
properties are built upon the foundation of a minimum-free-energy ensemble of
configurations that reproduces the experimental results. This project encompasses three
goals, which make up this thesis: 1) to show how sets of experimental measurements are
integrated into simulations to produce thermodynamically consistent, minimum-free-
energy ensembles; 2) to show how these ensembles can characterize the conformations of
macromolecules, which are not available from direct simulation; 3) to show how dynamic
processes, which create inhomogeneous systems can be incorporated, along with
experimental structural measurements, into thermodynamically consistent, minimum-
free-energy ensembles.

To achieve the first of these goals, we describe the application of the Semi-Grand
Canonical Monte Carlo (SGMC) method to analyze and interpret experimental data for
non-equilibrium polymer melts and glasses. Experiments that provide information about
atomic-level ordering, e.g. birefringence, are amenable to this approach. Closure of the
inverse problem of determining the structural detail from limited data is achieved by
selecting the lowest-free-energy ensemble of configurations that reproduces the
experimental data. The free energy is calculated using the thermodynamic potential of
the appropriate semi-grand canonical (SGC) ensemble [NPTAtu(1)], as defined by the
experimental data. To illustrate the method we examine uniaxially oriented polyethylene
melts of average chain length up to C400. The simulation results are analyzed for features
not explicitly measured by birefringence, such as the density, torsion angle distribution,



molecular scale orientation and free energy, to understand more fully the underlying
features of these non-equilibrium states. The stress-optical rule for polyethylene is
evaluated in this way.

The second goal is achieved through multi-scale modeling, which requires the
selection and preservation of information crucial to understanding the behavior of a
system at appropriate length and time scales. For a description of processed polymers,
such a model must successfully link rheological properties with atomic-level structure.
We propose a method for the calculation of an important rheological state descriptor, the
configuration tensor <QQ>, from atomistic simulations of oligomers. The method
requires no adjustable parameters and can describe anisotropic polymer conformations at
conditions of significant deformation. We establish the validity of the atomistic-to-
macromolecular scaling by comparing the consistency of macromolecular predictions of
<QQ> among different polyethylene (PE) oligomer systems. We use this method with
the previously reported Semi-Grand Canonical Monte Carlo (SGMC) method to deduce
macromolecular and atomic-level structural information interchangeably for systems with
flow-induced orientation.

Introducing the ability to model arbitrary points in a dynamic process fulfills the
third goal elaborated above. Because the characteristic relaxation times of processed
polymer chains often span several orders of magnitude, it is commonly the case that
partial relaxation of the chains is frozen into the final product. We report results of
molecular simulations by the Semi-grand Canonical Monte Carlo (SGMC) method to
study the orientation-dependent elasticity of glassy polystyrene as a function of both the
system-average degree of orientation and the degree of relaxation of chain ends at a
constant average degree of orientation, in accord with the tube model of Doi and
Edwards. Our simulations reproduce quantitatively the experimentally observed changes
in the tensile modulus E33 as a function of both average orientation and inhomogeneity of
the orientation due to partial relaxation. The results show that the partial relaxation of the
polymer chains is sufficient to explain the observed variation of mechanical properties for
samples that differ in processing history, yet have the same observed birefringence.

Thesis Supervisor: Gregory C. Rutledge
Title: Lammot DuPont Professor of Chemical Engineering
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Chapter 1

Introduction

1.1. Motivation

Since the beginnings of civilization, naturally occurring polymers, such as wool,

cotton, silk, and wood have played an important role in providing the necessities of

existence. Other natural polymers, such as latex rubber, subsequently provided

applications that spurred the development of synthetic polymers for continually

advancing industrial uses. Polymers are a class of materials which have grown to have a

multitude of uses over the past century since the recognition of macromolecules in the

early 1900's, replacing naturally occurring materials for a huge number of everyday uses

due to relatively low weight, high strength, and elasticity. Because of their versatility, the

use of these synthetic polymers has grown over the past half century from a novelty to a

banality, and their application to an ever-broadening array of uses. In fact, this

experience and understanding of polymers is now being applied to a new set of natural

polymers in the field of biological engineering.

The connectivity of a polymer chain is a unique aspect of these compounds,

which lies at the heart of their usefulness, as well as the complexity of their behavior.

This connectivity accounts for the multiplicity of materials that can be created from a

single monomer; by changing the connectivity among linear, branched, comb, star, rings,
etc, and by varying the molecular weight of these polymers, one can tailor the resulting

optical and mechanical properties. Additionally, structure and properties are affected by

the stereoregularity and tacticity of the polymer chain, the ability to crystallize being one
15



of the most important considerations. Similar concerns are increasingly important for the

understanding and control of biopolymers and the behavior of proteins; computational

efforts are directed at understanding how the sequences of 'monomers' affect the ability

to fold. In all fields of polymer study, the understanding of the effects of different

conformations is crucial in order to enhance the efficacy of product design, and to target

desired properties for future applications. Because computer experiments can isolate the

effects of changes to particular features and precisely measure aspects of the materials

hidden from analytical techniques, they are especially useful for such studies.

The ability to engineer materials at the nanoscale heightens the value of being

able to use these precise measures to describe the properties of materials in general and

polymers in particular through the use of atomistic simulations, which can focus

particularly well at this length scale. Their ability to isolate different characteristics

allows us to go beyond the ability to qualitatively understand the changes in the

materials, and to give quantitative estimates that provide the basis for the design of new

materials and for the manipulation of existing materials to extend their range of

application.

Orientation in many of the age-old polymeric materials was an intrinsic

characteristic that allowed their use as, e.g. fibers, and provided enhanced tensile

properties. The recognition of the importance of orientation spurred the production of

synthetic polymer fibers through artificial orientation processes for their use as direct

replacements of their natural analogues in the production of textiles. Polymers are

exceptionally well suited for this type of application because their properties are

enhanced in significant ways by orientation, and because that this orientation is readily

introduced into polymers, intentionally or not, through a variety of processes.

The subtler aspects of orientation remain an area of industrial and academic

research interest in order to develop new materials and enhance properties of existing

materials; the ways in which the manipulation of this orientation translates into the

change of optical, and particularly mechanical, properties is not fully understood. At first

glance, the wealth of analytical techniques available to the scientist might lead one to

believe that it is simply a matter of diligence in the measuring of the polymer in order to



build up a structural model that comprehensively incorporates the distribution of

conformations. However, the number of degrees of freedom is so huge that one has no

possibility of building up an atomistically detailed model. In addition, even if we had

such a model, the amount of structural data would still need to be distilled into a

manageable number of descriptors to be of use. The apparent contradiction of

"incomplete" measurements and "too much" information provided by a more complete

measurement is resolved through he use of computer simulations. These simulations can

provide a huge statistical sampling of possibilities which are distilled "on the fly" to

provide the needed information.

This structural information is obtained by making use of some kind of model to

interpret the experimental information. The model allows the organization of the huge

amount of data in such a way that the underlying physical structure is explained and our

understanding of the structure behind new sets of data enhanced. However, the

conformations sampled by a polymer simulation are greatly affected by the way in which

we integrate the analytical measurement of a non-equilibrium property such as

orientation into the atomic-level description. The motivation of this thesis is to go to the

heart of how we properly interpret these measurements to provide the most secure

foundation for the structure-property relationships that build upon them.

1.2. Thesis Goals

The overarching theme of my thesis is the use of atomistic computer simulations

to understand the structure and properties of non-equilibrium systems, particularly

oriented amorphous polymer melts and glasses. My work targets three major research

goals, which form the basis for publications and for individual chapters of my doctoral

thesis, as well as a fourth that is a fundamental goal of any simulation work:

1. Representation of experimental non-equilibrium information.

2. Bridging atomic-molecular length scales.



3. Representation of inhomogeneous non-equilibrium systems.

4. Demonstration of ability to reproduce macroscopic observations

Below, I provide details to explain the connection among these goals and how they fit

together to provide a significant contribution towards the project of understanding the

nature of oriented macromolecular systems.

1.2.1. Representation of experimental non-equilibrium information.

The most fundamental goal of this research is to provide a framework for the

interpretation of structural measurements of anisotropy. Ideally, we would like to

provide the modeler with the least restrictive interpretation of the experiments. This

allows the data to "speak for itself' and to give the modeler a fresh perspective on the

problem of explaining the connection between structure and properties. The model-free

interpretation has the benefit of helping the modeler avoid the pitfall of the incorporation

of unnecessary variables, or worse, of incorporating a preconceived notion that is

incompatible with the underlying structure.

In order to accomplish this goal, the method must: 1) provide an unambiguous

methodology for the incorporation of an arbitrary experimental measurement; 2) provide

insight into the microstructural details responsible for the experimental measurement.

The success of both of these points is necessary to provide a useful link between the

experimental measurements of structure and those of the properties of interest.

1.2.2. Bridging Atomistic-Molecular Length Scales.

The ability to interpret experimental techniques through the accomplishment of

the first goal gives us a window into the local structure. The primary motive for



obtaining this insight into local structure is to further the understanding of how it affects

the properties of industrially relevant macromolecules. To do this, one is faced with the

task of making simulations of oligomers of hundreds of repeat units relevant to the

configuration properties of polymers with tens, or hundreds, of thousands of repeat units.

This can only be done through the determination of a proper coarse grain descriptor that

"averages out" the details at the atomic level and describes the molecular level structure

in a small number of parameters. Therefore, the second goal of this thesis is to provide a

methodology that will facilitate the connection between the atomistic characteristics,

which are accessible by simulation, and the molecular characteristics, which are only

accessible through coarse graining of the atomistic) structural features.

1.2.3. Representation of inhomogeneous non-equilibrium systems.

The same feature of polymers that necessitates coarse graining, i.e., the huge span

of time and length scales, has other consequences. One of these is that polymers relax to

equilibrium more slowly as their length increases, because of the need for the relaxation

to propagate from the ends of the chain to the center. In many cases, the time scale of the

process will be of the same order as the relaxation. In these cases, it is often important to

incorporate this tendency of the ends to loose their orientation more quickly than the

center of the chain into molecular simulations so as to understand the development of

mechanical and optical properties in oriented polymer systems. Therefore, the third goal

is to provide the flexibility, when justified, to tailor the incorporation of experimental

measurements to fit known underlying structural characteristics.

1.2.4. Demonstration of ability to reproduce macroscopic observations

Implicit in the goals of any computational model is that it reproduces

experimental observations of the modeled system. The simulation of polymeric systems



inevitably requires making more substantial assumptions or simplifications than other

atomic level simulations, because of the molecular size. Even with a "perfect" force

field, one is not able to simulate the systems that we are interested in because of the limits

of computational power. One must always decide "how large is large enough?" for

polymer chains, so that the effects one sees are indicative of a system of much larger

chains, and if they are not, "to what degree can they inform us about these larger

systems?" There is always a tradeoff between ability to obtain results and the accuracy

of those results. Therefore, a goal that encompasses the previous goals is to show that

they reproduce aspects of experimental systems given the simulated polymer sizes.

Because of the treatment of different polymers (polyethylene, polystyrene), different

states (melt, glass), and quality of orientation (homogeneous, inhomogeneous), it is

worthwhile to assess the strengths and limitations of the methodologies developed here

side-by-side.

1.3. Thesis Organization

This section provides a brief outline of the following chapters of my thesis. The

second chapter of this thesis provides a review of the literature concerning topics relevant

to the understanding of the ideas developed in later chapters. This includes the

discussion of analytical measurements, the inverse problem of obtaining the structure

from these measurements, modeling orientation, and bridging length scales. Chapter 3 is

dedicated to explaining in detail the theory and development of the Semi-Grand canonical

ensemble Monte Carlo (SGMC) method as well as its practical application to describe

oriented polyethylene melts on the basis of birefringence measurements. This chapter

also contains more detail about the Maximum Entropy methods developed in the

introduction and important characteristics that carry over to the SGMC simulations.

Chapter 4 uses the information available from the techniques of the previous chapter to

develop the mapping of the anisotropic structure of oligomeric simulations to the

macromolecular scale anisotropic conformation properties. This chapter also



demonstrates the ability to use molecular scale conformation properties to derive the most

likely local degree of anisotropy. Chapter 5 details the way in which the oriented

polymers produced using the SGMC methodology can be extended to systems with

inhomogeneous orientation. The specific case of calculating the tensile modulus of

homogeneously and inhomogeneously oriented glassy polystyrene is provided. Chapter 6

augments the conclusions of previous chapters by linking together body of work and by

evaluating the degree to which the thesis goals are satisfied. In this chapter I also

highlight the most important contributions and how I believe these can be best exploited

in future research.



Chapter 2

State of the Art

2.1. Orientation in dense polymer systems

2.1.1. Introduction

The ubiquitous use of polymeric materials is a consequence of their versatility;

their high viscosity as melts and solutions allows them to be easily processed into

materials that have a wide variety of optical and mechanical properties. This

processabilty is the result of the definitive polymeric characteristic - the connectivity of

macromolecular chains. By orienting the chains of atoms of the polymer molecules, we

can produce materials with properties much different than those of the isotropic material,

despite an identical chemical composition. Because of the molecular connectivity, the

optical, and especially mechanical, properties along the chain are different from those

transverse to the chain. Consequently, any residual orientation from processing,

intentional or not, has predictable qualitative effects.

The orientation of the polymer molecules is the primary source of mechanical

strength in fibers, of which more than 30 million tons are produced annually worldwide

through processes of melt spinning, wet spinning, and dry spinning[13. Mechanical and

optical properties are modified through other processes, such as extrusion, rolling, and

roll-drawing to create axial or biaxial orientation, and a significant increase in the

modulus and strength in the direction of orientation[2]. Ward3]1provides an excellent



survey of the fundamental concepts involved in understanding the structure-property

relationships of oriented polymers.

By adjusting processing conditions, such as temperature, molecular weight, spin

line stress, or flow rate, the quality of the orientation and resulting macromolecular

properties can be controlled. The tensile strength and other mechanical properties

increase with orientation, but it must not be overlooked that the term 'orientation'

encompasses a spectrum of qualitatively different structural possibilities. Polymer

studies have consistently shown different qualities of orientation can have a measurably

different impact on the mechanical properties[3].

While orientation of any quality will tend to produce the intuitively expected

increase in tensile properties, it is only through careful definition of orientation, and

interpretation of experimental measures of specific types of orientation, that we can

analyze and explain macroscopic mechanical properties. Important considerations

include the length scale over which the orientation occurs, as well as the distribution of

the orientation. This is particularly relevant to the interpretation of the experimental

results from analytical techniques for measuring orientation; the measurements listed

below may probe different length scales, provide different information about the

distribution of orientation, or both. Additionally, it is important to recognize that these

measurements do not allow the definitive measurement of the full distribution of the

orientation. We are always left with a multiplicity of possible distributions that are

consistent with any measures of orientation, making the task of assessing the quantitative

relationship between orientation and properties even more difficult; it is possible for

different distributions of orientation to produce the same measured value of orientation in

any given experimental determination, but to have observable differences in their

mechanical properties [4 ]

Orientation in polymer systems in a preferred direction, at any length scale, is

indicative of a non-equilibrium state. Although the resulting states of the polymer can be

extremely long-lived, especially at or below the glass transition temperature Tg where the

largest time constants become effectively infinite, they are nonetheless non-equilibrium

states. Polymer processing near Tg inevitably leads to the occurrence of non-equilibrium



states, because the longest time scales involved in the relaxation of orientation are on the

order of seconds or larger. In many polymer processes, such as fiber drawing or fiber

spinning, this is advantageous because it allows the creation of highly oriented (i.e.,

highly non-equilibrium) polymer materials; in other cases, such as injection molding, one

may prefer to avoid running near Tg to promote the relaxation of orientation at the time of

cooling to provide uniform properties. Therefore, an understanding of how orientation

develops, and how it dissipates, is important to all categories of processes because of the

impact of orientation on the resulting properties.

2.1.2. Structure-Property-Process

While there has been relative success in the ability to describe the evolution of

macroscopic flow properties, i.e., velocity and pressure, in the modeling of polymer

processes, the ability to similarly model the evolution of the orientation is much more

elusive, due to the visco-elastic nature of polymeric systems 51. The triangle of

relationships shown in figure 1 represents a standard conceptual framework for the

understanding of materials. Importantly, without the understanding of the polymeric

microstructure the link between process and property is simply one of empirical

relationships and gives only a general conception of how to improve properties. Clearly

orientation is an important feature of the structure, and is crucial to the understanding of

the link between process and property.
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Figure 2.1. Process-property-structure triangle

A hidden, but crucial, piece of this process-property-structure triangle is the basis

upon which we can claim to know the structure. A process can be controlled, and a

property measured, each to a high degree of accuracy, because these are well defined by a

small number of macroscopic features (temperature, flow rate, tensile strength, etc.).

However, the complexity of a non-crystalline oriented structure cannot be similarly

described by a consistent set of macroscopic parameters, since all non-equilibrium

structures will be out of equilibrium in their own manner. The ability to gain an

understanding of the relationship among structure, process and properties requires that we

measure and interpret the structure of polymers for each of these non-equilibrium

situations using a variety of analytical techniques. Since each analytical technique probes

the microscopic structure of a material in a very specific way, distilling the complex

arrangement of atoms into a modest number of macroscopic values that are particular to

that technique, no analytical technique can individually define the structure. Even

together, these techniques cannot unambiguously define the structure, but rather simply

limit the range of possibility.

Because of this, the structure must be inferred to some degree. Here, the term

'structure' encompasses the correlations of the positions, orientations, etc., of atomic sites

of a given system, with the other sites. For a completely amorphous atomic system, the
25



structure consists only of the nearest-neighbor distances, and the knowledge of the

positions of neighboring sites is very limited. In contrast, the maximum amount of

structure is realized by a crystal, for which the knowledge of one or a few sites that make

up the "asymmetric unit" provides the knowledge of the position of all of the other sites

in the system through specified symmetry operators.

It is not always appreciated that the investigator who wishes to explain the

observed mechanical and/or optical behavior of complex material, such as polymers,

must fill in the blanks left by experimental measurements of the structure. It is precisely

during the process of filling in these blanks that the scientist must be careful not to

incorporate a model or structural interpretation that is not clearly indicated by the

experimental measurements of the system at hand, or by verifiable prior knowledge.

In this spirit, a more accurate conception of the structure-process-property triangle

would be the process-derived property-structural measurement triangle shown in figure

2.2. This conceptual framework has the benefit of emphasizing that the structure is a

complex quality that must be deciphered, rather than a readily available value that can be

parameterized and correlated with the derived properties. It makes explicit the need to

quantify specific structural changes in terms of the most adequate observable

measurements in order to understand the underlying relationships. Without the ability to

infer microscopic configuration features, especially those that may not be explicit in the

measurements, we cannot gain the insight needed to extend these measurements to a

general understanding of the relationship between structure and properties. This

understanding is a necessary condition for computational modeling to reach its full

potential as a tool to develop novel materials, and to extend the use of existing polymers,

to meet the demand for increasingly specialized high-performance materials.
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Figure 2.2. Modified process-property-structure triangle

2.1.2.1 Orientation-Induced Crystallization

In addition to the direct influence of orientation on the mechanical properties,

orientation in the melt phase also influences these properties through the acceleration of

the development of crystalline domains in stereo-regular polymers, including PE. In

these polymers, orientation-induced crystallization occurs in the production of fibers, and

consequently increases the tensile mechanical properties through an increase in the

crystallinityE61. A review of recent advances in the coupling of crystallization with the

processing conditions of polymer melts is provided by[71. Recent studies have also

highlighted the importance of domains of high orientation in amorphous melts to the

process of crystallization, proposing a spinodal decomposition of the melt into dense

nematic domains, and less dense amorphous domains[ 8'91. A similar explanation is used

to account for the mesomorphic nanostructure observed to precede the formation of the

crystalline domains in oriented polyethylene l' 0 .



In semi-crystalline polymers, the mechanical and optical properties will be a

mixture of those of the crystalline and the amorphous domains. Therefore it is also often

important to independently evaluate the properties of the amorphous oriented polymer,

which are distinct from the crystalline properties, because they can contribute

significantly to the mechanical properties of the system l'11 . Janzen [12] has carried out a

parameterization of such properties using data available from several other studies of the

properties of semi-crystaline PE. More recent studies have used atomistic modeling to

investigate the non-crystalline and inter-phase regions in order to understand the

connection between microstructure of semi-crystalline polymers and their observed

properties' 3 ].

