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Abstract

The main focus of this dissertation is the study of ionized gas flows through magneto-
dynamic accelerators, also called MPD thrusters. The analysis is based on a one-fluid
magneto-hydrodynamic model. The fundamental parameters considered here are the
magnetic Reynolds number and the Hall parameter. This dissertation is focused on
the regime of large magnetic Reynolds number. Two methods of analysis are con-
sidered in this study. First, a singular perturbation based on the small parameter
E = 1/Rm. This singular perturbation leads to the formal separation of the problem
into several sub-problems defined in different regions, and linked by a suitable asymp-
totic matching process. The outer problem is solved using a numerical simulation
based on a Galerkin finite element method. Several inner-regions are also considered:
the inlet acceleration layer, the magnetic boundary layer over an insulator, and the
flow around a weak corner.

The second method of analysis is a regular perturbation method based on the
perturbation of a uniform flow by a small deformation of the boundaries, leading to a
linear problem of fourth order. This problem can be solved by Fourier transformation.
This method is used to find the inner solution near an isolated corner and to calculate
the flow inside a weakly divergent thruster.

These methods give qualitative results for the structure of the flow in the thrusters.
The results underscore the importance of the Hall effect which is responsible for the
existence of strong transverse gradients within the thruster. The analysis shows that
the quasi one-dimensional model is inadequate when the inter-electrode distance is
not large compared to the magnetic interaction length. In addition, it is shown that
expansion fans obeying classical gas-dynamic laws on a small length scale, originate
at the tip of the electrodes, and that the current lines refract across the expansion
fan. In particular, near the anode tip, current lines refract away from the electrode
surface.

Thesis Supervisor: Manuel Martinez-Sanchez
Title: Associate Professor of Aeronautics and Astronautics
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NOMENCLATURE

b, B Magnetic field

C1,.., C4 Integration constants

ca Acoustic velocity

C, Magneto-acoustic velocity

E Electric field

Ha Hall number

h, H Thruster height

J Current density

k Wave number

Lref Thruster length

Ma Mach number = -

MV Mach-Alfven number = u
C,

n Normal coordinate

p, P Pressure

Pe Electron pressure

R Density

Rm Magnetic Reynolds number

s Streamwise coordinate

T Temperature

u, U Velocity

v,V Velocity

z, X x-coordinate

y, Y y-coordinate
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7 Ratio of specific heat

S M_2
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77 Characteristic coordinate or similarity coordinate
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Am Magnetic interaction length (dimensional)

P Mach, Mach-Alfven angle

iPo Vacuum permeability

Aji Coefficient in the Fourier transform of vi

vl, V 2  Solutions of the fourth order characteristic equation

S Characteristic coordinate

p Density

ar Electric conductivity

T(X) Step function

Angle

X Angle

w Vorticity or frequency



Chapter 1

Introduction

1.1 General Description of the Magneto Dynamic

Accelerator

1.1.1 Electric Propulsion

In classical rocket engines, the exhaust velocity (and therefore the specific impulse) is

limited by the chemical energy stored in the propellants and released by the combus-

tion reaction within the engine. By using an alternative source of energy, namely an

external electric generator, one can accelerate the propellant gas to higher velocities

and also lower the fuel consumption needed to produce a given impulse.

However, increasing the exhaust velocity also means increasing the energy con-

sumption. The choice of an optimal exhaust velocity thus depends on the specific

power of the electric generator, on the mission duration, and on the total impulse

needed for the mission. The higher the specific power of the generator (W/kg), the

higher the optimal exhaust velocity will be.

Several electric propulsion engines have been investigated. The most commonly

known is the ion engine. In this system the ions are accelerated by an electric field

present between two electrodes. They leave the thruster with an energy corresponding

to the potential difference between the electrodes. This system can accelerate the ions

to very high velocities, but it is inefficient at lower exhaust velocities.



A second class of propulsion devices is known as the arcjet. In this system the

propellant is heated by an electric discharge. The electric energy is converted into

thermal energy by Ohmic dissipation. The thermal energy is then recovered by ex-

panding the gas through a supersonic nozzle. This device is the closest to a traditional

rocket engine, both in performance and in physical construction.

A third class of devices can be identified: the electro-magnetic accelerators. In

these systems a magnetic field plays a significant role in the acceleration of the plasma.

This dissertation is focused on a particular device, the magneto-dynamic accelerator,

also known as the Magneto-Plasma-Dynamic Thruster (MPD), or as the Magneto-

Plasma-Dynamic Arcjet. This system is a good candidate for electric propulsion since

it is able to generate exit velocities of the order of 50 km/s.

In such a system there are two modes of acceleration: the electro-thermal mode

and the magneto-dynamic (also known as the electromagnetic) mode. The electro-

thermal mode is similar to the mode of operation of an arcjet. The magneto-dynamic

mode corresponds to the mode of operation of an ordinary D.C. electric motor, and is

characterized by a potentially higher efficiency. This suggests that the efficiency of the

thruster might be increased if the magneto dynamic mode were made dominant. A

simple analysis based on dimensional considerations shows that the ratio between the

electro-magnetic and the electro-thermal powers is proportional to a non-dimensional

number called the magnetic Reynolds number.' This suggests that there is a practical

benefit to studying the theory of the magneto-dynamic thruster for large magnetic

Reynolds numbers: the more efficient magneto-dynamic mode becomes dominant

when the magnetic Reynolds number is large.

The main focus of this thesis is to study the relative effects of the electromagnetic

and the electro-thermal forces on the flow of the plasma within an idealized self-field

accelerator in the framework of a resistive magneto-hydrodynamic model.

1For a more detailed discussion, see the appendices at the end of the dissertation, in particular
appendix B.



1.2 Experimental Background: Phenomenologi-

cal Description

1.2.1 Typical Devices

Experimental magneto-dynamic accelerators have been tested since the 60's. The

major programs were canceled in the early 70's, but related research continued on a

small scale in the USA, the USSR, Japan and Europe. A cutaway view of an idealized

thruster is shown in figure 1-1, and some thruster geometries are shown in figures 1-

2, 1-3, and 1-4. They consist of a combination of two coaxial electrodes, the outer

electrode being the anode (the positive electrode), and the inner electrode being the

cathode (negative electrode). The electrodes also play the role of the nozzle, and their

geometry contributes to the shaping of the flow. The current flowing from the anode

to the cathode through the plasma creates a magnetic field which is in the azimuthal

direction, i.e. B = Boe,. This field is called self-field, because it is a consequence of

the current flowing through the device. The magnetic field is confined between the

two electrodes. It has a maximum at the inlet of the plasma chamber near the root of

the cathode, and decreases downstream (with increasing z), as well as radially (with

increasing r). In addition some designs have incorporated an external coil generating

an axial magnetic field, whose purpose is to stabilize the flow and to act as a magnetic

nozzle. This improves the thrust and the system efficiency. Since the current drawn

by these devices can be considerable, many experiments are done with short current

pulses, with an instantaneous current of several tens of kiloamperes, and powers of

several megawatts.

A review of the performance of magneto-dynamic accelerators has been recently

published by Sovey and Mantenieks [58]. The experimental results indicate a general

increase of propulsive efficiency as the current is increased. However there exists a

threshold above which the discharge becomes highly unstable. This unstable regime

is characterized by high frequency oscillations of the interelectrode voltage. Kurtz,

Auweter-Kurtz et al. [31] found the oscillations to be in the 200 - 300 kHz range.



The maximum efficiency is about 20-25% when argon is used as propellant, and

seems to increase for lower atomic mass propellants. The onset of instabilities can be

experimentally correlated with a critical value of the ratio 1 (where I is the current

and ri is the mass flow rate,) which depends on the type of gas used as propellant

and is higher for the lower atomic masses as reported by Lien and Garrison [36].

The next section will concentrate on some important phenomena which have been

observed experimentally.

1.2.2 Current Distribution

An example of current patterns observed experimentally is shown in figure 5-9. It

can be seen that as the current flows from the anode to the cathode, it concentrates

at both ends of the electrodes. Notice that the current lines do not strike the surface

of the electrodes at right angles. On the cathode, the current lines concentrate at the

upstream end, and on the anode they concentrate at the downstream end. In the exit

region the current lines converge towards the corner at the end of the anode, some of

them attach on the corner's downstream side.

1.2.3 Anode Depletion

A decrease of particle density (neutral particles, ions and electrons) in the vicinity

of the anode has been observed at high current. Due to the high thermal fluxes and

the short response time needed for the sensor, the actual measurement of particle

densities within the thruster is a difficult task. The experimental evidence is mostly

related to the measurement of the charged particle densities (nhe and ni) by indirect

methods.

Vainberg et al. [63] have reported estimates of the electron density obtained

by using an electrostatic probe and by measuring the anode potential drop. The

electrostatic probe measures the relation between the probe potential drop (U) and

probe current flow (I). Combining these (U,I) characteristics with some assumptions

about the thermodynamical state of the plasma, one can estimate the electron density



and temperature in the neighborhood of the probe. In the second method, they

measured the anode potential drop which is the potential drop in the non-neutral

layer which covers the anode surface. Normally this layer is electron-repelling due to

an excess of negative charges in the layer, and the potential drop is therefore negative.

They have measured the change of this potential drop as a function of the mass flow

rate and of the total current. They observed that for high values of the 12/rh ratio,

the potential-drop across the non-neutral electrode layer changes sign and becomes

positive. This observation can be interpreted as an indication of a decrease in electron

density within the plasma at the edge of the non-neutral layer.2

Another evidence of low electronic density near the anode was provided by the

experiment described by Kilfoyle et al. [26]. They observed the spectroscopic emission

in the gas near the exit plane of a self field magneto-dynamic thruster working near

the threshold of instabilities. They measured the line broadening of the Ha and Hp

lines of hydrogen. From these measurements, they were able to estimate the electron

density in the region near the exit plane. They observed a maximum density near the

cathode and a minimum near the anode. The minimum appears to be very low, and

the point where the density is half of the maximum value is located halfway between

the electrodes.

These observations of low ionic and electronic density near the anode have two

consequences. One is the suggestion that one-dimensional models may be inadequate

to describe the thruster behavior since the transverse gradients may be more impor-

tant than the longitudinal.

Another consequence of this depletion has to do with the stability of the thruster.

Although there is no general consensus on the theory or on the actual mechanism of

this instability, many authors like Baksht et al. [4] have suggested that the mass-

2This is briefly explained below. The anode current-density can be estimated as i, = jie!& .

where AV. is the anode drop, je = jcnee is the electron thermal flux in the plasma, T, is the
electron temperature and e, - VT is the mean thermal velocity for the electrons. If T, is constant,
a decrease of n, can only be compensated by an increase of AV,. If the density becomes very low,
AVa can become positive. In addition, this saturation (ja j,) can only occur in highly ionized
plasmas. In weakly ionized plasma, the necessary current can be provided by additional ionization
of the plasma.



depletion near the anode is the cause of high current instabilities. This question will

be addressed again below.

1.2.4 Effect of the Tank Pressure

There has been some controversy about the extent to which test measurements made

on the ground reflected the true performance of the thrusters in vacuum. Some

researchers have postulated that thrust level and efficiency were often overestimated

in ground tests because the thrusters were fired in tanks which could not reach the

low pressure level likely to be encountered in outer space.

The effect of ambient tank pressure on the thrust and arc voltage of a 70 kW

continuously fired self-field thruster was studied by Kurtz, Auweter-Kurtz et al. [30].

They considered tank pressures in the 10-1 to 1.3 Pascal range. Although they did

not notice measurable changes in the 10- 1 Pa to 2.6 x 10- 1 Pa range, they observed

a small increase (- 2.5 %) in arc voltage and a small decrease (- 5 %) in the thrust

as the pressure was increased to its maximum value of 1.3 Pascals.

The effect of ambient pressure on the performance of the applied field thruster

was studied in a series of experiments at NASA's Lewis Research Center by Connolly

et al. [15]. They observed that the performance varied with the background pressure;

at high pressure (13 Pa) the thrust to pressure ratio could be increased by a factor

of two over the low pressure ratio. At intermediate pressure, this ratio could go as

low as half of the reference ratio. They attributed these effects to the entrainment of

background gases into the arc discharge. Using spectroscopic methods, Connolly et

al. measured the species' axial velocity in the plume. They observed that a significant

part of the acceleration occurred as far as 10 cm from the exit plane. This obser-

vation suggests that some of the electromagnetic interactions may happen outside

the thruster, which would be consistent with the presence of a significant amount of

magnetic field and currents downstream of the exit plane. This also suggests that the

analysis of a thruster could be incomplete when the condition beyond the exit plane

is not considered.



1.2.5 Onset of Instabilities

Experiments have shown that the overall efficiency and the exhaust velocity increase

with the current. Unfortunately the flow becomes highly unstable above a certain

current. This unstable regime is characterized by large fluctuations in the arc voltage

and a simultaneous increase of the electrode erosion rate on the cathode and on the

anode. The threshold of these instabilities is a function of mass flow rate and total

current. It has been correlated with a critical value of the parameter: 12

The phenomenon is poorly understood and several theories have been proposed

to explain these instabilities. Baksht et al. [4] suggested that it may be related to

the disappearance of charge carriers near the anode. These carriers are removed by

the action of the magnetic field on the plasma near the anode. When the carrier

density becomes too small, a diffusive discharge is no longer possible and experiments

have shown that the discharge breaks up into a number of concentrated conductive

channels which are animated with rapid motion over the anode surface. This mode is

called the anode spot mode. However it is not clear how the transition from a diffuse

discharge to a multiple anode spot discharge can affect the stability of the bulk of the

discharge away from the anode.

Some researchers have also attempted to correlate the onset of instabilities to

cathode and bulk processes. Kilfoyle et al. [26] looked at the spectroscopic emission

of Ar and Ar+ near the exit. Through a measurement of the anode potential drop they

observed a charge carrier depletion near the anode at high currents. However, this

depletion was observed at a current level (35 kA) for which the flow remained stable.

They also observed that the emission of Ar becomes very weak near the threshold

of instabilities around 60 kA at 4 g/s. These observations suggest that a mechanism

other than anode depletion may be the source of the unstable behavior.

1.3 Magneto-Hydrodynamic Theories

In order to understand the behavior of the thruster it is convenient to use a magneto-

hydrodynamic model, which assumes that the plasma can be described as a fluid. This



assumption is considered satisfactory when the collision frequency is large enough to

maintain local thermodynamic equilibrium, at least for each species considered. In

the case of most magneto-dynamic thrusters, the local thermodynamic equilibrium is

usually valid, assuming different equilibrium temperatures for the electrons and the

heavy species.

1.3.1 One-dimensional Models

Kuriki et al. [29] have presented a justification of the current distribution based

on a one-dimensional, one-fluid, magneto-hydrodynamic model. They consider a

narrow channel, assume that the quantities vary only in the streamwise direction,

and neglect the Hall effect and the pressure. The authors show that the current tends

to concentrate at both ends of the channel. They identify the magnetic Reynolds

number as a parameter which controls the shape of the discharge. This parameter

represents the relative strengths of the diffusive and convective effects on the magnetic

field, and it is defined by

Rm = o cro u,,ef Lee (1.1)

where go is the magnetic permeability of vacuum, ao is the electrical conductivity,

uef is the reference velocity, and L,,~ is the reference length, in this case the thruster

length.

As the same time it is possible to define a scale length Am for which the diffusive

and convective effects are of the same order. This scale length will be called the

magnetic interaction length in the rest of this thesis and is defined by the following

expression:
1 Lei

Am =. R (1.2)
ALOaUref Rrn

With this definition the magnetic Reynolds number becomes:

Rm,= (1.3)

As the magnetic Reynolds number increases, the concentration at the ends of the



channel becomes more pronounced. They distinguish between three regions: the inlet

concentration where there is a strong dissipation, the core of the channel where there

is little current and little dissipation, and the exit concentration region, again with

strong dissipation. The current concentration regions have a thickness of the order of

the magnetic interaction length Am As the magnetic Reynolds number decreases, the

end-regions eventually overlap each other, creating a rather homogeneous discharge

over the whole length of the channel. The authors considered the effect of the electrode

geometry on the solution of their one-dimensional model. They predicted that the

best efficiency is given by the convergent-divergent geometry, which allows a smooth

passage from sub-alfvenic to super-alfvenic flow.3

In a later article Kunii et al. [28] compared the results of their theory with

experiments. They confirmed the tendency for the current to concentrate near the

electrode ends with increasing total current. However they were unable to match the

experimental shape of the current distribution along the electrodes with the predicted

values. They observed that the most efficient geometry was the divergent geometry,

and not the convergent-divergent geometry predicted by the theory.

Martinez-Sanchez [39],[40] has extended the above theory to include the effect

of the pressure on the flow. By adding an energy equation he was able to confirm

the theoretical results of Kuriki et al. in particular in the regime of high magnetic

Reynolds number (Rm > 1), where the flow is everywhere supersonic. In addition he

predicted the existence of a mixed supersonic/subsonic regime which appears when

the magnetic Reynolds number falls below a threshold value. In this regime the su-

personic and subsonic regions are separated by a shock, which introduces additional

losses and decreases the efficiency. This shock is imposed by the constraint that the

flow be choked at the exit, or that the exit Mach number cannot become less than one,

3The alfvenic velocity is the velocity at which small amplitude waves propagate transverse to the
magnetic field in a cold magnetized plasma. The equivalent to the Mach number for these waves is
called the Alfven number and is defined by,

A-- (1.4)

where the variables are written in non-dimensional form.



since the thruster flow exits into the vacuum. If one reduces the magnetic Reynolds

number still further the channel eventually becomes completely subsonic, and the

shock disappears. Martinez-Sanchez has studied the effect of the electrode gap varia-

tion on the properties of the discharge, and confirmed the theoretical results of Kuriki

et al., suggesting use of a converging-diverging geometry in order to increase the over-

all efficiency. Martinez-Sanchez also presented a perturbation method which solves

the equations by separating the inlet and exit regions from the non-dissipative core

of the discharge. An analytic solution based on this perturbation method was given

for the case where the pressure is neglected, and a numerical solution was presented

for the case of an ideal gas and for the case of an ionized gas in thermodynamical

equilibrium. This analysis introduces two important non-dimensional numbers: the

Mach number

Ma = (1.5)

which indicates the ratio between the fluid velocity and the classical speed of sound,

and the Mach-Alfven number

My = (1.6)
p/p + 2b2/ (1.6)

which indicates the ratio between the fluid velocity and the magneto-acoustic speed

of sound. It was found that the Mach-Alfven number appears in the large-scale flow

behavior in the outer solution whereas the Mach number appears in the inner solution,

namely the resistive inlet layer, and controls the shock behavior.

Subsequently Heimerdinger [24] undertook an experimental validation of the theo-

retical predictions. He studied a quasi one-dimensional thruster with several cathode

geometries: a constant area channel, a divergent channel, and a convergent-divergent

channel. He measured the current density in the channel and estimated the thruster

efficiency. He reported that the divergent and convergent-divergent channels had a

higher efficiencies than the constant area channel.

In an effort to analyse the effect of the non-ideal character of the plasma, Martinez-



Sanchez and Niewood [47] have extended the one-dimensional model by including

some of the physical effects which are potentially important, in particular the dis-

tinction between electron and heavy-particle properties. The underlying idea was

to describe the plasma by a two-fluid hydrodynamic model with separate properties

(density, temperature, velocity) for the electrons and the heavy particles (ions and

neutrals). Each fluid is considered to be in local thermal equilibrium. The authors

allowed for different electron and heavy particle temperatures, different velocities,

non-equilibrium ionization, viscous friction, and the ambipolar charge diffusion to

the walls. Experiments show that this description is required when the plasma den-

sity is low and the collisions are not frequent enough to maintain a unique temperature

for the whole plasma.

They presented the results of numerical simulations which included various com-

binations of these phenomena. Most of these simulations were done for a magnetic

Reynolds number of approximately 5, which can be considered to be the lower end

of the magneto-dynamic regime. Their results showed that the current distribution

is not significantly modified by the presence of these effects, but that the efficiency

is lowered by ionization and viscous losses. The viscosity of the fluid had the largest

effect both on the distribution of the current along the electrodes and on the ef-

ficiency. Its effect was to distribute the current more uniformly on the surface of

the electrodes. They concluded that the plasma was not fully ionized even near the

thruster exit plane, and they noticed large temperature differences between electrons

and heavy particles.

In conclusion it appears that one-dimensional resistive magneto-hydrodynamic

models of the plasma flow can quantitatively explain the current concentration at the

ends of the electrodes, and predict the thrust with a good accuracy. But magneto-

hydrodynamic models do not accurately predict the voltage, which is equivalent to

overestimating the efficiency. Nor do they explain the mechanism by which the

thrusters become unstable at high current.



1.3.2 Shortcomings of One-Dimensional Models

Since real flows are two- or three-dimensional, a study based on a one-dimensional

model raises the question of its applicability. The argument which leads from an

original two-dimensional model to a one-dimensional approximation is usually the

following: The quantities can be averaged over the cross section of the thruster, for

instance

<a >= a d

and the original set of partial differential equations reduces to a set of ordinary dif-

ferential equations. In order to relate these averaged quantities to each other, it

is necessary to assume that the average of a product can be approximated by the

product of the averages:

< ab>=< a> < b>.

This last operation may not be valid, in particular when the quantities are very

inhomogeneous. Although it can be seen that this approximation becomes nearly

exact when the variables are nearly uniform on the integration surfaces, in general

there is no guarantee that the results of a particular problem will be meaningful,

and it is difficult to estimate the order of magnitude of the error introduced by the

averaging method.

Kevorkian and Cole [25] offer another argument to justify the applicability of

a one-dimensional model. This argument is based on a limiting process where the

thickness of the channel is a small parameter which goes to zero. The solution is then

sought as an asymptotic expansion in terms of the small parameter. This method

incorporates the influence of the boundary conditions directly. An analysis of the

magneto-hydrodynamic model shows that according to Kevorkian and Cole's defini-

tion, the one-dimensional model does not apply to the magneto-dynamic thruster,

because some of the quantities (namely p, u, T) do not assume a one-dimensional dis-

tribution in the limit of narrow channels. Therefore it seems that the one-dimensional

model is built on shaky mathematical grounds.

In addition there are two important issues which have not been addressed by the



one-dimensional models described above, namely the effect of the Hall conductivity

on the channel flow, and the analysis of the exit region where the flow expands

into vacuum. The Hall parameter reflects the relative level of the electron collisions

frequency 1/7; and the electron cyclotron frequency w,,, and is defined by:

Ha = wce re. (1.7)

Even in narrow channel geometries where the one-dimensional model is a priori

likely to be accurate, the effect of the Hall conductivity introduces constraints on the

solutions which imply the presence of very strong gradients in the transverse direction.

Finally the analysis of the exit region of narrow channels poses another difficulty as

the problem changes from a channel-flow to an expansion into the vacuum. In the one-

dimensional models considered above, the calculation is ended somewhat arbitrary

at the end of the electrodes where the boundary condition B = 0 is usually applied.

However experimental plots of the current lines show that a significant fraction (10

to 20%) of the current flows outside the channel.

Consequently it appears that the one-dimensional model may not be adequate

in order to understand the thruster behavior, and it seems logical to look at two-

dimensional flows.

1.3.3 Two-Dimensional Models

Two approaches can be employed to study two-dimensional models of magneto-

dynamic flows. One approach is to simplify the model to the point where it can

be solved analytically, or can be reduced to a quadrature. Another approach is to

rely on numerical simulations.

As for the first approach one should mention the work done in the Soviet Union

during the 1960s. The review presented by Morozov and Solovev in [35] summarizes

their research. In [44] Morozov and Solovev considered ideal magneto-hydrodynamic

flows in axisymmetrical nozzles. They obtained analytic solutions for narrow channels

and for flows with slowly varying parameters along the axis of symmetry. In [45] they



extended their analysis to include the Hall effect. In these analyses, the resistivity

is ignored, and consequently the inlet acceleration layer (see chapter 2) is not taken

into account.

Baksht et al. proposed a method to reduce the two-dimensional analysis to a

one-dimensional problem by averaging the quantities across the channel. By taking

into account the local behavior of the low density layer along the anode surface they

predicted the impossibility to pass more than a certain amount of current through

the accelerator. This maximum current corresponds to the value for which the entire

anode surface becomes electron-attracting. They show that the saturation occurs

when the parameter I7/4//rh M reaches a critical value. (Here I is the total current,

rh is the mass-flow rate and M is the atomic mass of the accelerated species.) This

theory fits well with the parameter 12/ ni VM used by experimentalists to predict the

onset of instabilities.

Soviet work based on numerical simulations dating from the same period is re-

viewed by Brushlinskii and Morozov in [35]. Most simulations are based on one-fluid

MHD models, and consider simple (idealized) geometries, including a convergent-

divergent nozzle and an axisymmetrical accelerator with a short central electrode.

The authors rely on a time-marching algorithm. They consider three classes of prob-

lems: the non-resistive plasma, the resistive plasma without the Hall effect, and the

resistive plasma with the Hall effect. Numerical results were easily obtained in the

first two cases, but the simulation of resistive plasmas with the Hall effect could only

be obtained within a narrow range of parameters. They report that their calculation

becomes unstable when the Hall effect exceeds a critical value which is a function of

the plasma-,f (defined by , = Z) and of the magnetic Reynolds number. They obtain

the following correlation: H* = f1/ 4 R1/ 2. If one assumes that the plasma-,f is inde-

pendent of of the geometry (which is supported by the results of the one-dimensional

model,) and is also independent of the Hall parameter, and if one accepts the au-

thors' suggestion that the calculation's unstable behavior corresponds to a physical

instability, this correlation suggests that the stability of the device can be improved

by increasing the Reynolds number, that is by increasing the thruster length. The



authors also presented a series of results for an axisymmetric thruster with a short

central electrode. They noticed the presence of a compression region along the axis

of symmetry, starting at the tip of the central electrode. This compression region

was characterized by very high temperatures and densities. Subsequently they ex-

tended their model by including ionization processes. Under certain conditions they

observed sharp temperature oscillations and periodic changes in the the position of

the ionization front. All their calculations start with a flow which has its origin at

-oo. In this situation the dissipative effects which would normally appear within the

inlet acceleration layer are ignored, and it is not possible to predict the effect of this

dissipative region on the flow.

