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Recent work has shown that viscous and diffusive processes have a significant effect on
MPD thruster performance for some geometries. In particular, viscosity has been shown
to drastically reduce the flow exit velocity through shear forces and the establishment of a
strong adverse pressure gradient by excessive heating of the heavy species. This research
has developed a two-dimensional, two fluid model which offers a consistent treatment of
the effects of viscosity and diffusion through a modified Navier-Stokes formulation of the
governing equations. Also included in the model are the effects of ambipolar diffusion,
ionizational nonequilibrium, and collisional energy transfer between electrons and heavy
species. The system of equations is solved numerically by Time-Split MacCormack's
Method, which is an explicit, two step predictor-corrector algorithm accurate to second
order in both time and space. In order to obtain an initial understanding of the physical
processes involved, solutions are achieved with a frozen magnetic field based on results
from previous quasi one-dimensional studies, a condition which will later be relaxed.
Results for the baseline case indicated that the flow was rapidly accelerated to supersonic
velocities through a thin region at the inlet, where the fluid density in particular decreased
dramatically. The development of velocity, thermal, and diffusive boundary layers was
examined throughout the channel, and it was found that the flow became fully developed
by half the channel length. Viscosity and collisional energy transfer caused the heavy
species temperature to increase to the order of the electron temperature by the end
of the channel, a phenomenon which has been observed in experiments. In addition to
examining the flow variables, the magnitudes of the terms in the governing equations were
compared to identify the dominant effects in different regions of the channel. An estimate
of the total power loss to the electrodes due to heat conduction and ambipolar diffusion
was produced, and the flow results were compared to those obtained from previous one-
dimensional work.
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Chapter 1

Introduction

1.1 Electric Propulsion

Nearly all space propulsion needs are currently filled by chemical propulsion systems,
which are limited in performance by the energy stored within the propellants used. One

way to overcome this limitation is to increase the propellant exit velocity through addi-

tional energy supplied from an external source. Basic electric propulsion devices, such

as the electrothermal resistojet and low power arcjet, use electric power from an outside

source to impart additional thermal energy to the flow, thereby increasing the exit ve-

locity through gasdynamic forces. More advanced methods of electric propulsion heat

the propellant to an ionized state, and then accelerate it through applied or induced

electromagnetic forces. High efficiencies and specific impulses of more than 1000 seconds

can be achieved in this manner, at the cost of the added weight of power generating and

conditioning systems. The low thrust generated by these devices, however, restricts their

employment to space applications only, such as satellite stationkeeping, orbital maneu-

vering, and interplanetary missions. At present, resistojets, arcjets, and ion engines have

been manufactured and utilized in space, while more exotic methods such as electromag-

netic and laser propulsion are still primarily in the research and development phase.

1.2 Magnetoplasmadynamic Thrusters

The magnetoplasmadynamic, or MPD thruster, is one type of electromagnetic acceler-

ator which is currently being researched for space applications. These thrusters have been

operated in both a steady and pulsed mode, with applied or self-induced magnetic fields.

In the steady, self-induced configuration modeled in this research, an electric current is

applied between two electrodes across the thruster channel which ionizes the injected
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Figure 1.1: Simplified MPD Thruster Diagram

propellant through Joule (or Ohmic) heating. This current also induces a perpendicular

magnetic field component through Maxwell's magnetic field curl relation, which in turn

accelerates the ionized gas by the Lorentz force F = j x B. Figure 1.1 shows a basic

axisymmetric MPD thruster with a central cathode and surrounding anode. The total

Lorentz force on the propellant is seen to be a combination of an axial, or "blowing",
force and a radial "pumping" force. The "blowing" force is produced by the interaction of

the radial current flowing between the electrodes and the magnetic field, and contributes

to the thrust of the device. The "pumping" force arises from the interaction between

the magnetic field and the axial current generated by E x B drift of the charged species,
otherwise known as the Hall Effect. This radial force works to concentrate the plasma

along the centerline of the thruster and contributes no thrust, thereby reducing efficiency

and in extreme cases creating an anode which is severely depleted of charge carriers.

The net thrust of the device is produced by a combination of gasdynamic pressure

forces resulting from the thermal energy imparted to the propellant and electromagnetic

forces due to the Lorentz effect. At high efficiencies the electromagnetic contribution

dominates, generating 85-90% of the total thrust. A typical coaxially configured self-field

MPD thruster is shown in Figure 1.2. This diagram illustrates the current path in greater

detail, and in particular highlights the dominance of the Hall Effect, which causes the
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Figure 1.2: Typical Self-Field Coaxial MPD Thruster Design

Table 1.1: Typical Self-Field MPD Thruster Parameters

current to be concentrated at the root of the cathode and at the tip of the anode.

MPD thruster electrodes are generally constructed of high temperature metals, while
insulators such as boron nitride are used for the backplate. A wide range of propellants
may be utilized in the device, including Hydrogen, Oxygen, Nitrogen, Ammonia, or any of
the Noble gases, although Argon is the current propellant of choice. Steady-state MPD
thrusters have several advantages over other methods of propulsion, including simple
design, low system specific mass, high specific impulse, and high thrust density (compared
to other high Isp electric propulsion devices). Disadvantages of MPD propulsion systems
include high power requirements, lifetime limitations due to electrode erosion, and the
existence of an "onset" phenomenon at the high current levels necessary for high efficiency
operation. Thruster operation beyond this onset condition has been observed to result in
severe instabilities and dramatic increases in electrode erosion rates. Table 1.1 lists the
ranges of several notable parameters for a typical self-field MPD accelerator.

SpecificImpulse = 1000 - 5000sec InputPower = 0.1 - 10MW

Efficiency = 30 - 50% ElectricCurrent = 10 - 100kA

Thrust = 20 - 200N MagneticField = 0.05 - 0.3T

MassFlowRate = 1 - lOg/s

DCAAAII~C·+



1.3 Status of MPD Thruster Research

Much experimental work has been done on MPD thrusters since the 1960's, most

recently at Princeton by Kelly and Jahn[7,26], at the Jet Propulsion Laboratory by

King[15], and at the Institute of Space and Astronautical Science in Tokyo by Kunii,
Kuriki, and Toki[16,17,37,40]. A great deal has been learned from these experiments

with respect to thruster design and scaling, performance enhancement, electrode erosion

rates, and the physical state of the accelerating plasma. The high power and high diffusion

pumping rates required and the difficulty in obtaining diagnostic measurements, however,
has led to increased theoretical and numerical modeling of MPD thrusters not only as a

method of research, but also as a diagnostic tool. Unfortunately, the complex nature of

the plasma environment as well as the collisional and electromagnetic effects which occur

in the MPD thruster, make it extremely difficult to analyze.

Thus far numerical work has been limited to simplified cases. One-dimensional,
one fluid, fully ionized magnetoplasmadynamic flow has been examined extensively by

Martinez-Sanchez[24]. Two-dimensional codes with similarly simplified physics have been

developed by Martinez-Sanchez and Heimerdinger[23], Chanty[5], Park[29], and Auweter-

Kurtz[2]. These models neglect diffusive and viscous effects, collisional transfer processes,
and thermal and ionizational nonequilibrium effects. Subramanian and Lawless[36] have

examined the effects of nonequilibrium ionization in one dimension, especially in relation

to the phenomena of onset. Heimerdinger[8] has constructed a model which includes

the effects of heat conduction, ionization, and radiation in an approximate sense in a

quasi-2D numerical model with various physical and geometrical simplifications.

The first comprehensive quasi one-dimensional model of an MPD thruster which ac-

counts for all of the above physical processes and employs a two-fluid formulation, was

developed recently by Niewood[27]. This model compares favorably with earlier one fluid,
one-dimensional work, and can demonstrate the effects of varying the total applied current

and the thruster channel area. It was found that thermal and ionizational equilibrium

are not good modeling assumptions in the MPD regime, and that viscous and diffusive

processes have a significant effect on MPD thruster performance for some geometries. In

particular, with respect to the long narrow channel studied by Niewood, it was found

that viscosity drastically reduced the flow exit velocity through excessive heating of the

propellant gas and the establishment of a strong adverse pressure gradient. For long



channels this resulted in a thermally choked condition at the exit which constrained the

Mach number to unity.

Although the viscous and diffusive effects in the model of Niewood were formulated as-

suming parabolic distributions and fully-developed flow throughout the thruster channel,

one result was particularly interesting and potentially very important. This was the fact

that viscous heating of the heavy species caused the gas temperature to increase to a level

equal to or greater than the electron temperature at the exit. Excessive heavy species tem-

peratures have been observed in experiments, but as yet no definitive argument has been

presented to explain the underlying physical processes of this phenomenon. To illustrate

the magnitude of this effect, the results of three MPD experiments are briefly described

here. In all three cases, Doppler line broadening techniques were used to determine heavy

species temperatures. DiCapua and Jahn in 1971 examined energy deposition in parallel

plate plasma accelerators, and found ion temperatures between 2.5 and 8.5 eV[6]. In 1985

Kunii and Kuriki measured ion temperatures of 6.2 eV at the exit plane of a quadrupole

MPD arcjet[16]. Finally, in 1988 Kilfoyle et.al. [13] performed a spectroscopic analysis of

the exit plane of a flared coaxial MPD thruster, and found heavy species temperatures of

1-7 eV for Argon and 2.6-3.4 eV for hydrogen, compared to an electron temperature of

approximately 1.1 eV. Possible mechanisms for gas heating include the already-mentioned

viscous effects, electron-heavy species collisional energy transfer, ion-neutral velocity slip,

shocks, ion-acoustic waves, and plasma instabilities. Niewood studied viscous, collisional,

and velocity slip effects and found that viscous dissipation was the primary contributor

in raising the gas temperature to 1.5 eV and above, depending on the channel geometry

and total applied current. This result warranted further work on the effects of viscous

and diffusive processes in MPD flows, and as such was one of the primary reasons for

undertaking the research presented in this thesis.

