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Abstract

Lightweight, high-transmission-ratio robot manipulators have not been able to
achieve the theoretical force-control performance of a simple rigid-body manipulator.
Avoiding instability on contact with the environment often requires severe limits on control
gains and a soft covering for the end-effector (to limit the effective environmental
stiffness). The results are low bandwidth, poor disturbance rejection, and degraded
positioning accuracy.

For these manipulators, the worst problem is caused by dynamics between the
actuator and the force sensor (the "non-colocated sensor" problem). These dynamics are
due to drive compliance, link bending, actuator inductance, etc. With high-ratio
transmissions, the dominant dynamic effect is usually drive compliance.

In this research, the force-control performance of a series of controller designs is
studied using a compliant-drive manipulator model. A new design is suggested, based on
the idea of decoupling the actuator from the joint, and controlling each with a separate
feedback loop.

Analysis, simulation, and experiments are performed which show distinct
advantages of the new approach over the best-performing reference design in the areas of
stability, bandwidth, smoothness, and contact behavior. Although the new controller uses
an internal model of drive compliance, its tolerance of modeling error is found to be
excellent.

The principal cost of the new approach is an increase in actuator torque
requirements, particularly when full advantage is taken of the improved bandwidth.
Several means of reducing torque requirements are explored. A combination of actuator
and joint torque command limits and filtering of the commanded reference trajectory
succeeds in lowering peak torques by a factor of five, with no loss of performance.

Experiments performed on a single-joint manipulator testbed confirm the results of
analysis and simulation, and validate the dynamic model used.

Thesis committee: Prof. David L. Akin, Chairman
Prof. Harold L. Alexander
Prof. Tomas Lozano-PNrez
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Chapter 1: Introduction

1.1 Motivation

There is a growing need for robotic manipulators to perform tasks which would be

too costly or dangerous for humans. Examples occur undersea, in space, and on the

factory floor. Robots are potentially faster, stronger, and more precise than humans, and

less subject to fatigue. For space applications (of particular interest here) they are also

likely to require less support equipment and maintenance.

Why then are they not commonplace in space and installed in every factory? What

has prevented them from fulfilling their potential?

Part of the answer lies in the type of manipulation current robots are capable of.

The first generation of commercial robot manipulators found several niches in earthbound

industry, notably for welding and painting tasks in mass production. These successful

applications were characterized by two features: predictability and repetition. The objects

handled had known shape and mass properties. Robot workspaces included fixtures to

make the geometry consistent and predictable.

Predictability is necessary because these early robots were position-controlled

machines with little or no external sensing. They were good at following programmed

paths and rejecting any disturbances which would cause them to deviate. This is desirable

behavior for many industrial tasks. However, a much broader class of useful tasks require

the path to vary in response to interaction forces which are not known in advance. This is

known as compliant motion[26,36], and the compliance of a manipulator is a specification of

the amount and direction of position deflection produced by an imposed force.

A standard example is the "peg-in-hole" task. To insert a rigid peg in a close-fitting

hole using position control requires extremely accurate knowledge of the hole's location

and precise control of the peg. Small errors cause the peg to jam, preventing completion of
the task and generating large, potentially damaging contact forces. In practice, the
necessary precision can be achieved with a specialized machine, but rarely with a general-
purpose robot. Alternatively, jamming can be avoided by even a low-precision manipulator
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if the robot reacts properly to interaction forces as a human does in performing this type of
task.

Compliant motion is a better strategy than pure position control for tasks requiring
motion while in contact with the environment. This is particularly true for doing work on
the environment (in the physics sense, of applying a force during motion). In the factory,
compliant motion is essential for such economically useful tasks as assembly of
components.

In space as well, the capability of compliant motion would make a robot much more

effective by increasing the range of tasks it could perform. Robotic manipulators in space

will be used for exploration, assembly, maintenance, and repair. Since transportation costs

to orbit are extreme (around $4800/kg to low Earth orbit[181), and few tasks are likely to be

standardized and repetitive, versatility is a key feature for space manipulators.

Compliant motion has been the focus of a great deal of research [5,26 ,36]. Two types

of manipulators have been developed to meet this need: those with "passive" compliance,

and those with "active" force control.

In the first type, compliance comes from the mechanical design of the manipulator

or (usually) the end-effector, which deflects in a predetermined way when forces are

encountered. Standard position control drives the joints to follow a nominal trajectory,

while the mechanical compliance moderates interaction forces and aligns the payload to

facilitate the desired task.

Quite a bit of work has been done to define the types of passive compliance which

are useful, and ways to achieve these in a mechanism. Whitney's Remote-Center

Compliance (RCC)[53] is one such concept that has already found commercial acceptance.

These devices (and other advances such as machine vision) are making the current

generation of industrial robots more capable and less dependent on task predictability.

However, the passive compliance of a manipulator must be set up for a particular task and

is not easily changed. This limits the versatility of an individual robot and is acceptable in

many factory situations, but a drawback for space applications.

The alternative to passive compliance is active force control, which promises to

improve versatility by allowing the compliance to change between (and during) tasks. With

active force control, compliance is achieved by modifying joint torques in response to the

sensed interaction forces. A variety of ways of implementing this have been

considered[2 ,13,21,27,28,34 ,40 ,42 ,47 ,54 ,57]. In this thesis, a force-controlled manipulator is a

robot with force sensing at or near the endpoint and a closed-loop force-feedback control

scheme. The controller is used to impose the commanded compliance on the manipulator.
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Motion in response to sensed forces follows a user-specified law; for example, the target

compliance could require the manipulator to react like a damped spring when pushed.

The initial attempts to implement active force control met severe performance

barriers [39 ,54] . Recent studies [16 ,26 ,51] have identified some of the principal causes of

instability and error. For the lightweight, high-transmission-ratio manipulators discussed

here the worst problem is caused by dynamics between the actuator and the force sensor

(the "non-colocated sensor" problem). These dynamics include transmission compliance

and link bending.

Some of these problems are eased considerably with the direct-drive actuators

adopted by several researchers[2 ,57]. Unfortunately, the adverse effect on total system

mass of using direct drive makes it impractical for most space applications.

1.2 Problem Statement

The specific problem addressed by this thesis is: Develop and evaluate new
design principles to improve the force-control performance of manipulators
with' transmission dynamics. Transmission dynamics, broadly defined, includes all
physical effects which alter the rigid-body relationship of actuator motion to joint motion.
Here, the dominant effect is assumed to be compliance in the drive train.

A secondary goal is to shed further light on the underlying mechanics of
manipulators and force control algorithms.

There are two reasons to focus on manipulators with transmission dynamics. First,
when direct-drive manipulators can be used, their performance is already quite good.
Second, due to the intended space applications, low overall mass is essential. As described
in Section 2.1, this requirement leads to designs with transmissions which multiply torque
and allow remote actuator installation. Designers use gearboxes, ball screws, harmonic
drives, chains, cables, torque tubes, etc., which introduce significant dynamics of their
own. This necessitates the specific treatment of drive compliance and actuator-axis
disturbance forces such as friction.

Transmissions, of course, are useful in many earthbound applications as well.
Lower mass and remote actuators often mean less bulk, allowing slimmer manipulators
with faster response and greater dexterity. The results of this research should be of general
interest to the robot-design community.
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1.3 Thesis Overview

Much progress has been made recently in understanding the observed limitations on

force control performance [16,26,51]. The problem now becomes to translate this insight into

design strategies which improve performance.

The earliest suggestions along these lines followed directly from the performance

analyses. For example, if limit cycles were found to result from stiction (a type of

friction), stiction should be reduced; if instability resulted from drive compliance, the drive

should be stiffened, etc.

Although such recommendations are sound, there are limits to this approach.

Stiction and drive compliance, foi instance, are costly to reduce and already minimal in a

good mechanism. Moreover, reducing them may be incompatible with design goals such

as low overall size or mass.

More fundamental progress will come from control and design strategies tailored to

cope with the known disturbances. Instead of simply minimizing an acknowledged source

of error, an understanding of it may allow its effects to be ameliorated by a change of

linkage geometry or the method of control. Familiar examples of this are the use of dither

to reduce friction effects without reducing the friction itself, or the addition of an inner

control loop to better reject actuator disturbance forces. Since the order of complexity of

the mechanism is often increased, such changes must be made with an understanding of the

overall system dynamics.

The objective of this thesis is to build upon recent analytical work characterizing the

limitations on force control performance, by recognizing these sources of error and

instability and taking them into account in a design strategy. This is an open-ended

problem since as performance levels increase more dynamic effects will become important.

The key ideas developed in this thesis are the use of Forward and Return Force

Transfer Functions for force controller analysis and tuning, the mechanical decoupling of

small-scale actuator dynamics from joint dynamics, and the separate control treatment of

actuator and joint.

Quite a bit of background information is helpful in understanding the problems

posed and solutions suggested here. The second and third chapters of this thesis are an

attempt to provide this by laying out the problem in detail, and defining the current state of

the art. No new strategies are introduced here, but existing ones are illuminated in new

ways.
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Chapter 2, "Force Control Performance," defines the problem explicitly. The

relevant physical phenomena are discussed and their effects on performance described.

Substantial review of the current literature is included in this section, although the analysis

of backlash and the manipulator mass scaling models are original to this thesis. A simple

dynamic model of a single manipulator joint with drive compliance is adopted for

subsequent analysis and simulations.

In Chapter 3, "Force Controller Analysis," a set of performance criteria is defined

to evaluate improvements. These are stability, bandwidth, smoothness, and contact

behavior. A method for analyzing force control algorithms is introduced, using Forward

and Return Force Transfer Functions. This method is applied to a series of controller

designs drawn from the literature to explore how they work, what their limitations are, and

to indicate how to overcome these.

A force-controlling manipulator can be thought of as a loop: control input is

processed through manipulator and workpiece dynamics to give output force, and this force

is sensed and processed through controller dynamics to give further control input.

Previous studies in the literature have concentrated on the first half of the loop, adding and

subtracting various modeled physical phenomena to determine their effects on performance.

The analysis in this chapter focuses instead on the return half of the loop. Assuming a

fixed physical model, various controller features are added to determine their effects on

performance. A standard example quantifies the performance improvements.

Chapter 4, "Joint/Actuator Controller Design," introduces a new manipulator design

approach based on the separate treatment of joint and actuator motion; hence the term

"Joint/Actuator Controller." The two inertias are mechanically decoupled by adding a linear

elastic element to the transmission, and the controller design forms separate (nested)

feedback loops around each. The addition of a joint position sensor is also required.

The new controller includes a model of drive compliance, and is intended to
overcome the bandwidth limit set by the drive resonance frequency. Stability range should
also improve, allowing lower target stiffnesses to be achieved. Mechanical drive
decoupling is intended to improve disturbance rejection and ensure the validity of the
controller's internal model.

Section 4.3 compares the Joint/Actuator design to the best-performing design of
Chapter 3. The comparison is made using the performance criteria defined in Section
3.1.2, and the results show improvement in every category.

Chapter 5, "Simulation and Experiments," extends this analysis to the time domain
through numerical simulations which include nonlinear effects such as finite sampling rate,
sensor and control resolution, actuator saturation, dry friction, contact discontinuity, etc.
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Also described are the results of experiments comparing the reference design to the new
ideas on a single-joint laboratory testbed.

Simulation is used to confirm the behavior of the controllers predicted in Chapters 3
and 4 to discover the effects of modeling error and to investigate techniques for improving
the practicality of the Joint/Actuator design by reducing actuator force requirements.
Experiments are performed to validate the manipulator dynamic model used throughout this
thesis and to directly demonstrate the stability advantages of the new controller.

Chapter 6 reviews the major conclusions. Also presented are recommendations for
implementing the ideas discussed, and topics for further work.

1.4 Contributions of this Thesis

This section summarizes the most important contributions of this research:

" A detailed investigation is performed of the problem of force control with a
compliant-drive manipulator. An analytical framework using Forward and Return
Force Transfer Functions is developed and used to study and compare existing
force-control algorithms.

* The analysis suggests a new approach: the Joint/Actuator controller design with

mechanical drive decoupling. The new design is shown to permit operation above
the actuator-drive resonance frequency cD and offers lower attainable target

stiffnesses than conventional designs, with improved disturbance rejection.

* A stability criterion is derived for the Joint/Actuator controller, enabling the designer
to select the control gains necessary to achieve the desired target stiffness and

bandwidth with a given environment. It shows that the stability limit is now due to
the limited bandwidth oa of the inner loop, rather than the drive resonance at

frequency (oD . This has two effects which improve stability over conventional

designs: the inner-loop bandwidth is generally higher than COD and the inner-loop

damping ratio is much greater than that of the drive resonance.

* A study of manipulator contact behavior characterizes the initial (open-loop)
response during a collision with the environment, indicates the closed-loop
bandwidth necessary to improve this, and examines the roles of drive compliance
and the inertia outboard of the force sensor (including payload). It is found that
drive compliance typically has little effect, but that payload mass places a
fundamental limit on the ability of a controller to limit impact forces and bouncing.
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* A study of ways to reduce actuator force requirements with the Joint/Actuator

controller reveals the utility of filtering unneeded high frequencies out of the

commanded position trajectory. It is also shown that limits (in software) on

commanded joint force assist the recovery from momentary saturation-induced

instability, providing a good safety feature for this type of controller.

* An experimental testbed was constructed. Experiments confirm the expected

stability improvements of the new design, and validate the dynamic model and

simulation procedure.

* A number of design recommendations are made. Some of these are specific to the

Joint/Actuator design, such as the desirability of locating the friction-introducing part

of the transmission inboard of the decoupling springs (e.g. installing the gearbox on

the actuator rather than the joint). Others are more generally applicable, such as the

benefit of minimizing structural mass outboard of the force sensor.

* Aspects of the Joint/Actuator design can be generalized to broader classes of

mechanisms. The modeling approach and controller structure allow stable operation

above the natural frequency of transmission dynamics, without requiring a model of

the environment; other effects could similarly be modeled and compensated for.

Also, the principle used to improve disturbance rejection can be abstracted as

follows: Use a software pre-filter (in this case the drive model) to boost input

signals, and a matching inverse mechanical post-filter (the decoupled drive

dynamics) to restore the desired output signal (in this case interaction force) while

attenuating disturbances. This resembles such electronic noise-reduction schemes as

the DolbyrT system, and is discussed more fully in Section 6.3.
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Chapter 2: Force Control Performance

This chapter characterizes some of the physical phenomena relevant to force control

performance in order to identify the most immediate challenges.

The effects of transmission ratio are described first. The ratio, an important

parameter of any transmission, is defined as the number of turns of the input shaft required

to produce one turn of the output shaft. The claim was made in the introduction that a high-

ratio transmission is required to meet the objective of low system mass. In the first section

of this chapter, this claim is justified with a simple mass-scaling model. When a high-ratio

transmission is used the effects of actuator-axis disturbance forces (those acting on the

motor shaft), backlash, and drive compliance become important, and these are discussed in

subsequent sections.

In the final two sections of the chapter, the dominant physical effects are

summarized and a dynamic model is defined for the class of mechanisms of interest. This

model is used throughout the rest of the thesis as a basis for analysis and simulation, and

its accuracy is evaluated experimentally in Chapter 5.

2.1 Transmission Ratio Effects

For the design engineer, the ability to specify the transmission ratio between each

actuator and the manipulator joint it drives is an important one. It allows the designer to

adapt actuator characteristics to the expected loads.

Direct-current electric motors provide a simple, approximately linear means of

converting electrical signals to force and motion, and are commonly used as actuators in

robots. Most are capable of high speeds (thousands of rpm), and their bulk, weight, and

cost rise rapidly with torque capability. Robotic applications, however, typically require

low speeds for a fraction of a revolution, with high torque. Transmissions allow high-

speed low-torque actuators to meet the low-speed high-torque demands of manipulators.
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2.1.1 Effect of Transmission Ratio on System Mass

When the designer is free to select a transmission ratio, higher performance can be

achieved for a given system mass. The effect is quantified in this section.

A mass-scaling model is developed in Appendix A to compare two types of serial-

link, revolute-joint electric manipulators. One design uses direct-drive actuators and the

other uses transmissions which provide torque multiplication and allow the actuators to be

installed remotely from the joint. Displacement of the actuator is used to reduce the

moment of inertia of each link.

Manipulator Scaling Model

The model allows the calculation of total manipulator mass given the desired

payload mass, tip acceleration, link length, and a parameter related to link stiffness. The

geometry shown in Figure 2.1 is assumed.

In the arm with transmissions the actuators have been displaced from the joints they
drive but are still installed on the same link. This allows some reduction of inertia with
minimum added mechanical complexity. Some manipulators remove all of the actuators to
the base, giving the maximum reduction of inertia.

Arm with Transmissions

Figure 2.1: Manipulator Geometry
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The independent (input) parameters are:

L link length

A a required tip acceleration capability
Mp - payload mass

ML3 mass of third link

The dependent (calculated) parameters are:

M 1I, ML2 a mass of links 1, 2

Mi = mass of motor i

MG i - mass of gearbox i

Mr a total manipulator mass

cii = angular acceleration of link i

Ji a moment of inertia of arm about joint i

JM i a rotor inertia of motor i

JT i a total inertia seen by motor i
Ti = torque applied at joint i

TMi a torque applied by motor i

Ni - transmission ratio at joint i

The equations for calculating these parameters are developed in Appendix A.

Manipulator Examples

Two examples are calculated to compare the overall mass of direct-drive vs. geared
manipulators.

RMS-Equivalent Manipulator

An interesting comparison is for performance equivalent to the Space Shuttle RMS
(Remote Manipulator System) which is 18 meters long, weighs 413 kg, has a payload
mass of 30000 kg, tip acceleration of .0025 m/sec2 , and gear ratios of 2000:1.

The actual RMS doesn't quite fit the manipulator design template of Figure 2.1. It
has two major links rather than three and, although it uses geared transmissions, the
actuators are located directly at each joint. What will be done here is first to design a geared
3-link manipulator which fits the template and matches the RMS values for total mass, total
length, payload mass, and tip acceleration, and which uses the actual RMS gear ratios. In
this procedure total mass is an independent parameter and ML3 becomes a derived

parameter. This is done by choosing a trial value for ML3, calculating MT and iterating
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until the total mass is that of the real RMS. Essentially, this is using the real RMS mass to

set the link stiffness parameter in our model.

This gives a RMS-equivalent geared manipulator which fits the template. The

equations developed above are then used to design a direct-drive version with the same

performance.

The assumptions and results for this RMS-equivalent example are shown below:

Specifications

Parameter Value

L 6m

Mp 30000 kg
A .0025 m/sec2

ML3 27 kg (derived from matching MT

for geared version to real RMS value)

Results

Parameter Geared Value Direct-Drive Value
M1  15.3 kg 478 kg

M2  11.9 kg 360 kg

M3  7.7 kg 222 kg

MLl 243 kg 245 kg

ML2  108 kg 108 kg

MT 413 kg (specified) 1440 kg (derived)

Mass Ratio: 3.48

Table 2.1: RMS Example Parameters

Since the geared version was intended to match the real RMS, equation (A.13) was
not used in this case. Instead, the actual ratios Ni = 2000 were substituted. This leads to

some error, as the algorithm outlined above still assumes that only half of the motor torque

goes toward accelerating the arm (the rest accelerates the rotor inertia). With these ratios
the effective rotor inertia is less than in the impedance-matched case, so more torque would
be available for accelerating the link. The effect on system mass is small and does not
change the nature of the results; in fact, a more accurate calculation (requiring iteration)
would show a larger advantage for geared systems.
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The model predicts that for a 3-link version of the RMS, direct drive would increase

mass by over 1000 kg for equivalent performance, reducing Shuttle payload capacity by the

same amount, at an approximate cost per mission of $5,000,000.

Dexterous Manipulator

The RMS is basically a crane for gross positioning of large objects. At the other

end of the manipulation spectrum would be a smaller unit for tasks requiring dexterity:

.5 meter links, payload mass 10 kg, tip acceleration 1 m/sec2 . The assumptions and

results for this dexterous manipulator example are shown below:

Specifications

Parameter

L

Mp
A

M 3U

Value

.5 m
10 kg

1 m/sec 2

1 kg

Results

Geared Value
.875 kg

.643 kg

.414 kg

10.7 kg

4.2 kg

17.85 kg

Mass Ratio: 4.80

Direct-Drive Value
33.1 kg

19.5 kg

10.0 kg

16.8 kg

5.2 kg

85.6 kg

Table 2.2: Dexterous Example Parameters

The model predicts a geared version would have a mass of 18 kg and the direct-

drive version 86 kg, giving a mass ratio of 4.8.

The overall effect on system mass will be even more than these figures indicate.

The more massive direct-drive arm will require more power at higher current levels to

follow the same trajectory, so additional mass is needed for power supply components

(e.g. batteries). If the arm is mounted on a free-flying platform, more fuel and structure

Parameter
M1

M3
MLl
ML2

MT
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will be required. All of this extra mass must be lifted to orbit. Thus, the decision to use

direct-drive actuators on a space manipulator would be an expensive one.

2.1.2 Side-Effects of Transmissions

A real transmission has several effects on manipulator joint dynamics besides the

desired torque multiplication [l 48]

The effect of motor armature inertia is multiplied by N 2. This has the benefit of

making the overall manipulator dynamics less configuration-dependent. The inertia matrix

is closer to diagonal and constant, so the nonlinear rigid-body dynamics of a multi-DOF

manipulator lose importance relative to the dynamics of each joint.

Drive compliance is increased, as if a lightly-damped spring had been placed

between the actuator and the link. This is caused by gear.tooth bending, shaft bending,

cable stretching, etc. Friction forces within the actuator are multiplied along with the

actuator force: Coulomb friction and stiction by the transmission ratio N, and viscous

friction by N2 . More friction may arise within the transmission itself, from gear tooth

sliding, intermediate shaft bearings or tendon sheaths [24], for example. If gears are used

backlash and cogging are present[ l]. These effects can seriously degrade the performance

of a manipulator using transmissions. The following sections describe this in more detail.
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2.2 Actuator Disturbance Forces

A single manipulator link can be modeled as having an inertia associated with the
actuator (the actuator node) and an inertia associated with the joint (the joint node). This is
the basis for the dynamic model adopted later for comparative analyses. If transmission
dynamics are present between them, these nodes may follow quite different trajectories.
Disturbance forces which act directly on the actuator node are particularly important in
manipulators with transmissions because their effect on joint motion is amplified by the
transmission ratio. Unlike forces acting at the joint node, they can be corrected
immediately if sensed or predicted accurately. This section describes the most commonly-
encountered actuator disturbance forces and their effects on performance.

2.2.1 Friction

"Friction" refers to any forces arising from the contact of two surfaces which
oppose their relative motion. This includes viscous forces from lubricant wetting the
surfaces, as well as dry friction.

Friction forces are primarily a function of the relative velocity of the surfaces and
the normal force, and are observed to fall into three categories[l11,501: viscous friction,
Coulomb friction, and stiction. In viscous friction the force is proportional to the velocity;
in Coulomb friction the force depends only on the sign of the velocity, and stiction forces
act only at zero (or very small) velocity.

Figure 2.2: Friction Models
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These are idealized models of actual friction forces. Canudas et al.[111 performed a

series of experiments on a prototype manipulator which found forces conforming to each of

these types, but they also found significant time and temperature variation in the

parameters, and the slope of the viscous friction component depended on the direction of

motion.

2.2.2 Cogging

Disturbance forces which depend on actuator position rather than velocity are

described here as cogging forces. This includes the uneven torque provided by a gear train

due to the small changes in geometry as the teeth mesh, and ripple torques in the motor due

to changing magnetic field geometry as the rotor turns. These disturbances are related to

the number of teeth on the gears or number of poles in the motor. Eccentricity and offsets

in shafts and bearings also contribute to cogging[ll.

With rotary actuators, cogging forces are periodic. Since they act on the actuator

node and intermediate gear meshes, the disturbance frequency is proportional to

transmission ratio for a given joint velocity.

Measurements made by the author on experimental manipulators in the laboratory
indicate that cogging forces may amount to 5 % or more of the maximum torque output of a
typical industrial-quality DC motor/gearbox actuator.

2.2.3 Performance Effects

Of the disturbance forces catalogued above, only viscous friction admits a linear

model. Viscous friction appears as the familiar damping or dissipation term in linear

differential equations. The usual effect of actuator damping is to increase stability margins
at the expense of bandwidth.

The methods of nonlinear analysis [20 ,37] seldom allow generalizable conclusions
about the effects on stability or performance of a given disturbance. In many cases, one
must fall back on simulations of the particular situation of interest. Nonetheless, recent
work by Townsend and Salisbury [501 sheds light on the qualitative effects of dry friction
(Coulomb friction and stiction) on force control. Their analysis pertains to a simplified
manipulator model, with an actuator capable of instantaneously attaining a commanded
velocity. In practice this would correspond to a manipulator with a low-mass actuator, a
low transmission ratio, and a high-gain inner control loop based on actuator velocity. A
compliant transmission connects the actuator to the inertial joint node, upon which the
friction acts. Note that this is a different problem than discussed above; the disturbance
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forces act on the joint node, not the actuator node. This distinction diminishes, however,
in the near-inertialess case which is the basis for several of their results.

They conclude that Coulomb friction introduces a time delay in response, but can
increase system stability for low amplitudes of force error, leaving high-amplitude stability
limits unchanged. In the near-inertialess case, stiction always resulted in limit cycles--a
periodic stick-slip motion of the joint. The amplitude of the limit cycle was proportional to
AF, the stiction force.

Other researchers[ 40] have noted limit cycles in actual manipulator behavior which
they attribute to an interaction between stiction and an integrator in the control loop.



2.3 Backlash

Backlash is a commonly encountered nonlinearity which can lead to limit-cycle

instabilities in an otherwise stable system. It arises in standard geared transmissions from

the necessary gap between teeth of mating gears[ 1] . When drive direction is reversed, free

motion occurs between the input and output shafts as this gap is traversed. Figure 2.3

illustrates the relationship between input angle and output angle.

Figure 2.3: Backlash Input/Output Diagram

"Anti-backlash" gears avoid this by splitting one gear (e.g. the input gear) into two

parallel gears connected by a torsion spring. One of these gears contacts one side of the

teeth of the output gear and the other contacts the other side, so that no gap exists. This

eliminates backlash, but at the same time increases friction and drive compliance. Since

transmissions for robotic force control are often designed for minimum friction and
compliance, backlash can still be a problem.

x (input)

b
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A nonlinear control analysis was undertaken to investigate the effects of backlash
on a serial-link rotary-joint manipulator. The analysis (detailed in Appendix B) shows:

* Backlash inserted between the actuator and control sensor on an

otherwise stable manipulator system introduces a single stable limit
cycle into its closed-loop free-space behavior.

* The limit cycle frequency is proportional to but less than controller
bandwidth wc. Increasing the controller damping ratio ' reduces the

limit cycle frequency.

* Limit cycle amplitude is strongly dependent on controller damping.
As C -- 0, amplitude -- oo; as ý -- oo, peak-to-peak amplitude

decreases asymptotically to a minimum at the backlash magnitude b.

* When limit cycle amplitude significantly exceeds backlash magnitude
(C < 1) motion is smooth and periodic; at smaller amplitudes the

higher harmonics become important and motion becomes quasi-
periodic.

These results apply whether the backlash physically occurs in the actuator or in the
control sensor. Note that if there are gravity forces or if the manipulator is in contact with
its environment, enough bias force may be present to suppress actuator backlash, although
sensor backlash would remain. In more complicated systems with multiple control loops
these results still apply, with the relevant oc and ' being those associated with the

innermost loop containing the backlash.

The third point above is important to note for the controller analysis in subsequent

chapters. It implies that the amplitude of a backlash-induced limit cycle cannot be reduced

below a minimum value by increasing the gains. The forces involved may increase, but the
position amplitude remains nearly constant. This is an essential nonlinear aspect of
backlash.

In linear control analysis, disturbances are usually formulated as forces, and
disturbance rejection calculated as the transfer function from this force to output error.
Backlash limit cycles, however, more closely resemble a constant-amplitude position

disturbance of the actuator (assuming reasonable damping of the actuator control loop). It
is therefore more relevant to examine the transfer function from actuator position to output
error.
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2.4 Drive Compliance

Transmissions inevitably add some elasticity, or compliance, to the drive train of a

manipulator. Indeed, elastic elements are essential to the function of some types such as

harmonic drives.

Drive compliance can degrade performance in two ways. In position control

applications, the sensors used for control can measure either actuator shaft angles or joint

angles. If actuator angles are used for control, any compliance between the actuator and

joint introduces a load-dependent error in actual payload position. This sets an upper limit

on the effective stiffness of the manipulator, no matter how high the control gains are set.

Conversely, if joint angles are used for control, it becomes a classic "non-colocated" sensor

problem. The compliance introduces destabilizing phase shift at high frequencies between

sensor and actuator, limiting the allowable gains and, again, the achievable stiffness.

In force-controlled manipulators, compliant dynamics between the force-sensing

wrist and the actuators cause instability at high gain[ 15,54]. The worst case occurs in

contact with a stiff environment, when force feedback effectively becomes very high-gain

non-colocated position feedback[2,25A00,41]. This problem can be more troublesome than in

position control because the effective gain depends on the environment. Oddly enough,
this sets a lower limit on achievable stiffness, because in this case the force feedback gains

are higher for a low target stiffness (since the motion required in response to a sensed force
is greater).

Control theory has given the designer tools which work well for controlling rigid
manipulators, as experiments with direct-drive attest[2 ,57]. Once it is understood that drive
compliance can cause stability problems in manipulators, it is logical to formulate a plant
model which includes the drive compliance. The principles of control theory might then be
expected to yield robust, high-performance control laws as in the rigid case.
Unfortunately, as the next section describes, this has not proven to be easy.
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2.4.1 Modeling Compliance for Control

In order to use the powerful methods of linear control theory, the plant equations,
written in input/output form, must be linear and uncoupled.

Manipulator dynamics contain many nonlinear terms. However, the dynamics of a
rigid manipulator can be linearized and decoupled by nonlinear static-state feedback. In
other words, an equation of the following form can be written:

a = g(.) + D() a (2.4.1)

where: a = control variables (vector); in this case actuator torques

X = state variables (vector); in this case joint angles and rates

a = reference variables (vector); in this case joint accelerations
r = nonlinear function of states (vector); in this case Coriolis and centripetal

forces

D = nonlinear function of states (matrix); in this case the inertia matrix

The important feature of equation (2.4.1) is the linear, uncoupled relationship
between a and M, which allows the application of linear control methods. Controller design

using this equation is known as the resolved-acceleration [33] or computed-torque [19]

method.

A manipulator with drive compliance cannot be linearized in this way [35], due to

additional internal state variables. Each inertial node contributes two state variables--its

position and velocity. The link inertias now move independently of the actuator inertias, so

each link brings with it four state variables instead of two.