Kimura et al. [27] presented a two-dimensional simulation of a self-field magneto-

dynamic thruster in the limit of very small magnetic Reynolds Number. In this limit

the thruster works in the electrothermal regime, the convective term can be neglected

in the magnetic field equation, and the magnetic field can be solved independently

from the flow of the plasma. The authors did not attempt to calculate the plasma

flow, but limited their analysis to the magnetic field. This magnetic field is controlled

by an elliptic equation which was solved by a finite difference method. The Hall effect

which appears both in the equation and in the boundary conditions was included in

the analysis. They calculated the current distribution on the electrodes for several

values of the Hall parameter, and concluded that the Hall phenomenon displaced

the current distribution toward the exit along the anode surface, and toward the

inlet along the cathode surface. They compared their calculation to experimental

results and concluded that there was a good correlation as long as the Hall effect was

included.

Tanaka et al. [59] extended this model to systems working with an external focus-

ing magnetic field. From their numerical simulation they concluded that the external

magnetic field changed the current flow and the current distribution along the elec-

trodes. In particular, they observed that the applied magnetic field compensated some

of the effects of the Hall conductivity along the cathode by reducing the concentra-

tion of current on the upstream part of the electrode and by increasing the current



concentration on the downstream part of the anode. Finally they noticed that the

flow pattern moved progressively outside of the thruster as the applied magnetic field

was increased, despite the complete absence of any convective effect in their model.

In a subsequent paper Tanaka and Kimura [60] have included the convection term

in the magnetic equation and estimated the plasma flow using a quasi one-dimensional

model which was coupled to the magnetic field. The effects of the magnetic field on

the plasma are averaged in the direction normal to the streamwise coordinate and

then applied to the one-dimensional variable-area model. Similarly the results of the

model are applied to the magnetic field equation assuming that the flow quantities

are constant in the direction normal to the streamlines. This coupling method raises

a question which was left unanswered: what indication do the authors have that the

averaging-coupling process will not erase some significant two-dimensional features of

the flow?

In a previous study [12] the author of this dissertation developed a two-dimensional

numerical simulation based on a one-fluid, isothermal, magneto-hydrodynamic model

of the plasma. The system of partial differential equations was discretized using a

finite volume technique and the steady state was solved using a Newton-Raphson

method. This simulation was limited to small magnetic Reynolds numbers corre-

sponding to the electrothermal regime.

In addition Sleziona, Kurtz, Auweter-Kurtz and Schrade [57], [3] have presented

several numerical simulations corresponding to small and medium Rm, characteristic

of the type of experimental thrusters studied at the University of Stuttgart.

More recently, Niewood [48] presented axisymmetrical two fluid simulations with

magnetic Reynolds number below 5. He studied the Hall effect as well as non-

equilibrium effects. He confirmed the existence of a strong mass-depletion along

the anode.

In conclusion, several two-dimensional numerical simulations of magneto-dynamic

thrusters have been presented in the literature. However none of these models covers

the regime of high magnetic Reynolds numbers. This limitation is essentially due

to the presence of numerical problems at high currents, namely unstable codes and



non-physical results like negative temperature, entropy decrease, etc.

1.4 Other Aspects of Magneto-Dynamic Acceler-

ator Flows

So far the discussion was centered on theories and simulations based on resistive

magneto-hydrodynamic equations. At this point it seems necessary to widen the

object of the discussion and to pay some attention to several physical phenomena not

considered before.

1.4.1 Transport Phenomena

In addition to electric conductivity other transport phenomena have an impact on

the flow inside a magneto-dynamic thruster. Classical transport coefficients based on

the Boltzmann theory of atomic and electronic collisions, will be considered first.

The most important of these phenomena, in addition to the electric resistivity,

is most likely the viscosity. The viscous friction within the fluid creates additional

losses which increase the plasma temperature and entropy and decrease the maximum

efficiency. Viscous boundary layers exist near the electrode surfaces. An estimate of

the size of these boundary layers is given in appendix D. It shows that the viscous

scale length is smaller than the magnetic scale length, so that viscous boundary

layers will be smaller than magnetic boundary layers. However, for flows in narrow

channels (when the width is not large compared to the magnetic interaction length)

viscous boundary layers are expected to merge, and a parabolic velocity profile should

appear in the channel. Niewood and Martinez-Sanchez [47] have considered the effect

of viscosity on the flow in a slender magneto-dynamic thruster. They concluded that

the addition of viscosity drastically lowers the overall thruster efficiency.

Along with the viscosity, the thermal conductivity is responsible for some addi-

tional decrease in the overall thruster efficiency. Since the plasma is composed of

different species, an additional transport phenomenon exists which has no equivalent



in the one-fluid MHD model, namely the diffusion of species as a response to density

gradients. The ambipolar diffusion mechanism transports energy from the core of the

discharge to the walls, where a fraction of the ionization energy is lost to the wall when

the ions and electrons recombine on the electrode surface. In addition experimental

data indicate that the electron temperature is very nearly constant. A high electron

thermal conductivity contributes to maintaining the electron temperature within nar-

row bounds. An accurate evaluation of thermal conductivity, of the electron diffusion

rate and of the electron density is important in order to predict the heat transfer to

the electrodes. These effects were studied by Niewood and Martinez-Sanchez using a

one-dimensional model described in [47].

One must also pay attention to the so-called anomalous transport coefficients.

When the plasma becomes turbulent the effective transport coefficients increase be-

cause of the mixing induced by the turbulence.

Gallimore et al. [19] have estimated the conductivity near the anode of a Princeton

"benchmark" thruster by using measurement of current density near the anode and

by assuming ad hoc expressions for the other unknowns. They concluded that the

electrical resistivity near the anode is lower than the classical expression derived

from kinetic theory (Spitzer-Hirm formula), and that the discrepancy increases with

higher current levels. The authors considered two mechanisms which could explain

the discrepancy: one related to a boundary layer of nearly collisionless and highly

magnetized electrons near the anode surface; and another related to the "anomalous

transport" due to small scale instabilities.

Hastings and Niewood [23] considered a modified two-stream instability and esti-

mated its effect on the electric conductivity, as well as on the ion heating rate. They

concluded that the instability could increase the resistivity by at least an order of

magnitude. Choueiri [13] also attributes the increase of resistivity to the onset of

small scale turbulence due to a two-stream instability. Tilley et al. [61] considered

two types of instabilities: the electron-cyclotron drift instability and the generalized

lower hybrid drift instability. These last two articles do not give quantitative predic-

tions for the anomalous plasma resistivity, however Choueiri has proposed correlations



between the anomalous resistivity and the local Hall effect derived from experimental

measurements.

The plasma fusion community has done a considerable amount of work on anoma-

lous resistivity in the context of tokamaks and other fusion machines. However

many of these results are derived for conditions which are very different from that of

magneto-dynamic thrusters, and therefore not directly applicable.

In order to be consistent, any consideration of "anomalous transport" should be

done systematically for all transport phenomenona including the Hall effect. This

means that a new Ohm's law must be derived in a consistent way. An additional

effect should also be expected on the plasma viscosity, considering the sensitivity of

the viscosity to the ionization fraction.

1.4.2 Onset of Macroscopic Instabilities

Experimental observations have shown that the thruster regime of operation becomes

unstable for large currents. The onset of macroscopic instabilities has important

practical consequences since these instabilities are often destructive in nature. Several

theories have been proposed in order to explain the physics of these instabilities, and

to predict the limit of the unstable regime.

A first theory suggests that the onset of instability appears when the whole surface

of the anode is depleted of charge carriers by the Hall effect. A criterion for anode

starvation was derived by Baksht, Moishes, and Rybakov [4]. Although the authors

did not claim that starvation was a cause of instability their theory is often considered

a theory of onset of macroscopic instabilities because they were able to predict the

scaling law observed experimentally.

Lawless and Subramanian [34] have suggested that the onset of instability was due

to a limitation on the value of the "electromotive force": EEMF = u x B. However

this theory is not satisfactory because it is based on a misunderstanding of the free

parameters in the one-dimensional problem. The authors' argument can be summa-

rized as follows: the one-dimensional model cannot have solutions when the ratio 2

is larger than a certain critical value. But it can be shown (see chapter 2 for the



details) that the one-dimensional model always has a unique solution for any value of

1, and therefore the mechanism proposed by Lawless and Subramanian cannot be a

possible explanation for the onset of instabilities.

Schrade et al. [53] have suggested that the onset is due to a loss of axial symmetry

in the discharge. Their theory relies only on magneto-hydrodynamic effects, and

predicts a localized current concentration at the anode surface which is consistent

with the increase of erosion rate observed in experiments. However the theory does

not predict the unsteadiness of the phenomenon.

Niewood, Preble et al. [49] have investigated two mechanisms: the electrother-

mal and the modified two-stream instabilities. They concluded that both of these

mechanisms were likely to be present in experimental systems. Moreover, the electro-

thermal mechanism correlates well with experimental observations of the unstable

regime.

The modified two-stream instability mechanism was also investigated by Hastings

and Niewood [23] and by Choueiri [13]. The goal of this last author was to find an

explanation for the onset of instabilities. A combination of theory and experiments

lead him to believe that a two-stream instability was consistent with the experimental

result and that the instability was strongest in the regions of large Hall parameter.

1.4.3 Other Aspects of Plasma Simulations

In parallel to the additional complexity of the physics of the flow one should also

consider more general numerical methods and comment on their relevance to the

simulation of magneto-dynamic flows. A logical approach is to consider what has

been done in the various branches of plasma physics. Since the physics of plasmas

varies considerably from one problem to the next, the numerical methods used in

practice are fairly specialized, and depend on each application. A sampling of the

numerical methods used in the various branches of plasma physics can be found in

[17].

Most plasma simulation methods fall in two categories: particle simulations and

finite difference methods applied to magneto-hydrodynamic models. Particle sim-



ulations are well-adapted to analyzing local phenomena, wave propagation, plasma

stability, particle-wave interaction, and transient phenomena. Large scale phenomena

are best studied with finite difference codes based on magneto-hydrodynamic models.

Ideal magneto-hydrodynamics dominates the simulation of astrophysical problems

involving plasma interactions with magnetospheres. In the absence of collisions, trans-

port processes are essentially anomalous. The principles of magneto-hydrodynamic

simulation in space plasma are described by Sato in [51]. Specific problems associ-

ated with local interactions are treated by particle methods. The principles of particle

simulations for space plasma are described by Matsumoto and Omura in [41].

The same distinction between particle and finite-difference models can be found

in thermonuclear plasma simulations. Most small-scale problems are treated by the

Particle-In-Cell method, reflecting the original interest in simulating high-temperature,

unsteady, and collisionless plasmas. In this type of algorithm the plasma is simulated

by a large number of particles while the electromagnetic field is described by its

nodal values on a grid. An example of such program is described by Brackbill in [8].

Although particle codes are well suited to study transient phenomena they do not

handle steady-state problems very efficiently. On the other hand fluid codes based on

magneto-hydrodynamic models can be used to study the global plasma equilibrium

and its stability problems. An example of magneto-hydrodynamic stability analysis

using a finite element method can be found in [21].

In addition several methods were developed in order to simulate devices with

rather different physics, like particle accelerators, free-electron lasers or millimeter-

wave generators, most of them based of particle codes.

The methods most applicable to the analysis of space propulsion devices are those

developed for the analysis of plasma switches. These devices often work in low-

temperature, collisional regimes, with significant plasma velocities.

A program called MACH2 was developed for the purpose of simulating transient,

collisional flows. The program can currently simulate the evolution of a plasma based

on a one-fluid magneto-hydrodynamic model. It can model transport phenomena like

electric conductivity and viscosity. It uses both Lagrangian and Eulerian meshes,



and the transition from one to the other can be controlled so as to cluster a large

number of grid points near a moving front. The model can also simulate the onset of

anomalous transport at low density by using the appropriate model for the resistivity

as a function of the plasma density.

This program has been used in the simulation of plasma switches by Buff et al. in

[10] and [11]. It was designed to follow the dynamics of the transient regime appearing

in pulsed discharges. However it is less practical when the steady-state regime is

sought. The program assumes a predetermined distribution of magnetic field along

the boundaries. In order to reach a steady state consistent with the behavior of the

plasma, these boundary conditions must be updated taking into account the current

flowing inside the plasma. This requires a careful analysis of the coupling, as well as

some additional programming. When these problems are solved, this program can

become a very efficient tool for studying magneto-dynamic flows.

1.5 Focus of the Thesis

1.5.1 General Philosophy

A large number of theories can be found in the literature, which attempt to explain

the physics of the flow and onset of the unstable regime. Many of these theories are

based on ad hoc hypotheses, often based on experimental correlations. This leads to

a situation where each experimental phenomenon is explained by a different set of

physical laws, some of them introduced without a logical reason, except for the fact

that the results will match some particular experiment.

In reaction to this tendency of introducing ad hoc hypotheses, the author has at-

tempted to formulate the simplest model which incorporates the minimum number

of physical phenomena necessary to capture the following effects: the compressibility

of the fluid (necessary since the the flows expands into the vacuum), the electric re-

sistivity (necessary to describe the Ohmic heating of the gas), the Hall effect (which

appears as the main performance limiting factor), the effect of convection on the



magnetic field (the essence of the magneto-dynamic regime) and a simple thermody-

namic model for the gas in order to have an indication of the energetic balance and

temperature variations.

The author believes that a systematic progression from the simplest to the most

complicated analytic model is more logical and easier to assimilate than a direct

numerical simulation of a complete model including all the possible effects, whose

results can be difficult to interpret.

1.5.2 What Will be Addressed by this Thesis

This thesis considers some of the two-dimensional effects which are not covered by

the one-dimensional magneto-hydrodynamic model of Martinez-Sanchez. The main

questions which are considered are, on one hand, the influence of the Hall effect on

the flow through the accelerator, and on the other hand, the structure of the flow in

the region of the exit plane where the plasma leaves the channel and expands into

the vacuum.

It is believed that the plasma flow can be significantly modified by the Hall effect.

The most direct consequence of this effect is to polarize the electrodes, canceling

the symmetry between the anode and the cathode. Experimental data suggest that

the Hall effect promotes the excursion of the current outside the thruster, and is

responsible for mass depletion near the anode.

1.5.3 Method of Approach

The underlying idea in this thesis is to find approximate two-dimensional solutions,

valid in the regime of high magnetic Reynolds numbers, which can be solved by a

mixture of analytic an numerical methods. Two approaches are used in this thesis.

The first approach is a singular perturbation method based on a small parameter

which is taken as E = --• Using this approach the two-dimensional non-linear prob-

lem can be solved approximately by reducing the entire problem to several simpler

ones. These problems are of two types, the outer and the inner problems.



The outer problems are valid away from the singular regions. The solution to

an outer problem typically does not satisfy some of the boundary conditions. These

boundary conditions must be satisfied by the appropriate inner solutions, and the

relevant inner and outer solutions must then be matched in order to construct a

solution which is valid over the whole domain. In this case the outer problem is the

non-resistive problem, governed by the equations of ideal magneto-hydrodynamics.

The inner problems are valid near the boundaries. They are typically of higher order

than the outer problems. Their solutions satisfy the boundary conditions (or internal

conditions) relevant to their domain of definition, and must match asymptotically the

appropriate outer solution(s). In this case the inner solutions contain the effect of

resistivity. They are typically non-linear, and harder to solve than the outer solutions,

but can sometimes be approximated by a one-dimensional or a self-similar solution

A second approach is a small disturbance linearization method. This method is

a regular perturbation method. One considers a uniform flow, which is perturbed

by a small change in the boundary shape. This method will be used to analyse

the structure of the flow near the exit of an idealized thruster, first by looking at

an isolated corner, and subsequently by analyzing the channel flow inside a weakly

divergent thruster.

These two methods should provide qualitative results on the flow structure within

the thruster and near the exit, including the scale of the phenomena, shape of the

current lines, their attachment point.

1.5.4 Range of the Parameters R, and Ha in Experimental

Devices

Eventually the results of these models are compared with experimental designs chosen

for their quasi one-dimensional geometries and their operating mode in the high

magnetic Reynolds number. These designs are: a flared thruster studied by Wolff

et al. [651 at Princeton University, shown in figure 1-2; a plasma gun studied by

Schoenberg et al. [52] at Los-Alamos, shown in figure 1-3; and a constant area,



Flared Gun Parallel
Gas Ar H, Ar Ar

ra [cm] 5 28 N.A.
re [cm] 0.9 18.5 N.A.

h (gap) [cm] 4.1 9.5 5.1
L (length) [cm] 22 112 13.3

I [kA] 21.3 100 104

rh [g/s] 3 5 24
u,,e [km/s] (25.1) (82.9) (94.)

a [Si/m] (3000.) (3000.) (3000.)
Am, [cm] (1.1) (0.32) (0.28)
Rm(L) (20.8) (350) (47.3)
Rm(h) (3.8) (29.7) (18)

Ha (2.) ? ?

Table 1.1: Operating characteristics of several thrusters. The first thruster is a quasi-
one-dimensional thruster with a flared anode, studied by Wolff, Kelly and Jahn at
Princeton. The second thruster is a large plasma gun studied by Schoenberg et al.
at Los Alamos. The third thruster is a parallel plate thruster studied by Di Capua,
Kelly, and Jahn at Princeton. The parameters which are in parenthesis have been
estimated.

thruster studied by Di Capua et al. [16] at Princeton University, shown in figure 1-4.

The characteristic parameters of these devices are described in table 1.1. In addition

some qualitative comparisons will be made with other experimental results.

1.5.5 Formulation of the Problem

The plasma is described by a two-dimensional magneto-hydrodynamic model of the

discharge, where the gas is assumed to be ideal, with constant -y and constant conduc-

tivity cr. The geometry is cartesian with the flow in the (z, y) plane and the magnetic

field is in the z-direction. The magnetic field is the self-induced field created by the

current flow within the plasma. The details of the process leading to these equations

is described in appendix A. After a suitable non-dimensionalization (which is de-

scribed in detail in appendix B and which introduces the magnetic Reynolds number

Rm = Ioau,,rfLref and the Hall number Ha) the equations take the non-dimensional



form:

V(p u) = 0 (1.8)

p(u V)u + Vp + V b2 = 0 (1.9)

(u V) () 2(- 1)(b)2 (1.10)

p(U.V) •) V2b (1.11)

1 H
e = -u x b + V x b + (V x b) x b (1.12)

1.5.6 Justification of the Choice of the Model

In order to analyze the flow in a magneto-dynamic thruster some simplifications

must be made. As a first step one can assume that the problem can be described by

a one-fluid model. This simplification relies on the assumption that the fluid is very

near thermal equilibrium. The consequence of this assumption will be most severe

in the energy balance equation. However the longitudinal momentum balance will

not be affected as much since the pressure term is small compared either to the gas

momentum or to the magnetic pressure. For the same reason it seems reasonable

to neglect the ionization, despite its considerable impact of the gas temperature,

the thermal conductivity as well as the variation of the plasma enthalpy with the

temperature.

The effect of the viscosity will depend on the relative size of the viscous boundary

layer and of the channel height. In addition one can compare the relative effects of

the viscosity and of the resistivity. For the thrusters considered in this analysis the

viscous scale length is smaller than the magnetic scale length. This indicates that

the main features of the discharge will be determined by the resistive transport, and

that the viscosity will most likely bring smaller corrections to the main features of

the flow.

Thus the most important transport phenomenon appear to be the resistivity of

plasma, including the Hall term. This Hall term is responsible for a significant de-



parture from the one-dimensionality in the flow in narrow channels, as will be shown

in this dissertation. On the other hand the role of viscosity seems more benign in

the sense that its most important effect will be some additional entropy losses. This

will be confirmed in a particular case: in the analysis of the magnetic boundary layer

which appears when the magnetized plasma flows along an insulator. This problem

is treated in chapter 6. The results show that the plasma viscosity and thermal

conductivity do not introduce significant modifications in the structure of the flow.

1.5.7 Structure of the Thesis

The dissertation will be structured in the following way: The first chapter contains

the general introduction. It includes a review of the relevant experimental observa-

tions, and of the theories and models published in the literature. It introduces the

formulation of the magneto-hydrodynamic model, and the goals of the thesis.

The second chapter contains, in a first section, a review of the one-dimensional

theory of the magneto-dynamic accelerator in the case of a constant area channel.

This should provide the reader, who may not be familiar with this theory, with the

knowledge which will facilitate the understanding of the rest of the dissertation. The

inlet inner-layer is then discussed in a second section. It will be shown that the

inlet inner-layer, coupled to the outer solution by the asymptotic matching process,

determines the flow properties in the channel except in the region near the exit.

Finally this chapter introduces the properties of one-dimensional wave propagation

in the plasma. The existence of two different length scales is put in evidence, and

should be useful to understand the properties of the two-dimensional solutions.

The outer problem is discussed in the third chapter. The chapter starts with a

general introduction of the flow properties in the absence of resistivity (ideal MHD),

and introduces a finite-element numerical method which can be used to compute the

outer flow. In addition the chapter contains a presentation of a method of character-

istics and a qualitative analysis of the exit region

The fourth chapter contains the analysis of the flow in the region of the exit.

This analysis contains elements of both the inner-outer singular perturbation method



based on the parameter '-, and of the regular perturbation method based on the

boundary perturbations (small deflection angle). The chapter includes the discussion

of the effects of these phenomena on the flow, and the prediction for the thruster

performance.

The fifth chapter extends the linear analysis to the case of a weakly divergent

channel. The influence of the channel height will be considered.

The sixth chapter contains an analysis of the flow along an insulating surface. This

chapter introduces a self-similar method which gives the asymptotic solution of the

magnetic boundary layer growing along an insulator. In the absence of momentum

and heat transfer the model predicts an infinite temperature at the surface of the

insulator. This singularity disappears when the momentum and heat transport are

included in the model.

The seventh chapter summarizes the results and achievements of this research, as

well as suggesting future work based on what was learned in this research.
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an example of enclosed current contours.



Chapter 2

Review of the One-Dimensional

Model

2.1 Solution to the One-Dimensional Constant Area

Channel

This section reviews the analysis of the one-dimensional model for the constant-

area channel. The model formulation is derived from the equations in conservative

form described in the appendix A. After the appropriate non-dimensionalization, and

dropping the derivatives with respect to y, one obtains the following system describing

the flow of gas in a narrow one-dimensional channel. The unknowns are p, u, p, and

b.

'(p9 ) = o (2.1)

-(pu2 + p +b2 ) = 0 (2.2)

( pu3  r 1 82b2
- ( + up + 2ub') (2.3)
Tx 2 - 1 Rm(2.

9(ub) 1 2b (2.4)
( Rub 8= 2



Since in most experimental devices, the three easily controllable parameters are the

total current, the inlet mass flow rate, and the gas inlet enthalpy, those will be chosen

as the inlet (boundary) conditions for this model as well. In addition there is a one-

to-one relation between the total current and the inlet magnetic field. As a result

one can specify the inlet magnetic field instead of the total current in the thruster.

At the outlet the boundary conditions on p, u, and p are unknown, but the magnetic

field b is assumed to go to zero.

It is possible to find a closed-form solution of this system of equations. The solu-

tion was derived by Martinez-Sanchez in [39]. After integrating the set of equations

with respect to the distance x one obtains,

CO = pu (2.5)

C2 = pu2 + b2 + p (2.6)

C3 = PU3 + up + 2Ub2 1 d b2 (2.7)
2 y - 1 Rl dX

1 db
C4 = ub PL dA (2.8)

Rm dx

Eliminating p and p gives a quadratic equation for u:

0 = u 7 + 1 C } + u{ (C2 - b2)} + {2 C4 b - C3 } (2.9)
2 (1 -7) (7 - 1)

with solutions:

_U - 2- b2 (1 + Iv-) (2.10)
U + 1 C,

U _ - 2 - b (1- 6 V/) (2.11)
+ 1 C1

72 - 1 2C 4 b - C3A = 1 + 1 C1. (2.12)
72 (C2 - b2)2

The solution u_ corresponds to the subsonic branch (near the inlet) and the solution

u+ corresponds to the supersonic branch. The equation (2.9) has solutions if and only



if the discriminant A is positive. This discriminant equals zero when the velocity u

equals the speed of sound ,/E. Since the gas should accelerate past the sonic point,

one must impose the condition that the discriminant reaches zero at the sonic point,

but never goes below zero around this point, and verifies simultaneously the equations:

A = 0, (2.13)

dA
d= 0, (2.14)

that is respectively:
72 -1

b - C2 b, + C C4 = 0, (2.15)

3 C4 b2 -2 C3 b. + C2 C4 = 0. (2.16)

The second equation is a quadratic equation in b, and the root which guarantees that

A > 0 around the sonic point should be chosen. This condition imposes a constraint

on the values of (C1, C2, C3, C4) which satisfy the two equations:

72 - 1b -bC2 + C 4C1 = 0 (2.17)

0a 1 2C\2
b -+  I - C2. (2.18)
3 04 3 04

The magnetic convection equation,

1 db
C04 = ub - (2.19)

Rm dc

can be integrated a second time, giving z as a function of b:

1(o) db'
Sb(O) db' (2.20)
x R () C4 - U(b) bb'

with boundary conditions:

b(1) = 0 (2.21)



b(O) = 1. (2.22)

The constant C4 = Ey is given by the boundary conditions:

Rm = b' (2.23)
R, C4 - U(b,)b"b

and the relation between b and x is obtained by inverting the function:1

x Rm = F(b; C1, C2, C3, C 4 ).

An example of a solution is given in figure 2-1. One can identify 3 regions: (1) The

inlet acceleration region where the plasma goes from a negligible velocity to a velocity

on the order of the magneto-acoustic speed of sound, in a distance on the order of

the magnetic interaction length (- N 1/Rm in reduced variables); (2) a central

region where the electric field is approximately equal to the Electro-Motive Field:

E , u b; (3) an exit region with a length on the order of the magnetic interaction

length where the diffusive aspect of the magnetic field is important. This region is

characterized by the competing effects of the magneto-dynamic acceleration and of

the resistive heating, resulting in a pressure increase and a succession of acceleration

and deceleration near the outlet. At high magnetic Reynolds numbers the following

ordering for the Mach and Mach-Alfven Numbers is valid:

1The integral 2.20 gives a as a function of b. In practice one may be more interested to find b as
a function of x. This can be calculated by discretizing the system of ordinary differential equations,
and solving it numerically, either by a shooting method like Runge-Kutta, or by an iterative method
like the Newton-Raphson method. Another approach that can be taken in this particular case is to
convert the system into an integral equation and solve it by a Picard iteration method. This can be
done because the singularity at the sonic point can be regularized beforehand by a consistent choice
of the constants C1, C 2, C3 , C4 . The integral equation can be written:

b(z) = b(0) + Rm (u(b) b - C4 )da.

