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ABSTRACT

Numerical techniques are presented for the determination of
the added mass matrix and the excess pressure induced in a fluid
of infinite extent by a totally submerged vibrating elastic
structure. For relatively low vibrational frequencies, the effect of
the surrounding fluid can be incorporated into an added mass
matrix merely superimposed upon the structural mass matrix for
the solution of the structural response. For higher vibrational
frequencies, the simultaneous solution of the elastic and fluid field
relationships is required in order to solve the general interaction
problem. For this coupled fluid-structure interaction problem, the
elastic response of the structure is modeled using finite element
method. The acoustic field equations relating the structure's
surface pressure and its surface normal velocities are used to
form an acoustic impedance matrix, which gives an expression for
the fluid-structure interaction forces. These forces are then
coupled with the external applied forces, the structural mass
matrix, and the stiffness matrix to form the dynamic equilibrium
equations for the coupled system.
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0. Introduction

Structural vibrations in a fluid are usually coupled to motion
of the surrounding fluid. The natural vibrational frequencies, the
mode shapes of the structure, and the far-field acoustic pressure
induced by the vibrating structure must be found, in general,
from a coupled fluid-structure analysis. If the structure is
immersed in a fluid of which the density is much less than the
average density of the structure (say, for example, air), the effect
of the surrounding fluid on the natural frequencies and mode
shapes of the structure can be neglected. On the other hand, if the
density of the fluid is of the same order of magnitude as the
average density of the structure (such as water), the surrounding
fluid can alter the natural frequencies and mode shapes of the
structure significantly; thus, the presence of the fluid cannot be
neglected and a coupled fluid-structure problem must be solved
in order to obtain the correct natural frequencies and mode
shapes.

At low vibrational frequencies, however, it is known that
the fluid pressure on the wetted surface of the structure is in
phase with the structural acceleration, and the surrounding fluid
appears to the structure like an added mass. Thus, for relatively
low frequencies 1 the effect of the fluid on the structure are
embodied in an added mass matrix that is merely superimposed
upon the structural mass matrix. At higher frequencies, the fluid
impedance (the ratio of fluid pressure to velocity) is
mathematically complex, since both mass-like and damping-like
effects are involved. In this case, the fluid can no longer be
treated simply as an added mass to the structure and the external
fluid equations must be coupled to the structural equations in
order to obtain solutions to the interaction problem.

L 2 21 Low frequency implies that X << X, where 'st is a characteristic
structure wave length for the motion of the structure's surface, and
Xac = c/f is a characteristic acoustic wave length for the motion where f is
a characteristic frequency and c is the speed of sound in that fluid.
Therefore, if the applied excitation frequencies are less than roughly one-
third of the structure's lowest natural frequency of vibration, the effect of
the fluid can be incorporated into an added mass matrix superimposing on
the structural mass matrix.



The main goal of this thesis is to address the steady state
fluid-structure interaction problem described by a totally
submerged vibrating elastic body in an acoustic medium of
infinite extent. Both low and high vibrational frequencies of the
structure will be studied using boundary integral equation (BIE)
method. Boundary integral equation formulations are chosen
because they appear to be more attractive for this problem as
compared to other popular numerical techniques such as finite
element or finite difference, 2 since they 1) reduce the
dimensionality of the problem by one, 2) obviate the need to
model the infinite far-field boundary condition of the acoustic
medium, 3) are flexible in handling arbitrary boundary conditions,
and 4) can easily handle arbitrary geometries.

The main structure of this thesis can be divided into two
parts: 1) to calculate the added mass matrix for low frequency
vibrations of a totally submerged structure, and 2) to calculate the
surface and the far-field pressures of a totally submerged
vibrating body using the integral Helmholtz equations.

2 Currently, this is the general feeling among researchers in the acoustic
field. However, advances in other field in recent years may change this in
the future. See the discussions in Section 3.



1. Low Frequency Fluid-Structure Interaction

For fluid-structure interaction situations where the fluid
viscosity effects are negligible and the vibrational frequencies are
low, the fluid can be treated as inviscid and incompressible (Refs.
16, 17). The added mass calculation then requires solving
Laplace's equation in the fluid domain exterior to the structure.
This calculation can be performed using either boundary integral
method or finite element method, among others. Sections 1.1 and
1.2 describe in details the theoretical basis and numerical
procedure for calculating the added mass matrix using the
boundary integral method.
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1.1 Added Mass Calculation Using Boundary
Method

Consider a three-dimensional elastic body immersed and at
rest in an infinite, inviscid, incompressible fluid which is also at
rest. If the surface of the body is made to oscillate about its
equilibrium position, the resulting motion of the fluid will be
irrotational and acyclic (Ref. 17); hence, the velocity can be
expressed as the negative gradient of a scalar potential function (P,
that is, V = -Vp. Also, in such a motion the pressure exerted by
the fluid on the surface of the body is finite, and to generate the
motion the body requires only a finite amount of energy, which is
shared between the fluid and the body. The kinetic energy of the
fluid is therefore finite, and so the velocity of the fluid at infinity
must be zero. Thus, the governing equation for the fluid motion is
Laplace's equation

V 2p = 0, (1.1a)

and the boundary conditions are

VPn - g' = -lul (1.lb)

on the surface and

IVp I = 0 (1.1c)

at infinity. The vector n in Eq. (1.1b) is the outward unit normal at
the surface, Iuis the surface velocity in the normal direction [both
a and a are defined as positive pointing into the fluid (Fig. 1.1)],
and V is the gradient operator. The problem defined by Eqs. (1.1a-
c) is known as the external Neumann problem. According to
Sobolev (Ref. 21), the solution of an external Neumann problem
which has continuous first-order derivatives right up to the
boundary is unique, and the solution of the problem can be
determined to within an arbitrary additive constant. Many
methods, both analytic and numerical, have been developed for
solving this problem. One of the classical methods is to reduce the
problem to an integral equation over the boundary surface.

Integral
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Figure 1.1 An elastic body immersed in an infinite, inviscid,
incompressible fluid.

Consider a unit point source located at a point q on the
surface of the body whose Cartesian coordinates are Xq, Yq, zq. At
another point d in the fluid domain (with coordinates x, y, z) the

potential induced at this point by the point source at q is3

p (d) = 1 (1.2)Ir(d, q)l

where Ir(d, q)l is the distance between the points d and q (Fig. 1.1),
namely,

3 Except for a factor of 1/4n, this is known as free-space Green's function
for Laplace's equation. r(d, q) means the distance between points d and q
where d represents a point ranging throughout the fluid domain D and q
represents a point ranging only over the boundary S.
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Ir_(d, q)l -= [(x - X,)2 + (y - yq)2 + ( - zq) 2] . (1.3)

In this equation q is usually referred to as the "source point" and d
the "receiver point." The potential in Eq. (1.2) is a singular solution
to Laplace's equation. It satisfies Eq. (1.1a) and Eq. (1.1c) at all
points except the source point q. Because of the linearity of
Laplace's equation, the potential due to any ensemble or
continuous distribution of such sources that lies entirely on the
boundary surface S (or interior to S) will also satisfy Eq. (1.1a) and
Eq. (1.1c) in D exterior to the boundary. Therefore, a solution
based on a continuous source distribution on the surface S can be
formulated. If the source density (source per unit area) at a given
point on the surface is denoted by 0(q), then the potential at the
receiver point d due to the continuous distribution of source at
the surface is4

p (d) ([ d)S. (1.4)
[ r_(d, q)I

Eq. (1.4) expresses the velocity potential (P at an arbitrary point d
in terms of an integral over the boundary of the fluid domain D.
Regardless of the nature of the source density function 0(q), the
potential given by Eq. (1.4) satisfies two of the three equations of
the external Neumann problem. The surface source density
function is determined from the requirement that the potential
must also satisfy the Neumann boundary condition, namely, Eq.
(1.1b). Applying the boundary condition (1.1b) requires the
evaluation of the limits of the spatial derivatives of Eq. (1.4) as d
approaches a point s on the surface S (Fig. 1.2). Care is required in
taking the derivatives of Eq. (1.4) because the derivatives of the
integrand 1/1r(d, q)l become singular as the surface is approached.
When Eq. (1.4) is differentiated and the Neumann boundary
condition is applied to it by allowing point d to approach point s,
the result is the following expression for the surface source
density distribution function 0(q):

4 dS = dS(q) indicating that it is a surface element at point q: when q shifts,
dS(q) shifts.

13



a9p o(q) cos [0(s, q)]Vp - -2 7 (s)+ ()COSo((s q)]+ dS (1.5)
fn+s Irf(s, q)12

D (fluid .domain)

S( d,iq)

Figure 1.2 The receiver point approaches the surface S along
the unit normal from the positive side of the surface.

where O(s, q) is the angle between the unit normal at the source

point and the vector r(s, q), and aq' / an+ is the normal derivative
of (P on the boundary S approaching from the positive side of the
surface. Eq. (1.5) is known as a Fredholm integral equation of the
second kind. The term 2 n o(s) arises from the delta function that
is brought in by the limiting process of approaching the boundary.
It represents the contribution to the outward normal velocity at
point s from the source density in the immediate neighborhood of
s. The surface integral represents the contribution to the normal

14
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velocity at s from the source density of the remainder of the
boundary surface (Ref. 15).