2.2. Methods of Measurement

The methods of measuring orientation cover a wide range of length scales; some

experimental techniques measure the orientation of atomic bonds while other techniques

measure the macromolecular orientation, or even the orientation of morphological

features. These techniques can also be characterized by their suitability for non-

destructive in-line process measurements; of the techniques listed below, the techniques

most readily applicable to these measurements are birefringence, IR, and Raman

measurements [14 . The ability of these techniques to collect data on the same time scale

as the processes of interest (-seconds) allows the direct measurement of the dynamic

processes as a series of state points, whose relative structural characteristics can be used

to elucidate the underlying processes. A more comprehensive assessment of the

characterization of orientation through analytical techniques is provided by Cole and

Ajji [l15 .



2.2.1. Birefringence

The refractive index of a material is proportional to its polarizability, taking on

distinct values along and perpendicular to, the backbone of a polymer chain. Since the

direction of the chains is random in an isotropic material, the overall refractive index is

independent of the direction. However, if the polymer chain is oriented, the refractive

index along the orientation direction will reflect the unequal contributions of the

polarizable units. Since the contribution of monomer units to the birefringence is

assumed to be additive, we can easily obtain the 2nd Legendre coefficient of segment

orientation. Empirically, the ratio of normal stress difference to birefringence is constant

at low values of stress (stress-optical rule), so the birefringence can be used to estimate

the stress. Birefringence studies are practical on-line measurements for typical industrial

applications['6 ' 17] in order to assess the orientation. The birefringence is often correlated

with the development of mechanical properties [ 18' 19], although, as noted earlier this

represents a simplification of the relationship between structure and properties.

2.2.2. Infrared Spectroscopy

Through the use of IR Dichroism, one can theoretically obtain more information

about the orientation of the local polarizable unit than is possible through birefringence

through a measurement of the angular dependence of absorbance. This is because the IR

absorbance due to individual bonds, or groups of bonds, will occur at specific

frequencies, which can be analyzed separately. As a consequence, this technique also

requires an accurate knowledge of the transition moments in order to accurately interpret

the orientation of a chain segment in terms of the orientation of these groups. Such

studies have evaluated the orientation of PET, PE, and polyimides[ 20-22], as well as the

orientation of semi-crystalline PE [23] and the orientation of amorphous chains during

necking of polypropylene[24]. In off-line measurements of solid materials, IR can be used

to investigate the orientation of specific layers of a solid polymer through successive



exposure and polishing through the use of surface reflectance [25]. Diffuse reflectance

techniques also interact only with the surface and can be employed to avoid the

limitations of transmission IR techniques applied to thick (>1cm) samplesl26]. One of the

weaknesses of this method is the tendency for overlap in the spectra, making it more

difficult to resolve the individual intensities.

2.2.3. Raman Spectroscopy

Raman spectroscopy activates a different set of vibrational motions than does IR

and is therefore complementary. Also, since Raman is a scattering technique, it is not

sensitive to the thickness of the sample, as is IR. Polarized Raman spectroscopy can be

used to evaluate the local orientation of the polarizable units of the polymer chain in

terms of the 2 nd and 4th moments of the orientation distribution function [27, 28]. This

technique has been used in the analysis of many polymers including PE, PP, and

nylon[2 9]. Changes in the vibration frequency have also been used to understand the

nature of stress on the orientation of the polymer, where it is shown that the backbone

vibrations are predominantly affected by the stress [30]

2.2.4. NMR

Nuclear magnetic resonance (NMR) spectroscopy is useful for the evaluation of

the conformational properties of polymers because of its sensitivity of the magnetic

interactions of the atomic nuclei to changes in these structural features[3 1]. Multi-

dimensional NMR techniques allow the determination of further details of the

conformations to be determined, as described by Schmidt-Rohr [32]. Analysis of oriented

melt systems is accomplished by rapid quenching of the sample at a specified process

condition. This technique has been applied to polystyrene samples oriented using

different shear rates and different quench times to track their relaxation dynamics[ 331. By



using NMR techniques such as DECODER-NMR, a very comprehensive assessment of

the orientation distribution of the moieties of the polymer chain (up to the 14th moment)

can be obtained [34 ]. Such accuracy removes much of the uncertainty of the nature of the

local orientation inherent in the previously described techniques. A recent study by

Wendlandt, et al.[35] gives a very comprehensive description of the procedure for

determining orientation from NMR measurements. The main drawback of NMR is the

required sample preparation and length of analyses, which precludes its use as a real-time

diagnostic for polymer processing and limits its accuracy in the analysis of dynamic

processes.

2.2.5. Neutron Scattering

Neutron scattering is extremely useful because it is the only means for evaluating

the radius of gyration of molecules in dense melt systems 36 1. One of the limitations of

this technique is that real-time experiments are difficult for melt systems. As with NMR,

melt systems are typically analyzed in the solid state, with the analysis taking into

account the relaxation time preceding the quenching of the system. Small angle neutron

scattering (SANS) has been used to measure the orientation of sheared polystyrene melts

by Muller and coworkers [37' 38]. These studies took advantage of the ability of the range

of scattering vectors to probe the orientation at different length scales to show the

dependence of orientation on length scale in the shear plane. Another study aimed at an

understanding of the dynamics of relaxation and orientation using SANS[39] showed that

the orientation at the different length scales was not modified uniformly with changes in

the processing conditions. This highlights the complexity of the orientation and the need

for both the local and molecular orientation to characterize polymer systems.



2.2.6. WAXS/SAXS

X-ray studies are typically performed to assess the size and orientation of

crystalline domains of polymer systems[ 40]. Like SANS, these X-ray techniques can

assess structural features over a range of length scales. While the measurement of

crystalline features of the polymer systems is not directly applicable to the scope of this

thesis, characterization of the amorphous region of semi-crystalline polymers is often

carried out through assessment of the component of the X-ray scattering that is not

accounted for by the crystalline domains [41' 42]. These techniques are also useful for the

time-resolved evolution of orientation-induced crystallinity and have been used to

investigate the meso- and macroscale structure in isotactic polystyrenel43] and in isotactic

polypropylene[44, 45]

2.2.7. Combination of Techniques

The recognition of the need for more comprehensive measurement of polymer

systems is reflected in a number of recent studies. Combinations of these techniques

have been increasingly used to obtain more comprehensive (off-line) assessments of the

polymer structure. Such studies have included the Raman/X-ray studies of

polypropylene[461, birefringence/X-ray studies of polyethylene and polypropylene[471, and

SAXS/IR studies of polyurethane [481. Birefringence has also been used in conjunction

with optical microscopy to link morphology with the local orientation [491. A recent

development that is of particular interest has been the development by Bent and

coworkers[ 50] of a flow cell for carrying out simultaneous measurements of SANS and

birefringence on polystyrene. Similarly, a shear cell has been developed by

Kumaraswamy, et al.[511 to allow visible and IR polarimetry in conjunction with light and

x-ray scattering studies. The common thread of these studies is the recognition that

orientation is most meaningful when we can provide a description that is grounded in

mesoscopic, or molecular, orientation as well as the bond-level orientation.



2.3. Orientation as an Inverse Problem

2.3.1. Formulation of the Inverse Problem

The measurements enumerated above represent the starting point for a statistical

mechanical description of a polymer system. Although these measurements can reveal

important facets of the system, they do not represent an exhaustive catalogue of the

interatomic correlations. Because the microscopic features cannot be comprehensively

measured, we must infer them from the experimental measurements. The determination

of the appropriate set of chain conformations that accounts for a given measurement

belongs to a general class of problems called "Inverse Problems"[52]. Out of the countless

ways in which configurations can combine to produce a particular result, we require a

methodology that guides us to the best choice. For all but the simplest of problems, this

is an iterative procedure that uses the limited knowledge of the energetic landscape to

guide us to a representative set of conformations that describes the experiment.

Most of the analytical techniques described above provide us with a small number

of moments of the orientation distribution function (odf) of the polymer chain at some

length scale. The most commonly used orientation order parameter is the 2 nd Legendre

coefficient, P2(cos9)= V (3cos20-1), of the angle 0 of the structural unit with respect to

the primary axis of orientation. This is also referred to as the Herman's parameter and is

common to all of the techniques. Higher order Legendre coefficients successively refine

the underlying orientation distribution. For a centrosymmetric system, the odd moments

of the orientation distribution vanish. Therefore, we are typically faced with the problem

of obtaining a complete odf from the knowledge of the first n even Legendre terms

P 2(COSO), P 4(cosO), ... , P2n(cosO).

The importance of determining these higher moments of the odf arises from the

recognition that a one-to-one correspondence between the experimental measurements

and the properties of interest is only possible if the higher moments can be ignored. The



importance of the higher moments is not known primafacie and can only be assessed in a

retrospective assessment of their effect on the properties of interest. As is typical for an

inverse problem, our knowledge of the system is not sufficient to obtain a unique

orientation distribution. Therefore, we must introduce some criteria for the solution, or

chose other means of closure, to determine the most appropriate odf.

2.3.2. Solution of the Inverse Problem using Maximum Entropy

Closure to this structural inverse problem can be achieved by associating the

"best" choice with the one that incorporates the minimum possible amount of additional

information. The solution is thus given by the variational minimization of a cost function

(maximization of entropy or equivalently minimization of information) through the

method of Lagrange multipliers. Entropy is the most adequate cost function when our

knowledge consists of a signal (experimental result) and no knowledge of the underlying

detail (molecular structure). This procedure is known as the maximum entropy (ME)

method and is attributed to Jaynes [53], although he himself credited JW Gibbs with using

this same principle [54]

Maximum entropy (ME) methods allow the use of experimental information

about a system, e.g. one of the moments of its distribution, to infer the most likely

underlying distribution. This allows the objective interpretation of data, and ensures that

no bias in the distribution is unintentionally included. Martyushev and Seleznev provide

a comprehensive review of the application of ME methods as applied to the solution of

non-equilibrium systems, and describe how the evolution of these systems is guided by

the principles of maximum entropy generations55]. An important feature of this method is

that the entropy cost function is concave irrespective of the properties of the underlying

distribution [561. Therefore the maximization of entropy always provides us with a unique

answer, which is justified as the most likely ensemble of orientations that accounts for the

empirical observations.



Examples of the reconstruction of a distribution from limited number of moments,

without explicitly considering the underlying molecular constraints, is given by

Rodriguez, et al.[57] in which the Legendre polynomials through P4(cos0) obtained from

NMR are used to calculate the orientation distribution for a non-centrosymmetric rod-like

azobenzene polymer. The application of ME has also been used to determine the

orientation of proteins, from a more comprehensive measurement of the orientations of

protein subunits[5 s ]. The flexibility of the application of ME methods is displayed in a

series of articles by Poland[s5 ' 601 in which ME methods were used to reproduce

distributions of energy, enthalpy, and end-to-end distance for polymer systems.

These studies highlight the benefits, as well as the potential difficulties, of using

ME methods to analyze experimental data. ME methods provide a unique determination

of the orientation (or energy, enthalpy, end-to-end distance) distribution of the relevant

elements of the system, even though it contains no model with which to (possibly

improperly) interpret the meaning of the measurements. The method can also be used for

the subsequent development of a model since it will highlight exactly those aspects of the

system that need to be more highly constrained.

ME methods however can be sensitive to the measurements (constraints) used to

calculate the distributions. Measurements that provide redundant data (non-

orthogonality) impede the ability of this method to work effectively. Although enforcing

the orthogonality of the measurements is the best approach to resolving redundancies [61],

van der Heide was able to obtain results using a "figure of merit" to bias the solution in

favor of the most reliable measurements. However, this strategy has the pitfall of

introducing a non-thermodynamic component to the description and jeopardizing the

objectivity of the analysis, as described below for RMC. Another requirement of an

effective ME analysis is that the measurements correspond with the primary axes of

orientation to effectively capture the orientation moments. This is not typically a

problem with orientation, since the orientation axis of a process is usually apparent.



2.3.2.1. Quantitative Comparison of ME Solutions

Finally, the ME methods allows a quantitative measure of the entropy of one

particular distribution relative to another. The entropy is proportional to the

thermodynamic potential, and thus the difference between two different conditions can be

quantified in terms of the minimum amount of work required to move the system from

one state to the other. However, by leaving out the microstructural details, the solution

obtained using ME may not accurately reflect either the odf or the change in energy to

reach the odf. By definition, the underlying odf cannot be broader than the ME solution.

Therefore, one can potentially obtain a ME odf that under-represents highly oriented

states (P2(cos)l 1), resulting in overly broad distributions that understate the mechanical

properties of polymers. This is a result of the non-linearity of the mechanical tensile

properties, which are often marked by extremely high values at complete orientation.

Other inverse methods discussed below retain the microstructural forces as part of the

acceptance criteria for appropriate polymer configurations, and are less susceptible to this

problem.

2.3.3. Solution of the Inverse Problem using Reverse Monte Carlo

Reverse Monte Carlo (RMC) was introduced in 1988 by McGreevy and

Pusztai[62 ]. Since that time, the method has produced many useful contributions to the

interpretation of structural measurements, especially in the interpretation of diffraction

experiments [63 ]. Similar to the ME methods, one attempts to reproduce experimental data

by appropriately constraining the system. Often RMC will include information about the

microscopic interactions through the inclusion of a classical force field. However, in

other respects the link to thermodynamics is broken because the experimental uncertainty

of the data is equated with the variance of the underlying system, usurping the

thermodynamic role of temperature. This is apparent from the form of the modified

Hamiltonian, in which the goodness of fit (chi squared) contributes to the thermodynamic



potential, proportional to a modeler-selected constant. The modeler is therefore

responsible for subjectively adjusting the fluctuations, and hence the thermodynamics, of

the system.

In its defense, RMC was formulated in large part to provide fitting to the positions

of atoms in a crystallographic lattice and has often provided satisfactory solutions without

the iteration necessary for the ME method. Since one is accustomed to thinking of the

movement of atoms from their sites in terms of springs, a quadratic potential, where the

user-selected constant acts as a spring constant, can be a reasonable approach. However,

in cases such as orientation, the system descriptor tends to be broadly distributed, making

more doubtful that a Gaussian-like distribution around the average value is appropriate.

2.3.4. Solution of the Inverse Problem using Potential of Mean Force

Other techniques can be broadly categorized as potential of mean force (pmf)

methods. The grouping of these methods under a single category follows that used in a

recent article by T6th and BaranyaiE641, which analyzed the relative merits of these

methods and RMC methods. The prototypical pmf problem is that of determining the

Lennard-Jones potential of interacting spheres so as to reproduce some set of

experimental data, typically a pair correlation function g(r). An early method for the

determination of pair potentials from g(r) is the method of SchommersE651. The pair

potentials obtained using the Schommers method were later shown to be as good as, or

better than, the potentials obtained from other methods[66]. Characteristics of

Schommer's "self-consistent method" are evident in the more recently developed pmf

methods.

Many of these methods make use of the ideas presented by Lyubartsev and

Laaksonent671. They set forth a method for evaluating the adequacy of a potential through

the numerical estimation of the second derivatives of the potential with respect to the

interparticle positions. This evaluation serves, through a matrix inversion, as the iterative

change in the potential in order to match the experimental data. The efforts in our



research group, which have aimed to model experimental data in a way that maintains

thermodynamic consistency, fall into this category of methods.

Rutledge [68 1 systematized this approach as the semi-grand canonical Monte Carlo

(SGMC) method. The contribution of this paper was to clarify the manner in which

experimental data could be added to a canonical Monte Carlo NVT simulation. Using

this methodology, a two-body potential was reproduced for a Lennard-Jones fluid given

g(r). This approach was extended through the application to partial pair correlation

functions by Bathe and Rutledge [691] , where this method reproduced not only the structural

characteristics but also the thermodynamic characteristics of an idealized protein system.

Colhoun applied this method to describe the configurational states of PS during

relaxation of orientation [70] . However, in this case an RIS model of polystyrene was used

to reproduce the orientations obtained from quenching after shearing and various

relaxation times. Because of this, the model did not fully account for the interactions of a

dense melt or glassy system, and the orientation of the polystyrene was not connected to

the thermodynamics of the system.

The EPSR method of Soper [71] refines the structure through the addition of a

higher order interaction term to provide a fit to the data. The inclusion of a higher order

term differentiates it from the other pmf methods included in this section. While the

inclusion of the higher order terms has been successful at reproducing the structure, it has

been noted by Soper that the values of these terms is very sensitive to the other

assumptions about the force field.

One of the advantages of these pmf calculations is that the potential determined

from these calculations can then be applied to the system to understand hidden or

unmeasured aspects of the system with a justification of thermodynamic consistency.

Using the evaluation of the pmf for these two-body forces, one can always arrive at a

unique answer[72] . Thus, other than the three-body modifications that can be applied

using EPSR, the calculated potentials objectively represent the "best" solutions to the

presented inverse problem. These solutions can then be justifiably applied to a variety of

other analyses including further simulations that can investigate the corresponding

dynamic properties.



2.4. Effects of Polymer Dynamics

Implicit up to this point in the discussion of the computational modeling of

oriented polymer systems is the assumption that orientation is homogeneous. This

however, is often not the case. The very fact that we describe these simulations as 'non-

equilibrium' means that if the process does not allow sufficient time to reach steady-state,

polymer dynamics will play a role in the distribution of orientation along the polymer

chain. This is particularly true for the process of disorientation upon cessation of the

orienting force. Therefore, some background is necessary to appreciate the potential

difficulty added by polymer dynamics to an already imposing problem.

Since the introduction by de Gennes of the reptation modelE731, and further

development of this concept by Doi and Edwards (Doi-Edwards model)E741, the idea of a

polymer molecule in a dense system as being constrained in a tube defined by its

neighboring chains is well accepted. Due to the nature of the tube constraints, the basic

DE model consists of three characteristic times related to the motion of the polymer

chain. The characteristic times Te < Tr < Td represent respectively: the time for the

polymer to relax between entanglements within the tube; the time for the relaxation of the

contour length of the polymer chain within the tube; the time for disengagement of the

chain from the tube. The DE model has been further developed to resolve discrepancies

with experimental results, such as the scaling of the viscosity with molecular weight.

Additional relaxation processes such as contour length fluctuations and tube

reorganization, have allowed the DE model to better accord with experimental data while

retaining its basic features.

The complexity of the flow behavior of polymers is a direct result of the dynamics

of polymer chains characterized by 'e, rr, and rd. These time scales, and their

corresponding length scales can span several orders of magnitude. Thus, it is not

surprising that the measurement of non-equilibrium states of polymers must often

incorporate this dynamical behavior. Recent studies have shown how these dynamics



prevent the birefringence from being an adequate predictor of mechanical properties

without considering the processing history. For example, Embry et al. showed how

highly drawn samples, which had relaxed to low levels of orientation as measured by

birefringence, still showed anisotropic fracture characteristics. The explanation of this

phenomenon rests on a nonlinear DE tube model[ 75]. Previously, one of the researchers

involved in the above-cited study found that a similar explanation accounted for the

variability of the Young's modulus in drawn PS[4]. In each case, the highly drawn

samples, after relaxation, retain some "memory" of the orientation. This is manifested in

macroscopic physical properties that exhibit more anisotropy in their mechanical

properties than is observed in systems that have the same orientation, but were not highly

drawn.

Studies continue to explore the nature of the discrepancies of the DE model with

experiments and to understand the nature of the relaxation dynamics of polymer systems.

Among these, Walczak and Wool [76] have analyzed the behavior of PS with labeled chain

ends to analyze the relaxation of orientation and to verify the importance of chain

fluctuation to the relaxation dynamics. It is also important to note that the understanding

of the initial dynamics of the oriented chains is not completely understood and is still the

subject of investigation[ 77] . This study of the initial dynamics is made more difficult by

the fact that one can only approximate the conditions of step-strain, which provide affine

deformation at all length scales necessary to provide a uniformly oriented system [74].

2.5 Modeling of Polymer Process-Property-Structure

2.5.1 Parameterization of Properties

There has been a considerable effort to parameterize the relationship between

optical and mechanical properties of polymers and the processing conditions. Bicerano

makes a useful distinction between "fundamental properties" and "derived properties"' 78]

Whereas the fundamental properties arise from the basic atomic nature of the polymer,



i.e. the force field interactions, the derived properties are "complex manifestations" of

these fundamental properties. Applied to oriented polymers, these are reflected in

properties that do not change with orientation (fundamental properties), versus those that

do change (derived properties).

Parameterizing the mechanical or optical properties can give us a feel for the

sensitivity of the polymer structure to processing effects on orientation [79], and is

tremendously useful for the processing of commodity materials. However, it is only

through the understanding of the micromechanical origins of the observed changes in the

derived properties that we can hope to reliably predict the properties of existing, or more

importantly, possible new polymeric materials.