The Picard iteration method consists in a repeated calculation of b(z) based on the integration,
which can be summarized by the recurrence relation between two successive estimates of b(z):

bn+,•() = b(O) + Rm j (u(b,n()) b,(0) - C4)d(.



Region Mach Number Mach-Alfven Number Region Type and Properties

(1) M increases M, increases resistive acceleration;

from - 0 to , 3 from - 0 to - 1 sonic passage at Ma = 1.

(2) Ma , 3 M -V 1 Magneto-Dynamic Region;

small magnetic diffusion.

(3) Ma decreases M, V 1 exit region;

from - 3 to - 1 resistive heating.

When the magnetic Reynolds number is decreased a shock appears near the exit

through which the solution jumps from the supersonic to the subsonic branch. As

the value of Rm is decreased the shock moves upstream until it reaches the sonic

point (close to the inlet), then disappears, as the whole channel becomes completely

subsonic.

2.2 Analysis of the Inlet Inner-Layer in the Ab-

sence of the Hall Effect

Consider the case of an inlet with a cartesian geometry. The inlet is parallel to

the y direction (see figure 2-2). It is assumed that the quantities (p, u, v,p, b) are

independent of y.

First, the coordinate z is rescaled according to X = g (with e = 1/Rm) which

eliminates the parameter Rm from the equations. The inner expansion is then :

(p,u,,u, p,b) = (R-, U, , EV, P,,B,) + ...

The transverse velocity is neglected. The expansions are then substituted in the main

equations. The system is then a system of ordinary differential equations similar to

the equations of the one-dimensional constant area channel. However the boundary

conditions for the first term of the expansions are different from those of the finite

length channel. They are defined as follows. At the inlet: B(O) and the inlet total



HTo 0.01 0.001 0.0001
Po 38.432 375.03 3742.3
uo 2.60 10-2 2.667 10- 3  2.672 10- 4

Po 0.1485 0.1494 0.1496
Bo  1. 1. 1.
To 3.8641 10- 3 3.985 10- 4  3.9969 10- 5

Mao 0.3242 0.1034 0.03274
Mvo 1.076 10- 1  3.443 10-2 1.090 10-2
oo 1.2848 1.3098 1.3124

u, 0.7783 0.7634 0.7620
Poo 4.226 10-2 4.1456 10-2 4.1372 10-2
Boo 0.5949 0.5892 0.5886
T. 3.289 10-2 3.1651 10-2 3.1525 10-2
Maoo 3.3241 3.3241 3.3242
Mv, 1.00000 1.00000 1.00000

Table 2.1: Values taken by the variables at the beginning of the inlet (subscripts zero),
and at the edge of the layer, where it matches the outer flow (subscripts infinity).

enthalpy HT(O) = U(0) 2 + () are given. There is an "internal condition"

imposed by the smooth passage through the singularity at the sonic point. This fixes

one parameter. There is one free parameter, the transverse electric field in the inlet

layer, which is adjusted in order to match the outer solution, according to:

lim (R, U, P, B) = lim(p, u, p, b)
X-.o00X4

(2.24)

The results for the case (M, = 1) are shown in figure 2-3, for a particular choice of

HTO = 0.001. The values at X = 0 and X -+ oo of p, u, P, B, T, M., M. for different

values of HTO are also listed in table 2.2.

2.3 Discussion of the Results

This analysis shows that, in the limit of high magnetic Reynolds number and in the

absence of the Hall effect, there exists an inner-layer near the inlet which accelerates

the gas from its small initial velocity to a high velocity. This layer can be calculated



by the equations of the one-dimensional model described in the previous section. The

thickness of this layer is proportional to the magnetic interaction length Am. At

the end of this acceleration layer the velocity is high, and the local magnetic field is

large. The energy needed to accelerate the gas through this layer is essentially derived

from the electro-magnetic field. The pressure and the temperature within the gas are

relatively small, reflecting the fact that most of the magnetic energy (proportional to

b2) is transformed into kinetic energy (proportional to lpu2 , and since the product

pu is constant, also proportional to u).

In order to insure a consistent solution it is necessary to match the inner solution

with the outer solution. It appears that this matching process is not always possible.

There is a limited range of outer-solutions which can be matched to the inlet solution,

namely those which are sub-magneto-sonic at the inlet (see figure 2-4). The limiting

case is that of an inner solution matching an outer flow with a Mach-Alfven number

equal to one. Consequently, if there is a throat downstream of the inlet (convergent-

divergent thruster), the inlet layer will accelerate the flow to the point where it

matches the outer solution, and that will be at a Mach-Alfven number strictly less

than one. If however there is no throat downstream of the inlet, the inlet layer will

accelerate the gas to a maximum velocity for which the Mach-Alfven number equals

one, but cannot accelerate it further.

Contrary to the case of a finite length thruster (see above) the inlet inner-solution

cannot include a shock. Such a shock typically appears in the one-dimensional model,

when the magnetic Reynolds number is below 4. Since the expansion procedure

matches only the first terms of the inner acceleration layer with the outer solution,

the conditions at the outlet cannot be felt at this order in the expansion in the inlet

inner-solution.

The mathematical singularity associated with the "sonic passage", is located

within the inlet acceleration layer. At this point the mathematical nature of the

equations changes from elliptic to partially hyperbolic. This singularity acts as an

inner boundary condition. This fact should be taken in consideration when writing

a two-dimensional numerical code, and care should be exercised in order to avoid



overspecifying the inlet boundary conditions.

2.4 One-Dimensional Wave Propagation through

the Plasma

The one-dimensional propagation of small amplitude waves through the plasma gives

the reader another insight into the different behaviors of the resistive plasma at small

and large scale lengths. Since there may be some confusion about the speed at which

waves propagate in the plasma, it will be shown below that one can define two speeds

of propagation, one being relevant at high frequency: the sonic velocity; the other

being relevant at low frequency: the magneto-sonic velocity. This last velocity is only

relevant when the thruster dimensions are large in front of the magnetic interaction

length.

2.4.1 Dispersion Relation

The presence of dissipation in the equations introduces two effects on wave propaga-

tion through the medium. The first effect is the presence of damping. The dissipation

due to the resistivity tends to damp out the waves, in particular those which have a

wavelength close to the magnetic interaction length Am,. The second effect is the dis-

persion of the waves according to their wavelength or frequency. Two limiting cases,

where the wavelength goes either to 0 or to oo, are considered. Long waves propagate

at the magneto-acoustic velocity while short waves propagate at the acoustic velocity,

which is typically two to four times slower than the magneto-acoustic velocity.

In this section the one-dimensional equations are used to derive a dispersion equa-

tion for small amplitude harmonic waves. This dispersion equation relates the fre-

quency of an elementary Fourier mode to its wave-number. Later the wave behavior

in the two limiting case of low and high frequency will be considered.

Notice that this analysis does not include the effect of the field boundary condi-

tions, and the ideal low frequency behavior is necessarily perturbed by the size of the



thruster so that any wave with a wavelength larger than the length of the channel

will not follow the dispersion relation found below. Similarly there exists another

limit to the applicability of this model at the higher end of the spectrum. This limit

corresponds to the onset of other physical phenomena which are neglected in this

analysis. In the framework of a magneto-hydro-dynamic model, the viscous friction

and the heat diffusion both cause an attenuation of the acoustic waves at the high

end of the spectrum. An order of magnitude analysis shows that these effects scale as

1/R, where Re is the classical Reynolds number. In practice R,IR, ~ 100, so these

effects can be legitimately neglected in this analysis.

The one-dimensional equations for the propagation of the small perturbations

(/, ,•5, b) are obtained by linearizing the equations (B.36-B.39). This system can be

written in the matrix form:

a La 0 &2 j
- + L- + = 0, (2.25)

with:

0 u 1 2'
L = " P (2.26)

0 7p u 0

0 b 0 u

000 0

000 0
M = 0 0 0 0 (2.27)

000 0

Rm

The Hall effect will be neglected in this analysis, and the wavefronts are assumed to

be planes, normal to the direction of propagation. After substitution of the Fourier

modes of the form W = Woei(ke-wt) in the above equation one obtains a homogeneous



linear system:

-iwW + ikLW - k2MW = 0

This can be viewed as an eigenvalue problem in either w or k, provided the other

variable is specified. The system admits non-zero solutions if the matrix is singular,

i.e.:

det(-iwl + ikL - kc2 M) = 0 (2.28)

After substitutions, this equation can be written as:

0 = (ku-w)f (k - )2 kk w k2 ku-w-i - 2 kb2(ku - w).
Rm P Rm P

(2.29)
This is a polynomial of 4th order in w, and of 5th order in k. In general this equation

can be solved for w as a function of k, or for k as a function of w, but the analysis

is simpler for the first case, since the polynomial is of lower order. In this case the

frequency w = w, + iwi, is sought as a function of the wave vector k. When k is real

this is equivalent to assuming that a perturbation is present everywhere in space at

time zero, and to observing its evolution in time.

The term ku - w, which corresponds to an undamped convected mode, can be

factored, as shown in (2.29), leaving a complex polynomial of third order in w. Rather

than writing the general solution which is rather complicated, it is sufficient for

the purpose of this discussion to consider two limiting cases: the case of low wave-

number/frequency (ideal MHD), and the case of high wave-number/frequency where

the magnetic diffusion dominates the behavior of the magnetic field and the fluid

decouples from the magnetic field.

2.4.2 Low Wave Numbers

For low wave numbers (1/k > 1) the dispersion relation reduces to:

0 = (ku - w)2 (kU - w)2 - k2 ( + V , (2.30)1 ( P P



which gives the following solutions to first order:

w = ku convected modes

= u± + + -- magneto-acoustic modes

At low wave numbers (to the first order), the solutions w(k) are all real. This situation

corresponds to high magnetic Reynolds numbers: Rm > 1 where the convection

dominates the behavior of the magnetic field. The waves that propagate through

the fluid correspond to the hybrid between the transverse Alfven waves and the sonic

waves. They are usually called magneto-sonic or magneto-acoustic waves, propagating

with a velocity:
rp 262c= + - (2.31)

The other two modes are convected at the speed of the fluid.

The other terms of the solution expansion in powers of k are:

W1 = ku (2.32)

ik( 2b )
w2 = ku 2- 2 + 2  + O(k 3) (2.33)

2 k7p + 2b2

S= k u + - + 2 2b + O(k 3 ) (2.34)P2R -p + 2b2
kp b( 2 ik 2 W

4 = k(u - + 2R + O2b2 (k3 ) (2.35)

A damping term (negative imaginary part), appears in the second order correction

in three of the four modes. This damping term corresponds to the influence of the

electric resistivity. Its absence in one of the modes corresponds to the existence of an

undamped mode which is not directly coupled to the magnetic field. This mode is

convected by the fluid.



2.4.3 High Wave Numbers

At high wave numbers the dispersion relation reduces (to leading order in k) to:

0 = (ku - ) ((ku - ) - k7 p ) (W + ) (2.36)

whose solutions are: w = ku, U = , w~, = -i . At high wave numbers the fluid

and the magnetic field decouple. This situation corresponds to low magnetic Reynolds

numbers Rm << 1, where the diffusion dominates the behavior of the magnetic field.

The complex root:

k 2( - ) + ku + O(ko) (2.37)

represents the diffusive behavior of the magnetic field. The other roots,

w = k ui - i b O(k-1), (2.38)

represent damped waves2 propagating at the sonic speed of sound c, = Jv/1T. The

undamped mode, convected by the fluid, is also present in the high frequency limit.

2.4.4 Intermediate Domain

Between these two limiting cases there is a region where the waves are strongly

damped by the medium, and cannot propagate very far, particularly when the mag-

netic Reynolds number based on the wavelength is of order one. Thus the plasma

behaves like a very diffusive system except for the entropy-mode which is convected

21In dimensional variables the dispersion relation for the acoustic waves can be written

w=k u± = - -2 = v k - if (2.39)

The Fourier mode is then eik - iwt = eik(z-vt)e- n t . The expression for the time-constant in
dimensional variables is:

S= 1/-2p
oB 2

With the following values: p = 10-5 kg m- 3 ; = 3000 Si m- 1 ; B = 0.1 T, typical of magneto-
dynamic thruster flows, the time constant is then, r = 0.66 10-' s, which corresponds to a relatively
fast decay.



without attenuation. In the presence of viscosity or heat diffusion this entropy-mode

would be damped as well.

2.4.5 Effects of Finite Thruster Length

As was mentioned earlier, this analysis is ill-suited to the situation where the length

of the thruster is of the same order as the wavelength. In this case it is necessary

to take the boundary conditions and the non-uniformity of the steady-state solution

into account. The problem becomes more complicated since one must now solve a

linear eigenvalue problem whose solutions are the eigenvalues (allowed frequencies)

and the eigenvectors (waveforms). Since the problem is bounded, the eigenvectors

are no longer simple exponentials but they must meet the homogeneous boundary

conditions.

This eigenvalue problem was solved by discretizing the one-dimensional equations

over a grid with a finite number of points and solving the resulting matrix-eigenvalue

problem by a standard eigenvalue solver (EISPACK). The eigenvectors and eigenval-

ues give an indication of the behavior of the continuous system. If the background

variables are uniform the results are stable. Four modes can be identified: a strongly

damped mode associated with the decay of magnetic perturbations, a weakly damped

convected mode, and two modes corresponding to the propagation of short waves near

the acoustic velocity. If the background variables have the spatial distribution cor-

responding to the solution of the one-dimensional constant-area channel, including

some strong gradients at the inlet and at the outlet, some of the modes are now un-

stable. Four modes can still be identified: a strongly damped mode associated with

the decay of magnetic perturbations, two stable modes corresponding to the propa-

gation of short waves near the acoustic velocity, and an unstable mode propagating

at a velocity lower than the convective velocity. This unstable mode appears at short

wavelength and grows quickly. A numerical simulation was attempted in order to

verify the results of the numerical eigenmode analysis. The simulation involved the

discretization of the one-dimensional equations on a regular one-dimensional grid.

The dynamics of the solution were simulated by a second order time-accurate im-



Low Spatial Frequency High Spatial Frequency
Magneto-Acoustic Regime Acoustic Regime
k<1 k>l
0W1= ku W1 = -ku
w2 =ku + O(k 2) w2 = -ik + ku + O(ko)

ws =k (u + y + + O(k2 ) w3 = k u + -t i + O(k-')

w4 =k (u - +) + O(k2 ) w4 =k - -irP + O(k1)

Table 2.2: Summary of asymptotic dispersion relations. Note that in order to be
consistent with the notations in the rest of the dissertation all the quantities are
non-dimensionalized according to the relations introduced in the Appendix B.

plicit method (Crank-Nicolson). The same unstable modes were observed and they

are likely to be an intrinsic feature of the flow. In addition these results suggest that,
in the regime of high magnetic Reynolds numbers, a numerical simulation based on a

time marching algorithm is unlikely to reach a steady state. The addition of artificial

viscosity can cure the problem of instabilities, but this raises the question of the rel-

evance of the answer. If the level of artificial dissipation is too high, the calculation

no longer simulates a flow in the regime of high magnetic Reynolds number.

2.4.6 Conclusion

Table 2.2 summarizes the asymptotic forms of the results.

At high frequency a damped acoustic wave propagates through the plasma at a

velocity of -yp/p. At low frequency a slightly damped magneto-acoustic wave prop-

agates through the plasma at a velocity of /yp/p + 2b2/p in non-dimensional units

or 7P/p + B 2/1 op in SI units. In the intermediate domain where the wavelength

is of the same order as the magnetic interaction length, the perturbation is strongly

damped, and the concept of wave no longer applies to the situation.



Constant Area Channel. (Rm=12.87016)
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Figure 2-1: This shows an example of the solution for the constant-area channel,
using the one-dimensional model. The inlet total-enthalpy is HT = 0.001, the electric
field is E = 0.47
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Figure 2-3: Inlet layer profiles. The horizontal coordinate corresponds to the distance
from the back plate, measured in units of magnetic interaction length (Am,). The
vertical coordinate indicates the value taken by the non-dimensionalized variables: (a)
Ma, the Mach number; (b) b, the magnetic field; (c) M,, the Mach-Alfven number;
(d) u, the velocity; (e) p, the pressure. The parameters for this calculation are:
HTo = 0.0001, b = 1., and the flow is chosen to reach a Magneto-sonic number of 1
at oo, which corresponds to the case of a thruster with no throat downstream of the
inlet layer.



Inlet Layer Solutions (Ht(0)=0.0001)
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Figure 2-4: Inlet layer profiles. The horizontal coordinate corresponds to the distance
from the back plate, measured in units of magnetic interaction length (Am,). The
vertical coordinate indicates the value taken by the non-dimensionalized magnetic
field b for different values of the constant C4 = e ,-ub. The curves 1,2,3 are divergent;
b tends to -oo at large distance. They cannot be matched to an outer solution. The
curves 4,5,6 are convergent at oo and therefore can be matched to an outer solution.
Curve number 4 corresponds to the limit case of a Mach-Alfven number of one at
infinity, which is the highest Mach-Alfven number that can be matched by the inlet
acceleration layer. The curves 5,6 correspond to cases of lower matching velocity.
The parameters for this calculation are HT, = 0.0001 and b = 1.



Chapter 3

Non-Resistive Approximation

The non-resistive approximation represents the ideal limit where the gas gains very

little entropy through Ohmic heating. Its first appeal is in the mathematical sim-

plification associated with the dropping of the diffusive and dissipative terms. In

this case the fluid entropy is conserved. The magnetized plasma behaves in a way

which is very similar to that of an ordinary compressible gas, with the exception that

the Mach number is replaced by a Mach-Alfven number which includes the effect of

the magnetic field. In this case the magnetic field plays a role similar to that of the

pressure, and varies along the streamlines according to its own conservation equation.

Although the mathematical simplicity of this method is a clear advantage, its

shortcomings should also be considered. The method will overestimate the efficiency

of the thruster. It cannot take into account the Hall effect. It overlooks the regular

gas-dynamic effects which occur at small scale lengths, i.e. when the plasma decouples

from the magnetic field. On the other hand, the conclusions of the following chapters

indicate that this approximation is valid when all the thruster dimensions, and in

particular the inter-electrode gap, are large compared to the magnetic interaction

length.



3.1 Background on Ideal Magneto-Hydrodynamic

Flows

In [35] and [44] Morozov and Solov'ev studied ideal magneto-hydrodynamic flows in

the context of magneto-dynamic accelerators. In their analysis the authors neglected

the pressure term in the momentum equation and ignored the energy equation. They

showed that as the flow passes through a throat, the plasma undergoes a transition

from sub-alfvenic to super-alfvenic. They derived analytic solutions for the two-

dimensional flow through a variable-area thruster with slowly varying cross-section.

Their analysis was later extended in order to account for some aspects of the Hall

effect in idealized thruster geometries, while still keeping a system of first order equa-

tions. In this case however streamlines are no longer equipotentials, and the boundary

conditions of the ideal MHD problem are not compatible with the equipotential con-

ditions at the electrode surfaces.

Numerical simulations of ideal magneto-hydrodynamic flows in idealized thruster

geometries were presented by Brushlinskii and Solov'ev in [9]. These simulations do

not account for the thermodynamic pressure and are limited to very simple geometries.

From their numerical simulations, they concluded that high speed flows of a non-

resistive plasma in a magneto-dynamic thruster are stable.

3.2 Formulation and Properties of the Solution

The outer problem represents the limiting case where the resistivity of the medium is

negligible. The model reduces to an ideal MHD problem. Its formulation is obtained

by setting the term ' to zero in the model equations (1.8), giving the system:

V(p u) = 0 (3.1)

p(u -V)u + Vp + V b = 0 (3.2)



(u . V)(& =0 (3.3)

(u -V) =0 (3.4)

E = ux b (3.5)

This simplification brings out many conservation relations. Here are some of these

properties.

First, the streamlines are equipotentials. This can be established by noting that

the Ohm's law for infinite conductivity can be written as: E = u x b, therefore,

E -u = (u x b) . u = 0. Consequently the walls, being streamlines, are also equipo-

tentials, independent of their actual resistivity. (In other words, the walls will be

equipotentials even if they are insulators. If this is the case there will be currents flow-

ing within the plasma in a thin boundary layer along the wall surface. This situation

will be considered in more detail in the chapter dedicated to the magnetic boundary

layer. In any case these currents are not part of the outer solution.) From equation

(3.4) it can be seen that the ratio b is constant along a streamline. From equation

(3.3) it can be seen that the entropy is also constant along a streamline. A modified

Bernoulli relation can be established for this problem: the sum u + •- -p/p + 2 is

constant along a streamline. This can be established by observing that the flow is

barotropic, and by combining the momentum equation with the mass, entropy and

magnetic conservation equations.

From the momentum equation it can be shown that, with some additional uni-

formity assumptions, the ratio of the vorticity over the density is constant along a

streamline. The vorticity is defined as W = V x u. The momentum equation can be

transformed into:

Vx( xu) + Vx V(b2+p)) =0. (36)

Assuming that the vorticity is normal to the plane of the flow and that p/p" and b/p

are constant everywhere, then, the ratio of the vorticity over the density is constant



along a streamline:

u-(V - 0. (3.7)

Finally, the Hall effect disappears from both the main equations and from the bound-

ary conditions.

3.2.1 Dynamic Effects

Although this dissertation is mostly concerned with steady-state phenomena it seems

useful to remind the reader of the dynamics of small wave propagation. By including

in the model the terms which contain the time derivatives, and by looking at the

dynamics of small perturbations, one concludes that infinitesimal waves propagate

with a velocity which is a hybrid between the transverse (magnetic) Alfven wave and

the acoustic wave. This magneto-acoustic (also called magneto-sonic or Mach-Alfven)

velocity is given by,

c, + 2b (3.8)

For more details the reader should look at the end of chapter 2 where this analysis

was done for the general case of a resistive plasma. The non-resistive approximation

is the limit of the resistive solution for large wavelengths. Since the velocity of wave

propagation is higher than for a regular gas, it is logical to redefine the Mach number

in order to take into account the change in the wave velocity. This new number can

be defined as:
u u

M = -- - . (3.9)
c, -Yp+2b2

V p

This number appears naturally as a critical parameter in the analysis of the non-

resistive problem. For instance it appears as the critical parameter for the transition

from elliptic (M, < 1) to hyperbolic (M, > 1) behavior of the coupled system (3.1)-
(3.4).



3.3 Numerical Method

3.3.1 Introduction to the Galerkin Finite Element method

A Galerkin finite element method has been developed to solve the non-resistive outer

problem. The computational domain is decomposed into elementary triangles. The

partial differential equations are expressed in conservative form and discretized using

the method of Galerkin.

Assuming a two-dimensional problem governed by a linear partial differential equa-

tion: L(u) = 0, in a domain Q, with boundary conditions: S(u) = 0 on 489. The

Galerkin method approximates the solution u(x, y) by the sum: u, = E'-=1 ajoj(z, y),

where the comcficients aj are to be determined, and the functions Aj(x,y) are defined

in advance. Substituting the approximation in the partial differential equation gives

a residual R which is a function of the independent variables x and y, and of the

unknown coefficients aj: R(ao, al, ..., a, ,y) = L(2U) = = ajL(4O). Defining the

inner product: (f,g) = ffn f g dx dy, the Galerkin method chooses the aj by impos-

ing: (R, k) = 0 for k = 1, N. This means that the coefficients aj are chosen such

that the projections of the residual onto the functions kj used in the approximation

are zero. This gives a system of N equations where the aj are unknowns.

3.3.2 Formulation of the Problem

Recall the equations for the first term of the outer solution, in 2-dimensional cartesian

coordinates, in conservative form.

ý(p) + (pU) + Ty(pv) = 0, (3.10)
8 t 8x

(p u) + (p U' + p + •) + (puv) = 0, (3.11)

-(Pv) + (puv) + (p v' + p + b2) = 0, (3.12)-jt ( V + P V T



8 1 2 P

( 1 ) _ + 2bb))

+ (v( p(u2 + v2 ) + p + 2b2)) = 0, (3.13)

M(b) + (u b) -(v b) = 0. (3.14)

The following boundary conditions apply: On the walls the normal velocity is zero (i.e.

the velocity is tangent to the wall). At the inlet the conditions are imposed by match-

ing the inlet inner-solution. At the outlet the conditions depend on whether the flow is

locally super-magneto-sonic (and the system of partial differential equations is hyper-

bolic), or locally sub-magneto-sonic (and the system of partial differential equations is

elliptic). The one-dimensional model suggests that the flow is locally super-magneto-

sonic near the outlet. When the flow is sub-magneto-sonic, the boundary conditions

are determined from conditions both inside and outside the computational domain.

When the flow is super-magneto-sonic, one can use the method of characteristics to

establish the proper boundary conditions. In practice a time-marching algorithm is

employed, where the boundary conditions and the computational domain are relaxed

simultaneously.

3.3.3 Description of the Finite Element Discretization

The functions p, u, v, p, b are approximated by: Pa = Ej pjNj(x, y), ua = Cj pjNj(z, y),

Va = Ej v N (X,y), Pa = F PjN •j(z,y), ba = 1j b Nj(x, y), where the Nj(z,y) are

continuous functions based on the discretized mesh, and such that Nj(xj, yj) = 1 and

Nj(xi, yi) = 0 for i # j. The base functions are taken as piecewise linear functions,

which are zero almost everywhere, except near the node j, where they are equal to

one. (Nj looks like a pyramid with its summit above the point with coordinates

(zx,y 3 ), and its base on the triangles adjacent to the node j. See figure 3-1.)

