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Abstract

The reentry dynamics and handling qualities of the Generic Hypersonic Aerody-
namic Model Example(GHAME) vehicle were studied employing Generalized Mul-
tiple Scales theory. The reentry dynamics were examined for an optimal trajectory
designed for the Space Shuttle Orbiter 049 vehicle. Both longitudinal and lateral
directional motions were modeled as time-varying linear differential equations. Gen-
eralized Multiple Scales solutions to vehicle reentry dynamics compared accurately
with numerical integration approximations. Second order angle-of-attack perturba-
tions behaved as damped oscillations with increasng frequency. Lateral-directional
reentry dynamics were found to be unstable due to instability in the spiral diver-
gence mode. The existence of non-continuous 'turhing' points in the phugoid mode,
prevented attempts to apply asymptotic methods to the fourth order longitudinal
model. Sensitivity analysis showed the angle-of-attack perturbations to be most af-
fected by changes in C,,, during reentry. Also, angle-of-attack perturbation motions
were found to be, in general, most sensitive at approximately 50,000 to 60,000 vehicle
lengths into the trajectory. The lateral-directional I reentry dynamics were shown to
be most affected by changes in the stability derivatives N, and L,. Of the lateral-
directional modes, spiral divergence motions were most sensitive to variations in the
stability derivatives. Finally, handling qualities of the GHAME vehicle along shuttle
reentry trajectory were determined to be inadequate. Effects of simple variations in
the behavior of characteristic roots on the handling qualities were determined for a
generic second order system.

Thesis Supervisor: Rudrapatna V. Ramnath
Title: Adjunct Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 Background

With the emergence of new technologies, there has been recent interest in the devel-

opment of hypersonic reentry vehicles. Unlike the Space Shuttle, these hypersonic

vehicles would perform a conventional horizontal take-off and achieve a low-Earth

orbit powered by a multimode propulsion system. Several vehicles of this nature such

as the X-30 National Aerospace Plane have been proposed for both commercial and

military purposes. It is clear that this class of hypersonic vehicles represents the next

generation of aeronautical development.

One of the many issues encountered in the development of such hypersonic vehi-

cles is the problem of predicting the dynamics of the aircraft during its reentry into

the Earth's atmosphere. The task of analyzing the reentry dynamics of space vehicles

is one which has already generated considerable research interest. For example, much

work has been done to predict the reentry behavior of ballistic missiles. The equations

of motion describing the dynamics of space vehicles during reentry are in general, non-

linear. An exact analytical solution to these equations has not been discovered, and

many approximate solutions have been proposed. In the past, such approximations

to reentry dynamics have been developed by making restricting assumptions on the

nature of the vehicle and reentry trajectory as well as the forces affecting the mo-

tion. For example, after neglecting gravity in favor of aerodynamic forces , Allen[5]



showed that reentry dynamics can be represented in the form of Bessel functions.

Etkin[6] developed approximations to reentry dynamics after limiting the trajectory

to those with small flight path angles. In one particular approach, a unified linear

time-varying differential equation was developed by Vinh and Laitone[4] to describe

longitudinal angle-of-attack perturbation for any reentry trajectory. However, due to

the variable coefficients, solutions could only be obtained by limiting the trajectories

to two special cases. A straight line reentry trajectory reduced the equation to Kum-

mer's equation while angle-of-attack perturbations were shown to be in the form of

Mathieu's functions for a trajectory with shallow flight path angles.[3]

Similar to Vinh and Laitone's equation for angle-of-attack perturbations, in gen-

eral, it is possible to accurately represent both the longitudinal and lateral-directional

reentry dynamics of a vehicle with time-varying linear differential equations. The Gen-

eralized Multiple Scales(GMS) theory[7, 8] developed by Ramnath offers asymptotic

approximations to such equation as well as other complex problems. The longitu-

dinal dynamics of the Space Shuttle were predicted by Ramnath employing GMS

theory[3]. By separating the inherent dynamics of the solution into 'fast' and 'slow'

parts, Ramnath developed approximations to linear time-varying differential equa-

tions while offering complete generality. Unlike the solutions of Vinh and Laitone,

only mild restrictions upon the trajectory or the nature of the vehicle are necessary

to predict the reentry dynamics with these asymptotic approximations. As shown

by Ramnath, the only assumption made by the GMS theory is that the coefficients

of the differential equation vary slowly when compared to the time constant of the

reentry motion. During entry into the earth's atmosphere, the main variations in the

coefficients are due to changes in air density, aerodynamic forces, and moments. Ex-

perience with ballistic missiles has shown that these parameters vary relatively slowly

when compare to the time constants of the dynamic motions. Aside from generality,

another advantage that the GMS theory presents is that the asymptotic approxi-

mations to the reentry dynamics come in the form of simple elementary functions.

This allows these approximations to be employed for further analysis regarding the

stability and sensitivity of reentry dynamics. Such analysis is not possible with the



approximations developed by Vinh, Loh, and Laitone which result in representations

of the dynamics in the form of non-elementary functions such as those of Bessel and

Mathieu. Ramnath's approach is followed in this work and his technique is briefly

presented in Chapter 3.

1.2 Approach

In this work, the reentry dynamics and handling qualities of the Generic Hypersonic

Aerodynamic Model Example(GHAME) vehicle along an optimal Space Shuttle tra-

jectory are studied employing GMS theory. The GHAME is a computer simulation

model designed to provide accurate aerodynamic data for generic vehicles in the hy-

personic flight regime. The reentry trajectory along which the the dynamics and

handling qualities of the GHAME vehicle are studied is one which was originally

designed to minimize the weight of the thermal protection system of the Space Shut-

tle orbiter 049 vehicle. The GHAME vehicle and the optimal shuttle trajectory are

detailed in Chapter 2.

GMS theory is employed to predict both the longitudinal and lateral-directional

reentry motions of the GHAME vehicle. The conceptual foundations of the GMS

method as well as the second and fourth order GMS approximations used to study

the GHAME vehicle dynamics are detailed in Chapter 3. The longitudinal reen-

try behavior of the aircraft is explored in two different ways. First, the behavior of

angle-of-attack perturbation dynamics is studied in Chapter 4 by applying Ramnath's

solutions to the second order time-varying linear differential equation developed by

Vinh and Laitone. Sensitivity of the angle-of-attack perturbations to several differ-

ent aerodynamic coefficients is examined through partial differentiation of the GMS

approximation which is justified by Ramnath and Radovsky[16]. Also, second order

longitudinal stability is assessed through a stability criterion derived by Ramnath's

GMS method. A possible manner in which this stability information can be dis-

played to a flight crew is considered. The full fourth order longitudinal dynamics

of the GHAME vehicle as it travels along the optimal shuttle reentry trajectory are



studied in Chapter 5. A fourth order linear differential equation describing the lon-

gitudinal motions is derived, and the GMS approximations are employed once again

in an attempt to predict reentry dynamics.

Similarly, the lateral-directional dynamics of the GHAME vehicle along the Shut-

tle reentry trajectory are studied in Chapter 6. Again, following Ramnath's theory

on parameter sensitivity of variable systems, a sensitivity analysis is conducted in

order to determine the effects of variations in the stability derivatives on the reentry

dynamics. Finally, the handling qualities of the GHAME vehicle are investigated

in Chapter 7 through comparison of reentry parameters with set of flying quality

specifications. Also, GMS theory is employed to study the relative differences in the

handling qualities of generic time-varying second order systems whose characteristic

roots exhibit different behaviors in time.



Chapter 2

GHAME Vehicle and Trajectory

2.1 GHAME Vehicle

The recent interest in the development of hypersonic vehicles has led to a need for

accurate aerodynamic data in this flight regime. Much of the existing data is not

available to general users. The Generic Hypersonic Aerodynamic Model Example[1]

was developed at the Dryden Flight Research Facility in order to satisfy this demand

for realistic aerodynamic data in hypersonic flight. The data included in the GHAME

provides a model with which it is possible to conduct simulations for the design of

control and guidance systems as well as trajectory optimization. The generic nature

of the GHAME data enables it to be a starting point for working designs of both

commercial and military aircraft.

