
COMMERCIALIZATION AND TRANSFER
OF TECHNOLOGY IN THE U.S.

JET AIRCRAFT ENGINE INDUSTRY

by

Jerry R. Sheehan

S.B. Electrical Engineering
Massachusetts Institute of Technology

1986

Submitted to the
Department of Aeronautics and Astronautics

in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE
in Technology and Policy

at the

Massachusetts Institute of Technology

June 1991

o Massachusetts Institute of Technology, 1991. All Rights Reserved.

Signature of Author
Department of Aeronautics & Astronautics

May 10,1991

Certified by:

Certified by:

Accepted by:

/I"

Theodore A. Postol
Professor of Science, Technology, and National Security

Thesis Supervisor

•, .. lr • . . .. . • _• ... . _. ... . ., • - _ ... . . . ..

VPtofessor Richard de Neufville
Chair, Technology and Policy Program

*1

L/ Professor Harold Y. Wachman
Chairman, Department Graduate Committee

MASAC-US~1TS I~NSTi E
OF TECHCnt. aGy

JUN L• 1991
LtHAHIES

-- --



COMMERCIALIZATION AND TRANSFER OF TECHNOLOGY
IN THE U.S. JET AIRCRAFT ENGINE INDUSTRY

by

Jerry R. Sheehan

Submitted to the Department of Aeronautics and Astronautics
on May 10, 1991 in partial fulfillment of the requirements for the degree of

Master of Science in Technology and Policy

ABSTRACT

This thesis examines the changing nature of technology transfer between military
and commercial research and development programs in the U.S. jet aircraft engine
industry. Early technology transfer in the jet engine industry is shown to have been
characterized by the direct commercialization of military engines. Future
technology transfer is projected to consist of the transfer of basic research results
from military to commercial programs. As a result, it is argued, the military can be
expected to assume less of the cost and risk associated with the development of
future commercial engines than it formerly did.

Prospects for future technology transfer are evaluated by determining the types of
engines likely to be developed for military and commercial aircraft. The effects of
increased specific thrust and improved fuel economy upon aircraft range, speed,
and fuel consumption are demonstrated by analyzing the aerodynamic
performance of military fighter, bombers, and transports and of commercial
airliners. The technologies necessary to meet the requirements of future military
and commercial engines are explored through ideal cycle analysis. As is shown,
military and commercial engines can both benefit from additional research in the
areas of advanced materials, compressor design, and component efficiencies.
However, advances in commercial engine design will also require additional
research in areas such as advanced nacelle design and fan blade aerodynamics.

This analysis indicates that future technology transfer between the military and
commercial sectors of the engine industry will be characterized more by the
transfer of basic research results than by the direct commercialization of military
hardware. The implications of this change upon the development of policies for
maintaining the competitiveness of the U.S. jet aircraft engine industry are
presented and discussed.

Thesis Supervisor: Dr. Theodore A. Postol
Professor of Science, Technology, and National Security
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CHAPTER I

INTRODUCTION

Over the past several decades, the U.S. aircraft industry has maintained a

highly competitive status in both the domestic and international markets for military

and commercial aircraft. In constant dollars, domestic sales of U.S. aircraft,

engines, and parts have increased over fifty percent since 1975, and despite the

growing trade deficit for U.S. general merchandise, the trade balance for the

American aerospace industry has continued to grow, from approximately $1.5

billion in 1964 to over $22 billion in 1989 (AIAA, 1991, p. 121). The reasons for

such success are many and include economic, political, technological, and

personal factors. In addition, it is also clear that the role of the U.S. government-

-and the U.S. military in particular-in creating and supporting the aircraft industry

cannot be overlooked.

A. Military-Commercial Relationships:

The large military buildup during the Second World War created a vast

infrastructure in the U.S. and abroad for the design, fabrication, and production of

military aircraft. U.S. manufacturers were able to take advantage of the

infrastructure the government had helped construct and developed it into

successful military and commercial aircraft industries (NAS/NRC, 1985, pp. 26-

27). The European nations that until then had lead the U.S. in aviation, however,

were unable to properly mobilize their manufacturing bases after the war. Much



of Germany's industrial infrastructure was destroyed by the war; what remained

was prohibited from being used for the production of aircraft for more than a

decade after the war. Great Britain's aircraft industry remained fragmented among

a number of different manufacturers who failed to consolidate into a unified industry

with the capacity and financing to launch a major research and development effort.

France's aircraft industry focused solely upon national air transportation and hence

had little motivation to develop long-range aircraft (MIT, 1989, p. 21).

The U.S. was well-situated to take advantage of its aircraft industry after the

war. Government investments had developed a strong industrial base from which

the industry could grow, and the military continued to invest in advanced aircraft

technology. By emphasizing the role of the Air Force in its defense policy, the U.S.

government generated an expanding market for military aircraft and provided

aircraft manufacturers with an assured market for their products.

The commercial aircraft manufacturing industry took advantage of such

government spending through the successful transfer of military technology to

commercial applications. In general, this process can take two forms that will be

referred to throughout this study as "commercialization" and "technology transfer".

Commercialization refers to the direct development of a commercial product from

military hardware. In the aerospace industry, commercialization can result from the

conversion of a military transport into a commercial airliner or the use of a military

engine on a commercial aircraft with minor modification. The term "technology

transfer", as will be used in this context is more encompassing. It can refer to



either commercialization or to the transfer of technical know-how between two

industrial sectors. Thus, a piece of hardware need not be transferred directly

between sectors, rather the process for developing the technology can be

transferred and then used for a new application. Examples of such transfer

include new materials and processing techniques that can be used to develop

components for different military and commercial engines.

The commercial aircraft industry has benefitted from military research and

development (R&D) in both these ways. In developing the 707 airliner, for

example, Boeing developed a prototype transport' aircraft that they knew could be

converted into a commercial airliner. At the same time, their design for the

prototype represented an outgrowth of the company's work on the B-47 and B-

52 bombers. The design of the 747 made use of the knowledge Boeing gained in

bidding for the Air Force's C-5 heavy transport aircraft. Similarly, until the early

1980s, virtually all commercial jet engines in operation on major passenger

transports were derived from military antecedents. General Electric's CF6 series

engines which now power the Boeing 747 and 767, the McDonnell-Douglas DC-

10, and the Airbus 300, 310, and 330 aircraft derive with only minor modification

from the TF-39 engine originally designed and constructed to power the C-5. Pratt

& Whitney's JT9-D engine which powers versions of the Boeing 747 and 767 and

Airbus 300 and 310 aircraft also derives from the engine that Pratt had proposed

for the C-5 competition.

'The prototype aircraft was designated the 367-80. It served as the prototype for both the 707
and the KC-135 military transport.



B. A Changing Environment in the Aerospace Industry:

The aircraft industry is at present undergoing a period of change which

threatens to alter the relationship between the commercial and military markets and

the nature of the industry itself. This change reflects both the evolution of domestic

policy and developments on an international level. Three primary trends

characterize this change: an increasing divergence between military and

commercial requirements for aircraft and their engines; a declining military budget;

and changes in the nature of competition in the commercial aerospace and airline

industries.

1. Diverging Military and Commercial Requirements:

A number of reports suggest that future military R&D in jet aircraft engines will

provide limited benefit to the commercial market because the requirements of the

two sectors are rapidly diverging (MIT, 1989; NAS/NRC, 1985). In other words,

the two sectors of the market may now be developing engines that have little

hardware in common. The divergence limits the amount of military technology that

may be validated for commercial use. As the MIT Commission on Industrial

Productivity concluded in its study of the U.S. aircraft industry:

The commercial sector is now enjoying less spin-off from
military validation of new concepts. ...While divergence
between military and commercial needs is greatest at the
product level, differential mission requirements appear to be
reducing the amount of generic technology validation useful
to commercial producers. In combination with fewer military
programs overall, the military is fulfilling this important function
to a much smaller extent than it formerly did (MIT, 1989, p.
17).



The growing divergence between military and commercial engines derives

primarily from changing design constraints in each sector. Throughout the 1950s

and 1960s, military transports and bombers were designed for maximum payload

and maximum range as were commercial airliners. Hence, the engines developed

by the military had exceptional utility in commercial applications; both required high

thrust and moderate fuel economy. However, recent military engine development

has not continued along these lines. The military is only now developing its first

large transport in over twenty years and so has not been funding development of

large transport engines. In fact, the military plans to use a modified commercial

engine on its new C-17 transport aircraft. Furthermore, engines developed for

modem bombers such as the B-1A and B-2 have been designed with requirements

for supersonic capability and stealth as primary design constraints. Thus, they

tend to trade off fuel efficiency for size so that they may be easily incorporated into

airframes.

As a result, recent military engine development has focused on fighter-sized

engines which have then been modified for use on bombers. These engines must

produce sufficient thrust to accelerate jet aircraft to high subsonic or supersonic

velocities. At the same time, they must meet stringent size and weight restrictions

in order to be easily integrated into small, lightweight airframes that have low

aerodynamic drag and present low radar cross sections. Thus, these engines

usually take the form of low bypass ratio turbofan engines (sometimes referred to

as "leaky turbofans"). In these engines, most of air ingested at the engine inlet

passes through the engine core and is combusted; only a small fraction of the air



•bypasses" the core and is later mixed with the core flow. These engines provide

improved thrust-to-weight ratios compared to higher bypass ratio engines, but at

the expense of fuel efficiency.

In contrast, the commercial sector is more concerned with operating costs. It

measures engine performance primarily in terms of specific fuel consumption

(SFC), the number of pounds of fuel that must be burned each hour to produce

one pound of thrust. Lowering the SFC of an engine decreases the amount of fuel

the aircraft will use during a flight and thus reduces the direct operating cost (DOC)

of the airliner.

Since the mid-1960s, commercial airlines have attempted to lower SFC by using

large, high bypass ratio turbofan engines in which a large quantity of air is

channeled around the engine core. Because of the large masses of air these

engines handle, they tend to be both heavy and large and therefore are not

suitable for most military fighter or bomber aircraft. On commercial aircraft, these

drawbacks are outweighed by gains in SFC which lower airliner operating costs

so that airlines can be yet more competitive.

Design constraints for military and commercial engines therefore appear to be

diverging. Whereas the engines developed for military transports and bombers

in the 1960s had direct commercial application in many instances, the engines

developed for modern military aircraft do not. As a result, the aircraft engine

industry is developing different types of engines for each sector and the amount



of directly commercialized military hardware is declining.

2. Declining Military Budget:

In addition, government expenditures on military R&D are expected to decrease

over the next decade due in large part to the declining Soviet threat. Current

projections estimate that the defense budget for R&D will decrease 1% in real terms

in Fiscal Year (FY) 1993, 6% in FY 1994, 10% in FY 1995, and 7% in FY 1996

(Gilmartin, 1991, p. 51). While the recent Gulf War may temper these cuts

somewhat and sustain funding for certain areas of research and development such

as smart munitions and stealth aircraft (Shifrin, 1991, p. 62), the overall trend will

be toward a reduced military budget for R&D.

Military budget cuts could adversely affect the aircraft engine industry.

Reductions in funding for advanced engine research may decrease the amount of

new gas turbine technology developed with government funding. Despite the fact

that much military engine hardware cannot be directly commercialized, much of the

basic technology developed for military engines such as efficient compressors and

high-temperature ceramic materials still has commercial application. The

commercial industry continues to benefit from the transfer of this technology from

the military sector. Without this source of technology development, the commercial

industry may be forced to fund this research itself.

Reductions in military procurement may also effect the size of the industry and

hence its ability to conduct large scale R&D programs. Reductions in the number



of B-2 bombers to be produced and cancellation of the Navy's A-12 stealth attack

aircraft have placed airframe manufacturers in a precarious position. Analysts

estimate that excess capacity caused by these and other cutbacks will force up to

three of the six current airframe manufacturers to withdraw from the industry

(Velocci, 1991, p. 63). Cancellation of aircraft programs also hurts the aircraft

engine manufacturers as they must produce fewer engines. The cancellation of the

A-12, for instance is likely to cost General Electric as much as 2.5 billion dollars in

lost sales of the F412 engine and an equal amount in lost sales of spare parts. In

the near term, the cancellation may affect "at least several hundred employees"

who had been working on F412 engine development (Aviation Week, 1991a, p. 19).

Combined with the already limited number of new military starts, military budget

reductions would place an additional financial burden on the aircraft industry.

Commercial sales would have to increase in order to sustain the size of the

industry and to produce sufficient profit to fund basic research and development.

In an industry in which military work provides a disproportionate amount of

corporate profit and commercial profit margins are low, such a change may be

difficult to survive.

3. Changes in the Basis of Competition:

The early success of the U.S. aircraft industry was influenced by domestic

policies that encouraged technological innovation. The establishment of the Civil

Aeronautics Board (CAB) in 1938 to control entry into the airline industry and

regulate pricing and route structures stimulated "service-based competition" (MIT,



1989, p. 22) throughout the industry. Because the CAB established airline fares

along different routes, competitors could not compete on a price basis, and airlines

were encouraged to adopt new technologies for their fleets such as new aircraft

and engines in order to attract additional passengers.

Deregulation of the airline industry in 1978 has shifted the basis of competition

from service to price. Without CAB regulated fares, airlines can no longer afford

to purchase new technologies unless they can be shown to reduce direct operating

costs and hence be used to enhance profitability. In many cases, the price airlines

are now willing to pay for new technology does not cover the cost of developing

and producing these technologies (MIT, 1989, p. 31).

At the same time, competition from foreign manufacturers has become more

intense. After a period of financial difficulties which led to public ownership, Rolls-

Royce has reemerged as a viable competitor in the aircraft engine business.

Despite lagging GE and Pratt in thrust-to-weight ratio and turbine inlet temperature

during the 1970s, Rolls-Royce has since gained parity (or near-parity) with the U.S.

manufacturers in these areas (NAS/NRC, 1985, p. 123). Airbus Industries, a

consortium of European airframe manufacturers, has also proven a viable

competitor in the aircraft industry with its A300 series of wide-body airliners.

Many of these foreign competitors such as Airbus and SNECMA, a French

engine company, receive support from their national governments in the form of

government subsidies and low-interest loans. This support has undoubtedly



contributed to their recent success. U.S. aircraft and engine manufacturers do not

receive such subsidies, but many analysts argue that U.S. military procurement

provides similar support (Markillie, 1988, p. 5; MIT, 1989, p. 18). As requirements

for military and commercial aircraft and engines continue to diverge, however, the

degree to which such indirect support will continue is questionable. Such a trend

may therefore adversely affect the ability of the commercial aircraft industry to

compete with international competitors that benefit from direct government support.

Together, the three trends identified above imply that the nature of the aircraft

industry may undergo revolutionary changes. As such, they dictate a need to

reexamine the U.S. aircraft industry in the light of the changing environment in

order to develop a coherent strategy for anticipating and responding to these

changes. An examination of this sort will have to address a wide range of topics

including the reasons for the past success of the U.S. industry, the nature of

business-government relations, and the shape of the future aircraft and airline

industries.

C. Objective of This Thesis:

This thesis begins such a reexamination by investigating the relationship

between military and commercial jet engine technology. In particular, it evaluates

the effectiveness of military funding in supporting research and development

applicable to the commercial jet aircraft engine industry. As such, this thesis

represents a case study applicable to the larger questions of technology transfer

between military and commercial industries and the future of the U.S. aerospace



industry in general.

This thesis is proactive in that it attempts to determine, from a technical

perspective, the extent to which the changing relationship between military and

commercial jet engine technology may affect the future competitiveness of the jet

engine industry as a whole. While the industry appears to have successfully

accommodated past changes in this relationship, its success in handling future

changes may rest on its ability to predict the effect of such changes and to adapt

to them knowledgeably. The analysis contained in this thesis is geared toward

identifying areas in which military and commercial engines will continue to diverge

and toward providing leadership to policy-makers and business planners so that

they may properly respond to the potentially new environment ahead.

The jet engine industry is particularly interesting in the context of technology

transfer for a number of reasons. First, jet engine technology is an enabling

technology for the aircraft industry as a whole. Advances in jet engines pace

advances in aircraft capabilities. Neither supersonic flight nor profitable

intercontinental flight would have been possible without the advances in jet engine

technology. Thus, the future of aviation may best be determined from a study of

the propulsion industry.

Secondly, the aircraft engine industry is dominated by a limited number of

engine manufacturers. Whereas nine U.S. companies manufacture gas turbine



engines2 for commercial and military applications, two of these companies, General

Electric (GE) and Pratt & Whitney (Pratt), dominate both the commercial and

military markets. In fact, GE and Pratt are the only U.S. engine manufacturers that

produce engines for large commercial transports that carry over 90 passengers

such as the Boeing 700 series aircraft, the McDonnell-Douglas DC-8, DC-9, and

DC-10 aircraft, and the Airbus 300 series. They are also the sole U.S. suppliers of

military engines for fighter and bomber aircraft. Thus, these two companies are in

a particularly promising position to benefit from the transfer of technology between

military and commercial programs. As suppliers to both sectors of the market,

Pratt and GE are well positioned to transfer military technology into commercial

products.

D. Structure of Thesis

This thesis is divided into six chapters which attempt to lead the reader to a

number of conclusions regarding the role of military research upon the commercial

jet engine industry and to a series of policy recommendations aimed at maintaining

the competitiveness of the U.S. jet engine industry. As this thesis examines only

a particular sector of the aerospace industry, conclusions regarding the role of the

military in developing technologies for commercial application may not necessarily

apply to other sectors of the industry. Nevertheless, this research should suggest

additional research into these other sectors and possibly into entirely different

2 These Include Allied-Signal Garret Engine Division, CFE Company, General Electric Company
(GE Aircraft Engines), General Motors (Allison Gas Turbine Division), Light Helicopter Turbine Engine
Company, Teledyne CAE, Textron Lycoming (Stratford Division), United Technologies Pratt &
Whitney, and Williams International.



industries. The argument contained in this thesis will be presented as described

below.

Chapter II of this thesis reviews jet aircraft engine technology. The concepts

of ideal cycle analysis are introduced and are used to develop expressions for the

specific thrust and specific fuel consumption of different types of engines. These

two quantities, specific thrust and specific fuel consumption, measure the thrust-

generating capability and the fuel efficiency of an engine, respectively, and are two

primary measures of performance for jet aircraft engines. The analysis

demonstrates the dependence of these quantities upon design characteristics of

and typical operating conditions for the engine.

Following this technical review, Chapter III examines the role military R&D has

played in helping to establish the commercial engine industry. Particular attention

is paid to the military's early interest in jet engine technology and the means by

which commercial airlines later adopted the technology. In addition, this chapter

reviews the development of prominent commercial engines in order to discern the

influence that military research and development played in their design. The

chapter ends with a several conclusions regarding the changing role of the military

in commercial engine development and the reasons for the successful transfer of

technology between the two sectors.

Chapter IV discusses likely requirements for future military and commercial

engines. It reviews the primary directions of military R&D in aeronautics and

|



discusses some of the more recent programs established by the military to meet

these goals. Similarly, commercial research goals will be discussed and

commercial research programs introduced. To the extent possible, the effect new

engines will have on aircraft performance, will be evaluated from a technical

perspective.

Chapter V investigates the technological innovations that will be necessary to

meet the performance requirements presented in Chapter IV. In effect, a sensitivity

analysis is conducted to explore the changes in engine performance achievable

with changes in the thermodynamic cycle of representative military engines. The

effects of these changes on commercial engines will then be assessed. Areas in

which military research will benefit commercial engines will be noted as will areas

of commercial need that are not satisfied by military research programs.

Using the results of the above analysis as its basis, Chapter VI will present

several conclusions regarding the applicability of military engine R&D to commercial

jet engines. Policy recommendations aimed at maintaining the competitiveness of

the U.S. aircraft engine industry in light of the previous analysis will then identified

and discussed.
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CHAPTER II

AIRCRAFT JET ENGINES: A TUTORIAL

A complete understanding of the role technology transfer plays in the U.S.

jet engine industry requires a basic understanding of jet engine technology. This

chapter reviews the fundamental principles of jet engine operation. The intent is

to introduce those with little or no knowledge of the technology to the key

concepts and components of jet aircraft engines. Readers with a thorough

knowledge of gas turbine design and analysis may find it appropriate to proceed

to Chapter IIIl.

The analysis presented in this chapter describes the primary components

of jet aircraft engines and develops expressions for determining the performance

of an engine given its primary design parameters and desired operating conditions.

Throughout this analysis performance is measured in terms of specific thrust and

specific fuel consumption (SFC). Specific thrust is defined as the ratio of an

engine's thrust to the mass flow of air that must pass through the engine in order

to generate that level of thrust. It is typically expressed in terms of pounds of

thrust generated per pound mass of air per second (bt/Ibm/s). Specific thrust is

of importance in determining the size of the engine required to produce a desired

thrust level. Engines with a higher specific thrust can generate a given level of

thrust with a smaller air mass flow than can engines with lower specific thrust.

Thus, for a given level of thrust, the engine with higher specific thrust can be made



smaller than an engine with low specific thrust.
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therefore reduced. Finally, the air is expelled through an exhaust nozzle that

returns the airflow to ambient pressure though at a temperature somewhat higher

than ambient temperature and a velocity higher than that of the incoming

airstream.

The difference between turbojet, turbofan, and turboprop (or propfan)

engines derives from the way they transform the thermal energy of the combusted

fuel-air mixture into propulsive power for the aircraft. The turbojet and turbofan

both rely on the increased velocity of the exhaust stream to provide a propulsive

force. However, a turbojet accelerates a small quantity of air to high velocity while

a turbofan produces thrust by accelerating a larger quantity of air to a lower overall

velocity. A turboprop, on the other hand, uses most of the energy generated by

the engine to drive a propeller which accelerates an even larger mass of air to

lower velocities than the turbofan engine.

The efficiency with which an engine converts thermal energy into propulsive

energy is referred to as overall engine efficiency, designated by the Greek symbol

eta, 11o. Overall engine efficiency is the product of the engine's thermal efficiency,

1rt, and its propulsive efficiency, 17p. The thermal efficiency is defined as the

fraction of total heat energy in the fuel that is converted to work. If the work

produced by the system is measured by the change in momentum of the mass air

flow as it passes through the engine, the expression for thermal efficiency

becomes (Boeing, 1969, p. 2-18):

23



Slt J- u ,u o ) (2-1)

where: r= mass flow rate of air in Ib/s
m = mass flow rate of fuel in Ib/s
ue = velocity of the mass flow at the exit to the engine
u0 = velocity of the mass flow at the engine inlet (flight velocity)
J = mechanical equivalent of heat in ft-lb/BTU
h = heating value of the fuel in BTU/lb

As can be seen from this expression, the thermal efficiency of an engine increases

as the exit velocity of the air stream increases or as the mass flow rate of fuel

needed to produce a given exit velocity decreases. The maximum thermal

efficiency available from an engine, however, is determined by the thermal

capability of the engine materials. The value of the maximal thermal efficiency for

an engine with a maximum possible temperature of Tm is given by a Carnot cycle

operating between atmospheric temperature (the heat sink) and the maximum

temperature (Kerrebrock, 1977, p. 2):

St 1 - O (2-2)

Propulsive efficiency, on the other hand is measured by the ratio of

mechanical work done on the airplane to the mechanical work produced by the

engine. The former is equal to the thrust of the engine multiplied by the flight

velocity. The latter is equal to the increase in kinetic energy of the air stream.

Using the notation introduced above, this can be written:

m( ue-uo)uo ZUo
.61u e2 u 02 ue+Uo) (2-3)



Propulsive efficiency decreases as the ratio of exhaust velocity to flight (inlet)

velocity increases. As will be shown, the specific thrust of an engine increases

with the ratio of inlet to exhaust velocity. Thus, in engine design, a tradeoff must

be made between propulsive efficiency and thrust.

B. Ideal Cycle Analysis

A common and simple way of analyzing the performance of an aircraft

engine is through "ideal cycle analysis" (Kerrebrock, 1977; Mattingly, 1987). In this

methodology, the components of the engine are modeled as black boxes; each

component is described not in physical terms such as its size or mass, but rather

by the change it imparts on the air stream. Typically, these changes are

expressed in terms of pressure and temperature ratios.

1. Stagnation Temperature and Pressure

The temperature ratios used in the analysis are not expressed in terms of

actual temperatures, but in terms of "Total" or "Stagnation" temperatures, noted by

a subscript 'T" as in TT. The total temperature represents the temperature that the

gas would achieve if all its kinetic energy were converted to heat energy as occurs

when the gas stagnates at the entrance to any of the stages of a turbine engine.

The total temperature is defined by the energy equation:

CpTT-C pT U2  (2-4)P TT-C,-2--
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re; T refers to the

velocity of the air

ie speed of sound

(2-5)

:onstant pressure
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pressure and the
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Ig result:

(2-8)



2. Temperature and Pressure Ratios:

Ideal cycle analysis uses special notation to refer to ratios of temperatures

and pressures. With this nomenclature, the greek letter r represents a ratio of

total temperatures; the Greek letter w represents a ratio of total pressures; e

represents the ratio of total temperature to atmospheric (ambient) temperature;

and 6 represents the ratio of total pressure to atmospheric (ambient) pressure.

For example, the total pressure ratio across the compressor can be written wr and

the stagnation temperature of the ambient air can be written E 0o

3. Assumptions of Ideal Cycle Analysis:

Ideal cycle analysis makes three primary assumptions regarding the

thermodynamic cycles of the jet engine:

All expansion and compression of gases is isentropic.
Thus, the temperature and pressure of a gas before and after
compression or expansion are related by equation 2-7 above.

* All combustion occurs at constant total pressure (rB = 1).

* The exit nozzle provides perfect expansion.
Thus the pressure of the gas at the exit of the engine nozzle is equal
to atmospheric pressure.

These assumptions greatly simplify the analysis of the jet engine. At the same

time, they provide an accurate description of the engine. Many of the non-ideal

effects of the engine not accounted for in this model tend to counteract one

another using the above assumptions.
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More precise estimates of engine parameters can be calculated by taking

deviations from the ideal behavior into account. Of particular interest are the

turbine and compressor stage "polytropic" efficiencies. If such effects are included

in the cycle analysis, the expressions for specific thrust and SFC become

extremely complex and cannot easily be written as single equations; rather, they

must be solved in parts. Thus, the effects of component inefficiencies will not be

addressed in this chapter, although later analyses of engines will take such factors

into account. A derivation of the cycle analysis equations for non-ideal

components can be found in several references including Mattingly (1987) and

Oates (1988).