The projection of the partial differential equations on the trial functions Nk gives



the following set of equations:

St(, y) (p)dx dy+

Jnj N(x, y) d(p u)dx dy + /Nk(x, y) (pv)dx dy = 0, (3.15)

Nk (x)Y) aP )d dY+

N( u2 + p + b2)dx dy +j Nk(x, y)) (p u)dx dy+Nk(X, y) a-(pu pZdy +

JjNk(xay) (p v' + p + b')dx dy = 0, (3.17)N , ( (ro ) a (p u v)d+ dy = 0, (3.16)y)-( Y)--(P v )d dy+kx (p u v)d(xdy +N, N(XIY)--y(pv2 + p + b2)dx dy = 0, (3.17)

I N(Xy)a P( u + v2 ) + ++ )b2)dxdy+
ft 9 1 2 7

JJN N 7(,y)-aM(u( 1 p(u2 + V2) + - p+ 2b ))2 dxdy +

j, N(x, y)a(V( 1 p(U2 + v2 ) + - p + 2b2 )) dx dy = 0, (3.18)

Nft xly) a] Nk (xy)(b) dx dy+

SNk(xy) i9O(a b)dx dy + f Nk(X,y) a-(v b)dz dy = 0, (3.19)

where QL is the whole domain of computation. This is a non-linear system, and it would

be difficult to substitute the approximations directly into each variable. Instead it is

possible to use the method of group finite element (see for instance Fletcher[18]),

and to approximate directly the flux vectors: Ft = (pu, pu 2 + p + b2 , puv, u{(p(U2 +



2') + p + 2b'}, b), and G' = (pv, puv, pv2 + p + b2, v{ jp(u2 + V2) + I p + 2b2}, b).
For instance the z-momentum equation becomes:

fJ 19 Z(p u)JNk Njd dy+

J Nk(x,) u(P 2 + p + b2)jNj(X, y)}dx dy +

SNk(x, y)• (pu v)jNj(z, y)}dx dy = 0 (3.20)

or also:

ý{Z(pu) fj Nk Ndx dy+

Z(pu p + b2) f Nk(x y)-Nj(x, y)dx dy +

(pu v) Nk (xy j-- j(, y)dz dy = 0. (3.21)

This gives a set of 5N equations with unknowns (pj, uj, vj,pj, bj) for j = 1, N.

A time-marching scheme, based on an approximate integration in time, is used to

iterate the solution towards the steady-state. The time integration is based on the

4-step Runge-Kutta method used by Shapiro [55]. The time-step is allowed to vary

locally in order to accelerate the convergence. Its value is fixed by the local constraint

imposed by the Courant-Friedrichs-Lewy condition. The CFL number is determined

from the local mesh size, the value of the magneto-sonic speed of sound, and the the

gas velocity.

In this method the primitive variables (p, u, v, p, b). are replaced by the set:

Qt = (p,, pv, { p(u2 + v2) + + b2},b),
2 7r-1

and the these variables are updated directly from the evaluation of the residuals. For



instance, for the momentum equation the residual is by definition:

Res" 2 (Nk= (pu 2 +p + b')j Nk(x, y)-N(z, y)dxdy (3.22)

+ (pu v)j f Nk(x, y) -Nj(x, y)dx dy. (3.23)

The momentum equation is then:

{f- (pu)jI} Nj Nk dx dy + Res(Nk) = 0, (3.24)

which can be written in the matrix form:

0 a
Mjk- Qf = -R. (3.25)

Where Mjk = (Nj, Nk) = ffn NJ Nk dZ dy is the element of the mass matrix,

R= Res (Nk) is the residual of the a-equation, and Q"5 is the unknown vector:

Q .= ( ...5  (p, )j, (p )j,

Following Shapiro [55] the mass-matrix is replaced by a lumped mass-matrix.

This matrix is obtained by lumping the different Mjk onto the diagonal, so that the

diagonal value becomes: M k = >j Mjk, and M* = diag(...Mkk....). For instance the

momentum equation becomes:

NfNrd dy = ResN=2(Nk), (3.26)

or

a 1
Q= -(M*)- R" = -(diag(..., M*k,...)) - ' R" = -diag(..., - .- Ra, (3.27)

at M=*k

a Q = Rk (3.28)
at k Ej Mjk



Finally the equations can be written as

1

< N7,Nk >

+ E(p v) < N,

E(p )j <

NJ >

1

Ej < Nj, N >

+ E (puv)j < Nk,
I

{pU2 + pu

-N.
ay .

+ b2)j < Nk,

>)

1

Zj< N, Nk >
pU J

+ E(p v' +p + b')j < Nk, -NJ
j y

p k = -
7 - 1 Ej < Nj, Nk >

+ v) 7 + 2b2))j < Nk

1
+ E(v(qp(U2

{ Z(ub)j <

+ v2) + 7P
7-1

Nka " j9 >

+ 2b2))j < Nk N
ay

+ E((vb)j < Nk,
j

The various integrals, like < Nk, Nj >= ff ddy, are in turn broken

into their elemental constituents. In order to maintain stability the algorithm uses a

S(P
0t Nk, a N > (3.29)

a Nj >
da. (3.30)

'9
a (P )kat (3.31)

>1·
S(1 2

{t 2
1

2

(3.32)

ax N

a(b)k =
at Ej < Nj, Nk >

>)

(3.33)

>1-Nj

'! -

(P U)k

a< NkjT -NJ >x 3

I(



second order artificial damping. The damping algorithm is a modified version of the

one used by R. Shapiro in [55]. The modification concerns the switch used to turn on

the damping in the regions of strong gradients. In the present algorithm the switch

is always on. As a result the damping is constant throughout the computational

domain, which makes the solution first-order accurate. This implies that the error

terms will decrease proportionally to the element's size. In classical computational

fluid dynamics it is customary to turn-off the second-order artificial viscosity in regions

where it is not needed and to rely on a constant level of fourth-order artificial viscosity

in order to maintain the stability. The second-order artificial viscosity is designed to

be turned on in regions where shocks are located, which are detected by looking at the

local pressure gradients. In this calculation the situation is slightly different. First,

the stability problem arises because of the gas expansion near a corner, not because

of a shock. Second, the rationale for the use of the thermodynamic pressure rather

than the magnetic pressure or any other variable is not clear. After several heuristic

attempts at choosing an adequate variable for the switch it was found that the most

reliable behavior was obtained when the switch was eliminated. This does not mean

that the code cannot benefit from a more appropriate type of artificial damping.

In the method described so far, the trial functions are not differentiated and the

"flux vectors" are differentiated once with respect to the spatial variables z and y. It

is however possible to formulate the problem in a different way. If one integrates by

parts the integrals of equations (3.30) to (3.34) one obtains a new set of equations

where the trial functions are now differentiated with respect to x and y, and the

"flux vectors" are not. This method offers the advantage of incorporating directly

the boundary conditions in the formulation of the problem.' However the algorithm

based on this formulation seemed less robust than the algorithm based on the direct

'This is done by integrating by part the integrals of the form: ff :jjL Nk dz dy. For the
momentum equation this gives:

Res(NI) = (pu 2 + p + b2)j{ Nj. dz dy + Nj Nk dy}
ji ax

j n



method. Consequently the results of the direct method are displayed below.

Res(Nk)= (pu + p + 2)j N1j dz dy

j~Jn

- (p• v) N N- dz dy - Z(pu v)1  Ni N, da. (3.35)- E(PU V)j f fa i- n

The two line integrals of (3.35) are zero everywhere except when either j or k is on the boundary. In
addition the terms in pu2 and puv disappear in the line integrals along the walls, since the normal
component of the velocity is zero there:

u . n = u dy - v dz = 0, (3.36)

and

uj N, Nk dy - vj Nj N, dz = Nj Nk (ujdy - vjd) = 0. (3.37)

Along the walls the contribution of the line integrals disappears from the equations, except in the
momentum equations where there are terms due to the effect of the pressure and of the magnetic
pressure. Finally:

Ea • (pu)j < Nj, 8N > + ,j(pv)j < Nj, •N1, >
- (P)k = ex p b(3.38)S5Ej < Nj, Nk >

(PU)j < NjN > ' 2 + p + b2)j < Nj,a Nk > (3.39)
at E < N, Nk

+ (pu v)j < N, +Nk > - (p + b 2 )j NN dy,Oy 
J

8 1 8
(P)k (p uv)j < N, 8 Nk > (3.40)tE( < Nj, Nk > i 6Z

+ (pV2 +p + b2 )j < N , > + (p + b2 )j Nj Nk d'

(6)k (3.41)
iCtj < Nj, Nk >

with 7 = P(U( + v2 ) + •_p + 2 b and £ = ((U + v 2 ) + 1p + b .2 -fr-1 2 -tr-1



3.3.4 Discussion

The algorithm was tested for simple configurations like straight and flared channels

for super-magneto-sonic conditions, and for a test case which can be calculated ana-

lytically: the self-similar solution described below. The Figures 3-3 to 3-5 show the

solution for the self similar flow in the channel whose geometry appears in figure 3-2.

The comparison with the analytic solution is shown in figure 3-6. The curve repre-

sents the analytic solution and the isolated points represent the numerical solution in

the the center of the computational domain.

Figures 3-8 to 3-14 show the results for two divergent thrusters whose geometries

appear in figures 3-7 and 3-11, with an incoming flow which is super-magneto-acoustic.

The calculations presented here were done on two similar unstructured grids composed

of 928 finite elements, linking 510 nodes. The calculations were interrupted after

500 iterations, which took about 12 minutes of computer time on a DECstation

5000. The rate of convergence for the last calculation is shown in figure 3-15. The

horizontal coordinate indicates the iteration number, whereas the vertical coordinates

shows the logarithm of the residuals for the first and the last equations (density and

magnetic field). The algorithm reaches machine accuracy in about 450 iterations. The

Courant-Friedrichs-Lewy number for these iterations was CFL = 0.5. The second-

order viscosity coefficient (See Shapiro's thesis [55] for details) was v2 = 0.09. The

fourth-order artificial viscosity coefficient was set to zero.

The magneto-acoustic expansion fans are visible near the corners. In theory these

fans should converge towards the corners, which are singular points for all variables.

In practice the artificial viscosity, which is necessary to maintain stability, imposes

a certain amount of smearing near the corners. The asymmetry between the upper

and the lower parts of the channel is attributed to the different orientations of the

triangular finite elements. It appears that the shape and orientation of the elements

has an effect on the accuracy of the results. The errors can be traced to the fact

that the internal energy equation is ill-conditioned. Since the internal energy is small

compared to the kinetic and magnetic energy, any error in either one of the two

dominant terms will decrease the accuracy of the internal energy considerably. Since



the temperature is proportional to the internal energy, an error in the internal energy

may result in the appearance of negative temperatures and infinite Mach numbers.

An attempt to regularize the problem by eliminating the dominant balance from the

equations failed. The resulting equation could not be put in conservative form, and

only conservative forms can be handled by the finite element method considered.

However it must be kept in mind that at high magnetic Reynolds numbers, the

effect of the internal energy on the general flow is small compared to those of the

dominant terms. Consequently the density, the velocity and the magnetic field are

not strongly affected by the errors in the energy equation.

3.4 Method of Characteristics

The one-dimensional model predicts that the outer flow in a divergent or a convergent-

divergent thruster channel will be super-magneto-sonic downstream of the section of

minimal area (the throat). When this is the case, the system of equations becomes

hyperbolic and the method of characteristics can be used to solve the outer prob-

lem in the super-magneto-sonic region. For many types of thrusters working in the

magneto-dynamic regime, this region constitutes most of the volume of the channel,

as well as the exit region where the flow expands into the vacuum. The method of

characteristics, applied to magneto-dynamic flows, is derived in the following section.

Although it has many similarities with the method of characteristics for normal gases,

it must be noted that the details of the expressions are slightly different, reflecting

the additional interaction of fluid with the magnetic field.

3.4.1 Derivation

After some reorganization the non-resistive equations can be written in the following

form:

(pUX) + (pu) = 0, (3.42)

pu, + puy-y + (p + b2) = 0, (3.43)



pu. + Pu'y +  (p + b') = 0, (3.44)

p' ( ) + p'"Y(, ) = 0, (3.45)TX pr ay Pf
ab ab

PE X()+ PUY ( )= 0. (3.46)

Changing the coordinates to (s, n), where s is aligned with the the streamlines and

n is normal to s, one obtains the following system,

1 p 1 Ow 09+ -- + -= 0, (3.47)
p s Wo an

8 1 2 7 p 262+-(w + -+ - = 0, (3.48)
8- 2 - p p

2 09 1 0S+ (p + b2) = 0, (3.49)

S(In )= 0, (3.50)
Os pr

b) = 0. (3.51)as p
where u, = wcosO, uy = wsin0. Notice that equations 3.48, 3.50, 3.51, are in

characteristic form and that the streamline is a characteristic line for these three

equations.

The remaining two characteristic lines are actually the Mach-Alfven lines defined

by the angle ±+ with,

tan 1 = (3.52)
,/Mý- 1

Defining the distance along the characteristics as ((,-) , respectively, the equations

can be written in characteristic form. Along the (+IL) characteristic, the equation is:

1 0 pw 2 d0S ( p + b2) + o 2 0, (3.53)sin I 8, cosy a'q



Along the (-ut) characteristic, it is:

1 ( p w2 b0
I ( + b 2)  = 0, (3.54)sin IL ( coso IL

with

MV = (3.55)
VP P

8 n
S= , (3.56)cos IL sin •'

S n
7 = - + (3.57)

cos IL sin l/

When b/p, p/p- and hT are constant everywhere p and b are functions of p only.

It is then possible to express p + b2 and w as functions of p only, and to turn the

characteristic equations into:

M2 - 11 ap 00
S - +  = 0, (3.58)

M2 p 07n 'q

M2 -1 1 p 00
- = 0. (3.59)

Mv2 p a( Tý

It is now convenient to introduce the function v such that:

JM2 -1 d
- dv= M 1 dp (3.60)M2  p

This function v depends on p and on two parameters. Here these parameters are

chosen as 3 = o and M, = po where the subscript o refers to the upstream

values. An expression for dv as a function of pt = p/Po can be obtained by replacing

Mv by its expression as a function of p,

opl-f + 2p [M7 o(2 + 7130) + 2 + 4] - +i' o-i3h1p-i - 6p
dv = - d. (3.61)

P (Mo(2 + 7 3o) + 200(1 -p ) + 4(1



This can be integrated to give

S 7o-- 1 F+ 2p V[Mv2o(2 + 7y3o) + " + 4] - 7i'I3op-' - 6p

p (Mv0(2 + -7/) + 2(1 - p-') + 4(1 - )) (3.62)

This function reduces to the classical Prandtl-Meyer function in the limit when o0

goes to oo.

The last two characteristic equations can now be written as:

S( - 0) = 0, (3.63)

(v + 0) = 0, (3.64)

where v is a function of p only.

In conclusion, if b/p, p/p- and hT are constant everywhere, a function v similar

to the Prandtl-Meyer function can be defined, and the problem reduces to a system

of characteristic equations similar to that of ordinary supersonic gas dynamics. If the

quantities are not constant everywhere, all the characteristic equations (3.48, 3.50,

3.51, 3.53, 3.54) must be kept and must be integrated along the three characteristic

directions.

3.4.2 Self-Similar Solution

A self-similar solution, analogous to the Prandtl-Meyer expansion fan for a perfect

gas can be found for the corner flow in the simplified case of an infinite corner and

negligible magnetic diffusion (R, = oo).

Changing to a system of cylindrical coordinates (r, 0, z) centered on the corner

vertex one finds:

i(rpu,) + (p) = 0, (3.65)
Or

Bu, Iu, 1 2
P,- + Pu -- PU + (bi + p) = 0 (3.66)Or r, 8q r Or



4,  10u4,  1 1 2
PU, + pu- + -pUuO + (b' + p) = 0, (3.67)rr r 84 r r10 P

8 10 p(p'Ur- + p'u-T )( ) = 0, (3.68)
O rO4' pr

O 10 b
(pU,T + puO )(-) = 0. (3.69)

Or r 8q p

Since there is no scale-length in either the equations or in the boundary conditions,

the solution will be independent of the distance r. Following the method discussed by

Landau and Lifshitz [32], it is possible to find an integral which relates the angular

coordinate 0 to the variable p in the expansion fan. Dropping the dependence on r

and integrating the system gives three conservation equations:

u2 + U 2 b2- + 7 P +2 - = const. = HO, (3.70)
2 y7-1p p

pY = const. (3.71)P'
b
- = const. (3.72)
P

Some manipulations of the equations of continuity and momentum lead the following

equation:

( N- ,)(1 - ) = 0, (3.73)

with c2 = -E + 2L, which shows the two types of solutions to this system. Either

1 - = 0, that is u = c2, corresponding to the fan solution, or = u,, which

implies that u2 + U2 = constant, and eventually that p, p and b are constant, leading

to a uniform flow. The equation pu, + ,(pu , ) = 0, can be integrated, giving

d= d(pu). (3.74)
pu,

Next, u, , u¢, p and b can be eliminated using u 2= c2 = 7 + 22, and the three

integrals above, leaving an expression where do can be written as a function of p



only. Finally:

= _ 7(7-y + 1)(po/P ~) p -l + 6(p )p
S= - fb dp, (3.75)

'2,4(,)p,+1 + 2(')p3}{2H 0 - 2()p-1 6( )p}P0! (.-p _

with the reference variables, Po, Po, bo, H, taken equal to the values at the origin of

the fan.

The solution depends on two parameters. Those can be chosen as Po = and

MO -= , where the index 0 refers to the beginning of the fan. Changing the

integration variable to p = -, leads to:

= y(7Y + 1)•oP-1 + 6pd
2Jy) -27.+ 1 + 2pa 2Mo(1 + -. ) + 2 3o 9 + 4] - 0-Y - 6P

(3.76)
Let X be the angle between the streamline and the reference direction. Then:

cot (X - U) = (3.77)

After substitutions one finds,

2(Mvo(1 + '13)± + T'0 + 2) -_ •-l-•• 6
cot2 (X - ) = 2 -1 + 2 (3.78)700~-l + 2P

which uniquely determines all the variables in the fan. Finally, € and X are related

to the Prandtl function v defined above by:

7r1

Some results for a particular choice of Mo = 1 and o0 = 0.1 are listed in table

3.1. The maximum turning angle for such a flow (69.380), is less than for a classical

gas of identical compressibility (900). In the limit where the pressure forces become

negligible, the plasma behaves like a gas with -f = 2, and has a maximum turning

angle of 65.880.



0o0 O P M Ma
0.000 0.000 1.000 1.000 2.646 0.1000
9.902 0.069 0.990 1.015 2.681 0.1003
14.02 0.181 0.980 1.030 2.717 0.1007
22.28 0.707 0.950 1.060 2.789 0.1017
31.80 1.924 0.900 1.153 3.006 0.1036
45.83 5.107 0.800 1.320 3.382 0.1077
57.31 8.921 0.700 1.506 3.788 0.1126
67.72 13.21 0.600 1.722 4.240 0.1186
77.70 17.96 0.500 1.985 4.764 0.1260
87.70 23.22 0.400 2.321 5.403 0.1357
98.15 29.18 0.300 2.788 6.243 0.1494
109.7 36.19 0.200 3.530 7.496 0.1710
124.0 45.30 0.100 5.110 9.941 0.2154
133.8 51.77 0.050 7.224 12.94 0.2714
146.9 60.63 0.010 15.43 23.36 0.4642
159.4 69.38 0.000 oo 00 1c

Table 3.1: Expansion fan for a transversely magnetized plasma with zero conductivity,
for M,0 = 1 and 30 = 0.1



3.4.3 Discussion: Structure of the Idealized Flow Near the

Exit

Consider a (somewhat idealized) region located at a distance from the corner which

is large compared to the magnetic interaction length Am (so that the non-resistive

approximation is valid), but small compared to the inter-electrode gap H, (so that

the presence of the other corner can be ignored), i.e. Am < x, y < H.

Two cases can be distinguished. If the corner deflection angle is small, the ex-

pansion is incomplete. The expansion has the structure indicated in figure 3-16, with

three zones: (i) ahead of the corner the values are constant; (ii) downstream of the

characteristic line coming from the corner where the expansion fan begins, this fan

is the self-similar solution described above; (iii) finally when the velocity becomes

parallel to the downstream boundary, the flow becomes constant again. The three

zones are separated from each other by a weak discontinuity.

If the deflection angle is increased, the plasma will expand up to the point where

it reaches the maximum turning angle, at which point the expansion is complete.

Beyond this point the plasma will not be able to turn any further. If the plasma

expands into a vacuum there will be a limiting angle, beyond which the density, the

pressure and the magnetic field are zero. Zone (iii) disappears and is replaced by an

empty cavity separated from the self-similar fan (ii) by a tangential discontinuity, as

shown in figure 3-17.

If the plasma expands into a medium with finite residual pressure, the solution is

slightly different; there is an additional stagnation region, separated from the constant

flow region (zone iii) by a tangential discontinuity. Across this tangential discontinuity

there is no mass flow, and there is a jump in both the tangential velocity and the

magnetic field. The residual pressure in zone (iv), p,, is equal to the sum of the

pressure and the magnetic pressure from zone (iii): p, = pii + bi2. (See figure 3-

18.)- A tangential discontinuity (shear flow) is generally a source of Kelvin-Helmholtz

instabilities and such instabilities can be expected in the exhaust plume as well.The

line of tangential discontinuity is also a current line (since the magnetic field jumps



from baii to zero across the discontinuity) and the current density along this line is

large (infinite in the limit of zero resistivity).

Consider now the two-dimensional expansion of the plasma through a slit. In this

case the presence of the other channel wall introduces a scale length, and destroys

the self-similarity of the solution. However some of the properties of the solution are

preserved. Figure 3-19 shows a complete two-dimensional expansion in the absence of

back-pressure. The constant flow zone (I) still exists in the domain delimited by the

two walls and the characteristic lines leaving from the corners. The self-similar fan

is replaced by two expansion fans which originate at each corner and which merge in

the center of the plume. The current lines leave from one corner, extend downstream

into the plume, then turn around, come back on the other side of the jet, and reattach

on the other corner. If the gas expands into a stagnant medium with some residual

pressure the flow becomes more complicated. The background pressure prevents a

complete expansion from taking place. The jet is separated from the stagnation region

by a tangential discontinuity which is a surface of discontinuity for the magnetic

field, and therefore is also a current sheet. A series of successive expansion and

recompression zones (similar to that of figure 3-20) is likely to exist, making the

analysis rather complicated. The recompression of the plasma is accompanied by a

simultaneous increase in the magnetic field. Consequently there will be current flowing

along the lines defining contours of constant pressure. There the current flows in the

opposite direction from that corresponding to an expansion and consequently current

loops will appear in the plume. In addition the tangential discontinuity which defines

the jet boundary is also a current sheet.

All of these phenomena are reminiscent of the behavior of a classical gas expansion.

However this analogy is not complete because of the presence of the magnetic field.

3.5 Conclusion

In conclusion it has been shown that the outer-solution behavior is similar to that

of a gas. However the presence of the magnetic field introduces some quantitative



differences, in particular a self-similar solution shows that the maximum turning angle

is smaller than that of a normal gas.

Numerical and analytic results show that currents extend downstream into the

plume. If the jet of ionized gas is injected into a medium with a finite pressure

instead of into a vacuum, a pattern of successive expansion and compression regions

appears in the plume, implying the existence of current loops.

As a practical implication of this analysis, it appears that the plasma should be

expanded within the thruster in order to recover as much of the electro-magnetic

energy as possible.
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Figure 3-1: Example of a piecewise linear interpolation function Nj associated with
the node j.
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Figure 3-2: Plot of the geometry used as a test case for the algorithm. The results
can be compared with an exact solution, namely the self-similar expansion around a
corner. The top drawing shows the relationship between the corner and the compu-
tational domain. The lower drawing shows the finite element grid.
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Figure 3-3: Result of the calculation for the test case. The plot shows the magnetic
field. The inlet conditions are M. = 1.4142, /o = 0.1. and bo = 0.5886
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Figure 3-5: Result of the calculation for the test case. The plot shows the Mach
number. The inlet conditions are M, = 1.4142, o0 = 0.1. and bo = 0.5886
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Figure 3-6: Comparison between the finite-element calculations for the test case, and
the analytic self-similar solution. The plot shows the magnetic field as a function of
the angle with respect to the horizontal line.The inlet conditions are M, = 1.4142,
,o = 0.1. and b0 = 0.5886
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Figure 3-7: Geometry and finite element grid for a divergent channel. The angle
between the divergent section and the horizontal axis is 14.50. The initial conditions
are M, = 1.4142, /o = 0.1 and bo = 0.5886.
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Figure 3-8: Magnetic field obtained by the finite element algorithm for the non-
resistive plasma flowing in a diverging channel. The angle between the divergent
section and the horizontal axis is 14.50. The initial conditions are M. = 1.4142,

,o = 0.1 and bo = 0.5886.
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Figure 3-9: Mach-Alfven number obtained by the finite element algorithm for the
non-resistive plasma flowing in a diverging channel. The angle between the divergent
section and the horizontal axis is 14.50. The initial conditions are M. = 1.4142,
0o = 0.1 and bo = 0.5886.
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Figure 3-10: Mach number obtained by the finite element algorithm for the non-
resistive plasma flowing in a diverging channel. The angle between the divergent
section and the horizontal axis is 14.50. The initial conditions are M. = 1.4142,
Oo = 0.1 and bo = 0.5886.
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Figure 3-11: Finite element grid for a divergent channel. The angle of the divergent
section is 280. The initial conditions are M, = 1.4142, 3o = 0.1 and bo = 0.5886
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Figure 3-12: Magnetic field obtained by the finite element algorithm for the non-
resistive plasma flowing in a diverging channel. The angle of the divergent section is
280. The initial conditions are M, = 1.4142, 3o = 0.1 and bo = 0.5886
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Figure 3-13: Mach-Alfven number obtained by the finite element algorithm for the
non-resistive plasma flowing in a diverging channel. The angle of the divergent section
is 280. The initial conditions are M. = 1.4142, o0 = 0.1 and bo = 0.5886
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Figure 3-14: Mach number obtained by the finite element algorithm for the non-

resistive plasma flowing in a diverging channel. The angle of the divergent section is

280. The initial conditions are M. = 1.4142, 3o = 0.1 and b0 = 0.5886
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Figure 3-15: Evolution of the maximum residual for the density and the magnetic
field as a function of the number of iterations during the calculation corresponding
to the last three figures.
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Figure 3-16: Magneto-Plasma expansion around a corner, in the limit when the re-
sistivity goes to zero. The flow is super-magneto-sonic. We distinguish three zones:
(I) and (III) are constant flow zones, zone (II) is the self similar expansion fan.
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Figure 3-17: Magneto-Plasma expansion around a corner in the limit when the re-
sistivity goes to zero. The flow is super-magneto-sonic. The expansion is complete.
Zone (I) is a constant flow region. Zone (II) is the self similar expansion fan. Zone
(III) is an empty cavity.
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Figure 3-18: Magneto-Plasma expansion around a corner in the limit when the resis-
tivity goes to zero. The flow is super-magneto-sonic. The expansion is incomplete.
The jet expands into a medium with final residual pressure and separates from the
wall. There are four zones: (I) is a constant flow zone, (II) is the self similar expansion
fan, (III) is a narrow constant flow zone, (IV) is a zone where the velocity and the
magnetic field are zero, but the pressure and density have constant non-zero value.
The interface between zones (III) and (IV) is a tangential discontinuity.