The aerodynamic data contained in the GHAME model are for a particular generic

vehicle geometry and were developed as a combinaton of existing aircraft and theo-

ries. Actual data from vehicles such as the Space Shuttle Orbiter, lifting body type

aircraft, as well as theories such as the modified Newtonian impact flow method were

employed in developing the final GHAME aerodynamic data. In order to maintain the

realistic nature of the data, certain aerodynamic anomalies contained in some of the

sources were retained. Lateral-directional derivatives for Mach numbers above 8 were

taken exclusively from Space Shuttle data. Below this speed, the lateral-directional

derivatives are an equal combination of the Space Shuttle and a swept double delta



configuration. The effect of the tip fins from the swept double delta configuration

was included with the justification that the larger vertical tail of the GHAME vehicle

would have a larger effect on the aerodynamics than the small vertical tail of the

Space Shuttle Orbiter. The data at the higher Mach numbers was also adjusted in

order to insure a smooth transition in the derivatives. The longitudinal aerodynamic

coefficients are an equal mix of various sources at all Mach numbers. The drag co-

efficients were modified through multiplication factors and biases in order to provide

L/D numbers which are realistic when compared with the Space Shuttle. Both the

lateral-directional and longitudinal sets of data were adjusted for reference span and

reference area.

The GHAME data was developed for a flight regime typical of a single stage-to-

orbit mission. Such a mission would entail a powered horizontal take-off from conven-

tional runways, and accelerating to orbital velocities with air-breathing engines until

achieving a low-Earth-orbit. Upon completing its mission in orbit, the GHAME vehi-

cle would reenter the Earth's atmosphere and maneuver to an unpowered horizontal

landing.

The sources employed to model the aerodynamic data result in a physical config-

uration of the GHAME vehicle which is analogous to the X-24B or the X-24C with a

more slender fuselage. The GHAME configuration is a delta wing vehicle with mixed

elevons serving both as ailerons and elevators. Provisions were made in the daba for

a single rudder, however no aerodynamic considerations were given to control jets,

speed brake, landing gear, and other variable physical elements.

Mass properties of the GHAME vehicle were estimated by approximating the

vehicle geometry through the use of simple shapes. The fuselage was modeled as

a cylinder 20 ft. in diameter and 120 ft. in length. This allows enough volume for

the liquid hydrogen fuel. Two 10 degree half cones were attached to the cylinder

to complete the fuselage structure. Both the delta wings and the vertical tail were

modeled as thin triangular plates, with the wings containing no dihedral. The engine

module was wrapped around the bottom surface of the fuselage. The complete vehicle

configuration is shown in Fig.2-1. The reference area of the vehicle is 6000 ft 2 and



Length, 1 233.4 ft.
Ref. Area, S 6000 ft. 2

Ref. Span, b 80 ft.
Ref. Chord, c 75 ft.
Mass, m 120,000 lbs.
I,, .87 x 106 slugs-ft.

I_ _ 14.2 x 106 slugs-ft.2

I,, 14.9 x 106 slugs-ft. 2

Iz, .28 x 106 slugs-ft. 2

Table 2.1: GHAME Vehicle Parameters

the reference span is 80 ft. Overall vehicle length is 233.4 ft. while the reference chord

is 70 ft.

The mass properties of the GHAME vehicle which were estimated employing

the simple configuration shown in Fig.2-1 were assumed to be on the same order

of magnitude as current existing supersonic cruise aircraft. Most of the GHAME

vehicle estimates were derived from the XB-70 aircraft. The gross take-off weight

was estimated to be approximately 300,000 lbs, of which 60% was assumed to be

the liquid hydrogen fuel. For the purposes of this study of reentry dynamics, the

GHAME vehicle is considered to be at the fuel burnout mass of 120,000 lbs. Also,

the moments of inertia are taken at fuel burnout values. All of the critical GHAME

vehicle parameters employed in this study are shown in Table 2.1.

2.2 Trajectory

In this study, the dynamics of the Generic Hypersonic Aerodynamic Model Example

vehicle are examined as it traverses a prescribed trajectory returning it into the

Earth's atmosphere. The trajectory employed is one which was originally designed

to minimize the thermal-protection-system(TPS) weight of the Space Shuttle Orbiter

049 vehicle[2]. The TPS of the Shuttle Orbiter consists of a collection of 22 metallic

panels of varying composition and thickness. In order to obtain the optimal trajectory,

the method of steepest descent was applied iteratively to minimize the total heat load
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at the stagnation point. The optimal trajectory produced a minimum TPS weight of

30,700 lbs.

Following Ramnath[3], the optimal Shuttle trajectory is detailed in Fig.2-2 where

angle of attack, velocity, altitude, and flight path angle are all shown as functions

of the non-dimensional variable (. This non-dimensional variable is the number of

vehicle lengths traversed along the trajectory and is discussed further in Chapter 3.

The Space Shuttle reentry trajectory covers a range of 0 to 290,000 vehicle lengths

traversed and a descent from 400,000 ft. to 100,000 ft. The terminal down range

distance is 5400 nautical miles, and the cross track distance is 1100 nautical miles.

The maximum acceleration does not exceed 3 g's. Angle-of-attack values are very

large along the trajectory while flight path angles vary from 00 to -40. It should be

noted that the variation of real time with respect to ( is non-linear as seen in Fig.2-2.

The total time required to fly the optimal trajectory is approximately 1900 seconds.

__



Chapter 3

Generalized Multiple Scales

Theory

3.1 Theory

This chapter and the techniques contained within closely follow the development of

the Generalized Multiple Scales(GMS) theory by Ramnath[7, 8]. The GMS method is

an asymptotic approach for approximating solutions to a variety of complex systems.

The concept of asymptotic solutions is based on the original work of Poincark and has

been employed to obtain engineering approximations in fields such as mechanics and

astrodynamics. The complete generalization of the multiple scales asymptotic analysis

was achieved by Ramnath in his development of GMS theory, and his approach has

been successfully applied to a large number of problems including the investigation

of the behavior of vehicles such as VTOL aircraft and the Space Shuttle.

One particular application of GMS theory is the approximation of solutions to

a class of linear ordinary differential equations having variable coefficients. While

first order linear equations of such kind are solved in the form of an exponential,

higher order equations cannot be resolved in this way. Often, the exact solutions to

higher order equations only exist in the form of transcendental functions such as those

of Bessel which cannot be expressed as simple analytic functions of the coefficients.

However, it is very often desirable to have approximate solutions in such analytic
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forms which allow for simple manipulations and sensitivity analysis.

As developed by Ramnath, the Generalized Multiple Scales method is based on

the premise that the variable coefficients of the linear differential equations contain

a small parameter. Often, direct expansion in powers of this parameter leads to

a misrepresentation of the true solution over a particular range of the independent

variable. Such a misrepresentation is called a nonuniformity in the perturbation ex-

pansion and is avoided by the GMS approximations through the concept of extension.

The fundamental idea behind the concept of extension is to enlarge the domain of the

independent variable to a space of higher dimension. This is achieved by the intro-

duction of general scale functions which reparameterize the independent variable into

I



a set of new independent clocks. The scale functions can in general be both complex

and nonlinear. If the original independent variable is time, qualitatively, extension is

similar to having a particular motion be recorded by a set of independent observers

each with time pieces running at different rates. In this way, the general solution

is separated into characteristic motions which occur at different rates or on differ-

ent scales. The scaling functions are chosen such that the non-uniformities of direct

perturbation theory are eliminated. The complete generalization of this technique

was achieved by Ramnath[7, 8] and has been fruitfully applied to a large number of

complex problems. The concept of extension is illustrated in Fig.3-1.

Generalized Multiple Scales theory employs the concept of extension in order to

provide asymptotic approximations to ordinary differential equations. Extension al-

lows the dynamics to be separated into motions on different scales after which they

are combined to produce an approximation to the full solution. Mathematically,

applying extension to ordinary differential equations results in sets of partial differ-

ential equations with a new independent variables. These equations are solved, and

the approximation is completed by returning the problem to its original independent

variable. Ramnath's Generalized Multiple Scales theory is applied and detailed in

the next two sections.