Closed-form analytic solutions to Eqs. (1.4) and (1.5) are rare
except for simple geometries. For arbitrary three-dimensional
bodies, these integrals must be solved numerically. This can be
accomplished in the following manner. The surface of the body is
approximated by quadrilateral elements whose characteristic
dimensions are small compared to those of the body. Over each
element the value of the surface source density is assumed
constant. This approximation reduces the problem of determining
a continuous source density function a(q) to that of determining a
discrete number of value of ai, one for each surface element. After
the above procedure is completed, the unknown source
distributions are eliminated from the equations. The fluid mass
matrix is determined from a variational principle based on the
fluid kinetic energy expression

KEf :- f f ((p'(m) <p(m)) dS, (1.6)

where KEf and Pf are the kinetic energy and the density of the
fluid, respectively. The details of the above procedure are as
follows. First, the surface of the body is divided into N
quadrilateral elements to identify N distinct boundary integral
relations (Fig. 1.3). Eq. (1.6) can be written in matrix form as

KEfds = - pf pT dS p (1.7a)

or

KEfydis = Pf j(PdS(p' (1.7b)

where the dimension of the column vectors (P and (P is (N x 1), the
dimension of the diagonal area matrix dS is (N x N), and the
superscript T denotes transpose of a vector or matrix. Next
assume that the surface density function can be suitably
represented, piecewise over N discrete patches of Sn, by constant
on (n = 1, 2, . . ., N). Based on the above assumptions Eqs. (1.4, 1.5)
can be rewritten as

15



=P B (1.8a)

C, = -Q (1.8b)
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Figure 1.3 Discretization of the surface.

and the dimension of the matrices B and C is (N x N). Since the 1th
component of the source density vector _ is independent of the
control point within the ith element (because constant source
density within each element was assumed), Eqs. (1.8 a, b) may be
expressed in terms of any desired set of control points P. (= [P1, P2,

..., PN]T). Therefore, the potential and the source density vectors
may be solved in terms of the surface normal velocity vector

_p(P) = B(P) _(P) (1.9a)

(P) = -[C(P)] -' '(P) = [C(P)]- u(P). (1.9b)

16
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In the above equations _(P) (= [(PP1, (P2, . . ., ]T) denotes a set of

discrete value of potentials evaluated at the control points P, g(P)

is the control point source density vector, [C(P)] 1 is the inverse of
the matrix C, and u_(P) is the normal velocity vector at P.
Substituting Eqs. (1.8a, b) [with _o = (P)] and Eqs. (1.9a, b) into Eq.
(1.7a):

-1 .pffs (Td S (p = - p f
2 --s 2

_ fs -1 T[(P)] ' MP)}2 P)

IPf Pr {[.(P)] T LC(p)] T CT) dS {B [C(P)] 1 u(P))2 fS

I= p [(P)]T E [(P)]
2

(1.10)

where

E= [C(P)' I]T (1.11)

Similarly, substituting the same set of equations into (1.7b) yields
--- _l (P)}T 'S-C •(P)}

S 1 B {. [ (P)]C [C(P)- 1(P) T
- [- B _1P)} dS [C [C(P)] - uP) }

- f pf {[u(P)] T [C(p)-]T BT dS {C [C(P)] " P) }

17

{-C o(P)}r dS {B o_(P)}

1 pf [p) T [C(P)-1 T
2 ,ICTddS B [C(P)]' u(P)

-fs [C] OS B i C(P ,1



[C(p)-']
T= [u(p)l T

2

[!((p)I]T j
[(ý(P ) -I] T -

[SBT d SC]

BT dST C

([CT] dS B

[C (P) 1  =

}T] [C(P)] "1

that dST = dS since it is a diagonal matrix),
can be rewritten as

1 Pf [p )] ]T E [(P)].
2

Averaging Eq.
fluid kinetic e

(1.10) and Eq. (1.13)
nergy can be expressed as

the discretized version of the

(1.14)KEf,. = T Mf u
2

where Mf is the fluid mass matrix,

(1.15)

and E is given by the expression in Eq. (1.11). Since constant
source density on each element was assumed, the entries of the

matrices CT and B in the integral of Eq. (1.11) are constants.
Therefore, the integral can be approximated by

[eT ] dS B = [C()] T A [IB(P)] (1.16)

18

Since

[C (P)] u(P). (1.12)

(note
(1.12)

= ET

therefore, Eq.

(1.13)

Mf = 1 pf [E + ET],
2



where A is the (N x N) diagonal matrix (aii is the area of the ith
surface element). Substituting Eq. (1.16) for the integral in Eq.
(1.11) yields

E [(p)-I]TL [T] dS B] [C(P)] 1

= [C(p)] T [C(P)]T A [B(P)] [((P)]-1

or

E = A [B(P)] [C(P)]' .  (1.17)

From Eqs. (1.15) and (1.17), it is seen that the calculations of
the matrices B(P) and C(P) form the basis of the present method
for the added mass calculation. The entries of the matrices B(P)
and C(P) are the potentials and velocities, respectively, that are

induced at the control point of the ith element by a unit point

source density on the jth element. They are obtained by
integrating over the element in question the formulas for the
potential and velocity, namely, Eqs. (1.4) and (1.5). With unit
source density Eqs. (1.4) and (1.5) depend only on the location of
the point at which the potential and velocity are being evaluated
and the geometries of the source elements; therefore, for simple
quadrilateral elements the integration of Eqs. (1.4) and (1.5) over
the source elements can be performed analytically.

19



1.2 Calculation of the Potential and Velocity Induced
by a Quadrilateral Element at a Point in Space

From the discussion in the last section, it is clear that the
added mass matrix can be assembled once the potential and
velocity matrices are obtained. The purpose of this section is to
derive the formulas necessary for calculating the entries of
matrices B(P) and C(P). Following the procedure outlined in Ref.
12, the formulas are obtained by performing the integration of the
basic point-source equations over a surface element. For
quadrilateral elements used to approximate the surfaces of three-
dimensional bodies, the integration of Eq. (1.4) is most
conveniently done in local element coordinate system. Consider a
typical surface element as shown in Fig. 1.4. A local coordinate
system (, 11, C) is chosen such that the origin of the coordinates is
located at the centroid of the element. The element is taken to lie
in the r1l-plane, and the ý-axis points in the direction of the unit
outward normal of the element. Assuming that four-noded
quadrilateral elements are used to approximate the surface of the
body. The four corner points of the element are denoted by
subscripts 1-4, where the numbering denotes the order in which
the corner points of the element are encountered as one traverses
along the perimeter in a clockwise sense (as view from the
positive p-axis). In the ýr1-plane the coordinates of the corner
points are ýn, rln, 0 where n = 1-4. The maximum dimension of the
element is denoted by dmax (Fig. 1.5). In order to facilitate the
calculations of certain equations to be derived later, the a-axis is
taken to be parallel to the vector from corner point 1 to corner
point 3. Consider a point g in space with local coordinates x, y, z
(Fig. 1.5). The distance between this point and a point (e, Tle, 0) on
the element in question is

r = (x - e) + ( -e) +z 2 . (1.18)

20



, ZY
x c r

global coordii

Figure 1.4 Local element coordinate system.

For a unit point source density, the potential at the point (x, y, z)
induced by an infinitesimal element d( drl is

drp = 1 d ý dr 1= dA . (1.19)r r

21



T13, 0)

Sz)

0)

Figure 1.5 A typical four-noded quadrilateral element
and its local coordinates.

The total potential at (x, y, z) induced by the quadrilateral
element is then

p(x, y,z) = fdp = f ] dA, (1.20)

where the domain of the area integral is the surface element. In
order to facilitate the integration of Eq. (1.20), a cylindrical
coordinate system, (R, 0, z), with origin situated at the point (x, y,
0) is introduced (Fig. 1.6). In this coordinate system, A is the
radial distance from (x, y, 0) to a point on the element, 0 is the
polar angle measured clockwise from any convenient reference
axis, and z is taken to be parallel to the C-axis. In terms of these
new variables Eq. (1.18) can be written as

r = (x - e) 2 + (y- e) 2 + Z2 = 2 + 2 (1.21)

22
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(~4, 114, 0)

y, 0)

Figure 1.6 Local cylindrical coordinate system

(looking down from the positive C axis).

Substituting Eq. (1.21) into Eq. (1.20) the potential at (x, y, z)
induced by the element becomes

<p(x, y, z) = i dA= 1 + z d A

sJ A j #2 + i 21 z

= - dR dO
S 2 + z2 dRd (1.22)

or

p(x, y, z) = R d dO. (1.23)

Jof J0 2 + z2
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In Eq. (1.23) the integration limits of the A variable is from A = 0
to a point on the perimeter of the element A = R , and the
integration limits of the 0 variable is around the perimeter of the
element from 0 to 2 t in a clockwise sense (Fig. 1.6). The
contribution of each side of the element to Eq. (1.23) represents
the potential of the plane triangle defined by the point (x, y, 0)
and the two end points of the line segment (Fig. 1.7). From Fig.
1.7a it is seen that as the perimeter of the element is being
traversed in a clockwise sense, d 0 is positive if the point (x, y, 0)
is to the right of the line segment (segments 2 and 3) and is
negative when the point is to the left of the element (segments 1
and 4). Therefore, when the potential of the four triangles
corresponding to all four sides of the element are summed, the
contributions of the portions of the triangles outside the element
summed to zero (the shaded portion in Fig. 1.7b), and the result
would be the contribution of the element itself. From Eq. (1.21)
the distance from a point on the element to the point (x, y, z) is

r = +2 +z 2  (1.24)

Differentiating the above equation yields

dr = A dA (1.25)
i2p -

Substituting Eq. (1.25) into Eq. (1.23) and changing the integration
Substituting Eq. (1.25) into Eq. (1.23) and changing the integration
limits of the R variable the potential at (x, y, z) becomes

2 n r
Px, y, Z) = i dr] dO

Izl

= [r] dO - ij Izlf dO, (1.26)

or

<p(x, y, z) = f [r] dO - 8ij Izl A (1.27)
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AO = d O.

gative

(1.28)

7a 7b

Contribution of each side of the
potential.

where

Figure
element

1.7
to the
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Figure 1.8 a) The point (x, y, 0) lies outside of the
element. b) The point (x, y, 0) lies inside of the element.

From Fig. 1.8 it is seen that when the point (x, y, 0) is outside the

element AO = 0 (A0's of segments 2 and 3 cancel out AO's of
segments 1 and 4), and Ae =2 x if the point (x, y, 0) lies inside the
element. (Note that when (x, y, 0) is inside the element the
perimeter is always on the right-hand side of (x, y, 0) as it is
being traversed, therefore, dO is always positive.) Hence,

<p(x, y, z) = [r] dO (1.29)

if (x, y, z) lies outside of the element and

<p(x, y, z) = [r] dO - 2 x IzI (1.30)
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if (x, y, z) lies inside of the element. Thus, the second term of Eq.
(1.27) is discontinuous as the point (x, y, 0) crosses a side of the
element. However, the first term of the equation has an equal but
opposite discontinuity (due to the change of sign of dO along the
side that is crossed) and thus the potential is continuous across
the surface as expected. The integral of Eq. (1.27) is evaluated by
calculating the contribution of a single side to the integral and
summing the results for all four sides. (Note that the results can
be generalized to polygons having any number of sides.) For the
purpose of deriving the equations, the contribution of the side

between the points (1,7 11, 0) and (42,112, 0) is used to illustrate
the procedure. The contributions of the other sides can be found
by advancing all the subscripts and superscripts in the equations.

Consider the line segment between (i1, 11, 0) and (42, 12, 0)
as shown in Fig. 1.9 and defining the following geometric

quantities. The length of the side between (1, 7T1, 0) and (42, T12, 0)
is

d12 = V(2- 1)2 + (112 11)2 (1.31)

The cosine and sine of the angle 012 are, respectively,

cos012 Ax _ (2-1) - C1 2  (1.32)
di 2 d 12

Ay (1 2-1]1)sin12 - - 12 -11) S12 . (1.33)
d12 d12

A line perpendicular to segment 1-2 is drawn from the point (x, y,
0), and the (signed) distance from the point (x, y, 0) to the
extension of segment 1-2 is

R12 = (x - 41) S12 - (y - 11) C12 . (1.34)

Note that the distance is positive if (x, y, 0) lies to the right of the

side with respect to the direction from (41, TI1, 0) to (42, ti2, 0) and
is negative if (x, y, 0) lies to the left. Let L12 be the distance along

the line segment from point o, measure positive from (41,11, 0) to
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(2, 112, 0), as shown in Fig. 1.9. The arc length associated with a
general point (ý, 11) on the side is

L12 = (ý - X) C 12 + (rY - y) S12. (1.35)

P(2, T12, 0)

- (•, rI)

(x, y, 0)

Figure 1.9 Integration over a side of the element.