There were two goals of this research. The first was to develop a two-dimensional MPD

flow model with detailed modeling of physical processes, including viscous and diffusive

effects, in an effort to extend the numerical work completed thus far. The second was to

use the model to examine the effects of viscosity and diffusion on thruster performance,

to include verifying and quantifying the viscous heating phenomenon described above,

studying the development of viscous and diffusive boundary layers in the channel, and

calculating an estimate of energy losses due to gradients at the electrode walls.



1.4 Overview of This Research

This research provides the next step toward achieving an accurate numerical model

of MPD thrusters. Careful treatment of viscous, diffusive, and other physical processes

in two dimensions for a simple geometry is undertaken in order to better understand

these truly multidimensional effects. The model developed in this research treats elec-

trons and heavy species separately. Only first ionization is considered, and the resulting

plasma is assumed to be macroscopically neutral with strong coupling between ions and

neutral atoms. Terms representing a Navier-Stokes formulation of gas viscosity, heat con-

duction, and ambipolar diffusion are retained in the governing equations. Source terms

which model ionization and recombination rates, Lorentz forces, Joule heating, and col-

lisional energy transfer between electrons and heavy species are also incorporated. The

resulting system of equations essentially represents an expanded and modified Navier-

Stokes formulation of the problem. At this time the magnetic field is taken from a quasi

one-dimensional calculation by Niewood[271, in order to simplify the numerical solution

process and also to gain an initial understanding of the viscous and diffusive terms with-

out introducing asymmetries due to the Hall Effect. As a result, the magnetic field is

constrained to vary in the axial direction only and can be thought of as externally applied.

This simplification is currently being relaxed in order to obtain fully two-dimensional,
self-consistent results. Time-Split MacCormack's Method has been utilized on a non-

uniform computational grid to numerically solve the governing equations for a constant

area channel. The implementation and results of this effort are described within the

remainder of this document.

The formulation of the analytical model is discussed in Chapter 2 of this thesis, fol-

lowed by a description of the numerical method in Chapter 3. Chapter 4 discusses in

detail the results of the simulation, while Chapters 5 and 6 contain conclusions and rec-

ommendations for further work. Unless otherwise stated, all quantities are reported in

MKS units.



Chapter 2

Governing Equations

2.1 Basic Equations

The equations governing magnetoplasmadynamic flow in a channel are Maxwell's

Equations, the electron, ion, and neutral species conservation equations, and the equation

of state.

2.1.1 Maxwell's Equations

Maxwell's equations can be written in vector form as

aB
VxE= (2.1)

Vx B= o + ( o E (2.2)

e(ni - n,)V * E = - n (2.3)

V.B=O (2.4)

2.1.2 Species Conservation Equations

The species conservation equations can be derived from Boltzmann's Equation, which

describes the rate of change of the distribution function of a species s with respect to

time and position in six-dimensional phase space (d5rd3v). Boltzmann's Equation can be



written in vector form as in Bittencourt[4]:

af* F_ (fa,\*-+ Vf. " / V+ I. V, f, = (2.5)at m8 /a

where F. is an externally applied force vector and the term on the right-hand side indicates

the net time rate of change of the distribution function of species s due to collisions.

The first step in deriving the species conservation equations is to multiply Equation 2.5

by some function (x, v , t), which may vary with respect to position, velocity, and time.

Integrating over all phase space, we obtain the general transport equation

a 84a(n, < 0 >,) -n, < >, +V -(n,• < 06>,)-n, < V- VO >,at at
- n. < 8 V >co>L d (2.6)m,9 \ at /oo

where the definition of the average value of a quantity (< >) has been utilized. By

now substituting appropriate values for the function g, we can arrive at the three species

conservation equations, which are closed by Maxwell's equations and the equation of

state:

p= n,kT. = pR,8T, (2.7)
8 8

Taking 0 = m, in Equation 2.6 results in the species continuity equation, which is a

statement of the conservation of mass of species s.

V u(ps, = fm dj v (2.8)at V  (  ) = S l = M  o,,
Here the source term on the right-hand side of the equation, S., represents the rate per

unit volume that particles of species s are created or destroyed as a result of collisional

events, such as ionization or recombination.

Using 4 = m,v, we obtain the species momentum equation

PS ýý!U+(8° u) s + V. P8 - n. < F >s= As --0S, (2.9)

The quantity =, is the kinetic pressure dyad, representing the scalar pressure and tan-

gential shear forces. The source term A, denotes the collisional rate of change of mean

momentum for species s, while the term S, is the same as that employed in Equation 2.8.



Since we are concerned with the effect of the Lorentz force in this research, we may

substitute

< F >.= q (E + -, x B (2.10)
In addition, the collisional momentum term may be written as

A, = p, E V,, (8 , - ,) (sf r) (2.11)

This leads to the statement of species momentum conservation in the following form:

p a+(t v)1 +v. = nq, (E +i x )+p.v ( - )- s (2.12)

Finally, the species energy equation may be obtained by substituting 1 = -m,v2 in

the general transport equation. Again after some manipulation we arrive at the following

form:

D, 3 a + )
D,t + pt V + at +V + V

+ V q-8 - n, < F -V'>,= M, (2.13)

where -- is the substantial derivative for species s, q = -k, VT, is the heat flux vector,D.t

and M, represents the rate of change of energy per unit volume due to collisions, given

by
M, = 1m v2~ o d3v (2.14)

2 f t oil

Substituting for the electromagnetic forces and heat flux vector and rearranging, we

obtain

D.3 ) 3 0 1 3 1 ,_.,D8 p3 +  P. V)~ , + a p( 2 + V. (-•P -) + V. p ( .)

- V (k,VT,) = " E + M, (2.15)

2.2 Two-Dimensional MPD Channel Flow Model

Using the equations in Section 2.1 for the case of two-dimensional flow of a three-

component (electron, ion, neutral) plasma, a model of magnetoplasmadynamic channel
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Figure 2.1: Diagram of 2D Magnetoplasmadynamic Channel Flow

flow can be developed. Figure 2.1 shows a diagram of this flow, and is essentially an

approximation to the lower portion of the MPD thruster of Figure 1.1. For simplicity, a

constant area channel such as that shown in Figure 2.1 is modeled. Only first ionization

is considered, and the plasma is assumed to be macroscopically neutral (n, = ni). Strong

coupling is assumed between the ions and neutrals, designated together as the heavy

species. This implies that t7 t t, r (except for ambipolar diffusion), and Tj T,

T,. Thus this is a two fluid model which separately tracks electron and heavy species

quantities, although transport properties can be calculated for the ions and neutrals

separately and their individual velocities may be extracted in an approximate sense.

Variations in flow quantities in the z-direction are neglected by the two dimensional

model, an assumption which is reasonable because of the axial symmetry in the coaxial

class of MPD thrusters currently being tested. The model could easily be modified to an

axially symmetric formulation, in order to obtain results which more accurately reflect

the geometry of these thrusters. Since this investigation is concerned primarily with the

development and effect of viscous and diffusive regions, however, a two-dimensional model

is retained initially in order to preserve the symmetry of these regions. The magnetic

field is assumed to have a component in the z-direction only, although it may vary in

magnitude over the xy-plane. The individual species are assumed to obey the ideal gas

law. Radiative processes are neglected in this model, as their effects on MPD flows in the

regime of this research has been shown to be minimal (less than 1%) by Sheppard[34].

The working fluid of this model is Argon, which has an atomic mass of 6.634 x 10- 26kg,
a gas constant of 208.13m-'s-2K - 1, and a first ionization potential of 15.79V.

Cathode 

(-)

z



2.2.1 Magnetic Field Equation

The magnetic field equation is derived from the electron momentum equation and

Maxwell's Equations. Using the definitions of current density, j = en6 (i4 - ue), and

electrical conductivity (cf. Section 2.2.5), the well known generalized Ohm's Law may be
obtained:

a(4 + & x ) = j + x - VP+ (2.16)
me E, e,,,

where 8 is the Hall parameter, given by

eBeB= 
(2.17)

me. r V.C

The current density is eliminated from Ohm's Law by using Ampere's Law (Eqn. 2.2)

with Eoy, neglected. This time-varying electric field term can be disregarded because

since E0 is small, the only significant variations occur on time scales much smaller than

encountered in this application. Also, the electric field can be eliminated by taking the

curl of the resulting equation and substituting Equation 2.1, V x E = - . We are left

with the expression

aB 1 1 (1 )+ Vx (, x B) = VXB + × (v B)at /oor o a

+ -V x [(Vx) x V - V ) XVp. (2.18)Ao ene en,
Assuming that B = B2 and simplifying, we arrive at the 2D magnetic field equation:

dB auB avB 1 (a2 B a2B' 1 ao mB ap.' aBt-+ a- + ay Tfoo + 2 2 + +ep, ay} axBt dz ay '0o0 a P By2 o ep!90 By a zt(1 ao meB ap. aB me (ap, ap aP a(2.19)
Po'o ay epCo a• ay ep a ay y a 9)

2.2.2 Mass Conservation Equations

From Equation 2.8, the three species continuity equations which which govern 2-D
magnetoplasmadynamic flow can be written as

ape acpue apve,
a + a• + me i, (2.20)at az ay



Opi Opius 8 pivip+ + = m+.+ (2.21)
at az 4y

Pn aPntln 8pavna + a + -maie (2.22)
at az ay

where 4, represents the net gain of electrons per unit volume through collisional processes.