3.2 Second Order GMS Solution

In this section, the Generalized Multiple Scales theory is demonstrated on a second

order linear differential equation with varying coefficients[3]. The GMS theory ap-

proximates the full solution through separation of natural motions. Consider the

following equation.

d2X dx
+ wl(t)- + wo(t)z = 0 (3.1)

In order to employ the GMS approximation, it is necessary to assume that the

coefficients of the above equation vary slowly. That is to say the variations in the



coefficients are slow in comparison to the time constant of the dynamic motion. Math-

ematically, this is equivalent to stating that the coefficients of Eq.3.1 vary on a new

slow variable f defined as

S= =t (3.2)

The small parameter e in the above equation is a measure of the ratio of time constants

of the solution and coefficient variation. Asymptotic solutions are obtained as e -- 0.

As developed by Ramnath, asymptotic solutions of the form z = z,(ro)zf(Tr) are

sought for Eq.3.1 by the GMS method. The final GMS solution is given by

z = z.(t)z (t) (3.3)

where the slow solution 2, is

X,(t) = I(w(t) 2 - 4wo(t)l-¼ (3.4)

and the fast solution is given by

Xf(t) = COep k,(t )dt) in ( tk(t)dt +

C2exp tk,(t)dt cos ki(t)dt (3.5)

k, and kc are respectively the real and imaginary parts of the characteristic roots of

Eq.3.1. C1 and C2 are arbitrary constants which depend on the initial conditions of

the original differential equation. The above approach was developed by Ramnath in

order to solve such systems of any order. This general theory is applied to a fourth

order system in the next section.



3.3 Fourth Order GMS Solution

The GMS approximation to a fourth order linear differential equation with vary-

ing coefficients is detailed in this section. The full GMS solution is obtained by

first obtaining approximations to the dynamics associated with each of the modes of

motion.[7, 8] Consider the fourth order equation

d4z  . d3  d2zx d
+ w3(t)- + w2(t)-- + wt) + wo(t)z = 0 (3.6)

The characteristic roots which describe the solution of the equation are them given

by the fourth order algebraic equation

s4 + W3 s3 + W4s2 + ws + Wo = 0 (3.7)

Since the coefficients of this equation vary with time, it is clear that the characteristic

roots of this system also change with time. Depending on the nature of the coefficients,

the four roots of the algebraic equation are comprised of pairs of complex conjugates

or real roots. A particular mode of motion is represented by either a pair of complex

conjugates roots or a single real root. As shown by Ramnath, the GMS solution

to Eq.3.6 is obtained by first approximating the motion associated with each of the

modes. If a mode is represented by a single real root, k, then the GMS appr1il:.ation

to its characteristic motion is given by

x(t) = emp (' k(t)dt) (3.8)

If a particular mode is represented by a complex conjugate pair of roots given by

k(t) = k, + iki then the GMS fast and slow solutions to the characteristic motion are

given by

X(t)= X(t)xz(t) (3.9)



where the slow solution is

,(t)= ep 2ik(t) (3.10)

and the fast solution is given by

Xf(t) = Cexp k(k t)dt) sin j k1(t)dt) +
C2exp ( k,(t)dt cos ki(t)dt)  (3.11)

C1 and C2 are arbitrary constants to be determined by initial conditions. The full

GMS solution to the fourth order equation shown in Eq.3.6 is obtained by a linear

combination of the approximations to each of the mode motions. For example, con-

sider a system which contains three modes consisting of a pair of complex roots and

two real roots. If the complex roots are given by k, + iki and the real roots are kI

and k2 respectively, then the full GMS solution to the system is given by

irtf kAt) \ (ft \ t
x(t) C= exp i dt) exp k((t)dt) sin (j ki(t)dt) +

C2 exp 2ik(t) dt) exp kr(t)dt) cos ' k1(t)dt) +

Csexp (j' ki(t)dt) + C4 exp (j' k2(t)dt) (3.12)

The constants C 1, C2, C3 , and C4 are determined by initial conditions of the original

differential equation.



Chapter 4

Second Order Longitudinal

Dynamics

4.1 Overview

The second order longitudinal dynamics of the GHAME vehicle flying along the Space

Shuttle trajectory are studied through the use of second order GMS solutions de-

veloped in section 3.1. The GMS solutions to angle-of-attack perturbations during

reentry are compared to numerical approximations. The sensitivity of longitudinal

motions to various aerodynamic coefficients is obtained by the differentiation of the

analytical approximations provided by GMS theory. This is based on Ramnath's

sensitivity theory of variable systems. Second order longitudinal stability is assessed

through a GMS stability criterion developed by Ramnath. One possible way to dis-

play such stability information to a flight crew is considered.

4.2 Equations of Motion

The following equations describing the longitudinal motions of an aircraft are devel-

oped under the assumption that the vehicle experiences lift, but does not exhibit a

rolling or yawing motion. The coordinate system is such that the x-axis is always

tangential to the instantaneous flight path. Under such conditions, the equations of



motion in the plane of symmetry are described by[4, 3, 10, 11]

fV = -pSCDV'1(2m) - gain- (4.1)

V 2m= - g _- cosy (4.2)

pSICV 2 _ 3g (I - I .sin28
2IC, 2R I (4.3)

and the kinematic relations

= q + (V/R)cosy (4.4)

R = Vin7  (4.5)

S=7+a (4.6)

The dot in the equations above denotes differentiation with respect to time.

Assuming that the slope of the lift curve is approximately independent of flight

speed and Mach number at high supersonic speeds, the aerodynamic coefficients in

Eqs.4.1-4.3 are linearized through a Taylor Series expansion about the nominal trajec-

tory. After eliminating 0 and V from the equations, a change of variable is made. The

independent variable time is replaced by a non-dimensional parameter 4 according to

the relationship

S= V(t)dt (4.7)

The new independent variable is the non-dimensional number of vehicle lengths

traversed along the trajectory. This variable transformation leads to the following

general equation for transient angle-of-attack perturbation.

a" + wi(,)a' + wo()a = 0 (4.8)



where

w1i() = 6[CL, - 0(CmC + Cq,)] + V'/V (4.9)

= -6 (Cm. + gCo.cos) + 8'CLo +

V'6 V CL, - 62[CL,(,C,, + Co0)D+ CoC0ce +

31 (l) /vcos2(-7 + ao) (4.10)

The non-dimensional parameters are defined by

pSI IP, - I,, ml2

6 - -PS (4.11)
2m I, I,

The primes in Eqs.4.8-4.10 represent differentiation with respect to the new indepen-

dent variable ý. It can be seen from Eqs.4.9 and 4.10 that both the coefficients wl

and w0 are functions of parameters which depend on instantaneous flight conditions,

and can be calculated only if the trajectory is explicitly known. It is clear that Eq.4.8

is a second order linear differential equation containing coefficients which vary with

the independent variable. In its most general form, Eq.4.8 cannot be solved exactly.

In the next section, Ramnath's Generalized Multiple Scales theory is employed to

obtain approximate solutions to Eq 4.8 with only mild restrictions on the vehicle or

trajectory.

4.3 GMS Solutions to Dynamics

Approximate solutions to angle-of-attack perturbations of the GHAME vehicle flying

along the shuttle trajectory are developed by applying Ramnath's GMS solutions

detailed in section 3.1. The GMS solutions are employed under the assumption that

the coefficients of Eq.4.8 vary slowly. During reentry from an altitude of 400,000 ft.,

the variations in the coefficients of Eq.4.8 are primarily caused by the changes in

density, velocity, and moment parameters. These changes are slow when compared



to the time constant of vehicle motion.[3, 8] From the equations developed in section

3.2, the GMS solution to Eq.4.8 is given by

•(•) = (4wo - w ) , [ex(ep k,()d) sin( ,ki(0)d)
+C 2 exp (j k,()d) cos (j tc(e)d) 1  (4.12)

The coefficients of Eq.4.8 as defined in Eqs.4.9 and 4.10 are calculated along the

Shuttle trajectory employing the aerodynamic data included in the GHAME model.

