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Abstract

Many future space missions will require that proximity operations be
accomplished reliably, precisely and efficiently without a pilot in the loop. This
thesis examines one element of an autonomous proximity operations controller,
the trajectory planner. The trajectory planner uses a modified gradient search
to find a locally optimal trajectory from the initial state to the target state that
does not violate any of the mission constraints.

The mission constraints are defined as the maximum time of flight for the
operation, the maximum closing velocity allowed, and the obstacles in close
proximity to the chase and target craft. The obstacles in this space are not
assumed to be stationary; therefore, the planner must be able to develop a
solution that, although not guaranteed globally optimal, meets all mission
constraints-in real time. This will enable the autonomous controller to avoid
obstacles moving rapidly with respect to it and to correct for failed actuators.

The Clohessy-Wiltshire equations for relative position and quaternions
for relative attitude are used to define a state space relationship between the
initial state and the final state as a function of time. The trajectory solver then
uses these equations to find the minimum fuel solution to the problem of
maneuvering to a target position and attitude while evading moving obstacles.
Example results and simulations are included for various initial conditions and
maneuvering constraints.

The trajectory planner algorithm can find a trajectory from any initial state
to any final state which satisfies the input constraints and uses minimum fuel.

Thesis Supervisor: Professor Walter M. Hollister
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Introduction

Autonomous Docking
Current proximity operations are highly constrained by both vehicle

specifications and operating restrictions. Consequently, these operations need
to be extensively orchestrated on the ground prior to execution. In spite of this
exhaustive planning, the execution often deviates from the planned trajectory
due to unmodelled dynamics or failed actuators. As a result, the active craft is
forced to return to one of the prechosen standoff points while the operation is
replanned on the ground.

Future proximity operations are expected to be considerably more
complex in both planning and execution. Docking with the US space station
may require maneuvering around other vehicles, solar arrays or appendages of
the station itself. Other vehicles could be simultaneously maneuvering near the
space station, creating moving obstacles that cannot be accounted for prior to
execution. Another highly constrained mission is the Mars sample return
mission, in which two unmanned spacecraft will rendezvous in orbit about Mars.
This rendezvous suffers from the problem that no man can be in the loop; not
only is the mission unmanned, but the communications time between Earth and
Mars is at best 4 minutes each way, making ground control impossible.

To accomplish these missions and to improve the reliability of proximity
operations for rescue missions, an autonomous system for proximity operations
must be developed. This system must be reliable, precise, and fuel efficient.

Current and Proposed Solutions
Knowing that future missions will require spacecraft to exercise a greater

level of autonomy in executing proximity operations, a great deal of research
has been conducted to this end. Unfortunately, most of the research has been
conducted on developing the hardware required for the imaging systems and
the docking platforms. Little effort has gone into the development of an
intelligent planner. The navigation and guidance portion of the autonomous
system is often a simple, fixed trajectory between two known parking orbits.
These methods have a standard solution for any contingency that may occur,
which is break off the maneuver, return to a prechosen standoff point, and try



again. Although these methods may have been acceptable in the past, it is
unlikely that they could accomplish a mission in a more constrained maneuver
space.

Many people advocate creating a simple algorithm which calculates a
series of small closing trajectories along the velocity vector of the target craft.
This technique of hopping along the velocity vector has been in use since the
early days of Apollo because each of the intermediate burn positions is on the
target velocity vector and is therefore stable with respect to the target state. This
method suffers from the same limitations that plagued the astronauts who flew
earlier missions; the simplistic algorithm does not account well for failed
actuators and the maneuver is prone to extensive replanning if a failure does
occur. Furthermore, it is by no means fuel optimal and therefore requires larger
fuel reserves on the chase craft.

Others suggest that all currently planned unmanned vehicles should be
remotely piloted. This may be a valid solution for many missions such as orbital
resupply or "space tug" missions which use the Orbital Maneuvering Vehicle,
OMV. While these mission might be accomplished without an intelligent
planner, the pilot could still benefit from its use. A planner could aid the pilot by
suggesting trajectories and associated burn histories as well as warning of
impending collisions and suggesting evasive action. Such an aid could
significantly increase the probability of success-in a highly constrained
maneuver space and could make real time replanning possible in the event of
failures.

Although progress toward autonomous planners has been slow, their
usefulness is difficult to deny. This thesis suggests an autonomous system that
eliminates the need for man in the planning or execution loop. The autonomous
controller proceeds by defining the maneuver, assessing the maneuver
constraints, planning the trajectory to the target state, and monitoring the
execution. As stated earlier, the autonomous controller could also be used as
a pilot aid on manned missions.

Elements of Planner
The intelligent autonomous controller will consist of three distinct

sections: the maneuver manager, the trajectory planner, and the execution
manager. All three controller sections will be in communication with each other.
(see Figure 1.1)



Maneuver Manager
-- Chooses course of action in response to

changes in vehicle or environment
status, or mission objectives.

Trajectory Planner
-- Uses optimal search to generate way

points.
-- Passes way points to execution manager. I

Execution Manager
-- Interface to sensors and vehicle.

-- Updates dynamics of modeled vehicle.

Figure 1.1: Intelligent Autonomous Controller

The maneuver manager is an intelligent decision maker, or a human
pilot, which chooses a course of action based on mission requirements and
information provided by the trajectory planner, execution manager and
spacecraft sensors. Since the maneuver manager needs to assimilate
information and make mission critical decisions such as continuing or aborting
the proximity operation, unmanned missions will need to pay special attention
to this element. The manager has access to information about mission
objectives, vehicle limitations, and the maneuvering environment. If the
maneuvering environment changes during the execution of proximity
operations, the manager will be made aware of this and will have the option of
replanning the maneuver to compensate for the new constraints or terminating
the maneuver.

The trajectory planner creates a series of waypoints, intermediate states,
between the current state and the target state for the vehicle to follow. This

ýJ



series of waypoints defines the optimal path between the initial and target states
subject to maneuvering constraints from the maneuver manager and the
execution manager. Although the search algorithm used in the planner is
applicable to any spacecraft, the cost function, fuel use, will be vehicle specific.
A trajectory planning time of a few minutes is usually insignificant in light of a
maneuver duration of several hundreds of minutes; however, conditions such
as a jet failure when the vehicle is close to the target state may dictate the need
for real time planning. The planner should therefore have the ability to find a
solution in real time that, although not optimal, does not violate any of the
constraints and allows the vehicle to complete the maneuver.

The final element in the autonomous controller is the execution manager.
It is the interface between the planner and the vehicle which implements the
plan. Before the maneuver is initiated, the execution manager determines the
maneuver environment and the vehicle condition. This information is then sent
to both the maneuver manager and the trajectory planner. Vehicle
malfunctions, such as inoperative thrusters, are relayed to the trajectory planner
as constraints in the maneuver environment; states requiring these thrusters
simply cannot be achieved. During the maneuver it uses a model of the
vehicle's actuators to determine the firings necessary to achieve the way points
and ultimately the goal state. If the maneuver environment changes or a failure
occurs during the maneuver, this information is made available for replanning.
One of the most important roles of the execution manager is that it allows the
controller to correct for dynamics that may have not been properly modelled in
the trajectory planner. If these unmodelled dynamics or incorrect
implementation of desired rate changes cause the vehicle to stray from the
planned path, the execution manager will sense this and can correct the
vehicle path.

SThis thesis will discuss the development of one of these three sections,
the trajectory planner.. Since only the cost function is vehicle specific, the
discussion of the search algorithm will be appropriate for the trajectory planner
of any craft. Example trajectories are included for various initial conditions,
obstacle sets, and terminal conditions. These trajectories, however, are
executed on the Space Shuttle OEX autopilot [2] and are therefore specific to
the Space Shuttle. The other two elements of this controller are topics of
continuing research at the Draper Laboratory.



Equations of Motion

Reference Frames
The target reference coordinate system is centered on the desired

position of the satellite, target position. The x axis is measured along the
radius vector from the center of mass of the attracting body to the satellite, with
the positive direction away from the attracting body. The y direction is measured
along the velocity vector of the target ,with the positive direction in the direction
of positive velocity. For this coordinate system to be orthogonal the orbit must
be circular; this makes the velocity vector normal to the radius vector for all
time. The final axis z, is normal to the x, y plane completing the right handed
coordinate system. (see Figure 2.1) This reference frame rotates in time about
its z axis at the orbital rate of its center so that the x axis is always aligned with
the radius vector.

Target

Figure 2.1: Target Reference Frame

The body reference coordinate system is centered on the center of mass
of the chase vehicle. For the Shuttle example presented in this paper, the axes



are standard aircraft axes. The positive x axis is located from the center of mass
through the nose of the craft. The positive y axis is located from the center of
mass through the right wing of the craft. The positive z axis rounds out the right
handed coordinate system by pointing through the "bottom" of the craft. (see
Figure 2.2) Since both the body and target reference frames,LVLH, are rotating
in time, current position and orientation of the body is referenced to the current
LVLH reference frame.

Figure 2.2: Body Reference Frame

Derivation of Hills Equations [5]
From Newton's second law, the acceleration of the chasing craft can be

expressed as the sum of the forces acting on the craft per unit mass,

R = 1. forces on the chase craft
M (2.1)

where: R = XI+Yj+Zk

assuming that the velocities are non relativistic. R is expressed here
in inertial coordinates of the central force body (capital X, Y, Z will be used for
inertial coordinates while lower case x, y, z will be used for LVLH coordinates).
Furthermore, it is assumed that the external forces are small compared to the
central force; this keeps the orbit nearly circular. Equation 2.1 can be rewritten
in the form,

= FF-GMR
R3  (2.2)

where: F = Fx + Fy + FZ

3ý(



where F is any non gravitational force, including control inputs, per unit mass
acting on the chase craft. The second term in Equation 2.2 is the gravitational
acceleration on the chase craft where M is the mass of the central body and G
is the universal gravitational constant. This equation can be further separated
into three components,

SI= (FxMX I'+ FyMY+ Fz Z (2.3)

Another expression for R may be obtained by differentiating the R vector
twice,

R = p'UR+(2nxp~UR)+(flXR)+ x (nx R) (2.4)

Expanding and collecting components gives,

R = ( -2nY-n2X)i+( + 2nX - n2Y)j+ Z k (2.5)

where n is the constant orbital rate, UR is a unit vector in the R direction, and R
= p UR . Equating the coefficients of i, j, and k in Equations 2.3 and 2.5
yields,

X = (n2 G- X+2nY + Fx
S R3 FI (2.6)

S= (n2- GMI Y -2nX X+Fy
R3VI (2.7)

. = -GM Z +Fz
R3  (2.8)

To make the derivation more straight forward, the central body inertial
coordinate system is initially aligned with the ascending node along the i axis.
Then, the origin of the target centered coordinate frame during node passage is,



(X, Y, Z)I target origin = (p, 0, 0)

where p is the radius of the target from the center of the central body. The
chase craft position is therefore,

(X, Y, Z)j chase craft = (p+x, y, z) (2.10)

Since the orbit is nearly circular and the orbit perturbations are assumed small,
the magnitude of R is approximately constant and can be expressed as,