Summing the above three equations results in the overall statement of mass conservation:

ap apu apv
S+ + = 0 (2.23)at xz ay

where p p• + pi The ion equation (Eqn. 2.21) is the only other continuity equation

required. We can modify this equation by introducing the ion slip velocity, Vi, such that

-u = + V (2.24)

where Ut is the mean flow velocity. Together with the assumption of plasma neutrality,

this results in the following form of the ion continuity equation:

ap+ V -(p ) = m. Z - V (p- ( ) (2.25)

Assuming that the ion slip is driven primarily by transverse concentration gradients and

ignoring differential inertia forces, this implies that

Dp,
PeVi - -Da (2.26)

Substituting this into Equation 2.25 produces the final form of the second 2-D continuity

equation:
dp, Op#u 8pv O a p,ap + mh, + - (Da (2.27)at ax ay ay ay

We need only define he and the ambipolar diffusion term to complete the derivation of

the mass conservation governing equations.

The net electron production rate in Equation 2.27 is given by the Hinnov-Hirshberg

model of ionization and three-body recombination[3,11,25]:

he- =H H = Rne (Sn. - n2) (2.28)

where
1.09 x 10-20

R = (2.29)
T72



S = 12 h2 e kT (2.30)

The ambipolar diffusion term can be derived from the electron and ion transverse mo-

mentum equations, with the assumption that there is no heavy particle flux through

the walls. This term arises from the combined action of the electron and ion pressure

gradients and electrostatic coupling between the two species. The net effect is that the

electrons are slowed and the ions are accelerated with respect to their corresponding free

diffusion rates, so that the two species diffuse together at a rate which is somewhere in

between. The ambipolar diffusion coefficient is given by

Da = Tk (2.31)4mo Qin(ne + nn)

2.2.3 Momentum Conservation Equations

Summing the three species momentum equations defined by Equation 2.12 results in

an overall momentum equation. In this process the collisional momentum terms and the

electric field terms cancel, so that by also neglecting electron viscous terms we arrive at

the following two-dimensional form:

apu a(pu 2  + p -= r.) a(puv - r~) = en,(u, - Ui)B (2.32)
at a+ ay

dpy 8(ptly - red 8d(pv' + p - ryy)apv a(puv -,.) +a(pV 2+ ) = en,(v, - v,)B (2.33)
at ax a

where the shear stress components are

4 au 2 8v
,zz, = - -• (2.34)

3 ax 3 ay
4 8v 2 au

ru = " ax (2.35)3 ay 3 Tz
Bu Bv

7, = au + av (2.36)ay Tx
Using the definition of current density and Ampere's Law (Eqn. 2.2) excluding the time-

varying component, the following conservative form of the overall momentum equations

can be achieved:

apu a(pu2 + p + -_ ) a(PV(p - ,ry)
ax + a = 0 (2.37)



dpv (puv - 7) +(pv' + +p + ) - (2.38)
._+ + = 0

at 9z ay

2.2.4 Energy Conservation Equations

Heavy Species

Since the ions and neutrals are assumed to be strongly coupled, we may combine

the energy conservation equations for each species (Eqn. 2.15) to obtain a heavy species

energy equation. The collisional terms between the ions and neutrals cancel, so that by

writing out the viscous terms, and using the definition of specific heat and the equation

of state for the heavy species, we are left with the following expression in two dimensions:

p, a ,u( 'Ip, + jp(U2 + •2)) aV(-*7p, + Ip(U2 + v2))
+)

+  p(2 2

at (- - 1) at 2 ax ay

a(ur., + way) 8(Uru us) 99= 99u
S + (uTr= + +) a_(uT, --+ vT) qg- + q -= E, (2.39)
dz dy az dy

Here it has also been assumed that the current is carried primarily by the electrons. The

terms of the shear stress tensor are given as before, and the remaining collisional term

on the right-hand side represents elastic collisional energy transfer between heavy species

and electrons:

E, = 3 Pe (vi + V,) k (T, - Tg) (2.40)
m a

The heat flux terms have been defined to reflect their dependence on heavy species quan-

tities as

qg = -k (,a) q, = -k, ( (2.41)

Equation 2.39 can be simplified by introducing the heavy species total energy and en-

thalpy per unit mass:

E- ') +( 1 U2 + v2) (2.42)(- -1) p 2 )
H, = E, + P- (2.43)

This results in the following form of the heavy species energy equation:

apEg + (puH, - urT2  - vr., + qgz) + (pI H, - u2,y - vyy + qgy)
dt dz ay



For computational purposes it is often useful to rewrite the heavy species energy

equation in terms of the internal energy of the gas, eg, defined by

E = eg + (u + v2) (2.45)

Taking the dot product of the overall momemtum equation with the fluid velocity and

substituting into the heavy species energy equation (Eqn. 2.44) results in the following

alternative form of the energy equation:

P +\ -g+ PU + pv + p p g kg = 4 + E, (2.46)at t a ey a a a y v z a z y ay

where 4 is the viscous dissipation function, given by

r au\2 (av)2 +(,v au 2 2 (au av) 2(
2 +2 + 2 (2.47)

This alternative form is especially useful in MPD calculations, because the kinetic en-

ergy of the flow attains such a high value through electromagnetic acceleration that it

dwarfs the internal energy component of the unsteady term in the heavy species energy

conservation equation, potentially leading to a loss of information or non-physical results

depending on the values of the energy flux terms. Although this internal energy formu-

lation is not conservative, it is accurate so long as the problem is free of shocks or other

discontinuities.

Electrons

The electron energy equation is given directly by Equation 2.15. Neglecting electron

shear terms, and again using the definition of specific heat and the electron equation of

state, we obtain

+ ('P ,2(e + V2) 2_
a P_ a a,3,(pe + 7p,(t,, + v,))
at (~ - 1) + /2 P)("u v + ax

ave( Ip C+ !p(CU + v2)) +aq aqey, j2
+ +- + 2 E, -riEi (2.48)ay ax ay a

where the heat flux terms and the collisional term El are defined as in the heavy species

energy equation, and E is the Joule heating or Ohmic dissipation term. Defining total



energy and enthalpy per unit mass as with the heavy species, we arrive at the following

expression:
PoE,, (P.u,H, + q,,) + (PoVH, + q,,) i •

Sa( + q) + + ) - E (2.49)
at zax y a

where

Ee + PV 1+ u + v E (2.50)(7 = -1)p, + m
H, = E, + Pe (2.51)

Pe

Note that in this formulation, the ionization energy of the gas is defined as a component

of the total energy of the electron species. In order to increase efficiency in numerical

computations with the model, it is desirable to eliminate the electron velocities in the flux

terms of Equation 2.49. This is accomplished by neglecting the inertial terms, recalling

that u4 u- - i, and using the definition of current density and the electron equation

of state. Consequently the final form of the electron energy equation is

ap(E, -i3 ( + (A,, + )+ a ( * + ckT +
+ + =(-1)e+ (-1)e y - - E, (2.52)at xz ay a

2.2.5 Additional Equations

Additional equations required in the model are Ampere's Law in two dimensions

(neglecting the time-varying electric field), the definition of current density, and the

overall equation of state.

1 aB 1 B
y = =v = (2.53).U0 ay Uo ax

j, = en, (u - u,) jY = en, (v - v,) (2.54)

p = pRgT + peReTe (2.55)

2.2.6 Transport Properties

In general, for a plasma in the presence of magnetic and electric fields, the transport

properties are functions of the direction of transport with respect to these fields. The

transport equations thus become tensor equations. For example, the generalized Ohm's



Law of Equation 2.16, neglecting ion currents, pressure gradients, and the Hall term, can

be written in tensor notation as J, = '. Here = is the electrical conductivity tensor,

or dyad. For the case of a magnetic field in the 2 direction only, the equivalent expression

in terms of matrices is

S, = ar O ] 0 El (2.56)
.eO o all . E'

where
e2Rn all Pall

S~ o = aH = (2.57)me E,. ., 1 + 2 1+ #2

and P is the Hall Parameter. The quantity all is called the longitudinal conductivity,
as it governs the flow of current in the direction parallel to the magnetic field. The

quantity a± is the perpendicular or transverse conductivity, which controls electrical

current in the direction perpendicular to the magnetic field and parallel to the electric

field component. Finally, aH, denoted as the Hall conductivity, governs current flow in

the direction perpendicular to both the magnetic field and the electric field component.

In this two-dimensional model there is no 2-component of the current density or electric

field, and for simplicity the plasma is assumed to be isotropic, so that Ua = all and

aH = 0. The electron and heavy species thermal conductivities are similarly formulated

in tensor notation, and also considered to be isotropic functions. Thermal diffusion is

not included in this model.

Electrical Conductivity

The scalar electrical conductivity for a plasma is given approximately by

e2nta = (2.58)
me E, V,•

Spitzer and Htirm[35] used numerical integration techniques to solve for the electron

transport properties of a plasma in the limit of full ionization, yielding coefficient cor-

rections to the simplified analytic expressions. The value of the electrical conductivity

coefficient was found to be 1.975. Although closed-form expressions for the transport

properties of a plasma at an arbitrary level of ionization are not obtainable, approximate

forms can be obtained by expanding the transport equations in terms of Sonine polyno-

mials. This leads to the following approximate equation for electrical conductivity, valid
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Figure 2.2: Correction Coefficient by 12th Order Sonine Polynomial Approximation for

Argon Electrical Conductivity

for any level of ionization, where now the correction coefficient has become a function of

electron temperature:
e2ne

a = So(T) e + n(2.59)
me?, (n6 Q6i + nnQen)

The coefficient So is interpolated from a 12th order Sonine polynomial approximation by

Mitchner and Kruger[25], and is plotted for a pressure of one atmosphere in Figure 2.2.