C. Turbojet Engine Analysis

This section applies ideal cycle analysis to the turbojet engine. A block

diagram of a generic turbojet is depicted in Figure 2-1. As shown, the turbojet

consists of five major components: the inlet or diffuser (D), the compressor (C),

the combustor or burner (B), the turbine (T), and the exit nozzle (N).

1. Turbojet Notation:

Station numbers are assigned to these components as shown in the figure.

These station numbers are used as subscripts in the ideal cycle analysis. Using

the standard notation, station 0 refers to ambient conditions far enough away from

the engine as to be unaffected by the engine's presence. At this point ambient

conditions are defined as T0, Po, and uo where u refers to the velocity of the



airstream. Station 1 refers to the entrance to the diffuser at which point the air

mass flow, m, enters the engine. Stations 2 and 3 refer to the entrance and exit

to the compressor, respectively. Stations 4 and 5 refer to the entrance and exit

to the turbine, and stations 6 and 7 refer to the entrance and exit to the nozzle.

(Alternatively, stations 3 and 4 can be considered the entrance and exit of the

combustor). Based upon the assumptions of ideal cycle analysis, the pressure of

the air flow at station 7 is assumed to be equal to P0.

rhf

diffuser compressor turbine nozzle

burner

Figure 2-1

Schematic Diagram of a Turbojet Engine Showing Primary
Components and Station Numbers. [From Kerrebrock
(1977, p. 6)]
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Additional subscripts will be used in this analysis to refer to pressure or

temperature ratios across a component. The subscript D will be used to refer to

ratios across the diffuser, or similarly, between stations 1 and 2. The subscript C

will refer to ratios across the combustor; B will refer to ratios across the burner;

T will refer to ratios across the turbine; and N will refer to ratios across the nozzle.

2. General Expression for Thrust:

The thrust of a turbine engine is defined as the force resulting from the

change in momentum of the air as it flows through the engine (Kerrebrock, 1977,

p. 14). Thus, engine thrust is actually the net thrust imparted to the airflow. This

thrust is governed by Newton's Third Law of Motion which in its simplest form can

be stated:

F -ma (2-9)

When applied to mass flows defined in terms of mass per unit time, this expression

can be written in terms of rn which is defined as du/dt. If one neglects the mass

of fuel added to the air passing through the engine, the thrust of the turbojet can

be rewritten using this notation as follows:

F•-i ( u 7 -uo ) (2-10)

in which u7 and uo are defined as the velocity of the air stream at the exit and

entrance of the nozzle, respectively. If we let the symbol "a" represent the local

speed of sound given the local conditions of temperature, pressure, and density,
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this expression can be written in terms of the local Mach number of the airflow as

it passes through the engine:

Fk -m ( a 7tl -a o0 1o ) (2-11)

Recalling the definition of Mach number presented in equation 2-5, equation 2-11

becomes:

F-a oHoi 7 -- I (2-12)

Typically, engines are rated in terms of their "specific thrust", the ratio of their total

thrust to the mass flow rate required to generate that thrust. Specific thrust

describes the change in velocity of the total airflow after is has been accelerated

by the engine. It is therefore a direct measure of an engine's ability to generate

thrust at a given mass flow rate. In this sense, specific thrust is a better measure

of an engine's performance capabilities than is simply thrust because specific

thrust relates thrust to the required mass airflow--and hence to the size of the

engine required to produce the thrust. Using this convention, equation 2-9 can be

written:

F a T M7 - (2-13)

As expression 2-13 indicates, the specific thrust of an engine is a function

primarily of the temperature and Mach number ratios across the engine; the



remainder of the ideal cycle analysis therefore focuses on deriving expression for

these relations.

Using the definition of stagnation temperature presented earlier, the

expression for the total temperature at station 7 becomes:

T ,-T,[ + I H, 2 (2-14)

The stagnation temperature at station 7 can also be computed by considering the

piece-wise change in temperature as the air traverses through the different

components of the engine. Using this approach:

'T' 7T -1'' 8o01 c[ B T N (2-15)

The last term in this equation is equal to zero in ideal cycle analysis because the

nozzle is assumed to provide perfect expansion of the gas. By equating equations

2-14 and 2-15, the following relation can be generated:

o17 E1C'T (2-16)

Similar expressions can be written for the total pressure of the gas at station

seven. Using the definition of total pressure:

P T,-P,7( i + IH,) 2 (2-17)

By tracing the flow of the gas through the engine and accounting for the change
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In pressure at each stage, the following expression can be derived:

P 7, -Po7 0o c BIE T jr (2-18)

Again, by the assumptions of the ideal cycle analysis, the total pressure ratio

across the burner and the total pressure ratio across the nozzle are equal to one.

In addition, the analysis assumes that the nozzle expands the gas to atmospheric

pressure, P0. Thus, equations 2-17 and 2-18 can be equated and the Po and P7

terms cancel each other out. The resulting expression takes the form:

I + 1 7 2.- 50 ICt T ) (2-19)

The left-hand side of this equation is identical to the denominator in equation 2-16.

Thus, the right-hand side of this equation can be substituted into equation 2-16 to

produce the following relation:

T7 EO' C T (2-20)

The denominator of this expression, however, is simply the pressure relationship

for an Isentropic temperature ratio, as shown earlier in equation 2-7. In other

words:
s( 5o TT T) -' 0 *1e C ET (2-21)

Thus, equation 2-21 reduces to:

T7 (2-22)

With this expression in hand, the remaining task is to calculate the Mach
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number ratio across the engine. This can be accomplished by combining

equations 2-19 and 2-21. By substituting the right-hand side of equation 2-21 into

2-19 and manipulating the result to isolate M72, the equation becomes:

H-. 1 (eot C'TT-1 )  (2-23)

Similarly,

S 2 (E _o-1 ) (2-24)

Thus,

M7 eoTc1 T-1 (2-25)

The equation for specific thrust can be found by substituting the expressions

for the temperature ratio and the Mach number ratio into the general thrust

equation. The result is shown below:

F Ho B( c' 7-I ) -~ 1] (2-26)-,-f-foa 8e0-1

3. Turbine-Compressor Power Balance for the Turbojet:

The specific thrust equation for the turbojet can be further simplified by

considering the power relationship between the turbine and the compressor.

Because all the power that the turbine extracts from the gas is used to drive the

compressor, the compressor power and the turbine power must be equal. The

power balance can be expressed solely in terms of heat energy extraction if total



temperatures are used. In this form the power balance is expressed as:

c p(. TT,-TT,) -( m2 +2 ) Cp( TT 4 -TTS) (2-27)

where mtf is the mass flow of fuel into the combustor. Because this flow is small

compared to the mass air flow, the mass flow of fuel can be neglected in this

analysis. Manipulation of equation 2-27 yields the following expression:

TT2 TT 3  TT4  5 (2-28)

The terms of this expression can be further simplified by noting their relationship

to variables defined earlier. With proper substitution, Equation 2-28 becomes:

-1 - -1 (2-29)

The right hand side of this expression can then be substituted into the specific

thrust equation derived above to yield the following expression:

-2- o o II oc IFeT -1 (2-30)

Further simplification is not possible. The above expression, though

complex, defines the specific thrust of the turbojet in terms of only four variables.

Two of these are the design operating conditions for the engine, o0 and Mo which

are defined by the altitude at which the aircraft engine operates. The other two

variables, ET and rc, are design variables determined by the design of the engine.

The former defines the maximum allowable turbine inlet temperature (TIT) of the



engine. This value is a function of the turbine materials and cooling system. Thus,

maximum turbine inlet temperature is determined by the state-of-the-art in turbine

materials and cooling system design. The second defines the compression ratio

of the engine. Greater flexibility is possible with compression ratio as additional

compressor stages can be added to an engine to increase its compression ratio.

In practical applications, though, maximum compression ratio is limited by weight

considerations.

4. Specific Fuel Consumption:

Specific fuel consumption (SFC) is a measure of the fuel efficiency of a

turbine engine. It expresses the number of pounds of fuel used per hour to

generate a pound of thrust. Its units are therefore Ib/lbt/hr. By definition:

SFC=.H#_L( 3600 )g--

(3600 ) m (3600 ) (2-31)

where F equals the thrust of the engine (in pounds) and g is acceleration due to

gravity (approximately 32.1 ft/s2). The 3600 factor converts the SFC calculation

from seconds to hours.

SFC is computed by considering the energy balance across the combustor.

As no other energy is put into the system, this balance can be expressed as:

i Cp( TT 4 - T T 3 ) -l 211 (2-32)

36



where h is the heating value of the fuel measured in BTU/lb. For typical jet engine

fuel, h = 18,500 BTU/lb. In simple terms, this equation states that the heat energy

added to the airstream (the right-hand side of the equation) produces a change

in the energy of the airstream proportional to the change in total temperature of the

gas across the combustor.

This equation can be solved for the ratio of ihfl/h in the following manner:

&f _ CT TT - TT3  TTz (2-33)

~L f T' p- 0 T-T 6L) (3-34)

By substituting this last expression into equation 2-31, SFC can be expressed in

the following terms:

FC - C O T J(ET-tceO)( 3600 ) (2-35)

5. Typical Turbojet Performance:

The equations for specific thrust and specific fuel consumption derived

above can be used to explore the performance of a turbojet engine given values

of the two design variables, maximum turbine inlet temperature and compression

ratio, and the design operating conditions of the engine, namely altitude and

velocity.
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engine are increased by the higher airstream velocity at the inlet.

Changes in turbine inlet temperature and compression ratio also influence

the specific thrust and SFC of a turbojet engine. The effect of these design

variables upon specific thrust is shown in Figure 2-4. This graph plots the specific

thrust versus compression ratio for a turbojet designed to operate at Mach 0.8 at

30,000 feet. Performance is plotted for three different turbine inlet temperatures,

2600', 2900", and 3200" R. As the graph demonstrates, specific thrust increases

with increasing turbine inlet temperature. In the case shown here, each 300" R

increases in TIT boosts the specific thrust of the engine by over 10% for

compression ratios above 10. The effect of compression ratio upon specific thrust

is more complicated. At each turbine inlet temperature, an optimal compression

ratio exists at which specific thrust achieves its maximum value. This value can be

calculated by differentiating equation 2-30 with respect to rT, setting the result

equal to zero, and solving for rrC. By doing so, it can be shown that specific thrust

is optimized when rT equals J~/T/e 0 The optimal rc can then be calculated from

the adiabatic relationship between temperature and pressure, equation 2-7.

The effect of turbine inlet temperature and compression ratio upon SFC is

shown in Figure 2-5. Again, curves are plotted for three different values of TIT.

As shown, the SFC of a turbojet engine increases with increasing TIT. This

increase results from the higher velocity at which the airstream is exhausted from

the engine at higher temperatures. SFC can be reduced at all turbine inlet
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temperatures by increasing the compression ratio of the engine. The higher

compression ratio improves the efficiency of the engine cycle and thereby reduces

SFC.

D. Turbofan Engine Analysis

The propulsive efficiency of a jet engine can be greatly improved by using

a fan to pump air through a secondary nozzle. The fan section is powered by a

second turbine placed downstream of the compressor turbine. In this manner, a

portion of the energy contained in the primary jet (or core stream) is transferred

to the fan stream. The engine accelerates a larger mass of air to a smaller velocity

than a turbojet, improving its propulsive efficiency. This configuration is called a

"turbofan" engine.

1. Turbofan Notation:

Figure 2-6 depicts schematically a turbofan engine. The turbofan cycle

differs from the turbojet cycle in that two air mass flows must be considered, the

core mass flow, designated rore, and the "bypass" air mass flow, designated

ri.fan The bypass ratio of the engine is defined as the fraction of air in the bypass

stream to the air in the core stream. It is designated by the greek letter a. Hence:

a-i Dan (2-36)
mcore

As shown, the turbofan station numbers are similar to those of the turbojet.

Station 0 represents the ambient conditions; station 1 refers to the inlet; station 2
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Iry nozzle

fan compressor

Figure 2-6

Schematic Diagram of a Turbofan Engine Showing Primary
Components and Station Numbers. [From Kerrebrock
(1977, p. 8)]

to the entrance to the fan/compressor. As with the turbojet, station 3 is the

compressor exit or burner entrance, and station 4 is the burner exit or turbine

entrance. Station 5 is then defined as the turbine exit and entrance to the core

stream nozzle; station 6 is the exit of the core stream nozzle. Station 7 is the

entrance to the bypass stream nozzle; and station 8 is the exit of the bypass

stream nozzle.

The equations for the turbofan are identical to those for the turbojet until the

turbine-compressor power balance is considered.

2. Turbofan Power Balance:

For the turbofan, the power balance must consider not only the power

extracted for driving the core compressor, but must consider the power extracted
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for driving the fan as well. Thus, the power balance equation takes on the
following form:

Score CP(TT4-TTS)- 11 core Cp(TT3-TT2 )+aC core CP(TT7-TT2)

(2-37)
Again, this equation can be manipulated into a form in which design parameters

can be recognized.

T4 TT T T - I I + 1TT, -  (2-38)

I1 -1 - ((I c - 1) + ( EF -1)) (2-39)

For the turbofan, total thrust of the engine is the sum total of the thrusts generated

by the core stream and the fan stream. The equation for the thrust of the fan
stream is analogous to that for the core stream derived for the turbojet, except that
'C is replaced by rF, and Br and TT are replaced by unity. Thus, the total specific

thrust of the turbojet can be written:

oaU0 ( ) T i1 1 H -1 -1

(2-40)

3. Turbofan Optimization:

The advantage of the turbofan lies in its ability to utilize the kinetic energy
of the core air stream to accelerate a large mass of air in the bypass stream. As
a result, the total mass of air accelerated in a turbofan engine is increased while
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the velocity of the core exhaust is reduced. By trading a high exhaust velocity for

a high mass flow, the turbofan can achieve an improvement in propulsive efficiency

relative to the turbojet'. For a given engine core, the velocity of the core airflow

will be a function of the bypass ratio. Larger bypass ratios will further decrease the

core stream velocity; conversely, they will increase the velocity of the bypass flow.

The bypass ratio at which the two streams have the same velocity will therefore be

the optimal operating point for the engine.

The engine will be operating optimally in terms of overall efficiency when

U core exha us t - fan exhaust (2-41)

The velocities of airflow at the core and fan exhausts are given by the terms under

the square root in equation 2-40. Thus, the condition that the two exhaust streams

have equal velocity can be evaluated by setting these two terms equal subject to

rT having the value defined by equation 2-39. Thus,

E)T e•c)t-1 eo-1 (2-42)
()0 ; T o-1 00-1

This equation can then be solved for rF, yielding the following expression:

I + eo ( i +a --I c) - c  (2-43)
F" - (o ( 1 + ) - I

'The improvement in propulsive efficiency relative to the turbojet engine depends on the air
speeds at which the engines are operating.
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fic thrust of the turbofan-in

1) +)c( e0 -1 )
1a +C) -1

(2-44)

t is a function of only three

function of the compression

re.

fuel consumption can be

nbustor. As heat energy is

akes the same form as with

o c; ( 3 600 ) (2-45)+a

46



5. Typical Turbofan Performance:

Using equations 2-44 and 2-45, the performance of the turbofan engine as

a function of its design variables and operating conditions can be explored. Figure

2-7 shows the relationship between specific thrust and design Mach number for

a turbofan engine that operates at 30,000 feet with a bypass ratio of 1, an overall

(fan plus compressor) pressure ratio of 30, and a turbine inlet temperature of

2900*R. As with the turbojet, specific thrust declines with increasing Mach

number. By comparing this graph with that in Figure 2-2, one can also see that

the specific thrust of the turbofan is less than that of the turbojet at all Mach

numbers. The lower specific thrust results from the fact that the energy generated

in the core is used to accelerate both the bypass airstream and the core airstream.

The advantage of this design is that the propulsive efficiency of the engine, and

hence its SFC is improved compared to the turbojet.

This effect is demonstrated in Figure 2-8 which plots the SFC of the turbofan

engine described above versus flight Mach number. As shown, the SFC of this

engine increases monotonically with Mach number over the region explored.

However, the SFC of this engine is less than that of the turbojet throughout this

range. For example, at Mach 1.0, the SFC of the bypass turbofan is about 0.69

Ib/lbt/hr compared to 0.88 for the turbojet.
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Further increases in bypass ratio will tend to lower both the specific thrust

and the SFC of a turbofan engine. This effect is demonstrated in Figures 2-9 and

2-10 which plot the specific thrust and SFC, respectively, for a turbofan engine

operating at Mach 0.8 at an altitude of 30,000 feet. Compression ratio is assumed

to be constant at 30, and the turbine inlet temperature is held constant at 29000

while bypass ratio is varied between 0 (a straight turbojet) and 20 (an "ultra-high

bypass" turbofan). As shown, both specific thrust and SFC drop off rapidly as the

bypass ratio is increased from 0 to 5 and continue to decline, though at a slower

rate, as bypass ratio is increased to 20. As these graphs indicate, a tradeoff must

therefore be made between specific thrust and SFC in turbofan engine design.

E. Afterburning

Engine thrust can be further increased by adding additional fuel to the

airflow and combusting it downstream of the turbine in an "afterburner". Though

this process increases the SFC of the engine significantly, it can greatly augment

the thrust of the engine and is useful in providing for short bursts of high thrust for

supersonic dash capability in aircraft. Afterbuming is made possible by the fact

that combustion in the burner is limited by the thermal resistance of the turbine and

as a result cannot combust all the oxygen in the air. Afterbuming combusts a

portion of this residual oxygen. Higher combustion temperatures can be used in

an afterburner than in the combustion chamber because the surface area is small

enough to permit cooling and because the hot gases do not impinge on any

rotating blades.
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1. Afterbuming Turbojet:

The afterbuming turbojet is shown schematically in Figure 2-11. As

indicated, this engine is identical to the unaugmented turbojet except that additional

fuel (rn) is to the airstream behind the turbine and is combusted. The ideal cycle

analysis of this engine is identical to that for the unaugmented engine except that

the temperature rise in the afterburner must be taken into account. This can be

done by simply modifying the expression for specific thrust so that the term rB is

replaced by rg rA where rA represents the temperature rise in the afterburner,

TI7/TTs.

diffuser compressor turbine nozzle
I I

bumner afterburner

Figure 2-11

Schematic Diagram of an Afterbuming Turbojet Engine.
[From Kerrebrock (1977, p. 6))



The expression for specific thrust is more helpful if it can be expressed in

terms of the normalized afterburner temperature, e A* This result can be achieved

by making the following substitutions:

B U(2-46)

A " •T, -T

The resulting equation for specific thrust becomes:

SAT (2-47)8A 8oBUc
m "TaeO-1 - T-O( Ec-1 )

The SFC can be determined from a power balance across the entire engine. This

analysis yields:

( f + % -I [i ) a -0o0) (2-48)

Substituting this expression into the general equation for SFC:

SFC - [ T2I / [ (A-E80)( 3600 ) (2-49)

2. Afterburning Turbofan:

The turbofan engine can also be modified with an afterburner to improve its

specific thrust. For many aircraft with a subsonic cruise requirement and a

supersonic dash requirement, the afterbuming turbofan is an ideal design choice.



Figure 2-12 depicts an afterbuming turbojet engine. In this type of engine,

the core and bypass airflows are almost always mixed prior to afterbuming. This

configuration places an additional requirement on the design of the engine,

specifically, the pressure ratios of the core and bypass airflows must be the same

just before the afterburner. In order for PT5 to equal PT7, the fan pressure ratio

must equal the product of the compressor pressure ratio and the turbine pressure

ratio. More explicitly:

(2-50)S- T 7CiT T

Assuming that the combustion in the afterburner brings the core and bypass

streams to the same temperature, the two airstreams will also have the same exit

I

diffuser fon b r afterburner
compressor turbine nozzle

Figure 2-12

Schematic Diagram of an Afterbuming Turbofan Engine.
[From Kerrebrock (1977, p. 34)]
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1

velocity (since their total pressure is also the same). Thus, the equation for

specific thrust can be written as:

F - (+1 .) a H A et l - 1 1 (2-51)
m U FO e0 -1 -

To meet the pressure requirements for this engine:

8 T+80 ( 1 +cr-zc)'F T+ 1 +a, C) (2-52)

K c+Oa0oI

The SFC of the afterburning turbofan is calculated after consideration of the energy

balance. Since the bypass and core air streams are brought to the same

temperature in the afterburner, the energy balance can be written as:

mf 1 - m ( I +a ) Cp'l'(eA -o) (2-53)

The resulting equation for SFC takes the form:

SF C iTgJ1 +ie-eoJ(36 ) (2-54)SFC - /C ( ( 3600 (2

The effect of afterburning on the performance of a turbofan engine is shown

in Figures 2-13 and 2-14 which plot specific thrust and SFC versus flight Mach

number for both non-afterburning and afterburning versions of the same engine2.

This engine is assumed to have a bypass ratio of 1, an overall pressure ratio of 30,

2The results for an afterbuming turbojet engine are comparable.
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and a turbine inlet temperature of 2900 which at 30,000 feet corresponds to a eT

of 7. The afterburning engine is assumed to have a E A equal to 10. As Figure 2-

13 shows, afterbuming can increase the specific thrust of this engine by over 80

Ibt/Ibm/s at all flight speeds. For a given mass airflow, this increase in specific

thrust would greatly increase the total net thrust of the engine. However, as shown

in Figure 2-14, afterbuming also increases the SFC of the engine by more than

0.40 Ib/lbt/hr at all flight velocities. Thus, the range that the aircraft can fly with full

afterburning power is considerably less than the range it can fly without

afterburning. This effect will demonstrated in more detail later in this thesis.

The analysis presented in this chapter demonstrates the key parameters in

determining the performance of turbojet and turbofan engines. For turbojet

engines, performance at a given operating point is determined primarily by

compression ratio and maximum turbine inlet temperature. For turbofan engines,

performance is determined primarily by compression ratio, turbine inlet

temperature, and bypass ratio. This insight will be used later in this thesis to

explore ways of improving the performance of military and commercial engines.

After determining appropriate measures of performance for the engines used on

different military and commercial aircraft, the technological advances necessary to

achieve the improved performance goals will be investigated through ideal cycle

analysis.
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CHAPTER III

THE MILITARY'S ROLE IN DEVELOPING
EARLY COMMERCIAL GAS TURBINE ENGINES

The U.S. aircraft engine industry has been remarkably successful in

"spinning off" and adapting military aircraft engine technology for use in the

commercial sector. This success has been accomplished by incorporating military

aircraft engine technology into commercial engines, improving their specific fuel

consumption, thrust, and reliability and providing considerable economic benefit to

commercial aviation. Many of the engines currently in service on modern airliners,

and most of the engines on earlier commercial aircraft, are derived from military

engines. This trend is the historical result of the military's early interest in jet engine

technology as a means of enhancing the performance of its fighter and bomber

aircraft. Because military interest in jet engines arose well before the commercial

interest did, R&D for military aircraft engines paved the way for the development

of commercial engines.

This chapter explores the role the military has played in helping to establish

and maintain the commercial jet engine industry in the United States. In particular,

this chapter documents the transfer of military jet engine technology to the

commercial engine industry and attempts to understand the reasons for the

successful incorporation of military technology in commercial products. The

chapter ends with several conclusions regarding the success of technology transfer

between the military and commercial jet engine industries in the U.S. These
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lessons will later be examined to better understand the potential for continuing the

success of the U.S. jet aircraft engine industry.

A. Commercial Jet Engines With Military Antecedents

The extent to which military engine technology has influenced commercial

engine development can be appreciated by examining the military content of

commercial engines. Many major commercial engines incorporate technology first

developed for military engines. In such cases, the degree of similarity between

the military and commercial versions varies. In some instances, the commercial

engine was a direct commercialization of the military engine. In others, the

commercial variant was derived from the core of the military engine, but

incorporates a different fan section to create an engine with a different bypass ratio.

The following discussion describes the lineage of today's commercial airliner

engines in order reveal the degree of military technology contained in these

engines. As will be shown, many early military engines and their cores were

directly commercialized for airline use.

1. Pratt & Whitney JT3: The First Commercial Airliner Jet Engine

The Pratt & Whitney JT3C engine was the first jet engine used on a

commercial airliner. This engine, a straight turbojet, served as the primary

powerplant on the Boeing 707 airliner, the first U.S.-manufactured commercial jet

airliner and was the first jet engine powerful enough for four to propel such a large

aircraft. At sea level, the JT3C generated 12,000 pounds of thrust with a specific
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fuel consumption of 0.76 Ib/lbt/hr1 (Taylor, 1966, p. 536). While somewhat less

fuel efficient than a typical propeller-driven engine of that day (which would have

an SFC of approximately 0.42 Ib/lbt/hr), the JT3C nevertheless helped lower the

direct operating costs (DOC) of airlines. By generating much more thrust than a

piston engine, the JT3C could power a larger aircraft to higher velocities than a

piston engine, and provide more economical service.

Though a revolutionary engine for the commercial market, the JT3 engine

was actually a commercial version of the J57 engine Pratt had developed for the

B-52 bomber. Pratt began designing a demonstration version of the J57 with

company funds in 1946 in order to make up for their late start in jet engine

development (Miller and Sawyers, 1968, p. 162). In 1948 the Air Force funded

Pratt & Whitney to continue development of this jet engine for the B-52 bomber.

Pratt built the J57 engine to Air Force specifications between 1948 and 1954.

Eight of these engines were used to power the B-52.

The J57/JT3 was the first engine to incorporate a dual rotor configuration

in which separate turbines were used to power the low-pressure and high-pressure

compressor stages or "spools".2 The earlier single-spool engines could operate

efficiently only near their design point. At this point, the rotational speed of the

compressor was properly matched to the engine airflow. Under off design

1Unless otherwise noted, all values of engine SFC quoted in this document refer to performance
under static, sea-level conditions.

2The term "spool" is used to refer to the turbine, its associated compressor stage, and the
connecting drive shaft.
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conditions, the stages of the high pressure compressor were mismatched; the first

stages of the compressor had a tendency to stall and the last stages often

operated under "turbining" conditions, drawing power from the airflow rather than

compressing it. Such an engine has difficulties starting or operating at high velocity

(von Ohain, 1987, p. 21). Similarly, if the engine is slowed down or the compressor

inlet temperature climbs, the front stages of the compressor supply too much air

to the rear stages. The excess air in the rear stages of the compressor initiates a

choking action which decreases the airflow through the compressor and increases

the chances of engine stall (Treager, 1979, p. 123).