103

irbt3



(LLC~rRoDE

Se c rc oe £3

Figure 3-19: Magneto-Plasma expansion from a two-dimensional orifice in the limit
when the resistivity goes to zero. The expansion takes place into a vacuum.
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Figure 3-20: Magneto-Plasma expansion from a two-dimensional orifice in the limit
when the resistivity goes to zero. The expansion takes place into a medium with
residual pressure. The initial expansion is followed by a recompression region where
the magnetic field increases, leading to the creation of current loops.
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Chapter 4

Resistive Analysis Near a Weak

Corner

As indicated above, the next step in the perturbation analysis is to study the various

inner-solutions. The inner-solution located near the inlet can easily be solved in the

absence of the Hall effect. The solution is a variation of the one-dimensional model,

and is discussed above. (See section 2.2.) In the presence of the Hall effect the

problem is more complicated and will not be treated here.

Another inner-region is that which is adjacent to the sharp corners of the exit. The

study of the flow around the exit has some important justifications. In the general

case it is a poorly understood region; despite its relative accessibility there have been

few investigations of the plasma density, velocity and temperature. The magnetic

field and the current have been more thoroughly studied, but few investigators have

looked at the field leakage along the surface of the anode beyond the point where the

jet detaches itself from the electrode. In the quasi-one-dimensional theories discussed

in the introduction, the researchers assume that the magnetic field reaches zero at

the end of the channel. But there is no reason to dismiss the possibility that some

of the current can leak out of the main channel and attach itself along other surfaces

of the electrodes, away from the plasma jet. Along the anode this effect is probably

reinforced by the Hall conduction.

This non-linear problem is difficult to solve. It is possible to solve a closely re-
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lated problem using a semi-analytical method by considering the limiting case of a

corner with a small deflection angle. In this case the problem becomes linear. This

type of approximation is often called a small disturbance approximation, and will be

considered next.

4.1 Background on the Small-Disturbance Ap-

proximation

The small disturbance approximation has been used to solve several problems in

aerodynamics. Some of the earliest applications were the lifting line theory of Prandtl;

the thin airfoil theory of Munk [46]; the analysis of supersonic flows by Ackeret [1];

and the analysis of compressible flows by Glauert [20].

The transonic regime, where the linear theory is not valid, was treated by Os-

watitsch and Berndt [50]. The resulting equation, called the small disturbance tran-

sonic equation, reduces to the linear equations both in the subsonic and in the super-

sonic regime. The viscous flow through a convergent-divergent nozzle was analyzed

by Sichel [56] using an extension of the transonic equation which incorporates an

additional term describing the viscous effects, first derived by Liepmann, Ashkenas,

and Cole [37]. These works could conceivably be used as a starting point for the

analysis of a plasma flowing through a convergent-divergent channel, where the outer

flow changes from sub-magnetosonic to super-magnetosonic at the throat.

Unsteady problems can also be treated by the small disturbance method. The

diffraction of a weak shock wave by a small corner was treated by Bargman [5] and

later extended by Lighthill [38] to the case of strong normal shocks. The flow around

an oscillating airfoil was treated by Timman, van de Vooren and Greidanus [62].

These works could be a starting point for a study of the stability of the thruster with

respect to small amplitude perturbations.

The flow of an ideal dissociating gas around a sharp corner was treated by Clarke

and McChesney [14] by the small disturbance approximation. This problem has many

similarities with the flow of a resistive plasma, including the presence of two different

107



expansion fans, namely a frozen flow expansion fan located near the corner and an

equilibrium flow expansion fan located at large distances. In their analysis Clarke

and McChesney use a Laplace transformation in the x direction which they were able

to invert analytically. In the flow of a resistive plasma, the diffusive effects propagate

upstream from the corner, so the solution requires the use of a Fourier transformation

instead of a Laplace transformation.

The flow of ionized gases over thin airfoils and slender bodies was studied by

Lary [33], by Sears and Resler [54] in the limit of high magnetic Reynolds numbers.

Compressible effects were studied by McCune and Resler [42]. However the geometry

considered by these authors differed from the geometry considered in this dissertation

by the orientation of the magnetic field. In addition the Hall effect was not considered.

4.2 Formulation of the Linear Problem

Consider the regular perturbation whose small parameter is a measure of the defor-

mation of the boundary, and the zero-order term of the expansion is a uniform flow.'

The solution is sought as a perturbation expansion of the form:

(p, u, v, p, b) = (po, uo, OjPo, bo) +,E/, (p1,,upi, ,pb) +... (4.1)

with the small parameter being the corner deflection angle:

0 < - 0. (4.2)

1The constant background solution satisfies the differential equations, as well as the boundary
conditions. In particular it satisfies the boundary condition for the magnetic field which is: , = 0.
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The original system of partial differential equations can be written in cartesian coor-

dinates in the following way:2

8 8
X (p + (p) = 0, (4.3)

Bu Ou 8
pu + P• + (p + b2) = 0, (4.4)

av Ov a
pu + P~ k (p + b2) = 0, (4.5)

=' + p2V -2 - a' (4.6)P-i " + P-V , ) (-) + p--V '
p• + P (V = 2b+ ). (4.7)puaX + Y p aX2 + 3Y2

After substitution of the perturbation expansions the following system of linear equa-

tions is obtained:
8ul api Ovi

Po + Uop + Po = 0, (4.8)

Pouo +' + 2bO = 0, (4.9)

Ovi 8pi 8bi
pouo + + 2bo = 0, (4.10)

I api 1 1Pi
- 7- = 0, (4.11)

po X Po OX '

O9b uobo O 2bi 2b (4.12)
uX po aX X2  Y2

This system is completed by several boundary conditions. The causality condition,

implies that the perturbations vanish at co upstream of the corner, giving the condi-

2In these equations, the magnetic Reynolds number is absorbed into the coordinates, which
amounts to measuring the distance in units of the magnetic interaction length. The new coordinates
X, Y are defined by:

X
Am

Y= -
Am,

where t, f, Am are the dimensional coordinates and magnetic interaction length.

109



tions:

(pit x, ui, Pi, b)(-oo,Y) = 0, (4.13)

(p1, ul i, vi, I, bi)(X, oo) = 0. (4.14)

The tangency condition states that the velocity is tangent to the boundary surface.

It can be written
1 dYv, (X, 0) = u-.dY (4.15)
e dX

In this case 1 d= - T(X), where T(X) is the step function, so that:

vi(X, 0) = -uoT(X). (4.16)

The equipotential condition imposes that the current be normal to the electrode in

the absence of the Hall effect, that is:

(X,O 0) = 0, for X e R. (4.17)"Y

From equation 4.11 it can be seen that the Joule heating does not appear in this

system of equations and that, to the order of this approximation, the solution is

isentropic.

4.3 Transformation into a Hyper-Elliptic Opera-

tor

It is possible to rearrange the system of equations into one unique equation of fourth

order, as follows: Equations (4.9) and (4.11) can be integrated to give conservative

quantities: the momentum perturbation and the entropy perturbation. In addition,

the combination of the two momentum equations gives

u- = v- (4.18)
OY a X
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It is possible to eliminate all but one variable. The result defines a linear partial

differential operator of fourth order. For instance one can write the problem in terms

of the normal velocity perturbation vi with the following equation and boundary

conditions:

a (1 _ M 0 2  2 02 02
8 8X2 8Y2 M1 X2 Y2

v(X, O) = -uoT(X), (4.20)
2 vr1 '92 1

(1 - M.2) 8X 2 + = 0, for Y = 0, (4.21)
(9X2  Y 2

where T(X) is the step function, M 2 = "o2-, and M,, = PO 2  Notice that the oper-YP0 
•

"ypo+2b0

ator is identical no matter which variable is chosen, though the boundary conditions

depend on the actual variable (pl, ul, v l , pi, bl, ... ).

4.3.1 Analysis of the Equation

Equation 4.19 is of fourth order. The left hand side is the convective part; the right-

hand side is the convective-diffusive part. An analysis of the characteristics of the

operator gives a way to classify the nature of this operator. Following Ames [2], it

can be shown that the operator has four characteristic roots: two real roots,

1
z± = tan j± = + , (4.22)

,M - 1'

which define the Mach lines and which correspond to the hyperbolic behavior; and

two complex characteristic roots. Since the operator has real characteristics, it is

partially hyperbolic and one can expect the existence of discontinuities in the solu-

tion across the characteristic lines. These discontinuities can appear either in the

variables themselves (strong discontinuities) or in their derivatives (weak discontinu-

ities). It appears that pi, pi, ul and vl have strong discontinuities and bl has weak

discontinuities across the characteristic lines.

Care must be taken to define a well-posed problem by choosing a set of boundary
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conditions which are compatible. In the following sections the cases of an isolated cor-

ner and an infinite channel are considered, and four independent boundary conditions

are specified in each case.

4.4 Solutions at Large Distances

It is logical to start the analysis of the small disturbance problem by looking at the

solution behavior at large distance from the corner. In a first step one can identify

the far field solution which is obtained by neglecting the effects of resistivity in the

equations. This far field solution is simply a magneto-sonic fan similar to that which

is shown in figure 4-1. The effect of the linearization is to collapse the width of the

expansion fan into a discontinuity, therefore the far field solution corresponds to an

abrupt change of the variables along the characteristic line leaving from the corner.

The second step is to improve the far field solution by taking the resistivity into

account. Since the order of the partial differential equation increases when the re-

sistivity is taken into consideration, the problem is a singular perturbation problem

in terms of 1 which can be analyzed considering inner and outer expansions. The

far field solution is simply the first term of the outer expansion. An inner expansion

must be constructed in each region where the outer expansion is singular and it is

possible to construct from these expansions a uniformly valid solution which is called

the asymptotic solution. The analysis will be limited to the calculation of two in-

ner regions: the transition layer along the characteristic line, and the magnetic wake

along the wall.

In principle another way to calculate asymptotic solutions would be to find asymp-

totic expansions of the Fourier integral considered in the next section. However this

is complicated by the presence of fourth order roots.
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4.4.1 Far Field Solution

At large distance from the corner, the right hand side of the equation (4.19) becomes

negligible. After integration the equation reduces to:

(1 - M) •- i + V2 ) • 0. (4.23)

with the boundary conditions, v()(-oo, Y) = 0, v )(X, oo) = 0, v2 )(X, 0) = T(X).

Since the flow near the exit is most likely to be super-magneto-sonic, this analysis is

limited to the case where M,2 > 1, and thus the operator is hyperbolic. The solution

is similar to that of a supersonic flow around a corner with a Mach number equal

to M,. The solution of this problem is then: vjO)(X, Y) = -uoT(X - YF M2 - 1).

It has a discontinuity along the characteristic line defined by: tan~,, = /

The other variables have identical behaviors. Upstream of the characteristic line the

perturbations are zero. Downstream of the characteristic line, they have a constant

value. The solutions are summarized below:

u( )(X, Y) = uoT(X - Y M2 - 1), (4.24)

vio)(X, Y) = -uoT(X - Y M,~ - 1), (4.25)

p~ )(X, Y) = -MfoT(X - Y M - 1), (4.26)

b~o)(X, Y) = -MboT(X - Y M - 1). (4.27)

4.4.2 Asymptotic Solutions at Large Distances

Transition Layer along the Characteristic Line

Along the characteristic line, the "far field solution" has a discontinuity. Therefore

the right hand side of the complete operator cannot be neglected in this region. One

can expect some type of inner-layer to appear along that line, which will smooth out

the sharp discontinuity. In order to find this correction let us consider the following
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inner expansion valid in the region of the characteristic line:

vi(X, Y; C') = Vo(.k, 2) + e'V(, Y) + ... (4.28)

with the following coordinate "contractions":

X = E'X, (4.29)

S= 1/2(y _ (4.30)

where e' is a small number which goes to zero, and f, = Mv - 1. This inner

expansion will be matched to the outer expansion; in this case the solution is:

v~o)(X, Y) = -uoT(X - Y/ M,- 1). (4.31)

To simplify the notation it is convenient to define the parameters:

f3 = M. - 1, (4.32)

a# = M2 -_ 1, (4.33)

After substituting in the equation 4.19 and collecting the terms of higher order,

one obtains the parabolic equation:

&V0  M 2 /32 •-1 _Vo
2uo- = - a + (1 (4.34)

with the boundary conditions (see figure 4-2):

Vo(k, -oo) = -uo (downstream matching);

Vo (-, oo) = 0 (upstream matching);

Vo(0, Y) = -uo T(-Y) (matching along the electrode).

The downstream boundary condition (V1 = -u.) should be imposed on the line

Y = 0 (that is X = -E'1/23,Y). But in order to simplify the analysis it is convenient
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to impose it instead on the line XC = 0. The equation then becomes,

V2Vo
aV = K (4.35)

with

K 1 M " 32 + # 2 1+ (4.36)

completed by the boundary conditions mentioned above.

It can be shown that the solution for this problem is:

Vo(X, Y) = -erfc (4.37)

where
2 0 0

erfc(z) = ~ e dt. (4.38)

This can also be expressed it in terms of the variables X, Y leading to:

Vo(X, Y) = erf 3. (4.39)

This solution shows that the far field transition is smoothed out in the region along

the characteristic leaving the corner. The profile of this inner-layer is shown in figure

4-3. The thickness of this layer increases as the square root of the distance to the

corner. As a result the layer thickness grows, but its width relative to the distance

decreases as one over the square root of the distance, turning it into a sharp line at

infinity.

Notice that for this analysis to be valid, the thickness of the transition layer, which

is proportional to vrR, where R = VX 2 + Y2, must be larger than the width of the

nonlinear "far field fan", which is itself of order aR. This limits the validity of the

linear analysis to R < 1/a2 . (For a = 0.1 this radius is of order 100 A,,, which

is larger than the size of practical thruster). At greater distances the width of the

nonlinear "far field fan" would be larger than the transition layer, and it would be

necessary to include the nonlinear effects. The transition layer would then separate in
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two parts: one along the leading characteristic of the fan, the other along the trailing

characteristic, leaving a portion of the original non-linear fan between them. These

transition layers would be somewhat different since the discontinuities in the outer

solution (the non-linear far field solution) would be less severe.3

Magnetic Wake along the Downstream Wall

One can expect some type of wake layer to appear along the downstream wall. This

wake corresponds to the relaxation of the magnetic field perturbation created by

the corner. Unlike the velocity perturbations which adjust fairly rapidly to their

asymptotic value over a length scale of order Am, the magnetic field perturbation

takes a much longer distance to adjust to the asymptotic value. This is due to

the different natures of the boundary conditions. For both velocities, the boundary

conditions impose a quick transition right after the corner. For the magnetic field,

the boundary condition, which states that the normal derivative must be zero, allows

for a more gradual adjustment under the influence of the diffusion (transverse to the

flow) and the convection of the magnetic field.

In order to find the asymptotic solution it is convenient to take a perturbation

method approach, looking for an inner expansion valid in a boundary-layer located

along the downstream wall. Using the coordinate transformation:

M
- o1e' U X ,  (4.40)

= -'/2y, (4.41)

and an expansion of the form:

bi(X, Y; e') = bl, + e'bAl(, k) +... (4.42)

After substitutions and elimination of the higher order terms, the fourth order oper-

3The function is continuous, but the derivatives are discontinuous. It is the linearization process
which creates the first order discontinuity in the solution
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ator of equation (4.19) reduces to:

aL l- =-,' (4.43)

with the boundary conditions: Lb1(-, oo) = 0, o(±, 0) =0, 07 (0, k) = C6(Y), where

8(Y) is the Dirac "delta-function". This problem is similar to the problem of the fully

developed laminar wake. (See White in [64].) It has the following solution:

= - 2 exp - . (4.44)

The constant C is still an unknown at this point and can only be determined by a

more complicated matching with the solution near the corner.

This section will be concluded by observing that the variables p, and p, have

similar behaviors. This means that the assumption that there cannot be a magnetic

boundary layer along a conducting wall is somewhat simplistic, as this analysis has

shown, but the assumption that the corner is isolated makes this case somewhat

contrived. In reality the presence of the opposite electrode will make this second

order effect negligible relative to other stronger first order effects.

4.5 Numerical Solution by a Fourier Transforma-

tion

Since the domain of definition for the small-angle/weak disturbance problem is the

upper half plane, Y > 0, the Fourier transformation with respect to the X variable

can be used in order to solve equation 4.19. The variable vl is related to its Fourier

transform along the X direction by:

1 ro
vi(X, Y)= f i(k, Y)e 'kXdk, (4.45)_7 00o
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with

1(k, Y) = vi(X, Y)e-ikX dX.

The equation becomes:4 so that uo = 1, and the expansions are then

u= 1+ ul(X,Y)+...

v = evi(X,Y) + . .

1M'vi = M V'
M2a

Y2)

aY22 39O X" - X2

8 ~axx211 - Oftyro =

2M+

a

Taking the Fourier transformation in X gives:

(1) a v-& + ik - k2(1 - #a) M
(M2

Ma)

= M
2

using 8 = it becomes:

9yyyy Y1 + i- k (1 - #)) yv + -ik ) - 2k4) fii = 0.6a )

This is an ordinary differential equation for 'l(k, Y). The solutions are of the form:

i61 (k, Y) = uo Z eIje-'J(k) Y (4.51)

4 The coordinates and the reference variables are chosen such that the incoming flow velocity is
equal to one (uo = 1) and such that the magnetic Reynolds number disappears from the equations.
The coordinates X, Y are defined by

Y =/•oatjo

where Ao is the magnetic permeability of vacuum, a is the conductivity, it. is the unperturbed
uniform velocity, and 2, 9 are the coordinates. All these quantities have their usual dimensions
except X and Y which are dimensionless. The velocity is

u-
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82  V1
0Y2 )

-- = '01

1 )xx4yYY - 4yyy) V1.

(4.47)

(4.48)

V6- = 0,

(4.49)

(4.50)

2 i92
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where the vj are the roots of the equation:

A + v (( - 1)k' - + (-)ik - = 0. (4.52)

This is a biquadratic equation with four roots vi, v2, v3, v4 such that /3 = -vl and

v4 = -v2. The coefficients v, and v2 are defined such that Re(vl) > 0 and Re(v 2) > 0

by choosing an appropriate branch cut.

For k e R,

1-0 ik 1 k 1
V,2 = a k2 +  k 1 • #kl (,2 + 1)2k2 + 2 i k(2 32 - )3 + 1) - 1

1,2 1/2

(4.53)
The asymptotic expansions at infinity for vl and v2 are vl , IkI and v2 , i ,aIkI.

Near zero the asymptotic expansions for v£ are:

V ^ vke'"/* 4, for k E R,k > 0,

v11 R e-i /4 , for k E R, k < 0,

and for V12:

v2 ' -ik,3,, for k E R.

The coefficients •j of the expansion (4.51) can be calculated using the bound-

ary conditions and our knowledge of the solution behavior at infinity. Two of the

four modes can be eliminated by the requirements that the solution be bounded for

Y --- oo, and that the propagation vector for the wave-like perturbations be directed

downstream. Thus only #1 and 12 are non-zero. The boundary conditions at Y = 0

impose the other two conditions needed to uniquely determine the tj. One of them

is the condition that the velocity be tangent to the wall, vl(X, 0) = -uoT(X) which

implies
u 01 (k, 0) = uo, for Im(k) < 0. (4.54)sk
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The other is the equipotential condition:

82vl 02vl
O'X 2  O 2 =0, for Y=O0. (4.55)

One can then solve for the coefficients I1I, 2, which turn out to be

= - 2 2 1/2i /3k * + vi

2 = 2k + . (4.57)k v2 -

the expression for the Fourier transform of the normal velocity is then:

i5(k, Y) = uo(le- 1Y + 2 L-1"), (4.58)

uo /i32 kav2 + V 3ak 2 + v2
1(k, Y) = -u2 1 2  e- 2 12 e-l Y  (4.59)

and the velocity is then

1 to
vi(X, Y) = f i•i(k, Y)eikXdk. (4.60)

Note that bl(k, Y) is not defined for k = 0. This can be tracked back to the fact that

the Fourier transform of the step function, T(X), is also singular at k = 0. In fact

the Fourier integral is only defined for Im(k) < 0, and consequently the integration

path for the inverse Fourier transformation should be defined by k = k, + i ki; with k,.

going from -oo --+ +oo and ki = -r; where 0 < r so that it lies within the domain of

definition of the transform of T(X). In fact the constraint on k is more severe. It can

be shown 5 that the integration path must lie in the strip defined by -7_ < Im(k) < 0,

5The condition Im(k) < 0 is not mathematically correct. The real condition is that -r.. <
Im(k) < 0, where r. is determined by the requirement that the inverse Fourier integral (4.60),
which defines vi, converges for the negative values of X.

The function T(X) has a Fourier transform: fS T(X)e-ikXdk for all I with ke < 0. Moreover
this Fourier transform is equal to 1 for all I in the domain of definition. The fact that the domain
of definition is the half plane Im(k) < 0 is a consequence of the fact that the function T(X) is equal
to zero for negative X.

However the function v 1(X) has non-zero values for large negative X, and one must pay some
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where 7r is a small positive number determined by the asymptotic properties of vi(X)

near -oo in order to guarantee the convergence of the inverse Fourier integral. The

integration path can be defined by: k = k, + iki; k, E] - oo,oo[; ki = -r;

0 < r < 7_. The expression for vi(X, Y) is then:

_u 0  7+a-~-i 1i ((3,2 k 2 ± + 23 2 k2  V12

v (X, Y) = 1  2 e-Y+ikX + e-Y+i dk.S-,r \ v2 - v2 2 - 2' /

(4.61)

Similarly one can find expressions for the remaining variables:

1 +00 ik ik `JY ikxdkiS(X, Y) = uo - - e e dk, (4.62)
2x f-o V 1  V2

(01 (iV2 +) 32k 2  2 + 3a2N kk d2bi(X,Y) = b 1. a i( ÷ k'Pev-"" +i +k - 2e-") eikdk,
\ 2b1 22 -oo 0 VI k V2 k

(4.63)
1 + v - k 3v k2  ekdk (4.64)

Pi(X, Y)= pO- e-eikdk. (4.64)
2 -oo - VIk V2k

If one attempts to invert the Fourier transformation analytically, one is confronted to

a difficult problem: the functions vi, v2 are two of the roots of a biquadratic equations.

The fourier transform of vi has several singularities which are not necessary poles.

4.5.1 Numerical Inversion

In order to invert the Fourier transformation, it is convenient to use a numerical

method based on the Fast Fourier Transformation algorithm which will be justified

now. Starting from the expression of the inverse Fourier transform of a function:

1f( - fJ(k)e'ikdk, (4.65)2T -oo

attention to the convergence of the integral fl(k) = f_ vr(X)e-ikxdk which defines the Fourier
transform of vl. For large negative X, the exponent is: -ikX = -i (k, + i ki) X = ki X - i k, X.
The exponential term will only converge to zero if ki is positive. But this is not possible, since the
integral would otherwise diverge for the positive values of X. It is the fact that the function vl(X)
decays to zero faster than e'- x for large negative values of X which allows the integral to converge
despite the growing factor in the exponential kernel.
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k can be replaced by 2-rý:

f(X) = J f(27r()e2wTitdý, (4.66)

The equation is evaluated at the discrete points z = mAX:

f(m)= ) f f(27r)e2wmiA-xdý. (4.67)

The integral is discretized by sampling at the points (j = WA:

00

f(Xm) E- j(27r~j)e2 'i mjaiaA(, (4.68)

f (xm) 00 N x r N A  
) e "' . (4.69)

The FFT algorithm is used to calculate the sum.6 In the process the sum is truncated

to j E [- + 1, N]. Finally:

f(xm ) . -• f(2r N )e2"mi• } , (4.70)
j=--T+1

where the expression in the curly bracket on the right hand side is the result of the

Fast Fourier Transformation algorithm applied to the values taken by the Fourier

transform f at the discrete points k = 27rj, with (j = .

Since the FFT algorithm assumes that one deals with k E R, something needs to

be done about the singularity at k = 0, in the integral which defines vl (equation 4.61).

For instance, one choice is to invert the partial derivative of vl with respect to X,

which does not have a singularity at k = 0, and to integrate the result again after the

6This implies that f(2rrj ) is a periodic function of ý, however this constraint is neglected, since
the function is assumed to decay fast enough at both ends of the interval of definition of k
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numerical inversion.

Ovi (X, ) = O + 1 ((Uak + v2 e-&1 Y+ikX _ 1 -e, -Y+ikX
2 _ 2 e 2 _ V2 e-AaX X 27r f-oo ik V2 k e dk8X X -- k\ v2 - v" - __

(4.71)

(4.72)
Similar methods can be used in order to invert the other variables, ul bl, etc... The

expressions for the variables _, and a are given below. Notice that the magnetic

field b, must be differentiated twice, since the singularity for b, is in k.

ul(x, Y)  o +-o ( k + V ik 2Y+ikx ok + __ ik_- 2Y+ k
(2(XY)= -2 2 ik + dk

X 27r "V - -V V Vi - V- V2 '
(4.73)02b _ )ybos b 10 /3k+2 + )3J2( k3d a'bu x yxo, b -0 , o + +V2 -iiY+ikxS(X 2 Y) 2 VI e

0X 2 21 2 -m -- e

+ (2k2 + V Jk2 + V2 e-Y+ikX}dk. (4.74)V2 V, 2

4.5.2 Discussion of the Results

It has been shown in the previous chapter that in the far-field, where the effect of

magnetic diffusion can be neglected, the flow undergoes an adiabatic magneto-acoustic

expansion comparable to a Prandtl-Meyer expansion. Similarly it can be shown that

in the near-field, the flow undergoes an isentropic purely acoustic Prandtl-Meyer

expansion. The small disturbance analysis shows the transition between these two

expansions, from the near-field to the far-field. Here an expansion fan (which has

an extent proportional to the small deflection angle e) appears as a discontinuity (as

would a weak compression shock too). The smooth blending between the near and

far-field behaviors happens by a gradual weakening of the discontinuity strength as

the distance increases away from the corner. Similarly information propagates ahead

(upstream) of the discontinuity, as a result of the partially "elliptic" character of the

operator.