Since nominal angle-of-attack values of the prescribed trajectory are so large, a least-

squares analysis is required to extrapolate aerodynamic data for the GHAME vehicle

at the flight conditions desired. The values of the coefficients wl and wo are plotted

along the trajectory in Figs.4-1 and 4-2. Again, the independent variable ( is the

number of vehicle lengths traversed along the trajectory. From the coefficients shown

in Figs.4-1 and 4-2, the characteristic roots of Eq.3.1 are calculated. Variations of

these roots as the GHAME vehicle progresses along the reentry trajectory are shown

in Fig.4-3. Finally, this information is substituted into Eq.4.12 in order to obtain

final GMS approximations to the angle-of-attack perturbation dynamics.

Two sets of solutions are developed for different sets of initial conditions. In order

to obtain a solution of a sine wave nature, the initial conditions are set at &(~o) = 0

and &'(ao) = ki(ýo). A solution of a cosine wave form is obtained with the initial

conditions &(ýo) = 1 and &'(ýo) = 0. For the purposes of comparison, a numerical

approximation to Eq.4.8 is also generated by means of a Runge-Kutta integration

scheme. In addition to the numerical approximation, an exact solution to a 'frozen'

system is obtained for further comparison. The coefficients of Eq.4.8 are assumed

to be constant at their initial reentry values, and a constant coefficient analysis is

employed to generate solutions to the 'frozen' system. The GMS approximations

are plotted for the two sets of initial conditions in Fig.4-4 and 4-5 along with their

respective numerical and 'frozen' counterparts. The fast scale solution of the GMS

approximation is also included.

As seen in Figs.4-4 and 4-5, the angle-of-attack perturbations of the GHAME
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vehicle during reentry behave as damped oscillations with increasing frequency. Upon

comparison to the numerical solutions, the GMS fast scale solution predicts these

frequency changes of the angle-of-attack perturbation dynamics quite accurately. In

both the sine and cosine-like cases, the zero-crossings of the fast scale solutions and

the numerical solutions occur virtually at the same instant. When the slow scale

solution is incorporated to form the full GMS approximation, the complete dynamics

are predicted with great accuracy. For both sets of initial conditions, the fast scale

solutions predict the frequency changes yet consistently overshoot the magnitude

variations. When the slow scale solution is included, the magnitude of the dynamics is

also predicted accurately. In the sine-like dynamics, the full GMS solution overshoots

the amplitude of the numerical solution by a negligible margin, and matches the

frequency completely. In the cosine-like case, both the GMS and numerical solutions

exhibit the same amplitude behavior, while the frequency appears to have a phase

shift towards the beginning of the trajectory. This may be due to the proximity of

the clock function roots to the real axis early in the trajectory.

The 'frozen' approximation is one that is often employed in the engineering anal-

ysis of slowly varying systems. Despite its use, it can clearly be seen that by freezing

the system at the initial point, the dynamics of the vehicle are totally misrepresented.

In both sets of initial conditions, the frozen approximation becomes quite invalid after

approximately half a cycle. The dynamics of angle-of-attack perturbations le a••arly

better predicted by GMS theory.

4.4 Sensitivity Analysis

In the study of vehicle dynamics, it is often useful to determine how certain physical

parameters of the aircraft can affect its motion. Since the GMS method provides

solutions to vehicle dynamics in simple analytical forms, a sensitivity analysis can be

performed by simple partial differentiation with respect to various physical parame-

ters. Sensitivity of the GHAME vehicle second order angle-of-attack perturbations

to certain aerodynamic coefficients is studied in this manner. The aerodynamic coef-



ficients CL., C,,o, and C,,,, are chosen due to their importance in the determination

of longitudinal dynamics.

It should be noted that partial differentiation of the GMS angle-of-attack solu-

tions with respect to the aerodynamic coefficients does not provide a true sensitivity

analysis. Partial differentiation with respect to the aerodynamic coefficients assumes

that these parameters are constant. In reality, these aerodynamic coefficients also

vary along the trajectory, and in order to conduct a true sensitivity study, variational

principles should be utilized. However, Ramnath has shown that the partial differ-

entiation is a suitable approximation to variational methods, and vehicle sensitivity

to physical parameters can be studied by treating the aerodynamic coefficients as if

they are constant.

The GMS approximation to angle-of-attack perturbation can be written in the

form

d(O) = a,(s) af() (4.13)

where the fast and slow solutions are as shown in Eq.4.12. Partial differentiation with

respect to the aerodynamic coefficient CL, is now carried out. The GMS solution

shown above is not only a function of the variable ý, but also a function of the the

aerodynamic coefficients in question. Thus, differentiating Eq.4.13 with respect to

CL, gives

S Ca, ifa (4.14)
OCL - ao CL,, a OCL,

It now must be determined how the fast and slow GMS solutions each vary with

respect to changes in CL,. From Eq.4.12, the fast solution, af, can be written in the

form

af = CieAsin(B) + C2eAcos(B) (4.15)

where A and B are defined by

A = fk,( )d,= -f wi(,)d( (4.16)
0o 2 o



B = k(()d = [4wo() - w (ý)2 d( (4.17)

Without considering the dependence of initial or boundry conditions on the parame-

ter, differentiating Eq.4.15 with respect CL, leads to the equation

(a dA OB \A DBSC C2 JoB  e i(B) + C eA+ Cco(B) (4.18)
OCL, DCL, L. CL. OC

where from Eqs.4.16 and 4.17

dA 1 [• wlA - 4 d~ (4.19)
CL., 2 Ja dCL,

and

OB 1 f" [erwo _w.
dC = - 4 - )L - 2wL, d (4.20)80s, 4 '. 10( OCL, , )I

Now the slow GMS solution is differentiated with respect to the aerodynamic coeffi-

cient. The slow solution is given by

n,(() = (4wo - wi)-r (4.21)

Partial differentiation with respect to CL, leads to the following.

0, _1 (4a wo _w
C(4wo -_1 4 - 2w, CL,) (4.22)

DCL, 4 - ) --

In order to calculate the sensitivity of the full GMS angle-of-attack perturbations to

CL., it is now required to determine the sensitivity of the coefficients wl and w0 to

the aerodynamic parameter. Once this is obtained, the information is substituted

into the above equations, and the effect of CL, on vehicle dynamics is obtained. The

effect of other aerodynamic coefficients such as C,,. and C,, on vehicle dynamics



can also be determined in a similar matter. All of the sensitivity equations developed

above are rendered valid for any vehicle parameter by simply replacing CLa with the

desired aerodynamic coefficient. Sensitivity solutions for C,, and C,, can also be

obtained by determining their respective effects on wl and w2 and substituting the

information into Eqs.4.14-4.22.

Differentiating Eqs.4.9 and 4.10 with respect to the aerodynamic parameters men-

tioned above leads to the following.

-= 5' + 6v'/v - 62'C,, (4.23)
OCLa

dwo - 6 (4.24)

Ow1 o = - (4.25)

OWo
O -60 (4.26)

- -6a (4.27)

Owo
80 = -6 20CL (4.28)

By substituting the above expressions and the trajectory information into Eqs.4.14-

4.22, the sensitivity of the GHAME vehicle angle-of-attack perturbations to CL,.

C,m, and C,, is determined.

Sensitivity solutions are calculated for the same initial conditions employed in

section 4.3. Sensitivity of a cosine-like solution is obtained with the initial conditions

a(ýo) = 1, a'(ýo) = 0 while sine-like solution sensitivity is studied with the initial

conditions a(eo) = 0, &'(ýo) = ki(eo). GHAME vehicle sensitivity to the three aero-

'dynamic parameters along the Shuttle trajectory for both sets of initial conditions is

shown in Figs.4-6 through 4-14. Sensitivity of the slow GMS solution to the various

parameters is also included.

It can be seen from these plots that the angle-of-attack perturbation sensitivity



to the three aerodynamic parameters all exhibit a similar behavior. For both sets

of initial conditions, the reentry sensitivity to CL., GCm, and C, oscillates with

the same frequency that was evident in the solutions to the actual angle-of-attack

dynamics. Also, the amplitude of vehicle sensitivity behaves in a similar manner for

all cases. Initially, the values are relatively small, after which they

increase to a maximum at approximately 50,000 to 60,000 vehicle lengths into the

trajectory. This is followed by an amplitude decay until sensitivity values reach zero

at approximately 90,000 vehicle lengths. Since the sensitivity of the angle-of-attack

perturbations reaches a maximum for all three aerodynamic parameters at virtually

the same time, this particular section of the trajectory is crucial to the longitudinal

dynamics. When the GHAME vehicle reaches the point in the trajectory where

it has traveled 50,000 to 60,000 vehicle lengths, changes in the three aerodynamic

parameters could have profound effects on the longitudinal dynamics.

