Application of the Homotopy Continuation Method to Low-Eccentricity Preliminary Orbit Determination

by

Andrew Markland Stanley Hart

Submitted to the Department of Aeronautics and Astronautics in partial fulfillment of the requirements for the degree of

Master of Science in Aeronautics and Astronautics

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1991

© Massachusetts Institute of Technology 1991. All rights reserved.
Application of the Homotopy Continuation Method to Low-Eccentricity Preliminary Orbit Determination

by

Andrew Markland Stanley Hart

Submitted to the Department of Aeronautics and Astronautics on June, 1991, in partial fulfillment of the requirements for the degree of Master of Science in Aeronautics and Astronautics

Abstract

The homotopy continuation method is a method for solving a set of non-linear equations.

This thesis examines the application of the homotopy continuation method to the preliminary orbit determination of satellites with low eccentricity orbits, extending and modifying techniques of R. L. Smith and C. Huang. Further improvements to the method, to allow more general orbit determination, are considered.

In particular this thesis deals with orbit determination using only six range measurements from a single ground-based tracking station. Application to the Landsat 6 satellite, which is due to be launched in May 1992, is considered.

Thesis Supervisor: Richard Battin
Title: Professor of Aeronautics and Astronautics

Thesis Supervisor: David W. Carter
Title: Staff Member, Draper Laboratory
Acknowledgments

I would like to thank David Carter of The Charles Stark Draper Laboratory for the invaluable time and assistance he provided over the last eight months.

I would also like to thank the Massachusetts Institute of Technology for the financial aid provided by it during that time.

A final note of thanks goes to Professor Richard Battin for his instruction in courses 16.46 and 16.47, which were both interesting and directly applicable to this work, for providing me with the opportunity to work on this subject and for acting as my thesis supervisor.
Biographical Note

The author graduated with first class honors in June 1989 from the University of Southampton, England, with a Bachelor of Engineering degree in Aeronautical and Astronautical Engineering.

While at The Massachusetts Institute of Technology the author spent six months as a research assistant doing experimental work in The Wright Brothers Wind Tunnel.
Contents

1 Introduction
 1.1 Motivation .. 9
 1.2 Previous Work Concerning Preliminary Orbit Determination .. 11
 1.3 Previous Work Concerning The Homotopy Continuation Method .. 11
 1.4 Outline of Thesis 12

2 The Method .. 13
 2.1 Setting Up the Problem 13
 2.2 Mechanics of the Method 15
 2.3 Direct Newton-Raphson 21
 2.4 Screening .. 22

3 Curve Following Algorithm 25
 3.1 Starter ... 26
 3.2 Step Size Selection 27
 3.3 Predictor ... 28
 3.4 Corrector .. 29
 3.5 Monitor .. 32
 3.6 Arc Length Correction 33
 3.7 Solution State Collection 37
 3.8 Critical State Collection 41
 3.9 Termination of the Algorithm 45
 3.9.1 Normal Termination 45
List of Figures

2-1 Schematic Diagram of a Simple Solution Curve 16
2-2 Schematic Diagram Showing the Possible Effects of Varying the A Priori Estimate on the Shape of the Solution Curve 17
2-3 Schematic Plot Showing a Case Where the A Priori Estimate and the Solution Which We Seek Lie on Different Loops 19
2-4 Schematic Diagram Illustrating the Corrector Scheme Employed 20
2-5 Schematic Diagram of a Case Where the Simple Newton-Raphson Method May Converge to the Wrong Solution 23
2-6 Schematic Diagram of a Case Where the Simple Newton-Raphson Method May Diverge ... 24
3-1 Schematic Diagram Illustrating How Correcting With Constant λ Could Cause Problems ... 30
3-2 Schematic Example of the Solution Curve Doubling Back 34
3-3 Schematic Example of the Solution Curve Skipping a Portion of the Solution Curve Where it Pinches In 35
3-4 Schematic Diagram to Show the Effect of Limiting λ Step Between Consecutive Points on the Solution Curve 36
3-5 Schematic Diagram Showing Potential Problem With Solution State Collector .. 39
3-6 Schematic Diagram Showing Another Potential Problem With Solution State Collector ... 40
3-7 Schematic Diagrams Representing the Different Discard and Reset Scenarios

4-1 Simple 2-D Example Showing Why a Convergence Criterion on the Size of the Correction Vector can be Poor

5-1 Plots Showing the Changing Shape of a Solution Curve as the A Priori Epoch Estimate is Varied in a Real Case

6-1 Plots of Exact and Replacement Factor vs Inclination
6-2 Plot of Replacement Function Divided by Exact Function vs Inclination
6-3 Plot of Inclination vs λ Using the Exact Factor in a Real Case
6-4 Plot of Inclination vs λ Using the Replacement Factor in a Real Case

10-1 A Plot Showing That Eccentricity on the Solution Curve Can be Large Even if the A Priori Estimate and the Real Solution Have Very Low Eccentricities
Chapter 1

Introduction

The purpose of any satellite orbit determination method is to use tracking data to determine the orbit of a satellite at some epoch time so that predictions regarding the future path of that satellite can be made. This research addresses the use of the homotopy continuation method with only six range measurements from a single Earth based tracking station for orbit determination. A range measurement is simply a measurement of the distance between the tracking station and the satellite.

1.1 Motivation

Up until recently the Landsat program was owned and operated by the United States government (NASA). The tracking data available to the program consisted of range, range-rate and angle data from a number of different Earth tracking stations, as well as data from the Tracking and Data Relay Satellite System (TDRSS).

In 1984, the Landsat Remote Sensing Commercialization Act was passed by Congress. This act allowed a contract for the operation and expansion of the Landsat system to be awarded to a private firm through competitive bidding. The contract was awarded in September 1985 to the Earth Observation Satellite Company (EOSAT) which is based in Lanham, Maryland.

EOSAT is a partnership formed in 1984 by General Motors' Hughes Aircraft Company, the General Electric Astro-Space Division, and Computer Sciences Corporation.
EOSAT is responsible for the development of the new Landsat and for worldwide marketing of Landsat data. It has initiated the development of the next generation Landsat satellite, Landsat 6.

EOSAT currently receives ephemeris and payload data from the Goddard Space Flight Center (GSFC) in Greenbelt, Maryland, and through the Tracking and Data Relay Satellite System. Tracking data consisting of range, range-rate, and angle data is processed at NASA GSFC. This means that EOSAT does not have control over what data they receive. Also, they have to pay for that data. For these reasons, EOSAT is planning to replace the NASA and other U.S. Government facilities with its own facilities for Landsat 6. This will include a tracking and data reception station in Norman, Oklahoma.

Range-rate is measured by observing the Doppler frequency shift between the satellite transponder and the tracking station receiver. The planned Landsat 6 transponder will be operating at frequencies which experience a maximum of about only 2 Hz Doppler shift horizon-to-horizon [10]. This means that range-rate measurements would have poor resolution. EOSAT plans to have some angle measurement equipment in the tracking station, but angle measurements are sensitive to atmospheric refraction, especially when the satellite is low over the horizon, and so may not be accurate enough to use for preliminary orbit determination. A preliminary orbit determination method that requires only range measurements seems desirable. An in-depth discussion of the history and functions of Landsat and EOSAT is contained in reference [11].

Out of the desire for a preliminary orbit determination method which requires only range measurements from a single Earth-based tracking station comes the motivation for the adaptation of the homotopy continuation method presented in this thesis.
1.2 Previous Work Concerning Preliminary Orbit Determination

A variety of techniques using varying combinations of range, range-rate and angle data have been researched in the past. A number of the classical orbit determination methods are presented in reference [9]. Chapter 9 of reference [8] presents algorithms using range and angle data. In reference [13] a preliminary orbit determination method using satellite-to-satellite range and range-rate data is presented. Reference [14] presents a method requiring range-only data from a single station but the method only applies to circular orbit determination. Another range-only method is presented in reference [15], but the method is a least squares method and so has a limited radius of convergence, and it also uses satellite-to-satellite tracking.

1.3 Previous Work Concerning The Homotopy Continuation Method

Many of the ideas for this research were derived from a National Aeronautics and Space Administration technical memorandum by R. L. Smith and C. Huang [1]. That memorandum addressed a similar early orbit determination problem, based on the use of range and range-rate observational data as obtained from the Tracking and Data Relay Satellite System (TDRSS). In this work, only range data obtained from a single Earth-bound tracking station is considered.

A more condensed and easier to read version of the technical memorandum mentioned above can be found in an American Institute of Aeronautics and Astronautics paper by the same authors [2].

A theoretical basis for the homotopy continuation method is presented in reference [3]. Examples of the homotopy continuation method applied to several engineering problems, not including orbit determination, are provided in reference [6].
1.4 Outline of Thesis

This chapter presents some of the practical background that led to this particular piece of research and provides information about related research. Chapter 2 presents a description of the homotopy continuation method as applied to preliminary orbit determination. Chapter 3 describes each of the steps in the algorithm designed to solve the early orbit determination problem. Chapter 4 presents a detailed discussion of the Newton-Raphson corrector step which is the major computational step in the algorithm. Chapter 5 discusses the problems associated with this method of preliminary orbit determination. Chapter 6 contains a discussion of the trick used to overcome the singularity at inclination \(\approx 63.5^\circ \) in the Brouwer-Lyddane orbit propagator. Chapter 7 contains a sample of the results produced by running the program on some real Landsat 4 data. Chapter 8 presents a good strategy for using the software developed during this research. Chapter 9 provides a list of the conclusions drawn from this research. In Chapter 10, recommendations for how this work could be extended and improved are suggested. Appendix A contains a brief description of the Gaussian quadrature technique for evaluating integrals. Appendix B contains a user’s guide, provides information about the computer subroutines used in this research, and also contains complete source code of the main program and all of the sub-programs.
Chapter 2

The Method

2.1 Setting Up the Problem

The problem is to carry out orbit determination of artificial satellite using only six range (distance between the tracker and the satellite) measurements from a single Earth based tracker. The method that is employed is the homotopy continuation method.

A clear and simple statement of the objective of this method is as follows:

Given the following data:

- the Earth-fixed coordinates of a single tracking station
- the right ascension of Greenwich at some epoch time
- six fixed times relative to the epoch time
- six range observations at those six fixed times relative to epoch
- an a priori estimate to the satellite state at epoch
- an orbit state propagation model, that is, some orbital dynamics model such as two-body mechanics

Calculate the exact satellite state at epoch. In this thesis a satellite state consists of a set of six orbital elements.
Let a general epoch orbit state be represented by x, a general set of six ranges at the six observation times be represented by y and the function that maps the epoch state to the ranges be represented by f. This function includes an orbit propagator which propagates the epoch state to a current state at each of the six chosen times. Then those current states are converted to inertial Cartesian coordinates. The tracking station’s position in inertial Cartesian coordinates, at each of the times, is also computed. Finally, the root sum of the squares is used to compute the ranges from the satellite and station positions at each of the six times. Note that f depends implicitly on the six times chosen and on the propagation model.

The a priori estimate of the epoch state is denoted by x_{ed}, the set of ranges calculated by evaluating $f(x_{ed})$ is denoted by y_{ed} and the observed set of ranges is denoted by y_{es}. Then, we can say that by definition:

$$f(x_{ed}) = y_{ed} \quad (2.1)$$

and the problem may be restated as a search for the exact epoch state x_{es} that solves the equation:

$$f(x_{es}) = y_{es} \quad (2.2)$$

Now consider the general set of ranges y given by:

$$y = \lambda y_{es} + (1 - \lambda) y_{ed} \quad (2.3)$$

where λ is the homotopy parameter.

Consider also, the locus of solutions (λ, x) to the equation:

$$f(x) = \lambda y_{es} + (1 - \lambda) y_{ed} \quad (2.4)$$

Clearly, for $\lambda = 0$, x_{ed} is a solution and for $\lambda = 1$, x_{es} is a solution. Note however that for any given value of λ the number of solutions to equation 2.4 may be zero, one, or more.

The assumption of the homotopy continuation method is that the locus of solutions
to equation 2.4 in the seven dimensional \(\lambda-x \) space, is a set of one or more disjoint, smooth, closed loops. A very simple example of a possible solution curve is shown in figure 2-1.

From the figure it is evident that in this simple case there is one solution at \(\lambda = 1 \), one solution at \(\lambda = 0 \), two solutions for all \(\lambda \) in the range \(0 < \lambda < 1 \), and no solutions with \(\lambda < 0 \) or with \(1 < \lambda \).

It is constructive at this point to consider the effect on the shape of the solution curve(s), of changing the a priori estimated epoch state, \(x_{est} \), while keeping the remainder of the problem parameters constant.

Logically, a different a priori estimate should have no effect whatsoever on the actual solution states, i.e., the \(\lambda = 1 \) solutions. This is borne out by the fact that the set of ranges \(y \) given by equation 2.3 for \(\lambda = 1 \) is always \(y_{ex} \) and so is independent of \(x_{est} \). For all other values of \(\lambda \) we would expect solutions to change as \(x_{est} \) is changed, and so the overall solution curve should change shape. Furthermore, we should expect that if the a priori estimate is varied smoothly, so too would the shape of the solution curve. Figure 2-2 shows an example of this taking place.

This figure serves to illustrate an additional point: as the a priori estimate varies, the solution curve can smoothly separate into two loops and in fact, for some special a priori estimate, the solution curve will be at a transition point between being one loop with two lobes and being two separate loops. The significance of this type of transition point will be discussed later on in this thesis after the mechanics of the method have been addressed, something which will be dealt with in the very next section.

2.2 Mechanics of the Method

Theoretically, the method simply entails following the solution curve in the seven dimensional \(\lambda-x \) space around from the a priori state, which is a point at \(\lambda = 0 \) on the curve, through all the \(\lambda = 1 \) points(candidate solutions), recording them as we pass, back to initial start point at \(\lambda = 0 \). It may be necessary to screen the solutions
Figure 2-1: Schematic Diagram of a Simple Solution Curve
Figure 2-2: Schematic Diagram Showing the Possible Effects of Varying the A Priori Estimate on the Shape of the Solution Curve
in some way in order to pick out the solution which we seek. That is, the solution which agrees with existing a priori knowledge and which is sufficiently accurate to be useful for making good predictions about the satellite state at future times.

At this time, it should be pointed out that in a case where more than one disjoint loop exists there is no guarantee that your a priori estimate will lie on the same loop as the solution which you seek [see figure 2-3]. However, it was found that the more accurate the a priori guess, the more likely it will be that that guess and the solution which you seek will lie on the same loop. What needs to be done if this ideal situation does not exist will be dealt with later on in this thesis. For now, it is constructive to assume that a good a priori estimate exists and so the a priori estimate and the solution which you seek do lie on the same loop. For the Landsat 6 case this a reasonable assumption because it will be launched southwards from the Western Test Range (WTR) in California and so its ascending node will have longitude very close to $180^\circ + \text{the right ascension of WTR}$ (which depends on the time of launch). Also, its inclination will be accurately known ($\approx 98^\circ$).

The curve following scheme is a simple predictor–corrector scheme. It consists of using three points on the loop that have already been calculated, to predict what another point further along the loop will be, and then to correct that prediction using a Newton-Raphson iterative scheme. Figure 2-4 illustrates this scheme.

The prediction is made according to quadratic Lagrange extrapolation of the solution curve by some previously determined curve length. There is a problem at the start because we only have one known point initially, that is, our a priori estimate. Thus, a special starter scheme is needed for calculating the second point along the loop. Once the second point has been found, those two points can be used to make a prediction based on linear extrapolation, which can then be corrected to give a third point. After each point is corrected, there are a number of procedures that need to be carried out before the next prediction step. A summary of the overall algorithm is shown below:

starter Implement starter scheme to get the second point along the loop and calculate the arc length between the two points on the loop.
Figure 2-3: Schematic Plot Showing a Case Where the A Priori Estimate and the Solution Which We Seek Lie on Different Loops
Figure 2-4: Schematic Diagram Illustrating the Corrector Scheme Employed
step size selector Calculate the step-size (in terms of arc length) that should be taken between the last point and the next point along the curve.

predictor Predict the next point using an extrapolation of the existing points and the step-size calculated.

corrector Correct that prediction using a Newton-Raphson iterative scheme with the prediction as an initial guess.

monitor Ensure that the corrector scheme converged and that the tangent vector at each of the last two corrected points do not differ by much. If either of these is not true, then return to the previous predictor step with a step-size that is halved.

arclength corrector Correct the arc length between the last two corrected points because during the transition from predicted point to corrected point the arc length may have changed from the initial step-size.

solution state collector Check for and store any crossings of the $\lambda = 1$ hyperplane (candidate solutions)

critical point collector Check for and store any points that are extrema in λ. Such points are called critical points.

terminator Check for a return to the initial start point to see if the loop has been completed. If it has, terminate the algorithm. If not, return to step 2.

A more in depth description of each of these algorithm steps is the subject of the next chapter.

2.3 Direct Newton-Raphson

The more simplistic approach of applying the Newton-Raphson method directly to the non-linear equations is not satisfactory. One reason is that the Newton-Raphson
method has a very limited radius of convergence. That is, even a good a priori estimate can result in the Newton-Raphson scheme diverging. The second reason is that the problem can have several solutions and so even if the Newton-Raphson scheme converges it may converge to a spurious solution. That is why we need a method that collects all of the possible solutions and then screens out the solution which we seek. Figure 2-5 illustrates a case where the simple Newton-Raphson scheme converges to the wrong solution. Figure 2-6 illustrates a case where the simple Newton-Raphson scheme diverges.

An interesting study of the application of the Newton-Raphson method applied directly to the Landsat 6 problem is presented in reference [16].

2.4 Screening

The screening method would depend on how much a priori information was available about the satellite. For example, some of the solutions may be ruled out by the fact that the amount of energy associated with that state may be greater than the maximum amount of energy that the launch vehicle was capable of imparting to the satellite. Possibly some of the solutions may have inclinations or ascending nodes outside of the limits within which the real inclination or ascending node is known to lie from a priori knowledge. Other solutions may be ruled out by the rough angle measurements made at the tracking station. However, even if there was absolutely no prior knowledge about the vehicle, we could use redundant observations to screen out the solution which we seek. In the case of Landsat orbit determination we will have good a priori knowledge and so we would not have to resort to using redundant observations as a screening method.
Figure 2-5: Schematic Diagram of a Case Where the Simple Newton-Raphson Method May Converge to the Wrong Solution
Figure 2-6: Schematic Diagram of a Case Where the Simple Newton-Raphson Method May Diverge
Chapter 3

Curve Following Algorithm

This chapter describes each of the steps in the algorithm in some detail, noting in particular any differences from the Smith paper [1], and giving reasons for those differences. The first difference to note is that Smith defined his orbit state in terms of position and velocity coordinates, while for this thesis, orbit states are defined in terms of orbital elements.

The algorithm is divided into nine steps, a starter step and then eight other steps which are repeated cyclically until the loop is completed. A good way to regard the starter is to consider it as the first cycle of eight steps; some of the steps in this cycle are left out because they are unnecessary and others are done differently because there is very limited information at the start.

A little notation is constructive at this point. A general point in the seven dimensional curve space is denoted by u where u = (λ, x). Distance along the curve from the start point is denoted by s and step size is denoted by δs. The last corrected point on the solution curve is denoted by u₁, the one before last corrected point on the solution curve is denoted by u₂ and its predecessor is denoted by u₃. A predicted curve point is denoted by uₚₑₚ. The a priori point which is the first point on our solution curve is given as

\[u_{est} = (0, x_{est}) = (0, x_{est}^{(1)}, x_{est}^{(2)}, x_{est}^{(3)}, x_{est}^{(4)}, x_{est}^{(5)}, x_{est}^{(6)}) \]
3.1 Starter

The technique used in the starter is as follows:

- Arbitrarily select a step size $\delta s = \delta s_{arb}$.

- Predict a solution $u_{pred} = (\delta s, x_{est}) = (\delta s, x_{est}^{(1)}, x_{est}^{(2)}, x_{est}^{(3)}, x_{est}^{(4)}, x_{est}^{(5)}, x_{est}^{(6)})$.

- Correct that prediction using a Newton-Raphson iterative corrector. The corrector scheme will be discussed in the Corrector section of this chapter.

- If the iterative scheme fails, then change the prediction to

$$u_{pred} = (0, x_{est}^{(1)} + \delta s, x_{est}^{(2)}, x_{est}^{(3)}, x_{est}^{(4)}, x_{est}^{(5)}, x_{est}^{(6)})$$

and try the corrector on that. If that fails, change prediction to

$$u_{pred} = (0, x_{est}^{(1)}, x_{est}^{(2)} + \delta s, x_{est}^{(3)}, x_{est}^{(4)}, x_{est}^{(5)}, x_{est}^{(6)})$$

and try the corrector on that. If after going through this process of adding δs to each of the components of u_{est} in turn, the iterative scheme has not converged in any case, then let $\delta s = \delta s_{arb}/2$ and repeat the process. Keep halving δs until the iteration scheme converges and you have your second point on the solution curve.

Three important points to note here:

1. Assuming that the data is correct, the starter cannot fail although it may require δs to be quite small.

2. It is better to make δs_{arb} small in the first place. This may save time in that the algorithm will not have to go through the whole cycle too many times before a successful convergence takes place. Also, it ensures that the first step is a small one and so the arc length between the first two points can be accurately approximated by assuming the curve is straight between those two points.
3. \(\delta s \) should really be scaled according to which component of U_{ext} it is being added to. For example, adding 0.1 to an eccentricity of 0.001 changes the orbit a great deal more than adding 0.1 km to a semi-major axis of 8000 km.

The starter has parallels to the first five of the eight steps in the main cycle. It has step-size selection (arbitrary), it has a predictor (adding \(\delta s \) to components of U_{ext}), it has the Newton-Raphson iterative corrector, it has a monitor (if corrector does not converge try adding \(\delta s \) to a different component of U_{ext}) and it has an arc length corrector which calculates the arc length instead of simply using the \(\delta s \) that led to convergence.

The three of the eight steps in the main cycle that have no parallels in the starter are omitted for good reasons. The critical state collector needs three corrected points to make sense, and so cannot be included. It is justifiably assumed that we could not have followed the entire loop around in just one small step, and so a check for termination is not necessary at this stage. Since the algorithm has been set up such that the first step is a small one, the curve cannot cross the \(\lambda = 1 \) hyperplane after that first step. Thus, a solution state collector is not necessary at this stage.

3.2 Step Size Selection

The selection of the step size for the next step along the loop depends on the last step size and on the number of iterations the corrector required for convergence at the last step. The maximum number of iterations allowed is set to be 10. That is, if the corrector performs 10 iterations and has not converged to the limit required, then a non-convergence is recorded even though the corrector may have been converging slowly. The step size selector says that if the number of iterations was 9 or 10, then the next step size is equal to the last step size. If the number of iterations was less than 9, then the step size is chosen to be a factor of 1.4 times the last step size. My experience with the selection of step size indicates that it makes little difference what number of iterations is used as the limit between increasing step size and leaving it as is. However, Smith [1] suggests that a more complicated step size selection scheme
can lead to a more time efficient algorithm.

The effect of the step size selector is that the algorithm automatically uses relatively small steps in areas where the solution curve has a small radius of curvature, and uses relatively large steps in areas where the radius of curvature is large.

3.3 Predictor

The predictor of the next point on the loop uses Lagrange extrapolation based on the last three corrected points and the chosen step size to predict the next point, except when only two corrected points are known, i.e., immediately after the starter. In that case, the extrapolation is based on only those two points. Note that the extrapolation could be based on any number of previous corrected points but the greater the number of points used, the more computation per step required, and there is no reason to believe the predictions will be better. Smith [1] notes that he found 3 or 4 to be an optimum number of back points to use. I found 2 or 3 to be optimum depending on the particular case.

The formulae used for the prediction are shown below, but first a little notation. To be consistent with notation already used, let s_1 be the arc length up to the last corrected point, s_2 be the arc length up to the one before last corrected point, etc. Let s_{pred} be the arc length at the predicted point, $s_{\text{pred}} = s_1 + \delta s$. Finally, let the number of back points being used be denoted by n. Set

$$u_{\text{pred}} = \sum_{i=1}^{n} L_i u_i \quad i = 1, \ldots, n \quad (3.1)$$
where the Lagrange coefficients \((L_i) \) are calculated according to:

\[
L_i = \frac{\prod_{j=1}^{n} (s_{pred} - s_j)}{\prod_{j=1}^{n} (s_i - s_j)} \quad i = 1, \ldots, n
\] (3.2)

3.4 Corrector

The algorithm arrives at the corrector with a guess at a point on the solution loop, \(u_{pred} \). The guess is corrected to a true point on the solution curve using an iterative Newton-Raphson scheme. We can take one of two approaches to the problem of correcting this guess. We can insist on keeping \(\lambda \) constant and correcting the \(x \) part of \(u_{pred} \). This approach has the potential for leading to problems. For example, if the curve is nearly parallel to a \(\lambda \) hyperplane, as it will be near critical points, then convergence may be slow, leading to prohibitively small steps in that area. This point is illustrated by figure 3-1.

The other approach, which is the one used in this thesis, is to allow \(\lambda \) to be a variable in the corrector scheme and to introduce the constraint that the correction at each iteration must be perpendicular to the tangent vector of the curve. For maximum accuracy the tangent vector should be calculated at the latest iterated value for the predicted point.

Each iteration involves solving a system of seven equations in the seven variables, \(\lambda, x \). One equation is derived from the correction vector constraint. The other six equations are derived from making a linear Taylor Series approximation of equation 2.4 which is reproduced here as equation 3.3

\[
f(x) = \lambda y_{ex} + (1 - \lambda) y_{est}
\] (3.3)
Figure 3-1: Schematic Diagram Illustrating How Correcting With Constant λ Could Cause Problems
The constraint equation is given by:

\[
\frac{du}{ds} \cdot \delta u = 0 \quad (3.4)
\]

The evaluation of \(\frac{du}{ds} \) is discussed in detail in the next chapter.

Let a point on the solution curve be denoted by \(\mathbf{u}_{sol} \) where \(\mathbf{u}_{sol} = (\lambda_{sol}, x_{sol}) \). This point will satisfy equation 3.3 giving:

\[
f(x) \mid_{x=x_{sol}} = \lambda_{sol} y_{ex} + (1 - \lambda_{sol}) y_{est} \quad (3.5)
\]

Rewriting \(\mathbf{u}_{sol} \) as:

\[
\mathbf{u}_{sol} = \mathbf{u}_{pred} + \delta \mathbf{u} = (\lambda_{pred} + \delta \lambda, x_{pred} + \delta x) \quad (3.6)
\]

and substituting equation 3.6 into equation 3.5 gives:

\[
f(x) \mid_{x=x_{pred}+\delta x} = (\lambda_{pred} + \delta \lambda) y_{ex} + (1 - \lambda_{pred} - \delta \lambda) y_{est} \quad (3.7)
\]

Now expanding the left hand side of equation 3.7 in a Taylor series and discarding the non-linear terms gives:

\[
f(x) \mid_{x=x_{pred}+\delta x} \approx f(x) \mid_{x=x_{pred}} + f'(x) \mid_{x=x_{pred}} \delta x \quad (3.8)
\]

Equating the right hand sides of equation 3.7 and equation 3.8 gives:

\[
f(x) \mid_{x=x_{pred}} + f'(x) \mid_{x=x_{pred}} \delta x \approx (\lambda_{pred} + \delta \lambda) y_{ex} + (1 - \lambda_{pred} - \delta \lambda) y_{est} \quad (3.9)
\]

Rearranging equation 3.9 gives us the six equations to go along with the constraint equation in making up the complete system of seven.

\[
(y_{ex} - y_{est}) \delta \lambda - f'(x) \mid_{x=x_{pred}} \delta x \approx \lambda_{pred}(y_{est} - y_{ex}) - y_{est} + f(x) \mid_{x=x_{pred}} \quad (3.10)
\]
where \(f(x) \mid x=x_{\text{pred}} \) is the set of six ranges calculated by propagating the predicted state to the six chosen times, and \(f'(x) \mid x=x_{\text{pred}} \) is the six-by-six matrix of partial derivatives of those six ranges with respect to the six epoch orbital elements.

After the seven-by-seven system has been solved, the resulting \(\delta u \) is added to the predicted state to give the new predicted state to be used in the next iteration. This process is repeated until the convergence criterion has been met or until the maximum ten iterations have been completed.

3.5 Monitor

This step consists of checking to ensure that three conditions regarding the last corrected point are satisfied. First, the corrector must have converged to the stipulated criterion. Second, the difference in the curve tangent vector between the last two corrected points must be less than some stipulated amount. Last, the difference in the \(\lambda \) values for the last two corrected points must be less than some specified amount (0.1 was chosen in this case).

If any of the three conditions are not met then the last corrected point is discarded, the \(\delta s \) is halved, and the algorithm returns to the predictor step. If all of the three conditions are satisfied then the point is accepted and the backpoint information is updated.

The first condition is obviously required because if the corrector has not converged, then the point in \(u \) space it returns with is not on the solution curve. The convergence criterion will be discussed in the next chapter which deals with the corrector step in greater detail.

The second condition is included in order to prevent the algorithm from doubling back on itself. That is, when the algorithm comes to a part of the solution loop which is highly curved, it may turn around and follow the path along which it came, back to the start point, thereby allowing termination to occur without completion of the solution loop [see figure 3-2]. This condition also prevents the algorithm from skipping portions of the solution curve at points where the curve pinches in [see figure 3-3].
The condition is enforced by taking the dot product of the tangent vectors at the last two corrected points and requiring this dot product to be greater than 0.9. Smith [1] recommends that the dot product should exceed 0.95 in order to satisfy this condition, but I found that 0.90 is good enough and allows the algorithm to proceed faster since it is a looser criterion. The method used for evaluating the tangent vector at a point on the curve is discussed in the next chapter.

The third condition is not necessary but it is useful. Its purpose is to ensure that reasonably small steps in λ are taken so that when plots of the orbit elements vs λ are made, they provide an accurate picture [see figure 3-4]. This condition is not included in Smith’s work [1] because he was concerned with maximizing efficiency, not with ensuring that the plots of the solution loops were accurate. I would say that the condition could be excluded when the algorithm is being used in a real situation.

3.6 Arc Length Correction

The purpose of this step is to evaluate s_1, the arc length along the solution curve up to the last corrected point, u_1. The arc length s_2 up to the one before last corrected point, u_2 is known, so we need only compute the arc length between the last two corrected steps and add that to s_2 to get s_1. Smith [1] says that the step size, δs, between u_2 and u_{pred}, may be a good enough estimate to the arc length between the last two corrected points to render this step unnecessary. That is, he feels that the change in arc length due to the correction of u_{pred} to u_1 is negligible. I found cases in which the arc length can change significantly during the correction process, and so the arc length correction procedure is necessary.

An exact expression for the arc length between the last two corrected points, u_1 and u_2 is:

$$s_1 - s_2 = \int_{u_2}^{u_1} (du \cdot du)^{1/2} = \int_{s=s_2}^{s=s_1} \left(\frac{du}{ds} \cdot \frac{du}{ds} \right)^{1/2} ds$$ \hspace{1cm} (3.11)

Since s_1 is precisely the thing we are trying to evaluate, we need to approximate the s_1 in the upper limit of the integral in the above equation with s_{pred}. Having done that, we can use Gaussian quadrature to evaluate the integral. Appendix A contains
Figure 3-2: Schematic Example of the Solution Curve Doubling Back
Figure 3-3: Schematic Example of the Solution Curve Skipping a Portion of the Solution Curve Where it Pinches In
Figure 3-4: Schematic Diagram to Show the Effect of Limiting λ Step Between Consecutive Points on the Solution Curve
a description of the Gaussian quadrature method. Evaluation of the tangent vector \(\frac{du}{ds} \) at the quadrature points, is done by differentiating the Lagrange interpolating polynomial discussed in the section on the predictor step. That produces:

\[
\frac{du}{ds} = \sum_{i=1}^{n} \frac{dL_i}{ds} u_i \quad i = 1, \ldots, n
\]

(3.12)

where

\[
\frac{dL_i}{ds} = \frac{1}{\prod_{j=1}^{n} (s_i - s_j)} \sum_{k=1}^{n} \left[\prod_{j=1}^{n} (s_{\text{pred}} - s_j) \right]_{j \neq i, k \neq i, j \neq k} \quad i = 1, \ldots, n
\]

(3.13)

Carrying out this quadrature should give us an improved estimate of the value of \(s_1 \). If we insert this improved value back into the upper limit of the integral, we can determine an even better estimate. The process can be iterated until changes in the estimate are less than some tolerance (1.0 e-8 was used in this case). This iteration represents a difference from Smith’s work [1]: he only used one improvement of \(s_1 \).