2.5.2 Aggregate Model

An early step towards understanding the nature of orientation through modeling

was the Single-Phase Aggregate Model of Ward[80o]. This description of polymer

orientation was formulated using the assumption that the mechanical properties are

dependent only on the orientation of non-interacting units, whose contributions are

additive. In the terms defined above, these units are assumed to contribute in an additive

fashion to the same derived properties based solely on their orientation. Thus, the

derived properties of a fully aligned polymer system coincide with those of a fully

aligned unit of the macroscopic aggregate. A consequence of the orientational symmetry

for uniaxial systems is that only the first two moments of the distribution of the non-

interacting units are needed to fully specify the mechanical properties.

Therefore one would be able to form a one-to-one correspondence of the

mechanical properties and orientation as measured by local probes, such as polarized

Raman spectroscopy. This model is fairly successful at describing polymers such as

LDPE, Nylon and PET[81]. However, polymers including HDPE and polypropylene do

not follow this model, presumably because of the degree of interactions, which render the

non-interactive nature of the Aggregate model less realistic[82]. These results indicate that



there is a significant degree of cooperative behavior, which requires a model

incorporating the anisotropic interactions of the fundamental properties of the polymer.

2.5.3. Atomistic Modeling of Properties

With current computational power, the most fundamental level at which dense

amorphous polymer systems can be investigated is at the atomic level. Atomic-level

simulations use the fundamental properties defined by an empirical force field to predict

of the derived properties that result from an imposed microstructure. This strategy has

successfully reproduced correlations in the orientations of neighboring chains, and the

appearance of ordered domains as revealed by experimental WAXS/SAXS

measurements 8 3] . MC simulations of Yong[84] further underscore the importance of

understanding the atomic level interactions by showing that excluded volume effects and

chain packing are heterogeneous and are important considerations in the modeling of

orientation.

The atomistic modeling of oriented polymers can proceed using Monte Carlo

(MC) methods or through the use of molecular dynamics (MD). Although knowledge of

MC methods is sufficient to understand the subsequent chapters, a brief review of MD is

also given to help understand its limitations for modeling polymer orientation. For both

types of simulations, the ability to reproduce the stress-optical behavior, as determined

from the change in birefringence for a given deviatoric stress, provides a validation of

results. The verification of this relationship rests on the ability to sample atomistic

conformations in order to calculate the stress through the virial relationship, and the

birefringence through the polarizability tensor. MC studies that evaluate the stress-

optical relationship have been performed by Mavrantzas and Theodorou for

polyethylene[8 5' 86] and by Cail, et al, for PET87 .]

Modeling at the atomic level allows the detailed assessment of the oriented

microstructure relating to a set of conditions, which may be unobtainable in the

laboratory. This ability is particularly useful for the analysis of semi-crystalline polymers



such as polyethylene, as described above, where isolation of the contribution of each of

the phases is not feasible in the laboratory.

2.5.4. Monte Carlo Modeling

Since the development of the Metropolis algorithm E8 8] the growth in the

application of MC methods has relied more on the development of innovative algorithms

than by increase of computing power[893. One important development for polymer

simulation was the introduction of variable connectivity moves [9°0 , which allow the rapid

equilibration of internal segments of polyethylene chains, and has provided the means for

equilibration of atomistic PE chains of up to C6000
[ 911. The advantage of MC modeling is

that we are able to make short cuts, through unphysical moves, to the non-equilibrium

state point of a system. This is useful for the exploration of steady-state non-equilibrium

state points, whose orientation is well described by a small number of orientation

descriptors. This is especially true for state points that lie far from equilibrium and are

not easily reached using MD simulations.

Mavrantzas and coworkers have provided the most relevant set of MC studies for

oriented polymer melts[85' 86, 92, 93]. Their approach is similar to the potential of mean

force calculations discussed above in that the choice of variables provides a

thermodynamically consistent description of the system. Although the particulars of the

methodology differed over this set of papers, their choice of descriptor for the orientation

was based on the average conformation tensor <QQ>, consistent with macroscopic

rheological equations of state.

These studies by Mavrantzas and coworkers were carried out for polyethylene

chains of lengths from C24 to C1000. The connection to macroscopically observed

quantities was made through the birefringence of these oriented chains. This set of studies

also provided results on the relationship between molecular ordering and properties

including local orientation, stress-optical behavior, and the nature of the free energy

changes. The last paper in this series[931incorporated the GENERIC formalism as



developed by Ottinger [94]. The GENERIC formalism is specifically designed to describe

a thermodynamically admissible evolution of any system in terms of the effects on

energy and entropy, defined respectively by reversible and dissipative matrices. The

results of the polymer simulations were interpreted in terms of homogeneous time-

independent systems, even though the GENERIC framework provides the basis for

obtaining the time evolution to reach a non-equilibrium state defined by a particular

potential. Thus, the GENERIC model contains the potential for more extensive

application to polymer systems. However, despite the rigor of the approach, or perhaps

because of it, there is a serious limitation in the ability with which one can simulate

polymer systems of realistic size; continuing with the conformation tensor as the "coarse

grain descriptor", one would be faced with impossibly large simulations in order to

evaluate industrially relevant polymer systems.

In its application to polymer melts by Mavrantzas and coworkers, the GENERIC

model has similarities to the SGMC methodology. The current state of atomistic

modeling using the SGMC methodology as well as a comparison with the GENERIC

model is presented in Chapter 3.

2.5.5. Molecular Dynamics Modeling

Molecular Dynamics modeling is more intuitive than Monte Carlo; a molecular

dynamics simulation proceeds according to Newton's laws of motion. As a consequence

of the explicit representation of time, MD simulations can be used for the calculation of

dynamical properties. However, in order to produce orientation in a polymer system, the

strain rates involved in MD simulations are orders of magnitude beyond what is

experimentally possible, due to the small time steps that can be accommodated by the

simulation. This can result in conformations that are not representative of those found in

experimental results. This was noted in MD studies of poly(vinyl phenol)195] in which

the side chains felt an unrealistic amount of stress, creating high energy states in which

the side groups were oriented in the flow direction. Additionally, the time scale of the



simulations does not allow the incorporation of the relaxation of the polymer chain ends

predicted by the DE model. Nevertheless, these studies can often reproduce the derived

mechanical properties of polymers, as is the case with polystyrene by Lyulin[96] and of PE

by Yashiro 97] . Other MD studies have modeled dynamic behavior not accessible by MC

simulations, such as the polymer crystallization of PE[98-0 1o.

2.6. Scale-Bridging

Because of the huge number of degrees of freedom, atomistic simulations of

polymers are limited to a direct description of small systems and/or short time scales. In

order to allow the results of these atomistic simulations to inform studies of

macroscopically observable phenomena, they must be connected to simplified models,

which are capable of accessing larger size and time scales. Considerable progress has

been made in the ability to link different scales through 'hierarchical' modeling [102' 103]

An overview of recently developed computational methods for linking atomistic

simulations to the predictions of thermal, mechanical, and rheological properties is given

by Theodorou [10 4]. The successful coarse graining of a polymer model allows degrees of

freedom that are not directly relevant to the properties under investigation, to be averaged

and removed from the simulation. Obviously, coarse grain models that are adequate for

the description of one polymer characteristic may not be adequate to describe another.

With this in mind, the coarse graining described below represents methodologies that are

relevant to the simulation of oriented polymer systems.

2.6.1. Coarse-graining RIS

Much of polymer theory has been developed using the recognition that, at some

macroscopic level, polymers have general characteristics that do not depend on their

specific chemical nature. This commonality underlies the derivation of scaling laws by



de Gennes[72 ] through the application of statistical segments that act as links in a freely

jointed chain. In this way, the unique chemical interactions of a polymer system are

contained in the nature of these links.

One strategy for connecting the local chain properties with macroscopic

conformation properties is by applying the Rotational Isomeric States (RIS) model l' s].

The RIS model ignores the explicit interactions among chains and reduces the possible

conformations to a large, but finite, number of possibilities. Cail and coworkers used RIS

models of PE and PET to investigate their orientation behavior['0 6]. They studied the

stress-strain and the birefringence-strain data and found that these simulations were not

successful at representing the mechanical and optical responses simultaneously. This

same group has also made use of the scale invariance arguments to coarse grain using

local measurements of orientation (NMR and birefringence) for polyethylene

networks[' 07] , while noting that the properties determined in this fashion are order-of-

magnitude because they ignore higher moments of orientation. These difficulties are

symptomatic of the problem of developing a broadly applicable coarse grain model.

2.6.2. Coarse graining, Bead-spring

Another typical approach to coarse graining is the use of bead-spring models, for

which the specific spring constants, equilibrium distances, and intermolecular forces

represent the specific chemical characteristics['18 ]. While this approach requires a

significant investment to determine the coarse grained positions and potentials, the

procedure has been systematized in order to facilitate these coarse grained analyses[ 10 9]

The resulting coarse grain models allow the simulation of realistic-size polymer chains.

There has been a significant development of the use of these bead-spring models

to provide closure to macroscopic fluid dynamics equationsE[ 11 . These "micro-macro"

approaches utilize a multi-scale approach in which mesoscopic simulations and a coarse-

grained microscopic bead-spring simulation pass information back-and-forth. The coarse

grained microscopic model assumes the role of the constitutive model needed in order to



provide closure to the macroscopic governing equations. Similar to the GENERIC

framework, the conformation tensor can be connected with the deviatoric stress to

provide a link with the processing conditions. In this case however the model is not

atomistic, and so sacrifices a level of detail to provide the connection at the macroscopic

level. While this microscopic coarse grain model provides the closure that is necessary

to solve the set of momentum and mass conservation equations, and allows the evaluation

of the macroscopic stress tensor through a stochastic analysis of the corresponding

microscopic system, these methods do not truly consider the chemical specificity of the

system at a fundamental (atomic) level. Typically there is no explicit interaction among

the molecules; these are included in a mean-field fashion. Such simplifications are a

necessary sacrifice in order to allow the number of time-steps required to obtain useful

information at the macroscopic level. While the descriptions of these bead-spring models

is expected to be good for regions in which the orientation does not contain a significant

enthalpic component, for conditions of high deviatoric stress (highly oriented chains), the

models used in these approaches will systematically underestimate the stress that

corresponds to an orientation state["111']. Chui has employed a conceptually similar poly-

bead model to obtain rheological and structural information of coarse-grained PE[112]

The Chui model builds in capability for non-Gaussian distribution of the mean-square

distance of sites at the length scale of several coarse grained bonds. However, at the

scale of a single coarse-grained bond, the model strictly assumes a Gaussian distribution

of the mean-square length and will be subject to a lesser degree of underestimation than a

purely bead-spring model.

2.7. Summary

Several topics have been covered in this chapter that are relevant to the following

chapters of this thesis. It is worthwhile to briefly summarize the most important ideas:



Experimental techniques provide only the measure of a specific

aspect of the structure; structure is a many-dimensional concept

that cannot be entirely captured by any set of experiments.

In order to make a comprehensive determination of the

microstructure, we must solve an Inverse Problem; there are a

number of techniques available for the closure of these Inverse

Problems.

Polymer dynamics are often important to consider along with the

experimental measurements in the determination of structure.

Atomistic modeling of polymers provides important insight into

the connection between structure and properties.

Scale-bridging is an active area of research because of the inability

of simulations to provide information at all length and time scales,

and because of the difficulties involved in coarse-graining.
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Chapter 3

Semi-Grand Canonical Monte Carlo (SGMC) Simulations to

Interpret Experimental Data on Processes Polymer Melts and

Glasses

3.1. Introduction

One of the hallmarks of polymers is the ease with which they can be processed

into anisotropic materials. The persistence of these anisotropic states, despite their

inherently non-equilibrium nature, is the key to the versatile optical and mechanical

properties of polymers. Deducing the microstructure of these anisotropic states from

their observed properties is, by its very nature, an inverse problem; the enormous number

of structural degrees of freedom at the atomic scale ensures that even the most

sophisticated battery of measurements will leave the structure severely underdetermined.

Statistical mechanics provides various tools whereby a representative sample of these

degrees of freedom can be averaged to calculate a corresponding measurable

macroscopic property. Semi-Grand Canonical Monte Carlo (SGMC) is one such tool that

allows the simulation of anisotropy in an otherwise homogeneous system by identifying

each structural unit by one or more of its measurable anisotropic features. We can thus

speak of a set of "physical isomers" or "physical species" which differ from each other

only in their orientation. The systems are distinguished by the orientation distribution

function (ODF) of these species.



Experimental data are incorporated into the SGMC simulation through the

normalization of an experimental observable to match the concentration of a

corresponding physical species El i . For the uniaxially oriented systems studied here, the

physical species are structural units that are distinguished according to the angle 0 they

form with the axis of orientation. For example, birefringence depends on the second

Legendre coefficient P2(cosO) of the polarizable structural units. Similarly, infrared

dichroism depends on P2(cosa) of the dipole of an IR-active structural unit of the

molecule. Raman depolarization ratios depend on the values of both P2(cos9) and the

fourth Legendre coefficient P4(cosO) of the relevant scattering unit. Multidimensional

NMR can, in principle, provide data for the entire ODF. For highly oriented samples,

DECODER-NMR and several related NMR techniques[ 2-4] have been shown to be

particularly powerful; values for Legendre coefficients up to P14(cos0) have been

reported by these methods[ 5]. The reader is directed to WardE6] for more detail on the

techniques and interpretation of measurements of oriented polymer systems.

From the information provided by these experimental techniques, one can attempt

to reconstruct the full ODFs, for example through the use of Maximum Entropy (ME)

methods[7] or Reverse Monte Carlo (RMC) 8].Maximum entropy methods produce a

unique and unbiased distribution function for a set of experimental constraints. However,

these methods ignore important energetic interactions within the system, possibly

resulting in an unphysical solution. RMC, on the other hand, can account for the

chemical interactions among sites in the system, but equates measurement uncertainty

with thermal fluctuations in the system, in a manner inconsistent with thermodynamics.

Obviously, as experimental measurement techniques improve, the thermodynamics of the

system should be unaffected.

SGMC is distinguished from other inverse methods by its consideration of the

specific chemical and thermodynamic features of a system that may be out of

equilibrium. The result is a simulation incorporating all available information about the

system in a thermodynamically consistent manner. Thus, we obtain not only a more

reliable estimate of the incomplete features of the orientation distribution, but also a basis

for estimating the other non-equilibrium characteristics of the system. We can obtain



estimates of torsion angle distributions, changes in free energy, orientation on different

length scales, density, and other measures which are not accessible using either

experimental measurements, or ME and RMC methods. It is this wealth of microscopic-

level information that justifies the more intense computational expense of an SGMC

simulation. We demonstrate this method for a variety of systems that span the range of

orientation observed in experimental polyethylene melt studies[9-11] as well as higher

orientations that have been simulated for polyethylene melts by molecular dynamics [12,131

3.2. Theory

3.2.1. Semi-Grand Canonical (SGC) Ensemble

The SGC ensemble is obtained by the identification of each of the N sites in a

system with one of several species types, indicated by a component or speciation matrix,

I; Ii is a vector component of I that designates the specific species type of site i14.

Rewriting equations 41 and 48 of Briano and Glandt[141 to express the SGC partition

function T and the probability densityp(I) of the species in terms of the conjugate

potential function 4(Ii) we obtain the equations that provide the basis for the SGMC

method:

= exp(-N ) . qZ exp(f ,p(I,)) dI,  (3.1)
11 IN i=l i=1

N N N
p(I) ZNexp(fl (p(Ii)-pl)) dI (3.2)

2N! I i= i=2

where ZN = exp (-fU (rN ))drN is the canonical configuration integral; q is a scaled

internal partition function (assumed to be constant, for the purposes of this work); Pr is a

reference potential whose value is constrained by fixing the system size to be N.

This speciation yields the non-equilibrium SGC [NVTA4(I)] ensemble (where

Ap(I)= I(I>)-r) by transformation of the canonical [NVT] ensemble (or analogously
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[NPTAu(I)] from [NPTJ). In the [NVTA4(I)] ensemble, the probability density and

importance criterion necessary to satisfy the detailed balance condition follow directly

from eq. 3.2:

In p(r', I) oc -f U(r N)- A/p(1) (3.3)
i=l

pacc = min 1,exp(- [U(rN)n - U(rN)old-

S( (3.4)

Methods for the iterative determination of 4 (I) to reproduce the desired p(rN,I)

have been reported elsewhere l[' ls' 6 1. The value off,l may be determined a posteriori by

methods such as thermodynamic integration or the self-consistent histogram method E' 71

In general, it is unnecessary to evaluate Pr since it is a constant and does not affect the

distributions.

A system that is physically inhomogeneous, yet chemically homogeneous, can be

simulated in the SGC ensemble by choosing a physical, rather than chemical, variable to

identify each site. This was originally demonstrated for a Lennard-Jones (LJ) fluid by

identifying each site by the (N-1) pair-wise intermolecular distances the site forms with

the other sites in the system, i.e. its contribution to the radial distribution function (RDF);

the conjugate potential determined by iteration in this case is just the conventional two-

body interaction potential E11. The same identification was subsequently evaluated for

intra- as well as intermolecular interaction potentials using the G6 model l181 for proteins

as a test case[14]. Procedurally similar methods to determine interaction potentials have

been proposed and justified on different grounds by Soper t' 91, Lyubartsev, et al.[20]

Mtiller-Plathe[21] and most recently Jain et al[221. However, the process of speciation to

construct a simulation in the SGC ensemble is more general. It can solve not only for the

potentials intrinsic to materials, but also for potentials or fields that perturb the system

out of equilibrium. Colhoun, et al, originally employed this capability to follow the

relaxation of polystyrene molecular conformations after shearingt231. In that work, the use

of the SMAS-DECODER NMR method allowed the determination of the full ODF prior

to its use in a SGMC simulation. In this work we consider the use of SGMC to study
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systems given only incomplete information about the ODF, as is more commonly the

case from birefringence and the other measurement methods mentioned earlier.

The motivation for using a Monte Carlo method to study non-equilibrium states is

that the method samples the optimal ensemble of configurations that reproduces the

available observations (i.e. the experimental measurements). Relative to molecular

dynamics, the Monte Carlo method permits the introduction of non-physical moves that

sample phase space more efficiently. The structures produced by a non-equilibrium

molecular dynamics simulation (NEMD) may be sensitive to the rate of deformation

employed in the simulation, which typically exceeds by several orders of magnitude

those available experimentally. In contrast, the SGMC method constructs a molecular

model that reproduces the available experimental data assuming only the applicability of

the force field. The result is a quasi-equilibrium state that can be identified closely with a

perturbation on the time scale of the delay between experimental measurements.

Ultimately, the goal of modeling building is to anticipate behavior that is not obvious

from the experimental measurement. A real strength of molecular modeling is the ability

to query the simulated ensemble and quantify characteristics of the most probable

ensemble of molecular configurations. These characteristics, which may not be

accessible by conventional analytical techniques, provide a window into the structural

changes taking place in the polymer melt. This is not to say that the extracted

characteristics of the system are the true ones, but rather that they are the most probable

ones given the limited information available. The method also allows the evaluation of

complementary sets of experimental data, either individually or jointly, to determine

whether they are consistent and non-degenerate in the information they provide about the

state of the system.

3.2.2. Maximum Entropy: The Moments Problem

Nearly a half-century ago, Jaynes showed the equivalence of the Maximum

Entropy (ME) estimates of information theory and the ensembles obtained from statistical



mechanics [24]. The ME estimate involves an iterative calculation of a potential conjugate

to each of the independent constraints using the method of Lagrange multipliers 25 .

These constraints are the measured (or known) values of the system, which are then

"simulated" in an ensemble that holds their conjugate potentials constant. Therefore, the

adaptation of this approach is not simply a mathematical convenience. Our statistical

approach to modeling ensembles makes this evaluation of a potential identical to the

statistical mechanical description of the most likely non-equilibrium ensemble that is

consistent with our knowledge of the system.

The application of this method to determine a full distribution of any

characteristic from a finite number of its moments is known as the 'Moments

Problem'[ 26]. This is relevant to the measurement of the second moment of an orientation

distribution, e.g. through birefringence, to obtain an estimate of the properties of the

system. The SGMC method provides a means for adapting ME methods to complex

interacting systems. In its simplest form, an ensemble with U(rN)0O, the SGMC method

becomes identical to the ME method. The Lagrange multipliers are analogous to Ap(I) in

eq. 3.3 (e.g. pk, k=O to K, see eq. 3.5 below) and maximize the entropy S subject to the

constraint that the known values of the K moments match their ensemble averages

(hk(I)).

