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Abstract

Graphite/epoxy plates with a variety of elastic couplings were tested
under three static, transverse loadings and a dynamic transverse vibration
to determine their behavior relative to different symmetric combinations of
clamped, simply supported, and free boundary conditions. Both tape and
fabric material systems were used to create specimens with weak bending-
twisting coupling, strong bending-twisting coupling, bending-shearing
coupling, and no in-plane or out-of-plane couplings. Aluminum plates
were also tested as controls. The three static loadings investigated were
uniform pressure, a uniform rectangular pressure patch, and a point load.

Analyses used Mindlin shear deformation plate theory with selected
comparisons to Kirchhoff plate theory. Rayleigh-Ritz, Navier, and
constrained Navier solutions for most of the static experimental cases were
performed. In addition, single mode static solutions for a displacement
based potential function solution are presented. Natural mode shapes and
frequencies were predicted from the Rayleigh-Ritz solution.

The experimental and analytical results for both static and dynamic
loadings exhibit good agreement, except for experimental errors in the
clamped boundary condition. It is concluded that the Rayleigh-Ritz
solution properly accounts for bending-twisting coupling and that bending-
shearing coupling has no observable affect on the experimental stiffnesses
for the cases tested where in-plane sliding is allowed.

The single mode potential function results are overly stiff compared
to the Rayleigh-Ritz solutions for the majority of the cases investigated. For
the plates without bending-twisting coupling, under uniform pressure with
four sides simply supported, however, a sixteen term polynomial potential
function is 2-4% less stiff than the 81 term Rayleigh-Ritz and Navier
solutions used. This example illustrates the solution efficiency that may be
obtained through displacement based potential function solutions.

Extensive experimental and analytical results are presented for both
the static and dynamic cases investigated.
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Title: Boeing Assistant Professor of
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Department of Aeronautics and Astronautics
Massachusetts Institute of Technology
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Nomenclature

A1  Amplitude of potential function

Aq Plate extensional stiffness matrix

a Plate dimension in x direction

Bij Plate coupling stiffness matrix

b Plate dimension in y direction

Cii Transverse shear stiffnesses

Dij Plate bending stiffness matrix

fx, fy, fz Body forces in the x, y, and z directions

h Plate thickness

iij Constants which arise from the differential operators

Lij Differential operators

mx, my Surface tractions in the x and y directions

Mx, My, Mxy Moment resultants

Nx, Ny, Nxy Stress resultants

Px, Py Body force resultants

Pz Distributed transverse loading

qj Reduced in-plane stiffnesses

Ox, Qy Transverse shear stress resultants

Ro, R1, R2  Integrated inertia terms

u Plate displacement in x direction

uO Midplane displacement in x direction

v Plate displacement in y direction

vo Midplane displacement in y direction

w Midplane displacement in z direction

x, y, z Plate coordinates



y Engineering shear strain

e Extensional strain

iK Shear correction factor

p density

a Extensional stress

t Shear stress

QD Potential function

Tx Shear rotation of the undeformed normal w.r.t the y-z plane

•Ty Shear rotation of the undeformed normal w.r.t the z-x plane



Chapter 1

Introduction

Composite materials pose rewarding challenges to the structural

engineer familiar with isotropic materials. Strength becomes a function of

direction in the material, failure occurs in many diverse and sometimes

unrelated modes, and bending behavior can be materially coupled with in-

plane behavior. Although still the exception rather the the norm, composites

are finding their way into an ever increasing number of applications, from

high tech sports equipment to primary aircraft structure, where their high

strength to weight ratio makes them attractive alternatives to their isotropic

predecessors. As the use of composites increases, more and more engineers

will discard their anisophobia and open their minds to the wonders of an

anisotropic world.

A single ply, or layer, of composite material is orthotropic. By rotating

individual plies through different angles and laminating them together,

however, complicated material couplings can be created. These material

couplings, which arise due to the laminate's anisotropic nature, can

significantly affect the laminate's mechanical properties. Engineers should

carefully include the effects of these couplings when necessary, in order to

fully utilize composites, rather than avoiding all couplings due to a lack of

understanding.

This work investigates the effects of bending-twisting and bending-

shearing coupling in laminates subjected to three static, transverse loadings

and a dynamic transverse vibration. The experimental results are compared

with analytical solutions to determine the quality of the modeling and the effect

of the couplings for the loadings and boundary conditions considered.



Additionally, a new displacement based potential function solution is

presented.

Chapter two provides a general background from the literature on the

subject of anisotropic plate bending. Both Kirchhoff and Mindlin plate theories

are considered, and typical solution techniques are discussed. The

experimental procedures for specimen manufacture and testing are detailed

in chapter three. Chapter four describes the analyses used, and explains the

displacement based potential function solution.

The extensive experimental results are presented in chapter five,

followed by the analytical results in chapter six. Comparisons of the

experimental and analytical results are then made in chapter seven. Finally,

chapter eight provides a concise summary of the conclusions of this

investigation and suggestions for future work.



Chapter 2

Summary of Previous Work

This chapter briefly summarizes previous composite plate analysis

techniques. The solution of a plate problem consists of an underlying theory,

or model of the plate, and a solution technique, or mathematical procedure, for

approximating the response of a plate to a given loading, for a particular set of

boundary conditions. In general, a solution technique may be applied to

several different theories, and a theory may be solved using any of several

solution techniques. The relation is not always this clear cut, however, as

some theories lend themselves more readily to some solution techniques than

others.

2.1 Plate Theories

Thousands of papers have been written on the topics of plate theories

and solutions to plate theories; even hundreds of papers have been written

concerning laminated orthotropic and anisotropic plates. Many of these plate

theories and solution techniques are highly specialized and are applicable or

useful for only a small class of problems. Only those theories which are

general enough to be applied to a broad class of engineering problems are

discussed here.

2.1.1 Kirchhoff Plate Theory

The "classical" plate theory or Kirchhoff plate theory [1] uses three

midplane displacement variables. The in-plane displacements, uo and vo, are

the midplane displacements in the x and y directions respectively. The out-of-

plane displacement, w, is the displacement in the z direction, or the



displacement normal to the plane of the plate. The displacement field is as

follows:

aw aw
u = uo(x,y,t) - z - v = vo(x,y,t) - z -- , w = w(x,y,t)ax ay

Kirchhoff plate theory assumes that as a plate deforms an imaginary plane

originally normal to the midplane will remain planer and normal to the

midplane throughout the deformation, see Figure 2.1. This implies that the

transverse shear strains will be approximately zero. The negligible transverse

shear strain assumption is acceptable for "thin" plates with "moderate"

transverse shear stiffness, but becomes less accurate with increasing plate

thickness or decreasing transverse shear stiffness. A plate is classified as

"thin" if the shorter edge length to thickness ratio is greater than one

hundred. Generally, transverse shear stiffness is considered "moderate" if

the ratio of in-plane stiffness to transverse shear stiffness is around 2.5.

Kirchhoff plate theory is an integrated plate theory. Quantities are

integrated through the thickness, which simplifies the model, but usually

results in pointwise breaches of equilibrium. The integrated loadings, or

resultants, are defined as:

Nxj= c xdz; Ny= aydz; Nxy = xy dz

2 2 21 h h

Mx = jx z dz; My = jya zdz; Mxy = fTxy zdz

2 2 22 2_

Qx= x••z dz; Qy= tyz dz

2 2
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IIP
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Figure 2.1 Kirchhoff plate theory deformation. Plane sections remain plane
and normal to the midplane throughout deformation.



Px = fx dz ; Py = fy dz;
2

h
Pz = fz dz + Pz

2

where the Ni's are stress resultants, the Mi's are moment resultants, the Qi's

are transverse shear stress resultants, and px and py are body force resultants

arising from the body forces, fx and fy. The distributed transverse load, Pz, is

the sum of the applied transverse load, Pz, and the integrated loading due to a

body force, fz. Additionally, the plate may rest on a frictionless, uniform elastic

foundation with stiffness K. The Kirchhoff plate model is depicted in Figure

2.2.

The integrated stiffnesses are defined as:

Aij = Qij dz ;
2

Bij= Oij z dz ;

2

Dii= Qij Z2 dz ;

2

where the Qij's are the ply, reduced in-plane stiffnesses [2]. The integrated

inertia terms are defined as follows:

h

Ro= p dz;

2

h

R, = P z dz;
2

(i,j = 1,2,6)

h
R2 = p z2 dz

2
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Figure 2.2 Kirchhoff plate model with applied loadings.



The constitutive equations follow as:

N x

Ny

Nxy

Mx

All A12

A12 A22

A16 A26

B11 B12

B12

B16

B22

B26

The strain-displacement relations,

are:

cx = -ux ;
Kx = - W, xx ;

in accordance with the displacement field,

'y = Uy + Vx

Kxy = - 2, xy

where the comma designates differentiation with respect to the variables that

follow.

From the constitutive equations and the strain-displacement relations,

we see that the Bij terms, or coupling stiffnesses, couple the in-plane and out-

of-plane displacements. Finally, the equations of motion are [3]:

L12
L22
L23

L13 Uo -px
L23  Vo = -Py
L33 LW +Pz

where the Lij's are differential operators defined as:

B11

B12

B16

A16

A26

A66

B16

B26

B66

B12 B16

B22 B2 6

B26 B66

D12 D16

D22 D26

D26 D66

0

Kx

Sxy

y = ?- w, y;
Ily = -W, yy;



L11 = All Lxx + 2 A16 Lxy + A66 Lyy - RO Ltt

L12 = A16 Lxx + (A12 + A6 6 ) Lxy + A26 Lyy
L13 = -811 Lxxx - 3 B16 Lxxy-(B12 + 2 866) Lxyy- B26 Lyyy + R1 Lxtt

L22 = A66 Lxx + 2 A26 Lxy + A22 Lyy - Ro Ltt

L23 = -B 16 Lxxx - (B12 + 2 B66) Lxxy - 3 B26 Lxyy - 22 Lyyy + R1 Lytt

L33 = D11 Lxxxx + 4 D1 6 Lxxxy + 2 (D12 + 2 D66) Lxxyy + 4 D26 Lxyyy + D22 Lyyyy
+ K + R0 Ltt - R2 Lxxtt - R2 Lyytt

where:
a2  a3  a4

Lxx = ; Lxxy = ; Lxxtt =
aX2 Wx2ay ax2at2

and the other partial derivatives are defined similarly.

The equations of motion may be solved with sufficient initial and

boundary conditions. For example, along an x edge any combination of the

following boundary conditions may be prescribed:

UO or Nx
vo or Nxy
w or Qx+Mxy, y

W,x or Mx

These governing partial differential equations and boundary conditions

summarize the Kirchhoff plate theory. For thin plates with moderate

transverse shear stiffness these equations are a reasonable model, however, in

other cases transverse shear deformation should be accounted for.

2.1.2 Mindlin Plate Theory

For thick plates or plates with a low transverse shear stiffness, rotations

of the midplane normals must be included for accurate modeling. Shear



deformation plate theory or Mindlin plate theory [4] uses five displacement

variables. The midplane displacements are uo and vo as before, however, two

out-of-plane shear rotations, Tx and Py, are introduced. The out-of-plane

displacement, w, remains defined as in Kirchhoff plate theory. The new

displacement field is as follows:

u = uo(x,y,t) + z Yx(x,y,t); v = vo(x,y,t) + z 'y(x,y,t); w = w(x,y,t)

Mindlin plate theory assumes that as a plate deforms an imaginary plane

originally normal to the midplane will remain planer, but will rotate from the

midplane normal during deformation, see Figure 2.3. This allows non-zero

transverse shear strains. Mindlin plate theory more accurately models thick

plates or plates with low transverse shear stiffness.

Mindlin plate theory is also an integrated plate theory. The integrated

loadings, body force resultants, and distributed transverse load are all defined

as they were in Kirchhoff plate theory. Distributed surface tractions, mx and

my, may also be applied to the upper surface of the plate [5, 61. Recall that the

uniform elastic foundation is assumed frictionless, thus not causing surface

tractions on the lower side of the plate. The Mindlin plate model is depicted in

Figure 2.4.

The integrated in-plane stiffnesses are defined as in Kirchhoff plate

theory, however, additional transverse shear stiffnesses are needed.

Traditionally, the transverse shear stiffnesses have been defined as [3]:

Aij = Cij z dz ; (i,j = 4,5)
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deformed plate
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undeformed plate

Figure 2.3 Mindlin plate theory deformation. Plane sections remain plane
but rotate from the midplane normal throughout deformation.
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Mindlin plate model with applied loadings.Figure 2.4



where the Cij's are the ply transverse shear stiffnesses [2]. Recently, several

authors [7, 8] have proposed a different formulation of the transverse

stiffnesses for laminated plates. The alternative formulation is based on 3-D

elasticity and allows a weighted average, very similar to springs in series, of

the individual transverse shear stiffnesses. The alternative transverse shear

stiffnesses are defined as follows:

A44 A45  h S44 S45

A45 A55  S45 S55
h

Sij = - Sij dz

where the Sij's are the ply compliances [2], and h is the plate thickness. For a

plate laminated from layers of the same material the difference in transverse

shear stiffness between the two methods is small. If, however, the plate is

laminated from materials with significantly different ply transverse shear

stiffnesses, the resulting laminate transverse stiffnesses will be very different.

Having defined all the plate stiffnesses, the constitutive equations may

be expressed as follows [9]:



N x

Ny

Nxy

Mx

My

Mxy

Oy A44 A45 yz
Ox A45 A55  Yxz

The transverse shear stiffnesses have been multiplied by a shear correction

factor, K, following Mindlin [4] and others [3,5,91. This is to account for the

inaccuracies inherent in assuming the shear stress is constant through the

thickness, while the boundary conditions guarantee the shear stress goes to

zero at the plate surfaces. Care should be taken to differentiate between the

shear correction factor which has no subscripts and the curvatures which

have subscripts. The strain-displacement relations are found from the

displacement field. The in-plane strains remain as defined for Kirchhoff plate

theory, however, the curvatures and transverse shear strains are now defined

as follows:

Kx = 'x,x ; Ky = y, ; Kx y = Yx, y + Py, x

Yyz = W,y + 'y; Yxz = W,x + 'x

Finally, the equations of motion are as follows [5]:

All A12 A16 B11 B12 B16

A12 A22 A26 B12 B22 B26

A16 A26 A66 B16 B26 B66

B11 B12 B16 D11 D12 D16

B12 B22 B2 6 D12 D2 2 D2 6

B16 B26 B6 6 D16 D26 D6 6

Ox

Kx

Kx y
KX y



Ll, L12 L13 L14 L15

L12 L22 L23 L24 L25

L13 L23 L33 L34 L3 5

L14 L24 L34 L44 L45

L15 L25 L35 L4 5 L55

UO

VO

W
wX

IvY

-Px

-PY

-Pz

+mx

+my

where the Lij's are differential operators defined as:

Ll1 = All Lxx + 2 A16 Lxy + A66 Lyy - R Ltt

L12 = A16 Lxx + (A12 + A66) Lxy + A26 Lyy

L13 = 0
L14 = B11 Lxx + 2 B16 Lxy + B66 Lyy - R Ltt

L15 = B16 Lxx + (B12 + B66) Lxy + B26 Lyy
L22 = A66 Lxx + 2 A26 Lxy + A22 Lyy - RO Ltt

L23 = 0
L24 = B16 Lxx +(B12 + B66) Lxy + B26 Lyy
L2 5 = B66 Lxx + 2 B26 Lxy + B22 Lyy - R Ltt

L33 = K A55 Lxx + 2 K A45 Lxy + K A44 Lyy - K - RO Ltt

L34 = K A55 Lx + KA45 Ly
L35 = K A45 Lx + xc A44 Ly
L44 

= x A55 - Dl Lxx - 2 D16 Lxy - D66 Lyy + R2 Ltt
L4 5 = K A45 - D16 Lxx -(D1 2 + D66) Lxy - D26 Lyy
L55 = K A44 - D66 Lxx - 2 D26 Lxy- D22 Lyy + R2 Ltt

Again the equations of motion may be solved with sufficient initial and

boundary conditions. Instead of four boundary conditions per edge, however,

there are now five. For example, along an x edge any combination of the

following boundary conditions may be prescribed:



uo or Nx
vO or Nxy
w or Qx
Tx or Mx
Sy or Mxy

These governing partial differential equations and boundary conditions

summarize the Mindlin plate theory. The Mindlin plate theory is useful in

characterizing thick plates or plates with low transverse shear stiffness.

J. N. Reddy [10] has formulated a higher order shear deformation theory

based on the same five displacement variables as Mindlin plate theory, but

with a higher order displacement field for u and v. This theory is aesthetically

pleasing because it allows the transverse shear stress distribution to be

parabolic through the thickness, however, it effectively doubles the complexity

of the plate bending problem. While Reddy's theory represents an

improvement over Mindlin plate theory, this improvement is most significant

for plates with a length to thickness ratio less than ten. For plates with a

length to thickness ratio greater than ten, i.e. most engineering problems, the

improvement is negligible and for that reason Reddy's theory will not be

discussed further here.

2.1.3 Symmetric Operator Reduction Method

V. Z. Vlasov observed that a series of partial differential equations

describing the equilibrium of elastic solids will always have a symmetric

matrix of differential operators. The symmetry is in accordance with Betti's

reciprocal theorem and is insured as long as any elimination of higher order

terms is done consistently [11].



Simply put, Betti's reciprocal theorem states that the flexibility influence

coefficients for a linearly elastic solid will be symmetric [12]. If a unit

generalized force at point 1 causes a generalized displacement at point 2 of wo,

then a unit generalized force at point 2 will cause a generalized displacement

at point 1, also of wo. The symmetry of the flexibility influence coefficients is

directly related to the symmetry of the differential operator matrix.

For a symmetric operator matrix with constant coefficients, Vlasov

found that the system of partial differential equations may be reduced to a

single partial differential equation in terms of a potential function, whose

order of differentiation is identical to that of the original system. Vlasov

derived the eighth order partial differential equation governing the deflection

of isotropic shells neglecting transverse shear deformation.

Vlasov's work with isotropic shells was later extended to orthotropic

shells by S. A. Ambartsumyan [13]. While the expressions become more

cumbersome with the added material complexity, the reduction method

remains unchanged. Again Ambartsumyan's reduction used a Kirchhoff type

shell theory, neglecting transverse shear. While much of Ambartsumyan's

work dealt with anisotropic shells, he never applied the reduction method to

the fully anisotropic case. This was done by Graves [14] in his Ph.D. thesis.

The symmetric operator reduction method is neither a plate theory nor a

solution technique. Given a set of partial differential equations resulting from

any plate theory that obeys Betti's reciprocal theorem, the reduction method

allows the system of equations to be recast as a single equation in terms of a

potential function. It is hoped that such recasting will promote unique and

useful solutions.



2.2 Solution Techniaues

Once the equilibrium equations have been found for a particular plate

theory, it remains to find a solution for specific boundary conditions and initial

conditions. Applicability of solution techniques seems to be more dependent

upon the particular boundary conditions of a problem than on the underlying

plate theory used to formulate the problem.

2.2.1 Navier Solutions

Navier solutions expand the displacement functions as double Fourier

sine and/or cosine series which are selected to explicitly satisfy all the

boundary conditions. The solution utilizes the orthogonality of Fourier series

by finding the Fourier expansion of the applied loading and then solving for the

unknown coefficients through harmonic balance. Completeness of the

solution is assured due to the completeness of the Fourier series themselves.

Navier solutions are very numerically efficient but are applicable to a limited

number of problems.

Navier solutions are possible for plates with all four sides simply

supported, but are restricted to plates with no bending-stretching and no

bending-twisting coupling. Without bending-stretching coupling the in-plane

and out-of-plane problems are uncoupled. For a Kirchhoff plate bending

problem this leaves one partial differential equation to be solved subject to two

boundary conditions per edge; for a Mindlin plate bending problem this leaves

a system of three partial differential equations to be solved subject to three

boundary conditions per edge.

For a rectangular Kirchhoff plate of dimensions a by b, simply

supported at x = 0, a and y = 0, b, the Navier solution assumes the transverse



deflection, w, as an infinite double sine series, which satisfies all the boundary

conditions explicitly:

w(O,y) = w(a,y) = w(x,O) = w(x,b) = 0

Mx(O,y) = Mx(a,y) = My(x,O) = My(x,b) = 0

When the distributed transverse loading, pz, is also expanded in an infinite

double sine series, the solution may be found directly through harmonic

balance [15]. For a plate without bending-stretching and bending-twisting

couplings:

00 00

w(x,y) = 1 amn sin m t x sin n
a b

m.1 nl.1

where:

amn Pmn
Dll1  + 2 (D12 + 2 D66)( ) + D22 (-)

4 f x nmyx dxdy
Pmn =  Pz sin sin dx dy

The natural frequencies of vibration may be found by assuming a

displacement that is periodic in time:

w(x,y,t) = w(x,y) ei ot

Substitution into the governing differential equation then yields the squares of

the natural frequencies as follows:



20mn =

D 1 i + 2 (D12 + 2 D66) (( fl2L) 2 + D22(n) 4

Navier plate bending solutions that include bending-twisting coupling

are not possible because these terms multiply odd order differential operators

which introduce cosine terms that do not satisfy the homogeneous

displacement and moment boundary conditions.

For a rectangular Mindlin plate of dimensions a by b, simply supported

at x = 0, a and y = 0, b, the Navier solution assumes the following three infinite

trigonometric series [5]:

w(x,y)= amn
mr1 n-l

'Yx(X,y) =
m-1

'y(x,y) = 1
m-l

00

Y bmn
n-1

I Cmn
n-l

sin M RXsin
a b

micx nfycos sin
a b

mitx nftysin M cosa b

which satisfy all the boundary conditions:

w(O,y) = w(a,y)

Mx(O,y) = Mx(a,y)

'ly(O,y) = 'y(a,y)

= w(x,0) = w(x,b) =

= My(x,O) = My(x,b)

= &x(x,O) = lx(x,b)

When the distributed transverse loading, pz, is again expanded in an

infinite double sine series, the solution may be found through harmonic

0

=0

=0



balance and matrix manipulations. For a plate without bending-stretching

and bending-twisting couplings:

amn

bmn

Cmn

Pmn (1255- 144 155)

Pmn (134 155 - 135 145)

- Pmn (135 144 - 134 145)
A

where the lij's are constants, arising from the differential operators, defined

as:

133 = -K A55 2  - K A44(

134 = -K A55 )

135 = -K A4 4(nL

144 = i A55 + Di S2 + D66 2

45 = (D12+ D66)i(

155 = K A44 + D66( )

133
134
135

+ D22

134 135
144 145
145 155

Again, natural frequencies of vibration may be found by assuming the

displacement and rotations are periodic in time:

=



w(x,y,t) = w(x,y) eiOt

Vx(x,y,t) = Vx(x,y) ei t

Vy(x,y,t) = fy(X,y) eiot

Substitution into the governing differential equations yields the following

eigenvalue problem:

2
133 - Omn RO 134 135

134 144 - Omn R2 145

135 145 155 - (mn R2

W mn 0\Vxmn =0

'Ymn 0

which must be solved for the natural frequencies of vibration.

If the rotary inertia term, R2 , is small compared to the displacement

inertia term, RO, the rotary inertia can be ignored with little loss of accuracy.

This approximation greatly simplifies the problem of determining the natural

frequencies of vibration. When the rotary inertia is set to zero, the natural

frequencies may be found as follows:

2 133(144155- 5) + 2 134135145 - 144 125 - 155 24
omn =

RO (144 155- 15)

Again Navier solutions that include bending-twisting coupling are not

possible because these terms multiply differential operators which introduce

cosine terms that do not satisfy the homogeneous boundary conditions.



2.2.2 Constrained Lagrange Multiplier Solution

While the double sine series solves the four sides simply supported

problem, there is no analogous trigonometric series to solve the four sides

clamped problem. The general four sides clamped problem has traditionally

been solved approximately using polynomials [1] or hyperbolic and

trigonometric functions using the Rayleigh-Ritz technique [16].

Chen and Ramkumar [17, 18] recently solved the four sides clamped

problem for a Mindlin plate with the trigonometric series used in the simply

supported problem. Because these functions do not satisfy all the boundary

conditions for the clamped problem, the Lagrange multiplier method was used

to append the unsatisfied boundary conditions as constraints to the energy

statement. This solution is only valid for Mindlin plates without bending-

stretching and bending-twisting couplings, as was the Navier solution for four

sides simply supported.

For a Mindlin plate with four sides clamped, the boundary conditions

are:

w(O,y) = w(a,y) = w(x,O) = w(x,b) = 0

Sx(O,y) = Yx(a,y) = 'y(x,O) = Ty(x,b) = 0

Sy(O,y) = Wy(a,y) = 'x(x,O) = 'x(x,b) = 0

where the Navier trigonometric series do not satisfy the four conditions in the

second line above. The Lagrange multipliers cause coupling between the

harmonics, prohibiting symbolic solutions as have been given in the Navier

cases.



2.2.3 Ravleigh-Ritz Method

Rayleigh-Ritz solutions minimize the energy of a system for a given set

of trial functions. Because these trial functions need only satisfy the essential,

or geometric, boundary conditions, and not the nonessential, or stress,

boundary conditions, trial functions are relatively easy to find. In fact, with

the Rayleigh-Ritz method all couplings can be accounted for. A Rayleigh-Ritz

solution is only approximate, however, and the quality of the solution is

dependent upon the insight used in selecting the trial functions.

Since virtually every text on solid mechanics discusses the Rayleigh-Ritz

technique, it will not be described here in detail. Whitney [16] discusses the

Rayleigh-Ritz method, and applies it to orthotropic plates with various

boundary conditions. He uses products of the one dimensional beam functions

to create two dimensional plate trial functions. Slightly different beam

functions, with a simpler form, were proposed by Dugundji [19]. For a beam

along the x axis with length a, the function is described by the general

equation:

fn(x) = Y sin On 1C+ + A e-n 1+ Bn e-Pn (1

where the mode shape parameters are defined according to the boundary

conditions and are given in Table 2.1.



Table 2.1 Dugundji Beam Mode Shape Parameters

B.C.'s On 0 A Bn
SS-SS nc 0 0 0
CL-FR (n-1/2)-/4 1 (-1)n+1l

CL-CL (n+1/2)n -x/4 1 (-1)n+l
FR-FR (n+1/2)n +3x/4 1 (-1)n+l
SS-CL (n+1/4)n 0 0 (-1)n+l

SS-FR (n+1/4)i 0 0 (-1) n

SS = simply supported; CL = clamped; FR = free

Such trial functions are suitable for the transverse deflection, w(x,y),

however, care should be taken in selecting the trial functions for the shear

rotations. Inappropriate choice of shear rotation trial functions can result in

"shear locking" in thin plates, where the shear stiffness is greatly over

estimated. As a plate becomes thin, the Mindlin theory must be able to

approach the Kirchhoff theory, i.e. the transverse shear strains should

approach zero. In order.to avoid "shear locking", Minguet [20] suggests the

following set of trial functions where fm(x) and gn(y) are the appropriate set of

beam functions for the specified boundary conditions:

w(x,y) = I X amn fm(x) gn(Y)
m.1 n.1

'Yx(x,y) = Y , bmn fm, x(x) gn(Y)
m-l nl-

'y(x,y) = 2 2 Cmn fm(x) gn, y(Y)
m-l n-l

where once again the commas designate differentiation with respect to the



variable that follows. This choice of functions allows the transverse shear

strains to go to zero, if the problem so dictates, thus avoiding "shear locking"

problems.



Chapter 3

Experimental Procedure

This chapter describes all of the manufacturing and testing procedures

used in this investigation. A description of the jig is provided, followed by

discussions of nomenclature, specimen selection, and specimen manufacture.

The different experiments are discussed individually in terms of

instrumentation and experimental procedure. The test matrix for the

investigation is given.

3.1 Test Jig Description

A test jig was designed and manufactured for this investigation. The jig

allows a variety of boundary conditions and loading scenarios. It may be

mounted in the MTS machine or used independently.

The test jig is made of steel and is composed of ten main pieces: two

rectangular frames which clamp the laminate, four rails which allow

positioning, and four legs. These parts are held together by numerous bolts

and nuts. The details of the jig dimensions are shown in Figure 3.1. The jig

was designed to support a maximum tensile load of fifty thousand pounds.

Three types of boundary conditions are available: clamped, simply

supported, and free. Both the clamped and simply supported conditions

require screwing the appropriate pairs of steel bars to the edges of the jig

frames. The bars, shown in Figure 3.2, were designed to enforce the

appropriate boundary conditions as well as possible, while remaining

interchangeable. The free boundary condition is created by the absence of a

metal bar. The test plates must be trimmed to different sizes to accommodate

the boundary conditions, however, all test sections are 254 mm x 204 mm

regardless of the boundary conditions used. The extra plate length required
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per edge for each boundary condition is given in Table 3.1; a summary of plate

dimensions used in this investigation is given in Figure 3.3. The jig allows all

possible combinations of boundary conditions, except for all four sides free.

Table 3.1 Extra Plate Length per Edge Required for Boundary Conditions

Boundary Condition Extra Length (mm)

Clamped 25
Simply Supported 6

Free 0

The test jig may be mounted in the MTS machine by screwing its four

legs into the base table of the MTS, around the lower grip as shown in Figure

3.4. The two halves of the main jig frame lie upon two sets of rails which run

parallel to the edges of the frame. A series of holes, in each set of rails, allows

the structure to be bolted in several positions; allowing loading, through the

MTS lower grip, to be applied at any one of several locations on the plate. The

grid of available loading center locations is shown in Figure 3.5.