It is important to note that the three aerodynamic parameters do not all affect

the vehicle dynamics to the same degree. Although each parameter's effect on the

dynamics reaches a maximum at approximately the same time, the actual sensitivity

of angle-of-attack perturbations to each differs greatly. As can be seen from the

plots, angle-of-attack perturbations are least sensitive to changes in the moment due

to pitch rate parameter, C,,, while they are most sensitive to C,,. In fact, angle-

of-attack dynamics are approximately 2000 times more sensitive to C,,. than they

are to C,,. Similarly, a change in C,,,. will have about 500 times a greater affect on

the longitudinal dynamics than the same change in CL. might produce. The relative

effects that each of the aerodynamic parameters has on the longitudinal dynamics of

the GHAME vehicle is result of the GMS slow solution sensitivity to the parameters.

The plots of the GMS slow solution sensitivity show that C,, has a much greater

impact on the full GMS solution than either of the other two parameters. It is clearly

evident that when concerned with the effect of changes in aerodynamic coefficients

on GHAME vehicle longitudinal dynamics, greater consideration should be given to

G,,, than the other aerodynamic parameters.
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4.5 Stability Analysis and Displays

The stability of the second order longitudinal GHAME vehicle dynamics is investi-

gated in this section. The stability of variable systems such as the GHAME vehicle

is, in general, very difficult to predict. Simple stability criteria applicable to this case

have been developed by Ramnath. This approach is used to predict the longitudinal

stability of the GHAME vehicle as it traverses the Space Shuttle reentry trajectory.

The effectiveness of such a criterion to provide useful information to the GHAME

vehicle flight crew is explored by presenting the stability information in the form of

a flight display.

An GMS criterion for longitudinal dynamics of an aircraft was developed by Ram-

nath as

P = CL, - CDT - 9Cm, (4.29)

where CD, is the trim drag coefficient value and o is as defined in Eq.4.11. If the

stability parameter, P, is greater than zero, the vehicle's second order longitudinal

motions can be considered stable. If the expression in the Eq.4.29 is of negative

value, than the aircraft is longitudinally unstable. Substituting the GHAME vehicle

data into the above expression, longitudinal second order stability along the shuttle

trajectory is predicted. The stability parameter for the GHAME vehicle is plotted

versus vehicle lengths into the trajectory as well as time elapsed in Figs.4-15 and 4-16.

It can be seen from these plots that the stability parameter never becomes neg-

ative as the GHAME vehicle travels along the Space Shuttle trajectory. Therefore,

the second order longitudinal dynamics remain stable for the entire reentry. Figs.4-15

and 4-16 show that at approximately 60,000 vehicle lengths or 225 seconds into the

trajectory, the stability parameter is at a minimum and the GHAME vehicle is close

to becoming longitudinally unstable. It should be noted that this particular section

of the trajectory is also the time at which the GHAME vehicle was found to be most

sensitive to the aerodynamic parameters Cm,,, CL., and Cm,. The second order longi-

tudinal dynamics are most affected by changes in the three aerodynamic coefficients

at the approximately the same time that the GHAME vehicle is closest to becoming
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longitudinally unstable. It is obvious that particular attention should be paid when

traversing this particular area of the reentry trajectory.

In order to alert the flight crew of such critical sections in the trajectory, it may

be desirable to display stability information in the form of a display in the cockpit.

If it is assumed that all of the trajectory and vehicle information is known prior to

the flight, than the stability parameter, P, can be displayed in a manner such that

the flight crew is presented with its immediate past, present, and future values. As

suggested by Ramnath[15], a possible display of such a nature is shown in Fig.4-17

through 4-19. As seen in the figures, a bar graph concept is employed to show the

values of the stability parameter in the neighborhood of a particular instant along

the trajectory. Stability values are displayed for up to 60 seconds into the immediate

future and for 30 seconds of the immediate past. The display is updated continuously

and the elapsed time readout provides the flight crew with their relative location along

the entire trajectory. The displays in Figs.4-17 through 4-19 are the actual values

of the stability parameter, P, for the GHAME vehicle as it flies along the Shuttle

trajectory. The display in Fig.4-17 in which the vehicle has been flying along the

trajectory for 200 seconds, shows the area discussed above where the longitudinal

stability parameter is at its minimum. Using displays as the ones shown, it may

be possible to effectively inform the flight crew as to when the vehicle is traversing

sensitive and critical sections of the reentry trajectory.
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Chapter 5

Fourth Order Longitudinal

Dynamics

5.1 Overview

The fourth order longitudinal dynamics of the GHAME vehicle flying along the Space

Shuttle reentry trajectory are studied in this section. Attempts to approximate the

solutions to the longitudinal equations of motion are made through the use of the

fourth order Generalized Multiple Scales solutions as developed by Ramnath. These

approximations are again compared to numerical integration solutions in order to

determine the accuracy of GMS methods.

5.2 Equations of Motion

The longitudinal equations of motion for a vehicle in flight are in general non-linear

and time varying. The longitudinal reentry dynamics of the GHAME vehicle are

investigated in this chapter by developing approximate solutions to the equations of

motion linearized about a steady flight condition. This is justified by the Poincark-

Lyapunov Theorem which states that in most cases, the local stability of a non-linear

system is described exactly in the same manner as the behavior of its linearized form.

Insight into the longitudinal dynamics of the GHAME vehicle can be obtained by



simply developing solutions to the equations of motion linearized about some nominal

steady flight condition.

The general longitudinal dynamics of a flight vehicle are described by the following

three equations which are obtained through balancing the lift and drag forces as well

as the moments acting on the aircraft[9-11].

- mV + (T - D) - W( - a)= (5.1)

L - W - mV(6 - &) = O (5.2)

My - I4,d = 0 (5.3)

Eq.5.1 is the drag equation and represents a balancing of forces in the direction of

flight, while the lift equation shown in Eq.5.2 describes the sum of forces in a direction

perpendicular to the flight path. The moment equation shown in Eq.5.3 balances the

moments experienced by the aircraft around its center of mass. In order to linearize

these equations of motion, the flight parameters a, V, and 0 are represented as

perturbations about some steady flight value. They are given by

a = ao + Aa (5.4)

v = Vo + av (5.5)

0 = 00 + AO (5.6)

where ao, Vo, and Oo are the equilibrium steady state values. The forces of thrust,

lift, and drag as well as the aerodynamic moment are expressed about some nominal

steady state value through expansion in a Taylor series. Taylor series expansion allows

the forces and moment to be written as

OL OL
L = Lo + Aa + AV + ... (5.7)

8a dV



OT
T = To + AV + ... (5.8)5V

OD OD
D = Do + -OAV + -Aa+ ... (5.9)

OV Oa

aM OM aM OM
M = Mo + AV + - Aa + - + -- A& + ... (5.10)

av 8a oe 8,

Lo, To, Do, and Mo are nominal values of the aerodynamic forces and moment which

produce the equilibrium flight condition given by ao, Vo, and 0o. Eqs.5.4 through

5.10 are substituted into the the general non-linear equations of motion and upon

manipulation results in the following.

AM + AV(Dv - Tv) + Aa(Da - g) + gaO = 0 (5.11)

( )AV +A& + () a-A = 0 (5.12)

- M,AV - M&Ad - MaAa + AM - MjAO = 0 (5.13)

The parameters Dv, D,, Tv, Lv/Vo, L,/Vo, Mv, Ma, Ma, and Mj appearing in the

equations above are the longitudinal stability derivatives of the vehicle and vary with

time as the flight conditions change along the reentry trajectory. The drag damping

term Dv is defined as

1 0D
Dv = (5.14)

m aV

and all of the other stability derivatives relating the change in flight parameters to

drag and lift are defined in the same manner. They are defined as the partial derivative

of the lift or drag with respect to the flight parameter in question normalized by the

inverse of vehicle mass. Similarly, the stability derivatives involving the moment of

the vehicle are defined as the partial derivative of the moment with respect to the

flight parameter in question normalized by the inverse of the moment of inertia I,.