In general, the SGMC potential function /(I) can be written as the summation of

a set of basis functions:
K K

(I) = / khk(I) =t + hk (I) (3.5)
k=0 k=l

The moments <h,Ž and the change in entropy AS with respect to the condition p(I)=0 for

a non-interacting system are then found to be[24]:

(hk (I)) = Jhk (I)p(I)dl = fhk (I) exp { pkhk (I)} dl (3.6)

AS= - p(I) In p(I)dl = - •ok (hk (I)) (3.7)
B k=O



where uo is chosen such that p(I) is normalized. The convexity of the functional form of

eq. 3.7 ensures a unique solution forq (I), if one exists [27]. This uniqueness can be

extended to interacting systems by recognizing that weighting states (e.g., by their

interaction energies) does not affect the existence of a unique solution [28]. This property

guarantees the closure of the inverse problem being solved here by SGMC.

One potential difficulty with reconstructing a detailed atomistic system from a

limited set of measured moments is that the Lagrange multipliers may oscillate and not

converge as the size of the basis set K increases for a non-orthogonal basis set[291. This

problem is resolved through orthonormalization of the basis sets as discussed below.

With both SGMC and ME methods, the nature of the experimental data will guide the

choice of the basis functions as well as the number of terms used in the basis set K to

provide a best solution to the inverse problem of estimating the complete distribution.

3.2.3. Molecular Representation

The selection of physical isomers is motivated by the experimental measurement

of the physical organization of the molecules. Significantly, for most of the experimental

methods mentioned in the Introduction, these physical isomers will be local in nature,

involving only one or a few bonds.

For a polymeric system comprised of N atoms or sites, distributed among Nch

chains, the Cartesian coordinate of the ith site of thejth chain can be written rij. The

intramolecular coordinates are equivalently represented in terms of connector vectors

q j(m) of the ni sites in each chain. The superscript m indicates the number of bonds

spanned by the connector. Connector vectors that coincide with the backbone bonds are

represented as:

q) = , - r,j; i = 1, 2,..., n -1 (3.8)

Other connector vectors can be similarly defined; for example, next-nearest neighbor

sites in polyethylene, which provide an estimate of the local chain direction, are

represented:



q,=r+2,j  ,j; i=1,2,..,n - 2 (3.9)

and the end-to-end vector Qj of chainj is defined as:

Qj =q ain) r,, - r,, (3.10)

For molecules with rigid intramolecular bonds and bond angles, q()ij and q(2)ij are fixed

in magnitude, and they can be described unambiguously by their corresponding unit

vectors e(') and e(2)ij:

(1)

(3.11a, 3.11 lb)(2)e2 Iq (2)

However, the magnitude of Qj will not, in general, be fixed, necessitating both an

orientation (unit vector) and scalar magnitude to characterize its distribution.

Application of the SGMC method requires the conservation of the total number of

speciated elements. For a monodisperse polymer system, nj is constant and the number

of connector vectors is strictly conserved and equal for each molecule. In general, we use

variable-connectivity moves to simulate polymer systems, in which N and Nch are fixed

but {nj} are not. For such systems, the number of connector vectors is not conserved for

q. (m) if m > nmin, the shortest chain in the simulation, violating this fundamental

requirement of the SGMC method. However, for all cases considered here, the size of

the structural units is smaller than nmin and so is always conserved. For fixed Nch, the

number of end-to-end connectors is conserved by construction, making the set {Qj} a

viable physical isomer in the SGC ensemble, despite m being larger than nmin.

3.2.4. Selection of Basis Set

In general, equation 3.3 can be written as:

In p(r N, l) ocP -[ U(r) -_ •~i hk(i) (3.12)



where now h(I) represents a generalized basis function. Colhoun et al.[2 3] provided a

demonstration of the SGMC method for molecular orientation, effectively using a boxcar

function for the multidimensional speciation of a polymer system based on the polar

angles of e(2)id, I cos- ^2) 2)}, where cos 0 (2) = e(, ex and

tan (2) = (e,(2) ,)/(e e ) . The corresponding uniaxial form -- {cos 02)} of this basis

set is:

K

p(cos 0 2') = khk(I)
k=1 (3.13)

= k H(cos (2) - cos 2k) - H(cos 02) - COS kc))
k=l

where H(x) is the Heaviside function and cos 9, ) and cos •2) are the upper and lower

limits of the ke bin. The resolution of the histogram is limited only by the numerical

precision, or the ability to populate each bin statistically during a single simulation.

As the number of bins becomes large, it is often more practical to represent

p(cos#m )) as a series of continuous basis functions. For e(')ij or e(2)ij, a particularly

relevant form is the polynomial expansion for the ODF using basis functions of the

formhk e(2)) e(2)t , where the superscript t denotes the transpose. For cases

involving connector vectors described in this work, the ODF generally exhibits mirror

symmetry, and odd-order terms in eim) average to zero. The ODF then becomes:

In p (e'(2))= 2) +e(2)t A 2) -e(2) +...

/2 (e(2)t .)2k (3.14)
= A (

2k

k=O (2k)! 2k

We can obtain a polynomial expansion over the interval [-1,1] in x, y and z by expanding

eq. 3.14:

In p(e(2)= ) 2 ) + A) cos 2 9j 2) +... (3.15)
j=x,y,z

which produces a distribution by specifying { (cos2k 92)) and determining the

conjugates {A2ki(2)}, forj=x, y, z, as in the Moments Problem discussed above. Upon
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application of the Gram-Schmidt orthonormalization, one obtains the Legendre

polynomial expansion:

Inp(e(2))= A'2)+ A' 2 p j (cos052))+... (3.16)
j=x,y,z

This form suggests a new set of species types or physical isomers that are defined by the

polynomials, P2k(cos02)). These are linearly related to the original isomers defined by

cos2k 2), and provide an equivalent expression for Inp(e(2)). The leading term A '2) is

constant and may be dropped. Equation 3.12 then takes the specific form:

In p(rN, {Pf }) oc -fl U(rN) - k2) (COS 82) (3.17)
i=l k=1 j=x,y,z

where p2k( 2) can be directly identified as A '(2)  in eq. 3.16. Because P (cos92)) is

typically proportional to the birefringence, eq. 3.17 can be truncated after k-=1 and p2k;(2)

=p2k;z(2 ) =0 to obtain an appropriate form for use with these measurements. Similarly,

other measures of uniaxial orientation will be truncated after k=l (infrared), k=-2

(Raman), or some k>2 (NMR).

3.2.5. Relation to Melt Elasticity

While we have been motivated by the nature of experimental measurements to

simulate orientation in polymers using a local orientation potential, Mavrantzas and

coworkers were motivated by studies of melt elasticity in elongational flows and

proposed a new free energy function for a flow-oriented polymer melt in terms of new,

molecular structural variables. This resulted in a similar description of non-equilibrium

polymer systems in terms of the conformation tensor [30- 32] or, alternatively, in terms of

the normal modes[33]. They defined the conformation tensor for chainj, ci, as:

3Q(Q1c = 3Q o (3.18)



where (Q2) is the mean squared end-to-end distance of thejh chain in the unperturbed

state. The selection of ci as the structural parameter to describe the non-equilibrium state

space was inspired by its prevalence in rheological models of polymer systems and by the

intuition that it accurately represents the "slowest" degrees of freedom, those most likely

to deviate from their equilibrium values under conditions of flow. The probability

distribution can then be written, to within an additive constant, as:

Inp(Q,) =a: c (3.19)

where a is a new thermodynamic potential conjugate to cj.

Despite their differences in origin and motivation, we believe that there exists an

intimate connection between the approach of Mavrantzas and coworkers and the SGMC

ensemble approach elaborated here. Comparing the two approaches can offer some

insight into both methods. To show this, we start with eq. 3.14, substitute Qj/Qj for e(2)

invoke mirror symmetry as before and truncate the expansion at the second moment term.

Doing so, we obtain:

1 (Qj) ' -A2 -Q 1 A QjQjIn p(QQ) 2 Q (3.20)
2 Qf 2 Qf

We next define two new variables, A2 and Sj, to represent the size and orientation,

respectively, of the conformation tensor of chainj with respect to its undeformed state:

2  tr(QQ) (3.2A = )(3.21a)

Sj = (3e(,, Q - I )/2 (3.21b)

The diagonal elements of Sj are the second Legendre polynomials of the vector Qi with

respect to the three Cartesian axes, and Sj is traceless. Using these definitions, the

conformation tensor for chainj defined by eq. 3.18 can be written as follows:

3QjQ = = A (2S +I) (3.22)

while eq. 3.20 becomes:

while eq. 3.20 becomes:



In p (Qj = A2 = 6 A2 :(2S + I) (3.23)
j6A 6

Comparison of eq. 3.19 and eq. 3.23 suggests that A2 = 6A2a and one can write:

In p(Q) = 2A a :S, + Atr(a) (3.24)

In the SGC ensemble, A2 = 3 p81' Q), where p2(Q) has been defined as the end-to-end

vector orientation potential. The tensors p2C Q) and a can always be specified to obtain the

equality 2a = pfpi? . In general, the form of a (and therefore P32JcQ) in this comparison)

is specified by the velocity gradient tensor for a given flow[33]. For the special case of

traceless a such that for a general uniaxial elongational flow[33], the melt elasticity

approach can be reproduced by SGMC using:

Inp(r ,QNh)= -fl U(rN)- A (Q):S) (3.25)
j=1

Since S is also traceless, it turns out that any arbitrary value can be added to the diagonal

components of pi in eq. 3.25 with no effect on the resulting distribution of Q produced by

simulation. Therefore, as a matter of practicality in this work, the melt elasticity approach

with a uniaxial traceless a was reproduced using a form of P3p with a single non-zero

component ff,=3a, (=-6ayy =-6azz.) in eq. 3.25; subtracting ac from this form recovers

the original /2 Q) with no change on the distribution of Q obtained by simulation.

Instead of coupling the physical potential to the conformation tensor, it may be

desirable in some circumstances to introduce a second speciation parameter for the chain

size, A2j. This is consistent with rheological models such as the "pompon" model

described by Ottinger [34] and employed by Mavrantzas and Ottinger[331], in which

independent variables for orientation Sj and stretch Aj2 are defined. We introduce a

second potential p 2(A) for the chain size and rewrite the orientation potential as p2(S ) to

clarify its coupling to Sj. The probability density becomes:

Inp(rNr,Q YC) = -fU U(rj) s-)(: A: ) (3.26)
j=1 j=1



Eq. 3.26 has the form of physical isomerism defined by a two-dimensional speciation

variable, {S, A2}, in which the variables are separable and independent. A similar

approximation was also recognized by Mavrantzas and Theodorou[32]

The separation of physical isomerism into two components, based on orientation (the Sj

term) and size (the A2
1 term), as shown in Eq. 3.26 reveals an interesting difference from

the use of the conformation tensor; application of 1L(S)2 with 1(A)2=0 produces only

rotational forces that do not contribute to the system pressure. In contrast, application of

a (or similarly, p2(Q)) or p(A)2 results in stretching forces. These stretching forces are

responsible for the pressure changes documented previously[30 ] and create a contribution

to the pressure that is not coupled to the volume, but rather to the applied physical

potential. In those simulations, the system pressure P is the trace of the sum of the

volume-coupled term bl and the stress due to the applied physical potential r(9) as shown

in eq. 8 of reference 30. The pressure contribution of the potential is traceless only if the

potential acts exclusively on the orthonormalized components of the direction of a non-

rigid unit, as is the case for pL(s with no direct effect on the size. Derivation of the

stresses due to orientation and their numerical validation against the simulated virial

stresses are given in the Appendix (section 3.6).

3.3. Simulation Method

We use the united atom polyethylene model originally proposed by Paul et al.[351 with

modifications described by Veld et al [361. The force field is:

E = E + E0, + E, + E,
1 2 1k 3

=-kb(bi -b o)2 + k (cos9i-cOS0o)2 +  k ,, (1-cosip) (3.27)
2 2 sin2 • i=1

+4,6 - (- I



with the following parameters: kb=37.61 kJ/mol/nm 2, bo=1.53 nm, k0=502.1

kJ/mol,06=68.0 degrees, k,,1=6.69 kJ/mol, k,,2=-3.63 kJ/mol, kr,3=13.56 kJ/mol, e=390.95

J/mol and o--0.4009 nm. The Lennard-Jones (LJ) cutoff is 2.5a with a corresponding

long-range energy correction.

During a simulation, the following Monte Carlo moves were employed: (1) site

translation; (2) reptation; (3) re-bridging[371; (4) end rotation; (5) end-bridging[38 1; and (6)

volume change. In the site translation move, the Cartesian coordinates of a single site

were changed by a random displacement within a range whose maximum was adjusted to

maintain a targeted acceptance of 50%. In the reptation move, a site was removed from

one end of a chain and appended to the other end of the same chain or to the end of a

different chain, while keeping the bond length and angle constant; the new torsion angle

was perturbed from the old one by a random value adjusted to maintain 50% acceptance.

In the rebridging move, three consecutive sites were selected at random from the middle

of the chain and a nonlinear equation was solved to determine alternative configurations

of these three sites that reconnect the chain sections, while keeping bond lengths and

angles constant; the move was selected randomly from among these alternative

configurations. In the end rotation move, the torsion at a randomly selected chain end was

perturbed by a random amount within a range whose maximum was adjusted to maintain

the targeted acceptance of 50%. In the end-bridging move, three consecutive sites in the

vicinity of a chain end were selected. A nonlinear equation was solved, as in re-bridging,

except that the sites were placed so as to connect part of the original chain to the end of

its neighbor. In the volume change move, the edge length of the simulation cell was

changed by a small random amount, within a range whose maximum was adjusted to

maintain the targeted acceptance of 50%, and the chain centers-of-mass were displaced

affinely. The attempt frequency and typical fraction of accepted moves (for the isotropic

melt) were, respectively: site translation, 0.55 and 0.50; reptation, 0.1 land 0.13; re-

bridging, 0.1 land 0.20; end rotation, 0.11 and 0.50; end bridging, 0.1 land 0.10. Volume

changes were attempted, on average, once every N moves with an acceptance of 0.50.

The use of variable connectivity moves (reptation and end-bridging) means that

the molecular weight of the chains is not fixed during a simulation. The resulting



molecular weight (or chemical) polydispersity is controlled through the introduction of

conventional residual chemical potentials u, for chains of different molecular weight.

The subscript MW is used to distinguish this chemical potential from the orientation

potential introduced earlier. The following choice of p, ensures a flat molecular weight

distribution whose polydispersity index is 1.091391:

1N 3N
pMw = 0, for- < Nes <_-

2 Nch 2 Nch (3.28)

pMW =-0O, otherwise

The parameters used for the simulations were chosen to allow comparison to previously

published work [30, 33' 391 as well as to evaluate the effects of orientation potentials applied

to different choices of connector vector in the [NNAhPTuMw4A(I)] ensemble. In each

case the simulations were run with the force field pressure contribution P=-I atm,

temperature T=450K, and pu, as specified by eq. 3.28. Simulations were run for 2x10 5

to 1x10 6 MC cycles. Block averages of the orientation were used to verify the

convergence of the error around the mean value obtained for the simulation. The "local"

orientation potential applied to next-nearest neighbor vectors q(2) was of the form

prescribed by eq. 3.17 with K=2 and only p2,( 2) nonzero (the subscript x on 61j,x (2) and

P2,x( 2) is omitted henceforth for simplicity):
Nch nj

p = ~2) P (cOs 0, ))  (3.29)
j i

The orientation potentials employed for each of four system sizes are shown in Table 3.1.

For each chain length, an additional simulation with three quarters as many chains was

run at the highest orientation potential to ensure that system size effects were negligible.



Table 3.1. Values of orientation potential f2 (2) used with eq. 3.29 (in units of kT)

Orientation Potential
ID N Nch (2(2)/kT)

C24  768 32 0, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45

C78 3120 40 0, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2, 0.25, 0.3

C156 3120 20 0, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2, 0.25

C400 3200 8 0, 0.025, 0.05, 0.075, 0.1

Two "molecular" orientation potential forms were tested by applying a potential to the

vector Q. Their forms were as follows:
N~hk = (s) ./=2 "ISi (3.30)

with all the components ,s)2,o=0 except ~s)2,, In this case, eq. 3.30 simplifies to a form

analogous to eq. 3.29, with 09J2) replaced by the orientation angle O( ) formed by the

end-to-end vector Q1of chainj with respect to the orientation direction:

Nhp=Pcos (3.31)

Similarly, the orientation potential given by eq. 3.25 takes the form:

(cos
(3.32)

Henceforth, the subscript xx on 2, (s ) and pt2, (Q) are also dropped for simplicity of

notation. The orientation potentials employed with eqs. 3.31 and 3.32 are shown in Table

3.2.



Table 3.2. Values of orientation potential used with eq. 3.31 and eq. 3.32 (in units of kT)

Physical Isomer Potential
MW Nsites Nch S)/kT Q) k T

C24  768 32 0, 0.7, 1.0, 1.4,3.0 0, 0.9, 1.8,2.7,3.6

C78 3120 40 0, 0.4, 0.8, 1.2, 1.6 0, 0.6, 1.2, 1.8, 2.4

3.4. RESULTS AND DISCUSSION

3.4.1. Simulations using the local orientation potential, p2(2 )

3.4.1.1. Orientational Order and Density.

Fig. 3.1 shows <P2(cosO(2))> as a function of #2(2) for the four different chain lengths

listed in Table 3.1. This plot shows that at small orientation potentials, the relationship

between <P2(cos8(2))> and p2(2) is linear and independent of the chain length. At larger

orientation potential, the orientation order parameter <P2(cos0(2))> increases more

sharply, an effect which becomes more pronounced for the longer chains. The

differences in response for the different chain lengths can be traced to the lower fraction

of chain ends in systems with longer chains. Chains ends tend to reduce the system

density and to exhibit greater orientational freedom. Both of these effects necessitate a

higher orientation potential to realize a given level of system orientation. Fig 3.2 shows

the computed density for systems of different chain length and increasing orientation.

The isotropic densities are consistent with the values calculated from the polyethylene

equation of state developed by von Meerwall et al[40]. Just as with the orientation, the

density behavior changes qualitatively around p2(2)= 0.15kT: for P2(2)< 0.15kT, the

density is roughly constant, while for p2(2)> 0.15kT it increases dramatically. This

upturn occurs at a normal stress difference of 15-20 MPa. As shown in the conformation

analyses to follow, the two regions suggested by Fig 3.1 and Fig 3.2 correspond to
70
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rotation of the principal axes of the molecule at low potential, followed by deformation

of the molecule and an increase in the number of trans torsions at high potential. The

latter allows for densification as chains become aligned.

3.4.1.2. Molecular Conformation.

For each individual chain, the radius of gyration tensor is determined from the outer

product of the individual intramolecular connector vectors:
nj-1 n,

Rgi = nj •1 q(''-i)q('-) (3.33)
i=l i'>i

The eigenvalues of this tensor define an ellipsoid that characterizes the size and shape of

the molecule, while the eigenvectors define the principal axes and the molecular frame of

reference. Averaging the radius of gyration tensor over all chainsj and then obtaining the

eigenvalues results in a system average molecular shape in the laboratory frame of

reference, defined by the orientation potential. Alternatively, determining the

eigenvalues molecule by molecule, sorting the eigenvalues for each molecule in

decreasing order (i.e. 11> X2> X3) and then averaging each Xi over all chainsj results in a

system averaged molecular shape in the molecular frame of reference, defined by the

principal axes of each molecule. The asphericity of the molecule is defined as:

a = - (3.34)
2k

where the eigenvalues correspond to those averaged in either the laboratory or the

molecular frame of reference. For an isotropic system, the asphericity in the laboratory

frame is zero, while that in the molecular frame is significantly different from zero [41].

As shown in Fig 3.3, the asphericity in the laboratory frame increases dramatically at low

orientation potential, with little change in asphericity in the molecular frame. This is

indicative of rotation of the principal axes of the molecules in response to the orientation

potential, with little change in the size or shape of the molecules. At high orientation

potential, the molecular asphericity increases, indicative of deformation and
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elongation of the molecules. The point at which this change in the behavior of the radius

of gyration occurs is commensurate with the changes in density and local orientation

order parameter <P2(cos(2))> mentioned previously.

Molecular size and shape are altered primarily through unraveling of the molecule

via torsional rearrangement. The torsion angle distribution of the molecule thus provides

another way to assess whether the orientation is occurring through rotation or

deformation of the molecule. Figure 3.4 shows the fraction of torsions in the trans state

as a function of increasing orientation potential, where torsion angles between -r/3 and

+n/3 radians were considered to be in the trans state. ForP 2(2) < 0.15kT, the trans fraction

is little changed; for p2(2) > 0.15kT, it increases, indicative of an unraveling of the chain.