3.2 Nomenclature

Fibrous composite material systems are referenced by a fiber/matrix

designation. Thus AS4/3501-6 specifies an AS4 (carbon) fiber in a 3501-6

(epoxy) matrix. In addition to varying material systems, fibrous composites

also come in different forms: unidirectional tape and bidirectional fabric of

different weaves. Laminates are designated by the angular orientation, in

degrees, of each ply with respect to the longitudinal axis. Plies are listed from

top to bottom and the angular orientation of each ply is measured

counterclockwise from the longitudinal axis of the laminate. Each angle
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specifies one ply of tape, unless subscripted with an "f' to indicate one ply of

fabric, and plies are separated by a "7' symbol. Thus [0/90] specifies two layers

of tape, while [0f/90f] specifies two layers of fabric; in both cases the first ply is

oriented at 00 to the longitudinal axis while the second ply is oriented at 900. In

fabric, 00 is defined as the warp direction as illustrated in Figure 3.6.

Additionally, subscripted numbers indicate multiple adjacent plies of

the same orientation, a subscripted "S" indicates a layup is symmetric with

respect to the laminate's midline, and a subscripted "A" indicates a layup is

antisymmetric with respect to the laminate's midline. In both the symmetric

and antisymmetric cases, only the upper half of the laminate is listed. An

antisymmetric laminate has a minus theta ply in the lower half of the

laminate corresponding to every theta ply in the upper half. For example,

[30/- 6 0]S is equivalent to [30/-60/-60/30] while [3 0/- 60]A is equivalent to

[30/-60/60/-30]. When a symmetric layup has an odd number of plies a "\"

follows the middle ply orientation; [0/ 9 0\]S indicates the three ply laminate,

[0/90/0].

3.3 Specimen Selection

Four different specimen layups were selected for this investigation.

Each layup was designed to exhibit different types of couplings between

extension, bending, twisting, and shearing. The layups were designated A, B,

C, and D for simplicity. Table 3.2 shows the laminate layups and the inherent

couplings these layups exhibit.
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Table 3.2 Laminate Designations and Inherent Couplings

Designation Layup Couplings
A [454/03/ 454/(03)\]S strong bending-twisting
B [(02/± 4 5 )2/9 02/0]S weak bending-twisting
C [(±4 5f)2/( 4 5f/-4 5f/4 5f)\]S none
D [-153/756/-1 5 3]A bending-shearing

No specimens were selected that exhibit bending-extension coupling due

to the difficulty of manufacturing such specimens. Because such specimens

are very susceptible to thermal warping due to their lack of symmetry, they

must be manufactured through room temperature bonding of autoclaved

sublaminates.

Three aluminum plates were used as controls throughout the

experimental investigation. The aluminum plates had approximately the

same bending stiffness as the composite specimens in the x direction. The

aluminum plates were designated by an "I", for isotropic.

3.4 Composite Specimen Manufacture

Twelve composite plate specimens were manufactured for this

investigation, three plates of each of the four layups. The C specimens were

made of A370-5H/3501-6 Graphite/Epoxy fabric; 5H attached to the fiber

designation indicates a five harness satin weave. The other three specimen

types, A, B, & D, were made of AS4/3501-6 Graphite/Epoxy tape. Both prepregs

were manufactured by Hercules Corporation and were stored at -180 C prior to

use to retard the curing process.

The composite plate specimens were manufactured according to TELAC

manufacturing specifications [21]. Vinyl gloves were worn whenever uncured



graphite/epoxy was handled, and care was taken to avoid contaminating the

prepreg. The prepreg was cut with sharp razor blades and templates to insure

accurate angle reproduction. The plies were laid up on a layup table which

has a raised aluminum right angle to insure accurate ply alignment. The

laminate corner that was included by the two aluminum edges was designated

the "good" corner. The laminates were stored in sealed vacuum bagging prior

to curing.

An intricate setup procedure insured proper laminate consolidation and

minimal cleanup effort. An aluminum cure plate was sprayed with mold

release and then covered with a sheet of guaranteed nonporous teflon (GNPT).

Aluminum "T" dams, also sprayed with mold release, were used to abut two

sides of each laminate, while cork dams were placed along the other two

edges. An individual oversized sheet of GNPT was placed beneath each

laminate and brought up between the laminate and its dams. A sheet of

porous teflon was placed on top of each laminate followed by the appropriate

number of bleeder sheets. One sheet of bleeder was used for every two plies of

prepreg. The bleeder was covered by another sheet of GNPT, followed by an

aluminum top plate and a final sheet of GNPT. The cure plate was covered by

porous teflon and fiberglass air breather. Vacuum tape and bagging were

used to seal off the entire cure plate. The cure plate setup is illustrated in

Figure 3.7.

The laminates were cured in an autoclave; the entire cure cycle lasted

slightly over five hours. A vacuum of 0.10 MPa was drawn on the cure plate

and the autoclave pressure was raised to 0.59 MPa. The temperature was

raised to 1210 C and held for one hour to allow the resin to flow. The
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temperature was then raised to 1770C and held for two hours, to allow the

resin's polymer chains to crosslink, before being returned to room

temperature. All heating and cooling rates were limited to approximately 30C

per minute. The cure cycle is depicted in Figure 3.8. After being removed

from the cure plate assembly, the laminates were post cured for eight hours at

1770C to allow additional crosslinking to occur.

The laminates were milled to the proper size using an automatic feed

milling machine that is equipped with a diamond wheel cutter which is

cleaned and cooled by a water stream. The laminates were aligned with a

carpenter's square and clamped to the table to insure straight cuts. The first

cut in each laminate was positioned from one of the edges including the "good"

corner. The same cutting procedure was followed for all subsequent laminate

trimmings.

Laminate thickness was measured at nine points on each specimen.

Figure 3.9 shows the locations of these measurement points; the

measurements appear in Appendix A. A weighted average of these

measurements was used as the laminate thickness for calculating each

specimen's bending stiffness. These average thicknesses appear in Table 3.3,

along with the thicknesses of the aluminum plates.
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Table 3.3 Test Specimen Average Thicknesses

Specimen Thickness (mm)
A-1 3.18
A-2 3.20
A-3 3.28
B-1 2.83
B-2 2.84
B-3 2.83
C-1 3.55
C-2 3.55
C-3 3.52
D-1 3.07
D-2 3.02
D-3 3.06
I-1 3.16
1-2 3.16
1-3 3.24

3.5 Point Load Experimentation

A 12.7 mm diameter, hemispherically ended steel tup was used to

simulate a point load. The tup had been previously used in TELAC for impact

and static indentation tests. Tests were conducted with the tup at the plate

center, (x,y) = (127 mm,102 mm), and off-center, (x,y) = (76 mm,127 mm), as

shown in Figure 3.10.

3.5.1 Point Load Test Instrumentation

The point load tests were conducted with the jig mounted in the MTS

machine. The tup was mounted to a PCB Piezotronics model 208A05 force

transducer, in turn mounted to a 60.3 mm diameter steel rod which was

clamped in the lower grips of the MTS. The loading device assembly is shown
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in Figure 3.11. The force transducer signal was conditioned with a PCB

Piezotronics model 484B signal conditioner; the output was fed to an A/D

board.

Trans-Tek model 353-000 displacement transducers were used to

measure the plate displacements at five points. The displacement transducer

cases were mounted to the upper half of the test jig with a two tier transducer

jig, to prevent transducer slippage or rotation. The five transducer locations

were picked to provide global insight into the plate deflection shape and are

illustrated in Figure 3.12. The displacement transducers had internal signal

conditioning and were powered with a ±15 Volt, 200 mA, DC power supply.

The transducer signals were fed to an A/D board.

The first three series of tests, those involving only combinations of

clamped and simply supported edges, used the MTS's proprietary A/D board

for which no information is available. In these tests, the five transducer

channels were recorded along with the force transducer and the MTS stroke.

The tests involving free edges were conducted after the laboratory had

upgraded to a Macintosh based data acquisition system. The system uses a

MacAdios board [22] driven with LabVIEW software [23]. The tests were

conducted with both the 30 Hz low pass differential mode filter and the 160 Hz

low pass common mode filter activated, to minimize the electromagnetic noise

that was prevalent in the room. Only five channels of data could be filtered, so

transducer number five was not recorded. This allowed the force transducer

channel to be filtered and recorded along with transducers number one

through four. The MTS stroke was recorded unfiltered.
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3.5.2 Point Load Test Procedure

The plates were positioned in the jig with the "good" corner at

(x,y) = (0 mm,204 mm). The tup was brought into minimal contact with the

plate prior to each test. The MTS was operated in stroke control, at several

thousandths of a cm per second, to the specified displacement. Displacements

were kept small to avoid damaging any plates, but were large enough to

measure the initial load-displacement slope. Tests lasted between 40 and 100

seconds, during which time seven (or six) channels of data were recorded.

MTS stroke, force transducer load, and displacements from the five (or four)

transducers were recorded at rates varying between one and two hertz, for

each test. The different sampling rates were used to obtain significant

amounts of data, while minimizing the number of repetitive readings caused

by working at the lower end of the equipment's capacity.

3.6 Uniform Rectangular Pressure Patch Experimentation

A device to apply a 51 mm by 63.5 mm rectangular patch of uniform

pressure was designed and manufactured for these experiments. The device

was a small box with five steel sides and a sixth made of aluminum

honeycomb. Over four hundred blunted nails were positioned in the cells of the

honeycomb, and rested on a water filled rubber bladder which was contained

within the box, see Figure 3.13. The purpose of the sealed bladder was to

ensure a uniform loading through each nail, regardless of their

displacements relative to one another. The uniform rectangular pressure

patch, URPP, was designed to maintain uniform pressure in spite of the plates

complicated two dimensional curvatures. Tests were conducted with the

URPP device at the plate center, (x,y) = (127 mm,102 mm), and off-center,

(x,y) = (76 mm,127 mm), as was done with the point load tests.
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3.6.1 Uniform Rectaneular Pressure Patch Test Instrumentation

The URPP device mounted on top of the force transducer in place of the

tup as shown in Figure 3.14. The URPP tests were also conducted in the MTS

machine and used the same instrumentation as for the point load tests.

3.6.2 Uniform Rectangular Pressure Patch Test Procedure

The plates were positioned in the jig with the "good" corner at

(x,y) = (0 mm,204 mm). The URPP device was raised until a couple of pounds

of load was registered by the force transducer prior to each test. This slight

preloading was done to eliminate "dead" time at the beginning of each test,

during which time the air and water in the bladder begins to compress but

minimal load is transferred to the plate. The MTS was operated in stroke

control, at a few thousandths of an inch per second. Unlike the point load tests

which were run to a specified stroke, the URPP tests were run to a specified

load. Stroke control was stopped manually when the plate reached the same

applied load it had been subjected to in the respective point load test. This was

done due to the compressibility of the URPP device and the uncertainties thus

introduced. Again, tests lasted between 40 and 100 seconds, during which

time the seven (or six) channels of data were recorded at rates varying between

one and two hertz. Again, different sampling rates were used to obtain

significant amounts of data, while minimizing the number of repetitive

readings caused by working at the lower end of the equipment's capacity.

3.7 Uniform Pressure Experimentation

A uniform pressure loading was created by drawing a vacuum on one

side of the test plates. A 9.52 mm thick aluminum plate was sealed to the

bottom half of the jig with vacuum tape and attached with the four, 15.9 mm
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corner bolts to create a vacuum chamber. The aluminum plate was plumbed

with a vacuum line and a vacuum gage as shown in Figure 3.15.

3.7.1 Uniform Pressure Test Instrumentation

The uniform pressure tests were conducted with the test jig lying on a

laboratory table. A Cenco-Megavac vacuum pump was plumbed to the

aluminum sealing plate through a needle valve to allow ample control of the

vacuum draw rate. A second needle valve served as a vacuum release, see

Figure 3.15. A 101.6 kPa WIKA vacuum gage with 1.7 kPa intervals was used

to monitor the vacuum. The five displacement transducers were again used to

measure the plate displacement. A PDP 11-23 based data acquisition system

was used to record the transducer data.

3.7.2 Uniform Pressure Test Procedure

The plates were positioned in the jig with the "good" corner at

(x,y) = (0 mm,0 mm). The uniform pressure tests were conducted upside-down

with respect to the other tests so that all plate deflections would be "up" with

respect to the plate layups. Vacuum tape was placed around the perimeter of

the boundary conditions to seal the test specimen and boundary conditions to

the lower half of the jig. Care was taken to not allow vacuum tape between the

test specimen and the boundary conditions, to prevent "softening" of the

boundary conditions. The plates were loaded at approximately 34 kPa per

minute, while transducer readings were taken at increments of 1.7 kPa. None

of the plates were loaded beyond 101.6 kPa, and many of the seals failed

between 67.7 and 101.6 kPa.
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Figure 3.15 Vacuum assembly for uniform pressure tests.



3.8 Forced Vibration Experimentation

Approximate natural frequencies and mode shapes were

experimentally obtained for the test specimens by transversely shaking them

with a mechanical shaker through a soft spring. Plate response was

monitored with an accelerometer mounted near an edge of the plate.

3.8.1 Forced Vibration Test Instrumentation

The plates were shaken with a Ling model 420-1 mechanical shaker.

Contact with the plate was made through a soft spring, see Figure 3.16. The

shaker was powered by a ALTEC shaker amplifier, which was in turn driven

by a Wave Tek 2 MHz function generator. A Fluke 1952B counter-timer was

used to more accurately measure the function generator's frequency. An

Enderco, model 7701-50 accelerometer along with an Tek Tronic 465

Oscilloscope were used to monitor the test specimen's response. Photographs

of the plate's mode shapes, accentuated with salt crystals, were taken on ASA-

400 black and white film with a Nikon FM2, 35 mm camera, and a Micro-

Nikkor 105 mm 1:4 lens.

3.8.2 Forced Vibration Test Procedure

The plates were positioned in the jig with the "good" corner at

(x,y) = (0 mm,204 mm). The accelerometer was mounted to the test specimen

with double stick tape, and the plates were lightly sprinkled with salt to

accentuate movement. Frequency sweeps were conducted with the shaker in

various positions under the plate to aid in forcing all obtainable modes. Shaker

amplitude was increased to help identify and sketch mode shapes, however, all

frequency measurements were taken at the lowest possible amplitude to

minimize nonlinear effects.
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Figure 3.16 Soft spring connection between mechanical shaker and specimen.



3.9 TestMatrix
Five different combinations of boundary conditions were investigated.

The combinations were composed of clamped, simply supported, and free

edges, however, for all five combinations the pair of x edges and the pair of y

edges were each subjected to the same constraint. Table 3.4 shows the test

matrix for this investigation. The boundary conditions are listed as x edge

condition - y edge condition. The Point Load and URPP tests were conducted

at the plate center (C) and off-center (O-C) as described above. The number of

specimens tested at each condition is listed.



Table 3.4 Test Matrix

Point Load URPP Uniform Forced
B. C.'s Spec. C O-C C O-C Pressure Vibration
CL-CL

SS-CL

SS-SS

CL-FR

SS-FR

* Entries indicate number of specimens tested for each condition.
C = centered; O-C = off-center
CL = clamped; SS = simply supported; FR = free;



Chapter 4

Analysis

This chapter describes all of the analysis methods used in this

investigation. New material is presented in detail, while previous techniques

are merely summarized. Copies of all major code used in this investigation

appear in Appendices B, D, and E.

4.1 Specimen Mechanical Properties

Two different graphite/epoxy material systems were used in this

investigation in addition to the aluminum specimens used as controls. The

nominal cured ply properties for these three material systems are given in

Table 4.1.

Table 4.1 Nominal Cured Ply Properties

Property AS4/3501-6 AW370-5H/3501-6 Aluminum
E1 (GPa) 142.0 72.5 69.0
E2 (GPa) 9.81 72.6 69.0
V12 0.30 0.059 0.30
G12 (GPa) 6.00 4.43 26.6
G23 (GPa) 3.77 27.2 26.6
G31 (GPa) 6.00 27.2 26.6
p (kg/m 3) 1570 1560 2700
tDIV (mm) .134 .343

Analytical results are normally based on nominal ply thickness. Due to

multiple adjacent layers of the same ply angle, however, most of the

experimental specimens were thinner than nominal thickness. Since bending



stiffness is related to thickness cubed while modulus is a linear function of

matrix volume ratio, the nominal ply properties listed above were used with

the average measured thickness for each specimen group. Hopefully this

leads to better estimates of the laminate bending stiffnesses.

The laminate stiffnesses were calculated from the appropriate formulas

given in Chapter 2. In-plane specimen stiffnesses are given in Table 4.2. The

code used to generate these values appears in Appendix B.

Table 4.2 In-plane Laminate Stiffnesses

Specimens
Stiffness A B C D I
All (106 N/m) 260 237 152 209 240
A22 (106 N/m) 106 134 152 209 240
A12 (106 N/m) 72.9 40.1 121 32.4 71.9
A66 (106 N/m) 82.7 48.7 121 41.7 83.9
A16 (106 N/m) 68.6 0.0 0.0 0.0 0.0
A26 (106 N/m) 68.6 0.0 0.0 0.0 0.0
Bll (103 N) 0.0 0.0 0.0 0.0 0.0
B22 (103 N) 0.0 0.0 0.0 0.0 0.0
B12 (103 N) 0.0 0.0 0.0 0.0 0.0
B66 (103 N) 0.0 0.0 0.0 0.0 0.0
B16 (103 N) 0.0 0.0 0.0 -30.9 0.0
B26 (103 N) 0.0 0.0 0.0 30.9 0.0
D11 (N-m) 190 200 159 188 199
D22 (N-m) 105 48.5 159 137 199
D12 (N-m) 74.3 26.9 126 25.1 59.8
D66 (N-m) 82.8 32.7 127 32.3 69.8
D16 (N-m) 71.5 3.43 0.0 0.0 0.0
D26 (N-m) 71.5 3.43 0.0 0.0 0.0

Transverse shear stiffnesses were calculated using both methods described in



Chapter 2, and are listed in Table 4.3. The 3-D moduli values for transverse

shear stiffness were used in all of the analysis; the "classical" values are listed

only for reference. For these specimens the two methods yield similar

estimates for the transverse stiffness, because each laminate is made of only

one material.

Table 4.3 Transverse Laminate Stiffnesses

Specimen Method A55 (106 N/m) A44 (106 N/m) A45 (106 N/m)
A 3-D 14.5 17.0 2.30
A classical 14.1 16.6 2.24
B 3-D 13.0 14.7 0.00
B classical 12.4 14.0 0.00
C 3-D 96.3 96.3 0.00
C classical 96.3 96.3 0.00
D 3-D 14.9 14.9 0.00
D classical 14.1 14.1 0.00
I 3-D 83.9 83.9 0.00
I classical 83.9 83.9 0.00

The shear correction factor for all of the analyses has been taken as:

2
12

following Dobyns [5] and Whitney [9].



4.2 Reduction of Tenth Order Mindlin Plate Theory

The full tenth order Mindlin Plate theory discussed in Chapter 2 can be

recast into a single tenth order partial differential equation using the

reduction technique of Vlasov [11] and Ambartsumyan [13]. For an anisotropic

plate this equation is very complicated, however, if the plate is symmetric

about its midplane significant simplifications occur. For a midplane

symmetric anisotropic plate, the following terms are zero:

Ei = 0 ; R1 =0

The following differential operators defined in Chapter 2 are then zero:

L13 = 0 ; L14 = 0 ; L15 = 0

L23 = 0 ; L24 = 0 ; L25 = 0

thus uncoupling the stretching and bending parts of the problem. The

stretching problem involves midplane displacements, uo and vO, while the

bending problem involves transverse displacement, w, and shear rotations, Yx,

and Py. The stretching problem alone is a fourth order system, while the

bending problem alone is a sixth order system.

The midplane symmetric anisotropic plate bending problem can now be

represented as follows:

L33 L34 L35  w -Pz
L34 L44 L4 5  'x i +mx

L35 L45 L55 Ty +my



where the differential operators are as defined in Chapter 2. This sixth order

system will now be reduced to a single sixth order partial differential equation

using the symmetric operator reduction method.

If the plate is only subjected to a transverse loading, pz, the new equation

can be written symbolically as:

L6 < = -Pz

where L6 is a sixth order differential operator, and Q is the new potential

function. The differential operator is defined as the determinant of the

symmetric operator coefficient matrix:

L33 L34 L35

L6 = L34 L4 4 L45

L35 L45 L55

For the case of transverse loading, the displacement and shear rotations can

be expressed as follows:

w=(L44 L55 - L)

Yx = (L35 L45 - L34 L55) 0

T = (L3 4 L45- L35 L4 4 )

If surface tractions are also applied, additional solutions for 0 must be

properly accounted for [11].

The sixth order partial differential equation for 4 may be expressed as:
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where the Pi's are constant coefficients and are defined in Appendix C.

For the case of midplane symmetric plates without bending-twisting

coupling the equation simplifies further to:
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Pi = KA55 D 1 D66

P3 = KA44 D11 D66 + KA55(D11 D22 D - 2 - 12 D66)

P5 = KA44 (D11 D2 2 - D22 - 2 D12 D66)+ KA55 D22 D6 6

P7 
= KA44 D22 D66

P 8 = - Ro R2

P9 = KcA55 
R2 + R R2 (D011 + D66)

P11 = A44 R2 + R0 R2 (D22 + D66 )

P12 = - KA55 R2 (D11 + D66)- Ro D01 D6 6

P14 = -KA44 R2 (D1 1 + D66)- KA55 R2 (D22 + D66)+

RO(D2 - D11 D22 + 2 D12 D66)

P 16 = - KA44 R2 (D2 2 + D66)- RO 0D22 D66

P17 = - Dll K2 A44 A55 - K 011 D66

P 19 = - 2 D12 K2 A44 A55 - 4 D66 Kc2 A44 A55 +

K(D 2 - Di D22 + 2 D12 D66)

P2 1 = - D22 K2 A44 A55 - K 022 D66

P22 = - Ro R2 K (A44 + A55)- K R22

P 23 = Ro0c (A44 D11 + A55 D6 6) + RK 2 A44 A55 + K R2(D11 + D66)

P2 5 = Ro K(A44 D66 + A55 D22) + R2 K2 A44 A55 + K R2(022 + D66)

P26 = K xi(A44 Dl1 + A55 D6 6 )

P28 = K K:(A 44 D66 + A55 D2 2)

P29 
= - R K2 A44 A55 - K R2 K(A44 + A55)

P30 = - K 2 A44 A55



4.2.1 Bending of Clamped Plates

An approximate one mode polynomial solution was investigated for the

case of a midplane symmetric anisotropic plate, without bending-twisting

coupling, with four edges clamped. The polynomial was chosen such that all

boundary conditions were satisfied explicitly; the amplitude was then found by

using the Galerkin method.

For simplicity, the single polynomial mode uses only even powers of x

and y. For this problem the axes are located at the center of the plate rather

than at the corner, so the even function represents a symmetric deformation.

The polynomial solution should only be used for symmetric loadings, due to it's

even nature.

The approximate polynomial solution is complete through x and y to the

tenth power. Unlike the other solutions that have been discussed, this

potential function is in general not separable in x and y; it is not a product of a

function of x and a function of y. The general form of the polynomial potential

function being used is as follows:

01 = A1 (1 + a2 X2 + a3 X4 + a4 X6 + a5 x8 + a6 X10 + a7 y2 + a8 X2 y2

+ ag x4 y2 + ao0 x6 y2 + al 'x8 y2 + a12 X10 y2 + a13 y4 + a14 x2 y4

+ a15 X4 y4 + a16 x6 y4 + a17 x8 y4 + a18 x10 y4 + a19 y
6 + a20 X2 y6

+ a21 x4 y6 + a22 x6 y6 + a23 x8 y6 + a24 x10 y6 + a25 y
8 + a26 X2 y8

+ a27 x4 y8 + a28 X6 y8 + a29 8 y8 + a30 X10 y8 + a31 y10 + a32 x2 y10

+ a33 x4 y10 + a34 x6 y10 + a35 x8 y10 + a36 X10 y10)



The twelve boundary conditions, three per edge, reduce to six

independent equations due to the symmetric nature of 01. The six independent

boundary conditions are as follows:

w(O,y) = 0 ; Px(0,y) = 0 ; •=y(0,y) = 0

w(x,0) = 0 ; Py(x,0) = 0 ; 'x(x,0) = 0

These six equations, however, expand to 34 equations upon matching

coefficients of the different exponents of the variables. This is the polynomial

analogy to harmonic balance. Of the resulting 34 equations, 31 are

independent. Since the general function has 35 unknowns, the final four

coefficients remain arbitrary and have been set to zero.

Since the polynomial will now explicitly satisfy the boundary conditions,

its appropriate magnitude may be found with the Galerkin technique [24].

While the potential function satisfies all the boundary conditions, in general it

will not satisfy the governing partial differential equation. When this

approximate function is placed into the differential equation some error or

residual, R, will result:

R = L6 D + Pz

The Galerkin method sets the residual, integrated with respect to a weighting

function, Wi, over the domain of the plate, to zero:

R Wi dy dx = 0
2 2



Any weighting function may be used, however, in practice the approximate

function itself is most often used [24]. In this case, the first mode of the

displacement, w1 , rather than 1I has been used because the product of w and

the partial differential equation integrated over the domain has the units of

energy. By using the Galerkin method in this way, the work done by the error

in the external loads is minimized. This application of the Galerkin method

can be represented as follows:

f A L4 + pz) w1 dy dx =0

2 2

where Al is the unknown amplitude to be determined.

Polynomial potential functions, such as the one above, offer great

flexibility in properly accounting for all types of couplings. However, to be

generally useful for a variety of problems, a set of functions rather than a

single function needs to be developed. This set of functions should include both

symmetric and antisymmetric shapes and should be mathematically

complete; it should be able to describe all physically possible deflection shapes

and converge to the loading function, pz.

The difficulty is in selecting functions that satisfy all the boundary

conditions. Finding such functions is computationally intensive. A routine to

find the single approximate potential function described above is included in

Appendix D.



4.2.2 Bending of Simoly Supdorted Plates

For a simply supported midplane symmetric plate without bending-

twisting coupling a Navier type solution can be found for the potential function.

When ) is taken as an infinite double sine series:

<(x,y) = Y I amn sinm'- sinn
a b

m-l na1

all the boundary conditions are satisfied explicitly. When the distributed

transverse loading, pz, is also expanded in an infinite double sine series, the

coefficients of D may be found through harmonic balance. The transverse

deflection, w, may then be found from the equations above as:

Pmn(L44 L55 - L5 sin sin m y

w(x,y)= i s b in m  sin n y
mxx _xy a bmrn n-l L6 sin xsin

a b

where once again:

Pmn = 4 Pz m sin n y dy dxab a b

Although appearing slightly different, the expression for w(x,y) above is

equivalent to the expression given in Chapter 2 for plates with transverse

shear deformation. Again, Navier type solutions that include bending-

twisting coupling are not possible because these terms multiply differential

operators which introduce cosine terms into w that do not explicitly satisfy the

homogeneous boundary conditions.



A polynomial potential function solution, similar to the clamped

potential function above, was also found for the four edges simply supported

problem for plates without bending-twisting coupling. For this case the

polynomial was chosen to be complete through even powers of x and y to the

sixth power. Again, due to its even nature, this potential function is only

intended for symmetric problems. The general form of the polynomial

potential function being used is as follows:

(I = A1 ( 1 + a2 x2 + a3 X4 + a4 x6 + a y2 + a6 x2 y2

+ a7 x4 y2 + a8  X6 y2 + a y4 + a10 x2 y4 + all x4 y4

+ a12 x6 y4 + a13 y6 + al 4 x2 y6 + a 15 X4 y6 + al 6 x6y6 )

Again, the twelve boundary conditions reduce to six independent

conditions due to the symmetric nature of 1. The six independent boundary

conditions are as follows:

w(O,y) = 0 ; Mx(0,y) = 0 ; Ty(0,y) = 0

w(x,0) = 0 ; My(x,0) = 0 ; Yx(x,O) = 0

A polynomial, of the general form above, which is independent of

material properties, but explicitly satisfies the boundary conditions has been

found to be:



1Di Ai 1 3- x2 + 240 x4  64 X6

61 a2  61 a4  61 a6

300 y2 + 90000 2 y2 _ 72000 4 y2 19200 6 y2
61 b2  3721 a2 b2  3721 a4 b2  3721 a6 b2

+240 4 _ 72000 2 y4 + 57600 X4 y 4  15360 X6 y 4

61 b4  3721 a2 b4  3721 a4 b4  3721 a6 b4

64 y6+ 19200 x2y 6  15360 x4 y6 + 4096 x6 y6
61 b6  3721 a2 b6  3721 a4 b6  3721 a6 b6

The amplitude, A1, may be found for a particular loading by using the

Galerkin method as discussed above for clamped plates. Again, to be generally

useful for a variety of problems, a set of functions rather than a single mode

needs to be developed.

For plates with bending-twisting coupling, other solution forms must be

used. Polynomial solutions which explicitly satisfy the boundary conditions

could be found, as has been done above for plates without bending-twisting

coupling.

4.3 Lagrange Multiplier Solutions

The work done by Ramkumar and Chen [17, 18] can be extended to any

combination of simply supported and clamped edges. In fact, typographical

errors in both papers resulted in solutions for two adjacent edges clamped with

the other two edges simply supported rather than the four sides clamped case

for which numerical and graphical data were presented. The two cases of

interest for this work are all four sides clamped and two opposite sides

clamped with the other pair of edges simply supported.