R = [ (x+p) 2 + y2 + z 2 ]1/2 (2.11)

and then R3 can be written as,

R3 = [ (x+p)2 2 + Z2 3/2 (2.12)

If the orbit is assumed to be low Earth, p will be on the order of 6600
Kilometers while x, y, z are on the order of 500 meters for close proximity
operations. It is therefore safe to say that p >> x, y, z. The following
approximations follow,

GM GM
R3 [(x + p)2+ y2 + Z2]3/2 y

GM y

P3  (2.13)

GM (x + p) =GM (x+p)
R3  [ ( + p)2+ y2 + 2 ]32

GM (x+p)
(x + p)3

(2.9)



- GM (x+p)

SP (2.14)

using the binomial expansion theorem to further reduce Equation 2.14 yields,

GM

P3(1 + )3

GM (x+p)
(x+p) = p (P 3P (Xtp) + Pf

GM p +1x-2

GM p Wp3  (P1

--(p - 2x)
P3

Kepler's Third Law can be used to
radius and orbital rate,

relate the central body mass,

n2 =;
a3

G (M + m)
a3

_GM
p3

Where m is the mass of the smaller second body, orbiting craft, and a is
the semi major axis of the orbit. This is a good approximation since M>>m and
a is approximately equal to p for a nearly circular orbit. Equations 2.5 through
2.6 can be rewritten using the approximations in 2.13 through 2.16,

S= (n2- )X+2n9'+Fx

9

(2.15)

orbital

(2.16)



= n2 (x+p)-GM(x+p)+2ny+Fx
R3

= n2 (x + p) - GM (p - 2x) + 2ny + Fx

= n2 (x + p) - n2 (p - 2x) + 2n, + Fx

= 2ny + 3n2x + Fx

Y = (n2- GM)
\ 2-R3 i

. = (n2 - GM

= (n2 - n2) y

Y - 2n(X + Fy

y - 2nx + Fy

- 2nx + Fy

= - 2ni + Fy

S= -GM Z+Fz
R3

S= -.GM z+F
R3

= -n2 z + PFz (2.19)

The three equations 2.17 through 2.19 are approximations of motion with
respect to the target centered reference frame. These three equations will be
defined as the linearized dynamics model. They are,

X = 2ny + 3n2x + Fx (2.20)

y = - 2nk + Fy (2.21)

2. = -n2 z + Fz (2.22)

which are commonly termed the Hill's Equations for forced motion. George
William Hill, after whom these equations are named, first published this solution

(2.17)

(2.18)



to the restricted three body problem in 1878 in the first issue of the American
Journal of Mathematics [4].

Summarizing the assumptions made in the derivation above:

(1) The target is in a near circular orbit. This makes the coordinate
system orthogonal and makes the orbital rate constant.

(2) F is small compared to the central force. This keeps the orbit
perturbations small and the orbit nearly circular.

(3) The displacements x, y and z are small compared to the
distance p. Even for low Earth orbits, p is on the order of 6 x 106
meters while x and y will be no more than 1 x 103 meters in this study; p
is at least three orders of magnitude greater than x and y for these
proximity operations.

(4) The impulses applied to the satellites normal to the orbital
plane are small. This keeps the magnitude of z much smaller than p.

(5) The central body is assumed to be spherical; J2 and higher
order perturbations are ignored. If desired, these effects could be
accounted for in the external forces terms.

(6) The mass of the second orbiting craft is much smaller than the
central force mass.

Since none of the assumptions are unreasonable for the proximity operations
scenario, the Hill's Equations are valid for this application. The errors in this
method are caused by neglecting x, y and z in the approximations and are
therefore of order [x2 + y2 + Z2]1/2 / p . Since x, y and z are three orders of
magnitude smaller than p, the errors will be insignificant.

Force Free Solution
If no force is applied to the chase craft, the Hill's equations reduce to

X -2ny -3n2 x = 0 (2.23)
y + 2nx = 0 (2.24)
2+ n2 z = 0 (2.25)

which are commonly referred to as the Clohessy-Wiltshire equations. Although



the equations are attributed to W. Clohessy and R. Wiltshire for their paper in
the September 1960 issue of the Journal of Aerospace Science, another
author developed the solution concurrently [3]. Mr. A. Wheelon published his
own version of the force free solutions in the chapter "Midcourse and Terminal
Guidance" in the book Space Technology published in 1959 [9].

The y in Equation 2.23 can be eliminated by integrating Equation 2.24
and substituting the value for y. The resultant equation is,

X + n2x = 2n (o + 2nxo) (2.26)

where (xo, Yo, zo) are the initial conditions of (x, y, z); ie. values prior to
application of an external force.

The unforced positions and velocities at time t (indicated by a subscript 1)
in terms of the initial position and velocities (indicated by a subscript 0) are
presented below in state space representation.

y1

Y1Zi

_Zi

x0

yo
ZO

io

yO
_z,0

4-3cos(nt) 0 0 1/n sin(nt) 2/n (1-cos(nt)) 0
-6 (nt-sin(nt)) 1 0 -2/h(1-cos(nt)) 4/nsin(nt)-3t 0

S0 cos(nt) 0 0 sin(nt)/n
3n sin(nt) 0 0 cos(nt) 2 sin(nt) 0

-6n(1-cos(nt)) 0 0 -2 dn(nt) 4cos(nt) -3 0
0 0 -nsin(nt) 0 0 cos(nt) (2.27)

This state space relationship implies that any target state can be commanded at
a time t by picking the correct initial velocity. The correct velocity is determined
by pre-multiplying the target state by the inverse of the state transition matrix,
assuming that an inverse exists. To find the conditions under which this matrix
has no inverse, its determinant is calculated and set equal to zero:

sin(nt) [ 8 - 8 cos(nt)- 3nt sin(nt)] = 0 (2.28)

= (



which has two zeros. The periodic zeros of the characteristic equation are
created by the sin(nt) which premultiplies the bracketed quantitiy. These zeros
occur when,

nt = N 7c (2.29)

where N is an integer. Or equivalently,

t = N/2 P (2.30)

where P is the orbital period of the craft. Another set of aperiodic zeros are
created by the bracketed quantity, the first of which occurs at nt = 8.84 r. At
these values of nt, the state space relationship reduces to,

X1

Y1yi
Z1

iZ_

-6nt 1 0 0 -3t 0S00100000100
0000010

L 0 0 0 0 0 1

xo

yo

Zo

io

(2.31~

This transition matrix implies that only yl can be controlled. x, and zi can
never be controlled for transfers of these times since the satellite must have the
same magnitude of radius at integer multiples of the period (for a two impulse
transfer).

The force free solution provides an adequate model for the translational
dynamics of proximity operations. Since the burn times are small in relation to.
the total time of the maneuvers, the burns can be assumed to be impulsive and
the change in velocity vectors instantaneous. The transfer is therefore
characterized by a series of coasting trajectories defined by the force free
solution.

Attitude Dynamics
The current orientation of the chase craft is represented by the current

quaternion from the LVLH frame to the Body Frame. This can be computed
quickly and efficiently if the angular rates in the Body Frame are assumed



constant between impulses. This is a good assumption because the effects of
atmospheric drag, gravity gradients, and Euler coupling on the chase craft,
which slowly change the body rates, will be small for transfer times investigated.
This quaternion is made up of two parts; a vector about which the current
reference frame must be rotated, and the angle of rotation about that vector.
Therefore, if the LVLH reference frame is rotated about the vector defined in the
quaternion through the proper angle, the body reference frame will be found.
(see Figure 2.3)

Figure 2.3: Quaternion Rotation

Where u is the vector of rotation and 0 is the angle of rotation. The quaternion
chosen is an ordered quadruple with a norm of one,

cos (0/2)

-ulsin ([/2)

-u2sin (3/2)

-u3sin (0/2) (2.32)

As stated earlier, both the LVLH reference
frame are rotating with time. Therefore, finding
chase craft is a four step process.

frame and the body reference
the current orientation of the



The first step is to find the orientation of the current body frame to the
initial body frame. This step takes advantage of the two assumptions previously
made, that the angular rates are constant between impulses and that all rate
changes are assumed impulsive. If the angular rates are constant , the
quaternion angle and vector between any two body frames is given by,

13 - Iwot

U = (02/1()3/IO01 (2.33)

where o is the constant body rate during this period. The first step is satisfied by
substituting this angle and vector set into equation 2.32 defining the quaternion
between the two body frames.

The second step is to find the orientation of the current body frame to the
initial LVLH frame. This is accomplished by multiplying the quaternion from
LVLH o to body o by the quaternion from body o to body 1 (subscipt 0 indicates
time zero, subscript 1 indicates current time).

body 1 body 1 body 0

qLVLH q bodyo 0LVLH 0  (2.34)

For the definition of quaternion multiplication, see referende 6.
The third step is to find the orientation of the current LVLH frame to the

initial LVLH frame. Knowing that the LVLH reference frame also rotates at the
constant rate n about its second axis, the quaternion angle and vector between
any two LVLH frames is given by ,

13 = nt

U = 1u 0 - (2.35)

The third step is satisfied by substituting this angle and vector set into equation
2.32 defining the quaternion between the two LVLH frames.



The final step is to find the orientation of the current body frame to the
current LVLH frame. This is accomplished by multiplying the quaternion from
LVLH 1 to LVLH o by the quaternion from LVLH o to body 1.

body 1 body 1 LVLH o
q =q qLVLH 1  LVLH 0 LVLH 1  (2.36)

This four part process is a simplistic method of tracking current attitude of
the body frame. With the quaternions given here and the force free solution
from the previous section, the chase position and attitude can be found at any
time with respect to the target state.



Trajectory Planner

The purpose of the trajectory planner is to create a series of intermediate
states that the chase vehicle should fly through on its way to the target state. At
several of these intermediate states the chase vehicle will be required to
execute rate changes so that it can continue along the planned trajectory. This
set of rate changes, along with the associated positions and times, defines the
impulse profile that the chase craft must follow to reach the target state.

The number of search methods which could be utilized to calculate this
impulse profile is almost endless; however, some are better suited to the task
than others. Furthermore, their is no obvious choice of independent variables to
use in the search algorithm. For this reason, two different algorithms were
investigated. The first was an application of simulated annealing which used
three independent variables: number of impulses, position of each impulse, and
time of each impulse. Although this method did create reasonable solutions,
the computation time required was exceptionally high. The second algorithm, a
modified gradient search, creates more efficient trajectories with greatly
reduced computation time. The modified gradient search algorithm is outlined
in this section.

Cost Function
The cost function used in this planner is the total fuel use required to

complete the maneuver,

n
Cost = fuel use impulse i

i=1 (3.1)

where n is the total number of impulsive velocity changes commanded by the
trajectory planner. The fuel use required for a given maneuver is a function of
specific impulse, jet location, thrust direction, jet coupling, and minimum
impulse of the jets; therefore, this cost function is highly vehicle specific.

To make the algorithm as general as possible, the impulses are
represented as changes in velocity and attitude rates. The output of the



algorithm is merely a schedule of combined rate changes at given locations and
times along the trajectory. Since the planner commands rate changes and not
jet on times, the algorithm can be adapted to any vehicle by simply changing
the jet select algorithm. For testing purposes, a linear programming jet
selection for the Space Shuttle [1] has been chosen to compute fuel use.