Figure 2.3 shows electrical conductivity versus temperature calculated from this model,

for Argon in ionizational equilibrium.

Thermal Conductivity

The coefficients of thermal conductivity for the electrons and heavy species are defined

in a manner similar to that used for the electrical conductivity:

nek2T, nek2Te
k, = Sk = Sk (2.60)

me Er V., mee (neQ., + nnQen)

s,



a
p=OO1P&

4. 6. 8. 10. 12. 14. 16. 18. 20.

T(1000K)

Figure 2.3: Equilibrium Argon Electrical Conductivity

k =S nnn n. Q ] (2.61)ma nQ . , + nQi ncQ, + nnQi,
In each case the simplified analytic expression for the transport coefficient is multiplied

by a correction coefficient based on a 12th order Sonine polynomial approximation. Note,
however, that the heavy species thermal conductivity coefficient is based on a mixture

rule which incorporates contributions from both neutral and singly ionized atoms. The

correction coefficient Sk is plotted in Figure 2.4 as a function of temperature, while k, and

kg are plotted in Figures 2.5 and 2.6, respectively, for Argon in ionizational equilibrium.

The graph of k, versus temperature appears similar to the previous plot of electrical

conductivity, with ke increasing monotonically at a rate dependent on the pressure of the

gas. The plot of kg versus temperature in Figure 2.6, however, shows two minima. The

first is due to the minimum of the correction coefficient Sk at approximately 7000 0K,
while the second arises from the fact that kg is actually a combination of ion and neutral

thermal conductivities. At low temperature the much larger neutral thermal conductivity

dominates, while at higher temperatures the gas eventually becomes fully ionized, at

which point the lower ion thermal conductivity is the only contributor to k9. Both the

ion and neutral thermal conductivity coefficients increase with increasing temperature.

As seen in Figure 2.6, the location of the transition region between neutral-dominated

1__
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Figure 2.4: Correction Coefficient by 12th Order Sonine Polynomial Approximation for

Argon Thermal Conductivity

and ion-dominated heavy species thermal conductivity depends on pressure, for a gas in

ionizational equilibrium.

Viscosity

The coefficient of viscosity for the fluid can be expressed as a mixture rule derived by

Mitchner and Kruger[25]:

it= n, I(M., (2.62)

where

Mar = .r (2.63)
V mo Q.,

and the individual species viscosity coefficients are given by

S= -m.n, .eA. = , (2.64)
2 V2q,,
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Figure 2.7: Equilibrium Coefficient of Viscosity for Argon

The summations on s and r are performed over the neutral and ion species; the contri-

bution of electrons to the viscosity coefficient is ignored. Both neutral and ion viscosity

coefficients increase with increasing temperature, but the neutral species component is

more than an order of magitude greater than the ion species component. Combining

Eqns. 2.62 - 2.64 results in the following analytic formula:

In = n n Qii (2.65)

The coefficient of viscosity is plotted in Figure 2.7 versus temperature for Argon gas in

ionizational equilibrium. Initially as the temperature is increased i/ increases, because

the gas is mostly neutral and so the higher neutral species viscosity dominates. As the

gas becomes more strongly ionized, however, the ion species viscosity begins to domi-

nate, causing the gas viscosity coefficient to decrease rapidly. Once the ion viscosity is

predominant, the overall viscosity again increases with temperature, although at a slower

rate. As seen with the heavy species thermal conductivity, which is also defined by a

mixture rule, the location of the transition region is dependent upon the pressure of the

gas, assuming ionizational equilibrium.



Collision Cross-Sections

Collision cross-sections involving neutral species are taken from empirical formulas

developed for Argon, the propellant considered in this research (Jaffrin[12], Lieberman

and Velikovich[19J):

Qj, = 1.4 x 10-18 [m2] (2.66)
1

Q m = 1.7 x 10-18 To [n 2] (2.67)

Qen = (.713 - 4.5 x 10-'T + 1.5 x 10-'T:) x 10-'0 [m'] (Te • 30000K)

= (-.488 + 3.96 x 10-'T) x 10-2 0  [ 2] (T > 30000K) (2.68)

Collisions between charged particles are treated analytically as summarized in Mitchner

and Kruger[25], resulting in the following expressions:

e4 In A
Qei = Qee = In A 2  (2.69)

24xr (EokT,) 2

Qii e 4 nA2 (2.70)
24r (cokT,)

where In A is the Spitzer logarithm, given by

127r (E ok Te) I (
A r - 1.239 x 10'  (2.71)

The empirical, non-coulombic cross-sections are plotted versus temperature in Figure 2.8,

while the coulombic cross section, Q,, is shown in Figure 2.9.

2.3 Simplified Quasi-2D Model

Equations 2.19, 2.27, 2.23, 2.37, 2.38, 2.44,and 2.52-2.55 comprise the two-dimensional

model of MPD channel flow. In order to gain an initial understanding of the viscous

and diffusive effects involved and to reduce the complexity of the numerical solution

and the computer run time, it was decided to discard the magnetic field equation and

instead assume that the magnetic field distribution is given by the quasi one-dimensional

solution of an analogous problem by the method of Niewood[27]. The difficulty is that

the time scale for magnetic diffusion is more than 100 times smaller than the time scale
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for fluid diffusion, so that much more computation time would be added to an already
time-intensive modified Navier-Stokes code in order to obtain a solution. In addition, the
fully two-dimensional time-varying magnetic field would create large unsymmetries in the
solution, which would detract from the initial aim to examine boundary layer evolution
and diffusive effects in the flow. This simplification will be relaxed in later work on
this model in order to achieve a more self-consistent, fully two-dimensional flow solution,
which incorporates phenomena such as the Hall effect and the resulting concentration
of the current near the cathode root and the anode tip. With this assumption, the
simplified model of two-dimensional MPD channel flow can be restated as the following
set of equations:

ap Opu Opv-+  -+ = 0 (2.72)

a-+ + = m. + ~a Da (2.73)
at ax ay ay

Opv a(po + p + B 2 2 py~ -r,)+  + ay= 0 (2.74)

apEg a(pul- - uT= - VT~+ + qgz) O(pvHg - UTzv - vT, 1 + qg,) - E (2.76)t + ayapy +(p( -+,+ ) +(Pu- +p + B2 - TYY)

+  + - E (2.76)

at =z ay a

p = pRpT , + PeRTe (2.78)

1 aB 1 aB
Ji = Jv = Lo x (2.79)

j, = en, (u - u,) j, = en, (v - v,) (2.80)



Chapter 3

Numerical Method

The set of equations governing magnetoplasmadynamic channel flow is essentially a mod-

ified form of the compressible Navier-Stokes equations. In two dimensions and Cartesian

coordinates, the Navier-Stokes equations can be expressed in the following simplified

conservative form, neglecting body forces and external source terms:

aU aF aG+ + =0
8t ax x y

U is a state vector and F and G are flux vectors given by

P

pu
U =p

pv

pE

pu

PU2 + p - r,,

puv - ray

puH - urz, - Vyry + qz

(3.1)

(3.2)

pu
G =p

pv 2

pvH - u

with the shear and heat flux terms given by

2
r,= -3

2
3

V - 7.v

+ p - Tryy

'zY - VT1 ,U +

2au yav
2(

av au
ay ax)

(3.3)

(3.4)



(d = P v + ) (3.5)
dT dT

qx = -k qu = -k T  (3.6)
dz dy

It was decided to utilize an explicit, second-order accurate numerical algorithm in

solving the MPD channel flow equations. Because of the complexity of the equations,
which include additional magnetic fluxes and source terms not present in the compress-

ible Navier-Stokes equations, and due to the complex nature of the boundary conditions,
particularly at the electrode walls, the simpler application of an explicit scheme is more

desirable than that of an implicit method. In addition, since instability analysis is an

important component of MPD thruster research, it is advantageous to retain a capability

for performing time-dependent calculations with the computer code so that instability

studies may be performed. In order to calculate an accurate time evolution of the flow,
however, a numerical method should be at least second-order accurate in time; conse-

quently a requirement of overall second-order accuracy was made. Because it satisfies

the conditions above and has been proved an excellent means of solving the compressible

Navier-Stokes equations for a variety of conditions, Time-Split MacCormack's Method

was chosen as the numerical scheme for this research.

3.1 Time-Split MacCormack's Method

MacCormack's Method, developed in 1969 by MacCormack[20], is a two step predictor-

corrector scheme based on the Lax-Wendroff Method. The scheme has since been modified

to include time-splitting[21], which allows the solution to be advanced in each coordinate

direction at the maximum possible time step. The basic algorithm applied to the conser-

vative vector form of the Navier-Stokes equations (Eqn. 3.1) yields:

Axial differencing

Predictor:
S= Ft, ,,, - F,) (3.7)

Corrector:
U ! U!. + U(=p - FfF! - F ,* (3.8)3 2 I, S t) x' 1X 1-1



Transverse differencing

Predictor:
U = U - (G ,+1 -G) (3.9)

Corrector:
U* = U? ( + U p  ay (GP  - G- , GP_ (3.10)

The asterisks represent dummy time indices, and the superscript P denotes the predicted

value of the state vector and associated fluxes at the (ij)th discrete point.