4.3.1 Four Sides Clamned

The four sides clamped problem requires four series of constraints to be

appended to the energy equation. Ramkumar and Chen [17, 18] have

inadvertently only listed two. One series of constraints is required for each

clamped edge and comes from using harmonic balance to enforce the zero

slope boundary conditions. For example, if the two opposing x edges are

clamped, the boundary conditions are:

Yx(O,y) = I bmn cosm' O sin n•y = 0
m-1 n1 b

Tx(a,y)= I I bmn cosm a sin ny= 0

m.1 n.1

which lead to the following constraints from harmonic balance:

bmn = 0 (for n = 1,2,...00)
m--1

I (-1)m bmn = 0 (for n = 1,2,...o)
m-l

Two similar sets of constraints come from the y edges. Each constraint is

appended to the energy expression with a Lagrange multiplier and then the

resulting system of equations is solved [17, 18]. The fully clamped case results

in 2(M+N) equations and 2(M+N) unknowns. M and N are the number of modes

used in the x and y directions respectively, since in practice the infinite series

is always truncated at some point. The two adjacent sides clamped and two
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sides simply supported problem that was inadvertently described by

Ramkumar and Chen [17, 18], was only (M+N) by (M+N) in size.

A code was developed for the four sides clamped solution and is listed in

Appendix E.

4.3.2 Two Sides Clamped and Two Sides Simply SuDoorted

The case of two opposite edges clamped and the other edges simply

supported is very similar to the two adjacent edges clamped problem. Only two

sets of constraints are needed rather than four, so the resulting system of

equations is only (M+N) by (M+N) in size.

A code was also developed for the two opposite edges clamped and two

edges simply supported case. A listing is given in Appendix E, following the

four sides clamped code listing.

4.4 Rayleigh-Ritz Solutions

The Rayleigh-Ritz solutions included in this work are from an internal

TELAC code written by Wilson Tsang. The program uses Dugundji's beam

functions [19] for the transverse displacement and the shear compatible

derivatives of the beam functions [20] for the shear rotations, as discussed in

chapter two. The Rayleigh-Ritz code is listed in Appendix F along with a post-

processor which produced the extensive graphics output included in this work.

The Rayleigh-Ritz solution includes the effects of bending-twisting coupling.

The code was modified to calculate static displacements as well as natural

frequencies of vibration.
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Chapter 5

Experimental Results

This chapter contains the results of all the plate tests. Representative

plots from the static tests are presented and discussed. Regressions of all the

static tests appear in Appendix G. Experimental natural mode shapes and

frequencies are presented for all the dynamic tests conducted.

5.1 Static Test Results

The important data from the static tests are the initially linear

force-displacement histories of the specimens. In many of the tests non-linear

effects eventually became noticeable, but those effects are not modeled by the

present analysis and therefore have been truncated in the data reduction.

5.1.1 Data Reduction

For each test, transducer measurements were taken at four or five

points on the plate as discused in Chapter 3. Regressions of these

displacements against the total applied load were performed to determine

"spring constants" or local stiffnesses for the transducer locations on the plate.

The stiffnesses have units of force per unit deflection (N/mm). The stiffness

represents the magnitude of force that must be applied, through the

appropriate mechanism, to achieve one mm of deflection at the transducer

location. A stiffness was regressed for each transducer location per test. Only

the linear portions of the displacement curves were used in the regressions.

Initial contact affects and any large deflection non-linearities were truncated.

The regressed stiffnesses for the static tests appear in Appendix F, along

with their respective "goodness of fit" values. The average stiffnesses for each
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specimen type are also given along with the largest deviation from the average,

as a percentage of the average. The deviation term reflects the largest

variation in the experimental stiffnesses that contributed to the average.

5.1.2 Renresentative Load-Deflection Plots

The load-deflection plots for specimen A-1, subjected to the off-center

URPP at (x,y) = (76 mm,127 mm), are presented below in Figures 5.1-5.5 for

each of the five boundary condition combinations investigated. The force

transducer was being used in the lower end of its range and suffers from poor

resolution. As a result, the data is clumped along horizontal lines of constant

force, creating a "staircase" effect. For clamped boundary conditions, the force

transducer data is fairly linear, however, for simply supported and free

boundary conditions the data exhibits a strong staircase trend. The linear

regressions, with goodness of fit values ranging from 0.981 to 0.997, help filter

out the staircase noise. The regressions are overlaid on the plots in Figures

5.1-5.5. These plots are representative of the experimental trends observed for

all of the tests, however, more non-linear behavior was evident in some of the

other tests.
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Figure 5.1 Load-deflection data for
URPP with all four edges

specimen A-1 loaded off-center by the
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Figure 5.2 Load-deflection data for specimen A-1 loaded off-center by the
URPP with x edges simply supported and y edges clamped.
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Figure 5.3 Load-deflection data for
URPP with all four edges

specimen A-i loaded off-center by the
simply supported.
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Figure 5.4 Load-deflection data for specimen A-1 loaded off-center by the
URPP with x edges free and y edges clamped.
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Figure 5.5 Load-deflection data for specimen A-1 loaded off-center by the
URPP with x edges free andy edges simply supported.

300

250 -

200 M

150 -
z
U
a,=

0
LL

' 0

-0

..................................... ..... .. ........... .. .... ............ ......................................................................
0

-

SLVDT #1

c LVDT #2
o LVDT #3
A LVDT#4~· U U U 0 . . .·-·--··----·

100-

50

0 I

0.5 2.5

_ 6M

-- ·- I Ii



5.2 Forced Vibration Tests

The forced vibration tests allowed approximate natural mode shapes

and frequencies to be determined. During testing, sketches were made of all

mode shapes and frequencies and photographs were taken of representative

mode shapes for each specimen type.

5.2.1 Data Reduction

Average modal frequencies and the range over which these frequencies

occurred, were calculated for each specimen type. The mode shapes

documented in the following section occurred in at least two of the three plates

for each specimen type. Single occurrences were discarded as

manufacturing/testing anomalies. Excitations at 630 and 1200 Hz were found

to be common across all the plates, and were discarded as natural frequencies

of the jig, shaker, and/or loading spring.

The figures in the following section are reverse video scans of the actual

photographs. Thus, the black composite plates appear white and the salt, used

to accentuate the mode shapes, appears black. Shadows along the edge of the

plate, caused by the sides of the jig, appear lighter than the rest of the plate.

The small black rectangles in some of the scans are labels that were placed on

the plates and the black dots mark the locations were the plate thickness was

measured. Narrow black frames have been placed around the scans to help

define the plate edges.

5.2.2 Natural Mode Shapes and Frequencies

Photographs were not taken of the aluminum control plates due to

lighting difficulties with the shiny metallic surface. The mode shapes for an

isotropic plate are, however, very well understood. It is customary to designate
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each shape by the respective x and y harmonics. The experimentally obtained

frequencies for the aluminum control plates are listed in Table 5.1 following

this convention.

Table 5.1 Experimental Modal Frequencies (Hz) for Aluminum Control Plates

Mode (x direction harmonic - y direction harmonic)
B. C.'s Spec. 1-1 2-1 1-2 2-2 3-1
CL-CL 1-2 475 888 1100 x 1588
SS-CL 1-2 490 780 1240 1482 1360
SS-SS 1-3 340 765 768 x 1450
FR-CL 1-2 355 424 x x 827
FR-SS 1-2 192 280 771 x 525

x = not found experimentally

The reverse video scans for all the composite plate specimens are

presented in Figures 5.6 through 5.25. Each figure shows the lowest four

modes found experimentally. Higher modes were found for some specimens

but have not been included here. The figures are organized by boundary

condition and then by specimen type.
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f = 475±7 Hz

f = 1432±9 Hz

f = 885±3 Hz

f = 1867±3 Hz

Figure 5.6 Four lowest experimentally detected mode shapes and frequencies
for Specimen A with all four edges clamped.
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f = 845±5 Hz

f = 952±9 Hz

Figure 5.7

f = 141 3±8 Hz

Four lowest experimentally detected mode shapes and frequencies
for Specimen B with all four edges clamped.
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f = 744±2 Hz f = 1046±19 Hz

f = 1420±20 Hz f = 1867±2 Hz

Figure 5.8 Four lowest experimentally detected mode shapes
for Specimen C with all four edges clamped.

and frequencies
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748±8 Hz f = 926+7 Hz

f = 1202±2 Hz

Figure 5.9

f = 1437±7 Hz

Four lowest experimentally detected mode shapes and frequencies
for Specimen D with all four edges clamped.
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f = 403±5 Hz f = 779+23 Hz

Figure 5.10

f = 1060±14 Hz f = 1201±9 Hz

Four lowest experimentally detected mode shapes and frequencies
for Specimen A with x edges (short edges) simply supported and y
edges (long edges) clamped.
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f = 361±39 Hz

f = 778+21 Hz f = 1204±25 Hz

Figure 5.11 Four lowest experimentally detected mode shapes and frequencies
for Specimen B with x edges (short edges) simply supported and y
edges (long edges) clamped.
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f = 491±7 Hz

Figure 5.12

f = 1500±12 Hz f = 1872±4 Hz

Four lowest experimentally detected mode shapes and frequencies
for Specimen C with x edges (short edges) simply supported and y
edges (long edges) clamped.
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f = 499±3 Hz f = 733+12 Hz

f = 1517±36 Hz f = 1874+4 Hz

Figure 5.13 Four lowest experimentally detected mode shapes and frequencies
for Specimen D with x edges (short edges) simply supported and y
edges (long edges) clamped.
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f = 319±13 Hz f = 662±2 Hz

f = 778±5 Hz f = 1513+26 Hz

Figure 5.14 Four lowest experimentally detected mode shapes and frequencies
for Specimen A with all four edges simply supported.
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f = 275+10 Hz

f = 77+2±25 Hz

f = 635+10 Hz

f = 1234±24 Hz

Figure 5.15 Four lowest experimentally detected mode shapes and frequencies
for Specimen B with all four edges simply supported.
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f = 366+16 Hz

f = 929±5 Hz f = 1487±4 Hz

Figure 5.16 Four lowest experimentally detected mode shapes and frequencies
for Specimen C with all four edges simply supported.

f = 779±3 Hz



f = 306±3 Hz f = 787+2 Hz

924±13 Hz f = 1214+3 Hz

Figure 5.17 Four lowest experimentally detected mode shapes and frequencies
for Specimen D with all four edges simply supported.
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f = 305±3 Hz f = 352±2 Hz

f = 785±2 Hz

Figure 5.18

f = 774±5 Hz

Four lowest experimentally detected mode shapes and frequencies
for Specimen A with x edges (short edges) free and y edges (long
edges) clamped.
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f = 248±2 Hz f = 318+6 Hz

Figure 5.19

f = 584±4 Hz f = 689±7 Hz

Four lowest experimentally detected mode shapes and
for Specimen B with x edges (short edges) free and y
edges) clamped.

frequencies
edges (long
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f = 504±3 Hz

Figure 5.20

f = 839±4 Hz f = 1389±48 Hz

Four lowest experimentally detected mode shapes and frequencies
for Specimen C with x edges (short edges) free and y edges (long
edges) clamped.
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f = 354±2 Hz f = 397+3 Hz

f = 617±26 Hz

Figure 5.21

f = 917±5 Hz

Four lowest experimentally detected mode shapes and frequencies
for Specimen D with x edges (short edges) free and y edges (long
edges) clamped.
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f = 194±3 Hz f = 248±4 Hz

f = 483±11 Hz

Figure 5.22

f = 759±7 Hz

Four lowest experimentally detected mode shapes and frequencies
for Specimen A with x edges (short edges) free and y edges (long
edges) simply supported.
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f = 168±3 Hz f = 247+3 Hz

Figure 5.23

f = 501±9 Hz f = 542±2 Hz

Four lowest experimentally detected mode shapes and
for Specimen B with x edges (short edges) free and y
edges) simply supported.
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f = 211±9 Hz

I
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=

f = 733±6 Hz f = 776±4 Hz

M

Figure 5.24 Four lowest experimentally detected mode shapes and frequencies
for Specimen C with x edges (short edges) free and y edges (long
edges) simply supported.
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f = 205±5 Hz f = 247+5 Hz

f = 504±9 Hz

Figure 5.25

f = 774+4 Hz

Four lowest experimentally detected mode shapes and frequencies
for Specimen D with x edges (short edges) free and y edges (long
edges) simply supported.
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Chapter 6

Analytical Results

This chapter contains the results of all the analysis conducted as part of

this investigation. A brief comparison of results from Kirchhoff and Mindlin

plate theories is presented and the convergence of solution techniques is

discussed. Comparisons of the analytical techniques that include shear

deformation are made for most of the conditions investigated experimentally.

Natural mode shapes and frequencies, obtained from the Rayleigh-Ritz model,

are presented for many of the conditions investigated experimentally.

Analytical stiffnesses (N/mm), corresponding to the experimental stiffnesses

found for each transducer point, are tabulated in Appendix H.

6.1 Comparison of Kirchhoff and Mindlin Plate Theories

The difference between Kirchhoff and Mindlin plate theory becomes

important for thick plates or plates with a low transverse shear stiffness. The

thicker the plate or the lower the transverse shear stiffness, the more

important this difference will become. Although several of the experimental

specimens have a low transverse shear stiffness, they are still relatively thin

and therefore exhibit only minor transverse shear deformation.

Figure 6.1 shows the analytical centerline deflections for Specimen B,

under a centered point load of 100 Newtons with all four edges clamped, for

both Kirchhoff and Mindlin plate theories. Both analyses are based on the 9 x 9

mode Rayleigh-Ritz model. The Kirchhoff curve was produced from the

Mindlin solution by raising the transverse shear stiffnesses by three orders of

magnitude, effectively causing infinite transverse shear stiffness, in

accordance with Kirchhoff plate theory. For reference, the shear stiffness of
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Mindlin
----- Kirchhoff

U LU U IU LUU LZU

x dimension (mm) along y=b/2

Figure 6.1 Comparison of Kirchhoff and Mindlin deformations for Specimen
B under a centered point load of 100 Newtons with all four edges
clamped.
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aluminum is seven times that of AS4/3501-6 tape. The difference in center

deflections between the Kirchhoff and Mindlin curves is 2.8%. For Specimen I,

which is isotropic and therefore has a moderate transverse stiffness, the

difference is less than 1%, and is not graphically visible.

For the experimental specimens, going to Mindlin plate theory improves

the natural frequency predictions by less than 1% for the first four modes,

however, greater improvement will occur with higher modes. The analytical

frequencies for two specimens for Kirchhoff and Mindlin theory as well as

Mindlin theory with the rotary inertia, R2, set to zero are presented. Table 6.1

shows the analytical frequencies, temporarily neglecting the bending-twisting

coupling, for Specimen B with four edges simply supported. The fourth digit

accuracy sacrifice for neglecting rotary inertia seems tolerable for the

significant computational savings, as discussed in chapter four.

Table 6.1 Comparison of Natural Frequencies (Hz) for Specimen B
with Four Edges Simply Supported

Mode Kirchhoff Mindlin (R2 = 0) Mindlin
1st 284.5 284.0 284.0

2nd 658.3 656.0 655.8
3rd 772.4 768.0 767.8
4th 1138.2 1129.9 1129.3

Table 6.2 shows the analytical frequencies for Specimen I with four

edges simply supported. Again, the analysis of the isotropic plate benefits less

from Mindlin theory than that of the laminated plates due to the difference in

their transverse to longitudinal modulus ratio.
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Table 6.2 Comparison of Natural Frequencies (Hz) for Specimen I
with Four Edges Simply Supported

Mode Kirchhoff Mindlin (R2 = 0) Mindlin
1st 297.7 297.5 297.5

2nd 646.2 645.4 645.2
3rd 842.1 840.8 840.4
4th 1190.9 1188.2 1187.4

Although the specimens under consideration exhibit minor to negligible

improvement with Mindlin plate theory, no generalizations should be made.

Thicker plates of the same material and layup would exhibit more of a

difference between the two theories.

6.2 Convergence of Constrained Navier and Rayleigh-Ritz Solutions

The Rayleigh-Ritz models were always run with 9 "contributing" beam

functions in each direction, for a total of 81 modes. Unsymmetric problems

used the first 9 modes, while symmetric problems used the first 9 odd modes in

each direction. Figure 6.2 shows the convergence trend for Specimen B with

four edges clamped and a centered point load. The 9 x 9 mode solution gives a

reasonably well converged answer for the cases investigated.

The traditional Navier solution for four sides simply supported follows a

convergence trend similar to the Rayleigh-Ritz model. In fact, for a simply

supported plate without bending-twisting coupling, the Rayleigh-Ritz and the

Navier solutions are identical. Thus, the traditional Navier solutions were

also run with 9 x 9 modes.

The constrained Navier solution suffers from very slow convergence.

Figure 6.3 compares the convergence trend of the constrained Navier solution

with the 9 x 9 mode Rayleigh-Ritz solution for Specimen B, again with four

edges clamped and a centered point load. The constrained Navier solutions
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9
-- 55

S -- 1

mode
mode
mode

I V

Rayleigh-Ritz
Rayleigh-Ritz
Rayleigh-Ritz

I I- UU JJU

x dimension (mm) along y=b/2

Figure 6.2 Convergence trend of Rayleigh-Ritz solution for Specimen B with
four edges clamped and a centered point load.
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9 x 9 mode Rayleigh-Ritz
50 x 50 mode Constrained Navier
30 x 30 mode Constrained Navier
10 x 10 mode Constrained Navier

.JVV .L V IV jV

x dimension (mm) along y=b/2

Figure 6.3 Convergence trend of constrained Navier solution for Specimen B
with four edges clamped and a centered point load.
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were run with 50 x 50 modes, due to computer limitations, although the level of

convergence falls short of that achieved with the Rayleigh-Ritz models. In

Figure 6.3, the 50 x 50 mode solution is depicted only at three points rather

than as a continuous function, due to computer limitations encountered with

graphing a function of 2500 terms. The displacement points chosen

correspond to transducer locations in the experiments.

Hybrid models, for the x edges simply supported and y edges clamped

case, were developed which used 9 Navier modes in the x direction and 50

constrained Navier modes in the y direction. These hybrid models also fall

short of the level of convergence achieved with the Rayleigh-Ritz models.

6.3 Results for Centered Point Load

This section presents the analytical results for the centered point load

problems that were investigated experimentally. The Rayleigh-Ritz, single

mode polynomial potential functions, and Navier solutions are presented for

the five specimens, for the boundary conditions four sides clamped and four

sides simply supported. The solutions are presented in graphical form, in

Figures 6.4 through 6.13, as plots of transverse displacement along the plate

centerlines.

The Rayleigh-Ritz solutions use 9 x 9 modes while the potential function

solutions are all single mode solutions. The constrained Navier solutions use

50 modes in a direction with clamped boundary conditions, while the

traditional Navier solutions use only 9 modes in a direction with simply

supported boundary conditions. More modes were used for the constrained

Navier solution due to its slower convergence. Both Navier solutions are given

only at discrete points.
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Again, the constrained Navier, the traditional Navier, and the potential

function solutions neglect the bending-twisting coupling that is present in

Specimens A and B. This coupling is correctly accounted for in the Rayleigh-

Ritz formulation. Specimen A, which has a strong bending-twisting coupling,

is poorly modeled by the Navier solutions.
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Rayleigh-Ritz
Potential Function
Constrained Navier

9 x 9 modes
1 mode

50 x 50 modes

40a- N

50 iUU lbU ZUU 2bU

x dimension (mm) along y=b/2

50 100 150 200
y dimension (mm) along x=a/2

Figure 6.4 Transverse deflection for Specimen A, under a centered point load
of 100 Newtons, with all four sides clamped.
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Rayleigh-Ritz
Potential Function

0 Constrained Navier

50 100
x dimension (mm

9 x 9 modes
1 mode

50 x 50 modes

1bU ZUU ZbU

I) along y=b/2

50 100 150 Zuu
y dimension (mm) along x=a/2

Figure 6.5 Transverse deflection for Specimen B, under a centered point load
of 100 Newtons, with all four sides clamped.
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Rayleigh-Ritz
Potential Function
Constrained Navier

9 x 9 modes
1 mode

50 x 50 modes

50 100 150 200 250
x dimension (mm) along y=b/2

50 100 150 200
y dimension (mm) along x=a/2

Figure 6.6 Transverse deflection for Specimen C, under a centered point load
of 100 Newtons, with all four sides clamped.
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Rayleigh-Ritz
Potential Function
Constrained Navier

9 x 9 modes
1 mode

50 x 50 modes

50 100 150 200 250
x dimension (mm) along y=b/2

50 100 b150 uu
y dimension (mm) along x=a/2

Figure 6.7 Transverse deflection for Specimen D, under a centered point load
of 100 Newtons, with all four sides clamped.
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Rayleigh-Ritz
Potential Function
Constrained Navier

9 x 9 modes
1 mode

50 x 50 modes

50 100 150 200 250
x dimension (mm) along y=b/2

50 100 150 200
y dimension (mm) along x=a/2

Figure 6.8 Transverse deflection for Specimen I, under a centered point load
of 100 Newtons, with all four sides clamped.
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Rayleigh-Ritz
Potential Function
Navier

9 x 9 modes
1 mode

9 x 9 modes

50 100 150 200 250
x dimension (mm) along y=b/2

U iUU (.3U LUU
y dimension (mm) along x=a/2

Figure 6.9 Transverse deflection for Specimen A, under a centered point load
of 100 Newtons, with all four sides simply supported.
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Rayleigh-Ritz
Potential Function
Navier

9 x 9 modes
1 mode

9 x 9 modes

E
C0)

w

cC

a
0

U IUU I. U LmUU LU

x dimension (mm) along y=b/2

SdU .iUU .DU LUU

y dimension (mm) along x=a/2

Figure 6.10 Transverse deflection for Specimen B, under a centered point load
of 100 Newtons, with all four sides simply supported.
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Rayleigh-Ritz
Potential Function
Navier

9 x 9 modes
1 mode

9 x 9 modes

E

C

a
0

12
E

ILbC
a)
0

0.2

50 100 150 200 250
x dimension (mm) along y=b/2

50 100 150 200
y dimension (mm) along x=a/2

Figure 6.11 Transverse deflection for Specimen C, under a centered point load
of 100 Newtons, with all four sides simply supported.
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Rayleigh-Ritz
Potential Function
Navier

9 x 9 modes
1 mode

9 x 9 modes

E

Lb
0uJ
U-O)

0

w
;9

Uý

bU IUU IbU ZUU ZbU
x dimension (mm) along y=b/2

50 100 150 200
y dimension (mm) along x=a/2

Figure 6.12 Transverse deflection for Specimen D, under a centered point load
of 100 Newtons, with all four sides simply supported.
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Rayleigh-Ritz
Potential Function
Navier

9 x 9 modes
1 mode

9 x 9 modes

50 100 150 200 250
x dimension (mm) along y=b/2

50 100 150 200
y dimension (mm) along x=a/2

Figure 6.13 Transverse deflection for Specimen I, under a centered point load
of 100 Newtons, with all four sides simply supported.
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6.4 Results for Off-Center Point Load

This section presents the analytical results for the off-center point load

problems that were investigated experimentally. For all of the off-center load

cases, the loading was applied at (x,y) = (76 mm,127 mm). The Rayleigh-Ritz

and Navier solutions are presented for the five specimens, for the boundary

conditions four sides clamped, x edges simply supported and y edges clamped,

and four sides simply supported. The solutions are presented in graphical

form, in Figures 6.14 through 6.28, as plots of transverse displacement along

the plate centerlines.

The Rayleigh-Ritz solutions use 9 x 9 modes. The constrained Navier

solutions use 50 modes in a direction with clamped boundary conditions, while

the traditional Navier solutions use only 9 modes in a direction with simply

supported boundary conditions. More modes were used for the constrained

Navier solution due to its slower convergence. Both Navier solutions are given

only at discrete points, selected to correspond to transducer locations in the

experiments, due to the computer time involved with plotting a function which

may consist of as many as 2500 terms.

Again, both Navier solutions neglect the bending-twisting coupling that

is present in Specimens A and B. This coupling is correctly accounted for in

the Rayleigh-Ritz formulation. Specimen A, which has a strong bending-

twisting coupling, is poorly modeled by the Navier solutions.
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Rayleigh-Ritz
* Constrained Navier

9 x 9 modes
50 x 50 modes

50 100 150 200 250
x dimension (mm) along y=b/2

bU 1UU lbU ZUU
y dimension (mm) along x=a/2

Figure 6.14 Transverse deflection for Specimen A, under an
load of 100 Newtons, with all four sides clamped.

off-center point
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Rayleigh-Ritz 9 x 9 modes
* Constrained Navier 50 x 50 modes

1.

1.2E

OuJ

C:
03

0.7!

0.2

0.2

bU IUU IbU ZUU ZbU

x dimension (mm) along y=b/2

1.

1 .2!E
E

0.7

0.2.

:DU UU ibU ZUU

y dimension (mm) along x=a/2

Figure 6.15 Transverse deflection for Specimen B, under an off-center point
load of 100 Newtons, with all four sides clamped.
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Rayleigh-Ritz
* Constrained N

50 10(
x dimensior

~avier
9 x 9 modes

50 x 50 modes

0 150 200 250
i (mm) along y=b/2

50 100 150 200
y dimension (mm) along x=a/2

Figure 6.16 Transverse deflection for Specimen C, under an off-center point
load of 100 Newtons, with all four sides clamped.
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Rayleigh-Ritz
* Constrained Navier

9 x 9 modes
50 x 50 modes

1.

IC0
0

E

0

ii8)

0.:

0.

O.0

0.1

0.

0.1

0.4

0.2

50 10UU
x dimension (mm

150 ZUU 250

) along y=b/2

50 100 150 200
y dimension (mm) along x=a/2

Figure 6.17 Transverse deflection for Specimen D, under an off-center point
load of 100 Newtons, with all four sides clamped.
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Rayleigh-Ritz
* Constrained Navier

9 x 9 modes
50 x 50 modes
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50 100
x dimension (mm

1bU ZUU ZIU
) along y=b/2

U dimension (mm) along x=a1
y dimension (mm) along x=a/2

Figure 6.18 Transverse deflection for Specimen I, under an off-center point
load of 100 Newtons, with all four sides clamped.
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Rayleigh-Ritz
* Constrained Navier
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modes
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x dimension (mm) along y=b/2
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0.E

0 .

0.

50 100 150 200
y dimension (mm) along x=a/2

Figure 6.19 Transverse deflection for Specimen A, under an off-center point
load of 100 Newtons, with x edges (short edges) simply supported
and y edges (long edges) clamped.
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Rayleigh-Ritz
Constrained Navier

9 x 9 modes
9 x 50 modes

50 100
x dimension (mm

150 200 250
) along y=b/2

2.

0.

I0

50 100 150 200
y dimension (mm) along x=a/2

Figure 6.20 Transverse deflection for Specimen B, under an off-center point
load of 100 Newtons, with x edges (short edges) simply supported
and y edges (long edges) clamped.
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Rayleigh-Ritz
Constrained Navier
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9 x 9 modes
9 x 50 modes
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I) along y=b/2
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y dimension (mm) along x=a/2

Figure 6.21 Transverse deflection for Specimen C, under an off-center point
load of 100 Newtons, with x edges (short edges) simply supported
and y edges (long edges) clamped.
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Rayleigh-Ritz
Constrained Navier

9 x 9 modes
9 x 50 modes

50 100
x dimension (mm

150 200 250
) along y=b/2

50 100 150 200
y dimension (mm) along x=a/2

Figure 6.22 Transverse deflection for Specimen D, under an off-center point
load of 100 Newtons, with x edges (short edges) simply supported
and y edges (long edges) clamped.
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Rayleigh-Ritz
* Constrained Navier

9x 9
9 x 50

modes
modes

50 100 150 200 250
x dimension (mm) along y=b/2

50 100 150 200
y dimension (mm) along x=a/2

Figure 6.23 Transverse deflection for Specimen I, under an off-center point
load of 100 Newtons, with x edges (short edges) simply supported
and y edges (long edges) clamped.
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Figure 6.24 Transverse deflection for Specimen A, under an off-center point
load of 100 Newtons, with all four sides simply supported.
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Figure 6.25 Transverse deflection for Specimen B, under an off-center point
load of 100 Newtons, with all four sides simply supported.
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Figure 6.26 Transverse deflection for Specimen C, under an off-center point
load of 100 Newtons, with all four sides simply supported.
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Figure 6.27 Transverse deflection for Specimen D, under an off-center point
load of 100 Newtons, with all four sides simply supported.
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Figure 6.28 Transverse deflection for Specimen I, under an off-center point
load of 100 Newtons, with allfour sides simply supported.
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6.5 Results for Centered Uniform Rectangular Pressure Patch

This section presents the analytical results for the centered uniform

rectangular pressure patch (URPP) problems that were investigated

experimentally. The rectangular pressure patch was 50.8 cm by 63.5 cm and

was aligned with the longer edge parallel to the x axis. The Rayleigh-Ritz,

single mode polynomial potential functions, and Navier solutions are

presented for the five specimens, for the boundary conditions four sides

clamped and four sides simply supported. The solutions are presented in

graphical form, in Figures 6.29 through 6.38, as plots of transverse

displacement along the plate centerlines.

The Rayleigh-Ritz solutions use 9 x 9 modes while the potential function

solutions are all single mode solutions. The constrained Navier solutions use

50 modes in a direction with clamped boundary conditions, while the

traditional Navier solutions use only 9 modes in a direction with simply

supported boundary conditions. More modes were used for the constrained

Navier solution due to its slower convergence. Both Navier solutions are given

only at discrete points, selected to correspond to transducer locations in the

experiments, due to the computer time involved with plotting a function which

may consist of as many as 2500 terms.