As most vehicles performing proximity operations will have range and
range rate information to the target state, feedback control of the maneuver
execution is possible. The feedback control is accomplished by defining a
region around the reference trajectory beyond which the chase craft cannot
stray; the limits of this region are called deadbands. If the chase vehicle
reaches one of these deadbands, the autopilot will correct the vehicle state with
additional jet firings. As the Shuttle jets have a minimum firing interval of eighty
milliseconds and therefore cannot exactly nullify the undesired rates, the
deadbanding firings are biased to drive the state toward the center of the
deadband region. Since the vehicle will continue to oscillate between the limits
defined by the deadbands, these additional firings are termed limit cycling
effects.

The trajectory planner should have the capability to account for these
additional firings since they may account for more than fifty percent of the fuel
use for a long transfer. The cost function used when considering feedback
control of the execution is

n
Cost = (fuel use impulse i) + (T * tof)

i= 1 (3.2)

where F is the limit cycling constant and tof is the maneuver time. The limit
cycling constant is an average fuel use as a function of time due to the added
jet firings. It describes the magnitude and frequency of the firings required to
keep the average deviation from the planned trajectory approximately zero.
Since it is a function of the fuel use considerations noted above as well as
vehicle orientation and magnitude of the position and attitude deadbands, it is
an empirically determined constant. As the correction for limit cycling effects is
only of first order, a slight error in fuel use predictions is expected. Adding this
correction reduces the maneuver time of flight so that limit cycling effects no
longer dominate total fuel use.
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Search Space
The search method used in this algorithm is a modified gradient search,

incorporating heuristics to trim the search space when necessary. The algorithm
searches over a set of independent variables simultaneously to minimize the
cost function. The search begins by finding a two impulse solution to the
problem, via equation 2.27, which meets all of the constraints defined by the
maneuver environment. This solution is then made more efficient by adding
impulses and then determining the best position, magnitude, direction, and
time of these impulses. The gradient search moves in the direction of the
maximum negative gradient of the cost function and terminates when it
encounters a positive gradient in all directions.

Independent Variables
To optimize the cost function, the algorithm searches over five

independent variables: time between each impulse, number of impulses,
position of the impulses, time of the first impulse, and the attitude at each
impulse. An infinite number of possible trajectories to the target state exist for
any given value of each independent variable, as long as it is not one of the
singular times of flight defined by Equation 2.28. Therefore, the search space
and computation time grows rapidly as the number of independent variables is
increased. For this reason, the search space has been limited slightly.

The cost function is most sensitive to changes in the time of flight. For
this reason, this variable's search space is not constrained. The search space
on time runs from instantaneous transfer, infinite cost, to the maximum time of
flight allowed for the maneuver. Any combination of second, third, and fourth
impulse times that adds up to this total transfer time is allowable.

The number of impulses has a large effect on the cost function, but only
through four impulses for reasonable obstacle sets and terminal conditions.
This has been empirically determined by investigating many different types of
obstacle sets and closing velocity constraints. For closing velocities greater than
0.01 ft/s, four impulse solutions are at least as efficient as solutions
incorporating more impulses. In fact, the only time that the algorithm returned
optimal trajectories requiring more than four impulses was when the chase craft
had to maneuver around a complex obstacle that encompassed the target state.
Based on these considerations, the number of impulses allowed in the search
space is limited to four.

19



It is more efficient at times to delay the time of the first impulse and allow
the vehicle to coast around obstacles. However, the algorithm is only asked to
search over this variable for two impulse solutions. This is because the three
and four impulse solutions can implicitly search over this variable by changing
the position and time of the second impulse so that the initial impulse is zero.
The range of values for the first delay time is the same as that for the time of
flight with the stipulation that the total transfer time must be less than the
maximum transfer time allowed.

The intermediate impulse positions can be optimized for both three and
four impulse solutions. These positions are optimization by a gradient search
and therefore have no imposed limits except that goal state and the initial state
cannot be chosen. This search space, however, has certain physical limits
because many positions are impossible to achieve given the control authority of
the vehicle and the limitations on time of flight.

To take advantage of the coupling of the chase craft's jets, the vehicle
attitude at each of the intermediate impulse positions can be varied for three
and four impulse solutions. By varying the chase craft's attitude at the impulse
positions, the angular rates during each coast period is implicitly varied. The
attitude search space runs from zero to three hundred sixty degrees in roll,
pitch, and yaw for the second and third impulse positions. Since the initial and
final states are predetermined, the attitudes at these Iositions cannot be varied.

Dependent Variables
Two dependent variables are tracked as the independent variables are

optimized; these are total fuel required (the cost function) and closing velocity
near the target state. The reason for calculating the total fuel required is
obvious; it is the quantity being minimized by the algorithm. The closing
velocity is calculated so that the two craft do not close at a rate faster than that
specified by the maneuver manager. The closing velocity is particularly
important when the final state is a dock rather than station keeping.

Constraints
The maneuver space is constrained by three quantities: maximum time

of flight, closing velocity, and physical obstacles in close proximity to the chase
craft and target state. The maximum time of flight is an upper limit on the total
maneuver time: no limitation is placed on how this time is distributed between
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the impulses. The closing velocity is an instantaneous limitation on the velocity
at the terminal point. Obstacles limit the maneuver space because no two
vehicles are allowed to occupy the same location in space at the same time. If
any of the constraints are violated by a trajectory, this trajectory is unacceptable
and it is abandoned by the trajectory planner.

Algorithm Operation
The algorithm requires a great deal of information about the maneuver

space before it can generate a trajectory to the target state. Since this thesis
deals solely with trajectory planning and not vehicle sensors, all information on
relative positions and rates is considered perfect. The information required by
the planner includes:

-- Initial position and velocity of the chase craft with respect to the
target state.

-- Altitude of the orbit above Earth (spherical Earth is assumed).
-- Maximum time allowed for the maneuver.
-- Maximum terminal closing velocity with respect to the target state.
-- Radius of a sphere, centered at the center of mass, required to

enclose the chase vehicle.
-- Number of degrees of freedom in the searcli. Three corresponding to

translation only and six to translation and rotation.
-- Cost function to be used; eg. whether to account for limit cycling.
-- If the six degree of freedom search is selected,

-- Initial roll, pitch, and yaw with respect to the initial LVLH frame.
-- Final roll, pitch, and yaw with respect to the final LVLH frame.
-- Initial body rates with respect to the chase craft body frame.

With this information, the algorithm is able to proceed with the search.
The search begins by finding a two impulse solution to the target state

using eq. 2.27, if one exists, subject to all the above constraints. This solution
serves as a baseline solution which meets every constraint except for obstacles
in the maneuver space. The search can continue without obstacles in the
search space, however, if they are to be considered they must be input at this
point. The necessary input for an obstacle set is,



-- Initial position and velocity of each obstacle with respect to the
target state.

-- Status of each obstacle, moving or fixed with respect to the target.
-- Radius of a sphere, centered at the center of mass, required to

enclose each obstacle.

It is important to note that all moving obstacles are assumed to be
coasting after time zero. The radius required to enclose the chase vehicle and
each obstacle is necessary so that the planner can simplify the propagation of
each in time. Furthermore, a collision between the chase vehicle and an
obstacle is indicated when the distance between their centers of mass is less
than the sum of the sphere radii.

The baseline case is then altered to seek the optimal two impulse
solution around the obstacles if one exists. This is done by varying the time of
flight from the reference time found earlier until the obstacles are avoided.
While not necessarily optimal, this solution is guaranteed to meet all of the input
constraints. Since this solution can be calculated almost immediately, this is a
very valuable solution if replanning is necessary due to impending collision. As
two impulse solutions oftenr have trouble meeting closing velocity constraints, it
is recommended that this constraint not be considered until after the collision is
avoided and more time is available for replanning.

The two impulse solution may be made even more nearly optimal by
varying the time of the first impulse. Delaying the first impulse can improve
efficiency of the solution if the initial velocity is in a favorable direction.
However, if the initial velocity vector tends to move the chase craft away from
the target state, a delayed burn is detrimental and the resultant cost will be
greater. At this point in the search, the best two impulse solution has been
found and the algorithm proceeds to add intermediate impulses.

As the number of impulses increases, the search space increases
drastically. To increase the search speed, the user may vary both the time and
spatial step sizes. Each coast period between impulses is incremented by the
time step while the impulse positions are incremented by the spatial step. As
with all gradient searches, the search time required is greatly dependent on the
accuracy of the initial guess. Additional impulse positions are therefore
considered at several logical positions along the reference trajectory. The best
of these is chosen as the initial guess. Intermediate impulse positions are then

22



optimized by searching each of the adjacent spatial nodes and selecting the
node with the minimum cost. The search terminates when each of the adjacent
nodes has a higher cost than the current node. Notice that this search may get
caught in a local minimum; however, this can be avoided by cleverly choosing
the spatial step size.

At this point the algorithm has calculated the most optimal two, three, and
four impulse solutions to the input set. If the three degree of freedom search
was selected, the search terminates at this point. Attitude angles and rates are
assumed to be zero for the entire maneuver and the best of the calculated
trajectories is output to the user.

If the six degree of freedom search was selected, the best current
solution is sent to the attitude post optimizer. In each of the sections of the
search outlined above, a constant.attitude rate was assumed during the entire
maneuver. If the best solution is a three or four impulse solution, however, the
solution can be further improved by varying the attitude rates at each of the
impulses. This portion of the search is a simple search over the entire range of
possible attitude angles where both the search space and step size are
reduced between each iteration. This portion of the search is not intended to
produce the best solution possible by a six degree of freedom search; rather, it
simply creates a more efficient solution than the solution given it by the three
degree of freedom search. With this more efficierit solution, insight can be
gained into how varying the attitude at each impulse can reduce the total cost.

Mathematical Description
In the three previous sections the basic algorithm was described. In this

section a simple functional overview is presented on how the algorithm was
practically implemented in computer code. This is done so that the reader can
gain some insight into the strengths and weaknesses of the algorithm without
delving into the mathematics in excruciating detail.

To be able to design any proximity operation, one must be able to readily
calculate four pieces of information. The first two deal with how to get to a given
location in space at a specified time. To accomplish such a maneuver with
impulses applied only at the initial and final positions, one must be able to
determine the initial velocity and attitude rates that allow the vehicle to coast to
the desired position at the correct time . The third piece of information is the fuel
cost associated with any specified rate change. The final quantity that must be
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calculable is the state of the chase vehicle, position and velocity, at any given
time between impulses. The equations used in calculating these quantities are
outlined in the chapter Equations of Motion.

From equation 2.27, the calculation of the required initial velocity can be
represented as an operation of the form,

position 1
position 2
tof

velocity 1

Figure 3.1: Required Initial Velocity Calculation -- operation VEL

Where the matrix Q* is used to represent the first three rows of the b matrix
evaluated at time tof, eg. time when position two is achieved. Only the first three
rows of the (D matrix are necessary because a final position is desired, not a
final position and velocity. Since D* is a three by six matrix, this operation is
slightly more complicated than a simple inversion. The operation actually
solves for vo in equation 3.3 below.