Cross-sections of the density and the magnetic field for several values of the dis-
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tance Y are shown in figures 4-4 and 4-5. In the density plot, the sonic fan appears as

a sharp discontinuity, whereas the magneto-sonic fan is smeared considerably under

the effect of the magnetic diffusion. As the distance Y increases, the sonic fan be-

comes weaker, moves towards the right, and eventually merges into the flow. A plot

of the density contours is shown in figure 4-6.

In the magnetic field cross sections, the sonic fan appears as a discontinuity in the

derivative, but b itself is continuous. The corresponding contour plots are shown in

figure 4-7. In the density plots, the density undershoots its asymptotic value along the

downstream electrodes. This implies that the cavitation effects of the expansion will

be felt most strongly in the immediate vicinity of the corner, on its downstream side.

In the magnetic field plot, the contours of constant magnetic field are also current

lines. These lines broadly follow the direction of the magneto-sonic fan, as they

converge toward the corner. Those which reach the edge of the sonic fan turn around

and reattach downstream of the corner's edge, reaching the wall with a zero normal

derivative in the absence of the Hall effect. The slow adjustment of the magnetic field

to its asymptotic value, is spread over a large distance, as discussed in the section

concerning the magnetic wake along the downstream wall.

The unexpected refraction of the current lines across the expansion fan can be

justified in the following way. The Ohm's law for the one-fluid plasma can be written

(in dimensional units) as:

J JxB
E + u x B = - + - (4.75)

o e ne

As the fluid expands across the sonic expansion fan, the normal component of the

velocity vector u changes abruptly (at least in the first order term). However B is

continuous across the fan, leaving only J and E to balance this increase. In fact the

increase is balanced by a discontinuous change in the current vector J, as will be

shown below.

The Ohm's law is projected on the directions normal and parallel to the sonic fan,
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giving the equations:

Ell - u 1 B = J11 , B (4.76)
a" e ne

JI J11BE. + ullB = - + J  (4.77)
a e ne

From the condition: div J = 0 one can derive the jump condition [J.] = 0. Similarly,

from the condition: V x E one can derive the jump condition: [Ell] = 0. From the

mass conservation equation: div pu = 0 one can derive: [p u±] = 0, and from the

conservation equation for the momentum in the direction parallel to the fan one can

derive [p u1 ull ] = 0, which leads to: [ull] = 0. Using these relations one can reduce

the above equations to:

- [u.] B = [Jil, (4.78)

[E±] = [J] ---- B (4.79)
e n e

The former equation gives a relation between the change in velocity across the fan

and the corresponding change in current. The second equation gives the change in

the normal electric field. This analysis assumes that the expansion fan reduces to a

discontinuity. In reality the fan has a finite thickness, and the current refraction will

be spread across the thickness of the fan.

Experimental confirmations of this phenomenon were found in several reports.

Some examples are given in figure 4-13 and 5-9. Notice that these phenomena are

observed near the anode, and not around the cathode. This is a consequence of

the Hall effect, which introduces a distinction between the electrodes. This will be

considered now in more detail.

4.6 Addition of the Hall Effect

As mentioned in the introduction, the Hall conductivity modifies the solution, and

it is desirable to study how this effect modifies the previous results. If one neglects

the variations of the conductivity a and of the Hall parameter Ha, the Hall effect

does not appear explicitly in the differential equations. It only appears in the bound-
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ary condition related to the magnetic field (the equipotential condition). The small

disturbance approximation can therefore be used with little modification.

The linear problem can be reformulated as:

192 21 M_ 2 82
uo = '(1 M + 92) (4.80)X X2 Y2 M2 2 Y2

vi(X, 0) = -uoT(X) for Y = 0, (4.81)

bl  8b61
Y +  = 0 for Y = 0, (4.82)

where /, is the Hall coefficient. The Fourier transformation can be used as well,

provided that the coefficients ( 1 , JL2) of the modal decomposition are modified to

reflect the new boundary conditions. The method to calculate the new values of

/1, Y2 will now be detailed. From equations (4.8-4.12) it is possible to construct the

equation:
2b02 zO 82b 2 +
-•yp o bX 2  UlXXx + VxXy. (4.83)

From:

v = U2-O (e -e"Y + 2t2e-"Y)eikXdk, (4.84)

1 k ik 1  ik -
u = Uo- (- - le - - )eikXdk, (4.85)

27r fIR(V21 V2

one can derive the expression of bl:

b1 = 2bi bo- 1 (I4 _ _ iak2 &e-Y + / P 2Lze- Y)eikXdk. (4.86)
= fP 2) r R iv1k iv2 k

The equipotential boundary condition, 8 + /3,- = 0 for Y = 0, leads to the

equation,

2 +±3ak2) (1 - ik-e + ±2(v,( + Pk')1 = 0. (4.87)V1 
V2
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Similarly the tangency condition vl = -uoT(X) leads to the condition,

1
l 1 + A 2 = -ik (4.88)

These two equations form a linear system which yields the following solutions:

1 (v2 + Pa2k) (1 - /•)(4.89)

I' = ik (v, + 3.2k 2) (1 - ik) - (v~ + 2k2) (1- ( )

/-12 1 (i (4.90)
IL=: ik (V2 + '32k2 )(1 - A) -1(v _+ /.k2)(1 - i-e)

The Fourier transform of vi is inverted by the Fast Fourier Transformation (FFT)

algorithm as before.

4.7 Discussion of the Results

Some interesting changes can be seen in the density contour plots shown in figures 4-8

and 4-9. The density perturbations anticipate the corner's presence along the cathode

surface, whereas they lag behind along the anode. The expected mass depletion along

the anode is also visible. However it appears in a way which was not fully expected:

it occurs downstream of the corner. The asymptotic value downstream of the corner

for the density and the magnetic field is given by:

boo/bo = 1 - eMV + O(E2 ) (4.91)

poo/Po = 1 - eMV + O(e2) (4.92)

For both quantities, and with the conditions considered in the calculations, these

asymptotic values are equal to 0.8. A plot of the density along the line Y = 0, both

for an anode and for a cathode is shown in figure 4-10.

The fluid anticipates the presence of the corner through its interaction with the

magnetic field. In fact one can give a hierarchy of interactions: At short distances
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from the corner the flow is independent from the magnetic field which reacts locally

to the boundary conditions along the electrodes, including the constraints imposed by

the Hall effect. Over larger distances, both upstream and downstream of the corner,

the perturbation on the magnetic field is compensated by a modification in the gas

flow.

It has been previously recognized [4] that the Hall effect was responsible for the

anodic mass depletion. This analysis confirms this fact but suggests that part of

this depletion is intrinsically related to the presence of the corner. It suggests that

the depleted region occurs outside the channel, on the side of the anode located

downstream from the corner, and over a region of a finite length. Similarly it appears

that the mass concentration along the cathode is due to the Hall effect and to the

presence of the corner.

Since for an isentropic flow the temperature variations are proportional to the

density variations, these conclusions are also valid for the temperature. This suggests

a possible explanation for the high temperatures and the luminosity often observed

near the cathode: the adiabatic compression just ahead of the cathode corner increases

the gas temperature to a level where the gas becomes luminous. In most experimental

designs the thruster geometry is axisymmetrical. One of the effects of the cylindrical

geometry is to create a density gradient due to the pinching effect of the Lorentz

force. So far the luminosity has been attributed to axisymmetrical effects, but this

analysis predicts that it should also be observed in thrusters with a "two-dimensional"

or "slab" geometry.

The results for the magnetic field are displayed in figures 4-11 and 4-12. As stated

above, the Hall conductivity changes the boundary conditions along the electrodes.

The equipotential condition implies that the current no longer penetrates the electrode

perpendicular to the surface but instead is deflected from the perpendicular by an

angle 0 such that tan 0 is equal to the Hall parameter 3e. An important difference

appears in the distribution of the current between the anode and cathode cases.

For the cathode, the current lines strike the electrode ahead of the corner. For the

anode, the opposite phenomenon occurs. The majority of the current lines strike the
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electrode on the downstream side of the corner. This confirms the theory that some

of the current lines tend to reattach outside the thruster channel. However it should

be kept in mind that this analysis does not account for the other electrode. This

limitation will be lifted in the next section, and it will be shown that the effect of

the other electrode is to limit the extent to which the current lines move outside the

thruster channel. Finally the current refraction is more visible near the anode than

the cathode. This is a consequence of the equipotential boundary condition, namely

that the current lines must reach the electrode with the appropriate angle.
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Figure 4-1: Structure of the flow around a weak corner. The drawing shows the
existence of a magneto-sonic expansion fan at a large distance from the corner and
a sonic expansion fan near the corner. The magnetosonic fan is smeared out by
the effect of the magnetic field diffusion associated with the finite resistivity of the
medium.
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Figure 4-2: Boundary conditions for the asymptotic solution at large distance from
the corner.
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Figure 4-3: Asymptotic Structure of the transition layer across the characteristic

leaving the corner. The transverse velocity v, is plotted against the coordinate:

(Y - i ). The velocity exhibits a smooth transition from vl = 0 to vl = uo.0.- ~·
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Density profiles

-15 -10 -5 0 5 10 15 20

X

Figure 4-4: Flow above a weak corner. Profiles of the density perturbation

pi(X,Y)/po at various distance from the electrode: Y = 0,1,2, 3A,, with M" =

1.414, M, = 3.544. The sharp discontinuity is due to the passage through the sonic

expansion fan. (In the small perturbation method, the sonic expansion fan reduces
to a discontinuity.)
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field profiles
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Figure 4-5: Flow above a weak corner. Profiles of the magnetic field perturbation
bi(X, Y)/bo at various distance from the electrode: Y = 0, 1,2, 3A,, with M, = 1.414,
M. = 3.544. The Magnetic field is continuous across the sonic expansion fan.

134

-20

Magnetic

-_3



Contour Plot
Density
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Figure 4-6: Flow above a weak corner. Contour plot of the density p = Po + E pl, with
M, = 1.414, M, = 3.544, e = 0.1. The density changes abruptly across the sharp
sonic expansion fan.
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Contour Plot
Magnetic Field
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Figure 4-7: Flow above a weak corner. Contour plot of the magnetic field b = b0 + b+ ,
with M, = 1.414, M, = 3.544, e = 0.1. The magnetic field is continuous across the
sharp expansion fan, but the current lines are refracted by the sonic fan.
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Contour Plot
Density
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Figure 4-8: Flow above a weak corner in the presence of the Hall effect. Contour plot
of the density p = Po + E pi, with M. = 1.414, M. = 3.544, 8, = 1, e = 0.1. The
situation corresponds to an anode.
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Contour Plot
Density
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Figure 4-9: Flow above a weak corner in the presence of the Hall effect. Contour plot

of the density p = Po + e pi, with M, = 1.414, M, = 3.544, /3 = 1, e = 0.1. The

situation corresponds to a cathode.

138



Density profile at Y=O

10 15

x

Figure 4-10: Density profiles for p, along Y = 0, with M, = 1.414, Ma = 3.544,
3e, = 1. The solid line corresponds to a cathode, the broken line corresponds to an
anode.
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Contour Plot
Magnetic Field
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Figure 4-11: Flow above a weak corner in
plot of the magnetic field b = b0 + E bl, with
The situation corresponds to an anode.

the presence of the Hall effect. Contour
MV = 1.414, M. = 3.544, ,3e = 1, e = 0.1.
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Contour Plot
Magnetic Field
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Figure 4-12: Flow above a weak corner in the presence of the Hall effect. Contour
plot of the magnetic field b = b0 + e bl, with M, = 1.414, M. = 3.544, P = 1, e = 0.1.
The situation corresponds to a cathode.
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Figure 4-13: Enclosed current contours in a Princeton "benchmark" thruster . (From
[Barnett J.W., 1985]) Near the anode the contour line corresponding to 40% of the
total current shows a deflection similar to that predicted by the linear model.
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Chapter 5

Resistive Solution for a Slightly

Divergent Channel

5.1 Statement of the Problem

The linear analysis of Chapter 4 can be extended to cover the case of a two-dimensional

channel whose boundaries are slightly different from the two flat planes which define

a constant area channel. A logical extension of Chapter 4 is to consider a symmetrical

channel whose boundaries are shown in figure 5-1.

The solution is no longer limited by the assumption that Am, < H, but includes

the cases Am - H. The case without the Hall effect, whose solution can be written

as an integral, will be considered first. Then, the case which includes the Hall effect

will be considered. It will be shown that the Hall effect modifies the solution in a

considerable way. Some of the effects that have been observed experimentally will be

seen in the linear solution when the Hall effect is included, namely the gas compression

along the cathode and a rather strong depletion along the anode, near the exit.

As for the case of the weak corner, the major application for this analysis lies in

the insight into the structure of the flow: the main features include the regions of

strong variations of density, temperature, pressure, and velocity near the exit, the

influence of the flow expansion, and the gradients created by the Hall effect.

However the non-linear effects are still not considered by this model. There are
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two conditions which limit the validity of the linear analysis for the corner flow. First,

the deflection angle must be small, and second, the solution is not valid far from the

corner because non-linear effects become dominant. (The abrupt transition turns into

a fan.) There are two similar limits of validity for the linear channel analysis: first

the deflection angle must be small, and second, the solution loses its validity at a

large distance downstream of the point where the channel's diameter starts growing,

as non-linear effects become dominant.

In addition the analysis assumes a uniform incoming flow. From the asymptotic

matching of the inlet layer to the outer solution in the main part of the channel

one can see that the inlet plays a critical role in the distribution of the density,

temperature and velocity in the incoming flow. In the absence of the Hall effect, and

for a sufficiently long channel, the symmetry of the problem at the inlet dictates that

the flow be uniform. However this uniformity is broken when the Hall effect is taken

into account. If the channel is sufficiently long the problem can still be separated

into two problems, one dealing with the calculation of the inlet acceleration layer, the

other dealing with the corner flow. The effect of the non-uniform distribution could,

in theory, be accounted for in the linearized model by assuming an artificial relation

between the small parameter (the deflection angle e) and the strength of the non-

uniformity. Since the author of this thesis was not able to solve the two-dimensional

inlet problem in the presence of the Hall effect, it was not possible to account for the

flow non-uniformity either. A qualitative comparison with some experimental results

is shown at the end of the chapter for a realistic set of parameters.

5.2 Formulation of the Linearized Problem

The results of the inlet inner-solution and of the mid-channel outer-solution are used

to determine the upstream boundary condition. The upstream flow is assumed to be

constant and can be defined by the Mach and Mach-Alfven number Ma and M,. The

channel height introduces a non-dimensional parameter: the ratio H which can be

considered as a magnetic Reynolds number based on the channel height (equivalent
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to the inter-electrode gap). If we consider the Hall effect, this introduces a second

non-dimensional parameter, Ha or 3, (depending on whether the strength of the local

magnetic field is included in the parameter definition).

The equations of the weak corner analysis are still valid, and the linearized problem

gives the same fourth order differential operator. The only change is in the boundary

conditions. The assumption of vanishing modes as Y -- oc and the causality condition

are replaced by two boundary conditions at the upper electrode. These two conditions

are of the same type as those defined on the lower electrode (at Y = 0) namely

the tangential velocity and the equipotential condition. The linearized problem can

therefore be expressed by the following operator and boundary conditions:

((I X 2 M2a2 i92

M 102 =2 2  (1 2 + 2
o (1 ) + (1  M + v (5.1)Y2

vl(X,O) = -uoT(X) at Y = 0, (5.2)

vi(X, H) = uoT(X) at Y = H, (5.3)

Obl Obl
S+  b = 0 at Y = 0, (5.4)

Obl Ob1- 3, -=0 at Y= H. (5.5)5Y aX
where H is the channel height and T(X) is the step function.

5.3 Method of Solution

The Fourier transformation in X can be used to calculate the solution in the strip

defined by X E R; Y E [0, H]. The transformation of equation (5.1) is a fourth-order

constant-coefficient ordinary differential equation in Y, which can be integrated easily.

The solution can be expressed as a linear combination of four modes:

vi(X, Y) = U J1 (Pie-vY + A 2 e-1 + p3 e'Y" + 1 4e&Y) eikXdk. (5.6)
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The Aj are complex functions of k, Y, H, fl~, ,. They are defined by the four

boundary conditions described above. Similarly the expressions for the other variables

are:

( .v kv 1 Alei-" -i - k 2
k 2 I 2 e- Y +

i k - k 3eV_ Y + 2 i L124 
Y  eikXdk ,

k kjy,

1 U
=o 2n-

ike ik 2e
---- ie - -L2e-Y Y
V11 2

--Cpe" + ik4e eikX dk,V1 V2

.V1 + $2k V 2 + Oak2 LI
-A l e - Y  +i Zpse-,

kv, k v, - (5.9)

2 ) 32k2
- 2 + P.k2 4e4 zY eikxdk.k-12 C4eY

After taking the Fourier transform of the boundary conditions one obtains the fol-

lowing conditions, respectively:

I1 + /2 + A3 + L4 = k

i
1 ue-vH + A2 eVH + A-3 e v1H + 4 ev2H =

2L(4 + 8a k2)(1 - , ) + (V2 + 2k2)(1 _ )ik
V1 V2

+A3(v12 + )3k2)(1 + Pe ) + 14(V22 + k 2')(1 + 3e)1 = 0,
V1 V2

(5.10)

(5.11)

(5.12)

21(1+ 1/2k 2 )(1- i k e- v H

V1
it2(V2 + )ka2 )(1 -1 )e- i "

e2
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pi(X, Y) 1
= Po•-POT (5.7)

ul(X, Y) (5.8)

bi(X, Y) S1
=b2
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+A3(L 1 2 + 02k'2)(1 + 3e )e,"31H + A4(v~ + I'k'2)(1 + 3e )e & = 0. (5.13)
V1 V 2

If the Hall effect is neglected, it is possible to find closed form expressions for the

zj which are given below:

- 1 = , . ie-•iH' (5.14)

i V2 + 2 k2  1
'2 = -i (5.15)

i 22 + 3o2k 2  e-1H(
a = k 2 1 -e-,iH ' (5.16)

i i2 +÷ #2k 2 e- v
1 = 2 e-H' (5.17)

And the expression for 1i(k, Y) is then:

i v2 + #J2ak2 e-61Y - e-ul(H-Y) i 2f +) /2k2 e-12Y - e-v(H-Y)
f (k, Y) v v 1-e -IH  . (5.18)

The velocity i1(k, Y) can be inverted using a Fast Fourier Transformation algo-

rithm as before. The caveat about the pole at k = 0 still applies, and one can use

the techniques described above (integration below the real axis or inversion of O

followed by integration in X.) Notice, in the case of the channel flow, that fil(k, Y)

must be differentiated twice, like b1 and 11, in order to remove the singularity at

k = 0.

When the Hall effect is included, there is no simple closed form solution. It

is however possible to solve for the vj numerically as functions of k. This can be

done after rescaling of the unknowns. A closed form solution for the 1j was found

using the MACSYMA package. Although this solution was too complicated to use,

it showed the asymptotic behavior of the solution for vlY > 1 and for vl(H -

Y) > 1. The solution includes exponential terms like e-" Y and e-" (H-Y) (similar

to equations (5.14) to (5.17)) which can change by many orders of magnitude. When

the exponential part of the pj are factored out, the solutions are well-behaved, and
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the fourth order linear system is well-conditioned.

The results for H = 30 are shown in figures 5-2, 5-3. Notice that p, and bl

become unbounded in the far downstream region as a result of the expansion through

an ever increasing channel area. This is also true for the variable ul, however vl stays

bounded.

5.4 Discussion

5.4.1 Wide Channels

An example of the results for a wide channel (h = 30A,) is shown in figures 5-2 and 5-

3. The properties of the weak corner solution discussed in section 4.7 (compression and

expansion along the electrodes) apply to the channel as well. The current refraction is

visible near both electrodes. This analysis confirms that the depletion region near the

anode appears downstream from the origin of the divergent section, suggesting that

the anode depletion is not only related to the presence of the Lorentz "pumping force",

but also the channel divergence. It also appears that there is a small compression

zone along the cathode, ahead of the origin of the divergent section (difficult to see

in the plots). All these effects would disappear in the absence of divergence in the

channel, and conversely the compression and depletion regions would be exchanged

if the channel were convergent instead of divergent. A transverse cross section of the

density downstream of the corner is shown in figure 5-4. This figure shows that the

density is not monotonic but has an alternation of maxima and minima (+ - + -).

Thus a local maximum exits between the core of the flow and the near-anode depletion

region, and conversely a local minimum exits between the core of the flow and the

near-cathode high-density region. The effects of the Hall conductivity are thus local

effects, which is consistent with the fact that they appear in second order derivatives.

They are confined in boundary layers which appear near the surface of the electrodes.

An increase of the Hall parameter results in an increase of the gradients near the

electrodes, in particular for the density.
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It must be kept in mind that this analysis assumes a uniform incoming flow cal-

culated from the one-dimensional inlet layer without the Hall effect, and that the

inclusion of the Hall effect in the inlet region would most likely create transverse

gradients, in particular for the temperature, density, and velocity.

5.4.2 Narrow Channels

When the height of the channel is decreased the results are modified significantly.

The major effect is that the longitudinal variations in the divergent section are much

stronger for the narrow channel. In addition a decrease of the channel height results in

the displacement of the current lines towards the inlet. The retrograde displacement

of the current lines along the cathode is depicted in figure 5-5, where the attachment

point of an arbitrary current line (defined by b1/bo = -1) is plotted as a function

of the channel height. The geometry is that of figure 5-1 (a symmetrical divergent

channel). When the channel height is larger than about 20Am, most of the current

attachment is confined to the exit area, and when the channel height is lower than

about 10Am, the attachment point moves upstream proportionally to log h. 1

This property invalidates the intuitive concept that the one-dimensional model

becomes more accurate as the channel height is decreased. One must distinguish here

between two different phenomena. On one hand it can be shown, by considering a

limiting process where the channel height tends to zero, that some of the variables

(namely b and p) will have a one-dimensional distribution within the channel. This

can be stated more formally by writing that, in the limit when the thickness h tends to

zero, the first term b0 of the perturbation expansion b(X, Y; h) = bo(X)+h bi(X, Y)+

h2 b2(X, Y) + ... does not depend on the transverse coordinate Y and similarly for p.

Notice that the variables p and u, do not have this property, and therefore do not,

in general, tend to a one-dimensional distribution.

The second effect to consider is the fact that the inter-electrode gap h replaces

Am as the scale length for the plasma expansion, and consequently the results change

lit can be approximated by X* ~ -34 + 30 log h10.
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on a smaller scale. However the diffusive effects still change on the same length scale,

Am. Consequently there is a balance between a source term whose "strength" is

proportional to 1/h and a damping factor whose "strength" is constant.

An analogy can be drawn with the interaction between a supersonic shock and a

laminar boundary layer. Under certain conditions the boundary layer separates from

the wall, and the separation occurs upstream of the point where the shock reaches the

boundary layer. The elliptic properties of the differential operator associated with

the viscosity are responsible for the upstream separation under the influence of the

shock.

The previously accepted condition for the thruster to work in the magnetosonic

regime, (i.e. that the direct electromagnetic acceleration will dominate over the

electrothermal acceleration mechanism), is that the magnetic Reynolds number based

on the channel length be large compared to one: Rm(L) > 1. The author suggests

that the condition2 : Rm(h) 1, should be added to the first, in order to prevent

current attachment close to the inlet, to guarantee a quasi one-dimensional behavior

for the thruster and to increase the effective magnetic Reynolds number for the flow.

Using a different approach Schoenberg et al. [52] have proposed a similar criterion.

The linearized calculation does not include the effect of the variation of the trans-

port coefficients, namely the electrical conductivity and the Hall parameter. However

these parameters vary in space, and are essentially functions of the electron temper-

ature, electron density and the magnetic field. The Hall parameter is proportional to

the magnetic field, and is therefore higher near the inlet than near the exit, in addi-

tion it is inversely proportional to the electron density, and will therefore be higher

near the anode than the cathode. An increase of the Hall effect can decrease the

local electron density near the anode, which in turn may increases the Hall effect

locally. This type of positive feedback can rapidly create a complete starvation of

charge carrier along the anode. Therefore it is possible that the upstream influence

could be stronger along the anode in a non-linear model.

Although it was difficult to find experimental results for quasi one-dimensional

2That the magnetic Reynolds number based on the channel height be large compared to one.
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thruster geometries, some qualitative comparison can be made between experimental

results and the present theory based on the measurements of Wolff [65]. Figure 5-9

shows the measured current distribution inside a flared thruster. The corresponding

calculations appear in figures 5-7 and 5-8. The calculations are based on a channel

geometry which is derived from the experimental geometry and which appears in

figure 5-6. The major differences are that: the real channel is finite whereas the

channel used in the calculation is infinite; at the exit plane the anode ends abruptly

and the deflection angle is 90 degrees, whereas in the calculation the deflection angle

is small; the conical section in the middle of the channel has an angle whose tangent

is about 0.22, whereas the calculation uses an angle whose tangent is about 0.1; the

real problem is axisymmetrical whereas the calculation ignores all axisymmetrical

effects; finally the electrical conductivity and the Hall effect are variable, whereas

in the calculation they are constant. Despite these limitations one can observe the

same qualitative features. These include the tilting of the current lines under the

Hall effect, with the current attaching towards the upstream section of the cathode

and toward the downstream section of the anode. The current line refraction across

the expansion fan originating from the start of the divergent section can also be

seen in the calculation as well as in the experimental results. Similarly, an opposite

refraction occurs across the weak shock originating from the end of the divergent

section. The plot of the density distribution inside the thruster suggests that there

is a strong density gradient in the transverse direction, with a maximum along the

cathode. This maximum appears to be a consequence of the expansion due to the

conical anode section. Similarly the density drops to very low values near the anode

surface as a consequence of this expansion.