Again, the constrained Navier, the traditional Navier, and the potential

function solutions neglect the bending-twisting coupling that is present in

Specimens A and B. This coupling is correctly accounted for in the Rayleigh-

Ritz formulation. Specimen A, which has a strong bending-twisting coupling,

is poorly modeled by the Navier solutions.
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Figure 6.29 Transverse deflection for Specimen A, under a
load of 100 Newtons, with all four sides clamped.

centered URPP
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Figure 6.30 Transverse deflection for Specimen B, under a
load of 100 Newtons, with all four sides clamped.
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Figure 6.31 Transverse deflection for Specimen C, under a
load of 100 Newtons, with all four sides clamped.

centered URPP
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Figure 6.32 Transverse deflection for Specimen D, under a
load of 100 Newtons, with all four sides clamped.

centered URPP
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Figure 6.33 Transverse deflection for Specimen I, under a
load of 100 Newtons, with all four sides clamped.

centered URPP
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Figure 6.34 Transverse deflection for Specimen A, under a centered URPP
load of 100 Newtons, with all four sides simply supported.
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Figure 6.35 Transverse deflection for Specimen B, under a centered URPP
load of 100 Newtons, with all four sides simply supported.
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Figure 6.36 Transverse deflection for Specimen C, under a centered URPP
load of 100 Newtons, with all four sides simply supported.
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Figure 6.37 Transverse deflection for Specimen D, under a centered URPP
load of 100 Newtons, with all four sides simply supported.
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Figure 6.38 Transverse deflection for Specimen I, under a centered URPP
load of 100 Newtons, with all four sides simply supported.
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6.6 Results for Off-Center Uniform Rectangular Pressure Patch

This section presents the analytical results for the off-center uniform

rectangular pressure patch (URPP) problems that were investigated

experimentally. For all of the off-center load cases, the loading was centered at

(x,y) = (76 mm,127 mm). The rectangular pressure patch was 50.8 cm by

63.5 cm and was aligned with the longer edge parallel to the x axis. The

Rayleigh-Ritz and Navier solutions are presented for the five specimens, for

the boundary conditions four sides clamped, x edges simply supported and y

edges clamped, and four sides simply supported. The solutions are presented

in graphical form, in Figures 6.39 through 6.53, as plots of transverse

displacement along the plate centerlines.

The Rayleigh-Ritz solutions use 9 x 9 modes. The constrained Navier

solutions use 50 modes in a direction with clamped boundary conditions, while

the traditional Navier solutions use only 9 modes in a direction with simply

supported boundary conditions. More modes were used for the constrained

Navier solution due to its slower convergence. Both Navier solutions are given

only at discrete points, selected to correspond to transducer locations in the

experiments, due to the computer time involved with plotting a function which

may consist of as many as 2500 terms.

Again, both Navier solutions neglect the bending-twisting coupling that

is present in Specimens A and B. This coupling is correctly accounted for in

the Rayleigh-Ritz formulation. Specimen A, which has a strong bending-

twisting coupling, is poorly modeled by the Navier solutions.
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Figure 6.39 Transverse deflection for Specimen A, under an off-center URPP
load of 100 Newtons, with all four sides clamped.
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Figure 6.40 Transverse deflection for Specimen B, under an
load of 100 Newtons, with all four sides clamped.
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Figure 6.41 Transverse deflection for Specimen C, under an
load of 100 Newtons, with all four sides clamped.

off-center URPP
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Figure 6.42 Transverse deflection for Specimen D, under an
load of 100 Newtons, with all four sides clamped.

off-center URPP
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Figure 6.43 Transverse deflection for Specimen I, under an
load of 100 Newtons, with all four sides clamped.

off-center URPP
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Figure 6.44 Transverse deflection for Specimen A, under an off-center URPP
load of 100 Newtons, with x edges (short edges) simply supported
and y edges (long edges) clamped.
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Figure 6.45 Transverse deflection for Specimen B, under an off-center URPP
load of 100 Newtons, with x edges (short edges) simply supported
and y edges (long edges) clamped.
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Figure 6.46 Transverse deflection for Specimen C, under an off-center URPP
load of 100 Newtons, with x edges (short edges) simply supported
and y edges (long edges) clamped.
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Figure 6.47 Transverse deflection for Specimen D, under an off-center URPP
load of 100 Newtons, with x edges (short edges) simply supported
and y edges (long edges) clamped.
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Figure 6.48 Transverse deflection for Specimen I, under an off-center URPP
load of 100 Newtons, with x edges (short edges) simply supported
and y edges (long edges) clamped.
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Figure 6.49 Transverse deflection for Specimen A, under an off-center URPP
load of 100 Newtons, with all four sides simply supported.
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Figure 6.50 Transverse deflection for Specimen B, under an off-center URPP
load of 100 Newtons, with all four sides simply supported.
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Figure 6.51 Transverse deflection for Specimen C, under an off-center URPP
load of 100 Newtons, with all four sides simply supported.
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Figure 6.52 Transverse deflection for Specimen D, under an off-center URPP
load of 100 Newtons, with all four sides simply supported.
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Figure 6.53 Transverse deflection for
load of 100 Newtons, with

Specimen I, under an off-center URPP
all four sides simply supported.
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6.7 Results for Uniform Pressure

This section presents the analytical results for the uniform pressure

problems that were investigated experimentally. The Rayleigh-Ritz, single

mode polynomial potential functions, and Navier solutions are presented for

the five specimens, for the boundary conditions four sides clamped and four

sides simply supported. Only Rayleigh-Ritz and Navier solutions are

presented for the five specimens, for the boundary condition x edges clamped

and y edges simply supported. The solutions are presented in graphical form,

in Figures 6.54 through 6.68, as plots of transverse displacement along the

plate centerlines.

The Rayleigh-Ritz solutions use 9 x 9 modes while the potential function

solutions are all single mode solutions. The constrained Navier solutions use

50 modes in a direction with clamped boundary conditions, while the

traditional Navier solutions use only 9 modes in a direction with simply

supported boundary conditions. More modes were used for the constrained

Navier solution due to its slower convergence. Both Navier solutions are given

only at discrete points, selected to correspond to transducer locations in the

experiments, due to the computer time involved with plotting a function which

may consist of as many as 2500 terms.

Again, the constrained Navier, the traditional Navier, and the potential

function solutions neglect the bending-twisting coupling that is present in

Specimens A and B. This coupling is correctly accounted for in the Rayleigh-

Ritz formulation. Specimen A, which has a strong bending-twisting coupling,

is poorly modeled by the Navier solutions.
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Figure 6.54 Transverse deflection for Specimen A, under a uniform pressure
load of 100 Newtons, with all four sides clamped.
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Figure 6.55 Transverse deflection for Specimen B, under a uniform pressure
load of 100 Newtons, with all four sides clamped.
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Figure 6.56 Transverse deflection for Specimen C, under a uniform pressure
load of 100 Newtons, with all four sides clamped.

197

S



Rayleigh-Ritz
Potential Function
Constrained Navier

9 x 9 modes
1 mode

50 x 50 modes

50 100 150 200 250
x dimension (mm) along y=b/2

50 100 150 200
y dimension (mm) along x=a/2

Figure 6.57 Transverse deflection for Specimen D, under a uniform pressure
load of 100 Newtons, with all four sides clamped.

198

w
CuJr
c-.O.RE3

0)

0

w
0

0.1

0.4

0.-

0.2



Rayleigh-Ritz
Potential Function
Constrained Navier

9 x 9 modes
1 mode

50 x 50 modes

50 100 150 200 250
x dimension (mm) along y=b/2

50 100 150 200
y dimension (mm) along x=a/2

Figure 6.58 Transverse deflection for
load of 100 Newtons, with

Specimen I, under a
all four sides clamped.

uniform pressure
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Figure 6.59 Transverse deflection for Specimen A, under a
load of 100 Newtons, with x edges (short edges)
and y edges (long edges) clamped.
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Figure 6.60 Transverse deflection for Specimen B, under a
load of 100 Newtons, with x edges (short edges)
and y edges (long edges) clamped.
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simply supported
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Figure 6.61 Transverse deflection for Specimen C, under a uniform pressure
load of 100 Newtons, with x edges (short edges) simply supported
and y edges (long edges) clamped.
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Figure 6.62 Transverse deflection for Specimen D, under a
load of 100 Newtons, with x edges (short edges)
and y edges (long edges) clamped.
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Figure 6.63 Transverse deflection for Specimen I, under a uniform pressure
load of 100 Newtons, with x edges (short edges) simply supported
and y edges (long edges) clamped.
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Figure 6.64 Transverse deflection for Specimen A, under a uniform pressure
load of 100 Newtons, with all four sides simply supported.
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Figure 6.65 Transverse deflection for Specimen B, under a uniform pressure
load of 100 Newtons, with all four sides simply supported.
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Figure 6.66 Transverse deflection for Specimen C, under a uniform pressure
load of 100 Newtons, with all four sides simply supported.
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Figure 6.67 Transverse deflection for Specimen D, under a uniform pressure
load of 100 Newtons, with all four sides simply supported.
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Rayleigh-Ritz
Potential Function
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Figure 6.68 Transverse deflection for Specimen I, under a uniform pressure
load of 100 Newtons, with all four sides simply supported.
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6.8 Results for Free Vibration

Analytical, free vibration mode shapes and natural frequencies were

found for each of the five plates for the boundary conditions four sides clamped,

x edges simply supported and y edges clamped, and four edges simply

supported. The mode shapes and natural frequencies were determined from a

Rayleigh-Ritz analysis using 9 x 9 modes. The rotary inertia was ignored, as

discussed in section 6.2, to simplify the calculation of the frequencies.

Bending-twisting coupling was included in the Rayleigh-Ritz model.

The first four mode shapes and corresponding frequencies for each

specimen and boundary condition are presented in Figures 6.69 through 6.83.

The strong bending-twisting coupling of Specimen A, which causes the node

lines to rotate from the plate axes, is very evident, while the weak bending-

twisting coupling of Specimen B is barely noticeable.
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Second Mode 1024 Hz

Third Mode 1309 Hz Fourth Mode

Figure 6.69 First four natural mode shapes and frequencies for Specimen A
with all four edges clamped.
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Second Mode 979 Hz

Third Mode 1145 Hz Fourth Mode 1546 Hz

Figure 6.70 First four natural mode shapes and frequencies for Specimen B
with all four edges clamped.
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First Mode 705 Hz

Third Mode 1551 Hz Fourth Mode 2066 Hz

Figure 6.71 First four natural mode shapes and frequencies for Specimen C
with all four edges clamped.
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Second Mode 1137 Hz

Third Mode 1374 Hz Fourth Mode

Figure 6.72 First four natural mode shapes and frequencies for Specimen D
with all four edges clamped.
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Second Mode 1004 Hz

Third Mode 1308 Hz Fourth Mode 1700 Hz

Figure 6.73 First four natural mode shapes and frequencies for Specimen I
with all four edges clamped.
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Second Mode 822 Hz

Third Mode 1204 Hz Fourth Mode 1304 Hz

Figure 6.74 First four natural mode shapes and frequencies for Specimen A
with x edges (short edges) simply supported and y edges (long
edges) clamped.
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First Mode 393 Hz Second Mode 829 Hz

Third Mode 902 Hz Fourth Mode 1308 Hz

Figure 6.75 First four natural mode shapes and frequencies for Specimen B
with x edges (short edges) simply supported and y edges (long
edges) clamped.
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First Mode 624 Hz Second Mode 1054 Hz

Third Mode 1491 Hz Fourth Mode 1721 Hz

Figure 6.76 First four natural mode shapes and frequencies for Specimen C
with x edges (short edges) simply supported and y edges (long
edges) clamped.
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Second Mode 865 Hz

Third Mode 1325 Hz Fourth Mode 1557 Hz

Figure 6.77 First four natural mode shapes and frequencies for Specimen D
with x edges (short edges) simply supported and y edges (long
edges) clamped.
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Second Mode 801 Hz

Third Mode 1267 Hz Fourth Mode 1363 Hz

Figure 6.78 First four natural mode shapes and frequencies for Specimen I
with x edges (short edges) simply supported and y edges (long
edges) clamped.
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Second Mode 677 Hz

Third Mode 920 Hz Fourth Mode 1102 Hz

Figure 6.79 First four natural mode shapes and frequencies for Specimen A
with all four edges simply supported.
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Second Mode 655 Hz

Third Mode 768 Hz Fourth Mode 1127 Hz

Figure 6.80 First four natural mode shapes and frequencies for Specimen B
with all four edges simply supported.

222

First Mode 284 Hz



First Mode 431 Hz

Third Mode 1091 Hz Fourth Mode 1600 Hz

Figure 6.81 First four natural mode shapes and frequencies for Specimen C
with all four edges simply supported.
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Second Mode 739 Hz

Third Mode 903 Hz Fourth Mode

Figure 6.82 First four natural mode shapes and frequencies for Specimen D
with all four edges simply supported.
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Second Mode 671 Hz

Third Mode 874 Hz Fourth Mode 1234 Hz

Figure 6.83 First four natural mode shapes and frequencies for Specimen I
with all four edges simply supported.
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Chapter 7

Comparison of Results

This chapter compares the experimental and analytical results for both

the static loadings and the dynamic vibrations. Plots are presented comparing

experimental and analytical deflections for the static loadings. Percentage

differences between experimental and analytical stiffness and natural

frequencies are summarized.

7.1 General Observations Regarding Experimental Results

In all cases, the experimental clamped condition was under constrained

compared to the analysis, resulting in more deflection than analytically

predicted. The increase in boundary flexibility may be attributed to either the

sponginess of the teflon tape that was used to lubricate the boundary, the

failure of the boundary condition to properly enforce the zero rotation

condition, or a combination of the two effects. The two effects can not be

separated from the experimental data available.

The error in the experimental clamped boundary condition appears to be

proportional to the edge moment, which also indicates boundary condition

stiffness as the problem. In general, off center loads have a larger error than

centered loads and the URPP loads have a larger error than the point loads,

while uniform pressure also exhibits a large error.

The simple supports were also slightly under constrained in most cases,

however, the difference was almost always within the experimental error

which was estimated at ± 8%. This error was composed of ± 2% from the

measurement devices, ± 2% from the regressions, and ± 4% from the stiffness
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averaging. For some cases the simple supports are over constrained, as

indicated in Table 7.1.

Table 7.1 summarizes the difference between the experimental

stiffnesses and the Rayleigh-Ritz stiffness predictions. The stiffnesses at the

first and third transducer locations have been compared because these points

are closest to the center of loading for the centered and off-center loadings

respectively. The transducers further from the loading show similar trends

but slightly more error. For these transducers the error constitutes a larger

percentage of the reading, because the displacements being measured are an

order of magnitude smaller than the center displacements.

Negative values in Table 7.1 indicate that the experimental stiffness was

less than the predicted analytical stiffness. The last column gives an average

of the absolute values of the error over all five specimen types for each loading

and boundary condition combination. These averages assist in deciphering

trends in the stiffness differences.



Table 7.1 Difference of Experimental Stiffness from Rayleigh-Ritz Prediction

Point Percent Difference from Rayleigh-Ritz

Loading B.C.'s # A B C D I Avg.

Centered Point Load

Off-Center Point Load

Centered URPP

Off-Center URPP

Uniform Pressure

CL-CL 1
3

SS-SS 1
3

CL-CL 1
3

SS-CL 1
3

SS-SS 1
3

CL-CL 1
3

SS-SS 1
3

CL-CL 1
3

SS-CL 1
3

SS-SS 1
3

CL-CL 1

3
SS-CL 1

3
SS-SS 1

3

-11

-13

-7

-8

-27

-38
-21

-15
-8

-6
-12
-16
-6

-7

-23
-19
-19
-13
-8

-5

-23
-24
-17
-19

3

1

-1

-1

0

-9

-13
8
8

-29
-28
-12
-11
-1
-1

-11
-13

8

8
-31
-27
-23
-18
-8
-6

-18
-17

4

4

37
35

-15

-19
-8
-8

-33
-30
-24

-21
-7
-7

-20
-21

-9
-9

-29
-25
-25
-22
-11
-11

-30
-31
-26
-28
-10
-11

-10
-17

-7

-7

-31
-30
-22
-17

1

2

-12
-15

1

1

-37
-41
-22
-17
-4

-2

-30
-33
-25
-24

6
5

-1

-23
-21
-22
-19
-2

-3
-17
-18

1

0

-25
-24
-25
-21

-5

-5

-30

-32
-20
-21

14

13

12

15

6

6

29

29

20

17

4

4
14

17

5

5

29

27

23

18

7

6

26

27

18

19
14

13



7.2 Comparison of Results for Centered Point Load

The centered point load tests are fairly consistent. The excessive

flexibility of the four sides clamped boundary condition results in 15% more

deflection than analytically predicted by the Rayleigh-Ritz solution. The

simply supported tests generally exhibit 5% more deflection than analytically

predicted by the Rayleigh-Ritz solution, but this is within the ±8 %

experimental error. In general, there is good agreement between the data and

the Rayleigh-Ritz analysis.

In general, the single mode potential functions for four edges clamped

and four edges simply supported are not sufficient to adequately describe the

deformations caused by the centered point load. Additional modes need to be

added to the single mode solution to obtain a converged answer.
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Rayleigh-Ritz
Potential Function
Experimental Data

9x
1

9 modes
mode

50 100 150 U ZUU Z

x dimension (mm) along y=b/2

50 100 150 ZUU

y dimension (mm) along x=a/2

Figure 7.1 Transverse deflection for Specimen A, under a centered point load
of 100 Newtons, with all four sides clamped.
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Rayleigh-Ritz
Potential Function
Experimental Data

9 x 9 modes
1 mode

40 %

50 100 150
x dimension (mm) along

200 250
y=b/2

50 100 150 200
y dimension (mm) along x=a/2

Figure 7.2 Transverse deflection for Specimen B, under a centered point load
of 100 Newtons, with all four sides clamped.
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Rayleigh-Ritz
Potential Function
Experimental Data

9 x 9 modes
1 mode

+ /e

50 10 1150 200 250

x dimension (mm) along y=b/2

50 100 150 2UU00

y dimension (mm) along x=a/2

Figure 7.3 Transverse deflection for Specimen C, under a centered point load
of 100 Newtons, with all four sides clamped.
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Rayleigh-Ritz
Potential Function
Experimental Data

9x
1

9 modes
mode

.0'* %
/

\ X\

50 100 150 200 250
x dimension (mm) along y=b/2

50 100 150 200
y dimension (mm) along x=a/2

Figure 7.4 Transverse deflection for Specimen D, under a centered point load
of 100 Newtons, with all four sides clamped.
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Rayleigh-Ritz
Potential Function
Experimental Data

9 x 9 modes
1 mode

b U 1UU lbU ZUU ZbU

x dimension (mm) along y=b/2

bU 1UU 1bU ZUU

y dimension (mm) along x=a/2

Figure 7.5 Transverse deflection for Specimen I, under a centered point load
of 100 Newtons, with all four sides clamped.
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Rayleigh-Ritz
Potential Function
Experimental Data

9 x 9 modes
1 mode

E

0

Owa
.b
a)
0

50 100 150 200 250
x dimension (mm) along y=b/2

U50 100 150 200
y dimension (mm) along x=a/2

Figure 7.6 Transverse deflection for Specimen A, under a centered point load
of 100 Newtons, with all four sides simply supported.
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Rayleigh-Ritz
Potential Function

* Experimental Data

9 x 9 modes
1 mode

w

0

8

a
0

s5 100 150 200 250
x dimension (mm) along y=b/2

50 100 150 200
y dimension (mm) along x=a/2

Figure 7.7 Transverse deflection for Specimen B, under a centered point load
of 100 Newtons, with all four sides simply supported.
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Rayleigh-Ritz
Potential Function
Experimental Data

9 x 9 modes
1 mode

50 100 150 200 250
x dimension (mm) along y=b/2

50 IUU l )U LUU
y dimension (mm) along x=a/2

Figure 7.8 Transverse deflection for Specimen C, under a centered point load
of 100 Newtons, with all four sides simply supported.
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Rayleigh-Ritz
Potential Function
Experimental Data

9 x 9 modes
1 mode

50 IUU 1bU ZUU ZU

x dimension (mm) along y=b/2

U 1UU lbU ZUU

y dimension (mm) along x=a/2

Figure 7.9 Transverse deflection for Specimen D, under a centered point load
of 100 Newtons, with all four sides simply supported.
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Rayleigh-Ritz
Potential Function
Experimental Data

9x
1

9 modes
mode

50 100 150 200 250
x dimension (mm) along y=b/2

50 100 150 200
y dimension (mm) along x=a/2

Figure 7.10 Transverse deflection for Specimen I, under a centered point load
of 100 Newtons, with all four sides simply supported.
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7.3 Comparison of Results for Off-Center Point Load

The off-center point load tests are also fairly consistent, however,

additional error results from the experimental clamped boundary conditions

due to the increased edge moment. The excessive flexibility of the four sides

clamped boundary condition results in 30% more deflection than analytically

predicted by the Rayleigh-Ritz solution. Even when only the y edges are

clamped, the boundary condition results in 20% more deflection than

predicted. The simply supported tests generally exhibit 5% more deflection

than analytically predicted by the Rayleigh-Ritz solution, but again this is

within the ±8 % experimental error. In general, there is good agreement

between the data and the Rayleigh-Ritz analysis.

No comparisons were made with the single mode potential functions

since the potential functions are symmetric, and would be unable to account

for the off-center loading.
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Rayleigh-Ritz
* Experimental Data

9 x 9 modes

1.4

0.A

0.1

0.;

0.19

0.i

0.'

0.;

50 100 150 200 250
x dimension (mm) along y=b/2

50 100 150
y dimension (mm) along x=a/2

200

Figure 7.11 Transverse deflection for Specimen A, under an off-center point
load of 100 Newtons, with all four sides clamped.
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Rayleigh-Ritz
* Experimental Data

9 x 9 modes

E
a0
0

E
4
0

10.

0.

0.

50 100 150 200 250
x dimension (mm) along y=b/2

50 100 150 200
y dimension (mm) along x=a/2

Figure 7.12 Transverse deflection for Specimen B, under an off-center point
load of 100 Newtons, with all four sides clamped.
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Rayleigh-Ritz
* Experimental Data

9 x 9 modes

50 100
x dimension (mm

150 200 250
) along y=b/2

50 100 150 200
y dimension (mm) along x=a/2

Figure 7.13 Transverse deflection for
load of 100 Newtons, with

Specimen C, under an
all four sides clamped.

off-center point
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Rayleigh-Ritz
Experimental Data

9 x 9 modes

1.!
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x dimension (mm) along y=b/2

0.

0.9

50 100 150 200
y dimension (mm) along x=a/2

Figure 7.14 Transverse deflection for Specimen D, under an off-center point
load of 100 Newtons, with all four sides clamped.
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Rayleigh-Ritz
* Experimental Data

9 x 9 modes

00-1E4LU
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.0ftE

O0ts)

50 100 150 200 250
x dimension (mm) along y=b/2

50 100 150 200
y dimension (mm) along x=a/2

Figure 7.15 Transverse deflection for Specimen I, under an off-center point
load of 100 Newtons, with all four sides clamped.
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Rayleigh-Ritz
Experimental Data

9 x 9 modes

bU 1UU

x dimension (mm
1bU 2UU ZbU
) along y=b/2

50 100 150 200
y dimension (mm) along x=a/2

Figure 7.16 Transverse deflection for Specimen A, under an off-center point
load of 100 Newtons, with x edges (short edges) simply supported
and y edges (long edges) clamped.
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Rayleigh-Ritz
* Experimental Data

9 x 9 modes

0

0

E
8
C
O

0)

2.

12.

0..

2.

I.

0

50 100
x dimension (mm

150 200 250
) along y=b/2

50 100 150 200
y dimension (mm) along x=a/2

Figure 7.17 Transverse deflection for Specimen B, under an off-center point
load of 100 Newtons, with x edges (short edges) simply supported
and y edges (long edges) clamped.
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Rayleigh-Ritz
* Experimental Data

9 x 9 modes
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Figure 7.18 Transverse deflection for Specimen C, under an off-center point
load of 100 Newtons, with x edges (short edges) simply supported
and y edges (long edges) clamped.
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Rayleigh-Ritz
* Experimental Data

9 x 9 modes

50 100
x dimension (mm

150 200 250
) along y=b/2

U lUU 15bU ZUU

y dimension (mm) along x=a/2

Figure 7.19 Transverse deflection for Specimen D, under an off-center point
load of 100 Newtons, with x edges (short edges) simply supported
and y edges (long edges) clamped.
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Rayleigh-Ritz
Experimental Data

9 x 9 modes
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C
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Figure 7.20 Transverse deflection for Specimen I, under an off-center point
load of 100 Newtons, with x edges (short edges) simply supported
and y edges (long edges) clamped.
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Rayleigh-Ritz
* Experimental Data

9 x 9 modes
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y dimension (mm) along x=a/2

Figure 7.21 Transverse deflection for Specimen A, under an off-center point
load of 100 Newtons, with all four sides simply supported.
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Rayleigh-Ritz
* Experimental Data

9 x 9 modes

U iUU mIU ZUU ZbU
x dimension (mm) along y=b/2

SU IUU IbU ZUU
y dimension (mm) along x=a/2

Figure 7.22 Transverse deflection for Specimen B, under an off-center point
load of 100 Newtons, with all four sides simply supported.
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Rayleigh-Ritz
* Experimental Data

9 x 9 modes
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Figure 7.23 Transverse deflection for Specimen C, under an off-center point
load of 100 Newtons, with all four sides simply supported.
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Rayleigh-Ritz
* Experimental Data
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x dimension (mm) along y=b/2
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y dimension (mm) along x=a/2

Figure 7.24 Transverse deflection for Specimen D, under an off-center point
load of 100 Newtons, with all four sides simply supported.
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Rayleigh-Ritz
Experimental Data

9 x 9 modes
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x dimension (mm) along y=b/2
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Figure 7.25 Transverse deflection for Specimen I, under an off-center point
load of 100 Newtons, with all four sides simply supported.
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7.4 Comnarison of Results for Centered URPP

The centered URPP tests follow the same pattern as the centered point

load tests. The four edges clamped case is 15% overly flexible and the four

edges simply supported case is 5% overly flexible when compared to the

Rayleigh-Ritz analysis. One interesting exception is specimen B with four

edges simply supported. For this case the experimental stiffness is 8% stiffer

than the Rayleigh-Ritz analysis. This over constraint comes close to exceeding

the estimated experimental error of ±8 %. All the other specimens are under

constrained or just marginally over constrained.

Again, the single mode potential functions for four edges clamped and

four edges simply supported are not sufficient to adequately describe the

deformations caused by the centered URPP. Additional modes need to be

added to the single mode solution to obtain a converged answer.
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Rayleigh-Ritz
Potential Function
Experimental Data

9 x 9 modes
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x dimension (mm) along

200 250
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y dimension (mm) along x=a/2

Figure 7.26 Transverse deflection for Specimen A, under a
load of 100 Newtons, with all four sides clamped.

centered URPP
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Rayleigh-Ritz
Potential Function
Experimental Data

9 x 9 modes
1 mode

U 1U00 .L U aLU LU
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y dimension (mm) along x=a/2

Figure 7.27 Transverse deflection for Specimen B, under a
load of 100 Newtons, with all four sides clamped.

centered URPP
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Rayleigh-Ritz
Potential Function
Experimental Data

9 x 9 modes
1 mode

50 100 150 200 250
x dimension (mm) along y=b/2
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y dimension (mm) along x=a/2

Figure 7.28 Transverse deflection for Specimen C, under a
load of 100 Newtons, with all four sides clamped.

centered URPP
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Rayleigh-Ritz
Potential Function
Experimental Data

9 x 9 modes
1 mode
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Figure 7.29 Transverse deflection for Specimen D, under a
load of 100 Newtons, with all four sides clamped.

centered URPP
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Rayleigh-Ritz
Potential Function

* Experimental Data

9 x 9 modes
1 mode

50 100
x dimension (mm
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50 100 150 ZUU
y dimension (mm) along x=a/2

Figure 7.30 Transverse deflection for Specimen I, under a
load of 100 Newtons, with all four sides clamped.

centered URPP
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Rayleigh-Ritz
Potential Function

* Experimental Data

9 x 9 modes
1 mode

xU IUU (mU ZUU ZyU
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y dimension (mm) along x=a/2

Figure 7.31 Transverse deflection for Specimen A, under a centered URPP
load of 100 Newtons, with all four sides simply supported.
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Rayleigh-Ritz
Potential Function
Experimental Data
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Figure 7.32 Transverse deflection for Specimen B, under a centered URPP
load of 100 Newtons, with all four sides simply supported.
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Figure 7.33 Transverse deflection for Specimen C, under a centered URPP
load of 100 Newtons, with all four sides simply supported.
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Figure 7.34 Transverse deflection for Specimen D, under a centered URPP
load of 100 Newtons, with all four sides simply supported.
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Figure 7.35 Transverse deflection for Specimen I, under a centered URPP
load of 100 Newtons, with all four sides simply supported.
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7.5 Comparison of Results for Off-Center URPP

The off-center URPP tests are slightly less consistent than the off-center

point load tests, however, they follow the same pattern. The excessive

flexibility of the four edges clamped boundary condition again results in 30%

more deflection for four edges clamped, 20% more deflection for two edges

clamped and two edges simply supported, and 5% more deflection for four

edges simply supported, than analytically predicted by the Rayleigh-Ritz

solution.

Again no comparisons were made with the single mode potential

functions for four edges clamped and four edges simply supported since both

potential functions are symmetric, and would be unable to account for the off-

center loading.
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Figure 7.36 Transverse deflection for Specimen A, under an off-center URPP
load of 100 Newtons, with all four sides clamped.
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Figure 7.37 Transverse deflection for Specimen B, under an off-center URPP
load of 100 Newtons, with all four sides clamped.