In particular, the arc lengths associated with the corner points
(ýi1, 1, 0) and (t2, 1r2, 0) are, respectively,

£12 =  ;1 - X) (12 + (7Tl - y) S 1 2

(2)
12 = (2 - X) C 12 + (12 - Y) S12 .

(1.36)

(1.37)
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The distances from the point (x, y, z) to the corner points (41, 1ll, 0)

and (2,9 1 2, 0) are, respectively,

ri = (x - 1)2 + (y- l)2 + z2 (1.38)

and

r2 = (X - 2)2 + (y- 92 2 + Z2 . (1.39)

With the above geometric variables the following two quantities
can be defined:

(2)
Q12 - lnr2 + L 12  = In r2 (1 40)

r +L(1) rl + r 2 - d12
+L 12

(2) (1)
tn [ R12 Iz1 (r1 , L12  - r2 L 12)

J12 tan [R12 2 ( 2Z 12)] (1.41)
r1 r2 (R12 ) 2 (2L L (1

where the range of the inverse tangent in Eq. (1.41) is from -x to nt
by considering the individual signs of the numerator and
denominator of its argument. With the defined quantities, the

contribution of the line segment between (ý1, 11, 0) and (2, 1T2, 0)
to the integral in Eq. (1.27) is then

(P12 = R12 Q12 + IzI J12. (1.42)

The contributions of other segments of the element are found by
advancing the subscripts and superscripts in the above equations.
The potential at the point (x, y, z), and also the entries of the B
matrix bij, induced by the element is then

bij = p (x, y, z) = [P 12 
+ 9P23 

+ (34 + (P41] - zI AO (1.43)

where (P12, (P23, (P34, and 'P41 are the contributions of the four
segments to the integral in Eq. (1.27). The velocity components in
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local element coordinates can be found by differentiating the
velocity potential:

Vx - -a S12 Q12 + S23 Q23 + S34 Q34 + S4 1 Q 4 1 ), (1.44)
ax

Vy - (C 12 Q 12 + C23 Q23 + C34 Q 34 + C4 1 Q4 1 , (1.45)
ay

and

Vz - - sgn(z) (AO - J12 - J23 - J34 - J41 (1.46)
az

where "sgn" is the FORTRAN sign function. The normal velocity at
(x, y, z), and also the entries of the C matrix cij, can be found by
taking the dot product of the velocity vector,
V = Vx i + Vy j + Vz ki, and the unit normal vector at the point (x,
y, z). Thus,

Cij = i ij = (ni i + i2 jni3 k) (Vx i + Vy j + Vz k)

or

cij = nil Vx + ni2 Vy + ni3 Vz. (1.47)

It can be verified that the above equations encounter no difficulty
in calculating the effects of an element at its own control point. All
the Q's are singular only on the sides of the element. For z = 0, all
the J's vanish. Thus P, Vx, and Vy are regular functions, and for z =
0

Vz = sgn(z) AO, (1.48)

Which is 2 n sgn(z) for a point on the element and zero for a point
outside the element. From the discussion in Section 1.1 the control
point was defined to have z = 0+. Therefore, AO can be evaluated
easily; it is 2 nt if R12, R23, R34 , and R4 1 are all positive, and it is
zero otherwise.
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Eqs. (1.40-1.47) are the required equations for calculating
the potential and velocity matrices B and C, respectively. The
entries of matrices B and C can be calculated using these
equations without any further approximation. However,
evaluation of Eq. (1.43) requires at least four logarithms, four
inverse tangents, and four square roots for each element. For
three-dimensional arbitrary bodies the computational time
required for calculating the velocity and potential matrices can be
prohibitively large. The complication comes from the fact that the
above formulas take into account of all the details of the shape of
the element. Incidentally, if the receiver point (x, y, z) is located
sufficiently far away from the source element, the shape of the
source element becomes less significant. Thus if a point (x, y, z) is
located at a distance ro from the source element, where ro is the
distance between the centroid of the source element and the point
(x, y, z) (Fig. 1.10), and if the ratio ro/dmax > 2.45 (dmax is the
maximum dimension of the element as defined in Fig. 1.5), Eq.
(1.20) can be approximate by expanding the integrand about ro in
terms of Taylor series expansion (Ref. 12). Since r was defined as

[(x - 2 + (y - r) 2 + 2]11/2, Eq. (1.20) can be rewritten as

p(x, y, z) = [(x - )2+(y )2 +z2-1/ 2 dA (1.49)

From any standard calculus text book the formula of Taylor series
expansion for two variables is

f(x, + Ax, yo + Ay) = f(x,, yo) + (Ax - + Ay ) f(x, y) +
ax ay

1 (Ax + Ay )2 (x0, Yo) + +i(---i+Ay• )2f(xo, yo)+...+2! ax ay

(Ax + Ay ) n f(xo + m Ax, yo + m Ay)
n! ax ay

0_ m _ 1. (1.50)
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(42,

y, z)

(1, Trl, O)

Figure 1.10
origin.

Location of the point (x, y, z) from the

Applying Eq. (1.50) to the integrand of Eq. (1.49):

+ [ 14 + 1 n0 ax ro
1)] + 1 [ 02 2

y ro 2! 2 ro

2
2 9 a2 1 ) 1 +

ax2y ox

(1)ro dA +
=f

2 2 a2

-2 (-)+2 x jy
aX2 o ax ay

P = 00 w - (llo Wx

(1)+ I- (L:)] dA+ro ay roR a[a
ex

2
( + 12  (-)] dA+..., (1.52)ro a2 0 o

+ io0 wy) +1 (120 Wxx +
2
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2 111 Wxy + 102 Wyy) + . . ., (1.53)

where

Imn m 11n dA, (1.54)

w 1 , (1.55)ro /(x2 + y2 + z2)

and the subscripts x and y in Eq. (1.53) denote partial derivatives
with respect to x and y, respectively. The integral terms Imn are
the moments of various orders of the area of the element about
the origin. In particular, 10 0 is the area of the element, I1 o and I0 1
are the first moments, and 120, 11 1, and 102 are the second
moments etc. The various terms in Eq. (1.53) may be interpreted
as the potentials of point singularities of various orders located at
the origin. Thus the first term in Eq. (1.53) is the potential of a
point source; the second group of terms is the potentials of two
dipoles, whose axes lie along the x-axis and the y-axis,
respectively; and the third group of terms is the potentials of the
three independent point quadrupoles with axes in the xy-plane.
The strengths of the singularities are the various moments of the
area of the element. In actual calculation the series is truncated
after the quadrupole terms in Eq. (1.53). Since the origin of the
coordinate system is located at the centroid of the element, the
first moments lho and 0lo are identically zero. Therefore, for
centroidal control points there are no dipole terms in Eq. (1.53),
only a source term plus the quadrupole terms. Thus, the
approximation of Eq. (1.20) may be written as

= I00 w + 1 (120 Wxx + 2 111 wxy + 102 Wyy), (1.56)
2

Vx - 4oo wx 1 (20 Wxxx +
ax 2

2 111 Wxxy + 102 Wxyy), (1.57a)
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V Y - - loowy -- (2o Wxxy+
ay 2

2 111 Wxyy + 102 Wyyy),

Vz = -aP -o 4w 1 (120 Wxxz +
= - 100 Wz- +az 2

2 111 Wxyz + 102 Wyyz),

where w and its derivatives are

w = ro-1

wx = -x ro-3

Wy = -y ro-3

Wz = -z ro-3

Wxx = -(f + 2 x2) ro-5

wxy = -(3 x y) ro-5

Wyy = -(f + 2 y2) ro-5

Wxxx = 3 x (3 f + 10 x2) ro-7

wxxy = 3yf ro7

Wxyy = 3 x h ro-7

Wyyy = 3 y (3 h + 10 y2) ro-7

Wxxz = 3zf ro7

W yyz = -15 x y z ro-7

Wyyz

f = y2 + z2 - 4 x2 ,

= 3 zh ro -7

h = x 2 + z2 - 4 y 2 .

The moments Imn may be expressed in terms of the coordinates of

the corner points of the element [remember that the 4-axis was

taken to be parallel to the vector from (I1, T11, 0) to (3, 113, 0)] as
follows:

o00 = - 3 - 1) (12- 114)1
2

120 - (42- 41) 111 (54 - 42) (41 + 42 + 43 + 44) + (12- O4)12
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2 2
(41 + 41 43 + 42) + 42 T12 (41 + 42 + 3) - 44 114 (41 + 43 + 44)1,

111 1 (43- 1) [244 (412_ .12) 2 ,n2 _n 2) + (41 + 3)
24

(012 - 14) (2 11 + 312 
+ T1 4)],

and

IO2 - (43 - 41) (12 - 1 4) [(31 + 112 
+ T1 4)2 -

12

11 1 (12 + T14) - 712 T14] (1.59)

Further approximation to Eq. (1.53) can be made if the ratio
ro/ dmax is greater than 4. For ro/ dmax > 4 the quadrupole terms [all
the terms multiplied by the 1/2 in Eq. (1.53)] are insignificant.
Therefore, those terms can be ignored without compromising the
accuracy. The quadrilateral element may further be approximated
by a point source located at its centroid. For this calculation there
is no need to transform to the element coordinate system. The
calculation may be performed directly in the global coordinate
system. Let xo, Yo, zo be the global coordinates of the centroid of
the element, and let xr, Yr, Zr be the global coordinates of the
receiver point. The potential and velocity components are then

P = 100oo (1.60)
ro

Vx = Xr-xo l00, (1.61a)

Vy = yr - Yo 100, (1.61b)3ro

Vz = Zr- o I00oo, (1.61c)
where

where
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ro = V/[(Xr- Xo)2 + (Yr - o)2 + (Zr Zo) 2 ] .

Note that the above equations are equivalent in accuracy to a
source plus a dipole (since the dipole terms = 0 for centroidal
control points).

From the above analysis, it is seen that three set of formulas
for calculating the potential and velocity induced by a surface
element at a point in space can be used. The choice of which set of
equations to used is determined solely by the value of the ratio
r o/dmax. Ifr o/dmax is less than 2.45 (an arbitrary choice) then the
(numerical) exact formulas Eqs. (1.40-1.48) are used; if r/ dmax is
greater than 2.45 but is less than 4, the multipole-expansion
formulas, Eqs. (1.56-1.59), are used; and if rd dmax is greater than
4 the potential and velocity can be calculated directly in the global
coordinate system with Eqs. (1.60-1.61).
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1.3 Numerical Examples

Analytical added mass solutions of three-dimensional bodies
are scarce owing to the lack of three-dimensional theories. Most of
the existing theoretical solutions in the literature are for simple
geometries such as rectangular plates, circular plates, and
triangular plates etc. In order to be able to compare the numerical
solutions with the analytical solutions, a square plate whose
physical and material parameters as given in Table 1.1 will be
used for the two examples followed.