[xi] = [A B Vo (3.3)

Where A and B are the three by three partitions of the D* matrix, x is the position
vector, and v is the velocity vector. The solution to this equation is

vo = B 1' [x1 - A xo] (3.4)

This calculation will be referred to as operation VEL.
A similar operation can be performed to determine the attitude rates

necessary to reach a final attitude at a specified time using equation 2.32. This
operation can be represented as,

attitude 1
attitude 2
tof

angular ratel

Figure 3.2: Required Initial Body Rates Calculation -- operation RATE
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Where u is the vector of rotation and P is the angle of rotation required to get
from attitude 1 to attitude 2 in the time tof. Since the two attitudes are input in
quaternions with respect to the rotating LVLH reference frame, the calculation
requires the three quaternion multiplications shown below.

body 2 body 2 LVLH 2  LVLH 1q =q q qbody 1 LVLH 2 LVLH 1 body 1 (3.5)

The values of u and P are then read from the resulting quadruple as outlined in
equations 2.32 and 2.33. This calculation will be referred to as operation RATE.

Now that the required velocity and angular rates can be calculated for a
transfer between any two points in space with a specified transfer time, it is
possible to determine the cost associated with this transfer. This is done with
the cost functions in equations 3.1 and 3.2, where the fuel use for each impulse
is obtained from the jet select algorithm. This operation is represented as,

A velocity
A angular rate
tof
close

fuel use

Figure 3.3: Fuel Cost Calculation -- operation FUEL

Where tof is the time until the next burn, close is a flag for considering limit
cycling effects, and A velocity and angular rates are the requested rate
changes. The rate changes are found by simply subtracting the rates
immediately before the impulse from the requested rates. This calculation is
referred to as operation FUEL.

When the vehicle translates between impulses, the state at any time can
be determined by simply propagating the linear equations of motion forward in
time. The translational portion of the state vector is calculated with equation
2.27 while the attitude portion of the state vector is calculated with equations
2.32 thru 2.36. This operation can be represented as,
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position 1 N--
velocity 1
tof
attitude 1
angular rate 1 ---
tof

- o- position 2

--- velocity 2

--- attitude 2

----- angular rate 1

Figure 3.4: Current State Calculation -- operation STATE

Where tof refers to the time since the last impulse. Since gravity gradient and
atmospheric drag effects are not considered, the angular rates are constant with
time. This calculation is referred to as operation STATE. In all of the diagrams
that follow, the state vector will refer to position, velocity, attitude, and angular
rates. The rate vector will refer to both velocity and angular rates.

With these four basic operations, it is straightforward to show how the
algorithm has been implemented. The following algorithm flow charts use these
primitive operations to show how the various trajectories are created and
checked against the input constraints. The first of these algorithm flow charts,
figure 3.5, is for the two impulse solution with the first impulse occurring at time
zero.

This trajectory is created by calling the four primitive operations above
with several different times of flight. The minimum cost solution that meets the
closing velocity constraint is then returned. If none of the two burn solutions
meet the closing velocity constraint, the time of flight of the minimum fuel use
solution between the two states is returned as the reference time of flight and no
further two burn solutions are attempted. Notice that the rates are driven to zero
relative to the LVLH reference frame by the final impulse. This is done so that
the chase craft will track the origin of the LVLH frame in both position and
attitude after the maneuver is completed.

The process of calculating the fuel use between two states in a specified
period of time has been grouped into a macro operation called SEGMENT.
This macro operation defines what is referred to as a coasting segment. The
initial impulse generates the rates needed to coast to the desired position, and
the final impulse generates the final desired rates. By combining these
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initial state
final state
tof 1 = tof step
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Operation
SEGMENT
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landed rate,

prior to
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Figure 3.5: Two Impulse Solution -- Macro Operation SEGMENT
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segments a trajectory with multiple burns can be achieved. The inputs required
for each segment are simply the initial and final state vectors and the current
time of flight, tof, of each segment. For multiple segment solutions, the tof of
each segment is varied simultaneously. In the two impulse solution presented
in Figure 3.5, only tofl is defined and the time step is hard wired to one minute.

After obstacles are input, the algorithm searches for a two impulse
solution around the obstacle set. This is done as before except that the initial
value of tofl is the reference time of flight. Since the obstacles can be avoided
by either increasing or decreasing the time of flight, the logic depicted in Figure
3.5 is called first with a negative one minute time step and then with a positive
one minute time step. The best solution which meets all of the constraints is
returned.

The next type of solution created by the algorithm is the two impulse
solution with a delayed first impulse. Here, the first impulse occurs at integer
multiples of the time step. The chase craft state is propagated forward by the
delay time and used as the initial condition input to SEGMENT, see Figure 3.6.
Here two flight segments exist, one for the coast before the first impulse and one
for the coast period between the two impulses. The sum of these times of flight
never exceeds the maximum time of flight. Since the first impulse must be
delayed by at least one time step, the solution returned by this routine may be
less fuel efficient than the two impulse solution found earlier.

As stated earlier, the multiple segment trajectories are found by
combining more than one of the segment operations. Since multiple times of
flight exist for these solutions, the logic must be created to vary each of these
segment times of flight simultaneously. Figures 3.7 and 3.8 illustrate the
procedures for two and three segment solutions. These flow charts show only
the time of flight variation; the gradient search on the impulse positions will be
illustrated later in this section.

In Figure 3.7 a. three impulse solution is created with two calls to
operation SEGMENT. In the first call of SEGMENT, the current state is fed
back as the desired state, thus eliminating one of the two commanded impulses.
This is necessary to create a trajectory with an odd number of impulses
because operation SEGMENT was created to command two impulses. The
rates after the first impulse are then propagated forward in time to the position of
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tof 1 = tstep

tof 2 = t step

final state

rate = 0

Figure 3.6: Two Impulse Solution , delayed first impulse
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initial state
impulse 2 position
tof = tsop

Figure 3.7:, Macro Operation Two Segments
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initial state
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tof = tstep tOf2 = tstep

final state
tOf3 = t tep

Figure 3.8: Macro Operation Three Segments



the second impulse by the operation STATE. A second call to SEGMENT
creates the last two impulses that define this trajectory. This process is
combined into a macro operation called Two Segments.

In Figure 3.8 a four impulse solution is created. Again, only two calls to
operation SEGMENT are used. Although three segments exist in the four
impulse solution, only two calls to SEGMENT are required. The first and third
segments of the trajectory are created by the two calls to SEGMENT. The
second segment, however, is simply created by calling operation STATE with
the rates required to reach the position of the third impulse. Notice that here
three different segment times of flight are varied simultaneously; this explains
the increase in run time associated with an increase in the number of impulses.
This process is combined into a macro operation call Three Segments.

To complete the three and four impulse solutions, some method must be
created for optimizing the positions of the intermediate impulses. The method
used in this algorithm is a steepest descent gradient search. An initial guess
for the intermediate impulse positions is found by looking at the chase craft
position at several different times along the two impulse reference trajectory.
Impulses are added at each of the chase craft positions investigated, and the
impulse positions associated with the lowest fuel use trajectory are chosen as
the starting point of the gradient search.

In Figure 3.9 the three impulse solution is created in this manner. The
initial position of the second impulse is chosen as the best of eight positions
along the'reference trajectory. These positions are found by propagating the
state after the first impulse, denoted by initial state* , forward in time with the
operation STATE. Notice that one of the positions considered is only ten
seconds from the final state along the reference trajectory. This position is
considered to provide an impulse near the target state so that very small closing
velocities can be accommodated. The gradient search then looks a unit step
in all directions, a total of twenty seven positions, and selects the impulse
position associated with the maximum negative gradient in the cost function;
this solution is returned as the optimal three impulse trajectory. The gradient
search continues until a positive gradient is found at each of the twenty seven
adjacent nodes. Notice that the spatial step size is denoted by 'step' and the
time step size by 'tstep'.

Although Figure 3.10 looks much more complex than the three impulse
solution, it is not. The four impulse solution looks much more difficult because
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Figure 3.9: Three Impulse Solution, Gradient Search on Impulse Position 2
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Figure 3.10: Four Impulse Solution , Gradient Search on Impulse Positions 2 and 3
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a second impulse position must be optimized. Since a call to Three Segments
takes considerably longer than a call to Two Segments, more care is taken to
start the gradient search with a good set of intermediate impulse positions.
Twenty five different sets of impulse positions are investigated here as defined
by the three logical loops. Once an initial set of impulse positions is found, the
search is started on the second impulse position. The second impulse position
is optimized until a positive gradient is encountered at each adjacent node, then
the third impulse position is optimized. When the third impulse position
encounters a positive gradient at each adjacent node, the second impulse
position is again optimized. This process continues until both impulse
positions encounter a positive gradient simultaneously; this solution is returned
as the optimal four impulse trajectory.

If the best of the above solutions is either a three or four impulse
trajectory, the algorithm calls the attitude post optimizer. The post optimizer
attempts to decrease the fuel use by taking advantage of the coupling inherent
in the jets to produce desired angular rates. Since the attitudes at the initial and
terminal states are fixed, only the attitude at the intermediate impulse positions
can be varied. The attitude optimization at an impulse position is depicted in
Figure 3.11. As the attitude at only one impulse position is optimized in the
figure, it is a good description of how the second impulse of a three impulse
solution is optimized. To illustrate the optimization-of both the second and
third impulses of a four impulse solution, the three loops on roll, pitch, and yaw
angles would need to be duplicated inside the step size loop.

The inputs to the optimizer are the attitude and angular rates after the
previous impulse, the velocity change requested by the current impulse, and
the segment time of flight from the last impulse. All of this information is
readily available at this point in the search. The references to 'all min' and 'all
max' refer to the limits on the roll, pitch, and yaw loops. When the search
begins, the limits are all from zero to three hundred sixty degrees with a step
size of ninety degrees. As the search progresses, both the range and the step
size of the attitude loops are changed. The new range of each of the loops is
centered on the best roll, pitch, and yaw currently available. The maximum limit
becomes the best current attitude plus the step size; the minimum limit
becomes the best current attitude minus the step size. After the new limits are
determined, the step size is cut in half. The attitude post optimizer terminates
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all min = 0
all max = 360

Return best combination of roll, pitch, and yaw.

Figure 3.11: Attitude Post Optimizer
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when the step size is less than one degree. The best combination of roll,
pitch, and yaw angles is returned with the associated trajectory.

Contingency Planning
Although the trajectory planner assumes perfect implementation of the

trajectories it creates, the planner can be used for real time contingency
planning in the event of failures. Unlike the simpler strategies used previously,
the maneuver need no longer be terminated if something unforeseen occurs;
instead the danger can be evaluated and the maneuver can either be
replanned or terminated depending on the severity of the problem. The
decision to terminate or continue can be made by the Maneuver Manager or
pilot based on the specific situation .