Dual-spool technology solved this problem by using two independently

rotating spools. The rates of rotation of the high- and low-pressure spools could

then be adjusted separately to operate under a wider range of conditions. In this

configuration, the front rotor is designed so that its rate of rotation decreases faster

than that of the rear rotor at low speeds to prevent the rear compressor stages

from choking.

The JT3 engine in operation on current Boeing 707s and Douglas DC-8s

is a modified JT3 engine designated the JT3D. The JT3D incorporates a forward

fan section, converting it into a turbofan engine with a bypass ratio of 1.4

(Wilkinson, 1960, p. 89). Such an arrangement offers great advantages in thrust

and in specific fuel consumption. The JT3D is capable of generating 18,000

pounds of thrust at take-off with a specific fuel consumption of 0.535 lb/lbt/hr

(Treager, 1979, p. 59). At cruise, the SFC of the JT3D increases to 0.80, only
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slightly higher than that of a piston engine (Miller and Sawyers, 1968, p. 197). This

innovation allows the JT3 engine to power larger aircraft, and to do so more

efficiently than a straight turbojet design can. Military versions of the J57 (that

power the B-52) were also refitted with fans and redesignated the TF-33.

2. Pratt & Whitney JT8:

Pratt & Whitney's success with the J57/JT3 engine led it to introduce a

smaller military engine, the J52, in 1960. Uke the J57, the J52 was a two-spool

turbojet. This engine produces approximately 9,300 pounds of thrust at sea level

with a specific fuel consumption of 0.79 (Taylor, 1966, p. 536). It is used to power

the Navy's A-6 Intruder and the A-4 Skyhawk.

In 1962, Pratt began offering a commercial version of the J52 to power the

mid-sized Boeing 727, 737, and Douglas DC-9 airliners. Over 4,500 JT8A engines

were sold in ten years (Trilling, 1983, p. 25). Additional modification of the J52

resulted in the JT8D turbofan engine. This engine was certified for commercial use

in 1964 and was designed specifically as a commercial engine. Pratt spent $75

million on its development. The JT8D engine has a bypass ratio of approximately

one and generates 14,000 pounds of thrust with a SFC of 0.6 (Taylor, 1966, p.

536). Variants of this engine are still in use on Boeing 727, 737, and McDonnell-

Douglas DC- 9 airliners.

3. General Electric CF6: GE's First Commercial High-Bypass Turbofan

General Electric's first commercial high-bypass ratio engine, the CF6 also



derives directly from a military engine, in this case, the TF-39. Since its introduction

in 1968, the CF6 series of engines has become one of the most successful engine

series ever and has formed the core of GE's commercial aircraft engine business.

Derivatives of this engine power versions of the Boeing 747 and 767, the DC10,

the Airbus 300 and 310. In total, over 27 variants of the engine have been

developed.

Although General Electric committed corporate funds to the development of

the CF6 in 1967 (Taylor, 1990, p. 733), the technology for the engine derives

directly from the T-39 engine GE designed and developed for the Air Force C-5

heavy-lift transport. The CF6 engine shares a common core with the TF-39,

meaning that it uses the same compressor, combustor, and turbine sections. The

major differences between the CF6 and the TF-39 are in the low-pressure spool,

and hence the bypass ratio. The TF-39 has a bypass ratio of eight; the CF6 has

a bypass ratio of five. In addition, the TF-39 uses "one and a haW" fan stages to

properly match its fan pressure ratio to the engine's overall compression ratio. The

CF6, on the other hand, uses a just single fan stage despite the fact that it should

have a higher fan pressure ratio to properly match the exhaust velocities of the

core and bypass airstreams. Additional fan stages would greatly increase the

weight of the engine and its noise. While these considerations could be

overlooked somewhat in the design of the TF-39, they were significant design

constraints in the case of the commercial CF-6 engine (Kerrebrock, 1977, p. 33).

Aside from this change, the two engines are highly similar as suggested by Table

2-1 which compares the specifications of the TF-39 and the CF6 engines.
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Table 3-1

Comparison of TF-39 and CF6 Specifications

Parameter TF-39 CF6

Bypass Ratio 8.0 5.9

Compression Ratio 25 28
Turbine Inlet Temp. ( F) 2400 2350
Maximum Thrust (Ib) 41,000 39,300

SFC at Takeoff (Ib/lbt/hr) 0.315 0.354

[Source: Taylor (1974)]

Development of the TF-39 required GE to solve several technical problems

that made later development of the CF6 possible. The first of these was the

development of adequate cooling systems. All high-bypass ratio turbofans

generate high power levels in the engine core in order to achieve high mass flow

rates in the bypass stream. As a result, the large fan associated with the CF6

engine (about 8 feet in diameter) requires extremely high energy densities in the

engine core as compared to that required for a turbojet of equivalent thrust. An

elaborate cooling system is therefore required for the engine components

(especially the turbine) to operate properly in the resulting environment. This

cooling system, in turn, adds to the weight of the engine.

In accepting the C-5 engine project, "General Electric was betting that an

improved technique for cooling turbine blades would bring to pass what had
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seemed the impossible: a huge, durable fan engine that could operate safely and

efficiently with a very high bypass ratio (as high as eight to one), hence at extreme

temperatures" (Newhouse, 1982, p. 113). GE solved the turbine heating problem

by introducing air-cooled blades in the TF-39 engine. Air from the core flow was

diverted before combustion and pumped into hollow turbine blades, allowing the

blades to operate at high temperatures.

The TF-39 and CF6 also required large diameter fan sections to generate

the air flow necessary to produce high bypass ratios. These fans, in turn, created

additional drag. This drag was originally thought to be so large as to overwhelm

any advantage in thrust that could be gained with the larger engine. Furthermore,

the large diameter fans required new blade materials that could withstand the large

stresses generated by the high tip velocities. GE was able to resolve these

difficulties due in part to its experience building large fans for the military's XV-5A

"vertifan" vertical takeoff airplane. GE designed an eighty inch fan for the J79

turbojet engine for this application, the efficiency which led GE engineers to

speculate that they might perform well on turbofan engines as well (GE, 1979, p.

142). These fans, retained their high efficiency up to high subsonic speeds and

could be applied to subsonic aircraft (Miller and Sawyers, 1968, p. 198).

Updated versions of the CF6 power many modem jetliners. CF6-50 is the

first major growth version of the CF6 engine3 . The CF6-50 differs from the original

3An earlier growth version, the CF6-45, was also developed, but manufactured only in small
numbers.



CF6 in several ways. First, it incorporates a larger fan section to increase its

bypass ratio. Two additional "booster" stages are installed behind the single-stage

low-pressure compressor to increase the core compression ratio. Also, the CF6-

50 operates at a higher turbine inlet temperature (2,425 OF) than the CF6 due to the

availability new turbine materials, many of which were developed for military

engines (Treager, 1979, p. 42). As a result, the engine generates 52,500 pounds

of thrust with a SFC of 0.376 Ib/lbt/hr (Taylor, 1990, pp. 733-734).

The CF6-80 represents a more recent modification of the basic CF6 that is

designed for even greater thrust. The CF6-80C uses a larger fan section (93

inches) than either the CF6 or the CF6-50. It also replaces the 4-stage low-

pressure turbine of earlier models with a 5% stage turbine to drive the larger fan

section. The turbine blades are directionally solidified so they can operate at a

higher turbine inlet temperature and with less cooling than the blades on the CF6-

50. A new E-series of the CF6-80 is being designed for higher thrust and better

fuel efficiency using an even larger fan and higher temperature alloys in the

compressors and turbines. The CF6-80 generates up to 64,000 pounds of thrust

with a SFC of 0.344 (Taylor, 1990, p. 734). It powers the Boeing 747 and 767, the

Airbus 300 and 310, and the MD-11 aircraft (Aviation Week, March 18, 1991, p.

133)

4. Pratt & Whitney JT9: The First Commercial High-Bypass Turbofan

Despite the experience General Electric gained in the development of high

bypass turbofans during the TF-39 program, the first commercial high-bypass



turbofan, the JT9D, was actually developed by Pratt & Whitney. This engine, with

a sea-level static thrust of approximately 45,000 pounds and a SFC of 0.346

(Taylor, 1990, pp. 741-742), powered the first Boeing 747s and later powered the

767 and DC-10. Several modified versions of the JT9D have since been developed

and sold to Boeing, McDonnell-Douglas, and Airbus.

The JT9D derived from Pratt's experience with USAF heavy freighter

propulsion in 1961-1963 (Taylor, 1972, p. 783) and Pratt's entry in the TF-39

competition. Though they lost the competition (primarily because they bid an

engine with a lower bypass ratio than GE), Pratt had gained considerable

experience in the design of high bypass turbofan engines. Throughout the bidding

process, they were forced to confront the issues of cooling and fan construction

that were necessary for developing such engines.

The JT9D engine developed for the original 747 was similar to the engine

Pratt & Whitney had designed for the C-5A. However, to meet the thrust and fuel

consumption requirements of the 747, Pratt increased the bypass ratio of the

engine from 3.4 to 5.0. The first JT9D engines delivered to Boeing had a maximum

thrust of 43,500 pounds and a SFC of 0.346. They also incorporated a number of

technological improvements over previous engines. The JT9D used an improved

fan design that could efficiently maintain the desired fan pressure ratio with a single

stage and no inlet guide vanes. The improved compressor allowed an overall

compression ratio of 24:1 with 15 stages as compared to the 14:1 compression

ratio achieved on the JT3D with 16 stages. Improvements in materials and cooling
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allowed the turbine inlet temperature to be increased to 2270" F.

Several upgraded models of the JT9D have been developed since then.

These incorporate new turbine blade materials to increase the operating

temperature of the engine and larger fan sections. Take-off thrust for these

engines is between 43,000 and 56,000 pounds. SFCs range between 0.34 and

0.37 Ib/lbt/hr (Taylor, 1990, pp 741-742).

5. CFM International CFM-56

CFM International's CFM-56 engine also derives from military technology.

This high-bypass turbofan engine generates between 22,000 and 31,000 pounds

of thrust with a SFC of 0.33 to 0.36 Ib/lbt/hr (Taylor, 1990, pp. 699-700). The

CFM-56 is now offered on several medium sized aircraft including the 737-300, KC-

135, and A320.

The CFM-56 is produced by CFM International, a joint venture formed by

General Electric and SNECMA, a French aircraft engine company. These partners

share both the development and production of the engine and hence share profits

from its sale. GE developed core and controls; SNECMA developed the low

pressure system including the fan, thrust reverser, and gearbox. The two

companies shared only interface requirements for their parts of the engine so they

would not have to exchange technical details of their components (MIT, 1989, p.

76).



Such an arrangement was necessary to protect the technology contained

in the core of the engine. The core derives from the F101 engine GE developed

for the B-1A program. During the 1960s, the Department of Defense (DoD) funded

the development of an engine for the Advanced Strategic Manned Bomber which

later resulted in the B-1A bomber program. GE designed a new core for this

engine to meet its special operational requirements. The resulting F101 engine

was designed as a 30,000 pound thrust class engine with a bypass ratio of 2.2 and

an afterburner for supersonic flight capability. The engine was selected for B-1A

in 1970.

After cancellation of B-1 in the early 1970s, GE and SNECMA teamed to

produce an engine which used the F101 core. The resulting CFM-56 engine uses

the original F101 core, but with a new low-pressure fan spool that increases the

engine's bypass ratio to 6.0. This change also lowered the SFC of the engine to

an acceptable level for commercial operations, between 0.32 and 0.39 Ib/lbt/hr.

SFC values for the F101 engine are currently classified under security restrictions.

B. The Development of the Gas Turbine Engine: An Historical Review

As the above discussion demonstrates, the military has played an important

role in developing technology for use in commercial engine applications. The

JT3D, JT8D, JT9D, CF6, and CFM-56 engines are all based around technology

developed for military engines. The reasons for the commercial engine industry's

heavy reliance upon the military can best be understood in a historical context. As

will be shown below, the military became interested in the development of jet



engines well before the commercial airliners and thus gained a head start in the

development of such engines. Primarily, the military was interested in increasing

the thrust available from a given power-plant so that it could increase the speed

and altitude at which its aircraft flew. The commonality between the technology

required to meet military and commercial interests at that time enhanced the flow

of technology between these two sectors of the jet engine industry.

1. The First Gas Turbine Engine

Development of jet engines was spurred primarily by the military's desire for

higher thrust engines. Despite the development of the turbosupercharger, piston

engines were limited in several ways. First, these engines could not propel aircraft

to high subsonic velocities. Such flight required engines with a much higher thrust-

to-weight ratio than the piston engine could achieve. Secondly, as flight speeds

approach the speed of sound, the efficiency of propellers decreases and the level

of noise they produce increases dramatically (von Ohain, 1987, p. 14). Finally,

advances in turbosupercharger technology had resulted in engines that were

mechanically complicated and unwieldy. The additional weight of large

superchargers needed for high-altitude flight began to increase the weight of the

overall engine to unacceptable levels.

At this time, engineers in the Army Air Corps and at General Electric became

aware of advances in a new engine technology in Great Britain, the jet engine, for

which Frank Whittle, an officer in the Royal Air Force received a British patent in

1930. U.S. interest in the jet engine was spurred by General H. H. Arnold, the
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head of the U.S. Army Air Corps, who wrote to Vannevar Bush, the Chairman of

the National Advisory Committee for Aeronautics and of the National Defense

Research Committee, and requested the formation of a committee to pursue the

development of the jet engine in the United States. General Arnold specifically

requested that leading aircraft engine manufacturers be excluded from the program

because he thought their experience with piston engine might make them resistant

to the new gas turbine technology and because the piston engine developers were

heavily involved in producing engines for the wartime buildup (GE, 1979, p. 41).

Three companies were granted contracts to develop jet engines: General Electric,

Allis Chalmers, and Westinghouse. All three had previously been awarded

contracts to study marine gas turbines and seemed a logical choice for developing

aircraft gas turbine engines. Allis Chalmers and Westinghouse received contracts

from the Navy; GE from the Army. Neither Pratt & Whitney or Wright, the primary

suppliers of piston engines to the military and commercial markets, were included

in the contest.

GE received additional assistance from the military in developing their jet

engine. After General Arnold witnessed the flight of a British jet-powered aircraft

and became more convinced of its utility to the U.S. military effort, he negotiated

a deal with the British Air Commission whereby GE was given access to the design

details of the engine. Eventually, an actual Whittle engine was shipped to GE for

inspection (GE, 1979, p. 44). With this assistance, GE successfully demonstrated

an operational jet engine, the GE I-A, in April 1942. It generated 1,250 pounds of

thrust. The first test flight, aboard a P-59 aircraft occurred just five months later.



Subsequent models of the GE I, designed to power other military aircraft, increased

its power rating to 2,000 pounds of thrust.

Following the development of the GE I engine, the military remained the

primary benefactor of engine development. As during World War II, its main

emphasis was placed upon increasing the thrust of jet engines so that they could

power aircraft to higher altitudes and velocities. By 1947, GE, with backing from

the Air Force, had designed the J-33 engine to power the F-80 fighter aircraft. This

engine provided 4,000 pounds of thrust and could propel the F-80 to speeds of

over 620 miles per hour.

Pratt & Whitney, though excluded from the initial research programs

managed to keep abreast of technological developments through the investment

of corporate funds. In 1943, Pratt & Whitney invested its own money in a program

to develop a "free piston" jet engine which would drive a propeller through a gear

reduction box. The project did not result in the development of a complete engine,

but along with a subcontract Pratt had won from Westinghouse, this project

enabled the company to become knowledgeable of the new technology. In 1948,

Pratt purchased the licensing agreement from Rolls Royce allowing them to

manufacture the Rolls Royce Nene engine in the U.S. (Trilling, 1983, pp. 22-23).

2. Improved Performance with Axial Flow Engines:

These early jet engines were "centrifugal flow" engines. They compressed

ambient air by driving the airflow radially from the center of the engine. Such



compression was highly efficient, but limited in magnitude. In order to increase

compression ratios, the diameter of the engine had to be continually expanded,

increasing the weight of the engine and the drag it produced. Above compression

ratios of six to eight, the efficiency of the centrifugal flow compressor decrease

rapidly because of the high impeller tip speeds required and because of shock

wave formation. (Treager, 1979, p. 117). Thus, centrifugal flow engines were

limited to thrusts of approximately 5000 to 7000 pounds and SFCs of approximately

1.0 to 1.25 (Trilling, 1983, p. 23).

Axial flow engines could overcome some of these limitations. In an axial flow

engine, the ambient air is compressed as it flows axially through the engine.

Successive compressor stages, compress the air sequentially as it travels through

the engine. Using such a technique, high compression ratios can be achieved

with a smaller frontal area than a centrifugal compressor. The higher compression

ratio results in engines of inherently higher thrust. Throughout the 1940s, the

military sponsored development of axial as well as centrifugal engines. The first

U.S. axial flow engine, the GE J35 was flight tested in 1946 and provided

performance comparable to that of the centrifugal J33 (GE, 1979, p. 56). Additional

development produced the GE J47 engine, an axial flow turbojet with a maximum

thrust of 5,500 pounds.

Pratt & Whitney also entered the jet engine market at this time. Previously,

the Air Force had worked almost exclusively with GE to develop jet engines while

Pratt continued to concentrate its efforts on producing piston engines for



commercial use. However, in 1948 Pratt negotiated a contract with the Air Force

to develop the J57 turbojet engine for the B-52. With this contract, Pratt hoped

to establish itself as a jet engine producer. By granting Pratt & Whitney this

contract, the Air Force not only hoped to develop a larger turbojet engine, but also

hoped to expand their source for jet engines.

Pratt developed the J57 for military applications, but soon after offered a

commercialized version of the engine, the JT3. Unlike earlier commercial jet

engines such as the GE J47, the JT3 sold well. Boeing, who had gained

experience with the J57 engine on its B-52 bomber, developed the 707 airliner to

use the JT3. McDonnell-Douglas soon followed suit with the DC-8 aircraft. The

commercial success of the 707 and the DC-8 enabled Pratt & Whitney to retain its

position as the leading supplier of engines to the commercial market as neither GE

nor Rolls-Royce could offer a comparable engine (Trilling, 1983, p. 24) In total,

over 25,000 J57 and JT3 engines were sold to military and commercial customers

by 1972.

The JT3 engine succeeded commercially for a combination of economic and

technological reasons. Previous jet engines did not appeal to commercial airlines

because the engines did not appear to improve their competitive stature. Early jet

engines were limited in thrust and had SFCs higher than the pistons engines of that

time' Thus, they were more expensive to operate. Jet-engine aircraft became

4A typical piston engine during the mid-1940s had a specific fuel consumption of approximately
0.42 Ib/lb/hr compared to about 1.0 for a comparable jet engine.
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economical only when they could fly at speeds greater than 450 miles per hour

(Miller and Sawyers, 1968, p. 153) and could be made large enough to power a

large aircraft that carried many passengers. The JT3 provided this capability. This

engine, with a maximum thrust rating of 11,200 was the first engine powerful

enough that four could power a large jetliner such as the Boeing 707. Though its

SFC was still considerably higher than that of a piston engine, the JT3 could propel

an airliner to high enough speeds to make the flight economical. High-speed flight

appealed to airline passengers and helped to increase the market for airline

operations (Miller and Sawyers, 1968, p. 177).

3. Turbofan Engines:

Although Pratt and GE continued to produce improved turbojet engines such

as the Pratt & Whitney J75 and GE J79 over the next decade, the next major

innovation in the engine industry did not occur until the late 1950s when GE

produced the first U.S. turbofan engine5. The operating principle of the turbofan

had actually been worked out by Whittle years earlier, but not until the airlines

desired the enhanced performance of the turbofan did the engine become a reality

(GE, 1979, p. 121). The turbofan consists of a turbojet engine modified by placing

a fan in a cylindrical duct surrounding the engine to accelerate a stream of air

around the core of the engine. Such engines could generate 15,000 to 20,000

pounds of thrust with SFCs on the order of 0.50 to 0.65 Ib/lbt/hr.

GE developed the first turbofan engine in the U.S. by adding a fan to the

SRolls-Royce had also been experimenting with the turbofan concept at about the same time.
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rear of its CJ805 engine, a commercialized version of the J79. GE engineers

believed that such a modification would improve the takeoff thrust of the engine by

40% and the SFC of the engine by 15% (GE, 1979, p. 121). The new aft-fan engine

was designated the CJ805-23 and was designed for the Convair 990 aircraft, a

faster version of the Convair 880. Though the Convair 990 failed technologically

and financially6, American Airlines became interested in replacing the JT3 engines

on its 707s with the CJ805-23 in order to increase their range and lower their fuel

consumption. Pratt & Whitney, which had previously opposed the turbofan

concept, agreed to equip its JT3 engines with a fan. American's 707s were

reequipped with the new JT3D engines. These engines could generate 17,000

pounds of thrust with a SFC of 0.52 lb/lbt/hr.

Although the Air Force eventually refitted its B-52 bombers with the a fan

version of the J57 (the TF-33), the development of the turbofan rested solely upon

commercial considerations. The military provided the basic engine core from which

the turbofan could be created, but the military did not provide the impetus for such

innovation.

4. High-Bypass Turbofan Engines:

The next development in engine technology, high-bypass ratio turbofans,

was strongly affected by military requirements and funding. In 1962, the Air Force

announced a requirement for a large, wide-body transport that would require

200,000 pounds of total thrust. Pratt & Whitney and GE competed for the engine

rThe 990 aircraft lost $425 million for Convair in 1960-61.
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portion of the work. Because the thrust requirements for the C-5A were double the

capability of any existing engine, both competitors were forced to examine the

potential for high-bypass turbofan engines. As discussed previously, the design

of such engines required advances in fan aerodynamics, turbine blade cooling, and

turbine inlet temperatures. In order to generate sufficient thrust from a high bypass

turbofan, turbine inlet temperatures had to be increased from 2100°F to nearly

25000F. GE won the competition by proposing the TF-39 engine with a bypass

ratio of eight as compared to 3.4 for Pratt's entry. The contract was worth over

$495 million to GE at that time (GE, 1979, p. 151).

Soon after the C-5A competition, Juan Trippe, the President of Pan

American Airlines began negotiating with Boeing to build the 747. Boeing had

recently lost its bid to build the C-5A airframe, but as a result of that experience

and its earlier work on Air Force bombers, had the capability to build a large

aircraft. Boeing and Pan Am approached GE about building the engines for this

aircraft, but GE was "too busy" with the C-5 to build a commercial engine.

Moreover, GE management was reluctant to start on a large commercial fan engine

venture until the Air Force had spent more money on the military prototype. They

wanted the military to absorb the cost of development. (Newhouse, 1982, pp. 117-

118)

In April 1966, Pratt & Whitney was selected to take on the project primarily

because of their experience with the C-5A. Rolls-Royce had also entered a bid for

the 747 engine, but had only a paper design. They had never built, nor attempted



to design, an engine of the scale required for the 747. Boeing and Pan Am

recognized that Pratt had extensively researched the problems associated with

high-bypass turbofans on the C-5A proposal and granted them a contract for the

747 engine.

Pratt accepted this contract despite the uncertainty associated with the new

technology so they could maintain their position as the leading supplier of

commercial engines. They feared that allowing GE or Rolls-Royce to take on the

project would jeopardize their market position. At that time Pratt held almost 90%

of the commercial market and made most of their sales to that market (Newhouse,

1982, p. 120). The engine they produced for the 747, the JT9D, has since become

the mainstay of Pratt's commercial operations.

5. Subsequent Developments:

Since the introduction of the high bypass ratio turbofan in 1968, commercial

interests have focused on modifications to this basic engine type. Between 1968

and 1991, GE introduced no entirely new commercial engine types; rather, it

produced upgraded versions of the CF6. Pratt, too, continued to modify the JT8D

and JT9D. Only recently has Pratt developed new commercial engine types.

Pratt's two newest high bypass turbofans are the PW2000 and PW4000

series engines. The PW200 produces approximately 40,000 pounds of thrust at

sea-level with a SFC of 0.33 (Aviation Week, 1991b, p. 135). At 35,000 feet and

Mach 0.8, the SFC of the engine is 0.563. The first version of the PW2000 was



designed for the Boeing 757-200 aircraft; a modified version will be used on the

military's C-17 transport. The PW4000 is a higher thrust turbofan. Present

versions generate 52,000 to 60,000 pounds of thrust with a SFC between 0.311

and 0.330. They are used on Boeing 747, 757, 767 and Airbus 300, 310, and 330

aircraft. Both of these engines incorporate increased compression ratios, single-

crystal turbine blades, and full-authority digital electronic controllers (FADEC)

to control fuel flow to the engine. Much of this technology derives from Pratt &

Whitney's centralized Engineering Division which develops basic technology for

both commercial and military applications. Thus, the degree to which these two

engine programs have benefitted from military research is difficult to determine.

Military interest, on the other hand, has centered upon low-bypass ratio

engines to power fighter aircraft such as the F-14, F-15, F-16, and F-18 and the B-

I bomber. Such engines provide sufficient thrust to power these aircraft while

providing a small cross-sectional area. Thus, they produce less aerodynamic drag

than high-bypass ratio engines and can be more easily integrated within the

airframe. Fighter aircraft use the PW F100 series, GE F110 series and GE F404

series engines. The B-1B uses the GE F101. The B-2 uses a modified F110

engine designated the F118. Of these, only the F101 has been used as the core

of a commercial engine. Nevertheless, advances in materials for increased turbine

inlet temperatures have been transferred to new and older modified commercial

engines.
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C. Conclusions:

As the above discussion demonstrates, the military has played a significant

role in supplying technology to the commercial aircraft engine industry. The

military has developed technology with potential commercial application and that

technology has been successfully transferred to the commercial manufacturers.

The success of such technology transfers appears to be the result of a fortuitous

series of interactions between military and commercial interests and between the

firms engaged in engine development. Despite many apparent obstacles to

technology transfer, the technology developed for military applications was

effectively utilized in the commercial sector, bringing with it tremendous benefits to

the U.S. economy.

1. Apparent Barricades to Technology Transfer:

On the surface, the prospect for technology transfer from early military

engine programs to the commercial sector appears bleak in retrospect. Jet engine

technology was "developed to military specifications, for military needs with military

funds, by a set of producers new to the aircraft engine field and brought in by the

military" (Trilling, 1983, p. 28). Commercial interests, which were widely divergent

from military interests, were not represented in much of the early military

development of the jet engine.