If one compares both cases to the one-dimensional model it appears that the

current distribution is more spread-out than what the one-dimensional theory would

predict (given that the magnetic Reynolds number based on the thruster length is

about 20.) The experimental results and the theory thus confirm the fact that the

current lines attach far inside the thruster when the channel height is decreased.
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Figure 5-1: Geometry of a symmetric channel with a slight divergence.
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Contour Plot
Density
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Figure 5-2: Flow in a channel with a slight divergence. Contour plot of the density
p = Po + E Pi, with M, = 1.414, Ms = 3.544, e = 0.1. The Hall parameter is 3, = 2.
The channel height is H = 30Am
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Contour Plot
Magnetic Field
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Figure 5-3: Flow in a channel with a slight divergence. Contour plot of the magnetic
field b = bo + E bl, with M, = 1.414, M, = 3.544, e = 0.1. The Hall parameter is
O, = 2. The channel height is H = 30Am,
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Transverse Plot
Density
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Figure 5-4: Flow in a channel with a slight divergence. Plot of the transverse density
profile downstream of the corners, at a distance of X = 2 9. 3 Am,. p = Po + E rhol,
with M, = 1.414, M. = 3.544, E = 0.1. The Hall parameter is 3e = 2. The channel

height is H = 30Am
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X* versus H
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Figure 5-5: Plot of the position at the point at which bl/bo = -1 along the cathode
surface. The geometry corresponds to the symmetric divergent channel of figure 5.1.
The distance is computed from the origin of the divergent section. The point moves
back upstream as the channel height is decreased, indicating that the influence of the
exit on the inlet region becomes stronger when the channel height is decreased. The
conditions are: M, = 1.414, Ma = 3.544, and the Hall parameter is /, = 2.

156

+-t

I I i it I I 11

i I I rlrlrrl

. . . -. I A I I I I- - I
- A 0



- -- -- - -L - - -- - l I I I I I I I"" II"' t' '•

Figure 5-6: Geometry similar to the flared thruster of Wolff et al. used for the narrow
channel calculations.
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Figure 5-7: Flow in a narrow channel with a slight divergence. The channel is similar
to the flared thruster of Wolff et al. Contour plot of the density p = po + E pi, with
M, = 1.414, Ma = 3.544 E = 0.1 and the Hall parameter is 3e = 2.
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Contour Plot
Magnetic Field
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Figure 5-8: Flow in a narrow channel with a slight divergence. The channel is similar
to the flared thruster of Wolff et al. Contour plot of the magnetic field b = b0 + e bi,
with M. = 1.414, M, = 3.544, e = 0.1 and the Hall parameter is e, = 2..
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Figure 5-9: Experimental results for the geometry studied by Wolff et al.
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Chapter 6

Flow along a Flat Insulator

When the plasma leaves the central region of the discharge it can be characterized

by the following properties: It has a high velocity, of the order of the magneto-

acoustic velocity, a low density, a low temperature, and a residual magnetic field.

The level of this residual magnetic field depends on the degree of completeness of

the plasma expansion. In some thruster geometries, such as that considered by Di

Capua et al. [16], the electrodes are extended by insulators which are used as nozzle

walls. (See figure 1-4.) Since no current can flow through these insulators all current

lines are forced to attach at the end of the electrode, just ahead of the insulated

section. Thus the magnetic field is suddenly forced to go to zero at the surface of

the insulator. This forced transition will release some of the electromagnetic energy

convected by the plasma. This release will be confined to a region in the neighborhood

of the insulator, and will take the form of Ohmic heating. The plasma will see its

temperature increased on a length scale corresponding to the decrease of the magnetic

field. In the region near the transition from the conductor to the insulator, the flow

has a complex structure which most likely cannot be reduced to a self-similar solution.

In a classical boundary layer this region would be the region near the leading edge

of a flat plate. Downstream of this transition region the flow relaxes to a self-similar

structure which is a boundary layer. This structure is the object of this chapter. In

a classical boundary layer this structure would be called the Prandtl boundary layer.

Here the problem is complicated by the presence of the magnetic field, the electrical
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conductivity, and the gas compressibility.

6.1 Self-Similar Solution without Heat and Mo-

mentum Transport

6.1.1 Formulation

For an insulating wall the outer solution does not satisfy the boundary condition

B = 0 at the surface of the insulator, and a boundary layer appears along the wall.

Since the magnetic boundary layer is located in a narrow region adjacent to the wall

it appears justified to stretch the coordinate which is normal to the boundary. This

will introduce what can be called the boundary layer equations, which can then be

solved by a self-similar transformation.

The equations can be written in cartesian coordinates as follow:

9 a
Y-(p u) + -(p v) = 0, (6.1)

i9u au apu + p + (p + b) = 0, (6.2)

v ay 8 bpu T + pv P+ + 01 (6.3)B y (6.3)

p p ( p 2 (-y - 1) )2(A)2} (6.4)
P' u ) + p v ) = + () , (6.4)

az py ay pJ Rm B a )8 b _b (o'b o1b
8a p dy p Rm 8225

The normal coordinate can be stretched the following way: Y = y/yv, e = , while

keeping the other coordinate constant: X = z. After substituting the inner variables

expansions,

(p, u., uy, p, b) = (R, U, e/ 2V, P, B) +..., (6.6)

inside the partial differential equations, and neglecting the higher orders in e one
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obtains the following boundary layer equations:

8 0X(RU) + a (RV)= 0, (6.7)
x ay

R(U + V )U + (P + B2 ) = 0, (6.8)

-(P + B 2) = 0, (6.9)

1 0 8 P \ 2R1 (U + V ) P 2 ( (6.10)S 1 aX aY RT '
0 0/B \ 2 BR(U a + V )- (6.11)

aX 0Y R YY2

Using a method proposed by Hansen [22] it is possible to find a similarity trans-

formation which turns the system of partial differential equations into a system of

ordinary differential equations. This transformation is a generalization of the flat

plate compressible boundary layer transformation to the case of a compressible flow

with a transverse magnetic field. The transformation is also valid when viscosity and

heat diffusion are included in the equations.'

In the case of a flat plate, the transformation has the form: r = •, = X, and

the variables take the form:

R = R(77), U = U(r~), V = -1/2'V(l), P = P(r7), B = B(9).

After substituting in the system of partial differential equations and keeping the terms

1The compressible boundary-layer is usually calculated using the Illingworth-Stewartson trans-
formation, which converts the parabolic system of partial differential equations of the compressible
boundary layer into a system of two ordinary differential equations, one for the momentum equation,
and one for the energy equation. The mass conservation equation (continuity equation) is satisfied
by expressing the velocities in term of the derivative of a streamfunction. It can be shown that the
Illingworth-Stewartson is actually equivalent to the transformation considered in this chapter. The
choice of one versus the other is mostly a question of taste. The Illingworth-Stewartson leads to a
smaller number of equations and it can take a form similar to that of the incompressible boundary
layer, but the algebra is fairly complicated; the method presented here leads to a larger number of
equations but the algebra is considerably easier, in particular for the magnetic field equation.
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of dominant order in z, one obtains the system of ordinary differential equations:

( =-+ (RV) =0o,

1
R(f - 177U)2

(P + B~ ) = 0,677(+B
1 a P

R ( - 77U),q )(

1
2 O 77

= 2 (- - 1) B 2

( 1 )
B 82B

After simplifications and assuming that fV # 5rU one obtains the system,

OUm----0

0

-- (P + B 2) = 0,ýý( +B
OR R 2BJ
d~d77 yP2BJ

B

7 P

- 2(7 - 1) J2ý' - 1q

1)j2 - 2BJ(ý' - 17U))2'II

(2(7 - 1)J2 - 2BJ(V -

OB
-=J,Or/

with the boundary conditions given by the matching conditions with the outer flow,

R(S,) = Pe,

P(S,) = pe,

B(S&) = be,,

(6.23)

(6.24)

(6.25)
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(6.12)

(6.13)

(6.14)

(6.15)

(6.16)

8J
dr

=J(V- yU)

(6.17)

(6.18)

(6.19)

(6.20)

(6.21)

(6.22)

1 0

aU 1 a' 77 7(P + B2) = 0,

1 ' )q ,2 )



and at the wall,

V(O) = 0, (6.26)

B(O) = 0. (6.27)

where &, is a finite distance which is large compared to the thickness of the boundary

layer.

6.1.2 Method of Solution

The system of ordinary differential equations can be integrated numerically. The in-

tegration was done with the package called COLNEW written by Ascher, Cristiansen,

and Russel, and available from NETLIB. This package is a general purpose colloca-

tion code which requires, as input, the description of the differential equations and of

the boundary conditions. The package handles automatically the mesh generation,

and the successive mesh refinements. The algorithm was able to converge to a close

approximation of the solution despite the presence of an unforeseen singularity at the

origin, where the density goes to zero.

6.1.3 Results

The results of the model are shown in figure 6-1. The values at the edge of the

boundary layer correspond to the zeroth-order solution of the constant area channel,

and are therefore indicative of the values taken by the variables inside the channel.

The most significant result of this analysis is the presence of a singularity near

the wall, where the density goes to zero. Simultaneously the temperature reaches

+oo in order to maintain a finite pressure at the wall. This singular behavior is the

consequence of the model. In the entropy equation, the convection of entropy balances

the dissipation due to the Joule effect. As the distance d to the wall decreases, the

convective term scales as d- 1, whereas the dissipative term scales as d-2 . In order to

maintain the balance, the entropy has to go to infinity, and since the pressure near

the wall is constant, the density must go to zero. In the next section it will be shown
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that the addition of a small amount of viscosity and heat conduction to the model

eliminates the singularity. These effects, which include second order derivatives, end

up balancing the Joule dissipation near the wall.

In addition the results show an inversion in the velocity component normal to

the wall. At large distances the normal velocity is directed towards the wall. Close

to the wall the normal component is directed away from the wall. This creates a

"convergent streamline", with streamlines converging towards it from both sides, as

shown in figure 6-2.

The density shows a maximum in the middle of the boundary layer, and this

maximum is attributed to the conflicting effects of the boundary layer compression

under the influence of the Lorentz force, and the requirement that the density decrease

near the wall as a result of the balance between entropy convection and entropy

creation within the boundary layer.

Experimental results that could be used to check the conclusions of this analysis

are difficult to find. The current distribution for the parallel-plate thruster experi-

mented by Di Capua [16] is shown in figure 1-4. The small size of the thruster barely

allows the magnetic boundary-layers to develop into a self-similar structure. The two

boundary layers, which grow on the upper and lower walls, merge in the middle of

the channel.

6.2 Self-Similar Solution with Momentum and Heat

Transport

The singularity at the wall in the solution described above can be eliminated by

allowing heat and momentum conduction to balance the Ohmic heating.
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Table 6.1: Magnetic Boundary
P, = 0.0414, B, = 0.589

Layer over a Flat Insulator. ý, = 1.312, fii, = 0.762,

6.2.1 Formulation

Using the same "stretched" coordinates: Y = y/lVc, e = (- and X = x, and the

expansions:

(6.28)

a new set of "boundary-layer equations" similar to those presented above, but includ-

ing the transport terms, can be written as:

a(RU) + (RV) = 0,8X aY
+ V )U + (P + B2)

dY 8X

(P + B2) = 0,ay
167

17 __ __ B P _

0.000 0.000 0.000 0.000 0.387 oo
0.202 0.429 0.0364 0.0598 0.384 0.895
0.404 0.794 0.0725 0.119 0.374 0.470
0.606 1.130 0.108 0.179 0.356 0.315
0.808 1.436 0.142 0.238 0.331 0.230
1.010 1.709 0.175 0.297 0.299 0.175
1.212 1.934 0.203 0.356 0.261 0.135
1.414 2.095 0.226 0.413 0.217 0.104
1.616 2.156 0.236 0.468 0.169 0.0783
1.818 2.065 0.216 0.519 0.119 0.0576
2.020 1.776 0.132 0.560 0.0747 0.0421
2.222 1.445 -0.022 0.582 0.0489 0.0338
2.424 1.329 -0.100 0.587 0.0423 0.0318
2.626 1.314 -0.112 0.589 0.0414 0.0316
2.828 1.313 -0.113 0.589 0.0414 0.0315
3.030 1.312 -0.114 0.589 0.0414 0.0315
3.232 1.312 -0.114 0.589 0.0414 0.0315
00 1.312 -0.114 0.589 0.0414 0.0315

R(U
8X

Rm Y2U
Re i9y2'

(6.29)

(6.30)

(6.31)

(p, u, u, T, p, b) = (R, U, e'/2V, T, P, B) + - -,



-2)a

+ V)

SR 7 1 O2T
R• 7 - 1 Pr aYY2

(B)
R

(6.32)

(6.33)

P = RT. (6.34)

The same similarity transformation, defined by: 77 = 7, = X, R = R(7),

U = U(7), V = /I r(7), P = P(7), B = B(7) leads, after substitution in the system

of partial differential equations, to the following set of ordinary differential equations:

- (RU) +
2 B77

1 9UR(V - 77U)2O9r

(RV) = 0,B1y

+(RT + B2 ) = 0,077

1
- U)2

T B)2=2( ) +
By

1 (_ BR ( - U)

with boundary conditions at a large distance:

R(6,) = pe,

U(&,) = e,

P(,) = pe,,

B(6,)= b,,

and at the wall,

U(o) = 0,

f(0) = 0,
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R,(UA -1 8X

+ aV )
±Vy-) RT

R(UaX

R2 ) 2U
+ ) R, B972'

(6.35)

(6.36)

(6.37)

7 1 82T
- 1 P, a72

(au\ý 2
-j7

a2B
="•2'

, (6.38)

(6.39)

(6.40)

(6.41)

(6.42)

(6.43)

(6.44)

(6.45)

Sa (RT
2 TI

R'(ý



B(O) = 0. (6.46)

For the temperature condition at the wall, one can define either a "cold" wall condi-

tion:

T(0) = To, (6.47)

or an insulated wall condition:
BTY = 0. (6.48)

This gives a system of 4 equations, with a total order of 7.

6.2.2 Method of Solution

The same package (COLNEW) was used successfully to solve the system of ordinary

differential equations for various ratios of ReI/R. It was necessary to start with a

value of R, close to Rm, and to increase Re progressively, using one solution as a

starting point for the next.

6.2.3 Results and Conclusion

As expected the model shows that the wall singularity is eliminated. The density

no longer goes to zero at the wall, and in the case of a thermally insulated wall, the

wall temperature is finite. However this temperature is high, as is the heat flux to

the wall in the case of a wall whose temperature is maintained constant ("cold" wall

condition). In the case of an insulated wall, and in the limit where Re -+ oo, theRim

ratio of wall-to-plasma temperatures, T,/T,, and the ratio of plasma-to-wall densities,

R,/R,, is proportional to the ratio VR/R,/R.
Some examples of profiles are shown in figures 6-3 to 6-5. When the Reynolds

number becomes large the magnetic boundary layer can be separated into two dis-

tinct regions: (i) the main magnetic boundary layer where the dominant terms are

those described in the previous section and where the effects of momentum and heat

transport are negligible, and (ii) an inner layer, close to the wall, where the heat and

momentum transfer are significant. There the Ohmic heating and the viscous friction
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are balanced by the heat conduction. The size of this layer is small and the ratio of

its width to the main magnetic boundary layer width is proportional to the square

root of R, / R.

The velocity inversion predicted in the previous section is sensitive to the presence

of viscosity and heat conduction within the boundary layer. It is easily eliminated

by even small amounts of viscosity. The critical value of R--, for which the inversion

disappears, falls in the interval [200,500].

In conclusion it has been shown that the presence of insulating surfaces down-

stream of a plasma containing a residual magnetic field will give rise to very intense

local heating along the surface of the insulator. This heating is the result of the recov-

ery of both the kinetic energy of the gas which is released by the mechanism of viscous

friction and heat conduction, as well as the recovery of the residual electromagnetic

energy, which is released by the mechanism of Ohmic heating. As a practical result,

the designer should avoid placing insulating surfaces downstream of the electrodes or

should attempt to reduce the residual electromagnetic field convected by the plasma

so that it does not represent a significant part of the plasma kinetic energy at the

point when it comes in contact with the insulator. Such an adiabatic expansion could

be done by using divergent electrodes, in the manner suggested by [29] and [40].

170



Magnetic Boundary Layer
3.0

2.5

2.0

1.5

1.0

.5

8

-. 5

-1 a1

0 .5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
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Figure 6-1: Magnetic boundary layer over a flat insulator for the conditions of table
6.1. The horizontal coordinate is 77, the vertical coordinate indicates the values of R,
the density; B, the magnetic field; P, the pressure; ', the normal velocity and T, the
temperature.
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Figure 6-2: Structure of the magnetic boundary layer over a flat insulator showing
the existence of a converging streamline.
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Magnetic Boundary Layer, F1=1.
SI i I , -- , ,- , , . . ..I 11.4
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Figure 6-3: Magnetic boundary layer over a flat insulator in the presence of momen-
tum and heat transport. R,/R, = P, = 1. The magnetic boundary layer and the
viscous layer are of the same scale. They cannot be distinguished.
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Magnetic Boundary
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Figure 6-4: Magnetic boundary layer over a flat insulator in the presence of momen-
tum and heat transport. R,/Rm = 200, P, = 1. The viscous sublayer is smaller than
the magnetic layer and can be observed near the wall. The viscosity is too large for
the normal-velocity inversion to appear.
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Magnetic Boundary
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Figure 6-5: Magnetic boundary layer over a flat insulator in the presence of momen-
tum and heat transport. ReRm = 500, P, = 1. The viscous sublayer is smaller than
the magnetic layer and can be observed near the wall. The normal-velocity changes
sign near 7 = 2.5 and V(oo) < 0.
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Chapter 7

General Conclusion and

Achievements of this Research

This dissertation will be concluded by a summary of the principal results that have

been found and by a series of suggestions for those who will attempt to further the

theoretical study of Magneto-Dynamic thrusters.

7.1 Achievements of this Research

The object of this dissertation was to develop analytical tools for the understanding

of the gas flow in magneto-dynamic thrusters. A magneto-hydro-dynamic model

was chosen to describe the physical behavior of the thruster. From an analysis of

previous work on one-dimensional models, the author found several questions which

had remained unanswered, and which could not be answered by the simple one-

dimensional model. These questions concerned the structure of the flow near the exit,

the applicability of the one-dimensional model, and the effect of the Hall conductivity.

Experiments have shown the existence of strong transverse gradients and there is a

practical advantage in understanding their cause and consequences. More generally,

very little is known of the distribution of density, velocity and temperature.

Although the complexity of the system of equations did not allow the author to

give a comprehensive answer to these questions in the form of a general solution to
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the non-linear, two-dimensional problem, it was possible to find approximate solutions

valid in the regime of high magnetic Reynolds numbers.

First, the inverse of the magnetic Reynolds number was used to define a singular

perturbation. This method, which was used previously by Martinez-Sanchez [40] for

the one-dimensional model, was extended to the case of two-dimensional flows. This

method made it possible to separate the problem into several simpler problems, which

interact by an appropriate matching process. A finite element code was written for

the purpose of solving the outer problem describing the bulk of the plasma flow, based

on an ideal magneto-hydrodynamic model. The results showed that a piecewise-linear

triangulation was ill-suited to solve the problem which is strongly non-linear in the

expansion region near the end of the thruster.

Second, a regular perturbation was used to obtain an idea of the flow structure

both inside the thruster and in the region near the exit. This perturbation method

has the advantage of being valid for any value of the magnetic Reynolds number. Its

primary success is in providing a qualitative description of the features of the flow

within the channel and around the exit.

The results of this research suggest that the principal difficulty of this magneto-

hydro-dynamic model is the coupling between the magnetic field and the fluid dy-

namics. This can be expressed mathematically by a non-linear operator of fourth

order (not given here). It is however possible to have an idea of the structure of this

operator by looking at its linearized version around a constant background. The first

implication of this analysis is that the usual mental concepts of fluid dynamics, in-

trinsically determined by a second order partial differential equation, are insufficient

to encompass the behavior of the plasma, in particular the influence of the boundary

conditions and the magnetic field diffusivity.

An important result of this research on the linearized flow approximation is that

the effect of dissipation in the energy equation (Joule heating) disappears but the

effect of magnetic diffusion is retained by the linearized operator. A practical conse-

quence of this phenomenon is that when the linearized flow approximation is valid,

the flow is nearly isentropic, despite the Joule heating and despite the theoretical
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suggestion of the non-resistive model that there is an infinite current concentration

on the lips of the accelerator, and therefore, an infinite source of heat and of entropy.

An interesting property of the flow is the existence of nearly-isentropic expansion

fans in the vicinity of the lips (corners) of the electrodes even when the conditions

of linearized flow are not valid, that is when the non-linearities are included. This is

however a local result, as the flow loses its isentropicity away from the corners.

This research confirmed the importance of the tensorial electric conductivity on

the plasma behavior. In this model the Hall effect appears only through the boundary

conditions applied to the problem. This does not prevent its effects from being felt

rather drastically in regions of significant current flow, in particular near the exit. The

results show the presence of strong density gradients in the direction perpendicular

to the flow. The expected region of mass depletion near the anode was observed in

the results. This analysis also suggests that the mass depletion, which appears along

the anode, is in part a consequence of the intrinsic divergence of the channel. It also

shows that the influence of the exit expansion is felt at large distances upstream of

the exit plane, in particular in narrow channels. Therefore the author suggests that

the condition1 : Rm(h) > 1 should be used as a way to reach higher efficiencies. This

points to designs of the type presented by Schoenberg et al. [52].

The phenomenon of current refraction in the expansion fans, which had not re-

ceived much attention so far, was first noticed in the results of the linear analysis. It

was explained as a consequence of the increase in the electromotive field across the

expansion fan, and was later observed in many experimental reports.

Finally this research has shown that when the plasma flows along a flat insulator

extending the length of the electrode, one should expect a high temperature near the

insulator surface, as well as a high rate of heat transfer to the wall. Simultaneously

the plasma density becomes very small near the insulator surface in order to maintain

a finite pressure at the insulator surface despite the high temperature. It was noticed

that the magnetic boundary layer is the seat of an uncommon phenomenon: an

inversion of the normal velocity in the middle of the boundary layer. This inversion

1 i.e. The magnetic Reynolds number based on the thruster height is large compared to one.
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disappears when a small amount of viscosity is present in the fluid.

7.2 Suggestions for Future Work

A logical extension of this research would be to undertake the experimental verifica-

tion of some of the phenomena predicted by this theory. Quantitative maps of the

density and of the magnetic field in the exit region could be constructed using, re-

spectively, interferometric techniques and Rogowski coils. The results could be used

to verify the presence of the sonic fans and of the current refraction near the anode

corner. In addition it would be useful to investigate the presence of expansion and

compression patterns in the plume, including the presence of current loops. Finally a

systematic series of tests with different inter-electrode distances should be undertaken

in order to verify the effect of narrowing the channel height.

In addition several extensions to the theory can be undertaken. The linear anal-

ysis shows that, under the influence of the Hall effect, the transverse gradients are

considerable, even when the incoming flow is assumed to be uniform. But the Hall

effect also has an influence on the inlet acceleration layer. Unfortunately this problem

cannot be solved by the regular perturbation method used for the divergent section

since it is fully non-linear and two-dimensional. The interaction between the Hall

effect and the acceleration layer is expected to create a density stratification parallel

to the electrode surface, and this will reinforce the species depletion along the an-

ode. In order to solve this problem a non-linear solution must be found. Such an

analysis should be based on the magneto-hydro-dynamic model including the Hall

effect. The author suggests attempting to solve the problem using the method of

integral relations, which reduces the two-dimensional problem to a small number of

one-dimensional problems which could be integrated numerically.

The next step should be to incorporate the viscosity in the model. This would

give a better estimate of the overall efficiency of the thruster, since as Niewood and

Martinez-Sanchez pointed out in [47], it is a significant loss factor. Finally, when these

problems are solved reliably, it will then be possible to proceed to the next logical
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step, namely the study of the dynamic stability of the flow, which is of importance

for both the practical applications and the numerical simulation of these devices.
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Appendix A

Derivation of the Model Equations

A.1 Generalities

The equations describing the model are derived from the general magneto-hydrodynamic

approximation which includes the following equations: conservation of mass, momen-

tum, and energy in the inviscid fluid, the Ohm's law (derived from the electron

momentum conservation), and the quasi-static Maxwell's equations. These equations

can be written':

at(P) + V(pu) = 0, (A.1)

9t(pu) + Div(piif + P) = J x B, (A.2)

1 P 1 __
1t( pu + ) + V. u(- U2 + P) = J.E, (A.3)
2 2 7- 1

V x E + 8tB = 0, (A.4)

V -B =0, (A.5)

V x B = poJ, (A.6)
J JxB

E+u x B= -+ - . (A.7)
0" ente

1In this appendix all the variables have their usual dimensions. The dimensionless quantities are
introduced in the next appendix.
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We will now go through them more systematically and carry out simplifications,

finally obtaining the equations of our model.

A.2 Momentum Conservation

The momentum conservation equation,

0t(pu) + Div(pWý + P) = F, (A.8)

includes the effect of the electromagnetic body force F (in Newtons per meter cubed)

on the fluid. On a microscopic scale the force on the particle (j) is:

fj = qj(E + vj x B). (A.9)

On a macroscopic scale the force per unit volume is then:

F = ~,n,q,(E + v, x B), (A.10)

(A.11)F = (E,nq,)E + (E,n,qv,) x B.

If one assumes quasi-neutrality of the plasma, E,n,q, = 0, then:

F = (nqev, + niqivi) x B, (A.12)

(A.13)F= J x B.