270



Rayleigh-Ritz
* Experimental Data

9 x 9 modes

E

C
O

ci
0

0.;
o Ed

0.(

0.4

0.2

w

0*t
O

O)

50 100
x dimension (mm

150 200 250
) along y=b/2

50 100 150 200
y dimension (mm) along x=a/2

Figure 7.38 Transverse deflection for Specimen C, under an off-center URPP
load of 100 Newtons, with all four sides clamped.
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Figure 7.39 Transverse deflection for Specimen D, under an off-center URPP
load of 100 Newtons, with all four sides clamped.
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Figure 7.40 Transverse deflection for Specimen I, under an
load of 100 Newtons, with all four sides clamped.
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Figure 7.41 Transverse deflection for Specimen A, under an off-center URPP
load of 100 Newtons, with x edges (short edges) simply supported
and y edges (long edges) clamped.
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Figure 7.42 Transverse deflection for Specimen B, under an off-center URPP
load of 100 Newtons, with x edges (short edges) simply supported
and y edges (long edges) clamped.
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Figure 7.43 Transverse deflection for Specimen C, under an off-center URPP
load of 100 Newtons, with x edges (short edges) simply supported
and y edges (long edges) clamped.
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Figure 7.44 Transverse deflection for Specimen D, under an off-center URPP
load of 100 Newtons, with x edges (short edges) simply supported
and y edges (long edges) clamped.
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Figure 7.45 Transverse deflection for Specimen I, under an off-center URPP
load of 100 Newtons, with x edges (short edges) simply supported
and y edges (long edges) clamped.
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Figure 7.46 Transverse deflection for Specimen A, under an off-center URPP
load of 100 Newtons, with all four sides simply supported.
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Figure 7.47 Transverse deflection for Specimen B, under an off-center URPP
load of 100 Newtons, with all four sides simply supported.
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Figure 7.48 Transverse deflection for Specimen C, under an off-center URPP
load of 100 Newtons, with all four sides simply supported.
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Figure 7.49 Transverse deflection for Specimen D, under an off-center URPP
load of 100 Newtons, with all four sides simply supported.
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Figure 7.50 Transverse deflection for Specimen I, under an off-center URPP
load of 100 Newtons, with all four sides simply supported.
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7.6 Comparison of Results for Uniform Pressure

The uniform pressure results are the least consistent and therefore the

most difficult to interpret. In general, the four edges clamped condition again

results in 30% more deflection, the two edges clamped and two edges simply

supported results in 20-25% more deflection, and the four edges simply

supported condition results in 5-10% less deflection than predicted by the

Rayleigh-Ritz prediction. Once again the B specimens are the furthest from

the norm resulting in 20% more deflection, 5% more deflection, and 35% less

deflection respectively, for the three boundary conditions compared to the

Rayleigh-Ritz prediction. This is significantly more deviation from predicted

stiffness than is observed in the A specimens which exhibit a much stronger

bending-twisting coupling.

The single mode potential function for four edges simply supported

yields surprisingly excellent results in the case of the uniform pressure

loading. In fact, the single mode potential function solution, which has only 16

terms in its polynomial, is 2-4% more converged than the 81 term double sine

Rayleigh-Ritz solution. This example illustrates the level of efficiency possible

with potential functions.
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Figure 7.51 Transverse deflection for Specimen A, under a uniform pressure
load of 100 Newtons, with all four sides clamped.
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Figure 7.52 Transverse deflection for Specimen B, under a uniform pressure
load of 100 Newtons, with all four sides clamped.
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Figure 7.53 Transverse deflection for Specimen C, under a uniform pressure
load of 100 Newtons, with all four sides clamped.
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Figure 7.54 Transverse deflection for Specimen D, under a uniform pressure
load of 100 Newtons, with all four sides clamped.
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Figure 7.55 Transverse deflection for Specimen I, under a uniform pressure
load of 100 Newtons, with all four sides clamped.
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Figure 7.56 Transverse deflection for Specimen A, under a
load of 100 Newtons, with x edges (short edges)
and y edges (long edges) clamped.

uniform pressure
simply supported
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Figure 7.57 Transverse deflection for Specimen B, under a
load of 100 Newtons, with x edges (short edges)
and y edges (long edges) clamped.

uniform pressure
simply supported
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Figure 7.58 Transverse deflection for Specimen C, under a
load of 100 Newtons, with x edges (short edges)
and y edges (long edges) clamped.

uniform pressure
simply supported
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Figure 7.59 Transverse deflection for Specimen D, under a
load of 100 Newtons, with x edges (short edges)
and y edges (long edges) clamped.

uniform pressure
simply supported
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Figure 7.60 Transverse deflection for Specimen I, under a uniform pressure
load of 100 Newtons, with x edges (short edges) simply supported
and y edges (long edges) clamped.
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Figure 7.61 Transverse deflection for Specimen A, under a uniform pressure
load of 100 Newtons, with all four sides simply supported.
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Figure 7.62 Transverse deflection for Specimen B, under a uniform pressure
load of 100 Newtons, with all four sides simply supported.
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Figure 7.63 Transverse deflection for Specimen C, under a uniform pressure
load of 100 Newtons, with all four sides simply supported.
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Figure 7.64 Transverse deflection for Specimen D, under a uniform pressure
load of 100 Newtons, with all four sides simply supported.
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Figure 7.65 Transverse deflection for Specimen I, under a uniform pressure
load of 100 Newtons, with all four sides simply supported.
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7.7 Comparison of Results for Forced Vibration

The vibration tests also correlate well with the Rayleigh-Ritz predictions,

both for natural frequency and mode shape. The experimental and analytical

mode shapes were presented in Chapters 5 and 6 along with their respective

frequencies. The two lowest modes were always found experimentally and the

difference in frequency between experiment and Rayleigh-Ritz prediction is

summarized in Table 7.2. Again, an average of the absolute values of the

errors for each boundary condition was calculated. The four edges clamped

condition exhibits the largest difference, two edges clamped and two edges

simply supported is slightly better, and four edges simply supported is almost

within experimental error. The average differences in frequency compare

favorably with the largest differences in stiffness since frequency is

proportional to the square root of stiffness.

Table 7.2 Difference of Experimental Frequency from Rayleigh-Ritz Prediction

Percentage Difference form Rayleigh-Ritz
B.C.'s Mode A B C D I Average

CL-CL First -19 -17 6 22 -17 16
Second -14 -14 -17 -19 -12 15

SS-CL First -17 -8 -21 -5 -2 11
Second -5 -8 -26 -15 -3 11

SS-SS First -3 -3 -15 -3 10 7
Second -2 -3 -14 6 14 8

In some cases, the third and fourth lowest modes found experimentally

match higher analytical modes, indicating that modes were missed in the

experiments or that the mechanical shaker was not powerful enough to excite

these modes. All the experimental modes presented in Chapter 5 can be
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correlated to analytical modes, however, not all correlate to the lowest four

analytical modes presented in Chapter 6. In many cases the fourth and fifth

analytical modes occur at frequencies very close to one another and in the

experiments these modes occurred in the reverse order. Thus in several

cases, the fourth lowest experimental mode is often the fifth lowest analytical

mode. The first four analytical modes have been presented in Chapter 6. An

example of the comparison between experimental and analytical mode shapes

and frequencies is given in Figures 7.66 and 7.67, where Specimen B with four

edges simply supported is contrasted. Note that the fourth experimental mode

corresponds to the fifth analytical mode, which is presented in Figure 7.67.
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* 6

f = 275±10 Hz

Figure 7.66

First Mode 284 Hz

Comparison of first and second experimental and analytical
modes for Specimen B with all four edges simply supported.
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f = 1234±24 Hz

Third Mode 768 Hz

Figure 7.67 Comparison of third and fourth experimental and matching
analytical modes for Specimen B with all four edges simply
supported.
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Chapter 8

Conclusions and Recommendations

The following conclusions were drawn considering the experimental

and analytical results:

1. The theoretical simply supported boundary conditions were well

modeled by the experimental jig. Almost all disagreement, for both

static and dynamic loadings, between the experimental and analytical

results for the simply supported cases was within experimental

accuracy.

2. The clamped boundary conditions allowed more experimental static

deflection, and caused lower natural frequencies than was analytically

predicted. This lack of proper boundary condition stiffness is attributed

to one of the following:

1) the teflon tape that was used to lubricate the boundary conditions

and allow in-plane sliding of the laminate

2) the failure of the clamped boundary condition to properly enforce

the zero rotation constraint

3) a combination of the teflon tape and unenforced zero rotation

constraint.

3. From the difficulty in modeling the clamped boundary condition, it may

be assumed that a true clamped boundary condition will rarely occur in

an aerospace structure. Understanding the range over which structure

behaves, however, is of concern, and requires an understanding of both
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the clamped and simply supported boundary conditions which represent

two extremes of structural response.

4. The constrained Navier solution exhibits poor convergence, but does

properly predict the displacement when bending-twisting coupling is

neglected. The moment applied to the plate by the boundary conditions

is not given explicitly by the solution, but may be reconstructed from the

Lagrange multipliers.

5. The Rayleigh-Ritz solution correctly models all consistently observed

experimental behavior, including the bending-twisting coupling. The

one exception is the experimentally clamped boundary condition as

discussed above.

6. The bending-shearing coupling, which was not modeled by any of the

analysis, did not appear to influence plate deformation in the cases

tested, where the plate was allowed to slide in-plane. In general,

disagreement between the experimental and analytical results was no

worse for specimen D, which had bending-shearing coupling, than for

the other specimens.

7. The single mode potential function solution for plates with all four sides

simply supported, under a uniform pressure loading, is less stiff (more

converged) than the 9 x 9 Rayleigh-Ritz solution. The sixteen polynomial

terms give a better solution for this boundary condition and loading than

the 81 term double sine series, thus illustrating the efficiency that may

be obtained with potential function solutions.
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8. The current single mode potential function solution for four sides

clamped is not capable of providing a converged solution for any of the

three loading cases investigated. Either a new mode must be formulated

or additional modes must be added to allow convergence for these

solutions.

The following items are recommended for further investigation:

1. Improved modeling of the clamped boundary condition should be

possible and would allow better understanding of the range of boundary

condition response. Further work should be performed to

experimentally create a truly clamped boundary condition.

2. Although bending-shearing coupling seemed to have no effect on plate

deformation for the cases tested, this may be due to the flexibility of the

plate to slide in-plane. Further tests should be conducted in which the

plate is prevented from sliding in-plane to evaluate the effect of bending-

shearing coupling with this additional constraint.

3. The single mode potential function solutions need to be expanded into

sets of modes to allow proper modeling of all loading conditions. In

addition, the single mode potential function for the all edges clamped

case should be reexamined to evaluate whether a more suitable first

mode shape exists.
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4. Although experimental data was obtained for cases with free edges, no

analysis has been performed for these boundary conditions. These cases

should be analyzed to insure that they are correctly modeled by Rayleigh-

Ritz or potential function solutions.

5. All of the cases studied in this investigation had symmetric boundary

conditions. Further experimental and analytical results should be

generated to confirm proper understanding of unsymmetric

combinations of boundary conditions.
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Appendix A

Specimen Thickness Measurements

This appendix contains the thickness measurements of the composite

plate specimens. Each specimen was measured at 25 points with a

micrometer. The average of these measurements is also given for each plate.

The average thickness for each layup, and the thickness of the aluminum

specimens are given in Chapter 4.
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Table A.1 Thickness Measurements for A and B Specimens (mm)

Location A-1 A-2 A-3 B-1 B-2 B-3

1 3.03 3.05 3.20 2.70 2.66 2.65

2 3.03 3.12 3.27 2.79 2.80 2.76

3 3.05 3.06 3.32 2.81 2.80 2.76

4 3.02 3.03 3.22 2.82 2.79 2.76
5 2.90 2.92 3.08 2.70 2.68 2.71

6 3.26 3.28 3.27 2.84 2.84 2.81
7 3.26 3.30 3.34 2.93 2.90 2.89

8 3.28 3.25 3.39 2.90 2.87 2.90

9 3.31 3.25 3.37 2.95 2.92 2.96
10 3.21 3.23 3.30 2.81 2.84 2.87

11 3.19 3.28 3.31 2.83 2.83 2.84

12 3.30 3.28 3.33 2.86 2.97 2.95

13 3.36 3.36 3.44 2.92 2.95 2.92

14 3.34 3.30 3.46 2.96 2.98 2.94

15 3.25 3.34 3.34 2.86 2.85 2.86

16 3.10 3.17 3.18 2.78 2.78 2.80

17 3.21 3.23 3.31 2.88 2.90 2.92
18 3.30 3.30 3.40 2.86 2.91 2.88

19 3.28 3.32 3.40 2.99 2.91 2.90

20 3.21 3.27 3.28 2.84 2.82 2.84

21 3.00 3.05 3.00 2.67 2.74 2.70

22 3.12 3.14 3.20 2.75 2.85 2.80

23 3.21 3.14 3.28 2.82 2.84 2.82
24 3.20 3.20 3.25 2.86 2.80 2.80
25 3.16 3.17 3.17 2.68 2.77 2.74

Average 3.18 3.20 3.28 2.83 2.84 2.83
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Table A.2 Thickness Measurements for C and D Specimens (mm)

Location C-1 C-2 C-3 D-1 D-2 D-3

1 3.50 3.52 3.46 2.90 2.90 2.91

2 3.56 3.51 3.48 3.08 3.05 3.06

3 3.51 3.56 3.53 3.18 3.14 3.19

4 3.55 3.60 3.48 3.08 3.10 3.08

5 3.58 3.51 3.44 2.80 2.82 2.77

6 3.52 3.52 3.56 3.00 2.94 3.00
7 3.54 3.56 3.54 3.20 3.07 3.09

8 3.57 3.58 3.58 3.23 3.15 3.14

9 3.57 3.56 3.57 3.14 3.10 3.09
10 3.54 3.54 3.53 2.93 2.84 3.87

11 3.52 3.57 3.50 3.07 2.94 2.96
12 3.60 3.61 3.57 3.25 3.14 3.11
13 3.63 3.61 3.60 3.28 3.19 3.22
14 3.60 3.60 3.53 3.18 3.13 3.18

15 3.57 3.57 3.52 2.91 2.88 2.89

16 3.59 3.53 3.49 3.03 2.93 2.95
17 3.55 3.61 3.51 3.17 3.06 3.11

18 3.60 3.59 3.51 3.24 3.18 3.15

19 3.58 3.56 3.56 3.20 3.12 3.11

20 3.51 3.51 3.53 2.91 2.92 2.85

21 3.50 3.46 3.48 2.87 2.82 2.82

22 3.52 3.53 3.51 3.14 3.01 3.03

23 3.52 3.54 3.50 3.13 3.09 3.08
24 3.52 3.55 3.49 3.15 3.09 3.03
25 3.48 3.48 3.44 2.79 2.80 2.86

Average 3.55 3.55 3.52 3.07 3.02 3.06
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Append~ix B

Computer Code for Taminated Plate Stiffnessm

This code calculates the stiffnesses for a laminated plate according to

the equations presented in Chapter 2. The program is written in the

MathematicaTM programming language [25] and runs on a Macintosh. Two

input files are required and one output file is created. The first input file is a

material property data file, "mat.dat". The second file contains the laminate

specific information, "lam.dat". Examples of these files along with an output

file, "stiff.out" are included.

Copyright ©1991 Massachusetts Institute of Technology

Permission to use, copy, and modify this software and its documentation
for internal purposes only and without fee is hereby granted provided that the
above copywrite notice and this permission appear on all copies of the code and
supporting documentation. For any other use of this software, in original or
modified form, including but not limited to, adaptation as the basis of a
commercial software or hardware product, or distribution in whole or in part,
specific prior permission and/or the appropriate license must be obtained from
MIT. This software is provided "as is" without any warranties whatsoever,
either expressed or implied, including but not limited to the implied
warranties of merchantability and fitness for a particular purpose. This
software is a research program, and MIT does not represent that it is free of
errors or bugs or suitable for any particular task.
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Code Listing: Plate Stiffnesses

nmatmax = 12; (' max number of materials to be read *)
nplymax = 25 (* max number of plies in a laminate *)
small = 10^-16 (' check against to zero numerical error *)

matname = Arraytml ,{nmatmax}];
matdat = Array[m2,{nmatmax,10)];

(' Reading material data from mat.dat *)
(* Reading: el,e2,e3,g23,g31,gl2,nu23,nul3,nul2,tply *)
OpenRead["mat.dat"];

Do[Read["mat.dat",String];,{2}];
Do[

matname([i]] = Read["mat.dat",String];
Do[

matdat[[i,j]] = Read["mat.dat",Number];
,(j,10}];
Read["mat.dat",String];

,{i,nmatmax}];
Close["mat.dat"];

(* Reading laminate data from lam.dat *)
(* Reading: nply, mat #, tply *)
nlam = Input["Number of laminates?"];
lamname = Array[ll ,{nlam}]; lamdat = Array[12,{nlam,3)];
lamangle = Array[13,{nlam,nplymax)];
OpenRead["lam.dat"];

Do[Read["lam.dat",String] ;,(3}];
Do[

lamname[[i]] = Read["lam.dat",String];
Do[

lamdat[[i,j]] = Read["lam.dat",Number];
,{j,3}];
If[lamdat[[i,3] == 0, lamdat[[i,3]] =

matdat[[lamdat[[i,2]], 10]]];
Do[

lamangle[[i,k]] = Read["lam.dat",Number];
,{k,lamdat[[i,1]]}];
Read["lam.dat",String];

,{i,nlamfl];
Close["lam.dat"];

q = Array[ql,9]; r = Array[rl,3]; s = Array[sl,3];
a = Array[al,9]; b = Array[bl,6]; d = Array[dl,6];
OpenWrite["stiff .out"];
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Do[
mn = lamdat[[i,2]]; tp = lamdat[[i,3]f; zt = tp lamdat[[i, 1]/2;
qbdn = 1 - matdat[[mn,9]]^2 matdat[[mn,2]]/matdat[[mn,1j];
qbl = matdat[[mn,1]]/qbdn;
qb1 2 = matdat[[mn,9]] matdat[[mn,2]]/qbdn;
qb22 = matdat[[mn,2]]/qbdn;
qb66 = matdat[[mn,6]];
Do[a[[k]] = 0;,{k,9)];
Do[(b[[k]] = O;d[[k]] = 0;},{k,6}];
Do[s[[k]] = 0;,{k,3}];
Do[

th = lamangle[[i,j]] Degree;
q[[1]] = qbl 1 Cos[th]A4 + 2 (qbl2+2qb66) Sin[th]A2 Cos[th]^2 +

qb22 Sin[th]^4;
q[[611 = (qbl 1 + qb22 - 4 qb66) Sin[th]^2 Cos[th]^2 +

qb12 (Sin[th]A4 + Cos[th]^4);
q[[2]] = qbl 1 Sin[th]A4 + 2 (qbl2+2qb66) Sin(th]^2 Cos[th]^2 +

qb22 Cos(th]^4;
q[[5]]= (qbl 1- qbl2 - 2 qb66) Sin[th] Cos[th]^3 +

(qbl2 - qb22 + 2 qb66) Sin[th]^3 Cos[th];
q[[4]] = (qbl 1 - qb12 - 2 qb66) Sin[th]^3 Cos[th] +

(qbl2 - qb22 + 2 qb66) Sin[th] Cos[th]^3;
q[[3]] = (qbl 1 + qb22 - 2 qb12 - 2 qb66) Sin[th]^2 Cos[th]^2 +

qb66 (Sin[th]^4 + Cos[th]^4);
(* transverse terms traditional plate *)

q[[7]] = matdat[[mn,4]] Cos[th]A2 + matdat[[mn,5]] Sin[th]^2;
q[[8]] = matdat[[mn,4]] Sin[th]A2 + matdat[[mn,5]] Cos[th]^2;
q[[9]] = (-matdat[[mn,4]] + matdat[[mn,5]]) Cos[th] Sin[th];

(* transverse terms 3-0 elasticity *)
rq[1]] = 1/matdat[[mn,4]] Cos[th]A2 + 1/matdat[[mn,5]] Sin[th]^2;
r[[2]] = 1/matdat[[mn,4]] Sin[th]^2 + 1/matdat[[mn,5]] Cos[th]^2;
r[[3]] = (-1/matdat[[mn,4]] + 1/matdat[[mn,5]]) Cos[th] Sin(th];
Do[

a[[k]] = a[[k]] + q[[k]] tp//N;
,{k,9)];
Do[

s[[k]] = s[[k]] + r[[k]]/lamdat[[i,1 ]]//N;
,{k,3}];
Do[

b[[kJ = bf[[k] + q[[k]](tpA2 (1 - 2 j) + 2 tp zt)/2//N;
d[[k] = d[[k] + q[[k]]((zt-(j-1)tp)A3-(zt-j tp)A3)/3//N;

,{k,6)];
,{j,lamdat[[i, 1]]}];
({r([1l ,r[[3]]},{junk,r[[2]]}} =

2 zt Inverse[{(s[[l]], s[[3]]},(s[[3]], s[[2)]}}Y/N;
Do[ If[Abs[a[[k]]] < small,a[[k]]=0,],{k,9}];
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Do[ If[Abs[r[[k]]] < small,rf[k]]=0,],(k,3)];
Do[ If[Abs[b[[kfl] < small,b[[k]]=0,],{k,6}];
Do[ If[Abs[d[[k]]] < small,d[[k]]=0,],(k,6}];
Write["stiff.out",Iamname[[il]];
Write["stiff.out",N[a,3]];
Write["stiff.out",N[r,3fl]];
Write["stiff.out",N[b,3]];
Write["stiff.out", N[d,3]];

,{i,nlam}];
Close["stiff.out"];

(' header for laminate *)
(* classical A's in 10^6 N/m ')
(* 3-D transverse A's in 10^6 N/m *)
(' B's in 10^3 N *)
(' D's in N-m *)
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Input File: mat.dat

Entries ordered: El E2 E3 G23 G31 G12
Nu23 Nu13 Nu12 Tply

AS4/3501-6
.14200000E+03 .98100000E+01 .981 00000E+01 .3770000E+01 .60000000E+01

.60000000E+01
.34000000E+00 .30000000E+00 .30000000E+00 .13400000E+00

A370-5H/3501-6 (fabric)
.72500000E+02 .72600000E+02 .98100000E+01 .27200000E+02 .27200000E+02

.44300000E+01
.33300000E+00 .33300000E+00 .59000000E-01 .34300000E+00

Aluminum
.69030000E+02 .69030000E+02 .69030000E+02 .26550000E+02 .26550000E+02

.26550000E+02
.30000000E+00 .30000000E+00 .30000000E+00 .10000000E+01
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Input File: Iam.dat

laminate information: label
number of plies, material #, tply (0=default)
ply angles ...

A's
25 1 .129
45 45 45 45 0 0 0 45 45 45 45 0 0 0 45 45 45 45 0 0 0 45 45 45 45
B's
22 1 .129
0 0 45 -45 0 0 45 -45 90 90 0 0 90 90 -45 45 0 0 -45 45 0 0
C's
11 2.322
45 -45 45 -45 45 -45 45 -45 45 -45 45
D's
24 1 .127
-15 -15 -15 75 75 75 75 75 75 -15 -15 -15 15 15 15 -75 -75 -75 -75 -75 -75 15 15 15
I's
13 3.16
0
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Output File: stiff out

"A's"
(260., 106., 82.7, 68.6, 68.6, 72.9, 14.5, 17., 2.3)
(14.1, 16.6, 2.24)
(0., 0., 0., 0., 0., 0.)
(190., 105., 82.8, 71.5, 71.5, 74.3)
"B's"
(237., 134., 48.7, 0., 0., 40.1, 13., 14.7, 0.)
(12.4, 14., 0.)
(0., 0., 0., 0., 0., 0.)
(200., 48.5, 32.7, 3.43, 3.43, 26.9)
"C's"
(152., 152., 121., -0.00808, -0.00808, 121., 96.3,
(96.3, 96.3, 0.)
{0., 0., 0., 0., 0., 0.)
(159., 159., 127., -0.0252, -0.0252, 126.)
"D's"

(209., 209., 41.7, 0., 0., 32.4, 14.9, 14.9, 0.)
{14.1, 14.1, 0.}

(0., 0., 0., 30.9, -30.9, 0.)
(188., 137., 32.3, 0., 0., 25.1)
"I's"

(240., 240., 83.9, 0., 0., 71.9, 83.9, 83.9, 0.)
(83.9, 83.9, 0.)
(0., 0., 0., 0., 0., 0.}
(199., 199., 69.8, 0., 0., 59.8)

{label)
(All, A22, A66, A26, A16, A12, A55, A44, A45)
(A44, A55, A45)
(Bl11, B22, B66, B26, B16, B12)
(Dl, D22, D66, D26, D16, D12)
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Appendix C

Constant Coefficients for Anisotropic Plate Bending

This appendix lists the constant coefficients for the bending of a

midplane symmetric anisotropic Mindlin plate. The sixth order partial

differential equation in terms of a potential function, 4, to which these

coefficients belong, is given in Chapter 4.

P 1 = KA55(011 D66 - 016)

P 2 = 2 KA45 (D11 D6 6 - D26 )+ 2 KA55(D11 D26- D12 D16)

P 3 = KA44 (D11 D6 6 - 0 6 )+ 4 KA4 5 (D11 D26 - D12 Di6)+

,A55 (D11 D2 2 - D22 + 2 D16 D26 - 2 D1 D6 6)

P 4 = 2 KA44 (Dll D2 6 - D12 D1 6 )+ 2 KA55 (D22 D16 - 2 012 D26)+

2 A45 (011 D22 - D22 + 2 D16 D26- 2 012 066)

P5 = KA44(011 D22- D12 + 2 D16 D26- 2 D12 D66)+

4 A45 (D22 016 - 012 D26) + KA55 (022 D66 - D26)

P6 = 2 A44 (D22 D16- D12 D26)+ 2 KA45 (D22 D66 - D026)

P7 = A44(D22 D66- 26)

P8 = - Ro R2

P 9 = KA55 R22 + R R2 (Dll + D66)

P 10 = 2 KA4 5 R2 + 2 R0 R2 (D16 + D26)

P11 = KA44 R22 + Ro R2 (D2 2 + D66 )

P 12 = - K•55 R2(D11 + D6 6)- RO(D 11 D6 6 - D2 6)
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P13 = - 2 KA45 R2 (Dil + D66)- 2 KA55 R2 (D16 + D26)+

2 Ro(D12 D16 -D D26)

P 14 = - KA44 R2 (011 + D66)- 4 KA45 R2 (D16 + D26)-

KA55 R2(D22 + D66) + RO (D2 - D11 D22 + 2 D12 D66 - 2 D1 6D2 6)

P15 = - 2 KA44 R2 (D16 + D26)- 2 KA45 R2 (D22 + D66 )+

2 RO(D12 D26 - D22 D16)

P1 6 = - KA44 R2 (D22 + D6 6 )- R0 ( 22 D66 - D26

P17  - DD11 c (A44 A55 - AD 6 6 - 16)

P 18 = -4 D16 K2 (A44 A55 - A25)-2 K(D11 D26 - D12 D16)

P19 = -2 12 K2 (A44 A55 - A25)- 4 D66 2 (A44 A55 - A25)+

K(D 2 - Di D22 + 2 D12 D66 - 2 D16 D26)

P20 =- 4 D26 
2 (A44 A55 - A25)- 2 K (D22 D16 - D12 D2 6)

P21 =- 22 K (A44 A55 - A245 ) - K 2 2 6 6 - D)

P 22 = - Ro R2 (A44 + A55) - K R22

P23 = RO K (A44 D11 - 2 A4 5 D1 6 + A5 5 D6 6 )+

R2 K2 (A44 A55 - A25)+ K R2 (D,11 + D66)

P24 = 2 Ro K(A44 D16- A4 5(D12 + D6 6)+ A55 D26)+ 2 K R2(D16 + D2 6 )

P25 = Ro K (A44 D66 - 2 A45 D26 + A55 D22)+ R2 2 (A44 A55 - A245)+

K R2 (D22 + D66)

P26 = K K(A44 Dil - 2 A4 5 D16 + A55 D66)

P27 = 2 K (A44 D16 - A45 (D12 + D66) + A55 026)

P28 = K K (A44 D66 - 2 A45 D2 6 + A55 D2 2 )

P 2 9 = - Ro K2 (A44 A55 - A45)- K R2 K (A44 + A55)

P30 = - K 44 A55 - A45
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Appendix D
Computer Code for Polynomial Potential Function

This code calculates the coefficients for a potential function that is

complete in even powers of x and y through the tenth. Having satisfied the

boundary conditions explicitly, the amplitude may be determined through the

Galerkin method.

The analysis used is limited to symmetric loadings, and is only

approximate. Either a point load or a rectangular patch of uniform pressure

may be applied. The program is written in the MathematicaTM programming

language [25] and runs on a Macintosh.