In developing the jet engine, the military intentionally prevented

manufacturers of commercial engines, namely Pratt & Whitney and Wright

Aeronautics, from entering the competition. The military believed that because of
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their reliance on piston engine technology, these companies would resist the

development of a new technology that might prove to outdate their technology

base (GE, 1970, p. 40). The military instead contracted with GE to produce the

first jet engine. GE had extensive experience with steam turbine engines and had

worked previously with the military on turbosuperchargers to increase the

performance of piston engines at high altitude. As GE's engine operations had no

relationship with the commercial aircraft market until it developed the CJ805-23

engine in the early 1960s, their selection to develop the jet engine temporarily

precluded the transfer of jet engine technology to the commercial sector.

Moreover, it eliminated commercial influences from the design of early jet engines.

Not until Pratt & Whitney entered the jet engine market in 1952 with the JT3 engine

did a commercially-oriented company enter the jet engine competition.

Furthermore, military and commercial interests in jet engine technology were

based on different operational requirements. The military interest was based upon

improving the speed and altitude capability of its aircraft. Hence the military

emphasized the development of engines with greater thrust-or more correctly

greater specific thrust. The development of the jet engine as a replacement for the

piston engine itself represented an attempt to surpass the limits on aviation

imposed by piston engine technology. Further innovation repeated this same

theme. The use of axial compressor flow (as opposed to centrifugal flow) allowed

increases in compression ratio, and hence thrust, without enlarging the diameter

of the engine and causing it to become heavier and less aerodynamic. The

development of the high bypass ratio turbofan was also an attempt to increase



engine thrust.

Commercial airlines, on the other hand, have sought to develop new

engines in order to decrease direct operating costs. This requirement at first

emphasized the development of higher thrust engines, but has since shifted

commercial interests toward lowering SFC. The airlines' original resistance to jet

engine technology was based upon the fact that early jet engines provided no

economic benefit to the airlines. Their subsequent adoption of jet engine

technology occurred only when the technology had matured sufficiently to allow

more economic operation than did piston engines. Development of the turbofan

engine was also a direct result of commercial pressure for greater engine

efficiency. As mentioned previously, military requirements had no influence on the

development of the first turbofan engine. This trend has continued through the

present as evidenced by the use of high bypass turbofans in commercial airlines

which can also be seen as an attempt to decrease direct operating costs. High

bypass turbofans produce sufficient thrust to power larger airliners and do so with

a considerably lower SFC than other types of engines offer.

2. Reasons for the Successful Technology Transfer:

The success of the military in supplying technology for the commercial

industry in many ways results from the fact that similar technology addressed the

requirements of both sectors of the industry. Although many operational

requirements for the two sectors were vastly different, the technological basis for

meeting these requirements was similar. Whereas the increased thrust provided



by the first turbojet engines translated into improved aircraft speed and altitude for

military aircraft, it translated into improved operating efficiency for commercial

aircraft. High bypass turbofan engines, while providing the large amounts of thrust

required to power the oversized C-5 aircraft, simultaneously provided airliners with

a fuel efficient powerplant for large, economical aircraft.

In addition, the jet engine industry developed a structure conducive to

successful technology transfer. Jet engine technology quickly became

concentrated in the hands of two major contenders that developed both military

and commercial operations. Thus, engine R&D is highly centralized, eliminating

some of the barriers to technology transfer (although security restrictions are still

an impediment). GE, though initially brought into the engine industry as a military

supplier of engines, developed a commercial practice with the CJ805-23 turbofan.

Conversely, Pratt, which had been heavily involved the commercial market for

piston engines, developed ties to the military in order to take advantage of military

technology and funding. Both major contenders in the jet engine business are also

part of larger corporations with substantial financial resources. Thus, both were

able to pursue long-term corporate strategies that were not solely dependent on

military sales of engine. The resources of the larger conglomerates enabled these

companies to dominate other, smaller firms that had been active in piston engine

production (Trilling, 1983, p. 28).

3. The Commercial Benefit from Technology Transfer:

As a result of this fortuitous combination of technological and organizational

82



83

factors, the U.S. commercial engine industry has benefitted greatly from military

investments in jet engine technology. As a result of military investment in jet engine

R&D, the commercial industry has gained technology with greatly reduced costs

and risks. The military not only developed and tested new engine technologies that

had application to commercial needs, but it developed engine cores that have

become the basis of many commercial engines. The significance of this military

funding is summarized by Miller and Sawyers as follows:

The most unequivocal gift that governments made to the
aircraft industry was the jet engine itself: it is unlikely that its
development would have been carried through without
government aid, and the first jet airliners were able to use
engines almost identical with those developed for military
aircraft (Miller and Sawyers, 1968, p. 156)

The military has effectively underwritten the cost of developing military and

many commercial engines. Such funding is particularly important in the jet engine

industry because new engines are expensive to develop. Recent figures estimate

that the development of a new engine cost approximately one billion dollars and

takes five years (Newhouse, 1982, p. 161). Manufacturers can not expect to earn

a profit on their investment for approximately fifteen years when the profit from

sales finally surpasses the cost of R&D (MIT, 1989, p.79). Thus, without an

assured market for a new engine, companies are often unwilling to make large

investments in a risky technology. The military, provides industry with an assured

market. Moreover, the military will pay the full cost of developing and producing

a new engine.



In addition, the military is willing to assume greater risks than commercial

industries in developing new technology. Unlike the commercial airlines which

frequently ask for performance guarantees on new engines, the military accepts

the risk inherent in developing new engine technologies. The rapid progress made

by engine manufacturers in increasing the thrust and efficiency of jet engines was

influenced by the large investments the military made in their development, which

reflected the desire of the Air Force to have better engines for its aircraft. Without

the pressure and financial support of the military, manufacturers would not have

accepted the risks inherent in many of the technological advances they made with

engines such as the J57 and the TF-39 (Miller and Sawyers, 1968, p. 163).

The military's willingness to accept risk enabled the engine manufacturers

to demonstrate many technologies applicable to commercial industry. Both the jet

engine technology and the high-bypass turbofan engine technology were proven

in military programs. Though the risks associated with these programs were large,

engine manufacturers were able to recoup their investments in R&D and thus

willing to accept the projects.

The military has also developed engine cores that later served as

commercial engine cores. In fact, few new cores have been developed explicitly

for commercial industry. GE has maintained its position as the low-cost supplier

of engines by basing its CF6 series engines upon the TF-39 core. Twenty-seven

variants of the CF6 have since been developed for commercial application. While

many of these incorporate incremental improvements in materials and cooling or
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minor changes in compressors and turbines, no completely new core has been

developed for these engines. Similarly, CFM International's family of CFM-56

engines derive from the F101 core.

Because technology transfer from the military sector successfully introduces

performance innovations to the commercial sector, commercial innovation has

concentrated on sector-specific issues such as noise abatement, safety, and fuel

consumption. While important to the viability of the commercial sector, these areas

of innovation have less significance in the military setting in which performance

takes priority over fuel efficiency, excess noise can be tolerated at remote bases,

and passengers other than the pilot and copilot are not carried on military aircraft.

Thus, the transfer of technology from military to commercial industry

appears to have played a significant role in establishing and maintaining the

commercial engine industry. The military has both demonstrated technologies and

developed engine cores that were applicable to commercial interests. The

commercial industry has thus been able to dedicate more of its resources toward

solving problems specific to commercial application. The reason for the successful

transfer of this technology appears to have been the ability of similar technologies

to simultaneously address military and commercial needs. While military and

commercial interests in jet engine technology derive from different requirements,

the same technology has been able to serve both these interests.
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The future success of technology transfer will also hinge on the ability of

military engine technology to satisfy commercial requirements. As the structure of

the industry has remained highly stable over the past several years, the means for

transferring technology from military to commercial programs still exists. What is

needed is military technology with commercial applicability. The next two chapters

of this thesis will examine military and commercial requirements for aircraft in order

to estimate the degree of similarity between future commercial and military engines.

This information will serve as a basis for assessing the nature of future technology

transfer from military engine programs to commercial programs.
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CHAPTER IV

FUTURE AIRCRAFT AND ENGINE REQUIREMENTS

The degree to which future military R&D in jet engine technology will apply to

commercial engine development will be strongly influenced by the nature of the

requirements established for future military and commercial aircraft. Though these

requirements need not be identical, they must have similar technological bases in

order to foster continued technology transfer. As demonstrated in Chapter III, the

goals of early military and commercial aircraft development were different, but

technology transfer succeeded because the same engine technologies served both

military and commercial interests. In order to estimate the potential that future

military engine technologies hold for commercial application, one should therefore

examine the requirements that will be placed on new engines. This process can

best be achieved by examining military and commercial aircraft and determining the

types of engines likely to power these aircraft.

This chapter examines likely requirements for future military and commercial

engines by examining the technological advances required to improve the

performance of military and commercial aircraft. This chapter does not attempt to

generate an exhaustive list of current military and commercial R&D programs,

rather it attempts to identify general directions in which aeronautical research will

progress. Commercial and military customers have different measures of aircraft

performance. The commercial airlines evaluate future performance in economic

terms such as direct operating costs and profitability. The military evaluates
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performance in terms of an aircraft's ability to meet demanding mission

requirements such as speed, maneuverability, range, and payload. Whereas in the

past, these two means of evaluation often resulted in similar engine requirements,

application of these same principles may in the future dictate a need to develop

different types technologies and hence different engines.

A. Basic Aerodynamics:

Much of the following discussion of engine requirements will be based upon

simple aerodynamic analysis of military and commercial engines. Because of the

technical nature of this analysis, a brief introduction to aerodynamics seems

appropriate at this point. Several references provide complete presentations of this

material (Nicolai, 1975; Raymer, 1989; and Shevell, 1989). The discussion herein

will introduce only basic concepts of lift and drag in order to elucidate the

subsequent discussion.

1. Forces Acting Upon an Aircraft:

A non-accelerating aircraft in flight is subject to four primary forces. As shown

in Figure 4-1 these forces are weight, thrust, lift, and drag. Weight results from the

gravitational attraction between the earth and the aircraft and is directed radially

toward the center of the earth, or downward as shown in the figure. Thrust is the

force generated by the engine that propels the aircraft in its direction of motion.

These two forces are counteracted by the forces of lift and drag, which are

determined by the shape and velocity of the aircraft. Lift is a force generated

primarily by the wing section of an aircraft and directed perpendicular to the



aircraft's direction of motion. Drag is a resistive force caused by the motion of the

aircraft through the air. It acts in a direction that is opposite to the aircraft's

direction of motion.

During cruise, aircraft typically operate at a constant altitude' and velocity. This

condition requires that no net forces be acting on the aircraft, or that the weight of

the aircraft be balanced by the lift force, and the drag on the aircraft be equal to

the thrust provided by the engine. In mathematical terms, this equilibrium condition

can be expressed as shown below:

L = W (4-1)

D = T (4-2)

In this nomenclature, L designates the lift force; W, the weight of the aircraft; D, the

drag on the aircraft; and T, the engine thrust.

Figure 4-1. Forces Acting Upon an Aircraft in Level Flight [From Talay, 1975,
p. 23].

1Altitude may vary as the aircraft bums fuel and becomes lighter. This effect will be discussed
later in the text.
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The forces of weight and thrust in these equations are familiar from everyday

experience. The aerodynamic forces of lift and drag, however, are less intuitive

and require further elaboration.

2. Lift

Lift is a force generated by the passage of air over a wing or an airfoil. It is

dictated by the application of Bernoulli's principle to the flow of air over the wing

surface. According to Bernoulli's equation, the total pressure along a subsonic

streamline is constant. Since total pressure is the sum of the static and dynamic

pressures, Bernoulli's equation can be written as:

Pt = p, + q (4-3)

where Pt is the total pressure of the airstream, p, is the static pressure of the

airstream, and q is the dynamic pressure of the airstream defined by the relation

q = %½v2. In this relation, j is the air density, and v is the velocity of the airstream.

Wings are shaped so that air passing over the top of the wing reaches a higher

local velocity than the air passing below the wing. Hence, the air above the wing

has a higher dynamic pressure than the air below the wing. According to

Bernoulli's equation, the air passing over the wing must therefore have a lower

static pressure than the airstream passing below the wing2. The difference in

pressure above and below the wing generates a force directed perpendicular to the

wing section. The component of this force perpendicular to the aircraft's direction

of motion is called the lift force.

2Assuming that downstream from the wing, the air has a uniform static pressure and free-stream
velocity.



Lift is usually expressed in terms of a dimensionless coefficient, CL, which

relates the overall lift force to the area of the aircraft wing, S,,,, and the dynamic

pressure of the airstream, q. In this form, the equation for lift becomes:

L = qS.fQCL (4-4)

The lift coefficient, CL, varies with the angle at which the incident airstream

strikes the wing. This angle is referred to as the "angle-of-attack" and is denoted

by the greek letter a. More precisely, angle-of-attack is defined as the angle

between the aircraft's direction of motion and its pitch attitude. The variation of CL

with angle of attack is typically measured in wind tunnel tests for a particular wing

section. Figure 4-2 shows the result of such measurements on the Boeing 767-

300 commercial transport (Roskam, 1987, p. 367). In this graph, the normalized

coefficient of lift is plotted as a function of angle-of-attack. As shown, coefficient

of lift increases linearly with angle-of-attack until an angle of approximately 15

degrees. At this point, the lift generated by the wing begins to fall off rapidly

because the airflow over the top of the wing begins to separate from the wing

surface. This condition is referred to as "stall" and establishes the maximum angle-

of-attack for operation of most aircraft. At higher angles of attack, alternative

means of providing lift (such as with directed thrust) must be utilized to keep the

aircraft aloft.

The intersection of the CL curve with the y-axis determines the minimum

coefficient of lift for the wing in level flight. In the case of the 767, C-,, equals

approximately 0.25. For a perfectly symmetrical wing, the minimum coefficient of
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Figure 4-2. Variation in Coefficient of Lift with Angle-of-Attack for
the Boeing 767-200 [From Roskam 1987, p. 367].

lift (the value of CL at a =0), is zero. However, if the wing is "cambered", so that

the centerline connecting the leading and trailing edges is arched, lift can be

produced at zero angle of attack, allowing the aircraft to remain in flight in a

horizontal position.

In analyzing aircraft aerodynamics, wing coefficients of lift do not need to be

generated empirically. Rather, one can make use of the fact that in level flight,

the total lift generated by the aircraft must equal the weight of the aircraft. Thus,

equations 4-4 and 4-1 can be equated to produce the following expression for CL:

CL = W/(qS,~. (4-5)
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By determining the correct value of q for the aircraft's altitude and velocity, the

value of CL required for steady flight can be computed.

3. Drag:

Drag on an airplane refers to all those factors that retard the progress of the

aircraft through the air. As with lift, drag is typically specified in terms of a drag

coefficient, CD, which scales the drag to the wing reference area and the dynamic

pressure of the airstream. The expression for drag is therefore of the form:

D = qSrfCD (4-6)

where q and S,,, are as defined previously. In subsonic flight, the coefficient of

drag is composed of two parts, a parasite drag component and an induced drag

component. In transonic and supersonic flight, an additional component, wave

drag must also be considered. Parasite drag, induced drag, and wave drag are

calculated or measured separately, but, the contribution of wave drag is often

included in the parasite drag coefficient. Thus the expression for the total

coefficient of drag is usually expressed as:

CD = CDo + CDi (4-7)

where Co refers to parasite drag and Cv, refers to induced drag.

Parasite Drag: The term parasite drag or "zero-lift" drag refers to the drag

caused by skin friction and viscous forces as the aircraft passes through the air.

The coefficient of parasite drag remains nearly constant regardless of aircraft speed

or operating conditions. It is a function primarily of the shaping of the aircraft, its

surface roughness, and the total "wetted area" of the aircraft, that is, the total
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surface area of the aircraft exposed to the airstream. Because parasite drag is

nearly constant, the coefficient of parasite drag is designated C0. This coefficient

is typically measured in flight tests or wind tunnel tests. Nevertheless, several

analytical techniques for approximating Co from physical characteristics of the

airframe have been developed. Both Roskam (1987) and Raymer (1989) present

such techniques.

Induced Drag: Induced drag varies with the lift generated by the wing. As the

angle-of-attack of a wing is increased, a force is generated normal to the wing

surface that is proportional to the pressure differential between the upper and lower

surfaces of the wing. The component of this force perpendicular to the aircraft's

direction of motion is referred to as lift; the component of the force opposite to the

direction of motion is called induced drag. Induced drag is proportional to the

square of the lift coefficient. Empirical tests suggest that this relationship can be

modelled by the relation:

, = K CL2  (4-8)

The proportionality constant, K, can be estimated using several techniques.

Typically, K takes the form:

K = 1/(r A e) (4-9)

In this expression, the term A refers to the "aspect ratio" of the wing section which

measures the ratio of a wing's length to its width. In the case of tapered wings, the

aspect ratio can be computed by dividing the total wing area, S,,,, by the square

of the wingspan, b. Hence,

A = Sf / b2 (4-10)



The symbol, e, in equation 4-8 is termed the "Oswald span efficiency factor.

It is a comparative measure of the efficiency of a given wing to the efficiency of an

elliptically-shaped wing. Values of e typically fall between 0.70 and 0.85 for

subsonic aircraft, but decrease to 0.30 or less during supersonic flight. Raymer

(1989) presents an expression for determining the Oswald span efficiency for a

wing whose leading edge is swept back at an angle r,:

e = 4.61 (1-.045 AO. 68)(cosrul)O015 - 3.1 (4-11)

With this expression, the coefficient of induced drag can be estimated from a

simple sketch of the aircraft. The overall coefficient of drag, CL, for the aircraft

can then be written:

CL = CDO + CL/(r A e) (4-12)

Supersonic and Transonic Wave Drag: Additional sources of drag must be

considered when calculating the drag on an aircraft operating at transonic (Mach

numbers 0.8 to 1.2) or supersonic velocities. Aircraft operating at these speeds are

subject to increased wave drag caused by the formation of shock waves along

the aircraft. Wave drag in supersonic flight is often greater than the sum of all

other drag effects. It is a direct result of the way in which an aircraft's volume is

distributed. Techniques such as "area ruling" are often incorporated into aircraft

design in order to distribute volume efficiently. Raymer (1989) presents methods

for estimating wave drag in transonic and supersonic flight. These techniques

compare the volume distribution of the aircraft to that of an ideal Sears-Hack body
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which has the minimum possible drag for any closed end body of the same length

and volume.

The effect of wave drag is to increase CDO significantly at Mach numbers above

0.85 to 0.90, typically by a factor of 2.5 or more over the CDo at lower velocities.

Figure 4-3 shows the change in CDO for several aircraft as a function of Mach

number (Raymer, 1989, p. 296). As the chart shows, the drag coefficient increases

rapidly for most aircraft near Mach 1. This effect is greater for aircraft designed for

both subsonic and supersonic flight (such as the F-14) than for aircraft such as the

B-70 that are designed primarily for supersonic flight. This effect results from the

different design considerations that are incorporated into supersonic and subsonic

aircraft, especially in wing design.

CDO
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Figure 4-3. Coefficient of Parasite Drag (CDJ) for Representative Aircraft Versus
Flight Mach Number [From Raymer, 1989, p. 296].
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4. Lift-to-Drag Ratios:

The aerodynamic efficiency of aircraft is often defined in terms of lift-to-drag

ratios. For a given operating altitude and aircraft weight, an optimal speed exists

at which the aircraft's lift-to-drag ratio is maximized. The significance of this point

can be seen in the Breguet range equation which relates the range that an aircraft

can fly to several design parameters including lift-to-drag ratio. The Breguet range

equation has the following form:

R = (v/SFC)(L/D)Iog(W,/Wf) (4-13)

where: R = range
v = flight velocity
SFC = thrust specific fuel consumption
W, = initial weight (at beginning of flight or flight increment)
Wf = final weight (at end of flight or flight increment)

As this equation shows, improving the lift-to-drag ratio of a given aircraft at a given

speed will increase the range that the aircraft can fly (all other factors being

constant). Thus, the lift-to-drag ratio of an aircraft denotes the relative efficiency

of that aircraft. This fact should be apparent from the definitions of lift and drag.

Since the lift generated by an aircraft is fixed by its weight, increases in lift-to-drag

ratio can be achieved by decreasing the drag of the aircraft, improving its

aerodynamic efficiency.

5. Changes in Lift and Drag:

The lift and drag forces acting upon an aircraft vary during the course of flight.

Even if an aircraft flies at constant altitude and velocity, its weight will continue to

change as fuel is burned, and thus, the lift required to maintain the aircraft in level

97



flight will decrease. Without intervention by the pilot or control system, the aircraft

will have a tendency to rise until the air density declines sufficiently to restore the

equilibrium between lift and weight. This process assumes, however, that the

aircraft maintains a constant angle of attack and constant thrust.

Alternatively, the lift experienced by an aircraft can be reduced by either

changing the aircraft's angle-of-attack or by decreasing flight velocity. In the first

case, a decrease in angle-of-attack translates into a reduced coefficient of lift.

Thus, the total lift generated by the aircraft decreases. Simultaneously, the induced

drag on the aircraft decreases. The overall effect on the lift to drag ratio of the

aircraft will depend upon specific operating conditions. Uft may also be decreased

by slowing the flight velocity of the aircraft, but maintaining a constant altitude and

angle-of-attack. In this case, drag will also be affected and, in fact, the ratio of lift

to drag can be improved, but the flight velocity of the aircraft will decline.

B. Commercial Requirements:

Aerodynamic analysis of commercial aircraft can produce useful insight into

future requirements for commercial engines. By analyzing the performance of

typical commercial aircraft, one can discern technological innovations that can

decrease the direct operating cost of a airliner. The innovations with the greatest

financial rewards to airlines can also be determined from aerodynamic analysis.

As demonstrated in Chapter III, commercial aviation requirements have

historically been determined by cost considerations. Even during the days of
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regulated airfares, commercial innovations were measured in terms of their effect

upon direct operating costs. In the present age, the Civil Aeronautics Board no

longer establishes fares on carrier routes, and as a result cost competition has

become more intense. Decisions to purchase new equipment or to modify existing

equipment are consistently made on a cost basis.

Commercial aircraft are developed with payload, range, and economic efficiency

as key design criteria. Different sized aircraft are designed to maximize the

efficiency of transporting passengers between destinations. For given levels of

traffic density along particular routes, suitably sized aircraft are selected for use.

Thus, technological developments likely to improve economic efficiency can be

analyzed in terms of their effect on direct operating costs of representative aircraft.

In particular, the influence of new technologies upon fuel expenditure can be

evaluated.

The Breguet range equation provides a suitable means for making such

evaluations. This equation relates the range travelled by an aircraft to its change

in weight during flight, its lift-to-drag ratio, its flight velocity, and its specific fuel

consumption. In terms of these variables, the equation takes the form presented

above:

R = (v/SFC) (L/D) log (W,/Wf)

The values for L/D and Wi/W, are dictated by aircraft size and design. They

are established primarily by the desired capacity of the aircraft selected to fly a
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particular route. These characteristics can be altered by changing the

aerodynamic design of the aircraft or using new materials for construction. As

such, they reflect the state-of-the-art in aircraft design at any given point in time.

Engine design, on the other hand, has its greatest influence on aircraft velocity

and SFC. While engine weight and drag can factor into the L/D and weight

considerations, for large commercial jet liners the effect of the engine upon these

factors is small compared to the contribution of the airframe. Engine thrust and

efficiency are directly related to velocity and SFC, however. These factors can

influence the profitability of an airliner by increasing the range of its aircraft, or

conversely, decreasing the amount of fuel needed to travel a desired range. As

the Breguet equation shows, either increasing v or decreasing SFC will increase

the range of an aircraft. Similarly, increasing v or decreasing SFC will allow an

aircraft to fly a constant range with a lower value of W,/W,. Since the difference

between W, and Wf for a commercial airliner is equal to the fuel burned during

flight, changes in v and SFC translate into changes in fuel burn and, hence, direct

operating costs for flights of constant range.

The effect of thrust upon airline profitability has long been recognized in the

airline industry. As was demonstrated in Chapter III, the jet airliner became an

economical aircraft only when the thrust generated by jet engines became sufficient

to allow high flight velocities. Further increases in thrust, however, do not appear

to increase the profitability of present aircraft. Present airliners operate at cruise

speeds between Mach 0.75 and 0.86. At higher velocities, transonic
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compressibility effects increase and wave drag grows significantly. The increase

in CDo with Mach number for a Boeing 727-200 can be seen in Figure 4-4 which is

adapted from Roskam (1987, p. 123). Whereas the coefficient of drag at Mach

0.76 is only 0.0176, CDo at Mach 0.9 increases to 0.0240.
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To demonstrate the effects of this large increase in drag upon aircraft

performance, the range of the 727-200 was computed as a function of Mach

number using the values of CD0 from Figure 4-4 and the aircraft physical data

shown in Table 4-1. Values in this table were taken from Taylor (1990) with the

exception of the Oswald Span Efficiency Factor which comes from Roskam (1987,

p. 123). This curve was plotted assuming the aircraft maintains a constant speed

throughout the flight and adjusts its angle of attack accordingly. Values of L/D

were recalculated for each 1/10 of the fuel burned. The flight altitude was held

constant 30,000 feet, consistent with the thrust-generating capability of the JT8D

engines. SFC was assumed to remain constant at 0.81 Ib/Ibt/hr regardless of

flight speed. The calculations also assumed that 2% of the fuel is burned prior to

cruise (during warm-up, taxi, and takeoff, etc) and another 8% is kept in reserve,

consistent with general airline operating principles. As Figure 4-4 demonstrates,

the 727 achieves its maximum range of 2450 nautical miles (nm) at Mach number

of approximately 0.76. Further increases in flight speed degrade this range rapidly.

At Mach 0.9, for example, the 727-200 can fly only 1825 nm. This large reduction

in maximum range results from the increase in C,0 at high speeds. Between Mach

0.76 and 0.90, maximum lift-to-drag at the beginning of the flight decreases from

16.89 to 11.17, overwhelming any gains resulting from increased flight speed.