What can be used instead is nonlinear dynamic-state feedback [12]. This allows

equations of the following form to be written:

(2.4.2)

u = EQ2x,_z) + D&, z) a
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where: Z = new state variables (vector); actuator angles and rates

x = the original state variables (vector); joint angles and rates

a = reference variables (vector); in this case not the joint accelerations

, , e = nonlinear functions of states (vector)

B, D = nonlinear functions of states (matrix)

The first equation contains the dynamics of the drive compliance. The most

important practical difference between the dynamic-state formulation and the static-state one

is the fact that a no longer represents the joint accelerations. This is a disadvantage, since

the overall goal is to control joint behavior.

The difference can be understood by examining the physical system. With a rigid

drive, it is clear that at any point in time the acceleration of a link will have a linear

relationship with the actuator torque, because this torque is applied directly to the link

inertia. The slope and offset of this relationship vary with the system state, as given by

equation (2.4.1), but the relationship is always linear. With drive compliance, however, a

torque applied to the actuator inertia will have a linear relationship with the actuator

acceleration, not the link acceleration.

If, for example, drive compliance is represented by a simple spring, the

displacement of the spring gives the force transmitted from actuator to joint. The
displacement of the actuator then has a linear relationship with the acceleration of the joint.

Since the actuator torque is linearly related to the actuator acceleration, it is also linearly
related to the fourth derivative of the joint angle. The reference vector a in this case would

be the fourth derivative of the joint motion, rather than simply joint acceleration.
The example of a three-link manipulator with a model of drive compliance was

investigated in [12]. In this case, the linearizing, decoupling transformation (2.4.2) used
makes the dynamical system equivalent to three chains of six integrators each, instead of
the double integrators of the rigid-body case. In other words, the reference a turned out to
be a vector of sixth derivatives of joint angles, rather than accelerations. It is conjectured in
[12] that similar results apply to any arm with their model of drive compliance.

Unfortunately, while they are linearized and decoupled, it is hard to design a real
controller with these equations. To produce the usually-desired second-order behavior by
controlling sixth derivatives of joint position would require measurement or estimation of
the fouith and fifth derivatives. Noise and unmodeled dynamics make this impractical.

Approximations to the exact dynamics (2.4.2) are often considered. One approach
is to linearize the original nonlinear equations about an operating point, i.e. a given
state z0 . Experiments have shown that good position-control performance can then be
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obtained with a linear controller in the neighborhood of • [23]. For serial multiple-link

manipulators, however, the dynamics vary greatly over the workspace. This restricts the
range of validity of the linearized model.

Another way to approximate the exact dynamics uses singular perturbation
theory[29]. The addition of drive compliance is considered as a (small) perturbation to the
rigid-body manipulator dynamics. The equations can be separated into "slow" dynamics
and "fast" dynamics. A slow controller is designed for the unperturbed (rigid) system
using a model of the form (2.4.1), and a "corrective control" is added to make the slow
dynamics behave like the rigid-body system. This corrective control is not explicitly
solvable, but can be approximated to any desired order [46]. A fast controller is used to
stabilize the fast dynamics, ensuring that trajectories converge to the slow dynamics [35 ,44].
In this case, the fast controller damps out drive oscillations. While this has the potential of
making a compliant-drive manipulator behave like a rigid one, the approximation that
allows separation into slow and fast dynamics limits the overall closed-loop bandwidth
(that of the slow controller) to below the natural frequency of the compliance.

Another problem with many higher-order model approaches is that they require an
equally accurate model of the environment, since in force control the environment is "in the
loop" and the coupling is strong through the force sensor. This would add much
complication to a working manipulator system, and robustness might be poor.

In summary, modeling compliance is a good idea but has been difficult to take
advantage of in practice. Success that has been achieved in position control of flexible-link
manipulators has required a good model and sophisticated control, and even then is
conditionally stable [9,101.

The exact problem is very difficult; what is needed is a simple approximation to it
which allows a practical controller design. The approach taken in this thesis makes such an
approximation, and enforces it by redesigning the mechanism to ensure. that the
approximation is sufficiently accurate.



37

2.4.2 Effects on Force Control Performance

Transmission compliance contributes extra phase shift to the open-loop transfer

function at high frequencies [16 ,51] . This leads to instability as the closed-loop bandwidth

of the system (including the environment it is coupled to) approaches the natural frequency

of the compliance.

The documented effects of such a stability limit are to limit bandwidth and enforce a

tradeoff between stiffness of the environment and the achievable closed-loop compliance of

the manipulator [16 ,54]. A rigid environment requires stiffer manipulator behavior. The

recommendations presented so far in the literature are twofold:

* Through mechanical design, raise the natural frequency of the drive

dynamics as high as possible, and
* Add compliance between the force sensor and the environment, to limit

the effective environmental stiffness seen by the manipulator.

To obtain a large improvement by following the first recommendation requires a

direct-drive manipulator. As shown in Section 2.1 this is not always practical. The second

recommendation is more easily followed--by installing compliant coverings on grippers,

for example. There are limits here as well; adding too much compliance makes for a bulky

end-effector and degrades positioning precision.
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2.5 Summary: Current Performance Barriers in Force Control

Constraints on robot mass and bulk make the use of high transmission ratios

essential for many applications.

Lightweight, high-ratio manipulators have not been able to achieve the theoretical

force-control performance of a simple rigid manipulator, which is approached by some

direct-drive machines. This failure is due to higher-order dynamic effects which lead to

instability and disturbances which lead to error.

The dynamic effects include force sensor flexibility, motor inductance, link

bending, drive compliance, and delay due to digital sampling. All of these introduce phase

shift between the force sensor signal and the actuator control signal at high frequencies,

causing instability when the closed-loop bandwidth is too high.

Disturbances include sensor noise, friction, stiction, backlash, and cogging at the

actuator axis, at the joint axis, and within the transmission.

The most important dynamic effects are those occurring at the lowest frequencies;

these are the immediate barriers to improving closed-loop bandwidth and stability. The

assumption of a high transmission ratio helps determine which effects are dominant.

Measurements of high-ratio manipulators in use in this laboratory give the following typical

values for the frequencies at which different effects become important (defined here as

contributing at least 45° of phase shift):

Motor Inductance 125 Hz

500 Hz Sampling Rate 62.5 Hz

Force Sensor Flexibility 30 Hz

Link Bending 25 Hz

Drive Compliance 3 Hz

Of these, the most immediate challenge is clearly drive compliance.

For disturbances, the most important are simply those with the greatest effect on

endpoint errors (force and position). With typical transmission ratios > 100, the effect of

actuator-axis force disturbances far outweighs that of joint-axis force disturbances.

Friction and cogging will be considered actuator-axis force disturbances and the limit-

cycling due to backlash will be considered an actuator-axis position disturbance.

The effect of sensor noise will not be explicitly considered here, although it may be

significant in some cases. Digital sensors (encoders or resolvers) are commonly used for

position measurements and are essentially noise-free, although they have finite resolution.
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Force sensors, on the other hand, are analog devices and susceptible to electrical and

thermal noise. Excessive force sensor noise could limit force-control performance.
However, the position response of a force-controlled manipulator to a sensed force is
usually intended to be inertial; i.e. the response to a force is acceleration. Noise in the force
sensor is thus integrated twice before it appears as position error. This diminishes the
effect of high-frequency, zero-bias noise. Low-frequency noise, or calibration drift, is not
attenuated as much and should be limited by careful design.
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2.6 Manipulator Dynamic Model

For the analysis in subsequent chapters, a dynamic model is required to represent

force-controlled manipulators. The model should be as simple as possible while retaining

the dynamics being studied. Much research on robot modeling has been

done[l1,2 ,5 ,16 ,4 1,48 ,51]. Eppinger's work[16] in particular has shown the utility of single-

joint lumped-parameter models in understanding the performance of real manipulators in
force control.

For multi-DOF force control, each axis can be considered to be autonomous [47].

This just reflects the fact that a Cartesian-coordinate end-effector stiffness can be

transformed into joint-coordinate stiffnesses using the inverse Jacobian (if one avoids

singularities). Accordingly, most of the remainder of this thesis assumes a single-joint

manipulator model. The important dynamic effects described above can be included, and

all of the performance criteria proposed can be quantified and compared using such a

model.

2.6.1 Model Description

The following diagram illustrates the single-joint manipulator model:

T - W% I, Ir I-

y x

mA = actuator mass d A = actuator damping k D = drive stiffness

mL = link mass d D = drive damping k E = environmental stiffness

m = payload mass d E = environmental damping

U = control force D = disturbance force F = compressive force

x = joint position y = actuator position

Figure 2.4: Single-Joint Manipulator Model



41

The disturbance force D includes Coulomb friction and stiction. The actuator is

assumed to accept a force command U. Compressive interaction force F is measured by a
(rigid) sensor at the "wrist," with mp representing the mass (including payload) outboard

of the sensor. The link itself is assumed rigid. Position coordinates are the joint position x

and the actuator position y. The environment is represented by a spring and damper for

x > 0, and no effect for x 5 0.
The assumption of a rigid force sensor is an approximation which may fail in

practice. An important effect of flexibility in the force sensor would be to limit the effective

environmental compliance to the value of the compliance in the sensor. Experiments in

Chapter 5 show that when this effect is taken into account, the model above provides a

good representation of actual hardware.

The dynamic equations of this system are:

mAy=U+D-dA ,-dD (y k- )-kD (y-x)

mL = dD (- k) + kD (y - x) - F (2.6.1)

F = mp k + [dE k + kEX]x>O

In this model, the usually rotary motions of joints and actuators have been

abstracted to linear motions. The physics is equivalent, but terminology changes. Actuator

and joint torques become forces, and actuator and joint angles will be referred to as

positions.

2.6.2 Controllability

Controllability is a property of a linear system which implies that it is possible to
drive the system from any initial state to any final state in finite time, with appropriate
control inputs. A system without this property may have oscillatory modes which cannot

be damped out by control signals, or other undesirable behavior.

If the manipulator model adopted above is uncontrollable, efforts to improve its
performance are doomed from the start. It would be necessary to redesign the modeled
system to ensure control effectiveness over all the states.
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Controllability is easily checked. The system can be written in state-space form

x= Ax + Bu, where X is the vector of states and u is the control input. A, B and X are

shown in equation (2.6.2).
- 1 i ... 1_ ! _D ± M 1

UD IE D1 UD
mL+mP mL+mp mL+mP mL+mP

1 0 0 0
PdD kD dA+dD kD

A n 1 n

(2.6.2)

0[ x

0 L
y

The controllability matrix is then defined as [BIABIA 2BI ... IA'-1B]. Control
theory asserts that the system is controllable if the rank of this matrix is equal to n, the
dimension of the state vector [43].

In this case the controllability matrix is a 4 X 4 matrix whose determinant must be
nonzero. After some algebra performed with the aid of the MACSYMA 7M computer
program, this determinant is found to be:

det(controllability matrix) - (L + p)kD2 + dD2 kE - dDd(2.6.3)
mL3 + 3mpmL2 + 3mp2 mL + mp3  (2.6.3)

Since mp and mL are always positive, only the numerator is of concern. Note that
when dE = 0 as in free space or against a purely spring-like surface, the numerator is
positive and the system is controllable. The same is true if drive damping dD = 0. Since

both of these parameters are small compared to the other terms in practice, the system is
theoretically controllable in all situations of interest.

This assures us only that control signals can exist to make the manipulator behave
as desired. No guidance is given as to what sensors or feedback law may be used to
generate them.

A=

~ "
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2.6.3 Observability

A related property to controllability is observability. A system is observable if

every state can be exactly determined from measurements of the output over a finite interval

of time.

If the manipulator model is not observable with the sensors available, the controller

cannot drive it to the desired state. Also, if transfer functions are to be used in controller

analysis, observability is a requirement for accurate representation of the system.

The equation . = Cx represents the sensor readings as a function of state. The

observability matrix is then defined as [CTIATCTIAT2CTI ... IATn-1CT], and must be of

rank n for observability[4 3]

For the manipulator model used here, the states are x,x, y, and j, as shown in

(2.6.2). Clearly if all of the states are directly measured (C is the identity matrix), the

system is observable. In many manipulators only the actuator states y and 5 are directly

measured, along with the interaction force F. Some algebra with MACSYMA indicates that

this is still observable. In fact, if the environment dynamics are included and payload mass

is nonzero, the system is in principle observable using only the interaction force sensor F.
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Chapter 3: Force Controller Analysis

The first section of this chapter specifies what is meant by force control in this
thesis, and proposes four criteria for good performance. This is followed by a discussion
of analysis techniques for force controllers, including development of the concept of
Forward and Return Force Transfer Functions. The remainder of the chapter is devoted to
exploration of the properties of a series of controllers drawn from the literature, to reveal
the source of their limitations and discover ways to overcome these.

Analysis of the controllers here is similar in methodology to work done by other
researchers [16,51], in the use of simple models and linear control techniques. However,
those efforts focused on exploring the behavior of a single assumed (very simple)
controller with models of a variety of physical phenomena, to determine the effects of these
phenomena on force control. The approach here is the converse; to select a single
representative physical model (aided by their findings), and explore the effects of a variety
of controller designs.

This work also serves to verify that the simple dynamic model adopted at the end of
Chapter 2 can account for the performance limitations seen in various experiments. The
most important of these is instability upon contact with a rigid environment, which has
required either severe lowering of control gains [81 or the installation of a very compliant
covering for the end-effector[7]. Another observed feature of past implementations of force
control is poor disturbance rejection[134 54], leading to uneven behavior and large errors.

The controller analysis in this chapter confirms the results of other research [16 ,51]

that these effects can be traced to the destabilizing nature of feedback from a non-colocated
force sensor, and goes on to show the utility of position-based inner loops and filtering of
the force feedback. These features have been demonstrated before [22 ,34], but the
discussion here clarifies why they work, and examples allow quantitative performance
comparisons of different controllers for the same system. The best of the controllers is
selected as a performance baseline for evaluating the improvements described in the next
chapter.
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3.1 Force Control Objectives

Chapter 2 described the interfering effects of various physical phenomena on the

behavior of force-controlled manipulators. This section looks at the problem from the

user's point of view to determine what performance features are most important. Taking

into account these goals and the nature of the disturbances, performance criteria are picked

to guide improvements and enable comparisons with other work.

3.1.1 Desired Closed-Loop Dynamics

To date, there are no commercially-available manipulators using active endpoint

force control, yet a great deal of research has been done on this topic in the last decade.

High hopes are held out for a wide range of assembly tasks [4,21,25,26 ,28 ,36 ,40 ,551 currently

beyond the capabilities of position-controlled manipulators.

"Force control" itself means many things to many people. Once a manipulator can

react to measured forces, the question becomes how should it react. The range of

behaviors that ultimately may be desired of manipulators is unknown, but the alternatives

proliosed so far in the literature are fairly simple and some have been shown to facilitate

experimental tasks. The hybrid control of Raibert and Craig [40], Salisbury's stiffness

control [42] , damping (also called accomodation) control [13 ,52] , Hogan's impedance

control [21,27], and various types of explicit force control are among them. Many of these

are reviewed by Whitney [54]. In general, the desired behavior in these schemes is to exert a

commanded force (force error is corrected immediately), or simulate a specified damper

(force error produces velocity response) or damped spring (force error produces position

displacement).

In explicit force control, only the force trajectory is commanded. In stiffness (or

damping) control a reference position trajectory is given, along with the commanded spring

(damping) constant. "Impedance" control requires the manipulator endpoint to follow

second-order dynamics about the reference trajectory, with a commanded mass as well as
stiffness and damping. These distinctions blur a bit in practice; all controllers have limited
bandwidth and ultimately behave like inertial objects, so can be considered special cases of
impedance control whether the target mass is implicit or explicit.

For the purposes of this thesis, the pragmatic view is taken that the user will want
as much bandwidth as he/she can get. In other words, the user would not command a
higher target mass than required for stability and acceptable tracking. The bandwidth then
will be implicit, and the user will command only stiffness and damping about a reference
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position trajectory. It is still sometimes useful to break this down into two classes of

controller: those which are primarily springs (with some damping), and those which are

primarily dampers (possibly with some "spring" to give self-centering and prevent

divergence).

3.1.2 Performance Criteria

The following are the author's attempt to make precise and measurable those

qualities of performance which are i) of value to the user, and ii) difficult to achieve with

current manipulators. Many researchers have formulated similar lists which overlap this

one to some degree [48,51].

Stability Range

Stability, in some sense, is required for every operating condition encountered as

the manipulator performs its tasks. The strictest control theory definition--uniformly,

asymptotically, stable in the large (UASIL) is not necessary; bounded instabilities such as

limit cycles are acceptable if of small enough amplitude.

Divergent instability is often observed to limit the range of a performance-related
figure of merit, such as kE/kT, the ratio of environmental stiffness to commanded

manipulator stiffness, in the case of a spring-like controller contacting a spring-like

environment [54] . The particular figure of merit depends on the task at hand and the
structure of the controller used. For stiffness controllers, the range of stiffness kT and

damping dT achievable with a given environment is a good measure, and range of stability

offers a way to compare the performance of different controller implementations.

Control Bandwidth

Control bandwidth is defined here as the maximum frequency at which the

manipulator system can track the desired dynamics. Note that the desired dynamics may

include a very soft spring and thus exhibit low-bandwidth response to external forces, and

yet the control bandwidth could remain high. This is simply a case of a high-bandwidth

controller tracking a trajectory which lacks high-frequency content. The full bandwidth

may not be needed for command following, but is available for disturbance rejection.

In manly situations bandwidth is directly related to productivity, hence economic

viability. Regardless of the desired dynamics, higher control bandwidth improves

performance. Bandwidth must be evaluated in conjunction with stability range, since there

is usually a tradeoff between the two.
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Smoothness

The motion of early force-controlled manipulators has been described as "hesitant,"

and "jerking"[34]. This can be traced to the influence of disturbances like friction and

backlash. Both give rise to limit cycles, and friction causes stick-slip behavior during

motion.

Since small position errors can generate large contact force errors, force tracking

may be poor. Even when maximum tracking errors are small, these disturbances can add

unwanted higher harmonics to the trajectory. This in turn can excite undesirable dynamics

in the payload or environment. In a task such as grinding, trajectory smoothness is

reflected in the quality of the surface produced. For the assembly of delicate parts,
smoothness may mean the difference between success and failure.

A logical way to evaluate smoothness is to examine the transfer function from

disturbance forces at the actuator to contact forces at the manipulator endpoint. Desirable

features would be low gain amplitude within the controller's bandwidth and rapid gain

rolloff with frequency. Simulation must be used to check performance with specific

nonlinear types of disturbance, e.g. stiction.

Disturbances such as actuator limit cycles are better seen as position disturbances

than as force disturbances. It is important in these cases to look at the transfer function

from actuator position to endpoint force.

A closely related parameter is the available force dynamic range, defined as the ratio

between the maximum usable force a manipulator can apply at its tip and the minimum

increment of force it can reliably apply. This is a useful dimensionless measure of the

versatility of a manipulator, indicating the range of tasks it can perform[51] . A high ratio of

these forces implies a good combination of strength and delicacy.

The maximum usable force is determined by actuator capacity multiplied by

transmission ratio and link geometry factors, minus the peak value of disturbance forces

which must be countered. The minimum force unit can depend on a variety of factors:

force sensor resolution, actuator force resolution, limit cycle magnitude, etc. In a
manipulator with force feedback, it can be evaluated using the disturbance transfer
functions and estimates of the disturbance magnitudes.
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Contact Behavior

A recognized difficulty in manipulation is the "contact" problem [28 ,39]. When a
manipulator contacts the environment, its dynamics change from an open kinematic chain to
a closed one. Ideally, one moment there is relative velocity and the next there is none. The
design problem is to ensure that the kinetic energy is dissipated without damage and to
provide a rapid, smooth transition to constrained motion. Since with a rigid payload and
environment the initial collision may take only microseconds, the amount and distribution
of passive (mechanical) compliance and inertia in the manipulator play an important role
before the controller can react.

Relevant measures of contact performance are peak impact force and the time from
initial contact to continuous contact, both of which should be minimized.
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3.2 A Brief Review of Control Theory

Since stability is critical to performance, some concepts from control theory will be

used frequently in the analysis and are reviewed here. Currently available microprocessor

speeds are high and likely to increase further, so the analysis is performed in continuous

time rather than discrete time. This implies that sampling rates can be set fast enough not to

be the factor limiting performance. Continuous-time analysis is clearer and more

straightforward since the equations representing physical systems are derived as

differential, rather than difference, equations.

3.2.1 Stability Analysis

In classical linear control theory, dynamics are often described in terms of transfer

functions. Following [38], the transfer function of a linear time-invariant system is defined
to be the ratio of the Laplace transform of the output to the Laplace transform of the input,

under the assumption that all initial conditions are zero. A transfer function is an accurate

representation of a system if and only if the system is controllable and observable [43]. A
sinusoidal transfer function is a transfer function with s, the Laplace variable, replaced by
io, where o is a (real) frequency in radians/second, and i -= - .PT

In a system with feedback, stability depends on the locations of the poles of the
closed-loop transfer function. For stability, they must all have negative real parts. There
are many ways of checking this, given a system model: Nyquist diagrams, Routh test for
polynomials, iterative root-solvers, etc. For several reasons, the method used here is to
look at the Bode plot of the open-loop transfer function.

Assume a system is described by the following block diagram:

Figure 3.1: Feedback Block Diagram
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The closed-loop transfer function is:

X(s) G(s)
Xres)- 1+ G(s)H(s) (3.2.1)

The Nyquist stability criterion states[38]: If the open-loop transfer function
G(s)H(s) has k poles in the right-half s plane, then for stability the G(s)H(s) locus, as s
traces out the modified Nyquist path in the clockwise direction, must encircle the -1 + Oi

point k times in the counterclockwise direction. The modified Nyquist path is simply a

contour in the s-plane which encloses the right half-plane without passing through any

poles or zeroes of the function G(s)H(s). For systems with minimum phase open-loop

transfer functions (no poles or zeroes in right half plane) k = 0; no encirclements are
allowed.

A Bode diagram consists of two graphs: one is a plot of the logarithm of the
magnitude (in db) of a sinusoidal transfer function; the other is a plot of the phase angle;
both are plotted against the frequency to in logarithmic scale. The Bode diagram of a

system's open-loop transfer function shows the behavior on the portion of the Nyquist path

that traces the imaginary axis. For a minimum-phase system, the stability criterion requires

that the phase at the gain crossover frequency (the frequency at which gain = unity) be

greater than -180'.

Phase margin is defined as the amount of additional phase lag at the gain crossover

frequency required to bring the system to the verge of instability. Gain margin is the
reciprocal of the magnitude of G(s)H(s) at the frequency where the phase angle is -180 °.
Both can be easily read from the Bode diagram.

Bode diagrams of the open-loop transfer function offer several advantages over

other methods of stability assessment. They give an indication of relative stability through

gain and phase margins. The frequency-response approach itself often provides physical

insight. When transfer functions are multiplied, their Bode plots simply add; this allows

the effect on stability of particular physical phenomena to be identified. Since modeling
accuracy is usually good at low frequencies and poor at high frequencies, the sensitivity of
a system's stability to modeling error can be estimated. There is also the practical
advantage that Bode plots can be obtained experimentally for an unmodeled system.
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3.2.2 Second-Order Systems

A common factor in transfer functions is second-order in s: (As 2 + Bs + C). A

few comments reviewing the behavior of such a factor are in order. In physical terms, the

coefficient A is analogous to mass, B to damping, and C to spring stiffness. Substituting
io for s, it can be seen that the real part goes to zero at the "natural frequency":

Wn = (3.2.2)

in radians/second. The magnitude of the function at this resonant frequency is determined

solely by the imaginary part, and is Bwn = B \h . Note that this magnitude is proportional

to the damping coefficient B. The dimensionless "damping ratio" is defined as:

B
2 AC (3.2.3)

A system is called "underdamped" if 0 < C < 1, "overdamped" if ý > 1, and

"critically damped" if ý = 1.

When an underdamped second-order factor appears in the denominator of a transfer

function, the result is a resonance peak in magnitude. The peak occurs at the "damped

natural frequency" dn = •o 1 -(2, and its magnitude is equal to 1 .An
C 4- 3C2

underdamped system exhibits oscillatory behavior in the time domain.

In this thesis, simple PD control loops are often discussed. These controllers have

a proportional gain C and a derivative gain B. When used to control the position of an

inertia A, the closed-loop dynamics are second-order, as above. If the inertia is known,

specifying the natural frequency and damping ratio is equivalent to specifying the gains,
and vice-versa. Equations (3.2.2) and (3.2.3) can be used to compute these quantities
from the gains and the following gives the inverse relationship:

C = A on2

B =2 A n  (3.2.4)

Since natural frequencies and damping ratios are often more intuitively meaningful
than gains, this method of description will be used frequently. For inner position loops the
implied inertia A will be the actuator inertia mA, and for outer position loops the implied
inertia will be the link inertia mL. The natural frequency of a control loop will also be
referred to as its bandwidth.
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3.3 The Forward Force Transfer Function

Since the purpose of this chapter is to investigate controller designs, a particular
way of dividing up the system is chosen which isolates controller dynamics in the feedback
transfer function H(s), and makes the forward transfer function G(s) dependent only on the
mechanism and environment dynamics, which remain fixed. The forward function G(s)
reveals features of the plant which must be dealt with by any controller, and the properties
of the controllers themselves can be compared through their return (feedback) functions
H(s).

3.3.1 Definition

The system model described in Section 2.6 can be depicted by the following block
diagram:

Figure 3.2: Block Diagram of Mechanism + Environment

A controller closes the loop. A general form for controllers is assumed to be:

u = A(s) F + B(s) x + C(s) y + R(s) r (3.3.1)

where r is a command input--a reference force or position.
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The controller block diagram is then:

Figure 3.3: General Controller Block Diagram

Through block diagram reduction techniques[ 38], these transfer functions can be

combined into a system with a block diagram of the form of Figure 3.1. Bode plot stability

analysis can then be carried out on the reduced system.

For the forward transfer function, consider the loop to be broken between the
F(s)controller and the actuator, and the output to be the force F; choose G(s) -u(s) . This is

dimensionless and easy to interpret physically, as the transmission function from actuator

force to measured force at the wrist, when the manipulator is in contact with the
environment. From this alone it can be guessed that G(s) -- 1 at low frequencies, and any

drive compliance will cause the magnitude to rolloff and the phase to lag at high
frequencies. Since G(s) is a force-to-force transfer function, it will be referred to as the
Forward Force Transfer Function, or FFTF.

u(s)The complementary function for the return loop is then defined as H(s) - -(s)

which includes the controller dynamics. This will be referred to as the Return Force
Transfer Function, or RFTF. The open-loop transfer function is the product G(s)H(s).

The closed-loop transfer function from command to measured force is:

F(s) R(s)G(s)
r(s) - 1 + G(s)H(s)

The controller 
block diagram is then:
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The closed-loop transfer function from command input to joint position is:

x(s) R(s)G(s)
r(s) - E(s)[1 + G(s)H(s)]

where E(s) - mps2 + dEs + kE , the environment and payload dynamics. Actuator-axis

disturbance rejection can be evaluated by looking at the closed-loop disturbance transfer
function:

F(s) G(s)
D(s) - 1 + G(s)H(s) (3.3.4)

3.3.2 FFTF Evaluation for this Manipulator Model

Before deriving the FFTF, some underlying assumptions will be stated. First, it is

assumed for this linear analysis that the manipulator is in continuous contact with the

environment. Discontinuous contact will be treated by simulation in Chapters 4 and 5.

Second, it is assumed for the initial survey of control algorithms that there is no modeling

error--that a controller which uses a physical parameter of the manipulator is provided with

an accurate value. Note that this does not extend to the environment; no knowledge of

environmental properties is incorporated into any controller studied here. One consequence
of the accurate-model assumption is that the effects of viscous friction (the dAS block in

Figure 3.2) can be eliminated completely with actuator velocity feedback. The inclusion of

this block and its corresponding compensation becomes an unnecessary complication, and

they are deleted from this part of the analysis.

Note also that only linear effects are included, so dry friction is not explicitly

modeled here. The magnitude of its effect can be deduced from the disturbance rejection

transfer functions; a more detailed study is performed with the simulations of Chapters 4
and 5.

Under these assumptions, equations (2.6.1) and some algebra give the following
FFTF:

G(s) = (3.3.5)

(mps 2 + dEs + kE)(dDS + kD)
(mps 2 + dES + kE)(mAs 2 + dDs + kD) + s2[mLmAs 2 + (mL + mA)(dDS + kD)1
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For comparison, the FFTF for a manipulator with a rigid drive would be:

G(s) = mps 2 + dES + kE

(mp + mL + mA) s
2 + dEs + kE

(3.3.6)

To illustrate these functions, an example is used. The numerical parameters are

chosen to reflect a relatively small manipulator with a high gear ratio (hence compliant

drive) in contact with a stiff environment, carrying little or no payload. This forms a good

basis for comparison because many researchers have found that stability with a rigid

springlike environment is more difficult to achieve than with a primarily inertial

environment [2 ,5 ,34 ,54]. These values (tabulated below) will be used for a number of

comparisons. Also included in the table are the frequencies of several resonances which

occur in the FFTF; these are discussed below.

Parameter Value

mA 1 kg

mL 1 kg

mp .01 kg
dD 5 Ns/m
dE 2 Ns/m
kD 1000 N/m
kE 20000 N/m

PLAkE 16 Hz03PLA mp + mL + mA

pop 225 Hz

WD- f 5 Hz
IA1A

LOE IE 22.4 HzyO mL + mp

Table 3.1: Control Analysis Parameters

Figures 3.4 and 3.5 compare the FFTF for the above example to that of the rigid-
drive case.
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Note that in both cases, G(s) -4 1 as s -- 0, as expected. In the rigid-drive case,

kEthere is a lightly damped magnitude peak at OPLA mp + mL + mA = 16 Hz,

accompanied by a 180' phase lag, and then a -40 db/decade rolloff until a magnitude dip

and 180' phase lead at op = ,k = 225 Hz.
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This behavior can be explained physically as follows. Since the drive is rigid, the
manipulator is essentially a single mass (mp + mL + mA) connected to a spring kE. The

expected resonance in position response X to input force U therefore occurs at the natural
frequency opLA. The FFTF, however, is the transfer function from input force U to

measured force F, not to position X. The force F is related to position X through another
mass-spring system, with mass mp and spring kE. This is an inverse resonance, because
the input is position and the output is force. It occurs at frequency (op and appears as a

trough (rather than peak) in the magnitude response, and lead (rather than lag) in the phase

response. The total FFTF is then the product of the U-to-X transfer function and the
X-to-F transfer function, with one resonance at opLa and an inverse resonance at cOp.