Copyright ©1991 Massachusetts Institute of Technology

Permission to use, copy, and modify this software and its documentation
for internal purposes only and without fee is hereby granted provided that the
above copywrite notice and this permission appear on all copies of the code and
supporting documentation. For any other use of this software, in original or
modified form, including but not limited to, adaptation as the basis of a
commercial software or hardware product, or distribution in whole or in part,
specific prior permission and/or the appropriate license must be obtained from
MIT. This software is provided "as is" without any warranties whatsoever,
either expressed or implied, including but not limited to the implied
warranties of merchantability and fitness for a particular purpose. This
software is a research program, and MIT does not represent that it is free of
errors or bugs or suitable for any particular task.
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Code Listing: Polynomial Potential Function

(' Written by M.J. Graves & R.J. Notestine *)
(' M.I.T. TELAC - 1991')
(' This is an experimental one mode solution *)
(* Warning: Use ONLY for SYMMETRIC loadings *)
Share[];
conv = 254/10; (' english to SI *)
a = 10 convy; b = 8 conv; (* x & y plate dimensions *)
K = 822467/1000000; (* shear correction factor *)
{A44, A55} = {141/10,166/10} 1000;
{D11, 022, D66, D12} = {190,105,828/10,743/10) 1000;
P1 = -K A55 D11 D66;
P2 = -K A44 D11 D66 - K A55 (D11 D22 - 012^2 - 2 D12 D66);
P3 = -K A55 D22 D66 - K A44 (D11 D22 - D12^2 - 2 D12 D66);
P4 = -K A44 D22 D66;
P5 = K^2 A44 A55 D11;
P6 = 2 K^2 A44 A55 (D12 + 2 D66);
P7 = K^2 A44 A55 D22;

d131 = K A55 D66;

d132 = K A55 022 - K A44(D12 + D66);
d133 = -KA2 A44 A55;
d231 = K A44 D66;

d232 = K A44 D11 - K A55(D12 + D66);
d233 = -K^2 A44 A55;
d331 = Dl11 D66;

d332 = D11 D22 - D12^2 - 2 012 D66;
d333 = D22 D66;

d334 = -K (A44 D11 + A55 D66);
d335 = -K (A44 D66 + A55 D22);

d336 = K^2 A44 A55;

phi = 1 + a2 xA2 + a3 x^4 + a4 x^6 + a5 xA8 + a6 xA10 + a7 yA2 + a8 x^2 yA2 + a9 xA4 yA2 +
al0 xA6 yA2 + all xA8 yA2 + a12 x^10 yA2 + a13 yA4 + a14 x^2 yA4 + a15 x^4 yA4 +

a16 x^6 yA4 + a17 xA8 yA4 + a18 x^10 yA4 + a19 yA6 + a20 xA2 yA6 + a21 xA4 yA6 +
a22 xA6 yA6 + a23 x^8 yA6 + a24 x^10 yA6 + a25 yA8 + a26 x^2 yA8 + a27 x^4 yA8 +
a28 xA6 yA8 + a29 xA8 y^8 + a30 xA10 yA8 + a31 yA10 + a32 xA2 y 10 + a33 xA4 yA10 +
a34 xA6 yAlO + a35 x^8 yA10 + a36 xA10 y^10;

psix = Expand[dl31 D[phi,{x,3)}] + d132 D[phi,x,{y,2}] +
d133 D[phi,x]];

psiy = Expand[d231 D[phi,{y,3)}] + d232 D[phi,{x,2),y] +
d233 D[phi,y]];

w = Expand[d331 D[phi,{x,4)] + d332 D[phi,{x,2),{y,2)] +
d333 D[phi,{y,4}] + d334 D[phi,{x,2)}] +
d335 D[phi,(y,2)] + d336 phi];

mx = Expand[D1 1 D[psix,x] + D12 D[psiy,y]];
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my = Expand[D12 D[psix,x] + D22 D[psiy,y]];
mxy = Expand[D66 (D[psix,y] + D[psiy,x])];
qx = Expand[K A55 (D[w,x] + psix)];
qy = Expand[K A44 (D[w,y] + psiy)];
pde = Expand[P1 D[phi,{x,6}] + P2 D[phi,{x,4),(y,2}] +
P3 D[phi,{x,2),(y,4}] + P4 D[phi,{y,6)] + P5 D[phi,{x,4}] +
P6 D[phi,{x,2},{y,2}] + P7 D[phi,(y,4}]];
equationwx = w/.x->a/2;
equationwy = w/.y->b/2;
equationpsixx = psix/.x->a/2;
equationpsixy = psix/.y->b/2;
equationpsiyx = psiy/.x->a/2;
equationpsiyy = psiy/.y->b/2;
eql = equationwx/.y->0;
eq2 = Coefficient[equationwx,yA2];
eq3 = Coefficient[equationwx,yA4];
eq4 = Coefficient[equationwx,yA6];
eq5 = Coefficient[equationwx,yA8];
eq6 = Coefficient[equationwx,yl̂ 0];
eq7 = equationwy/.x->0;
eq8 = Coefficient[equationwy,xA2];
eq9 = Coefficient[equationwy,xA4];
eqlO = Coefficient[equationwy,xA6];
eql 1 = Coefficient[equationwy,xA8];
eq12 = Coefficient[equationwy,x ^ 10];
eq13 = equationpsixx/.y->0;
eqi4 = Coefficient[equationpsixx,yA2];
eq15 = Coefficient[equationpsixx,yA4];
eq16 = Coefficient[equationpsixx,yA6];
eq 17 = Coefficient[equationpsixx,yA8];
eq18 = Coefficient[equationpsixx,yAl 0];
eq19 = Coefficient[equationpsixy,x];
eq20 = Coefficient[equationpsixy,xA3];
eq21 = Coefficient[equationpsixy,x^5];
eq22 = Coefficient[equationpsixy,xA7];
eq23 = Coefficient[equationpsixy,x^9];
eq24 = Coefficient[equationpsiyx,y];
eq25 = Coefficient[equationpsiyx,yA3];
eq26 = Coefficient[equationpsiyx,yA5];
eq27 = Coefficient[equationpsiyx,yA7];
eq28 = Coefficient[equationpsiyx,yA9];
eq29 = equationpsiyy/.x->0;
eq30 = Coefficient[equationpsiyy,xA2];
eq3l = Coefficient[equationpsiyy,xA4];
eq32 = Coefficient[equationpsiyy,x^6];
eq33 = Coefficient[equationpsiyy,x^8];



eq34 = Coefficient[equationpsiyy,x^10];
Solve[{eql ==0,eq2==0,eq3==0,eq4==0,eq5==0,eq6==0,eq7==0,eq8==0,eq9==0,eql 0==0,

eql 1 ==O,eql 2==O,eq 13==0,eq 14==0,eql 5==0,eql 6==0,eql 7==0,eql 8==0,eql9==0,
eq20==0,eq2l ==0,eq22==0,eq23==0,eq24==,eq25==0,eq26==0,eq27==0,eq28==0,
eq29==0,eq30==0 ,eq31 ==0,eq32==0 ,eq33==0,eq34==0),{a2,a3,a4,a5,a6,a7,a8,a9,al 0,
al 1,al 2,al3,al 4,al 5,al 6,al 7,al 8,al 9,a20,a21,a22,a23,a24,a25,a26,a27,a28,a29,a30,
a31,a32,a33,a34,a35,a36}]

(* Uniform Pressure *)
ao = 10 conv; bo = 8 conv; (* x & y patch dimensions *)
po = 1/ao/bo; (* distributed load->N/mmA2 *)
Al = Integrate[po w,{x,-ao/2,ao/2),{y,-bo/2,bo/2}]/Integrate[pde w,{x,-a/2,a/2},{y,-b/2,b/2)];
1/{A1 w/.{x->0, y->0), Al w/.(x->0, y->-1.5 conv},Al w/.{x->1.5 conv, y->0}, Al w/.{x->O, y->2.5 conv},

Al w/.(x->3 conv, y->0}}//N
(' Uniform Pressure Patch *)
ao = 25/10 conv; bo = 2 conv; (' x & y patch dimensions *)
po = 1/ao/bo; (* distributed load->N/mmA2 *)
A2 = Integrate[po w,{x,-ao/2,ao/2},{y,-bo/2,bo/2}]/Integrate[pde w,{x,-a/2,a/2},{y,-b/2,b/2}];
1/(A2 w/.{x->0, y->O}, A2 w/.(x->0, y->-1.5 conv},A2 w/.(x->1.5 cony, y->0}, A2 w/.{x->0, y->2.5 conv},

A2 w/.(x->3 cony, y->0})}//N
(* Point Load *)
po = 1; (' point load->N *)
A3 = {po w/.{x->0, y->0}}/Integrate[pde w,{x,-a/2,a/2},{y,-b/2,b/2}];
1/{A3 w/.{x->0, y->0}, A3 w/.{x->0, y->-1.5 conv},A3 w/.{x->1.5 cony, y->0}, A3 w/.{x->0, y->2.5 conv},

A3 w/.{x->3 cony, y->0}}//N
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Appendix E
Computer Codes for Lagrange Multiplier Solutions

The first code calculates the transverse deflections for an orthotropic

plate with all four sides clamped. By stripping off the lagrange multipliers the

four sides simply supported solution is also obtained in the final lines. The

second code is for an orthotropic plate with two opposite edges clamped and the

other pair of edges simply supported.

The analysis used has been modified from that of Ramkumar and Chen

[17, 181. Either a point load or a rectangular patch of uniform pressure may be

applied. The programs are written in the MathematicaTM programming

language [25] and run on a Macintosh.

Copyright @1991 Massachusetts Institute of Technology

Permission to use, copy, and modify this software and its documentation
for internal purposes only and without fee is hereby granted provided that the
above copywrite notice and this permission appear on all copies of the code and
supporting documentation. For any other use of this software, in original or
modified form, including but not limited to, adaptation as the basis of a
commercial software or hardware product, or distribution in whole or in part,
specific prior permission and/or the appropriate license must be obtained from
MIT. This software is provided "as is" without any warranties whatsoever,
either expressed or implied, including but not limited to the implied
warranties of merchantability and fitness for a particular purpose. This
software is a research program, and MIT does not represent that it is free of
errors or bugs or suitable for any particular task.
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Code Listing:. Four Sides Clamped

(* This program is based on work done by R. L. Ramkumar *)
(* Written by R. J. Notestine - M.I.T. TELAC - 1991')
(' This version uses even and odd modes *)
convy = 25.4;
mu = 50; nu = 50; (* number of modes *)

11 = 10 conv; 12 = 8 conv; (' x & y plate dimensions *)

xo = 3 conv; yo = 5 conv; (' loading center location *)

patch = False (* rectagular pressure patch rather than point load *)
110 = 2.5 conv; 12o = 2 conv; (* x & y patch dimensions *)
po = 1; (* distributed load->N/mmA2 OR point load->N *)
K = PiA2/12; (* shear correction factor *)
kk = Table[0,(2(mu+nu)},{2(mu+nu)}];
qq = Table[0,{2(mu+nu)}];
a = (0,0,0,0,0,0,14.1,16.6,2.24} 1000;
d = (190,105,82.8,71.5,71.5,74.3} 1000;
Share[]
If[patch,

pz = 4 po/(PiA2 m n) (Cos[Pi m (-11o/2 + xo)/Ill] -
Cos[Pi m (110/2 + xo)/ll]) (Cos[Pi*n*(-12o/2 + yo)/12] - Cos[Pi*n*(12o/2 + yo)/12])//N,

pz = 4 po/11/12 Sin[m Pi xo/11] Sin[n Pi yo/12]//N];
111 = K (a[[8]] (m Pi/ll)^2 + a([7]] (n Pi/12)A2)//N;
112 = K a[[8]] (m Pi/Il)//N;
113 = K a[[7]] (n Pi/12)//N;
122 = (K a[[8]] + d[[1]] (m Pi/l)^A2 + d[[3]] (n Pi/12)A2)//N;
123 = (d[[6]] + d[[3]]) (m Pi/11) (n Pi/12)//N;
133 = (K a[[7]] + d[[3]] (m Pi/11)A2 + d[[2]] (n Pi/12)A2)//N;
det = Det[{(11 1,112,113},[{112,122,123}),113,123,133}}]1//N;
Do[ qq[[n]] = Sum[-pz (113 123 -133 112)/det,{m,mu}];

kk[[n,n]] = Sum[(111 133 - 113^2)/det,(m,mu}];
kk[[n,nu+n]] = Sum[(-1)^m (111 133 - 113^2)/det,(m,mu)];

Do[ kk[[n,2nu+m]] = (112 113 - Ill 123)/det;
kk[[n,2nu+mu+ml] = (-1)An (112 113 - Ill 123)/det;

,(m,mu)];
,{n,nu}];
Do[ qq[[nu+n]] = Sum[-(-1)^m pz (113 123 - 133 112)/det,{m,mu}];

kk[[nu+n,n]l = Sum[(-1)^m (111 133 - 1132)/det,{m,mu}];
kk[[nu+n,nu+n]] = Sum[(-1)A(2m) (111 133 - 113^2)/det,{m,mu}];
Do[ kk[[nu+n,2nu+m] = (-1)Am (112113 -111 123)/det;

kk[[nu+n,2nu+mu+m] = (-1)A(m+n) (112 113- 111 123)/det;
,{m,mu)];

,(n,nu}];
Do[ qq[[2nu+m]] = Sum[-pz (112 123 - 122 113)/det,{n,nu}];

Do[ kk[[2nu+m,n] = (112 113-111 123)/det;
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kk[[2nu+m,nu+n]] = (-1)^m (112 113 -111 123)/det;
,{n,nu)];
kk[[2nu+m,2nu+m]] = Sum[(ll1 122 - 112^2)/det,{n,nu)];
kk[[2nu+m,2nu+mu+mJ = Sum[(-1)A^n (111 122 - 112A2)/det,{n,nu)];

,(m,mu)];
Do[ qq[[2nu+mu+m]] = Sum[-(-1)An pz (112 123 - 122 113)/det,{n,nu)];

Do[ kk[[2nu+mu+m,n]] = (-1)An (112 113 -111 123)/det;
kk[[2nu+mu+m,nu+n]] = (-1)^(n+m) (112113 -111 123)/det;

,{n,nu}];
kk[[2nu+mu+m,2nu+m]] = Sum[((-1)n (111 122 - 112^2)/det,{n,nu];
kk[[2nu+mu+m,2nu+mu+m]] = Sum[(-1)^(2n) (111 122- 112^2)/det,(n,nu)];

,{m,mu}];
alpha = LinearSolve[kk,qq]
ClearAIl[kk,qq];
w = Sum[(pz (122 133 - 123^2) + (alpha[[n]] + (-1)Am alpha[[nu+n]]) (113 123- 133 112) +

(alpha[[2nu+m]] + (-1)An alpha[[2nu+mu+m]]) *
(112 123 - 122 113))/det Sin[m Pi x/Il] Sin[n Pi y/12], {m,mu),(n,nu}];

1/{w/.{x->5 conv,y->4 conv},w/.{x->5 conv,y->2.5 conv},
w/.{x->3.5 conv,y->4 conv},w/.(x->5 conv,y->6.5 conv}), w/.{x->8 conv,y->4 conv))}}//N

ClearAll[w];
wss = Sum[pz (122 133 - 123^2)/det * Sin[m Pi x/ll] Sin[n Pi y/12],{m,mu),{n,nu)];
1/(wss/.{x->5 conv,y->4 conv),wss/.(x->5 conv,y->2.5 conv),

wss/.{x->3.5 conv,y->4 conv),wss/.{x->5 conv,y->6.5 conv}), wss/.{x->8 conv,y->4 conv}}//N
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Code Listing. Two Sides Clamped & Two Sides Simply Supported

(' This program is based on work done by R. L. Ramkumar *)
(* Written by R. J. Notestine - M.I.T. TELAC - 1991*)
(* This version uses even and odd modes *)
convy = 25.4;
mu = 9; nu = 50; (' number of modes *)
11 = 10 conv; 12 = 8 conv; (* x & y plate dimensions *)
xo = 3 conv; yo = 5 conv; (* loading center location *)
patch = False (* rectagular pressure patch
110 = 2.5 conv; 12o = 2 conv; (' x & y patch dimensions *)
po = 1; (* distributed load->N/mmA^2
K = PiA2/12; (' shear correction factor *)
kk = Table[0,{2 mu},{2 mu}];
qq = Table[0,{2 mu}];
a = {0,0,0,0,0,0,14.1,16.6,2.24} 1000;
d = {190,105,82.8,71.5,71.5,74.3} 1000;
Share[]
If[patch,

Ill

112 :
113:
122 :
123 :
133:
det
Do[

rather than point load *)

OR point load->N *)

pz = 4 po/(PiA2 m n) (Cos[Pi m (-11o/2 + xo)/ll] -
Cos[Pi m (110/2 + xo)/ll]) (Cos[Pi*n*(-12o/2 + yo)/12] - Cos[Pi*n*(12o/2 + yo)/12])//N,

pz = 4 po/11/12 Sin[m Pi xo/ll] Sin[n Pi yo/12]//N];
K (a[[8]] (m Pi/ll )^2 + a[[7]] (n Pi/12)A2)//N;
K a[[8]] (m Pi/ll)//N;
K a[[7]] (n Pi/12)//N;
(K a[[8]] + d[[1]] (m Pi/I1)A2 + d[[3]] (n Pi/12)A2)//N;
(d([6]] + d[[3]]) (m Pi/ll) (n Pi/12)//N;
(K a[[7]] + d[[3]] (m Pi/ll )^2 + d[[2]] (n Pi/12)A2)//N;
= Det[({{11 1,112,113),{112,122,123),{113,123,133}}]//N;

qq[[m]] = Sum[-pz (112 123 -122 113)/det,{n,nu}];
kk[[m,m]] = Sum[(l11 122 - 112^2)/det,{n,nu}];
kk[[m,mu+m]] = Sum[(-1)An (111 122 - 112^2)/det,{n,nu}];

,{m,mu}];
Do[ qq[[mu+m] = Sum[-(-1)An pz (112 123 - 122 113)/det,(n,nu)];

kk[[mu+m,m]] = Sum[(-1)An (111 122 - 112^2)/det,{n,nu}];
kk[[mu+m,mu+m] = Sum[(-1)A(2n) (111 122 - 112^2)/det,(n,nu)];

,{m,mu}];
alpha = LinearSolve[kk,qq]
w = Sum[(pz (122 133 -123^2) + (alpha[[m]] + (-1)^n alpha[[mu+m]])*

(112 123 - 122 113))/det Sin[m Pi x/Il] Sin[n Pi y/12],{m,mu),(n,nu}];
1/{w/.(x->5 conv,y->4 conv}),w/.{x->5 conv,y->2.5 conv},

w/.{x->3.5 conv,y->4 conv),w/.{x->5 conv,y->6.5 conv), w/.{x->8 conv,y->4 conv))}}//N
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Appendix F
Computer Codes for Lagrange Multiplier Solutions

This code was written by Wilson Tsang in TELAC at MIT. A brief

description of the code is supplied in chapters two and four. The code was

modified to solve static loading problems in addition to finding the natural

frequencies. Note: The modifications are quick and dirty and do not reflect

good programing or efficient computing. The program is written in Fortran

and runs on a Macintosh.

A MathematicaTM [25] postprocessor was written to create the extensive

graphics used in this report. A listing of the postprocessor follows the source

code listing.

Copyright ©1991 Massachusetts Institute of Technology

Permission to use, copy, and modify this software and its documentation
for internal purposes only and without fee is hereby granted provided that the
above copywrite notice and this permission appear on all copies of the code and
supporting documentation. For any other use of this software, in original or
modified form, including but not limited to, adaptation as the basis of a
commercial software or hardware product, or distribution in whole or in part,
specific prior permission and/or the appropriate license must be obtained from
MIT. This software is provided "as is" without any warranties whatsoever,
either expressed or implied, including but not limited to the implied
warranties of merchantability and fitness for a particular purpose. This
software is a research program, and MIT does not represent that it is free of
errors or bugs or suitable for any particular task.
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Code Listing: Rayleigh-Ritz Source Code
PROGRAM SFREQ

C
C NATURAL FREQUENCIES OF
C A SANDWICH PANEL
C
C WRITTEN BY : WILSON TSANG - MIT TELAC
C MODIFIED: TO SOLVE STATIC LOADINGS AND PROVIDE
C MATHEMATICA COMPATABLE OUTPUT
C MODIFIED BY: R. NOTESTINE - MIT TELAC
C

IMPLICIT REAL*4 (A-H,O-Z)
REAL*4 MASS

C
INCLUDE SFREQ.INC

C
DIMENSION PSI(3,3,M 1 ,M1 ),PHI(3,3,M2,M2),FV1 (M3),FV2(M3)
DIMENSION MASS(M3),STIFF(M4),EVALUE(M3),EVECTOR(M3,M3)
COMMON/COEFX/ XBETA(M1),XB(M1),XA,XTHETA
COMMON/COEFY/ YBETA(M2),YB(M2),YA,YTHETA
COMMON /MATL/ TC,TF,RHOC,RHOF,A,B,D1 1,D12,D1 6,D22,D26,D66,

& A44,A45,A55,S
COMMON /INVSE/ WORK(M3),KP(M3),DET(2),INERT(3)

C
C UNIT FILE TYPE
C 1 SINPT.DAT INPUT
C 2 FREQ.DAT OUTPUT
C

PI=3.141592654
C

OPEN(UNIT=1 ,FILE='SINPT.DAT',STATUS='OLD')
OPEN(UNIT=2,FILE='FREQ.DAT', STATUS='NEW')

C
CALL INDAT (NX,NY,IX,IY,IFC,IFM,PO,PX,PY,PA,PB)
CALL BCONS (XBETA,XTHETA,XA,XB,IX,NX,IFM)
CALL BCONS (YBETA,YTHETA,YA,YB,IY,NY,IFM)

C
IF (NX.EQ.4) THEN

CALL INTGL1 (XBETA,XTHETA,XA,XB,IX,PSI)
ELSE

CALL INTGL (XBETA,XTHETA,XA,XB,IX,PSI)
ENDIF

C
IF (NY.EQ.4) THEN
CALL INTGL1 (YBETA,YTHETA,YA,YB,IY,PHI)
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ELSE
CALL INTGL (YBETA,YTHETA,YA,YB,IY,PHI)

ENDIF
C

CALL MATRIX (MASS,STIFF,IX,IY,PSI,PHI)
N=3*IXIY

C
IF(NX.EQ.4.OR.NY.EQ.4) THEN
CALL ARRAN(STIFF,MASS,N,NLIST)

ELSE
NLIST-0

ENDIF
C

IF(IFC.EQ.0) THEN
C

CALL RCOND(MASS,STIFF,N,NLIST)
C

WRITE(9,*)'INVERTING MASS MATRIX...'
DO 10 I=1,N
MASS(I)=1 ./MASS(1)

10 CONTINUE
C

WRITE(9,*)'CALCULATING MASS-1*STIFF...'
NV=N*(N+1)/2
NN--0
DO 14 1=1,N

DO 12 J=-1,I
NN=NN+1
STIFF(NN)=STIFF(NN)*MASS(I)

12 CONTINUE
14 CONTINUE

C
WRITE(9,*)'SOLVING FOR E-VALUES'
CALL RSP(M3,N,NV,STIFF, EVALUE,1 ,EVECTOR,FV1 ,FV2,1IERR)
DO 16 I=1,N

EVALUE(I)=SQRT(EVALUE(I))/2./PI
16 CONTINUE

C
ELSE

C
CALL OVECT(EVECTOR,IX,IY,IFC,PO,PX,PY,PA,PB)
DO 18 I=1,N

EVALUE(I)=EVECTOR(I,1 )
18 CONTINUE

CALL SSPFA(STIFF,N,KP,ICHECK)
CALL SSPSL(STIFF,N,KP,EVECTOR)

337



ENDIF
C

IF(IFC.GT.0)IFC=1
WRITE(2,*)A,B
WRITE(2,')NX,NY,IX,IY,IFC,IFM
WRITE(2,')XA,XTH ETA,YA,YTH ETA
DO 24 1=1,IX
WRITE(2,*)XB(I),XBETA(I)

24 CONTINUE
DO 26 I=1,IY
WRITE(2,*)YB(I),YBETA(I)

26 CONTINUE
DO 30 I=1,N
WRITE(2,*)I,EVALUE(I)

30 CONTINUE
NN=(1-N)*IFC+N
DO 40 I=1,NN
DO 35 J=1,N
WRITE(2,*)EVECTOR(J,I)

35 CONTINUE
40 CONTINUE

C
STOP
END

C----------------------------
SUBROUTINE INDAT(NX,NY,IX,IY,IFC,IFM,PO,PX,PY,PA,PB)
IMPLICIT REAL*4 (A-H,O-Z)
CHARACTER*70 TITLE1 ,TITLE2,TITLE3
COMMON /MATL/ TC,TF,RHOC,RHOF,A,B,D11,D12,D1 6,D22,D26,D66,

& A44,A45,A55,S
C
C INDEX NO.S FOR B.C.S:
C 1 FOR SS-SS
C 2 FOR CL-FR
C 3 FOR CL-CL
C 4 FOR FR-FR
C 5 FOR SS-CL
C 6 FOR SS-FR
C

READ(1,10) TITLE1
READ(1,10) TITLE2
READ(1,10) TITLE3
READ(1,*) NX
READ(1,*) NY
READ(1 ,*) IX
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READ(1,*) IY

READ(1,*) IFC,IFM,PO,PX,PY,PA,PB
READ(1,') TC,TF,RHOC,RHOF,A,B,D 11,D22,D66,D26,D16,D12,

& A44,A55,A45,S
C
10 FORMAT(A)

RETURN
END

C-------------------------------
SUBROUTINE BCONS (BETA,THETA,A,B,I,N,IFM)
IMPLICIT REAL*4 (A-H,O-Z)
DIMENSION BETA(*),B(*)
WRITE (9,*) 'SETTING UP B.C.S'

C
IF (N.EQ.1) THEN

DO 10 J=1,l
IF(IFM.EQ.1) THEN
M=2*J-1

ELSE
M=--J

ENDIF
BETA(J)= M*3.141592654

B(J)=--0.
10 CONTINUE

THETA=0.
A=0.
RETURN

ENDIF
C

IF (N.EQ.2) THEN
DO 20 J=-1,
IF(IFM.EQ.1) THEN
M=2*J-1

ELSE
M--J

ENDIF
BETA(J)=(M-.5)*3.141592654
B(J)=2*MOD(M,2)-1

20 CONTINUE
THETA=-.785398163

A= 1.
RETURN

ENDIF
C

IF (N.EQ.3) THEN
DO 30 J=1,I
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IF(IFM.EQ.1) THEN
M=2*J-1

ELSE
M=--

ENDIF
BETA(J)=(M+.5)*3.141592654
B(J)=2*MOD(M,2)-1

30 CONTINUE
THETA=-.785398163

A= 1.
RETURN

ENDIF
C

IF (N.EQ.4) THEN
IF(IFM.EQ.1) THEN
BETA(1)=0.
BETA(2)=1.5'3.141592654

B(1)=0.
B(2)=1.

ELSE
BETA(1)=0.
BETA(2)=0.
B(1)=0.
B(2)=0.

ENDIF
DO 40 J=--3,1
IF(IFM.EQ.1) THEN
M=2*J-1

ELSE
M--J

ENDIF
BETA(J)=(M-2.+.5)*3.141592654
B(J)=2*MOD(M-2,2)-1

40 CONTINUE
THETA=2.35619449

A= 1.
RETURN

ENDIF
C

IF (N.EQ.5) THEN
DO 50 J=1,I
IF(IFM.EQ.1) THEN
M=2*J-1

ELSE
M=J

ENDIF

340



BETA(J)=(M+.25)*3.141592654
B(J)=2*MOD(M,2)-1

50 CONTINUE
THETA=0.
A=0.
RETURN

ENDIF
C

IF (N.EQ.6) THEN
DO 60 J=1,I
IF(IFM.EQ.1) THEN
M=2*J-1

ELSE
M=J

ENDIF
BETA(J)=(M+.25)*3.141592654
B(J)=2*MOD(M+1,2)-1

60 CONTINUE
THETA=0.
A-=0.
RETURN

ENDIF
C

END
C--------------------------------

SUBROUTINE INTGL (BETA,THETA,A,B,II,F)
IMPLICIT REAL*4 (A-H,O-Z)
INTEGER P,Q

C
INCLUDE SFREQ.INC

C
DIMENSION BETA(*),B(*),F(3,3,M1 ,M1)
WRITE (9,*) 'CALCULATING INTEGRALS OF BEAM FUNCTIONS
PI=3.141592654
DO 10 1=1,3
DO 10 J=1,3
DO 10 M=1,II1
DO 10 N,1,11
IF(I.GT.J) THEN

F(I,J,M,N)=F(J,I,N,M)
GOTO 10

ENDIF
P=I-1
QOJ-1
DI= BETA(M)-BETA(N)
D2=BETA(M)+BETA(N)
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D3=BETA(M)*BETA(M)+BETA(N)*BETA(N)
D4=2*MOD(P+1,2)-1
D5-2*MOD(Q+1,2)-1
D6=THETA+P*PI/2.
D7=THETA+Q*PV2.
IF(M.EQ.N) THEN

D8=COS(D6-D7)
ELSE

D8=(SIN(D1+D6-D7)-SIN(D6-D7))/DI
ENDIF

D9=(SIN(D6+D7)-SIN(D2+D6+D7))/D2
Dl 0=D4*A(BETA(N)*COS(D7)+BETA(M)*SIN(D7))
D11 =B(M)*(BETA(M)*SIN(BETA(N)+D7)-BETA(N)*COS(BETA(N)+D7))
D12=D5*A'(BETA(M)*COS(D6)+BETA(N)*SIN(D6))
D13=B(N)*(BETA(N)*SIN(BETA(M)+D6)-BETA(M)*COS(BETA(M)+D6))
D1 4=(D4*D5*A*A+B(M)*B(N))/D2
F(I,J,M,N)=(BETA(M)*P)*(BETA(N)**Q)*(D8+D9+Di4+1.414213562

& *(D10+D1 +D12+D1 3)/D3)
10 CONTINUE

C
RETURN
END

C--------------------------------
SUBROUTINE INTGL1 (BETA,THETA,A,B,II,F)
IMPLICIT REAL*4 (A-H,O-Z)
INTEGER P,Q

C
INCLUDE SFREQ.INC

C
DIMENSION BETA(*),B(*),F(3,3,M1,*)
WRITE (9,*) 'CALCULATING INTEGRALS OF BEAM FUNCTIONS'
P1=3.141592654
R2=1.414213562
R3=1.732050808
DO 10 1=1,3
DO 10 J=1,3
DO 20 M=1,2
DO 20 N=I,II
F(I,J,M,N)=O.