Accurate recording of the arc length is useful for keeping the solution state collector, the critical state collector and the terminator sub-algorithms working efficiently.

3.7 Solution State Collection

This step detects when the solution loop has crossed the \(\lambda = 1 \) hyperplane, and then locates the exact point(s) on the solution curve which lie in this hyperplane. These points are stored in a file, so that after the algorithm has completed the loop, all of these solutions are available for the screening process.

Since each step can only have a maximum change of 0.1 in \(\lambda \) (see section on monitor), then if neither \(u_1 \) nor \(u_2 \) have a \(\lambda \) coordinate within 0.1 of 1.0, it is assumed the \(\lambda = 1 \) hyperplane has not been crossed and this step is skipped. Otherwise, the
following process is carried out.

1. Interpolated states are computed, using the Lagrange formulae shown in the Predictor section, at equal intervals of arc length between \(s_1 \) and \(s_2 \). In this case, the arc length is divided into 50 equal intervals requiring 49 interpolated states to be computed. The notation used for these interpolated states is that the \(n^{th} \) interpolated state starting from the \(u_2 \) side, is denoted by \(u_{n}^{\text{int}} \).

2. If the sign of \((1-\lambda_{n+1}^{\text{int}})\) is opposite to the sign of \((1-\lambda_{n}^{\text{int}})\), the two interpolated states, \(u_{n+1}^{\text{int}} \) and \(u_{n}^{\text{int}} \), are corrected using the corrector sub-algorithm. The corrected states are denoted by \(u_{\text{up}} \) and \(u_{\text{down}} \) respectively.

3. A linearly interpolated state, \(u_{\text{app}} \), at \(\lambda = 1 \) is computed according to:

\[
u_{\text{app}} = u_{\text{down}} + \frac{(1 - \lambda_{\text{down}})}{(\lambda_{\text{up}} - \lambda_{\text{down}})}(u_{\text{up}} - u_{\text{down}})\] (3.14)

4. This \(u_{\text{app}} \) is corrected using the corrector sub-algorithm.

5. If the corrected \(\lambda_{\text{app}} \) is equal to 1 within a specified tolerance (1.0 e-8 in this case), then this \(u_{\text{app}} \) is stored as a solution. If not, whichever of \(u_{\text{up}} \) or \(u_{\text{down}} \) has a \(\lambda \) component farther from 1.0, is replaced by \(u_{\text{app}} \). A new \(u_{\text{app}} \) is computed as before, and this process is repeated until the corrected \(\lambda_{\text{app}} \) is equal to 1.0 within the specified tolerance.

There are two conceivable situations that could cause problems with this scheme. One possibility is that the interpolated curve between \(u_1 \) and \(u_2 \) crosses the \(\lambda = 1 \) hyperplane, but the solution curve does not. For example, see figure 3-5. This situation would lead to a failure to converge in the corrector sub-algorithm. If this happens, the last curve point, \(u_1 \), is discarded, \(\delta s \) is halved and a new \(u_1 \) is computed.

The other potential problem occurs if the solution curve crosses the \(\lambda = 1 \) hyperplane, but the interpolated curve does not. The result of this would be that the algorithm would continue without having recorded a solution point where a solution
Figure 3-5: Schematic Diagram Showing Potential Problem With Solution State Collector
Figure 3-6: Schematic Diagram Showing Another Potential Problem With Solution State Collector
point exists. See figure 3-6. Actually, two exact solutions will fail to be recorded. Thankfully, this situation must be extremely rare. If the user checks the critical points (see next section) and finds that there is a critical point with λ equal to a tiny bit more or less than 1, then he/she should check the possibility that this situation may have occurred.

3.8 Critical State Collection

As mentioned in the previous chapter, the critical states are those points on the solution curve which are local extrema in λ. The reason for wanting to determine and record such states is related to the possibility of finding that the solution loop on which your a priori estimate lies, and the solution loop on which the solution which we seek lies, are not the same. There is an extended version of this homotopy continuation method that is entirely global. That is, it can follow all existing loops, not just the one on which the a priori estimate lies. Time did not permit the inclusion of that extension in this thesis, but some detailed description of the extension is included in Smith’s paper [1].

A critical state collector was included in this thesis because initially, it was hoped that there would have been time to tackle the extended method. Also, if anyone should ever want to add the extension to this piece of work, they would have available a working critical point collector.

The first step of this sub-algorithm is to check, for λ_1, λ_2 and λ_3 corresponding to the last three points on the solution curve, whether either of the following two conditions exist.

\[
\begin{align*}
\lambda_2 & < \lambda_1 \text{ and } \lambda_2 < \lambda_3 \\
\lambda_2 & > \lambda_1 \text{ and } \lambda_2 > \lambda_3
\end{align*}
\]

If neither of these two conditions exists, it is assumed that there are no local extrema in λ between u_1 and u_3. If the first condition exists, it is assumed that there is a local minimum in λ between u_1 and u_3. If the second condition exists, it is assumed
that there is a local maximum in λ between u_1 and u_3.

If it has been determined that a critical point does exist, the task of locating it is carried out. It should be pointed out that the location technique used in this thesis is quite different from the one suggested by Smith [1].

The location process starts by calculating the arc length in the range $[s_1, s_3]$ for which the derivative of λ with respect to arc length, on the quadratic Lagrange interpolated curve, is equal to zero. This value of arc length is denoted by s_{extrm}. It is assumed that the critical point lies within the restricted range defined by $s_{\text{extrm}} \pm 0.2(s_1 - s_3)$. The s value corresponding to the $+$ve sign is denoted by s_{high}, and the s value corresponding to the $-$ve sign is denoted by s_{low}. The purpose of this first step is to reduce the range in which the critical point lies to 40% of the original range. The Lagrange interpolation formulae are used to find approximate points on the solution curve at $s_{\text{high}}, s_{\text{low}}$ and s_{extrm}. These three approximate points are then corrected using the corrector sub-algorithm to give the points on the solution curve denoted by $u_{\text{low}}, u_{\text{extrm}}$ and u_{high}. The arc lengths associated with these points are then corrected using the arc length corrector sub-algorithm. From this point the location technique consists of a series of reductions of the range of arc lengths, defined by $[s_{\text{high}}, s_{\text{low}}]$, within which the critical point lies. When this range is reduced to the point where $s_{\text{high}} - s_{\text{low}} < 0.01$, and where $|\lambda_{\text{high}} - \lambda_{\text{low}}| < 1.0 \times 10^{-7}$, then the critical point is equated to u_{extrm}, a point between u_{high} and u_{low}.

Each range reduction step involves the following:

- Compute an arc length half-way between s_{low} and s_{high} and call that arc length s_{new}.

- Use the Lagrange interpolator to approximate a point on the solution curve at s_{new}.

- Correct that point using the corrector sub-algorithm to a point on the solution curve, u_{new}.

- Correct the arc length s_{new} using the arc length corrector sub-algorithm.
According to the relative values of $\lambda_{\text{high}}, \lambda_{\text{low}}, \lambda_{\text{new}}$ and λ_{extrem}, discard either u_{high} or u_{low}. Reset the other three to $u_{\text{high}}, u_{\text{low}}$ and u_{extrem} and repeat the process until the criteria on arc length and λ are satisfied.

If the critical point is a maximum, four scenarios for discarding a point and resetting the other three exist. They are outlined in figure 3-7. In the first scenario shown the process is:

- $u_{\text{new}} \rightarrow u_{\text{high}}$
- $u_{\text{extrem}} \rightarrow u_{\text{extrem}}$
- $u_{\text{low}} \rightarrow u_{\text{low}}$
- $u_{\text{high}} \rightarrow \text{discarded}$

In the second it is:

- $u_{\text{new}} \rightarrow u_{\text{low}}$
- $u_{\text{extrem}} \rightarrow u_{\text{extrem}}$
- $u_{\text{high}} \rightarrow u_{\text{high}}$
- $u_{\text{low}} \rightarrow \text{discarded}$

In the third it is:

- $u_{\text{new}} \rightarrow u_{\text{extrem}}$
- $u_{\text{extrem}} \rightarrow u_{\text{low}}$
- $u_{\text{high}} \rightarrow u_{\text{high}}$
- $u_{\text{low}} \rightarrow \text{discarded}$

In the fourth it is:

- $u_{\text{new}} \rightarrow u_{\text{extrem}}$
- $u_{\text{extrem}} \rightarrow u_{\text{high}}$
- $u_{\text{low}} \rightarrow u_{\text{low}}$
- $u_{\text{high}} \rightarrow \text{discarded}$

Parallel situations exist if the critical point is a minimum.
Figure 3-7: Schematic Diagrams Representing the Different Discard and Reset Scenarios
When a critical point has been determined it is compared with the critical points that have already been recorded. If it is found to be the same as one of the already recorded critical points, that message is recorded instead of recording the same critical point again. The same is true of collection of the solution states. This kind of occurrence indicates either a doubling back of the algorithm, or a situation in which the terminator has failed to recognize a return to the initial start point causing the solution loop to be followed twice. Neither of these things should happen, but at least if they do, there will be evidence to show that they have.

3.9 Termination of the Algorithm

Termination of the algorithm may occur in one of three different ways. The solution loop can be completed, i.e., the algorithm followed the loop from the initial point, all the way around and back to the initial point. This will be called normal termination. Prior to the completion of the loop, the step size selected may become less than some specified tolerance. If that happens, the user will be offered the option of terminating. This is an example of optional termination. Prior to the completion of the loop, termination may occur, for example, due to the number of solution points exceeding some maximum allowed number. This is referred to as abnormal termination.

3.9.1 Normal Termination

The normal termination sub-algorithm is very similar to the solution state collector scheme. First it is determined whether the loop has crossed the $\lambda = 0$ hyperplane (in the solution state collector the $\lambda = 1$ hyperplane was the one of interest). If it has, the exact points at which that occurs are determined in an identical manner to that used in the solution state collector. Now, instead of storing the $\lambda = 0$ states, this sub-algorithm compares them with the initial starting point. If a $\lambda = 0$ state is found to be identical to the initial starting point to within some tolerance, then it is clear that the loop has been completed, and the algorithm undergoes normal termination.
3.9.2 Optional Termination

There are two circumstances under which termination is offered as an option to the user. The one which is more likely to occur is that the step size becomes less than some tolerance (1.0 e-5 in this case). This can happen if, for example, the algorithm reaches a part of the solution loop which has hyperbolic orbit states on it. Since the orbit propagation subroutines used in this thesis are only designed to be able to handle elliptic orbits, this will cause the corrector to fail, and therefore the step size to be halved, until the step size is less than the tolerance value. The less likely possibility that leads to optional termination is that the number of stored critical points becomes equal to some specified maximum (10 in this case).

In either case, the options that are offered are:

1. terminate algorithm
2. restart algorithm at the original start point
3. restart algorithm at the last corrected point on the solution curve

If step size is the reason for the options being offered, restarting at the last corrected point is not recommended because either the algorithm just runs right back into the same problem that caused the step size to be so small in the first place, or it heads off along the path that it took to get there. That is, the restart causes a doubling back of the algorithm. Restarting at the initial start point may be useful in some cases.

If the number of critical points is the reason for the options being offered, any of the options may prove useful.

3.9.3 Abnormal Termination

One situation that causes the algorithm to terminate prior to completing the solution loop without option, is that the number of solution points recorded exceeds a set maximum number (10 in this case). Other situations which can lead to this kind of termination are:
• Program crashes. Hopefully, this never happens !!

• Starter step fails either at the very beginning or after a restart option has been chosen. If it happens at the very beginning it is indicative of a probable bug in the software. Otherwise, it is probably due to the situation mentioned in the section on optional termination. That is, where even the tiniest step leads to a point that represents a hyperbolic orbit.

• Normally, if the corrector sub-algorithm fails when called from the solution state collector sub-algorithm or from the normal terminator sub-algorithm, the last corrected point is discarded, the step size is halved, and the algorithm continues. However, if this happens just after having restarted, the algorithm terminates.
Chapter 4

Details of the Newton-Raphson Corrector Scheme

The major computational step in the method is the corrector step. This chapter describes that step in detail.

As was indicated in the previous chapter, the corrector sub-algorithm takes a predicted state and corrects it to a state on the solution curve using a Newton-Raphson iterative scheme. Each iteration involves solving a seven-by-seven linear system to get a δu correction to the latest prediction. That system is represented by equation 3.4 and equation 3.10 which are reproduced here for convenience.

$$\frac{du}{ds} \cdot \delta u = 0$$

$$(y_{est} - y_{calc}) \delta \lambda - f'(x) |_{x=x_{pred}} \delta x \approx \lambda_{pred} (y_{est} - y_{calc}) - y_{est} + f(x) |_{x=x_{pred}}$$

Since the y_{est} and y_{calc} vectors are constants which are specified near the beginning of the algorithm, the only quantities that remain to be calculated at each iteration are:

1. The set of ranges $f(x) |_{x=x_{pred}}$ computed by propagating the last predicted state.
 This will suitably be denoted by y_{pred}.

2. The six-by-six matrix of partial derivatives of ranges with respect to the six
epoch orbital elements $f'(x) |_{x=x_{pred}}$. This will suitably be denoted by $\frac{\partial y}{\partial x}$. The pred subscript has been dropped from the y and the x for clarity, although the reader should keep in mind that strictly speaking they should be there.

3. The tangent vector $\frac{dy}{ds}$.

The range at a given time t after epoch is calculated from the epoch elements by first propagating the epoch elements, \mathbf{x}, to that time to get the current elements, \mathbf{x}_t, using whichever dynamics model was chosen (this thesis employs either two-body mechanics or Brouwer-Lyddane), then by converting those current elements to a satellite position in inertial Cartesian coordinates. Finally, knowing the station position in inertial Cartesian coordinates it is simple to calculate the range between station and satellite. Thus, carrying out this process using the last predicted state as epoch, and using the six measurement times, we arrive at the required ranges \mathbf{y}_{pred}.

The calculation of the matrix of partial derivatives $\frac{\partial y}{\partial x}$ is more complicated. One method is to evaluate the partial derivatives analytically. The technique used is to calculate them one row at a time. The n^{th} row of the matrix, denoted by $\frac{\partial \mathbf{y}(n)}{\partial \mathbf{x}}$, where

$$\mathbf{y} = (y^{(1)}, y^{(2)}, y^{(3)}, y^{(4)}, y^{(5)}, y^{(6)})$$

is calculated from the product of three matrices as follows:

$$\frac{\partial y^{(n)}}{\partial \mathbf{x}} = \frac{\partial \mathbf{y}(n)}{\partial \mathbf{pv}} \cdot \frac{\partial \mathbf{pv}}{\partial \mathbf{x}_t} \cdot \frac{\partial \mathbf{x}_t}{\partial \mathbf{x}}$$

(4.1)

The \mathbf{pv} denotes the vector of current position and velocity in Cartesian coordinates. Thus, $\frac{\partial \mathbf{pv}}{\partial \mathbf{x}_t}$ represents the six-by-six matrix of the partial derivatives of current position and velocity with respect to current elements. A subroutine called CRTDRV [7], which calculates this matrix, provided that equinoctial elements are being used, was already available.

The row vector, $\frac{\partial \mathbf{y}(n)}{\partial \mathbf{pv}}$, which represents the partial differentiation of the n^{th} range with respect to current position and velocity, is relatively simple. Let \mathbf{pv} be expressed
as :

\[PV = (p_x, p_y, p_z, v_x, v_y, v_z) \]

Also, let the current station position be represented by :

\[(r_x, r_y, r_z) \]

Then we can express \(y^{(n)} \) as :

\[y^{(n)} = \sqrt{(p_x - r_x)^2 + (p_y - r_y)^2 + (p_z - r_z)^2} \]

Simple differentiation thus leads to :

\[\frac{\partial y^{(n)}}{\partial PV} = \left(\frac{p_x - r_x}{y^{(n)}}, \frac{p_y - r_y}{y^{(n)}}, \frac{p_z - r_z}{y^{(n)}}, 0, 0, 0 \right) \]

The relationship between current and epoch equinoctial elements, under the two-body mechanics system, is simply given by :

\[
\begin{align*}
 a_t &= a \\
 h_t &= h \\
 k_t &= k \\
 p_t &= p \\
 q_t &= q \\
 m_t &= m + t \sqrt{\frac{\mu}{a^5}}
\end{align*}
\]

where \(\mu \) is the gravitational parameter of the Earth and \(t \) is the time elapsed since epoch. Therefore there are only seven non-zero entries in the matrix \(\frac{\partial x_t}{\partial x} \) — six 1's on the diagonal and an entry in the bottom left corner given by \(-\frac{3}{2} t \sqrt{\frac{\mu}{a^5}} \). The value of
t will depend on which row is being computed.

\[
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
-\frac{3}{2}t_v \sqrt{\frac{\mu}{a^3}} & 0 & 0 & 0 & 0 & 1
\end{pmatrix}
\]

Therefore, analytical evaluation of \(\frac{\partial y}{\partial x} \) is a good technique for two-body mechanics propagation.

If instead Brouwer-Lyddane propagation is being used, then the relationship between current and epoch equinoctial elements is much more complicated than for two-body mechanics. We can take one of three approaches with Brouwer-Lyddane. We can pretend that the effect of Brouwer-Lyddane on the partial derivatives is negligible, since the only difference between Brouwer-Lyddane and two-body mechanics is that Brouwer-Lyddane includes the first four harmonic terms in the gravity field expansion. Taking this approach we can leave the calculation of partial derivatives in the same form as it was for two-body mechanics. This is the approach suggested by Smith [1]. The second approach is to try to calculate the partial derivatives analytically from the Brouwer theory. This is intellectually more satisfactory but a great deal of work for possibly little gain. The third approach, which is more of an engineering compromise approach, is to compute the partial derivatives in \(\frac{\partial y}{\partial x} \) by numerical differencing.

The second approach was ruled out because of the amount of time it would have taken to develop a subroutine that calculates analytical partial derivatives for the Brouwer-Lyddane propagation model. Both the first and the third approaches were tried and the results compared. The first approach requires substantially less computation per step but gives less accurate partial derivatives than the third approach. The effect of the less accurate partial derivatives is generally to cause the algorithm to require smaller step sizes along the curve and consequently to require more steps.
to complete the loop. In fact, I found that in areas where the curve had a small radius of curvature the step size was often reduced to a value smaller than the minimum allowed and so the algorithm terminated without completing the loop, whereas using numerically determined partials allowed completion of the loop. Based on this finding, I chose to implement the numerical differencing method of calculating partial derivatives for the Brouwer-Lyddane propagation model.

The method of evaluating \(\frac{\partial y}{\partial x} \) by numerical differencing is also a row by row process. We start with the set of six ranges

\[
y = (y^{(1)}, y^{(2)}, y^{(3)}, y^{(4)}, y^{(5)}, y^{(6)})
\]

which have been computed by propagating the predicted epoch state

\[
x = (x^{(1)}, x^{(2)}, x^{(3)}, x^{(4)}, x^{(5)}, x^{(6)})
\]

(remember the \(\text{pred} \) subscript has been dropped from both \(y \) and \(x \)), to the six observation times

\[
t = (t^{(1)}, t^{(2)}, t^{(3)}, t^{(4)}, t^{(5)}, t^{(6)})
\]

To compute \(\frac{\partial y^{(n)}}{\partial x^{(m)}} \), the \(m^{th} \) entry of the \(n^{th} \) row of the partial derivative matrix \(\frac{\partial y}{\partial x} \), propagate the epoch element vector formed by adding \(\delta x^{(m)} \) to \(x^{(m)} \) entry in \(x \), to the time \(t^{(n)} \). Then calculate the resulting range \(y^{(\text{res})} \). The desired entry is given by:

\[
\frac{\partial y^{(n)}}{\partial x^{(m)}} \approx \frac{y^{(\text{res})} - y^{(n)}}{\delta x^{(m)}}
\]

\(\delta x^{(m)} \) should be some very small value and should also be scaled according to which component of \(x \) is being dealt with for the same reason that the \(\delta s \) in the starter scheme needed to be scaled. In this thesis \(\delta x^{(m)} \) is equal to 1.0 e-8 times the relevant scaling factor.

Finally, we need to address the calculation of the tangent vector, \(\frac{dx}{ds} \). One way of calculating the tangent vector is to use the derivatives of the Lagrange interpolating formulae of equations 3.1 and 3.2. This method is discussed in the previous chapter in
the section on the arc length corrector sub-algorithm, and the relevant equations are equation 3.12 and equation 3.13. This is the method used by Smith [1], but he does recommend a second and better method. Initially, in this thesis, the first method was implemented. Later on however, the switch was made to the second method, and it was indeed found to perform better. That second method is outlined as follows.

Differentiation of equation 3.3 with respect to arc length s leads to:

\[
(Y_{ex} - Y_{est}) \frac{d\lambda}{ds} - \frac{\partial f}{\partial x} \cdot \frac{dx}{ds} = 0
\]

(4.2)

Also, in the limit, \(\delta u \cdot \delta u = (\delta s)^2 \), which implies:

\[
\left(\frac{d\lambda}{ds} \right)^2 + \left(\frac{dx}{ds} \cdot \frac{dx}{ds} \right) = 1
\]

(4.3)

If we let the 6-by-1 column vector, \((Y_{ex} - Y_{est})\), be represented by \(c\), and we let the 6-by-6 Jacobian matrix, \(\frac{\partial f}{\partial x}\), be represented by \(B\), then equation 4.2 may be written as:

\[
c \frac{d\lambda}{ds} - B \frac{dx}{ds} = 0
\]

\[
\Rightarrow \quad \frac{dx}{ds} = B^{-1}c \frac{d\lambda}{ds}
\]

(4.4)

Substituting equation 4.4 into equation 4.3 gives:

\[
\left(\frac{d\lambda}{ds} \right)^2 \left[1 + (B^{-1}c) \cdot (B^{-1}c) \right] = 1
\]

\[
\Rightarrow \quad \left(\frac{d\lambda}{ds} \right)^2 \left[1 + (B^{-1}c)^T(B^{-1}c) \right] = 1
\]

Thus, letting \(D\) be defined by:

\[
D = \left[1 + (B^{-1}c)^T(B^{-1}c) \right]^{\frac{1}{2}} = \left[1 + c^TB^{-1}B^{-1}c \right]^{\frac{1}{2}}
\]

we can write:

\[
\frac{du}{ds} = \left(\frac{d\lambda}{ds}, \frac{dx}{ds} \right) = \left(\frac{1}{D}, \frac{B^{-1}c}{D} \right)
\]

(4.5)
This is the expression used in computing the tangent vector at each iteration. Note that \(B \) and \(c \) have already been computed at this stage so that this tangent evaluation method involves only one non-simple step, i.e., inverting the \(B \) matrix.

In summary, each iteration in the corrector sub-algorithm consists of:

1. Solving the linear seven-by-seven system for

\[
\delta u = \begin{pmatrix}
\delta \lambda \\
\delta x^{(1)} \\
\delta x^{(2)} \\
\delta x^{(3)} \\
\delta x^{(4)} \\
\delta x^{(5)} \\
\delta x^{(6)}
\end{pmatrix}
\]

2. Adding \(\delta u \) to the previous \(u \) approximation to get the updated approximation

3. Testing the updated approximation against the convergence criterion

The system is written explicitly as:

\[
\begin{pmatrix}
\delta \lambda \\
\delta x^{(1)} \\
\delta x^{(2)} \\
\delta x^{(3)} \\
\delta x^{(4)} \\
\delta x^{(5)} \\
\delta x^{(6)}
\end{pmatrix}
= \begin{pmatrix}
0 \\
\lambda[y_{est}^{(1)} - y_{ex}^{(1)}] - y_{est}^{(1)} + y^{(1)} \\
\lambda[y_{est}^{(2)} - y_{ex}^{(2)}] - y_{est}^{(2)} + y^{(2)} \\
\lambda[y_{est}^{(3)} - y_{ex}^{(3)}] - y_{est}^{(3)} + y^{(3)} \\
\lambda[y_{est}^{(4)} - y_{ex}^{(4)}] - y_{est}^{(4)} + y^{(4)} \\
\lambda[y_{est}^{(5)} - y_{ex}^{(5)}] - y_{est}^{(5)} + y^{(5)} \\
\lambda[y_{est}^{(6)} - y_{ex}^{(6)}] - y_{est}^{(6)} + y^{(6)}
\end{pmatrix}
\]
The actual solving of the linear system is carried out efficiently using a triangular factorization of the A matrix, followed by a simple back-substitution scheme. FORTRAN subroutines LUDCMP and LUBKSB used for these two steps are taken from reference [4]. These same subroutines are also used for inverting the B matrix in the tangent evaluation step — equation 4.5.

The final issue related to the corrector sub-algorithm that remains to be discussed, is the convergence criterion. Smith [1] actually employs two criteria and defines the scheme to have converged if either is met. The first is a criterion on the size of the correction vector δu. That is, the scheme has converged if

$$|\delta u| < 1.0 e - 13$$

Under certain circumstances it is possible to have a tiny correction vector without actually being very close to the solution. For a simple 2-D example, see figure 4-1. Thus, this criterion is not so good and has been left out of the present implementation.

The other criterion that Smith uses, which is retained in this thesis, is a criterion on the residue of the system of equations. It is written explicitly in the following equation:

$$\max\left| \frac{\frac{n}{y_{est}(n)} + \lambda_{pred}(y_{est}(n) - y_{est}(n)) - y_{pred}(n)}{\max(|y_{est}(n)|, |y_{est}(n)|, |y_{pred}(n)|)} \right| \leq 1.0 e - 11 \quad n = 1, \ldots, 6$$
Figure 4-1: Simple 2-D Example Showing Why a Convergence Criterion on the Size of the Correction Vector can be Poor
where the maximum is over n.

This criterion can only be satisfied if the predicted point is virtually a point on the solution curve.
Chapter 5

Problems With the Algorithm

This chapter is concerned with the various problems associated with the use of the curve following algorithm. The problems are sub-divided into two categories:

- Problems which result in algorithm failure.
- Problems which cause inaccurate solutions to be produced.

The expression *algorithm failure* needs to be defined here.

Algorithm failure will be defined as any case in which the algorithm terminates before completing the solution loop. This definition allows for the algorithm to fail but yet produce the desired solution state. If by the time the algorithm terminates prematurely, a $\lambda = 1$ state has been recorded, this may already be the desired solution.

There is another problem that can occur which has been mentioned before, but which shall not be discussed in this chapter. That is the problem of completing the solution loop without getting the desired solution. The solution locus is dependent upon the a priori estimate and the distribution of observation times. If either of these is poorly chosen, the solution loop on which your a priori estimate lies may have no $\lambda = 1$ hyperplane crossing points, or it may have some $\lambda = 1$ hyperplane crossing points none of which are the desired solution. An example is discussed as case #3 in chapter 7. This means that the desired solution lies on a different solution loop to the one on which your a priori estimate lies. The way to overcome this problem is to use the extended method of Smith [1].
5.1 Algorithm Failure

Algorithm failure is very rare when two-body mechanics is the chosen propagation method. In fact, in none of the many real cases that was run with the two-body mechanics propagator did algorithm failure occur. However, there are possible situations which can lead to algorithm failure even with two-body mechanics propagation formulation that was used. One such situation is the existence of epoch states corresponding to hyperbolic orbits on the solution curve. GTDS subroutine BROLYD was used for both two-body and Brouwer-Lyddane propagation in this thesis. This subroutine is unable to handle parabolic or hyperbolic orbits. If the algorithm reaches a point on the solution curve corresponding to a hyperbolic orbit, the corrector step will return to the main algorithm with a non-convergence condition. This in turn will cause the step size to be halved, a new prediction to be made, and the corrector to be tried again. The corrector will repeatedly return a non-convergence condition because the propagator cannot deal with eccentricity > 1. Eventually, the step size will become smaller than the minimum allowed value. At that point, the user will be offered the options of either terminating, restarting at the last corrected point, or restarting at the initial start point in the opposite direction to the one originally chosen. As explained in the section on optional termination in chapter 3, choosing to restart at the last corrected point is not worthwhile under these conditions. There is a formulation of the propagation equations which allows smooth transition between elliptic, parabolic and hyperbolic orbits. This will be discussed in the last chapter.

Fortunately, the existence of hyperbolic solution points on the solution curve is unlikely to occur if the algorithm is being used to determine very low eccentricity orbits and if the chosen a priori estimate also has a low eccentricity. It was noted in the introduction that the Landsat orbits have very low eccentricity, of the order 1.0×10^{-3}.

Another possible situation that could cause algorithm failure even with two-body mechanics propagation is the situation where there is a bifurcation point on the solution curve. That is, the solution curve is precisely at the transition point of
splitting into two loops. This situation is discussed in the first section of chapter 2, schematically illustrated by figure 2-2, and is very unlikely in practice. The shape of the solution curve is dependent, amongst other things, on the a priori estimate chosen (as equation 2.4 indicates). To demonstrate how unusual it would be to have this happen in a real case, I took some real data and varied the epoch estimate very slowly through a transition point; I was never able to get termination due to existence of a bifurcation point. The plots in figure 5-1 of semi-major axis vs λ show how the solution curve shape changed as the epoch estimate was varied through a transition point. The first plot was produced using the following epoch estimate:

\[
\begin{align*}
a &= 7077.8 \text{ km} \\
e &= 0.001 \\
i &= 100° \\
w &= 20° \\
W &= 80° \\
m &= 130°
\end{align*}
\]

The epoch estimates used to produce the second, third, fourth and fifth plots were identical except that the semi-major axes were respectively 7076 km, 7074.238 km, 7074.237 km and 7070 km. These plots indicate that for an epoch estimate with some semi-major axis between 7074.237 km and 7074.238 km, the solution curve may have a bifurcation point.

If the user is unlucky enough to choose an epoch estimate which produces a bifurcation point on the solution curve, the algorithm would reduce the step size near the bifurcation point until it is smaller than the allowed minimum. At that point, the three options mentioned above will be offered.

A good strategy for deciding which option to take when these three are offered is outlined as follows:

1. Check the solution points that have been stored up to the point when the options are offered. If an acceptable solution has already been stored then the obvious choice would be to terminate. Otherwise, continue down this list.
Figure 5-1: Plots Showing the Changing Shape of a Solution Curve as the A Priori Epoch Estimate is Varied in a Real Case
2. Check the number of critical points already stored. If there are ten critical points already stored, then you should try restarting at the last corrected point. If not, continue.

3. Check the eccentricity of the last corrected point. If it is close to 1, then you should try restarting at the initial start point but in the opposite direction to the one originally chosen.

4. If an acceptable solution has not yet been stored, and if the number of critical points stored so far is < 10 and the eccentricity of the last corrected point is not close to 1, then terminate the algorithm and try again with a slightly different a priori estimate.