The response in the compliant-drive case can be understood by simplifying the
FFTF in eqn. (3.3.5) with the assumption dD = dE = 0, approached in many situations of

interest:

G(s) kD(mps 2 + kE)(3.3.7)
mA(mL + mp)s 4 + [(mA + mL + mp)kD + mAkE]s 2 + kEkD

Definingi D A d w mp , and substituting iofors:
AL-- m + mpL

(WEF2 O)D 2 Op2 _ (02
G(c) =4 E2 + A-ML ++-))2 (3.3.8)

2p 4CO([ -E2 A+ L + mp 2 + JE D

In the case of an impedance-matched transmission (mA = mL) and small payload
mp, this becomes:

G(co) = - ( 2  C (3.3.9)G() P2 )04 (- OE2 + 2 D2)c02 + COE D2_

From the denominator of this equation one would expect to see two resonances,

each with 180' of phase lag, at frequencies 02 = D2 + E2 4D4+ E4). If

wE > oD these peaks occur at approximately oD and oE. These peaks are indeed seen in
Figures 3.4 and 3.5 at COD - 5 Hz and wE = 22.4 Hz. The resonance trough observed at
Op is also expected from the factor in the numerator, as in the rigid-drive case. Some
additional behavior seen in the figures results from dynamics neglected in eqn. (3.3.7) and
consists of a gradual 90' phase lead due to nonzero dD, with a center frequency of o -kD

dD
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= 32 Hz, and the corresponding magnitude slope behavior expected from a minimum-phase

system.
Physically, when the drive spring kD is much softer than the environment spring

kE, the joint motion in response to an actuator force is much smaller than actuator motion.
Therefore the actuator behaves like a single mass-spring system with mass mA and spring
kD. In the transfer function from actuator force U to actuator position Y there is a
resonance at o)D .

Actuator position essentially gives the force on the joint (again, since joint motion is
small compared to actuator motion), and the joint behaves approximately like a mass-spring
system with mass (mL + mp) and spring kE, so the transfer function from actuator position
Y to joint position X has a resonance at wE. Combining these with the same inverse
resonance at Op that occurs in the transfer function from X to F in the rigid-drive case gives

a picture of the overall compliant-drive FFTF.

3.3.3 Consequences for Stability

The FFTF is one component of the system's open-loop transfer function. The
phase shift and gain of the FFTF is added to that of the RFTF to give the whole transfer
function and determine stability. The concepts of gain and phase margin can be applied to
the FFTF alone to give an indication of how difficult it will be to stabilize the system with a
controller, and to discover the frequencies at which the stability margin is slimmest.

The effects of drive compliance can be seen as follows. In the rigid-drive case the
phase lag never exceeds -180', so the system would theoretically be stable with a simple
proportional controller with constant gain of any magnitude. If the controller itself
contributes phase lag, the frequency region around WopL A is crucial, since the FFTF phase

shift is near -180" and FFTF gain is around 40 db there due to the environmental
resonance. The controller's RFTF would thus need to have virtually no phase lag at that
frequency or at least 40 db of attenuation.

When drive compliance is present, the environmental peak is split into two: an
actuator-drive resonance at ooD and a link-environment resonance at oE. In the vicinity of

the actuator-drive peak, the FFTF phase margin reaches a low of about 25', constraining
the phase lag (or gain) of a controller at that frequency. The most crucial frequency region
is near the link-environment peak at c E. This is where FFTF phase lag exceeds -180' and

the gain is near 0 db.

The gain margin of the FFTF (in this case 0.33 db) limits controller gains. A
controller simply feeding back the measured force F multiplied by a constant gain C
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(i.e. U = -CF; the RFTF is H(s) = C) would theoretically be stable for gains less than

0.33 db (C < 1.04). In practice, a common rule-of-thumb [381 for controller design is to

aim for a gain margin of 6 db or more (requiring C < 0.52), giving some stability

robustness to cope with modeling errors.

In the more complicated controllers discussed in the next section, RFTF gain varies
with frequency. Since the FFTF resonance peak at WE sets the stability limit for constant-

gain controllers, it might be expected that the RFTF gain and phase behavior of other

controllers specifically around this frequency would determine their stability as well. In

fact, this turns out to be true for many of the controllers studied here, simplifying the

stability analysis. It is relatively easy to determine the effects of parameter changes on
stability when the important behavior is confined to a narrow frequency region around CoE.

From the FFTF plot in Figure 3.4, it might appear that a stiffer environment would
cause the oE peak to occur at a higher frequency, and the rolloff from the first peak (at toD)

would reduce its magnitude to a less troublesome level, allowing a controller with higher

gain to be stable. To investigate this Figure 3.6 was made assuming an environment ten

times stiffer:
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Figure 3.6: FFTF Magnitude; Stiff Environment

As the figure illustrates, the link-environment frequency wE increased as expected

but the magnitude of the peak gain was unchanged. The gain margin of the FFTF is not
improved by increasing environmental stiffness.

0.10.1 1
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3.4 Force Controller Designs

This section compares several different controller designs for a given manipulator
and environment to reveal their limitations, understand the tradeoffs involved, and set a
performance baseline to judge improvements. No attempt is made to analyze every
variation of controller design that has been proposed in the literature. The strategy is rather
to proceed along a logical path from the simplest designs to ones representing the state-of-
the-art. The path chosen is stiffness control, an approach with generality and an extensive
literature background. This choice also reflects the philosophy of the author, who prefers
to think of force control in terms of perturbations to a position trajectory.

This analysis is linear and assumes continuous environmental contact. Performance
criteria are addressed as follows: stability is assessed through the constraints it imposes on
gains and commanded behavior; usable bandwidth is defined, using the closed-loop
transfer function, as the frequency region over which the manipulator behavior
approximates the form of the commanded behavior; smoothness is compared using the
closed-loop transfer function from actuator-axis disturbance to measured interaction force.

One guideline that will be used is related to robustness. In practice, the simple
model used would be accurate only up to some frequency, optimistically in the 100 Hz
region. Unmodeled effects such as actuator inductance, force sensor dynamics, etc. will
add extra phase lag and attenuation above this frequency. If implemented digitally, the

controller itself will have a time delay equal to one sampling period at best, giving phase lag
proportional to frequency. So, although the FFTF shown in Figures 3.4 and 3.5 rises
above -180' phase at cop this may not occur in the real system, and it would be unwise to

base a controller on this assumption. In selecting controller gains, a safe method is to
restrict the region with open-loop gain > 1 to frequencies at which the model is considered
accurate, in this case 100 Hz. This rule eliminates some theoretically stable controllers
which would fail in practice.
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3.4.1 The Return Force Transfer Function

The RFTF is defined as H(s) = (s), with u(s) given by eqn. (3.3.1). For the

compliant-drive manipulator model, some algebra along with equations (2.6.1) gives:

H(s) = (3.4.1)

A (s) + 1 () + (mp + mL)s 2 + (dE + dD)s + kE + kD C(s)

[A(s) mps 2 + dEs + kE  (mps 2 + dEs + kE)(dDs + kD) 1
The control law is represented by the transfer functions A(s), B(s), and C(s).

These, as shown in Figure 3.3 and eqn. (3.3.1), are the gains and compensations which

the controller applies to the measured force F, joint position X, and actuator position Y,

respectively. The factors which multiply them above are the transfer functions from force

F to the appropriate sensor measurements.

These factors depend on the drive and environment parameters, and represent the
"effectiveness" on the RFTF of the control from each type of sensor. For instance, it is

evident that the effect of control based on joint position is attenuated at high frequencies,
since the coefficient of B(s) goes to zero as Isl increases.

In each of the following sections, controller analysis begins with specifying the

control law and evaluating the corresponding RFTF (eqn. 3.4.1). Comparison with the

compliant-drive FFTF described in Section 3.3.2 reveals stability limits and suggests

tuning rules for the gains. Choosing a stable set of gains, the performance of the controller

is then investigated with the closed-loop input-output and disturbance transfer functions.

3.4.2 Explicit Force Control

One of the simplest forms of force control is explicit force control [54]. The control
law used as an example here is slightly more complicated than constant-gain proportional

force feedback, but still straightforward:

u = F + [gp + (Fref- F) (3.4.2)

In this implementation, the controller accepts force commands Fref, and the actuator

input consists of a force feedforward term (to cancel the measured force) and a
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compensator applied to the force error to provide the desired motion response. A simple PI
compensator is assumed. The effect of the gp term is to give acceleration proportional to
force error, and the gl term gives acceleration proportional to integrated force error.

Integral terms such as the latter are frequently used to reduce steady-state error.
The intention of an explicit force controller is not to provide a given stiffness or

damping; the gains are selected to give fast stable response to force commands. The
x(s)

steady-state admittance (-F as s - 0) of the closed-loop system should be infinite.

Controllers of this simple type are commonly used in the literature to demonstrate
theoretical points, and in some laboratory experiments[40 ,41]. Hence, this is a good starting
point for force controller analysis.

A block diagram for this controller is:

Figure 3.7: Explicit Force Controller;, Block Diagram

Referring to eqn. (3.3.1) gives the following transfer functions:

A(s) = 1-[gp + g]

B(s)= C(s) = 0 (3.4.3)

R(s) = gp +

Eqn. (3.4.1) then gives the RFTF for this controller:

H(s) = (gP - )s + g1  (3.4.4)
5
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The following figures show the Bode plot for this RFTF:
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The resulting open-loop transfer function (product of the FFTF and RFTF) is
shown in the following figures:
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ways: use high enough gains that the gain crossover occurs above the payload frequency

wp, or use low enough gains that it occurs below the environment frequency wE.

The first approach leads to very high gains; gp = 200,000. The magnitude of the

open-loop transfer function is then greater than 0 db at frequencies above 200 Hz, violating

the robustness constraint adopted at the beginning of this section. For this reason, the

high-gain approach is rejected.

To set the gain crossover frequency below the region of excessive phase lag, note

the effects of the two gains on the RFTF. The proportional gain gp gives a constant

magnitude ( = gp - 1), with no phase shift. The integral gain g, contributes magnitude and

90' phase lag at frequencies below o = L-. To maximize gains while retaining stability:

* Set gp so that the ultimate gain (gp - 1) of the RFTF does not

exceed the gain margin of the FFTF, which occurs at oE and is

about 0.33 db in this case. This sets the peak at WE in Figure

3.10 just below the unity-gain line.

* Set g, so that phase lag of the RFTF above coD is less than the

FFTF phase margin there, which is about 25" in this case.

These tuning rules give gp = 2.0 and g, = 18 in our example. For these maximum

gains, the gain crossover frequency WGC is slightly higher than coD (7 Hz and 5 Hz,

respectively, in this example). If desired, phase margin could be considerably increased by
keeping oGC below to. The RFTF of Figures 3.8 and 3.9, and the open-loop transfer

function of Figures 3.10 and 3.11 were plotted using the maximum gains and represent

performance just short of instability.

Note that in the rigid-drive case, the proportional gain would be constrained only by

the robustness requirement of open-loop attenuation at 100 Hz. The integral gain is then

set by the requirement to add very little phase lag at 100 Hz. This would allow the much
higher gains of gp = 40 and gI = 1000.

The controller bandwidth attainable is shown by plotting the magnitude of the
closed-loop transfer function from commanded force to measured force in Figure 3.12,
using eqn. (3.3.2).
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Figure 3.12: Explicit Force Control; Closed-Loop Bandwidth

It can be seen that the usable command-following bandwidth is restricted to 3 or 4
Hz (below coD) in this case, to avoid exciting a lightly-damped resonance in the closed-loop

system at about 7 Hz (the gain crossover frequency).

This resonance peak is a consequence of the fact that these gains are close to the

limit of stability. Phase margin is very small, so phase shift at the gain crossover

frequency is near -180'. By definition, gain at the gain crossover frequency is unity, so the

open-loop transfer function G(s)H(s) = -1 there. The denominator of the closed-loop
transfer function plotted above is 1 + G(s)H(s). This therefore approaches 0 at #OGC,

giving rise to the sharp peak in response.

If gains are lowered this peak diminishes, but the closed-loop bandwidth rolls off at

a lower frequency; no improvement in usable bandwidth is realized.
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Disturbance rejection is shown by the magnitude of the disturbance transfer

function, from eqn. (3.3.4):
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Figure 3.13: Explicit Force Control; Force Disturbance Rejection

This is the magnitude of the transfer function from actuator-axis disturbance forces
to output force, and should be minimized.

The resonance peak at (oGC appears again here, since all of the closed-loop transfer

functions share the relevant factor in the denominator. In this case, it actually causes

actuator-axis disturbances at that frequency to be amplified in the output (gain > 0 db). As
the next plot shows, however, commands at that frequency are amplified as well, so are not
dominated by disturbances. Still, in practice it is preferable to lower the gains until this
amplification of disturbances does not occur, sacrificing some disturbance rejection at
lower frequencies. Overall, the disturbance rejection with this controller is minimal.

The command input, disturbance, and output are all forces, so the previous two
figures can be combined to give a "signal-to-noise ratio" plot. This gives Figure 3.14,
which shows the differential amplification of commands over disturbances as a function of
frequency. In this plot high values are desirable, indicating that the output is influenced
more by the command than the disturbance.

,,
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Figure 3.14: Explicit Force Control; S/N Ratio

This figure shows that disturbance rejection improves below 3 or 4 Hz (due to the
action of the integral gain), but is not good until the frequency is quite low. If significant

friction were present, requiring at least 90 % (20 db) rejection, bandwidth would have to be
restricted to 0.3 Hz.

In summary, drive compliance considerably reduces the allowable gains in explicit
force control. Bandwidth is limited to below coD , the drive resonance frequency.

Disturbance rejection is poor.
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3.4.3 Stiffness Control

An alternative form of force control is called stiffness (which here includes

damping) control. This approach recognizes that it is more natural for many tasks to

specify a position trajectory rather than a force trajectory. Interaction forces are limited to

desired levels by specifying a stiffness around the reference trajectory. Multi-DOF

implementations usually allow different stiffnesses in orthogonal directions. An extreme

example is the hybrid control of Raibert and Craig [40], which uses (stiff) position control in
some directions and force control in others.

One practical reason for using stiffness control rather than explicit force control is

the ease of including an inner position-based control loop (to improve disturbance

rejection), since interaction forces are already interpreted in terms of their effects on the

desired position trajectory.

The user of a stiffness-controlled manipulator needs to have a feeling for what

represents a good range of stiffness values for performing tasks. In an attempt to give
intuition on the meaning of various stiffness numbers, Table 3.2 presents the values for the
bending stiffness of "fingers" composed of some common materials.

The finger in each case is 8 cm long, 1 cm tall, and 0.5 cm thick. If it is clamped at

the base and a force applied (in the thickness direction) at the tip, the finger will deflect.

The stiffnesses tabulated here are valid for small deflections. For comparison purposes,
the approximate value for a human finger is included.

Table 3.2: Sample Stiffness Table

Material Stiffness

Steel 120000 N/m

Aluminum 42000 N/m

Wood (American Elm) 5600 N/m

Soft Plastic (Nylon 11) 760 N/m

Human Finger 400 N/m



70

The simplest implementation of stiffness control (with no inner loop) is described
first. The control law is:

u = F + (mL + mA) s2[xref - dTS + kT (3.4.5)

The actuator input consists of a force feedforward term and a term to accelerate the
link to follow the desired trajectory, which is the reference modified by the measured
interaction forces. No position feedback is used in this implementation (it is added in the
next controller considered), so the position trajectory tracking is open-loop. The
commanded stiffness and damping are kT and dT, respectively. Low values of these

parameters are desirable, as the goal of force control is to make the manipulator more
sensitive to contact forces. A block diagram for this controller is:

Figure 3.15: Stiffness Controller; Block Diagram

Referring to eqn. (3.3.1) gives the following transfer functions:

(mL + mA)s2
A(s)= 1 ddTS + kT

B(s) = C(s) = 0

R(s) = (mL + mA)s 2

Eqn. (3.4.1) then gives the RFTF for this controller:

H(s) = (mL + mA)s2 - d Ts - kT
dTS + kT

(3.4.6)

(3.4.7)
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Figures 3.16 and 3.17 show the Bode plot for this RFTF:
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The resulting open-loop transfer function (product of the FFTF and RFTF) is

shown in the following figures:
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kT. T2dT otherwise. The RFTF phase lead at wE increases with . If kT(m L + mA) < d the

desired behavior is "damperlike," and the magnitude of the RFTF at WE is inversely
proportional to dT. The RFTF phase lead increases with dT.

This enforces a tradeoff between kT and dT. For damperlike behavior, a low dT
requires a high kT and vice-versa. In the present case, dT > 140 Ns/m allows arbitrarily
low kT, and kT > 5000 N/m allows arbitrarily low dT. The RFTF plotted above used
intermediate values of dT = 120 Ns/m and kT = 3000 N/m. For very springlike behavior,

stability can obtain despite low values of kT and dT, but only if the ratio k  is undesirablydT
large. Figure 3.20 illustrates this tradeoff:

- Stability Boundary - - Line of Constant Damping Ratio

0 20 40 60 80 100 120

Target Damping (Ns/m)

Figure 3.20: Stiffness Controller; Stability Tradeoff

140 160

The dotted line in the figure shows combinations of kT and dT which give a
constant damping ratio, in this case selected to give critical damping to a payload of 1 kg.
It is included as a reminder that the desired behavior may be a pure damper, but not an
underdamped spring (oscillation is to be avoided). Hence the range of useful commanded
behavior for this controller is the shaded region, described as stable and overdamped.
Points near the upper edge of this region give springlike behavior, and points near the
bottom give damperlike behavior.
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Note that a more compliant environment would improve stability by decreasing coE,

which places it in a region of greater RFTF phase lead and decreased RFTF gain. This

effect is illustrated in Figure 3.21, which shows the minimum target damping dT which can

be stably achieved as a function of environmental stiffness kE (assuming kT = 0):
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Figure 3.21: Stiffness Controller, Target Damping Tradeoff

To show closed-loop performance of the stiffness controller, the closed-loop
x(s)

admittance I(s) is plotted in Figure 3.22. This is defined as - (s) with the environmentF(s)

removed from the loop, and represents the position response to an applied tip-force:

I(s) -- F(s) (3.4.8)
mAs 2 + dD(s)- (d + kD)A(s)

mAs 2 + dD5 + kD - C(s) - (dDS + kD)A(s)

(mLs 2 + dDS + kD)[mAs 2 + dDS + kD - C(s)] - (dDS + kD)[B(s) + dDS + kD]

I • I I •
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Figure 3.22: Stiffness Controller; Closed-Loop Admittance

1The target admittance dTs + kT is plotted also for reference. Two things are clear

from this figure: usable command bandwidth is again limited to about 4 Hz, below the
drive resonance wD, and there is an error in the closed-loop stiffness at low frequencies.

This is due to the (unmodeled) drive compliance, in series with the active compliance. In
this case the target steady-state stiffness kT = 3000 N/m (corresponding to -69.5 db on the

chart), yet the achieved steady-state value is around 1200 N/m (-62 db).
The magnitude of the disturbance transfer function is shown in Figure 3.23. It can

be seen that the control law amplifies low-frequency actuator disturbances. The reason is
that the force-feedback term in the control law is essentially a high-pass filter, and at low
frequencies its effect is dominated by the force feedforward term. The feedforward term
could be deleted, giving a unity-gain disturbance transfer function at low frequencies, but
the closed-loop admittance would then fail to approximate the target admittance at low
frequencies.
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Figure 3.23: Stiffness Controller; Force Disturbance Rejection

In summary, the simple stiffness controller is also limited in bandwidth to below

the drive resonance frequency o D . Accuracy of closed-loop admittance suffers when

commanded to exceed drive stiffness, although "damperlike" behavior can be accurately
produced. The stability limits enforce a tradeoff between dT and kT, restricting

commanded behavior to be rather unyielding either as a damper or a spring. Environmental

properties affect stability, requiring stiffer commanded dynamics with a stiffer

environment. Disturbance rejection is practically nonexistent.

These factors combine to defeat the utility of the force feedback loop. It is required

to be stiff for stability, yet in that case drive compliance dominates the "active" compliance.

With no position feedback, position tracking and disturbance rejection is poor.

Performance is basically that of an open-loop position controller, with whatever passive

compliance is provided by the transmission.

76
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3.4.4 Stiffness Control with Inner Loop

The limitations of a simple stiffness controller quickly became apparent to

researchers trying to implement force control, sparking much of the recent research on

dynamic modeling and design improvements [34_54]. The first major improvement, adopted

widely [34,47 ,51], is to add a position- (or velocity-) based inner control loop. The idea is

that a high-gain colocated-sensor inner loop will improve disturbance rejection, while

hopefully not degrading stability (since it does not enclose the unmodeled drive compliance

or environment, etc.). There is the added advantage that many commercially available

manipulators already have such loops at each joint, and can be converted to force

controllers relatively easily.
The control law is:

u = F + (gDs + gp) [xref- d + k - y (3.4.9)

Actuator input consists of the usual force feedforward term and a term to drive y

(the actuator position) to match the desired trajectory, which is again the reference modified
by measured interaction forces. The parameters gD and gp are derivative and proportional

gains of the position-based inner loop, respectively. Other types of inner-loop

compensation are used, often with an integrator to eliminate static disturbances, but for this

analysis a PD compensator was considered sufficiently general. Acceleration feedforward

in the form of the second term of eqn. (3.4.5) is not included because it requires additional

differentiation of the force measurement, adding noise and unwanted dynamics. Reliance

is made instead on inner-loop feedback to track the position trajectory.
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A block diagram for this controller is:

Figure 3.24: Stiffness Controller w/Inner Loop; Block Diagram

Referring to eqn. (3.3.1) gives the following transfer functions:

A(s)= 1- Ds + gp
A = dTS + kT)

B(s) = 0

C(s) = - (gDs + gp)

R(s) = gDs + gp

Eqn. (3.4.1) then gives the RFTF for this controller:

H(s) = gDs + gp,(mp + mL)S2 + (dE + dD)s + kE + kD
) dDs + kD)[ mps 2 + dEs + kE

dos + kD
dTS + kT]

(3.4.11)

(3.4.10)
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The following figures show the Bode plot for this RFTF:
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Figure 3.26: Stiffness Controller w/Inner Loop; RFTF Phase

To plot the RFTF shown above, the same target values were used as for the
previous controller: kT = 3000 N/m and dT = 120 Ns/m. The inner-loop damping ratio
was set at Ci = .707 and the inner-loop bandwidth was increased to a point near the stability
limit, giving coI = 22 Hz.

10 100 1000 10000

------- -- ---- -_ -
--- ---- ----I--- --

------ --- -- - - -----
------ ---- ---- --- --

------

------ 

-- 
I ------- --i -fn iiil illii i ii

I J'1IP Illt 3 ! LI •l~~tI4- 1 j I-· r~r

II10



80

The resulting open-loop transfer function (product of the FFTF and RFTF) is
shown in the following figures:
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(mp + mL)s 2 + (dE + dDS + kE +(mp + mL)s2 + (d + dDS + kE + kD, and contributes the observed resonance at
(mps 2 + dEs + kE)(dDs + kD)

op and the inverse resonance at mR, where mR is defined by:

+R + (3.4.12)
Mp + mL

The actuator-position term (the first term in the bracket in eqn. 3.4.11) gives

approximately 180' phase lead between the frequencies oR and cop, accompanied by a

sharp dip in magnitude near oR and a sharp peak at cp. This almost matches an inverse

feature in the FFTF (see Figures 3.4 and 3.5). If the match were perfect, the open-loop

transfer function phase would never drop below -180' and stability would be indangered
only by unmodeled dynamics. Unfortunately, oIR, the frequency at which the 180" phase

lead of the RFTF occurs, is slightly higher than E - mp + mL  the frequency at

which the FFTF phase falls 180". The separation is due to drive compliance kD. In this

example, oE = 22.40 Hz and oR = 22.95 Hz.

The result is a narrow region between oE and oR where the phase of the open-loop

transfer function falls abruptly and then returns. Instability can occur as follows: Just
below aR the phase of the open-loop transfer function falls below -180". At oR the RFTF

magnitude drops to a small value set by the low level of damping in drive and environment,
causing the open-loop transfer function magnitude to cross 0 db. When RFTF magnitude
increases again on the high-frequency side of OR, the open-loop transfer function phase is

above -180" due to the rising phase of the RFTF; the result is an encirclement of the -1

point by the Nyquist path.

In the plots shown above, this does not quite happen; the gains were chosen to give

stability. The phase of the open-loop transfer function only descends to -173'. However,
its gain crossover frequency is near WE, and the potential for this type of instability can be

seen.
For this controller it is again the response near oE that determines stability. In root-

locus terms, it is the link-environment poles which first cross the imaginary axis into the
right half-plane. As a result, we can now concentrate on the vicinity of oE to evaluate the

effects of parameter changes on stability. Changes which decrease phase lag in the RFTF
at W)E improve stability, and changes which increase it bring on instability.

The first term (representing actuator position feedback) in the RFTF of eqn.

(3.5.11) is multiplied by the factor + . Define corner frequencies kCi a -

Idos + kD1 9D 2ý1
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and occd -kD - where co and C' are the inner-loop bandwidth and damping ratio,
dD = 2CD

respectively and CD is the drive damping ratio (= .1 in this case). The denominator

approximately gives 90* of phase lag above frequency 0oCd, and the numerator gives 90' of

phase lead above frequency oCi. The net effect of this factor on phase is therefore to give

90* lag between the frequencies OCd and CCi if OCi > oCd, or 90' lead if CCd > CCi.
Stability is thus improved if wCd > 0E > oCi and the wider the frequency separation, the

better (since the 90" phase transitions do not occur immediately at the corner frequency).
It follows that if the drive is stiffened coD increases, so opCd increases, improving

stability. If inner-loop bandwidth o04 is increased oCi increases, degrading stability.

Stiffening the environment also degrades stability, since for these parameters WE is close to

aCd and will exceed it if slightly increased, decreasing the phase lead due to the first term in

the RFTF.

The target dynamics enter into the second term of the RFTF (the term representing

force feedback): .gDs + gP  Defining corner frequency mCt = • , this term gives 90'

phase lag between the frequencies coCt and coCi if oCi > COCt, or 90 ° phase lead if oCt >

oCi. Stability is improved if oCt > wE > cCi.

This is a constraint on commanded behavior which is difficult to meet. The
inequality )Ct > wCi requires the ratio of kT to dT to be so large that the manipulator would

act like a very lightly-damped spring; such oscillatory behavior is undesirable. As a result,

the second term of the RFTF usually contributes lag instead of lead. This effect can be
reduced by increasing (dt oE2 + kT2), which diminishes the overall magnitude of the term.

This leads again to a tradeoff between lowest achievable values of kT and dT, which is

illustrated in Figure 3.29.
The highest inner-loop bandwidths (desirable for increased disturbance rejection)

require a high target stiffness and a soft environment for stability. The first term dominates
the RFTF in this case. Lowering the target values dT or kT always decreases the

bandwidth that can be achieved, by increasing the influence of the destabilizing second
term.
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The closed-loop admittance is plotted below:
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The admittance achieved is very similar to that of the previous controller. The

steady-state closed-loop stiffness attained is simply the commanded stiffness in series with

the drive stiffness:

kDkT
kT,achieved kD + kTkD + kT (3.5.13)

Attempts to command behavior stiffer than the drive are therefore fruitless. Usable

bandwidth is again limited to approximately the drive frequency oD .

The disturbance transfer function is given by equation (3.3.4). For this controller it

becomes:

F(s)
D(s) -

(dTS + kT)(mps 2 + dES + kE)(dDS + kD)
(dTS + kT)[((mp + mL)s 2 + (dE + dD)s + kE + kD)(mA s2 + gDS + gp) + ...

(3.4.14)

... (dDs + kD)mLs 2 ] + (gDs + gp)(mps 2 + dEs + kE)(dDS + kD)

The magnitude of the disturbance transfer function is shown below:
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It is clear from comparison with Figure 3.23 that disturbance rejection below 04,

the inner-loop bandwidth, is much improved, achieving in this case nearly 30 db

attenuation throughout the usable bandwidth. Disturbance rejection above this frequency is

essentially unchanged.

In summary, the addition of an inner position loop to the simple stiffness controller

improves performance by allowing higher disturbance rejection and widening the range of

stable commanded behavior. With such an inner loop, increasing the inner-loop bandwidth
04 improves disturbance rejection, but degrades stability. However, it is possible to find

gains which give much improved disturbance rejection and wider stability limits than the

simple stiffness controller of the previous section.

Other features remain the same. Overall bandwidth is still limited to below the drive
resonance wD, and inaccuracy in the achieved admittance occurs when commanded

stiffness exceeds drive stiffness. As before, increasing drive compliance or environmental

stiffness degrades stability. There is still a tradeoff between the lowest allowable values of
dT and kT.

3.4.5 Stiffness Control with Inner Loop and Filtering

The major limitation of the controllers so far described is the inability to attain low
values of kT and dT. Low target stiffness means the manipulator must react strongly to

measured forces. This means large force feedback, which is destabilizing for this system
since the force sensor is non-colocated. In the stiffness controller with inner loop, force
feedback is the second term in brackets in eqn. (3.4.11). As described above, low values
of kT and dT increase the influence of this term on the RFTF at the link-environment natural
frequency oE, which increases phase lag and leads to instability.

One approach to this problem is filtering. If a low-pass filter is placed in series
with the force feedback, the magnitude of this term at the stability-critical frequency 0E can

be reduced while retaining the same force feedback at lower frequencies.
The filter cutoff frequency is chosen to give sufficient attenuation at wE. With a

stiff environment, a high filter cutoff could be used. However, for robustness, the same
controller should be stable with softer environments. In particular, to avoid the need to
switch controller gains at environmental contact it should be stable for kE = dE = 0 (free
space). If oE decreases below the actuator-drive natural frequency wD, oD becomes the

crucial frequency for stability (the frequency at which FFTF phase falls below -180").
Thus, for robustness, the filter cutoff should be below wD. Since the usable bandwidth of
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the non-filtered controller is limited to less than coD anyway, tracking of the commanded

behavior should not be impaired.

The control law is:

u = F + (gDis + gPi) xref - (mLs gDos + gPo Ts + kT -y (3.4.15)

Here the particular form assumed for the low-pass filter is g 0o+ gPo

,mLs2 + gDos + gPoJ
with two adjustable gains gDo and gPo. The use of mL in the denominator serves to

normalize the gains and is unimportant at this point; it is there to facilitate later

comparisons.

Some filtering of analog signals (e.g. those from a force sensor) before sampling is

commonly used in practice to prevent aliasing [61 and reduce noise. The filter frequencies

used for these purposes are relatively high. Anti-aliasing filters have a cutoff around half

the sampling frequency, which is itself typically 20-30 times the bandwidth of the inner

loop. The filter suggested here for control purposes has a cutoff frequency near the overall

bandwidth of the controller; around a factor of 10 lower than inner-loop bandwidth and

roughly 100 times lower than that of an anti-aliasing filter.