A comparison of Fig 3.2 and Fig 3.4 reveals that a correlation exists between

density and fraction of torsions in the trans state. This correlation is shown explicitly in

Fig 3.5. It has been proposed that such a relationship could be responsible for the

formation of a dense liquid phase in coexistence with a less dense liquid by spinodal

decomposition, due to spontaneous segregation of trans-rich regions from trans-poor

regions in the melt[42]. Evidence in favor of this spinodal decomposition has been

suggested based on small angle X-ray diffraction data on polymer melts [43',4 ]. The length

scale of density fluctuations is on the order of 10-100 nm, larger than the simulations

performed here. Thus, the oriented melt phases produced by the SGMC simulation are

representative volume elements of the dense liquid phase, and can be used to estimate the

free energy of such phases relative to that of the isotropic melt. A first principles analysis

of the spinodal decomposition mechanism is thus possible by this approach, but it is

beyond the scope of the current work.

3.4.1.3. End-to-End Vector.

We next consider the change in the end-to-end vector of the molecules as the orientation

potential is applied for the systems described in Table 3.1. In Fig. 3.6 and Fig. 3.7,

molecular orientation order parameter, <P2(cos#(a))>, where 4Q) is the angle
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formed by the end-to-end vector of the molecule with the orientation axis, and molecular

size, A2, respectively, are plotted against the local orientation order parameter,

<P2(cos02))>, to show the changes in orientation and size of the molecules. At low

orientation, the molecular orientation order parameter is roughly proportional to the local

orientation order parameter, while the molecular size is essentially unchanged; this

regime corresponds to rotation of the principal axes of the molecules in the direction of

orientation. Subsequent increases in <P2(COs92))> produce relatively smaller changes in

<P2(cos0(Q))> but larger changes in <A2>, consistent with significant deformation of the

polymer molecules. This effect is stronger for the longer chains.

3.4.2. The Stress-Optical Coefficient

Orientation plays a primary role in the development of birefringence. As the

molecules orient, the difference in the optical properties along the chain and

perpendicular to the chain produce an increasingly birefringent material. The empirical

observation that the birefringence, An, is proportional to the normal stress difference

AT=,-,ryy at low At is known as the stress-optical rule. The stress-optical coefficient is

defined as:

C A- (3.35)
Ar

This proportionality holds true in regions without significant molecular deformation. The

normal stress difference Ar can be measured through the determination of the forces

originating with the physical isomeric potential as shown in the appendix to this chapter,

and the birefringence An is calculated as described by Mavrantzas and Theodorou[31]:
2 N (n2+2)2 pt) (opt) (cos(2)) (3.36)

An=(a,("Pt) 2 (COS 0,2 (3.36)

9;r V n 2

The values of the diagonal elements of the optical polarizability tensor a(opt) represent the

principal components for a fully trans conformation of PE. The values, a(opt)11=2.458,

a(oPt)22=1.903 and a(opt)33=1.458, were obtained from Mavrantzas and Theodorou[31] and

assume an equilibrium bond angle complement of 68"; N/V is the number density of
78
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polarizable species; The refractive index n of polyethylene is described by the following

relation[ 45]:

n2 -1
p(g /cc) = 0.3276 n (3.37)

n2 +2

While the birefringence is most strongly affected by orientation, it is also dependent on

density, as apparent from eqs 3.36 and 3.37.

From a series of simulations, Mavrantzas and Theordorou [31,32 ] calculated C for

polyethylene to within 35% of its experimentally observed value. They attributed the

error to the intrinsic stiffness of their intramolecular potential, but acknowledged that the

observed length dependence of this quantity could indicate artifacts in the simulation due

to the choice of state variable. The accurate calculation of C is significant in the current

context, since An depends primarily on the local chain direction, and Ar is sensitive to the

manner in which the orientation potential is applied.

Reported experimental values of C for polyethylene melts are 2.0 GPa-1 (403K)[46]

and 2.2 GPa-1 (413K)[47]. Fig. 3.8 shows the plot of Ar vs. An, with an expanded view of

the region at low AT shown in fig. 3.9. Fig. 3.9 shows that the relationship is

approximately linear for A <15 MPa. At larger At, the relationship becomes non-linear,

coincident with the crossover from molecular rotation to molecular deformation. Changes

in birefringence due to density account for only about 5% of C for the highest

orientations of C24, C78, and C156.

Two linear regressions of the data are shown in Fig. 3.9: The lower regression uses all of

the points below 4MPa and yields an estimate for the stress optical coefficient C of 2.1

GPa'; the upper regression uses all of the points shown except the C24 points > 7MPa

and yields a C of 2.4 GPa1 . Both are in good agreement with the experimental data. One

notable feature of these results is that they do not reproduce the large MW dependence

seen by Mavrantzas and Theodorou[31' 32] in which C exhibited a maximum for C78, with a

value almost 3 times that obtained for high molecular weight polyethylene. As shown in

Figure 3.10, our results indicate that C approaches an asymptotic value of about 2.5 GPa-

for high molecular weight polyethylene. The shape of this curve mirrors
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that of the simulated isotropic refractive index n, which also reaches its asymptotic value

at a chain length of about 150 carbons.

3.4.3. Work of orientation

The SGMC method minimizes the free energy of the system simulated. A useful

consequence of this is that one can obtain the reversible work of orientation through a

thermodynamic integration with respect to the orientation potential ti. The work of

orientation is taken with reference to the isotropic state at the same pressure and

temperature. We computed the integral using the self-consistent histogram method~7 ].

Fig. 3.11 shows that the work of orientation for the potential defined in eq. 3.29 is

molecular weight-dependent and that it requires less work to orient the longer chains.

The ability to calculate the free energy allows us to determine the relative contributions

of the loss of entropy and of the change in enthalpy, as shown in Fig. 3.12. We observe

that the enthalpic contribution to the work of orientation is comparable for all four

molecular weights; the greater work required to orient the C24 chains is due to the larger

entropy to be overcome for this low molecular weight system.

3.4.4. Simulations using the End-to-End Potentials, 1 •2s) and 14 )

The results presented in the preceding section were generated exclusively through

the application of a local orientation potential, according to eq. 3.29. Next, we discuss

results from simulations using the potentials (eqs. 3.31 and 3.32) acting on Qj. The

potential described by eq. 3.32 in particular reproduces simulations similar to those of

refs. 30-33 for the case of a traceless a tensor and a single conformation tensor model.

The traceless form of a is consistent with the kinematic interpretation presented in ref. 33

for uniaxial elongational flow. Unfortunately, there are non-trivial differences in the

polyethylene force field, in the applied potential, and in the measured quantities between
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the present work and those referenced: refs. 30-32 use an a that is not traceless; ref. 33

employs a traceless a, but applies it to a multiple conformation tensor model based on

normal modes rather than as defined in refs. 30-32 and in eq. 3.18 here. Nevertheless, the

response of the conformation tensor components <c > and <cy,> versus AT from the C78

simulations using eq. 3.32 are in reasonable accord with the corresponding first normal

modes plotted in Fig. 1 of ref. 3.33 (data not shown) and confirm the analogous behavior

of the two approaches.

Of course, in the spirit of modeling experimental data, the SGMC approach

presented here presupposes some knowledge about the chain conformation, such as the

conformation tensor predicted by rheological modeling. The melt elasticity approach

presumes instead a kinematic interpretation of a in terms of velocity gradients"331. Either

way, the information provided to the simulation is molecular in nature rather than local,

as was the case for birefringence measurements. Thus, it may produce a qualitatively

different picture of the ordering of the molecule. One of the most striking demonstrations

of this is the relationship between <P2(cos0f2))> and <P2(cos0fa))> shown in Fig. 3.13.

Compared to Fig 3.6, the local orientation <P2(cos0(2))> is much lower for the same

<P2(cos0dQ))> when the potential is applied to the end-to-end vectors. The two end-to-

end potentials produce similar results even though one acts on both the orientation and

size of the conformation tensor while the other acts only on the orientation of the

principal axes of conformation tensor. The proportionality between <P2(cos6(Q))> and

<P2(cosd(2))> is molecular weight dependent for all values of the molecular orientation

potentials /p )2 and us) 2. This contrasts with the situation for p•2) 2, which is molecular-

weight independent for p(2)2<0.15kT. This can be explained by the nature of the potential

in the two instances. For the end-to-end potential, if the entire chain is properly

equilibrated, one expects additivity of the local orientation such that <P2(cos0 a))> s (nf -

1)<P2(cos0(2))>, because of the long-range correlation. For a local orientation potential,

the correlations along the chain contour and thus the persistence length are independent

of chain length, provided the chains are of sufficient length. This is exactly what we

observe; the best-fit slopes of the lines in Fig. 3.13 are 79 and 22, in good agreement with
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(<nj>-l) for <nj>=78 and 24, respectively. For the local orientation, the slope is about

2.5 and independent of chain size for low degrees of orientation.

3.5. Conclusion

We describe a general strategy for using Monte Carlo simulation in the semi-

grand canonical ensemble to study non-equilibrium polymer systems. The method takes

advantage of a generalized treatment of speciation of a system to encompass physical

species, as well as chemical species; the thermodynamics are otherwise unaltered. The

physical speciation is then allowed to be polydisperse and the distribution transformed so

that a more convenient set of species types is defined for the case of orientation.

Assigning potentials to one or more members of the new list of physical species allows

the method to be applied to a wide variety of experimental methods; it is sufficient that

the measured property can be computed as an ensemble average of individual molecular

conformations. We have shown how the local orientation, characterized through

measurements of birefringence for example, can be used to infer information about the

molecular shape, torsion distributions, and work of orientation. These results produce the

most likely ensemble of structures by taking the least restrictive interpretation of the data.

For the specific case of polyethylene, our results confirm two qualitatively

different mechanisms for orientation, also observed by Mavrantzas and Theodorou t30 1,

with a transition occurring at a normal stress difference of approximately 15-20 MPa for

all molecular weights studied. Below this point, the molecular axes undergo rotation

with little molecular deformation. We also observe a proportionality between the local

and end-to-end orientation order parameters <P2(cos0f2))> and <P2(cos(Q))> that is

independent of the molecular weight. We estimate the stress-optical coefficient in good

agreement with the literature values and find it to be relatively insensitive to molecular

weight for C78 and higher. The most important factor that limits the range of applicability

of the stress-optical rule is the degree to which orientation occurs primarily through

molecular rotation; changes in the density account for a small part of the non-linearity in



the SOC. At higher normal stress difference, the molecules experience significant

deformation, as characterized by the trans fraction of torsions, the end-to-end vectors,

and the asphericity of the molecules.

We also show that different results are obtained depending on whether the

orientation is applied locally, to bond segments, or at the molecular level, to the end-to-

end vector. The latter is well described by the additivity of the local order parameter.

Studies probing oriented polyethylene melts simultaneously at different length scales

would provide guidance as to which of these physical potentials is more relevant. Bent

and coworkers48 have performed simultaneous birefringence and SANS measurements of

non-equilibrium polystyrene melts. However, such experiments are currently lacking for

polyethylene, to the best of our knowledge.

3.6 Appendix - Normal Stress Calculation

We demonstrate the calculation of the virial stress contributions of the terms

containing p2(Q) (eq. 3.25) and p2( (eq. 3.26) for which the end-to-end vector is Qj. The

results for the end-to-end connector can be generalized to other connector vectors.

Contribution of p2_:

We are concerned only with the diagonal components of the virial tensor since: (1) off-

diagonal components are on average zero; and (2) only the diagonal components

contribute to the pressure and to the normal stress difference. Thus, only one subscript is

used to specify the component of the tensors p2(S) and Lp2( ) , and the subscript '2' is

dropped to simplify notation. The trace of the virial stress due to the applied physical

potential L(S for an individual end-to-end vector (or connector vector) is calculated as:

tr W = 0.) =e i p(s) : S = (3.38)aQi aQ (3.38)
where i andj both index Cartesian coordinates. Performing the partial differentiation for

(((Q,)= 3Q Q2•/ - 1), eq. 3.38 becomes:



tr G, "3 :A IQ21 Qi= IQ 21=
(3.39)

Eq 3.39 shows that there is no change in the pressure of the system due to the application

of an arbitrary {pi(s)}.

Defining M,= P-S) Q2 and taking the sum over the N, interactions in the system

volume V, the normal stress difference for a uniaxial potential is seen to be:

A : N W= . W N Mx -M + IQ21 Q . MQ (3.40)
V V Q2 /

Contribution of MO2 :' -

Similarly, the trace of the virial stress due to a the applied physical potential p(Q) for an

individual end-to-end vector (or connector vector) can be calculated:

tr (Wcu)= Wcu

= Q, A2 P(Q) : S (3.41)

1 )Q,
= aQ .2(1Q21) 0 i

Partial differentiation obtains the following expression for the pressure contribution:

tr(W" )= 1 • Q) - (Q) (3.42)
)- (IQ 0, a2 Qi -( ,

If we consider a traceless form of p (=2a) the final result is:

3 p(Q )Q1
2

tr, (Wu) ) = 0 (3.43)

The contribution to the pressure will therefore be:



) = N tr(Woj)
V

(3.44)

This accounts for the necessary introduction of a conjugate variable to the volume of

P=-3b+AP~") where b is the conjugate thermodynamic variable to volume in the constant

pressure simulations.

Comparison of normal stresses using the virial equation, and the orientation fluctuations

Eq. 3.40 can be used to calculate the normal stress difference from a local physical

isomer potential by replacing N, with the number of interactions N-2Nch and Q with q(2)

Alternatively, one could obtain this quantity from the average virial stresses. However,

the use of eq. 3.40 is more accurate. Figure 3.14 shows a comparison of the two methods

for calculating the normal stress differences for the series of simulations on C78 chains

using a local isomer potential p2(2). The error bars are only shown for the normal virial

stress differences for clarity; the error bars on the normal stress differences calculated

using eq. 3.41 are one half, or less, the size of the error bars on the virial. This shows the

consistency of this approach with the simulation results.
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Chapter 4

A Method for the Estimation of Macromolecular

Configurational Properties from Atomistic Simulations of

Oligomers under Non-equilibrium Conditions

4.1. Introduction

Rheologists and others who study melt phase flows are interested in both the

molecular-scale and continuum scale properties of polymer melts. For example, the

configuration tensor <QQ>, defined as the ensemble averaged outer product of the end-

to-end vector Q of the melt phase molecules, is often assumed to provide information

necessary and sufficient to predict the stress on a macromolecule using, e.g., the Giesekus

model l'2]1. Since the time and length scales necessary to describe polymers span several

orders of magnitude, a multiscale modeling strategy is required to link the atomic-level

structural information with the behavior of <QQ>, from which rheological phenomena

can be understood.

A typical strategy is to represent a polymer as a series of beads and springs, e.g.

finite extensibility nonlinear elastic dumbbell (FENE) modelsE3 1. However, such models

have been found to underestimate the experimentally measured stress required to obtain a

given value of <QQ> in strong extensional flow[] 1. The discrepancies of the FENE

model can be attributed to its configuration distribution, which is always Gaussian and

fails to reproduce the non-Gaussian behavior that accompanies breakdown of the stress-

optical relationshipE51. The method presented here provides a quantitative description of



the principal components of <QQ> valid even at conditions where the stress-optical rule

is no longer valid.

We accomplish this by applying a local orientational bias to the polymer chain,

which accurately reproduces the stress-optical relationship for polyethylene, as we have

shown in Chapter 3. The fundamental difference between this approach and that of

applying stresses to the chain ends is analyzed by Picu et al.;6]1 we have also discussed

this in detail in Chapter 3. An important outcome of such oriented, nonequilibrium

simulations is the ability to determine a direction-dependent persistence length of a

polymer under uniaxial deformation, which turns out to be a rapidly convergent function

of the simulated oligomer size.

We demonstrate our method using polyethylene (PE), the prototypical chain

molecule, as its structural simplicity allows the simulation of relatively high molecular

weight systems. However, our ultimate goal is to characterize the conformations of more

complex molecules for which atomistic simulation is much more challenging. For

example, even the pendant methyl groups of polypropylene severely reduce the efficacy

of state-of-the-art variable-connectivity Monte Carlo moves that make the cited PE

simulations possible[7]. Without such moves, effectively sampling conformations of

dense atomistic systems of more than a few dozen monomers is difficult and time-

consuming.

The approach developed here allows us to make predictions about high molecular

weight polymers in oriented flows based on simulations of relatively low molecular

weight oligomers. The ability to make such predictions from simulations of oligomers of

only a few persistence lengths allows the structural investigation of a much broader array

of industrially relevant materials at highly oriented conditions. We also show how the

reverse procedure allows us to probe the likely atomic-level structure corresponding to a

measured or simulated <QQ>.



4.2. Method

4.2.1. Configurational Properties

We consider a polymer system consisting of Nh chains for which the Cartesian

coordinate of the ith site of the th chain can be written rij. The coordinates rij represent

the full set of Nj atomic backbone sites associated with chainj. The full set of

intramolecular backbone coordinates is equivalently represented by a set of n,= Nj -1

connector vectors as:

qj = r+,j - r,j i = 1,2,...,Nj-1 (4.1)

As in Chapter 3, we make use of a "local chain direction" defined by the vector joining

next-nearest neighbors along the chain (see figure 4. 1b), such that the relevant connector

vectors are defined as follows, now with n-=(NJ-1)/2:

qi2,j =ri+1,j -ri- 1,j, i= 2,4,...,Nj -1 (4.2)

The local chain direction is preferable because: (1) experimental measurements, such as

birefringence, are traditionally interpreted in terms of the orientation of the local chain

direction, since it is the smallest segment for which full alignment coincides with that of

the chain; (2) the chain direction is a much smoother function of position along the chain

than the bond direction. Other connector vectors can similarly be defined. Figure 4.1

shows different possible representations of an atomistic polymer chain, all of which are

consistent with eq. 4.5 below.

The square of the jth end-to-end vector Qj can be represented in the connector

vector notation as:

nj n j- nj

(Qj . Q) = (q,j . qi,j)+ 2Z (q,j . q,,) (4.3)
i i'>i

where the brackets denote an ensemble average. By defining k =1 i - i' as the contour

distance between the vectors and summing over i, eqn. 4.3 can be rewritten as:

nj -1

Q )= njq2 +2 (nj - k)q .qkj (4.4)
k=1
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Figure 4.1. Representation of chain using: (a) Nj -1 bond vectors; (b) (Nj-1)/2 chain

direction vectors; (c) end-to-end vector. Dotted lines refer to sections of arbitrary length

in the middle of the chain.
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where (q qk,j ) represents the average of the dot product of all vector pairs displaced by

k vectors along the backbone of chainj.

By choosing Cartesian axes that coincide with the principal axes a of (Qj. Qj),

the configuration tensor is diagonalized, with three nonzero components. Upon

rearrangement we obtain:

a=1,2,3

=j ,2 2 (1 - )(qq k,a - (q ) (4.5)
a=1,2,3 k=O j

=nj n (q2)(,,a -I)
a=1,2,3

It should be noted that eqn. 4.5 is rigorously true for any chain comprising nj connectors,

and does not depend on the specific choice of representation used for the chain. The

summation over k produces the scaled persistence vector component tp,a,, where the

quantity <qa2>, the mean squared length of the connector vectors, acts as a scaling

factor. The persistence of the polymer chain is thus a direction-dependent quantity that

depends on both its specific chemical properties and the orientation imposed by the

processing conditions. Eq. 4.5 provides the corresponding magnitude of the principal

components (Qj,a) used in the rheological modeling of the system.

To obtain the parameters necessary to calculate tp, we make use of the Flory

theorem[83, which states that real polymer chains in a melt behave as ideal chains for

sufficiently large contour distances. This condition requires that all interactions are

short-rangedE9 1, and implies a limiting form of (q.qk,a) that is exponential in k. Thus,

beyond some segmental separation k>k* the following relationship holds for the

components of the average dot product of contour segments:

(q.qk,a) = Aa exp(-kra) (4.6)

Eqn. 4.6 permits the determination of -,a from the k-dependence of the connector vector

correlation function, which can be written for the special case of k*=0 as:

102



p,a k*=0 0- ' - exp(-k a)

A (1- exp[-njir_] + (4.7)

(q2) 1-exp[-ra] I

exp[- ](l - ni exp[-(nj -l1)- ] + (nj - 1) exp[-nijra ])
nj (1- exp[-r ])2

In the limit of large molecules (ni -+ oo), eq. 4.7 simplifies to the relationship:

P I kO = () { } (4.8)"p,*=. q0 1'• l-exp[-ra] (4.8)

For small ra, eq. 4.8 further simplifies to the mathematical equivalent of the wormlike

chain model with ra being the inverse of the wormlike chain persistence length scaled by

the bond length.