In order to maintain time accuracy, the solution must be advanced in each coordinate

direction for the same interval of time during each integration step. Since in general

the maximum allowable time step for stability in each direction is different, this requires

that the MacCormack scheme be applied multiple times in the direction with the most

time-restrictive stability criteria during each integration step. To quantify this, one-

dimensional difference operators are defined as follows:

VU = L,(Atz)Ui  (3.11)

U!? = Lu(aty)UJi (3.12)

The integration step may then be divided into some sequence of applications of the one-

dimensional operators. The time integration remains second-order accurate provided that

the sequence is symmetric, and is consistent if the sums of the time steps of each of the

operators are equal. Stability is guaranteed so long as the time step of each operator does

not exceed the maximum allowable time step for that operator. The sequence employed

in this research is:

U+1 = [L,(m) L,(At) [L( )] Un. (3.13)

where m is an integer calculated before each time integration to maintain consistency,

and At is the calculated time step in the axial direction, which in this application is

generally the largest.

3.2 Stability

Because of the complex nature of the compressible Navier-Stokes equations, an ana-

lytic stability expression for Time-Split MacCormack's Method is unattainable. Approx-



imate stability criteria, however, have been estimated by MacCormack and Baldwin[22]

based on stability analyses of the convective, diffusive, and viscous terms of the full

equations. This results in the following time step limits:

At, < (3.14)
- +a+ 21 +

At < (3.15)

where

a -= (3.16)

Pr = p• (3.17)
k
2A = - (3.18)
3

The coefficient a represents a safety factor to account for the nonlinearity of the equa-

tions. Because these stability criteria were developed for a single component gas assuming

constant transport coefficients and neglecting the prescence of source terms, however, the

value of a used in this research is somewhat smaller than that used for typical compress-

ible flow applications. In practice, the stability criteria are applied at each grid point at

the beginning of each integration step, and the smallest time steps calculated are then

used at every grid point in advancing the solution. This maintains the time accuracy of

the integration procedure.

3.3 Numerical Smoothing

Although the MacCormack scheme contains some inherent smoothing, it is necessary

to provide additional dissipative terms to damp numerical oscillations which may arise

in regions of steep gradients where the mesh is insufficiently refined. MacCormack and

Baldwin[22] have developed a fourth-order product type of smoothing based on a pressure

switch, which becomes significant in magnitude only where numerical truncation error

is producing pressure oscillations in the solution. The smoothing terms are applied as

additional flux terms in the numerical scheme, and are of the following form:

SXx 4p X2  ] (3.19)

sxi = 4pA 81 18±_1a%



SY,, = EAy' I a (3.20)
ay 4p 'la' "y

where 0 < E < 0.5 for stability.

3.4 Application to MPD Channel Flow

Time-Split MacCormack's Method is applied to the model problem of this research

in a straightforward manner. When the simplified MPD channel equations (Eqn. 2.72

to Eqn. 2.77) are written in the conservative vector form of Eqn. 3.1 with a source term

vector, the following representation results:

aU aF aG
+ - + = S (3.21)at +a: • y

U =

P

Pe

pu

pv

pu

PeU

PU2 +p+ 2 - rz

puv -- •r•

puH, - uT=r - Vr=u + qgz

- (j + (-l) + qe-iz (.Y-I)C

Pv

Pev - Da a

puv - r.y

Pv2 +p+ P ' - UY

pvHg - ury, - vruyy + qgy
-jy (• Ci ('y-)/-I- qC =

(3.22)

F =

G =



0
HH

0
S=

0

E,

Stability criteria are evaluated based on the overall mass and momentum equations, and

the heavy species energy equation. Smoothing is applied to all state vector components,

based either on a heavy species pressure switch for the overall and heavy species equations,

or on an electron pressure switch for the electron equations.

3.4.1 Mesh

The simple geometry of the model problem necessitates nothing more complicated

than a Cartesian mesh. In order to resolve steep gradients near the electrode walls due

to viscous and boundary effects, however, the grid is exponentially refined in these regions.

Also, since one-dimensional analyses have shown that large gradients exist at the inlet of

the channel[24,27], exponential grid refinement is utilized in this region as well. A mesh

with 75 axial points and 40 transverse points has proven sufficient to accurately resolve

the solution to the model problem. Figure 3.1 is an illustration of this mesh.

3.4.2 Boundary Conditions

Inlet

The conditions at the entrance of the channel are postulated to be essentially those

of a flow which has just been injected through the MPD thruster backplate by a large

number of evenly spaced jets. The flow is therefore assumed to be subsonic and parallel

to the electrode walls (v = 0). Additionally, the axial velocity, density, and enthalpy

are assumed to be constant over the channel cross-section, implying that no boundary

layers have yet developed. In application, the inlet mass flow rate, total enthalpy, and

ionization fraction are each specified. The total mass flow rate per unit area at the inlet
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Figure 3.1: Computational Grid for Flow Calculations

is fixed at 0.7 *, based on an initially constant transverse density distribution and axial

velocity profile. For a channel height of 2 cm and a width of 40 cm, the corresponding

mass flow rate is 5.6 g/s, which is comparable to the flow rates studied experimentally

by Heimerdinger et. al.[10] and numerically by Niewood[27]. The total enthalpy at the

inlet is set equal to
_ p 1_ E,

Ho = + -u 2 + a-- (3.23)
(y - 1)p 2 m

and the ionization fraction is fixed at some small value at each of the inlet points, typically

1 x 10- 3. This model cannot accomodate a zero ionization fraction, which would normally

be expected as an inlet condition of the flow, so some small nonzero a must be specified.

Previous one-dimensional numerical research, however, has shown that as long as the

specified inlet ionization fraction is small, the effect on the overall solution is minimal[27].

Given the above parameters and information from the next inside grid point, all con-

ditions at the inlet may be calculated. The inlet electron temperature is set equal to that

of the next inside point. The density is obtained from a quasi one-dimensional downwind

finite difference approximation to the overall continuity equation, and the axial velocity

and gas temperature are then found from the specified mass flow rate and enthalpy, re-

spectively. The inlet electron density and the species pressures are subsequently known,



and the electron velocities are calculated from the current density relations (Eqn. 2.80).
These equations are actually used to calculate the electron velocities at every grid point
as a post-processing task; u, and v, are not needed in the simplified channel model. The
inlet magnetic field is assumed constant and equal to a value consistent with the total
applied current of the accelerator:

Bo = (3.24)

Outlet

The boundary conditions at the outlet of the channel depend on whether the exit flow

is subsonic or supersonic. In both cases the electron temperature is set equal to that

of the next inside point and the magnetic field is fixed at zero. In reality, the magnetic

field at the exit plane is zero only at the electrodes, and extends beyond the outlet in the

interior of the flow. This results in additional Joule heating and fluid acceleration beyond
the accelerator structure. Although the computer code has the capability to model this
phenomenon, because the applied magnetic field taken from the solution of the analogous
one-dimensional problem is not specified beyond the exit, it is not explicitly modeled at
this stage in the research. It is assumed that since the total energy input is nevertheless
taken into account in the current state of the model, the overall error in the calculated
exit flow solution will not be serious, and the effect on the solution far from the outlet
will be minimal. If the magnetic field equation were integrated along with the other
governing equations of MPD channel flow to produce a fully two-dimensional solution,
then it would be much more desirable to more accurately model this exit phenomenon.

If the flow is supersonic at a point on the exit plane, then the remaining quantities are

set equal to their values at the next inside grid point, with the exception of the pressure
and the heavy species temperature. The pressure is given by

TB 1
PI = P -1 = PI-1 + ' '' •  (3.25)

2#o

after Niewood[27], and the heavy species temperature is then determined by the other

known quantities. If the flow is subsonic, then the exit pressure is set equal to some small
value (typically less than 100 Pa), and the density and axial velocity are given by the
Riemann invariants

PI pT PI-1 (3.26)PI T



2
U1 = UI-1 + (a-1 - aj) (3.27)

'-1

In general, the prescence of the magnetic field through Lorentz acceleration of the ionized

gas renders simple invariant theory inapplicable, and it is not in fact utilized at the inlet.

At the outlet, however, the value of the magnetic field is nearly zero, so that the use

of Riemann invariants at the exit boundary introduces minimal additional error to the

solution. The remaining quantities at a subsonic outlet are then calculated as in the

supersonic case.

Electrode Walls

At the electrode walls viscous no-slip conditions are imposed on the axial and trans-

verse fluid velocities (u = 0, v = 0). The electron temperature is set equal to that of the

next inside grid point, and the heavy species temperature is held constant at 5000 K. It

is assumed that the gas temperature at the walls is substantially lower than the melting

point of the electrode material, and constant along the length of the channel due to good

conduction within the metallic electrodes. A higher wall temperature of 10000 K was con-

sidered, which is compatible with electrodes composed of high-temperature metals such

as Tungsten or lower-temperature metals such as Copper alloyed with Nickel, Titanium,

Molybdenum, or similar materials. Since the gas temperature is significantly higher in

the interior region of the channel, this higher wall value would lessen the steep tempera-

ture gradients near the electrodes, and consequently reduce the flux of energy lost to the

walls through conduction and alleviate potential computational problems in this region.

It was determined, however, that the value of the wall gas temperature has a minimal

effect on the flow, especially far from the wall boundaries. In addition, for simplicity the

inlet gas temperature is set equal to that of the electrode walls, and a lower temperature

at the inlet is more desirable in order to more realistically model the state of the incoming

gas and to more closely match boundary conditions to those used in previous comparable

numerical simulations.