Controllers of this category have been used by several researchers, although the

particular form of the filter and the reasoning cited varies. This principle helps explain the

good force control performance found empirically by Maples and Becker [341 in their

experiments. Hogan's impedance control [21,22 ,56] obtains the same effect by imposing a

target mass on the desired behavior.

A block diagram for this controller is:

Figure 3.32: Stiffness Controller w/Inner Loop + Filter; Block Diagram
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Referring to eqn. (3.3.1) gives the following transfer functions:

A(s)= 1 gDs+ gp o g D is + gp i

m 2s+ gDos + gPo dTS+ kT

B(s) = 0 (3.4.16)

C(s) = - (gDis + gPi)

R(s) = gDis + gPi

Eqn. (3.4.1) then gives the RFTF for this controller:

H(s) _gDi s + gpij(mp + mL)s 2 + (dE + dD)s + kE + kD
S dDs + kD mps 2 + dEs + kE

(3.4.17)

+ (g Dos+ gP  D + kD 1
mLS2 + gDos + gPo  IdTs + kT

Figures 3.33 and 3.34 show the Bode plot for this RFTF. Filter bandwidth was set

at 6 Hz with a damping ratio of .707. Inner-loop bandwidth was increased to
50 Hz, and the commanded stiffness was reduced to kT = 600 N/m and dT = 60 Ns/m.

Compared with Figures 3.25 and 3.26, attenuation and phase lag in the force feedback term
of the RFTF due to the filter is visible at low frequencies. Because of the attenuation the
colocated position-feedback term dominates at oE, giving a net phase lead there over the

non-filtered controller, as intended. Except for these effects, behavior is similar to the
previous controller.

Figures 3.35 and 3.36 show the open-loop transfer function. The same potential
for instability exists around the link-environment frequency WE. This leads to a stability

tradeoff (illustrated in Figure 3.37) which appears qualitatively similar to that of Figure
3.29. Note, however, that the filter permits numerically lower stiffnesses to be achieved.

The closed-loop admittance is shown in Figure 3.38. Since the commanded
stiffness is less than the drive stiffness in this case, the achieved steady-state value is-more
accurate than before. The stiffness obtained is 375 N/m for a target value of 600 N/m, as
expected from equation (3.4.13). Usable bandwidth is still around 4 Hz with the filter.
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The disturbance transfer function is given by equation (3.3.4). For this controller it
becomes:

F(s)
D(s) -

(dTs + kT)(mps 2 + dEs + kE)(dDs + kD)(mLs 2 + gDos + gpo)
(dTS + kT)(mLS2 + gDos + gPo)[((mp + mL)s 2 + (dE + dD)s + kE + kD) • ...

(3.4.18)
... (mAs 2 + gDis + gpi) + (dDS + kD)mLS2 ] + ...

... (gDos + gPo)(gDis + gpi)(mps 2 + dES + kE)(dDS + kD)

Figure 3.39 shows the magnitude of this function. Since the inner-loop bandwidth
could be increased to 50 Hz, disturbance rejection improved to about 50 db at frequencies
below 1 Hz.
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Figure 3.39: Stiffness Controller w/Inner Loop + Filter, Force Disturbance Rejection

In summary, the addition of filtering to the force feedback term improved stability,
by reducing the non-colocated force sensor's influence on open-loop phase near the gain
crossover frequency. Inner-loop bandwidth could then be increased, improving
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disturbance rejection. At the same time, lower values of kT and dT could be attained,

making the manipulator more responsive to interaction forces. The required filtering

diminished the usable bandwidth only slightly, still limited to below the actuator-drive
natural frequency cod (which is 5 Hz in this example).

3.5 Conclusions

This chapter set criteria for good performance, and studied the workings of a series

of force control algorithms applied to the compliant-drive manipulator model. One feature

at a time was added to the controllers, starting with the simplest and ending with one which

represents the best-performing current design.

The analysis establishes that the simple manipulator model used can produce the
kind of performance limitations seen in practice, and that a frequency-domain approach to

controller analysis is useful in this context. It is shown that these methods can explain the

successes and failures of present control algorithms, in particular clarifying how force

feedback filtering improves stability.

Dividing the system into Forward and Return Force Transfer Functions is a good

way to compare different controllers for the same system, develop tuning rules for gains,

and discover ways to improve stability. One important result for the controllers shown is

that stability limits can be understood solely by examining the behavior of the RFTF in the
vicinity of oE, the link-environment resonance frequency. When the transfer function is

evaluated at a particular frequency, the effect of each term is clear. It is then easier to

predict the stability consequences of parameter changes.

To summarize the important features seen in force controller behavior: Gains are
significantly limited by drive compliance. Bandwidth is limited to oD , the drive-actuator
resonance frequency. The upper limit on achieved stiffness is kD, the drive stiffness.

In stiffness controllers, the force feedback term contributes phase lag to the RFTF
at frequencies above wD. More compliance in the drive or less in the environment degrades
stability, by lowering oD in the first case or raising (wE (which is approximately the gain

crossover frequency of the open-loop transfer function) in the second. Either of these has
the effect of increasing the phase lag of the RFTF (and therefore the open-loop transfer
function) at cE. Lowering inner-loop bandwidth or increasing commanded stiffness is

required to regain stability.
There is a tradeoff in lowest achievable values of the commanded parameters kT and

dT. Increasing either parameter reduces the magnitude of the destabilizing force-feedback
term.
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A position-based inner control loop greatly improves disturbance rejection within its
bandwidth, but high gains still lead to instability (even though the primary inner-loop
sensor is colocated). Low-pass filtering of the force feedback to give attenuation at CE
allows higher inner-loop gains and lower values of kT and dT. Essentially this decouples
the desirable effects of force feedback at frequencies below coD from the undesirable effects
on stability at the higher frequency WE.

The final controller studied in this chapter (the stiffness controller with inner loop
and filtering) is taken as a reference design. It will be used to evaluate the ideas suggested
in the next chapter.
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Chapter 4: Joint/Actuator Controller Design

This chapter presents two interrelated ideas for improving the force-control

performance of a manipulator with drive compliance. One is a change in mechanical design

of the manipulator, and the other is a new control algorithm. The success of either idea

requires the use of both. In each case, the key concept is the separate treatment of joint

motion and actuator motion; hence the term "Joint/Actuator Controller."

The first recommendation of this thesis is to further mechanically decouple the joint

from the actuator by adding drive compliance. This may seem strange, as drive compliance

has been cast as a problem up to this point. Section 4.1 details the expected benefits and

drawbacks.

The control algorithm described in Section 4.2 relies on this mechanical decoupling

and an internal model of the drive compliance, and is intended to overcome the bandwidth

limit set by drive frequency opD . Stability range is also improved, allowing lower target

stiffnesses to be achieved.

Section 4.3 compares the resulting performance of the Joint/Actuator design with

the best-performing design of Chapter 3: the stiffness controller with inner loop and

filtering. The comparison is made using the performance criteria defined in Section 3.1.2.

The final section of the chapter summarizes the comparison results, which show

improved performance in every category.

4.1 Mechanical Decoupling of Joint and Actuator Dynamics

Decoupling here implies that drive stiffness is made low enough that actuator

position and joint position must be considered distinct variables in the operating frequency

range. This can be accomplished by simply adding a linear spring in series with the

transmission. The joint force is then determined by actuator position relative to joint

position, rather than directly by actuator force. Increasing drive compliance is intended to

improve performance in the areas of smoothness and contact behavior.
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The next two sections explain these benefits. The third section discusses some

other effects of drive decoupling, and the fourth section describes the principal cost of this
approach--increased actuator force requirements.

4.1.1 Smoothness Benefits

Smoothness is improved in several ways. A more compliant drive reduces the
effect of actuator force disturbances (stiction, friction, cogging, etc.) on tip forces, when
there is an inner loop based on actuator position. This works as follows: a disturbance

force at the actuator gives rise to a certain position error: the magnitude of the force divided
by the proportional gain of the inner loop (for steady-state error). When in contact with a
rigid environment, the resulting error in force applied at the tip is the position error
multiplied by the drive stiffness. With a stiff drive, small position errors can give large tip-
force errors.

Of course, closing the outer loop on the tip force sensor acts to reduce this error.
This is done, however, with the relatively low gains of the outer loop. By decoupling the
drive, the outer loop is faced with significantly smaller force errors to correct. Hence, the
rejection of actuator disturbance forces is improved.

Also, the analysis in Section 2.3 indicates that an actuator limit cycle caused by
backlash can be thought of as a position disturbance rather than a force disturbance, since it
approaches a minimum amplitude which is independent of inner-loop gains. The most
direct way to reduce the effect of such a disturbance on tip force is to increase drive
compliance.

Cogging, backlash, and the stick-slip behavior caused by friction introduce
unwanted high-frequency components into actuator motion. Drive compliance improves
smoothness by filtering these out of the endpoint trajectory.

With drive decoupling, the smallest forces that can be applied open-loop (without
force feedback) at the manipulator tip are determined by the positioning resolution of the
actuator, rather than by the magnitude of disturbance forces at the actuator. For instance, a
joint force increment smaller than the level of actuator friction can be reliably applied, given
a high-resolution inner loop and a compliant drive. The maximum static force that can be
applied is still the same, so that force dynamic range is improved.
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4.1.2 Contact Behavior Benefits

For environmental contact, consider a rigid-drive manipulator touching a rigid

surface. The entire manipulator must stop immediately, generating large interaction forces.

With compliant drives, less mass must be stopped by the initial contact, giving the

controller more time to react and safely bring the rest of the manipulator to a halt.

The reduction in inertia depends on configuration. Links adjacent to the wrist may

be aligned with the direction of motion. These contribute to wrist mass and stop

immediately, since the drive compliance for these links is not deflected at contact. The link

drives which are producing motion in the contact direction, however, always act to

decouple inertias during contact, sb smaller interaction forces are generated than with a

rigid drive. If some drive compliance already exists, increasing it will lower forces still

further.

4.1.3 Other Performance Effects

Increasing drive compliance has further consequences. If a simple linear spring is

added in series with the transmission, both the drive resonance frequency oD and damping

ratio CD decrease. As seen in Chapter 3, this limits performance of the controllers

discussed so far, which are implicitly based on a rigid-drive manipulator model. For a

controller based on a compliant-drive model (as discussed in Section 4.2) adding a spring

to the transmission can actually improve performance by enhancing modeling accuracy.

The reason is that compliance arising naturally in a transmission may not be very linear;

often it stiffens with increasing force, and the stiffness may vary with position. The

intentionally-added spring can be designed to be linear over the force range of interest and

softer than the drive compliance, so that its behavior is dominant and the relative modeling

error caused by the transmission nonlinearity is much reduced.

If a more compliant drive is used with any of the controllers discussed in Chapter 3,

the positioning accuracy of the end-effector decreases. Since significant load-dependent

errors already exist when these controllers are used with relatively stiff drives, increased

error could be a serious drawback. This is addressed in Section 4.2 by the addition of

joint-position sensing, which is a necessary component of the new controller design. Joint

sensing allows joint position errors to be rejected, but since it involves adding a non-

colocated sensor, a more sophisticated control approach is required.

When joint position sensing is employed to reduce endpoint position errors, there

arises a distinction between drive compliance and the compliance outboard of the joint
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position sensor. Such outboard compliance may be due to link bending, or flexible
elements in the force sensor or end-effector. Increasing outboard compliance provides the
same benefits for smoothness and contadt behavior as increasing drive compliance, but
positioning accuracy would be lost unless some kind of absolute endpoint position sensing
is used (as suggested by Cannon et al.19,10]). This possibility is not pursued here.
Compliance outboard of the joint simply contributes to the effective environmental
compliance.
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4.1.4 Actuator Force Requirements

Mechanical drive decoupling has one effect which can be a serious practical

drawback. Operation of a manipulator above its drive frequency oD , as implied by drive

decoupling, incurs a penalty in power consumption and force requirements. At high

frequencies a given endpoint trajectory requires higher-amplitude actuator motion when

drive compliance is increased. More power is consumed through acceleration of the

actuator inertia and dissipation from actuator-axis friction. Considering the inertial effect

alone, the peak actuator force required to track a sinusoidal endpoint position trajectory of
frequency o with a compliant-drive manipulator is:

Umax,compliant - mA + mL + mp 2 maxrigid  (4.1.1)

where Umax,igid is the corresponding peak force for a rigid-drive manipulator.

For high-bandwidth operation, ) > OD and Umax,compliant becomes larger than

(and 180" out of phase with) Umax,rigid. Lowering the drive frequency oD increases peak

force requirements. This is compounded by the fact that the controller improvements

discussed in the next section allow a higher overall bandwidth of stable operation. Taking

advantage of this also increases force requirements. Actuator force constraints may limit

the amount of decoupling compliance it is desirable to introduce for a given intended

bandwidth of operation.

The controllers described in Chapter 3 are restricted to a usable bandwidth below

the drive natural frequency, so their peak force requirements are essentially those of a rigid

manipulator. If drive stiffness is lowered by a factor of 10 and operating bandwidth

increased to twice the original drive frequency, eqn. (4.1.1) predicts that peak forces

required would increase by a factor of 19 (for tracking of a sinusoidal trajectory at the

bandwidth limit). The drive decoupling alone, with no increase in bandwidth, gives a peak

force increase of a factor of 4.

Equation (4.1.1) gives only a rough indication of this effect; it is difficult to predict

on analytical grounds the level of actuator force required to follow an arbitrary reference

trajectory, while rejecting disturbances and reacting to environmental contact. Numerical
simulation is a better tool for studying actuator force levels. The analysis in this chapter
will concentrate on the performance benefits obtainable when full advantage is taken of the

stability and bandwidth limits of the new controller design, with a decoupled drive.

Simulations in the next chapter explore several ways to reduce actuator force requirements.
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4.2 Joint/Actuator Control Loops

In all of the controllers described in Chapter 3, bandwidth was limited to below the
drive resonance frequency oD, where joint and actuator positions are essentially the same

except for a DC offset. These control laws implicitly assume that forces applied by the

actuator are instantly conveyed to the joint. The phase shift due to drive compliance is
"unexpected" and causes instability.

The controller proposed here is based on a compliant-drive model and allows
operation above the drive resonance frequency o D.

4.2.1 Controller Structure

This approach uses a position sensor on the joint in addition to one on the actuator.
The desired joint trajectory is derived as before from the input reference trajectory Xref ,

modified by the measured interaction force F and commanded stiffness (dTs + kT). But
now, a joint control loop uses feedback from the joint sensor to compute the force
command required to correct the joint position error. A model of drive compliance is then
used to calculate the actuator position required to provide the desired joint force. The
resulting actuator trajectory is then tracked by the inner control loop. This is illustrated by
the following block diagram:

Figure 4.1: Joint/Actuator Controller Block Diagram
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The control law is:

u = (dDs + kD)(y - x) + (4.2.1)

(gDas+ Pa){s [F + (gDjs + gpi) ref dTskT x)] + x - y

The first term is feedforward of the estimated drive compression force. The
actuator-loop gains are gDa and gPa, and the joint-loop gains are gDj and gpj . The model

drive parameters are dD and kD, which are estimates of the real parameters dD and kD.

This controller differs from the compliance-modeling approaches discussed in

Section 2.4.1 in several ways. One difference is the use of a joint position sensor.

Another is the "classical control" approach of nested control loops, rather than a "modern

control" state-variable formulation. For this approach to be valid, the interaction between

the control loops must be small. This requires the bandwidth of the inner (actuator) loop to

be higher than that of the outer (joint) loop, and the joint and actuator variables to be

mechanically decoupled. In this case, the latter condition means that inner-loop bandwidth

must be much higher than the drive natural frequency. For disturbance rejection,

controllers already in use (e.g. the reference design) have much higher inner-loop

bandwidths than overall bandwidths, so the first assumption is easily satisfied. As

described in the previous section, decoupling of the joint and actuator positions typically

requires the addition of extra compliance to the transmission.

The advantage of this approach is a fairly simple controller structure, with no high-

order estimation or differentiation required. No unstable poles or zeroes are cancelled. The

gains have straightforward physical interpretations and the loops can be tuned

independently. A simple criterion for stability can be derived to give the designer a logical

way of picking gains.

This controller requires additional drive compliance for another reason as well. The

position variables x and y are subtracted in the control law to determine the force being
transmitted by the drive. Since the position sensors have finite resolution, subtracting two
nearly equal numbers would provide very poor open-loop joint-force resolution.

Compliance increases the magnitude of the position difference for a given force, refining
this resolution.

Separate actuator/joint control loops are intended to improve performance in the
areas of stability and bandwidth. Use of a model of drive compliance allows stable
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operation above coD and permits the closed-loop stiffness to closely approximate the target

value, even when this exceeds drive stiffness.
To see how force-control stability range can improve, examine the problem from

the point of view of the joint, which in our model is rigidly connected to the force sensor.
If an ideal actuator is also coupled rigidly to the joint, no instability occurs, even with a stiff

environment and soft commanded compliance. However, if a transmission (or actuator)
with limited bandwidth is used, the phase shift introduced into joint force commands as
frequencies approach the bandwidth limit causes instability.

With the Joint/Actuator controller design, transmission dynamics are cancelled out
by the internal model used by the inner loop. There is still, however, a limiting bandwidth
for joint force commands--the inner-loop bandwidth itself. As frequencies approach this
bandwidth limit, phase shift is introduced and instability again results.

As far as the joint loop is concerned, drive dynamics have been replaced by the
inner-loop dynamics. Since the inner loop typically has a higher bandwidth and much
higher damping ratio than the drive compliance, instability is postponed. The effect is
similar to stiffening the drive, but is accomplished in software rather than hardware.

A consequence of this, which will be explored later, is that the effect of inner-loop
gain on stability is reversed for the Joint/Actuator controller: with the controllers of
Chapter 3, an increase of inner-loop bandwidth is destabilizing; with the new controller,
stability is improved as inner-loop bandwidth increases.

4.2.2 Comparison with Force-Controlling Inner Loops

The Joint/Actuator control scheme bears some similarity to the direct feedback force
control scheme suggested by Luh, Fisher, and Paul[32]. In their system, a force sensor is
used in the tranismission to measure the force actually applied to the joint. A high-gain
force feedback loop is then used to achieve the desired force and reject actuator-axis force
disturbances. No model of drive compliance is required and no mechanical drive
decoupling is needed.

By contrast, the Joint/Actuator controller described here forms its estimate of the
joint force error from measurements of relative joint and actuator position and a model of
drive compliance. The high-gain inner loop then acts to reduce this position error. There
are some fundamental advantages to this approach.

First, the sensor on which the inner loop is based is actuator position, which is
colocated. Position sensors such as optical encoders introduce no significant low-
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frequency dynamics of their own; this permits high gains. Force sensors usually include a

flexible element which can be destabilizing at high gains.

Second is the fact that most of the disturbance forces acting on the actuator are

position- or velocity-related: friction, stiction, and cogging. If a model is available for

these disturbances, a position-based inner loop can use feedforward compensation to

reduce their effect before they cause position errors. As noted by Canudas et al.[11] the

parameters of the friction disturbances change somewhat with operating conditions; they

propose an adaptive scheme for feedforward compensation. Even without this level of'

effort, significant improvements can be obtained by feeding forward easily-calculated

forces whicti underestimate the full value of the disturbance (see for instance [23]). A

force-based inner loop cannot predict these disturbances and must rely on feedback to

correct errors after they occur.

Third is the issue of force sensor placement. The sensor can be placed near the

actuator axis or near the joint axis, the difference being whether transmission dynamics are

enclosed in the inner loop. If placed on the actuator axis, disturbance forces arising in the

transmission cannot be rejected by the inner loop, since the input force to the transmission

is being controlled instead of the output force. If placed on the joint axis, inertia and

compliance in the transmission makes the sensor non-colocated, limiting gains and

eliminating the principal advantage of an inner loop. Luh, Fisher, and Paul used actuator-

axis sensor placement in their experiments.
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The following simple model shows that the position-based inner loop of the

Joint/Actuator controller, combined with drive decoupling, can reject disturbance forces
arising in the transmission, while a force-sensing loop with a sensor on the actuator axis
cannot. Consider a transmission model consisting of a massless node upon which friction
(or some other disturbance) acts. This is connected to the actuator mass mA by a spring
representing transmission compliance kA and connected to the link mass mL by the spring
kj added to decouple the drive, as shown in Figure 4.2:

Figure 4.2: Transmission Disturbance Model

The compression force in the transmission compliance is the actuator force FA and
the force in the decoupling spring is the joint force Fj, given by:

FA = kA(y - z) (4.2.2)

FJ = kj(z -x)

In equilibrium the forces must sum to zero at the transmission node, so:

FA - FJ = Ftrans (4.2.3)

Assume the commanded joint force is zero. If the magnitude of the transmission
force disturbance is Ftrans then the actuator can be producing zero force while the joint force
equals the full disturbance. From eqn. (4.2.3):

FA = 0 =O Fj = Ftrans (4.2.4)

FA

actuator I

Z X

link
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The force-sensing inner loop with actuator-axis sensor placement thus cannot reject

any transmission force disturbance. The Joint/Actuator controller, if commanded to

produce zero joint force, drives the relative actuator and joint positions to x - y = 0.

Equations (4.2.2) and (4.2.3) then imply:

Fj = Ftrans k kA) (4.2.5)

Thus, if the drive-decoupling spring kj is N times softer than the initial drive

stiffness kA, the Joint/Actuator inner-loop attenuates transmission disturbance forces by a

factor of (N + 1). The Joint/Actuator controller therefore rejects force disturbances in the

transmission, while the force-sensing loop cannot.

Another implication of the above result is that the decoupling spring should be

inserted between the transmission and joint, rather than between transmission and actuator.

In other words, the friction-introducing part of the transmission should be placed on the

actuator rather than the joint. This minimizes the force error caused by transmission

disturbances.

Joint-axis force sensor placement is the other alternative for a force-controlling

inner loop, and this allows rejection of transmission disturbances. However, any

dynamics between the actuator and control sensor can be destabilizing to the force-control

loop. In the Joint/Actuator control scheme such dynamics cause error but not instability.

The following example clarifies this.

Figure 4.3a shows a simplified version of the drive model, with the link fixed and

drive damping neglected. A real transmission, of course, is not a purely massless spring.

In gearboxes, for example, the compliance is due to shaft and tooth bending, and the gears

themselves have inertia. A more accurate model would include an inertia for each gear, and

springs connecting them in series. A step in this direction is shown in Figure 4.3b, with

one intermediate inertia.



Figure 4.3: Transmission Models

To preserve the same overall drive compliance as in Figure 4.3a, the following

equation must hold:

1
kD

1
- kl

1
k2 (4.2.6)

The dynamics of the intermediate mass mG are given by:

mG *i = k1 (y - z) - k2 z (4.2.7)

If a force sensor is installed at the joint-axis end of the transmission, it will measure
the compression of the second spring:

F = k2 z (4.2.8)

The transfer function from actuator position y to measured force F is then:

F(s) klk2
y(s) -mGs 2 + kl + k2

(4.2.9)
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Thus there are now second-order dynamics between the actuator and control

sensor, with natural frequency:

4Ek +2k 2

on r- 1 + (4.2.10)
mG

This is a limit on the maximum bandwidth of a simple inner control loop using

joint-axis force sensing. To estimate this numerically, use the value of kD = 1000 N/m

from Table 3.1, and assume that mG = .1 mA and that k1 = k2. This then gives on = 32

Hz, a considerable restriction on inner-loop bandwidth; the reference design controller of

Chapter 3 used 50 Hz.

The simple example above gives a first-order illustration of the effects of distributed

inertia and compliance in the transmission. In the limit of a continuum model, a force

change would propagate as a wave from the actuator to the joint. It is the delay due to finite

wave speed that causes instability with high gains. An inner loop based directly on actuator

position is colocated and does not suffer from this problem; it can achieve higher

bandwidth.

One other somewhat similar force control system in the literature is the Whole Arm

Manipulation (WAM) concept of Salisbury [511. Force sensing in the transmission is used

there as well. In this case, however, transmission force sensors take the place of the wrist-

mounted force sensor instead of replacing the inner-loop position sensors. A velocity-

based inner loop is still used around each actuator. The reasons for this derive from the

WAM idea, which is to be able to use the entire arm surface for manipulation, rather than

just the end-effector. The merits of this philosophy will not be pursued here; the

manipulators studied in this thesis are of the conventional type simply to make the results

relevant to a wider body of research. It should be noted, however, that for conventional

tasks, placing the force sensor inboard of the link mass is detrimental to contact behavior.

This is explained more fully in Section 4.3.4.
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4.3 Performance Evaluation

In this section the ideas presented above are explored and evaluated according to the

performance criteria adopted in Section 3.1.2. To facilitate comparison with the controller

analysis in Chapter 3, the parameter values of the following table are adopted as a standard

example:

Parameter Reference Joint/Actuator
Design Value Design Value

mA 1 kg 1 kg

mL 1 kg 1 kg

mp .01 kg .01 kg
dD 5 Ns/m .5 Ns/m

dE 2 Ns/m 2 Ns/m

dT 60 Ns/m 60 Ns/m

kD 1000 N/m 100 N/m
kE 20000 N/m 20000 N/m
kT 600 N/m 600 N/m

drive frequency oD = 5.03 Hz CD = 1.59 Hz

environment frequency oE = 22.5 Hz E = 22.5 Hz

payload frequency Op = 225 Hz Op = 225 Hz

inner-loop b/w qi = 50 Hz oa =50 Hz

inner-loop ý ri = .707 Ca =.707

outer-loop b/w coo = 6 Hz j = 10 Hz

outer-loop ý I o = .707 ýj = .707

Table 4.1: Controller Comparison Parameters

The values for the reference design match those used in Chapter 3. Differences for

the Joint/Actuator design (highlighted by bold-face type), are the drive parameters (reduced

to provide mechanical decoupling), and the outer-loop bandwidth. The latter is limited by
the requirement of stability, and one of the chief benefits of the new design is its ability to

achieve a higher bandwidth while retaining stability. This is discussed in the next section.
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4.3.1 Stability Range

This section characterizes the stability limits of the Joint/Actuator design approach,

and contrasts them with those of the reference design. The effects of drive decoupling on

the FFTF are first examined, then the effects of the new controller structure on the RFTF.

Forward Force Transfer Function

Increasing drive compliance changes the FFTF. For the Joint/Actuator controller

example the drive is decoupled by reducing kD and dD by a factor of ten. Figures 4.4 and

4.5 show the new FFTF. The rigid-drive FFTF is also plotted for reference.

The major differences betiveen these plots and those in Figures 3.5 and 3.6 are the
lowering of the actuator-drive resonance frequency cD from 5 Hz to 1.6 Hz, the increase in

magnitude of that peak from 17.2 db to 26.1 db, and the reduction of the magnitude of the
link-environment resonance peak at wE from -0.3 db to -9.2 db. The phase margin at oD

falls from 25' to 8° and the gain margin at wE increases from 0.3 to 9.2 db.

As seen in Chapter 3, instability with the reference design controller occurs when a

sharp dip in the RFTF response near oE uses up the gain margin there, and the RFTF does

not contribute sufficient phase lead at that frequency to bring total phase above -180'.
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Return Force Transfer Function

From the control law eqn. (4.2.1) and eqn. (3.3.1) are derived the following

transfer functions:

gDjs + gpj
dTS + kT

B(s) = (gDas + gPa) - (dDS + kD)
gDa s + gPa
dDs + kD

(gDjs + gpj)

(4.3.1)

C(s) = (dDs + kD) - (gDas + gPa)

R(s) =( gDa s + gPa

dDs + kD
S(gDjs + gpj)

Eqn. (3.4.1) then gives the RFTF for this controller:

S=gDas + gPa dDs + kD
dDs + kD dDs + kD)

CgDs + gPJ)F 1 +dTS + kT )L mp

-dDS + kD
I~dDs + kD

mLs2

+ LS
mps + dES + kEJ

dTS + kT
s2 + dEs + kE

mLs2

s2 + dEs + kE

With the assumption of accurate modeling, this becomes:

H(s) gDas + gPa[
=~dDs + kD)

mLs 2 + gDjS + gpj +
mps 2 + dES + kE

gDjs + gpj
dTS + kT

(4.3.3)
/ 2mLs

mps2 + dEs + kE

)( 1( dDs + kD

(4.3.2)

+mFmp
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Figures 4.6 and 4.7 show the Bode plot for this RFTF, using the parameter values

from Table 4.1.
The shape of the RFTF plots are basically similar to those of the other stiffness

controllers with inner loops. Comparison of equations (3.4.11) and (4.3.3) shows that the
RFTF's have the same form. As long as actuator bandwidth is reasonably high, the
feedforward terms in each equation can be neglected for stability analysis.

As before, the effect of the feedback term is to give approximately 180' phase lead
between a frequency 0 R and the payload-environment resonance frequency wp. The

frequency wR of the first resonance is different in this case, however. Using the same

reasoning as in Section 3.4.4, oR is found to be:

R = gDkE (4.3.4)

where coi is the bandwidth of the joint loop. For the parameters of Table 4.1, this gives
OR = 29.2 Hz.

Note that coR for this controller is independent of drive parameters kD and dD.

Another important difference is that for this controller the depth of the resonance magnitude
dip at coR is determined by the (user-selected) damping of the joint loop instead of the

(often very low) damping of the drive and environment. As a result the dip is much
broader and shallower. In the reference design controller, the depth of this dip sets the
stability limit by causing the open-loop transfer function gain to cross over unity there. In
the new controller, the gain crossover frequency (and stability limit) is not set by the dip at
qR but by the general rolloff of the FFTF gain at higher frequencies.

This can be seen in the open-loop transfer function plotted in Figures 4.8 and 4.9.
The gain crossover frequency in this case is 74 Hz. The phase margin is 51.1', compared
with 16.4' in the reference design case, indicating significantly more robust stability.
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At frequencies above oqR the following approximations hold, from equations

(4.3.3) and (3.3.5):

H's( gDa s  2•[ mLs2
H(s) (dDs-kD) mps 2 m. Es ]kE

+ mps + dEs + kE

G(s) (mps 2 + dES + kE)(dDS + kD) (435)
mAmLS4 (4.3.5)
mAmLs4

G.. G(s)H(s)= gDa
mAs

The gain crossover frequency oGC is thus approximately given by:

GC Da= 2mCaa (4.3.6)
mA

This approximation gives a value of 71 Hz in this case; close to the actual value of
74 Hz.