Such results are not characteristic only of small commercial transports; they

apply similarly to large commercial wide-body jets such as the Boeing 747 as well.
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Parameter Value

Wing Reference Area (ft2) 1700

Wing Span (ft) 108

Aspect Ratio 6.86

Empty Weight (Ib) 102,300

Payload Weight (Ib) 39,500

Fuel Weight (Ib) 50,500

Takeoff Weight (Ib) 190,500
Altitude (ft) 30,000

SFC (Ib/lb/hr) [JT8D-7] 0.81
Oswald Span Efficiency Factor 0.90

Table 4-2
Specifications for Boeing 747-200

Parameter Value

Wing Reference Area (ft2) 5500
Wing Span (ft) 195.75
Aspect Ratio 6.97

Empty Weight (Ib) 380,800
Payload Weight (Ib) 145,700

Fuel Weight (lb) 306,500
Takeoff Weight (Ib) 833,000
Altitude (ft) 35,000
SFC (lb/lb/hr) [CF6-80C2] 0.61

Oswald Span Efficiency Factor 1.02
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Though the Boeing 747 has a higher maximum lift-to-drag ratio than the 727 at

cruise (over 21 at Mach 0.70), its optimum flight speed is limited by compressibility

effects to speeds of approximately Mach 0.83. Figure 4-6 shows the change in CD0

for the 747-200 versus Mach number as given by Roskam (1987, p. 124). Whereas

the curve is relatively flat for Mach numbers below 0.75, it begins to rise rapidly for

Mach numbers above 0.80. As a result, maximum flight range is severely reduced

at high Mach numbers. Figure 4-7 shows the result of calculations of the maximum

range of the 747-200 versus Mach number using the data in Table 4-2 which again

is derived from Taylor (1990) with the exception of the Oswald span efficiency

factor which is taken from Roskam (1987, p. 124). The analysis makes the same

general assumptions as described above for the 727 analysis. As the curve

demonstrates, the range of the 747 decreases at speeds greater than Mach 0.83.

As with the 727, the change in the range of the 747 results from the rise in CD0 as

flight velocity is increased.

This analysis demonstrates that present commercial airliners have little to benefit

in the way of speed due to large increases in engine thrust. As experience with the

Concorde has demonstrated, new airframes designed for supersonic speeds may

fair no better (Gunston, 1987, p. 77). From the perspective of increased flight

speeds, increased thrust appears detrimental to commercial operations.

Nevertheless, higher thrust engines can power larger, heavier aircraft.

Increases in thrust would allow current aircraft to be stretched so that they may

carry more passengers. Alternatively, larger engines could power new, larger
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aircraft. In fact, a number of airlines are considering the use of bigger aircraft to

reduce airport congestion problems (Markillie, 1988, p. 21). Several new, large

aircraft, including the Airbus 330 and the Boeing 777 which is presently under

development, are designed for only two engines. These aircraft push current

engines to their limit and may necessitate the development of new engines should

they grow in size over their operational lifetime. At present, no aircraft

manufacturer nor no airline is designing another commercial jet transport larger

than the Boeing 747 (Gunston, 1987, p. 77); however both Airbus and Boeing are

contemplating the design of a 600-passengers transport to serve the Pacific Rim

ten or more years from now (O'Lone, 1990, p. 80). These aircraft will almost

undoubtedly require the development of new, higher thrust turbofan engines.

Airlines can clearly benefit from reductions in SFC. As long as such reductions

can be achieved without significantly increasing the drag or the weight of the

aircraft, reductions in SFC will allow aircraft to fly farther with the same amount of

fuel or to fly a constant range while burning less fuel overall. To demonstrate this

effect, the increase in aircraft range resulting from a decline in SFC was computed

from the Breguet range equation. Figure 4-8 shows the result of these calculations,

plotting the percent increases in maximum range that would result from percentage

improvements in engine SFC. This data is valid for both the 727-200 and the 747-

200 as well as other aircraft. As shown, a 1% decrease in SFC results in a slightly

greater than 1% improvement in maximum range, assuming as above, a constant

flight speed. With a 15% improvement in SFC, a figure widely cited as feasible for

turbofan engines, maximum range could be increased by 17.5%.



SFC Improvement (%)

Figure 4-8. Percent Improvement in Maximum Flight Range Resulting from
Percentage Improvements in Engine Specific Fuel Consumption.

Gains in maximum range could translate into cost savings for airlines in that

they would allow smaller aircraft to fly some longer routes now served only by

larger aircraft. On some of these routes passenger traffic is low enough that either

few flights can be scheduled or large planes must fly with only a fraction of their

seats filled. Operation of smaller aircraft on these routes may prove more profitable

since the aircraft would be flying closer to full capacity.

108

C:
O ,Q)E

0

E
C)

L(



Improved SFC would provide greater gains to airlines in that it would allow

them to fly their current routes while burning less fuel. In order to estimate the size

of such savings, the Breguet range equation was used to calculate the amount of

fuel burned by the 727-200 and the 747-200 on flights of varying range for different

levels of improvement in SFC. Flight speed was assumed to be unaffected by

changes in SFC. The results of the analysis for the 727 and 747 are plotted in

Figures 4-9 and 4-10, respectively. With its current engines, the 727 burns

approximately 38,000 Ib of fuel on a 2000 nm trip. With only a 5% improvement in

SFC, fuel burn could be reduced to under 36,000 pounds for the same trip saving

2000 Ib of fuel. Larger reductions in SFC provide proportional reductions in fuel

burn so that for a 15% reduction in SFC, fuel burn could be as low as 32,000 lb.

The 15% reduction in SFC represents a reasonable estimate of reductions in SFC

for turbofan engines. Additional reductions in SFC could be achieved with

turboprop engines. Several hybrid turboprop engines, called propfans, have been

tested on demonstration aircraft such as the MD-80. Estimates of SFC reductions

available with these engines range between 25% and 60%, with 40% being a

commonly accepted value (Miller, 1987, p. 30; Saunders and Glassman, 1985, p.

4; Gray and Conliffe, 1990, p. 33). Because of limitations on blade rotation rates

and their low specific thrust, these engines cannot generate enough total thrust

for widebody jets and can be used only on short-medium range airliners. Figure

4-9 shows the effect such an engine would have on fuel burn with the 727. Fuel

burn could be reduced to approximately 23,000 pounds with propfan engine,
saving over 15,000 Ibs of fuel.
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Similar results are achieved with the 747. Although the 747 is too large to be

powered by present propfans, reductions of 15% in SFC would still be available

with turbofan technology. As Figure 4-10 demonstrates, such an improvement

would decrease fuel bum on a 5000 nm route from 215,000 pounds to 185,000

pounds.
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Figure 4-10. Reduction in Fuel Burned by a Boeing 747-200 Versus Flight
Range for Percentage Improvements in Engine Specific Fuel
Consumption (SFC).
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The actual savings an airline would achieve with such reductions varies

according to the price of fuel-a value which has been highly unstable over the past

two decades. Between 1975 and 1989, the cost of jet fuel has increased from

$0.29 to $0.60 per gallon in nominal terms. At the same time the fraction of an

airline's total cash operating expenses represented by fuel costs has varied from

a maximum of 29.7% in 1980 to a low of 14.9% in 1989. Hence, the value of fuel

savings has varied and will continue to vary with the price of fuel over time.

The uncertainty associated with fuel prices complicates long-term decision

making for airlines, aircraft manufacturers, and engine manufacturers. As could be

expected, interest in fuel-saving technologies waxes and wanes with the variation

in fuel prices. Nevertheless, the high percentage of operating costs represented

by fuel and the strong variation in fuel prices place great emphasis on lowering

airliner SFC. Not only will such reductions decrease the total cost of fuel to airlines

and decrease their direct operating costs proportionally, but they will allow airline

profitability to become less susceptible to changes in fuel prices.

Therefore, commercial engine development will most likely progress along two

routes. First, engine manufacturers will attempt to increase the efficiency of high-

bypass ratio turbofan engines. These engines, though large and heavy, are the

only types of engines presently capable of producing sufficient thrust to power

large airliners. Figure 4-11 shows the maximum thrust required to maintain the

Boeing 747-200 in steady flight as a function of Mach number. This curve was

calculated using the physical data in Table 4-2 and the aerodynamic drag data in
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Figure 4-6. As shown, an aircraft such as the 747 flying at Mach 0.8 requires

almost 40,000 pounds of total thrust. Moreover, away from the optimal cruise

point, greater amounts of thrust are needed. High-bypass ratio turbofans are, at

present, the only engines capable of generating such large amounts of thrust at

cruise with low enough values of SFC to allow long range flight. Further

improvement in SFC would make these engines even more cost-effective for
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In addition, commercial interests will likely pursue further development of

propfan engines. Though these engines are limited in thrust and could power only

short-medium range airliners to speeds of approximately Mach 0.80, they offer

significant decreases in SFC. To demonstrate this fact, the minimum thrust

required to maintain a 727-size aircraft in level flight at operational speeds and

altitudes was calculated using the data in Table 4-1 and Figure 4-4. Figure 4-12

shows the result of these calculations for the Boeing 727-200 in level flight at

30,000 feet. At a speed of Mach 0.76, this aircraft requires only 11,500 pounds of

total thrust to maintain level flight. Thus, for a twin-engine aircraft, each engine

need only generate 6,000 pounds of thrust (though additional thrust would be

required for off-design cruise and for climb). A tri-jet such as the 727 requires only

4,000 pounds of thrust per engine. These values are commensurate with the

anticipated thrust of propfan engines which have sea-level static thrust ratings

between 20,000 and 25,000 pounds as does the JT8D engine currently powering

the 727. As these engines potentially have SFCs 40% lower than present high-

bypass ratio turbofans, they represent a possible alternative to the high-bypass

ratio turbofans used on most present short- to medium-range transports.

C. Military Interests:

The military has a variety of uses for aircraft. As opposed to the commercial

airline industry which uses its aircraft solely to ferry passengers between

destinations, the military has varied missions for different types of aircraft:
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transports, bombers, and fighter/attack aircraft. Thus, an analysis of likely

requirements for future military aircraft must examine each of these areas

independently.



1. Military Transports:

The military operates a number of transport and cargo aircraft that span a wide

range of sizes from the 10,000 pound empty-weight C-20 to the 374,000 pound

empty-weight C-5B. Of these, only the KC-135, VC-137, C-141, C-5, KC-10A and

the VC-25A weigh over 100,000 pounds and are comparable to jet airliners.

Nevertheless, these aircraft have played an important part in the development of

passenger aircraft and their engines. The KC-135, for example, is a tanker version

of the Boeing 707, the first U.S. jetliner. The military's decision to purchase the KC-

135 paved the way for the production of the 707. Work on the engines for the C-

5, as described in Chapter III, resulted in the development of the high-bypass

turbofan engines now used on large commercial passenger transports.

Uke commercial airliners, military transports gain little advantage from increased

velocity. The two primary design considerations in transport design are range and

payload. Increased speed itself has little or no tactical utility for transports.

Transports do not typically penetrate enemy air defenses and so have no need for

supersonic dash capability. Nor do transports need to reduce their travel time

between destinations. Airlift is a process that takes weeks or months to

accomplish; decreasing the flight time of a single transport would offer little

additional capability to the military.

Increased velocity is, in fact, detrimental to military transports. As with the

airliners, the range of military transports decreases as Mach numbers approach

1.0. Because of their shape, CDO for large military transports such as the C-141
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and the C-5 begins to increase dramatically at Mach numbers as low as 0.70. For

the C-5, CD0 increases from 0.016 to 0.039 as Mach number increases from 0.70

to 0.87 (Roskam, 1987, p. 126).

Trends in transport development are difficult to discern. As the present fleet of

U.S. military transports spans a wide range of sizes, development seems unlikely

to focus either on increasing payload capability or on filling in holes in present

capacity. Rather, development may focus upon the replacement of older aircraft.

The C-17 represents a case in point. With an empty weight of 269,000 pounds, a

maximum takeoff weight of 580,000 pounds, and a payload capacity of 172,000

pounds (Jane's, 1990), the C-17 is being designed as a long-range, heavy lift

transport to replace the C-141. Given the wide-ranging capabilities of the present

transport fleet, it is unlikely that another major transport program will be undertaken

in the near future.

Engines for transport-sized aircraft have already been developed. Thus,

replacement of older military transports is unlikely to generate novel engine

requirements that necessitate new R&D programs. While the military could benefit

from replacing their transport engines with more fuel efficient engines, the military

will probably not fund the development of new high-bypass ratio turbofans. The

commercial motivation for designing such engines is strong and will probably not

require additional military support. Transport aircraft will most likely continue to

adapt commercial engines to their purposes. The C-17, for example, will use Pratt

& Whitney PW2000 engines. These engines were developed for commercial
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airliners, but had adequate thrust to power the C-17. As these engines were

developed to reduce SFC on commercial airliners, the military had little incentive

to develop more efficient engines for the C-17.

2. Military Bombers:

Military bombers, like military transports, are designed for long-range flight and

heavy payloads. Bombers such as the B-52, B-1B, and B-2 are all designed with

intercontinental ranges and payloads of over 40,000 pounds. Flight velocity is a

lesser priority. As with the commercial airliners, bombers lose range capability at

transonic and supersonic velocities because of the increase in CDO at speeds above

Mach 0.8. Thus, bombers trade off supersonic cruise velocity for range. Even the

B-1B bomber which has a supersonic dash capability is designed for subsonic

cruise to preserve its range capability.

As a result of range and payload requirements, development of new bomber

engines should focus on lowering specific fuel consumption. As demonstrated in

Figure 4-8 earlier, a 1% improvement in SFC translates into a greater than 1%

increase in range. For long range aircraft like military bombers, large increases in

total range can be achieved even by small percentage improvements in SFC. This

effect can be demonstrated by considering the B-2 bomber. An analysis of which

was conducted for this study. Although lift, drag, and weight data for the B-2 have

not been released publicly, values for these parameters were estimated from

various sources and are shown in Table 4-3. Weights for the B-2 were estimated

from Taylor (1990) and Aviation Week (Bond, 1989, pp. 30-31).
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Parameter Value

Wing Reference Area (ft2) 5100

Wing Span (ft) 172

Aspect Ratio 6.29
Empty Weight (Ib) 130,000 (est.)

Fuel Weight (Ib) 170,000 (est.)

Takeoff Weight (Ib) 350,000

Altitude (ft) 35,000
SFC (Ib/lb/hr) 0.80 (est.)

Oswald Span Efficiency Factor 0.70

Co (Subsonic) 0.0072 (est.)

The Oswald span efficiency factor was estimated using equation 4-11 presented

earlier in this chapter. The subsonic C0o of the B-2 was estimated using the

component buildup method described in Raymer (1989, p. 279). Transonic effects

were not included in this analysis, so the value shown in Table 4-3 is valid only up

to Mach 0.8. The value shown for CDo is in close agreement with a value derived

independently by Roskam (1991, p. 18). The B-2's range capability at cruise at

35,000 feet was calculated with the Breguet range equation using these values.

The result is shown in Figure 4-13. Assuming 2% of the B-2's total fuel is used in

taxi, takeoff, and climb and that 8% is maintained as a reserve, the B-2 appears to

have a maximum range of approximately 7400 nm at a speed of Mach 0.8. An

increase in flight velocity would decrease the range of the B-2 because of wave

drag effects, but an improvement in SFC of 15% could increase its range capability

by 17.5% to 8510 nm.
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Mach Number

Figure 4-13. Estimated Maximum Range of the Northrop B-2 Bomber at 35,000
Feet Assuming a Constant Flight Velocity.

Despite the advantages of improved SFC, other design considerations limit the

SFC values achievable on bomber aircraft. Bomber engines must generate large

quantities of thrust. A bomber such as the B-2 weighs 350,000 pounds fully

loaded. The B-1 and the B-52 weigh even more. Using the figures shown in Table

4-3, the thrust required to maintain the B-2 in level flight can be calculated for a
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range of Mach numbers. Figure 4-14 summarizes the results of this analysis. As

shown, the B-2 requires 16,000 pounds of total thrust to maintain level flight at

35,000 feet and a speed of Mach 0.80. At lower velocities such as Mach 0.5, the

thrust requirement increases to over 20,000 pounds.
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Given the high thrust and low SFC desired for long-range bombers, the likely

choice of engine would be a high-bypass-ratio turbofan. As will be shown, such

engines are too large to be incorporated onto modem bombers. Though the exact

form of future bombers cannot be determined at this time, the B-1 and B- 2

characterize likely requirements. Both are designed with survivability as a major

design consideration. In the B-1, survivability is achieved primarily through its

supersonic dash capability which is designed to minimize the aircraft's exposure

to hostile air defenses. The B-1 also incorporates stealth features to reduce its

radar cross section. In the B-2, survivability is achieved almost exclusively through

stealth design characteristics that are intended to prevent or delay detection by

enemy sensors. Future bombers will most likely incorporate one of these two

criteria into their design.

Supersonic speed and stealth both require engines with small frontal areas.

As velocities approach the speed of sound, the drag caused by engine nacelles

increases rapidly as does the CDO of the aircraft itself. This drag degrades the

performance of the aircraft and increases the stresses transmitted to the engine

mountings. Thus, engines for supersonic aircraft are not mounted away from the

fuselage on under-wing pylons; instead they are mounted against the body of the

aircraft as on the B-1 or are integrated into the airframe as on fighter aircraft.

Stealth requirements place further restrictions on engine mounting. Engine

nacelles and fan blades can generate large radar returns when an aircraft is viewed

at forward angles. The hot exhaust of the engine can potentially be detected at

long range by sophisticated infrared surveillance sensors. Thus, engine fan blades
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must be shielded and the engine exhaust must be mixed with cooling air to reduce

their radar and infrared signatures, respectively. In effect, such requirements

dictate that engines be mounted conformally. In the case of the B-2, the engines

are mounted within the wing of the aircraft. Thus, the size of the engine is limited

by the dimensions of the aircraft wing or body.

Such size constraints place a high demand on specific thrust. Because the inlet

size of the engine is limited, engines with low specific thrust such as high bypass

ratio turbofans cannot ingest a large enough mass flow of air to generate the high

levels of thrust required by large bombers. Only low-bypass ratio turbofans and

turbojet engines can generate adequate thrust from a limited mass air flow. This

effect is demonstrated in Figure 4-15 which plots the cross sectional area required

to generate 6500 pounds of thrust at 35,000 feet versus the bypass ratio of the

engine. This calculation assumes an engine core with a constant overall

compression ratio of 30 and a turbine inlet temperature of 26000 Fahrenheit, similar

to the F118 engine that powers the B-2 (Gal-Or, 1990, p. 206). As can be seen in

the figure, an increase in bypass ratio from one to four increases the required inlet

area of the engine by more than a factor of two. Since area is proportional to

radius squared, the inlet radius must be increased by over 1.4 times to

accommodate the larger bypass ratio.

The larger inlet areas required for higher bypass ratio engines limits their

applicability to bomber aircraft. However, as higher bypass ratios imply improved

specific fuel consumption for given values of turbine inlet temperature and
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size requirement can be viewed as a constraint on

led off against engine efficiency. In order to explore

ciated with each bypass ratio in Figure 4-15 was

ist the corresponding inlet area requirement. This

'igure 4-16 which plots inlet size versus SFC for the
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same engine examined above. In effect, the x-axis of Figure 4-15 has been

modified to show not bypass ratio per se, but the SFC available at a given bypass

ratio. As the figure demonstrates, further decreases in engine SFC can be

achieved only if the engine inlet size is increased. By establishing a maximum

allowable inlet size, SFC is limited to higher values.
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Figure 4-16. Tradeoff Between Specific Fuel Consumption (SFC) and Required
Inlet Area for a Turbofan Engine With Varying Bypass Ratio.
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Improvements in SFC can be achieved without unnecessarily increasing

required inlet area if higher specific thrust engine cores are be developed for

strategic bombers. With high enough specific thrust, the core can generate

sufficient total thrust to power large aircraft with smaller mass airflows than present

engines. Thus, the size of the core can be reduced. If the size of the overall

engine were kept constant, the bypass ratio of the engine would be increased,

thereby reducing the SFC of the engine.

These considerations imply that development of new bomber engines will be

directed toward designing engine cores with greater specific thrust. These cores

could then become the basis for higher bypass ratio engines with lower SFCs than

present engines with equal thrust. Alternatively, the cores could be used to

construct low bypass ratio engines with SFC equal to present engines, but with

greater thrust. The higher thrust engines would allow larger, heavier bombers to

be developed which could potentially carry more fuel and hence have an improved

range capability. Stealth considerations, however, may preclude the development

of such large aircraft.

3. Fighter/Attack Aircraft:

Much military emphasis is placed upon the development of fighter/attack

aircraft (hereafter referred to simply as fighter aircraft). Over the past two decades,

a variety of such aircraft have been developed for all branches of the armed forces.

These aircraft include the F-14, F-15, F-16, F-18, and the ATF presently in a

prototype stage. Unlike the commercial sector which has historically placed
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primary emphasis on cost considerations, the military has continually sought to

increase the combat performance of its fighter aircraft. Thus, while commercial

aircraft speeds have leveled off at approximately Mach 0.80 - 0.85, the maximum

speed of military aircraft has continued to grow past Mach 2.0 (Aviation Week,

1991b, p. 106).

Increased maximum velocity has particular military utility for fighter aircraft.

Such speeds allow these planes to intercept targets quickly in an offensive role,

and play a major role in ensuring the survivability of these aircraft. With high

velocity capability, these aircraft can minimize their time in enemy air defense

coverage and can outmaneuver hostile fighter aircraft.

Requirements for supersonic velocity place great demands on thrust. As with

commercial aircraft, the coefficient of drag for fighter aircraft increases rapidly at

Mach numbers approaching 1. Figure 4-17 shows the change in CDO versus Mach

number for the F-16 fighter. This data derives from actual flight tests of the F- 16

prototypes (Webb, 1977, p. 19-11). As shown, CD0 increases from 0.20 to 0.42 in

the transonic region. At Mach numbers greater than Mach 1.2, CDO levels off at

approximately .041. In order to demonstrate the effect of increasing drag upon

engine requirements, the thrust required to maintain the F-16 in level flight was

computed. This computation was performed using drag data from Figure 4-17 and

using physical data from Table 4-4. With the exception of the Oswald span

efficiency factor, all data was derived from Taylor (1990). The Oswald span

efficiency factor was estimated by matching the drag polar computations with a
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Figure 4-17. Change in CDo
Number [From

of the F-16 Fighter as a Function of Flight Mach
Webb, 1977, p. 19-11].

Specifications for
Table 4-4

the General Dynamics F-16 Fighter
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Parameter Value

Wing Reference Area (ft2) 300

Wing Span (ft) 31

Aspect Ratio 3.2

Empty Weight (Ib) 15,586

Payload Weight (Ib) 1600
Fuel Weight (lb) [Internal Only] 6624

Takeoff Weight (Ib) 23,810
Altitude (ft) 35,000
Oswald Span Efficiency Factor 0.70



flight test drag polar provided in Webb (1977, p 19-10). Figure 4-18 plots the

results of the calculations. At subsonic Mach numbers, the single F100 engine on

the F-16 must provide roughly 2600 Ibs of thrust. However, at Mach 1.2, about

7000 lbs of thrust are required, and at Mach 1.6, 12,500 pounds of thrust are

required to maintain the aircraft in level flight.

14000

12000

10000 -

8000

6000

4000

2000

0:

F-16
, 0 0 Ft
oV V I1i I o

I, I I' i i , I liJ I r i I I I l i * I IIII **i 
I
II II mIji I II Iuu uI II I III I III 1 I I

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Mach Number

Figure 4-18. Minimum Thrust Required to Maintain the F-16 in Level Flight at
35,000 Feet.
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Such large thrust requirements are typically met through afterburning. As

Figure 4-19 (Nicolai, 1975, p. 14-17) shows, at an altitude of 36,000 feet and a

speed of Mach 0.8, the F100 engine without afterburner can supply a maximum of

4,000 pounds of thrust with an SFC just under 0.9 Ib/lbt/hr. As shown in Figure

4-20 (Nicolai, 1975, p. 14-13), however, the F100 can generate 13,000 pounds of

thrust at Mach 1.2 with its afterburner. At Mach 1.6, the engine can generate

17,000 pounds of thrust. Thus, the F-16 can reach supersonic speeds, but only

by using its afterburner. In this mode of operation, SFC is severely degraded.

1.3

Uo 1.

.9

7 0 000 2000 000 4000 5000
0 1000 2000 3000 4000 5000

Figure 4-19.

INSTALLED THRUST, Ib

Non-afterburning Thrust of the F100 Engine at 36,000 Feet as a
Function of Installed Thrust and Mach Number [From Nicolai,
1987, p. 14-17].

130



ALTITUDE (1000 feet)

.4 .8 1.2 1.6
MACH NUMBER

2.0

Figure 4-20. Maximum Afterbuming Thrust of the F100 Engine as a Function
of Mach Number and Altitude [From Nicolai, 1987, p. 14-13].
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Figure 4-21. Specific Fuel Consumption of the F100 Engine at Maximum
Afterburning Thrust [From Nicolai, 1987, p. 14-15].
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Figure 4-21 (Nicolai, 1975, p. 14-15) plots the SFC of the F100 with maximum

afterburning versus Mach number. At Mach 1.2, SFC is just over 2.1 Ib/lbt/hr. At

Mach 1.6, SFC is over 2.2 Ib/Ibt/hr. These figures compare to an SFC of under

0.9 Ib/lbt/hr at Mach 0.80. The large increase in SFC implies that the aircraft

cannot operate for long periods of time with the afterburner.

Larger fighters such as the F-15 suffer from the same problem. The thrust

required to maintain the F-15 in level flight was computed from the data in Table

4-5. Size and weight data were derived from Taylor (1990); the Oswald span

efficiency factor was computed using equation 4-11. The CD0 for the F-15 with

external fuel tanks and armaments was assumed to be 10% higher than the

Table 4-5
Specifications for the McDonnell-Douglas F-15 Fighter
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Parameter Value

Wing Reference Area (ft2) 608

Wing Span (ft) 42.8

Aspect Ratio 3.0

Empty Weight (Ib) 28,600
Payload Weight (Ib) 5,300

Fuel Weight (Ib) 35,100

Takeoff Weight (Ib) 68,000

Altitude (ft) 35,000

Oswald Span Efficiency Factor 0.71

Co (Subsonic) 0.022

Co, (Supersonic) 0.047



corresponding value for the F-16 due to the larger size of the aircraft and the

additional external stores (munitions and fuel tanks) carried on a fully-loaded F-

15. Thus, a subsonic CD of 0.022 and a supersonic CDO of 0.047 were used in

the calculations. These values are comparable to the values of CDo presented by

Raymer (1989, p. 296) for the F-14. Figure 4-22 shows the result of the thrust

calculations for an F-15 at 35,000 feet and at Mach numbers between 0.4 and 1.4.