Using Maxwell's equation, V x B = poJ, we have:

F -1(V x B) x B. (A.14)

Using cartesian tensor notation this becomes:

1
F = - fi~jk jlm V(B,)Bk,

/10
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1fj = (Skl6im - Skm6ji)V1(Bm)Bk,
#o

1
F = (Vk(Bi)Bk - VI(Bk)Bk),

YLo

1 1
Fi = Vj(BiB. - -SijBkBk),

tPo 2

F = T,, (A.15)

with:
1 1

T, -= (BiBj - 1ijBkBk)' (A.16)Ao 2
In conclusion we observe that the body force F = J x B can be expressed as the

divergence of the Maxwell stress tensor. For a one-fluid MHD model the momentum

equation:

ipu, + ± (puiuj + ,8jP) = (J x B);, (A.17)

can be transformed into a conservative equation. In cartesian tensor notation it takes

the following form:

8 9 1 1
-pu + (pui• + 6jP + T6ijBkBk - BiBj) = 0. (A.18)

-t zij 25P o Bo

Since the body force disappears from the momentum equation, we can use the mo-

mentum theorem [7] to calculate the thrust. The force exerted by the fluid on the

thruster is (neglecting the fluid viscosity):

F1 = - 1L(p u + 8P + 1,.ijBkBk - 1 BiBj)njdS, (A.19)
s 2Ao Ao

where So is any surface completely surrounding the thruster.

In cartesian tensor notation, using the simplifications proper to our geometry, we
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have the following physical components for the generalized momentum tensor:

H \ I = pu~u~y pu2 -+

0

and the momentum equation becomes:

9t(pu) + Div(II) = F,

(pu,) + a(n==) +at a +
a a

(pu) + -(II) +

9(II1 ) = 0,
II) = 0.

(A.22)

(A.23)

In this case, the x-component of the thrust is then:

F = - Js(II=n= + II=n,)dS, (A.24)

where So is a closed surface surrounding the thruster, and n = (nm, nt, 0) is the local

normal to S,. If So is a plane surface, normal to the x-axis and located downstream

from the thruster exit, the x-component of the thrust becomes:

F, = - J j(II,,)n~dS. (A.25)

A.3 Energy Conservation

The energy conservation for the plasma can be written as:

at(E 1+ Ek)+ V-(u(Ei + Ek + P)) = S, (A.26)

where S is the electric energy per unit volume, where P = m,n, < csc, > is the

pressure stress tensor, Ei = pei is the internal energy per unit volume, Ek = ½pU2 is
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0

0

0

2poJ(A.20)

that is:
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the kinetic energy per unit volume and P is the pressure.

The energy transferred to each particle per unit time by the magnetic field is

fj. vj = qj(E + vj x B) . vj = qjvj. E + [vj, B, vj] = qjvj . E. (A.27)

On a macroscopic scale the energy per unit volume is then:

S = E,n,qv, -E = J -E. (A.28)

Assuming a one-fluid Ohm's law of the form:

J JxB
E + u x B = - + - , (A.29)

a ene

the J . E term can be written as,

J J x B J2
J.E=J.( - - ux B)= - + [u,J,B]. (A.30)

cr ene  Cr

The terms on the right are respectively: Ohmic heating and the electro-magnetic

power. The J . E term can also be written in a conservative form using the Poynting

equation,
1 0 B 2  EloE2

J - E = -V(E x B) - ( • + C ) (A.31)YO 8t 2To 2
In our case we can use the magneto-quasi-static approximation where >> E0

and we can incorporate J . E into the left hand side of the equation:

9t(E,, + E + Ek) + V +(E + Ek + P)u + E -B) = 0, (A.32)

where Eem, = is the electromagnetic energy per unit volume and E is the

Poynting vector. The energy equation is completed by a state equation relating the

pressure to the internal energy. For instance for a perfect gas we would have,

P = (-y - 1)pej. (A.33)

185



For a perfect gas the energy equation becomes, with the Poynting transformation:

1 P B2 1 7 ExB 0
9t(-pu2 + + + V u(pu + -P) + - 0. (A.34)
2 7 -1 2Io 1o

Without the Poynting transformation one obtains a non-conservative form:

1 P 1 )
at(-pu2 + ') + V. u(1pu2 + P)=J E. (A.35)

Using Ohm's law (A.29) the Poynting vector ExB can be separated into a convective

and a dissipative part:

ExB J JxB B= (-u x B + - + - ) - (A.36)
o a" e er i o

The energy equation can then be written in conservative form. If a and n, are

constant then:

1 P B2  1 7 B 1
t( + )+V. u( + P + ) ,V -(B x (Vx B)).2 -1 o -1 o ) o

(A.37)

Similarly the non-conservative form for the energy equation can be broken into a

convective and a dissipative part:

at(pu 2 + ) + V. u(1pu + P ) + -(u x B) (V x B)= 1(V x B)22 -- 2 1 Ao 2cr0
(A.38)

For a cartesian geometry with B = Be, we have:

1 P 1 1 BP 1
t(p + )+ ( p + 7 )+ - V) B(VB)'. (A.39)S -1 u(P2 7-1 (o 2 = 7v J

For a real gas we would need to account for the effect of ionization. At equilibrium

the ionization fractions can be calculated by the Saha equation. However the gas

does not reach equilibrium and the ionization level departs significantly from the

level predicted by Saha's equilibrium. The full set of equations is difficult to solve

and some very crude assumptions need to be made in order to carry the calculations
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through.

A.4 Magnetic Field

In the magneto-quasi-static limit Maxwell's equations reduce to:

Vx E + dtB = 0, V B = 0, (A.40)

V x B = jLJ.

We have assumed that the field is quasi-static and that the plasma is approximately

neutral. The equations are combined with the Ohm's law A.29 in order to eliminate

E and J. We obtain an equation for B which describes the diffusion and convection

of the magnetic field in a conducting medium:

B + Vx(-uxB+ V B + (V x B) xB 0. (A.41)

A0o0 Poene

We neglect the last two terms of the equation, which represent the Hall effect and

the electron diffusion terms. In a self-field accelerator there is no externally imposed

magnetic field. The magnetic field is only generated by the current flowing through

the medium. As a result there is only one component for the magnetic field.

If we consider a two-dimensional cartesian flow in the plane (x, y), this non-zero

component of the magnetic field is in the direction z.

A.5 Summary of the Equations

A.5.1 Conservative Forms

We have written below the final equation set after taking into account the simplifi-

cations mentioned above. The equations are in cartesian coordinates. The magnetic

field is B = (0, 0, b).
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Mass Conservation:

S(p ) +- (puZ)Ox: + (pu•) = 0.
ay

Momentum Conservation:

(pu·) + ' pu9,U

Energy Conservation:

'z
P +

(pUXUY) +

'9 ___

1
PU2

+
B2

+ P + 21LO

19 PU(YU
(pu-unY) = 0.

- 0.

1 2
+ -.pu

+
9y

1 ( 22B 2

20 22

P +
-y - 1

1 pu2 +2

+2B2 2)

Magnetic Field Conservation:

+B + (u,B)
at a x

Electric Field Equation:

E = -ux B + -V
ILoo"

(VxB)xB
+ oene
men,

A.5.2 Non-Conservative forms

We can still simplify these equations, at the expense of losing their conservative form.

They can be written, neglecting the Hall effect as:

Mass Conservation:
'9

(pu)19 PUX + (pu•) = 0.ay (A.48)

188

(A.42)

(A.43)

(A.44)

(A.45)

+ (uyB)
By

1 (8 2B

Ao'= 'ýd 2
+2B)
+y2j

(A.46)

(A.47)

+P+ B)21L,,

B 2
+ -

CLo j



Momentum Conservation:

Oz

Ouy
PUX O-

ax

Ou,
+ puy-

YuY

+ PUy
Oay

0
++ ( P +a
+ _(p+Oy

B 2

B2 ) = 0,

B2
2) = 0.

Energy Conservation:

SP O P
+pT (-) 7-1 B O

S{(B )2ax~a da
Magnetic Field Conservation:

O Bm (p) O B+ Puy ( )
dy P

1 a 2B
I- {loa 2
Poe 802

0 2B
(A.52)

Electric Field Equations:

(A.53)

(A.54)

A.6 Equations Including Heat and Momentum

Transport

The expression of the equations with heat and momentum transport included are

given here.

Mass Conservation:

0
a(pU Z)Ox+ ay(pu,) = 0.Oy (A.55)

Momentum Conservation:

+ (P +Xa
B2

2pto
= 02u+ 2

Oy 2 + -OOgy
A a
A Xgdiv u)

(A.56)
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(A.50)

OB
+ )2}.ay (A.51)

1 OB 1 OB
E, = -uBB +1 B B

"a Ao 9y A o e n, az:

Ey = uB - B 1 BOLa Io Oz Jo e n, "yB

uX
PUc ixpus

u,
+ puy

By



p uy + (P B+

Energy Conservation:

1

7-1

'
8rz-f a

'2T92
92T T

+ -y

+ 2 + ( + ,
ay ay ax

(A.59)

Su,} .5(A.60)A

Magnetic Field Conservation:

8 B
pux-(-)

xa: p

Electric Field Equations:

1 'B 1 'B
Ex = -uYB + I -- B

a /io 9y po e ne z9x'

1 'B 1 'B
Ey = - xB I B .9

a ILo 8z po e n, By

S02u y
9X2 + au

'9x'9 y
div u .

(A.57)

P '

p* B

1
Ai

('B 2 + B +21 kax By j k

(A.58)

+ pu,(
dy

B

P

10 0'2B

'y2
(A.61)

(A.62)

(A.63)
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Appendix B

Non-Dimensional Forms

B.1 Non-Dimensional Parameters

Starting from the equations in non-conservative form:

atP + div(pu) = 0,

B 2

p(Gt + U . V)u + V(P + ) = 0,1 2-y

+u V) - = (VB)2,

(u x B)= - V x (V x B),/109(
B +• - PoO

(Vx B) xB
+ en

PL.oe7e

we introduce the following non-dimensional variables:

*

U-

p
Pref

U

Uref

p Pref
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7-1

atB - V x

E = -u x

(B.1)

(B.2)

(B.3)

(B.4)

(B.5)

(B.6)

(B.7)

(B.8)



B
b* B

St U,,f

Lref

t* - x

e* 
E

After substitution in the systfBfem we obtain:

After substitution in the system we obtain:

Ot*p* + div*(p*u*) = 0,

p*(t* + u* . V*)u* +
P,,r2-f V*(p*) +

(PrefUref

Sp'*'(•( + u* V)

p*(8; + u*. V*) (b)

1
e* = -u* x b* + V x

tLoO Uref Lrei

Using the reference parameters:

b2er )
2Prefueo V*(b*2) = 0,

B-ef

b* + e"' (V
loUref Lref

x b*) x b*.

2

M2 PrefUref

B 2
reff

Rm = IoIuref L,,f

cr B,,f
H =a We 7 = e

e n,

(B.18)

(B.19)

(B.20)

(B.21)

where Ma is the Mach number, 3 is the plasma-P, Rm is the magnetic Reynolds

number and Ha is the Hall parameter, we can rewrite the equations the following

way:

at.p* + div*(p*u*) = 0, (B.22)
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(B.10)

(B.11)

(B.12)

(B.13)

(B.14)

(B.15)

(B.16)

(B.17)

Ptrefef

= iiUrtefLrej ) V*b*



p*(9* + u* - V*)u* + V*(p,*) + )V*(b* 2 ) = 0, (B.23)

1 u*1
- P *^(8*: + u* -V*) P*- = (V*b* )2, (B.24)

(b) .. 1 ,b Rm MB.2

p*(8 + u* v*) *=b* (B.25)

1H
e* = -u* x b* + V x b* + (V x b*) x b*. (B.26)

Rm Rm

We can justify the existence of two modes of acceleration with an argument based

on the ordering of the various terms which appear in these equations.

B.2 Electrothermal Regime

In the electrothermal regime we expect the gas to be heated by the current and then

go through a pressure-driven expansion. In the momentum equation we expect the

kinetic term p(u -V)u to balance the pressure term -M 1 Vp, so that must be of

order one. We also expect the magnetic term to be negligible, that is: 1< ,

which implies that 3 > 1.

In the entropy equation, the Joule heating is strong, and must be balanced by

the convection of entropy. We expect 1 to be of order one. Consequently

Rm <« 1. The electrothermal regime is therefore a regime of low magnetic

Reynolds numbers.

B.3 Magnetodynamic Regime

In the magneto-dynamic regime we expect the flow to be driven by the magnetic

pressure gradient, so that
1

PTM2
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In the entropy equation we neglect the dissipation relative to the convection, which

implies
1

< 1.
R.TyM,2

Consequently,

Rm > 1. (B.27)

The magneto-dynamic regime is therefore the regime of high magnetic Reynolds num-

bers.

B.4 Choice of the Reference Variables

Since we are chiefly interested in the magneto-dynamic regime, we choose the reference

variables in the following way, using A,,f (the cross sectional area), rh (the mass flow

rate) and B,,ef (the inlet magnetic field) as primary variables and we choose:

Pref = PrefUrej, (B.28)

PrefUref = , (B.29)

Prefu2ef Bref (B.30)

This implies

Pre ° - Ae2B, (B.31)Pre =" A2 2e'

Aref B,re

Uref - Br f (B.32)

B2
Pref = ef (B.33)

yM 2, = 1, (B.34)

1
_freM = - (B.35)r,,t 2"
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This implies that ,/3 ,e = 1. The equations then reduce to the following expressions:

8tp* + div*(p*u*) = 0, (B.36)

p*(8; + u* . V*)u* + V*(p* + b* 2) = 0, (B.37)

* - ( " + u* . V*) = (Vb',  (B.38)

p*( + u* ) *2b*,  (B.39)

(P* Rm

e* = - x b* + Vx b* + (Vx b*) x b*. (B.40)Rm Rm
Throughout the thesis, except when otherwise indicated, the non-dimensional

variables are normalized by the reference variables defined above. In addition the

stars will be omitted in the rest of the thesis.
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Appendix C

Proposal for the Numerical

Simulation of the Non-Linear

Two-Dimensional Flow

The analysis of the flow in the exit region presented in Chapter 4 was limited to the

case of a corner with a small deflection angle. The more general problem of the flow

around a sharp corner was not considered in that analysis, despite the obvious benefits

that its solution would provide. In this section the problem of the flow around a sharp

isolated corner will be described in more detail. The problem will be stated from the

point of view of a numerical analysis, paying attention to its eventual resolution by a

numerical method.

A similar description will be made of the problem of the flow at the end of the

channel, taking into consideration the influence of both corners. A final section will

generalize the problem to that of the simulation of the flow through the whole device.
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C.1 Definition of the Numerical Problem for the

Isolated Corner

The plasma flows along a conducting corner whose geometry is that of Chapter 4, but

with a large deflection angle, typically equal to 7r/2. The incoming flow is assumed to

be uniform ahead of the corner. The flow is assumed to be super magneto-sonic(M, >

1). This condition will be verified in most experimental thrusters designed to work

in the magneto dynamic regime. In addition the incoming Mach number is assumed

to be of the order of 3, so that the flow is also supersonic at small scale length.

The system of equations which describes the problem is given in the sections above.

The equations can be expressed in conservative or non-conservative form. The choice

of the expression has several implications. First the majority of algorithms developed

by fluid dynamicists, like the Finite Volume or the Galerkin Finite Element methods,

require that the equations be expressed in conservative form. The conservative form

has the benefit of conserving the right quantities across discontinuities like shocks,

whereas a non-conservative method would give incorrect results across discontinuities.

A drawback of the conservative formulation is that it is ill-conditioned for typical

flows in magneto-dynamic thrusters. In the magneto-dynamic regime the plasma's

thermal energy is small compared to either the kinetic or the magnetic energy. As a

result, small errors in the value of either the kinetic or the magnetic energy will result

in large errors in the internal (thermal) energy of the fluid.

After the choice of the formulation, the next step is to consider the boundary

conditions. Along the conductor surface, two conditions can be written. First, the

velocity must be tangent to the surface of the conductor. Second, the electric field

must be normal to the conductor, since it is an equipotential surface.

The other boundary conditions are slightly more difficult to establish. By consid-

ering the far field is is possible to show that, in the limit where the distance from the

corner goes to infinity, the solution of the resistive non-linear problem tends almost

everywhere to the solution of the non-resistive non-linear problem. The solution to

the non-resistive problem can easily be calculated (see the section 3.4.2). From the
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hyperbolic nature of the non-resistive operator follows the fact that the boundary

conditions of the problem must be compatible in order to insure that the problem

is well-posed. The conditions in the fan region (ii) and in the downstream region

(iii) of figure 3-16 or 3-17 are consequences of, and cannot be specified independently

from those of region (i). Five independent boundary conditions must be specified

to uniquely determine the it uniform incoming plasma. These conditions can be for

instance taken as: the incoming density, longitudinal and transverse velocities, the

incoming pressure, and the incoming magnetic field. Some of these conditions can be

replaced by either the Mach number, the Mach-Alfven number, the plasma-s, or the

temperature. The problem is then well-posed and the solution can theoretically be

obtained from these boundary conditions.

In practice one has to deal with the additional constraints of the numerical process.

One must choose the method of discretization and the type of algorithm. Since

the solution is usually represented by the values taken by the approximation on a

finite number of points, the domain of validity of the approximation, also called the

computational domain, has a finite size. The boundary conditions must therefore be

extrapolated from infinity to the edge of this finite domain.

Two methods can be considered. In the first, one can use as much knowledge of the

actual solution as possible to extrapolate analytically the solution to a finite distance

and impose the result as fixed boundary conditions on the numerical solution. In

order to do so, one must know an analytic expression for the asymptotic solution in

the far field. In other words, it is not sufficient to know the limit at infinity, but one

must know the next term (a function of the coordinates) of the solution's asymptotic

expansion near infinity. Although it is usually possible to derive the form that this

asymptotic solution must take, there is often an unknown multiplicative constant

involved in the expression of this solution. The value of this multiplicative constant

cannot be found from the boundary conditions at infinity, but the asymptotic limit

can be used to impose a relationship between the gradient at a finite distance and

the difference between the value at that point and the asymptotic limit.

Another possible method for determining the boundary condition is to estimate
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these conditions based on the knowledge of the differential equations and the data

available locally near the boundary. This method is commonly used in computational

fluid dynamics, both for subsonic and for supersonic problems. It is particularly

well adapted to time-marching algorithms where the solution is relaxed to a steady

state solution by simulating the dynamical behavior of the system, and where the

boundary conditions on the computational domain are iterated as well. However

the relaxation method for the boundary conditions is necessarily more complicated

than the relaxation method of the main part of the computational domain, since

information from both the outside and the inside of the computational domain must

be taken into consideration. Here the problem is complicated by the fact that the

behavior of the differential operator depends on the scale length which is considered.

This research has shown that the large scale behavior is nearly hyperbolic, whereas the

small scale behavior is both elliptic and hyperbolic. If one considers the steady state

behavior of the flow, one can define for each boundary-point two characteristic lines

(similar to the characteristic lines of a classical gas) along which some information is

propagated. These lines define a "wedge" of dependence, which delineates the limited

range of space from which there is an influence on the solution at the point considered.

Simultaneously the equations have an elliptic behavior which means that the value at

the point considered will depend on information coming from all possible directions.

The task of the numerical analyst is then to decide what should be updated elliptically

and what should be updated hyperbolically, what information should be extrapolated

from inside the computational domain and what information should be extrapolated

from the outside.

It seems that the choice of an algorithm for relaxing the boundary conditions

which is consistent with the steady state solution is difficult. In addition there is the

difficulty of maintaining the stability of the calculation during the iterative process.

It is probably hopeless to expect that one could prove in the general (non-linear) case

that stability will be guaranteed by a particular algorithm. This leaves the algorithm

designer with the empirical method as his only option. To the knowledge of the

author of this dissertation there is no systematic way to approach this problem. The
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author's experience leads him to believe that solving resistive magneto-dynamic flow

is considerably more difficult than solving normal fluid dynamic flows. The author

has tried to solve the problem with a time marching algorithm but was unable to

find a algorithm for the boundary conditions which maintains stability throughout

the computational domain without radically changing the nature of the problem by

adding too much artificial damping.

C.2 Definition of the Numerical Problem for the

Exit Region of a Symmetric Channel

The numerical solution for the flow in the exit region differs from solution for the

corner flow only because the boundary conditions are different. In this case the

difficulties are limited to the far field on the exit side. If the fluid expands in perfect

vacuum, the magnetic field, the pressure and the density decay to zero in the far field,

whereas the velocity tends to a constant value reflecting the residual kinetic energy

left in the fluid at the end of the expansion. If there is some residual pressure in

the medium into which the plume expands, the flow will not be purely radial, but

will have a more complex structure which includes a series of shocks like a classical

exhaust plume. The structure of this plume is difficult to calculate. In addition it

is a somewhat academic exercise, since the flow quickly becomes a rarefied flow, and

the collision-dominated MHD model becomes invalid.

C.3 Definition of the Numerical Problem for the

Whole Thruster

If one adds the initial section of the thruster to the problem, one now faces an addi-

tional difficulty: the singularity where the Mach number equals one, also called the

sonic passage. If one chooses to start the calculation with a uniform flow at a subsonic

velocity, one of the initial boundary conditions must be left free so that this extra

200



degree of freedom will be used to remove the singularity at the sonic point. In the

case of a time marching algorithm, this implies that one of the boundary conditions

should be extrapolated at each time step from the inside of the channel, according to

a method of characteristics similar to what is used in computational fluid dynamics.

But an algorithm to do this calculation cannot be found easily.

If one looks at a scale length at which the gradients of density, velocity, pres-

sure...etc. are small, the non-linear operator can be approximated by the linearized

fourth order operator which has the hyper-elliptic properties mentioned above. Even

if one could find an algorithm based on the known properties of the linear operator,

this algorithm would probably require a very high grid definition near the inlet, since

the gradients are very strong there, and the relevance of the linear operator would be

limited to extremely short scale lengths.

In conclusion the task of calculating the solution of the problem using a numerical

method based on either a finite volume or a finite element method is considerable.

The author's experience is that the strong gradients encountered near the inlet and

near the exit are the source of violent instabilities which can only be damped at the

cost of completely changing the nature of the problem and smearing out all the small

scale features of the solution.
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Appendix D

Comparison Between Momentum

and Resistive Transport

D.1 Estimates of Resistivity and Viscosity

In most of this dissertation the only transport process considered is the electrical

resistivity. The other processes were neglected for essentially two reasons: first, they

add significant mathematical difficulties, and second, their effect is believed to be less

important than the effects of the electrical resistivity. Based on a one-dimensional

model Niewood and Martinez-Sanchez [47] have shown that, among several of the

other transport phenomena, the viscosity had the second most important effect on

the decrease of the overall efficiency of slender thrusters. In this section the relative

scales of these two transport phenomena (resistivity and viscosity,) will be estimated,

based on the classical theory, (i.e. on the kinetic theory of conductive gases,) while

ignoring the effects of turbulence.

The electrical conductivity can be estimated by the Spitzer-Hairm formula

a = 1.53 10- 2 T  (D.1)
InA'

where in A is the Coulomb logarithm, Te is the electron temperature in Kelvin, and a

is the conductivity in Si/m. For T. = 12500K, and In A = 7 the conductivity is about
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r = 3000 Si/m.

Figure D-1 shows an estimate of the viscosity calculated by Miller [43] for argon in

thermodynamic equilibrium. The viscosity is strongly affected by the ionization level.

The viscosity is proportional to the mean-free-path of the heavy particles. Because

of the strong effect of Coulomb collisions, the mean free path of ions is much shorter

than that of neutral atoms. Therefore the gas viscosity decreases by several orders

of magnitude as the gas ionization fraction goes from near zero, to near one. The

electron temperature inside the discharge is estimated to be 12500K or above. This

turns out to give a viscosity close to the minimum, of the order of 11,z j- 0.05 10- 4

kg m - 1 s- 1 . However it may be that some part of the discharge will have a lower

electron temperature, and consequently a much higher viscosity. In order to be on the

safe side, one can estimate an upper bound for the viscosity. In this case a reasonable

estimate for the worst case viscosity would be m,,, 2_ 2.4 10- 4 kg/m/s.

D.2 Boundary Layer Size

The relative scale of the resistive and viscous effects is given by the ratio of the

Reynolds number to the magnetic Reynolds number which are respectively defined

by

puL

Rm = iooauL.

Therefore
Re - (D.2)

Table D.1 shows the estimates for the ratio R' for each of the three thrusters con-
Rmi

sidered. In the most likely case, the viscous scale is significantly smaller than the

resistive scale. In the worst case the viscous scale length is of the same order as the

resistive scale length, which suggests that it may be important to consider these two

effect simultaneously.

The size of the viscous boundary layer along an electrode can be estimated using
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Flared Gun Parallel
) max 833 24 1750
) min 17 0.5 37

Table D.1: Estimates of the ratio R-Rm

the results of chapter 6. The similarity transformation is still valid in this case and

the results for two arbitrary values of R are shown in figures D-2 and D-3, where

77 is the non-dimensional similarity variable which can be expressed in terms of the

dimensional variables t, y, and Am by ,q = . If one defines, somewhat arbitrarily,

the edge of the boundary layer by the value of the similarity variable q* where the

local velocity reaches 90% of the free stream velocity (therefore q* is a function of the

ratio ), one can estimate the ththickness of the boundary layer by

ýF" -Am. (D.3)

The results at the end of the channel are displayed in table D.2. They indicate that

the boundary layer can reach a significant fraction of the electrode gap near the exit.

D.3 Conclusion

The plasma resistivity and viscosity were calculated using classical transport theory.

The scale length for the resistive effects is expected to be much larger than the scale

length for the viscosity. This suggests that the resistivity should determine the main

features of the flow, while the viscosity should play a secondary, but not negligible

role. This conclusion is supported by the comparison between the viscous and inviscid

solutions for the magnetic boundary layer flow presented in chapter 6.
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Flared Gun Parallel
L = L [cm] 22 112 13.3

Am [cm] 1.1 0.32 0.28
Vx=A. [cm] 4.9 6.0 1.9

77* min 0.5 0.5 0.5
77* max 0.5 4. 0.5

8 min. [cm] 2.5 6. 1.0
S max. [cm] 4.9 36. 1.3

h [cm] 4.1 9.5 5.1

Table D.2: Estimates of the boundary layer size near the exit.
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Figure D-1: Diagram of the total viscosity for argon in thermodynamic equilibrium,
at 102 and at 10s Pascals
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Electrode Boundary Layer, FI=1.
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Figure D-2: Structure of the boundary layer along a flat electrode in the absence of
the Hall effect for R,/IR = 1.
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layer, FI=30
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Figure D-3: Structure of the boundary
the Hall effect for R,/Rm = 30.

layer along a flat electrode in the absence of
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