Since the phase of the open-loop transfer function rises above -180' near the
frequency coR , an approximate criterion for stability can be stated CGC > 0R, which

becomes, using equations (4.3.4) and (4.3.5):

4a 2O a2 2 > +2 2. + kE (4.3.7)a a I j dT

This can be rearranged with controller gain parameters on one side, showing the

limitation on commanded behavior due to instability:

Joint/Actuator Stability Criterion:
dT 2 Cjj (4.3.8)
kE 4a 2T a2 - o 2

Two assumptions were used in deriving this stability criterion:

i) dTO) > kT, which is true for any reasonably-damped desired behavior, and

ii) op > coGC, which means the environment is primarily springlike, rather than

inertial
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The first assumption allowed approximation of the term (dTs + kT) by dTs at s =
ioWR , and the second allows us to approximate (mps2 + dEs + kE) by kE at s = icoGC, where

we also assume environmental damping dE is negligible.

Since it is an approximation, the stability criterion must be applied conservatively,
but should give a good indication of the effects of varying each parameter. From this
criterion it is evident that actuator bandwidth ao should exceed joint bandwidth wo. It can

also be seen that increasing the commanded stiffness or softening the environment

improves stability, as usual.
To test assumption i), the tradeoff between lowest attainable values of dT and kT is

plotted in the following figure (for parameter values from Table 4.1), using the Routh

criterion on the closed-loop characteristic polynomial to determine stability:

- Stability Boundary - - Line of Constant Damping Ratio

I 0RJu

8000

Target 6000
Stiffness

(N/m) 40

2000

0
0 20 40 60 80 100 120 140 160

Target Damping (Ns/m)

Figure 4.10: Joint/Actuator Controller; Stability Tradeoff

The left-hand stability boundary (solid line) of the shaded area is nearly vertical;
there is little dependence on kT, so assumption i) above is justified here. Comparison with
Figure 3.30 reveals improved stability range for the new controller, using the same
actuator-loop gains. The lowest pure damping value attainable by the reference design was
54 Ns/m, versus 38 Ns/m for the new design. Note also that coj = 10 Hz for the new
controller and oo = 6 Hz for the reference design in this comparison. Reducing oj to 6 Hz
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would give an even larger stability range improvement, allowing pure damping values as

low as 26 Ns/m.

Large payload mass would invalidate assumption ii) above. In this case the proper
approximation becomes (mps 2 + dEs + kE) = mps2 at s = iCOGC. The gain crossover

frequency is then given by:

OOGC 2aoa mLm [ -m11 + (4.3.9)

where oar is defined as the natural frequency of the payload mass with the commanded

stiffness kT, and rT is the corresponding damping ratio:

ýkT
WT - mp

(4.3.10)

dT
2 4 mpkT

In the large-payload case, the phase of the open-loop transfer function rises above
-180* at oR or (op, whichever is lower. The stability criterion becomes:

2aOa L mp 1 + > Min 0j 2 + kE , p (4.3.11)

mL+mpL L T'Tr +M dT

Assuming CT = Cj, it can be shown that sufficient conditions for this stability

criterion to be satisfied are:

* the no-payload stability criterion (4.3.8) above, and
* gpj >Max (kT, i kT )

Since high gains and low commanded stiffness are likely to be desirable operating

conditions, the previous stability criterion (4.3.8) will imply stability in this case as well.

In other words, if a manipulator in contact with the environment is stable without a

payload, it will usually be stable with one. As is the case for other controller designs,

stability with a stiff springlike environment is more difficult to obtain than with an inertial

environment.

In summary, the Joint/Actuator design shows improved stability tradeoffs over the

reference design, allowing a wider range of commanded behavior. A simple approximate
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criterion for stability was derived for the new controller (eqn. 4.3.8), which allows the

choice of controller parameters to suit a particular task.

4.3.2 Control Bandwidth

The closed-loop tracking quality and bandwidth can be evaluated using the closed-

loop admittance given by equation (3.4.8). With the transfer functions for the new

controller (eqns. 4.3.1) this is:

x(s) (4.3.12)F(s)
mAs 2 (dTs + kT) + (gDas + gpa)(gDjs + gpj)

(dTs + kT)[mA 2 ( mLs 2 + dDs + kD) + (gDas + gPa)(mLs 2 + gDjs + gPj)]

In the limit of very high actuator-loop gains gDa and gPa this becomes:

x(s) gDjs + g (4.3.13 1
F(s) LS2 + gDjs + gPdT s + k (4.3.13)

It can be seen by comparison with eqn. (3.4.15) that the joint loop in the new

controller is directly analogous to the filter in the reference design. When the loop is closed,

the effect is to filter the desired admittance T 1 by a factor( gDjs + gP
ds+ kT) mLs + gDjs + gPj)

of bandwidth wj, whereas the reference design directly filters the measured forces by the

factor( gDos + gPo_ In determining bandwidth, therefore, joint-loop gains play a
YmLs 2 + gDoS + gPoj

similar role to the filter gains of the reference design.

Equation (4.3.13) also shows that with a high-gain inner loop, the overall

bandwidth of the new controller is simply that of the joint loop. Since drive dynamics are

absent from this equation, the achieved admittance should be accurate throughout the
bandwidth.

Figure 4.11 plots the achieved vs. target admittance for the Joint/Actuator
controller, using parameters from Table 4.1.
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Figure 4.11: Joint/Actuator Controller; Closed-Loop Admittance

Compared with Figure 3.25 for the reference design, this figure shows much better

tracking of the target admittance. No steady-state error exists and the achieved admittance

does not deviate markedly from the target admittance until the frequency exceeds 20 Hz.

This was achieved using the same inner-loop gains as the reference design, and with a

greater margin of stability.
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4.3.3 Smoothness

This section compares the new controller to the reference design using some criteria

for trajectory smoothness, primarily the degree of rejection of actuator force and position

disturbances. Then, since dry friction is poorly modeled as a linear disturbance, numerical

simulation is used to evaluate the effects of drive compliance and controller bandwidth on

smoothness when Coulomb friction and stiction are present.

Force Disturbance Rejection

The force disturbance transfer function is given by equation (3.3.4). For the

Joint/Actuator controller it is:

F(s)- (dTs + kT)(mps 2 + dEs + kE)(ds + kD) (4.3.14)
D(s)JJ/A mAS2(dTs + kT)[(mP + mL)s2 + (dE + dD)S + kE + kD] ...

... + (gDas + gpa)[mLS2 (dTs + kT) + (gDjs + gpj)(mps 2 + (dE + dT)s + kE + kT)]

Low-frequency behavior is particularly important. In the limit it becomes:
[ F(s) - kDkEkT

[F(s) as s k 0 (4.3.15)D(s) J/A gpagpj(kE + kT) as s (4.3.15)

For the reference design controller this limit becomes (from eqn. 3.4.18):

F(s) -- kDkEkT as s -> 0 (4.3.16)
D(s) EF gpi(kDkE + kDkT + kEkT)

When kE > kD > kT, a typical desirable operating condition, the ratio of these

transfer functions becomes:

(F/D)REF i (4.3.17)
(F/D)J/A - kD

assuming the inner-loop gains are the same in each case. The kD appearing in this equation
is the drive stiffness of the Joint/Actuator controller rather than the reference design, if the
two differ. In this approximation, therefore, disturbance rejection with the new controller
is improved over the reference by increasing joint-loop gains or by adding drive compliance
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(lowering kD). A net improvement occurs if the joint loop has higher bandwidth than the

drive resonance frequency (which is a primary objective of the new controller anyway).
The following figure compares the magnitude of the actuator-axis force disturbance

transfer function for the Joint/Actuator controller to that of the reference design, using the
parameter values from Table 4.1:

-Joint/Actuator Design -- Reference Design
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Figure 4.12: Force Disturbance Rejection Comparison

The comparison reveals an improvement over the reference design of approximately

30 db (a factor of 32) in disturbance rejection throughout the controller's bandwidth. The

improvement at higher frequencies is approximately 20 db (a factor of 10).

Position Disturbance Rejection

Limit cycles due to backlash or other causes can behave more like actuator position

disturbances than force disturbances, in the sense that turning up inner-loop gains may not

reduce their amplitude. Also, in practice there are limits to how high gains can be

increased, and limits to sensor resolution, which combine to give the minimum-attainable

actuator position error. This section investigates the effect of this limit on force control

accuracy.
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The transfer function from actuator position y to measured force F is given by:

F(s) (mps 2 + dES + kE)(dDs + kD)

y(s) (mp + mL)s 2 + (dE + dD)s + kE + kD

Since no control input occurs in the system between the actuator and the

manipulator tip, this transfer function depends only on the mechanical parameters;

controller design is irrelevant. With a rigid-drive manipulator, the transfer function
approaches (mps2 + dEs + kE). If the environment is stiff, large forces result from small

position displacements. The manipulator designer can reduce this effect only by softening

the effective environment (with a compliant covering on the manipulator, for instance), or

by reducing the drive stiffness.

The equation indicates, however, that in the usual case of an environment more

rigid than the drive, it is far more effective to soften the drive than to soften the

environment. Figure 4.13 illustrates the advantage obtained by reducing drive stiffness by
a factor of 10, from the value used for the reference design example to that of the
Joint/Actuator (with drive decoupling) design example. Also shown is the effect of
reducing the environment stiffness by a factor of 10.

Note that, as in all of the "disturbance rejection" plots, the curves show the
magnitude of the transfer function from disturbance to output; therefore lower values are
better. In the present case of a transfer function from position disturbance to output force,
the actual values depend on the units used: here 0 db indicates a 1 N response to a 1 m
disturbance. As usual, relative comparisons of the values on different curves (expressed in
db) represent dimensionless ratios.
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Figure 4.13: Position Disturbance Rejection Comparison

Softening the drive improved rejection by 20 db at nearly all frequencies, while
softening the environment gave a much smaller improvement (about 4 db) over most of the
manipulator's bandwidth. Installing a compliant covering on a manipulator reduces its
versatility, by increasing its bulk and limiting the stiffness it can attain. Since this is not a
very effective means of improving actuator position disturbance rejection, the alternative of
adding drive compliance is more attractive.

This example shows that adding drive compliance can significantly reduce the effect

of actuator position disturbances on force control, contributing to smoothness of response.
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Force Dynamic Range

The maximum static force available is the same for both designs, though in

operation the force reserved for dynamic disturbance rejection will depend on factors such

as bandwidth. The minimum force increment can be no smaller than:

i) the force corresponding to the least significant bit of control signal

resolution

ii) the magnitude of the disturbance forces times the steady-state

magnitude of the force disturbance transfer function, or

iii) the magnitude of the position disturbances times the steady-state
magnitude of the position disturbance transfer function, or in the

case of limit cycles, the magnitude of the transfer function at the
limit cycle frequency.

In the example of Table 4.1, the above transfer functions indicate the Joint/Actuator
design would have between 10 and 30 times the static force dynamic range of the reference
design, assuming that limitation i) is avoided by proper selection of electronic components.

Stick-Slip Simulation

Linear transfer function analysis is valuable but doesn't tell the whole story when a
disturbance is highly nonlinear, as in the case of dry friction. Simulation provides a means
of investigating the effects of nonlinear disturbances. It does not replace analysis because it
is difficult to generalize quantitatively, but it can give useful qualitative information and
compare performance in specific cases.

Friction is known to cause "stick-slip" behavior in mechanisms. This is antithetical
to the goal of smoothness of response. Since a major objective of the Joint/Actuator
controller design is to improve smoothness, a simplified problem is simulated here to
investigate the controller's effectiveness in suppressing this specific type of disturbance.

This simulation compares performance of the position-controlling parts of the
controllers only, so the results do not depend on environmental parameters. The desired
trajectory is assumed to be a simple ramp in free space, starting from rest:

xT(t) = Vt, t > 0 (4.3.19)

XT(O) = i•(O) = 0
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The target velocity value used is 5 cm/sec. In each case the controller is assumed to

comprise an outer (joint) loop and an inner (actuator) loop, with specified bandwidths and

damping ratios (= .707 in each case). These and the drive stiffness are selected to

correspond to the reference design example and the Joint/Actuator example used above. An

intermediate case shows the effect of mechanical decoupling alone. The following table

gives the values used:

Table 4.2: Stick-Slip Simulation Parameters

The disturbance forces are Coulomb friction and stiction. Very high values of these

forces were needed (FCoulomb = 100 N, AFstiction = 500 N) to produce observable errors

with the control gains assumed; as seen above, both example controllers have in excess of

45 db force disturbance rejection. Although this level of friction is unlikely, the same

disturbance values are used for each case so the relative comparison is still valid. Many

practical manipulators use lower-bandwidth inner loops than in these examples, and can

exhibit this behavior with prevailing levels of friction. A factor of ten lower in bandwidth

brings the required friction levels to values typically seen.

The simulation was performed using a 4th-order Runge-Kutta scheme with a time

step of .001 second.

Figure 4.14 shows the joint-position response in the reference design case. Figure

4.15 shows the actuator-position trajectory. Stick-slip behavior dominates the actuator

plot, and its effects are evident in the tracking error of the joint plot.

Parameter Reference Mechanically Joint/Actuator
Design Value Decoupled Value Design Value

kD 1000 N/m 100 N/m 100 N/m

Winner 50 Hz 50 Hz 50 Hz

(Oouter 6 Hz 6 Hz 10 Hz
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Increasing the drive compliance, with no other change to the system, produces the

results shown in Figures 4.16 and 4.17. Joint behavior is clearly smoother and more

accurate, even though the actuator still sticks and slips.
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Figure 4.16: Mechanically Decoupled Design; Joint-Position Response
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Figure 4.17: Mechanically Decoupled Design; Actuator-Position Response
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Figures 4.18 and 4.19 show the additional effect of increasing outer-loop

bandwidth to the 10 Hz that stability analysis in Section 4.3.1 indicates is possible with the

Joint/Actuator design. Joint tracking becomes even more accurate.
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Figure 4.18: Joint/Actuator Design; Joint-Position Response
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There is evidence in these figures that stick-slip behavior in actuator response can
lead to limit-cycling, with a frequency that increases with the controller bandwidth. The
point of view taken here is that some actuator limit-cycling is acceptable as long as endpoint
behavior remains smooth, as in Figures 4.18 and 4.19 above. In some applications this
may not be true; actuator wear or power consumption might increase to significant levels.
Techniques to suppress the limit cycle such as series compensation (see for instance [32]),
or the addition of a deadband to the controller, should then be investigated.

As an additional note which will not be pursued here, dither can be added to the
actuator signal to reduce the effects of dry friction[14,23]. The increased disturbance
rejection of the Joint/Actuator controller design at high frequencies would allow a higher
value of dither amplitude than the reference design. Of course, dither has the same
drawbacks as limit cycling in terms of increased power consumption and wear, so its utility
depends on the application.

Overall, these simulations support the conclusion that the mechanical decoupling of
a manipulator's joint and actuator nodes can considerably improve smoothness and tracking
accuracy in the presence of dry friction. The higher bandwidth permitted by the
Joint/Actuator controller gives an additional benefit.
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4.3.4 Contact Behavior

A smooth, rapid transition from free motion to constrained motion is highly
desirable, but difficult to obtain with a rigid environment. The stiffness controllers

considered in this thesis have first-order target dynamics (dTs + kT , which would

provide the desired smooth transition if:

i) they are tracked perfectly by the controller, and

ii) they are applied directly to the interaction force between payload and
environment.

Since every controller has a bandwidth limit, the first condition does not hold
initially during a collision; response is essentially open-loop. This case will be examined
first. At some point the controller does make itself felt, so closed-loop behavior is
investigated next.

The second condition above is also not strictly true, because the force sensor is
inboard of the payload mass. In fact, in this model the force sensor location is the dividing
line between what is considered link mass and payload mass. Inertial payload dynamics
can give rise to force oscillations and bouncing during contact even if tracking is perfect.

Due to the discontinuity at contact, linear analysis is difficult to apply. The
simulations in the next chapter will explore contact behavior in more detail, but some
simple arguments are used here to indicate the roles of drive compliance, bandwidth, and
payload mass.

Open-Loop Response

To first investigate open-loop contact behavior, a simplified version of the
manipulator is considered. Actuator position y is held fixed and a moving environment of
stiffness kE impinges on the link with velocity -V. Drive compliance dDs + kD allows the
endpoint position x to react. The desired result is the time history of F, the interaction force
between the manipulator and the environment. From this can be determined the peak
collision force and the time of the first "bounce." The assumption of fixed actuator position
during this first bounce should be valid for high-transmission-ratio manipulators, since
these have low drive stiffness, high effective actuator mass, and significant actuator
friction, all of which reduce the backdriveability of the actuator. A stiff inner position loop
on the actuator also contributes to this effect.



The dynamics are given by the following equations:

(mL + mp) i + dD k + kDx = - F

F = kE (x + Vt)

Expressed in Laplace notation, the interaction force is given by:

VkE[(mL + mp)s 2 + dDS + kD]F( s2 [(L + mp)s 2 + dDs + kD + kE]

Solving this differential equation using the inverse Laplace transform gives:

F(t) = k + kDt +E +D I
2kE + kE e

On
ý)t 1 - 2(2 sin (Odnt - 2C

COn
cos COdnt)]

(4.3.22)

using the following definitions:

kD+ kE
m•Ln + mp

2l(mL + mp)(kD + kE)

kE + kD dD2

mL + mp 4 (mL + mp) 2

The oscillatory component decays with the following time constant:

1Z;
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(4.3.20)

(4.3.21)

cOdn -n i 2 .

(4.3.23)

(4.3.24)

w
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Equation (4.3.22) is valid until contact with the surface is first lost. Since drive

damping is typically small (ý = .018 for the values in Table 4.1) its effect during the first

bounce can be neglected, giving:

F(t) = kE kDt + kEsin Cnt (4.3.25)

Solving for the first t > 0 at which F(t) = 0 (the time at which the manipulator loses

contact with the surface) requires:

sin cnt _ D  (4.3.26)
Ont -- kE

kD
Although an explicit solution for t is unavailable, it can be seen that as kE

X k 3n
approaches zero, t -- -- , and as D increases, t - - . For small kD, the bounce

Wn kE 2)n

time approaches:

mL + mp (4.3.27)
tbounce,kD=0  kE (4.3.27)

As kD increases from zero to kD = .217 kE, this time increases by 29 %. If kD >
.217 kE, there is no solution for bounce time; the manipulator remains in contact with the

surface.

The peak value of interaction force reached during the first bounce can be calculated

by differentiating eqn. (4.3.25), solving for the time of maximum and evaluating the force

at that time:

Sk[kDCOs'"k D )2 2 2] mL+mP

Fmax  + kE + kD cos-kE - kD kE + kD (4.3.28)

For kD < kE the effect of drive compliance is small; as kD increases from zero to kE

the peak force increases by only 11 %. For kD = 0, eqn. (4.3.28) reduces to the usual
value for an object of mass (mL + mp) bouncing on a surface of stiffness kE:

Fmax,kD=0 = V-(mL + mp)kE (4.3.29)
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Some conclusions can now be drawn about initial open-loop behavior during
contact with a stiff environment (kE > kD). The qualitative behavior, i.e. whether or not a

bounce occurs, is independent of collision velocity, although the magnitude of the forces

generated is proportional to it. The response has an oscillatory component which decays
with time constant r, given by eqn. (4.3.24).

The peak force and oscillation frequency are determined primarily by the contact
velocity, link + payload mass, and environmental stiffness. Decreasing drive stiffness can

reduce peak interaction force, but the effect is slight; the maximum force is well
approximated by eqn. (4.3.29). A stiff drive (kD > .217 kE) can suppress bouncing

regardless of contact velocity or payload, although if the drive becomes too stiff the

assumption of no actuator motion is invalid and the actuator will simply bounce with the

link. The time of the first link bounce (if it occurs) is approximately given by eqn.

(4.3.27).

The best prospects for improving open-loop contact behavior through mechanical

design remain the generally-recognized principles of minimizing link mass and limiting

effective environmental stiffness. Drive compliance has a relatively small effect.

Closed-Loop Response

At some point in the manipulator's response its closed-loop behavior becomes

important, as the controller reacts to measured interaction forces. The above analysis
indicates that a controller could help damp out the oscillations if its bandwidth exceeds 4'on,
but to reduce the peak force or suppress the initial bounce, the bandwidth must approach

(Odn.

The closed-loop contact behavior of the Joint/Actuator controller and the reference

design can be compared by the same Laplace ramp-response method used above for the

open-loop case, but using the full linear manipulator model and controller equations instead

of the simple fixed-actuator version. Equation (3.4.8) is used along with the controller

transfer functions (3.4.16) and (4.3.1) to obtain I(s), the closed-loop admittance. The

payload and environment are represented by the usual mass, damping, and stiffness
parameters mp, dE, and kE, but now has velocity -V. The following equations result:

x = -I(s) F

(4.3.30)

F = mps2 x + (dEs + kE)(x +
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Combining these equations gives:

V(dEs + kE)F(s) = + kE) (4.3.31)
s2[1 + I(s)(mps 2 + dEs + kE)]

The symbolic sodltion for time response in this case is so complicated as to be
unenlightening, so the response is obtained numerically (using the MATLAB 7M computer
program) for the standard example parameters in Table 4.1, assuming collision velocity
V = 1 m/sec. Since force response is simply proportional to V, the forces for any other
velocity can be obtained by scaling.

Figure 4.20 shows the interaction force F(t) for the initial bounce of the reference
design controller, compared with that of the target dynamics. Note that again this linear
analysis assumes continuous contact with the environment, so these results are only valid
up to the point the manipulator leaves the surface; approximately when F(t) crosses zero at
.0227 seconds. This bounce time agrees well with the open-loop estimate from eqn.
(4.3.27), which gives .0222 seconds. The peak force during the first bounce is 140.6 N,
also agreeing with the calculated open-loop value from eqn. (4.3.29) of 141.4 N.
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Figure 4.20: Reference Design; Contact Force Response
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Figure 4.21 shows the same time period for the Joint/Actuator controller. Since

contact is continuous this trajectory is valid over the whole interval.
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Figure 4.21: Joint/Actuator Design; Contact Force Response

The plot interval can be extended to show the decay of the force oscillations:
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The force oscillations from impact decay with a time constant of approximately
0.05 sec, eight times as fast as the open-loop response from eqn. (4.3.24).

It is clear from this comparison that the Joint/Actuator controller design can improve
contact behavior over that of the reference design, which essentially gives the open-loop
initial response. In this case the peak impact force decreased 14 % and bouncing was

suppressed.

These results and the open-loop analysis indicate that the improvement is
attributable mostly to the increased overall bandwidth of the Joint/Actuator controller, rather
than the reduced drive stiffness. Contact behavior can be improved over the open-loop
response only when overall bandwidth (cop in the Joint/Actuator case) approaches co• (from

eqn. 4.3.23), the frequency of the payload + link-environment resonance. Since overall
bandwidth in the reference design is limited by the actuator-drive resonance cOD, contact

behavior in that case can be improved over open-loop response only if the environment is
more compliant than the drive, or if the link + payload inertia is much greater than the
actuator inertia. With the Joint/Actuator design this is not a constraint, and contact behavior
can be improved significantly.

It is interesting to note that if for a particular application bounce suppression is more
important than minimizing peak force magnitude, link mass should be increased. This
reduces the frequency of the oscillations, allowing the controller a better chance to damp
them out before a bounce occurs.

Effect of Payload Mass

Although the target dynamics in a stiffness controller are first-order in the measured
force, any inertia between the force sensor and the environment (i.e. payload mass) can
introduce oscillatory behavior into the target trajectory. In the trajectory of a real
manipulator this is added to the tracking errors studied above, since it is present even if the
target dynamics are tracked perfectly.
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To investigate this effect on contact behavior, the previous example was modified
by increasing payload mass from .01 kg to 1.0 kg, equal to the link inertia. Note that

payload mass is not modeled internally in any controller considered here. The following

figure compares the resulting force trajectory of the Joint/Actuator controller to the new
target trajectory:
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Figure 4.23: Joint/Actuator Design w/Payload; Contact Force Response

Increasing payload mass lowers the frequency of the open-loop force oscillations,
permitting the controller to damp them out more effectively. However, there is now
noticeable oscillation in the target trajectory. This generates peak forces larger than those
due to tracking error in this case; for high payload masses it will limit the best contact
behavior achievable with any controller.

The foregoing analysis shows that it is the inertial character of the manipulator

which limits contact performance, giving rise to high impact forces and bouncing. In

impedance-control terms, the bandwidth of the controller implies an equivalent closed-loop
link inertia, with a high-bandwidth controller reducing this effective inertia, and low
bandwidth giving the open-loop (physical) link inertia. The contact forces due to tracking
error are the forces of this equivalent inertia colliding with the environment. The real inertia

of the payload must be added to this to determine total inertia, and the total contact forces.
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A simple argument indicates that even with an ideal controller, the total effective

inertia of the system cannot be reduced below the actual payload inertia: consider a generic

manipulator carrying a payload of mass mp, with a force sensor in between. Assume that

the manipulator has a controller which can give it any desired acceleration. To make the

manipulator behave as if it has target mass mT, the desired acceleration in response to
F

external forces is given by x = - , where F is the compressive force measured by themT
sensor. For causality, assume that this acceleration takes place some small time At after the

F(t)force measurement, so i(t + At) = -t. Then in free space, where F(t) = mp i(t), one
mT

obtains:

R(t + At) mp= - t (4.3.32)

If mT < mp, the magnitude of the acceleration diverges to infinity. The controller is

unstable if the target mass is less than the payload mass, regardless of how small At is.

Such a stability limit has been observed in experiments with impedance controllers [56].

The design recommendation that follows from this is to keep the inertia of the

manipulator structure outboard of the force sensor to a minimum; below the equivalent

closed-loop link inertia. Payload mass obviously depends on the task at hand, but any

manipulator structural mass which contributes to it limits the best obtainable contact

behavior.

Force-sensing fingers are preferable to a force-sensing wrist, for example. As an

analogy, consider the difficulty of picking up an egg between two heavy objects held in the

hands. A much more delicate touch is possible when one's force-sensing fingers are

directly applied to the egg.
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4.4 Conclusions: Performance Comparison Results

This section summarizes the results of this chapter's performance comparison

between the Joint/Actuator controller and the reference design, for the example parameters

in Table 4.1. The following table shows ten measures related to the performance criteria

defined in Section 3.1.2:

Parameter Reference Joint/Actuator Relative
Design Value Design Value Improvement

Open-Loop Transfer Function -2.47 db -2.73 db .26 db

Magnitude @ 100 Hz

Phase Margin 16.40 51.1 °  312 %

Usable Bandwidth 4 Hz 20 Hz 500 %

Steady-State Stiffness Error - 37.5 % 0 00oo

Steady-State Actuator Force -44.58 db -78.15 db 33.57 db

Disturbance Rejection

Steady-State Actuator Position 59.58 db 39.96 db 19.62 db

Disturbance Rejection

Transmission Force Disturbance 0 db 20.83 db 20.83 db

Rejection by Inner Loop

Static Force Dynamic Range 20-30 db

Peak Force in 1 m/s Impact 140.6 N 120.4 N 14 %

Bouncing at Contact yes no Bouncing

suppressed

Table 4.3: Performance Parameter Comparison

The first two parameters above are related to stability robustness. Both controllers

are stable for the operating conditions of the example; these values give an indication of the
sensitivity of this stability to small changes in the manipulator or environment. Since it has

been assumed that the model may be inaccurate above 100 Hz, the open-loop transfer

function gain at 100 Hz gives an indication of sensitivity to unmodeled dynamics above that

frequency, with more attenuation preferred. The values for the two controllers are virtually

* Value depends on magnitude and nature of disturbances.
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the same, with a slight advantage going to the Joint/Actuator design. Both offer attenuation
at all frequencies above 100 Hz. Phase margin, the second parameter, is the amount of
additional phase lag at the gain crossover frequency required to bring the system to the
verge of instability, and indicates relative stability. A standard rule of thumb is that phase
margin should be between 30' and 60' for satisfactory performance [38]. The Joint/Actuator
design provides a significantly better phase margin.

Usable bandwidth for the reference controller is limited by a resonance peak in the
response due to drive compliance; for frequencies above that peak, closed-loop behavior
differs greatly from the target dynamics. For the Joint/Actuator controller usable
bandwidth is limited to the point at which response begins to roll off from the target value.
A useful increase in bandwidth is obtainable with the new controller.

Stiffness error gives an indication of the relative accuracy of the tracking of the
target dynamics within the usable bandwidth; for ease of comparison it is evaluated at
steady state (zero frequency). Drive compliance leads to significant error with the reference
design; there is none with the new controller.

The disturbance rejection figures reflect the relative smoothness of force control.
For the above table, force and position disturbance rejections are evaluated at zero
frequency (their relative magnitudes remain approximately constant throughout the usable
bandwidth). Note that position disturbance rejection is the magnitude of a position-to-force
transfer function, and is not a dimensionless ratio, but the improvement tabulated above is a
ratio of these magnitudes and is dimensionless. Force and position disturbance rejection
are both greatly improved with the Joint/Actuator design.

As Section 4.3.3 showed, the position disturbance rejection advantage is reflected
in superior tracking of a constant-velocity trajectory with friction and stiction. Stick-slip
behavior at the actuator was effectively filtered out of the endpoint trajectory with the new
design.

The rejection of transmission force disturbances by the inner loop alone is also
compared. This represents the error in applied joint force due to friction, etc. arising in the
transmission. Errors in endpoint force would be further reduced by the outer loop in each
case, but this comparison points out just the difference due to inner loop structure. In the
Joint/Actuator design, the inner loop reduces these forces by a factor of (N + 1), where the
drive has been decoupled by decreasing its stiffness by a factor of N. No attenuation is
provided by the reference design; all rejection of transmission force disturbances must
come from the outer loop.

Actual values for force dynamic range depend on the type of disturbances (force or
position) present and their magnitudes, so numerical values are not shown. The relative
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improvement of the Joint/Actuator controller over the reference design lies in the range of

20-30 db, however.

Peak impact force is an indication of the quality of contact behavior, and should be

small. The tabulated value is for the parameter values of Table 4.1, and assumes a 1 m/s

collision; the force scales proportionally with velocity. In this case, the Joint/Actuator

controller suppressed bouncing from the surface at contact; the reference design did not.

By every criterion used the Joint/Actuator controller outperforms the reference

design, in many cases by a wide margin.
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Chapter 5: Simulation and Experiments

This chapter completes the analysis by examining time-domain behavior and
including nonlinear effects. Numerical simulation and experimentation with a single-joint

manipulator testbed are used for this purpose.
The simulation is used to confirm the predicted behavior of the controllers described

in Chapters 3 and 4, to discover the effects of modeling error, and to investigate techniques
for improving the practicality of the Joint/Actuator design by reducing actuator force
requirements. Experiments are performed to validate the manipulator dynamic model used
throughout this thesis, and to directly demonstrate the stability advantages of the new
controller.

5.1 Simulation

The methods used for simulation are discussed in the first section. Next, the
comparison example of Chapter 4 is investigated, first with a low-speed trajectory and then
with a high-speed trajectory. It is seen that the predicted improvements in stability,
smoothness, bandwidth, and contact behavior indeed materialize in the simulation. As
expected, however, when full advantage is taken of the improved bandwidth capability of
the Joint/Actuator controller, the required actuator forces are much higher.