At Mach 0.8 the F-15 requires less than 7000 pounds of thrust for steady flight.

This value, as shown in Figure 4-19, is within the range of the two F100 engines

used on the aircraft. At Mach numbers of 1.2 and 1.4, 16,000 and 21,000 pounds

of thrust are required, respectively. These thrust levels can be achieved only with

afterburners, increasing the SFC of the engines dramatically. As shown in Figure

4-23 (Nicolal, 1975, p. 14-19) which plots SFC versus thrust for partial afterburning

settings of the F100 at 36,000 feet, the thrust required by the F-15 at these

velocities can be provided only at SFCs between 1.7 and 1.8 lb/lbt/hr. According

to the Breguet range equation, the increase in SFC compared to the subsonic

case will reduce the maximum range of the aircraft. In moving to supersonic

velocities, the speed of the aircraft about doubles, but the lift-to-drag ratio

decreases by a factor of two, negating the effect of increased velocity. Thus, rise

in SFC will be reflected in a corresponding decrease in maximum range.

The F-15 analysis is interesting because it sheds light on requirements for the

Air Force Advanced Tactical Fighter (ATF) aircraft. Military requirements for this

aircraft state that the ATF should be able to maintain supersonic cruise capability

("supercruise") without the use of afterburners. This requirement will greatly
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Figure 4-22. Minimum Thrust Required to Maintain a Fully-Loaded F-15 in Level
Flight at 35,000 Feet Versus Flight Number.

increase the supersonic range of the ATF because the SFC of the engine will be

below the afterbuning SFC of the F100 engine. The ATF is similar to the F-15 in

terms of size and weight. Therefore, the supercruise requirement will necessitate

the development of engines that can produce 11,000 pounds of thrust or more

apiece at altitude without afterburning. At the same time, these engines must meet

size and weight constraints similar to those of the F100 engine. Hence, the ATF
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engine will need to be designed for high specific thrust.

higher specific thrust will be examined in Chapter V.

Methods for achieving

ALTITUDE = 36089'
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Figure 4-23. Specific Fuel Consumption of the F100 Engine at 36,000 Feet for
Partial Afterburning Power Settings [From Nicolal, 1987, p. 14-
19].
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Fighter engines are subject to additional design constraints as well. In addition

to providing high thrust, fighter engines must meet strict size and weight

restrictions in order to be properly integrated onto their airframe. Fighter aircraft

have operating weights on the order of 30,000-60,000 Ibs; engine weight

represents a significant portion of this total. The F100 engine and the upgraded

F117 engine weigh between 3000 and 3700 pounds. Thus, these engines

comprise approximately 10% of the operational weight of the F-15 and F-16. Fuel

comprises another 25 to 50% of maximum takeoff weight. Further increases in

engine or fuel weight could seriously degrade aircraft performance, so increases

in thrust must be gained without corresponding increases in engine weight.

Requirements for stealth and supersonic capability further constrain fighter engine

size as they do bomber engine size. As a result, military fighter engines are rated

in terms of thrust-to-weight ratios and specific thrust. Both of these criteria refer

to the ability of an engine to generate high thrust with low cross-sectional area and

low weight.

These two constraints, high specific thrust and low weight drive fighter engine

design toward low-bypass ratio turbofan engines. Fighter aircraft could be

powered by higher bypass ratio engines to obtain better fuel efficiency and range,

but such benefits would be greatly outweighed by the increased weight and drag.

As fighter aircraft can be deployed from aircraft carriers and refueled in-flight, the

advantages of greater range pale in comparison to the enhanced performance

provided by lower bypass ratio engines.
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D. Summary

The above discussion indicates the general trends that the commercial and

military requirements for jet aircraft engines can be expected to follow. Commercial

development will concentrate on improving the SFC of high-bypass turbofan

engines and on the continued development of propfans. The goal of both these

endeavors will be to decrease the direct operating costs of airlines by reducing the

amount of fuel burned during flight.

Military interests will concentrate on the development of low-bypass ratio

turbofans. These engines present a reasonable compromise between the thrust

required from fighter and bomber engines and the small cross-sectional area

required for stealth, low-drag, and airframe integration. The primary goal of military

engine development will more likely focus on increases in specific thrust than on

reductions in SFC.

Military interest in propfan technology will be limited. First, the propfan engines

envisioned today cannot produce the thrust required to power large military

bombers or to accelerate fighter aircraft to supersonic velocities. The propfan

engines currently under development by GE and Pratt & Whitney/Allison are in the

25,000 pound static sea-level thrust class. Increases in thrust can be achieved

only by increasing the size of the engine core and the size of the rotor blades.

Moreover, the exposed blades of these engines negate attempts to design stealth

into the aircraft. Propfan blades are both large and unducted.
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These trends will establish the basis from which technology transfer and

commercialization can occur in the U.S. jet aircraft engine industry. The next

chapter will attempt to investigate the technical means by which the military will

improve its engines and evaluate the ability of such improvements to lower the SFC

of commercial engines.
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CHAPTER V

PROSPECTS FOR FUTURE COMMERCIALIZATION
AND TECHNOLOGY TRANSFER

The requirements outlined in Chapter IV for future commercial and military

aircraft and engines determine the constraints on technological innovation in the

jet engine industry; however, they do not necessarily determine the specific

technologies to be developed. For this reason, the analysis of future prospects for

commercialization and technology transfer in the jet engine industry must include

consideration of the technologies likely to be incorporated into future engines.

This chapter analyzes research areas likely to generate technology for future

military and commercial engines. In doing so, it makes no attempt to project the

likelihood of particular technologies being developed over time or the cost

associated with such development; rather it uses insight gained from ideal cycle

analysis to investigate areas of technical advancement capable of meeting the

future requirements for commercial and military jet aircraft engines. This chapter

then attempts to assess the degree of commonality between likely military and

commercial innovations with an eye toward technology transfer considerations.

This chapter is divided into three sections. The first uses ideal cycle analysis

to examine the technological innovations most likely to be pursued in meeting the

military's goals for future fighter- and bomber-class engines. The effects of turbine

inlet temperature, compression ratio, bypass ratio, and component efficiencies

upon specific thrust and specific fuel consumption will be demonstrated.
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Commercial engines are analyzed in the next section in order to investigate the

types of innovation likely to bring about future reductions in SFC. The degree to

which the military research will apply to commercial engines will be also discussed,

and areas in which commercial and military research appear to be diverging will be

identified. In both these sections, current research programs will be identified and

described in order to demonstrate the goals of engine research. Finally, several

conclusions will be drawn regarding the future of technology transfer and

commercialization within the jet engine industry.

A. Research Directions for Military Engines

Efforts to improve the performance of military jet engines may pursue a number

of paths. As was demonstrated in Chapter IV, the primary goal of these efforts will

be to develop technologies capable of increasing the specific thrust and the thrust-

to-weight ratios of low bypass ratio turbofan engines. To a lesser degree research

on military engines will focus on lowering the SFC of these engines, specifically

for long-range bombers, or on maintaining present levels of SFC while increasing

specific thrust.

Recent efforts in the development of military engines have focused upon the

Advanced Tactical Fighter (ATF) engine. The ATF itself is being pursued as a

replacement for the Air Force's F-15 fighter. Both Pratt & Whitney and GE

participated in the engine competition with Pratt recently being declared the winner.

A major goal of the ATF engine program was the development of an engine

capable of propelling the ATF at speeds of Mach 1.4-1.6 without afterburning.
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Such requirements dictated an engine with a thrust-to-weight ratio of approximately

10 to 1 and a maximum static thrust of 35,000 pounds compared to the 25,000

pounds generated by the F100 engine used on the F-15 (Dornheim, 1991, p. 44).

Key factors in engine design intended to achieve these thrust and weight

requirements were increased turbine inlet temperatures and reduced bypass ratios.

Development of post-ATF engine technologies is being pursued under the

Department of Defense's Integrated High-Performance Turbine Engine Technology

Program (IHPTET). IHPTET is being jointly sponsored on a cost-sharing basis with

industry by a number of agencies including the U.S. Air Force, Army, and Navy,

NASA, and the Defense Advanced Research Projects Agency (DARPA). The

program is designed to develop technology to the point at which it can be

incorporated into demonstration/validation or full-scale development programs, but

IHPTET is not intended to develop specific engines.

In general terms, the goal of the IHPTET initiative is to improve key engine

performance parameters such as thrust and SFC by a factor of two. Turbojet,

turbofan, and turboshaft/turboprop technologies are all addressed by the program.

Individual goals for the different engine types goals are to be met through a

sequence of three phases ending in the year 2003. The first two phases are

planned to end in 1991 and 1997, respectively, with technology developed during

these phases being transitioned into current production engines. Table 5-1

summarizes some of the goals for the IHPTET program (Interavia, 1989, p. 1114).

All performance goals are referenced to current state-of-the-art engines such as the
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Table 5-1
Primary Goals of IHPTET Program

Parameter Phase I Phase II Phase III

Turbojet/Turbofan

Thrust:Weight Ratio +30% +60% +100%

Compressor Inlet Temp + 55K + 170K + 255K

Maximum Temperature + 170K +340K +510K

Turboshaft/Turboprop

SFC -20% -30% -40%

Power:Weight Ratio +40% +80% + 120%

Maximum Temperature + 170K + 340K + 555K

Expendable TJ/TF

SFC -20% -30% -40%

Specific Thrust +35% +70% + 100%

Maximum Temperature + 275K +510K + 780K

[From: Interavia, 1989, p. 1113]

ATF engine or T800 turboshaft engine. As shown, IHPTET intends to double the

thrust-to- weight ratios of turbojet and turbofan engines by 2003. While part of this

improvement will derive from increases in operating temperatures as noted in the

table, the remainder will derive from lighter weight materials and components.

Work in the turbojet/turbofan area is of most interest in terms of technology

transfer to commercial airliner engines. While the advances in

turboshaft/turboprop work may have some applicability to commercial engines, the

technology for turboprop engines developed through IHPTET would most likely be
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geared toward smaller engines than would be used on commercial airliners

(Interavia, November 1989, p. 1114).

This section of the report uses ideal cycle analysis to investigate the types of

innovations likely to produce engines with higher specific thrust. The equations

used in this analysis are not identical to those defined in Chapter II; rather, these

equations include non-ideal effects of individual components. The equations for

describing the behavior of such components are described in Mattingly (1989).

Unless otherwise specified, the performance curves presented in this chapter were

developed using the ONX and OFFX programs developed by Mattingly to

accompany his text.

The performance of a turbofan engine at its design point is a function of four

primary design variables: turbine inlet temperature, overall compression ratio, fan

pressure ratio, and bypass ratio. In addition, component efficiencies--the turbine

and compressor polytropic efficiencies, in particular-also influence the behavior of

the engine. The following analysis examines the effect of these parameters on

overall engine performance. Changes in performance are measured in comparison

to the performance of a base engine described by the parameters in Table 5-2.

This engine is a low-bypass-ratio turbofan representative of current fighter class

engines such as the F110 engine used on the F-15 and F-16 fighters. A modified

version of the F110, designated the F118, powers the B-2 bomber, so subsonic

assessment of this engine is also indicative of trends in bomber engine

development.
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Table 5-2

Parameters for Base Case Military Engine

1. Turbine Inlet Temperature:

Military research will most likely pursue development of new materials and

cooling techniques in order to increase the maximum turbine inlet temperature of

jet engines. The specific thrust of an engine is a strong function of turbine inlet

temperature; increases in the maximum allowable turbine inlet temperature allow

more fuel to be burned during combustion, transferring more energy to the core

airstream and improving thrust. The thermal efficiency of the engine cycle is also

increased at higher turbine inlet temperatures, though potentially at the expense

of propulsive efficiency and SFC. For military engines, however, the gains in

specific thrust are typically seen as outweighing the rise in SFC. This is especially

true in the case of fighter engines. A large increase in specific thrust can allow

fighter aircraft to cruise at supersonic speeds without afterburning and thereby

increase their fuel efficiency compared to current engines which must use

afterbuming to develop supersonic thrust levels.
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Parameter Value

Bypass Ratio 0.80

Maximum Turbine Inlet Temp ( R) 2900
Overall Compression Ratio 30
Polytropic Efficiency: Turbine 0.90

Polytropic Efficiency: Compressor 0.90

Cooling Air Flow (Each Spool) 5%



The effect of increased turbine inlet temperature (TIT) on specific thrust is

demonstrated in Figure 5-1. This graph shows the increase in specific thrust for

the base engine at an altitude of 35,000 feet and a speed of Mach 0.8 as maximum

TIT is increased from 2900°R to 38000R. The overall compression ratio is held

constant at 30; fan pressure ratio is also held constant at 3. As the curve shows,

specific thrust varies almost linearly with TIT over the range examined. By

increasing TIT from 2900 to 3800)R, the specific thrust of the engine increases

28%, from 51.1 Ibt/Ibm/s to 65.5 Ibt/Ibm/s. This translates into an increase of 3%

in specific thrust for each 100 degree Rankine increase in temperature, assuming

a linear relationship over the range examined. Greater increases in specific thrust

could be gained by changing other design factors (such as fan and compressor

pressure ratios) as the TIT increases.

The large increase in specific thrust results from the increase in the velocity at

which the core stream exits the engine. By increasing the maximum allowable

temperature of the turbine, more fuel can be combusted in the burner and thus

more thermal energy can be released during the combustion process. As this

thermal energy is imparted to the airflow in the form of mechanical energy, the

velocity of the core airflow will increase. In fact, over the interval shown in Figure

5-1, the ratio of the core exhaust velocity to the inlet airflow velocity increases from

approximately 2.5 to 3.0. From the expression for specific thrust derived in

Chapter II, it can be seen that this increase in exhaust to inlet velocity ratio

translates into an increase in specific thrust.
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Influence of Turbine Inlet Temperature on the SFC of a Low Bypass
Ratio Turbofan at Mach 0.80.
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The increase in exhaust velocity simultaneously decreases the propulsive

efficiency of the engine. Thus, despite the increase in thermal efficiency, the overall

efficiency of the engine and its SFC decline. This effect is demonstrated in Figure

5-2 which plots SFC versus TIT for the base engine. This curve was computed by

varying the TIT between 2900 and 3800°R while holding all other design variables

constant. The graph shows that SFC increases from 1.1 Ib/lb/hr to 1.3 Ib/lb/hr

as TIT increases over this interval. As with specific thrust, the relationship is nearly

linear over the range examined. This relationship assumes that other design

parameters are held constant. As will be demonstrated later in the text, the effects

of increased TIT upon SFC can be compensated for by changing other design

parameters such as bypass ratio or compression ratio.

The increase in SFC with TIT implies that a tradeoff must be made between

specific thrust and SFC in the design of an engine unless other design changes are

made in the engine. In order to achieve higher specific thrust, the turbine entry

temperature of the engine can be increased; however, the engine will then have a

higher SFC. This relationship is summarized in Figure 5-3 which plots SFC versus

specific thrust using the figures computed in Figures 5-1 and 5-2. Each point on

the graph represents a different turbine inlet temperature. For increasing values

of TIT, specific thrust increases as does SFC. Thus, engine designers must

judiciously select the turbine inlet temperature that best suits the performance

requirements of the aircraft.
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For military aircraft, specific thrust is a key design parameter. In military fighters

especially, the increase in SFC with specific thrust is an acceptable design tradeoff

because the increase in thrust can allow continuous flight at Mach numbers above

1.5 without afterburners. Current fighters with uprated engines can cruise slightly

above Mach 1, but only under certain circumstances (Dornheim, 1991, p. 44). As

was demonstrated in Chapter IV, the engine thrust requirements for supersonic

flight are extremely high. Engine thrust declines significantly at higher Mach
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numbers. Thus, engines used on supersonic aircraft must be designed with high

specific thrust. Increased turbine inlet temperature can provide part of this thrust

requirement. Figure 5-4 plots the change in specific thrust versus TIT for an engine

with a design point of 35,000 feet and Mach 1.6. As for the subsonic case, specific

thrust increases linearly with TIT. By comparing this figure with Figure 5-1, it can

be seen that the engine designed for supersonic flight with a TIT of 3800OR has

almost the same specific thrust as the engine designed for subsonic flight with a

TIT of 2900*R. Further increases in turbine inlet temperature could allow additional

gains in specific thrust sufficient to sustain supersonic cruise. SFC will increase

with TIT as shown in Figure 5-5; however, these SFC levels are substantially lower

than those for an afterburning engine and would result in efficiency improvements

for the engine compared to current afterburning engines.

Subsonic aircraft can also benefit from increases in TIT. The higher specific

thrust of the engine allows the engine to generate a given thrust level from a

smaller airflow. Thus, the size of the engine can be reduced without sacrificing

aircraft performance. On the contrary, aircraft performance will improve as the

smaller engine will be lighter and generate less drag. The increase in SFC caused

by the higher TIT may be offset by carrying additional fuel or by other design

changes that can lower SFC such as increased bypass ratio or compression ratio.

These will be highlighted in subsequent discussion.

The benefits of increased turbine inlet temperature for military engines imply that

much research will continue to be directed in this area. The primary focus of this
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research will be to develop new materials for turbine construction. Several such

materials are being developed under the auspices of IHPTET. Inter-metallic

materials are expected to be developed in Phase I of the program. These materials

such as nickel-aluminides and titanium-aluminides retain the heat-resistant qualities

of their base metals, but are lighter-weight because of their aluminum content.

Nickel aluminides are only half the weight of nickel. Metal matrix composites

(MMC) are expected to be developed during Phase II of IHPTET, and ceramics

such as silicon nitride will probably be introduced into Phase III engines (Interavia,

1989, p. 1114).

Some of these Phase I materials have already been introduced into the design

of the ATF engine. This engine operates with a higher turbine inlet temperature

than its predecessors. The most recent upgrade of the F100 engine, the PW 220-

229 operates with a maximum turbine inlet temperature of 2595 degrees

Fahrenheit; the Pratt & Whitney YF119 engine (recently selected as the winner of

the ATF engine competition) is estimated to operate at temperatures just below

3200 degrees Fahrenheit (Gal-Or, 1990, p. 206).

2. Cooling Requirements:

Advances in turbine materials provide an additional benefit to aircraft engines

as they allow reductions in the cooling air requirements for turbofan engines. In

current turbofans, more than 10% of the total core airflow may be diverted into

the cooling system to cool the turbine blades. Such cooling is required to allow the

turbine to operate at higher temperatures than its materials can otherwise
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withstand. By pumping cool air into hollow turbine blades, some of the heat can

be removed from blades, preventing them from overheating and failing.

Reductions in turbine cooling requirements translate into increases in specific

thrust as more core air can be accelerated by the combustion process. The

figures calculated in the previous section assumed that 10% of the core airflow was

diverted for cooling the high and low pressure turbine spools. Five percent of the

air was assumed to be diverted to each spool. The effect of reducing these

requirements while maintaining a constant turbine inlet temperature of 2900°R and

a constant pressure ratio of 30 is shown in Figure 5-6. With a cooling air

requirement of 5% for each spool, the specific thrust of the engine is 51.3

Ibt/Ibm/s; with no cooling air requirements, the specific thrust increases to almost

55 Ibt/Ibm/s, a five percent gain in specific thrust.

Unless accounted for by other design changes, reductions in cooling air can

actually cause an increase in SFC. As the cooling airflow is reduced, the mass of

air flowing through the core and being combusted increases accordingly. The

velocity at which the core airflow is exhausted from the engine must also increase

by conservation of mass considerations. Because propulsive efficiency is inversely

proportional to the velocity of the core flow, the propulsive efficiency of the engine

must decrease. Unless the increase in thermal efficiency is sufficient to overcome

this deficit, SFC will also be reduced. However, fuel efficiency can be partially

regained without sacrificing the improvement in specific thrust by increasing the
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bypass ratio of the engine or by increasing compression ratio'.
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Figure 5-6. Influence of Cooling Airflow Requirements on the Specific Thrust
of a Turbofan Engine with a Bypass Ratio of 0.80.

'The increase in compression ratio does not Improve SFC by decreasing the velocity of the core
airflow, but by Improving the thermal efficiency of the engine cycle.
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3. Compressor Design:

Military engines can also benefit from advances in compressor design. These

benefits can take the form of increased overall compression ratios2 and lower

compressor weight brought about by increases in compressor stage pressure

ratios. The application of this research to subsonic and supersonic aircraft,

though, may differ.

The desired compression ratio for an engine designed for supersonic flight

differs from that of an engine designed for subsonic flight due to the effects of

increased ram pressure. Ram pressure refers to the total pressure of the airflow

at the entrance to the engine inlet. As flight velocity increases, the total pressure

of the airflow at the entrance to the inlet increases in accordance with the definition

of total pressure presented in Chapter II. The total temperature of the airflow at the

inlet also increases with flight velocity in accordance with the adiabatic temperature-

pressure relation, T = PW ~- 1". For given compressor pressure ratio, therefore, the

temperature of air at the exit of the compressor will be higher for an engine flying

at supersonic speeds than for an aircraft flying at subsonic speeds. As the

maximum allowable temperature of the gas at the exit of the combustor is limited

by the thermal properties of the turbine inlet materials, the increased temperature

at the entrance to the combustor reduces the amount of heating that can occur in

the combustor and hence limits the net thrust of the engine.

2Overall compression ratio (or overall pressure ratio) is defined as the product of the fan
pressure ratio and the compressor pressure ratio. It is therefore the ratio of the total pressure of
the core airstream at the entrance of the combustor to the total pressure at the exit of the engine
inlet.
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Due to the ram effect, the optimal compression ratio for an engine designed for

supersonic flight is less than that for a subsonic engine. This effect can be seen

in Figure 5-7 which plots specific thrust versus Mach number for three different

compression ratios: 10, 20, and 30. The engine in this case is assumed to be a

mixed exhaust turbofan engine in which fan pressure ratio is optimized for

maximum specific thrust3. TIT is held constant at 29000. Below Mach 1, the engine

generates maximum specific thrust at higher compression ratios; at speeds above

Mach 1, however, the engine generates maximum specific thrust at lower

compression ratios. Figure 5-8 plots SFC versus Mach number for the same

engine analyzed above. For velocities below Mach 1.8, the SFC of this engine is

lowest with a compression ratio of 30. The steep rise in SFC at Mach numbers

above 1.8 results from the low specific thrust generated at these speeds. In

actuality, this engine would not be run at such high speeds, so SFC can be

considered lower at higher pressure ratios regardless of flight velocity. As these

results indicate, the design of engines for supersonic cruise will not generate

requirements for increased compression ratios as high as those for subsonic

engines.

The optimum pressure ratio for subsonic and supersonic engines is actually a

function of turbine inlet temperature. Increases in maximum TIT increase the

3For a mixed exhaust turbofan, the core and bypass streams are assumed to be exhausted from
a single nozzle as is typical of most military engines. For optimal engine performance, the total
pressures of the core and bypass stream mass flows should be equal at the entrance to the mixer.
Given an overall pressure ratio, this requirement uniquely determines the fan pressure ratio required
to meet this condition. Equations for calculating this fan pressure ratio are derived in Mattingly
(1987, p. 111).
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compression ratio at which specific thrust is optimized. Figures 5-9 and 5-10

demonstrate the relationship between TIT and compression ratio for subsonic and

supersonic engine designs, respectively. These figures plot specific thrust versus

compression ratio for four different turbine inlet temperatures; Figure 5-9 shows the

result for an engine designed to operate at Mach 0.8, and Figure 5- 10 plots the

result for an engine designed to operate at Mach 1.6. In both cases, the engine

is assumed to have mixed exhausts, and the fan pressure ratio is selected to

maximize specific thrust at each overall pressure ratio examined. These graphs

demonstrate that an optimal pressure ratio exists for maximizing the specific thrust

of subsonic and supersonic engines and that this optimal pressure ratio increases

with turbine inlet temperature. For the subsonic case, optimal pressure ratio

increases from 18 to 32 as TIT increases from 2900 to 3800 degrees. For the

supersonic case the increase is smaller; the optimal compression ratio increases

from 8 to 12 as TIT increases from 2900 to 3800 degrees. Moreover, these graphs

demonstrate that specific thrust is only a weak function of compression ratio. At

each TIT examined, compression ratio can be increased past the optimal point with

only a minor change in specific thrust.

Furthermore, as this analysis demonstrates, the optimal compression ratio for

supersonic engines is lower than that for subsonic engines. Thus, should military

engines be developed for supersonic cruise capability, increases in overall

compression ratio may be pursued only as turbine inlet temperatures are

increased. The emphasis on supersonic cruise requirements may obviate

advances in overall compression ratio.
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Increases in compression ratio may be still pursued for subsonic aircraft such

as strategic bombers for which SFC is an important consideration. SFC can be

recovered at higher turbine inlet temperatures by simultaneously increasing the

pressure ratio of the engine. This effect results from the fact that the pressure ratio

at which an engine achieves maximum thermal efficiency is typically higher than the

pressure ratio for maximum specific thrust. Figure 5-11 plots thermal efficiency as

a function of overall compression ratio for a mixed exhaust turbofan engine four

different turbine inlet temperatures. The engine analyzed is the same as the one

analyzed in Figure 5-9. By comparing this graph with Figure 5-9, one can see that

the compressor ratio for maximum thermal efficiency is considerably higher than

o>,50,C 1
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Overall Compression Ratio

Figure 5-11. Thermal Efficiency as a Function of Compression Ratio for Four
Different Turbine Inlet Temperatures.
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that for maximum specific thrust. This result implies that the SFC of an engine can

be improved by increasing the engine's compression ratio to the point of maximum

thermal efficiency.

For a low-bypass ratio engine, an increase in compression ratio can decrease

cruise SFC by 10-15%. Figures 5-12 and 5-13 demonstrate this effect for engines

with design Mach numbers of 0.8 and 1.6, respectively. In both graphs SFC is

plotted versus compression ratio for four different turbine inlet temperatures. At

each turbine inlet temperature, increases in compression ratio from 10:1 to 40:1

decrease SFC by 10 to 15%. As a result an engine with a TIT of 3800WR and a

compression ratio of 40 is more fuel efficient than an engine operating at 2900XR

and a compression ratio of 15.