A fully two-dimensional calculation would require complex electrode boundary con-

ditions on the magnetic field, but since this research assumes a static, applied magnetic

field, no such conditions are necessary. In addition, the transverse overall momentum

equation at the walls reduces to the familiar condition run = 0, with the modification



that here P is the sum of the fluid and magnetic pressures, so that

d(p + j-d , lu) =ill 0 (3.28)

For the boundary condition on electron density at each electrode, a balance is postulated

between the flux of ions arriving at the wall by ambipolar diffusion, and the flux of ions

arriving by virtue of their thermal energy at the Bohm velocity (vE):

dneDa = neVB (3.29)dy
where

k (T, + T,)vB k- (3.30)
ma

The Bohm velocity is derived by assuming that at the edge of the plasma sheath located

on each electrode, the ion velocity is limited by an electrostatically choked flow condition

beyond which the ions free-fall collisionlessly through the sheath to the wall[8]. This

boundary condition neglects the internal effects of plasma sheaths and the voltage drops

which are present there, typically on the order of 10V. Also omitted is any treatment of

the thermionic emission of electrons which occurs at the "hot" regions of the cathode.

Introducing additional modeling to account for these phenomena would add another

iterative level to the already complex and time-consuming set of governing equations for

this model. Therefore it is assumed that the simpler treatment is at least sufficient to

provide reasonable solutions to the flow away from the electrode walls. Given the above

conditions, the remaining flow quantities can be determined at each electrode.

3.4.3 Initial Conditions

The initial conditions are chosen as a first approximation to the steady-state solution

of the problem. Distributions of the current density and electron velocity are given by

the specified magnetic field distribution. The electron temperature is set at a constant

value over the mesh, while the transverse velocity is everywhere set equal to zero. The

axial velocity, gas temperature, and ionization fraction are defined as linearly increasing

functions in the axial direction with parabolic transverse distributions. Density is cal-

culated by assuming no variation in the transverse direction, and enforcing the correct

mass flow rate at each axial location in the channel.



3.4.4 Procedure

Once the initial conditions of the flow have been specified, the solution is calculated

numerically as follows. First, the time steps are calculated at all grid points in each

direction from stability criteria. The most restrictive axial time step is chosen as the

time interval for the current integration step. Next, the fast terms in the electron density

and energy equations are integrated based on their individual stability restrictions. These

terms, including the flux terms in the energy equation and the ambipolar diffusion term

in the density equation, are manipulated separately because their stability-restricted time

steps are significantly smaller than those of the other terms in the governing equations.

Removing these terms and performing the integration separately while holding the other

variables constant allows the overall time restriction on the governing equations to be

relaxed, thus saving computational time. The next step is to integrate the governing

equations using Time-Split MacCormack's Method. During each predictor and corrector

step the fluxes, damping terms, and source terms are calculated, and the boundary

conditions are updated. Once the time step integration has been completed, the time

counter is updated and the error is estimated by calculating the root mean square changes

in heavy species pressure, electron pressure, and total pressure over the mesh. The system

of equations is repeatedly integrated until either a specified number of iterations has been

reached or the solution is considered converged. Computations were performed on both

a VAX 3200 computer under the VMS V5.2 operating system, and a CRAY Y-MP/832

supercomputer under UNICOS V5.0.



Chapter 4

Results

4.1 Flow Results: Baseline Case

Parameters of the baseline case are listed in Table 4.1. A useful non-dimensional

parameter in magnetogasdynamics is the magnetic Reynolds number, RB. This parameter

is analogous to the familiar fluid Reynolds number, and represents the ratio of magnetic

convection to magnetic diffusion. When RB ; 1, these two processes are of comparable

order, while for RB > 1 magnetic convection dominates. The magnetic Reynolds number

is given by

RB = ooure,.L (4.1)

where B2A*

uref = (4.2)21torh

ChannelLength(L) = O.1m TotalCurrent(I) = 31.83kA

ChannelHeight(H) = 0.02m Bo = O.1Tesla

ChannelDepth(D) = 0.4m rh = 5.6g/s

InletGasTemp. = 5000K WallGasTemp. = 5000K

WorkingFluid = Argon RB - 2.5

Table 4.1: Parameters for Baseline Case

Using the parameters of the baseline case, this implies that RB = 0.001. Results to

be discussed show that for the baseline case, the electrical conductivity varies between

2000mho/m and 3000mho/m, so the magnetic Reynolds number is approximately 2.5.

Four types of plots are utilized in this section to display results. The first is an axial

line plot with three lines - one near or at the upper wall boundary, one at the centerline,



and one near or at the lower wall boundary. This is to quantitatively display the axial

variation of the plotted quantity at representative points in the channel. The second is

a transverse line plot, employed to quantitatively display the transverse variation of the

plotted quantity at a given axial point. The third is a two-dimensional contour plot. This

is used to show with some precision the relative variation of the plotted quantity over the

computational domain. The fourth is a three-dimensional perspective plot, which graphs

the plotted quantity as a function of both x and y. This is the most qualitative of the

three types of plots, but is important in that it shows the value of the plotted quantity at

every point on the computational grid. Axial line plots will be presented for every flow

variable, while transverse, contour, and perspective plots will be reserved for those cases

in which they will be most elucidating. Since the magnetic field has been constrained to

vary in the axial direction only and the transport properties are assumed to be isotropic,
the solution is symmetric about the channel centerline.

4.1.1 Flow Variables

Figures 4.1 and 4.2 show the magnetic field distribution used for the baseline case.

The magnetic field is seen to vary only in the axial direction, by construction, and is

roughly linear except for concentrations in the regions of the inlet and outlet. As the

magnetic Reynolds number increases these concentrations become more marked, causing

nearly all of the energy deposition and fluid acceleration to occur within thin layers at

the entrance and exit of the channel. The following pair of figures illustrate the current

density distribution over the channel. Through Maxwell's magnetic field curl relation,
since the magnetic field varies only in the axial direction, the current density does so as

well. Because the magnitude of !B is greater at the inlet and outlet than in the interior

of the channel, the value of the current density is higher in these regions.

A line plot of the fluid pressure is shown in Figure 4.5. After an initial large decrease

in a very thin layer at the inlet, the pressure is seen to slowly increase in the mid-channel

region as the gas is heated and ionization occurs. At the outlet a steep adverse pressure

gradient is formed due to the large energy deposition by Ohmic heating there, as a result

of the local current density maximum. Small standing pressure waves are evident in the

line plot as well as the perspective plot of Figure 4.6. In the perspective plot the channel

entrance is to the lower left of the figure, while the exit is located at the upper right.
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Figure 4.1: Magnetic Field: Baseline Case
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Figure 4.3: Current Density: Baseline Case
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These waves originate near the electrode walls at the channel entrance, and propagate

down the length of the channel with periodic reflections from the downstream boundaries.

The source of these waves is twofold.

First, the quasi one-dimensional mass flow boundary condition at the inlet is an over-

simplification of the physical situation; it was necessary at this point in order to obtain a

solution, because much further work would be required to accurately formulate the inlet

conditions. One might, for example, derive the Riemann invariant conditions including

the effects of the magnetic field, and use a modified backward traveling characteristic

wave to obtain information from the next inside point. The inlet boundary condition

may also be nonphysical because the density and gas temperature may have deviated

from constant injection profiles by the inlet point, perhaps through some very thin re-

gion just beyond the injection point of the propellant. The current formulation of the

inlet boundary conditions, however, does guarantee constant pressure over the channel

cross-section for the inlet point, a condition which was not observed with other boundary

condition methods. Since the magnitude of the transverse velocity is small and there is

no transverse variation in the magnetic field, constant pressure across the channel would

be expected.

The second source of pressure waves at the channel entrance is that in reality a

discontinuity in the electron pressure is present at the first point beyond the inlet, as

a consequence of the local current density maximum there. A large amount of energy

is imparted to the flow at the first point, which rapidly raises the electron temperature

and ionizes the gas. Because the inlet ionization fraction is set to a very small value,
however, a large jump in the electron number density occurs in the first grid cell. This is

followed by either a much slower rate of increase or a decrease in n, due to the decreasing

level of Ohmic heating as the current density minimum at the half-channel length is

approached. Unfortunately, because the numerical smoothing is applied separately to

the overall and electron equations based on the electron and heavy species pressures

respectively, this large discontinuity in the electron pressure tends to be numerically

damped as a function of transverse location. Thus the true physical situation at the

inlet is not fully captured. Removing the numerical smoothing entirely from the inlet

region does not solve the problem, because the large gradients still create computational

difficulties. Therefore a future challenge will be to develop a smoothing procedure which

is based on an overall pressure (heavy species pressure plus electron pressure) switch
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Figure 4.5: Fluid Pressure: Baseline Case

rather than separate switches for each species. The main obstacle in such a formulation

is deciding which of the state variables to change in order to maintain a smooth overall

pressure profile. Based on the quasi one-dimensional results of Niewood[27], the most

likely scenario is that the gas temperature also increases rapidly at the inlet and has a

discontinuity at the first grid point. Physically this implies that the quantity of energy

deposited in the first cell is too large for the electrons to absorb through heating and

ionization within the residence time of that cell, so that the excess energy is collisionally

transferred to the heavy species.