After a look at the effects of modeling error in the fourth section, the emphasis turns
to ways of reducing actuator force levels. Saturation and trajectory filtering are examined

in the next two sections, which succeed in reducing the peak force level to 22 % of its

initial value without degrading performance.
The following section concentrates on the stability advantages of the new controller.

It is shown that for low target stiffnesses, superior performance can be obtained with the
Joint/Actuator design with no penalty in actuator force.

Conclusions drawn from the simulation work are summarized in Section 5.1.8.
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5.1.1 Description of Simulation

Numerical simulation allows the inclusion of a number of effects present in a real

manipulator which are not treated in continuous-time linear analysis. The simulation used

here was written in C and run on a Macintosh SE/30 computer.

Digital implementations of the reference design control law and the Joint/Actuator

control law were derived using procedures described in reference [6]. Zero-order-hold

equivalents are used for the filter dynamics gDos + gPo in the reference design
,mLs2 + gDos + gPo}

and for the target dynamics k in both designs. Experimentation with the

simulator showed that the drive model ( 1 S , in the Joint/Actuator controller could be

1adequately approximated by simply -- for the small amounts of drive damping assumed.
kD

This approximation gave lower control forces and lower sensitivity to modeling errors than
A

the zero-order-hold equivalent of the original expression. The drive damping estimate dD is

still used in the feedforward of drive compression force.

Finite (adjustable) resolution is assumed for measurements of position and force, as

well as the control input U. The simulation includes actuator saturation, contact

discontinuity, and friction nonlinearities. Provision is also made for introducing modeling

error into the controllers.

The dynamic equations are integrated using a 4th-order Runge-Kutta scheme with a

time step of .0001 second. The maximum controller sampling rate simulated is 1000 Hz,

giving at least 10 dynamics-updates per sampling period.

In addition to the simulated controller behavior, the program calculates the target

trajectory (in both position and interaction force) which would result if the manipulator

perfectly tracked the commanded stiffness.

Since the algorithms being simulated control stiffness, their input is a reference

position trajectory. The standard trajectory used begins in free space at x = -1 cm, with the

environment consisting of a wall at x = 0. At time t = 0, the manipulator is at rest with no

position error. The reference point then moves at constant velocity of 2 cm/sec for 1

second, placing it 1 cm past the surface of the wall. It remains stationary for 1 second,

then moves back out at -4 cm/sec for 0.5 second, placing it back at x = -1 cm. The

simulation continues for a further 1 second with the reference point stationary.
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This trajectory gives a look at the response to sharp changes in the reference

trajectory in free space and while in contact with the environment, the response to impact
and to leaving a surface, the tracking of a constant reference velocity, and the settling to a
constant desired force while in contact, and to a constant position in free space.

These velocities are typical of an approach to contact that might be used in space
applications, where the components to be handled may be delicate and speed is secondary
in importance to avoiding damage. In an industrial setting much higher speeds are
desirable, so an example using a high-velocity trajectory is simulated in Section 5.1.3.
Results are qualitatively similar, so in all other examples the low-speed trajectory above is
used.

5.1.2 Controller Comparison Example

The comparison example analyzed in Chapter 4 is simulated first. The parameter
values from Table 4.1 are used. The following table shows additional simulation
parameters used for this example:

Parameter Value
Sampling Rate 1000 Hz

Actuator Saturation Limit oo
Coulomb Friction FC 20 N

Stiction AFstict  50 N
Viscous Friction dA 10 Ns/m

Estimated Viscous Friction dA 8 Ns/m
A

Estimated Actuator Inertia mA 1.1 kg
Estimated Link Inertia ML 1.1 kg

A

Estimated Drive Stiffness kD 110 N/m
Estimated Drive Damping dD 0.45 Ns/m

X Sensor lsb Value .00016 m
Y Sensor Isb Value .000041 m
F Sensor Isb Value .0122 N

Control Input Isb Value .0122 N

Table 5.1: Controller Comparison Simulation Parameters
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The estimated manipulator parameters include an intentional modeling error of
10 %, except for actuator viscous friction, which has 20 % error. The "Isb values" shown
represent the resolution of the sensors simulated. No actuator saturation limit is imposed
for this example.

Figure 5.1 shows the manipulator endpoint (X) trajectory results for the reference
design controller. Evidence of stick-slip behavior can be seen in the initial free-space
motion. Several bounces occur upon contact with the surface at x = 0. Sticking also
delays response when motion reverses. The effects of the lightly-damped drive resonance
can be clearly seen after t = 2.5 seconds, as it settles to a fixed commanded position. The
oscillations occur at about 5 Hz, which is the drive resonance frequency o .D*

Figure 5.2 shows the corresponding trajectory for the Joint/Actuator controller. No
bouncing occurs at contact and the tracking is very good.
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Figure 5.1: Reference Design; Simulated Position Trajectory
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Figure 5.2: Joint/Actuator Design; Simulated Position Trajectory
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A more sensitive indication of tracking performance, and one more relevant to force

control, is given by the trajectory of interaction force F. Figures 5.3 and 5.4 show this

trajectory for the reference design and the Joint/Actuator design, respectively:
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Figure 5.3: Reference Design; Simulated Force Trajectory
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Figure 5.4: Joint/Actuator Design; Simulated Force Trajectory
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The reference design shows a great deal of oscillation in the force response. It also

settles toward an incorrect steady-state value (38 % error), due to drive compliance.

The Joint/Actuator design tracks the target trajectory quite well, with some force

overshoot at sharp transitions (such as contact) due to limited bandwidth. In the steady-

force phase between t = I and t = 2 seconds, there is a low-amplitude limit cycle which

further simulation shows is due to stiction; the force remains within .05 N (0.9 %) of the

target value.

The main drawback of the new controller is that to take full advantage of the

improved bandwidth capability (giving the excellent tracking shown above), much higher

actuator forces are required. This is true whenever bandwidth is increased, but it is

exaggerated in this case by the drive decoupling, which increases the amplitude of actuator

motion required. Figure 5.5 shows the control input U as a function of time for the

reference design:
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Figure 5.5: Reference Design; Simulated Control Input Trajectory

The overall control bandwidth in the reference design case is roughly equal to the
drive resonance frequency. In the Joint/Actuator case, the bandwidth is nearly 7 times the
drive frequency. Equation (4.1.1) predicts approximately 23 times the peak actuator force
of the reference case will be required for the Joint/Actuator case to track the same trajectory,
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just considering the additional actuator acceleration needed. Dissipation by actuator friction
will increase this even more. As Figure 5.6 shows, this is borne out by the simulation; the

peak-force ratio is approximately 70 in this example.
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Figure 5.6: Joint/Actuator Design; Simulated Control Input Trajectory

In the Joint/Actuator case the actuator force required is very frequency-dependent.

In the steady-force region between t = I and t = 2 seconds, the force is negligible compared

to that required during sharp transitions. The average actuator force required is not 70
times that of the reference case. In this example, the ratio of average absolute values of

actuator force is 10.4.

Comparing Figures 5.5 and 5.6 also indicates there is more high-frequency content

in the control signals for the Joint/Actuator case. The author's speculation is that this is due

to the conditional stability of the new controller. Equation (4.3.8) shows that the actuator-

loop bandwidth must be above a certain value to give stability; this indicates that the full

actuator bandwidth is being utilized to stabilize the system, not just improve disturbance

rejection and tracking. Some high-frequency control activity is then expected, even when

motion is smooth.

It is possible that this high-frequency control content will cause problems in

practical situations. Some types of motors react poorly to high-frequency control signals--

commutator brushes, if present, may arc and erode prematurely. Motor inductance,

0VW 7

I
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neglected here, may prevent the motor from responding as modeled at high frequencies.

Experiments described in the latter half of this chapter show that the predicted performance

is, in fact, realizable with hardware. No degradation attributable to this effect is observed,

since the discrepancies that occur between simulation and experiment are approximately the

same for both types of controller. Nevertheless, care must be taken in manipulator design

to recognize these as potential problems.

This comparison in this section confirms the advantages in smoothness, bandwidth,

and contact behavior of the Joint/Actuator design over the reference design predicted by the

analysis in Chapter 4. As expected, the principal cost of this approach is the need for

higher actuator force capability. Ways of reducing this cost are investigated in later

sections discussing the effects of saturation and filtering of the reference trajectory.

5.1.3 A High-Speed Example

This example repeats the previous comparison, but using a high-speed trajectory.

The trajectory begins in free space at x = -10 cm. At time t = 0, the manipulator is at rest

with no position error. The reference point then moves at constant velocity of 50 cm/sec

for 0.4 second, placing it 10 cm past the surface of the wall. It remains stationary for 1.6

seconds, then moves back out at -100 cm/sec for 0.2 second, placing it back at x = -10 cm.

The simulation continues for a further 1.3 seconds with the reference point stationary. The

controller parameters from tables 4.1 and 5.1 are used.

Figure 5.7 shows the position trajectory obtained with the reference design

controller, and Figure 5.8 shows that of the Joint/Actuator design.
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Figure 5.7: Reference Design; Simulated Position Trajectory
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Figure 5.8: Joint/Actuator Design; Simulated Position Trajectory
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The interaction force trajectories are shown in Figures 5.9 and 5.10:
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Figure 5.9: Reference Design; Simulated Force Trajectory
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Figure 5.10: Joint/Actuator Design; Simulated Force Trajectory
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Comparison with the previous example shows that the results are qualitatively the

same, although numerical values of forces and position errors scaled up with the velocities.

Higher reference velocities do not significantly change the character of performance

achieved by the two control schemes.

5.1.4 Effects of Modeling Error

The Joint/Actuator controller design depends on a model of the drive dynamics,
given by the parameters dD and kD. If the controller's performance or stability were very

sensitive to errors in these parameter estimates, it would be of limited value in the real

world.

To test this, some simulations were performed with large errors in the modeled

drive parameters. It was found that errors of 50 % or more in drive damping are tolerated

with minor degradation of performance. Figure 5.11 shows the simulated force trajectory
obtained with +50 % error in drive stiffness kD and -50 % error in drive damping dD:
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Figure 5.1: Simulated Force Trajector, +50 , -50 dA Modeling Error
Figure 5.11: Simulated Force Trajectory, +50 % kD , -50 % dD Modeling Error
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A
Figure 5.12 shows the results with +50 % error in rD:
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Figure 5.12: Simulated Force Trajectory, +50 % kD, +50 % dD Modeling Error

The trajectories are essentially the same and reasonably approximate the target.
Errors of +±50 % in drive damping thus have very little effect in this example. The error in

A

drive stiffness kD causes an error in steady-state force applied. Steady-state force error due

to stiffness modeling error can be predicted from the transfer functions in (4.3.1), and is
given by:

Fer D r g Pa 1  k kEkT 1kX )F -- " kDj)kE + kT)gPagPj (5.1.1)

which can usually be approximated by:

FrF •g( kD
F -gpj. ~k D (5.1.2)

In this case a steady-state force error of 4.5 % results from a 50 % stiffness
overestimate.

F (N)
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The effects of underestimating drive stiffness kD are somewhat more severe.

Figure 5.13 shows the force trajectory with -30 % error in stiffness and -50 % in damping:
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Figure 5.13: Simulated Force Trajectory, -30 % kD, -50 % dD Modeling Error

Comparison with Figure 5.11 shows increased oscillation (ringing) in the force

response, as well as the expected steady-state error. Control input levels also increased:

the average absolute control level is 4.8 times that of the trajectory of Figure 5.11.
These results indicate that it is better to overestimate drive stiffness than to

underestimate it, and that large (30-50 %) errors in the estimate are tolerable. Accuracy of

the drive damping estimate is not critical, with +50 % error producing no noticeable effect.

5.1.5 Effects of Actuator Saturation

Real actuators have finite force capabilities; if the control law calls for more force,
the output saturates. Sweet and Good [48] refer to actuator saturation as "the most
significant nonlinearity" in the control of manipulators. If occasional actuator saturation
does not degrade performance excessively, smaller actuators can be used, saving mass and

power.

The stability criterion (4.3.8) for the Joint/Actuator controller gives an indication of
the effects of saturation on its performance. Saturation of the control signal of the inner
loop (the actuator force) in effect lowers the inner-loop gains for high error values. By
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eqn. (4.3.8) the inner loop is conditionally stable, i.e. lowering inner-loop bandwidth

reduces stability. Therefore, excessive saturation is expected to lead to instability.

Simulation indicates that for the example of Table 5.1, the maximum control input

called for is 5328 N. Imposing a saturation limit of ±3000 N has no significant effect on

performance, but a limit of ±2500 N causes instability. This instability occurs at t = 2
seconds, when the reference trajectory instantaneously accelerates from rest to -4 cm/sec.
Once the error is large enough to cause instability, it continues even after the reference

trajectory stops moving. This is illustrated by Figure 5.14. In the graph the vertical range
is kept small to show some detail in the early part of the trajectory; as a result the bouncing
which occurs after t = 2 seconds goes off-scale.
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Figure 5.14: Simulated Position Trajectory; ±2500 N Saturation Limit

It is interesting to note from eqn. (4.3.8) that, unlike the inner loop, the outer (joint)
loop is not conditionally stable; decreasing outer-loop bandwidth improves stability.
Saturation of the joint-force command should therefore not lead to instability, but (more
benignly) degrade bandwidth and tracking quality. Referring to equation (4.2.1), the
Joint/Actuator control law can be written:

u = (dDs + kD)(y - x) + (gDas + Pa FJD + x -
dDs + kD

(5.1.3)

where FJD - F + (gDjs + gpj)(xref dTS + kT - x
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This equation makes explicit the joint-force command FJD, which consists of

feedforward of the sensed interaction force F, and a term applying the outer-loop gains to

the joint position error. FjD is calculated in the controller algorithm as an intermediate step,

and it is easy to impose a saturation limit on it in the software. It should also be noted in

passing that feedforward compensation of disturbance forces acting on the joint axis (such

as friction) can easily be added to FJD if a disturbance model is available, although this is

not pursued here.

Imposing a saturation limit on the joint loop could provide an effective safety

feature, to reduce the demands on the inner loop and limit the divergence which could occur

when the inner loop saturates. This effect is illustrated in Figure 5.15, which uses the

same parameters as the simulation in Figure 5.14, except that a 8 N saturation limit is

imposed on the commanded joint force FJD.

Divergence still occurs at t = 2 seconds when the actuator initially saturates, but

now the manipulator is able to recover stability and resume accurate tracking. The force

trajectory shown in Figure 5.16 shows that tracking quality is not significantly degraded by

the limit on commanded joint force, as long as enough force is allowed to properly interact

with the environment during stable operation. The errors at t > 2 are due to the actuator

force limit.
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Figure 5.15: Simulated Position Trajectory; using Joint Force Saturation Limit
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Figure 5.16: Simulated Force Trajectory; using Joint Force Saturation Limit

To summarize the effects of saturation: in this example, limiting the actuator force

to 50 % of its peak value resulted in instability; higher limits had no discernible effect. The

consequences of actuator saturation can be ameliorated, without degrading tracking

performance, by an appropriately-chosen limit on commanded joint force.

5.1.6 Effects of Filtering the Reference Trajectory

The study of saturation indicates that the highest actuator forces, and therefore the

closest approach to saturation-induced instability, occur at sharp transitions in the reference

trajectory. This suggests that filtering unnecessary high frequencies from the reference

trajectory could reduce actuator force requirements.

To test this, simulations were run with the reference trajectory passed through a

first-order low-pass filter with adjustable corner frequency. The best results were found

with the corner frequency equal to the joint-loop bandwidth, at 10 Hz. Frequency content
above this value is not trackable anyway, so performance is not impaired by the filtering.

With this filter, the actuator saturation limit could be reduced from ±3000 N to
+1200 N without triggering instability, and the average absolute actuator force required
decreased by 10 %.
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Figure 5.17 shows the tracking obtained with this filter and saturation limit.

Comparison with Figure 5.4 shows an improvement in smoothness over the unsaturated,
unfiltered trajectory. Figure 5.18 illustrates the control input trajectory. Comparison with

Figure 5.6 shows a 78 % reduction in peak actuator force.
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Figure 5.17: Simulated Force Trajectory; ±1200 N Saturation Limit, Filtered Xref
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5.1.7 Low-Stiffness Example

The simulations in Section 5.1.2 confirm the predicted advantages of the
Joint/Actuator controller in bandwidth, smoothness, and contact behavior. The other
principal advantage expected is in stability range. Lower commanded stiffness should be

attainable when the Joint/Actuator design is used.

To test this, simulations were performed with a lower target stiffness. The

simulation parameters are listed in the following table:

Table 5.2: Low-Stiffness Simulation Parameters

Other values remain as in Table 4.1. The Xref trajectory used is the low-speed one
of Section 5.1.2, but is filtered as described in Section 5.1.6.

For the reference design controller a wide range of gains and filter bandwidths were
tried, without achieving good results. If bandwidth is set too high, instability occurs upon

Parameter Value

Target damping dT 10 Ns/m
Target stiffness kT 25 N/m

Environment damping dE 2 Ns/m
Environment stiffness kE 5000 N/m

Sampling Rate 1000 Hz
Coulomb Friction FC 2.0 N

Stiction AFstict  5.0 N
Viscous Friction dA 1.0 Ns/m

Estimated Viscous Friction dA .8 Ns/m
A

Estimated Actuator Inertia mA 1.1 kg
Estimated Link Inertia ML 1.1 kg

A

Estimated Drive Stiffness kD 110 N/m

Estimated Drive Damping dD 0.45 Ns/m
X Sensor Isb Value .00016 m
Y Sensor Isb Value .000041 m
F Sensor Isb Value .0122 N

Control Input Isb Value .0122 N
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contact; if set lower, tracking is poor. These cases are illustrated by the position trajectories

in Figures 5.19 and 5.20, and the force trajectory in Figure 5.21:
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Figure 5.19: Reference Design; Simulated Position Trajectory, coo = 2 Hz
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Figure 5.20: Reference Design; Simulated Position Trajectory, oo = 0.1 Hz
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Figure 5.21: Reference Design; Simulated Force Trajectory, coo = 0.1 Hz

In each of these cases, the Xref trajectory was filtered with a corner frequency of

10 Hz, and the inner-loop bandwidth oi was set to 50 Hz. In Figure 5.19, with an outer-

loop bandwidth of 2 Hz, instability set in upon contact. This resulted in a series of

bounces of increasing amplitude, until the reference trajectory left the surface.

For the simulation of Figures 5.20 and 5.21 outer-loop bandwidth was lowered to

0.1 Hz. This value gave the best performance of any values tested, and required a peak

actuator force of 13.2 N. Bouncing was reduced, but position and force tracking were
very poor. The reference design controller was unable to produce practically useful

performance at this low target stiffness.

The Joint/Actuator controller was simulated with a range of bandwidths as well.

Figure 5.22 shows the position response with an inner-loop bandwidth of 50 Hz and outer-

loop bandwidth of 10 Hz. Figure 5.23 shows the force trajectory for the same case.
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Figure 5.22: Joint/Actuator Design; Simulated Position Trajectory, oj = 10 Hz
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Figure 5.23: Joint/Actuator Design; Simulated Force Trajectory, wj = 10 Hz
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Tracking of both position and force was very good in this case. Actuator forces

were very high, with a peak of 4663 N and an absolute average of 363 N. It seemed likely

that a lower bandwidth would still yield acceptable performance and should reduce actuator

force requirements, so further simulations were performed.

Reducing the joint-loop bandwidth to 5 Hz resulted in the force trajectory of

Figure 5.24. It is still quite good, although open-loop behavior dominates the initial

contact response, causing a brief bounce and some oscillation. Actuator forces were

1412 N peak and 88.5 N average, a reduction of approximately a factor of 4.
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Figure 5.24: Joint/Actuator Design; Simulated Force Trajectory, wo = 5 Hz

To pursue this further, simulations were run with a joint-loop bandwidth of 1 Hz.
The Xref trajectory was filtered with a corner frequency of 1 Hz as well in this case, and

actuator saturation was imposed at a level of ±13 N, resulting in the position trajectory of

Figure 5.25 and the force trajectory of Figure 5.26. The average actuator force required
was 4.52 N. Compared to the oj = 10 Hz case, the peak actuator force was therefore

reduced by a factor of 358, and the average by a factor of 80.
Three bounces occur at contact, but within 1 second the force error settles to a small

value, as one would expect with an overall bandwidth of 1 Hz. The free-space position
tracking is fairly good. This level of performance is useful in many applications, and is
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much better than that shown in Figures 5.20 and 5.21 for the reference design. It should

be noted that this was achieved with less actuator force.
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Figure 5.25: Joint/Actuator Design; Simulated Position Trajectory, oj = 1 Hz
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Figure 5.26: Joint/Actuator Design; Simulated Force Trajectory, wO = 1 Hz
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The results of this low-stiffness example show that the Joint/Actuator controller has

the predicted advantage. in stability range. At this target stiffness the new design

significantly outperformed the reference design, demonstrating much more usable

performance even when restricted to the same actuator force levels. At higher actuator

force levels, extremely accurate tracking could be obtained.

5.1.8 Conclusions

Simulations confirmed many of the qualitative predictions of the previous analysis
and revealed additional information on modeling-error sensitivity and actuator force
requirements.

The Joint/Actuator controller proved superior in all four of the performance criteria

used: stability, bandwidth, smoothness, and contact behavior. Although it depends on a

drive model, it can tolerate large errors (50 %) in the estimated parameters with little effect
on performance. The high tolerance for errors in drive damping dD is particularly useful,

since this is a difficult parameter to measure accurately and may change with operating
conditions such as temperature and drive tension.

The major disadvantage of this approach is the higher actuator force requirement,
due to a control bandwidth above the drive natural frequency. This is exacerbated by the
fact that, although peak force requirements can be cut about 50 % with saturation, the
response to excessive saturation is instability. The following points should be noted,
however:

* In many situations, trading higher actuator force for better performance is
advantageous. With the reference design, performance could not be
improved to this level at all.

* Average actuator forces are not increased as much as peak forces.

* Filtering unneeded high frequencies from Xref significantly reduces force

requirements, and in fact improves smoothness.

* Imposing a saturation limit on joint force commands is easily done in
controller software and reduces the consequences of actuator saturation
instability.

* Even when bandwidth is lowered to use actuator forces comparable to the
reference design, superior performance is possible.
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The specific design recommendations which follow from the simulation work are to
tend to overestimate kD for the drive model rather than underestimate it, include a joint-

force saturation limit, and filter unneeded high frequencies from the reference trajectory
Xref. If possible, actuators should be selected that can briefly exert peak forces much

higher than the sustainable average, and they should be tolerant of high-frequency control

signals.

5.2 Experiments

The linear analysis and the nonlinear simulations show a number of advantages for

the new controller and joint design. All of these results were based on a simplified model
of real mechanisms, described in Section 2.6. Although this model was suggested by
studies of actual manipulators [l 6,48,5 1], the work here pushes the model in new directions.
To see whether the predicted improvements carry over into the real world of hardware,

experiments with the new design were performed on a single-joint testbed.
The primary purpose of the experiments is to validate the simulation procedure used

above. The predicted and achieved trajectories of position and force are compared for
several operating points. It is shown that the simulation accurately predicts the onset of
contact instability as the target stiffness is lowered. Oscillation frequencies and settling
times are close to the expected values.

A second goal of the experiments is to directly demonstrate the stability advantage
of the new approach. This is done by comparing the performance of the Joint/Actuator

design to the reference design for the same set of target dynamics and environment. These
results agree with the simulation as well, and the stability improvement is clear.
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5.2.1 Description of Hardware

The experimental hardware is depicted in the figure below:

Actuator Axis:
Actuator
Gearbox
Encoder

Drive Capstan

Force Sensor I
Wall" Scale: 1 meter

Figure 5.27: Experimental Apparatus, Top View

Actuation is provided by a permanent-magnet DC motor (Pittman model # GM
9414E729). A 500-line incremental optical encoder (the "Y" sensor) is mounted on one
end of the motor shaft, and a gearbox with ratio of 38.3 is mounted on the other end. To
the output shaft of the gearbox is attached a 1-inch diameter capstan for a cable drive.

The joint is located approximately 1 meter away. The actuator capstan is connected
to the joint capstan by 1/16"-diameter braided stainless steel aircraft control cable. The
cable includes a lightweight turnbuckle for tensioning, and interchangeably incorporates
either two drive-decoupling springs (used with the Joint/Actuator controller) or rigid
aluminum pieces of the same length and mass (used with the reference design controller).
The ends of the cable are anchored to the joint capstan by set-screws. Four and one-half
turns of cable are wrapped around the actuator capstan, and affixed in the middle to the
capstan by another set-screw. Cable tension is set at 30-35 N.

Two angular-contact ball bearings support the joint shaft. The lower end of the
shaft is coupled to a 5000-line incremental optical encoder (the "X" sensor). A 4-inch
diameter cable drive capstan is attached to the middle of the shaft, and the link is attached to
the upper end of the shaft. The joint has approximately 180* of travel before encountering

A/
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rubber bump stops. The transmission ratio requires 76.6 revolutions of the motor shaft to

produce this range of motion.

The link is a .5-inch diameter horizontal steel rod approximately 1 meter in length,
with the joint axis intersecting vertically at the center. A counterweight is clamped to one

end of the link and the "wrist" force sensor attached to the other. The radius from joint axis

to force-sensing tip is 52 cm. Link motion takes place in a horizontal plane, so gravity

effects are negligible. The first bending mode of the link has an observed natural frequency

of about 25 Hz.

The force sensor is an aluminum alloy (6061-T6) beam instrumented with a strain-

gage bridge to measure interaction forces in the (circumferential) direction of link motion.

The required flexibility of the force sensor limits the effective environmental stiffness to a

maximum of 2970 N/m. The force signal is boosted by an instrumentation amplifier

located at the wrist, and relayed to a 12-bit A/D converter.

The X and Y encoders are read by circuits using 16-bit counters. The circuit for the

X encoder uses quadrature to augment position resolution by a factor of four. Sufficient

resolution is available already from the Y encoder, due to the large transmission ratio.

Velocity measurements are obtained with circuits which time the interval between

successive encoder pulses. These intervals are inverted in software to give velocities. A

consequence of this method is that velocity resolution becomes finer at low velocities. The

clock rates used are selected to give at most ±2 % quantization error at the highest expected

endpoint velocity of 4 n/sec.

Data is gathered and control torque calculated by an IBM PC AT personal computer

with a 16-bit parallel interface to the sensor circuitry. The software is written in Microsoft

C (Version 5.0), and runs at a cycle rate of 535 Hz. A listing of the controller software

appears in Appendix C.

A 12-bit D/A converter drives an op-amp (Apex PA-03) in a circuit which converts

the voltage command to a current output, producing the desired torque from the actuator.

The limitations of this particular hardware introduced two effects which have not

been included in previous simulations. The first is a constraint on output voltage of the

actuator drive circuit, which imposes a torque limit which is velocity-dependent (due to

varying back-emf of the DC motor). This saturation limit is given by:

10.6 (4.09 m/s - Y) > U > 10.6 (-4.09 m/s - Y) (5.2.1)

where U is control force (in N), and ,is actuator velocity (in m/s). This limit exists in

addition to the current-constrained saturation limit at a fixed value of ±27.1 N.
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The second effect is related to the sampling of the somewhat noisy force signal F.

An analog filter was applied to this signal before sampling to eliminate aliasing and reduce

the effects of electrical noise. The peak-to-peak noise amplitude of the unfiltered signal

was approximately 50 lsb units, corresponding to 0.66 N of force. A first-order RC low-

pass filter with bandwidth of 6 Hz reduced the peak-to-peak noise value to approximately 5

lsb units, or 0.07 N of force. Since the maximum overall control bandwidth used in the

experiments is 1.5 Hz, this filtering should not degrade performance.

These two effects were included in the simulations presented in the next section for

comparison with experiments.

An effect not included in the simulations is backlash in the actuator or transmission.

In the implementation of the Joint/Actuator controller, the effect of backlash is to add a

deadband to the joint force command. In other words, initial movement of the actuator

with respect to the joint produces no joint force until the backlash is taken up. This can be

compensated for by including a bias force in the drive model: positive bias force if the

desired force command is positive, negative bias if the command is negative.

This type of compensation was used in the experiment controller, with a bias force

magnitude of 0.13 N. Rather than add backlash and its compensation into the simulation,

both were left out.

The most likely sources of remaining discrepancies between the simulation and

experiment are errors in the modeled parameters, sensor noise, joint-axis friction, link

bending, and actuator cogging; the simulation includes none of these effects.
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The following table summarizes the parameters of the hardware, as seen from the

endpoint of the force sensor:

Parameter

Payload Mass mp

Link Mass mL

Actuator Mass mA

Drive Stiffness kD
Drive Damping dD

Drive Stiffness kD (decoupled)

Drive Damping dD (decoupled)

Environmental Stiffness kE
Environmental Damping dE

Coulomb Friction Force FC

Stiction Force AFstic t
Viscous Friction dA

X Sensor Isb Value

Y Sensor lsb Value

Velocity Isb Value (after conversion)

F Sensor Isb Value

Control Input Isb Value

Sampling Rate

Control Force Saturation Level

Actuator-Drive Frequency o D

oD (decoupled)

Link-Environment Frequency o E

Payload-Environment Frequency o)p

Value

.052 kg

.739 kg

.206 kg

2870 N/m

3.58 Ns/m

192.5 N/m

.24 Ns/m

2970 N/m

2.5 Ns/m

.77 N

4.0 N

.64 Ns/m

.156 mm

.0427 mm

1.248 mm/s

.024 N

.01323 N

535 Hz

±27.1 N

18.8 Hz

4.87 Hz

9.75 Hz

38.0 Hz

Table 5.3: Experimental Apparatus Parameters

The values for physical parameters above were calculated from measurements made

on the assembled hardware. Calibrated weights were used to provide known forces for the

stiffness measurements. Inertias and damping values were calculated from curvefits to

trajectories measured in response to a constant applied force.
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5.2.2 Results

Due to the limited torque available from the actuator, very high bandwidths could

not be explored with the present apparatus. So, rather than verifying the predicted

bandwidth improvements of the Joint/Actuator approach, the experiments were selected to

confirm its stability advantages at low target stiffnesses. This can be done without large

actuator forces, as shown by the low-stiffness example of Section 5.1.7.

The results of four experimental runs are presented. The parameters used for each

run are shown below:

Run Controller Drive Inner-Loop Outer-Loop kT dT
# Type Bandwidth Bandwidth

1 Joint/Actuator Decoupled oa = 30 Hz oj = 1.5 Hz 50 N/m 30 Ns/m

2 Joint/Actuator Decoupled oa = 30 Hz oj = 1.5 Hz 15 N/m 9 Ns/m

3 Reference Stiff oi = 30 Hz mo = 1.5 Hz 50 N/mr 30 Ns/m

4 Reference Stiff coi = 30 Hz oo = 0.1 Hz 50 N/m 30 Ns/m

Table 5.4: Experimental Parameters

The achievable sampling rate of 535 Hz limited the inner-loop bandwidth to 30 Hz

in each case. The maximum outer-loop bandwidth of 1.5 Hz for the Joint/Actuator

controller was set by saturation limits.