One possible failure is the loss of one or more jets during the maneuver.
The effect' of this failure on the maneuver is easily evaluated by simply checking
whether or not these jets are used in any of the firing sequences. If they are
not, the maneuver can continue and the jets will simply be recorded by the
execution manager as unusable for future maneuvers. If these jets are used,
two options are available to the manager which enable the maneuver to
continue. The first option is to find other jet combinations which achieve the
same rate request by calling the jet select algorithm with the failed jets disabled.
Although this will not be as efficient as the original maneuver, it will likely be
more efficient than aborting and reinitiating the maneuver. The second option
is to propagate the current state forward, to allow for planning delays, and use
this state as the initial condition for a new trajectory planned during that time.
This option is more likely to be successful if the attitude angles are optimized
because it can utilize attitude changes to favorably align working jets.

Another failure which can occur is a large deviation from the planned
trajectory. This can result from jets failing to fire or turn off or improper
modelling in the planner. If these deviations are sufficiently small, the autopilot
will compensate for them during maneuver execution. If they are too large for
the autopilot to correct, a new plan must be developed. Again it should be
noted that if the vehicle has strayed so far that a collision is imminent, the
replanning can be accomplished more quickly if only two burn solutions are
considered.
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Limitations
The algorithm outlined above has a few significant limitations. The first is

that the gradient search on impulse positions assumes that the cost function has
no local minima in which the search can be trapped; this is not necessarily true.
Two cases are presented in this section to illustrate this algorithm limitation.
Each case involves a maneuver relative to an orbital altitude of 176.7 miles with
a 100.0 minute maximum time of flight. The first case has a maximum closing
velocity of 10.0 ft/s and no obstacles. For the maneuver specifications in Table
3.1, the second impulse position search terminated at three different locations.

Parameter Initial State Final State

position- ft ( 100, 200, 300) ( 0, 0, 0)
velocity ft/s ( 1.00, 2.00, 3.00) ( 0, 0, 0)
0, 9, 7 deg ( 180, 0, 0) ( 270, 270, 270)
w,,w2,w3  deg/s (0.00, 0.00, 0.00) ( 0.00, 0.00, 0.00)

Table 3.1 Input for Local Minima Illustration, variable step size

Where <,8,y are the chase craft roll, pitch, and yaw angles (commanded in.the
order yaw, pitch, roll) with respect to the LVLH frame and W1,W 2,W3 are the
angular rates of the chase craft body frame with respect to the LVLH frame.
Notice that since the final angulare rates are zero, the vehicle will track the
rotating LVLH frame at the end of the maneuver.

Three six dimensional searches with no limit cycling effects were run by
the trajectory planner on the initial conditions above. In each case the spatial
step size used in the gradient search was varied, while the time step was held
at a constant twenty minutes. In each of these runs the algorithm returned a
three impulse solution as the optimal trajectory; however, the positions of the
second impulse were not the same (see table 3.2).

Spatial Step Second Impulse Total Fuel
Size (ft) Position (ft) Use (Ibm)

2 ( -6, -2, -21) 154.0
4 ( -8, -8, -15) 154.6

20 (-68,-140, -23) 155.1

Table 3.2 Second Impulse Positions and Resulting Fuel Use
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The three runs in Table 3.2 illustrate a common problem with gradient
searches, step size selection. If a step size is too small, the search might not
find a global minimum because it is unable to search outside the cost function
'valley' it is currently in (when analyzing gradient techniques, it is often easier to
visualize the path to a minimum as a valley in the cost function). If the step size
is too large, the search might not even find the 'valley' which contains the global
minimum. The cases with step sizes of two and four feet converge on
essentially the same solution. It is unclear, however, whether the twenty foot
step size case converged to a different local minimum or whether it was unable
to follow the 'valley' which defined the minimum found in the other two cases all
the way to its lowest point. In spite of the differences in second impulse
position, the fuel use differed by less than a percent in all three cases.

The search could better avoid local minimum by incorporating a
probablistic approach to impulse position acceptance, eg. simulated annealing.
However, the additional heuristics required to implement this approach would
greatly increase the run time of the planner. For this reason, no probablistic
heuristics were incorporated in this algorithm. Another method of avoiding
local minimum would be to change the spatial step size whenever the search
finds a local minimum. This would allow the algorithm to identify new 'valleys'
in the cost function or better follow the 'valley' it is currently in. Although this is
not included in this algorithm, it would be a worthwhile area of future study.

Fortunately, the cost function for this particular problem has an interesting
quality that helps the algorithm avoid local minima. If a reasonably low closing
velocity constraint is placed on the maneuver, the 'valleys' in the cost function
have much steeper 'walls', ie. the cost gradients are much greater. This
reduces the risk that the gradient search will get caught in a local minimum
(the case presented above had an unrealistically high maximum closing
velocity). Since this is a logical constraint for proximity operations, it is not
unreasonable to plan a maneuver subject to this constraint. A second case is
presented to show this change in the cost function. This case has four spherical
obstacles, two moving and two stationary (all obstacle initial conditions are
listed in the appendix). The maneuver specifications are listed in Table 3.3.
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Parameter Initial State Final State

position ft (1000, 1000, 1000) ( 0, 0, 0)
velocity ft/s ( 1.00, 1.00, 1.00) ( 0, 0, 0)

S9, 0 7  deg ( 180, 0, 0) ( 270, 0, 270)
w , , w2,,w deg/s (0.50, 0.50, 0.50) ( 0.00, 0.00, 0.00)

Table 3.3 Input for Local Minima Illustration, variable Vciose

Two six dimensional searches with no limit cycling effects were run by
the trajectory planner on the initial conditions above, each with different closing
velocity constraints. The spatial step size was held constant at one hundred
feet, and the time step was held constant at twenty minutes. In each of these
runs the algorithm returned a four impulse solution as the optimal trajectory;
however, the positions of the second impulse were not the same (see table
3.4).

Maximum Second Impulse Total Fuel
Vcodase (ft/s) Position (ft) Use (Ibm)

1.00 ( 565, 242, 291) 201.1
0.05 ( 365, 342, 191) 189.6

Table 3.4 Second Impulse Positions and Resulting Fuel Use

Since both of the runs converged on the same third impulse position,
only the second impulse positions are discussed here. In both runs the
gradient search on the second impulse position begins at the same place.
However, in the run where high closing velocity was allowed, the second
impulse position gets caught in a local minimum some two hundred and fifty feet
from a lower cost minimum. The run with the more constrained closing velocity
converged to a lower cost minimum because it had a much better defined
'valley' in the cost function to follow. Since a small closing velocity is typical of
most proximity operations, the algorithm is less likely to get caught in a local
minimum.

A second limitation is that the gradient search follows the maximum
negative gradient in the cost function of acceptable solutions. If an impulse
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position has a solution to the transfer which requires less fuel but does not meet
all of the input constraints, the impulse position is abandoned by the search
(see Figure 3.12).

L-

CU

Figure 3.12: Gradient Search Visualization, impulse position elimination

In the figure, the gradient search investigates impulse positi6ns adjacent to the
current impulse position 'a'. The trajectory which requires the minimum fuel
uses point 'b' for an intermediate impulse position. However, this trajectory
does not meet the closing velocity constraint and it is abandoned in favor of the
next best trajectory throug1h point 'c' which does meet the constraint. This
means that many impulse positions adjacent to the unacceptable position, point
'b', will not be investigated. This elimination of impulse positions associated
with lower fuel use-is viewed as a necessary evil to guarantee that the trajectory
returned from the algorithm meets the closing velocity constraint.

The last significant limitation is that the computer code which executes
the algorithm has not been optimized. Although the coded algorithm is not as
efficient as it could be, it does demonstrate that constrained trajectories can be
created between a chase state and a target state in a reasonable amount of
time. The full algorithm can be run on a one MIPS (millions of operations per
second) machine in five to ten minutes, depending on the closing velocity
constraint. Further optimization of the code is left to the future.

1
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Evaluation of the Trajectory Planner

Link to Shuttle Autopilot
Before any conclusions can be drawn from maneuvers created by the

trajectory planner, the accuracy of the planning algorithm must be determined.
This accuracy is determined with the aid of the Space Shuttle simulator at the
Draper Laboratory. A given problem solution is evaluated as follows,

-- Define a problem to be solved by the trajectory planner.
-- Solve the problem with the trajectory planning algorithm and create a

waypoint file which contains information about the trajectory at one
minute intervals, including

-- position of the chase craft with respect to the target state.
-- velocity of the chase craft with respect to the target state.
-- attitude of the chase craft with respect to the LVLH frame.
-- angular rates of the chase craft with respect to body axes.
-- time.
-- flag indicating a commanded rate change.

-- Execute the waypoint file on the Space Shuttle simulator, with the
the commanded rate changes implemented impulsively.

-- Compare the expected trajectory to the actual trajectory.

Notice that the rate changes are implemented impulsively. This is done to
eliminate errors due to velocity changes being implemented in finite time rather
than impulsively. As a result, the errors observed in the implementation of the
waypoint file are almost entirely modelling errors. The modelling errors
dominate for large transfer times, while non-impulsive bum effects dominate for
large impulses, hence long firing times.

Twenty different maneuvers were executed successfully in this manner
before the algorithm was considered functional; the results of two of these tests
are presented here. Although only one optimum solution is output by the
trajectory planner for each set of input conditions, four distinct types of
solutions are created along the way: the two impulse solution, the two impulse
solution with a delayed first impulse, the three impulse solution, and the four
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impulse solution. The first validation case illustrates the effects of modelling
errors on each of these solution types. The second case shows the effects of
nonimpulsive burns and how the associated errors can be eliminated by the
closed loop autopilot. Both cases involve maneuvers relative to an orbital
altitude of 176.7 miles with a 100.0 minute maximum time of flight. The first
case has a maximum closing velocity of 1.0 ft/s and three stationary spherical
obstacles. The maneuver specifications appear in Table 4.1.

Parameter Initial State Final State

position ft ( 100, -200, 300) ( 0, 0, 0)
velocity ft/s ( 0.75,-1.25, 1.75) ( 0, 0, 0)

, , Syi deg ( 45, 135, 270) ( -80, 80, -80)
w , ,w 2,,w 3  deg/s ( 0.50, 0.50, 0.50) ( 0.00, 0.00, 0.00)

Table 4.1 Validation Case One Input

A six dimensional search .with no limit cycling effects was run by the
trajectory planner on the initial conditions above. When the resulting waypoint
files were fed to the Shuttle simulator, the following terminal conditions were
reached for each of the solution types (see Table 4.2).

Solution Final Final
Type Position (ft) Attitude (deg)

2 impulse (0.1, -0.2, -0.3) (-80.0, 80.0,-79.9)
delayed, 2 impulse ( 0.3, 0.5, -0.3) (-80.1, 79.9, -80.0)

3 impulse ( 0.4, -1.3, 0.1) (-79.9, 80.1, -80.0)
4 impulse (1.7, -1.6, 0.1) (-79.9, 80.1, -80.0)

Table 4.2 Validation Case One Terminal Conditions

Notice that all of the solution types very accurately reproduced the
desired attitude at the final state. The small errors in final attitude are caused by
the truncation of the very small body rates. When these truncated rates are
propagated over several thousands of seconds, the result is an attitude angle
error on the order of a tenth of a degree.
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The final positions, however, exhibit a slightly larger range of errors. The
two impulse solutions. reach the origin of the LVLH frame within half a foot while
the four impulse solution misses the origin by just over two feet; the errors in
final position get continuously worse as the number of impulses increases. This
is because the intermediate impulses are being made at the correct times but at
slightly different positions and attitudes than predicted by the Clohessy-Wiltshire
equations. Since the rate change request is correct for the predicted chase craft
position but not for the actual chase craft position, the position error is further
increased by each impulse. As the magnitudes of both position and attitude
errors are small, the linearized equations of motion used by the trajectory
planner appear to be an excellent model for proximity operations.