For real polymers, eq. 4.6 only applies beyond some segmental separation k*.

Thus, eq. 4.7 may require a correction term for k<k*. Fortunately, the correction term is

readily evaluated in a simulation of oligomers, by choosing the smallest k* for which the

values of Aa and ra have converged. The true value of the persistence length to be used in

eqn. 4.5 is obtained by replacing the first k* terms of eqn. 4.7 with the value obtained

directly from an oligomer simulation. The true persistence p4 , can then be calculated as

the persistence given by eq. 4.7, p,,alk*=O, modified by the short range correction for k*#0:
k*-1

P,, = p,lk*=0+ (( k,-a)- A exp(-kva)) (4.9)
k=0

The preceding equations and their application represent the proposed method for

calculating the anisotropic configurational tensor of macromolecules from the properties

of simulations of oriented oligomers. It consists of:

1) Performing a simulation in the semigrand canonical ensemble, as described in

Chapter 3 with chains of length n>>k* and a finite orientation potential, to

generate ensembles of oriented melt-like configurations. From these simulations,

the averages (q qk,a) are obtained.
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2) Fitting simulated data for (q. qk,a) for k >k* using eqn. 4.6 to obtain Aa and ra for

a=1,2,3; the value of k* is determined as the smallest value for which A, and rT

are independent of k*. (q) and the short range correction terms are then

obtained from the simulated data by direct evaluation of (q qk,a) for k<k*.

3) Determining tp using eqns. 4.7 and 4.9.

4) For any polymer of length nj'>>nj accessible by simulation, the components of

(Qj .Qj) are obtained using eqn. 4.5.

Although we present results exclusively in terms of <QQ>, the radius of gyration

rg2 and its components can be calculated by equating Qj in eq. 4.5 with the vector

between two points in a chain separated by ni bonds. This allows the evaluation by

summation over all pairs in an average chain. In the long-chain limit, the 1/6

proportionality between (Qj . Q,) and rg2 can be used.

Finally, the order parameter used for orientation is the second Legendre

coefficient, defined as:
2 1

P2 (q,,j) = qj (4.10)
2 q 2 2

Here, a= 1 corresponds to the axial direction in a uniaxially oriented system.

4.2.2. Simulation Procedure

The Semi-Grand Canonical Monte Carlo (SGMC) is a thermodynamically

consistent method for incorporating experimental measurements into an otherwise

unconstrained simulation of a system at equilibrium E'0l . We impose a physical potential

that acts on the orientation of the local chain direction vector qy as explained in detail in

Chapter 3. The acceptance criterion for the SGMC simulation of uniaxially oriented

molecules described by birefringence measurements differs from that of the
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corresponding isotropic NPT simulations by the addition of a single measure of anisotopy

P2(q) and its thermodynamic conjugate, the scalar physical potential p, to the

Hamiltonian. In this case, p plays the role of an orienting field; increasing p results in an

increased average orientation <P2(q)>. The relative probability of a configuration is

related to the thermodynamic variables as follows:

In(p) ac -f U(rN)+PV - . PJ (q,,j) + N In V (4.11)

To obtain properties representative of the full chain, we simulate an oligomer

sufficiently long to capture fully the short range correlations due to the specific chemical

nature of the polymer. For polyethylene, the characteristic ratio is about 7111,

significantly smaller than the typical number of monomer units in the chains used in these

simulations.

SGMC simulations of oligomeric alkanes with average chain lengths of C24, C78,

and C156, were performed using a modification of the united atom force field originally

proposed by Paul et al. •12' 13]. This force field was previously shown to yield good results

for PE melt structure and dynamics[1 21 and, in Chapter 3, for the stress-optical coefficient

of PE in oriented melts. Site translation, reptation, rebridging, end-rotation, end-bridging

and volume change moves were all used to ensure rapid and complete sampling. The end-

bridging move in particular leads to polydispersity in the chain length. For each of the

three systems reported here, the polydispersity was 1.09. The ranges of chain lengths for

each system were: Cl2 to C36 for the C24 system; C39 to C117 for the C78 system; and C78

to C234 for the C156 system. For complete details, the reader is referred to Chapter 3.

Simulations were run at pressure P=-1 atm and temperature T=450 K. Simulations ran for

2x10 5 to 1x10 6 cycles after equilibration of the orientation. The physical isomer

potentials used with eqn. 4.11 are listed in Table 4.1.
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Table 4.1. Physical Potentials applied in [NPTAp] ensemble.

MW N Neh Physical Isomer Potential

It (in units of kT)

C24  768 32 0, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45

C78  3120 40 0, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2, 0.25, 0.3

C156 3120 20 0, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2, 0.25

4.3. Results and Discussion

4.3.1 Correlation Parameters.

Fig. 4.2 shows a semi-log plot of the correlation of (q.qk,a, for selected values of

p and chain size C78. It illustrates graphically the procedure for determining the

parameters ra, Aa, and k*. The value of rT is determined from the slope of the fit to the

semi-log plot for kk*, and A, from the corresponding intercept using a weighted

nonlinear least-squares regression. Fig. 3 shows the estimates of A, and r, and their 95%

confidence limits as a function of k* for the transverse component of the C78 system with

p=0.15. The uncertainty in the estimated parameters is typically 3 to 5 %. From the

deviations in A, and r, estimated by k*<2 from their asymptotic values, we conclude

k*=2 to be appropriate for this case. For the axial component, even k*=0 does not

introduce significant error. Other chemistries may be different, however; in general, we

expect that k* depends on the stiffness of the chain and the choice of q vector used to

represent the chain.

Figs. 4.4 and 4.5 shows the parameters Aa and ra obtained using different

molecular weights and different local orientation potentials. The values for these

parameters are consistent over the chain lengths studied and highlight their intrinsic

nature.
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Figure 4.2. Semi-log plot of the connector vector q autocorrelation as a function of

separation k along the chain contour. The points are the values of the components of the

vectors obtained from simulation; error bars represent 95% confidence levels. The lines

represent fits weighted to minimize the residual difference with the values at contour

distance k > k*. The data sets are, from top to bottom: p=0.3, axial; p=0.15, axial; P=O;

p=0.15, transverse; p=0.3, transverse for C78 system. Note: due to polydispersity arising

from end-bridging and rebridging MC moves, the contour length for the shortest chains in

the C78 simulations is 18.
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Figure 4.3. Estimates of the parameters (a) Aa and (b) ra as a function of k* for the

transverse component of the C78 system with p=0.15. The rise in error of the

parameters with increasing k* results from increased noise in the simulation data at

large k.
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Figure 4.4. Intercept parameter Aa as a function of local orientation <P2(q)> for: C24

system (circles); C78 system (diamonds) and C156 system (squares). Upper curve is the

axial component; lower curve is the transverse component.
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Figure 4.5. Characteristic length of correlation versus order parameter for the following

simulations: C24 system (circles); C78 system (diamonds) and C156 system (squares).

Upper curve is the axial component; lower curve is the transverse component.
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4.3.2 Long Chain Limit.

Fig. 4.6 compares the principal components of <QQ> for a C156 system predicted

by the three sets of PE simulations using the proposed method of persistence lengths,

with those measured directly from the C156 simulation. There is no statistically

significant difference between the predicted and directly measured values of <QQ>.

Figure 4.7 shows the evolution with <P2(q)> and Nj of the components of <QQ>

computed using the method of persistence lengths. For a given value of <P2(q)> , the

components of <QQ>/NA approach asymptotic values with increasing Ny; the asymptotic

value for the axial component diverges, of course, as <P2(q)> approaches 1,

corresponding to the fully extended chain. For values of <P2(q)> as high as 0.15, C100

provides an accurate value of the components of <QQ>/Nj for arbitrarily long chains; for

values of <P2(q)> approaching 0.5, however, an order of magnitude increase in chain

length is necessary to obtain the asymptotic value of the axial component of <QQ>/Nj.

The reason for this can be understood in terms of the previously explained transition from

chain rotation to chain extension around <P2(q)>=0.15. Fig. 4.8 shows how

(Q2) = (Q+ia) +2 (Qraverse) varies with orientation. It remains relatively constant up to

<P2(q)>=0.15, beyond which it increases dramatically, accompanied by changes in the

torsion angle distribution and the internal energy of the molecule.

As discussed in the Introduction to this Chapter, these changes coincide with a

breakdown in the ability of FENE-type models to provide accurate estimates of the stress

at large deformations, due to the non-Gaussian nature of the resulting configurations.

Since atomistic simulations can reproduce the stress-birefringence relation up to and

beyond the linear region described by the stress-optical rule, as shown in the previous

Chapter, it offers an implicit constitutive relation between stress and degree of flow-

induced orientation for polymeric systems even at high deformation. In this respect, our

method can serve as a component of "micro-macro" MD modeling approaches, which

model the properties of macromolecular systems without the use of explicit constitutive

equations. Examples of such approaches include the CONNFFESSIT method developed

by Laso and Ottinger[ 14], as well as more recently developed methods like the Lagrangian
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Figure 4.6. Principal components of <QQ> for C156 chains: Directly measured from

simulation (filled squares); others calculated by the method of persistence lengths using

parameters from the following simulations: C24 system (circles); C78 system (diamonds);

and Cls6 system (squares). The upper curve is the axial component; the lower curve is

the transverse component.
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Figure 4.7. Principal components of <QQ> calculated using the persistence length

method. The solid lines are the axial components; the dashed line represents the

corresponding transverse components (not distinguishable at this scale for chains of

different length). Lines are substituted for data particle method (LPM)t"S , and Brownian

configuration fields (BCF)[ 161. However, as shown in figure 3.8, there is a molecular

weight dependence of the stress-optical relationship at high deformation. Therefore,

demonstration of convergence of the stress-optical relationship at high molecular weight

and for high levels of stress would be necessary before such a constitutive relationship

would really be useful.
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4.3.3 Inverse Mapping.

The mapping procedure relating macromolecular configuration to oligomeric

persistence lengths, demonstrated here for the uniaxial case, determines two molecular

characteristics {<Q2>axial, <Q2 >tanverse} given two others {<P 2(q)>, Nj}. In the long

chain limit <Q2>axial/Nj and <Q>tanv,,/Nj are asymptotically constant for a given

<P2(q)>, leaving only one independent quantity among <P2(q)> and <Q2>axia/Nj in this

limit. Thus, given values of the principal components of <QQ>, one can infer the local

orientation <P2(q)> from fig. 4.7. A simulation of oligomers of a chosen length and with

the same level of local orientation can then be constructed using a value of p interpolated

from a plot of p versus <P 2(q)>, such as the one previously generated for PE and shown

in fig. 3.1; alternatively, in the absence of such a plot, p can be found iteratively using

procedures discussed elsewhere[' 0'171. It is important to note that p must be chosen

according to the length of oligomers to be simulated. Nevertheless, a valuable feature of

the persistence length methodology is that all of the information in fig. 4.7 can be

obtained with a relatively modest amount of computing power. A handful of simulations

of oligomers at the temperature of interest provide the necessary persistence vector

information to link local and macromolecular conformations in oriented states. This in

turn allows the connection between processing conditions defined at the continuum scale

and simulations of structure-property relations arising from atomic scale interactions.

Implicit in all that has been presented above is the assumption that orientation is

spatially and topologically homogeneous down to the atomic level. Lacking information

to the contrary, we have minimized the free energy by inferring an orientation that is

independent of both the spatial and chain contour coordinates. Nevertheless, there are

examples where orientation is inhomogeneous; for example, upon cessation of shear ['18 ,

the relaxation of oriented polymer chains proceeds from the ends of the chain to the

center, so there can be a period of time in which orientation is inhomogeneously

distributed along the contour of the chains. Such cases can also be treated within the

SGMC method when warranted, but require a more detailed analysis that is presented in

Chapter 5.
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4.4. Conclusion

We have demonstrated a general method for evaluating the average conformation

tensor <QQ> for chains of arbitrary length in a state of orientation, based on a

information obtained from simulations of oligomers constrained to a comparable state of

local orientation. No significant difference is seen between the results obtained using

systems whose minimum chain lengths vary from about 1.5 to ten times the intrinsic

persistence length (i.e. in the absence of orientation). This method allows us to relate

measurements of local orientation, such as birefringence, to macromolecular

conformational properties using readily accessible oligomeric simulations. Conversely, it

allows the determination of the appropriate local degree of orientation consistent with a

rheological measurement of <QQ> for a high molecular weight polymer. This provides a

means to cross length scales from the atomistic to the macromolecular for the purpose of

describing systems with significant flow-induced orientation. This in turn allows the

development of a unique non-equilibrium model that captures the chemical nature of the

material and some aspect of the processing history. The method promises to be

especially useful for modeling the deformation of chemically complex polymers, for

which equilibration of chains larger than a few persistence lengths is problematic.
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Chapter 5

Simulation of Mechanical Properties of Oriented Glassy

Polystyrene

5.1. Introduction

A useful characteristic of polymeric materials is their processability into

persistent, non-equilibrium structures that exhibit anisotropic mechanical and optical

properties. For example, Hadley and coworkers showed that by subjecting polymer

filaments to a draw ratio of approximately 6, one obtains an order-of-magnitude increase

in the tensile modulus of low-density and high-density polyethylenes, polypropylene, and

polyethylene terephthalate11 . Other polymers follow the same trend, albeit with less

dramatic increases in their tensile properties [l' 2]

In Chapters 3 and 4, I have studied polymer systems that are homogeneously

oriented, both spatially and along the chain contour using the Semi-Grand Canonical

Monte Carlo (SGMC) method. Using this approach, many aspects of dense polymer

systems that are out of equilibrium can be inferred from simple structural measurements

like birefringence. These include stress-optical relationships, average macromolecular

conformations, and enthalpic and entropic contributions to the changes in free energy

upon orientation. These homogeneously oriented simulations are appropriate for the local

description of systems exhibiting macroscopic gradients in orientation, provided that the

average orientation and stresses are effectively constant at the local (nanometer) scale. In

such cases, the simulated homogeneous systems should be viewed as slices of the larger,
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heterogeneous system. Such an approach can be readily used to investigate the spatial

variation in, e.g., the orientation of injection-molded parts31.

However, in many cases chain relaxation creates orientation differences at length

scales on the order of, or smaller than, the simulation box size and cannot therefore be

adequately described using a series of simulations with homogeneous orientation. One

example of this inhomogeneity is the enhanced orientation of long chains vis-ai-vis short

chains during flow-induced crystallization of polyethylene[4], which is believed to be

responsible for the "shish-kabob" morphology.

The simulations presented here explore another example of inhomogeneity - the

variation of orientation along the contour of individual polymer chains. The current

simulations are prompted by the results of a study of the effects of draw ratio and

temperature on the development of orientation in atactic polystyrene (PS), and the

resulting effects on the mechanical properties, by De Francesco and Duckett[ 5'6 ]. Based

on the theories of contour-dependent relaxation of oriented polymer chains published by

Doi[7], and by Milner, et al. [8], De Francesco and Duckett concluded that the variation in

the mechanical properties could be explained by the inhomogeneity of the orientation

along the chain contour, as illustrated in Fig 5.1 (similar to Fig 6 of ref. 5). The

inhomogeneity arises from the fact that the chain relaxation propagates from the chain

ends toward the center of the chain. Because the longest and shortest time scales of

relaxation for polymer systems span many orders of magnitude, partial relaxation is a

common feature of polymeric systems.

Although the study of systems out of equilibrium normally entails simulation of

the real dynamics of the polymer, the longest time-scale of the polymer chain dynamics

are not amenable to molecular dynamics (MD) simulation without substantial coarse-

graining. While this coarse-graining may allow the exploration of polymer dynamics on

the desired time scale, this comes with the loss of the unique chemical characteristics of

the system, which are important for the accurate calculation of mechanical and

rheological properties. In such cases, the use of a constrained Monte Carlo (MC)

simulation offers an alternative approach to study a system far from equilibrium.
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In the same way that we have used the SGMC method to provide a

thermodynamically consistent ensemble to describe homogeneous states of orientation,

we can also model systems that describe inhomogeneous states of orientation. This is

achieved by applying an orientation potential selectively to a subset of segments within

the chains, chosen according to criteria such as the length of chain in which such

segments reside, or the contour distance of the segment from a chain end. This allows us

to create simulations that can readily explore the evolution of microstructure and the

dependence of properties like Young's modulus on such evolution. The resulting

ensembles can also serve as a starting point for subsequent MD simulations of dynamic

phenomena such as crystallization. Here, we focus on the dependence of mechanical

properties of glassy polystyrene on process-induced orientation of either a homogeneous

or inhomogeneous nature.

5.2 Theoretical Approach

5.2.1 Physics of Chain Relaxation

The Doi-Edwards theory[ 9] has been successful in explaining a number of

observed dynamic phenomena of polymer chains. It is built upon a "tube" model that

envisions an individual polymer chain as being constrained by entanglements with other

chains to remain within a tube that follows the contour of the chain. The tube model

establishes a number of characteristic times that explain various aspects of polymer

dynamics. These include the entanglement time re, the retraction time r, and the reptation

time Td, where Te<Tr<rd. The entanglement time represents the characteristic time for

equilibration of the density of polymer segments between entanglements; the retraction

time characterizes the recoil after deformation of the tube contour to its original size, as

well as fluctuation of the tube contour length at equilibrium; the reptation time

characterizes the loss of memory of the original conformation of the tube.
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Orientation of the polymer chains occurs when the Weissenberg number for

reptation, the product of the strain rate and the reptation time rd, is greater than unity,

thus giving rise to deformation of tube. However, if the Weissenberg number for

retraction, the product of the strain rate and the retraction time y'r, is less than unity, two

dynamic processes contribute to the loss of deformation-induced orientation through

partial relaxation of the tube: (1) the aforementioned retraction of the chain decreases its

tube contour length and attenuates the orientation of the entire molecule; and (2)

fluctuations of the contour length (or "breathing" modes) eliminate orientation

preferentially at the chain ends by allowing the ends of the molecule to escape from the

tube on a time scale short compared to the reptation time rd. The result is that even in the

absence of reptation (y> 1/rd) there is a finite fraction of the chain that nevertheless

escapes the tube and disorients on the shorter time scale of order rr. This effect was used

by Doi to explain the value of 3.4 in the power law dependence of viscosity on molecular

weight 713 and has also been used to correct other deviations of the Doi-Edwards (DE)

model from experimental dataEl'0 . The scaling of this effect goes as the inverse square

root of the number of entanglement lengths; a prefactor of 1.3 was estimated by Doi

using a variational calculation of the Rouse model and accounting for deformation of the

tube under strainELI 1. This prefactor is consistent with other studies as well[12, 13]. Thus,

the fraction of the chainfthat is has lost orientation on the sub-rd time scale is:

f= l.3(MJ (5.1)

where Me and M are the entanglement molecular weight and chain molecular weight

respectively.

The simplest way in which to model the partial loss of orientation at the molecular

scale is to consider two populations of segments within each chain: the first population

consists of the segments at each end of the polymer chain, which have fully relaxed on

the time scale tr and are isotropically oriented; the second population consists of the

central segments of each polymer chain, which relax on the time scale rd and are thus
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oriented for much longer times. The average orientation of the system <P2>system is the

average of these two populations, wherefl2 is the fraction of segments at each end of the

chain that have fully relaxed:

(P2 )system =f (P 2 ) population 1 + (1-f)(P2)population 2 (5.2)

In order to simulate these partially relaxed chains, population 1 is allowed to

sample local configurations independent of orientation and has an average orientation

<P2>population 1_O; population 2 is constrained to provide the overall average orientation

<P2>system corresponding to the observed bireffingence. Depending on the value off, even

a modest value of <P2>system may indicate very high degrees of orientation for the inner

segments of the chain. The orientation along the contour of the chain using this two-

population model is shown schematically in figure 5.1.

While the addition of chain contour fluctuation represents an improvement in the

ability of the DE model to explain the loss of orientation in polymer chains, this model of

relaxation remains overly simplistic[141. Nevertheless, the addition of a contour

fluctuation to the DE tube model reproduces the observed phenomenon of a rapid loss of

orientation of the chain ends followed by the slower loss of orientation throughout the

remainder of the chain[ 10° . We proceed on the basis of well-separated relaxation times for

which two distict conditions approximately describe the structure for t<rd: the first is the

case of the uniformly oriented chain (f0O); the second case is that of a chain relaxed to

the extent described by eq. 5.1.