Young's modulus E = 6.895(1010) N/m 2

Poisson's ratio v = 3.000(10 1)
Density P = 7794.6 Kg/m3

Length L = 3.048(10- 1) m

Width W= 3.048(10- 1) m

Thickness h = 3.048(10 - 3) m

Table 1.1 Material properties for the plate.

The computational scheme presented in Section 1.2 was
programmed in FORTRAN for the solution of the added mass
matrix with a minimum of six finite element grids for each case.
Outputs from the program were then compared to the exact
solutions. All the analytical solutions given in this section were
obtained from Ref. 3. The equation for the exact natural
frequencies of rectangular plates is given by

fij - 2•i E ; i = 1, 2, 3,... (1.62)
2 L2 12 y (1-v2) j = 1, 2, 3,...

where 7 = mass per unit area of the plate, i = number of half-
waves in mode shape along horizontal axis, j = number of half-

waves in mode shape along vertical axis, and ?ij is the
dimensionless frequency parameter. The dimensionless frequency

parameter Xij is generally a function of the boundary conditions
applied to the edges of the plate, the aspect ratio of the plate
(L/W), and in certain cases Poisson's ratio (v):
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kij = kij(boundary conditions, L/W, v).

The natural frequencies of the first six modes of rectangular
plates for all 21 possible combinations of the three elementary
boundary conditions on the four edges of the plates (clamped,
free, simply supported) are given in Ref. 3. The following two
cases with two different types of boundary conditions were
chosen to demonstrate the solution procedure and the results
generated by the program. [Note that number of elements in the
following examples denotes the total number of elements for the
full plate (without symmetry boundary conditions).]

5 It is shown in Ref. 3 that kij is independent of Poisson's ratio V unless one
or more edges of the plate are free.
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CASE 1 Square Plate with Free-Free Boundary
Conditions

All edges of the plate are free to vibrate for this case. The
analytical solutions for the first four modes for a plate to vibrate
freely in vacuum are f2 2 = 5.283 Hz, f 13 = 7.750 Hz, f3 1 = 9.568 Hz,
and f32 = 13.715 Hz. 6 Fig. 1.11 shows the computed first mode

(f2 2 ) natural frequency of the plate plotted as function of the
number of elements. The numerical solution is seemed to exhibit
rapid monotonic convergence from below. Note that when only
one element was used to model the plate, the error is well over
60%. The reason for this large error is due to the fact that lumped
mass formulation was used to calculate the structural mass
matrix. For a single quadrilateral element the lumped mass
approximation resulted in all the mass of the plate being
concentrated in the four corner nodes; hence, the program was not
able to capture the first modal vibration in this case. As the
number of elements was increased, more elements (and nodes)
were being distributed inside the plate and the solution converged
rapidly toward the exact solution. Note that for a model of only 36
elements (6 x 6) the numerical solution is already within 2% of the
exact solution. Fig. 1.12 presents the absolute error in the
computed natural frequency for free vibration of the first mode.
The absolute error of the numerical solution starts from 3.429 for
a one-element model and decreases to less than 0.09 for a model
of 10 x 10 elements.

6 The subscripts are the vibration mode indices. f2 2 is the first nonrigid-
body mode for a completely free plate.
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frequency convergence

boundary conditions-first mode
history (no added mass).

40



3

2

0
0 20 40 60 80 100

Number of Elements
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The previous example was valid only for a plate vibrating
freely in vacuum. As discussed in the introduction section, the
surrounding fluid can alter the natural frequencies of vibration of
a structure significantly if the fluid density is of the same order of
magnitude as the average density of the structure. If the plate
were to vibrate freely in a body of water of infinite extent, the
analytical solutions for the first four modes of the natural
frequencies of the plate are f 2 2 = 1.485 Hz, f 13 = 2.179 Hz, f31 =
2.690 Hz, and f3 2 = 3.856 Hz. Comparing these frequencies with
the (in vacuum) frequencies given above, one sees that the
presence of the water is indeed to have a profound effect on the
natural frequencies of the plate. Fig. 1.13 shows the numerical
solution of the first mode natural frequency (f2 2 ) for the plate
vibrating in water. The program based on the scheme presented
in Section 1.2 was used to generate the added mass matrix Mf.
After the added mass matrix was generated, it was combined with
the structural mass matrix as shown in Eq. (1.64) to form the
dynamic equilibrium equations for the structure

(Ms + Mf) X + iKs X = F (1.64)

In Eq. (1.64) Ms is the structural mass matrix, K, is the structural
stiffness matrix, and F is the force vector which may include
structural damping forces as well as prescribed external forces.
From Fig. 1.13, it is seen that the added mass matrix did not seem
to affect the convergence rate of the finite element program at all.
Note that even with the added mass matrix, the solution still
exhibit monotonic convergence. For this case, the computed first
mode natural frequency converged to within 1.6% of the analytical
solution for a mess of 10 x 10 elements. The absolute error for
this case is presented in Fig. 1.14. Comparing Figs. 1.12 and 1.14,
although both plots have the same shape, the absolute error for
the case with added mass decreased more rapidly and the
absolute magnitude of the error decreased to less than 0.03 for a
mesh of 10 x 10 elements.
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Figure 1.14 FFFF boundary conditions-first
frequency absolute error (with added mass).
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The ratios of numerical to the exact solutions (fnum/fexact) for
the first four modes are presented in Fig. 1.15. Note that only the
first mode exhibits complete monotonic convergence. The other
three higher modes started from above at the beginning and
dropped down rapidly before converging to the exact solutions.
For a model of 10 x 10 elements, the first mode converged to
within 2% of the exact solution and the other three modes are only
within 5%. This information can be seen more clearly in Fig. 1.16.
The analytical and the converged numerical solutions (with added
mass) for the first four modes of the plate are shown in Fig. 1.17.
(The numerical solutions were obtained using a mesh of 10 x 10
elements.) Note that the converged numerical solutions fall almost
right on top of the analytical solutions.

45



1.0

0.5

0.0
0 20

Figure 1.15
fnum/fexact (with a

40 60 80 100

Number of Elements

FFFF boundary conditions-modes 1-4
Ided mass).

46



5

Mode

Figure 1.16 FFFF boundary conditions-modes 1-4 natural
frequency percent error (with added mass).

47

0
0

% Error
.................... ------- ...........--..........-...........---..........--....... ...........-.......................-- ........... .... .... ... .... .... ... .... .... ......Z _ .... .... .... ... ... _ • •_ • .... .... ... .... .... .. ..... .... ...



0 1 2 3 4 5

Mode

Figure 1.17
frequencies.

FFFF boundary conditions-modes 1-4 natural

48



Fig. 1.18 compares the first mode natural frequency (f2 2 ) for
the cases with and without added mass. This figure shows clearly
that the inertia of the water cannot be neglected for this case
since the water density if of the same order of magnitude as the
average structural density. A very large error will result if the
inertia effect of the water is neglected when calculating the
natural frequencies. Finally, Figs. 1.19 and 1.20 show the first four
mode natural frequencies for a freely vibrating plate in vacuum
and in water, respectively.
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Figure 1.18 FFFF boundary conditions-first mode natural
frequency with and without added mass.
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Figure 1.19 FFFF boundary conditions-modes 1-4 natural
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Figure 1.20 FFFF boundary conditions-modes 1-4
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CASE 2 Square Plate with Simply-Supported Boundary
Conditions

For this case, all four edges are restrained from moving in
all directions but are free to rotate. The (in vacuum) analytical
solutions for the first four mode natural frequencies are fl =
7.731 Hz, f2 1 = 19.327 Hz, f 12 = 19.327 Hz, and f2 2 = 30.923 Hz.
Note that the second and third natural frequencies are exactly
identical for this set of boundary conditions. The computed first
four mode natural frequencies of the plate plotted as function of
the number of elements are shown in Fig. 1.21. From the figure, it
is seen that all the frequencies started from above at the
beginning and dropped below the exact solutions before
converging. The convergence histories for the different
frequencies are shown in Fig. 1.22. Unlike the previous case, the
three higher modes for this set of boundary conditions have much
slower convergence rates than the first mode. For a mesh of 10 x
10 elements the first mode has converged to within 5% of the
exact solution whereas the other three modes are only within 20%
of the exact solutions (see Fig. 1.23). Again, this could be due to
the lumped mass formulation of the structural mass matrix and
the more complicate boundary conditions. For lumped mass
formulation, particle "lumps" have no rotary inertia. 7 The
importance of rotary inertia generally increases with increasing
mode number; however, these effects are generally insignificant
for plates whose thickness is less than 1/10 of the plate length for
vibrations in the fundamental mode. Looking at the trend of the
converging history plots, one would expect those three higher
modes to converge to their exact solutions as more elements are to
be used in the model. For this set of boundary conditions, if the
plate were to vibrate in water the natural frequencies of the plate
are fi1 = 1.657 Hz, f2 1 = 4.141 Hz, fl 2 = 4.141 Hz, and f2 2 = 6.626
Hz. Fig. 1.24 shows the convergence histories for the case with
added mass. Unlike Case 1, with the added mass matrix the
convergence histories for the various modes changed slightly for
this case. The first mode exhibits monotonic convergence with
added mass, but the added mass did not seem to have any effect
on the second and third modes. Fig. 1.25 shows the ratios of the

7 Rotary inertia is the inertia associated with local rotation of the plate as
it flexes.
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computed frequencies to the exact solutions. For some reason, the
added mass matrix seems to improve the overall rates of
convergence of all the modes for this case. Fig. 1.26 compares the
numerical solutions to the exact solutions for the first four modes
(with and without added mass). As pointed out in the above
discussion, for a mesh of 10 x 10 elements the higher mode
natural frequencies did not converge as completely as the first
mode for the case without added mass. For the case with the
added mass, the convergence rates for the higher modes are much
better but they are still slower than the convergence rate of the
first mode.
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2. Coupling Fluid-Structure Interaction

As mentioned in the Introduction, if the frequency of
excitation applied to the structure is less than roughly one-third
of the structure's lowest natural frequency of vibration, then the
effect of the fluid on the structure can be treated as added mass
and the equation of motion for the submerged structure is

(Ms + Mf) X + Ks X = F (2.1)

where Ms is the structure mass matrix, M f is the fluid added mass
matrix, Ks is the structure stiffness matrix, and F is the force
vector. However, the fluid can no longer be treated merely as
added mass to the structure if the applied frequencies are higher
than noted above. The system representing by the fluid and
structure must be coupled together as at any time the behavior of
one influences the other and vice versa.