20 CONTINUE
DO 30 M=1,11
DO 30 N=1,2
F(I,J,M,N)=O.

30 CONTINUE
DO 10 M-3,11
DO 10 N-3,11

342



IF(I.GT.J) THEN
F(I,J,M,N)=F(J,I,N,M)

GOTO 10
ENDIF
P=I-1
Q=J-1
Dl=BETA(M)-BETA(N)
D2=BETA(M)+BETA(N)
D3=BETA(M)*BETA(M)+BETA(N)*BETA(N)
D4=2*MOD(P+1,2)-1
D5=2*MOD(Q+1,2)-1
D6=THETA+P*PI/2.
D7=THETA+Q*PV/2.
IF(M.EQ.N) THEN

D=--COS(D6-D7)
ELSE

D8=(SIN(D1+D6-D07)-SIN(D6-07))/D1
ENDIF
D9=(SIN(D6+D7)-SIN(D2+D6+D7))/D2
DlO=D4*A*(BETA(N)*COS(D7)+BETA(M)*SIN(D7))
D1 I=B(M)*(BETA(M)*SIN(BETA(N)+D7)-BETA(N)*COS(BETA(N)+D7))
D12=D5*A*(BETA(M)*COS(D6)+BETA(N)*SIN(D6))
D13=B(N)*(BETA(N)*SIN(BETA(M)+D6)-BETA(M)*COS(BETA(M)+D6))
D14=(D4*D5*A*A+B(M)*B(N))/D2
F(I,J,M,N)=(BETA(M)*P)*(BETA(N)*Q)*(D8+D9+D14+R2*

& (D010+D11+D12+D13)/D3)
10 CONTINUE

C
DO 40 1=3,11

D1 =SIN(BETA(I)+THETA)+SIN(TH ETA)
D2=SIN(BETA(I)+THETA)-SIN(THETA)
D3=COS(BETA(I)+THETA)-COS(TH ETA)
F(1,2,1 ,I)=R2*D2+B(I)-A
F(2,1,1,1)=F(1,2,1,1)
F(1,2,2,1)= R3*(-R2*D1-B(I)-A+2JBETA(I)*(-R2*D3+A+B(I)))
F(2,1,1,2)=F(1,2,2,1)
F(2,1,2,1)-2.*R3/BETA(I)*(R2*D3-A-B(I))
F(1,2,1,2)=F(2,1,2,1)
F(1,3,1,I)=BETA(I)*(R2*D3+A+B(I))
F(3,1,1,1)=F(1,3,1,I)
F(1,3,2,1)=R3*F(1,3,1 ,1)-2."R3*(BETA(I)*(R2*COS(BETA(I)+

& THETA)+B(I))-R2*D2-B(I)+A)
F(3,1 ,I,2)=F(1,3,2,1)
F(2,3,2,1)=-2.* R3*BETA(I)*(R2*D3+A+B(I))
F(3,2,1,2)=F(2,3,2,1)
F(2,2,2,1)=2.*R3*(-R2*D2-B(I)+A)
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F(2,2,1,2)=F(2,2,2,I)
40 CONTINUE
C

F(1,1,2,2)=1.
F(1,2,1,2)=-2.*R3
F(2,1,2,1)=-2.*R3
F(2,2,2,2)=12.

C
RETURN

END
C-------------------------------

SUBROUTINE MATRIX(MASS,STIFF,IX,IY,PSI,PHI)
IMPLICIT REAL*4 (A-H,O-Z)
REAL*4 MASS

C
INCLUDE SFREQ.INC

C
DIMENSION PHI(3,3,M2,M2),PSI(3,3,M1 ,M1)
DIMENSION MASS(M3),STIFF(M4)

C
COMMON /MATL/ TC,TF,RHOC, RHOF,A,B,D1 1,D12,D1 6,D22,D26,D66,

& A44,A45,A55,S
H=TC+2.*TF
RHO=RHOC/RHOF
RT=TC/H

C
WRITE (9,*) 'SETTING UP STIFFNESS MATRIX'
II=IXIY
DO 10 1=1,11
DO 10 J=1,II
M=(I-1)/IY+1
N=I-IY*(M-1)
K=(J-1)/1Y+1
L=--J-IY'(K-1)

C
C KAC(I,J)=

STIFF((J+2*II)*(J+2*11-1)/2+1)=
& S*S*(A55*B*PSl(2,2,M,K)*PHI(1,1 ,N,L)
& +A45*A*PSI(2,1,M,K)*PHI(1,2,N,L))

C
C KAB(I,J)=

STIFF((J+II)*(J+II-1)/2+1)=
& D12*PS1(3,1 ,M,K)*PHI(1,3,N,L)
& +D16*B/A'PSI(3,2,M,K)*PHI(1,2,N,L)
& +D26*A/B*PSI(2,1 ,M,K)*PHI(2,3,N,L)
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& +D66*PSI(2,2,M,K)*PHI(2,2,N,L)
& +S*S*A45*A*B*PSI(2,1,M,K)*PHI(1,2,N,L)

C
C KBC(I,J)=

STIFF((J+2*11)*(J+2*11-1)/2+1+11)=

& S*S'(A45*B*PSI(1,2,M,K)'PHI(2,1 ,N,L)
& +A44'A*PSI(1,1,M,K)*PHI(2,2,N,L))

C
IF (I.GT.J) GOTO 10

C
C KAA(I,J)=

STIFF(J*(J-1)/2+1)=
& D11*B/A*PSI(3,3,M,K)*PHI(1,1,N,L)
& +D16*PSI(3,2,M,K)*PHI(1,2,N,L)
& +D16*PSI(2,3,M,K)*PHI(2,1,N,L)
& +D66*A/B*PSI(22,,M,K)*PHI(2,2,N,L)
& +S*S*A55*B*A*PSI(2,2,M,K)*PHI(1,1,N,L)

C
C KBB(I,J)=

STIFF((J+II)*(J+II-1)/2+1+II)=
& D22*A/B*PSI(1,1,M,K)'PHI(3,3,N,L)
& +D26*PSI(1,2,M,K)*PHI(3,2,N,L)
& +D26*PSI(2,1,M,K)*PHI(2,3,N,L)
& +D66/A*B*PSI(2,2,M,K)*PHI(2,2,N,L)
& +S*S*A44*A*B*PSI(1,1 ,M,K)*PHI(2,2,N,L)

C
C KCC(I,J)=

STIFF((J+2*11)*(J+2*II-1)/2+1+2*11)=
& S*S*(A55*B/A'PSI(2,2,M,K)*PHI(1,1,N,L)
& +A44*A/B*PSI(1,1,M,K)*PHI(2,2,N,L)
& +A45*PSI(2,1,M,K)*PHI(1,2,N,L)
& +A45*PSI(1,2,M,K)*PHI(2,1,N,L))

C
10 CONTINUE
C

WRITE(9,') 'SETTING UP MASS MATRIX'
DO 30 I=1,11
M=(I-1)/IY+1
N=-I-Y(M-1)

C MA(I)=
MASS(I)=RHOF*H*H*H/12.*(1.-RT*RTPRT+RHO*RPRT*RT)

& *B*A*PSI(2,2,M,M)
C MB(I)=

MASS(II+I)=RHOF*H*H*H/12.*(1.-RT*RT*RT+RHO*RT*RT*RT)
& *A'B*PHI(2,2,N,N)

c MC(I)=
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MASS(2*II+I)=RHOF*H*(1 .-RT+RHO*RT)*A*B
30 CONTINUE
C

RETURN
END

SUBROUTINE RCOND(MASS,STIFF,N,NLIST)
IMPLICIT REAL*4(A-H,O-Z)
REAL*4 MASS

INCLUDE SFREQ.INC

DIMENSION MASS(*),STIFF(*)
DIMENSION H(M5)
COMMON /INVSE/ WORK(M3),KP(M3),DET(2),INERT(3)
N2=(N+NLIST)/3
N1 =N-N2

WRITE(9,*) 'INVERTING K2'
WRITE(9,*)
CALL SSPFA(STIFF,N1 ,KP,INFO)
CALL SSPDI(STIFF,N1 ,KP,DET,INERT,WORK,001)

WRITE(9,*) 'K1T*K2-1*K1'
WRITE(9,')
DO 10 J=1,N2
WRITE(9,90) J
DO 20 K=1,N1
WORK(K)=0.
DO 20 L=1,N1
IF(K.LE.L) WORK(K)=WORK(K)+STIFF((L-1)*U2+K)

& *STIFF((J+N1)*(J+N1-1)/2+L)
IF(K.GT.L) WORK(K)=WORK(K)+STIFF((K-1)*K/2+L)

& *STIFF((J+N1)*(J+N1-1)/2+L)
20 CONTINUE

DO 30 I-J,N2
DUM=0.
DO 40 K-1,N1
DUM=DUM+STIFF((I+N1 )*(I+N1-1 )/2+K)*WORK(K)

40 CONTINUE

H((I-1)*I/2+J)=DUM
30 CONTINUE
10 CONTINUE

WRITE(9,*) 'CONDENSING STIFF
DO 50 I=1,N2

346



DO 50 J=I,N2
STIFF((J-1)*J/2+I)=

& STIFF((J+N1-1)*(J+N1)/2+1+N1)-H((J-1)'J/2+1)
50 CONTINUE
C

WRITE(9,*) 'CONDENSING MASS...'
DO 60 1=1 ,N2
MASS(I)=MASS(I+N1)

60 CONTINUE
N=N2

90 FORMAT('+',14)
C

RETURN
END

C-------------------------------
SUBROUTINE ARRAN(STIFF,MASS,N,NLIST)
IMPLICIT REAL*4(A-H,O-Z)
REAL*4 MASS

C
INCLUDE SFREQ.INC

C
DIMENSION STIFF(*),MASS(*),ILIST(M 1)

C
DO 5 I=1,N

IF(MASS(I).EQ.0.) THEN
NLIST=NLIST+1
ILIST(NLIST)=I

ENDIF
5 CONTINUE

WRITE(9,*)
WRITE(9,*) 'NLIST=',NLIST
DO 7 I=1,NLIST
WRITE(9,') 'ILIST(',I,)=',ILIST(I)

7 CONTINUE
C

WRITE(9,*) 'REARRANGING MASS'
IND1=1
1=1
IDUM=IUST(IND1)

10 CONTINUE
IF(I.EQ.IDUM) THEN
IND1=IND1+1
DO 20 J=I,N+1-IND1
MASS(J)=MASS(J+1)

20 CONTINUE
DO 30 K=IND1,NLIST
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IDUM=ILIST(K)-1
30 CONTINUE

1=1-1
ENDIF

C
IF(IND1.EQ.NLIST+1) THEN
GOTO 15

ENDIF
C

I=1+1

GOTO 10
C
15 WRITE(9,*) 'REARRANGING STIFF

IND1=1
IND2=1
IND3=1
IND4=1
DO 40 1=1,N
IF(I.EQ.IUST(IND3)) THEN
IND3=IND3+1
IND2=IND2+1
GOTO 40

ENDIF
DO 50 J=1,I
IF(J.EQ.ILIST(IND4)) THEN
IND2=IND2+1
IND4=IND4+1
GOTO 50

ENDIF
STIFF(IND1)=STIFF(IND2)
IND1 =IND1+1
IND2=IND2+1

50 CONTINUE
IND4=I1

40 CONTINUE
C

IF(IND1.EQ.NLIST+1) THEN
GOTO 25

ENDIF
C

1=1+1
C
25 CONTINUE

N=-N-NLIST
RETURN
END
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C-
SUBROUTINE QVECT(Q,IX,IY,IFC,PO,PX,PY,PA,PB)
IMPLICIT REAL*4(A-H,O-Z)
REAL Q()

C
INCLUDE SFREQ.INC

C
COMMON/COEFX/ XBETA(M1),XB(M1),XA,XTHETA
COMMON/COEFY/ YBETA(M2),YB(M2),YA,YTHETA
COMMON /MATLJ TC,TF,RHOC,RHOF,A,B,D1 1,D012,01 6,D22,D26,D66,

& A44,A45,A55,S
NN= 2*IX*IY
DO 10 I=1,NN
Q(I)=0.

10 CONTINUE
IF(IFC.EQ.1) THEN
DO 30 I=1,IX

DO 20 J=1,IY
QX=SQRT(2.)*SIN(XBETA(I)*PX/A+XTHETA)+XA*EXP(-XBETA(I)*

& PX/A)+XB(I)*EXP(-XBETA(I)*(1.-PX/A))
OY=SQRT(2.)*SIN(YBETA(J)*PY/B+YTHETA)+YA*EXP(-YBETA(J)*

& PY/B)+YB(J)*EXP(-YBETA(J)*(1.-PY/B))
Q(NN+IX'(I-1)+J)=QX*QY*PO

20 CONTINUE
30 CONTINUE

ELSE
DO 50 I=1,IX
DO 40 J=1,IY

QXi =XA*ANXBETA(I)*(EXP(-XBETA(I)*(PX-PAI2)/A)-
& EXP(-XBETA(I)*(PX+PN2)/A))

QX2=XB(I)*NXBETA(I)*(EXP(-XBETA(I)*(1 -(PX-PAN2)/A))-
& EXP(-XBETA(I)*(1-(PX+PA/2)/A)))

QX3=SQRT(2.)*AIXBETA(I)*(COS(XBETA(I)*(PX-PA/2)/A+XTHETA)-
& COS(XBETA(I)*(PX+PA2)/A+XTHETA))

QYl YA*B/YBETA(J)*(EXP(-YBETA(J)*(PY-PB/2)/B)-
& EXP(-YBETA(J)*(PY+PB/2)/B))

QY2=YB(J)*B/YBETA(J)*(EXP(-YBETA(J)*(1 -(PY-PB/2)/B))-
& EXP(-YBETA(J)*(1-(PY+PB/2)/B)))

QY3=SQRT(2.)*B/YBETA(J)*(COS(YBETA(J)*(PY-PB/2)/B+YTHETA)-
& COS(YBETA(J)*(PY+PB/2)/B+YTHETA))

Q(NN+IX*(I-1)+J)=(QX1-QX2+QX3)*(QY1-QY2+QY3)*PO
40 CONTINUE
50 CONTINUE

ENDIF
RETURN
END
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C ****** *** ***** ** * ** * ** * * *

C
C THIS IS THE INCLUDE FILE FOR THE PROGRAM SFREQ.FOR
C

C
C THE PARAMETERS USED IN DIMENSIONING THE ARRAYS ARE:
C
C M1 = MAXIMUM NUMBER OF MODES IN X-DIRECTION
C M2 = MAXIMUM NUMBER OF MODES IN Y-DIRECTION
C M3 = (M1 * M2*3) +1
C M4 = (M3 * (M3 + 1))/ 2
C M5 = (M1 *M2)*(M1 M2 +1) / 2
C M6 = (M1' M2)
C
C-------------------------------------
C 17 MODES(X) BY 17 MODES(Y):
C

PARAMETER(M1 = 10, M2 = 10,
& M3 = (M1 * M2*3)+1.,
& M4 = (M3 * (M3 + 1))/2.,
& M5 = (M1 * M2)*(M1 * M2 + 1.) / 2.,
& M6 = (M1 * M2))

C'"""""* """*"** * * ** * * * * * *** * * * * *' * * *" ** *
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Code Listing: Postprocessor to Rayleigh-Ritz

(* Written by R. J. Notestine - M.I.T. TELAC - 1991*)
(* Plots Natural Mode Shapes from Ritz Fortran Code *)
kk = 4; (' number of modes to plot *)
OpenRead["FR EQ. DAT"];

11 = Read["FREQ.DAT",Number] 1000;
12 = Read["FR EQ. DAT",Number] 1000;
nx = Read["FREQ.DAT",Number];
ny = Read["FREQ.DAT",Number];
ix = Read["FREQ.DAT",Number];
iy = Read["FREQ.DAT",Number];
ifc = Read["FREQ.DAT",Number];
ifm = Read["FREQ.DAT",Number];
evect = Table[0,{i,ix iy}, {j,ix iy)];
xb = Table[0,{i,ix}];
xbeta = Table(0,{i,ix}];
yb = Table[0,{i,iy}];
ybeta = Table[0,(i,iy}];
xa = Read["FREQ. DAT",Number];
xtheta = Read["FREQ.DAT",Number];
ya = Read["FREQ.DAT",Number];
ytheta = Read["FREQ. DAT",Number];
Do[

xb([i]] = Read("FR EQ.DAT",Number];
xbeta[[i]] = Read["FREQ.DAT",Number];

,{i,ix}];
Do[

yb[[i]] = Read["FR EQ.DAT",Number];
ybeta[[i]] = Read["FREQ.DAT",Number];

,{i,iy}];
Do[Read["FREQ.DAT",Number];,{2 (1+3 ifc) ix iy)];
Do[

evect[[i,j]] = Read("FREQ.DAT",Number];
,{i,ix iy),(j,(1-ix iy) ifc+ix iy)];

Close["FREQ.DAT"];
If[ifc == 0,
Do[

f = Sum[evect[[k,ix(i-1)+j]] (Sqrt[2] Sin[xbeta[[i]] x/ll1 +
xtheta] + xa Exp[-xbeta[[i]] x/ll] + xb[[i]] Exp[-xbeta[[i]]*
(1-x/ll)])*(Sqrt[2] Sin[ybeta[[j]] y/12 + ytheta] +
ya Exp[-ybeta[[j]] y/12] + yb[[j]] Exp[-ybeta[[j]]*
(1 -y/12)]),{i,ix),{j,iy)];
ff = ContourPlot[f,{y,0,12),{x,0,11 }];
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Show[ff,AspectRatio->I1 /12, Framed->True, Axes->None];
,(k,kk)],
f = Sum[evect[[ix(i-1)+j,1]] (Sqrt[2] Sin[xbeta[[i]] x/11 +

xtheta] + xa Exp[-xbeta[[i]] x/ll] + xb[[i]] Exp[-xbeta[[il]*
(1-x/ll)])*(Sqrt[2] Sin[ybeta[[j]] y/12 + ytheta] +
ya Exp[-ybeta[[j]] y/12] + yb[[j]] Exp[-ybeta[[j]]*
(1-y/12)]),({i,ix},{j,iy}];

(* Plot[f/.y->12/2,{x,0,11},AspectRatio->.75]; *)
(' Plot[f/.x->11/2,{y,0,12},AspectRatio->.75]; *)

100/{f/.{x->.5 11, y->.5 12},f/.{x->.5 I1,y->.6875 12),f/.{x->.35 I1,y->.5 12},f/.{x->.5 I1,
y->.1875 12},f/.(x->.8 11, y->.5 12)}}//N]
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Appendix G

Experimental Stiffness Regressions

This appendix contains the regressed stiffnesses, force per unit

deflection (N/mm), for all the static tests. The stiffnesses represent the

magnitude of force that must be applied, through the appropriate mechanism,

to achieve one mm of deflection at the transducer location. A stiffness was

regressed for each transducer location per test. Only the linear portions of

each displacement curve were used in the regressions. Initial contact effects

and any large deflection non-linearities were removed.

The regressed stiffnesses are labeled as K, and the goodness of fit values

for the individual regressions are labeled as R. The average stiffness,

calculated from the three specimens tested at each condition, is labeled as K

Avg., and the maximum percentage deviation from the average stiffness is

labeled as Dev. Only one aluminum plate was tested for each condition.

The regressed stiffness information for all the tests conducted in this

study is contained in Tables G.1 through G.17. Three plates were accidentally

tested in the incorrect orientation. These cases have been marked with an '*'

and have not been included in the averages.
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Table G.1 Experimental Stiffnesses for Centered Point Load (CL-CL)

Transducer #1 #2 #3 #4 #5
A-1

A-2

A-3

B-1

B-2

B-3

C-1

C-2

C-3

D-1

D-2

D-3

K
R
K
R
K
R

K Avg.
Dev.

K
R
K
R
K
R

K Avg.
Dev.

K
R
K
R
K
R

K Avg.
Dev.

K
R
K
R
K
R

K Avg.
Dev.

1-2 K
R

382
0.989
402

0.991
383

0.995
389
0.03

303
0.988
301

0.988
295

0.992
299
0.02

652
0.998
650

0.997
618

0.998
639
0.04

438
0.995
410

0.995
403

0.995
416
0.05

633
0.998

621
0.989
646

0.989
611

0.994
625
0.03

470
0.988
468

0.988
459

0.992
466
0.01

969
0.998
967

0.997
922

0.997
952
0.03

644
0.995
601

0.995
590

0.995
611
0.05

917
0.999

537
0.989
574

0.991
552

0.995
554
0.03

396
0.988
391

0.988
388

0.992
392
0.01

890
0.998
892

0.998
844

0.997
875
0.04

615
0.995
570

0.994
566

0.995
583
0.05

845
0.998

1239
0.988
1361
0.99
1281
0.995
1292
0.05

902
0.988
879

0.989
901
0.99
894
0.02

1715
0.997
1709
0.997
1638
0.997
1686
0.03

1336
0.995
1193
0.994
1245
0.995
1255
0.06

1597
0.998

1169
0.99
1255
0.991
1251
0.992
1224
0.05

792
0.988
769

0.988
755

0.994
772
0.03

1792
0.997
1790
0.997
1696
0.997
1758
0.04

1224
0.994
1122
0.993
1162
0.995
1168
0.05

1758
0.997
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Table G.2 Experimental Stiffnesses for Centered Point Load (SS-SS)

Transducer #1 #2 #3 #4 #5
A-1

A-2

A-3

B-1

B-2

B-3

C-1

C-2

C-3

D-1

D-2

D-3

K
R
K
R
K
R

K Avg.
Dev.

K
R
K
R
K
R

K Avg.
Dev.

K
R
K
R
K
R

K Avg.
Dev.

K
R
K
R
K
R

K Avg.
Dev.

1-2 K
R

203
0.981
209

0.984
227

0.992
213
0.06

181
0.972
179
0.97
163

0.969
174
0.07

403
0.997
403

0.995
419

0.995
408
0.03

216
0.982
207

0.982
222

0.986
215
0.04

323
0.993

271
0.981
276

0.683
306

0.992
284
0.07

239
0.973
234

0.968
207

0.968
226
0.09

520
0.997
523

0.995
540

0.995
528
0.02

276
0.982
263

0.982
283

0.986
274
0.04

414
0.993

254
0.98
263

0.984
288

0.992
267
0.07

219
0.972
215

0.969
196
0.97
209
0.07

510
0.997
511

0.995
531

0.995
517
0.03

265
0.982
251

0.982
269

0.987
261
0.04

401
0.994

445
0.979
457

0.983
505

0.992
468
0.07

385
0.973
382

0.968
343

0.969
369
0.08

829
0.997
826

0.996
875

0.995
843
0.04

431
0.984
414

0.981
450

0.986
431
0.04

628
0.992

448
0.981
454
0.98
503

0.991
467
0.07

347
0.973
344

0.967
318
0.97
336
0.06

843
0.996
848

0.995
868

0.995
853
0.02

402
0.981
390

0.981
441

0.986
410
0.07

650
0.993
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Table G.3 Experimental Stiffnesses for Off-Center Point Load (CL-CL)

Transducer #1 #2 #3 #4 #5
A-1*

A-2*

A-3

B-1

B-2

B-3

C-1

C-2

C-3

D-1

D-2

D-3

K
R
K
R
K
R

K Avg.

K
R
K
R
K
R

K Avg.
Dev.

K
R
K
R
K
R

K Avg.
Dev.

K
R
K
R
K
R

K Avg.
Dev.

495
0.981
567

0.986
921

0.994
921

496
0.988
480

0.996
470

0.989
482
0.03

1094
0.998
1033
0.998
1055
0.999
1060
0.03

820
0.993
738

0.994
777

0.994
777
0.05

745
0.981
850

0.985
1864
0.995
1864

885
0.986
833

0.996
836

0.989
851
0.04

1705
0.997
1628
0.998
1613
0.999
1648
0.03

1277
0.993
1127
0.995
1202
0.993
1198
0.06

459
0.981
518

0.984
685

0.994
685

440
0.989
422

0.996
417

0.989
426
0.03

856
0.998
808

0.998
816

0.999
826
0.03

663
0.993
590

0.994
619

0.993
622
0.06

1497
0.978
1642
0.983
1168
0.994
1168

851
0.987
831

0.996
770

0.989
816
0.06

2011
0.998
1899
0.997
2017
0.999
1974
0.04

1650
0.993
1411
0.995
1621
0.993
1553
0.10

1-2 K
R

1035
A 998

1177 1773
0n998 0.998

2703 1106
0.997 0.998
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1980
0.982
2176
0.985
4846
0.981
4846

1586
0.983
1520
0.996
1513
0.986
1539
0.03

3695
0.991
3719
0.997
3726
0.998
3713
0.01

3174
0.989
3058
0.989
3255
0.991
3160
0.03

. .98 0.998
WMMMMWMIMý - --



Table G.4 Experimental Stiffnesses for Off-Center Point Load (SS-CL)

Transducer #1 #2 #3 #4 #5
A-1 K 718 1312 518 983 2740

R 0.996 0.996 0.996 0.997 0.993
A-2 K 708 1280 510 934 2667

R 0.995 0.995 0.995 0.995 0.993
A-3 K 715 1300 518 926 2674

R 0.995 0.994 0.995 0.995 0.989
KAvg. 713 1297 515 947 2693
Dev. 0.01 0.01 0.01 0.04 0.02

B-1 K 377 602 332 662 920
R 0.99 0.99 0.99 0.989 0.988

B-2 K 355 568 316 644 854
R 0.992 0.993 0.992 0.993 0.992

B-3 K 343 546 303 594 849
R 0.994 0.994 0.994 0.994 0.994

KAvg. 358 571 316 632 873
Dev. 0.05 0.05 0.05 0.06 0.05

C-1 K 1013 1519 773 1817 3082
R 0.996 0.994 0.995 0.994 0.993

C-2 K 988 1500 753 1825 2959
R 0.995 0.994 0.995 0.995 0.991

C-3 K 1018 1554 773 1895 3148
R 0.993 0.993 0.993 0.99 0.991

KAvg. 1006 1524 766 1845 3061
Dev. 0.02 0.02 0.02 0.03 0.03

D-1 K 657 978 510 1333 2194
R 0.983 0.983 0.984 0.982 0.985

D-2 K 596 875 451 1108 2078
R 0.993 0.992 0.993 0.992 0.983

D-3 K 605 889 458 1193 2056
R 0.98 0.976 0.98 0.98 0.974

KAvg. 618 912 472 1204 2108
Dev. 0.06 0.07 0.07 0.10 0.04

1-2 K 981 1439 736 1842 3325
R 0.999 0.999 0.999 0.999 0.997

- - - -
I
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Table G.5 Experimental Stiffnesses for Off-Center Point Load (SS-SS)

Transducer #1 #2 #3 #4 #5
A-1

A-2

A-3

B-1

B-2

B-3

C-1

C-2

C-3

D-1

D-2

D-3

K
R
K
R
K
R

K Avg.
Dev.

K
R
K
R
K
R

K Avg.
Dev.

K
R
K
R
K
R

K Avg.
Dev.

K
R
K
R
K
R

K Avg.
Dev.