A marked drop in the fluid density also occurs within the first grid point, as shown

in the line plot of Figure 4.7. The density near the electrode walls is observed to be

substantially higher than that in the central region of the channel, as a consequence of the

gas temperature gradient and the effect of ambipolar diffusion. Electrons diffusing toward

the walls as a result of a strongly decreasing electron density gradient, carry ions with

them due to charge coupling. Since the ions, unlike the electrons, cannot pass through

the walls, they instead accumulate there. The value of the wall density is dependent upon

the combined boundary conditions on the electron and ion densities (Eqns. 3.28, 3.29).
Figures 4.8 and 4.9 show transverse fluid and electron density profiles at representative



points in the channel. These graphs illustrate not only the prescence of large gradients

near the walls, but also the evolution of these gradients down the channel. The initial

shapes of the fluid and electron density profiles produce a local maximum of the quantity

n,e, a short distance from each electrode wall, thereby creating a local maximum in

ionization based on the Hinnov-Hirschberg model (Eqn. 2.28). Consequently, as the flow

moves downstream, the electron number density itself develops local maxima near the

walls. Ambipolar diffusion to the walls therefore increases, producing a corresponding

increase in the wall fluid density gradient.

Figures 4.10 and 4.11 show the fluid velocity for the baseline case. After an initial

thin acceleration region through which the flow becomes supersonic, further acceleration

primarily by the Lorentz force increases the velocity to approximately 5000 m/s at the

exit plane. The rapid development of the velocity boundary layer is evidenced in the con-

tour plot of Figure 4.11; viscous effects reach the centerline by half the channel length.

The evolution of the velocity profile is traced in Figure 4.12, which contains normalized

graphs between x=0.00 and x=0.07 at intervals of 0.01m. Note that the second profile

(x=0.01) is deformed in the center due to lower pressure in the center of the flow near

the channel entrance, a result of the aforementioned inlet boundary condition difficul-

ties. Interestingly, the velocity profile evolves to something which is not quite parabolic.

Thus, previous quasi one-dimensional work which has assumed parabolic velocity profiles

appears to be inaccurate in the early part of the channel because of the boundary layer

development region, and in the latter part of the channel because of the non-parabolic

character of the developed flow. The Mach number plots in Figures 4.13 and 4.14 show

that the flow in fact becomes supersonic by the first grid point. The central core rapidly

attains a Mach number of 2, and maintains that value nearly to the exit plane. In this

region the acceleration of the gas roughly balances the rate of increase in internal energy

due to viscous and collisional heating.

The heavy species temperature is plotted in Figures 4.15, 4.16, and 4.17. As in the

previous perspective plot for fluid pressure, the channel inlet is to the lower right of Fig-

ure 4.17, while the outlet is to the upper right. Near the inlet, collisional heating from

electrons is the dominant process, while viscous dissipation becomes an important heat-

ing mechanism near the walls as the flow develops. The effect of viscous heating is the

production of temperature maxima located a short distance inside each wall boundary.

The location of these maxima is determined by the variation of the viscosity coefficient



and the velocity gradient over the cross-section, and is approximately at the point where

the flow velocity is one half of the centerline maximum value. At the exit gas tem-

peratures approach 15, 0000K, and in fact the heavy species begin to transfer energy

collisionally to the electrons. This is evident in the contour plot of the electron tempera-

ture in Figure 4.19, where T, is seen to increase near the walls toward the channel outlet.

Throughout the channel the electron temperature varies between 0.9 and 1.1 electron

volts.

The steepest gradients in the ionization fraction of the gas occur near the inlet and

outlet where the Ohmic dissipation is the highest, as shown in the line plot of Figure 4.20.

By the end of the channel the ionization fraction reaches a value of 0.55 at the centerline.

At the exit the combination of strong dissipation, and high gas temperature and electron

density near the walls, creates a high level of ionization over the entire channel cross-

section.
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Transverse Distributions: Electron Density
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Figure 4.11: Flow Velocity Channel Contours
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Figure 4.15: Gas Temperature: Baseline Case
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Figure 4.17: Gas Temperature X-Y Perspective Plot
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Figure 4.21: Electrical Conductivity: Baseline Case

4.1.2 Transport Properties

The graph of electrical conductivity in Figure 4.21 illustrates an interesting physical

aspect of low magnetic Reynolds number MPD flows. This is that the electron density and

temperature distributions in the channel are maintained such that the Ohmic dissipation
(! ) is approximately constant in the transverse direction. Figures 4.22 and 4.23 show the

coefficient of viscosity in the channel. A maximum value of jL is achieved at approximately

70% of the channel length near the electrode walls. Upstream of the maximum the

fluid viscosity is dominated by the neutral viscosity component, which is relatively large

and increases with temperature. Downstream of the maximum, however, the level of

ionization increases rapidly and the much lower ion viscosity becomes predominant. Once

the viscosity begins to decrease, local minima are attained near the walls at the exit where

the gas temperature and electron density are the highest. Comparison to the earlier graph

of viscosity coefficient versus temperature (Figure 2.7) shows that the real flow is far from

ionizational equilibrium. In the real flow excess ionization leads to a larger population of

ions and hence a lower fluid viscosity than in the equilibrium case.

The electron and heavy species thermal conductivity coefficients are plotted in Figures
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Figure 4.24: Electron Thermal Conductivity Coefficient: Baseline Case

4.24 and 4.25, respectively. The value of ke is seen to be strongly dependent on electron

temperature (refer to Figure 4.18). The value of kg, like the coefficient of viscosity,
decreases once the level of ionization has increased sufficiently, and is considerably lower

than its value in Saha equilibrium due to excess ionization.
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4.2 Relative Importance of Effects

In order to examine the relative importance of the factors involved in energy exchange

in the flow, the magnitudes of some terms in the electron and heavy species energy equa-

tions are plotted transversely at three representative axial locations in the channel. These

axial stations are (1) x=0.01m, chosen to show the energy balance near the inlet where

magnetic effects are strongest but the flow is yet undeveloped, (2) x=0.05m, representa-

tive of the mid-channel region, and (3) x=0.09m, which is indicative of the outlet region

of the channel where maxima in the level of ionization, gas temperature, and Ohmic

dissipation occur. Figures 4.26 through 4.28 show the relative sizes of terms in the heavy

species energy equation for these locations. Near the inlet the dominant effect is colli-

sional energy transfer from the electrons, because the electron number density is relatively

high and there is a large difference between the gas temperature and the electron tem-

perature in this region. Viscous heating and transverse heat conduction are important

only very near the electrode walls, since the velocity and thermal boundary layers are

not fully developed. Axial heat conduction was found to be negligible in all parts of

the channel. By the middle of the channel (Fig. 4.27) viscous dissipation has become

dominant in a larger region near the walls, due to the increasing value of the viscosity

coefficient and the spread of viscous forces toward the centerline. The lower collisional

energy transfer rate results from a somewhat lower electron density in the middle of the

channel and an increasing gas temperature, which is 5910 0K at the centerline, compared

to 11,040 0K for the electrons. Energy is increasingly conducted toward the electrodes,
as the increasing gas temperature in the core of the flow produces a steeper temperature

gradient near the wall boundaries. Near the exit of the channel collisional energy transfer

again becomes the dominant process except in interior regions a short distance from the

walls. Very near the walls collisional transfer is high because of high electron density

and the difference between T, and Tg, as is the case to a lesser degree in the central core.

At the gas temperature maxima located approximately 0.2cm inside each wall, however,
viscous dissipation has heated the heavy species temperature to a value greater than the

electron temperature, so that energy is actually transferred from the heavy species to

the electrons. Viscous heating is still dominant near the maxima in gas temperature,

although it is decreasing as the exit is approached because of the decreasing value of

the viscosity coefficient. The transverse heat conduction plot illustrates that heat is also

being conducted away from the gas temperature maxima.
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Figure 4.26: Size of Terms in Heavy Species Energy Equation, x=0.01

Graphs of some terms in the electron energy equation are shown in Figures 4.29

through 4.31. Ohmic dissipation is the primary source of energy in all three representative

regions, and is naturally higher near the channel inlet and exit. As previously noted, the

dissipation is nearly constant over the channel cross-section. Axial heat conduction, as

observed with the heavy species, is negligible in the overall energy balance. Transverse

heat conduction is important only near the electrode walls, where energy is generally

conducted toward the centerline due to the shape of the electron temperature profile.

Collisional energy transfer, described in the preceding paragraph, is a relatively important

energy loss mechanism depending on the location in the channel. The primary source

of energy loss, however, is ionization. This effect is greatest near the wall boundaries,
where the ionization rate must be higher in order to replace electrons which are lost

through ambipolar diffusion to the walls. The magnitude of terms in the electron energy

equation are presented quantitatively in Table 4.3 for the centerline of the channel, at

.01m axial intervals. Ionization and recombination rates from the Hinnov-Hirschberg

model are similarly presented in Table 4.2. From the table it is apparent that three-body

recombination is not important for this baseline case at the centerline of the channel.