In many coupled problems the system can usually be
associated with a physical region of the problem. The governing
equation(s) for each region can separately be written in matrix
form using finite element, boundary element, or finite difference
method. This separation of domain gives rise to the possibility of
using different methods in treating the governing equation(s) in
each domain and the resulting equations combined at the onset of
solving the system of equations. For this fluid-structure
interaction problem, the structure is modeled using finite
elements. However, boundary elements are used to modeled the
external fluid due to the ease of treating the far-field radiation
boundary condition with Green's theorem. All the theories and
numerical procedure for carrying out the solution procedure for
this coupled problem are presented in Sections 2.1-2.3.



2.1 Dynamic Equations for the Structure

The structural dynamic equations can be derived using the
variational principle. The equations are obtained by requiring the
work of external forces to be equal to the work of internal,
inertial, and viscous forces for any small kinematically admissible
motion; that is, any small motion that satisfies both compatibility
and essential boundary conditions (Refs. 6, 7). For a single
element, the work balance becomes

f [ TEdV + J[ [Tq]dS + i1 iTa Pl

= a + + p. + 8 u Kd ui dV (2.2)

where 6u and 5 are small arbitrary admissible displacements and
their corresponding strains, respectively; F are the body forces; 0
are prescribed surface tractions (which are typically nonzero over
only a portion of the surface Se); Pi are concentrated loads that act

Tat a total of n locations on the element; _ui is the displacement of
the point at which load P. is applied; P is the mass density of the
material; Kd is the material damping coefficient; and the volume
integral is carried out over the element volume Ve. Using standard
finite element method, the displacement field u (which is a
function of both space and time) and its first and second time
derivatives can be written as

u =N d, i =N d, u=Nd. (2.3)

In the above equations the shape function N are function of space
only and the nodal degrees of freedom d are function of time only.
Thus, representing the displacement field and its derivatives with
Eq. (2.3) has the effect of separating the variables locally.
Combining Eqs. (2.2) and (2.3) yields

f[ N F dV + [s d NT tdS + i [T
Ve Se i=
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f [Sd T B dV + [f(d p NTN)dv]

+ [f(d 8dT NT N) d V (2.4)

or

8d d V + (pN N) dVI .1 e
+N ( Nd V i - (NT F dV

- (NT ) dS - Pi = 0 (2.5)

where B is the strain-displacement matrix (the derivative of the
shape function N). In Eqs. (2.4-2.5), it has been assumed that the
locations of concentrated loads Pi are coincided with nodal
locations. Since 8d is an arbitrary variation vector, Eq. (2.5) is true
for any 8d only if

[f[TdV + [epN N) dV d

+[f (Kd NT N)dv] - >N TF)dV

J(NT ) d S - i- . (2.6)
Se i=1

or

m i +c d+ r int = rext (2.7)

where the element mass and damping matrices are defined as
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m Ve (p N N)dV (2.8)

S (d NT N dV, (2.9)

and the elemental generalized internal force and external load
vectors are defined as

r int ( B T  dV (2.10)

rext  (NT F) dV + (N ) dS + J Pi. (2.11)
V. . i=1

The generalized internal force vector represents loads at nodal
locations caused by the straining of the material. Eqs. (2.7) and
(2.10) are valid for both linear and nonlinear material behavior;
that is, 9 in Eq. (2.10) could be a nonlinear function of strain (or
strain rate). For linear elastic material behavior, _ = E B A and Eq.
(2.10) becomes

rint = k d (2.12)

where

k =f(BTEB)dV (2.13)

is the stiffness matrix of the structure, and E is the material
property matrix. Therefore, with linear material behavior
assumption Eq. (2.7) becomes

m + g + k d= rext . (2.14)
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Global structural equations can be constructed by expansion of

element matrices m, Ck, and rext to structure size as described in
Ref. 6. The resulting global structure matrix equation is

M + D+ K DKD= Rext  (2.15)

where M is the global mass matrix, C is the global (viscous)

damping matrix, K is the global stiffness matrix, and Rext
corresponds to loads R of a static problem but is in general a
function of time.

An important special case of Eq. (2.15) is that the input
forces and the responses of the system vary harmonically with
time. Assume the nodal displacement vector of the structure and
the input force vector have the following form:

D = u ei cot (2.16)

Rex t = F ei(ot (2.17)

where i is the imaginary number f-iT, co is the circular excitation
frequency, F are the magnitudes of the applied forces, and r are
the magnitudes of the structure displacements. Substituting Eqs.
(2.16) and (2.17) and the derivatives of D into Eq. (2.15), the
global structure equation becomes

[(-C 2 M + K) + i 0 C] u ei c t = F eit. (2.18)

Canceling out eiCOt on both sides of Eq. (2.18), the equation of
motion of the structure in the frequency domain is

[(-02 M + K)+ i C]u = F. (2.19)

If a structure impedance is defined to be the ratio of the applied
force to velocity,

Z_ F [(02 m + K) + io C]u eiwt
s - (2.20)

D i 0m U eic t
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then the structural impedance matrix can be written as

K
Zs = C + (omM_ ) i (2.21)

where C is the resistance and (o M - ) can be interpreted as the
structural reactance.

structural reactance.
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2.2 Governing Equations for the External Fluid

Consider the body as shown in Fig. 2.1, an arbitrary finite
object whose total surface area is S is immersed in an infinite
ideal homogeneous fluid. The fluid fills the region D exterior to S.
The region interior to S is designated E. Thus, the total space of the

problem is D u S E. If the surface of the body is made to oscillate
about its mean position, a force will be exerted on the fluid in
contact with the surface. The fluid is hence disturbed from its
equilibrium position. As a result, disturbances (acoustic waves)
are produced and propagated away from the body in all
directions. The propagation of the acoustic waves through the
fluid is described by the homogeneous wave equation (Ref. 2)

1 V T = 0 in D (2.22)
c2 at 2

where V2 is the Laplacian operator. The function T is the excess
acoustic pressure 8 or the wave potential function at an arbitrary
point r at time t in the fluid domain, and c is the speed of sound in

the fluid. For a simple harmonic excitation of the form9

P(r, t) = P(r) ei(Ot Eq. (2.22) reduces to the Helmholtz wave
equation [also known as the reduced wave equation (A-1)]

V2P(r) + K2P(r) = 0 (2.23)

where K = co/c is the acoustic wave number. The main problem of
interest in this case is the determination of unique solutions to the
excess pressure field generated by vibrating surface(s), and the
problem of scattering of acoustic waves from the submerged body.
In general, the excess acoustic pressure at a given point in the
fluid domain can be represented as a sum of the incident pressure

8 Excess acoustic pressure is the change of pressure at any given point
from its undisturbed hydrostatic pressure.

9 T is taken as the excess pressure in this case.
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and the scattered pressure (from the surfaces). 10 Thus, the total
excess pressure at any given point in the fluid domain is

global lomain)

Figure 2.1 An elastic body immersed in an infinite,
inviscid, incompressible fluid.

P(r) = PI(r) + Ps(r) (2.24)

where the subscripts I and S denote incident and scatter,
respectively. The scatter pressure also needs to satisfy the
Sommerfeld far-field radiation condition (Ref. 22)

10 This is true only for linear waves. For linear waves, the sum of solutions
is also a solution of the problem.
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lim (r + i KPs(r_) dS = 0, (2.25)
R->oo r r=R

'SR

where r is the radial distance from the origin of coordinates and

SR represents the surface of a large sphere of radius R centered at
the origin and surrounded the object. The pressure field must also
satisfy the Neumann boundary condition on the surface of the
object

Sap n q [VP(r)] = -ico p ly_(q)1 q 9 S . (2.26)
anq

For this problem, the attention is centered on finding the
surface pressure since if the surface pressure is found, other
useful quantities such as far-field patterns, P(r_), radiation
efficiency of the body, and many other desired quantities can
always be computed. Although Eq. (2.23) [with boundary
conditions Eqs. (2.25) and (2.26)] is valid for any point in the fluid
domain, it is not in a convenient form for numerical analysis of
this infinite domain problem. With the help of the Green's
identities, Eq. (2.23) can be recast into the form of a boundary
integral equation known as the Helmholtz integral equation for
the exterior problem (A-2):

aG(x, q) aP(q) P(x)/2 - PI x e S
P(q) N G(x,q) dS = P(x) - PI x_ D (2.27)

s nn- 0 x__ E

where G(x, q) is the free space Green's function

G(x, q) e , r = Ix- ql (2.28)

11 The free-space Green's function satisfies the inhomogeneous reduced

wave equation (V2 + K2)G = -8(r - r').
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and

aP(q)- - -io pf Iv nI . (2.29)
anq

In the above equation, Pf is the fluid density, and Ivjni is the
magnitude of the outward normal velocity on the surface S. With
the above two equations, Eq. (2.27) can be rewritten as

P ( q )e-iKr/47tr) -iKr P I dS
P(q) (eI e (-impf In)J dS =an 4 nr

P(x)/2 - PI x_ S
P(x) - P1  x •D (2.30)
0 x_E E

As shown in Fig. 2.1, 4 in Eq. (2.30) is the position vector of a
typical point Pj on the surface S, x is the position vector for an
arbitrary point Pi which may be either on the surface or in the
exterior field D, and fq is the unit outward normal at Pj. The
normal derivative of Green's function appears in Eq. (2.30) is

S(e -iKr/4r) -iKr iK + co (p) (2.31)

anq 4rr r

where p is the angle between the unit normal N4 and the vector -L
Substituting Eq. (2.31) into the surface integral equation [the first
of Eq. (2.30)] yields

P(x) P(q) e-iKr)(iK + )cos (3)] dS =

i w pfr [e)-r Iv(q)nhI dS + PI. (2.32)
i pL•4xrr
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Eq. (2.32) is an integral equation relating the total surface
pressure P and normal velocity vn on S. The integral on the left-
hand side of Eq. (2.32) is the pressure integral and the one on the
right-hand side is the velocity integral. Eq. (2.32) is the integral
equation suitable for numerical computation.

Using standard boundary element method, the discretized
version of Eq. (2.32) can be written as

E P = U v n + P (2.33)

where the dimension of the coefficient matrices E and U is (f x f)
[with f being the fluid nodal degrees of freedom]. In the above
equation P is the nodal pressure vector and yn is the nodal
normal velocity vector. The off-diagonal entries in the E matrix is
(Ref. 10)

Eij =-(e -iKr iK+ 1 r Icos (P ij)) Aj i • j (2.34)

where Aj is the surface area assigned to the point qj and
rij = [i- q il. Similarly, the off-diagonal entries in the U matrix is

Uij = i f e -iKrij A i j. (2.35)

Eqs. (2.34) and (2.35) are applicable only for the off-diagonal

terms (i # j) in the E and U matrices, respectively. For the
diagonal entries r ii = 0, therefore, different approaches must be
used in order to obtain expressions for Eii and Uii. Consider first
the velocity integral in Eq. (2.32), assume that the normal velocity
V n is constant over a small circular area of radius bi centered at x,
then,

2nt bi '

U iOf= ip Ir dr dO (2.36)

2where bi is chosen such that t b = Ai, the total area assigned to
point i. Evaluating the integral in Eq. (2.36) yields

71



Uii iopf Ai (2.37)
2 n bi

where bi= A i.