Thus, turbofan engines can be designed for increased specific thrust and for

low SFC by simultaneously increasing turbine inlet temperature and compression

ratio. This interrelationship leaves the designer with several choices in the design

of an engine. These choices are displayed in Figure 5-14 which plots the tradeoff

between specific thrust and SFC for combinations of TIT between 2900 and 3200°R

and compression ratios between 30 and 80. If the base case is taken as 2900°R

and a compression ratio of 30, characteristic of the F118 engine, it can be seen

that increasing the TIT to 3800 degrees and increasing the compressor ratio to 80

increases the specific thrust of the engine from 59 to 78 Ibt/lbm/s and actually

lowers the SFC from over 0.95 to 0.93 Ib/lbt/hr. Without the increase in pressure

ratio, the engine would have an SFC of approximately 1.04 at 38000. The loss in

161



1.15

1.10

1.05

1.00

095

0.90

Lr-
1Cz

.0

.0

T-3800 R

T=3500 R

T-3200 R

Tm2000 R

1.40
%

"1.30

1.20:

1.10

1.00

Compression Ratio

/ T-M

.. oh .a

Mac Prhsu Malerhane TwoCan0% dftbu hbo

Compression Ratio

Figure 5-12

Variation in the Specific Fuel Consumption of a Low Bypass Ratio
Turbofan with Compression Ratio and Turbine Inlet Temperature
at Mach 0.80.

Figure 5-13

Variation in the Specific Fuel Consumption of a Low Bypass Ratio
Turbofan with Compression Ratio and Turbine Inlet Temperature
at Mach 1.6.

35.000 n
Mooo 0.8

Optk•nl Fan Prwure Rdlo
0.85 a 40

4 ' &-



A ~

1.00

-CQ: 095

) -

0.85

0.80v,.r-

4

Pi=40

Pi=60

Pi-80

T=2900
I =LZJQ

I I I I I 0 1 l-l ' Il I 1

0 50 60
Specific Thrust

35,000 Ft
Mach 0.8
Bypass Ratio=0.8
ixed Exhaust

Optimal Fan Pressure Ratio

70 80 90
(Ibt/Ibm/s)

Figure 5-14. Tradeoff Between Specific Thrust and SFC for Various Choices of
Turbine Inlet Temperature (T) and Compression Ratio (Pi).

specific thrust resulting from the increased compression ratio is minimal. Only 3

Ibt/lbm/s is lost.

This analysis indicates that military interests in compression ratio will be dictated

by the application for which new engines are designed. Fighter engines will

probably not stimulate the design of higher pressure compressors as high pressure
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ratios are detrimental to performance at supersonic speeds. Subsonic aircraft,

however, stand to benefit greatly from high pressure compressors as they allow

SFC to be maintained or even improved as specific thrust increases.

Regardless of this difference, the military will most likely continue to pursue

advances in compressor stage design. Both subsonic and supersonic engines can

benefit from improved compressor stages as they will lead to lighter engines and

thus improved thrust-to-weight ratios. The greater the pressure ratio that can be

achieved with a single stage, the fewer stages will be needed to achieve a desired

compression ratio and the lighter the engines will become.

The IHPTET program may generate technologies to be used in compressor

design. In axial compressor design, the goal of IHPTET is to improve stage

compression ratios by 25% with a 4% improvement in efficiency4. In addition, the

use of metal matrix composites in stage construction will help reduce the weight

of the compressor by up to 50%. Additional work is being directed toward fan

blade design so that the number of fan stages used in a typical fighter engine can

be reduced from three to two. In particular swept fan blades are being developed

under IHPTET. These blades are swept forward at the root and backward at the

tip in order to reduce tip speeds and shock losses (Interavia, 1989, p. 1114).

4Compressor stage efficiency will be described in the next section of the text.
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4. Turbine and Compressor Efficiencies:

Further improvements in specific thrust can be achieved by improving the

efficiency of the turbine and compressor. Turbine and compressor efficiencies are

typically expressed in terms of the polytropic efficiency of the individual stages

This efficiency characterizes the state-of-the-art in compressor design. The

efficiency of a complete compressor or turbine can be computed by calculating the

combined effect of the individual stage efficiencies. Polytropic efficiency defines the

ratio of actual work required for a given incremental increase in pressure divided

by the ideal amount of work required for a given incremental increase in pressure.

Improvements in compressor and turbine stage efficiencies can both increase

specific thrust and decrease SFC. Inefficient stages result in larger temperature

increases across a stage than would be expected from an adiabatic compression

of a gas. By improving the efficiency of a stage, the temperature rise resulting from

a given compression ratio will be decreased, allowing a greater temperature rise

in the combustor. Figure 5-15 displays the effect of increasing compressor

polytropic efficiency from 0.9 to 1.0 in an mixed exhaust turbofan engine with a

turbine inlet temperature of 3200°R and a design point of Mach 0.8 at 35,000 feet.

Fan pressure ratio is assumed to be optimized for specific thrust. As shown, the

specific thrust of the engine increases from a maximum of 67.5 Ibt/lbm/s to 75

Ibt/lbm/s.

Optimal compression ratio also increases as polytropic efficiency increases. As

shown in the graph, an increase in the polytropic efficiency from 0.9 to 1.0
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increases the optimum compression ratio from 22.5 to 36.0. This effect can be

understood from an analysis of temperature considerations. A more efficient

compressor will increase the temperature of the airstream less than an inefficient

compressor. Thus, with more efficient compressor stages, the compression ratio

required to bring the airstream to the desired temperature at the inlet to the

combustor increases.

By increasing the compressor ratio, the SFC of the engine can also be

improved despite the increase in core stream exhaust velocity. Figure 5-16 plots

SFC versus compression ratio for four levels of polytropic efficiency. At each

compression ratio, the SFC of the engine is improved. The relationship between

specific thrust and SFC can be appreciated by plotting the two on the same graph.

Figure 5-17 shows the tradeoff for all four levels of polytropic efficiency. Each point

on each curve represents a different compressor ratio. As can be seen, even by

operating at the point of maximum specific thrust on each curve, SFC can be

steadily reduced.
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5. Bypass Ratio:

Further improvements in specific thrust can be gained by decreasing the

bypass ratio of military engines. The advantage of high bypass ratios is in their

improved propulsive efficiency which, in turn, improves the SFC of the engine.

However, this advantage is gained at the expense of specific thrust and with

penalties in size and weight. As engine size, thrust-to-weight ratios, and specific

thrust become more important in military engines, the design of these engines is

likely to be characterized by decreased bypass ratios.
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Supersonic engine design can benefit most from reduced bypass ratios. At

all speeds, the net thrust of a gas turbine engine decreases steadily as its speed

increases, regardless of bypass ratio. Thus, an engine that is powerful enough for

subsonic flight may be severely underpowered for supersonic flight. By decreasing

the bypass ratio of an engine, specific thrust can be recovered at high speed. The

variation of specific thrust with design speed is shown in Figure 5-18 which plots

specific thrust of a mixed exhaust turbofan with a pressure ratio of 30 for five

different bypass ratios. Turbine inlet temperature is assumed to remain constant

at 29000R. As this graph demonstrates, specific thrust decreases by approximately

60% at all bypass ratios as Mach number increases from 0 to 2.0. Using a bypass

ratio of 0.8 as a base case, one can see that the specific thrust generated at Mach

0.8 is just under 60 Ibt/Ibm/s. By decreasing the bypass ratio to 0.2, this same

specific thrust level can be achieved at a speed of Mach 1.5 without otherwise

modifying the design of the engine.

Decreases in bypass ratio are important in the design of engines for aircraft with

supersonic cruise requirements in which the increase in specific thrust is of primary

importance. However, for subsonic aircraft in which speed is not a primary design

feature, decreased bypass ratios are detrimental because they increase the SFC

of the engine and as a result reduce the maximum range of the aircraft. Figure 5-

19 plots SFC versus design Mach number for five different values of bypass ratio.

The engine has the same characteristics as that described above. At any given

Mach number, a decrease in bypass ratio causes an increase in SFC. Some of

this loss can be regained by increasing the compression ratio as described above.
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Fighter engine design appears to be moving toward lower bypass ratios

Whereas the Pratt & Whitney F100 engine designed to power the F-15 and F-16

has a bypass ratio of 0.69, the more recent F-404 designed by GE and used on

the F-18, F-20, and F-117A has a bypass ratio of only 0.35. As a result, the F404

engine has a specific thrust of 78.6 Ibt/lbm/s at sea-level compared to a value of

65.3 for the F100 engine (Gal-Or, 1990, p. 206). Its maximum diameter is only 35

inches compared to 46½ inches for the F100; and its weight is a full one-third less

than the F100 (Aviation Week, 1991b, pp. 133-135).

ATF engine designs reflect the same trend. This engine is required to generate

sufficient thrust to allow supersonic cruise capability without recourse to

afterburners. This capability, referred to as "supercruise" will allow the ATF to use

its supersonic capability for greater periods of time without sacrificing range

(Dornheim, 1990, p. 44). Both competitors for the ATF engine have introduced low

bypass turbofans in order to meet this requirement. The Pratt & Whitney engine,

the YF119 is best described as a "leaky turbojet" engine although details regarding

its bypass ratio have not been released. The GE entrant, the YF120, uses a

variable bypass ratio to increase specific thrust at high Mach numbers. This

engine operates as a turbofan at low speed, but by closing the bypass ducts at

supersonic velocities, operates as a turbojet for high-speed flight.
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B. Research Directions for Commercial Engines

The priorities driving research into commercial engines are the reverse of those

for military engines. Development of engines for commercial application will focus

on ways to improve specific fuel consumption without sacrificing specific thrust.

Emphasis on SFC will enable new engines to operate more efficiently than the

engines they replace and burn less fuel. The desire to maintain specific thrust

derives from a desire to avoid the need to develop larger mass flow engines to

produce the thrust needed by large jet airliners.

The SFC of an engine is directly related to its overall efficiency. Thus, SFC can

be improved by increasing either the propulsive efficiency or the thermal efficiency

of the engine. However, propulsive and thermal efficiencies are interrelated.

Increases in thermal efficiency tend to increase the velocity at which the core

stream is exhausted from the engine. The increased velocity of the core airstream,

in turn, reduces the propulsive efficiency of the engine. However, as was

demonstrated in Chapter II, the propulsive efficiency of a turbofan engines can be

increased by raising the bypass ratio of the engine. Improvements in SFC can

therefore be achieved by increasing the thermal efficiency of the engine core and

then increasing the bypass ratio of the engine to regain propulsive efficiency.

1. Bypass Ratio:

The effect of increased bypass ratios upon engine performance was

demonstrated briefly in Chapter II. As noted, the increased bypass ratio decreases

the SFC of the turbofan, but simultaneously decreases its specific thrust. Figure
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Figure 5-20. Comparison of SFC as a Function of Bypass Ratio for Two
Turbofan Engines: One With a Fixed Fan Pressure Ratio of 1.7;
the Other With an Optimal Fan Pressure Ratio Matched to the
Bypass Ratio.

5-20 plots the SFC of a turbofan engine versus bypass ratio. The engine was

assumed to have a maximum turbine inlet temperature of 2800OR and an overall

pressure ratio of 30, consistent with current commercial turbofans such as the

PW4000 engine. Other engine parameters are shown in Table 5-3 and are also

representative of current high bypass ratio turbofans. Two curves are plotted in

this graph. The solid curve plots the SFC of an engine in which the fan pressure

ratio is matched to the bypass ratio. The dashed curve plots the SFC for a
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Table 5-3

Parameters for Base Case Commercial Engine

turbofan engine with a fixed fan pressure ratio of 1.7 which is the current limit for

a single stage fan. Because of the extra weight additional fan stages would

contribute to the overall engine weight, most current high bypass turbofans use

only a single fan stage. For bypass ratios less than eight, the engine is optimized

with a fan pressure ratio over 1.7. Since such levels cannot be achieved with

current technology, the SFC of this engine at low bypass ratios is more accurately

portrayed by the dashed line. Above bypass ratios of eight, the engine is

optimized with a fan pressure ratio less than 1.7; thus, the solid line is more

representative of optimal performance.

The actual tradeoff between SFC and bypass ratio is shown in Figure 5-21.

This graph combines the two curves shown in Figure 20. For bypass ratios less

than eight, the fan pressure ratio is assumed to equal 1.7. For higher bypass

ratios, the optimal fan pressure ratio is used. As this graph demonstrates, the SFC

174

Parameter Value

Bypass Ratio 5.0
Maximum Turbine Inlet Temp. (, R) 2800

Overall Compression Ratio 30

Polytropic Efficiency: Turbine 0.90

Polytropic Efficiency: Compressor 0.90

Cooling Air Flow (Each Spool) 5%



of this engine can be significantly reduced (by 15% in this case) by increasing the

bypass ratio. The greatest portion of this improvement in SFC can be achieved by

increasing the bypass ratio to eight, though further reductions are possible with

larger bypass ratios.

Increasing bypass ratio, however, simultaneously reduces the specific thrust

of the engine. Figure 5-22 shows the change in specific thrust for the engine

studied above caused by the change in bypass ratio. Specific thrust decreases

almost linearly with bypass ratio so that from a bypass ratio of five to a bypass

ratio of 10, specific thrust decreases from 18.8 to 11.5. This reduction in specific

thrust would require the mass flow through the engine to be increased by 40% in

order to maintain the original thrust level of the engine. In effect, this would require

that the size of the engine be increased, increasing its weight and drag.
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2. Turbine Inlet Temperature:

Some of the loss in specific thrust can be regained by increasing the turbine

inlet temperature of the engine in order to improve its thermal efficiency. The result

of this change is shown in Figure 5-23 which compares the specific thrust of an

engine operating with a turbine inlet temperature of 3200 degrees with that of the

2800 degree engine explored above. This curve was calculated assuming a

constant pressure ratio of 30. In addition, as the optimal fan pressure ratio for an

engine at 3200 degrees is above 1.7, a constant fan pressure ratio of 1.7 was used

in this analysis. As shown, the increase in turbine inlet temperature improves the

specific thrust of the engine by about 15% at all bypass ratios. By examining the

graph, one can see that the bypass ratio of the 3200 degree engine can be

increased to about 7 with no appreciable loss in specific thrust as compared to the

2800 degree engine with a bypass ratio of 5.

The effect of the temperature increase on SFC is shown in Figure 5-24. This

graph displays a surprising result. Whereas the hotter engine has a higher SFC

for bypass ratios less than 9 as might be expected, it has a lower SFC than the

cooler engine at bypass ratios above 9. As this graph demonstrates, higher

bypass ratio engines are optimized at higher turbine inlet temperatures (assuming

other design factors are held constant). This effect results from the interplay

between thermal and propulsive efficiencies. At low bypass ratios, the propulsive

efficiency of the cooler engine is substantially higher than that of the hotter engine

because its airstream is exhausted at a lower velocity. Thus, despite the higher

thermal efficiency of the hotter engine, the overall efficiency of the cooler engine
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is higher. As bypass ratio is increased, the propulsive efficiency of both the high

and low temperature engine increases. For large bypass ratios, the propulsive

efficiency of both engines approaches unity. However, because of its higher

turbine inlet temperature, the hotter engine has a higher thermal efficiency. Thus,

the overall efficiency of the hotter engine and its SFC will be superior to that of the

cooler engine.

3. Compressor Pressure Ratio:

Additional improvements in specific fuel consumption can be achieved by

increasing the overall pressure ratio of the engine. As was shown earlier for

military engines, the compression ratio at which an engine achieves maximum

thermal efficiency is much larger than the compression ratio at which it achieves

maximum specific thrust. Thus, SFC can be reduced by increasing the

compression ratio of high bypass turbofan engines. Figure 5-25 shows the effect

on SFC of increasing the pressure ratio of the 3200°R engine from 30 to 50. SFC

is plotted versus bypass ratio and compared to the base case with a turbine inlet

temperature equal to 2800°R and a pressure ratio of 30. The increased pressure

ratio decreases the SFC of the hotter engine at all bypass ratios and lowers the

bypass ratio at which the higher temperature engine becomes more efficient that

the cooler engine. As shown in this figure, the engine with a 3200 degree turbine

inlet temperature and the pressure ratio of 50 becomes more efficient than the

base engine at bypass ratios above six. Moreover, as shown in Figure 5-26, the

specific thrust of the hotter engine with a bypass ratio of six is higher than that of

the cooler engine at its original bypass ratio of 5. Thus, the improved SFC can be
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gained without any loss in thrust. Additional increases in bypass ratio to further

reduce SFC would, however, require an enlargement of the fan to generate

sufficient mass flow through the engine and maintain a constant thrust rating.

Several manufacturers are now exploring the benefits of ultra-high bypass ratio

engines. These engines have bypass ratios between 9 and 25. Pratt & Whitney

and General Motors' Allison Gas Turbine Division have jointly developed a

demonstration version of an ultra-high bypass engine designated the Advanced

Ducted Propeller (ADP) engine. Pratt has proposed a production version of this

demonstrator as a possible contender for the new Boeing 777 should the thrust

requirement for that aircraft continue to grow. The ADP is a turbofan engine that

can have a bypass ratio between ten and twenty-five to one. This extremely high

bypass ratio gives the ADP extremely low SFC, though a specific figure has not yet

been released. The current demonstrator engine is powered by a PW2000 core

section. Because the PW2000 has a sea-level static mass airflow of only 200

pounds per second, the current ADP is limited in thrust to smaller widebody twin

jet aircraft or larger four-engine jets such as the 747. With a PW4000 core, the

engine could become powerful enough to power a heavier version of the 777.

General Electric has also developed an ultra-high bypass engine that it is

proposing for the 777. This engine, the GE90, has a bypass ratio of 9:1 and an

overall compression ratio of 40. The compressor itself has a pressure ratio of

23:1, compared to the current standard of 15:1. As a result, the bare engine has

a maximum thrust rating of 86,800 pounds and a SFC that is 8-10% lower than its
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competitors (Interavia, 1991, p. 14). According to Aviation Week & Space

Technology (1991b, p. 133), this engine has a sea-level, static SFC of only 0.278

Ib/lbt/hr. The GE90 is an entirely new engine, scaled from the engine GE

designed and demonstrated as a participant in NASA's Energy Efficient Engine (E3)

project (Taylor, 1990, p. 733). During this program, GE developed an engine with

a bypass ratio of seven and an SFC at takeoff of 0.299 Ib/lb/hr (Davis and Stearns,

1985).

4. Advanced Nacelle Design:

The large increase in bypass ratio associated with ultra-high bypass engines

requires an increase in the total mass flow through the engine in order to generate

acceptable levels of total net thrust. As a result, these engines use large nacelles

to duct the airstream through the core and bypass regions. The nacelles

themselves generate additional drag, and negate some of the SFC benefit of the

higher bypass ratio. The GE90, for example, has an uninstalled SFC 8-10% better

than the engines it is intended to replace. When installed on an aircraft in its larger

nacelle, however, the engine has an effective SFC only 3 to 5 percent better than

the competition.

Nacelle drag becomes significant as bypass ratio is increased. For large

increases in bypass ratio, the additional nacelle drag may completely negate

reductions in SFC gained by the improved propulsive efficiency. Figure 5-27 shows

the effect of nacelle drag on SFC for a high bypass ratio turbofan engine with a

turbine inlet temperature of 3460°R and an overall pressure ratio of 100 as the
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bypass ratio is increased. This figure is reproduced from Glassman (1989, p. 9)

and assumes constant core technology (in terms of component efficiencies, etc.)

and an optimal fan pressure ratio as shown on the x-axis. Several curves are

plotted on this graph. The top curve shows the effect of increased bypass ratio on

engine SFC assuming no nacelle losses. As expected, SFC increases

monotonically with bypass ratio. The effect of nacelle losses is included in the

lower curve. As this curve shows, with current nacelle designs nacelle losses

negate gains in propulsive efficiency for bypass ratios above 11. In fact, for bypass

ratios above 16, the nacelle losses may outweigh the benefits of increased bypass

ratio and actually increase the SFC of the engine.
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Figure 5-27. Effect of Nacelle Technology Upon Engine Installed SFC as a
Function of Bypass Ratio and Fan Pressure Ratio [From Glassman,
1989, p 9].
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Research on advanced nacelles is directed at reducing the effects of nacelle

drag. The middle curves in Figure 2-27 demonstrate the effect that advanced

nacelles and advanced nacelles plus improved fan efficiency may have upon

engine SFC. The shaded band represents differing estimates of the success of

these programs. Such programs appear necessary in order to allow further

improvement in SFC with bypass ratio.

5. Unducted Fan Engines (Propfans):

In order to increase bypass ratio without the penalty imposed by nacelle drag,

both Pratt & Whitney and GE have begun developing unducted fan engines or

propfans. In these engines, the fan blades are positioned near the rear of the

engine and exposed to the incoming airflow without a nacelle to diffuse the

airstream and lower its velocity. Without the nacelle, the drag penalty imposed

upon these engines by their large bypass ratios is negligible. However, since the

incoming airflow is not diffused by the nacelle, blade design becomes more difficult.

Without a nacelle to diffuse the incoming airstream, the fan blades are exposed

directly to the incoming airflow. The velocity of the fan blade tips with respect to the

airflow is therefore the vector sum of the flight velocity of the aircraft and the

rotational velocity of the blades. As a result, the blades reach sonic velocities at

relatively low rates of revolution. In order to overcome the problems associated

with shock wave formation, the fan blades must be swept back at the tips and set

at an extreme angle to the airflow. Both the GE and Pratt engines use scimitar-

shaped fan blades. However, even with sophisticated blade shaping, the size of
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the blades and hence the total mass flow through the engine is limited. These

limitations restrict the thrust levels achievable with propfan technology. Further

research in this area will undoubtedly be necessary to further improve the efficiency

of the propfan.

The advantage of propfans is that they promise large reductions in SFC

because of their large effective bypass ratios. The GE engine, the Unducted Fan

(UDF) engine has a bypass ratio of 36 and a sea-level thrust rating of 25,000

pounds. The SFC of this engine at takeoff is only 0.24 (Gray and Conliffe, 1990,

p. 34). The Pratt-Allison engine has a bypass ratio of 60 and is rated at 20,000

pounds of thrust. Its SFC rating has not yet been published (Gray and Conliffe,

1990, p. 35).

Further reductions in engine weight will have to be achieved, though, before

propfan engines become practical for commercial application. Because of their

unducted fan blades, acoustic properties, and aerodynamic characteristics, propfan

engines must be mounted on the rear fuselage of aircraft rather than below the

wings (Interavia, 1989, p. 1116). The additional weight at the tail alters the stability

of the aircraft. In order to compensate for this additional weight, the length of the

tail arm must be reduced and the size of the tail control surfaces must be

increased. These changes reduce the efficiency of the aircraft as a whole.

Until lighter weight engines can be developed, therefore, the unducted fan

engine may not prove to be a viable commercial engine. GE, in fact, after
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developing a production model of its UDF engine has temporarily shelved the

technology until a market for it should appear (Taylor, 1990, p. 735). Military

research into new materials and more efficient compressor stages may prove

applicable to propfan engines as it would help lower the weight of these engines.

C. Future Commercialization and Technology Transfer

This analysis indicates that the overall character of engine technology transfer

between military and commercial applications may in the future differ from the

technology transfer characteristic of the early U.S. jet aircraft engine industry.

Whereas early technology transfer was based upon a nearly direct transfer of

complete engines and their cores to the commercial sector, future technology

transfer will most likely involve the transfer of basic technologies and research

results from military to commercial programs. Designs for military engines will differ

radically from those for commercial engines, yet much of the military's research in

materials and compressor design for advanced engine cores will be equally

applicable to commercial engines. Interestingly, the only transfer of complete

hardware between the two sectors may be the transfer of commercial high bypass

ratio turbofans to military transport aircraft.

1. Direct Commercialization of Military Engines:

As noted, the engines developed for military and commercial applications will

continue to diverge. Most military engine development is currently and will likely

continue to be directed toward fighter engines and their upgrades. Since the

1950s, only two engines have been developed for bomber aircraft, the JT3 for the
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B-52 and the F101 for the B-1. The only upgrade to these engines was the

addition of a front fan section to the JT3, converting it into a turbofan. Several

fighter-class engines have been developed over the past two decades, including

the F100, F110, F404, and the ATF engines. Upgraded versions of all but the ATF

engine have been produced. These engines are unsuitable for the commercial

aircraft industry. Not only do they generate insufficient thrust to power large

airliners, but their SFCs are approximately double those for commercial high-

bypass turbofans. Most likely, future military engines will have even lower bypass

ratios than present engines. Thus, the prospects for direct commercialization of

military engines appear slim.

On the other hand, the military may expect to benefit from the "militarization" of

commercial engines for military transport aircraft. Military requirements for such

engines are similar to the requirements for commercial engines: high thrust and low

SFC. Because military transports are designed for neither supersonic speed nor

stealth, the size, weight, and installation requirements of high bypass turbofans do

not impede aircraft performance. Moreover, with strong commercial demand for

improved high bypass ratio turbofans, the military has little incentive to dedicate

additional funding to this technology. Having demonstrated and validated the

original high-bypass engine technology, the military may now leave further

development to the commercial sector.
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2. Commercialization of Military Engine Cores:

Prospects for the commercialization of military engine cores will be determined

by three primary factors: specific thrust, design mass flow, and overall pressure

ratio. In order for commercial engines to use military cores, these cores must be

designed for high specific thrust, low core mass flow, and high overall pressure

ratio. As highlighted in the previous section of this chapter, improvements in

engine SFC will be pursued in the commercial sector by the development of higher

bypass ratio engines. At the same time, the increase in bypass ratio must be

achieved with as small an increase in overall engine size as possible. Clearly, the

bypass ratio of an engine can be raised by increasing the diameter of the engine

and passing more air through the bypass stream, but the extent to which such

increases can be achieved is limited by the maximum diameter of the engine. In

order to be installed on an aircraft, the engine must fit under the wing with

adequate ground clearance. Thus, the true objective of high bypass ratio turbofan

development will be to increase the bypass ratio of the engine without increasing

its total mass flow. This result can be achieved by decreasing the size of the core

flow. For example, consider an engine with a total mass air flow of 1200 Ibm/s,

200 Ibm/s of which passes through the engine core and 1000 Ibm/s of which

bypasses the core. This engine has a bypass ratio of 5. However, if the total

mass flow is held constant so that the engine size is also held constant, and the

core air flow is reduced to 100 Ibm/s by constructing a smaller engine core, the

bypass ratio of the engine will increase to 1100/100 or 11 to 1.
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While such a change in design would greatly reduce SFC, the specific thrust of

the engine would be significantly reduced. By increasing the specific thrust of the

engine core, by such means as increasing the maximum turbine inlet temperature,

the specific thrust of the overall engine could theoretically be returned to its original

value. But, as shown previously, the compression ratio of the engine would also

need to be increased to retain the gain in SFC. Thus, commercial engine

requirements will be characterized by an increase in core specific thrust through

higher turbine inlet temperatures and improved core efficiency, a decrease in the

size of the core, and an increase in compression ratio.