The situations mentioned above can lead to algorithm failure with either two body mechanics or Brouwer-Lyddane propagation. However algorithm failure is much more common when Brouwer-Lyddane propagation is used. This extra problem with the Brouwer-Lyddane propagation is the fact that there is a singularity at critical inclination \(\approx 63.5^\circ \). Actually, the singularity exists where cosine of the inclination is equal to \(\pm 1/\sqrt{5} \). Thus, \(116.5^\circ \) is also a critical inclination. Note that the singularity at \(63.5^\circ \) will often lead to algorithm failure because it is typical for the solution curve to cross the inclination = \(63.5^\circ \) hyperplane at some point, even when the inclination of the desired orbit is quite different. When the algorithm reaches such a crossing point it reacts similarly to the way it reacts to reaching hyperbolic states on the solution curve. That is, the corrector subalgorithm returns a non-convergence condition which causes the step size to be halved until it is smaller than the minimum allowed value. At that point the optional termination is offered along with the restart options.

NOTE A neat technique for avoiding this singularity has been implemented late in the proceedings of this thesis. That technique is discussed in the next chapter.
5.2 Inaccurate Results

There are three kinds of error that can lead to inaccuracy in the solutions obtained: measurement errors, round-off errors, and modeling errors. Round-off error is minimized in this algorithm by using high precision storage of variables. It is safe to say that inaccuracy in the solution caused by round-off errors is negligible compared with that caused by other sources. This is confirmed by runs in which range data is simulated so that modeling and measurement errors are not present.

The amount of solution inaccuracy arising out of measurement error depends on the quality of the instrumentation, the location of the tracking station and on the distribution of measurement times. For example, taking six measurements over a very short time span will cause small errors in measurement to be severely amplified in the solution. This manifests itself as ill-conditioning of the Jacobian matrix \(\frac{\partial f}{\partial x} \). One potentially important area of future research would be the investigation of how the Jacobian matrix depends on measurement time distribution, tracking station location, and satellite orbit. Inaccuracies in the measurement times (tracking station clock errors) are also potentially important, particularly for short arc fits (closely spaced measurements).

The source of inaccuracy that would be easiest to improve is the modeling of the dynamics of the problem. The solution \(x_{ce} \) that is produced by the algorithm will be such that:

\[
 f(x_{ce}) = y_{ce}
\]

Clearly the greater the dynamics modeling inaccuracy contained in \(f \), the greater will be the inaccuracy in the solution produced.

In order to keep the problem simple enough to be run on a VAXstation 3100, simple propagation models such as two-body mechanics and Brouwer-Lyddane were used. The two-body model ignores the gravitational perturbations caused by the sun and the moon, the solar radiation pressure, the effects of atmospheric drag and the zonal and tesseral harmonics of the Earth’s gravitational field. The Brouwer-Lyddane propagation model is an improvement because it accounts for the effects of the first
four zonal harmonics. The solution improvement resulting from this better modeling in demonstrated in chapter 7.

The error resulting from a lack of atmospheric drag modeling would be greater for low altitude satellites, particularly in periods of high solar activity when the atmosphere becomes more dense. The error resulting from not including the solar and lunar gravitational perturbations would be greater for high altitude satellites such as geostationary satellites.

Another potential source of solution error is inaccuracy in the following data:

- the tracking station Earth-fixed coordinates
- the right ascension of Greenwich at epoch
- the values of certain constants such as μ, the gravitational constant of the Earth, and ω, the rotational rate of the Earth

These quantities are generally known to high precision and so should not be a significant problem.

The longer the elapsed time between epoch and a measurement, the greater will be the solution error caused by all of these modeling errors. Therefore it is better to make measurements relatively soon after the desired epoch time. However we cannot make all of the measurements too close together or we run into the problem of ill-conditioning mentioned above.

Clearly, the distribution of times at which measurements are taken is something to which some attention should be paid. The measurement times should be sufficiently far apart to prevent significant inaccuracy due to measurement error, yet they should be close enough to the epoch time, to prevent significant errors due to inaccuracy in the gravitational field and atmospheric drag modeling. We are further restricted by the fact that the satellite will only be in view of our tracking station a small percentage of the time. A measurement strategy that has produced fairly good results with this algorithm for the Landsat orbit using a northern tracking station, is to use three times spaced one minute apart in one pass of the satellite, followed by three more times spaced one minute apart in the next pass of the satellite. A better distribution might
be to take the six measurements at the beginning, middle and end of consecutive
passes. The advantage of a high latitude station for Landsat tracking, would be that
the Landsat orbit is almost polar and so would be visible for some part of most, if
not all, of its orbits.

The effect of having measurement times that are too close together is demonstrated
by case #1 in chapter 7. The effect of having measurement times that are too far
away from the epoch time is demonstrated by case #3 in chapter 7.
Chapter 6

Removing The Brouwer-Lyddane Singularity at Critical Inclination

As explained in chapter 5, the Brouwer-Lyddane propagation model has a singularity at the critical inclination of approximately 63.5°. If we would like to be able to use the algorithm for general preliminary orbit determination, we need to be sure that this singularity is removed.

A clever technique for avoiding the singularity in inclination at 63.5° was devised by the former Technical Director of the Naval Space Surveillance System (NAVS-PASUR), Richard H. Smith [5] and is implemented in the PPT General Perturbation Satellite Theory. The singularity arises because the calculation of the Brouwer-Lyddane osculating elements involves terms including the factor:

\[
\frac{1}{1 - 5 \cos^2 i}
\]

(6.1)

The trick is to arbitrarily replace this factor with the following:

\[
\frac{1 - e^{-100x^2}}{x}
\]

(6.2)

where x is given by:

\[
x = 1 - 5 \cos^2 i
\]
The plot of the replacement factor given by equation 6.2 vs inclination is compared with the plot of the exact factor given by equation 6.1 in figure 6-1. The replacement factor is virtually equal to the exact factor everywhere except very close to the critical inclination, where the replacement factor remains bounded instead of having the singularity of the exact factor. A plot of the replacement factor divided by the real factor vs inclination is shown by figure 6-2.

The effectiveness of using the replacement factor is illustrated by the plots in figures 6-3 and 6-4. Figure 6-3 shows a plot of inclination vs λ for a real case using the exact factor. Figure 6-4 shows the corresponding plot when the replacement factor is used. Using the exact factor forced the algorithm to terminate without completing the loop because of the singularity at 63.5°, whereas using the replacement factor got rid of the singularity and allowed the loop to be completed.

This trick for getting rid of the singularity in inclination was brought to my attention by Paul Cefola towards the end of the time allowed for this thesis and so was only included at the end. It represents a significant improvement to the algorithm. Smith [1] does not even mention the problem.

Note that this trick will also work for the singularity at inclination $\approx 116.5^\circ$.

67
Figure 6-1: Plots of Exact and Replacement Factor vs Inclination
Figure 6-2: Plot of Replacement Function Divided by Exact Function vs Inclination
Figure 6-3: Plot of Inclination vs \(\lambda \) Using the Exact Factor in a Real Case
Figure 6-4: Plot of Inclination vs λ Using the Replacement Factor in a Real Case
Chapter 7

Application to the Landsat Satellite

The effectiveness of the algorithm in determining the epoch state of a Landsat satellite was evaluated by running the program using real Landsat 4 tracking data. The solutions produced using both two-body mechanics and Brouwer-Lyddane orbit propagation models are compared with very accurate solutions produced at The Charles Stark Draper Laboratory in Cambridge, Massachusetts. The tracking data used was provided by the NASA Goddard Space Flight Center (GSFC).

The accurate solutions from Draper Laboratory were produced using a batch least squares fit to the tracking data. In general, the tracking data used consisted of a combination of two to three hundred range, range-rate and angular measurements made from the following tracking stations: Greenbelt, MD; Goldstone, CA; Merritt Island, FL; Guam; Bermuda; Madrid, Spain; Fairbanks, AK. Generally, observations were made from about six passes of the satellite spanning about two days.

The standard deviations for position coordinates in the solutions produced by Draper were typically about 50 meters and the standard deviations for the velocities were typically about 50 millimeters per second.

The orbit propagation method used at Draper was a Cowell numerical integration technique with a 60 second step size. The dynamic modeling included the following:
1. The gravity model used was GEM 9, a 21-by-21 potential field model.

2. Atmospheric drag was included using the Harris-Priester \(F_{10.7} = 175 \) atmospheric density model.

3. GTDS Solar/Lunar/Planetary (SLP) files were used to compute the gravitational perturbations caused by the Sun and the Moon.

4. The effects of solar radiation pressure were modeled.

Some notation that will be used in this chapter is necessary here. Solution states will be given in true of reference Cartesian coordinates and corresponding mean Kepler elements. The position coordinates will be denoted by \(x, y \) and \(z \), and the corresponding velocity coordinates will be denoted by \(x_v, y_v \) and \(z_v \). The a priori estimates will be given in mean Kepler elements. As before, the semi-major axis will be denoted by \(a \), the eccentricity by \(e \), the inclination by \(i \), the longitude of the ascending node by \(\omega \), the argument of perigee by \(\Omega \), and the mean anomaly by \(m \). The observation times are given in seconds after the epoch time.

Five real test cases will be presented in this chapter. In each case the tracking data used came from the Fairbanks station. That station has the following geodetic parameters:

\[
\begin{align*}
\text{latitude} & \approx 64.972^\circ \\
\text{longitude} & \approx 212.487^\circ \\
\text{height} & \approx 334.39 \text{ meters}
\end{align*}
\]

NOTE: EOSAT planned to track Landsat 6 from Fairbanks, Alaska at the time work was begun on this thesis. Recent plans to move the tracker to Norman, Oklahoma are not addressed in this work.
7.1 Landsat 4 Test Cases

TEST CASE #1

In this case the epoch time was 00:00 hours on the 10th of November 1982. The right ascension of Greenwich was \approx 48.8262^\circ at that time. The exact epoch state as calculated at Draper was:

\[x = -4411.7615 \text{ km} \quad a = 7077.8449 \text{ km} \]
\[y = -265.5134 \text{ km} \quad e = 1.8117 \times 10^{-4} \]
\[z = -5542.8760 \text{ km} \quad i = 98.2430 \text{ degrees} \]
\[xv = 5.5846 \text{ km/s} \quad w = 13.9188 \text{ degrees} \]
\[yv = 2.0622 \text{ km/s} \quad W = 78.0268 \text{ degrees} \]
\[zv = -4.5471 \text{ km/s} \quad m = 154.0688 \text{ degrees} \]

The epoch estimate used was:

\[a = 7050 \text{ km} \]
\[e = 0.001 \]
\[i = 100 \text{ degrees} \]
\[w = 10 \text{ degrees} \]
\[W = 100 \text{ degrees} \]
\[m = 130 \text{ degrees} \]

Using the following observations,

<table>
<thead>
<tr>
<th>times</th>
<th>ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>21060</td>
<td>835.7509 km</td>
</tr>
<tr>
<td>21120</td>
<td>1067.7043 km</td>
</tr>
<tr>
<td>21180</td>
<td>1397.5961 km</td>
</tr>
<tr>
<td>27120</td>
<td>1892.3992 km</td>
</tr>
<tr>
<td>27180</td>
<td>2248.5968 km</td>
</tr>
<tr>
<td>27230</td>
<td>2559.4028 km</td>
</tr>
</tbody>
</table>
the solutions produced by the algorithm using each of the propagation models were as follows:

<table>
<thead>
<tr>
<th></th>
<th>two-body</th>
<th>Brouwer-Lyddane</th>
</tr>
</thead>
<tbody>
<tr>
<td>distance</td>
<td>-4693.6247 km</td>
<td>-4415.7695 km</td>
</tr>
<tr>
<td></td>
<td>-226.6133 km</td>
<td>-267.1547 km</td>
</tr>
<tr>
<td></td>
<td>-5291.1003 km</td>
<td>-5540.0795 km</td>
</tr>
<tr>
<td>velocity</td>
<td>5.4572 km/s</td>
<td>5.5819 km/s</td>
</tr>
<tr>
<td></td>
<td>1.4940 km/s</td>
<td>2.0612 km/s</td>
</tr>
<tr>
<td></td>
<td>-4.9277 km/s</td>
<td>-4.5504 km/s</td>
</tr>
</tbody>
</table>

The amount by which these solutions differ from the accurate Draper solution is represented by the following:

<table>
<thead>
<tr>
<th></th>
<th>two-body error</th>
<th>Brouwer-Lyddane error</th>
</tr>
</thead>
<tbody>
<tr>
<td>distance</td>
<td>281.9 km</td>
<td>4.0 km</td>
</tr>
<tr>
<td></td>
<td>35.9 km</td>
<td>1.6 km</td>
</tr>
<tr>
<td></td>
<td>251.8 km</td>
<td>2.8 km</td>
</tr>
<tr>
<td>velocity</td>
<td>127.4 m/s</td>
<td>2.7 m/s</td>
</tr>
<tr>
<td></td>
<td>568.2 m/s</td>
<td>1.0 m/s</td>
</tr>
<tr>
<td></td>
<td>380.6 m/s</td>
<td>3.3 m/s</td>
</tr>
</tbody>
</table>

The effect of having all six measurements too close together was demonstrated by running this same case but with the following observations:

<table>
<thead>
<tr>
<th>times</th>
<th>ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>21060</td>
<td>835.7509 km</td>
</tr>
<tr>
<td>21120</td>
<td>1067.7043 km</td>
</tr>
<tr>
<td>21180</td>
<td>1397.5961 km</td>
</tr>
<tr>
<td>21240</td>
<td>1770.5617 km</td>
</tr>
<tr>
<td>21300</td>
<td>2163.2992 km</td>
</tr>
<tr>
<td>21360</td>
<td>2565.4879 km</td>
</tr>
</tbody>
</table>

Using these measurements, the solution curve did not cross the $\lambda = 1$ with either two-body or Brouwer-Lyddane propagation. The change in performance of the algorithm
caused by taking all six observations from a single pass of the satellite separated by one minute each, instead of taking three observations separated by one minute each from one pass, and then three more separated by a minute each from the next pass, is clearly very substantial. This confirms the need to pay attention to the distribution of observation times.

TEST CASE #2

In this case the epoch time was 00:00 hours on the 13th of November 1982. The right ascension of Greenwich was \(\approx 51.7828^\circ \) at that time. The exact epoch state as calculated at Draper was:

\[
\begin{align*}
 x &= -3035.5649 \text{ km} & a &= 7077.9005 \text{ km} \\
 y &= -1848.0000 \text{ km} & e &= 1.8313 \times 10^{-4} \\
 z &= 6115.9519 \text{ km} & i &= 98.2425 \text{ degrees} \\
 xv &= -6.4306 \text{ km/s} & w &= 16.8868 \text{ degrees} \\
 yv &= -1.4063 \text{ km/s} & W &= 81.5833 \text{ degrees} \\
 zv &= -3.6078 \text{ km/s} & m &= 37.4597 \text{ degrees}
\end{align*}
\]

The epoch estimate used was:

\[
\begin{align*}
 a &= 7070 \text{ km} \\
 e &= 0.001 \\
 i &= 100 \text{ degrees} \\
 w &= 20 \text{ degrees} \\
 W &= 80 \text{ degrees} \\
 m &= 40 \text{ degrees}
\end{align*}
\]

Using the following observations,

\[
\begin{align*}
 \text{times} & \quad \text{ranges} \\
 17100 & \quad 1377.1289 \text{ km} \\
 17160 & \quad 1614.6082 \text{ km} \\
 17220 & \quad 1920.4452 \text{ km}
\end{align*}
\]
the solutions produced by the algorithm using each of the propagation models were as follows:

<table>
<thead>
<tr>
<th></th>
<th>two-body</th>
<th>Brouwer-Lyddane</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>-2967.7452 km</td>
<td>-3036.1244 km</td>
</tr>
<tr>
<td>y</td>
<td>-1693.2593 km</td>
<td>-1848.1642 km</td>
</tr>
<tr>
<td>a</td>
<td>6197.8204 km</td>
<td>6116.2554 km</td>
</tr>
<tr>
<td>e</td>
<td>-6.5219 km/s</td>
<td>-6.4300 km/s</td>
</tr>
<tr>
<td>i</td>
<td>-1.3215 km/s</td>
<td>-1.4069 km/s</td>
</tr>
<tr>
<td>n</td>
<td>-3.4735 km/s</td>
<td>-3.6075 km/s</td>
</tr>
</tbody>
</table>

The amount by which these solutions differ from the accurate Draper solution is represented by the following:

<table>
<thead>
<tr>
<th></th>
<th>two-body error</th>
<th>Brouwer-Lyddane error</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>67.8 km</td>
<td>0.5 km</td>
</tr>
<tr>
<td>y</td>
<td>154.7 km</td>
<td>0.2 km</td>
</tr>
<tr>
<td>a</td>
<td>81.9 km</td>
<td>0.3 km</td>
</tr>
<tr>
<td>e</td>
<td>91.3 m/s</td>
<td>0.6 m/s</td>
</tr>
<tr>
<td>i</td>
<td>84.8 m/s</td>
<td>0.6 m/s</td>
</tr>
<tr>
<td>n</td>
<td>134.3 m/s</td>
<td>0.3 m/s</td>
</tr>
</tbody>
</table>

TEST CASE #3

In this case the epoch time was 00:00 hours on the 16th of November 1982. The right ascension of Greenwich was \(\approx 54.7398^\circ \) at that time. The exact epoch state as calculated at Draper was:

\[
\begin{align*}
 x &= 6661.3348 \text{ km} \\
 a &= 7077.8502 \text{ km} \\
 y &= 2294.3875 \text{ km} \\
 e &= 1.6676 \times 10^{-4}
\end{align*}
\]
The epoch estimate used was:

\[
\begin{align*}
 a &= 7080 \text{ km} \\
 e &= 0.001 \\
 i &= 100 \text{ degrees} \\
 w &= 20 \text{ degrees} \\
 W &= 60 \text{ degrees} \\
 m &= 300 \text{ degrees}
\end{align*}
\]

Using the following observations,

<table>
<thead>
<tr>
<th>times</th>
<th>ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>18720</td>
<td>1350.1219 km</td>
</tr>
<tr>
<td>18780</td>
<td>1110.4840 km</td>
</tr>
<tr>
<td>18840</td>
<td>1008.8227 km</td>
</tr>
<tr>
<td>-64140</td>
<td>1168.6036 km</td>
</tr>
<tr>
<td>-64200</td>
<td>870.7931 km</td>
</tr>
<tr>
<td>-64260</td>
<td>723.0790 km</td>
</tr>
</tbody>
</table>

the algorithm failed to produce the desired solution with either of the propagation models.

This case is an example of having the measurement times too far from the required epoch. Running this case with two-body mechanics propagation produced a curve which never crossed the $\lambda = 1$ hyperplane. Running the case with Brouwer-Lyddane gave a curve which did cross the $\lambda = 1$ hyperplane twice but neither of those solutions was the desired one.
TEST CASE #4

In this case the epoch time was 00:00 hours on the 8th of November 1982. The right ascension of Greenwich was \(\approx 46.8549^\circ \) at that time. The exact epoch state as calculated at Draper was:

\[
\begin{align*}
x &= -6898.0071 \text{ km} & a &= 7078.0078 \text{ km} \\
y &= -1320.3564 \text{ km} & e &= 1.7567 \times 10^{-4} \\
z &= -933.9781 \text{ km} & i &= 98.2427 \text{ degrees} \\
xv &= 0.7486 \text{ km/s} & w &= 11.9405 \text{ degrees} \\
yv &= 1.2473 \text{ km/s} & W &= 88.7248 \text{ degrees} \\
zv &= -7.3592 \text{ km/s} & m &= 98.7843 \text{ degrees}
\end{align*}
\]

The epoch estimate used was:

\[
\begin{align*}
a &= 7050 \text{ km} \\
e &= 0.001 \\
i &= 100 \text{ degrees} \\
w &= 10 \text{ degrees} \\
W &= 100 \text{ degrees} \\
m &= 80 \text{ degrees}
\end{align*}
\]

Using the following observations,

<table>
<thead>
<tr>
<th>times</th>
<th>ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>15960</td>
<td>1419.7035 km</td>
</tr>
<tr>
<td>16020</td>
<td>1584.5052 km</td>
</tr>
<tr>
<td>16080</td>
<td>1837.9442 km</td>
</tr>
<tr>
<td>21600</td>
<td>1275.6315 km</td>
</tr>
<tr>
<td>21660</td>
<td>956.1996 km</td>
</tr>
<tr>
<td>21720</td>
<td>757.2672 km</td>
</tr>
</tbody>
</table>

the solutions produced by the algorithm using each of the propagation models were as follows:
The amount by which these solutions differ from the accurate Draper solution is represented by the following:

<table>
<thead>
<tr>
<th>two-body error</th>
<th>Brouwer-Lyddane error</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.4 km</td>
<td>1.2 km</td>
</tr>
<tr>
<td>17.3 km</td>
<td>1.0 km</td>
</tr>
<tr>
<td>48.9 km</td>
<td>2.2 km</td>
</tr>
<tr>
<td>42.2 m/s</td>
<td>2.1 m/s</td>
</tr>
<tr>
<td>26.1 m/s</td>
<td>1.0 m/s</td>
</tr>
<tr>
<td>2.5 m/s</td>
<td>0.9 m/s</td>
</tr>
</tbody>
</table>

TEST CASE #5

In this case the epoch time was 00:00 hours on the 17th of November 1982. The right ascension of Greenwich was \(\approx 55.7253^\circ \) at that time. The exact epoch state as calculated at Draper was:

\[
\begin{align*}
x &= -5992.2672 \text{ km} \\
y &= -1761.7529 \text{ km} \\
z &= -3350.3145 \text{ km} \\
xv &= 3.0061 \text{ km/s} \\
yv &= 2.1543 \text{ km/s} \\
zv &= -6.5209 \text{ km/s}
\end{align*}
\]

\[
\begin{align*}
a &= 7077.8455 \text{ km} \\
e &= 1.5872 \times 10^{-4} \\
i &= 98.2409 \text{ degrees} \\
w &= 20.8421 \text{ degrees} \\
W &= 67.4594 \text{ degrees} \\
m &= 140.9419 \text{ degrees}
\end{align*}
\]
a = 7070 km

\(e = 0.001 \)

\(i = 100 \text{ degrees} \)

\(w = 20 \text{ degrees} \)

\(W = 80 \text{ degrees} \)

\(m = 130 \text{ degrees} \)

Using the following observations,

<table>
<thead>
<tr>
<th>times</th>
<th>ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>15600</td>
<td>1429.4088 km</td>
</tr>
<tr>
<td>15660</td>
<td>1547.8971 km</td>
</tr>
<tr>
<td>15720</td>
<td>1766.8760 km</td>
</tr>
<tr>
<td>21300</td>
<td>1065.9566 km</td>
</tr>
<tr>
<td>21360</td>
<td>820.4502 km</td>
</tr>
<tr>
<td>21420</td>
<td>763.8133 km</td>
</tr>
</tbody>
</table>

the solutions produced by the algorithm using each of the propagation models were as follows:

<table>
<thead>
<tr>
<th>two-body</th>
<th>Brouwer-Lyddane</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>-5994.1642 km</td>
</tr>
<tr>
<td>O</td>
<td>-1761.9712 km</td>
</tr>
<tr>
<td>N</td>
<td>-3347.8987 km</td>
</tr>
<tr>
<td>E</td>
<td>3.0042 km/s</td>
</tr>
<tr>
<td></td>
<td>2.1522 km/s</td>
</tr>
<tr>
<td></td>
<td>-6.5218 km/s</td>
</tr>
</tbody>
</table>

The amount by which this solution differ from the accurate Draper solution is represented by the following:

Brouwer-Lyddane error

1.9 km

0.2 km
Running this case with two-body mechanics propagation produced a solution curve which never intercepted the $\lambda = 1$ hyperplane. Running it with Brouwer-Lyddane propagation produced a curve which not only crossed the $\lambda = 1$ hyperplane more than once, but recovered the desired solution at one of those crossings. This case is an illustration of the greater accuracy of the Brouwer-Lyddane propagation model.

7.2 General Comments

The above results show that the algorithm is effective at determining the epoch state of a Landsat satellite using only six range measurements from a single Earth-based tracker.

The accuracy of that epoch state is very dependent on the accuracy of the propagation model used. Brouwer-Lyddane propagation is much more accurate than two-body mechanics.

The strategy of taking three measurements separated by one minute during one pass of the satellite, then taking three more measurements separated by one minute during the next pass yields good performance.

Measurements were taken during the fourth and fifth passes after epoch in case #1, and during the third and fourth passes after epoch in cases #2, #4 and #5. The accuracies in position coordinates for cases #2, #4 and #5 were about 1 km with Brouwer-Lyddane and about 30 km with two-body mechanics. The accuracies in velocity coordinates for these cases were about 1 m/s with Brouwer-Lyddane and about 30 m/s with two-body mechanics. The accuracies for case #1 were significantly worse. Position coordinates were accurate to about 3 km with Brouwer-Lyddane and about 200 km with two-body mechanics, while velocity coordinates were accurate to about 3 m/s with Brouwer-Lyddane and about 350 m/s with two-body mechanics. This
evidence may be explained by the fact that in case #1 longer times were allowed for the errors in dynamic modeling in the propagators to manifest themselves as solution inaccuracy. We would therefore expect significant improvement in our solutions if epoch was chosen so that the measurements were taken during the first and second satellite passes after epoch.
Chapter 8

Use of the Software

This chapter addresses the use of the algorithm developed for this thesis and suggests a method for getting maximum efficiency from it.

When processing real data we must choose whether to select two-body mechanics or Brouwer-Lyddane as the propagation dynamics model. The model chosen should be the result of trading off the greater accuracy of the Brouwer-Lyddane method against the greater speed of the two-body mechanics method. If a relatively inaccurate solution is acceptable to the user, then it is better to use the two-body mechanics propagation method and then screen out the desired solution from the set of solutions obtained. If a relatively accurate solution is required, then Brouwer-Lyddane will have to be used. Note that although the only two propagation models included in this algorithm are two body mechanics and Brouwer-Lyddane, other, more accurate models could be added if necessary.

There is a strategy that can be used for obtaining the accuracy of the Brouwer-Lyddane propagation, without sacrificing too much computational speed. That strategy is outlined as follows:

1. Run the data using two-body propagation.
2. Then screen out the desired but inaccurate solution assuming that the desired solution lies on the same loop as the a priori estimate chosen.
3. Then run the data using the Brouwer-Lyddane propagator with the inaccurate
two-body solution as the a priori estimate.

4. Stop the program immediately after the $\lambda = 1$ is crossed for the first time. The user will know when $\lambda = 1$ because after each corrected point is computed, its λ value is written to the screen. The single solution stored, will be the relatively accurate Brouwer-Lyddane solution, corresponding to the relatively inaccurate two body mechanics solution, obtained from the two-body part of the operation, and used as the a priori estimate for the Brouwer-Lyddane part.

If another, more accurate and more time consuming propagation model was added, the strategy would then be to take the Brouwer-Lyddane solution and use it as the a priori estimate for that new model.

Note that in step 2 of the suggested strategy it is assumed that the solution loop completed by running the two-body propagation model contains the desired solution. If this is not the case, we have to abandon the suggested strategy. However, what we should do at that point is to run the initial a priori estimate with the more accurate Brouwer-Lyddane propagator. It is possible that the desired solution will lie on the solution loop produced then. An example of this is discussed in case #5 of the previous chapter.

If we were concerned with maximizing the efficiency of the algorithm (minimizing its run time), we could remove most of the writing to files that is done in the present software implementation. Using the strategy suggested above as opposed to running Brouwer-Lyddane directly on the initial epoch estimate is another time saving approach. The following figures indicate how effective implementing these two time saving techniques can be:

Running case #1 directly with Brouwer-Lyddane propagation took $7\frac{1}{4}$ minutes
Running case #1 using the suggested strategy and retaining the unnecessary writing to files took 4 minutes.
Running case #1 using the suggested strategy and without the unnecessary writing to files took $2\frac{3}{4}$ minutes.
Running case #2 directly with Brouwer-Lyddane propagation took 13 minutes.
Running case #2 using the suggested strategy and retaining the unnecessary writing to files took 3\(\frac{1}{2}\) minutes.
Running case #2 using the suggested strategy and without the unnecessary writing to files took 2\(\frac{3}{4}\) minutes.

The above times are not CPU times, they are run turnaround times in a heavily used time sharing environment. The hardware used was a VAXstation 3100.
Chapter 9

Conclusions

The algorithm in its current form is a useful tool for preliminary orbit determination. An immediate application could be the preliminary orbit determination of the Landsat 6 satellite. The only data it requires consists of:

1. Six range observations from a single Earth-based tracker, and the corresponding six observation times
2. The geodetic latitude, longitude and height of the Earth-based tracker.
3. The right ascension of Greenwich at the desired epoch time.
4. An a priori estimate of the epoch state to be determined.

In order to work satisfactorily a reasonably good a priori estimate, such as would certainly be available in the Landsat 6 case, is required.

The accuracy of the solution produced depends on, amongst other things, the accuracy of the observation data, the tracker geodetic parameters, and the right ascension of Greenwich at epoch.

Solution accuracy also depends on the distribution of observation times. A detailed study of this dependence would be very useful. The real test cases that were run for this research indicate the following:

- Taking all six observations at one minute intervals during a single pass of the satellite is a bad strategy.
• Taking three observations at one minute intervals during one pass of the satellite and then taking the next three observations at one minute intervals during the next pass is a good strategy.

• Using observations from the 3rd and 4th passes produced significantly more accurate solutions than those produced by using observations from the 4th and 5th passes.

• Choosing epoch such that the measurements correspond to the 1st and 2nd passes of the satellite would produce even more accurate solutions.

• The accuracy of the solution produced by this algorithm depends on the propagation model used. Brouwer-Lyddane produced much more accurate solutions than two-body mechanics. The amount of solution improvement resulting from using a better propagator is a function of the distribution of measurement times. That is, the closer to the measurement times you choose epoch to be, the lesser will be the improvement made by using a better propagation model.

• The algorithm produced during this research is a useful tool which has immediate application to the Landsat 6 preliminary orbit determination problem.
Chapter 10

Recommendations for Future Work

The algorithm in its present state is a very useful tool for the preliminary orbit determination of a limited range of orbits, in particular, the Landsat orbits. However, there are a number of improvements that could be implemented that would greatly expand the usefulness of the algorithm by extending the range of orbits it could be used to determine.

10.1 The Extended Six-Level Scheme

One major improvement would be to extend the method to the six-level scheme discussed by Smith [1]. As it stands the algorithm can only complete the solution loop upon which the chosen a priori estimate lies. Hence, only solutions that lie on that loop will be recorded. If the a priori estimate is a relatively good one, then the solution which we seek will lie on the same loop as the a priori estimate. In the case of Landsat 6, if the launch goes according to plan, a relatively good a priori estimate will be available and so the algorithm is good enough as it stands provided that a sensible measurement time distribution is used. This is supported by the results presented in chapter 7. In fact, in most cases where friendly man made satellites are concerned, a good a priori estimate should be available. However, if we consider a situation in
which the satellite launch goes wrong and we have no good a priori estimate, then
the algorithm as it stands may be inadequate. With the six-level scheme, the method
becomes global, that is, regardless of the a priori estimate used, the algorithm will
store all the possible solutions. Therefore, in the case of a misfired launch, the six-
level scheme would still record the desired solution provided that tracking data was
available. The problem then might be to screen the correct solution from amongst
the solutions stored.

Another example of when a good a priori estimate would not be available, is in the
case where you were trying to determine the flight path of an enemy ballistic missile.
For that situation we would again need the extended six-level scheme. The algorithm
could then be further extended to allow propagation of the determined epoch state to
some future time so that coordinates for an interception could be calculated. The basic
problem we could anticipate for this kind of application would be the fact that the six
observation times would have to be close together and it has already been noted that
this can lead to solution inaccuracy due to measurement error. However, the ranges
would be very short compared to the ranges used in satellite orbit determination and
so there should be very little error in the range measurements.