379
0.991
407

0.991
423

0.992
402
0.06

258
0.981
245

0.977
236

0.985
246
0.05

670
0.998
675

0.997
666

0.998
670
0.01

323
0.989
331

0.983
311

0.984
322
0.03

570
0.991

612
0.992
643

0.993
607
0.06

362
0.981
343

0.976
319

0.986
340
0.07

900
0.998
906

0.997
897

0.997
901
0.01

421
0.988
432

0.983
405

0.984
419
0.03

320
0.991
339

0.992
352

0.993
337
0.05

242
0.981
230

0.977
223

0.985
231
0.04

570
0.998
567

0.997
563

0.998
567
0.01

292
0.988
297

0.982
276

0.984
288
0.04

468
0.991
495

0.992
516

0.993
492
0.05

383
0.982
365

0.976
360

0.985
369
0.04

1032
0.997
1026
0.997
1025
0.998
1028
0.00

518
0.988
526

0.983
501

0.983
515
0.03

1057
0.99
1103
0.992
1155
0.993
1103
0.04

559
0.98
521

0.977
499

0.984
525
0.06

1611
0.997
1632
0.997
1582
0.996
1608
0.02

719
0.987
735

0.982
731

0.984
728
0.01

1-2 K
R

544 713

9.0 9 6 

0 . 9 96

478 859 1344
0.996 0.996 0.996
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Table G.6 Experimental Stiffnesses for Off-Center Point Load (FR-CL)

Transducer #1 #2 #3 #4
A-1 K 555 1112 349 786

R 0.984 0.986 0.986 0.982
A-2 K 521 1026 328 741

R 0.982 0.985 0.983 0.985
A-3* K 209 320 1561 282

R 0.975 0.969 0.974 0.969
KAvg. 538 1069 339 764
Dev. 0.03 0.04 0.03 0.03

B-1 K 326 511 248 672
R 0.954 0.953 0.953 0.949

B-2 K 288 457 222 602
R 0.983 0.981 0.981 0.983

B-3 K 303 486 230 634
R 0.965 0.961 0.965 0.963

KAvg. 305 484 233 634
Dev. 0.06 0.06 0.06 0.06

C-1 K 749 1131 544 1515
R 0.996 0.996 0.996 0.995

C-2 K 745 1123 553 1498
R 0.998 0.998 0.998 0.997

C-3 K 715 1082 523 1419
R 0.996 0.996 0.996 0.994

K Avg. 736 1112 540 1476
Dev. 0.03 0.03 0.03 0.04

D-1 K 644 985 441 1361
R 0.991 0.993 0.992 0.99

D-2 K 597 885 410 1265
R 0.991 0.992 0.993 0.993

D-3 K 609 901 420 1313
R 0.991 0.991 0.991 0.988

KAvg. 616 922 423 1312
Dev. 0.04 0.06 0.04 0.04

1-2 K 908 1288 645 1808
R 0.997 0.997 0.998 0.994
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Table G.7 Experimental Stiffnesses for Off-Center Point Load (FR-SS)

Transducer #1 #2 #3 #4
A-1 K 169 258 126 219

R 0.98 0.98 0.98 0.98
A-2 K 170 259 128 220

R 0.976 0.977 0.977 0.977
A-3 K 163 251 123 212

R 0.992 0.992 0.992 0.992
KAvg. 167 256 125 217
Dev. 0.02 0.02 0.02 0.02

B-1 K 81 106 70 134
R 0.976 0.976 0.976 0.975

B-2 K 79 102 68 129
R 0.974 0.974 0.974 0.973

B-3 K 81 105 70 133
R 0.979 0.979 0.98 0.979

KAvg. 80 104 69 132
Dev. 0.02 0.02 0.02 0.02

C-1 K 230 295 199 382
R 0.994 0.994 0.994 0.993

C-2 K 226 291 194 372
R 0.994 0.994 0.994 0.994

C-3 K 221 285 191 368
R 0.099 0.993 0.993 0.993

KAvg. 226 290 194 374
Dev. 0.02 0.02 0.02 0.02

D-1 K 193 249 150 319
R 0.992 0.992 0.991 0.991

D-2 K 181 231 140 298
R 0.985 0.985 0.985 0.984

D-3 K 178 227 138 298
R 0.989 0.989 0.989 0.989

KAvg. 184 235 142 305

Dev. 0.05 0.05 0.05 0.04

1-2 K 315 402 254 521
R 0.996 0.996 0.996 0.996

360



Table G.8 Experimental Stiffnesses for Centered URPP (CL-CL)

Transducer #1 #2 #3 #4 #5
A-1

1-2 K
R

A-2

A-3

B-1

B-2

B-3

C-1

C-2

C-3

D-1

D-2

D-3

K
R
K
R
K
R

K Avg.
Dev.

K
R
K
R
K
R

K Avg.
Dev.

K
R
K
R
K
R

K Avg.
Dev.

K
R
K
R
K
R

K Avg.
Dev.

440
0.997
460

0.996
465

0.997
455
0.03

355
0.993
347

0.994
324

0.985
341
0.05

734
0.997
718

0.997
699

0.996
717
0.03

496
0.998
455

0.995
469

0.994
473
0.05

733 979 934
0.997 0.997 0.997

639
0.997
664

0.996
657

0.997
653
0.02

502
0.994
489

0.994
465

0.984
485
0.04

976
0.997
978

0.997
936

0.995
963
0.03

680
0.998
608

0.995
633

0.993
639
0.06

A. QQ A.OO~

560
0.997
589

0.995
596

0.997
581
0.04

447
0.994
439

0.995
395

0.984
426
0.08

950
0.997
926

0.997
888

0.996
921
0.04

644
0.998
584

0.996
595

0.994
607
0.06

361

1277
0.997
1311
0.995
1293
0.997
1294
0.01

953
0.993
919

0.993
815

0.984
892
0.09

1780
0.997
1718
0.998
1721
0.996
1739
0.02

1301
0.998
1083
0.992
1225
0.993
1196
0.10

1838
0 97

1250
0.997
1328
0.995
1319
0.995
1298
0.04

848
0.992
807

0.993
819

0.983
824
0.03

1681
0.992
1781
0.997
1684
0.995
1714
0.04

1201
0.997
962

0.995
1145
0.992
1093
0.14

1783
0 995

oowý



Table G.9 Experimental Stiffnesses for Centered URPP (SS-SS)

Transducer #1 #2 #3 #4 #5
A-1

A-2

A-3

B-1

B-2

B-3

C-1

C-2

C-3

D-1

D-2

D-3

K
R
K
R
K
R

K Avg.
Dev.

K
R
K
R
K
R

K Avg.
Dev.

K
R
K
R
K
R

K Avg.
Dev.

K
R
K
R
K
R

K Avg.
Dev.

1-2 K
R

232
0.981
252

0.987
236

0.986
240
0.05

210
0.971

194
0.967
173

0.974
191
0.10

454
0.995
455

0.996
449

0.996
452
0.01

235
0.985
243

0.982
235

0.988
238
0.02

384
0.993

290
0.98
319

0.987
298

0.985
302
0.05

266
0.97
241

0.967
213

0.974
238
0.12

561
0.995
562

0.996
552

0.996
558
0.01

288
0.985
297

0.982
287

0.988
291
0.02

276
0.98
300

0.986
281

0.986
285
0.05

244
0.97
223

0.968
202

0.974
222
0.10

542
0.994
541

0.996
533

0.996
539
0.01

274
0.985
283

0.982
274

0.987
277
0.02

479 458
0.992 0.993

362

472

0.98
516

0.986
482

0.986
489
0.05

411
0.971
381

0.967
341

0.974
376
0.10

875
0.994
854

0.996
870

0.995
866
0.01

444
0.984
460

0.983
449

0.989
451
0.02

725
0.992

473
0.982
508

0.986
487

0.985
489
0.04

385
0.97
356

0.968
318

0.971
351
0.10

861
0.995
876

0.995
843

0.996
860
0.02

403
0.984
428

0.983
427

0.986
419
0.04

744
0.993



Table G.10 Experimental Stiffnesses for Off-Center URPP (CL-CL)

Transducer #1 #2 #3 #4 #5
a • ·-

A-1

1-2 K
R

A-2

A-3

B-1

B-2

B-3

C-1

C-2

C-3

D-1

D-2

D-3

K
R
K
R
K
R

K Avg.
Dev.

K
R
K
R
K
R

K Avg.
Dev.

K
R
K
R
K
R

K Avg.
Dev.

K
R
K
R
K
R

K Avg.
Dev.

950 1852
0.992 0.991

956
0.997
915

0.996
977

0.998
949
0.04

588
0.997
581

0.998
558

0.999
575
0.03

1198
0.998
1191
0.996
1140

0.998
1176
0.03

863
0.998
727

0.998
774

0.996
784
0.09

.9 1 R

1854
0.997
1751
0.996
1846

0.997
1816
0.04

1008
0.997
995

0.998
961

0.998
988
0.03

1869
0.996
1847

0.996
1736

0.998
1816
0.05

1324
0.998
1100
0.998
1198
0.995
1201
0.09

750
0.997
713

0.997
761

0.998
741
0.04

544
0.997
537

0.998
504

0.998
527
0.05

1007
0.997
990

0.996
941

0.998
978
0.04

725
0.998
616

0.998
650

0.996
661
0.09

737
0.991

363

1306
0.996
1208

0.996
1278
0.998
1262
0.05

976
0.997
981

0.997
921

0.999
959
0.04

2121
0.997
2085
0.997
2036
0.998
2080
0.02

1658
0.998
1344
0.998
1511
0.995
1494
0.11

1293
0.991

4791
0.981
4473
0.993
4836
0.993
4694
0.05

1914
0.996
1861
0.997
1793
0.998
1855
0.03

4422
0.989
4470
0.993
4007
0.997
4289
0.07

3187
0.995
2373
0.997
3014
0.994
2811
0.18

4891
096i8



Table G.11 Experimental Stiffnesses for Off-Center URPP (SS-CL)

Transducer #1 #2 #3 #4 #5
A-1

A-2

A-3

B-1

B-2

B-3

C-1

C-2

C-3

D-1

D-2

D-3

K
R
K
R
K
R

K Avg.
Dev.

K
R
K
R
K
R

K Avg.
Dev.

K
R
K
R
K
R

K Avg.
Dev.

K
R
K
R
K
R

K Avg.
Dev.

1-2 K
R

734
0.995
703

0.998
728

0.994
722
0.03

379
0.991
377

0.995
361

0.991
372
0.03

1061
0.994
1006
0.996
1030

0.996
1032
0.03

661
0.996
619

0.997
611

0.996
630
0.05

1017
0.997

1335
0.996
1248
0.998
1296
0.994
1292
0.04

591
0.991
589

0.995
569

0.991
583
0.02

1569
0.992
1524
0.996
1540

0.997
1544
0.02

957
0.996
911

0.997
898

0.997
921
0.04

558
0.995
543

0.998
563

0.994
555
0.02

343
0.991
342

0.995
328

0.991
338
0.03

859
0.994
820

0.995
834

0.997
837
0.03

533
0.996
497

0.997
491

0.996
506
0.05

1490 811
0.998 0.997

364

1069

0.995
1028

0.998
1035
0.994
1044
0.02

673
0.99
683

0.995
625

0.991
659
0.05

1897

0.992
1884
0.994
1893

0.996
1891
0.00

1307
0.996
1161
0.997
1216
0.996
1225
0.06

1941
0.997

2732
0.992
2536
0.996
2659
0.994
2640
0.04

887
0.99
889

0.994
877

0.989
884
0.01

3039
0.995
2881
0.993
2902
0.988
2939
0.03

2040
0.995
1945
0.997
2008
0.995
1997
0.03

3397
0.998



Table G.12 Experimental Stiffnesses for Off-Center URPP (SS-SS)

Transducer #1 #2 #3 #4 #5
A-1

A-2

A-3

B-1

B-2

B-3

C-1

C-2

C-3

D-1

D-2

D-3

1-2 K
R

K
R
K
R
K
R

K Avg.
Dev.

K
R
K
R
K
R

K Avg.
Dev.

K
R
K
R
K
R

K Avg.
Dev.

K
R
K
R
K
R

K Avg.
Dev.

394
0.996
418

0.996
424

0.992
412
0.04

278
0.985
258
0.99
257

0.989
264
0.05

671
0.998
681

0.998
655

0.997
669
0.02

337
0.986
319

0.987
324

0.994
326
0.03

543 701
0.997 0.996

590
0.996
615

0.996
632

0.991
612
0.04

391
0.985
359
0.99
357
0.99
368
0.06

898
0.997
920

0.998
880

0.997
899
0.02

442
0.985
417

0.988
420

0.995
426
0.04

342
0.996
362

0.996
366

0.992
357
0.04

265
0.984
247
0.99
247
0.99
253
0.05

590
0.998
597

0.998
577

0.998
588
0.02

314
0.986
294

0.987
294

0.995
300
0.04

495
0.996

505
0.996
530

0.995
540

0.991
525
0.04

409
0.985
380
0.99
378

0.989
388
0.05

1018
0.997
1025
0.997
1001
0.997
1015
0.01

539
0.984
505

0.987
516

0.995
520
0.04

862
0.996

365

1071
0.996
1111
0.995
1162
0.993
1113
0.04

596
0.986
552

0.988
542
0.99
563
0.06

1554
0.996
1647
0.998
1530
0.996
1575
0.04

728
0.986
680

0.986
728

0.994
711
0.05

1240
0.995



Table G.13 Experimental Stiffnesses for Off-Center URPP (FR-CL)

Transducer #1 #2 #3 #4
A-1

A-2

A-3

B-1

B-2

B-3

C-1

C-2

C-3

D-1

D-2

D-3

K
R
K
R
K
R

K Avg.
Dev.

K
R
K
R
K
R

K Avg.
Dev.

K
R
K
R
K
R

K Avg.
Dev.

K
R
K
R
K
R

K Avg.
Dev.

1-2 K
R

537
0.998
513

0.996
524

0.998
525
0.02

291
0.997
286

0.996
280

0.996
286
0.02

784
0.998
771

0.996
786

0.995
780
0.01

653
0.994
597

0.998
611

0.996
619
0.05

959
0.997

1064
0.998
1020
0.995
1045
0.997
1043
0.02

450
0.997
445

0.996
433

0.996
443
0.02

1165
0.997
1154
0.995
1174
0.995
1164
0.01

968
0.994
879

0.998
900

0.996
914
0.06

1406
0.997

348
0.998
338

0.996
345

0.998
344
0.02

227
0.997
224

0.996
220

0.996
223
0.02

589
0.998
580

0.996
588

0.996
586
0.01

449
0.994
415

0.999
425

0.996
429
0.04

798
0.998
771

0.996
769

0.998
779
0.02

595
0.997
591

0.996
580

0.996
588
0.01

1624
0.997
1550
0.997
1648
0.995
1606
0.04

1385
0.993
1248
0.998
1311
0.995
1312
0.05

699 1875
0.998 0.997

366



Table G.14 Experimental Stiffnesses for Off-Center URPP (FR-SS)

Transducer #1 #2 #3 #4
A-1

A-2

A-3

B-1

B-2

B-3

C-1

C-2

C-3

D-1

D-2

D-3

K
R
K
R
K
R

K Avg.
Dev.

K
R
K
R
K
R

K Avg.
Dev.

K
R
K
R
K
R

K Avg.
Dev.

K
R
K
R
K
R

K Avg.
Dev.

1-2 K
R

169

0.988
166

0.989
189

0.976
174

0.08

88
0.981

90
0.981

89
0.971

89
0.01

230
0.995
222

0.996
224

0.995
225
0.02

205
0.996
189

0.999
190

0.997
195
0.05

350
0.981

255
0.989
251
0.99
285

0.976
263
0.08

114
0.981
116

0.981
115

0.971
115
0.01

295
0.995
285

0.996
285

0.995
288
0.02

261
0.996
241

0.999
241

0.997
247
0.05

449
0.981

128
0.988
127

0.989
144

0.976
133

0.08

77
0.981

78

0.981
78

0.97
78

0.01

201
0.995
193

0.996
194

0.995
196
0.02

163
0.995

151
0.999
151

0.997
155
0.05

285
0.983
0.983 0.981

224
0.988
221

0.989
249

0.976
231
0.07

144
0.981
145

0.981
146
0.97
145
0.01

379
0.995
361

0.997
373

0.995
371
0.03

344
0.995
315

0.998
318

0.997
325
0.05

570
0.981

367



Table G.15 Experimental Stiffnesses for Uniform Pressure (CL-CL)

Transducer #1 #2 #3 #4 #5
A-1

A-2

A-3

B-1

B-2

B-3

C-1

C-2

C-3

D-1

D-2

D-3

K
R
K
R
K
R

K Avg.
Dev.

K
R
K
R
K
R

K Avg.
Dev.

K
R
K
R
K
R

K Avg.
Dev.

K
R
K
R
K
R

K Avg.
Dev.

1-2 K
R

1519
0.999
1553
0.999
1623
0.999
1564
0.04

1226
0.999
1185
0.999
1147
0.999
1185
0.03

2331
0.999
2288
0.999
2273
0.999
2297
0.01

1560
0.999
1437
0.999
1509
0.999
1500
0.04

2200
0.998

1920
0.999
1978
0.999
2056
0.999
1983
0.04

1523
0.999
1464
0.999
1425
0.999
1470
0.03

2834
0.999
2951
0.999
2731
0.999
2836
0.04

1944
0.997
1819
0.999
1866
0.999
1875
0.04

2722
0.998

1743
0.999
1838
0.998
1924
0.999
1832
0.05

1434
0.999
1409
0.999
1378
0.999
1406
0.02

2663
0.999
2541
0.999
2587
0.999
2596
0.03

1752
0.998
1637
0.999
1710
0.999
1698
0.04

2440
0.998

3140
0.997
3140
0.998
3374
0.999
3214
0.05

2526
0.999
2479
0.999
2234
0.998
2406
0.08

4792
0.999
4540
0.999
4833
0.999
4718
0.04

3555
0.999
3072
0.998
3414
0.999
3334
0.09

4469
0.999

2839
0.999
3040
0.999
3192
0.999
3017
0.06

2344
0.999
2344
0.999
2211
0.998
2298
0.04

4096
0.999
4106
0.999
4058
0.999
4087
0.01

2946
0.997
2731
0.999
2748
0.999
2805
0.05

3973
0.999
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Table G.16 Experimental Stiffnesses for Uniform Pressure (SS-CL)

Transducer #1 #2 #3 #4 #5
A-1 K 1198 1497 1330 2779 2096

R 0.999 0.999 0.999 0.999 0.999
A-2 K 1212 1520 1322 2692 2098

R 0.998 0.998 0.999 0.999 0.998
A-3 K 1258 1563 1359 2663 2075

R 0.999 0.999 0.999 0.999 0.999
KAvg. 1222 1526 1337 2711 2090
Dev. 0.03 0.02 0.02 0.02 0.01

B-1 K 881 1087 971 1870 1400
R 0.999 0.999 0.999 0.999 0.999

B-2 K 914 1118 998 1860 1482
R 0.999 0.999 0.999 0.996 0.999

B-3 K 842 1073 947 1777 1378
R 0.999 0.999 0.999 0.999 0.999

KAvg. 878 1092 972 1835 1418
Dev. 0.04 0.02 0.03 0.03 0.04

C-1 K 1942 2396 2140 3823 3094
R 0.999 0.999 0.999 0.999 0.999

C-2 K 1998 2501 2164 4010 3163
R 0.999 0.999 0.999 0.999 0.999

C-3 K 2022 2479 2098 4156 3111
R 0.997 0.998 0.998 0.999 0.999

KAvg. 1987 2458 2134 3992 3123
Dev. 0.02 0.03 0.02 0.04 0.01

D-1 K 1333 1687 1446 2858 2019
R 0.999 0.999 0.999 0.999 0.999

D-2 K 1257 1564 1342 2692 1878
R 0.999 0.999 0.998 0.998 0.998

D-3 K 1323 1665 1430 2935 2021
R 0.999 0.999 0.999 0.999 0.999

KAvg. 1303 1637 1404 2825 1971
Dev. 0.04 0.05 0.05 0.05 0.05

1-2 K 1924 2370 2129 4010 2906
R 0.999 0.999 0.999 0.998 0.999

MMMM R .999 0.99 0.99 .998. .999



Table G.17 Experimental Stiffnesses for Uniform Pressure (SS-SS)

Transducer #1 #2 #3 #4 #5
A-1

A-2

A-3

B-1

B-2

B-3

C-1

C-2

C-3

D-1

D-2

D-3

K
R
K
R
K
R

K Avg.
Dev.

K
R
K
R
K
R

K Avg.
Dev.

K
R
K
R
K
R

K Avg.
Dev.

K
R
K
R
K
R

K Avg.
Dev.

1-2 K
R

715
0.999
740

0.999
730

0.999
728
0.02

638
0.997
659

0.998
600

0.996
631
0.05

1171
0.999
1277
0.999
1194
0.999
1212
0.05

700
0.996
675

0.997
711

0.997
695
0.03

1060
n 9QQQ

838
0.999
863

0.999
853

0.999
851
0.02

729
0.998
753

0.998
699

0.996
726
0.04

1360
0.999
1462
0.999
1427
0.999
1415
0.04

814
0.997
792

0.998
825

0.997
810
0.02

786
0.999
824

0.999
814

0.999
808
0.03

700
0.997

715
0.998
666

0.996
693
0.04

1268
0.999
1368
0.999
1314
0.999
1315
0.04

767
0.997
744

0.998
772

0.997
761
0.02

1241 1164
0_999 0.999
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1224
0.999
1252
0.999
1278
0.999
1251
0.02

1008
0.998
1032
0.999
961

0.997
999
0.04

1895
0.999
2111
0.999
1982
0.999
1992
0.06

1180
0.998
1139
0.998
1192
0.997
1170
0.03

1856
0.999

1198
0.999
1212
0.999
1232
0.999
1214
0.01

991
0.998
1019
0.998
956

0.996
988
0.03

1800
0.999
1912
0.999
1862
0.999
1857
0.03

1067
0.998
1052
0.999
1097
0.998
1072
0.02

1672
0.999R n.QQQ 0.999



Appendix H

Analytical Stiffnesses

This appendix contains the stiffnesses, force per unit deflection (N/mm),

obtained from the Navier and constrained Navier, Rayleigh-Ritz, and potential

function analyses for the first three boundary conditions: CL-CL, SS-CL, and

SS-SS. The stiffness represents the magnitude of force that must be applied,

through the appropriate mechanism, to achieve one mm of deflection at the

point of interest. The stiffnesses have been calculated at five points which

correspond to the five points at which transducer measurements were taken in

the laboratory tests.

The Navier and constrained Navier stiffnesses in Tables H.1 through

H.5 are based on 50 modes in directions with constrained, clamped boundary

conditions and 9 modes in directions with simply supported boundary

conditions. This results in 2500, 450, and 81 modes for the three boundary

conditions, CL-CL, SS-CL, and SS-SS respectively. The Navier analyses do

not include bending-twisting coupling.

The Rayleigh-Ritz stiffnesses in Tables H.6 through H.10 are based on

the 81 mode Rayleigh-Ritz solution discussed in Chapter 4, which includes

bending-twisting coupling.

The stiffnesses from the polynomial potential functions are listed in

Tables H.11 through H.13. These polynomial functions were also discussed in

Chapter 4.
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Table H.1 Navier Stiffnesses for Centered Point Load Cases

Stiffnesses (N/mm) for Points of Interest

B. C.'s Spec. #1 #2 #3 #4 #5
CL-CL A 557 913 801 1990 1860

B 335 574 469 1310 1090
C 768 1210 1110 2610 2590
D 492 812 727 1830 1800
I 728 1160 1070 2580 2650

SS- SS A 309 417 385 671 649

B 161 218 194 353 317

C 444 593 563 949 976

D 215 282 264 444 438

I 346 453 430 715 731

Table H.2 Navier Stiffnesses for Off-Center Point Load Cases

Stiffnesses (N/mm) for Points of Interest

B. C.'s Spec. #1 #2 #3 #4 #5

CL-CL A 1200 2130 954 2570 5230

B 709 1400 625 1440 2870

C 1670 2880 1230 3710 7590

D 1090 1860 838 2470 5920

I 1610 2710 1180 3710 9050

SS-CL A 892 1500 695 2020 2830

B 417 718 362 934 1100

C 1380 2300 996 3170 4800

D 829 1350 607 1980 3400

I 1310 2140 919 3140 5700

SS - SS A 490 694 434 776 1190

B 245 358 233 381 539

C 724 1010 608 1150 1880

D 329 441 296 534 793

I 542 729 468 880 1390
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Table H.3 Navier Stiffnesses for Centered URPP Cases

Stiffnesses (N/mm) for Points of Interest

B. C.'s Spec. #1 #2 #3 #4 #5

CL-CL A 670 990 869 2120 1950
B 402 613 516 1370 1160

C 915 1330 1200 2820 2700

D 594 884 785 1940 1870

I 868 1280 1150 2770 2740

SS - SS A 344 441 407 701 675

B 177 229 206 366 332
C 495 632 594 1000 1010

D 236 297 278 465 455

I 381 480 453 751 756

Table H.4 Navier Stiffnesses for Off-Center URPP Cases

Stiffnesses (N/mm) for Points of Interest

B. C.'s Spec. #1 #2 #3 #4 #5

CL-CL A 1250 2180 1050 2680 5280
B 746 1420 681 1520 2930

C 1730 2930 1370 3830 7630

D 1140 1920 930 2590 5810

I 1670 2790 1310 3850 8840
SS-CL A 934 1540 759 2110 2870

B 441 743 391 990 1140
C 1430 2350 1100 3270 4850

D 868 1400 667 2080 3350

I 1360 2210 1010 3260 5590
SS - SS A 512 717 465 810 1230

B 257 370 248 400 558

C 752 1040 657 1200 1920

D 344 459 317 560 814
I 565 757 504 919 1420
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Table H.5 Navier Stiffnesses for Uniform Pressure Cases

Stiffnesses (N/mm) for Points of Interest

B. C.'s Spec. #1 #2 #3 #4 #5
CL - CL A 2520 3280 2940 6090 5360

B 1530 1980 1820 3640 3520
C 3460 4530 3960 8500 6880

D 2290 3050 2690 5880 5030

I 3350 4450 3890 8610 7030
SS-CL A 1830 2420 2010 4600 2890

B 874 1160 969 2210 1420
C 2790 3690 3040 7050 4270

D 1700 2290 1860 4510 2650
I 2670 3580 2910 7040 4080

SS- SS A 912 1080 1010 1580 1490
B 462 546 515 797 766

C 1340 1580 1480 2320 2150
D 609 726 676 1070 1000

I 999 1190 1110 1760 1620
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Table H.6 Rayleigh-Ritz Stiffnesses for Centered Point Load Cases

Stiffnesses (N/mm) for Points of Interest

B. C.'s Spec. #1 #2 #3 #4 #5

CL - CL A 435 752 640 1830 1680

B 329 546 449 1220 1020

C 755 1180 1080 2480 2460

D 478 769 689 1690 1660

I 705 1110 1020 2400 2460

SS - SS A 229 320 291 545 525

B 161 218 194 353 316
C 444 593 563 949 976

D 215 282 264 444 438

I 346 453 430 715 731

Table H.7 Rayleigh-Ritz Stiffnesses for Off-Center Point Load Cases

Stiffnesses (N/mm) for Points of Interest

B. C.'s Spec. #1 #2 #3 #4 #5

CL-CL A 1270 2870 865 1650 8150
B 675 1320 593 1300 2610
C 1590 2700 1180 3430 6780

D 1010 1700 788 2240 5030

I 1500 2490 1110 3370 7710
SS-CL A 897 1900 604 1290 4170

B 409 698 354 866 1080

C 1330 2190 971 2970 4540

D 790 1260 584 1830 3130

I 1250 2010 886 2910 5250

SS-SS A 439 712 357 529 1310

B 247 363 234 377 546

C 724 1010 608 1150 1880

D 329 441 296 534 793

I 542 729 468 879 1390

375



Table H.8 Rayleigh-Ritz Stiffnesses for Centered URPP Cases

Stiffnesses (N/mm) for Points of Interest

B. C.'s Spec. #1 #2 #3 #4 #5
CL-CL A 519 808 693 1910 1730

B 385 582 492 1270 1090

C 891 1290 1160 2680 2560

D 567 836 744 1800 1730
I 833 1220 1100 2580 2550

SS - SS A 256 337 308 566 544

B 177 229 206 366 331
C 495 632 594 1000 1010

D 236 297 278 465 455

I 381 480 453 751 756

Table H.9 Rayleigh-Ritz Stiffnesses for Off-Center URPP Cases

Stiffnesses (N/mm) for Points of Interest

B. C.'s Spec. #1 #2 #3 #4 #5
CL - CL A 1240 2680 911 1820 7310

B 835 1560 726 1620 3220

C 1650 2750 1310 3530 6820

D 1050 1750 872 2350 4970

I 1560 2560 1240 3500 7590

SS-CL A 893 1830 640 1420 3850
B 482 799 411 1030 1280
C 1380 2240 1070 3070 4590

D 826 1310 640 1920 3090
I 1300 2070 976 3030 5160

SS - SS A 447 713 377 570 1300
B 287 412 269 440 636
C 752 1040 657 1200 1920

D 344 459 317 560 814
I 565 757 504 919 1420
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Table H.10 Rayleigh-Ritz Stiffnesses for Uniform Pressure Cases

Stiffnesses (N/mm) for Points of Interest
B. C.'s Spec. #1 #2 #3 #4 #5

CL-CL A 2040 2720 2420 5310 4660
B 1440 1850 1700 3350 3240
C 3300 4290 3770 7920 6460

D 2130 2820 2500 5360 4610
I 3140 4150 3630 7880 6480

SS-CL A 1480 2010 1650 4010 2470
B 845 1110 936 2090 1370

C 2700 3550 2950 6680 4150
D 1630 2180 1780 4210 2540
I 2560 3410 2790 6590 3910

SS - SS A 710 854 798 1290 1220
B 461 545 514 796 765
C 1340 1580 1480 2320 2150
D 609 726 676 1070 1000
I 999 1190 1110 1760 1620
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Table H.11 Potential Function Stiffnesses for Centered Point Load Cases

Stiffnesses (N/mm) for Points of Interest
B. C.'s Spec. #1 #2 #3 #4 #5

CL-CL A 797 1300 1230 3900 6160
B 571 901 931 2540 6150
C 975 1520 1240 4200 3190
D 663 1100 980 3500 4190
I 901 1420 1180 4030 3250

SS - SS A 360 432 404 647 611
B 183 220 205 329 311
C 524 630 588 942 891
D 242 291 271 435 411
I 395 475 443 710 672

Table H.12 Potential Function Stiffnesses for Centered URPP Cases

Stiffnesses (N/mm) for Points of Interest
B. C.'s Spec. #1 #2 #3 #4 #5

CL - CL A 936 1520 1440 4570 7230
B 675 1060 1100 3000 7270

C 1090 1700 1380 4700 3570
D 774 1290 1140 4090 4890

I 1020 1610 1330 4550 3670
SS- SS A 379 455 425 681 644

B 193 231 216 346 327
C 552 663 619 992 938

D 255 306 286 458 433

I 416 500 467 748 707
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Table H.13 Potential Function Stiffnesses for Uniform Pressure Cases

Stiffnesses (N/mm) for Points of Interest
B. C.'s Spec. #1 #2 #3 #4 #5

CL - CL A 4680 7620 7210 22900 36200
B 3460 5460 5640 15400 37300
C 4430 6920 5620 19100 14500
D 3800 6330 5610 20100 24000
I 4240 6710 5550 19000 15300

SS- SS A 887 1070 994 1590 1500
B 451 542 506 810 766
C 1290 1550 1450 2320 2190
D 596 716 669 1070 1010
I 974 1170 1090 1750 1660

379