The fuel use predicted by the trajectory planner and actual fuel use
required in the simulation for each of the solution types is outlined below (see
Table 4.3).

Solution Fuel Use Fuel Use Percent
Type Predicted (Ibm) Actual (Ibm) Error

2 impulse 95.21 95.20 0.01
delayed, 2 impulse 95.61 95.45 0.17

3 impulse 76.87 76.56 0.40
4 impulse 83.53 84:26 0.87

Table 4.3 Validation Case One Fuel Use

Again, the small difference between predicted and actual fuel use is
caused by the impulse being made at a slightly different attitude than that
predicted by the planner. For this reason the error increases with the number
of impulses. Even with this source of error, the fuel use prediction is within a
percent of the actual fuel use for every case. This is an important result
because it implies that the solution obtained by the trajectory planner is based
on an accurate fuel use model. If the errors in the model were much larger, it
would be difficult to justify that the algorithm actually optimized fuel use because
trajectories would be accepted or rejected based on incorrect fuel use
predictions.



The second case is presented here to show the accuracy obtained
when limit cycling effects are added during the transfer. For this case a
maximum closing velocity of 0.25 ft/s is used and four spherical obstacles, two
stationary and two moving, are placed in the maneuver space. The maneuver
specifications appear in Table 4.1.

Parameter Initial State Final State

position ft ( 500, 300, 500) ( 50, 300, 50)0, 0, 0)
velocity ft/s ( 1.50, 1.00, 0.50) 0, 0, 0)

S0 deg ( 180, 0, 0) ( 33, 90, 33)*
w,,w2,w3  deg/s ( 0.50, 0.25,-1.00) ( 0.00, 0.00, 0.00)

Table 4.4 Validation Case Two Input

The final commanded attitude was actually (0,90,0); however, this is an
equivalent attitude to both (33,90,33) and (18,90,18) which were returned -by the
algorithm.

A six dimensional search with limit cycling effects was run by the
trajectory planner on the initial conditions above and a waypoint file was
created for the most fuel efficient solution. This case was executed with real jets
creating velocity changes nonimpulsively. When the resulting waypoint file was
given to the Shuttle simulator, the following terminal conditions were reached
(see Table 4.5).

Solution Final Final
Type Position (ft) Attitude (deg)

3 burn (-0.1, -0.2, -1.5) (35.4, 89.3, 33.5)
4 burn (-0.3, 0.8, -1.0) (18.4, 88.9, 18.6)

Table 4.5 Validation Case Two Terminal Conditions

Only three and four burn solutions are shown in the table since no two burn
solution could meet the closing velocity constraint.



Since the jets take a finite time to fire, the craft is both rotating and
translating during the firing. As a result, the impulse does not occur entirely at
the correct time, position, or attitude. The chase craft, therefore, departs from the
planned trajectory during the period of firing. These 'doglegging' effects [1] are
kept to a minimum by limiting the burn times to 4.96 seconds. In addition to
nonimpulsive burn effects, a second source of error is quantization effects in the
jets. Since the digital autopilot on the Shuttle will only change the status of a jet
every eighty milliseconds, all rate changes must be created by a firing time
equal to an integer multiple of eighty milliseconds. Therefore, the actual rate
change created by the jets may not match the requested change.

Although the effect of these two sources of error is to make the vehicle
depart from the planned trajectory, the chase craft still arrives at the desired final
state. This is due to the closed loop autopilot which applies correction firings
when the current state strays too far from the intended state. The cost of this
correction is an increase in fuel use over the impulsive, open loop, optimal
trajectory. This increased fuel use is a function of the size of the deadband; as
the position and angular deadbands decrease, the fuel required to stay within
these limits increases. For all of the cases presented in this thesis a constant
set of deadbands was used (see the Appendix for these deadbands). The
actual and predicted fuel uses are summarized in the table below (see Table
4.6).

Solution Fuel Use Fuel Use Percent
Type Predicted (Ibm) Actual (Ibm) Error

3 burn 210.18 210.46 0.13
4 burn 212.42 220.13 3.63

Table 4.6 Validation Case Two Fuel Use

As expected, the fuel use required for the closed loop, finite firing time,
execution is much greater than would be predicted by open loop, impulsive,
execution. Since the limit cycling effects are modelled as a linear function of
time, the planner attempts to minimize the fuel use by decreasing the total time
of flight. However, when the time of flight is decreased the magnitude of the
forced firings increases. As a result, the times of flight for trajectories planned



with limit cycling in the execution typically fall between a quarter and a half of an
orbital period; while those planned without limit cycling effects have times of
flight between a half and a full period. Notice that the error in the four burn fuel
use prediction is much larger than in the open loop cases. This is because the
correction for limit cycling effects is only of first order. Some of the fuel use
predictions are high while others are low; the average of the prediction errors is
approximately zero.

Open Loop Execution
Trajectories which are executed without state feedback and limit cycling

are termed open loop; those executed with state feedback and limit cycling are
termed closed loop. The next two sections discuss how unforeseen
disturbances can affect the open and closed loop execution of a maneuver.

Certain assumptions affect the accuracy of the solution. The critical
assumptions are:

-- All rate changes are implemented impulsively.
-- All rate changes are implemented correctly.
-- Orbital changes are caused only by the impulsive rate changes.
-- Gravity gradient torques are ignored.

In the open loop case presented in the previous section the simulator was
altered to meet these assumptions. This was necessary to check the accuracy
of the model. In this section, however, these assumptions will be checked one
by one and the effects on the terminal conditions determined to show how
effectively a maneuver manager could perform a maneuver without feedback
control.

One set of initial conditions will be used here for all of the cases. As a
result, all the terminal conditions and fuel use predictions of the planned
trajectory will be the same; only the actual chase vehicle behavior will vary. A
six degree of freedom search will be done on the set of initial conditions so that
the Shuttle does not fly in a stable gravity gradient orientation during the entire
maneuver. This case involves a maneuver relative to an orbital altitude of
176.7 miles with a 100.0 minute maximum time of flight. It has a maximum
closing velocity of 0.05 ft/s and four spherical obstacles, two stationary and two
moving. The maneuver specifications appear in Table 4.1.
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Parameter Initial State Final State

position ft (1000, 1000, 1000) ( 0, 0, 0)
velocity ft/s ( 1.00, 1.00, 1.00) ( 0, 0, 0)
9, e,7 deg ( 180, 0, 0) ( -90, 0, -90)

w,,w 2,,w deg/s (0.50, 0.50, 0.50) ( 0.00, 0.00, 0.00)

Table 4.7 Input Case Used To Investigate External Acceleration Effects

This is one of the cases presented in the Limitations section of Chapter 3.
This set of initial conditions was chosen because it stresses many of the

algorithm capabilities. The chase craft is placed far from the target state with an
initial velocity and angular rate that carries it farther away. Furthermore, the
chase craft is constrained to complete the rendezvous in about one orbit without
violating the closing velocity constraint. Finally, four obstacles are placed in
close proximity to the target. As a result the algorithm chose a four impulse
solution with a long transfer time, just over one orbital period. The trajectory
chosen is ideal for showing the effect of each assumption listed above on final
state since it has a few large rate changes and a long transfer time.

Four cases were executed to show the effect of each of the above
assumptions. The first is a reference case executed with perfect jets, eg. jets
which provide impulsive and precise rate changes, and no external
disturbances. By comparing other cases to this reference, the contribution of
each disturbance to the final state error can be determined. The second case
uses perfect jets and includes gravity gradient effects. The third case is a
perfect jet run with a nonspherical Earth (J2 is added to the gravitational
potential). The final case uses real jets, eg. jets which provide nonimpulsive
and imprecise rate changes, and includes no external disturbances. The
above cases produced the results in Table 4.8.

Invalid Final Final
Assumption Position (ft) Attitude (deg)

none ( 20, -38, 0) (-90.0, 0.0, -90.1)
uniform gravity ( 20, -38, 0) (-71.1, -3.4, -165.0)
spherical Earth ( 147, -266, -1) (-91.0, 0.0, 90.1)

perfect jets (8565,-16428, -84) (-91.1, -8.7, -73.3)

Table 4.8 Open Loop Terminal Conditions
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The solution executed with perfect jets and no disturbances missed by a
greater distance than would be expected based on previous results. The error
is forty three feet, an order of magnitude greater than in any of the previous
cases. This miss distance can be explained by the modelling errors noted in
the previous section; the modelling errors were simply aggravated by the initial
conditions of this case. When the distance between the target state and the
chase state increases, modelling errors cause the rate change requests
returned from operation VEL to be less precise. This imprecise velocity vector
results in position errors over time and the desired final state is not reached. In
spite of this error, the final position and attitude provide a reference against
which the other solutions can be compared. The reference trajectory is
illustrated in Figure 4.1 with the Shuttle drawn at the final state. In this figure,
the curve shows the path followed by the Shuttle, the small cylinders represent
the obstacle positions at the final time, and the large cylinder represents the
desired final position.

Since the acceleration due to gravity is a function of the radius from the
attracting body, discrete components of the chase craft will experience different
accelerations due to gravity depending on their distance from the central body;
this can result in a torque on the body called a gravity gradient torque. The
second solution takes gravity gradient effects into account. Since the velocity
vector is defined through the center of mass of the orbiting craft, gravity gradient
effects cannot affect the velocity vector; angular rates, however, can be
altered. Therefore, when the Shuttle Simulator accounted for gravity gradient
effects, the final position did not change but the final attitude changed by
seventy five degrees in yaw and twenty degrees in roll.

The planner operates under the assumption that the central body is
spherical. If the central body is the Earth, this assumption is not quite true. The
Earth is actually an oblate spheroid with the largest deviation being a small
extra 'band' of mass around the equator. This extra mass makes the
acceleration due to gravity different at each position along an orbit inclined to
the equator; this is the J2 term in the gravitational expansion. Fortunately, this
disturbance acceleration affects the velocity vector of both the chase craft and
the target state similarly; with slight differences caused by variations in the
eccentricity and inclination of the chase craft orbit. The addition of J2 in the
Shuttle simulation increased the final position error by two hundred and sixty
feet from that achieved by the reference trajectory.
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Figure 4.1 Open Loop Reference Trajectory
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In the final case the maneuver is executed with a model of the Shuttle
jets. This means that the rate changes occur over a finite period of time rather
than impulsively. As a result, only a small portion of the rate change occurs at
the correct position, attitude, and time. Since this violates one of the critical
assumptions made by the algorithm, it is unlikely that the chase craft will
approach the target state at the desired time. Furthermore, the real jets do not
create precisely the desired rate change due to the autopilot quantization
effects mentioned earlier. When the imprecise, nonimpulsive rate changes
were propagated forward in time, the chase craft reached a position more than
three and a half miles from the intended target.