10.2 Allowing for Hyperbolic States

The next important improvement that could be made to this algorithm would be
to modify the orbit propagation models so that they can deal with hyperbolic orbit
states. The Landsat orbits are very low eccentricity orbits and so if we use a good a
priori estimate that also has very low eccentricity, we would not expect to find any
hyperbolic states lying on the solution curve, although that situation is not impossible.
Figure 10-1 demonstrates this. This figure shows a plot of eccentricity vs lambda for
a real Landsat data case. The very accurate approximation to the real solution that
was produced by the Cowell propagator used by Draper and the a priori estimate
used are shown below.
The figure shows that, although the real eccentricity is very low, and a relatively good a priori estimate, also with very low eccentricity is used, the solution curve still comes very close to crossing the eccentricity = 1 hyperplane. The maximum value of eccentricity on the plot is \(\approx 0.986 \). Behavior like this is unusual for Landsat data processing. However, if we hope to use this algorithm for more general orbit determination, in which the real solution may have medium or high eccentricity, then it would be necessary to modify the propagation models so that they will allow hyperbolic orbit states on the solution curve. One way to do this would be to use the Universal formulation for two-body mechanics discussed in [9].

10.3 Sensitivity Study

An area for useful future work would be the study of the sensitivity of the algorithm to the distribution of observation times. Of particular interest would be the short arc case. That is, the case in which all measurements are taken over a short period of time, e.g., from a single pass. Determining the path of a ballistic missile falls into this category. This kind of application would require a high precision propagator.

Sensitivity to tracking station location and to the type of orbit (e.g., geostationary orbit) are other areas of interest that would represent useful future work.
Figure 10-1: A Plot Showing That Eccentricity on the Solution Curve Can be Large Even if the A Priori Estimate and the Real Solution Have Very Low Eccentricities
10.4 Atmospheric Drag Modeling

Another improvement that could be made to this algorithm would be to include some atmospheric drag modeling in the dynamics of the problem. This would serve to improve the accuracy of the solutions obtained from the algorithm in general. For high altitude orbits, such as geostationary orbit, or even for medium altitude orbits, such as the Landsat orbits, the improvement would not be great, since over the period of time spanned by the observations, atmospheric drag does not have a marked effect. However, for a lower altitude orbit, the improvement made by including a drag model may be worthwhile. A major problem with drag modeling is that density profile of the atmosphere is difficult to predict. It depends strongly on solar activity.

10.5 Improved Gravitational Field Modeling

Clearly the algorithm could be improved, in terms of producing more accurate solutions, by implementing a better model of the gravitational forces on the satellite. That is, we could use a propagation model that takes account of more of the zonal and tesseral harmonics of the Earth's gravitational field. Also we could include the effect of the gravitational attraction of the Sun and the Moon. Of course, there is a trade-off between the greater accuracy and the increased run time that would result from an improved gravity model. Chapter 8 provides a strategy on how best to optimize the trade-off between run time and solution accuracy. That strategy is basically to use the solution obtained from running the data with the less accurate propagation model, as the a priori estimate for data processing with the more accurate propagation model.

10.6 Application to Non-Terrestrial Satellites

In this final section, the possibility of using this preliminary orbit determination method for determining the orbits of satellites about other planets such as Mars is considered. In order to use this algorithm, certain modifications would be necessary. The basic method could remain unchanged, but any parameters that are local to
The planet Earth would have to be replaced by the corresponding parameters of Mars. The two body mechanics propagator would need to replace the values of the Earth's angular rate, its gravitational parameter, μ, and its size and shape parameters with the corresponding Mars parameters.

Atmospheric modeling, solar radiation pressure, gravitational perturbations due to external bodies and zonal and tesseral harmonics would have to be altered to model the conditions on Mars.

The extension to the six-level method, and the modification to allow hyperbolic orbit states on the solution curve, would be unaffected by the change of planet.
Bibliography

[10] Tangredi, L., GE Astro-Space Division, personal communication to Draper Laboratory.

APPENDIX A

The purpose of this appendix is to explain the Gaussian quadrature technique used in the arc length correction sub-algorithm. Gaussian Quadrature is a technique used to exactly evaluate the integral of any polynomial of degree \(\leq (2n-1) \) using the linear combination of just \(n \) evaluations (at specific points). In this appendix, the \(n = 2 \) case will be outlined.

Suppose we seek a result of the form:

\[
\int_{-1}^{1} f(x)dx = c_1 f(x_1) + c_2 f(x_2)
\]

(10.1)

We need to find the values of \(c_1, c_2, x_1 \) and \(x_2 \), such that the equation 10.1 is exact for all polynomials \(f(x) \) of degree \(\leq 3 \). By linearity, the expression must hold for all polynomials of degree \(\leq 3 \) if it holds for the monomials \(x^0, x^1, x^2 \) and \(x^3 \). Thus, our problem is reduced to finding the values of \(c_1, c_2, x_1 \) and \(x_2 \) such that:

\[
\int_{-1}^{1} x^0 dx = 2 = c_1 + c_2
\]

\[
\int_{-1}^{1} x^1 dx = 0 = c_1 x_1 + c_2 x_2
\]

\[
\int_{-1}^{1} x^2 dx = \frac{2}{3} = c_1 x_1^2 + c_2 x_2^2
\]

\[
\int_{-1}^{1} x^3 dx = 0 = c_1 x_1^3 + c_2 x_2^3
\]

If we choose \(x_1 = -x_2 \) and \(c_1 = c_2 \), then the \(2^{nd} \) and \(4^{th} \) equations are satisfied. The remaining two equations then require \(c_1 = 1 \) and \(x_1 = \pm 1/\sqrt{3} \). Hence, we can say:

\[
\int_{-1}^{1} f(x)dx = f(1/\sqrt{3}) + f(-1/\sqrt{3})
\]

(10.2)
is true for all polynomials \(f(x) \) of degree \(\leq 3 \).

Now we need to be able to generalize equation 10.2 to an integral with general limits. To do this, consider the following:

\[
\int_{x_1}^{x_2} f(x)dx
\]

Let \(x = Au + B \) where \(A \) and \(B \) are constants. This gives:

\[
\int_{x_1}^{x_2} f(x)dx = A \int_{\frac{x_1-B}{A}}^{\frac{x_2-B}{A}} f(Au + B)du
\]
\((10.3) \)

Now let \(\frac{x_1-B}{A} = -1 \) and \(\frac{x_2-B}{A} = 1 \) giving \(A = \frac{x_2-x_1}{2} \) and \(B = \frac{x_2+x_1}{2} \). Then we can rewrite equation 10.3 as:

\[
\int_{x_1}^{x_2} f(x)dx = \frac{x_2-x_1}{2} \int_{-1}^{1} f \left(\frac{x_2-x_1}{2} u + \frac{x_2+x_1}{2} \right) du
\]
\((10.4) \)

Thus, in accordance with equation 10.2, we can say that for all polynomials \(f(x) \) of degree \(\leq 3 \):

\[
\int_{x_1}^{x_2} f(x)dx = \frac{x_2-x_1}{2} \left[f \left(\frac{x_2-x_1}{2\sqrt{3}} + \frac{x_2+x_1}{2} \right) + f \left(\frac{x_2-x_1}{2\sqrt{3}} + \frac{x_2+x_1}{2} \right) \right]
\]
\((10.5) \)

is an exact equation. This is known as 3rd order, or 2-point Gaussian quadrature. The 3-point or 4th order scheme is used in the arc length evaluation discussed in chapter 3. This will give exact integrals for any polynomial of degree \(\leq 4 \). The Gaussian quadrature coefficients for higher order methods are known and can be found in tabulated form in reference [12]
The software consists of the main program, twenty-one subroutines and two block data sub-programs. Two of the subroutines, ludcmp and lubksb, were taken from reference [4]. The two block data sub-programs and nine of the subroutines were taken from the Draper Research and Development version of the Goddard Trajectory Determination System [7]. The mathematical description of these subroutines is contained in [8]. The main program and the remaining ten subroutines were written by the author.

Software layout is as follows:

- **newhmtpy** — Executive. Contains starter and monitor sub-algorithms explicitly. Performs sequencing of the main steps in the method.
- **stpsz** — Carries out step size selection.
- **predict** — Carries out curve point predictor step.
- **correct** — Carries out curve point corrector step.
- **arc** — Carries out arc length correction step.
- **output** — Carries out collection of solution points.
- **critical** — Carries out collection of critical points.
- **terminate** — Carries out determination of whether the curve has been completed.
- **invert** — Carries out matrix inversion.
- **tangent** — Carries out curve tangent evaluation.
- derive — Carries out determination of partial derivative matrix using numerical differencing.

- satelm# [7] — Block data sub-program containing information about current orbital elements.

- elipsd# [7] — Block data sub-program containing information the size and shape parameters of the Earth.
Note: Subroutines brolyd, eqnkep and kepeqn have minor modifications to the originals received from Draper.

Software input is provided from the keyboard. Keyboard input may be redirected to a file if file input is desired.

Software writes to the following files:

- solutn.dat — Solution points are stored.
- critcl.dat — Critical points are stored.
- range3.dat — Predicted and corrected points are stored.
- axis.dat — For each corrected point the semi-major axis and the λ coordinate are stored.
- eccent.dat — For each corrected point the eccentricity and the λ coordinate are stored.
- inclin.dat — For each corrected point the inclination and the λ coordinate are stored.
- node.dat — For each corrected point the ascending node and the λ coordinate are stored.
- pergee.dat — For each corrected point the argument of perigee and the λ coordinate are stored.
- anomal.dat — For each corrected point the true anomaly and the λ coordinate are stored.
- arclen.dat — For each corrected point the curve length s and the λ coordinate are stored.

Data in files 4 to 10 inclusive may be plotted using MATLAB.

Listings of these software are given below:
program newhmtpy

c
This program computes a satellite epoch state using only six observed
ranges at six known observation times relative to epoch. The method used is
c the Homotopy Continuation Method. It is based on and modifies the work of
c R. L. Smith and C. Huang.

c
Required type statements

implicit none (a-z)
logical setrtr

double precision mu, long, lat, omega, height, theta, t, temp, satest, x1,
+ y1, z1, xest, eqnelm, pos, vel, yest, stn, drdpv, xex, satex, x, y, sat,
+ deltas, rhs, lha, drdeq, dpvdeq, theta0, value, comp, comp1, lambda, row1,
+ scale, u1, u2, u3, u3old, s1, s2, s3, s3old, L1, L2, pi, d, dups, kep, kep1,
+ retro, eps2, dups2, xestin, amat, sign, r8dum, tto, dfrc, bj2, bj3, bj4, bj5,
+ ae, oscele, orbel, sbuffer, buffer, row, iter, relax, n, b, prop, array
integer i, j, k, iflag, iflag1, iflag2, iflag3, ipass,
+ idmean, intgr, number, nflag, var

c
Fix the value of n to be 6.

c
parameter(n=6)

c
Required common blocks

common/dcint / r8dum(126), tto, intgr
common/ frc/ dfrc(1300)

c
Dimension the various arrays required.

dimension xest(n), xex(n), x(n), t(n), eqnelm(n), temp(n), drdpv(3),
+ vel(3), yex(n), yest(n), y(n), stn(3, n), satex(3, n), satest(3, n), pos(3),
+ sat(3, n), rhs(7), lhs(7, 7), drpdeq(6, 6), drdeq(6, 6), index(7), kep(n),
+ scale(7), u(7), u1(7), u2(7), u3(7), u3old(7), dups(7), kep1(n), iter(3),
+ dups2(7), xestin(n), oscele(n), orbel(5), buffer(7), amat(n), row(7),
+ array(n), row1(n)

c
Required equivalence statements

equivalence (bj2, dfrc(356)), (bj3, dfrc(357)),
+ (bj4, dfrc(358)), (bj5, dfrc(359)),
+ (dfrc(2), mu), (ae, dfrc(24))

c

c
DEFINITION OF VARIABLES USED IN THIS PROGRAM
c***
c
 c setrtr: logical variable to determine whether or not to change retro
 c retro: either +1 or -1 depending on whether orbit is retrograde or not
 c (For our purposes retro = +1 and setrtr = .false. at all times)
 c mu: gravitational parameter of the Earth
 c long: longitude of Earth station in Earth fixed coordinates
 c lat: latitude of Earth station in Earth fixed coordinates
 c omega: Earth's rotational rate
 c height: local height of Earth station
 c theta: Greenwich hour angle
 c thetas0: Greenwich hour angle at epoch
 c t: array holding observation times
 c sat: array holding satellite position in inertial coordinates
 c corresponding to the a priori epoch estimate
 c satex: array holding exact satellite position in inertial coordinates at
 c the six observation times
 c sat: array holding satellite position in inertial coordinates corresponding
 c to current epoch estimate
 c xi: current x-coordinate of station in inertial coordinates
 c y1: current y-coordinate of station in inertial coordinates
 c z1: current z-coordinate of station in inertial coordinates
 c xestin: array holding a priori epoch estimate
 c xest: array holding epoch estimate at the latest restart point
 c xex: array holding exact epoch state
 c x: array holding current epoch estimate
 c lambda: a parameter which defines the homotopy (= 0.0 at a priori epoch
 c estimate and = 1.0 at solution)
 c u: array holding lambda and x
 c u1: >
 c u2: > arrays holding lambda and x information at backpoints
 c u3: > along the solution curve
 c u3old: >
 c s: the distance along the solution curve from the start point
 c s1: >
 c s2: > distances along the solution curve from the start point at
 c s3: > backpoints along the solution curve
 c s3old: >
 c L1: > Lagrange polynomials for two backpoints
 c L2: >
 c temp: array holding current elements
 c eqnelm: array holding current Equinoctial elements
 c pos: array holding current satellite position in inertial coordinates
 c vel: array holding current satellite velocity in inertial coordinates
 c y: array holding ranges corresponding to current epoch estimate
 c yex: array holding the exact ranges
 c yest: array holding ranges corresponding to a priori epoch estimate
 c stn: array holding station position in inertial coordinates at the six
 c observation times
 c dpvdeq: array holding partial derivatives of current position and velocity
 c with respect to current Equinoctial elements (this is then multiplied by
 c the partial derivative of current Equinoctial elements with respect to
 c epoch Equinoctial elements and the answer returned back to dpvdeq)
 c drdpv: array holding partial derivatives of ranges with respect to

103
c current position and velocity
c drdreq: array holding partial derivatives of ranges with respect to epoch

Equinoctial elements
c deltas: curve length step
c iflag: # of Newton-Raphson iterations
c jflag: # of times original deltas has been halved
c kflag: # of critical points passed

c iflag: # of times program has been restarted
c mflag: # of times that the initial start point has been passed

c nflag: # of solution points that have been passed

c rhs: array holding the right hand side of the 7x7 system to be solved in

each Newton-Raphson iteration (the solution is later returned back to rhs)

c lhs: array holding the left hand side of the 7x7 system to be solved in each

Newton-Raphson iteration

c indx: array local to the lu decomposition and back substitution routines

c used for solving the above mentioned 7x7 system

c d: variable local to the lu decomposition and back substitution routines

c used for solving the above mentioned 7x7 system

c scale: array holding scaling constants for the u vector

c eps2: similar to eps1 but used in a different convergence criterion

c value: used in determining convergence; also used in determining if a
time is valid for observation of satellite from station

c comp: variable used in determining if a time is valid for observation of

satellite from station

c comp1: variable used in determining if a time is valid for observation of

c satellite from station

c sign: value of lambda after the very first step along the solution curve

c duds: Array holding derivative of the u vector with respect to curve

c length s at the most recent solution point

c duds1: Array holding derivative of the u vector with respect to curve

c length s at the last back point

c kep1: Array holding Kepler elements corresponding to the most recent

c solution point

c kep: Array holding Kepler elements corresponding to the last back point

c number: A variable whose value is 1 if the program has just emerged from

c the starter and is 0 otherwise

c intgr: A variable which takes the value of 1 if the eccentricity exceeds

c 1 while in subroutine brolyd but is 0 otherwise

c ipert: >
c ipass: > Variables whose values determine the paths taken in subroutine

c idmean: > brolyd

c tto: Current time since epoch

c bj2: >
c bj3: > Coefficients of the Earth's gravitational field expansion

c bj4: >
c bj5: >
c r8dum: > Arrays in the common block with brolyd

c dfrc: >
c ae: Earth's mean radius in km

c buffer: array holding the u vector solution point just before the last

c restart point

c sbuffer: curve length s corresponding to solution point buffer

c oscle: array holding latest osculating elements

c iter: array holding convergence criterion values for the last three
iterations of the N-R scheme
relax: variable holding the value of a relaxation parameter for the N-R scheme
prop: variable whose value determines whether orbit propagation is 2-body mechanics or Brouwer-Lydanne
var: variable whose value determines certain decisions such as if exact ranges should be entered from the keyboard or not
array: array containing either mean elements or osculating elements depending on what kind of propagation has been selected
amat: > arrays used in the calculation of the local tangent vector
row1: array used in the numerical calculation of partial derivatives

Open files for output of data.

Open(1, file = 'range3.dat')
Open(2, file = 'axis.dat')
Open(3, file = 'eccent.dat')
Open(4, file = 'inclin.dat')
Open(7, file = 'node.dat')
Open(8, file = 'pergee.dat')
Open(9, file = 'anomly.dat')
Open(10, file = 'solutn.dat')
Open(11, file = 'critcl.dat')
Open(13, file = 'arclen.dat')

Ask user whether he/she would like to use two-body propagation or Brouwer-Lydanne propagation

write(6, *) 'If you would like two-body propagation enter 1, if you would like Brouwer-Lydanne propagation enter 0'
read(5, *) prop

Set values of various constants.

setrst = .false.
retro = 1.0
omega = 7.2921159e-05
mu = 398600.64
eps2 = 1.0d-11
pi = 3.1415926535897932
ae = 6.3781350d3
bj2 = -1.082627d-3
bj3 = 2.538414d-6
bj4 = 1.6233497d-6
bj5 = 2.2808687d-7
kflag = 0
lflag = 0
mflag = 0
nflag = 0
ipass = 1
idmean = 1
if(prop.lt.0.5) then
ipert = 2
else
ipert = 0
endif

Print message to screen asking for Earth station latitude, longitude and height.

write(6,*)'Input Earth-fixed station latitude, longitude and height (in km) in that order. Latitude and longitude in degrees.'
read(5,*)lat,long,height
lat = lat*pi/180.0
long = long*pi/180.0

Calculate the station's Earth fixed cartesian coordinates.
call crtgeo(xl,yl,zl,height,lat,long)

Print message to screen asking for initial angle between inertial and Earth-fixed coordinates (Greenwich Hour Angle).
write(6,*)'Input the initial angle between inertial and Earth-fixed coords in degrees.'
read(5,*)theta0
theta0 = theta0*pi/180

Print message to screen asking for observation times in seconds after epoch state time, and read them into an array.
write(6,*)'Input the six observation times, in seconds, in chronological order.'
read(5,*)(t(i), i = 1,n)

Calculate the station's cartesian coordinates in inertial coordinates at the six chosen observation times.
do 5 i = 1,n
theta = omega*t(i)+theta0
stn(1,i) = xi*cos(theta)-y1*sin(theta)
\[\text{stn}(2,i) = x_1 \sin(\theta) + y_1 \cos(\theta) \]
\[\text{stn}(3,i) = z_1 \]

If two body mechanics has been chosen, allow exact ranges to be calculated from exact epoch elements or to be entered as observed quantities.

\[
\text{if}(\text{prop} \leq 0) \text{then} \\
\text{var} = 1 \\
\text{goto} \ 6 \\
\text{endif} \\
\text{write}(6,*), 'If you wish to use observed ranges enter 1, if not, enter 0' \\
\text{read}(5,*), \text{var} \\
\text{if}(\text{var} \gt 0) \text{then} \\
\text{write}(6,*), 'Enter observed ranges in kilometers' \\
\text{read}(5,*), (y_{ex}(i), \ i = 1,n) \\
\text{goto} \ 204 \\
\text{endif} \\
\]

Print message to screen asking for a satellite epoch state in Kepler elements (Brouwer mean elements), and read them into an array.

\[
\text{write}(6,*), 'Input a satellite epoch state, in Kepler elements, in the following order: a(km), e, i, w, q, m. All angles in degrees.' \\
\text{read}(6,*), (x_{ex}(i), \ i = 1,n) \\
\text{do} \ 10 \ i = 3,6 \\
\quad x_{ex}(i) = x_{ex}(i) \pi / 180 \\
\text{continue} \\
\]

For each of the six chosen observation times: 1.) calculate the current Kepler elements and put them in an array (temp) 2.) convert them to equinoctial elements using subroutine eqnkep 3.) convert the equinoctial elements to position and velocity in inertial cartesian coordinates using subroutine cartes 4.) write the satellite position to an array.

\[
\text{do} \ 150 \ i = 1,n \\
\quad \text{tto} = t(i) \\
\quad \text{do} \ 50 \ j = 1,n \\
\quad \quad \text{temp}(j) = x_{ex}(j) \\
\quad \quad \text{continue} \\
\quad \text{call brolyd(oscale,temp,ipert,ipass,idmean,orbel,pi)} \\
\text{if}(\text{prop} \lt 0.5) \text{then} \\
\quad \text{do} \ 55 \ j = 1,n \\
\quad \quad \text{array}(j) = \text{oscale}(j) \\
\quad \quad \text{continue} \\
\quad \text{else} \\
\quad \text{do} \ 60 \ j = 1,n \\
\]
array(j) = temp(j)
continue
endif
call eqnkep(eqnelm,retro,array,setrtr)
call cartes(pos,vel,eqnelm,retro,mu)
do 100 j = 1,3
satex(j,i) = pos(j)
100 continue
150 continue
c c Calculate the exact ranges at the six chosen times and store them in an array.
c
do 200 i = 1,n
 yex(i) = sqrt((satex(1,i)-stn(1,i))**2+(satex(2,i)-stn(2,i))**2
 ++(satex(3,i)-stn(3,i))**2)
200 continue
c c Check that at the chosen times, the satellite is in view of the station.
c
do 210 i = 1,n
 value = 0.0
 do 206 j = 1,3
 comp = (satex(j,i)-stn(j,i))/yex(i)
 comp1 = stn(j,i)/sqrt(stn(1,i)**2+stn(2,i)**2+stn(3,i)**2)
 value = value+comp*comp1
 206 continue
 if(value.lt.0.176)then
 write(6,*)'Time',t(i),'is a bad time because at that time the satellite is not in view of the station'
pause
 endif
210 continue
c c Write the exact satellite position data to file.
c
c write(1,217)(satex(j,i), i = 1,n)
217 format(6F10.2)
Write the station coordinates to file.

write(1,*),'Station position in inertial coordinates at times:
write(1,*), t1 t2 t3 t4 t5 t6
+write(1,*),
do 215 j = 1,3
 write(1,217)(stn(j,i), i = 1,n)
215 continue

Print message to screen asking for an estimate to the epoch state in
Kepler elements, and read them into an array.

write(6,*),'Input an estimate to the satellite epoch state, in Kepler
+ elements, in the following order: a(in km),e,i,w,q,m. All angles
+ in degrees.,'
read(5,*)(xest(i), i = 1,n)
do 218 i = 3,6
 xest(i) = xest(i)*pi/180
218 continue

Initialize backpoint information

u1(1) = 0.0
u2(1) = 0.0
u3(1) = 0.0
s = 0.0
s1 = 0.0
s2 = 0.0
s3 = 0.0

Save a priori Kepler elements in array kep

do 219 i = 1,n
 kep(i) = xest(i)
219 continue

Convert a priori estimate to Equinoctial elements

call eqnkep(xest,retro,xest,setting)

Write first point data to plotting files

write(2,'(lx,2F25.16)')u1(1),kep(1)
write(3,'(lx,2F25.16)')u1(1),kep(2)
write(4,'(lx,2F25.16)')u1(1),kep(3)*180.0/pi
write(7,'(lx,2F25.16)')u1(1),kep(4)*180.0/pi
write(8,'(lx,2F25.16)')u1(1),kep(6)*180.0/pi
write(9,'(i,2F25.16)',)u1(1),kep(6)*180.0/π
write(13,'(i,2F25.16)',)u1(1),s1

! Initialize the backpoint information
!
! do 220 i = 1,n
! u1(i+1) = xest(i)
! u2(i+1) = xest(i)
! u3(i+1) = xest(i)
! xestin(i) = xest(i)
220 continue
!
! For each of the chosen observation times calculate the present Kepler
! elements and convert to present Equinoctial elements
!
! do 260 i = 1,n
! tto = t(i)
! do 260 j = 1,n
! temp(j) = kep(j)
! continue
! call brolyd(oscele,temp,ipert,ipass,idmean,orb1,pi)
! if(prop.lt.0.5)then
! do 251 j = 1,n
! array(j) = oscele(j)
! continue
! else
! do 252 j = 1,n
! array(j) = temp(j)
! continue
! endif
! call eqnkep(eqne1m,retro,array,setrtr)
!
! Convert from Equinoctial elements to position and velocity using
! subroutine cartes. This subroutine also sets up the satelm block data
! to correspond to the current time.
!
! call cartes(pos,vel,eqne1m,retro,mu)
!
! Write the estimated satellite position to an appropriate array.
!
! do 255 j = 1,3
! satest(j,i) = pos(j)
! continue
!
! Calculate the estimated range and store it in the appropriate array.
!
! yest(i) = sqrt((satest(1,i)-stn(1,i))**2+(satest(2,i)-stn(2,i))
! +**2+(satest(3,i)-stn(3,i))**2)
! continue
!
! Write the actual and estimated range data to file.
c
c
write(1,*), '**
+************************
write(1,*), RANGES'
write(1,*), exact estimated
write(1,*),
do 270 i = 1,n
 write(1,*), yex(i), yest(i)
270 continue
write(1,*),
c
c calculate amat array
c
 do 267 i = 1,n
 amat(i) = yex(i) - yest(i)
267 continue

c Bootstrap starter begins here! Input an initial value for deltas.
c
 lambda = 0.0
c
Enter +1 or -1 to determine which direction you want to start the curve in
c
 write(6,*), 'Enter +1 or -1 to determine which direction you want to
+ start the curve in'
 read(5,*), deltas
 deltas = 0.1 * deltas
 goto 272
c
If the program reaches this point, we are restarting at the initial point
c or terminating the program
c
271 write(6,*), 'Either input a deltas that is greater than 10 which wil
+1 terminate the program, or input a different deltas, such as the
+negative of the original deltas used, and the program will restart
+ at the original start point'
 read(5,*), deltas
 deltas = 0.1 * deltas
 mflag = 1
 do 265 i = 1,n
 xest(i) = xestin(i)
 265 continue
s = 0.0
s1 = 0.0
s2 = 0.0
s3 = 0.0
lambda = 0.0
u2(1) = 0.0
u3(1) = 0.0
do 266 i = 1,n
 u2(i+1) = xest(i)
 u3(i+1) = xest(i)
266 continue
lflag = 0
kflag = 0
272 if(deltas.ge.1)then
 goto 1000
endif

Set up scaling for u components, i.e., for the Equinoctial elements
scale(1) = 1.0
scale(2) = 1000
scale(3) = 0.001
scale(4) = 0.001
scale(5) = 1.0
scale(6) = 1.0
scale(7) = 1.0

Set counter for number of times deltas is halved to zero.
jflag = 0
goto 280
275 deltas = deltas/2.0

Initiate loop which adds deltas to each of the seven dimensions of u in turn
280 do 460 i = 1,7
 s1 = s1+abs(deltas*scale(i))
460 continue

Initialize iter array
iter(1) = 100.0
iter(2) = 100.0
iter(3) = 100.0

Set Newton-Raphson iteration counter to 0 and relaxation parameter to 1 initially
iflag = 0
relax = 1.0

Set up u1 = (lambda,xest) initially
do 290 j = 1,n
 u1(j+1) = xest(j)
290 continue
u1(1) = lambda

Add deltas to the relevant entry in u1
u1(i) = u1(i)+deltas*scale(i)
Set up \(x = u_1(2) \) to \(u_1(7) \)

do 300 \(j = 1,n \)
\[x(j) = u_1(j+1) \]
300 continue

c Calculate the Jacobian matrix and range vector corresponding to this \(x \) vector

c For each of the chosen observation times calculate the current Kepler elements and convert to current Equinoctial elements

do 310 \(j = 1,n \)
\[t_{to} = t(j) \]
call kepeq\(mn(\text{temp}, x, \text{retro}, \text{kep}) \)
call brolyd(\text{oscele}, \text{temp}, \text{ipert}, \text{ipass}, \text{idmean}, \text{orbel}, \text{pi}) \)
if(intgr.eq.1)then
go to 460
endif
if(prop.lt.0.5)then
do 311 \(k = 1,n \)
array\((k) = \text{oscele} (k) \)
311 continue
else
do 312 \(k = 1,n \)
array\((k) = \text{temp} (k) \)
312 continue
endif
call eqnkep(eqnelm, retro, array, setrtr)

c Convert from Equinoctial elements to position and velocity using subroutine cartes. This subroutine also sets up the satelm block data to correspond to the current time.
call cartes(pos, vel, eqnelm, retro, mu)

c Write the current satellite position to an appropriate array.
do 355 \(k = 1,3 \)
\[\text{sat}(k, j) = \text{pos}(k) \]
355 continue

c Calculate the current range and store it in the appropriate array.
\[y(j) = \sqrt{(\text{sat}(1,j) - \text{stn}(1,j))^2 + (\text{sat}(2,j) - \text{stn}(2,j))^2 + (\text{sat}(3,j) - \text{stn}(3,j))^2} \]
c Calculate derivative matrix either analytically in the case of 2-body mechanics or by numerical differencing in the case of Brouwer propagation
if(prop.lt.0.5)then
c Calculate the matrix of partial derivatives of ranges with respect to epoch mean Brouwer elements using subroutine derive
call derive(row1,y(j),x,retro,kep,ipass,ipert,idmean, +pi,settrr,mu,j,stn)
if(intgr.eq.1)then
goto 460
endif
do 359 k = 1,n
 drdeq(j,k) = row1(k)
359 continue
goto 360
else
 call crtdrv(dpvdeq)
 Multiply the matrix of partial derivatives of current state in Equinoctial elements with respect to current equinoctial elements using subroutine crtdrv.
c
c Calculate the matrix of partial derivatives of current position and velocity with respect to current equinoctial elements using subroutine crtdrv.
c
c Calculate the row vector (drdpv) resulting from partial differentiation of range at the current time with respect to current position and velocity. The last three entries are zeroes since range is independent of current velocity components.
c
do 356 k = 1,3
 drdpv(k) = (sat(k,j)-stn(k,j))/y(j)
356 continue
c
Carry out the multiplication drdpv x dpvdeq to get the ith row of the Jacobian matrix (drdeq).
c
do 358 k = 1,n
 drdeq(j,k) = drdpv(1)*dpvdeq(1,k)+drdpv(2)*dpvdeq(2,k)
 +drdpv(3)*dpvdeq(3,k)
358 continue
edif
360 continue
c
Set up the 7x7 system to be solved in order to get the change in ui, deltamu
c
Calculate the 7x1 right hand side column vector, rhs. Also set up a
c convergence criterion on rhs
value = 0.0
do 370 j = 1,n
rhs(j+1) = -yest(j)+y(j)-ui(1)*amat(j)
value = max(value,abs(rhs(j+1)/max(abs(yex(j)),abs(yest(j)))))
370 continue
write(1,*value,ui(1))
if(value.le.eps2)then
deltas = abs(deltas*scale(i))
goto 460
endif

c Update iteration array
iter(3) = iter(2)
iter(2) = iter(1)
iter(1) = value

if convergence criterion is not met, update iteration number and if it is
c less than 10, update u1 and do the next iteration. If the iteration number is
c not less than 10 then return to the start of the bootstrap starter and add
c deltas to the next component of the initial u1.
iflag = iflag+1
if(iflag.gt.10)then
goto 450
endif
rhs(1) = 0.0

c Calculate the 7x7 left hand side matrix, lhs
do 390 j = 1,n
lhs(j+1,1) = amat(j)
do 380 k = 1,n
lhs(j+1,k+1) = -drdeq(j,k)
380 continue
390 continue
call tangent amat,drdeq,rov
do 400 j = 1,7
lhs(1,j) = rov(j)
duds1(j) = lhs(1,j)
400 continue

c Solve the 7x7 system using subroutines ludcmp and lubksb which return deltaxu
as rhs
call ludcmp(lhs,7,7,indx,d)
call lubksb(lhs,7,7,indx,rhs)

c If the scheme has not converged but appears to be doing so, then
c allow another iteration with current value of relax. If it was converging
c but the last iteration was a divergence then set relax to 0.8 and do the
c next iteration. If it is diverging try the next component of u.