5.2.2 Application to Polystyrene

It has been demonstrated[5 ' 15 that the characterization of oriented samples of

polystyrene by birefringence is insufficient to account for variations in the Young's

modulus E 33. This has been explained by the fact that birefringence measures the average

local orientation of the polymer chain, and is insensitive to any kind of inhomogeneity in
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0.4 0.6
Chain Contour (units of (n-2))I.

Figure 5.1. Schematic diagram showing f-0.0 (dot-dashed line), 0.1 (dotted line), 0.3

(dashed line), and 0.5 (solid line) for partial relaxation of the chain. While the curves

represent different initial orientations, the overall average orientation <P2>system is the

same for all of the curves.
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orientational order, such as that arising from the relaxation of chain ends. The

experiments of De Francesco and Duckett[6 1 considered systems of MW= 130 to 210

kg/mol and T-T, = 3 to 28 *C. The time constants for these systems covered a broad

range: tr=0.05 to 425, ,r= 9.0x100 to 1.0x105 , and rd= 3 .0x102 to 9.0x106 seconds. For

any given molecular weight and temperature, an order of magnitude or more separates

these time constants; this separation is more pronounced for the higher MW systems

since te-MWo, Tr~MW 2, and td -MW 3. For a given molecular weight, the time constants

all increase by a factor of about 15 as T-Tg decreases from 28 to 18 oC. There is a more

rapid increase as temperature nears Tg; the time constants increase by a factor of 10 over

the smaller decrease of T-Tg from 8 to 3 OC (see table 3 of reference 6). This illustrates

the tremendous influence of temperature on the relaxation of polymers, especially for

small values of T-Tg.

To study the partial chain relaxation hypothesis proposed, we model two pairs of

drawn PS samples produced by De Francesco and Duckett having a birefringence An -

0.015[6], or equivalently <P2>system I 0.3. This set comprises samples of molecular

weights 130 and 180 kg/mol, each of which were deformed by drawing at a common

initial strain rate of 1.2x10-2s-1. The strain ratios and temperatures were {3, 105°C} and

{5.5, 1100 C} for the 130 kg/mol sample and were {3, 105'C} and {4.5, 110OC} for the

180 kg/mol sample. The values of fractional relaxation that may be attributed to these

samples correspond to 0 and 0.5 for the 130 kg/mol sample and 0 and 0.4 for the 180

kg/mol sample.

5.2.3 Molecular representation of PS

For a polymeric system comprised of N atoms or sites, distributed among Nch

chains, the Cartesian coordinate of the ith site of the jh chain can be written rij.

Considering only the backbone of the chain, the intramolecular coordinates are

equivalently represented in terms of connector vectors q-im) of the nj sites along the

backbone in each chain, where the superscript m indicates the number of bonds spanned
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by the connector. As in our previous work, we employ the use of a "local chain

direction" q%(2) defined as follows:

S=(2) +, - j, i = 2,3,...,nj -1 (5.3)

Additionally, for polystyrene we define a unit vector q0(P) normal to the plane of

the phenyl ring of the side group. Both of these vectors are shown in figure 5.2.

Figure 5.2. Vectors used to define the orientation of a polystyrene chain.

The description of the polystyrene (PS) chains in terms of q ( 2) and qij(P) is motivated by

the relationship between available experimental measurements and the physical

organization of the molecules. Not only birefringence measurements, but also

measurements of IR and Raman, produce results that depend on the orientation of these

vectors through the value of the second Legendre polynomial P2(m) of the direction

vectors shown in fig. 5.2:

P(m) = 3(q (m))2  1(5.4)

2(q4,m) 2  2

The birefringence An is defined as[16]:

125

r



An 2;r N (n2 +2)2 a +a (2)=Anm(p (5.5)
9 V n 2 (55)

where n is the refractive index of the material, N/V is the number density of birefringent

units, and {a-, ay,, a,} are the diagonal components of the polarizability tensor of the

birefringent unit in the frame of reference of the sample orientation. In general, the

orientation of the phenyl rings are expected to mirror that of the chain backbone, since

q(2) and q(P) are parallel in the energetically favored conformation of the styrene unit.

However, libration of the phenyl rings leads to a reduction in orientational order for the

rings relative to the chain backbone, so the overall birefringence must be written as the

sum of the contributions of the phenyl ring and the backbone. For polystyrene, the

individual birefringences Anmax were calculated according to eq. 5.5 using the

polarizability tensors of Abe, et al. E'7 for the phenyl ring (a,=-2.981, a,,=0.383,

a,,2.598) and the backbone (a,=1.741, ay,=-0.953, azz=-0.788) and by using a refractive

index for PS ofn=1.591181. This leads to the relationship between An and the

orientational order parameters for the chain backbone <p2(2)> and phenyl ring <P2 P)> :

n = [23.5(p2))- 40.2(JP))] (5.6)

where N/V is the number density of monomer units in A"3.

5.3 Simulation Procedure

The force field used in these simulations is based on the united-atom model

proposed by Mondello et al.[19] They showed that this united-atom force field

successfully reproduced two independent sets of X-ray data for PS within experimental

error. In the united-atom force field, each carbon and associated hydrogens of the PS

molecule are lumped together into a single site and labeled as indicated in fig 5.3. In

order to adapt the Mondello force field to our existing code, the bond lengths along the

backbone of the polymer were modeled as harmonic springs rather than as rigid bonds.

The force constant was chosen to be consistent with the General Amber Force Field of
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Wang, et al.[201, and did not introduce any measurable changes in the average bond

lengths and angles. The force field is as follows:

U= - kb (bb )2 0 2+ + 1k [1-cos30]
backbone 2  backbone 2 sin2  backbone 2
bonds angles torsions

+ 4 k ( - o•,)2 + k°/PO2 + k(xi - xo)2 + k cos 2 (Ti T) (5.7)
rings i=1,3

12 6
+ - 4e ,

sites i,j J

In the equation above, the first term is the harmonic bond stretching potential, applied to

the backbone bonds, where bo0= 0.153 nm and kb =3761 kJ/mol/nm2. The C-C bonds in

the phenyl ring were fixed at 0.140 nm and the C2-C3 bond connecting the phenyl ring

to the chain backbone was fixed at 0.151 nm. The second term is the harmonic bond

angle bending potential, applied only to the C-C-C angles in the chain backbone. For the

angle C1'-C2-C1, 00=1.91 rad and ke=502.1kJ/mol; for the angle C2'-C1-C2, 00o=1.91 rad

and k0=527.2 kJ/mol. The C-C-C angles in the phenyl ring were fixed at 2.095 rad. The

third term is the backbone torsion potential, which accounts for all intramolecular

interactions between atoms separated by three bonds; , is defined to be zero in the trans

state and ko=5. 86 kJ/mol. The fourth through seventh terms are specific to the phenyl

rings. The fourth term arises due to bending of the phenyl ring relative to the chain

backbone and has three contributions per ring: 4,l--1.91rad and k,=-502.1kJ/mol for bond

angle C1-C2-C3; o0,,=2.095 rad and ký,=585.8kJ/mol/rad2 for bond angles C2-C3-C7 and

C2-C3-C8. The fifth term is the out-of-plane bending energy, where (9i is the angle

defined by C2-C3-C6 and koop=334.7 kJ/mol/rad 2. The sixth term is the improper torsion,

which serves to maintain the chirality of the molecule. Xi is the angle between the normal

to the plane defined by C 1'-C2-C1 and the bond C2-C3. Depending on the chirality of

the C2 site, the equilibrium angle Zo will be either 0.6116 rad or 2.530 rad. The force

constant is k,=209.2 kJ/mol/rad2. The seventh term is the ring torsion, where ri is defined

by projection onto the plane normal to C2-C3 of the angle between the normal to the

ring, and the vector connecting sites C1 and Cl', and k =8.37 kJ/rad 2/mol with ro=1.571
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rad. The last term is the Lennard-Jones (LJ) potential, which is used to compute the

nonbonded interactions between all united atom pairs that are on different chains or that

are separated by four or more bonds on the same chain. The nonbonded potential

parameters are: Cl, a=0.385 nm and E=0.5021 kJ/mol; C2, a=0.370 nm and s=0.3766

kJ/mol; CX, X :1,2, 0-0.370 nm and e=0.5021 kJ/mol. Lorentz-Berthlot mixing rules

were used for interactions between all unlike sites. The cut-off distance for all

nonbonded interactions was 0.770 nm, or twice the largest value of a. A corresponding

long-range correction based on g(r)=l, where g(r) is the radial distribution function

between any pair of atom types, was applied to the simulation.

The polymer chains are 30 mers long, regio-regular head-to-tail, atactic with a

meso dyad fraction of 0.5±0.03, and terminated with a CH 3 group at each end. Thus,

each molecule has 61 backbone sites and 30 phenyl rings, for a total of 241

sites/molecule. Each individual system consists of four such chains. All results were

averaged over six independent simulations. The root mean squared values of the radius

of gyration <r2>/1 2 for samples of 40-mer and 80-mer polystyrenes were also simulated,

to confirm agreement in conformational properties between our simulations and those of

Lyulin and Michels[211, who also used a version of the Mondello force field, modified to

relax the rigidity of the phenyl ring angles.

1' C1

Figure 5.3. Diagram of nomenclature for a styrene monomer
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The acceptance criterion for the SGMC simulation of uniaxially oriented

molecules employed in this work differs from the corresponding isotropic NPT

simulations by the addition to the Hamiltonian of the measure of chain backbone

anisotropy, P2(2), and its thermodynamic conjugate, the scalar physical potential p. The

relative probability of a configuration is related to the thermodynamic variables as

follows:

In(p) oc -[U(r) + PV - u P(2) +NlnV (5.8)

The value of P2(P) was not constrained since the time scale of ring libration (i.e.

the f relaxation) is much faster than that of the chain backbone. Addition of a term

containing P2(P) to eq. 5.8 was found to bias the orientation of the rings relative to the

chain backbone, thus producing improbable conformations.

For the purposes of mechanical property determination, the [NoTp] ensemble was

used, with the following Hamiltonian:

In(p) oc -f8 U(rN)+ Z cr ,A -,,,( z',z,,) +NInV (5.9)
ij

where [x',y',z'] is cycled over [x,y,z], [y,z,x], and [z,x,y]; the axes of the

simulation box were kept orthogonal. The change in the normal stress difference

attributable to the applied physical potential (,) was determined according to the eq.

3.41. Because the strains were small, <P2(2)> did not change significantly, and the

contribution of this term to the stress was unimportant.

Simulations of homogeneously oriented systems (using eq. 5.8) were run for

<P2(2) >ystem=0.0, 0.1, 0.2, 0.3, 0.4 and 0.5. Simulations of inhomogeneously oriented

systems that account for the partial loss of orientation at the chain ends were run for

<P2(2)>system=0.3 andf= 0.0, 0.4 and 0.5. All simulations were run in four stages: (1)
generation of independent configurations that match the target <P2(2)>system through the

application of an appropriate value of p for PS "ghost" chains (i.e. with LJ potentials

turned off), called "amorphization"; (2) application of the LJ potentials to equilibrate the

PS melt at the target <P2(2)>system at T=550K in the [NPTp] ensemble, called "melt
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equilibration"; (3) generation of glassy samples using a series of [NPTp] simulations by

reducing temperature from 550K to 300K while the value of the physical potential P was

continuously updated to maintain <P2(2)>system, called "quench"; and (4) evaluation of the

elastic modulus using the relationship between stress and strain obtained from

simulations with five applied stresses ~x, ranging from -30MPa to 30MPa in the [NaTla]

ensemble, called "glass deformation".

In each of stages (1) to (3), the physical potentials (y) were iterated using a

procedure reported by Bathe and Rutledge[22], based on the method developed by

Lyubartsev and Laaksonen[231; for inhomogeneously oriented systems (f#0) the potential

p was applied only to population 2, the central fraction (1-f) of the chain. Stage 1 was run

for 20,000 MC cycles; stage 2 was run for 175,000 to 250,000 cycles; the temperature

was reduced in stage 3 from 550K to 300K over 750 steps of 200 cycles each; elastic

properties were evaluated in stage 4 over 450,000 cycles. Because the systems rapidly

loses orientation in the absence of the applied physical potential, the value of p obtained

from the cooling stage was applied and held constant during the application of stress in

stage 4. The equilibration was judged on the basis of a stable value of orientation without

drift in the value of p for stages 1 and 2; in subsequent stages, convergence of volume

and energy was used as an indicator of equilibration. Table 1 summarizes the simulation

protocol described above.

During any given simulation, the following Monte Carlo moves were employed:

(1) site translation; (2) reptation; (3) re-bridging; (4) end rotation; (5) pendant move; and

(6) volume change. Other than the pendant move, all of these moves were performed as

described in Chapter 3. The added pendant move attempts at random to perturb one of

the following: a ring torsion, an out-of-plane bending angle, an improper torsion, or a

ring bending angle. The maximum sizes of these perturbations were continuously

updated to maintain 50% acceptance. The attempt frequency and typical fraction of

accepted moves (for the isotropic melt) were, respectively: site translation, 0.44 and 0.50;

reptation, 0.1 land <0.001; re-bridging, 0.1 land 0.01; end rotation, 0.11 and 0.50;

pendant move, 0.22 and 0.50.
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The decorrelation times of the end-to-end vectors for polystyrene are extremely

long compared to our earlier polyethylene simulations, due in large part to the absence of

variable connectivity moves, which were found to be ineffective for PS due to the

presence of the large phenyl side group. A similar problem was previously encountered

with variable connectivity moves for polypropylene, and resolved through the use of an

expanded ensemble in Hamiltonian space[24]; this was not attempted here. The longest

relaxation time, and consequently the time for orientation to react to the application of a

given p (i.e., for orientation to propagate throughout the polymer chain), scales as the

square of the chain length, ni2. Thus, a trade-off was necessary between the length of

chain that could be equilibrated in an oriented state practically, and the length of chain

required to obtain quantitative estimates of mechanical properties (as evident below).

The current simulations of 30-mer PS were each run in parallel over the course of several

weeks on 1.6MHz Pentium processors; these 30-mers were sufficient to reproduce

realistic densities and orientation in the glassy state.

As an aside, the original Mondello force field was developed using simulations in

the NVT ensemble and was not confirmed to yield the correct pressure. In applying this

force field to studies of 80-mers of polystyrene in the NPT ensemble, Lyulin and

coworkers found it necessary to introduce a pressure correction in order to match the melt

phase density. Even so, the density of the polymer glass so obtained underestimates the

experimental density by about 2% (see figure 3 of ref. 21); as reported below, our

simulation densities range from about 3% above to 2% below the same set of

experimental values. Since we obtain comparable agreement with the experimental

density data in the glassy state for these 30-mers, we used the force field without this

pressure correction.
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Table 5.1. Simulation Protocol

Stage Simulation Parameters

1: Amorphization T = 550K

p - iterated

2: Melt Equilibration P = 0.1MPa

[NPTNchP] T = 550K

p => iterated

3: Quench P = 0.1MPa

[NPTNch,] 300K < T < 550K

p => iterated

4: Glass Deformation ca = aq = 0.1MPa

[NcTNchp] a. - y (MPa) = -30,-15, 0,15, 30

T(K) = 300K

p => value from previous step

5.4 Results and Discussion

5.4.1 Melt Configurations

The ensemble average chain orientations are shown in figure 5.4 as a function of

the applied potential for the melt equilibration stage. The absolute values of p obtained at

the end of the cooling stage did not differ significantly from those of the melt stage;

however, due to lack of ergodic sampling at the lower temperatures of the glassy state,

these p values should be viewed only as "locally relevant" to a particular region of phase

space at low temperature. Since p was iterated to maintain a specific orientation for each

sample, there are a distribution of values corresponding to each value of <P2>. For the

PS melt, figure 5.4 is analogous to figure 3.1. In that case, the sampling of polyethylene

was much more robust and did not suffer from equilibration problems.
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values for p that produced the specified values of <P2>.
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Fig 5.5 shows the distribution of orientation as a function of position along the

chain, for the cases of a homogeneously oriented system (f=0) and an inhomogeneously

oriented system (f=0.5), generated during the melt equilibration stage. The most

important aspect of fig. 5.5 is that the average distributions indicative of effective

sampling of the possible conformations at each level of orientation and at each position

along the chain. As can be seen, the application of the physical potential is very effective

in creating the desired orientation distribution; the resulting plots may be compared with

the hypothesized samples shown in Fig 5.1. However, the use of a single orientation

potentialy through the chain does create some artifacts in the contour orientation. This is

most apparent for the orientation at the chain ends and for the abrupt transition between

the oriented and isotropic portions for the case off=0.5. The value of p may, in general,

depend on the proximity of the segment to the chain ends or to the change in potential.

Due to the connectivity of the chains, these effects are distributed over several segments

and account for the curvature in the orientation distributions. These effects could be

corrected using a chain position-dependent p, but this was not done here since the effects

are relatively minor and sampling for a position-dependent would be extremely difficult.

5.4.2 Glass Transition

Figure 5.6 shows a cooling curve for the isotropic polystyrene melt obtained from

the quench stage. From this, we estimate a Tg of 415±30 K for this model of polystyrene

using data between 300 K and 500 K. This is somewhat higher than the value of 380 K

obtained by Lyulin et al 25]. This difference is most likely due to the addition of the

pressure correction term and the lower density obtained by Lyulin and Michaels [211, as

discussed above. Although our results indicate a high value for the glass transition, the

Tg is sensitive to the range of data used for the determination of the melt phase coefficient

of thermal expansion, because of the large volume change and the rapid quench rate;

excluding values above 480 K provides a glass transition temperature of about 390 K,

which is very close to the expected value of 380 K.
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Figure 5.6. Cooling curve for atactic PS, MW=3135 (30-mer). The resulting Tg is

approximately 415±30 K. Lines were fitted using data between 300K and 500K.
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The density obtained for glassy polystyrene chains of 30-mers and 80-mers at

300K was about 1.08 g/cm3, comparable to the literature value of 1.05 g/cm3 for pS[261;

simulations of polystyrene chains of 20 mers gave a density of 0.95g/cc, which was

deemed to be too low to be representative of polystyrene. The densities obtained

through our simulations ranged from 1.08 g/cc to 1.03 g/cc, with the oriented systems

generally having lower density compared to the isotropic system.

5.4.3 Birefringence

Figure 5.7 shows the variation of birefringence with orientation. The overall

birefringence was obtained using eq. 5.5 with the coefficients obtained from Abe [17] and

the orientation averages independently obtained from the simulations. By extrapolation to

<P2>=1.0, we obtain a value of Anmax (the value of birefringence at full orientation) equal

to -0.0489. This is in excellent agreement with the value of -0.048 obtained by Vancso,

et al. using WAXS and birefringence[ 271 from a similar study of the relationship between

birefringence and average chain orientation over this same range.

5.4.4 Elasticity of Homogeneously Oriented Polystyrene

The determination of the modulus E33 was made from the results of the [NaTy]

simulations through fitting to the relationship:

r3 = E3363 (5.10)

where e3=8Lx/Lx and atmospheric pressure was maintained in the lateral directions, y and

z. Voigt notation is used for Young's modulus. The strains obtained from the

simulations spanned the range +/-1.0% for the most oriented PS systems, and +/-2.0% for

the isotropic systems, well within the range of elastic behavior for PS[28].
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Figure 5.8 shows the increase of the Young's modulus E33 with increasing

birefringence, or equivalently <P2>, for simulations with homogeneously distributed

orientation, f-0. Looking first at the results for simulations without any orientational bias,

i.e. -An=O, the simulated value is E33=1.7 GPa. This falls significantly below

experimental values of the isotropic Young's modulus, which are typically in the range of

2.3-3.3GPa[ 26]. However, additional simulations of 80-mer PS predict a modulus of

2.3GPa for the isotropic case, which agrees significantly better with the experimental

values and with the value of 2.9GPa obtained by MD simulations of 160-mer chains at

the same temperature by Lyulin, et al[29]. From this, we conclude that the downward shift

of 0.65 GPa for the simulation results using 30-mer PS are due to the low molecular

weight, relative to the experimental systems.