Hence, the speed stability term My is defined by the following.

1 0M
My v - (5.15)

The longitudinal stability derivatives of the GHAME vehicle and their approximation

along the reentry trajectory are detailed in the following section.

The linearized longitudinal equations of motion shown in Eqs.5.11 through 5.13

are simplified and written into the final state space form[9]

s + Dv- Tv D -g g9 9 AV 0
Lv/Vo a + Ll/Vo -sa = 0 (5.16)

-My -(M& +Ms ) as( - Mi) Ao 0

where s is the derivative operator A. The stability derivatives appearing in the state

equation are functions of different flight parameters such as air density and flight

velocity which vary with time as the GHAME vehicle reenters the Earth's atmosphere.

It is clear that the state equation describing the fourth order longitudinal motions is a

time varying system which cannot be solved employing traditional constant coefficient

methods. Attempts to develop approximate solution to Eq.5.16 are made using GMS

methods in section 5.4.

5.3 Longitudinal Stability Derivatives

From the equations of longitudinal motion developed in the previous section, it is

clear that the dynamics of the GHAME vehicle during reentry along the Space Shuttle

trajectory are very much dependent on the stability derivatives. The GHAME vehicle

stability derivatives along the shuttle reentry trajectory are detailed in this section.

For the purposes of dynamics and stability, the thrust velocity derivative, Tv, and

the angle-of-attack damping derivative, Ma often have little effect, and are therefore

ignored.



The longitudinal stability derivatives of the GHAME vehicle are approximated by

substituting vehicle aerodynamic data and other parameters of the Shuttle reentry

trajectory into equations available for estimating stability derivatives. The actual

equations used for the approximations are left to be detailed in Appendix A. The

longitudinal stability derivatives of the GHAME vehicle along the Shuttle reentry

trajectory are shown in Figs.5-1 through 5-7. Each of the parameters is plotted

against the (, the number of vehicle lengths traversed along the trajectory.

There are certain tendencies exhibited by longitudinal stability derivatives which

are a result of the inherent nature of aircraft and the conventions of definitions.

For example, in a typical aircraft, the parameters D,, Dv, L,/Vo, and Lv/Vo

are usually of positive value, and it can be seen that this is in fact the case for

the GHAME vehicle. Similarly, due to convention, the pitch damping derivative,

MO, is usually negative for conventional aircraft. Again, as can be seen in Fig.5-7, the

GHAME vehicle pitch damping derivative conforms and is always negative during the

reentry flight. It is clear that the longitudinal stability derivatives of the GHAME

vehicle during reentry do not exhibit strange anomalies. It should be noted that

certain stability derivatives exhibit similar behavior as the vehicle progresses along

the trajectory. The derivatives Dv, L,,/Vo, and Lv/Vo increase in in a very similar

manner along the trajectory, while the drag angle-of-attack derivative, D,, and the

speed stability term, My exhibit the same behavior. This may be due to the fact

that these stability derivatives are functions of trajectory characteristics such as air

density in similar ways.

Two of the longitudinal stability derivatives involved in the equations of motion

have significant roles in determining the longitudinal stability of the aircraft. The

angle-of-attack stability parameter, M,,, determines the static stability of longitudinal

motions. If Ma is negative than the vehicle is statically stable. As seen in Fig.5-5,

throughout the entire reentry trajectory, the GHAME vehicle angle-of-attack stability

parameter remains negative, and the aircraft becomes statically more stable as it

progresses further. M, is closer to zero at initial parts of the reentry, and the vehicle

is less statically stable at these sections.
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Another important stability derivative with regards to dynamics is the speed sta-

bility term, My. If My is positive than it has a dynamically destablizing effect on

the aircraft while if it is negative than the tendency is to statically destabalize the

vehicle. Therefore, it is usually desirable to maintain My as close to zero as pos-

sible, and as seen in Fig.5-6, the speed stability parameter values for the GHAME

vehicle are extremely small. The speed stability term is statically most destablizing

at approximately 60,000 vehicle lengths into the trajectory and is dynamically most

destablizing after traveling 160,000 vehicle lengths.

As shown, it is possible to obtain some insight into the longitudinal dynamics of the

GHAME vehicle by analyzing the stability derivatives. The fourth order longitudinal

reentry dynamics of the GHAME vehicle described by these stability derivatives is

studied through the use of GMS theory in the next section.

5.4 GMS Solutions to Dynamics

The Generalized Multiple Scales theory is utilized in this section to study the fourth

order longitudinal dynamics of the GHAME vehicle as it reenters the atmosphere

along the optimal Shuttle trajectory. The linearized state equations which describe

the longitudinal vehicle motions are given in Eq.5.16. Since the stability derivatives

contained in the state equations vary along the trajectory as detailed in section 5.2,

it is clear that the fourth order systems is time-varying. In order to apply the GMS

solutions shown in section 3.3 to this time-varying system, the equations of motion

must be written as a fourth order linear differential equation. The transformation of

the linearized state equations into such a form is accomplished by making a dominant

approximation to the actual longitudinal equations of motion.

For the purposes of transforming the state equations into a fourth order linear

differential equation, it is assumed for a moment that the stability derivatives con-

tained in Eq.5.16 are all of constant value along the trajectory. If this is the case,

than solutions to the dynamics of the three independent variables, A V, Aa, and

AO, are identical, and their response is described by solving an equation obtained



by calculating the determinant of the main matrix in Eq.5.16. Ignoring the stability

derivatives Tv and Ma, we have

s + Dv D, - g 9
det Lv/Vo a+ o -L -M 84 +W 3

3 + W25 2 + W1 + Wo (5.17)

-Mv -M, s(s - Mj)

where

W3 = La/Vo - Mi + Dv (5.18)

W2 = Dv(La/Vo) - DvMi - Mi(La/Vo) - Ma - Da(La/Vo) + g(Lv/Vo) (5.19)

WO = MvD: - MaDv - DMi(Lm/Vo) + DM4(Lv/Vo) - gMi(Lv/Vo) (5.20)

WO = g[Mv(Lc/Vo)- Ma(Lv/Vo)] (5.21)

and s again is the derivative operator d. Under the assumption that the longitudinal

stability derivatives in the above equations are constant, the full longitudinal response

of the vehicle is described by setting the above determinant equal to zero and replacing

the higher order s terms with their respective higher order derivatives. Since the

independent variables, AV, AO, and Aa have the same response, all three will be

replaced by a generic variable y, and the longitudinal dynamics of the GHAME vehicle

are represented by the expression

d~y day d2y dyd4y + + W + W1 + WOY = 0 (5.22)
dt4 dt3 dt2 dt

As shown by Ramnath, this equation is a dominant approximation to the actual

longitudinal behavior and is made under the assumption that the stability derivatives

in Eqs.5.18-21 are constant. However, it is recognized that the coefficients in Eq.5.22

and the stability derivatives actually do vary with time, and they are now allowed to

do so. This finally results in the longitudinal dynamics of the GHAME vehicle being



represented by the fourth order linear time-varying equation

d4t d3t d2t dy
S+ (t) +2(t) + () + w(t)y = 0 (5.23)

where the coefficients w3, w2 , w1 , and w0 are as defined in Eqs.5.18 through 5.21.

The fourth order GMS solutions shown in section 3.3 require that the each mode

of motion and its corresponding roots be identified before an approximation to the

dynamics can be made. The roots associated with the longitudinal equation of motion

are determined by solving the algebraic equation

a4  s 383 + W2
2 + s + w = 0 (5.24)

Since the coefficients of the above expression vary with time, the roots of the equation

will move as the vehicle traverses along the trajectory. The roots associated with the

longitudinal motions of the GHAME vehicle and their movement with time are shown

in Figs.5-8 and 5-9. Fig. 5-8 clearly shows the roots of the short period mode and

the way they vary as the vehicle travels 1657 seconds into the Shuttle trajectory. As

expected, the short period mode is a complex conjugate pair and remains in the left-

half plane throughout the entire trajectory. As the GHAME vehicle progresses further

into the atmosphere, the short period damping as well as the frequency increases. Due

to the fact that the phugoid mode and the short period mode of the vehicle occur on

such differing frequency scales, in Fig.5-8, the roots representing the phugoid mode

appear as a set of unresolvable points near the origin. The movement of the phugoid

roots along the trajectory is plotted in detail in Fig.5-9.