c
 if(iter(1).le.iter(2))then
 goto 415
 elseif(iter(1).gt.iter(2).and.iter(2).le.iter(3))then
 relax = 0.8
 goto 415
 elseif(iter(1).gt.iter(2).and.iter(2).gt.iter(3))then
 goto 460
 endif

 c Add the calculated change
 c

 415 do 420 j = 1,n
 x(j) = x(j)+relax*rhs(j+1)
 420 continue
 u1(1) = u1(1)+relax*rhs(1)

 c Update u1
 c

 do 430 j = 1,n
 u1(j+1) = x(j)
 430 continue

 c If eccentricity is greater than 1, try next component of u1
 c

 if((x(2)**2+x(3)**2).ge.1.0)then
 goto 460
 endif
 goto 310

 460 continue

 c Update the number of times deltas has been halved
 c

 jflag = jflag+1

 c If you reach this point that means that the bootstrap starter has not
 c worked with the current value of deltas. If the number of times that the
 c deltas has been halved is less than 10, then halve it again and start once
 c more. If the deltas has been halved not less than 10 times, consider the
 c starter as having failed.
 c

 if(jflag.lt.10)then
 goto 275
 endif

 c If bootstrap starter failed, write failure message to screen
 c

 write(6,*),'Starter failed. To terminate the program type 0, to res
 +tart at the initial start point type 1'
 read(6,*),var
 if(var.gt.0.5)then
 goto 271
 endif
goto 1000

Convert to Kepler elements for output

call kepeqn(kep,x,retro,kep)

Write important information to file

write(1,*)' Value of dels that gave convergence is, deltas,'.
write(1,*)' The corrected next point on the solution curve is:
write(1,*)' lambda =', u1(1), '
write(1,*)' a =', kep(1), 'km
write(1,*)' e =', kep(2), '
write(1,*)' i =', kep(3), 'radians
write(1,*)' w =', kep(4), 'radians
write(1,*)' W =', kep(6), 'radians
write(1,*)' m =', kep(6), 'radians

Correct arc length

value = 0.0
do 465 i = 1,7
 value = value+(u1(i)-u2(i))^2
465 continue
s1 = s2+sqrt(value)

Write data to plotting files and screen

write(2,'(1x,2F25.16)')u1(1),kep(1)
write(3,'(1x,2F25.16)')u1(1),kep(2)
write(4,'(1x,2F25.16)')u1(1),kep(3)*180.0/PI
write(5,'(1x,2F25.16)')u1(1),kep(4)*180.0/PI
write(6,'(1x,2F25.16)')u1(1),kep(5)*180.0/PI
write(7,'(1x,2F25.16)')u1(1),kep(6)*180.0/PI
write(13,'(1x,2F25.16)')u1(1),s1
write(8,*'u1(i)

Update number of times program has been restarted

lflag = lflag+1
if(lflag.eq.1) then
 sign = ui(1)
endif
number = 1
if(lflag.gt.1) then

Test for output states
if(abs(1.0-u1(1)).gt.0.1.and.abs(1.0-u2(1)).gt.0.1)then
goto 700
endif
call output(u1,u2,u3,s1,s2,s3,sn,yest,yex,mu,retro,sertr,t,
+scale,kep,comp,ipass,ipert,idmean,pi,orbel,oscele,number,eps2,
+nflag,amat,prop)
if(comp.gt.5)then
write(6,*)'Program terminated because corrector failed to converge
+ within output subroutine immediately after coming out of a
+restart'
goto 1000
endif

c If maximum number of solution points has been reached terminate program

c if(nflag.ge.10)then
write(6,*)'Maximum number of solution points has been reached. Pro
+gram terminates'
goto 1000
endif

c Check for critical point

c 700 if(u2(1).gt.u1(1).and.u3(1).gt.u2(1))then
goto 710
endif
if(u1(1).gt.u2(1).and.u2(1).gt.u3(1))then
goto 710
endif
call critical(u1,u2,buffer,s1,s2,sbuffer,kep,pi,kflag,sn,yest,
yex,mu,retro,sertr,t,calcale,comp,ipass,ipert,idmean,orbel,oscele,
+amat,prop,eps2)
if(kflag.ge.10)then
write(6,*)'Number of critical points is maximum allowed'
goto 271
endif

c Check for termination condition

c 710 if(abs(u1(1)).gt.0.1.and.abs(u2(1)).gt.0.1)then

goto 720
endif
call terminate(u1,u2,u3,s1,s2,s3,sn,yest,yex,mu,retro,sertr,t,
+estin,comp,cale,kep,eps2,sign,nflag,ipass,ipert,idmean,pi,orbel,
+oscele,number,amat,prop)
if(comp.gt.15)then

goto 1000
endif
if(comp.gt.5)then
write(6,*)'Program terminated because corrector failed to converge
+ within terminate subroutine immediately after coming out of a
+restart'
goto 1000
endif
endif

number = 0

c Select next step size
c
 call stpsz(iflag,deltas)
s = s + deltas
c
Predict the next step along the solution curve
c
 L1 = (s - s2)/(s1 - s2)
 L2 = (s - s1)/(s2 - s1)
do 480 i = 1,7
 u(i) = L1*u1(i)+L2*u2(i)
480 continue
c
Update back point information
c
489 do 490 i = 1,7
 u3old(i) = u3(i)
 u3(i) = u2(i)
 u2(i) = u1(i)
 u1(i) = u(i)
490 continue
do 491 i = 1, n
 x(i) = u1(i+1)
491 continue
s3old = s3
s3 = s2
s2 = s1
s1 = s
c
Convert to Kepler elements for output
c
 call kepeqn(kep1,x,retro,kep)
c
Write the predicted next point data to file
c
 write(1,*),'
write(1,*),' The predicted next point on the solution curve is:
write(1,*),' lambda = ',ui(1),'
write(1,*),' a = ',kep1(1),',km'
write(1,*),' e = ',kep1(2),'
write(1,*),' i = ',kep1(3),',radians'
write(1,*),' w = ',kep1(4),',radians'
write(1,*),' W = ',kep1(5),',radians'
write(1,*),' m = ',kep1(6),',radians'
c
If stepsize is less than 1.0d-5, allow restart options at either the last
corrected point or at the initial start point or allow terminate option
c
if(deltas.lt.1.0d-5) then
 write(6,*),' For a restart at the last corrected point type 1, for a
+ restart at the initial start point type 2, to terminate type 0'
read(5,*) var
if(var.gt.0.5.and.var.lt.1.5)then
lambda = u2(i)
do 499 i = 1,n
xest(i) = u2(i+1)
499 continue
do 500 i = 1,7
buffer(i) = u3(i)
u1(i) = u2(i)
u3(i) = u2(i)
u3old(i) = u2(i)
500 continue
sbuffer = s3
s1 = s2
s3 = s2
s3old = s2
deltas = 0.1
goto 272
elseif(var.gt.1.5.and.var.lt.2.5)then
goto 271
else
goto 1000
endif
endif

Correct the next step along the solution curve

a = 0
b = 0
value = 0
do 492 i = 1,7
value = value+duds(i)*duds1(i)
a = a+duds(i)**2
b = b+duds1(i)**2
492 continue
value = value/sqrt(a*b)
write(1,*)'value =',value,''

Update x

493 do 495 i = 1,n
x(i) = u1(i+1)
495 continue
If:
1.) the corrector did not converge
2.) the change in lambda between the last 2 corrected points > 0.1
3.) the change in curve tangent is too great

halve deltas, set back the backpoint data and return to the predictor step

if(comp.gt.5.or.abs(u1(1)-u2(1)).gt.0.1.or.abs(value).lt.0.9)then
 deltas = deltas/2.0
 do 497 i = 1,7
 u1(i) = u2(i)
 u2(i) = u3(i)
 u3(i) = u3old(i)
 continue
 s1 = s2
 s2 = s3
 s3 = s3old
 if(abs(s2-s3).lt.1.0d-10)then
 goto 470
 endif
 goto 560
endif

Convert to Kepler elements for output

call kepeqn(kep1,x,retro,kep)

Otherwise, write the corrected next point data to files

write(1,*)' The corrected next point on the solution curve is:
write(1,*) lambda =',u1(1),'
write(1,*) a =',kep1(1),' km'
write(1,*) e =',kep1(2),'
write(1,*) i =',kep1(3),' radians'
write(1,*) w =',kep1(4),' radians'
write(1,*) W =',kep1(5),' radians'
write(1,*) m =',kep1(6),' radians'

Correct the arc length

call arc(s1,s2,s3,u1,u2,u3)
write(2,'(1x,2F25.16)')u1(1),kep1(1)
write(3,'(1x,2F25.16)')u1(1),kep1(2)
write(4,'(1x,2F25.16)')u1(1),kep1(3)*180.0/pi
write(7,'(1x,2F25.16)')u1(1),kep1(4)*180.0/pi
write(6,'(1x,2F25.16)')u1(1),kep1(5)*180.0/pi
write(9,'(1x,2F25.16)')u1(1),kep1(6)*180.0/pi
write(13,'(1x,2F25.16)')u1(1),s1
write(6,*)u1(1)

Update kep
c do 550 i = 1,6
 kep(i) = kep1(i)
550 continue

Update duds

do 555 i = 1,7
 duds1(i) = duds(i)
555 continue

Calculate the straight line distance between the last corrected point and
the start point. If this is greater than the corrected arc length there is
clearly something wrong

value = 0.0
do 556 i = 1,7
 value = value+(ul(i)-u2(i))**2
556 continue
 value = sqrt(value)
if(value.ge.abs(sl))then
 write(*,'(F20.0)')'Corrected arc length is less than physically possible'
 pause
endif

Collect output states

if(abs(1.0-ul(1)).gt.0.1.and.abs(1.0-u2(1)).gt.0.1)then
 goto 590
endif
 call output(u1,u2,u3,s1,s2,s3,yst,yex,mu,retro,sestrt,t,scal
 +,kep,comp,ipass,ipert,idean,pi,orbe1,oscele,number,eps2,nflag,
 +amat,prop)

If, while in subroutine output, subroutine correct is called but the N-R
scheme does not converge, then halve deltas, set back the backpoint
data and return to the predictor step

if(comp.gt.5)then
 goto 496
endif

If maximum number of solution points has been reached terminate program

if(nflag.ge.10)then
 write(*,'(F20.0)')'Maximum number of solution points has been reached. Pro
 +gram terminates'
 goto 1000
endif

Collect critical points
if(u2(1).gt.u1(1).and.u3(1).gt.u2(1))then
 goto 600
endif
if(u1(1).gt.u2(1).and.u2(1).gt.u3(1))then
 goto 600
endif
if(kflag.ge.10)then
 write(6,*),'Number of critical points is maximum allowed'
 goto 271
endif
if(abs(u1(1)).gt.0.1.and.abs(u2(1)).gt.0.1)then
 goto 660
endif
calculate critical(u1,u2,u3,s1,s2,s3,kep,pi,kflag,sn,yest,yex,mu,retro +,setrtr,t, Scale,comp,ipass,ipert,idmean,orbel,oscele,amat,prop, +eps2)

c If maximum number of critical points has been reached allow the option of
c restarting at the initial start point or of terminating

cif(kflag.ge.10)then
 write(6,*),'Number of critical points is maximum allowed'
 goto 271
endif

c Check for return to initial state. If returned, terminate algorithm, if not,
c do next step.
c
if(abs(u1(1)).gt.0.1.and.abs(u2(1)).gt.0.1)then
 goto 650
endif
calculate terminate(u1,u2,u3,s1,s2,s3,sn,yest,yex,retro,rettr,t, +xestin,comp,Scale,kep,eps2,sign,snflag,ipass,ipert,idmean,pi, +orbel,oscele,number,amat,prop)
if(comp.gt.15)then
 goto 1000
endif

c If, while in subroutine terminate, subroutine correct is called but the N-R

c scheme does not converge, then halve deltas, set back the backpoint
c data and return to the predictor step

cif(comp.ge.5)then
 goto 496
endif

c Calculate next step-size
c
650 call stpsz(iflag,deltas)
660 s = s1+deltas
c
660 s = s1+deltas

c Predict next step
c
 call predict(s,s1,s2,s3,u,u1,u2,u3)

c If predicted point has a lambda value that exceeds the lambda value of
c the last corrected point by more than 0.1, halve the step size and make a
c new prediction

if(abs(u(1)-u1(1)).gt.0.1)then
 deltas = deltas/2.0
 goto 560
endif
 goto 489

cc

cc Close files and end.
cc
cc
1000 close(1)
 close(2)
 close(3)
 close(4)
 close(7)
 close(8)
 close(9)
 close(10)
 close(11)
 close(13)
 end
subroutine output(u1,u2,u3,s1,s2,s3,stan,yest,yex,mu,retro,setrtr,
+t,scale,kep,comp,ipass,ipert,idmean,pi,orbel,oscele,number,eps2,
+nflag,amat,prop)

This subroutine collects any output states that occur between the last
two points calculated on the solution curve

Required type statements

implicit none (a-z)
logial setrtr

double precision u1,u2,u3,uint,s2,s3,sint,stan,uup,kep1,pi,eps2,
+udown,yest,yex,mu,t,ua,u,scale,kep,retro,comp,duds,real,pi,orbel,oscele,L1,L2,value,soltn,tto,eqnelm,pos,vel,r8dum,amat,
+prop,arrays

integer i,j,iflag,n,ipass,ipert,idmean,number,nflag,k,intgr

Set n = 6

parameter(n=6)

Required common blocks

common/dcint /r8dum(126),tto,intgr

Required dimension statements

dimension u1(7),u2(7),u3(7),uint(7,0:50),sint(0:49),scale(7),
+stan(3,n),yest(n),yex(n),t(n),uup(7),udown(7),ua(7),u(7),x(n),
+kep(n),kepl(n),duds(7),orbel(5),oscele(n),soltn(n,0:9),pos(3),
+vel(3),eqnelm(n),amat(n),array(n)

comp = 0

Let uint(1:7,0) = u2(1:7), uint(1:7,50) = u1(1:7), and sint(0) = s2

do 25 i = 1,7
uint(i,0) = u2(i)
uint(i,50) = u1(i)
25 continue

sint(0) = s2

Otherwise, calculate 49 points on the solution curve evenly spaced between
s1 and s2 using the predictor method, based on the last two points if we
have just come out of the starter or based on the last three points otherwise

if(number.eq.1)then

do 40 i = 1,49
sint(i) = s2+i*(s1-s2)/49.0
L1 = (sint(i)-s2)/(s1-s2)
L2 = (sint(i)-s1)/(s2-s1)
do 30 j = 1,7
uint(j,i) = L1*u1(j)+L2*u2(j)
30 continue

125
continue
goto 80
endif
 do 75 i = 1,49
 sint(i) = s2+i*(s1-s2)/50.0
 call predict(sint(i),s1,s2,s3,u1,u2,u3)
 do 50 j = 1,7
 uint(j,i) = u(j)
50 continue
75 continue
 c
 c Pick out pairs of these predicted solutions that straddle the lambda = 1
 c hyperplane.
 c
70 do 200 i = 1,50
 if((1.0-uint(1,i))*(1.0-uint(1,i-1)).ge.0)then
 goto 200
 endif
 c For each such pair, correct them using N-R. If corrector does not work, set
 c comp = 10 and return to main program
 c
100 do 125 j = 1,7
 uup(j) = uint(j,i)
 udown(j) = uint(j,i-1)
125 continue
 if(i.eq.1)then
 goto 130
 endif
 call correct(udown,stn,yest,yex,mu,retro,setrtr,t,iflag,comp,+
 +eps2,duds,kep,ipass,ipert,idmean,pi,orbel,oscele,amat,prop)
 if(comp.gt.5)then
 goto 300
 endif
 if(i.eq.50)then
 goto 140
 endif
130 call correct(uup,stn,yest,yex,mu,retro,setrtr,t,iflag,comp,+
 +eps2,duds,kep,ipass,ipert,idmean,pi,orbel,oscele,amat,prop)
 if(comp.gt.5)then
 goto 300
 endif
140 continue
 c Let ua be a linearly interpolated state at lambda = 1
 c
100 do 150 j = 1,7
 ua(j) = udown(j)+(1.0-udown(1))*(1.0-udown(1))/(uup(1)-ud+
 +own(1))
150 continue
 c Correct ua using N-R
call correct(ua, stn, yest, yex, mu, retro, settrt, t, iflag, comp, eps2,
+duds, kep, ipass, ipert, idmean, pi, orbel, oscle, amat, prop)
if(comp.gt.5)then
 goto 300
endif

If the corresponding lambda is equal to 1 within a specified tolerance, write solution to file unless the same solution has been written to file previously. If not, let either uup or udown, whichever is further from 1, equal ua, and repeat

if(abs(1.0-ua(1)).gt.1.0d-8)then
 if(abs(uup(1)-1.0).gt.abs(udown(1)-1.0))then
 do 175 j = 1,7
 uup(j) = ua(j)
 175 continue
 goto 140
 endif
 do 190 j = 1,7
 udown(j) = ua(j)
 190 continue
 goto 140
endif

Compare this solution with previous solutions stored to see if it is different

do 88 k = 0,nflag
 value = 0.0
 do 85 j = 1,n
 if(j.le.5)then
 value = value+((soltn(j,k)-ua(j+1))/scale(j+1))**2
 85 continue
 goto 85
 endif
 var = abs(mod(soltn(j,k),2*pi)-mod(ua(j+1),2*pi))
 if(var.gt.pi)then
 var = var-2*pi
 endif
 value = value+(var/scale(j+1))**2
 continue
 if(value.lt.1.0d-2)then
 write(10,"'(A solution point has been encountered but it is the same as one which has been recorded before')
 write(10,"')
 endif
 goto 300
 88 continue

Store new solution point in soltn and update number of solutions

do 195 j = 1,n
 x(j) = ua(j+1)
soltn(j,nflag) = ua(j+1)
continue
nflag = nflag+1

Convert to Kepler elements for output

call kepeqn(kepl,x,retro,kep)

Write Brouwer mean solution to file

write(10,*)'One solution state is:'
write(10,*)' a =',kepl(1),'km'
write(10,*)' e =',kepl(2),'
write(10,*)' i =',kepl(3)*180/pi,'degrees'
write(10,*)' w =',kepl(4)*180/pi,'degrees'
write(10,*)' q =',kepl(5)*180/pi,'degrees'
write(10,*)' m =',kepl(6)*180/pi,'degrees'

Convert to osculating elements

tto = 0
call brolyd(oscele,kepl,ipert,ipass,idmean,orbel,pi)

If Brouwer–Lydanne propagation was being used write the osculating solution to file

if(prop.lt.0.5) then
write(10,*)'That solution state in Brouwer osculating elements is:'
write(10,*)' a =',oscele(1),'km'
write(10,*)' e =',oscele(2),'
write(10,*)' i =',oscele(3)*180/pi,'degrees'
write(10,*)' w =',oscele(4)*180/pi,'degrees'
write(10,*)' q =',oscele(5)*180/pi,'degrees'
write(10,*)' m =',oscele(6)*180/pi,'degrees'
do 55 j = 1,n
array(j) = oscele(j)
55 continue
else
do 60 j = 1,n
array(j) = kepl(j)
60 continue
endif

Convert to position and velocity

call eqnkep(eqelm,retro,array,setrtr)
call cartes(pos,vel,eqelm,retro,mu)

Write solution in terms of position and velocity to file
c
write(10,*), 'That solution state in position and velocity is:
write(10,*), x =', pos(1), 'km
write(10,*), y =', pos(2), 'km
write(10,*), z =', pos(3), 'km
write(10,*), xdot =', vel(1), 'km/s
write(10,*), ydot =', vel(2), 'km/s
write(10,*), zdot =', vel(3), 'km/s
200 continue
comp = 0
300 end
subroutine predict(s,s1,s2,s3,u,u1,u2,u3)

 c This subroutine predicts a point along the solution curve using
 c quadratic Lagrange extrapolation or interpolation

 c Required type statements

 implicit none (a-z)
 double precision u,u1,u2,u3,L1,L2,L3
 integer i

 c Dimension the various arrays used

 dimension u(7),u1(7),u2(7),u3(7)

 c Calculate the Lagrange coefficients

 L1 = ((s-s2)*(s-s3))/((s1-s2)*(s1-s3))
 L2 = ((s-s1)*(s-s3))/((s2-s1)*(s2-s3))
 L3 = ((s-s1)*(s-s2))/((s3-s1)*(s3-s2))

 c Calculate predicted point u

 do 480 i = 1,7
 u(i) = L1*u1(i)+L2*u2(i)+L3*u3(i)
 480 continue

end
subroutine correct(ul,stn,yest,yex,mu,retro,setrtr,t,iflag,comp,
+eps2,duds,kep,ipass,ipert,ldmean,pi,orbel,oscele,amat,prop)
c
 c This subroutine takes a predicted solution point and corrects to a real
 c solution point using the Newton–Raphson scheme
 c
 c Required type statements
 c
 implicit none (a–z)
double precision ul ,x,temp,mu,t,sat,pos,vel,y,stn,yex,lhs,
+rhs,value,amat,iter,dpvdeq,drdeq,drdpv,retro,d,comp,eps2,duds,kep,
+eqnelm,pi,orbel,oscele,r8dum,tto,row,relax,prop,array,row1
logical setrtr
integer iflag,j,n,k,indx,ipass,ldmean,ipert,intgr

 c Fix n to be 6
 c
 parameter(n=6)
c
 c Required common blocks
 c
 common/dcint /r8dum(126),tto,intgr
 c
 c Dimension local arrays
 c
 dimension ul(7),x(n),temp(n),t(6),sat(3,n),pos(3),vel(3),
y(6),stn(3,n),yest(n),yex(n),lhs(7,7),rhs(7),indx(7),dpvdeq(n,n),
+drdeq(n,n),drdpv(3),duds(7),kep(n),eqnelm(n),orbel(5),oscele(n),
+row(7),amat(n),iter(3),array(n),row1(n)
c
 c Set initial value of relaxation parameter to 1.0
 c
 relax = 1.0
 c
 c Set iteration count to zero and initialize iteration array
 c
 iflag = 0
 iter(1) = 100.0
 iter(2) = 100.0
 iter(3) = 100.0
 c
 c Set up x = ul(2) to ul(7)
c
 do 300 j = 1,n
 x(j) = ul(j+1)
 300 continue
 c
 c Calculate the Jacobian matrix and range vector corresponding to this x
 c vector
 c
 c For each of the chosen observation times calculate the current Kepler
c elements and convert to current Equinoxial elements

d0 360 j = 1,n
 tto = t(j)
call kepeqn(temp,x,retro,kep)
call brolyd(oscele,temp,ipert,ipass,idmean,orbel,pi)
if(intgr.eq.1)then
 comp = 10
goto 470
endif
if(prop.lt.0.5)then
 do 55 k = 1,n
 array(k) = oscele(k)
 continue
else
 do 60 k = l,n
 array(k) = temp(k)
 continue
endif
call eqnkep(eqnelm,retro,array,setrtr)

 Call subroutine cartes. This subroutine also sets up the satelm block data
to correspond to the current time.
call cartes(pos,vel,eqnelm,retro,mu)

 Write the current satellite position to an appropriate array.
d0 355 k = 1,3
 sat(k,j) = pos(k)
355 continue

 Calculate the current range and store it in the appropriate array.
y(j) = sqrt((sat(1,j)-stn(1,j))**2+(sat(2,j)-stn(2,j))**2+
 +2+(sat(3,j)-stn(3,j))**2)

 Calculate the derivative matrix either analytically in the case of 2-body
mechanics or by numerical differencing in the case of Brouwer propagation
if(prop.lt.0.5)then

 Calculate the matrix of partial derivatives of ranges with respect to epoch
mean Brouwer elements using subroutine derive
call derive(row1,y(j),x,retro,kep,ipass,ipert,idmean,
 +pi,setrtr,muj,stn)
if(intgr.eq.1)then
 comp = 10
goto 470
endif
d0 359 k = 1,n
 drdeq(j,k) = row1(k)
c Calculate the matrix of partial derivatives of current position and
c velocity with respect to current equinoctial elements using subroutine
c crtdrv.
c
 call crtdrv(dpvdeq)
c
 dpvdeq(k,1) = dpvdeq(k,1)-1.5*sqrt(mu/x(1)**5)*t(j)*d
 +pvdeq(k,6)
356 continue

c Calculate the row vector (drdpv) resulting from partial differentiation of
c range at the current time with respect to current position and velocity. The
c last three entries are zeroes since range is independent of current velocity
c components.
c
 do 357 k = 1,3
 drdpv(k) = (sat(kJ)-stn(kJ))/y(j)
357 continue
c
 Carry out the multiplication drdpv x dpvdeq to get the ith row of the
c Jacobian matrix (drdeq).
c
 do 358 k = 1,n
 drdeq(j,k) = drdpv(l)*dpvdeq(1,k)+drdpv(2)*dpvdeq(2,k
 +)+drdpv(3)*dpvdeq(3,k)
358 continue
endif
360 continue

c Set up the 7x7 system to be solved in order to get the change in ul, deltau
c
cc Calculate the 7x1 right hand side column vector, rhs. Also, test rhs for
c convergence
c
 value = 0.0
 do 370 j = 1,n
 rhs(j+1) = -yest(j)+y(j)-ul(l)*amat(j)
 value = max(value,abs(rhs(j+1))/max(abs(yex(j)),ab
 +s(yest(j),abs(y(j)))))
370 continue
write(1,*)value,u1(1)
if(value.le.eps2)then
goto 460
endif

c Update iteration array
c iter(3) = iter(2)
c iter(2) = iter(1)
c iter(1) = value

c If convergence criterion is not met, update iteration number and if it is
c less than 10, update u and do the next iteration. If the iteration number is
c not less than 10 then return to the start of the bootstrap starter and add
c deltas to the next component of the initial u.
c iflag = iflag+1
c if(iflag.gt.10)then
goto 440
endif
c rhs(1) = 0.0

c Calculate the 7x7 left hand side matrix, lhs
c do 390 j = 1,n
c lhs(j+1,1) = amat(j)
c do 380 k = 1,n
c lhs(j+1,k+1) = -drdeq(j,k)
c continue
380 continue
390 continue
c call tangent(amat,drdeq,row)
c do 400 j = 1,7
c lhs(1,j) = row(j)
c duds(j) = lhs(1,j)
c continue
400 continue

c Solve the 7x7 system using subroutines ludcmp and lubksb which return deltau
c as rhs

c call ludcmp(lhs,7,7,indx,d)
c call lubksb(lhs,7,7,indx,rhs)

c If the iterative scheme is diverging try letting the relaxation parameter
c equal 0.8

c if(iter(1).gt.iter(2).and.iter(2).gt.iter(3))then
relax = 0.8
endif

c Add the calculated change
c do 425 j = 1,n
c x(j) = x(j)+relax*rhs(j+1)
c continue
u1(1) = u1(1)+relax*rhs(1)

Update u1

\[\begin{align*}
435 & \quad \text{do } 430 \ j = 1, n \\
430 & \quad \text{u1}(j+1) = x(j) \\
430 & \quad \text{continue}
\end{align*} \]

If eccentricity is greater than 1, write a failure message to file, let
comp = 10 so that on returning to the main program, the last predicted
point will be discarded and the step-size halved

\[
\text{if}((x(2)**2+x(3)**2).ge.1.0) \text{then} \\
\quad \text{write}(1,*)'\text{Failure in corrector due to eccentricity > 1}.' \\
\quad \text{comp} = 10 \\
\quad \text{goto 470} \\
\quad \text{endif} \\
\quad \text{goto 320}
\]

If the Newton–Raphson scheme converged in 10 or less iterations, then
set comp = 0, otherwise, set comp = 10

\[
\begin{align*}
440 & \quad \text{comp} = 10 \\
460 & \quad \text{comp} = 0 \\
470 & \quad \text{end}
\end{align*} \]
subroutine critical(u1,u2,u3,s1,s2,s3,kep,pi,kflag,stan,yest,yex,
+mu,retro,sextrm,t,scale,comp,ipass,ipert,idmean,orbel,oscele,amat,
+prop,eps2)

c
This subroutine determines whether a local extremum in lambda has been
c passed. If so, it is estimated and then refined and stored

c Required type statements

c implicit none (a-z)

double precision u1,u2,u3,s1,s2,s3,sextrm,sextrm,slow,shigh,kep1,
+kep,retro,pi,uhigh,ulow,stan,yest,yex,mu,retro,t,comp,eps2,scale,
+duds,orbel,oscele,crit,value,calc1,calc2,sexnew,uexnew,amat,prop,
+x,var
integer i,j,kflag,iflag,n,ipass,ipert,idmean,k
logical setrtr

c Set n = 6

c parameter(n=6)

c Required dimension statements

c dimension u1(7),u2(7),u3(7),sextrm(7),kep(n),kep1(n),x(n),uhigh(7)
+,ulow(7),yest(n),yex(n),t(n),scale(7),duds(7),stan(3,n),
+crit(7,0:10),uexnew(7),amat(n)

c Calculate the value of arc length sextrm for which the derivative of lambda
c with respect to s is 0 on the extrapolated curve and take a point either side
c of it to define the range in which the critical point lies

c calc1 = u1(1)*(s2+s3)/((s1-s2)*(s1-s3))
+u2(1)*(s1+s3)/((s2-s1)*(s2-s3))
+u3(1)*(s1+s2)/((s3-s1)*(s3-s2))

calc2 = u1(1)/((s1-s2)*(s1-s3))
+u2(1)/((s2-s1)*(s2-s3))
+u3(1)/((s3-s1)

sextrm = calc1/(2*calc2)
if((sextrm-s1)*(sextrm-s3).gt.0)then
 write(11,*),
 write(11,*),'No real critical point exists here, we probably have a
 turn around of the solution curve',
 write(11,*),
 kflag = kflag+1
 goto 300
endif

shigh = sextrm+0.2*(s1-s3)
slow = sextrm-0.2*(s1-s3)

c Ensure that these three points all lie within the initial range

c 30 if((shigh.gt.s3.and.shigh.gt.s1).or.(shigh.lt.s3.and.shigh.lt.s1))
+then
 shigh = (shigh+sextrm)/2.0
goto 30
endif
40 if((slow.gt.s3.and.slow.gt.s1).or.(slow.lt.s3.and.slow.lt.s1))then
 slow = (slow+sextrm)/2.0
 goto 40
endif
c
Predict and correct these points. If the corrector fails on any of these
points write that message to the critical point storage file
c
 call predict(sextrm,s1,s2,s3,uextrm,u1,u2,u3)
call predict(shigh,s1,s2,s3,uhigh,u1,u2,u3)
call predict(slow,s1,s2,s3,ulow,u1,u2,u3)
call correct(ulow,ystn,yex,retro,sestrt,t,iflag,comp,eps2,
duds,kep,ipass,ipert,idmean,pi,orbel,oscele,amat,prop)
if(comp.gt.5)then
 write(11,*)'A critical point has been passed but due to a non-conv
ergence condition in correct, it was prevented from being recorded
+(ulow)'
write(11,*)'A critical point has been passed but due to a non-conv
ergence condition in correct, it was prevented from being recorded
+(uhigh)'
write(11,*)'A critical point has been passed but due to a non-conv
ergence condition in correct, it was prevented from being recorded
+(uextrm)'
 kflag = kflag+1
goto 300
dendif
c
Correct the arclengths of these three points
c
 call arc(shigh,s2,s3,uhigh,u2,u3)
call arc(slow,s2,s3,ulow,u2,u3)
call arc(sextrm,s2,s3,uextrm,u2,u3)
c
Check to make sure that after correcting the three points the critical
c point still lies within the range defined by the corrected points

if(uextrm(l).gt.uhigh(l).and.ulow(l).gt.uextrm(l)) then
write(ll,*),',
write(ll,*),'After correcting 3 points in the initial interval the '
+critical point is no longer in the reduced interval'
write(ll,*),',
goto 300
endif
if(uhigh(l).gt.uextrm(l).and.uextrm(l).gt.ulow(l)) then
write(ll,*),',
write(ll,*),'After correcting 3 points in the initial interval the '
+critical point is no longer in the reduced interval'
write(ll,*),',
goto 300
endif
if((sextrm-shigh)*(sextrm-slow).ge.0) then
write(ll,*),',
write(ll,*),'No real critical point exists here.'
write(ll,*),',
goto 300
endif