The evaluation of the self term of the pressure integral is
similar; however, the curvature of the vibrating surface at the
given point must be taken into account in this case since the
singularity in the pressure integral is one order higher than that
of the velocity integral (Ref. 10). Assuming that the pressure P is
constant over a small spherical cap locating at xi and having mean
curvature ci and area Ai; then,

Eii -1 e iKr (iK+ --rci r dr dO. (2.38)
2 4r r 2

In Eq. (2.38) cos(p) has been approximated by -r c. Evaluating
2

the integral of Eq. (2.38) yields

Eii = + (1 + iKbi) (2.39)i Ai
2 4 n bi (2.39)

With Eqs. (2.34-2.39), all the entries in the fluid matrices E and !
can be computed. In general, the above discretization procedure
yields two (f x f) fluid matrices E and U which are fully populated,
nonsymmetric, complex, and frequency dependent.
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2.3 The Coupled Fluid-Structure Equations

The excess pressure on the surface of the submerged body is
related to the surface normal velocity by Eq. (2.33). Assuming for
now that the incident pressure is identically zero, then Eq. (2.33)
becomes

EP = U Vn. (2.40)

Since force is equal to pressure times the surface area, F = PA, and
if a fluid impedance Z4 is defined to be the ratio of the surface
force to the surface normal velocity

Zf =F (2.41)
Vn

then the fluid impedance matrix can be written as

Zf = A E-1 _ U (2.42)

where A is a diagonal area matrix for the wet surface. The
structural and fluid impedance matrices as given by Eqs. (2.21)
and (2.42) cannot simply be added together to yield the
impedance matrix for the submerged structure since the two
matrices have different dimensions. The structure impedance
matrix Zs has dimension (S x S) where S is the total number of
structural degrees of freedom and the fluid impedance matrix Z
has dimension (f x f) where f is the total fluid number degrees of
freedom 12 . Several matrix operations must be done to the
impedance matrices before they can be combined. For the

12 A three-dimensional finite element structure model usually has three
translational and three rotational degrees of freedom per node. The total
number of structural degrees of freedom S = 6 Ns where Ns = total number
of nodes in the model. For non-shell structures there may be internal nodes
as well as surface nodes and only the surface nodes are in contact with the
fluid. Therefore, the number of fluid nodes Nf is always less than or equal
to Ns with the equality holds for shell structures (without internal nodes).
For the fluid, there is only one degree of freedom per node (the excess
pressure at that node) and the total fluid degrees of freedom f = Nf. Hence,
even for a shell structure with Ns = Nf, the total structural degrees of
freedom S is still larger than the fluid degrees of freedom f by a factor of 6.
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following analysis, the structure is assumed to be a shell (without
internal nodes); hence, total number of structure nodes Ns is
exactly equal to the total number of fluid nodes Nf13 . Let N = Nf ( =
Ns) to be defined as the total number of surface nodes of the
structure, then f = N. In terms of the wet degrees of freedom of
the problem, the applied force and the resulting surface normal
velocities are related by

(s + Zf) vn = F(n) (2.43)

where Zfis the fluid impedance matrix zs is the impedance matrix
of the structure in terms of the wet degrees of freedom, vn is the

surface normal velocity vector, and E(n) is the nodal normal force
vector. The global structural impedance matrix ZZs and the global
force vector F (expressed in terms of all the structural degrees of
freedom) are related to the reduced structural impedance matrix

zs and the reduced normal force vector F (n) by the rectangular
transformation matrix T defined by

E = T E(n) and V = TY (2.44)

where the dimensions of E and E(n) are (S x 1) and (f x 1),
respectively. T is an (S x f) rectangular matrix of directional

cosines which transforms F(n) to F. In terms of the total structure
degrees of freedom

_ V= E.Zs V (2.45)(S x S) (S x 1) (S x 1)

Solving for the velocity vector V in Eq. (2.45):

V = Zs .E (2.46)

Substituting Eq. (2.44) into Eq. (2.46), the following Eq. is obtained

13 For a general structure, there are internal nodes as well as surface
nodes. In this case, the surface nodes of the structure impedance matrix
must be condensed out first by using the method of static condensation
(Ref. 6) before performing the matrix operations presented in this section.
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V = Zs-1 TE(n).

Since V = T vn, then

TIv = Zs 1 F ( n)

vn = T T Z s 1 T E (n ) .

For the reduced structure matrix zs,

Zs vn = E(n)

or

yn =Z1 EF(n).

Therefore,

Tv = T -1 F(n). (2.5

Combining Eqs. (2.48) and (2.52) yields

s- T (n) = T= -1 F(n). (2.5

Premultiplying both sides of Eq. (2.53) by IT, Eq. (2.53) becomes

TT Z,-1 T F(n) = TT T z s-1F(n) (2.5

or
T Z 1 = _s - 1
T T- -S

14 Note that the inverse of the transformation matrix is equal to its
transpose (see Ref. 6).
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Solving for the normal velocity vector of Eq.
substituting the result into Eq. (2.43) yields

(s + f)(U -1 E ) = F(n)

or

(suU_•; E Pu+ Zf UV( E P) = E(n).

Substituting Eq. (2.42) for -Z in the above equation yields

U) U -1 EP

Simplifying Eq. (2.58)

(s U•1 EP + A P) = F(n)

(U-1 EP + z~s- 1 AP) = -1 F(n)

(U -1 E P + z S-' A P) = (T T Zs-1 T) F (n )

(U- EP+z'1A P) =TT Zs'lF

(EP+ U TTZsIT A R) = T T ,-1 F
UTT: _ .

the terms and rearranging the equation:

(E+U TTz s I1TA ) P = UT T Z s-1 E

HP=Q

H = (E+UT T z s T A_ )

Q (U TTZs-1F)
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(2.57)

(2.58)

Grouping

or

where

(2.59)

and

(2.60)

(2.61)

(2.62)

(2.40) and

(s U 1 EP + (A E - 1 = F(n).



where matrices E, U, and A have dimension (f x f), Zs has
dimension (S x S), T has dimension (S x f), and F has dimension (S
x 1). If scattering problems are to be considered, an incident
pressure vector needed to be added to the right-hand side of Eq.

(2.62), 

that 

is,

HP = Q+ P. (2.63)

Since the matrix H and vector Q depend only on geometry,
material properties, and frequencies, Eq. (2.60) [or (2.63)] may be
solved to yield the surface excess pressure P. After the surface
pressure P is obtained, surface normal velocity may then be
calculated using the following equation:

n = TTZs F-I - Zs TAP. (2.64)

After the surface excess pressure vector P and the surface normal
velocity vector vn are obtained, the process of obtaining the
surface solution is completed. All the far-field properties can be
obtained by integrating the surface quantities using the second
integral of Eq. (2.30).

15 Again, this is possible because only linear waves are considered.
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2.4 Frequency Limitations

With the present boundary integral formulations, it is well
known that the surface Helmholtz integral equation has
nonunique or nonexistence solutions if the excitation frequencies
correspond to the eigenvalues of the interior Dirichlet problem of
the same structure. This nonuniqueness or nonexistence of
solutions does not have any physical significance. It simply
implies that the integral equation formulation is not valid at
frequencies that are characteristic of the associated interior
Dirichlet problem. The fluid matrices E and ! in Eqs. (2.61) and
(2.62) are either singular or poorly conditioned at these critical
frequencies. Hence, poor results should be expected when the
excitation frequency approaches one of these critical frequencies
of the structure. For spheres, the lowest critical frequency occurs
at Ka = in, while for long cylinders with flat ends the lowest critical

frequency occurs at Ka = 2.4, where K = co/c is the acoustic wave
number and a is the radius of the sphere or cylinder. Many
methods have been developed to circumvent the problem of
nonuniqueness at characteristic frequencies. Some of these well-
known methods are the combined Helmholtz integral formulation
(CHIEF) first proposed by Schenck (Ref. 19) and the composite
outward normal derivative overlap relation (CONDOR) developed
by Burton and Miller (Ref. 4).
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2.5 Numerical Example----Far-field Acoustic Radiation
From a Uniformly Driven Spherical Shell

In this section a classical radiation problem in acoustic is
solved numerically on a computer using the equations presented
in Sections 2.1-2.3. Numerical outputs generated by the program
are compared to the closed-form analytic solution.

The problem to be solved is an elastic spherical shell
immersed in an inviscid fluid of infinite extent. The shell is
subjected to an internal spherically-symmetric, harmonically
oscillating pressure load. For this classical problem, there exists an
analytic solution (Ref. 10).

Analytic Solution

For a given shell, the stiffness of the shell is given by

Ks = (8 n E h) (2.65)
1-v

where E and v are the Young's modulus and Poisson's ratio,
respectively; and h is the shell thickness. The mass of the shell is

ms = 4 n a2 h ps (2.66)

where a is the mean radius of the shell and Ps is the material
density. With a uniform internal pressure load the structure
impedance is

(W2 ms - Ks) .67)
Zs =  (2.67)

where co is the angular frequency of excitation (in Rad/s). For the
fluid in contact with the surface of the shell, the ratio of surface
pressure to surface normal velocity is

p - (pf a) i
Vn 1 + i (Ka) (2.68)
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where pf is the density of the fluid, and K = co/c is the wave
number. Therefore, the fluid impedance is given by

(4 co pf a3) i
= , (2.69)1 + i (Ka)

and the surface normal velocity is

(4 x a2 Po)
n =  (Zs + Zf) (2.70)

where Po is the amplitude of the internal pressure. Hence, for a
given shell and a given internal drive pressure Po, the surface
normal velocity can be computed using Eq. (2.70). After the
surface normal velocity is obtained, surface pressure can be
calculated using Eq. (2.68). The excess pressure at any point in the
fluid domain is then

Pr = P (-) e-iK(r-a) (2.71)

where Pr is the excess pressure at a given point a distance r from
the origin and P is the pressure on the surface of the sphere.

Numerical Solution

The spherical shell used for this example problem has the
following geometric and material properties:

shell radius a = 1.000 m

shell thickness h = 5.000(10 - 3) m

Young's modulus E = 2.070(10 1 ) N/m 2

Poisson's ratio v = 3.000(10-1)

fluid density Pf = 1.000(103) kg/m 3

structure density Ps = 7.669(103) kg/m 3

internal pressure Po = 1.000(105) N/m2.