The degree to which military engine cores will meet such characteristics will

depend on the application for which they are designed. As noted, the design of

fighter and bomber engines may begin to diverge as fighter engines are optimized

for supersonic capability. In fact, fighter engine cores may not be suitable for

commercial application. While they will be designed for higher turbine inlet

temperatures as required by commercial engines, and will generate high levels of

core specific thrust as further required by commercial engines, they will most likely

not be designed for reduced mass flows. Instead, the mass flow will most likely be

held relatively constant so that the total thrust of the engines will increase with the

increase in specific thrust. As noted, the military has a requirement for high thrust

engines to power aircraft with supercruise capability. Thus, the size of the engine

may not be decreased as specific thrust is increased because increases in total

thrust are desired. Should supersonic cruise capability remain a requirement for

military engines, the new cores developed for these engines may not be applicable
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to commercial engines.

Engine cores developed for bombers hold more promise for commercial

application. As these engines will most likely be designed for subsonic flight, they

will be designed not for increased total thrust, but for increased specific thrust so

that the total mass flow through the engine-and hence engine size--can be

reduced. In this manner, they can be more easily be integrated onto stealthy

platforms. Low SFC will also remain a requirement for future bomber engines.

Thus, they may be designed with the high compression ratios desired in

commercial turbofans. However, it is not clear that the military will develop many

new bomber engines. The future of the strategic bomber force is at present

uncertain. With the decline in the Soviet threat and the rising cost of new bombers,

the structure of the strategic bomber force is likely to change over the next several

decades. Moreover, even if a new bomber should be designed, the military may

opt to adapt a fighter engine for its next bomber as was done on the B-2 in order

to reduce development costs.

3. Transfer of Basic Technologies:

Despite the growing divergence between military engines and their commercial

counterparts, military research on advanced core design holds much potential

benefit for the commercial industry. In order to increase the specific thrust and

thrust-to-weight ratios of military engines, advances in core design will be required.

In particular, emphasis will need to be placed on the development of new turbine

materials to increase the maximum turbine inlet temperature of military engines, to
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reduce the cooling air requirements, and to reduce engine weight. Improvements

in component efficiencies will also aid in increasing specific thrust. Further

research on compressor and fan stage design will help lighten military engines.

These core technologies are all applicable to commercial engine design. As

demonstrated, increases in turbofan bypass ratios necessitate higher turbine inlet

temperatures in order to simultaneously improve specific thrust and minimize SFC.

Losses in specific thrust associated with increased bypass ratios must be offset by

increases in turbine inlet temperature. Furthermore, higher bypass engines are

optimized for fuel efficiency at higher temperatures than are lower bypass ratio

engines. Maximal thermal efficiency is also achieved at higher pressure ratios than

can be achieved with present technology. Thus, while military interests in high

compression ratios may be limited to bomber engines, military research into

improved compressor stage design for both fighter and bomber aircraft will apply

to commercial compressor design. Greater pressure ratios per stage will allow

increases in overall pressure ratio without increasing the weight of the compressor.

Not all basic technologies required to improve commercial engines will be

addressed by military research programs. Advanced nacelle design for ducted fan

engines and fan blade design for large propfan engines are unlikely to be

developed for military applications5. To date, much of the research in these areas

has been funded by the commercial engine manufacturers and by NASA. Through

r5he military had expressed some interest in propfans for cruise missile applications, but such
Interest appears to be waning. In addition, because of their smaller blade size, propfans developed
for cruise missiles would probably not present the same design challenges to developers.
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its Aircraft Energy Efficiency (ACEE) program initiated in the late 1970s, NASA has

supported the Energy Efficient Engine program and the Advanced Turboprop

program. The first of these was intended as a means of promoting the

development of more fuel efficient turbofans through increased bypass ratios and

improved core designs. The precursor to GE's GE90 ultra-high bypass engine was

developed under this program (Davis and Stearns, 1985). The Advanced

Turboprop Program was begun as a long-term initiative to develop propfan

technologies for commercial use. Both the GE UDF and the Pratt-Allison propfan

trace their heritage to research conducted as part of this program. As military

interest in such technologies was limited, and fuel prices were expected to rise

significantly, Congress authorized NASA to lead these development efforts.

As this discussion demonstrates, the nature of technology transfer between the

military and commercial jet aircraft engine sectors will differ significantly from the

commercialization that characterized the early engine industry. This change,

coupled with changes in the nature of the aviation industry as a whole, have strong

implications for the U.S. jet aircraft engine industry. These implications will be

explored in the next chapter.
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CHAPTER VI

POLICY IMPLICATIONS

This thesis was begun with three major goals in mind. The first was to examine

the relationship, past and present, between commercial and military jet aircraft

engine development in the U.S. The hope was that the role of the military in

establishing and maintaining the early commercial jet engine industry could be

uncovered and the importance of military R&D to this industry revealed. The

second goal of this thesis was to examine the engine characteristics and

technologies likely to be sought by commercial and military customers in the future

in order to anticipate changes in the relationship between the military and

commercial sectors of the engine industry. In particular, areas of divergence

between future military and commercial engine research and development were to

be identified. The third goal of this thesis was to provide guidance to government

and business policy-makers for assuring the continued success and

competitiveness of the U.S. jet aircraft engine industry.

Chapters III through V addressed the first two primary goals of this research.

This chapter attempts to conclude the analysis. Particular attention is paid to

understanding the implications of the earlier analysis on the development of policies

to help promote the future success of the U.S. jet aircraft engine industry. Though

the following discussion will identify issues to be addressed in future policy

formulation, in many cases, further research will have to be conducted in order to

fully evaluate the suggestions provided herein and to devise plans of

193



implementation should they appear tractable. Nevertheless, this chapter should

provide some direction for those later efforts.

A. Lessons Learned

At this point it seems appropriate to review the analysis presented so far in this

thesis in order to highlight the conclusions that have significant policy implications.

The conclusions presented below are based upon the analyses in Chapters III

through V.

1. The Significance of Military R&D:

The U.S. military played a significant role in the establishment of the jet aircraft

industry in the United States and in the eventual expansion of that industry into

commercial operations. Early jet engine development was funded solely by the

military and directed toward military goals, namely increasing the speed and

altitude capabilities of its fighter and bomber aircraft. Early commercial interest in

jet engines was hindered by considerations of cost-effectiveness. Until the

development of the turbofan, jet engines were not powerful enough nor fuel

efficient enough to be commercially competitive with propeller-driven engines.

Early research and development in jet engine technology was conducted by

companies brought into the jet engine industry by the government, specifically

General Electric. Only after the technology was developed and somewhat

established did another entrant succeed in breaking into the industry. This

structure assured that engine development proceeded in accordance with military

requirements.
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Nevertheless, military R&D generated the technological base from which

commercial products were derived. The requirements of the commercial airline

industry were met with the same technology developed by the military. Thus,

military research was essential in developing and validating technologies for

commercial application. The development and validation of the axial-flow turbojet

which allowed the first commercial application of jet technology and the later

development of the high bypass turbofan which has since become the backbone

of the commercial engine industry were both funded through military programs.

In these cases, it is unlikely that the technology could have been developed without

military funding because of the large developmental risks involved. Engine

manufacturers could not provide the performance guarantees required by

commercial airlines; nor could they guarantee the financial success of such

projects to potential commercial investors. The military is less risk-averse than

commercial industry in funding technical R&D, and its funding allowed engine

manufacturers to overcome large technological obstacles associated with

development of the jet aircraft engine.

Military interest in jet technology has also benefitted commercial industry by

providing financial and capital resources that corporations could then devote to

other areas of commercial engine research. Government procurement of engines

generated funds for the establishment of the production facilities needed for both

commercial and military production of engines. In an industry in which

development of a new commercial engine can cost over a billion dollars and profits

can be made only after long lead times, such capital is especially significant.
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2. The Changing Relationship:

The relationship between military and commercial engine development is

changing at present and will continue to change over the next several decades.

Military interests in engine development appear strongly influenced by the desire

for sustained supersonic flight. However, subsonic flight will continue to dominate

commercial aviation for some time. As a result, military and commercial

requirements for aircraft engines are diverging and the same engine designs will

no longer serve both sectors of the industry. Whereas military requirements

emphasize increases in specific thrust and thrust-to-weight ratios, commercial

requirements are dominated by the desire for decreased operating costs and lower

specific fuel consumption.

As a result of these differences, different types of engines will be developed

for each sector. Military engines will take the form of low-bypass ratio turbofan

engines or perhaps variable cycle engines that operate as turbofans at low speeds,

but operate as turbojets at high, supersonic, velocities. These engines can meet

military requirements for thrust while simultaneously satisfying requirements for

aircraft stealth and supersonic capability. Commercial engines, on the other hand,

will take the form of large high bypass ratio turbofans and possibly propfans which

offer significant reductions in SFC. The military has little interest in such engines

except for its larger transport aircraft, so the military is unlikely to fund development

of new engines for such aircraft. New commercial engines will be suitable to their

needs. As a result, less direct commercialization of military engines will occur in

the future.
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Despite differences on the product level, some commonality will remain between

military and commercial engine cores and the basic technology incorporated into

these cores. As was demonstrated, future military bomber engines may be

designed with smaller, more powerful cores than those in present engines. These

cores could have potential for powering commercial high-bypass ratio turbofans,

allowing some transfer of core technology. In addition, much of the basic research

conducted by the military will be applicable to commercial needs. Both military and

commercial engines can further benefit from additional increases in engine turbine

inlet temperature and compression ratio. Thus, military research in high-

temperature materials and compressor stage design will be of use in commercial

engines as well. In general, the more efficient engine components being developed

by the military will be applicable to commercial engines as well.

Not all areas of research required for further development of commercial

engines will be addressed by military programs. For example, research in

advanced nacelle design for ultra high bypass turbofans and research on

advanced fan blade design for commercial propfans are unlikely to be adequately

addressed by current or future military research programs such as IHPTET. Thus,

the commercial industry will have to bear more of the burden of its engine research

and development costs.
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B. Policy Implications

These conclusions imply that the commercial jet aircraft engine industry can

expect a decline in the amount of technology transferred from military research and

development programs. In addition, the decline in defense procurement referred

to in Chapter I threatens to reduce the military contribution to the industry's capital

base. At the same time as military sources of funding are declining, international

competition in the aircraft engine industry is growing. Foreign engine makers are

developing engines that may prove to be competitive with those of U.S.

manufacturers. Both Rolls-Royce and Germany's MTU have ultra-high bypass ratio

engines currently under development that may compete with the GE90 and the

Pratt & Whitney ADF engines (Gray and Conliffe, 1990, p. 35). French, Japanese,

and Italian engine manufacturers are also gaining experience in engine design

through collaboration with GE, Pratt, and others.

These trends imply that funding for commercially-oriented engine R&D in the

U.S. will have to rise in order to maintain the technological superiority and

competitiveness of the U.S. commercial jet aircraft engine industry. Although jet

engine technology has matured significantly over the past five decades,

commercially significant improvements are still achievable. With advances in

turbine inlet temperature, compressor design, and nacelle design, turbofan engines

can be developed with significantly greater thrust and lower fuel consumption than

current engines (Glassman, 1989; Newton, 1985; Mordoff, 1982). Propfan engines

promise even greater reductions in fuel consumption.
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The significance of the U.S. jet engine industry to the U.S. economy, national

security, and national prestige demands that policies be developed to help

preserve the nation's lead in jet engine technology. The large risks and high cost

associated with jet engine development may well require continued or additional

government involvement in this industry. Both government and industry actions

should be directed toward enhancing the capabilities of the U.S. jet engine industry

in an environment of declining military influence. Directions for commercial

research must be developed and means for funding such research must be

sought. Several guidelines for developing appropriate policies for achieving these

goals are provided below.

1. Directions for Military and Commercial Jet Engine Research:

The most direct implication of the research contained in this thesis concerns the

directions for future military and commercial jet engine research. As was

demonstrated in Chapter V, both military and commercial engines can benefit

from advances in high-temperature materials, lightweight materials, compressor

design, and component efficiency. Military development work can then focus on

incorporating the results of this research into low bypass or variable-cycle engines.

Commercial development can focus on incorporating this research into ultra-high

bypass turbofan engines. Development of ultra-high bypass engines and propfans

for commercial application will require additional research into advanced nacelle

design and blade aerodynamics, areas in which the military has limited interest.
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These results suggest research priorities for industry and for government

sponsors such as the Department of Defense and NASA. Assuming military

funding for jet engine research will continue to outstrip civilian funding of

aeronautical R&D1 (regardless of the military's budget for procurement of engines),

funding of commercial research by industry and by NASA should be directed

toward problems such as fan blade aerodynamics and nacelle design that are

peculiar to commercial engines and will not be addressed by military research.

Advances in materials, compressor design, and component efficiencies should be

developed by the military and transferred to the commercial industry. In this

manner, the totality of research funds can provide the greatest benefit to

commercial engine manufacturers.

The military should continue to fund development of improved engine cores

through research in materials, compressors, and component efficiencies. In

addition, opportunities for developing commercially-applicable technologies should

be sought in military programs. In determining whether to design a new engine for

a military aircraft or to modify existing engines, consideration should be given to

the application newly-developed technologies may have to the commercial industry.

Such considerations are especially applicable in the case of bomber engines which

are likely to retain more commonality with commercial engines than are fighter

engines.

1According to AIAA estimates, Department of Defense budget outlays for aeronautical R&D in
1988 were almost nine times greater those from NASA during the same year (AIAA, 1990).
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2. Improving Technology Transfer Mechanisms:

Central to the success of the strategy outlined above will be the ability to

transfer technology from military research programs to commercial development

programs. As technology transfer becomes characterized more by the transfer of

research results and process innovations between industry sectors than by the

direct commercialization of military engines, the knowledge to be transferred

between research and development groups will become more tacit. As Teece

(1981) has demonstrated, tacit knowledge, by definition, is difficult to articulate, so

transfer is difficult unless those who possess the knowledge can demonstrate it

to others. New structures may be necessary in order to maximize communication

between differing R&D agencies and companies. Stronger attempts will need to

be made by laboratories conducting engine research to disseminate research

results to engine manufacturers and by corporations involved in military R&D work

to disseminate information regarding advances in military engine design to

commercial engine design groups.

Industry has begun to respond to the change in technology transfer by

reorganizing so as to maximize the potential for transfer. Pratt & Whitney, while

maintaining separate corporate divisions for the development of commercial and

government engines, now uses a centralized Engineering Division to conduct basic

research in areas such as advanced materials that can be applied to both

development divisions. In addition, engines from both development divisions are

produced by a single manufacturing division located in East Hartford. While

security restrictions may impede the sharing of production lines for military and
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commercial engine programs, knowledge regarding production and manufacture

may be transferred by sharing production personnel.

Likewise, General Electric, though divided into two development facilities, uses

a single Advanced Technology division to conduct research applicable to both

military and commercial engines. GE's plants are not divided into military and

commercial development and production centers, but rather are distinguished by

technical capabilities. Thus, military and commercial variants of an engine are

designed and produced at the same facility, again enhancing prospects for

technology transfer.

These changes in corporate structure tend to improve internal technology

transfer within a corporation; additional mechanisms may be needed to more

efficiently transfer technological know-how from government research centers to

U.S. engine developers. To date, American aerospace manufacturers lag their

European competitors in applying the results of NASA research to new aircraft

and engine products (March, 1990, p. 33). These competitors actively collect and

evaluate technical aeronautical data published in the U.S. and successfully use this

data in the design of their products (NAS/NRC, 1985, p. 139). U.S. aerospace

manufacturers less actively integrate NASA research results into their development

programs. As successful transfer of research results from military programs to

commercial programs is necessary for improving commercial aircraft engine

design, greater emphasis should be placed on developing adequate means of

transferring research results from government programs to industrial engine
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producers.

3. Funding For Subsonic Propulsion Research:

In order to maintain the competitiveness of the U.S. jet aircraft engine industry,

additional sources of funding may have to be tapped to finance commercial

research and development programs. At present NASA appears to be the only

government agency with sufficient resources and a suitable charter to coordinate

such research (NAS/NRC, 1985, p. 135). Under the National Aeronautics and

Space (NAS) Act of 1958, NASA was chartered to "preserv[e] the role of the United

States as a leader in aeronautical science and technology ... ." (NAS/NRC, 1981,

p. 37). NASA has historically emphasized the development of space technology

at the expense of subsonic aeronautical technology. According to figures

published by the Aerospace Industries Association of America (AIAA, 1990), NASA

budget authority for aeronautical research and technology represented only 8% of

NASA's R&D budget for 1990 and only 3.7% of its total budget for fiscal year 1990.

These figures are characteristic of NASA's past budget allocations. NASA has

historically devoted the majority of its budget to space programs; in light of the

changing environment in the commercial aviation industry, these priorities may

need to be reevaluated.

The need for additional funding of subsonic aviation research appears justified.

As this and other reports (Glassman, 1989; Newton, 1985) have demonstrated,

considerable potential exists for the continued development of commercial gas

turbine engines. With advances in compressor design, turbine inlet temperature,
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advanced nacelle design, and fan blade aerodynamics, considerable reductions in

SFC and hence in aircraft direct operating costs can be gained from gas turbine

engines. High bypass turbofan engines will most likely remain the backbone of the

commercial aviation industry. Propfan technology, an evolution of the gas turbine

engine, also has applicability to commercial aviation. U.S. leadership in jet engine

technology could translate into direct economic benefit to the nation. Sales of

aircraft engines and spare parts by U.S. manufacturers totalled over fifteen billion

dollars worldwide in 1989; roughly two-thirds of these sales were to customers

other than the U.S. government (AIAA, 1990, p. 28). Total commercial engine sales

are expected to remain high in the near future despite reductions in military sales

(Aviation Week, 1991b, p. 88). By retaining its technological superiority and global

competitiveness, the U.S. engine industry and the U.S. economy in general have

much to benefit from such prospects.

4. NASA's Role in Engine Validation:

The 1985 report issued by the National Academy of Sciences and National

Research Council (NAS/NRC, 1985) called for a greater involvement of NASA in

the validation of subsonic engine technologies. Validation is the process whereby

new technologies are tested under representative flight conditions so that

manufacturers may better understand means to incorporate the innovation into a

product. Validation helps a manufacturer determine the likelihood of a new

technology being certified by the Federal Aviation Administration (FAA); it thus

helps reduce the risk associated with later product development. At present NASA

is involved primarily in the research phase of engine development; validation is left
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up to the developers. Yet, because most new engine technologies have historically

been developed first for military application, the military has funded most of the

validation costs.

The analysis contained in this thesis supports the Academy's recommendation.

As was shown in Chapter III, the military has played a vital role in validating

technologies for commercial industry. The high-bypass turbofan engines

developed by Pratt & Whitney and GE were derived from military engines. As

military and commercial technologies diverge, however, the amount of commercial

technology validated by the military can be expected to decline. Unless additional

funding can be found for commercial validation, industries may not be able to

afford this part of engine development. Validation costs are high due to the large

amount of testing that must be conducted on a new technology. For example, GE

anticipates that it would require over four years and 1.3 billion dollars to certify its

UDF engine (Taylor, 1990).

The burden on commercial industry could be eased by expanding NASA's

activities to include validation. As the Academy report notes, validation activities

are within NASA's charter. The technologies studied during validation are generic,

not particular to a design under development; thus, the results of such tests are

helpful to all competitors in an industry. Additional research may be needed to

more fully explore the potential of this proposal.
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5. Industrial Collaboration:

Another means of enhancing the ability of the U.S. jet aircraft engine industry

to conduct large scale research programs despite the declining military budget

would be to encourage collaboration between companies engaged in engine

research and development. By pooling resources in a precompetitive research

program, new technologies could be developed for later incorporation into

products. As much of the technology such as high temperature materials needed

for continued advancements in jet engines is generic, collaboration in basic

research may provide a means of developing new technologies without sponsoring

new products.

The greatest risk associated with such a strategy may be the potential loss of

participants' proprietary data. However, the Department of Defense often claims

the rights to new materials and technologies anyway and disseminates applicable

fabrication and manufacturing techniques to other organizations (Kandebo, 1987,

p. 59). Thus, the additional risk associated with direct collaboration may be

outweighed by the benefits of larger available resource pools. Clearly, though,

additional research is required in this area to determine whether such a scheme

would be feasible in practice.

6. Market Strategies:

The government can also play a role in creating a stronger market pull for new

engine technologies, thereby providing greater assurance to engine developers that

their investments in new technology development may generate a return. The
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government, in particular the FAA, could increase demand for new engines by

establishing stricter requirements for safety, noise, emissions, or fuel efficiency of

aircraft. As military procurement decreases, the industrial base for engine

manufacturing may decline unless commercial orders can fill the gap. Government

regulation could stimulate commercial demand for engines.

The effects of deregulation have reduced the technology pull formerly exerted

by commercial airlines on the engine manufacturers (March, 1990, p. 30). Many

airlines are hesitant to invest in new technologies unless they can be proven to

improve profits regardless of improvements in performance. In addition, the

destabilization of route structures brought about by deregulation has weakened

airline desire to make 20-year fleet commitments on new aircraft and engines. As

a result, demand for new aircraft has decreased. Airlines appear satisfied to

continue using older, yet proven technology (Markillie, 1988, p. 21).

Government regulations regarding aircraft safety, noise, emissions, and fuel-

efficiency could provide the added incentive to restore some of the lost technology

pull to the engine industry. As the MIT Commission on Industrial Productivity

notes, airlines are now replacing their aging fleets due in part to the enforcement

of Stage 3 noise regulations that older aircraft cannot meet (MIT, 1989, p. 51).

Though designed to address problems of environmental concern, these regulations

have also served to increase demand for aircraft and engines. By phasing in these

regulations over time, the burden placed upon the airlines was reduced to an

acceptable level. The apparent success of this approach suggests that additional
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regulation could stimulate market pull in other areas such as fuel efficiency as well.

Such a policy would not be without drawbacks. Undoubtedly, the costs of

purchasing new engines would be passed on to the consumer in the form of higher

fares and as a result demand for air travel could decline. Depending upon the

price elasticity of demand for air transport, the resulting loss in demand for air

travel could outweigh the benefits to the commercial engine manufacturers.

Further research will be needed in this area in order to fully characterize the types

of regulation possible and their likely effects on the economy as a whole. Yet, this

type of policy has the potential to restore the demand for new engine technologies.

7. Increased Globalization of Commercial Engine R&D:

The reduction in technology transfer from the military will likely stimulate further

globalization of commercial engine development programs. At present, both major

U.S. engine manufacturers are involved in multi-national partnerships. GE co-

developed and is co-producing the CFM-56 engine with SNECMA of France. Pratt

& Whitney is a partner in International Aero Engines, a consortium comprised of

Rolls-Royce, Japanese Aero Engines, MTU, and Fiat Aviazione. These

partnerships allow U.S. manufacturers to share the risk of large development

projects, to gain access to foreign markets which are often oriented toward

purchasing domestic products, and to gain access to alternative sources of capital

(MIT, 1989, p. 10).
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As military funding declines and becomes less suited to the development of

commercial engines, U.S. manufacturers will have increased incentive to seek

international partners who have access to alternative sources of funding and are

willing to accept development risk in order to strengthen their position in the aircraft

engine market. This trend will raise additional questions regarding the transfer of

U.S. technology to foreign competitors-questions which have implications for both

national competitiveness and national security. To date, both GE and Pratt have

arranged their partnerships so as to retain control of core technologies which are

controlled by U.S. export regulations. However as a recent report by the National

Academy of Sciences has stated, the increasing globalization of the aircraft industry

"has attendant negative implications for control by any single nation of the export

of production technology" (NAS/NRC, 1991, p. 226). Strong export controls

present an impediment to multinational collaboration. In order to participate in

future collaborative efforts and remain competitive in the global market, U.S. export

control measure may need to be relaxed.

Export control could be further relaxed without jeopardizing U.S. leadership in

jet engine technology. Present laws control export of engine cores. As this thesis

demonstrates, advances in jet engine design will derive from developments in

materials and their processing. The important technology that should be protected

is not, therefore, the engine itself, or even the engine core, but the combined

knowledge of the materials design and fabrication processes. Product superiority

is based not upon the acquisition of a single technique or associated product, but

on the integration of design, materials processing, and manufacturing processes
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(NAS/NRC, 1991, p. 230). Thus, export controls that allow the sale and transfer

of completed engines and components, but do not allow sharing of production or

processing technology could protect U.S. interests in security and technological

superiority while simultaneously enhancing the ability of U.S. engine manufacturers

to participate in multinational development programs.

C. A Final Word

The discussion presented in this chapter demonstrates the effect that the

growing divergence between military and commercial engines may have on the

U.S. jet aircraft engine industry and upon the formulation of policy to maintain the

competitiveness of the industry. As military and commercial technologies diverge,

research priorities will have to be redirected and additional financing will have to be

secured. Means for achieving these goals may require the reconsideration of

NASA priorities regarding aeronautics, the expansion of NASA's activities to include

technology validation, the development of new structures to foster communications

between firms and to stimulate collaborative research, and the reconsideration of

U.S. export control laws.

The conclusions of this research should, however, be considered only in light

of the many other factors, political, economic, and technological, that may influence

the competitiveness of the aircraft industry as a whole or that may affect other

industries and policies. The close ties between the engine industry and the

airframe manufacturing industry cannot be overlooked in policy development or in

setting goals for the aircraft engine industry. Hopefully, the discussion contained
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in this thesis will not only provide guidance applicable to the U.S jet aircraft engine

industry, but will also help to identify areas of further interest to be researched in

studying the rest of the U.S. commercial aircraft industry. By properly

understanding the trends characterizing the development of the industry and

developing policies to appropriately respond to these changes, the success of the

U.S. aircraft industry can be better assured.
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