Transverse heat conduction to the walls and the ambipolar loss of electrons through
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Figure 4.28: Size of Terms in Heavy Species Energy Equation, x=0.09
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Figure 4.29: Size of Terms in Electron Energy Equation, x=0.01
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Figure 4.30: Size of Terms in Electron Energy Equation, x=0.05
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Figure 4.31: Size of Terms in Electron Energy Equation, x=0.09

Ionization Recombination

x(m) Rate Rate it

(102B6 m3S) (102B6 /M 3 ) (1026/m 3s)
0.00 1.724 0.000 1.724

0.01 0.616 0.009 0.607

0.02 0.421 0.026 0.395

0.03 0.277 0.026 0.251

0.04 0.247 0.022 0.225

0.05 0.305 0.027 0.278

0.06 0.407 0.027 0.380

0.07 0.565 0.026 0.539

0.08 0.898 0.030 0.868

0.09 1.512 0.052 1.460

0.10 3.697 0.271 3.426

Table 4.2: Ionization and Recombination Rates Along the Centerline: Baseline Case

E(W/m 3)

-3.0

-10.00



Table 4.3: Magnitude of Some Terms in the Electron Energy Equation: Centerline

the wall boundaries represent a loss of energy from the flow. Given the transverse distri-

butions of gas temperature and electron density, these losses can be estimated. The flux

of energy to the walls due to conduction is shown in Figure 4.32, and due to ambipolar

diffusion in Figure 4.33. For the baseline case of this research the total power input

was 298kW, not including power lost in the near-electrode drops and assuming a channel

depth of 0.4m. The depth was chosen to approximate the thruster studied experimentally

by Heimerdinger[10]. Based on the calculated energy fluxes, an ambipolar power loss of

8.5% was obtained, as well as a 4.8% power loss due to transverse heat conduction. This

amounts to a 13.2% total power loss, although in the real flow the prescence of large volt-

age drops in the near-electrode regions would account for a much greater loss of power.

It is unclear how the incorporation of these voltage drops into the model would change

the flow behavior near the electrodes.

Power Density (108 W/m 3 )

Ohmic Collisional Transverse Heat Axial Heat

x(m) Dissipation Transfer Ionization Conduction Conduction

0.00 5.19 -0.03 -4.36 0.014 -1.350

0.01 2.31 -0.32 -1.58 -0.057 -0.003

0.02 1.40 -0.47 -1.12 -0.037 -0.002

0.03 1.07 -0.38 -0.77 0.001 0.004

0.04 1.00 -0.30 -0.68 0.005 0.002

0.05 1.10 -0.30 -0.84 0.013 0.004

0.06 1.35 -0.28 -1.10 0.013 0.004

0.07 1.85 -0.28 -1.50 0.015 0.005

0.08 2.91 -0.30 -2.35 0.018 0.008

0.09 5.07 -0.36 -3.96 0.051 -0.016

0.10 9.37 -0.20 -10.04 0.161 -0.101
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Figure 4.34: p, p, and a from Similar Quasi-1D Case

4.3 Comparison With Quasi-1D Results

The quasi one-dimensional code of Niewood[27] was used to calculate a solution for

comparison to the two-dimensional baseline case of this research. Parameters for the

quasi-1D run are identical to those utilized for the 2D case. The physical model used

in the quasi-1D code is roughly the same as that used in this research, except that

the only viscous and diffusive effects included are (1) Da • -
2 ambipolar diffusion in the

ion density and electron energy equations, (2) " viscous shear in the axial overall

momentum equation, and (3) i•~ 2 viscous dissipation in the heavy species energy

equation. All three viscous and diffusive terms are calculated based on the assumption

that the fluid velocity and electron density have parabolic distributions in the transverse

direction. The density, pressure, and ionization fraction from the quasi-1D case are

plotted in Figure 4.34, while the axial velocity, Mach number, heavy species temperature,
and electron temperature are presented in Figure 4.35.

In general, the results from this two-dimensional model follow those of the quasi

one-dimensional case fairly closely. Differences arise primarily from the non-parabolic



5.

4.

3.

2.

1.

0.
0.000 1.250 2.500 3.750 5.000 6.250 7.500 8.750 10.000 x10-2

x

Figure 4.35: u, M, T,, and Te from Similar Quasi-1D Case

and non-constant transverse distributions of the flow variables found in this research,
especially the velocity and density distributions, which directly impact the calculation

of viscous and diffusive effects. It was shown by Niewood that the inclusion of viscosity

and diffusion in the quasi-1D model substantially altered the flow solution for relatively

narrow channels[27], so that any differences in the calculated magnitude of these effects

could be expected to give very different results. A second cause of discrepancies between

the models is the inaccuracy of the two-dimensional code near the entrance of the channel,
due to problems with the inlet boundary conditions and numerical smoothing as discussed

in section 4.1.1.

Figures 4.36 through 4.39 show four representative flow quantities averaged over the

channel cross-section. Even with the difficulties of the 2D code at the inlet, the aver-

age ionization fraction (Fig. 4.36) is nearly the same as that of the quasi-1D case. The

average electron temperatures calculated by each method are also similar, although the

average gas temperatures differ considerably. This is most likely due to the non-parabolic

transverse distributions and the low fixed wall temperature in the two-dimensional case,

which prescribe different viscous dissipation and collisional heating rates from the sim-

plified quasi one-dimensional case. The average flow velocity is plotted in Figure 4.39 for
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Figure 4.36: Comparison of Quasi-1D and 2D Results: Ionization Fraction

the two cases. Here it is observed that the 2D solution diverges rapidly from the quasi-1D

solution, primarily due to the steeper adverse pressure gradient generated in the 2D case

from differing transverse distributions and the influence of the wall density boundary con-

ditions. Further refinement of the two-dimensional scheme is necessary, however, before

conclusive comparisons with the quasi one-dimensional code can be made.
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Chapter 5

Conclusions

This research has developed a two-dimensional numerical model for the calculation of

magnetoplasmadynamic flows in a constant area channel. The model distinguishes be-

tween electrons and heavy species, and employs MacCormack's Time-Split Method to

integrate the governing equations. Viscous and diffusive processes are incorporated using

essentially a Navier-Stokes formulation; these include ambipolar diffusion, viscous shear,
viscous dissipation, and electron and heavy species heat conduction. Other effects such

as nonequilibrium ionization, Lorentz acceleration, Ohmic heating, and collisional energy

transfer are also included.

The flow calculated in the baseline case was similar to that seen in previous one-

dimensional calculations. A rapid decrease in density and pressure at the inlet caused

the gas to become supersonic in the first grid cell, after which the Mach number remained

fairly constant. The velocity boundary layers originating at the inlet electrodes merged

at the centerline by half the channel length, although the fully developed velocity profile

was not parabolic. Viscous dissipation and collisional energy transfer from the electrons

increased the gas temperature to a level greater than the electron temperature by the

channel exit, a phenomenon which has been observed in experiments. Viscous heating

created transverse maxima in the gas temperature, located at a distance approximately

10% of the channel width inside the electrode walls.

Other flow quantities also displayed two-dimensional structure. The formation of

steep density gradients near the walls was caused by transverse gas temperature gradients

and the ambipolar diffusion of electrons, as ions which were carried with the electrons

could not pass through the wall boundaries and thus accumulated there. In addition,
a much higher ionization rate was required near the walls to compensate for the loss

of these electrons. The transverse distributions of electron number density and electron

temperature were such that the Ohmic dissipation was nearly constant over the channel

cross-section.



The transverse structure revealed in this research demonstrates the necessity of two-

dimensional MPD thruster models to capture not only multidimensional electromagnetic

effects such as the Hall Effect, but also transverse flow variations created by viscous and

diffusive processes. These transverse distributions were seen to be fairly complex, and

not easily modeled by such simple assumptions as parabolic flow in the case of velocity.

Viscous and diffusive effects also produced an axial flow solution which was significantly

different from those seen in previous one-dimensional, inviscid models. Examples of this

include excessive heating of the heavy species through viscous dissipation, and a reduction

in the axial velocity through viscous shear and the establishment of a strong adverse

pressure gradient. Further work on this model is warranted, however, to quantify these

effects and to determine the extent to which the interaction of a self-consistent magnetic

field would influence the flow solution.



Chapter 6

Recommendations for Further Work

Further work on the model constructed in this research is warranted in order to better

quantify the effect of viscous and diffusive processes, and to formulate a self-consistent

magnetic field calculation so that fully two-dimensional flow can be predicted. In the near

future the problematic inlet boundary conditions must be improved. This may involve

developing a modified characteristic theory which includes the effects of the current and

magnetic field. It may be sufficient to formulate a new numerical smoothing technique

based on the overall pressure instead of that of the individual species. The next step

would be to add a dynamic magnetic field calculation to obtain a self-consistent flow

solution. This could be compared to the static magnetic field case to determine the

effects of axial current and other nonuniformities. Calculating the magnetic field as a

flow variable would also allow the B = 0 boundary condition at the exit to be relaxed,
most likely by extending the computational domain beyond the end of the electrodes and

allowing current to flow through that region.

Later work on this model could involve modification of the electrode wall boundary

conditions to include a rigorous model of the plasma sheaths located there, and to account

for the voltage drops at the anode and cathode. It may also be important to change the

formulation of the equations to an axisymmetric coordinate system, since most experi-

mental MPD thrusters are coaxial in geometry. Finally, a non-Cartesian grid would be

required to examine the effects of channel contouring on thruster performance. In general

a great deal of research needs to be performed both numerically and experimentally in

order for magnetoplasmadynamic flows to be fully understood and applied.
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Appendix A

Fundamental Constants

Electric charge of a proton

Permittivity of vacuum

Permeability of vacuum

Planck's constant

Boltzmann's constant

Electron rest mass

Argon atomic mass

1st ionization energy for Argon

Ratio of specific heats for Argon

Argon gas constant

Electron gas constant

e = 1.602 x 10-1 9C

Eo = 8.854 x 10 - 12 F

=o = 4?r x 10- 7 H

h = 6.626 x 10- 34J - s

k = 1.381 x 10- 23 JOK

me = 9.11 x 10- 31kg

ma = 6.634 x 10- 2 6kg

Ei = 2.53 x 10-1 8J

-y = 1.667

R = 20 8 .13 j

Re = 1.516 x 107 J
kgoK