It is clear that the roots of the phugoid mode do not behave in a conventional

manner. As the GHAME vehicle begins its reentry, the phugoid roots are a pair

of complex conjugates in the right-half plane. As the vehicle progresses along the

trajectory, the pair of roots move into the left-half plane and then once again return

toward the right-half plane. At approximately 400 seconds into the reentry trajectory,

the complex phugoid roots abruptly become a pair of real roots, one negative and

the other positive. These real roots move towards the origin until approximately 600
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seconds into the trajectory at which point they once again become complex.

The peculiar behavior of the phugoid mode roots requires greater rigor and a more

careful use of Generalized Multiple Scales to study the GHAME vehicle dynamics.

The points at which the phugoid roots change from complex conjugates to real roots

and vice versa are known as 'turning points' and represent a change in the nature

of the mode between oscillatory and non-oscillatory behavior. In regard to the GMS

theory, these 'turning points' present additional mathematical difficulties. When a

'turning point' is present, greater care is needed in generating the GMS approxi-

mations. Because of this, the study of GHAME vehicle longitudinal dynamics as it

travels along the Shuttle reentry trajectory is restricted to predicting only the short

period behavior of the vehicle.

The GHAME vehicle root information shown in Fig.5-8 is substituted into the

fourth order GMS solutions given in section 3.3 in order to approximate the nature of

the short period mode motions. Once again, two sets of initial conditions are chosen

to produce solutions of different forms. In order to simulate a sine-like solution, the

initial conditions are set at y(O) = 0, y'(0) = .2181, while a cosine-like solution is

obtained with the initial conditions y(O) = 1, y'(0) = 0. The fast GMS solution as

well as the full GMS solution to the short period behavior for both sets of initial

conditions are shown in Fig.5-10 and 5-11. Unlike the GMS solutions to the sec-

ond order angle-of-attack perturbations obtained in Chapter 4, these approximations

exhibit virtually no difference between the fast solution and the complete solution.

The fast GMS solution contains all of the frequency and magnitude information to

be obtained by GMS theory and the addition of the slow solution has virtually no

effect on the approximation. Once again, to determine the degree of accuracy with

which the GMS theory predicts the dynamics of the GHAME vehicle, a Runge-Kutta

integration scheme was employed to obtain numerical solutions to the short period

mode. The numerical solutions to the short period behavior along with the full GMS

approximations for both sets of initial conditions are plotted in Figs.5-12 and 5-13.

As with the angle-of-attack perturbations in Chapter 4, the GMS approximations

coincide extremely well with their numerical counterparts. In both the sine-like and



0 100 200 300 400 500 600 700 800

t(sec)

Figure 5-10: Sine-like GMS Solutions to Short Period Mode

1

0.8

0.6

0.4

0.2

YpI 0

-0.2

-0.4

-0.6

-0.8

_1



Yap

0 100 200 300 400 500 600 700 800

t(sec)

Figure 5-11: Cosine-like GMS Solutions to Short Period Mode

-- --- --- --- ---



0 100

1

0.8

0.6

0.4

0.2

MYp 0

-0.2

-0.4

-0.6

-0.8

-1

Figure 5-12: Sine-like Numerical and GMS Solutions to Short Period Mode

200 300 400 500 600 700

t(sec)

800



0.8

0.6

0.4

0.2

Yis 0

-0.2

-0.4

-0.6

-0.8

0 100 800200 300 400 500 600 700

t(sec)

Figure 5-13: Cosine-like Numerical and GMS Solutions to Short Period Mode



cosine-like solutions, the amplitude of the short period behavior is overshot by the

GMS approximations, however, the discrepancy is small and disappears as the vehicle

progresses further into the trajectory. Unfortunately, due to the presence of the turn-

ing points in the phugoid mode, a complete study of the fourth order longitudinal

reentry dynamics of the GHAME vehicle could not be accomplished in this study.

However, the accuracy of the asymptotic method is again demonstrated in predicting

the short period behavior of the vehicle.



Chapter 6

Fourth Order Lateral-Directional

Dynamics

6.1 Overview

In this chapter, the lateral-directional dynamics of the GHAME vehicle as it traverses

the Space Shuttle reentry trajectory are studied. As before, the motions of the hyper-

sonic vehicle are investigated through the use of Generalized Multiple Scales theory

which provides approximation to non-autonomous differential equations. The GMS

solutions obtained to the lateral-directional dynamics of the GHAME vehicle are once

again compared to numerical solutions in order to determine the accuracy of such ap-

proximations. Finally, a sensitivity analysis of the lateral-directional motions is con-

ducted by differentiating the GMS solutions with respect to the lateral-directional

stability derivatives.

6.2 Equations of Motion

Similar to their longitudinal counterparts, the equations of motion describing the

lateral-directional dynamics of a flight vehicle are generally non-linear. The Poincark-

Lyapunov theorem is again invoked, and in order to gain insight into the behavior of

the GHAME vehicle, GMS theory is employed to approximate solutions to the lateral-



directional equations of motion linearized about a nominal steady flight condition.

The non-linear equations describing the lateral-directional motions of the GHAME

vehicle are given by[9, 10, 11]

Y - mi - mVr + mge = 0 (6.1)

L - I,,i + Iz,• = 0 (6.2)

N - I,zý + Iz = 0 (6.3)

where Y, L, and N are respectively the aerodynamic side force, rolling moment, and

yawing moment on the vehicle. The variable v represents the component of velocity

perpendicular to the flight path while r and € are the yaw rate and roll angle of the

vehicle. The three equations shown above are a result of balancing aerodynamic and

inertial forces as well as moments which affect lateral-directional motions. Eq.6.1 is

developed through the equating of forces in the direction perpendicular to the flight

path. Eqs.6.2 and 6.3 are the result of balancing the rolling and yawing moments of

the aircraft. These three equations are now linearized using the exact same process

employed to linearize the longitudinal equations of motion. The three parameters v, r,

and q are represented as perturbations about some nominal steady state value, while

the aerodynamic force and moments are rewritten in the form a Taylor expansion

given by

Y = YO + v + ... (6.4)

9L OL OLL = Lo + Av + Ar + Ap + ... (6.5)
v Or Op

ON ON ON
N = No + Av + j r + - p + ... (6.6)ov Or Op

where p is the roll rate and the other variables are as defined before. These Taylor

series representations and the perturbation forms of v, r, and 4 are substituted into

the nonlinear equations of motion given in Eq.6.1 through 6.3. Upon manipulation,

the resulting linearized lateral-directional equations of motion given in state space



form are[9]

[ -Y V -g Av 0

-L, -L, s2 - Ljs Ar 0 (6.7)

-N, a - N, - Np A 0

where s is once again the derivative operator •. The parameters Yt, L,, L,, L,,

N,, N,, and N, appearing in the linearized state equation are the lateral-directional

stability derivatives of the aircraft and vary with time as the GHAME vehicle travels

along the reentry trajectory. The stability derivative Y, is defined as

1 oY
Y, (6.8)

m dv

The stability derivatives involving the rolling and yawing moments are defined as the

partial derivative of the moment with respect to the particular parameter normalized

by the inverse of the relevent moment of inertia. For example, the dihederal term L,,

is given by
1 L

L, = (6.9)
I,, 0v

All of the other derivatives involving rolling moment are defined in the same manner.

Similarly, the yawing moment derivatives are normalized by the inverse of I,, and

can be written in the same form as N, which is defined as

1 8NN, = (6.10)

The lateral-directional stability derivatives of the GHAME vehicle during reentry

along the optimal trajectory are detailed in the next section. As with the longitudinal

derivatives, these parameters vary along the trajectory as the flight conditions change,

and the linearized equations of motion in Eq.6.7 are time-varying. GMS theory is

employed in section 6.3 to develop approximate solutions to this system and gain

insight into the lateral-directional reentry behavior of the GHAME vehicle.