If the range is small enough consider uextrm to be the critical point.
Otherwise, narrow the range further

write(ll,*),'
write(ll,110)shigh,sextrm,slow,uhigh(I),uextrm(I),ulow(1)
write(ll,*),
110 format(6(F20.10))
if(abs(uhigh(1)-ulow(1)).gt.1.0d-7.or.abs(shigh-slow).gt.1.0d-1) then

Calculate the value of arc length sexnew which lies half-way between slow
c and shigh. Extrapolate the curve to get a point at that arc length. Correct
c that point. Correct the arc length of the corrected point. Make sure that
c the new corrected point lies in the range containing the critical point. If
c it does, then decide which of the original three points to throw away
c
sexnew = slow+0.5*(shigh-slow)
call predict(sexnew,shigh,sextrm,slow,uexnew,uhigh,uextrm,ulow)
call correct(uexnew,thy,ex,mu,retro,settrt,iflag,comp,eps2 +,duds,kep,ipass,ipert,ipmean,pi,orbel,oscele,amat,prop)
if(comp.gt.5) then
write(ll,*),'
write(ll,*),'A critical point has been passed but due to a non-conv '
+ergence condition in correct it was prevented from being recorded '
+(uexnew)'
write(ll,*),'
kflag = kflag+1
goto 300
endif

call arc(sexnew,shigh,slow,uexnew,uhigh,ulow)
if(sexnew.eq.sextrm) then
 sexnew = slow+0.6*(shigh-slow)
goto 46
endif
write(11,*)
write(11,110)sexnew,uexnew(1)
write(11,*)
if((sexnew-slow)*(sexnew-shigh).gt.0) then
 write(11,*)'The value of the latest s estimate falls outside the c'
 write(11,*)'ritical point interval'
 write(11,*)
kflag = kflag+1
goto 300
endif
if(uextrm(1).gt.ulow(1).and.uexnew(1).ge.uextrm(1).or.(uextrm(1)
 .lt.ulow(1).and.uexnew(1).le.uextrm(1))) then
 do 50 i = 1,7
 ulow(i) = uextrm(i)
 continue
slow = sextrm
else
 do 60 i = 1,7
 uhigh(i) = uextrm(i)
 continue
shigh = sextrm
endif
do 70 i = 1,7
 uextrm(i) = uexnew(i)
continue
sextrm = sexnew
goto 45
endif
if((uextrm(1).gt.ulow(1).and.uexnew(1).ge.uextrm(1)).or.(uextrm(1)
 .lt.ulow(1).and.uexnew(1).le.uextrm(1)) then
 do 80 i = 1,7
 ulow(i) = uexnew(i)
 continue
slow = sextrm
else
 do 90 i = 1,7
 uhigh(i) = uexnew(i)
 continue
shigh = sextrm
endif
goto 45
endif
endif
c c Check to see if this critical point is the same as one which has been
 c recorded previously
c
do 88 k = 0,kflag
 value = 0.0
 do 86 j = 1,7
 if(j.le.6)then
 value = value+((crit(j,k)-uextrm(j))/scale(j))**2
 endif
 var = abs(mod(crit(j,k),2*pi)-mod(uextrm(j),2*pi))
 if(var.gt.pi)then
 var = var-2*pi
 endif
 value = value+(var/scale(j))**2
 86 continue
 if(value.lt.1.0)then
 write(11,*),' A critical point has been encountered but it is the
 + same as one which has been recorded before'
 goto 300
 endif
88 continue

c Convert to Kepler elements for output

 do 100 j = 1,6
 x(j) = uextrm(j+1)
 100 continue
 call kepeqn(kep1,x,retro,kep)

 do 95 j = 1,7
 crit(j,kflag) = uextrm(j)
 95 continue
 kflag = kflag+1

 write(11,*),
 write(11,*),
 write(11,*),
 write(11,*),
 write(11,*),

 write(11,*),
 write(11,*),

 write(11,*),
 write(11,*),

 write(11,*),
 write(11,*),

 write(11,*),
 write(11,*),

 write(11,*),
 write(11,*),

300 comp = 0
end
subroutine arc(s1,s2,s3,u1,u2,u3)

c
This subroutine corrects the value of the arc length along the
solution curve from start point to current point

c
Required type statements

c
implicit none (a-z)
double precision a,b,c,d,quad,s1,s2,s3,u1,u2,u3,dL1ds,dL2ds,dL3ds,
+duds,value,s1old
integer i,j

c Dimension the various arrays used

c
dimension quad(3),u1(7),u2(7),u3(7),duds(7)

c
Set up various required constants

c
a = 0.5555555555555556
b = 0.225403330758517
c = 1.774596669241483
d = 0.888888888888889

c Calculate the quadrature evaluation points

c
20 s1old = s1
quad(1) = 0.5*(b*s2+c*s1)
quad(2) = 0.5*(s2+s1)
quad(3) = 0.5*(c*s2+b*s1)

c For each of the evaluation points, evaluate the function, i.e., the root
mean square of the components of the gradient vector at the evaluation
point

c
do 100 i = 1,3
dL1ds = ((quad(i)-s3)+(quad(i)-s2))/((s1-s2)*(s1-s3))
dL2ds = ((quad(i)-s3)+(quad(i)-s1))/((s2-s1)*(s2-s3))
dL3ds = ((quad(i)-s1)+(quad(i)-s2))/((s3-s2)*(s3-s1))
value = 0.0

100 continue

do 50 j = 1,7

duds(j) = dL1ds*u1(j)+dL2ds*u2(j)+dL3ds*u3(j)

50 continue

quad(i) = sqrt(value)

c Calculate the corrected curve length

c
s1 = s2+(s1-s2)*(d*quad(2)+a*quad(1)+a*quad(3))/2.0

c Test to see if the calculated change in curve length exceeds some tolerance.
If it does then run it through the arc length corrector again

141
if(abs(s1-s1old).gt.1.0d-8)then
 goto 20
endif
end
subroutine terminate(u1,u2,u3,s1,s2,s3,stn,yest,yex,mu,retro,
 +setrtr,t,xest,comp,scale,kep,eps2,lambda,mflag,ipass,ipert,idmean,
 +pi,orbel,oscele,number,amat,prop)
c
c// This subroutine checks to see if the solution curve has returned to the
// initial point by completing the solution loop
//
// Required type statements
//
c implicit none (a-z)
logical setrtr
double precision u1,u2,u3,uint,s1,s2,s3,sint,stn,uup,kep,kepl,
+udown,yest,yex,mu,t,ua,xest,scale,x,comp,retro,var,
+value,pi,eps2,duds,lambda,pi,orbel,oscele,Ll,L2,amat,prop
integer ij,n,iflag,mflag,ipass,ipert,idmean,number

c// Set n = 6
nc parameter(n=6)

c// Required dimension statements

c dimension u1(7),u2(7),u3(7),uint(7,0:50),sint(0:50),xest(n),
+stn(3,n),yest(n),yex(n),t(n),uup(7),udown(7),ua(7),u(7),scale(7),
+kep(n),kepl(n),x(n),duds(7),orbel(5),oscele(n),amat(n)
comp = 0
c//
// Let uint(1:7,0) = u2(1:7), uint(1:7,50) = u1(1:7), sint(50) = s1, and
// sint(0) = s2

c sint(0) = s2
sint(50) = s1

c// Otherwise, calculate 49 points on the solution curve evenly spaced between
// s1 and s2 using linear interpolation if the algorithm has only two points
// available, or using quadratic interpolation otherwise.
c
if(number.eq.1)then
do 40 i = 1,49
 sint(i) = s2+(i-1)*(-s1+s2)/50.0
 L1 = (sint(i)-s2)/(s1-s2)
 L2 = (sint(i)-s1)/(s2-s1)
do 30 j = 1,7
 uint(j,i) = L1*u1(j)+L2*u2(j)
30 continue
40 continue

goto 80
endif
do 75 i = 1,49
 sint(i) = s2+i*(s1-s2)/50.0
 call predict(sint(i),s1,s2,s3,u,u1,u2,u3)
 do 50 j = 1,7
 uint(j,i) = u(j)
 50 continue
75 continue

Pick out pairs of these predicted solutions that straddle the lambda = 0 hyperplane.

80 do 200 i = 1,50
 if((uint(1,i))*(uint(1,i-1))*.ge.0) then
 goto 200
 endif
200 continue

For each such pair, correct them using N-R. If corrector does not converge set comp = 10 and return to the main program

125 do 125 j = 1,7
 uup(j) = uint(j,i)
 udown(j) = uint(j,i-1)
125 continue
130 if(i.eq.1) then
 goto 130
endif
130 call correct(udown,stn,yest,yex,mu,retro,sestrt,t,iflag,comp,
 +eps2,duds,kep,ipass,ipert,immean,pi,orbel,oscele,amat,prop)
 if(comp.gt.5) then
 goto 300
 endif
140 call correct(uup,stn,yest,yex,mu,retro,sestrt,t,iflag,comp,eps2
 +,duds,kep,ipass,ipert,immean,pi,orbel,oscele,amat,prop)
 if(comp.gt.5) then
 goto 300
 endif

Let ua be a linearly interpolated state at lambda = 0

150 do 150 j = 1,7
 ua(j) = udown(j)-udown(l)*(uup(j)-udown(j))/(uup(l)-udown(l))
150 continue

Correct ua using N-R. If it does not converge set comp = 10 and return to the main program

140 call correct(ua,stn,yest,yex,mu,retro,sestrt,t,iflag,comp,eps2
 +,duds,kep,ipass,ipert,immean,pi,orbel,oscele,amat,prop)
if(comp.gt.5)then
 goto 300
endif

If the corresponding lambda is not equal to 0 within the specified tolerance let either uup or udown, whichever is further from 1, equal ua, and repeat

if(abs(ua(1)).gt.0.00001)then
 if(abs(uup(1)).gt.abs(udown(1)))then
 do 175 j = 1,7
 uup(j) = ua(j)
 175 continue
 goto 140
 endif
 do 190 j = 1,7
 udown(j) = ua(j)
 190 continue
 goto 140
endif

If lambda is equal to 0 within the specified tolerance check for return to the initial state. If it has returned, and if either the curve approached from the opposite direction from which it left or if this is the second time the curve returned to the initial point, terminate algorithm. Otherwise, do next step.

value = 0.0
 do 192 j = 1,6
 if(j.ie.6)then
 value = value+((xest(j)-ua(j+1))/scale(j+1))**2
 endif
 var = abs(mod(xest(j),2*pi)-mod(ua(j+1),2*pi))
 if(var.gt.pi)then
 var = var-2*pi
 endif
 value = value+(var/scale(j+1))**2
 192 continue
 write(1,*), value
 write(l,*) (xest(j),j = 1,6)
 write(l,*)(ua(j),j = 2,7)
 if(value.lt.1.0d-2)then
 mflag = mflag+1
 endif
 if(mflag.gt.1.or.lambda ul(1).gt.0)then

Convert to Kepler elements for output

do 195 j = 1,n
 x(j) = ua(j+1)
195 continue
 call kepeqn(kep1,x,retro,kep)

 Write termination point to file

 write(1,*),'Termination occurred at:
 write(1,*),' lambda =',ua(1),'
 write(1,*),' a =',kep1(1),'km
 write(1,*),' e =',kep1(2),'
 write(1,*),' i =',kep1(3)*180/pi,'degrees'
 write(1,*),' w =',kep1(4)*180/pi,'degrees'
 write(1,*),' q =',kep1(5)*180/pi,'degrees'
 write(1,*),' m =',kep1(6)*180/pi,'degrees'
 comp = 20
 goto 300
endif
endif

200 continue

300 end
subroutine stpsz(iflag,deltas)

c This subroutine chooses the next step—size based on the last step size and

c on how many iterations it took to converge

c
c Required type statements

c implicit none (a-z)

double precision deltas

integer iflag

c If the last step took 9 or 10 steps, leave deltas to 100% of the value

c it had for the last step. If the last step took 8 or less steps, increase

c deltas to 140% of the value it had for the last step

c
if(iflag.le.8)then
 deltas = 1.4*deltas
endif

end
subroutine derive(rowl,range,x,retro,kep,ipass,ipert,idmean, +pi,setrtr,mu,j,stn)

This subroutine numerically calculates the derivatives of ranges with respect to epoch mean Brouwer elements

Required type statements

implicit none (a-z)
double precision rowl,range,x,delta,scale,tto,temp,kep,oscele, +orbel,pi,retro,eqnelm,pos,vel,mu,y,stn,r8dum
logical setrtr
integer j,i,ipass,ipert,idmean,intgr

Required common block

common/dcint /r8dum(126),tto,intgr

Dimension local arrays

dimension rowl(6),x(6),scale(6),temp(6),kep(6),oscele(6),orbel(5), +eqnelm(6),pos(3),vel(3),y(6),stn(3,6)

Set up scaling of Equinoctial elements

scale(1) = 1000
scale(2) = 0.001
scale(3) = 0.001
scale(4) = 1
scale(5) = 1
scale(6) = 1

Propagate the element set with scaled delta added to each component in turn in order to get range differences

delta = 1.0d-8
do 100 i = 1,6
 x(i) = x(i)+delta*scale(i)
call kepeqn(temp,x,retro,kep)
call brolyd(oscele,temp,ipert,ipass,idmean,orbel,pi)
if(intgr.eq.1)then
 goto 200
endif
call eqnkep(eqnelm,retro,oscele,setrtr)
call cartes(pos,vel,eqnelm,retro,mu)
y(i) = sqrt((pos(1)-stn(i,j))**2+(pos(2)-stn(2,j))**2+(pos(3)-s +tn(3,j))**2)
rowl(i) = (y(i)-range)/(delta*scale(i))
x(i) = x(i)-delta*scale(i)
100 continue

end
subroutine tangent(amat,drdeq,row)

This subroutine calculates the tangent vector of the solution curve

Required type statements

implicit none (a-z)

double precision amat,drdeq,row,inv,dxds,trans,column,G

integer j,k,n

Fix the value of n to be 6

parameter(n=6)

Required dimension statements

dimension amat(n),drdeq(n,n),row(7),inv(n,n),dxds(n),trans(n,n),
+column(n)

Invert Jacobian and let inv be the negative of it

call invert(drdeq,inv)
do 392 j = 1,n
do 391 k = 1,n
 inv(j,k) = -inv(j,k)
391 continue
392 continue

Do matrix multiplication of inv by amat and store in dxds

do 394 j = 1,n
dxds(j) = 0.0
do 395 k = 1,n
 dxds(j) = dxds(j)+inv(j,k)*amat(k)
395 continue
394 continue

Take transpose of inv and store in trans

do 397 j = 1,n
do 396 k = 1,n
 trans(j,k) = inv(k,j)
396 continue
397 continue

Do matrix multiplication of trans by dxds and store in column

do 399 j = 1,n
column(j) = 0.0
do 398 k = 1,n
 column(j) = column(j)+trans(j,k)*dxds(k)
398 continue
399 continue
 c
 c Calculate G
 c
 G = 0.0
 do 401 j = 1,n
 G = G+amat(j)*column(j)
 401 continue
 G = sqrt(G+1.0)
 c
 c Calculate the tangent vector and return it in row
 c
 row(1) = 1.0/G
 do 402 j = 1,n
 row(j+1) = -dxds(j)/G
 402 continue
end
subroutine invert(a,y)

This subroutine calculates the inverse of the matrix a which it receives in the call argument, and returns that inverse as y.

Necessary type statements

implicit none (a-z)
double precision a,y,indx,d
integer i,j,n

Fix the value of n to be 6

parameter(n=6)

Necessary dimension statements

dimension a(n,n),y(n,n),indx(n)

c

Initializes y to be the identity matrix.

do 12 i = 1,n
do 11 j = 1,n
 y(i,j) = 0.0
11 continue
 y(i,i) = 1.0
12 continue

c

Does the matrix inversion using the LINPACK subroutines ludcmp and lubksb.

c
call ludcmp(a,n,n,indx,d)
do 13 j = 1,n
call lubksb(a,n,n,indx,y(1,j))
13 continue
end
Size and shape parameters for central-body ellipsoid.

SEMMAJ 0 Equatorial radius.
SEMMIN 0 Polar radius.
ECCEN 0 Eccentricity.
ESQR 0 ECCEN ** 2
RTESQR 0 SQRT (1 - ECCEN ** 2)
FLAT 0 Flattening coefficient.
FLTINV 0 Inverse flattening coefficient.

Switches.

INIELL 0 Initialize central-body ellipsoid?
PRTELL 0 Iteration print?

VERSION: October 1988
Fortran block data subprogram for the IBM 3090.

ANALYSIS
Leo W. Early, Jr. -- Charles Stark Draper Laboratory

PROGRAMMER
Leo W. Early, Jr. -- Charles Stark Draper Laboratory

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

Data Types

LOGICAL INIELL, PRTELL, LELIPS

COMMON /ELIPSD/ RELIPS (7), LELIPS (2)
EQUIVALENCE (SEMMAJ, RELIPS (1))
EQUIVALENCE (SEMMIN, RELIPS (2))
EQUIVALENCE (ECCEN, RELIPS (3))
EQUIVALENCE (ESQR, RELIPS (4))
EQUIVALENCE (RTESQR, RELIPS (5))
EQUIVALENCE (FLAT, RELIPS (6))
EQUIVALENCE (FLTINV, RELIPS (7))
EQUIVALENCE (INIELL, LELIPS (1))
EQUIVALENCE (PRTELL, LELIPS (2))

C
C
C
C
C Equatorial radius. (km)
C DATA SEMMAJ / 6378.135 D 0 /
C
C Inverse flattening coefficient.
C DATA FLTINV / 298.26 D 0 /
C
C Initialize central-body ellipsoid?
C DATA INIELL / .TRUE. /
C
C Iteration print?
C DATA PRTELL / .FALSE. /
END

154
BLOCK DATA

/SATELM/

1. SATELLITE POSITION AND VELOCITY.
2. SATELLITE EQUINOCTIAL ORBIT ELEMENTS.
3. PARTIAL DERIVATIVES OF EQUINOCTIAL ORBIT ELEMENTS WITH RESPECT TO VELOCITY.
4. AUXILIARY PARAMETERS.

********** DESCRIPTION **********

THIS COMMON BLOCK CONTAINS THE ORBIT ELEMENTS CURRENTLY BEING USED. THE CONTENTS WILL CHANGE WHENEVER ANY OF THE FOLLOWING SUBROUTINES IS CALLED:

CARTES AUXEQN
QDRCRT AUXDRV

************************ TABLE OF CONTENTS ************************

VARIABLE DIMENSION LOCATION DESCRIPTION

POSITION AND VELOCITY.
X 3 1 POSITION.
V 3 4 VELOCITY.

AUXILIARY PARAMETERS FOR POSITION AND VELOCITY.
XORB 2 7 POSITION IN ORBITAL REFERENCE FRAME.
VORB 2 9 VELOCITY IN ORBITAL REFERENCE FRAME.
RDA 1 11 RADIAL DISTANCE / SEMIMAJOR AXIS

155
C SATELLITE LONGITUDE. (TWO OPTIONS)
C
C F 1 12 ECCENTRIC LONGITUDE.
C SINF 1 13 SIN (F)
C COSF 1 14 COS (F)
C DLAMDF 1 87 D LAMBDA / D F
C
C XL 1 12 TRUE LONGITUDE: L
C SINL 1 13 SIN (L)
C COSL 1 14 COS (L)
C DLAMDL 1 87 D LAMBDA / D L
C
C EQUINOCTIAL ORBIT ELEMENTS.
C
C A 1 15 SEMIMAJOR AXIS.
C XH 1 16 H
C XK 1 17 K
C P 1 18 P
C Q 1 19 Q
C XLAMDA 1 20 MEAN LONGITUDE: LAMBDA
C
C RETRG 1 21 RETROGRADE FACTOR.
C 1 DIRECT ELEMENTS
C -1 RETROGRADE ELEMENTS
C
C AUXILIARY PARAMETERS FOR EQUINOCTIAL ORBIT ELEMENTS.
C
C FAXIS 3 22 F AXIS OF ORBITAL REFERENCE FRAME.
C GAXIS 3 25 G AXIS OF ORBITAL REFERENCE FRAME.
C WAXIS 3 28 W AXIS OF ORBITAL REFERENCE FRAME.
C
C XMU 1 31 GRAVITATIONAL CONSTANT OF CENTRAL BODY.
C XMEAN 1 32 KEPLER MEAN MOTION: N
C XNA 1 33 N*A
C XNA2 1 34 N*A*A
C
C XHH 1 35 H*H
C XKK 1 36 K*K
C HHKK 1 37 H*H + K*K
C ONEHK 1 38 1 - H*H - K*K
C SRTHK 1 39 SQRT (1 - H*H - K*K)
C BETAUX 1 40 1 / (1 + SQRT (1 - H*H - K*K))
C ONEHHB 1 41 1 - H*H*BETAUX
C ONEKKB 1 42 1 - K*K*BETAUX
C HKBETA 1 43 H*K*BETAUX
C
C PP 1 44 P*P
C QQ 1 45 Q*Q
C PPQQ 1 46 P*P + Q*Q
C ONEPQ 1 47 1 + P*P + Q*Q
C ONEPQI 1 48 1 / (1 + P*P + Q*Q)
C
C PARTIAL DERIVATIVES.
C
C DELMDV 6,3 49 PARTIAL DERIVATIVES OF EQUINOCTIAL ORBIT
C ELEMENTS WITH RESPECT TO VELOCITY.
C
C (1,J) D A / D V(J)
C (2,J) D H / D V(J)
C (3,J) D K / D V(J)
C (4,J) D P / D V(J)
C (5,J) D Q / D V(J)
C (6,J) D LAMBDA / D V(J)
C
C AUXILIARY PARAMETERS FOR PARTIAL DERIVATIVES.
C
C XMUI 1 67 1 / XMU
C TWON2A 1 68 2 / N*N*A
C TWONA 1 69 2 / N*A
C TWONA2 1 70 2 / N*A*A
C
C SRTHKI 1 71 1 / SQRT (1 - H*H - K*K)
C ONEHKI 1 72 1 / (1 - H*H - K*K)
C BETAH 1 73 BETAUX*H
C BETAK 1 74 BETAUX*K
C
C XNA2RT 1 75 XNA2*SRTHK
C XHN2A2R 1 76 H / XNA2*SRTHK
C XKNA2R 1 77 K / XNA2*SRTHK
C
C RTHDKA 1 78 SRTHK / N*A
C RTHDNA 1 79 SRTHK / N*A*A
C SRTHKX 1 80 SRTHK / XNA2*(1 + SRTHK)
C SXHRTA 1 81 H*SRTHK / XNA2*(1 + SRTHK)
C SXKRTA 1 82 K*SRTHK / XNA2*(1 + SRTHK)
C
C PQAUX 1 83 (1 + P*P + Q*Q) / 2*XNA2*SRTHK
C
C ORBIT DESCRIPTION PARAMETERS.
C
C ECCEN 1 84 ECCENTRICITY.
C PERRAD 1 85 PERIGEE RADIUS.
C APORAD 1 86 APOGEE RADIUS.
C
C
C******************** HISTORY **
C
C VERSION OF FEBRUARY 1984
C FORTRAN SUBROUTINE FOR THE IBM 3081 AND 3033.
C
C ANALYSIS
C LEO W. EARLY, JR. -- CHARLES STARK DRAPER LABORATORY
C
C PROGRAMMER
C LEO W. EARLY, JR. -- CHARLES STARK DRAPER LABORATORY
C
C
C*------------------- DECLARATIONS ---------------------------*
C
C
C IMPLICIT DOUBLE PRECISION (A-H,O-Z)
C
C DIMENSIONS ***
C
C DIMENSION X (3), XORB (2)
DIMENSION V (3), VORB (2)
DIMENSION FAXIS (3), WAXIS (3)
DIMENSION GAXIS (3), DELMDV (6,3)
C
C /SATELM/ ***
C
C COMMON /SATELM/ RSATEL (87)
C
C POSITION AND VELOCITY.
C
C EQUIVALENCE (X (1) , RSATEL (1)),
* (V (1) , RSATEL (4))
C
C AUXILIARY PARAMETERS FOR POSITION AND VELOCITY.
C
C EQUIVALENCE (XORB (1) , RSATEL (7)),
* (VORB (1) , RSATEL (9)),
* (RDA , RSATEL (11))
C
C SATELLITE LONGITUDE. (TWO OPTIONS)
C
C EQUIVALENCE (F , RSATEL (12)) ,
* (SINF , RSATEL (13)),
* (COSF , RSATEL (14)),
* (DLAMDF , RSATEL (87))
EQUIVALENCE (XL , RSATEL (12)),
* (SINL , RSATEL (13)),
* (COSL , RSATEL (14)),
* (DLAMDL , RSATEL (87))
C
C EQUINOCTIAL ORBIT ELEMENTS.
C
C EQUIVALENCE (A , RSATEL (15)),
* (XH , RSATEL (16)),
* (XK , RSATEL (17)),
* (P , RSATEL (18)),
* (Q , RSATEL (19)),
* (XLAMDA , RSATEL (20)),
* (RETRG , RSATEL (21))
C
C AUXILIARY PARAMETERS FOR EQUINOCTIAL ORBIT ELEMENTS.
C
158
EQUIVALENCE (FAXIS (1), RSATEL (22)),
 * (GAXIS (1), RSATEL (23)),
 * (WAXIS (1), RSATEL (28)),
 * (XMU, RSATEL (31)),
 * (XMEAN, RSATEL (32)),
 * (XNA, RSATEL (33)),
 * (XNA2, RSATEL (34)),
 * (XHH, RSATEL (35)),
 * (XKK, RSATEL (36)),
 * (HHKK, RSATEL (37))
EQUIVALENCE (ONEHK, RSATEL (38)),
 * (SRTHK, RSATEL (39)),
 * (BETAUX, RSATEL (40)),
 * (ONEHHB, RSATEL (41)),
 * (ONEKKB, RSATEL (42)),
 * (HBETA, RSATEL (43)),
 * (PP, RSATEL (44)),
 * (QQ, RSATEL (45)),
 * (PPQQ, RSATEL (46)),
 * (ONEPQ, RSATEL (47)),
 * (ONEPQI, RSATEL (48))

PARTIAL DERIVATIVES.

EQUIVALENCE (DELMDV (1,1), RSATEL (49))

AUXILIARY PARAMETERS FOR PARTIAL DERIVATIVES.

EQUIVALENCE (XMUI, RSATEL (67)),
 * (TWON2A, RSATEL (68)),
 * (TWONA, RSATEL (69)),
 * (TWONA2, RSATEL (70)),
 * (SRTHKI, RSATEL (71)),
 * (ONEHKI, RSATEL (72)),
 * (BETAH, RSATEL (73)),
 * (BETAK, RSATEL (74))
EQUIVALENCE (XNA2RT, RSATEL (75)),
 * (XHNA2R, RSATEL (76)),
 * (XKNA2R, RSATEL (77)),
 * (RTDNA, RSATEL (78)),
 * (RTDNA2, RSATEL (79)),
 * (SRTAUX, RSATEL (80)),
 * (XHSRTA, RSATEL (81)),
 * (XXSRTA, RSATEL (82)),
 * (PQAUX, RSATEL (83))

ORBIT DESCRIPTION PARAMETERS.

EQUIVALENCE (ECCEN, RSATEL (84)),
 * (PERRAD, RSATEL (85)),
 * (APORAD, RSATEL (86))

159
DATA STATEMENTS

THIS DATA STATEMENT IS INCLUDED TO PREVENT COMPI-
ATION ERRORS. IT DOES NOT AFFECT EXECUTION.

DATA RDA / 0.D0 /
END
SUBROUTINE ELLGEO (RADIUS, FLATIN, PRINT)

FUNCTION

This subroutine sets size and shape parameters for the reference ellipsoid of the geodetic coordinate system.

CALLING SEQUENCE

CALL ELLGEO (RADIUS, FLATIN, PRINT)

PARAMETERS

RADIUS I Equatorial radius.
FLATIN I Inverse flattening coefficient.
PRINT I Print iterated values of reduced latitude when converting from Cartesian to geodetic coordinates?

PARAMETERS

/ELIPSD/

Size and shape parameters for central-body ellipsoid.

SEMMAJ O Equatorial radius.
SEMMIN O Polar radius.
ECCEN O Eccentricity.
ESQR O ECCEN ** 2
RTESQR O SQRT (1 - ECCEN ** 2)
FLAT O Flattening coefficient.
FLTINV O Inverse flattening coefficient.

Switches.

INIELL O Initialize central-body ellipsoid?
PRTELL O Iteration print?

NO SUBROUTINES CALLED
C*************** HISTORY ***
C
C
C
C
C VERSION: October 1988
Fortran subroutine for the IBM 3090.
C
C ANALYSIS
Leo W. Early, Jr. -- Charles Stark Draper Laboratory
C
C PROGRAMMER
Leo W. Early, Jr. -- Charles Stark Draper Laboratory
C
C*************** DECLARATIONS **
C
C
C
C
C
C IMPLICIT DOUBLE PRECISION (A-H,O-Z)
C
C Data Types ============--
C
C LOGICAL PRINT ,INIELL ,PRTELL ,LELIPS
C
C /ELIPSD/ ===============---------------------------------------
C
C COMMON /ELIPSD/ RELIPS (7) ,LELIPS (2)
EQUIVALENCE (SEMMAJ ,RELIPS (1))
EQUIVALENCE (SEMMIN ,RELIPS (2))
EQUIVALENCE (ECCEN ,RELIPS (3))
EQUIVALENCE (ESQR ,RELIPS (4))
EQUIVALENCE (RTESQR ,RELIPS (5))
EQUIVALENCE (FLAT ,RELIPS (6))
EQUIVALENCE (FLTINV ,RELIPS (7))
EQUIVALENCE (INIELL ,LELIPS (1))
EQUIVALENCE (PRTELL ,LELIPS (2))
C
C
C*************** BEGIN PROGRAM ***************************************
C
C
C
C
C
C
C
C Equatorial radius.
C
C SEMMAJ = RADIUS
C
C
C
C
C
C
Inverse flattening coefficient.

\[\text{FLTINV} = \text{FLATIN} \]

Iteration print?

\[\text{PRTELL} = \text{PRINT} \]

FIND ELLIPSOID PARAMETERS

Eccentricity parameters.

\[\text{FLAT} = 1.00 / \text{FLTINV} \]
\[\text{RTESQR} = 1.00 - \text{FLAT} \]
\[\text{ESQR} = (2.00 - \text{FLAT}) \times \text{FLAT} \]
\[\text{ECCEN} = \text{SQRT}(\text{ESQR}) \]

Semiminor axis.

\[\text{SEMMIN} = \text{SEMMAJ} \times \text{RTESQR} \]

END INITIALIZATION

INIELL = .FALSE.
RETURN
END
SUBROUTINE CRTGEO (X,Y,Z, HEIGHT,GLAT,GLON)

FUNCTION

This subroutine transforms geodetic latitude, longitude, and height to earth-fixed Cartesian coordinates.