Table 2.1 Material properties for the shell.
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An octant of the shell was modeled using four-noded
quadrilateral elements (three planes of symmetry were imposed).
A total of six meshes were run in order to obtain the convergence
history plots. The octant model with the finest mesh has 243
surface elements, 271 grid points, and a total of 1626 structural
degrees of freedom. Figs. (2.2-2.5) present the convergence
histories of the surface pressures as function of the
nondimensional wave number Ka (K = co/c is the acoustic wave
number and a is the radius of the sphere). From these figures, it is
seen that the surface pressures converge monotonically from
below except for Ka = 1.0. Despite the nonmonotonic convergence
rate, the surface pressure for Ka = 1.0 still converges much
quicker than the other three higher frequency modes as the mesh
is refined. The frequency with the slowest convergence rate is Ka
= 3.0. As discussed in Section 2.4, this is to be expected since the
first critical frequency for a spherical shell occurs at Ka = X
(3.1416). For excitation frequencies which are close to the critical
frequencies, the fluid matrices E and U in Eqs. (2.61) and (2.62)
become poorly conditioned (these two matrices become singular at
the critical frequencies). Hence, the convergence rates for drive
frequencies which are close to the critical frequencies should not
be expected as good as the other drive frequencies which are far
away from the critical frequencies. Also note from the plots that
the convergence rate goes down with increasing frequencies. Figs.
(2.6-2.9) present the absolute errors (IPexact - Pnum.) for the
different frequencies for each mesh. The maximum percent errors
for the above four frequencies are shown together in Fig. 2.10 for
comparison. From the figure, it is seen that the error for Ka = 1.0
is much less than the other three higher frequencies even for the
coarse mesh and that it decreases to less than 2% for the finest
mesh model. The error for Ka = 4.0 is over 70% for the coarse
mesh, which is much higher than that for Ka = 3.0. However, while
the error for Ka = 3.0 remains to be more than 13% for the finest
mesh, the error for Ka = 4.0 has dropped to about 9%. This
information can be seen more clearly in Fig. 2.11. The surface
pressure as function of Ka is presented in Fig. 2.12. In this figure,
the numerical data were obtained using the model with the finest
mesh. A total of 18 drive frequencies ranging from Ka = 0.1 to Ka
= 4.0 were run. Note that the numerical solutions fall almost right

on top of the analytic solution for Ka <5 1.0. However, as the
frequencies increase, the numerical solutions start to deviate from
the analytic solution. This increasing error in higher frequency
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finer mesh must be used in order to obtain better solution when
the drive frequencies are high. The predicted surface pressures
are 13% and 9% too low as compared to the analytic solution for
Ka = 3.0 and Ka = 4.0, respectively. Figs. 2.13 and 2.14 present the
far-field pressures at 2.0 m for the excitation frequencies of Ka =
1.0 and Ka = 3.0, respectively. Note that the numerical solution
agrees quite well with the analytic solution for Ka = 1.0 but
deviates considerably from the analytic solution for Ka = 3.0. In
summary, the present boundary integral formulation is capable of
predicting the excess pressure induced in a fluid by a totally
submerged vibrating body. However, a very fine mesh 16 is
required for high excitation frequencies and the scheme will not
work if the given drive frequency coincides with one of the
critical frequencies of the structure.

16 This means large array sizes in the FORTRAN program and long run
times.
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Figure 2.5 Surface pressure convergence history, Ka = 4.0.
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Figure 2.6 Surface pressure absolute error, Ka = 1.0.
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Figure 2.7 Surface pressure absolute error, Ka = 2.0.
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Figure 2.8 Surface pressure absolute error, Ka = 3.0.
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Figure 2.9 Surface pressure absolute error, Ka = 4.0.
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Figure 2.10 Percent error, Ka = 1-4.

91

250



I * I

0.0 0.5
I * I * I * I * I * I * I

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Ka

Figure 2.11 Maximum percent error, Ka = 1-4 (243 surface
elements)

92

12

10

- - a----i-----mm ~ - - -- ----- ------

-------...------ - Max m % r -- -.- - - - -.
. . .. .... .... ...------ .. .. .. ..- -.-- -.-- -- --. .- -

-- ----M a x im u m % e rro r H ... ... -_. ......... ....... .

.. . .. . . .. . ... . .. . .. . . . .. .. ...... ... . .. . . . - - --

.... ... . . .. ..... . .. ...... ... .......... .. ........... .. ........ ...... ...... -- - -- - ------ --- -----------.... .. -- - - -.. .. ... . .. . .. . .. .. . .. . .. . .. . .. .

.77... 7 .... |... .i .... _ i ......... ......... ...... 4 i ------- ....... J|-------i--------------

:: 7 =======================-------==== ==== Z • - Z .• -........... ... ....... --- --- --- ------- ------- ------

7 1 :::::::::::::::::: : ::::::::::---------- ........ --.....--.....--.....---:+ : : ....."..... .....



0.0 0.5 1.0 1.5 2.0 2.5 3.0

Ka

Figure 2.12 Surface pressure as function of Ka.

3.5 4.0

93

le+5

le+5

8e+4

A 6e+4

o

c 4e+4

2e+4

Oe+O



0 numerical solution
a analytic solution

Figure 2.13 Far-field pressure, r = 2.0 m, Ka = 1.0.
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Figure 2.14 Far-field pressure, r = 2.0 m, Ka = 3.0.
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3. Discussion

As mentioned in Section 2.4 and demonstrated in Section
2.5, the solution of the surface Helmholtz integral equation
becomes nonunique or nonexistence when the excitation
frequency coincides with a critical frequency. However, this
nonuniqueness or nonexistence of the solution to the exterior
problem does not have any physical significance. It simply implies
that the assumptions used in deriving the exterior Helmholtz
equation become invalid as the excitation frequency approaches
the characteristic frequencies of the interior problem. Many
methods have been proposed in order to circumvent the problem.
Some of the better known methods are the combined Helmholtz
integral formulation (CHIEF) method proposed by Schenck (Ref.
19) and the composite outward normal derivative overlap relation
(CONDOR) method developed by Burton and Miller (Ref. 4).

The basic principle of the original CHIEF method is to
augment the (N x N) system of equations that resulted from the
surface Helmholtz integral formulation by additional compatible
equations based on the interior Helmholtz integral for selected
interior points. The nonsquare, or overdetermined complex
system of equations are then solved by a least-squares
orthonormalizing procedure. By using this procedure, the

approximate surface pressure vector p* minimizes the magnitude

of the error vector. Once the least-squares approximation p* of the
surface pressure P is found, the far-field excess pressure can be
computed as discussed in Sec. 2.3.

The method developed by Burton and Miller combines a
multiple of the differentiated Helmholtz equation with the surface
Helmholtz equation (Eq. 2.30). By doing so they had proved that
although the surface Helmholtz integral equation, and the integral
equation for the normal derivative, failed to yield unique
solutions at the characteristic frequencies of the interior Dirichlet
and Neumann problems, respectively, the combination of the two
integral equations has a unique solution for the exterior problem
for all wave numbers. However, the successful numerical
implementation of this formulation hinges on the successful
numerical representation of the highly singular integral (known as
the hypersigular integral) resulted from differentiating the
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Helmholtz equation. Many procedure have been proposed for
regularizing the hypersingularities (Refs. 4, 5), however, most
methods required extensive computation.

From the discussion above, it is clear that the present basic
formulation provides a basis for more robust methods. Most
techniques for circumventing the problem of nonuniqueness or
nonexistence solution based on augmenting the basic surface
Helmholtz equation by one or more constraining equation.
Therefore, the frequency limitations inherent in the present
formulation can be removed without requiring much modification
of the main structure of the basic FORTRAN code.

As mentioned in the introduction section, BIE method is
currently the most popular method in the acoustic field for solving
fluid-structure interaction problems. In view of the recent
development in the field of computational fluid dynamics (CFD), a
better approach in solving this fluid-structure interaction problem
would be to solve the reduced wave equation (or the integral form
of the full wave equation) in the fluid domain using finite element
method without resorting to Green's theorems. This idea is not
new and has been criticized by many researchers in the acoustic
field as inconvenient and impractical due to the difficulties in
treating the infinite far-field radiation boundary condition.
However, problems with infinite far-field boundary conditions
have been solved routinely by researchers in the field of CFD
using finite different, finite volume, and more recently, finite
element methods. Using finite element method to solve the
reduced wave equation in the fluid domain would completely
eliminate the problem of nonuniqueness and nonexistence of the
solution as in the BIE method. It also eliminate the need of using
complex arithmetic on the computer (which is quite expensive in
terms of storage and operational counts). Two major criticisms
about using finite elements in the fluid domain are that the
artificial outer boundary must be very far away and that finite
element method will only yield solutions at some finite number of
grid points. Both of these criticisms are not quite true any more.
Researchers in CFD have solved airfoil problems and have
obtained good results with outer artificial boundary no more than
two or three chord lengths from the airfoil. As for the second
point, one can use finite element method to obtain the surface
pressure of the structure and then use the exterior Helmholtz
integral [the second of Eq. (2.27)] in order to obtain far-field
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pressure at any point in the fluid domain. Doing so will not only
eliminate the problems of the surface Helmholtz formulation, at
the same time, it will also allow the flexibility (which enjoys by
the BIE method) of obtaining solution at any point in the far-field.

Finite element method would also opening up the possibility
of solving the full wave equation rather than the reduced wave
equation. Solving the full wave equation will eliminate the
requirements that the inputs and the responses of the structure
are simple-harmonic, and the transient response of the structure
can also be obtained if desired (this is not possible when BIE
method is used). In summary, due to the recent development in
other field, many methods and ideas once deemed to be
impractical are becoming more attractive for this fluid-structure
interaction problem. It is recommended that all these other
possibilities be explored in future research in addition to the more
traditional BIE method.
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4. Conclusions

Numerical techniques for the determination of the added
mass matrix and the excess pressure induced in a fluid of infinite
extent by a totally submerged vibrating elastic structure have
been presented. For low vibrational frequencies, the surface
excess pressure P and the surface normal velocity v_ have nearly
orthogonal phase; hence, the fluid behaves like an added mass.
Theoretical and numerical aspects of calculating the added mass
matrix using boundary integral equation method were discussed
in Sections 1.1-1.2. Numerical examples for a uniform, rectangular
plate with different boundary conditions vibrating in water were
presented in Section 1.3.

The results presented in Section 1.3 clearly shown that the
presence of the fluid cannot be ignored for calculating the natural
vibrational frequencies and mode shapes of a submerged
structure if the fluid density is comparable to the average density
of the structure. On the other hand, the results also pointed out
that a computationally more expensive coupled fluid-structure
interaction problem needed not to be solved if the vibrational
frequencies are low. In this case, the effect of the fluid can be
lumped into an added mass merely superimposed on the
structural mass.

For higher vibrational frequencies, the lumped-mass
approximation is no longer valid and a coupled fluid-structure
problem must be solved. Sections 2.0-2.3 discussed the problem of
fluid-structure interaction for an elastic structure submerged in
an inviscid fluid of infinite extent.