Two of the cases mentioned above discussed unmodelled disturbances
which changed the trajectory of the chase craft. Since both J2 and gravity
gradient disturbances are created by the gravity of the central body, their effects
will decrease as the orbital radius increases. In the final case, however, the
error was created by nonimpulsive and imprecise implementation of the rate
changes by the chase craft's jets; this effect is independent of the orbital radius.
The actual unmodelled disturbances on a chase craft will include the
disturbances mentioned above and others such as atmospheric drag, third
body accelerations, and failed actuators.

Since any one of the disturbances mentioned create a sizeable error in
the final state, any maneuver planned by the algorithm would need to be
executed with state feedback and limit cycling burns. The fuel penalty of doing
so must be considered.

Closed Loop Execution
In an effort to keep the chase vehicle from straying too far from the

planned trajectory, each of the cases above was executed using state feedback
in the maneuver execution. The results are presented in this section to
determine if the linearized equations of motion, with jet firings as the only
external acceleration, provide an adequate model for the orbital dynamics. If
the fuel required to correct for the modelling errors is too large, the errors might
better be eliminated by changing the model to account for the external
disturbances rather than simply relying on closed loop execution.

The four cases presented here are identical to those above except for the
implementation of the rate changes. Only the first of the four cases uses perfect
jets to create both the commanded rate changes and the limit cycling impulses.



The other three cases use real jets. Those cases executed with J2 and gravity
gradient effects actually show the fuel required to correct for both real jet and
gravity related disturbances. When the waypoint file was given to the Shuttle
Simulator with the appropriate disturbances, the following terminal conditions
were reached (see Table 4.9).

Invalid Final Final
Assumption Position (ft) Attitude (deg)

none (-1.1, 0.6,-0.3) (-90.1, 0.0, -90.0)
uniform gravity (-2.1,-1.2, 3.1) (-89.9, 0.3, -88.2)
spherical Earth ( 1.4, 0.4,-0.5) (-91.4, 0.5, -91.7)

perfect jets ( 0.5, 0.0, -0.3) (-92.0, 0.6, -88.5)

Table 4.9 Closed Loop Terminal Conditions

Each of the cases reached the desired final state within the limits set by
the attitude and position deadbands. This means that although the model does
not account for these external disturbances, the final state can still be achieved
through closed loop control of the maneuver execution. The closed loop
reference trajectory depicted in Figure 4.2 illustrates the increased accuracy
with which the final state is achieved. Although this seems to justify the concept
of planning with no disturbance accelerations and correcting for the errors in the
execution, the cost associated with adding limit cycling has not been discussed.
The fuel cost of adding the limit cycling burns is presented in Table 4.10.

Invalid Open Loop Closed Loop Percent
Assumption Fuel Use (Ibm) Fuel Use (Ibm) Difference

none 190.40 321.89 69.06
uniform gravity 212.27 335.90 58.24
spherical Earth 197.36 342.98 73.78

perfect jets 519.00 342.89 -33.93

Table 4.10 Fuel Required To Correct For Unmodelled Accelerations

Here the fuel cost associated with correcting for each
accelerations is compared against the open loop maneuver

of the disturbance
cost. Notice that
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FIgure 4.2 Closed Loop Reference Trajectory
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the closed loop fuel use for each of these cases is essentially the same. This is
because the majority of the fuel used in limit cycling is required to generate the
rates which carry the chase vehicle from one deadband limit to the other. As a
result, the fuel required for limit cycling is accurately modelled as a linear
function of time, and not of the disturbances. The first of the cases in the table
shows the additional fuel required to implement closed loop control with no
external disturbances; it is roughly one hundred thirty pounds of fuel. No more
than twenty one pounds of fuel were required beyond this to accommodate the
addition of any of the external disturbances.

The fuel increased considerably when the maneuver was executed
closed loop, in one case by as much as seventy three percent. However, this is
not the minimum fuel, closed loop trajectory between the initial and final states.
This trajectory was planned by the algorithm with the cost function that does not
consider limit cycling effects. Since the time of flight is very large, so is the
closed loop fuel cost. When the maneuver was replanned considering limit
cycling effects in the cost function, the following fuel uses were determined (see
Figure 4.11)

Invalid Open Loop Closed Loop Percent
Assumption Fuel Use (Ibm) Fuel Use (Ibm) Difference

none 190.40 264.72 39.03
uniform gravity 212.27 269.82 27.11
spherical Earth 197.36 281.67 42.19

perfect jets 519.00 276.26 -46.77

Table 4.11 Fuel Required To Correct For Unmodelled Accelerations

When the planner developed a trajectory including the cost of closed
loop control, it decreased the transfer time from ninety five minutes to forty three
minutes. Although the forced firings were less efficient with this time of flight, the
total fuel use decreased by roughly sixty pounds of fuel in each case due to the
decreased limit cycling. Here the increased fuel required for closed loop
execution is seventy four pounds in the case without disturbances, or
approximately forty percent.
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Although each of the disturbances discussed here are predictable and
can be included in the model, many other external disturbances such as
outgassing or jet failures cannot be predicted. The execution of the maneuver
must, therefore, include closed loop control if the maneuver is to have any
chance of success. Since the vast majority of the increased fuel use from
closing the loop is caused by the limit cycling and not from correcting for the
small disturbances, the fuel savings associated with correcting for the
predictable disturbances in the model would be marginal. As these maneuvers
are proximity operations and a small state error could cause a collision or
violation of other constraints, this increased closed loop fuel use is a small price
to pay to guarantee that the vehicle will accurately follow the planned trajectory
to the target state.

Attitude Optimization
All of the six degree of freedom searches mentioned in this chapter used

the attitude post optimizer. The purpose of this section is to give some insight
into how much fuel can be saved by varying the angular rates throughout the
maneuver in order to take advantage of jet coupling effects. It should be noted
once again that the search on attitude is done after the burn positions and times
are determined by the algorithm in order to limit the computation time. It is
logical to assume that if post optimizing the angular rates can save fuel,
optimizing these rates during the gradient search could save even more fuel [8].
This discussion, therefore, gives a conservative estimate of how much fuel can
be saved by varying angular rates.

All of the cases discussed in this section were presented earlier in this
chapter. The first two cases are those which were used in validating the model,
their initial conditions are in Tables 4.1 and 4.4. The last two cases use the
initial conditions for the open and closed loop execution discussions, located in
Table 4.7. These last two cases differ in that the algorithm used the cost
function without limit cycling effects in the first and with them in the second.
Since none of these cases were executed on the Shuttle simulator with
constant angular rates, ie. before the attitude post optimizer was called, all of
the fuel costs discussed here are the costs predicted by the trajectory planner.
The fuel costs for each of these cases, both before and after the call to the post
optimizer, are presented in Table 4.12.
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Case no Fuel Use, Fuel Use, Percent
burns Constant w (Ibm) Variable w (Ibm) Difference

Validation 1 3 83.87 76.87 -8.35
4 87.78 83.53 -4.84

Validation 2 3 223.76 210.18 -6.07
4 253.05 212.42 -16.06

Open Loop 3 258.69 237.19 -8.31
4 204.86 189.64 -7.43

Closed Loop 4 300.30 286.15 -4.71

Table 4.12 Fuel Savings From Attitude Post Optimizer

Only a four burn solution is presented for the closed loop case since the planner
could find no three burn solution to the problem with the cost function which
includes limit cycling.

By varying the angular rates at each of the commanded burn positions,
the fuel required was reduced in each case; in one case it was reduced by over
sixteen percent. Although one might expect greater fuel savings by allowing
greater latitude in allowing rate changes, four burn solutions do not necessarily
exhibit larger savings from attitude variations. Since-fuel savings are observed
in every trajectory after the attitude post optimizer is called, even greater fuel
savings.would be expected if the algorithm were upgraded to allow for angular
rate variations during the gradient search on impulse positions. This is an area
of continuing research.

Comparison to A* Method
Another algorithm for solving this proximity operation problem was

developed simultaneously at the Draper Laboratory. This algorithm made use of
a limited tree search known as the A* method [7]. A quick comparison between
the A* algorithm and the gradient search algorithm is presented here to show
that the two methods, although fundamentally different in their approach,
converge to similar fuel use solutions.

There are a few notable differences between the two searches. The first
is that the attitudes are fixed during the entire maneuver in the A* algorithm.
Fuel expenditures required to keep the vehicle at this attitude are not
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considered. In the gradient search, an attitude hold can be commanded but the
fuel required to do this will be considered. The second difference is that the A*
search does not include limit cycling in the cost function. The result of these
algorithm differences is that the fuel use returned by the two algorithms will not
be the same; they should, however, be close to each other.

Two cases are used to compare the algorithms; one with open loop
execution and one with closed loop execution. Two of the input constraints
required by the gradient search are not considered by the A* algorithm,
maximum time of flight and maximum closing velocity. To keep the input to
each algorithm roughly equal, these two values were intentionally kept large in
the gradient search. Both cases involve maneuvers relative to an orbital
altitude of 176.7 miles with a 100.0 minute maximum time of flight. Both cases
also have a maximum closing velocity of 1.0 ft/s and one moving spherical
obstacle. The maneuver specifications of the first case appear in Table 4.13.

Parameter Initial State Final State

position ft ( 0, 5000,-1000) ( 0, 0, 0)
velocity ft/s ( 0.00, 0.00, 0.00) ( 0, 0, 0)

, 0, deg ( 0, 0, 0) ( 0, 0, 0)
w , ,w 2 ,W 3  deg/s (0.00, 0.00, 0.00) (0.00, 0.00, 0.00)

Table 4.13 Comparison of A* and Gradient Search Input 1

The angular rates are zero for all time when the three dimensional search is
used. Otherwise, the angular rates are allowed to vary as long as the final state
is reached.

The second case discussed here is the closed loop execution case;
the maneuver specifications appear in Table 4.14.

Parameter Initial State Final State

position f t (3000, 0, 0) ( 0, 0, 0)
velocity ft/s ( 0.00,-5.22, 0.00) ( 0, 0, 0)
9, S, t deg ( 0, 0, 0) ( 0, 0, 0)
w, ,w2,w3 deg/s (0.00, 0.00, 0.00) ( 0.00, 0.00, 0.00)

Table 4.14 Comparison of A* and Gradient Search Input 2
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Again, the angular rates are zero for all time when the three dimensional search
is used. Otherwise, the angular rates are allowed to vary as long as the final
state is reached.

A trajectory for both cases was created by each algorithm. However,
both three and six degree of freedom searches were executed by the gradient
search algorithm while only a three degree of freedom search was executed by
the A* algorithm (it cannot vary attitude angles). The resulting fuel uses are
summarized in Table 4.15.