CALLING SEQUENCE

CALL CRTGEO (X,Y,Z, HEIGHT,GLAT,GLON)

PARAMETERS

X O X coordinate.
Y O Y coordinate.
Z O Z coordinate.

HEIGHT I Height above the reference ellipsoid.
GLAT I Geodetic latitude.
GLON I Geodetic longitude.

/ELIPSD/ Size and shape parameters for central-body ellipsoid.

SEMMAJ I Equatorial radius.
SEMMIN I Polar radius.
ECCEN I Eccentricity.
ESQR I ECCEN ** 2
RTESQR I SQRT (1 - ECCEN ** 2)
FLAT I Flattening coefficient.
FLTINV I Inverse flattening coefficient.

Switches.

INIELL I Initialize central-body ellipsoid?
PRTELL I Iteration print?

NO SUBROUTINES CALLED
C
C
C*************** HISTORY**
C
C
C VERSION: October 1988
C Fortran subroutine for the IBM 3090.
C
C ANALYSIS
C Leo W. Early, Jr. -- Charles Stark Draper Laboratory
C
C PROGRAMMER
C Leo W. Early, Jr. -- Charles Stark Draper Laboratory
C
C
C*************** DECLARATIONS**
C
C
C IMPLICIT DOUBLE PRECISION (A-H,O-Z)
C
C Data Types =---
C
C LOGICAL INIELL ,PRTELL ,LELIPS
C
C /ELIPSD/ =---
C
C COMMON /ELIPSD/ RELIPS (7) ,LELIPS (2)
C EQUIVALENCE (SEMMAJ ,RELIPS (1))
C EQUIVALENCE (SEMMIN ,RELIPS (2))
C EQUIVALENCE (ECCEN ,RELIPS (3))
C EQUIVALENCE (ESQR ,RELIPS (4))
C EQUIVALENCE (RTESQR ,RELIPS (5))
C EQUIVALENCE (FLAT ,RELIPS (6))
C EQUIVALENCE (FLTINV ,RELIPS (7))
C EQUIVALENCE (INIELL ,LELIPS (1))
C EQUIVALENCE (PRTELL ,LELIPS (2))
C
C
C*************** BEGIN PROGRAM**
C
C
C **********
C INITIALIZE
C **********
C
C IF (INIELL) THEN
CALL ELLGEO (SEMMAJ,FLTINV,PRTELL)
END IF

FIND COORDINATES

Sines and cosines of geodetic latitude.

SINLAT = SIN (GLAT)
COSLAT = COS (GLAT)

Reduced latitude.

THETA = ATAN2 (RTESQR*SINLAT, COSLAT)

Cylindrical coordinates.

R = SEMMAJ * COS (THETA) + HEIGHT * COSLAT
Z = SEMMIN * SIN (THETA) + HEIGHT * SINLAT

Cartesian coordinates.

X = R * COS (GLON)
Y = R * SIN (GLON)
RETURN
END
SUBROUTINE BROLYD(OSCELE,DPELE,IPERT,IPASS,IDMEAN,ORBEL,PI)
C***
C* REF. 'BROUWER-LYDDANE ORBIT GENERATOR ROUTINE' *
C* (X-553-70-223) *
C* BY E.A. GALBREATH 1970 *
C***
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
DOUBLE PRECISION MU
COMMON /DCINT /R8DUM(126),TTO,intgr
COMMON / FRC/ DFRC(1300)
DIMENSION OSCELE(6),DPELE(6),ORBEL(5)
EQUIVALENCE (BJ2,DFRC(356)) , (BJ3,DFRC(357)) ,
+ (BJ4,DFRC(358)) , (BJ5,DFRC(359)) ,
+ (DFRC(2),MU) , (AE,DFRC(24))
Data BMU,RE/1.0DO,1.0D0/,BKSUBC/0.01DO/
intgr = 0
if(dpele(1).lt.0.or.dpele(2).ge.1.0)then
 intgr = 1
endif
write(1,*('Failure in brolyd due to eccentricity > 1 or semi-major
+ axis < 0' , 20)
go to 1000
endif
EK = DSQRT(MU/AE**3)
DELT = EK*TTO
GO TO (10,111), IPASS
CI------------------------------I
CI EPOCH ELEMENTS AT EPOCH TIME I
CI------------------------------I
10 ADP = DPELE(1)/AE
 EDP = DPELE(2)
 BIDP = DPELE(3)
 HDP = DPELE(4)
 GDP = DPELE(5)
 BLDP = DPELE(6)
 AO = ADP
 EO = EDP
 BIO = BIDP
 HO = HDP
 G0 = GDP
 BLO = BLDP
IFLG = 0
C---------------------I
C COMPUTE MEAN MOTION I
C---------------------I
ANU=DSQRT(BMU/A0**3)
C-------------------I
C COMPUTE FRACTIONS I
C-------------------I
F3D8=3.0DO/8.0DO
F1d2=1.0DO/2.0DO
F3D2=3.0DO/2.0DO
F1D4=1.0DO/4.0DO
F5D4=5.0DO/4.0DO
F1D8=1.0DO/8.0DO
F5D12=5.0DO/12.0DO
F1D16=1.0DO/16.0DO
F1D516=15.0DO/16.0DO
F5D24=5.0DO/24.0DO
F3D32=3.0DO/32.0DO
F1D532=15.0DO/32.0DO
F5D64=5.0DO/64.0DO
F3D5384=35.0DO/384.0DO
F3D576=35.0DO/576.0DO
F3D512=35.0DO/1152.0DO
F1D8=1.0DO/3.0DO
F5D16=5.0DO/16.0DO
BK2 = -F1D2*(Bl2*RE*RE)
BK3 = Bl3*RE**3
BK4 = F3D8*(Bl4*RE**4)
BK5 = Bl5*RE**5

GO TO 153

111 IF(IPERT.EQ.O)GO TO 7
IF(IDMEAN .NE.O)GO TO 202
ADP = DPELE(1)/AE
EDP = DPELE(2)
BIDP = DPELE(3)
HDP = DPELE(4)
GDP = DPELE(5)
BLDP = DPELE(6)

153 EDP2=EDP*EDP
CN2=1.0-EDP2
CN=DSQRT(CN2)
GM2=BK2/ADP**2
GMP2=GM2/(CN2*CN2)
GM4=BK4/ADP**4
GMP4=GM4/CN**8
THETA=DCOS(BIDP)
THETA2=THETA*THETA

A1DASH=1-5*THETA2
A1DASH=(1-5*THETA2)/(1-EXP(-100*((1-5*THETA2)**2))

THETA4=THETA2*THETA2

202 IF(IDMEAN.EQ.O)GO TO 155
IF(IPASS.EQ.2) GO TO 150

C------------------------I
C COMPUTE LDOT,GDOT,HDOT I
C------------------------I

157 BLDOT=-CN*ANU*(GMP2*(F3D2*(3.0*THETA2-1)+GMP2*F3D32*(THETA2
1*(-96.0*CN+30.0-90.0*CN2)+(16.0*CN+25.0*CN2-15.0)+THETA4
2*(144.0*CN+25.0*CN2+105.0))))+EDP2*GMP4*F1D516*(3.0+35.0*THETA2
3-30.0*THETA2))

GDOT=ANU*(F5D16*GMP4*((THETA2*(126.0*CN2-270.0)+THETA4*(385.0
1-189.0*CN2)))+GMP2*(F3D32*GMP2*(THETA4*(45.0*CN2
2+360.0*CN+385.0)+THETA2*(90.0-192.0*CN-126.0*CN2)+(24.0*CN
3+25.0*CN2-35)]+F3D2*(5*THETA2-1))

HDOT=ANU*(GMP4*F5D4*THETA*(3.0-7.0*THETA2)*(5.0-3.0*CN2)+GMP2
1*(GMP2*F3D8*(THETA*(12.0*CN+9.0*CN2-5.0)-THETA*THETA2*(5.0*CN
2+36.0*CN+35.0)-3*THETA))
155 IF(IFLG.EQ.1)GO TO 19
CI---I
CI COMPUTE ISUBC TO TEST CRITICAL INCLINATION I
CI---I
 BISUBC=«(A1DASH)**(-2)*((25.0*THETA4*THETA)*(GMP2*EDP2))
 IFLG=1
CI---I
CI FIRST CHECK FOR CRITICAL INCLINATION I
CI---I
 IF(BISUBC.GT.BKSUBC)GO TO 158
 ASSIGN 163 TO ID8
 GO TO 159
C-------------------------------I
C IS THERE CRITICAL INCLINATION I
C-------------------------------I
19 IF(BISUBC.GT.BKSUBC)GO TO 150
159 IF(IPERT.EQ.1)GO TO 160
 GM3=BK3/ADP**3
 GMP3=GM3/(CN2*CN2*CN2)
 GM5=BK5/ADP**5
 GMP5=GM5/CN**10
 G3DG2=GMP3/GMP2
 G4DG2=GMP4/GMP2
 G5DG2=GMP5/GMP2
CI---I
CI COMPUTE A1-A8 I
CI---I
 A1=(FID8*GMP2*CN2)*(1.0-11.0*THETA2-«40.0*THETA4)/(A1DASH)
 A2=(F5D12*G4DG2*CN2)*(1.0-«8.0*THETA4)/(A1DASH)-3.0
 1*THETA2
 A3=G5DG2*«3.0*EDP2)+4.0)
 A4=G5DG2*(1.0-«24.0*THETA4)/(A1DASH)-9.0*THETA2)
 A5=(G5DG2*(3.0*EDP2+4.0))*(1.0-(24.0*THETA4)/(A1DASH)-9.0
 1*THETA2)
 A6=G3DG2*F1D4
 SINI=DSIN(BIDP)
 A10=CN2*SINI
 A7=A8*A10
 A8P=G5DG2*EDP*(1.0-(16.0*THETA4)/(A1DASH)-5.0*THETA2)
 A8=A8P*EDP
C
C COMPUTE B13-B15
C
 B13=EDP*(A1-A2)
 B14=A7+F5D64*A5*A10
 B15=A8*A10*F35384
C
C COMPUTE A11-A27
C
 A11=2.0+EDP2
 A12=3.0*EDP2+2.0
 A13=THETA2*A12
 A14=(5.0*EDP2+2.0)*(THETA4/(A1DASH))
A17 = THETA4/((A1DASH)*(A1DASH))
A15 = (EDP2*THETA4*THETA2)/((A1DASH)*(A1DASH))
A16 = THETA2/(A1DASH)
A18 = EDP*SINI
A19 = A18/(1.0+CN)
A21 = EDP*THETA
A22 = EDP2*THETA
SINI2 = DSIN(BIDP/2.0)
COSI2 = DCOS(BIDP/2.0)
TANI2 = DTAN(BIDP/2.0)
A26 = 16.0*A16+40.0*A17+3.0
A27 = A22*F1D8*(11.0+200.0*A17+80.0*A16)

CI-----------------------I
CI COMPUTE B1-B12 I
CI-----------------------I
B1 = CN*(A1-A2)-((A11-400.0*A15-40.0*A14-11.0*A13)*F1D16+(11.0+200.0
1*A17+80.0*A16)*A22*F1D8)*GMP2+((-80.0*A15-8.0*A14-3.0*A13+A11)
2*F5D24+F5D12*A26*A22)*G4DG2
B2 = A6*A19*(2.0+CN-EDP2)+F5D64*A5*A19*CN2-F15D32*A4*A18*CN*CN2
1+(F5D64*A5+A6)*A21*TANI2+(9.0*EDP2+26.0)*F5D64*A4*A18+F15D32*A3
2*A21*A26*SINI*(1.0-THETA)
B3 = ((80.0*A17+5.0+32.0*A16)*A22*SINI*(THETA-1.0)*F35576*G5DG2*EDP)
1-((A22*TANI2+(2.0*EDP2+3.0*(1.0-CN2*CN))*SINI)*F35D52*A8)
B4 = CN*EDP*(A1-A2)
B5 = ((9.0*EDP2+4.0)*A10*A4*F5D64+A7)*CN
B6 = F35384*A8*CN2*CN*SINI
B7 = ((CN2*A18)/(A1DASH))*F1D8*GMP2*(1.0-15.0*THETA2)+(1.0
1-7.0*THETA2)*G4DG2*(-F5D12)
B8 = F5D64*(A3*CN2*(1.0-9.0*THETA2-(24.0*THETA4/(A1DASH))))
1+A6*CN2
B9 = A8*F35384*CN2
B10 = SINI*(A22*A26*G4DG2*F5D12-A27*GMP2)
B11 = A21*(A5*F5D64+A6+A3*A26*F15D32*SINI*SINI)
B12 = ((80.0*A17+32.0*A16+5.0)*(A22*EDP*SINI*SINI)*F35576*G5DG2)+(A8
1*A21*F35D52))
150 IF(IPERT.EQ.0)GO TO 7
IF(IDMEAN.EQ.0)GO TO 4
C-----------------------I
C COMPUTE SECULAR TERMS I
C-----------------------I
C ' 'MEAN' ' MEAN ANOMALY I
C ADD EFFECTS OF N(P,Q) I
C-----------------------I
CDWC
CDWC CALL BLDrag(DRAGL)
CDWC BLDP = ANU*DELT + BLDOT * DELT + BL0 + DRAGL
BLDP = ANU*DELT + BLDOT * DELT + BL0
CDWC
BLDP = DMOD(BLDP,2.0DO*PI)
IF(BLDP.LT.0.0D0)BLDP = BLDP + PI*2.0D0
C-----------------------I
C MEAN ARGUMENT OF PERIGEE I
C-----------------------I
GDP = GDOT*DELT + G0
GDP = DMOD(GDP,PI*2.0D0)
IF(GDP.LT.0.0D0) GDP = GDP + PI*2.0D0
C MEAN LONGITUDE OF ASCENDING NODE
HDP = HDOT*DELT + H0
HDP = DMOD(HDP,PI*2.0D0)
IF(HDP.LT.0.0D0) HDP = HDP + PI*2.0D0
4 DO 33 NN=1,6
33 OSCELE(NN) = DPELE(NN)
A = ADP
E = EDP
B1 = B1DP
H = HDP
G = GDP
BL = BLDP
CI-------------------------------------I
CI COMPUTE TRUE ANOMALY(DOUBLE PRIMED) I
CI-------------------------------------I
EADP = DKEPLR(BLDP,EDP,PI)
SINDE = DSIN(EADP)
COSDE = DCOS(EADP)
SINF = CN*SINDE
COSFD = COSDE - EDP
CDWC
CDWC FDP = DATAN0(SINF,COSFD)
FDP = DATAN2(SINF,COSFD)
IF(FDP.LT.0.0D0) FDP = FDP + PI*2.0D0
CDWC
IF(IPERT.EQ.1) GO TO 7
DADR = (1.0-EDP*COSDE)**(-1)
SINFD = SINF*DADR
COSFD = COSFD*DADR
CS2GFD = DCOS(2.0*GDP+2.0*FDP)
DADR2 = DADR*DADR
DADR3 = DADR2*DADR
COSFD2 = COSFD*COSFD
CI-------------------------------------I
CI COMPUTE A(SEMI-MAJOR AXIS) I
CI-------------------------------------I
A = ADP*(1.0+GM2*((3.0*THETA2-1.0)*(EDP2/(CN2*CN2*CN2)) * (CN+(1.0/(1.1+CN)))) + (3.0*THETA2-1.0)/(CN2*CN2*CN2)) * (EDP*COSFD)*(3.0+3.0*EDP**2*COSFD+EDP2*COSFD+3.0*(1.0-THETA2)*DADR3*CS2GFD))
SN2GFD = DSIN(2.0*GDP+2.0*FDP)
SNF2GD = DSIN(2.0*GDP+FDP)
CSF2GD = DCOS(2.0*GDP+FDP)
SN2GD = DSIN(2.0*GDP)
CS2GD = DCOS(2.0*GDP)
SN3GD = DSIN(3.0*GDP)
CS3GD = DCOS(3.0*GDP)
SN3FGD = DSIN(3.0*GDP+2.0*GDP)
CS3FGD = DCOS(3.0*GDP+2.0*GDP)
SINGD = DSIN(GDP)
COSGD = DCOS(GDP)
GO TO ID8,(163,164)
163 DLTI = B14*SINGD + B13*CS2GD - B15*SN3GD
CI --I
CI COMPUTE (L+G+H) PRIMED I
CI --I

BLGH = HDP + GDP + BLDP + B3*CS3GD + B1*SN2GD + B2*COSGD
BLGH = MOD(BLGH, P1*2.0D0)
IF(BLGH < L.T.0.0D0) BLGH = BLGH + P1*2.0D0
EDPDL = B4*SN2GD - B5*COSGD + B6*CS3GD - F1D4*CN2*CN*GM2*(2.0*(3.0*THETA2)
1-1.0)*(DADR2-CN2+DADR-1.0)*SINFD + 3.0*(1.0-THETA2)*((-(DADR2-CN2
2-DADR+1.0)*SNF2GD + (DADR2-CN2+DADR+F1D3)*SN3GD))
DLTI = F1D2*THETA*GM2*SIN*(EDP*CS3FGD + 3.0*(EDP*CSF2GD + CS2GFD))
1-((A2/SCN2)*(B8*SINGD + B7*CS2GD - B9*SN3GD)
SINDH = (1.0/COSI2)*(F1D2*(B12*CS3GD + B11*COSGD + B10*SN2GD - (F1D2*GM2
1*THETA2*SIN*(6.0*(EDP*SINFD - BLDP + FDP) - (3.0*(SN2GFD + EDP*SNF2GD) + EDP
2*SN3FGD))))

CI --I
CI COMPUTE (L+G+H) I
CI --I

164 BLGH = BLGH + ((1.0/(CN+1.0))*F1D4*EDP*GM2*CN2*(3.0*(1.0-THETA2)*
1(SN3FGD*F1D3+DADR2-CN2+DADR)+SNF2GD*(1.0-(DADR2-CN2+DADR))+2.0*
25SINFD*(3.0*THETA2-1.0)*(DADR2-CN2+DADR+1.0))+GM2*F3D2*(-2.0*
3THETA-1.0+5.0*THETA2)+(3.0+2.0*THETA-5.0*)
4THETA2)*GM2*F1D4*(EDP*SN3FGD + 3.0*(SN2GFD + EDP*SNF2GD))
BLGH = MOD(BLGH, P1*2.0D0)
IF(BLGH < L.T.0.0D0) BLGH = BLGH + P1*2.0D0
DLTE = DLTI + (F1D2-CN2*(3.0*(1.0/(CN2-CN2-CN2))GM2*(1.0-THETA2)
1*CS2GFD*3.0*EDP*COSF2D+3.0*COSF2D+EDP2*COSF2D*CEF+EDP)*(GM2
2*(1.0-THETA2)*(3.0*CSF2GD+CS3FGD)+(3.0*THETA2-1.0)*GM2*(1.0/
3(CN2-CN2-CN2))*(EDP*CN+(EDP/(1.0+CN)))+3.0*EDP*COSF2D+3.0*COSF2D+
4EDP2*COSF2D*CEF2))
EDPDL2 = EDPDL*EDPDL
EDPDE2 = (EDP+DLTE)*(EDP+DLTE)

CI --I
CI COMPUTE E(ECCENTRICITY) I
CI --I

E = DSQRT(EDPDL2+EDPDE2)
if(e.ge.1.0D0) then
 intgr = 1
 write(1,*'Failure in broly due to eccentricity > 1')
goto 1000
endif
SINDH2 = SINDH*SINDH
SQUAR = (DLTI*COSI2*F1D2+SNI2)*(DLTI*COSI2*F1D2+SNI2)
SQRI = DSQRT(SINDH2+SQUAR)
if(sqrL.ge.1.0D0) then
 intgr = 1
 write(1,*'Failure in broly due to problem with inclination')
goto 1000
endif

CI --I
CI COMPUTE BI (INCLINATION) I
CI --I

CDWC
CDWC BI = DARSIN(SQRI)
BI = ASIN(SQRI)
CDWC
BI = 2.0*BI
BI = DMOD(BI, PI*2.0D0)
IF(BI.LT.0.0D0) BI = BI + PI*2.0D0
CI--I
CI CHECK FOR E (ECCENTRICITY) = 0 I
CI--I
IF(E.NE.0.0) GO TO 168
BL = 0.0
CI--I
CI CHECK FOR BI (INCLINATION) = 0 I
CI--I
145 IF(BI.NE.0.0) GO TO 169
H = 0.0
CI--I
CI COMPUTE G (ARGUMENT OF PERIGEE) I
CI--I
146 G = BL*G - BL - H
G = DMOD(G, PI*2.0D0)
IF(G.LT.0.0D0) G = G + PI*2.0D0
CI--I
CI COMPUTE TRUE ANOMALY I
CI--I
EA = DEKPLR(BL, E, PI)
ARG1 = DSIN(EA) * DSQRT(1.0 - E**2)
ARG2 = DCOS(EA) - E
CDWC
CDWC F = DATAN0(ARG1, ARG2)
F = DATAN2(ARG1, ARG2)
IF(F.LT.0.0D0) F = F + PI*2.0D0
CDWC
C
C
OSCELE(1) = A*AE
OSCELE(2) = E
OSCELE(3) = BI
OSCELE(4) = H
OSCELE(5) = G
OSCELE(6) = BL
7 CONTINUE
DPELE(1) = ADP*AE
DPELE(2) = EDP
DPELE(3) = BIDP
DPELE(4) = HDP
DPELE(5) = GDP
DPELE(6) = BLDP + anu*delt
IF(IPERT.EQ.0) BL = DMOD(ANU*DELT, PI*2.0D0)
ORBEL(1) = EADP
ORBEL(2) = GDP + FDP
ORBEL(3) = GDP
ORBEL(4) = EK*(ANU + BLDOT)
ORBEL(5) = FDP
CDWC

173
CDWC $R = A^*AE^*(1.0D0 - E^*DCOS(EA))$
CDWC
 GO TO 45
CI--I
CI MODIFICATIONS FOR CRITICAL INCLINATION I
CI--I
158 DLT1E=0.0
 BLGHP=0.0
 EDPDL=0.0
 DLT1=0.0
 SINDH=0.0
 ASSIGN 164 TO ID8
 GO TO 150
168 SINLDP=DSIN(BLDP)
 COSLDP=DCOS(BLDP)
 SINHDP=DSIN(HDP)
 COSHDP=DCOS(HDP)
CI-------------------------I
CI COMPUTE L(MEAN ANOMALY) I
CI-------------------------I
 ARG1=EDPDL*COSLDP+(EDP+DLTE)*SINLDP
 ARG2=(EDP+DLTE)*COSLDP -(EDPDL*SINLDP)
 BL=DATAN2(ARG1,ARG2)
 BL=DMOD(BL,PI*2.0DO)
 IF(BL.LT.0.ODO)BL=BL+PI*2.0DO
 GO TO 145
CI--I
CI COMPUTE H(LONGITUDE OF ASCENDING NODE) I
CI--I
169 ARG1=SINDH*COSHDP+SINHDP*(F1D2*DLTI*COSI2+SINI2)
 ARG2=COSHDP*(F1D2*DLTI*COSI2+SINI2)-(SINDH*SINHDP)
 H=DATAN2(ARG1,ARG2)
 H=DMOD(H,PI*2.0DO)
 IF(H.LT.0.ODO)H=H+PI*2.0DO
 GO TO 146
45 CONTINUE
RETURN
1000 END

DOUBLE PRECISION FUNCTION DKEPLR (M,E,PI)
C
C SUBROUTINE TO SOLVE KEPLER'S EQ.
C KEPLER'S EQ., RELATES GEOMETRY OR POSITION IN ORBIT PLANE TO TIME.
C
C M - MEAN ANOMALY (0<M<2*PI)
C E - ECCENTRICITY
C EA - ECCENTRIC ANOMALY
C
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
DOUBLE PRECISION M
TOL = 0.5D-17
EA=0
IF(M)1,2,1
1 EA=M + E*DSIN(M)
DO 22 I=1,12
OLDEA=EA
FE=EA-E*DSIN(EA)-M
EA=EA-FE/(1-E*DCOS(EA-0.5D0*FE))
C TEST FOR CONVERGENCE
DELEA=DABS(EA-OLDEA)
IF(DELEA.LE.TOL)GO TO 2
22 CONTINUE
2 EA=DMOD(EA,PI*2.0D0)
DKEPLR=EA
RETURN
END
SUBROUTINE EQNKEP (EQNELM, RETRO, KEPELM, SETRTR)

FUNCTION

THIS SUBROUTINE CONVERTS KEPLERIAN ORBIT ELEMENTS TO EQUINOCTIAL ORBIT ELEMENTS.

CALLING SEQUENCE **
CALL EQNKEP (EQNELM, RETRO, KEPELM, SETRTR)

PARAMETERS ***
EQNELM 0 EQUINOCTIAL ORBIT ELEMENTS.
RETRO I/O RETROGRADE FACTOR FOR EQUINOCTIAL ORBIT ELEMENTS.
1 DIRECT ELEMENTS
-1 RETROGRADE ELEMENTS

KEPELM I KEPLERIAN ORBIT ELEMENTS.

SETRTR I COMPUTE NEW VALUE OF RETROGRADE FACTOR FOR EQUINOCTIAL ORBIT ELEMENTS?
.TRUE. YES
.FALSE. NO

NO SUBROUTINES CALLED **

HISTORY ***

VERSION OF DECEMBER 1983
FORTRAN SUBROUTINE FOR THE AMDAHL 470/V8 AND THE IBM 3033.

ANALYSIS
LEO W. EARLY, JR. -- CHARLES STARK DRAPER LABORATORY

PROGRAMMER
LEO W. EARLY, JR. -- CHARLES STARK DRAPER LABORATORY

176
C** DECLARATIONS **********************************
C
C
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
LOGICAL SETRTR
DOUBLE PRECISION EQNELM (6) , KEPELM (6)
DOUBLE PRECISION INCLIN , NODE
C
C** DATA STATEMENTS **********************************
C
C
DATA HALFPI / 1.5707963267948966 D0 /
DATA TWOPI / 6.2831853071795865 D0 /
C
C
C** BEGIN PROGRAM **********************************
C
C
*************** KEPLERIAN ORBIT ELEMENTS ***********************
C
A = KEPELM (1)
ECCEN = KEPELM (2)
INCLIN = KEPELM (3)
NODE = KEPELM (4)
PERGEE = KEPELM (5)
ANOMLY = KEPELM (6)
C
*************** EQUINOCTIAL ORBIT ELEMENTS ***********************
C
C
RETROGRADE FACTOR.
C
IF (SETRTR) THEN
RETRO = 1.D0
IF (INCLIN .GT. HALFPI) RETRO = -1.D0
END IF
C
AUXILIARY PARAMETERS.
C
C
177
IF (RETRO .GE. 0.D0) THEN
 APPLAN = PERGEE + NODE
 TANINC = TAN (INCLIN/2.D0)
ELSE
 APPLAN = PERGEE - NODE
 TANINC = TAN (HALFPI - INCLIN/2.D0)
END IF

C
H AND K
C
XH = ECCEN * SIN (APPLAN)
XK = ECCEN * COS (APPLAN)
C
P AND Q
C
P = TANINC * SIN (NODE)
Q = TANINC * COS (NODE)
C
MEAN LONGITUDE
C
XLAMDA = ANOMLY + APPLAN
C
C

C
RETURN OUTPUT
C

C
C
EQNELM (1) = A
EQNELM (2) = XH
EQNELM (3) = XK
EQNELM (4) = P
EQNELM (5) = Q
EQNELM (6) = XLAMDA
RETURN
END
SUBROUTINE CARTES (POS,VEL, EQNELM, RETRO, GM)

FUNCTION

THIS SUBROUTINE CONVERTS EQUINOCTIAL ORBIT ELEMENTS TO POSITION AND VELOCITY.

CALLING SEQUENCE

CALL CARTES (POS,VEL, EQNELM, RETRO, GM)

PARAMETERS

POS O POSITION.
VEL O VELOCITY.

EQNELM I EQUINOCTIAL ORBIT ELEMENTS.
RETRO I RETROGRADE FACTOR.
1 DIRECT ELEMENTS
-1 RETROGRADE ELEMENTS

GM I GRAVITATIONAL CONSTANT OF CENTRAL BODY.

/SATELM/ AUXILIARY PARAMETERS FOR POSITION AND VELOCITY.

X O POSITION.
V O VELOCITY.

XORB O POSITION IN ORBITAL REFERENCE FRAME.
VORB O VELOCITY IN ORBITAL REFERENCE FRAME.
RDA O RADIAL DISTANCE / SEMIMAJOR AXIS

SATELLITE LONGITUDE.

F O ECCENTRIC LONGITUDE.
SINF O SIN (F)
COSF O COS (F)

EQUINOCTIAL ORBIT ELEMENTS.

A O SEMIMAJOR AXIS: A

179
SUBROUTINE FOR THE IBM 3081 AND 3033.

ANALYSIS
LEO W. EARLY, JR. -- CHARLES STARK DRAPER LABORATORY

PROGRAMMER

FORTRAN SUBROUTINE FOR THE IBM 3081 AND 3033.

AUXILIARY PARAMETERS FOR EQUINOCTIAL ORBIT ELEMENTS.

FAXIS O F AXIS OF ORBITAL REFERENCE FRAME.
GAXIS O G AXIS OF ORBITAL REFERENCE FRAME.
WAXIS O W AXIS OF ORBITAL REFERENCE FRAME.

XMU O GRAVITATIONAL CONSTANT OF CENTRAL BODY.
XMEAN O KEPLER MEAN MOTION: N
XNA O N*A
XNA2 O N*A*A

XHH O H*H
XKK O K*K
HHKK O H*H + K*K
ONEHK O 1 - H*H - K*K
SRTHK O SQRT (1 - H*H - K*K)
BETAUX O 1 / (1 + SQRT (1 - H*H - K*K))
ONEHBB O 1 - H*H*BETAUX
ONEKKB O 1 - K*K*BETAUX
HKBETA O H*K*BETAUX

PP O P*P
QQ O Q*Q
PPQQ O P*P + Q*Q
ONEPQ O 1 + P*P + Q*Q
ONEPQI O 1 / (1 + P*P + Q*Q)

SUBROUTINES CALLED **
AUXEQN ECLONG

*************** HISTORY **

VERSION OF FEBRUARY 1984
FORTRAN SUBROUTINE FOR THE IBM 3081 AND 3033.