Run 1 was chosen to demonstrate stable contact with a rigid environment and

relatively soft target stiffness, using the new controller design. Run 2 was chosen to

demonstrate behavior on the edge of stability: the target values were found by trial-and-

error to be ones which produce bouncing from the surface which neither grows in

magnitude nor damps out (when the target trajectory should be producing constant force).

Comparison with the simulation for this borderline case provides a sensitive test of the

simulator's accuracy in predicting contact stability.
Run 3 directly compares the reference design controller with the Joint/Actuator

controller of Run 1. It shows instability upon contact. Run 4 reduces the outer loop
bandwidth in an attempt to improve stability. Bouncing still occurs, and tracking is
degraded.
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The experimental trajectory is the low-velocity one used in the simulations of

Section 5.1. The "wall" at X = 0 in this case is solid aluminum; much more rigid than the

arm's force sensor. It is therefore the force sensor which sets the effective environmental

compliance.

The force trajectories shown here are slightly different than those in Section 5.1.

Since the purpose is to compare with the experiment, the simulated forces plotted are not

the interaction forces between the tip of the manipulator and the environment as before, but

those that would be measured by the force sensor itself. The difference is the inclusion of

the inertial force due to acceleration of the payload mass (outboard of the force sensor), and

also simulated sensor quantization and filtering. This makes the simulated forces directly

comparable to the experimentally measured ones.

In each case the experimental or simulated trajectory is plotted with the "target"

trajectory for reference, representing the trajectory of an ideal manipulator tracking the

target dynamics.
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Figure 5.28: Experimental Position Trajectory, Run 1
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Figure 5.29: Simulated Position Trajectory, Run 1
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Figure 5.30: Experimental Force Trajectory, Run 1
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Figure 5.31: Simulated Force Trajectory, Run 1

The experimental results differ from the simulation in having larger free-space

position tracking errors, convergence to a slightly incorrect final position, and a notably
"rounder" force peak.
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The final convergence error is attributable to drift in the force sensor calibration

during the run, leading to an incorrect value for the desired equilibrium position. This
effect can be seen to some extent in all of the runs.

Although this is speculation, some stiction at the joint axis could produce the

observed rounding of the force peak, by distorting the relationship between joint position

and endpoint force when the tip is nearly stationary. It would also delay motion when

direction reverses, contributing to the tracking errors seen when the tip comes off of the

surface.

The general behavior of the experiment is close to that of the simulation, however.

Oscillation frequencies and settling times are quite similar. Some oscillation at
approximately 12 Hz is observable in both force trajectories, and oscillation at about 3 Hz
is present in both free-space position trajectories. The steady-state force values achieved
are close to the same, and are approached at similar times. Qualitatively, the overall level of
stability, or damping, in the experimental results matches that of the simulation.
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Figure 5.32: Experimental Position Trajectory, Run 2
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Figure 5.33: Simulated Position Trajectory, Run 2
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Figure 5.34: Experimental Force Trajectory, Run 2
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Figure 5.35: Simulated Force Trajectory, Run 2

Once again, in free space the experimental tracking error is larger than that of the

simulation. The position amplitude of the bounces is higher by a factor of 2-3.
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The force response of the experiment displays some ringing at a frequency of about

25 Hz, which is not present in the simulation. This is due to excitation of the first bending

mode of the link, which is not modeled in the simulation.

The overall response is quite similar. The ramping pattern of the force bounces

during the constant-velocity phase and the approximately constant-amplitude bounces that

follow are a close match in amplitude and frequency. The bounces occur at about 7 Hz in

the simulation and 6 Hz in the experiment, reaching a maximum amplitude of about 1.3 N
in each.

This comparison indicates a particularly good prediction of the stability of the

experiment. Slightly stiffer target dynamics produce decaying bounces, and slightly softer

dynamics produce divergence. Both the simulation and experiment display bouncing of

approximately constant amplitude.
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Figure 5.36: Experimental Position Trajectory, Run 3
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Figure 5.37: Simulated Position Trajectory, Run 3
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Figure 5.38: Experimental Force Trajectory, Run 3

-F - F target

3

2.5

2

F (N) 1.5

1

0.5

0

-0.5
0 0.5 1 1.5 2 2.5 3 3.5

Time (sec.)

Figure 5.39: Simulated Force Trajectory, Run 3

The position amplitude of the rebound is again higher by a factor of 2-3 in the

experiment than in the simulation, but the shape of the bounces is similar. The frequency

of the bouncing itself is about 3 Hz in the simulation and 2 Hz in the experiment. A higher-
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frequency force oscillation superposed on the bounces occurs at about 16 Hz in both the

simulation and experiment. The force amplitude of the bouncing reaches a peak of about

3 N in each.

As the simulation and previous analysis predict, for these target dynamics the

performance of the reference design controller is inferior to the Joint/Actuator performance

of Run 1. Contact with the surface results in bouncing instability in this case, where stable

contact was achieved before. Although it is difficult to make quantitative estimates of

disturbance rejection from this data, evidence of stick-slip behavior can be seen in the

position response of both the experiment and simulation for the reference design, during

the constant-velocity phases of the trajectory.
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Figure 5.40: Experimental Position Trajectory, Run 4
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Figure 5.41: Simulated Position Trajectory, Run 4
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Figure 5.42: Experimental Force Trajectory, Run 4
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Figure 5.43: Simulated Force Trajectory, Run 4

This case exhibits particularly close correspondence between the simulation and
experiment. This might be due to overall lower high-frequency content of the trajectories,

because of the reduced control bandwidth.
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The response consists of a single bounce, reaching a peak force of about 5 N in

each case. Thus, reducing the outer-loop bandwidth to the low value of 0.1 Hz did not

succeed in producing stable contact with the reference design controller. Position and force

tracking are significantly degraded by the reduced bandwidth. Note that once again, stick-

slip behavior can be seen in the position response.

Less formal experiments performed with this hardware indicate that the superior

stability of the Joint/Actuator approach extends to softer target dynamics with softer

environments. Specifically, when the force sensor is pushed with a person's finger or

hand, the environmental stiffness is quite low. The Joint/Actuator controller can produce
smooth, stable response to a finger-push with target dynamics of kT = 1 N/m and

dT = 2 Ns/m, while the reference design responds with (violent) instability.

5.2.3 Conclusions

In the important qualitative areas of smoothness and stability, the simulation

correctly predicts the behavior of actual hardware using the control algorithms studied.

Quantitative predictions of settling time, oscillation frequency, and force amplitude are also

quite good.

The largest errors occur in the prediction of free-space position tracking

performance, with both types of controller. The higher errors seen in the experiments

could be caused by joint-axis disturbance forces (e.g. friction and stiction) which are

unmodeled in the simulation. In a practical application a manipulator designed to take full

advantage of the Joint/Actuator controller design would use a higher joint-loop bandwidth

than the current experiment, giving better rejection of joint-axis disturbance forces. Also, if

a model of joint-axis disturbance forces is available, feedforward compensation in the joint
force command FJD can be used to reduce errors.

The experiments also confirm the results of the low-stiffness simulation of Section

5.1.7. They show that the Joint/Actuator design can improve stability for low target

stiffnesses even without increasing actuator force requirements.

These results indicate that the simple manipulator dynamic model adopted in Section

2.6 is adequate to explain the performance of actual hardware using force control,

validating the analysis of Chapter 4. The experiments demonstrate that real performance

advantages can be obtained with the Joint/Actuator design approach.
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Chapter 6: Conclusions and Recommendations

This chapter reviews the main results of this research, and ventures some

suggestions as to what should be done next. These include design recommendations that

could be applied directly, and topics for further research.

6.1 Summary of Conclusions

" A principal source of instability in existing stiffness controllers is phase lag in
the force feedback term at the environment-link resonance frequency, caused
by transmission dynamics. Filtering the force feedback to reduce its

magnitude at that frequency can improve stability while preserving

performance at lower frequencies.

* The peak impact force of a manipulator during contact with a rigid
environment at velocity V is well approximated by the simple equation:

Fmax,kD 0 = V(mL + mp)kE

for a mass (mL + mp) bouncing on a surface of stiffness kE (the

environmental spring constant). A controller can help damp out the ensuing
oscillations if its bandwidth exceeds C'cn (the reciprocal of the oscillation

decay time) but to reduce the peak force or suppress the initial bounce,
bandwidth must approach the damped natural frequency of contact Wdn.

These values are given by:

=kD + kE dD a1

C m + mp 2(mL + mp)(kD + kE)

where: kD = drive spring constant dD = drive damping constant
mL = link mass mp = payload mass
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* Joint/Actuator control design (introduced here) combined with mechanical

drive decoupling yields significant performance benefits over current designs

in the areas of stability, bandwidth, smoothness, and contact behavior.

* The advantages of the Joint/Actuator approach over force-controlling inner-

loop methods are better rejection of transmission disturbances, the use of a

colocated sensor which allows high gains, and the fact that it is position-based

allowing feedforward friction compensation at both the joint and actuator.

* The principal cost of this approach is an increase in actuator force

requirements, particularly when full advantage is taken of the bandwidth

improvement.

* Although the Joint/Actuator controller depends on a drive model, simulation

shows that modeling errors of +50 % -30 % in drive stiffness and ±50 % in

drive damping are tolerated with minor loss of performance.

* Simulation also indicates that actuator force limits and reference trajectory

filtering can reduce peak actuator forces by a factor of five.

* The response of the Joint/Actuator controller to excessive actuator saturation

is instability; recovery from this instability is facilitated by the use of joint

force limits in software.

* Stability advantages of the Joint/Actuator design at low commanded

stiffnesses are demonstrable in simulation and with hardware, and do not

require large actuator forces.

* The dynamic model and simulation procedure used throughout the thesis are

validated by experimental data.

This thesis addresses the problem of improving the force-control performance of

manipulators with transmission dynamics. Analysis, simulation, and experiments reveal
the shortcomings of current designs and show that the new Joint/Actuator design can
provide a significant improvement, in the typical case where drive compliance is the

performance-limiting factor. The analyses of controller stability tradeoffs, contact

behavior, and saturation limits also contribute new insight into the mechanics of

manipulators and force control algorithms in general.
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6.2 Design Recommendations

Joint/Actuator manipulator design broadens the range of force-control performance

that can be attained with a non-direct drive manipulator. It also relaxes the need to keep the
manipulator drive mechanically stiff, giving the engineer more latitude in transmission

design. However, joint position sensors must be added, and provision made for the drive-

decoupling compliance. For high-bandwidth operation, large actuators will be required.

This section outlines a suggested design procedure for a force-controlling

manipulator, based on the ideas and analyses presented in this thesis. Design is always an

iterative process. The approach described here starts with performance goals and calculates

what is required to achieve them. The goals may then have to be revised and the process
repeated. A popular alternative is to begin with the constraints on cost, size, and mass and
then design for the maximum performance that can be obtained, revising the constraints
later if necessary. Although it may seem that this cost-centered method would produce a

more efficient design, the reverse is often true. Since the first approach forces the designer

to define the required performance up front, a more focused and useful design often

results. Also, the second approach never comes in under budget.

The range of intended tasks must first be carefully defined. The designer begins
with an idea of the required bandwidth, static force capability, payload range, minimum
desired stiffness, maximum desired stiffness, expected maximum collision velocity,
maximum allowable contact force, estimated disturbance forces and required smoothness of
operation.

Maximum required stiffness determines the maximum environmental spring
constant kE that must be dealt with in the following way. Installing a compliant covering
on the manipulator grippers allows the designer to set an upper limit on the effective kE
seen by the manipulator. As shown in Chapter 4, reducing kE lowers contact forces,

reduces bouncing, and improves stability. However, a compliant covering also limits the
maximum effective manipulator stiffness as seen by the payload and environment. The
compliant covering should therefore be used to reduce kE to its minimum acceptable value,
i.e. the maximum required manipulator stiffness.

The minimum required stiffness, combined with knowledge of the payload range
and the requirement that commanded behavior be overdamped, sets a minimum
commanded manipulator damping value dT.

The required control bandwidth sets a minimum value for the joint-loop bandwidth
Oj. Another minimum value for coj is set by the contact requirements. With kE, payload,
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and maximum collision velocity now fixed, if maximum allowable contact force is

exceeded by the resulting open-loop behavior (eqn. 4.3.29), the only remedy is to increase
wj to at least the damped natural frequency of contact odn (from eqn. 4.3.23).

From these values for kE, minimum dT, and minimum coj, the stability criterion

eqn. (4.3.8) leads to a minimum value for the actuator-loop bandwidth wa.

The required position disturbance rejection combined with the already-set
environment parameters give a maximum value for the drive stiffness kD, to be obtained by

adding a linear elastic element to the transmission. A certain minimum amount of drive

decoupling is also required for proper controller operation: to ensure sufficiently accurate

modeling of drive compliance, and to obtain sufficient resolution in the controller's

differencing of actuator and joint position to give a force estimate. The latter limit depends
on the resolution of the position sensors used, and the former can be checked by
calibration.

With minimum values for the control gains and a maximum drive stiffness now set,

the force disturbance rejection can be computed (eqn. 4.3.14) and applied to the expected

disturbance forces. If the resulting trajectory smoothness does not meet requirements, two

remedies are available: increasing bandwidths further or decreasing drive stiffness. Both

increase power consumption and actuator force requirements. Increasing bandwidths may
require faster sampling rates and will increase sensitivity to unmodeled dynamics by
increasing the gain crossover frequency of the open-loop transfer function (eqn. 4.3.6).

On the other hand, decreasing drive stiffness will increase force and power requirements

with no benefit in speed of response (eqn. 4.1.1). This tradeoff must be made with a
detailed knowledge of the costs. As mentioned above, iteration of the design is generally

required.

Some specific hardware recommendations can be made. Since the controller can

cope with a large amount of drive compliance and the actuators are likely to be massive, it
is particularly advantageous to place all of the actuators on the manipulator base.

Transmissions like the tension-element drives used by Townsend [5 1] should be used to

convey actuator forces to the joints.
The next recommendation is to locate the speed-reducing part of the transmission

(e.g. gearbox) at the actuator axis rather than the joint axis, with the decoupling spring

between the transmission and the joint. This has two benefits: it minimizes inertia by
moving the gearbox mass off of the moving links, and it maximizes rejection of force
disturbances arising in the transmission (eqn. 4.2.5).

The third hardware recommendation is to reduce structural mass outboard of the
force sensor to a minimum. As described in Section 4.3.4, any such inertia limits the best
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obtainable contact behavior. For a delicate touch, force-sensing skin is preferable to force-

sensing fingers, which are preferable to a force-sensing wrist, etc.

Finally, if actuator limit cycles prove to be a problem, the designer should recognize

that increasing drive compliance will reduce their effect on endpoint motion. Of course,

standard treatments such as adding a controller deadband are still available.

Some of these design recommendations conflict with those suggested for other
force controller designs. Townsend [511, for instance, recommends increasing kD, lowering

kE until WoE = oD, and locating the speed-reduction at the joint. This is sound advice for

the standard type of controller, because its bandwidth and disturbance rejection are limited

by instability due to drive dynamics. Increasing the natural frequency of drive dynamics

allows higher gains.

In the Joint/Actuator controller it is the inner-loop dynamics which provide an

analogous limit for the outer-loop gains, so in this case stability is improved by increasing

inner-loop bandwidth. Drive stiffness no longer affects stability and is chosen from other

considerations; primarily disturbance rejection.
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6.3 Recommendations for Further Work

In the examples used in this thesis, actuator inertia was set equal to link inertia

(except in the experiment, where measured values differed somewhat). This corresponds

to choosing the "impedance-matching" transmission ratio, which gives the highest joint

acceleration for a given actuator torque capability, in the rigid-drive case.

When the drive is decoupled, however, this ratio is no longer "optimal" by the same

criterion. The proportion of actuator torque which is conveyed to the joint is now

frequency-dependent. Finding the "optimal" transmission ratio will require a more

thorough system analysis, trading off actuator torque costs with desired bandwidth. Since

this tradeoff is very task-specific it was not pursued at this stage of research. The topic

deserves further investigation, since lower actuator inertia would reduce required torques

significantly.

Another area for study would be the addition of feedforward to the joint loop, to

compensate for known disturbances. In standard controllers there is no way to directly

compensate for joint friction, since the sensing and control take place at the actuator. In the

Joint/Actuator design, however, joint position is directly sensed and joint force commands

are explicitly formulated. A model of friction could easily be included, if available. This

potential benefit remains unexploited in this thesis.

Manipulators designed to be very lightweight or carry massive payloads may have

low-frequency link bending modes. These non-colocated modes limit performance in the

same way as drive compliance. The Joint/Actuator design described here does not cope

with link bending any better than a standard design, because link dynamics occur outboard

of the joint sensor. The Joint/Actuator design could be extended, however, to use endpoint

sensing instead of joint sensing. Small-amplitude link bending would then be lumped in

with the deflections due to drive compliance. The deflection of the (softer) drive-

decoupling spring would dominate this effect as well as the original transmission

compliance, and the controller design should improve stability.
Finally, the principles developed here can be generalized to other classes of

mechanism. In addition to enhancing stability in force control, the Joint/Actuator controller
approach combined with mechanical drive decoupling is a powerful method for improving
rejection of mechanical disturbances. It can be thought of as a mechanical analog of
electrical noise-reduction systems (e.g. Dolbym).
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The figure below shows a system with a source of additive noise between the input

and output. One approach to noise reduction is to pre-filter the input signal, boosting its
level at frequencies where noise is significant, then filter the output signal with an inverse

of the pre-filter. The input waveform is restored and the noise is attenuated. This practice

is common in the recording industry, where the processes of analog recording, duplication

and playback add high-frequency noise to a signal.

Figure 6.1: Noise-Reduction Analogy

In the Joint/Actuator manipulator analogy, the post-filter is provided mechanically
by the drive-decoupling compliance, and the pre-filter is the inverse drive model in the
controller software. The "noise" consists of actuator disturbance forces such as friction,
backlash, and cogging. As this thesis demonstrates, the effect of these disturbances on the
output can be reduced significantly.

A wide range of mechanisms could conceivably benefit from this technique.
Although a simple spring is used to decouple the manipulator drive in this thesis, more
sophisticated mechanical filters could certainly be designed to attenuate specific
disturbances.

Noise
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Appendix A: Manipulator Mass Scaling Model

It is assumed that each actuator by itself can produce the required tip acceleration A
with all other joints fixed. This gives:

=A/3L

S= A/2L (A.1)

= A/L

-Each link is assumed to be a uniform beam of length L. With the geometry shown
in Figure 2.1, this gives:

Direct-Drive

JT1 =J 1 =(9
19

Mp +3 ML3
7 1

ML2 + 1ML1+4M 3 +M 2 ) L2

JT 2 = J2 = (4 Mp + ML3 ML2 + M3 ) L2

JT3 =J 3 =(MP +ML3)L2

Geared

J1 =[ 9Mp + 3 ML3
7
3 ML2

1
3 MLU + 1.44(M 3 +MG3 ) + .04 ( M2 + MG2 )] L2

7 1
J2

= [ 4 M + ML3 + ML2 +.04 ( M3 + MG3 )] L2 (A.2b)

J3 = (Mp + ML3 ) L2
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(A.2a)
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For the geared manipulator, actuator rotor inertia is included (neglected in this

approximation for the direct-drive case, since it is most significant with large ratios):

JT 1 = J1/N12 + JA 1

JT2 = J2/N22 + JA 2  (A.3)

JT 3 = J3/N 3
2 + J A 3

Some assumptions need to be made to determine link masses. Design of a

manipulator link depends on many factors, but when designing for minimum mass the

most important constraints are required stiffness, length and maximum girth. For

simplicity, the links here are assumed to be thin-walled tubes of fixed diameter (presumably

determined by geometric constraints of the intended tasks). The thickness of the walls can

be varied to change bending stiffness. This gives stiffness proportional to mass for each
link.

As a rational way of relating stiffness requirements for the different links, it is

assumed here that the worst-case deflection of the payload due to link bending is to be the

same for all links, when imparting to the payload the required acceleration. Actual
deflections would depend on the materials used and link diameters. By taking ML3 (the

mass of the third link) as an independent parameter, the deflections and geometry need not

be determined. The masses of the other links are set by this mass and the requirement of
equal payload deflection under load. ML3 can be considered to set the level of stiffness

required. These assumptions give the following relationship between link masses:

J,MLW J1ML3 -3

(A.4)

ML3 J3
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Combining equations (A.2) and (A.4) gives:

Direct-Drive

ML,M1 =-Mp ( 9 19 7
Mp + ML3 +ML2 + 4 M3 +M2 )

(A.5a)
ML MLM 7

ML2- p (4Mp + ML3 +3 )

19
[9MP + L

ML2-= M

Geared

7
3 + ML2 + 3 + MG3)

7
[4Mp + ML,3 +.04( M3 +M

+ .04 ( M2 + MG2 )1

(A.5b)

ýG3)]

Using Euler's Law T = J cbi
Mp 1; and letting K -• +3

T1 = J1 61

T2 = J2 6d2

1= IALKML1

1=IALKML2 (A.6)

T3 = J3 63 =ALKML3

For the geared case the torques the motors must supply are given by:

TM1 = JT N 1 61

TM2 = JTN 2 12

TM3 =T3 N3 63

A L

A L
SN2

L=A
=A(w(KML 3

N
L JAl)

N
+ L- JA2)

N
L JA3)

(A.7)

The remaining unknowns are motor mass, and (in the geared case) gearbox mass,
transmission ratio, and motor rotor inertia.

ML3
ML= Mp
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Scaling laws are proposed in reference [17], based on a simple analysis of the

physics involved. The following laws are adopted here:

JAi = aA (TMi)PA (A.8)

Mi = aM (TMi)M (A.9)

MGi = cG (Ti)fG (A.10)

Relationships (A.8) and (A.9) follow from arguments in [17]. The dependence of
gearbox mass primarily on output torque Ti in (A.10) is deduced empirically from product

data[59].
Values for the exponents PA and iPM can be obtained on theoretical grounds[ 17 ].

For the purposes of this model, all values were taken from curvefits to product data [58,59] .

These numbers apply specifically to DC brushless motors, a type suited to space

applications. Reasonable agreement exists between the theoretical and empirical values:

Parameter Empirical Theoretical

aA 1.11 x 10 - 4 kgm 2

PA 1.33 1.22

aM 3.2 kg

PM .694 .731

aG .15 kg

PG .6

Table A.1: Inertial Scaling Parameters

(Note: These values assume torque is measured in Nm)

The direct-drive case can now be solved. T3 is calculated from equation (A.6).
This gives M3 through equation (A.9). ML2 is then calculated using equation (A.5a).
Equation (A.6) gives T2 , and so on.
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The total mass is given by:

Direct-Drive

Mr = M 1 + M2 + M 3 + ML1 +ML 2 + ML3  (A.1 lla)

Geared

Mr = M + M2 + M 3 + MG1 + MG2 + MG3 + ML + ML 2 + ML3  (A.1 lb)

The geared case still contains unknowns: the transmission ratios Ni. Since mass is

the "cost" function, the transmission ratios are chosen to minimize mass.
From equations (A.6) and (A.10), MGi does not depend on N i. From equation

(A.5), MLi does not depend on N i.Therefore the only mass dependence on transmission
ratio is that of M i. Mass is a monotonic function of motor torque by equation (A.9).
Therefore minimizing mass is equivalent to minimizing motor torque TMi.

The following equations follow from (A.7) and (A.8):

TM 1 =j- -( KML + A (TM1)CA)

TM2  A L N2
TM2 2( KML2 + A(TM2)A) (A.12)

L N3

TM3 =A(W ( KML3 + A (TM3)A)

To minimize TMi with respect to Ni, the partial derivatives M i are set to zero.
aNi

This gives:

Ni2  KMLi L2
S Li (A.13)1 A (TMi))A
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Combining equations (A.12) and (A.13):

2ALKML1
TM1= 3N 1

ALKML 2TM2 = NL2 (A.14)TM2= N2

2ALKML
3

TM3 = N3

J.
In other words, the optimization sets the actuator inertia JAi equal to , the arm

Ni2

inertia as seen from the motor. This is a familiar result, giving the maximum joint
acceleration for a given actuator torque. Ni is known as the "impedance-matching"

transmission ratio.

Equations (A.13) and (A.14) give:

N 2ALKMP1 A2- 3L (2 -PA

22-PA [A aA

-N2 A LK (2 -A)

N3 = [2ALKML3 ] A)[2AL I

Now equation (A.15) can be solved for N3 . Equation (A.14) then gives TM3 ,
which gives M3 by equation (A.9). T3 is obtained from equation (A.6), giving MG3 by
equation (A.10). Now equation (A.5b) can be solved for ML2 . Equation (A.15) is then
solved for N2, and so on.

In this way all of the dependent parameters are calculated, finally giving the total
mass by equation (A.11).
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Appendix B: Analysis of Backlash

A nonlinear control analysis was undertaken to investigate the effects of backlash

on a serial-link rotary-joint manipulator. The following section describes the manipulator

model and control law assumed. Since these dynamics are nonlinear even without

backlash, appeal is made to LaSalle's Theorem to prove global stability. Then backlash is

added and a search for potential limit cycles made using Sinusoidal-Input Describing

Functions (SIDF's). These results are then checked by numerical simulation of the

nonlinear dynamics.

The advantage of the SIDF approach is that it yields symbolic equations for the

amplitude and frequency of limit cycles, giving more insight than simulation results alone.

The simulations allow assessment of the accuracy of the SIDF method for particular cases.

B.1 Manipulator Model

The following simplified manipulator model is used:

Figure B.1: 2-Link Manipulator Model
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This is a two-link manipulator with rotational joints having parallel axes. Motion is

therefore confined to a plane. Assume that L1 = L2 = L and that the links are thin rods of

equal mass M, distributed evenly over their length. No gravity effects are considered.

The model was chosen to be as simple as possible while retaining the nonlinear

character of common multi-DOF manipulators. Derivation of the dynamical equations

follows standard Lagrangian procedure[30].

The kinetic energy associated with translation of each link is:

E1 =M L2 62

(B.1)

E2 = ML2[ 12+cos(02) 1 (1 + 62)+ 1 (61 + 2)2]

The rotational kinetic energy of each link is given by:

R1 = M L2 12

(B.2)

R2  4 M L2 (01 + 02) 2

Combining these equations one obtains the total kinetic energy of the system, which
is also the Lagrangian L, since there is no potential energy. To simplify the expressions,

normalize by setting M L2 = 1

=[ + cos(02)] 12 + [+ cos(0 2)] 01 6 + 2 (B.3)

Using Lagrange's equation dt .I I- = Ti , one obtains:

T1 =[1 + 2 cos(0 2)] 1 + [ + cos(0 2)] 2 - sin(0 2) a2 (2 61 + 02)

(B.4)

T2 = + cos(0 2 )] 1 + + sin(0 2) 612

where Ti is the torque applied to the ith joint. These equations provide the dynamical

description of the plant.
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B.2 Control Law

A simple linear control law is assumed, using position and velocity feedback on
each joint. A fixed set point of 01 = 02 = 0 is used, so the joint torques are given by:

T1 = k1 81 + k3 81 (B.5)

T2 = k2 02 + k4 82

Some performance criteria will be used to set the gains. The system can be roughly
approximated by setting the second-order velocity-dependent terms to zero and considering
each joint separately. The linearized dynamics become:

16 = T1 = k1 81 + k3 81

(B.6)

S= =T2 = k2 2 + k4 62

These second-order linear equations define a natural frequency and damping ratio

for each joint:

O2 = -k 2

(B.7)

3
!2a - 16k 1

k4 3

22 472 2 k 2
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It seems reasonable to equate the natural frequencies (and damping ratios) for the

two joints, which gives:

k2 =-

(B.8)

k4 8

Later in the analysis, the set of gains will be specified by the controller bandwidth

Coc = cl = On2 and damping ratio ' of the linearized system (B.6). The actual gains can

be calculated from equations (B.7) and (B.8) if desired.

B.3 Stability Analysis

In this section, the second method of Lyapunov will be applied to the system

described by equations (B.4) and (B.5) to prove that its behavior is uniformly,

asymptotically, stable in the large (UASIL), for appropriately chosen gains. A similar

derivation has appeared in [49].

LaSalle's Theorem states[37]:

For a free dynamic system k= f(t, t) where f(Q, t) = 0_and ft, t) =

f(, t + T), for all t 2 0: If a scalar function V(, t) = V(, t + c) is
defined such that

(i) V(, t)= 0
(ii) V(x, t) is positive definite, i.e. there exists a

continuous nondecreasing function a such that

a(O) = 0 and 0 < a(llxll) 5 V(x, t).

(iii) a(llxll) -+ oo as Illl - oo

(iv) V(x, t) is non-positive and not identically zero

along any solution of the differential equation

except x = Q.

then the equilibrium state x = 0 is UASIL and V is called a
Lyapunov function.
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To apply this theorem, let V be defined by:

1i2 + [ + cos(02)] 1 G2 +I3 -1k 1 012 -k 2 22

(B.9)

which is just the kinetic energy of the system from equation (B.3) plus terms which would

be the potential energy of the system if the control gains were spring constants of physical

springs. Hence, V corresponds to the total system energy.
Clearly V(Q, t) = 0, so condition (i) is satisfied. If it is required that k1 < 0 and

k2 < 0, the only potentially negative term of V is [2 + cos(02) 6 1 42 . The first three

terms of equation (B.9) can be factored as follows:

[ + cos(02

[ + cos(02) [1

[6i

+12 [4+ +os(02)] 1 2+ 22

2 + 3 cos(0 2) + 4 9 cos 2 (02) - 16

10 + 6 cos(0 2)

2 + 3 cos(0 2) - 4 9 cos2 (02) - 16
10 + 6 cos(0 2)

The first factor is always positive, and since 9 cos2 (02) - 16 < 0, the second and

third factors can be written (x + iy)(x - iy) = x2 + y2 > 0. Writing V in this way:

V=[+ cos(02)][01
+ 2 2 + 3 cos(02)

10 + 6 cos(0 2)

-kl 81
2 - k2 02

2

16 - 9 cos2(02)+ (10 + 6 22
(10 + 6 cos(02)) 2

(B.11)

By inspection of the above equation, V(x, t) > 0 for all x * 0, and V is not an
explicit function of t, so V is positive definite, satisfying condition (ii) of LaSalle's

Theorem. Condition (iii) is also clearly satisfied by equation (B.11).