Case DOF A* Search Gradient Search Difference
Fuel Use (Ibm) Fuel Use (Ibm) (Ibm)

Open Loop 3 50.9 70.6 19.7
6 ---- 60.2 9.3

Closed Loop 3 174.2 193.4 19.2
6 185.1 10.9

Table 4.15 Fuel Use Comparison of A* and Gradient Methods

In each case, the fuel cost returned by the gradient search was slightly
higher than the cost returned by the A* algorithm. .This comes as no surprise
when the basic differences between the methods are considered. The A*
search does not account for the amount of fuel required to maintain the LVLH
aligned attitude. At each of the forced firings, a slight couple is created which
excites a change in the angular rates. This angular rate change is a jet
coupling effect and is created even if a pure translational rate change is
requested. In the A* algorithm, the change in angular rate is ignored and the
attitude is set to LVLH alignment for all time. In the gradient search algorithm,
however, a second couple in the opposite direction is commanded so that the
attitude rates do not change; to create this second couple, jets must be fired. It
is the additional jet firings required by the gradient search algorithm that
account for the majority of the fuel use differences. The observation that both
algorithms use completely different methods to create trajectories, yet converge
on similar fuel use solutions, increases confidence in the optimality of each
solution.
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Conclusions

Capabilities and Efficiency of Algorithm
As the complexity of proximity operations in space continues to increase

along with the precision with which they must be performed, the need for an
autonomous system to plan and execute these maneuvers becomes more
urgent. One of the necessary pieces of any autonomous system is the
Trajectory Planner discussed in this thesis.

The equations of motion used in implementing the Trajectory Planner
are the Clohessy-Wiltshire equations for translation and quaternions and
angular rates for attitudes. They proved to be highly accurate for achieving a
desired target state in the absence of external disturbances. The slight errors,
on the order of five feet, in the translational equations of motion are a function
of both the initial separation of the two vehicles and the maneuver time of flight.
As the initial distance and time of flight increase, the error in the final state can
increase by an order of magnitude in the absence of closed loop control.

When disturbance accelerations were introduced during maneuver
execution, the error in the final state increased by up to three orders of
magnitude for executions without limit cycling. In fact, none of the cases
implemented without closed loop control and with disturbance accelerations,
gravity gradient , J2, and imperfect jets had an acceptable error in the final state.
Therefore, the maneuver can be planned assuming no external accelerations
but the execution must include closed loop control. The associated increase in
fuel cost is roughly forty percent in each case investigated, regardless of the
disturbances. The reduction in fuel use which could be obtained by adding the
periodic gravitational disturbances to the model is therefore marginal.

The algorithm includes a post optimizer on the attitude at each of the
commanded impulse positions. This is done to take advantage of both jet
coupling effects to create desired angular rates and to better align the chase
craft in directions in which it has more control authority at each impulse position.
By simply commanding the angular rates required to achieve the attitudes
returned by the algorithm, an average of eight percent reduction in fuel use was
realized.
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Since the algorithm described in this thesis uses a steepest descent
gradient search, it is prone to getting stuck in local minima as in any other
gradient descent method. By careful selection of the time and spatial step sizes
as well as the closing velocity constraint, the algorithm can avoid converging on
a poor local minimum. To help illustrate this point, cases were presented in
which trajectories were created by an A* search trajectory planner and the
gradient search trajectory planner. Although the two methods converged on
slightly different fuel use solutions, the discrepancy is easily accounted for by a
difference in the cost functions used by the algorithms. The similarity in these
results lends credibility to the claim that both algorithms create fuel use optimal
trajectories.

The OEX autopilot for the Shuttle has been used as an execution
manager for the closed loop cases. This means that the software for two of the
three autonomous system elements already exist for the Space Shuttle. The
software for Maneuver Manager, the third element of the system, is currently
being developed at Draper Laboratory.

Future Development
Several areas of future research have been suggested throughout this

thesis. However, expanding the algorithm to accommodate any of these would
greatly increase the execution time. Therefore, before any of the areas of future
development are investigated, it is suggested that the practical aspect of
optimizing the algorithm software is considered. By optimizing the algorithm
software first, a great deal more research can be accomplished in a given
amount of time.

The first area of suggested development is the incorporation of variable
step sizes in the gradient search. The addition of variable time and spatial step
sizes in the search could help the algorithm to converge to a lower fuel use
solution by avoiding poor local minima in the cost function. The logic
associated with varying the step size stems from the fact that small step sizes
are desired to reach the lowest point in a cost function 'valley', while large step
sizes are desired to find other, possibly lower cost, 'valleys.' The process
should be to use small step sizes until the gradient is positive in all directions
then increase the step sizes to find a new lower cost 'valley'. The search would
terminate when the algorithm could no longer find a valley with a negative
gradient from the current cost.
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The second area of suggested development is the addition of constraints
representing jet failures and plume impingement. The jet failure constraint is
obvious. If a jet fails during the execution, either on or off, it should not be
considered as active by the jet select algorithm. The plume impingement
constraint is similar in that jets which will plume the target state should not be
considered by the jet select algorithm. Imposing either constraint, therefore,
has the same effect on the jet select algorithm; the jets which are disabled
cannot be called upon to create a rate change. In adding these constraints,
development should concentrate on deciding which jets must be disabled to
avoid plume impingement as a function of current attitude angle. Once the
determination of which jets to disable has been made, the available jets are
passed to the jet select and the rest of the algorithm functions as before. This
change, although simple, would greatly increase the usefulness of the
algorithm. It should be noted that if this change is made in conjunction with
adding attitude optimization during the impulse position gradient search, a great
deal of fuel could be saved for the failed jet cases.

The last suggestion for future development promises to create the largest
fuel savings; unfortunately, it is also the hardest to implement. This suggestion
is that the attitude angles be optimized during the impulse position gradient
search. Since the attitude post optimizer was written simply to prove that total
fuel use could be reduced by varying the attitude at each impulse position, it is
not very efficient. Therefore, a more efficient method of varying the attitude
angles than the one illustrated in Figure 3.11 would have to be developed
before this change could be practically implemented.

This is by no means an inclusive list of future development topics. Many
practical considerations associated with proximity operations have not even
been mentioned such as maximum allowable accelerations, which are
especially important for maneuvers involving flexible structures, and changes in
vehicle systems status which govern the decision to continue or abort the
maneuver. These practical considerations lead to the development of the final
autonomous system component, the Maneuver Manager.
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Appendix

Additional Information for Test Cases
Each of the cases executed in this program require additional input that

was not presented in the main body of this thesis. These include the obstacle
positions and velocities
execution. The step sizes

as well as the step sizes used
are summarized in Table A.1,

in the algorithm

Case 2 Burn Solution 3 Burn Solution 4 Burn Solution
Description At (min) At (min) Ax (ft) At (min) Ax (ft)

Local Min, Variable Ax 2 20 var 20 var
Local Min, Variable Vn 2 20 100 20 100

Validation 1 2 10 20 20 20
Validation 2 2 20 4 20 20

External Accelerations 2 20 100 20 100
A* comparison 1 2 20 100 20 100
A* comparison 2 2 20 50 20 50

Table A.1: Step Sizes for Sample Cases

Most of the spatial step sizes were chosen based on experience gained
from solving similar maneuvers. For an algorithm which uses constant step
sizes, these are good choices for spatial steps. However, the large time step
sizes were chosen to minimize computation time. Therefore, lower fuel use
solutions could have been determined if the time steps were decreased. To
minimize the effect on fuel use of a large time step, the time step is decreased
to two minutes for the three burn solutions and four minutes for the four burn
solutions to post optimize the solution returned by the gradient search on
impulse position.

Each case presented in the main body had a different set of obstacles in
the maneuver space. These obstacle sets are summarized in Table A.2.
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Case
Description

Local Min, Variable Ax

Local Min, Variable V,.

Validation 1

Validation 2

External Accelerations

A* comparison 1

A* comparison 2

Initial
Position (ft)

none

Initial
Velocity (ft/sec)

--m m -

Table A.2: Initial Obstacle States

The initial states are given with respect to the rotating LVLH reference frame.
All of the obstacles, except those in validation case one, can be encompassed
by a sphere of radius ten feet located at their center of mass. In the first
validation case, the first obstacle has a radius of twenty feet and the other two
have radii of thirty feet. The obstacles with zero initial velocity have their
position fixed for all time with respect to the target state. Obstacles with nonzero
initial velocity are subject to the same central body force as the chase craft and
target state; these obstacles do not fire jets to change their velocities. The initial
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none

( 0.00, 0.00,
( 0.00, 0.00,
( 0.05,-0.90,
( 0.53, 1.60,

( 0.00, 0.00,
( 0.00, 0.00,
( 0.00, 0.00,

( 0.00, 0.00,
( 0.00, 0.00,
(-0.34, 0.00,
( 0.22, -0.08,

( 0.00, 0.00,
( 0.00, 0.00,
( 0.05,-0.90,
( 0.53, 1.60,

(-0.21, 0.48,

( 0.07, 0.06,

0.00)
0.00)
0.03)

-0.33)

o.00o)
0.00)
0.00)

0.00)
0.00)

-0.14)
0.05)

0.00)
0.00)
0.03)

-0.33)

0.46)

0.41)

(1040, 890, 1030)
(-100, -20, -100)
( 400, -200, -500)
(-750, 600, 100)

(150, 380, 480)
( -50, -750, -70)
( -60, -20, -170)

( 300, 30, 430)
( 50, -50, 160)
( 100, -200, 300)
( -50, 100, -50)

(1040, 890, 1030)
(-100, -20, -100)
( 400, -200, -500)
(-750, 600, 100)

( 0, 4000, 500)

( 0,-5000, 500)



velocity of each moving obstacle is approximately what is required to
rendezvous with the target state.

When executing the trajectories, several parameters were set by the OEX
autopilot which affected the closed loop maneuver cost. These parameters
included position and attitude deadbands, maximum firing times of the jets
allowed for each rate change, and the minimum cycle rate of the jets. Although
each of these parameters was mentioned briefly in the main body of the thesis,
the specific numbers were often omitted. These parameters were set to be

position dead band = 5.00 degrees
attitude dead band = 3.00 degrees
limit cycling constant = 0.032 lbmfuedsec
(derived from deadbands)
maximum on time = 4.96 seconds
minimum cycle time = 0.080 seconds

The position and attitude dead bands define limits on the magnitude of
the state error. Therefore, these limits define a region around the nominal
trajectory in which the vehicle is allowed to translate and rotate. The limit
cycling constant, r, was empirically determined by commanding the Shuttle to
fly along twenty six different vectors while maintaining a constant attitude.
These vectors were defined from the center of a unit cube to each corner, the
midpoint of each edge, and the center of each face. The average fuel use per
second was defined as the limit cycling constant. Since this constant is a
function of both dead banding limits and vehicle jet configuration, it is correct
only for the Space Shuttle with this particular set of limits.

The last two parameters define how the the OEX autopilot achieves the
desired rate changes. Although the jet select algorithm can command a jet on
time of any duration, it is constrained to a maximum of 4.96 seconds. At the end
of the firing, a subsequent velocity change including both the remainder of the
requested velocity change plus a component to correct the accumulated
position error is implemented. By doing this the 'doglegging' effects are
minimized during large rate changes. The minimum cycle time of the jets is
merely a relic of the digital autopilot. Since the current state is updated by the
autopilot every eighty milliseconds, the jet status is changed to correct any
state errors or to command burns only at these times.
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