ANALYSIS
LEO W. EARLY, JR. -- CHARLES STARK DRAPER LABORATORY

PROGRAMMER
DECLARATIONS

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

DIMENSIONS

```
DIMENSION EQNELM (6), FAXIS (3)
DIMENSION POS (3), GAXIS (3)
DIMENSION VEL (3), WAXIS (3)
DIMENSION X (3), XORB (2)
DIMENSION V (3), VORB (2)
```

COMMON /SATELM/ RSATEL (87)

POSITION AND VELOCITY.

```
EQUIVALENCE (X (1), RSATEL (1)),
* (V (1), RSATEL (4))
```

AUXILIARY PARAMETERS FOR POSITION AND VELOCITY.

```
EQUIVALENCE (XORB (1), RSATEL (7)),
* (VORB (1), RSATEL (9)),
* (RDA, RSATEL (11))
```

SATELLITE LONGITUDE.

```
EQUIVALENCE (F, RSATEL (12)),
* (SINF, RSATEL (13)),
* (COSF, RSATEL (14))
```

EQUINOCTIAL ORBIT ELEMENTS.

```
EQUIVALENCE (A, RSATEL (15)),
* (XH, RSATEL (16)),
* (XX, RSATEL (17)),
* (P, RSATEL (18)),
* (Q, RSATEL (19)),
* (XLAMDA, RSATEL (20)),
* (RETRG, RSATEL (21))
```

AUXILIARY PARAMETERS FOR EQUINOCTIAL ORBIT ELEMENTS.

```
EQUIVALENCE (FAXIS (1), RSATEL (22)),
* (GAXIS (1), RSATEL (25)),
* (WAXIS (1), RSATEL (28))
```
C ************************ BEGIN PROGRAM ******************************

C

C ********************
C AUXILIARY PARAMETERS
C ********************

C AUXILIARY PARAMETERS FOR EQUINOCTIAL ELEMENTS.
C
CALL AUXEQA (EQNELM, RETRO, GM)

C ECCENTRIC LONGITUDE.
C
SINLAM = SIN (XLAMDA)
COSLAM = COS (XLAMDA)
CALL ECLONG (F, SINF, COSF, XLAMDA, SINLAM, COSLAM, XH, XK)

C AUXILIARY PARAMETERS FOR POSITION AND VELOCITY.
C
RDA = 1.D0 - XH * SINF - XK * COSF
XNA2DR = XNA / RDA

C

C POSITION AND VELOCITY
C

C
POSITION IN EQUINOCTIAL REFERENCE FRAME.

\[
\text{XORB (1)} = A \cdot (\text{ONEHHB} \cdot \cos F + \text{HKBETA} \cdot \sin F - XK)
\]
\[
\text{XORB (2)} = A \cdot (\text{ONEKKB} \cdot \sin F + \text{HKBETA} \cdot \cos F - XH)
\]

VELOCITY IN EQUINOCTIAL REFERENCE FRAME.

\[
\text{VORB (1)} = \text{XNA2DR} \cdot (\text{HKBETA} \cdot \cos F - \text{ONEHHB} \cdot \sin F)
\]
\[
\text{VORB (2)} = \text{XNA2DR} \cdot (\text{ONEKKB} \cdot \cos F - \text{HKBETA} \cdot \sin F)
\]

POSITION IN INERTIAL REFERENCE FRAME.

\[
X (1) = \text{XORB (1)} \cdot FAXIS (1) + \text{XORB (2)} \cdot GAXIS (1)
\]
\[
X (2) = \text{XORB (1)} \cdot FAXIS (2) + \text{XORB (2)} \cdot GAXIS (2)
\]
\[
X (3) = \text{XORB (1)} \cdot FAXIS (3) + \text{XORB (2)} \cdot GAXIS (3)
\]

VELOCITY IN INERTIAL REFERENCE FRAME.

\[
V (1) = \text{VORB (1)} \cdot FAXIS (1) + \text{VORB (2)} \cdot GAXIS (1)
\]
\[
V (2) = \text{VORB (1)} \cdot FAXIS (2) + \text{VORB (2)} \cdot GAXIS (2)
\]
\[
V (3) = \text{VORB (1)} \cdot FAXIS (3) + \text{VORB (2)} \cdot GAXIS (3)
\]

RETURN OUTPUT

RETURN POSITION TO CALLING PROGRAM.

\[
\text{POS (1)} = X (1)
\]
\[
\text{POS (2)} = X (2)
\]
\[
\text{POS (3)} = X (3)
\]

RETURN VELOCITY TO CALLING PROGRAM.

\[
\text{VEL (1)} = V (1)
\]
\[
\text{VEL (2)} = V (2)
\]
\[
\text{VEL (3)} = V (3)
\]
SUBROUTINE AUXEQN (ELEMNT, RETRO, GM)

FUNCTION

THIS SUBROUTINE COMPUTES AUXILIARY PARAMETERS RELATED TO THE
EQUINOCTIAL ORBIT ELEMENTS.

CALLING SEQUENCE ***

CALL AUXEQN (ELEMNT, RETRO, GM)

PARAMETERS ***

ELEMNT I EQUINOCTIAL ORBIT ELEMENTS.
RETRO I RETROGRADE FACTOR.
 1 DIRECT ELEMENTS
 -1 RETROGRADE ELEMENTS

GM I GRAVITATIONAL CONSTANT OF CENTRAL BODY.

/EATELM/ ***

EQUINOCTIAL ORBIT ELEMENTS.

A O SEMIMAJOR AXIS: A
XH O H
XK O K
P O P
Q O Q
XLAMDA O MEAN LONGITUDE: LAMBDA

 RETRG O RETROGRADE FACTOR.
 1 DIRECT ELEMENTS
 -1 RETROGRADE ELEMENTS

AUXILIARY PARAMETERS FOR EQUINOCTIAL ORBIT ELEMENTS.

FAXIS O F AXIS OF ORBITAL REFERENCE FRAME.
GAXIS O G AXIS OF ORBITAL REFERENCE FRAME.
WAXIS O W AXIS OF ORBITAL REFERENCE FRAME.

XMU O GRAVITATIONAL CONSTANT OF CENTRAL BODY.
XMEAN O KEPLER MEAN MOTION: N
XNA O N*A
C XNA2 O N*A*A
C
C XHH O H*H
C XKK O K*K
C HXKK O H*H + K*K
C ONEHK O 1 - H*H - K*K
C SRTHK O SQRT (1 - H*H - K*K)
C BETAXO O 1 / (1 + SQRT (1 - H*H - K*K))
C ONEHHB O 1 - H*H*BETAUX
C ONEKKB O 1 - K*K*BETAUX
C HKBETA O H*K*BETAUX
C
C PP O P*P
C QQ O Q*Q
C PPQQ O P*P + Q*Q
C ONEPQ O 1 + P*P + Q*Q
C ONEPQI O 1 / (1 + P*P + Q*Q)
C
C NO SUBROUTINES CALLED ***
C
C
C***************** HISTORY **
C
C VERSION OF FEBRUARY 1984
C FORTRAN SUBROUTINE FOR THE IBM 3081 AND 3033.
C
C ANALYSIS
C LEO W. EARLY, JR. -- CHARLES STARK DRAPER LABORATORY
C
C PROGRAMMER
C LEO W. EARLY, JR. -- CHARLES STARK DRAPER LABORATORY
C
C***************** DECLARATIONS ***
C
C IMPLICIT DOUBLE PRECISION (A-H,O-Z)
C
C DIMENSIONS ***
C
C DIMENSION ELEMNT(6) ,FAXIS(3) ,GAXIS(3) ,WAXIS(3)
C /SATELM/ ***
C COMMON /SATELM/ RSATEL (87)
C
C EQUINOCTIAL ORBIT ELEMENTS.
C EQUIVALENCE (A ,RSATEL (15)),

185
AUXILIARY PARAMETERS FOR EQUINOCTIAL ORBIT ELEMENTS.

AUXILIARY KEPLER MEAN MOTION PARAMETERS.
C AUXILIARY H AND K PARAMETERS.

XHH = XH * XH
XKK = XK * XK
HHKK = XHH + XKK
ONEHK = 1.D0 - HHKK
SRTHK = SQRT (ONEHK)
BETAUX = 1.D0 / (1.D0 + SRTHK)

ONEHHB = 1.D0 - XHH * BETAUX
ONEKKB = 1.D0 - XKK * BETAUX
HKBETA = XH * XK * BETAUX

C AUXILIARY P AND Q PARAMETERS.

PP = P * P
QQ = Q * Q
PPQQ = PP + QQ
ONEPQ = 1.D0 + PPQQ
ONEPQI = 1.D0 / ONEPQ

C ORBITAL REFERENCE FRAME.

FAXIS (1) = (1.D0 - PP + QQ) * ONEPQI
FAXIS (2) = 2.D0*P*Q * ONEPQI
FAXIS (3) = - 2.D0*P * ONEPQI * RETRG

GAXIS (1) = 2.D0*P*Q * ONEPQI * RETRG
GAXIS (2) = (1.D0 + PP - QQ) * ONEPQI * RETRG
GAXIS (3) = 2.D0*Q * ONEPQI

WAXIS (1) = 2.D0*P * ONEPQI
WAXIS (2) = - 2.D0*Q * ONEPQI
WAXIS (3) = (1.D0 - PPQQ) * ONEPQI * RETRG
RETURN
END
SUBROUTINE ECLONG (F,SINF,COSF, XLAMDA,SINLAM,COSLAM, * XH,XK)

FUNCTION

This subroutine solves Kepler's equation

\[\lambda = F + h \cos F - k \sin F \]

for the eccentric longitude \(F \) using Newton's method for solving nonlinear equations.

CALLING SEQUENCE ***

CALL ECLONG (F,SINF,COSF, XLAMDA,SINLAM,COSLAM, * XH,XK)

PARAMETERS ***

F O Eccentric longitude.
SINF O sin F
COSF O cos F

XLAMDA I Mean longitude.
SINLAM I sin XLAMDA
COSLAM I cos XLAMDA

XH I Equinoctial element h.
XK I Equinoctial element k.

NO SUBROUTINES CALLED ***

RESTRUCTIONS ***

\[\sqrt{XH^2 + XK^2} \leq .9999999999 \]

*************** HISTORY ***

VERSION: January 1986
Fortran subroutine for the IBM 3081 and 3033.

ANALYSIS
Leo W. Early, Jr. -- Charles Stark Draper Laboratory

PROGRAMMER
Leo W. Early, Jr. -- Charles Stark Draper Laboratory

***************** DECLARATIONS **
C
C
C IMPLICIT DOUBLE PRECISION (A-H,O-Z)
C
C
C***************** DATA STATEMENTS **
C
C
C Convergence tolerance. The value given guarantees that F, sin F, and cos F will have the maximum accuracy obtainable with 16.8-digit floating-point arithmetic.
C
DATA TOLER / 1. D -10 /
C
Iteration limit.
C
DATA ITRLIM / 30 /
C
Error message file number.
C
DATA MSG / 6 /
C
C
C***************** BEGIN PROGRAM **
C

INITIALIZE

Compute auxiliary parameters.

R = XH * COSLAM - XK * SINLAM
S = XH * SINLAM + XK * COSLAM
Compute initial approximation for $F - \Lambda$.

\[
FSL = 0.0
\]
\[
DELFSL = R / (1.0 - S)
\]
IF (ABS (DELFSL) .GT. 1.0) DELFSL = SIGN (1.0,DELFSL)

ITERATE

Compute next approximation for $F - \Lambda$.

DO 100 ITR = 1,ITRLIM
 FSL = FSL - DELFSL
 SINFSL = SIN (FSL)
 COSFSL = COS (FSL)

 Compute correction.

 DELFSL = (FSL + R*COSFSL - S*SINFSL) / (1.0 - R*SINFSL - * S*COSFSL)
 IF (ABS (DELFSL) .LE. TOLER) GO TO 200
100 CONTINUE

ITERATION DID NOT CONVERGE

WRITE (MSG,2000) ITRLIM, XLAMDA, SINLAM, COSLAM, XH, XK, *
 DELFSL

END OF ALGORITHM

Compute final approximation to $F - \Lambda$.

\[
200 \text{ DIF } = FSL - DELFSL \\
\text{SINDIF } = \text{SINFSL} - \text{COSFSL} \times \text{DELFSL} \\
\text{COSDIF } = \text{COSFSL} + \text{SINFSL} \times \text{DELFSL}
\]

Compute F, sin F, cos F.

190
C
F = XLAMDA + DIF
SINF = SINLAM * COSDIF + COSLAM * SINDIF
COSF = COSLAM * COSDIF - SINLAM * SINDIF
RETURN
C
C
C***************** FORMAT STATEMENTS *********************************** 170
C
C
C2000 FORMAT('***** ERROR ***** ITERATION TO SOLVE KEPLER', /,
* 'S EQUATION FOR THE ECCENTRIC LONGITUDE FAILED TO', /
* ' CONVERGE IN ',I4, ' ITERATIONS.', /
* ' LAMBDA = ',1PG13.5, /,
* ' SINLAM = ',1PG13.5, /,
* ' COSLAM = ',1PG13.5, /,
* ' H = ',1PG13.5, /,
* ' K = ',1PG13.5, //
* ' LAST CHANGE IN F = ',1PG13.5, //)
END
SUBROUTINE KEPEQN (KEPELM, EQNELM, RETRO, x)

FUNCTION

THIS SUBROUTINE CONVERTS EQUINOCTIAL ORBIT ELEMENTS TO KEPLERIAN ORBIT ELEMENTS.

CALLING SEQUENCE

CALL KEPEQN (KEPELM, EQNELM, RETRO)

PARAMETERS

KEPELM 0 KEPLERIAN ORBIT ELEMENTS.
EQNELM 1 EQUINOCTIAL ORBIT ELEMENTS.
RETRO 1 RETROGRADE FACTOR.
-1 DIRECT ELEMENTS

NO SUBROUTINES CALLED

CALLING SEQUENCE

VERSION OF DECEMBER 1983
FORTRAN SUBROUTINE FOR THE IBM 3081 AND 3033.

ANALYSIS
LEO W. EARLY, JR. -- CHARLES STARK DRAPER LABORATORY

PROGRAMMER
LEO W. EARLY, JR. -- CHARLES STARK DRAPER LABORATORY

DECLARATIONS

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DOUBLE PRECISION EQNELM (6), x(6), KEPELM (6)
DOUBLE PRECISION INCLIN, NODE

C
C
C*************** DATA STATEMENTS ***************************************
C
C
C 60
C
C
C
C***************** BEGIN PROGRAM ***************************************
C
C
C
C****************** KEPLERIAN ELEMENTS *************
C
C
C
A = EQNELM (1)
XH = EQNELM (2)
XK = EQNELM (3)
P = EQNELM (4)
Q = EQNELM (5)
XLAMDA = EQNELM (6)

C
C
C
C*************** AUXILIARY PARAMETERS ***************
C
C
C
HHKK = XH * XH + XK * XK
PPQQ = P * P + Q * Q

C
C
C
C
C ECCENTRICITY
C
C
C
C
C ECCEN = SQRT (HHKK)

C
C
C
C
C
C INCLINATION
C
C
C
C INCLIN = 2.0D0 * ATAN (SQRT (PPQQ))

IF (RETRO .LT. 0.0D0) INCLIN = PI - INCLIN

25 if(inclin - x(3) .gt. pi) then
inclin = inclin - twoPi
goto 25
endif
40 if(x(3)-inclin.gt.pi)then
 inclin = inclin+twopi
 goto 40
endif

C LONGITUDE OF ASCENDING NODE
C
IF (PPQQ.GT.0.D0) THEN
 NODE = ATAN2(P,Q)
ELSE
 NODE = 0.D0
END IF
50 if(node-x(4).gt.pi)then
 node = node-twopi
 goto 50
endif
70 if(x(4)-node.gt.pi)then
 node = node+twopi
 goto 70
endif

C LONGITUDE OF PERIGEE
C
IF (HHKK.GT.0.D0) THEN
 APPLAN = ATAN2(XH,XK)
ELSE
 APPLAN = RETRO * NODE
END IF

C ARGUMENT OF PERIGEE
C
PERGEE = APPLAN - RETRO*NODE
75 if(pergee-x(5).gt.pi)then
 pergee = pergee-twopi
 goto 75
endif
90 if(x(5)-pergee.gt.pi)then
 pergee = pergee+twopi
 goto 90
endif

C MEAN ANOMALY
C
ANOMLY = XLAMDA - APPLAN
100 if(anomly-x(6).gt.pi)then
 anomal = anomal-twopi
 goto 100
endif
120 if(x(6)-anomly.gt.pi)then
 anomal = anomal+twopi
 goto 120
endif

RETURN OUTPUT

KEPELM (1) = A
KEPELM (2) = ECCEN
KEPELM (3) = INCLIN
KEPELM (4) = NODE
KEPELM (5) = PERGEE
KEPELM (6) = ANOMLY
RETURN
END
SUBROUTINE CRTDRV (DPVDEQ)

FUNCTION

THIS SUBROUTINE COMPUTES THE PARTIAL DERIVATIVES OF POSITION AND VELOCITY WITH RESPECT TO THE EQUINOCTIAL ORBIT ELEMENTS.

CALLING SEQUENCE
**

CALL CRTDRV (DPVDEQ)

PARAMETERS
**

DPVDEQ O PARTIAL DERIVATIVES OF POSITION AND VELOCITY
WITH RESPECT TO EQUINOCTIAL ORBIT ELEMENTS.

FOR J = 1,2,3

(J,1) D X(J) / D A
(J,2) D X(J) / D H
(J,3) D X(J) / D K
(J,4) D X(J) / D P
(J,5) D X(J) / D Q
(J,6) D X(J) / D LAMBDA

(J+3,1) D V(J) / D A
(J+3,2) D V(J) / D H
(J+3,3) D V(J) / D K
(J+3,4) D V(J) / D P
(J+3,5) D V(J) / D Q
(J+3,6) D V(J) / D LAMBDA

/SATELM/ **

POSITION AND VELOCITY.

X I POSITION.
V I VELOCITY.

AUXILIARY PARAMETERS FOR POSITION AND VELOCITY.

XORB I POSITION IN ORBITAL REFERENCE FRAME.
VORB I VELOCITY IN ORBITAL REFERENCE FRAME.
RDA I RADIAL DISTANCE / SEMIMAJOR AXIS
SATELLITE LONGITUDE.

F I ECCENTRIC LONGITUDE.
SINF I SIN (F)
COSF I COS (F)

EQUINOCTIAL ORBIT ELEMENTS.

A I SEMIMAJOR AXIS
XH I H
XK I K
P I P
Q I Q

RETRG I RETROGRADE FACTOR.
1 DIRECT ELEMENTS
-1 RETROGRADE ELEMENTS

AUXILIARY PARAMETERS FOR EQUINOCTIAL ORBIT ELEMENTS.

FAXIS I F AXIS OF ORBITAL REFERENCE FRAME.
GAXIS I G AXIS OF ORBITAL REFERENCE FRAME.
WAXIS I W AXIS OF ORBITAL REFERENCE FRAME.

XMU I GRAVITATIONAL CONSTANT OF CENTRAL BODY.
XMEAN I KEPLER MEAN MOTION: N
XNA I N*A
XNA2 I N*A*A

XHH I H*H
XKK I K*K
HHKK I H*H + K*K
ONEHK I 1 - H*H - K*K
SRTHK I SQRT (1 - H*H - K*K)
BETAUX I 1 / (1 + SQRT (1 - H*H - K*K))
ONEHKB I 1 - H*K*BETAUX
ONEKKB I 1 - K*K*BETAUX
HKBETA I H*K*BETAUX

PP I P*P
QQ I Q*Q
PPQQ I P*P + Q*Q
ONEPQ I 1 + P*P + Q*Q
ONEPQI I 1 / (1 + P*P + Q*Q)

NO SUBROUTINES CALLED **

RE_RESTRICTIONS **

CALL SUBROUTINE "CARTES" TO CREATE THE INPUT FOR THIS SUBROUTINE.
VERSION OF FEBRUARY 1984

FORTRAN SUBROUTINE FOR THE IBM 3081 AND 3033.

ANALYSIS
LEO W. EARLY, JR. -- CHARLES STARK DRAPER LABORATORY

PROGRAMMER
LEO W. EARLY, JR. -- CHARLES STARK DRAPER LABORATORY

DECLARATIONS

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

DIMENSIONS

DIMENSION X (3) ,XORB (2)
DIMENSION V (3) ,VORB (2)
DIMENSION FAXIS (3) ,WAXIS (3)
DIMENSION GAXIS (3) ,DPVDEQ (6,6)

COMMON /SATELM/ RSATEL (87)

POSITION AND VELOCITY.

EQUIVALENCE (X (1) ,RSATEL (1)),
* (V (1) ,RSATEL (4))

AUXILIARY PARAMETERS FOR POSITION AND VELOCITY.

EQUIVALENCE (XORB (1) ,RSATEL (7)),
* (VORB (1) ,RSATEL (9)),
* (RDA ,RSATEL (11))

SATELLITE LONGITUDE.

EQUIVALENCE (F ,RSATEL (12)),
* (SINF ,RSATEL (13)),
* (COSF ,RSATEL (14))

EQUINOCTIAL ORBIT ELEMENTS.

EQUIVALENCE (A ,RSATEL (15)),
AUXILIARY PARAMETERS FOR EQUINOCTIAL ORBIT ELEMENTS.

EQUIVALENCE (FAXIS (1) ,RSATEL (22)),
* (GAXIS (1) ,RSATEL (25)),
* (WAXIS (1) ,RSATEL (28)),
* (XMU ,RSATEL (31)),
* (XMEAN ,RSATEL (32)),
* (XNA ,RSATEL (33)),
* (XNA2 ,RSATEL (34)),
* (XHH ,RSATEL (35)),
* (XKK ,RSATEL (36)),
* (HHKK ,RSATEL (37))
EQUIVALENCE (ONEHK ,RSATEL (38)),
* (SRTHK ,RSATEL (39)),
* (BETAUX ,RSATEL (40)),
* (ONEHHB ,RSATEL (41)),
* (ONEKKB ,RSATEL (42)),
* (HKBETA ,RSATEL (43)),
* (PP ,RSATEL (44)),
* (QQ ,RSATEL (45)),
* (PPQQ ,RSATEL (46)),
* (ONEPQ ,RSATEL (47)),
* (ONEPQI ,RSATEL (48))

*************** BEGIN PROGRAM ***************************************

AUXILIARY PARAMETERS

SEMIMAJOR AXIS

RTAI = 1.D0 / (A * SRTHK)
RTNAI = RTAI / XMEAN
XNADR3 = XMEAN / (RDA * RDA * RDA)

H AND K

BETAH = BETAUX * XH
BETAK = BETAUX * XK
BETAHN = BETAH / XMEAN
BETAKN = BETAK / XMEAN
PARTIAL DERIVATIVES OF POSITION IN ORBITAL REFERENCE FRAME.

\[
\begin{align*}
\text{DXDH} & = -\beta_{1}\text{VORB}(1) + \rho_{1}\text{XORB}(2)\text{VORB}(2) \\
\text{DYDH} & = -\beta_{2}\text{VORB}(2) - \rho_{1}\text{XORB}(1)\text{VORB}(2) - \Delta
\end{align*}
\]

PARTIAL DERIVATIVES OF VELOCITY IN ORBITAL REFERENCE FRAME.

\[
\begin{align*}
\text{DVXDH} & = \frac{\text{XNADR}3}{\rho_{1}} (\beta_{1}\text{VORB}(1) - \rho_{1}\text{XORB}(2)\text{VORB}(2)) \\
& \quad + \rho_{1}\text{VORB}(2)\text{VORB}(2) \\
\text{DVYDH} & = \frac{\text{XNADR}3}{\rho_{1}} (\beta_{1}\text{VORB}(2) + \rho_{1}\text{XORB}(1)\text{VORB}(2)) \\
& \quad - \rho_{1}\text{VORB}(1)\text{VORB}(2)
\end{align*}
\]

\[
\begin{align*}
\text{DVXDK} & = -\frac{\text{XNADR}3}{\rho_{1}} (\beta_{1}\text{VORB}(1) + \rho_{1}\text{XORB}(2)\text{VORB}(2)) \\
& \quad + \rho_{1}\text{VORB}(1)\text{VORB}(2) \\
\text{DVYDK} & = -\frac{\text{XNADR}3}{\rho_{1}} (\beta_{1}\text{VORB}(2) - \rho_{1}\text{XORB}(1)\text{VORB}(1)) \\
& \quad - \rho_{1}\text{VORB}(1)\text{VORB}(1)
\end{align*}
\]

POSITION PARTIAL DERIVATIVES

SEMIMAJOR AXIS

\[
\begin{align*}
\text{DPVDEQ}(1,1) & = \frac{\text{X}(1)}{\rho_{1}} \\
\text{DPVDEQ}(2,1) & = \frac{\text{X}(2)}{\rho_{1}} \\
\text{DPVDEQ}(3,1) & = \frac{\text{X}(3)}{\rho_{1}} \\
\text{DPVDEQ}(1,2) & = \text{DXDH}\text{FAXIS}(1) + \text{DYDH}\text{GAXIS}(1) \\
\text{DPVDEQ}(2,2) & = \text{DXDH}\text{FAXIS}(2) + \text{DYDH}\text{GAXIS}(2) \\
\text{DPVDEQ}(3,2) & = \text{DXDH}\text{FAXIS}(3) + \text{DYDH}\text{GAXIS}(3) \\
\text{DPVDEQ}(1,3) & = \text{DXDK}\text{FAXIS}(1) + \text{DYDK}\text{GAXIS}(1) \\
\text{DPVDEQ}(2,3) & = \text{DXDK}\text{FAXIS}(2) + \text{DYDK}\text{GAXIS}(2)
\end{align*}
\]
\[
DPVDEQ(3,3) = DXDK*FAXIS(3) + DYDK*GAXIS(3) \\
\]

P

\[
FFAC = QAUX * XORB(2) \\
GFAC = - QAUX * XORB(1) \\
WFAC = - TWOPQ * XORB(1) \\
\]

\[
DPVDEQ(1,4) = FFAC*FAXIS(1) + GFAC*GAXIS(1) + WFAC*WAXIS(1) \\
DPVDEQ(2,4) = FFAC*FAXIS(2) + GFAC*GAXIS(2) + WFAC*WAXIS(2) \\
DPVDEQ(3,4) = FFAC*FAXIS(3) + GFAC*GAXIS(3) + WFAC*WAXIS(3) \\
\]

Q

\[
FFAC = - PAUX * XORB(2) \\
GFAC = PAUX * XORB(1) \\
WFAC = TWOIPQ * XORB(2) \\
\]

\[
DPVDEQ(1,5) = FFAC*FAXIS(1) + GFAC*GAXIS(1) + WFAC*WAXIS(1) \\
DPVDEQ(2,5) = FFAC*FAXIS(2) + GFAC*GAXIS(2) + WFAC*WAXIS(2) \\
DPVDEQ(3,5) = FFAC*FAXIS(3) + GFAC*GAXIS(3) + WFAC*WAXIS(3) \\
\]

MEAN LONGITUDE

\[
DPVDEQ(1,6) = V(1) / XMEAN \\
DPVDEQ(2,6) = V(2) / XMEAN \\
DPVDEQ(3,6) = V(3) / XMEAN \\
\]

VELOCITY PARTIAL DERIVATIVES

SEMIMAJOR AXIS

\[
300 \ \ \ \ VFAC = - .5D0 / A \\
\]

\[
DPVDEQ(4,1) = VFAC * V(1) \\
DPVDEQ(5,1) = VFAC * V(2) \\
DPVDEQ(6,1) = VFAC * V(3) \\
\]

\[
H \\
\]

\[
DPVDEQ(4,2) = DVXDH*FAXIS(1) + DVYDH*GAXIS(1) \\
DPVDEQ(5,2) = DVXDH*FAXIS(2) + DVYDH*GAXIS(2) \\
DPVDEQ(6,2) = DVXDH*FAXIS(3) + DVYDH*GAXIS(3) \\
\]

\[
K \\
\]

\[
DPVDEQ(4,3) = DVXDK*FAXIS(1) + DVYDK*GAXIS(1) \\
DPVDEQ(5,3) = DVXDK*FAXIS(2) + DVYDK*GAXIS(2) \\
\]

201
DPVDEQ (6,3) = DVXDK*FAXIS(3) + DVYDK*GAXIS(3)

C
P
C
FFAC = QAUX * VORB(2)
GFAC = - QAUX * VORB(1)
WFAC = - TWOPQ * VORB(1)

C
DPVDEQ (4,4) = FFAC*FAXIS(1) + GFAC*GAXIS(1) + WFAC*WAXIS(1)
DPVDEQ (5,4) = FFAC*FAXIS(2) + GFAC*GAXIS(2) + WFAC*WAXIS(2)
DPVDEQ (6,4) = FFAC*FAXIS(3) + GFAC*GAXIS(3) + WFAC*WAXIS(3)

C
Q
C
FFAC = - PAUX * VORB(2)
GFAC = PAUX * VORB(1)
WFAC = - TWOIPQ * VORB(2)

C
DPVDEQ (4,5) = FFAC*FAXIS(1) + GFAC*GAXIS(1) + WFAC*WAXIS(1)
DPVDEQ (5,5) = FFAC*FAXIS(2) + GFAC*GAXIS(2) + WFAC*WAXIS(2)
DPVDEQ (6,5) = FFAC*FAXIS(3) + GFAC*GAXIS(3) + WFAC*WAXIS(3)

C
MEAN LONGITUDE
C
XFAC = - XNADR3
C
DPVDEQ (4,6) = XFAC * X(1)
DPVDEQ (5,6) = XFAC * X(2)
DPVDEQ (6,6) = XFAC * X(3)
RETURN
END
SUBROUTINE LUDCMP(A,N,NP,INDX,D)

LINPAK subroutine for decomposing an nxn matrix a.

DOUBLE PRECISION A,SUM,DUM,VV,AAMAX,D
PARAMETER (NMAX=100,TINY=1.0E-20)
DIMENSION A(NP,NP),INDX(N),VV(NMAX)

D=1.
DO 10 I=1,N
 AAMAX=0.
 DO 11 J=I,N
 IF (ABS(A(I,J)).GT.AAMAX) AAMAX=ABS(A(I,J))
 11 CONTINUE
 IF (AAMAX.EQ.0.) PAUSE 'Singular matrix.'
 VV(I)=1./AAMAX
10 CONTINUE

DO 19 J=I,N
 IF (J.GT.1) THEN
 DO 20 I=1,J-1
 SUM=A(I,J)
 IF (I.GT.1) THEN
 DO 13 K=I,I-1
 SUM=SUM-A(I,K)*A(K,J)
 13 CONTINUE
 A(I,J)=SUM
 ENDIF
 20 CONTINUE
 AAMAX=0.
 DO 16 I=J,N
 SUM=A(I,J)
 IF (J.GT.1) THEN
 DO 15 K=I,J-1
 SUM=SUM-A(I,K)*A(K,J)
 15 CONTINUE
 A(I,J)=SUM
 ENDIF
 DUM=VV(I)*ABS(SUM)
 IF (DUM.GE.AAMAX) THEN
 IMAX=I
 AAMAX=DUM
 ENDIF
 16 CONTINUE
 IF (J.NE.IMAX) THEN
 DO 17 K=1,N
 DUM=A(IMAX,K)
 A(IMAX,K)=A(J,K)
 A(J,K)=DUM
 17 CONTINUE
 D=-D
 VV(IMAX)=VV(J)
 ENDIF
203
ENDIF

INDEX(J)=IMAX

IF(J .NE. N) THEN
 IF(A(J,J).EQ.0.) A(J,J)=TINY
 DUM=1./A(J,J)
 DO 18 I=J+1,N
 A(I,J)=A(I,J)*DUM
 18 CONTINUE
ENDIF

19 CONTINUE

IF(A(N,N).EQ.0.) A(N,N)=TINY

RETURN

END
SUBROUTINE LUBKSB(A,N,NP,INDX,B)

LINPAK subroutine for carrying out back substitution.

DOUBLE PRECISION A,B, SUM
DIMENSION A(NP,NP),INDX(N),B(N)

II=0
DO 12 I=1,N
 LL=INDX(I)
 SUM=B(LL)
 B(LL)=B(I)
 IF (II.NE.0) THEN
 DO 11 J=II,I-1
 SUM=SUM-A(I,J)*B(J)
 11 CONTINUE
 ELSE IF (SUM.NE.0.) THEN
 II=I
 ENDIF
 12 CONTINUE
 IF(I.LT.N) THEN
 DO 13 J=I+1,N
 SUM=SUM-A(I,J)*B(J)
 13 CONTINUE
 ENDIF
 B(I)=SUM/A(I,I)
 14 CONTINUE
RETURN
END