Secondly, Figure 5.8 shows the variation of the simulated modulus with

increasing birefringence. Despite the downward shift relative to the experimental data

attributed to molecular weight mismatch, the trend in modulus with increasing

birefringence agrees well with the experimental data of De Francesco and Duckett[51. The

relevant experimental values for this comparison are the lowest values of modulus, which

exhibit the least amount of contour inhomogeneity. The simulated values of the modulus

increase by 1.2 GPa between -An=0 and 0.025, compared to approximately 1.6 GPa for

the experimental data over the same range. In each case, there is an approximate

doubling of the Young's modulus for systems with a birefringence An=-0.025 relative to

the isotropic systems. As mentioned earlier, the decision to simulate 30-mers was made

as the result of a trade-off between practical considerations required for accurate

equilibration of orientation and quantitative accuracy of properties such as density for the

isotropic system. The downward shift in mechanical properties appears to be systematic

and entirely due to molecular weight. Nevertheless, we believe these results are

promising with regard to the ability of the SGMC method to reproduce the relationship

between two macroscopically observable quantities, birefringence and tensile Young's

modulus. The variation of modulus in fig. 5.8 is discussed below.
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Figure 5.8. Increase of tensile modulus with the birefringence from simulations and

experiments. Simulations assuming homogeneously oriented (f0O) 30-mer PS (open

circles); experimentally observed measures of tensile modulus versus birefringence

(filled circles) for samples of PS reproduced from figs. 3 and 4 of ref 5. Variation in the

moduli can be attributed to the processing conditions, as explained in the text.
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5.4.4 Elasticity of Inhomogeneously Oriented Polystyrene

In order to explain the range of modulus values they observed for samples with similar

birefringence, De Francesco and Duckett[5 ] hypothesized the presence of inhomogeneities

in the distribution of the backbone orientation of the chain, as originally proposed by

Doi[ 7]. The tensile moduli obtained by De Francesco and Duckett[ 5] are shown in Figure

5.8. At any given birefringence, samples that were more highly drawn at a higher

temperature exhibited a higher modulus. De Francesco and Duckett[51 concluded that the

existence of inhomogeneity in the chain is responsible for increase the mechanical

properties, i.e., that the increase in modulus due to a more highly oriented center of the

chain more than offsets the decrease due to less highly oriented chain ends. Fig 5.9

shows the increase in modulus with the increase of the fraction of chain with relaxed

orientation for the cases selected in the Theoretical Approach - Application to

Polystyrene. For purposes of comparison, the simulation results are shifted by 0.65 GPa

to compensate for the average downward shift of the 30-mer moduli. The increase of the

modulus due to inhomogeneous orientation predicted by the simulations is consistent

with the increase in the modulus observed experimentally for samples drawn at high

temperature[5 .

For comparison, we provide an analysis of the relationship between the

distribution of orientation and mechanical properties using the Aggregate Model of

Ward[30]. This model describes a polymer system as an aggregate of identical, non-

interacting mechanical units. Parameterization proceeds by equating the mechanical

properties of an individual unit to that of the fully oriented material. The mechanical

properties of the aggregate can thus be expressed as a function of the orientation

distribution of the individual mechanical units. The Aggregate Model predicts that the

change in the modulus with increasingfat a fixed birefringence is proportional to the

quantity (2s13 +S44 - S11 -S33), where the sy are compliance constants in Voigt notation.

Experimental estimates of this quantity for PS indicate that it is negative [2' 31, 32]. This

means that the Aggregate Model predicts a decrease of E33 with increasing

<P2(2)>population2 at constant <P2(2)>system, in contradiction to the experimental results and
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the simulations reported here. This qualitative difference underscores the value of

atomistic simulations to understand phenomena such as the effect of the distribution of

orientation on the mechanical properties of polymers.

5.5 Conclusion

There are two novel aspects to the methodology presented here to analyze the

connection between the structural and mechanical properties of PS. First, there is the use

of an atomistic-level Monte Carlo method to probe the properties of glassy PS. Second,

there is the ability to constrain the orientation of the polymer chains to mimic desired

states of anisotropy. Both of these aspects are necessary to provide conformations

tailored to exhibit features of homogeneously oriented (f-0) and partially relaxed (f(O)

PS chains. This method is unique in that it allows us to access systems characterized by

partially relaxed orientation, which is not typically accessible using MD. This provides

the opportunity for a more complete understanding of the effects of microstructure on the

mechanical properties.

The simulation results obtained for oriented PS support the explanation of De

Francesco and Duckett[s ] for the variation of modulus with processing conditions due to

partial relaxation in the more highly-drawn, high temperature systems. Our results show

quantitative agreement with the experimentally observed increase of tensile modulus with

overall orientation as measured by birefringence. Significantly, the simulations also

reproduce the experimentally observed increase of the tensile modulus with

inhomogeneity by evaluating different conditions of partial relaxation of the PS chains.

Atomistic simulations are shown to be particularly useful in the case of PS,
because they provide qualitatively different results from the behavior predicted by the

Aggregate Model. We believe this difference is indicative of the importance of the

distribution of orientation along the chain and the nature of interactions between different

parts of the chain. The importance of the atomic-level interactions is not unique to PS,
and we expect that the additional information provided through atomistic simulation will
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similarly provide insight to the structural problems of other polymers. Because of its

flexibility, the SGMC methodology can be tailored to produce spatial, or other,

heterogeneities, thereby providing the tools to investigate a wide variety of polymer

structural problems at the atomic level. This ability to mimic conditions inaccessible by

direct MD simulation provides not only the means to evaluate their structural

thermodynamic properties, but also a starting point for MD simulations to probe their

dynamic properties.

5.6. Appendix - Orientation of Polystyrene using Second and Fourth

Legendre Coefficients

The original strategy for simulating the results of De Francesco and Duckett 5s' 61

was to homogeneously constrain the orientation of PS molecules using an expanded basis

expansion suggested by equation 3.17. Using the second and fourth Legendre

coefficients provides the ability to describe a more complex set of orientation

distributions. Moreover, since the birefringence depends only on the second Legendre

coefficient, the fourth Legendre coefficient could be increased or decreased to mimic the

possible spectrum of microstructures that correspond to a given birefringence value. The

strategy for the simulations differed from those described in this chapter in that the eqn

5.8 was modified to include an additional term:

ln(p) oc - [U(rN)+PV -_1 2  P(2) _ p4 P4 (2) +NlnV (5.11)
i,j ij

where the p's are subscripted to designate which Legendre coefficient is being

constrained and P4(2) is the Fourth Legendre coefficient of the chain direction vector,

defined analogously to P4(2) in eq. 5.4:

P) 35(q"m) )4 15(q"') 2 3(5.12)p(m) - IX Yx ) (5.12)8(q4m)) 4  4(qm) ) 2  8
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For simplicity, the Fourth Legendre coefficient will be denoted P4. The inhomogeneous

systems described earlier in this chapter correspond to systems with higher values of P4

than for the homogeneous cases.

Simulations were run using the protocol described in Table 5.1 to produce

systems with values of P4 chosen to be significantly higher, and lower, than the value of

the unconstrained value for P2=0.2. Systems with unconstrained P4 correspond to the

homogeneously oriented simulations performed above; the unconstrained value of P4 in

this case was 0.07. For the constrained simulations, values of P4=0.2 and P4=-0.05 were

chosen.

Figure 5.10 shows the change in modulus that accompanied the changes in the

value of P4. The modulus of the high- P4 system did not show a significant difference

from that of the unconstrained P4 system. The low- P4 system showed a noticeable

decrease in the modulus with respect to the other systems. Although this result follows

the trend observed by De Francesco and Duckett that lower values of P4 correspond to a

decreased modulus, it must be recognized that none of the systems in that study

correspond structurally to this case.

One could ask whether the degree of change in the structure was significant

enough to expect the changes in modulus observed above in the case of inhomogeneous

orientation. In fact, the value of P4 for the P2=0.3 system studied above in going from

f=0 to f=0.5 only increases from 0.11 to 0.18. Therefore, in terms of the value of P4 the

differences were much more significant here than for the introduction of inhomogeneity

detailed in this chapter. This serves to further highlight the importance of structural

inhomogeneity, such as that introduced through polymer dynamics, to the properties of

polymer systems.
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Figure 5.10. Variation of modulus obtained by constraining the values of P4.

Unconstrained values are shown for <P2>=0. 1, 0.2, and 0.3 to provide context for the

shift in moduli; constrained values of <P4>=0.2 (triangle) and <P4>=-0.05 (upside-down

triangle) are shown for <P2>=0.2.
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Chapter 6

Conclusion and Future Work

6.1 Summary

The modeling and conceptual understanding of non-equilibrium systems present

enormous challenges. One reason is that non-equilibrium conditions are characterized by

what they are not, i.e. equilibrium, and not by virtue of the specific characteristics which

are not at equilibrium; each non-equilibrium condition is unique. Although the

constantly increasing computational power is an important component of the ability to

use methods such as Monte Carlo simulations for these, it is just as important to devise

efficient and creative methods to apply this power; brute force calculation is only useful

in the simplest of cases. This failure of brute force methods is a common feature of

highly interacting systems, for which it is possible to sample only with difficulty a

sufficient portion of phase space, and thus obtain the answers to outstanding problems.

This is especially true for polymer systems, because of the huge number of degrees of

freedom and the highly interactive nature of polymer systems, i.e. their connectivity.

This thesis has proposed a number of interconnected methods and tools to investigate

non-equilibrium systems, with an emphasis on the application to oriented polymer

systems. Below, I summarize the most important contributions to the achievement of the

goals outlined in the first chapter of this thesis. These goals are:

1. Representation of experimental non-equilibrium information.

2. Bridging atomic-molecular length scales.
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3. Representation of inhomogeneous non-equilibrium systems.

4. Demonstration of ability to reproduce macroscopic observations

6.1.1 SGMC representation of experimental non-equilibrium information.

The first, and most fundamental of these goals is the question of how to interpret

experimental data. While the tools developed here are general to atomic level

measurements of structure, I have focused on the specific problem of interpreting atomic

level measurements of polymer orientation provided by birefringence measurements.

The measurement of birefringence provides an average measurement of the average

second moment of the orientation of specific units of the polymer. In the case of PE, this

orientation is approximated as that of the chain itself; for polymers with side-groups, the

relationship is more complex. By incorporating this information in a consistent manner,

without a priori assumptions about the meaning of the data, we can allow the

measurements guide us to an interpretation of the underlying structural relationships.

The SGMC method is one such method which allows the incorporation of data in a way

that ensures the uniqueness of the interpretation by specifying that the minimum-energy

solution that is consistent with the experimental measurement and the known information

about the system be chosen.

The SGMC method is shown in Chapter 3 to provide the 'best' interpretation of

non-equilibrium experimental information. In this case the 'best' interpretation is the

one that is most likely given only what we know about the system. In the specific cases

of oriented polyethylene, I infer the microstructure from a single measure of anisotropy

obtainable from the birefringence measurements, and from a reliable force field that

describes the intrinsic properties of PE. The SGMC method is shown to be the

appropriate framework for the interpretation of measurements of the non-equilibrium

system by providing an ensemble of configurations that is the lowest free energy state

that is consistent with all of the information we know about the system. Because of the

thermodynamic consistency of the method, we can use the ensemble of configurations to
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understand aspects of the system that are not, or cannot, be measured. Such attributes are

density, molecular shape and size, torsion distribution, orientation at arbitrary length

scales, free energy, and normal stress. This final attribute can be used in conjunction

with the birefringence to obtain the stress-optical coefficient C. The veracity of our other

structural inferences is supported by the fact that the value of C obtained in this study

matched its experimental value.

Another aspect that is apparent from my results is the delineation of two modes

of orientation available to a polymer chain. This is the orientation of the chain as a

whole, followed by the distortion of the chain to obtain further orientation. The

application of the SGMC method shows that the transition to distortion of the molecules

occurs at an orientation of P2 0. 15. This point is the transition of a number of

interrelated phenomena, which include the rapid increase in the energy of orientation, the

increase in the radius of gyration, and the increase of the fraction of trans torsions.

Again, the SGMC method allows a quantitative assessment of the onset of the transition

between these different orientations as well as a quantitative estimate of the degree to

which torsions, molecular dimensions, and free energy increase upon the onset of

distortion. While the verification of these structural changes is not yet possible, the

degree to which these results agree with future structural analyses will test the usefulness

of a single measurement of birefringence for the characterization of microstructure.

6.1.2 Bridging Atomistic-Molecular Length Scales.

In Chapter 4, I have addressed the present impossibility of using atomistic

simulations to directly obtain macromolecular characteristics for polymers of industrial

interest. This stems from the fact that of carrying out an atomistic simulation of a chain

hundreds of thousands of repeat units in length is orders of magnitude beyond current

computational capabilities. I provide a solution to the challenge of bridging these scales

by considering the intrinsic behavior of a portion of a polymer chain. This information is

used to calculate a coarse grain descriptor that preserves the important characteristics of
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the system while averaging out unnecessary atomic-level details. The selected

characteristics common to both oligomers and macromolecules is the orientation and

persistence in each principal direction a, represented respectively by the parameters As

and r.. These parameters provide the means for calculating the size and shape of an

arbitrary molecular system at the simulated oligomer conditions.

A correction was also introduced for the possible short-range deviation from the

exponential decay of orientation assumed by the method. It was therefore recognized that

there may be k* terms that require correction due to bonded interactions. These

parameters were found to be consistent for oligomers of polyethylene covering an order

of magnitude from C12 to C234, and gave results that matched the measured simulation

results of the highest molecular weight system.

The proposed method allows the determination of the coarse grain descriptor of

polymer molecules, the configuration tensor <QQ>, for very long chains that are beyond

the scope of atomistic simulations alone, which is used in equations of state to determine

the stress on the systems. This method extends the SGMC method elaborated in Chapter

3 since it relies on the information obtained from an SGMC simulation of oligomers in

order to determine the macromolecular properties of the system. Therefore, it preserves

the determination of properties based on the addition of no extra information; the

application of the method relies on a similar lack of structure that is not a part of the

experimental measurement. Similar to the results of the previous section, the degree to

which these results agree with future structural analyses, i.e. simultaneous SANS

measurements, will test the usefulness of a single measurement of birefringence for the

characterization of the conformation at the macromolecular scale.

6.1.3 Representation of inhomogeneous non-equilibrium systems.

In Chapter 5, I make a concrete application of the SGMC method to experimental

data by exploring the hypothesis that the relaxation processes in polymer systems lead to

measurable differences in the mechanical properties of the system. Specifically, the
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experimental data document an increase in the Young's modulus that accompanies the

increasing inhomogeneity of the orientation. The ability to impose the characteristic

inhomogeneous orientation of this system in a MC simulation highlights the flexibility of

the SGMC method to apply the relevant constraints to a system. Due to the nature of the

SGMC method, these constraints can cover any arbitrary distribution of average

orientation; the modeling of inhomogeneities of orientation along the chain contour is

only one possible application.

The increasing modulus with degree of orientation as measured by birefringence,

although consistently lower than the experimental modulus, reproduced the trend

quantitatively. More importantly, the increase of the Young's modulus with increasing

inhomogeneity was also reproduced quantitatively. This latter result is important because

the results of inhomogeneity depend on the specific chemical nature of the polymer;

inhomogeneity could very well decrease the modulus in some cases. In fact, for

polystyrene, the Aggregate Model predicts that inhomogeneity should decrease the

modulus, in contrast to the experimental and simulation results. Therefore, the atomistic

simulations presented here are necessary to elucidate the properties due to the chemical

specificity of the system, and to understand the development of mechanical and optical

properties. In this case, the simulations using the SGMC method provide a consistent

link between the measurements of orientation and of mechanical properties. This

provides supporting evidence for the ability of this method to be extrapolated to provide

properties for other cases in which direct measurement is not feasible.

6.1.4 Demonstration of ability to reproduce macroscopic observations

Whenever possible we make comparisons between the computational models and

the experimental systems. The most important reproductions of data were mentioned

above as part of the previous goals. However, since our ultimate goal is to apply

simulations to systems that cannot be measured, it is important to understand the limits of

our ability to reproduce experimentally observable characteristics. The most concrete
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examples of this are the measurement of the stress-optical coefficient of polyethylene,

and the Young's modulus of oriented PS.

In Chapter 3, the stress-optical coefficient C was determined from the application

of an orientation potential to the system. Neither the birefringence nor the stress is a

simple function of the orientation potential; both quantities were evaluated for a given

orientation potential. We found that although the low MW systems underestimated the

stress-optical coefficient, its value asymptotically approaches the literature value for the

higher MW systems; a MW of 100 repeat units appeared sufficient to reproduce this

value. This sets a lower limit for simulations that can properly reproduce the stress-

optical relationship.

In chapter 5, I focused on the ability to reproduce aspects of the mechanical

properties of polystyrene for a number of structural conditions. The underestimate of the

Young's modulus can be attributed in part to the fact that the simulations used 30-mer

oligomers, which lie below the point at which the mechanical properties in the glassy

phase become independent of the molecular weight. While this was recognized as a

potential problem, higher MW simulations were not run because of the expense of PS

simulations described earlier. Nonetheless, the simulations showed quantitative trends

that matched those of the experimental systems. Just as with the stress-optical coefficient

above, useful estimates of the large MW polymer can be obtained even at these

oligomeric sizes, although care must be taken in the application of specific numeric

values.

Nevertheless, the success of these simulations to quantitatively reproduce

experimentally verifiable properties in the first case, and trends in the second case, argue

strongly for the usefulness of computational simulations to understand orientation

phenomena that are unobservable in the laboratory, using the SGMC methodology

elaborated here.
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6.2 Future Work

In many respects the topics of this thesis represent forays into completely

unexplored territory. As is typical in such cases, the number of new questions raised by

this research is as great as the number of answers it provides, leaving open many possible

avenues for future work. The future work encompasses areas that were left unresolved

because of constraints on time, computational resources, or conceptual development.

Below, I outline what I feel are the most important unanswered or undeveloped questions

brought up over the course of this research.

6.2.1 Expansion of Variable-Connectivity Moves

Variable connectivity moves, such as end-bridging provide the means for

investigating relatively high molecular weight polyethylene. However its application to

polymers with side groups is severely limited because of the steric hindrances. Such

problems were the fundamental cause of the inability to simulate higher molecular weight

PS in Chapter 5. The ability to extend the variable connectivity moves, through a more

complex reformulation of the attempted moves, would greatly enhance the study of linear

polymers with side groups. Even minimal acceptances (-0.01%) would provide a

tremendous increase in the ability to investigate more complex polymer systems such as

PS. The use of expanded ensembles has recently been applied to polypropylene to

provide efficient sampling for a nonlinear polymer molecule[ .

6.2.2 Expansion of the use of moments

The descriptions provided in this thesis were based primarily on the second

legendre coefficient of the orientation; the application of higher Legendre coefficients in

a homogeneous system, as could be measured by IR or Raman, has not been explored.
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Such effects would be most important in cases where the higher moments give

indications of bimodal distributions of orientation. Another possible avenue in which a

bimodal distribution occurs is the suggested exploration of orientational inhomogeneity

based on the identity of the chain, i.e. long vs. short. The investigation of the behavior of

chains whose inhomogeneity is based on molecular weight would give insight into the

formation of the "shish" morphology. The methodology of this investigation would

follow that of Chapter 5, except that the populations contributing to the overall

orientation would be determined according to chain identity in place of contour position.

6.2.3 Application of results to MD simulations

Part of the motivation of using MC simulations to describe the polymer system is

the relative efficiency with which they can reach a desired state point. Therefore, if one

is interested in the dynamic properties of oriented systems, the methods detailed here can

provide a starting point for a MD simulation that would be otherwise inaccessible. Such

studies could probe the necessary orientation to provide crystallization. The ability of

providing inhomogeneous systems allows hypothesized formation of the shish-kebab

polymer morphology to be explored in conjunction with the bimodal orientations

mentioned above. As explained by T6th and Baranyai[2], the thermodynamic consistency

of methods such as SGMC allows the potentials to be directly applied to subsequent MD

simulations in order to investigate the dynamic behavior of these constrained systems.

6.2.4 Use of simultaneous measurements

One aspect of the SGMC method that is promising for the determination of

structure is its ability to incorporate measurements of orientation at different length

scales. Different couplings of techniques to provide this information were provided in

the Chapter 2. Although such measurements exist, there are complications that precluded
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this direction of inquiry here. The most important is that the measures for PE would have

to also account for the added complication of crystallinity. For this reason the

development of variable-connectivity techniques applicable to non-crystallizable

polymers (i.e., those with non regular side groups) would be especially beneficial.

6.3 References

[1] V.K. Kuppa, P.J. in 't Veld, G.C. Rutledge, Macromolecules 2007, 40, 5187.

[2] G. T6th, A. Baranyai, JPhys. - Condens. Mat 2005, 17, S 159.

157