V =3 + cos(0 2)

(B.10)
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The derivative of V(%, t) is given by:

Vr(, t) = k3 012 + k4 622  (B.12)

V(1., t) is non-positive for k3 5 0 and k4 5 0. If we further restrict k3 * 0 and

k4 * 0, then the only region in which V(x, t) = 0 is the plane 61 = 02 = 0. Since the

only trajectory which lies in this plane and satisfies the differential equation is the origin,

condition (iv) of LaSalle's theorem is satisfied.

The Lyapunov function V therefore satisfies LaSalle's theorem and proves the

system to be UASIL with the following constraints on the gains:

k1 <0

k2 < 0 (B.13)

k3 <0

k4 <0

This confirms one's intuition, as it agrees with the results of linearized analysis

using equations (B.6). Also, an analogy can be made between colocated PD control with

negative gains and the action of mechanical springs and dampers attached to the joints.

Since such components are passive they do not add energy to the system. If motion exists,

the dampers remove energy, so stability follows.

B.4 Derivation of Equivalent Linear System

The next step is to introduce backlash into the system, using the input-output
relationship illustrated in Figure 2.3. Note that the backlash is introduced here between the
sensor and actuator. In a real manipulator this would correspond to measuring joint angle
while controlling actuator position. In a more complicated system implementing force
control, the position setpoint is determined by the forces sensed at the tip; this leads to a
similar effect.

Since the goal is to detect potential limit cycles, Sinusoidal-Input Describing
Functions (SIDF's) are used to define an equivalent linear system [201. This is an
approximate method, which assumes a sinusoidal form for the system variables. The
nonlinearities in the dynamical equations are replaced by linear terms, whose gains are the
Fourier series coefficients for the first harmonic (higher harmonics are assumed negligible).
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The accuracy of this method depends on the "filtering hypothesis," that the open

loop transfer function acts as a low-pass filter. This is often justified for equations

describing physical systems. In this case the inertial nature of the plant provides filtering,

but the backlash nonlinearity itself adds higher harmonics, so results will be checked by
simulation.

It is assumed that both joints oscillate at frequency o, with constant phase

difference 0:

01 = Alei

01 =ioAle

01 = -02 Al

Any nonlinear term f(0
or N2(A1,A2 ,wO,) 02 where:

NI(AI,A2,,) -
x A,

02 = A2 ei(t + 4)

02 = i o A2 ei(*t + 4)

k2 = _)2 A2 ei(ct + 0)

jo)t (B.14)

1,01, 01,02 92, 02) can be replaced by NI(A 1,A2,0,O) 01

2x

I f(Alsingp, mcAlcos(p, ... , -c 2 A2sin(p+)) e-i9P dp

(B.15)

N2(A1,A2 ,C4)M = f(Alsin•, coAlcosq, ... , -o 2A2sin(cp+O)) e-i(q'+) d(p
x A 2

Each term in the dynamical equations is considered in turn, and an equivalent linear
equation for (B.4) derived. Dividing by eia removes time dependence, and resolution into
real and imaginary components gives the following four equations:

2" -2bA 1 -k lsin I -b + A12 2bA- b2 =

(B.16)

A2 cos4 5 J 1(A 2 )cos +os()(A)2 4 3A1 + J0 (A2) + A + cos(2)J2(A2)
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klj2bA - b2· aka_ cok3  sin-I(A 1 A1 -by
,x ý A12 7 27IC A) A12

2bAl - b2
-

(B.17)

2 A2sin4 J 1(A2)sin(2 3A1 + Al + sin(24)J 2(A 2)

k2cos4 - k4sin x sin 2 - b
+ sin-x2 F 2

+ 2 - b 2bA 2bA2 -b2 +

A22 Y 21

k2sin4 + wk4cos 2bA 2 b21 =
X A22= (B.18)

2A 2cos_ 2 A 1J1(A2)cos# A1J3(A2)os(3)
3A 1 -3" J 0 (A 2) + 2 +

k2sinL -ok4cos[ + sin - b)
x 2EA2 A2 2  2bA 2 - b2 +

SAg22

k2coso + cok 4 sino b2 - 2bA 21

x A222
(B.19)

A, 2A2sino 3Alsino J1 (A2) A J3(A2)sin(30)
S- 3A 1  + 2 + sin(24)J2 (A2 ) + 2

where Ji() are Bessel functions of the first kind of order i and b is the angular magnitude of

the backlash, in radians.

B.5 Limit Cycle Prediction

When the amount of backlash b and the gains kl - k4 are fixed, equations (B. 16)
through (B. 19) are four nonlinear equations in four unknowns (A1, A2 , Co, 0). A solution

to these equations represents a limit cycle. Using c c and C to specify the gains, inspection
of the equations shows that if a solution (A1, A2, (o, 0) exists for o, and C, then a solution
(A1, A2, Cco, ) exists for Co c and '. In other words, A1, A2, and 0 do not depend on
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controller bandwidth wc, and w is simply proportional to it. This allows a restatement of

the solution as (A1, A2, -, 4), now only a function of backlash magnitude b and damping
COC

ratio C.
The equations (B.16) - (B.19) were solved numerically for a variety of damping

ratios, assuming a backlash magnitude of .05 radians. A solution (limit cycle) was found

in all cases, with the parameters shown in Figures B.2 - B.4:

Peak-to-Peak
Amplitude
(radians)

0.1

0.01

A2

Al

Bac

0.01 1 10

Figure B.2: Limit Cycle Amplitude vs. Damping Ratio
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Figure B.3: Limit Cycle Phase vs. Damping Ratio
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Figure B.4: Limit Cycle Frequency Ratio vs. Damping Ratio

B.6 System Simulation

Control analysis using SIDF's to detect limit cycles should include simulation of the
nonlinear system to test the accuracy of predictions. The SIDF method used above can
save a considerable amount of simulation time by indicating where to look for limit cycles,
but does not conclusively prove their existence or indicate whether they are stable or
unstable.

Equations (B.4) plus the control law (B.5) and backlash were integrated
numerically for two values of .': 0.1 and 2.0. The gain used was k, = -20000, giving
controller bandwidth coc = 61.24 rad/sec (9.75 Hz), a respectable but not far-fetched
value for a real manipulator. Backlash was again set at 0.05 radians. A number of runs
were performed from different initial conditions.

A single stable limit cycle developed in each case. For the r = 0.1 case, Figure B.5
shows the joint space trajectory as the limit cycle is approached from rather distant initial
conditions.

1
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Figure B.6 shows
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Figure B.7 shows the time variation of the joint angles in the developed limit cycle.
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Figure B.7: Joint angles vs. time; C = 0.1

Figures B.8 and B.9 show behavior in the C = 2.0 case. Both of these figures

describe the response after a considerable "settling in" period has taken place; however it is
clear that the shape of each cycle is still changing. The motion seems likely to remain

quasi-periodic, with stable average amplitude and frequency but variable cycle shape.
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B.7 Accuracy of SIDF Predictions

The following table compares the results of prediction and simulation:

0.1

2.0

.1486

.1716

-13 %

.0280

.0271
+3%

Al A 2 Caoc/

predicted
simulated

error (% of

sim.)

predicted
simulated

error (% of

sim.)

Table B.1: Limit Cycle Parameters

The SIDF method predicted amplitudes reasonably well, was very accurate with
frequency in one case but not the other, and relative phase prediction was fair in one case

and indeterminate in the other (the ? in the table), due to the irregular shape of the response.

.7148

.7187
-.5 %

.4496

.3083

+46 %
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.3860

.4486

-14%

.0332

.0305

+9 %

-. 123

-.099

-25 %

-.259

<0
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The difference in accuracy between the two cases can be explained with reference to

Figures B.7 and B.9. In the former the response is clearly very close to sinusoidal, and in
this case the predicted frequency was very accurate. In the latter the response is not even

truly periodic, so the assumption of the filtering hypothesis is less valid.

Another test of the filtering hypothesis for this system is given by Figures B.6 and

B.8. Were the motions truly sinusoidal the loci of the limit cycles would be ellipses.

Figure B.6 is close, but in Figure B.8 the resemblance to an ellipse is rough.

The assumption made during equivalent linearization that the joints oscillate with the

same frequency is closely supported by the simulation data; the consequent assumption that
there is a constant phase relationship between them appears less valid. Since phase
predictions themselves are of little interest compared to amplitude and frequency, the
simplification provided by this assumption still seems justified.

Overall, the predictions were good. Using the predicted limit cycle as an initial
condition, the simulation rapidly converged on the true limit cycle in each case tested. If
simulation had been the only tool, much more time and effort would have been required to

characterize the limit cycles.



Appendix C: Controller Listings

JALoop.C
Joint/Actuator Controller

#include <stdio.h>
#include <math.h>

#defmine Sf 120
#define Cf 20
#define H .00187
#define KD .6215
#define KDI 1.609
#define DD .00279
#define DA .06037

/* Stiction estimate (units = .01323 N)
/* Coulomb friction estimate (units = .01323 N)
/* Sample time (sec)
/* Drive stiffness estimate (units = .00323 N/m)
/* Inverse of drive stiffness
/* Drive damping estimate (units = .0116 Ns/m)
/* Actuator damping estimate (units = .0116 Ns/m)

static int x[2500],err[2500],f[2500],ua[2500];
static unsigned int t[2500];

main() (
int i,j,k,fr,xrvel,fxd,y,xddot,vj,va,yd,u,limvl,limvh,xO,yO,f0;
long vl;
float xdxr,wa,wj,kt,dt,Ax,Bx,Axh,Bxh,mldcx,mlkcx,madcy,makcy,xr,ft;
FILE *tfile;

wa = 30.;
wj = 1.5;
printf("Enter Kt (N/m):\n");
scanf("%f",&kt);
printf("Enter Dt (Ns/m):n");
scanf("%f",&dt);
Bx = exp(-kt*H/dt);
Ax = 309.75*(Bx - 1.)/kt;
Bxh = .03422*(Bx - 1.)/H;
Axh = .03422*Ax/H;
mldcx = .876*wj;
mlkcx = .09419*wj*wj;
madcy = .17265*wa - DD;
makcy = .026255*wa*wa;
xdxr = 0;
startup();
printf("Enter 0 when ready:n");
scanf("%d",&j);
xr = 0.;
outpw(772,0);
do fO = inpw(784);

while ((fO & 20480) != 0);
fO &= 4095;
xO = inpw(768);
yO = inpw(774);
for (i=0;i<2500;++i) (

outpw(794,0);

Actuator-loop bandwidth (Hz)
Joint-loop bandwidth (Hz)

/* Input reference force reading

Input reference X sensor reading
Input reference Y sensor reading
Begin loop
Clear timer
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xrvel = 0;
if (i<1335) xrvel = -32;
if (i<1068) xrvel = 0;
if (i<534) xrvel = 16;
xr += .0547*xrvel;
outpw(772,0);
do fr = inpw(784);

while ((fr & 20480) != 0);
fr &= 4095;
f[i] = 1.814*(f0 - fr);
xddot = xrvel + Axh*f[i] + Bxh*xdxr;
xdxr = Ax*f[i] + Bx*xdxr;
x[i] = 3.65*(x0 - inpw(768));
vj = inpw(776);
if (vj 1= -32768) J

if (vj < O0) vj = -(vj & 32767);
if (vj == 0) vj = 1;
vl = 32768/vj;
vj = vl;
if (vl > 32767) vj = 32767;
if (vl < -32768) vj = -32768;
if ((vj < 2)&&(vj > -3)) vj = 0;

err[i] = xdxr + xr - x[i];
fxd = f[i] + mldcx*(xddot - vj) + mlkcx*err[i];
if (fxd > 0) fxd += 10;
if (fxd < 0) fxd -= 10;
yd = KDI*fxd + x[i];
y = yO - inpw(774);
va = inpw(782);
if (va != -32768) (

if (va < 0) va = -(va & 32767);
if (va = 0) va = 1;
vl = 136891/va;
va = vl;
if (vl > 32767) va = 32767;
if (vl < -32768) va = -32768;
if ((va < 5)&&(va > -6)) va = 0;

/* Calculate reference trajectory xr

/* Input force sensor reading

/* Calculate desired x trajectory

Input X sensor reading
Input X velocity counter reading

/* Calculate X velocity

Calculate X error
Calculate X force
Backlash compensation

Calculate desired Y position
Input Y sensor reading
Input Y velocity counter reading

/* Calculate Y velocity

) /* Calculate Control
u = DA*va + KD*(y - x[i]) + madcy*(vj - va) + makcy*(yd - y);
if (va>0) u += Cf;
if (va<0) u -= Cf;
if (va--=0)

if (u>0) u += Sf;
if (u<0) u -= Sf;

limvl = -(3278 + va);
limvh = limvl + 6556;
if (u < limvl) u = limvl;
if (u > limvh) u = limvh;
u += 2048;
if (u <0) u = 0;
if (u > 4095) u = 4095;
do t[i] = inpw(794);

while (t[i]<28);
outpw(790,u);
ua[i] = u -2048;

}
outpw(790,2048);
if (j==0) (

printf("Writing to file test.dat\n");
tfile = fopen("test.dat","w");
t[0] = 0;
ft = 0.;

/* Impose saturation limits

/* Wait for Control Time

/* Output Control Signal

/* Write Data to File
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fprintf(tfile,"Kt = %NfDt = %f\tWa = %ftWj = %f\n",kt,dt,wa,wj);
fprintf(tfile,'Time (sec)~tX (m),tXerr (m)\tF (N)1tU (N)n");
fprintf(tfile,"%ft%f\t%t%Nt%f\n",t[0],x[0]/23413.,err[0]/23413.,f[0]*.01323,
ua[0]*.01323);
for (i=1l; i<2500; ++i) (

ft += 66.9e-6*t[i];
fprintf(tfile, "%ftt%f\t%tt%f\N %fn",ft,x [i]/23413.,err[i]/23413.,f[i]*.01323,
ua[i]*.01323);

I
fclose(tfile);

)
printf("Done");

/* Startup Routine; Allows Safe Turn-on of Power Supply */

startup() {
int t= 1;
printf('nTurn on Op-Amp Power in the next 4 seconds.\n");
outpw(794,0);
do (t = inpw(794);

outpw(790,2048);)
while (t>=O);

do (t = inpw(794);
outpw(790,2048);)
while (t<O);

printf("Thank you.\n");
return;
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RefLoop.C
Reference Design Controller

#include <stdio.h>
#include <math.h>

#define Sf 120
#define Cf 20
#defme H .00187
#define DA .06037

/* Stiction estimate (units = .01323 N) */
/* Coulomb friction estimate (units = .01323 N) */
/* Sample time (sec) */
/* Actuator damping estimate (units = .0116 Ns/m)*/

static int x[2500],f[2500],ua[25001;
static unsigned int t[2500];

main() {
int i,j,k,fr,xrvel,y,yddot,vj,va,yd,u,limvl,limvh,xO,yO,fO;
long vl;
float wi,wo,kt,dt,Ax,Bx,madc,makc,xr,ft,ydxr,fydxr;
float oldfydxr,tmp,z,fa,fb,fc,fd;
FILE *tfile;

wi = 30.;
printf("Enter Wo (Hz):n");
scanf("%f",&wo);
printf("Enter Kt (N/m):\n");
scanf("%f",&kt);
printf("Enter Dt (Ns/m):-n");
scanf("%f",&dt);
Bx = exp(-kt*H/dt);
Ax = 309.75*(Bx - l.)/kt;
z = 6.2832*wo*H/sqrt(2.);
fa = 1. - exp(-z)*(cos(z) - sin(z));
fb = exp(-2.*z) - exp(-z)*(cos(z) + sin(z));
fc = -2.*exp(-z)*cos(z);
fd = exp(-2.*z);
madc = .17265*wi;
makc = .026255*wi*wi;
ydxr = 0.;
fydxr = 0.;
oldfydxr = 0.;
startup();
printf("Enter 0 when ready:\");
scanf("%d",&j);
xr = 0.;
outpw(772,0);
do f0 = inpw(784);

while ((fO & 20480) != 0);
fD &= 4095;
xO = inpw(768);
yO = inpw(774);
for (i=0;i<2500;++i) {

outpw(794,0);
xrvel = 0;
if (i<1335) xrvel = -32;
if (i<1068) xrvel = 0;
if (i<534) xrvel = 16;
xr += .0547*xrvel;
outpw(772,0);
do fr = inpw(784);

while ((fr & 20480) != 0);
fr &= 4095;
f[i] = 1.814*(fO - fr);
x[i] = 3.65*(x0 - inpw(768));

Inner-loop bandwidth (Hz)
Joint-loop bandwidth (Hz)

/* Input reference force reading

Input reference X sensor reading
Input reference Y sensor reading
Begin loop
Clear timer
Calculate reference trajectory xr

/* Input force sensor reading

/* Input X sensor reading



tmp = fydxr;
fydxr = fb*ydxr - fc*fydxr - fd*oldfydxr;
ydxr = Ax*f[i] + Bx*ydxr;
fydxr += fa*ydxr; /*
oldfydxr = tmp;
yd = fydxr + xr; /*
yddot = xrvel + 18.27*(fydxr - oldfydxr);
y = yO - inpw(774);
va = innw(782):
if (va != -32768)

if (va < 0) va = -(va & 32767);
if (va = 0) va = 1;
vl = 136891/va; /*
va = vl;
if (vl > 32767) va = 32767;
if (vl < -32768) va = -32768;
if ((va < 5)&&(va > -6)) va = 0;

} /*
u = DA*va + f[i] + madc*(yddot - va) + makc*(yd - y);
if (va>0) u - Cf;
if (va<0) u -= Cf;
if (va--0)

if (u>O)u += Sf;
if (u<0) u -= Sf;

}
limvl = -(3278 + va); /*
limvh = limvl + 6556;
if (u < limvl) u = limvl;
if (u > limvh) u = limvh;
u +=- 2048;
if (u <0) u = 0;
if (u > 4095) u = 4095;
do t[i] = inpw(794); /*

while (t[i]<28);
outpw(790,u); /*
ua[i] = u -2048;

Filter force reading

Calculate desired Y trajectory

Input Y sensor reading
Input Y velocity counter reading

Calculate Y velocity

Calculate Control

Impose saturation limits

Wait for Control Time

Output Control Signal

}
outpw(790,204 8 );
if (j--0) ( /* Write Data to File

printf("Writing to file test.dat\n");
tfile = fopen("test.dat","w");
t[0] = 0;
ft = 0.;
fprintf(tfile,"Kt = %f\tDt = %t\tWi = %f\tWo = %f\n",kt,dt,wi,wo);
fprintf(tfile,"Time (sec)\tX (m)\tF (N)NtU (N)n");
fprintf(tfile,"%t%f\t%N% t%f\n",t[0],x[0]/23413.,f[0]*.01 3 2 3 ,ua[0]*.013 2 3 );
for (i=l; i<2500; ++i) {

ft += 66.9e-6*t[i];
fprintf(tfile,"%t\t%f\tcf\t%tf\n",ft,x[i]/23413.,f[i]*.01323,ua[i]*.01323);

fclose(tfile);

printf("Done");

216



217

References

[1] Ahmad, S., "Analysis of Robot Drive Train Errors, their Static Effects, and their
Compensations," IEEE J. Robotics and Automation, RA-4, no. 2, pp.
117-128, April 1988.

[2] An, C. H., Hollerbach, J. M., "Dynamic Stability Issues in Force Control of
Manipulators," Proc. 1987 IEEE Int'l. Conf. on Robotics and Automation,
pp. 890-896, Raleigh, NC, March 1987.

[3] An, C. H., Hollerbach, J. M., "Kinematic Stability Issues in Force Control of
Manipulators," Proc. 1987 IEEE Int'l. Conf. on Robotics and Automation,
pp. 897-903, Raleigh, NC, March 1987.

[4] Appleton II, V., "Tom Swift and his Giant Robot," (New York: Grosset &
Dunlap), 1954.

[5] Asada, H., Ogawa, K., "On the Dynamic Analysis of a Manipulator and its End
Effector Interacting with the Environment," Proc. 1987 IEEE Int'l. Conf.
on Robotics and Automation, pp. 751-756, Raleigh, NC, March 1987.

[6] Astrom, K. J., Wittenmark, B., "Computer-Controlled Systems," (New Jersey:
Prentice-Hall), 1984.

[7] Benjamin, M. H., "Design and Analysis of a Control System for the M.I.T.
Precision Assembly Robot," Master's Thesis, M.I.T., January 1985.

[8] Caine, M. E., "Chamferless Assembly of Rectangular Parts in Two and Three
Dimensions," Master's Thesis, M.I.T., June 1985.

[9] Cannon, R. H., Rosenthal, D. E., "Experiments in Control of Flexible Structures
with Noncolocated Sensors and Actuators," AIAA J. Guidance and
Control, 7, no.5 pp. 546-553, Sept.-Oct. 1984.

[10] Cannon, R. H., Schmitz, E., "Initial Experiments on the End-Point Control of a
Flexible One-Link Robot," Int'l. J. Robotics Research, 3, no. 3, pp. 62-
75, 1984.

[11] Canudas, C., Astri6m, K. J., Braun, K., "Adaptive Friction Compensation in
DC-Motor Drives," IEEE J. Robotics and Automation, RA-3, no. 6, pp.
681-685, Dec. 1987.



218

[12] DeLuca, A., Isidori, A., Nicolb, F., "Control of Robot Arm with Elastic Joints
via Nonlinear Dynamic Feedback," Proc. 24 th IEEE Conf. on Decision and
Control, pp. 1671-1679, Fort Lauderdale, FL, Dec. 1985.

[13] De Schutter, J., "A Study of Active Compliant Motion Control Methods for Rigid
Manipulators Based on a Generic Scheme," Proc. 1987 IEEE Int'l. Conf.
on Robotics and Automation, pp. 1060-1065, Raleigh, NC, March 1987.

[14] Desoer, C. A., Shahruz, S. M., "Stability of Dithered Non-Linear Systems with
Backlash or Hysteresis," Int'l. J. Control, 43, no. 4, pp. 1045-1060,
1986.

[15] Eppinger, S. D., Seering, W. P., "Understanding Bandwidth Limitations in
Robot Force Control," Proc. 1987 IEEE Int'l. Conf. on Robotics and
Automation, pp. 262-268, Raleigh, NC, March 1987.

[16] Eppinger, S. D., "Modeling Robot Dynamic Performance for Endpoint Force
Control," Ph.D. Thesis, M.I.T. Dept. of Mechanical Engineering,
September 1988.

[17] Flatau, D. R., "Design Outline for Mini-Arms Based on Manipulator
Technology," AI Memo No. 308, MIT AI Laboratory, May 1973.

[18] Foley, T. M., "NASA Considers System Changes in Effort to Cut Space Station
Costs," Aviation Week & Space Technology, pp. 29-30, Jan. 25, 1988.

[19] Freund, E., "Fast Nonlinear Control with Arbitrary Pole Placement for Industrial
Robots and Manipulators," Int'l. J. Robotics Research, 1, no. 1, pp. 65-
78, 1982.

[20] Gelb, A., VanderVelde, W. E., "Multiple-Input Describing Functions and
Nonlinear System Design" (New York: McGraw-Hill), 1968.

[21] Hogan, N., "Impedance Control: An Approach to Manipulation, Part 1: Theory,
Part 2: Implementation, Part 3: Applications," ASME J. Dyn. Systems,
Meas. and Control, 1985.

[22] Hogan, N., "Stable Execution of Contact Tasks Using Impedance Control,"
Proc. 1987 IEEE Int'l. Conf. on Robotics and Automation, pp. 1047-1053,
Raleigh, NC, March 1987.

[23] Hollars, M. G., "Experiments in End-Point Control of Manipulators with Elastic
Drives" Ph.D. Thesis, Stanford Dept. of Aeronautics and Astronautics,
May 1988.

[24] Jacobsen, S. C., Iversen, E. K., Knutti, D. F., Johnson, R. T., Biggers, K. B.,
"Design of the Utah/MIT Dexterous Hand," Proc. 1986 IEEE Int'l. Conf.
on Robotics and Automation, San Francisco, CA, April 1986.

[25] Jilani, M. A., "Force Feedback Hydraulic Servo for Advanced Assembly
Machines," M.S. Thesis, MIT Dept. of Mech. Eng., Nov. 1974.



219

[26] Kazerooni, H., Houpt, P. K., Sheridan, T. B., "The Fundamental Concepts of
Robust Compliant Motion for Robot Manipulators," Proc. 1986 IEEE Int'l.
Conf. on Robotics and Automation, pp. 418-427, San Francisco, CA, April
1986.

[27] Kazerooni, H., "Robust, Non-Linear Impedance Control for Robot
Manipulators," Proc. 1987 IEEE Int'l. Conf. on Robotics and Automation,
pp. 741-750, Raleigh, NC, March 1987.

[28] Khatib, O., Burdick, J., "Motion and Force Control of Robot Manipulators,"
Proc. 1986 IEEE Int'l. Conf. on Robotics and Automation, pp. 1381-1386,
San Francisco, CA, April 1986.

[29] Kokotovic, P. V., Khalil, H., O'Reilly, J., "Singular Perturbation Methods in
Control: Analysis and Design," (New York: Academic Press), 1986.

[30 Lagrange, J., "Mechanique Analytique," (Paris: Gauthier-Villars), 1788.

[31] Loncaric, J., "Normal Forms of Stiffness and Compliance Matrices," IEEE J.
Robotics and Automation, RA-3, no. 6, pp. 567-572, Dec. 1987.

[32] Luh, J. Y. S., Fisher, W. D., Paul, R. P. C., "Joint Torque Control by a Direct
Feedback for Industrial Robots," IEEE Trans. Automatic Control, AC-28,
no.2, pp. 153-161, Feb. 1983.

[33] Luh, J. Y. S., Walker, M. W., Paul, R. P., "Resolved Acceleration Control of
Mechanical Manipulators," IEEE Trans. Automatic Control, AC-25, pp.
468-474, 1980.

[34] Maples, J. A., Becker, J. J., "Experiments in Force Control of Robotic
Manipulators," Proc. 1986 IEEE Int'l. Conf. on Robotics and Automation,
pp. 695-702, San Francisco, CA, April 1986.

[35] Marino, R., Nicosia, S., "On the Control of Robots with Elastic Joints," Proc.
Automatic Control Conf., pp. 69-70, Boston, MA, June 1985.

[36] Mason, M. T., "Compliant Motion," Robot Motion: Planning and Control,
(Cambridge: MIT Press), pp. 305-322, 1982.

[37] Narendra, K. S., "Stability of Nonlinear Systems," Nonlinear System Analysis
and Synthesis: Volume 1-Fundamental Principles, (New York: American
Society of Mechanical Engineers), 1978.

[38] Ogata, K., "Modern Control Engineering," (New Jersey: Prentice-Hall), 1970.

[39] Paul, R. P. C., "Problems and Research Issues Associated with the Hybrid
Control of Force and Displacement," Proc. 1987 IEEE Int'l. Conf. on
Robotics and Automation, pp. 1966-1971, Raleigh, NC, March 1987.

[40] Raibert, M. H., Craig, J. J., "Hybrid Position/Force Control of Manipulators,"
ASME J. Dyn. Systems, Meas. and Control, 102, pp. 126-133, June
1981.



220

[41] Roberts, R. K., Paul, R. P., Hillberry, B. M., "The Effect of Wrist Force
Sensor Stiffness on the Control of Robot Manipulators," Proc. 1985 IEEE
Int'l. Conf. on Robotics and Automation, pp. 269-274, St. Louis, MO,
March 1985.

[42] Salisbury, J. K., "Active Stiffness Control of a Manipulator in Cartesian
Coordinates," Proc. 19th IEEE Conf. on Decision and Control, Dec. 1980.

[43] Schultz, D. G., Melsa, J. L., "State Functions and Linear Control Systems,"
(New York: McGraw-Hill), 1967.

[44] Slotine, J.-J. E., Hong, S., "Two-Time Scale Sliding Control of Manipulators
with Flexible Joints," Proc. 1986 American Control Conf., Seattle, WA,
1986.

[45] Spong, M. W., Thorp, J. S., Kleinwaks, J. M., "The Control of Robot
Manipulators with Bounded Input," IEEE Trans. on Automatic Control,
AC-31, no. 6, June 1986.

[46] Spong, M. W., Khorasani, K., Kokotovic, P. V., "An Integral Manifold
Approach to the Feedback Control of Flexible Joint Robots," IEEE J.
Robotics and Automation, RA-3, no. 4, pp. 291-300, Aug. 1987.

[47] Stepien, T. M., Sweet, L. M., Good, M. C., Tomizuka, M., "Control of
Tool/Workpiece Contact Force with Application to Robotic Deburring,"
IEEE J. Robotics and Automation, RA-3, no. 1, pp. 7-18, Feb. 1987.

[48] Sweet, L. M., Good, M. C., "Redefinition of the Robot Motion-Control
Problem," IEEE Control Systems Magazine, pp. 18-25, Aug. 1985.

[49] Takegaki, M., Arimoto, S., "A New Feedback Method for Dynamic Control of
Manipulators," ASME J. Dyn. Systems, Meas. and Control, 103, pp.
119-125, June 1981.

[50] Townsend, W. T., Salisbury, J. K., "The Effect of Coulomb Friction and
Stiction on Force Control," Proc. 1987 IEEE Int'l. Conf. on Robotics and
Automation, pp. 883-889, Raleigh, NC, March 1987.

[51] Townsend, W. T., "The Effect of Transmission Design on Force-Controlled
Manipulator Performance," Ph.D. Thesis, M.I.T. Dept. of Mechanical
Engineering, April 1988.

[52] Whitney, D. E., "Force Feedback Control of Manipulator Fine Motions," ASME
J. Dyn. Systems, Meas. and Control, pp. 91-97, June 1977.

[53] Whitney, D. E., "Quasi-Static Assembly of Compliantly Supported Rigid Parts,"
Robot Motion: Planning and Control, (Cambridge: MIT Press), pp. 439-
471, 1982.

[54] Whitney, D. E., "Historical Perspective and State of the Art in Robot Force
Control," Proc. 1985 IEEE Int'l. Conf. on Robotics and Automation, pp.
262-268, St. Louis, MO, March 1985.



221

[55] Whitney, D. E., "Real Robots Don't Need Jigs," Proc. 1986 IEEE Int'l. Conf.
on Robotics and Automation, pp. 746-752, San Francisco, CA, April 1986.

[56] Wlassich, J. J., "Nonlinear Force Feedback Impedance Control," S.M. Thesis,
MIT Dept. of Mech. Eng., 1986.

[57] Youcef-Toumi, K., Li, D., "Force Control of Direct-Drive Manipulators for
Surface Following," Proc. 1987 IEEE Int'l. Conf. on Robotics and
Automation, pp. 2055-2060, Raleigh, NC, March 1987.

[58] "Brushless DC Servo Systems Catalog," General Numeric, Elk Grove Village,
IL, 1987.

[59] "Maxon DC Motor Catalog," Maxon Precision Motors, Inc., Burlingame, CA,
1987.