The example presented in Section 2.5 showed that the
present boundary integral formulation is capable of predicting the
behavior of the vibrating structure in the fluid provided that the
excitation frequency is far away from the critical frequencies of
the associated interior Dirchlet problem of the same structure. As
mentioned in Section 2.4 and demonstrated in Section 2.5, the
solution becomes nonunique or nonexistence when the excitation
frequency coincides with a critical frequency. However, this
nonuniqueness or nonexistence of the solution to the exterior
problem does not have any physical significance. It simply implies
that the assumptions used in deriving the exterior Helmholtz

99



equation become invalid as the excitation frequency approaches
the characteristic frequencies of the interior problem.
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A - 1 The Helmholtz Equation (Reduced Wave
Equation)

The Helmholtz equation governs the space-dependence of
those solutions of the wave equation that are simple-harmonic in
time. Consider the nonhomogeneous wave equation

S2 V 2 = p(r, t) (Al-1)
c2 at 2

where T could be the excess pressure or velocity of the fluid [w =
P(rI, t)], and p(r, t) is the nonhomogeneous source term. If all the
prescribed inputs are simple-harmonic, for instance

p(r_, t) = po(r) e -iot, (A1-2)

and similar expressions for any prescribed boundary values one
can look for oscillatory solutions to the wave equation of the form

Y(r_, t) = ~Y(r) e -iCt. (A1-3)

Differentiating Eq. (A1-3) with respect to the space and time
variables the following equations are obtained

yxx = Toxx e -i c t  (A1-4a)

Tyyy = Yoyy e -icot (A 1-4b)

Yzz = yor, e -i t  (A1-4c)

ytt = _(02 Yo e -iot. (A 1-4d)

On substituting the above equations into the wave equation, the
factor e -iot cancels out and one obtains the inhomogeneous
Helmholtz equation:

TI'xx + Iyy + zz + q2 T) e-it = -p(r, t) e-it (A1-5)

or
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(V2 T + k2O) = -p(r_, t) (A1-6)

where k = m/c is the wave number. If the source term p(r, t) on
the right-hand side of Eq. (Al-6) is set equal to zero, the resulting
equation is the well-known homogeneous Helmholtz equation

(V2 T + k2 T) = 0. (A1-7)
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A - 2 Green's Identities

Green's First, Second, and Third Identities can be derived by
applying the divergence theorem to an arbitrary control volume.
Consider a control volume as shown in Fig. (A2.1), the surface and
volume integrals are related through the divergence theorem

f [Vr dV =f[-n] dS (A2-1)

S (surface of the control volume)

Figure A2.1 Control volume for deriving Green's identities

where v is an arbitrary vector. Let Y(r) and O(r) be two scalar
functions of position, a vector field can be formed by multiplying
one of the functions by the gradient of the other

SyV4 = I (grad4). (A2-2)

Substituting Eq. (A2-2) for the vector field v in Eq. (A2-1):

fI[V (WVO)] dV = f[(Y~VO) . ndS (A2-3)
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IV [V .V + m V2~ d =- ,[(,PV ). n] dS.

Introducing ~4/an to denote the derivative of 0 with
distance in the direction of the outward normal n

- 0

respect to

(A2-5)

Eq. (A2-4) , therefore, may be rewritten as

f ,v,-V + TV2-• dV fs an

which is commonly known as Green's First Identity.

Now, consider the following vector field

VV4 --VwY,

and substituting it for the vector V in Eq. (A2-1):

(A2-6)

(A2-7)

[v -(VO- VY)] dV = [(IYV -4V~) -n] dS.
Expandin Eq. (A28) and JSin q A-)t elc h

Expanding Eq. (A2-8) and using Eq. (A2-5) to replace the
operator, Green's Second Identity is obtained

St dV = ( -- i dS .
Conside hd in A- a n a n d

Consider the vector field in Eq. (A2-7) again and let

(A2-8)

gradient

(A2-9)
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r /(x-xo)2 + (y-yo) 2 + (Zo)2  (A2-10)

Note that 1/r satisfies Laplace's equation except at the point
(xo, Yo, zo). Assuming first that t has continuous second derivatives
throughout the domain D and on its boundary S. Let's cut out a
sphere of volume c with radius E and surface area a and centered
at the point (xo, yo, zo). Applying Green's second identity to the
remaining volume (D - o) yields the following equation

lim J V - dV f 1 [f f - dS +0f- o -w L n an r

lim a 1 dS.
E an a0fn (A2-1 1 )

Since V 2(1/r) = 0 (the function 1/r satisfies Laplace's equation),
Eq. (A2-11) can be rewritten as

f v2 ]dV= [•  9 ()] dS +

lim a (I dS ,Lr an - r ,d, (A2-12)E --+ 0 f n an

The second integral on the right-hand side of Eq. (A2-12) can be
separated into two terms:

lim 1 ~ (L) dS = lim I [l dS -
E 0 o r an an -r o
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nlim a () dS . (A2-13)

For the second integral on the left-hand side

lim dS (A2-14)
E -- 0 anr

note that = d since the radius vector r is in the direction of
an dr

the surface unit normal n on a sphere. Therefore,

(1/r) - 1- - 1 and Eq. (A2-14) becomes
an r2  E2

lirm J~[( ~1 dS = lim 2) [1]dS =
e--- 0 fa --4 0 -2

lim E [4(xo, yo, zo) + 1] dS (A2-15)
E -4 0 C2 a

where 1T is some well behave function which tends uniformly to
zero in co as e -* 0 so that -= O(xo, yo, zo) at (xo, yo, zo); that is,

0 < I111 < 8(E) and 8(e) -- 0 as e -> 0. Evaluating the integral in Eq.
(A2-15):

E --> 12 [O(

lim - 1 (x, yo, zo) dS + (id) dS
E -+ 0 2 a4 ' I"s

= lim - 1) 4 n 0(x yo, Zo) +f (11) dSl. (A2-16)
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Because it was assumed that q11 <6(e), then,

(i) dS < 8(-) dS = 8(e) 4 :E 2 .

Since 6(e) -- 0

Therefore,

as -> 0, it is clear that fa(rl) dS -+ 0 as E - 0.

lim I'- -(C fr)0 F24 x Pe2 ((Xo, Yo, Zo) +

4 rt O(xo, yo, zo).

Now, for the first integral on the right-hand side of Eq. (A2-13),

lim L dS,
1a

because
an

is bounded, therefore, the normal derivative

upper bound, that is, < <K where K is a constant. Since

a (K) dS
= K (4 n7 E2)

I1 (K) dS = K (4 E)
E ,

thus

111

(A2-17)

(i) dS]

(A2-18)

(A2-19)

has

and

(A2-20)

(A2-21)



f[1 dS
ran

As -- 0, (4 x K E --- 0); hence,

lim i1 dS
e ---> - r an

Combining Eqs. (A2-13), (A2-18), and (A2-23) yields

lim anCfF anan r
= - 4 Et p(xo, Yo, zo).

Therefore Eq. (A2-12),

r dV
Ca)

= 1 n ( )dS + lim  • __ dS
r an an ra r a an

becomes

J [ 01 dV
(0r

(1) dS -4 n 4(xo, Yo, zo)
r an,SS

which is commonly known as Green's Third Identity. Note that

if the point (xo, yo, zo) is outside of the domain D,
Third Identity becomes

2 0] dV fLr an

then Green's

S() dS , (xo, yo, zo) = 0. (A2-26)
anr
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( 1K) dS _K (4 xe). (A2-22)

-* 0. (A2-23)

(A2-24)
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A -3 Free-space Green's Function for Laplace's
Equation

Laplace's equation written in three-dimensional spherical
coordinate system is

V2  = 1 _r2
r 2 sin (0)

+ =) 0.
ao sin(6) ao

S+ sin()0) + s

ar aO ao

(A3-1)

If P = 1/r and since r • r(O, 0), then

V 2ý r. p21=r2 sin () a

1ar2 
r2

r2 sin (0) la -TL

sin (0) (r)
sin (

sin (0) - I]I =
r2 _I

2 1 -( ) r-sin (0) = 0.r2 Sin (ý) Dr
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(A3-2)



A - 4 Free-space
Helmholtz

Green's
Equation

Function for the

The typical solution of the homogeneous Helmholtz equation
[Eq. (A1-7)], from which all other solutions can be derived, is that
which corresponds to a unit source

= iKr
41nr (A4-1)

The gradient operator in spherical coordinate system is

V r a 1 sin(O) a +
r2 ar\ r 2 Sin)

1

r 2 sin 2(0)) 20

Since Y = P(r) only, therefore,

V2=1 2
r 2  anr r

r2 d 'P = r2 -iKe -iKr _-iKe -iKr

dr 4xr 4xr 2

r2 dr \ dr

. -iKe -iKr -iKe -iKr
4n 4nxr

and

1 A dr2 ' 1 -K2e -iKr 1 -K2 e-iKr
r2 dr d r2 4 n 4 x r

therefore,

(V2 + K2) W =1 rr2 d - [ -K2e -iKr + K 2e -iKr
r2 dr dr 4 n r 4 n r

= 0. (A4-6)
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(A4-2)

(A4-3)

(A4-4)

(A4-5)



A - 5 Helmholtz Integral Equations

From Green's Second Identity

[TV 20 _ V2]

If w and 0 and

dV = dS.
an an (A5-1)

their first and second derivatives are continuous

and single-valued and if T and 0 satisfied
Helmholtz equation, then

[V 2
- V2 T] dV

the homogeneous

= j [-K2) - O(-K2 )] dV
V

= -Kj K2T + K 2 TO] dV

Hence, Green's Second Identity becomes

T an
S

T dS
an-

= 0. (A5-2)

=0. (A5-3)

-T iKr

4 tr
(A5-4)

then Eq. (A5-3) becomes

e -iKr a a -iKr

4 ntr an an 4 T r

(from Green's Third Identity),
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Let

= -Op (A5-5)



J -iKr iKr aO
S-e dS = .

an 4 ir 4 x r an
S-

(A5-6)

Eq. (A5-6), which is the same as the second equation in (2.30)

(without the incident pressure term), gives the value of * at any

point p of a region in terms of the value of 0 and D4/an at the
boundary. If r' denotes the distance from a point p' external to the
domain D, then

J -eiKr _ -e iKr dS
an4 xr 4 x r DnJ

S-

=0 (A5-7)

which is the third of Eq. (2.30). Finally, if point p is on the surface
of the body, then

- - Do dS = 1tJ- an iK r - 2
an 4 r 4 x r an] 2

S-

(A5-8)

t If the point (x,y,z) is situated on the surface S, the surface SE is chosen to
be a small hemisphere that indents the original surface S inside the source
point. The contribution from this hemisphere is just half that given by Eq.
(A5-6). Therefore, Eq. (A5-8) is half of Eq. (A5-6) (see Ref. 18).
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