6.3 Lateral-Directional Stability Derivatives

It is clear by examining the lateral-directional equations of motion shown in Eq.

6.7 that the stability derivatives of the GHAME vehicle primarily determine its

lateral-directional behavior. Similar to their longitudinal counterparts, these lateral-

directional stability derivatives are functions of a variety of parameters and vary with

the changing flight conditions during reentry. The lateral-directional stability deriva-

tives of the GHAME vehicle along the Shuttle trajectory are shown in Figs.6-1 through

6-7. The derivatives are plotted against ý, the number of vehicle lengths traversed

along the trajectory by the GHAME vehicle. The equations employed to approximate

the lateral-directional stability derivatives are left to be detailed in Appendix A.

Although the values of the lateral-directional stability derivatives largely deter-

mine the dynamics, insights into the nature of the vehicle and trajectory can be

gained by studying the derivatives themselves. For example, due to the dihederal of

the main wings, sideslip components of velocity causes most aircraft to experience

a change in local angle-of-attack values between the two wings. Hence, the vehicle

experiences a rolling moment due to sideslip velocity. The stability derivative L,,

represents this tendency, and its values for the GHAME vehicle along the optimal

reentry trajectory are plotted in Fig.6-2. Since the GHAME vehicle has no dihed-

eral angle in the main wings, the values of L. are relatively small. Although main

contributions to the dihederal effect are due to the main wings, the fuselage and tail

can also be factors. They are likely responsible for the small positive values of L,

exhibited by the GHAME vehicle. For stability purposes, it is desirable to keep the

dihederal derivative within narrow limits, and as seen in Fig.6-2, L,, remains almost

at a constant value through most of the reentry trajectory.

Another important lateral-directional stability derivative is the directional stabil-

ity term N,. This parameter represents the tendency of flight vehicles to yaw into

the relative wind and is mainly caused by the change in oncoming airflow angle ex-

perienced by the vertical tail. The values of N,, for the GHAME vehicle are plotted

versus vehicle lengths into the reentry trajectory in Fig.6-5. It can be seen that early
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in the trajectory, the values of N, are not much different from those of L,, and a

sideslip velocity will approximately cause equal rolling and yawing moments on the

vehicle. However, as the GHAME vehicle progresses further into the atmosphere, the

absolute value of N, increases, and the directional stability term has a much greater

effect on the vehicle than the dihederal term. In fact, with the exception of of L,,

all of the lateral-directional stability derivatives increase their effects on the vehicle

as it travels further into the atmosphere. Since the stability derivatives represent

aerodynamic tendencies of the vehicle, in all probability, the increased effects on the

vehicle are due to the increase in air density further into the atmosphere.

The stability derivatives again with the exception of the dihederal term, do not

exhibit abnormal behavior with regard to sign behavior at the hypersonic speeds

encountered during reentry. The parameters remain as they would for conventional

subsonic aircraft except for L,. In conventional aircraft with positive dihederal angles,

the definition of the standard coordinate system implies that the dihederal term is

negative. If the aircraft sideslips to the right, the result is for the vehicle to roll

right wing up. However, Fig.6-2 shows that the GHAME vehicle dihederal term is

positive throughout the trajectory. If the GHAME vehicle sideslips to the right, it

will experience a rolling moment causing the right wing to go down. If it is assumed

that L, is only affected by wing dihederal, then aerodynamically this makes no sense.

However, since the GHAME vehicle has no wing dihederal, it is conceivable that the

positive values of Lv are caused by the effects of the fuselage and tail.

The lateral-directional stability derivatives of the GHAME vehicle are employed

in the next section to approximate solutions to reentry dynamics. Due to the fact

that these parameters vary along the reentry trajectory, simple constant coefficient

methods are not very useful, and GMS theory is employed. The sensitivity of the

lateral-directional dynamics to each of these stability derivatives is considered in

section 6.4.



6.4 GMS Solutions to Dynamics

Ramnath's GMS analysis outlined in Chapter 3 is utilized in this section to ap-

proximate the lateral-directional dynamics of the GHAME vehicle. The linearized

lateral-directional equations of motion shown in Eq.6.7 are time-varying, and the

asymptotic method is required to provide solutions to the system. As was the case

with longitudinal dynamics, in order to apply GMS theory, it is convenient to express

the linearized equations of motion in the form of a fourth order linear differential

equation. This transformation is accomplished in exactly the same manner which

was employed with the longitudinal equations of motion. First, it is assumed that the

stability derivatives described in the previous section are of constant value through

out the trajectory. Under such an assumption, the three independent variables of

the lateral-directional equations of motion Av, Ar, and AOb have the same response.

They are replaced by the generic variable y whose dynamics are described by the

determinant of the main matrix in Eq.6.7. Following the same procedure and rea-

soning employed in transforming the longitudinal equations of motion, a dominant

approximation to the lateral-directional motions is developed in the form desired. It

is given by the fourth order linear time-varying differential equation

d ,y dy+ d2y dy
dd4+ W t 3  (t-) + w(t) + Wo(t) = 0 (6.11)

where
w3(t) = -Lp - N, - Yv (6.12)

w2(t) = VN, - L,N, + YLp + N,(L, + Y,) (6.13)

wi(t) = Y,(L,Np - N,L,) - gL, + VNpL - VLN, (6.14)

wo(t) = g(L,N,. - NL,) (6.15)

Solutions to this time-varying differential equation are approximated by the GMS

method to determine the lateral-directional reentry behavior of the GHAME vehicle.

The fourth order GMS theory detailed in Chapter 3 approximates the solution



of a differential equation by first approximating the dynamics to each of the sys-

tem's modes of motion. These approximations require that the characteristic roots

associated with each of the GHAME vehicle's modes be determined along the entire

trajectory. This is accomplished by solving the algebraic equation

s4 + W3s3 + W2s 2 + w1S + W0 = 0 (6.16)

where the coefficients are as defined in Eqs.6.12 through 6.15. Since, these coefficients

vary with time, it is expected that the roots associated with the modes of motion will

not remain stationary. The roots representing the lateral-directional motions of the

GHAME vehicle are plotted in Fig.6-8 for up to 1657 seconds into the trajectory.

It is clear that the GHAME vehicle possesses the three modes of motion which are

typical of lateral-directional behavior in conventional aircraft. The dutch roll mode is

represented by the complex conjugate pair of roots while the spiral divergence and roll

convergence modes are identified by the two roots on the real axis. The root which

remains in the left-half plane represents the roll convergence mode, while the other is

the spiral divergence root. As the GHAME vehicle travel further into the atmosphere,

the dutch roll mode experiences increase in both the frequency and damping terms.

The changes in the frequency term are greater than those of the damping term which

varies very little. Fig.6-8 shows that the roll convergence root initially starts close

to the origin than travels away from it as time progresses. The spiral root generally

remains in the same area. Figs.6-9 and 6-10 are plots of the roll convergence and

spiral divergence roots versus time, and better show the way in which these roots

vary along the trajectory.

The fourth order GMS equations shown in section 3.3 are now employed in order

to approximate the characteristic motion associated with each of the GHAME vehi-

cle's three lateral-directional modes of motion. Since the roll convergence and spiral

divergence modes are each represented by a single real root, their respective dynamics
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are predicted by the expressions

y,,(t) = ezp (fotk,(t)dt) (6.17)

yoP(t) = exp ( kft k(t)dt) (6.18)

k,, and k,P are the roots of the roll convergence and spiral divergence modes re-

spectively and are plotted in Figs.6-9 and 6-10. The characteristic dynamics of the

remaining dutch roll mode are represented by a pair of complex conjugate roots as

seen in Fig.6-8. If these roots are defined as kd, = kdr,, + iked,i, then the dutch roll

response is approximated by the equation

Ydr(t) = C3Ydrl(t) + C4Yd2(t) (6.19)

where C3 and C4 are arbitrary constants. yd,1 and yd,2 are given by

Yd (t) = exp (ft I2k~' (t) exp ( kd,,(t)dt ain k( k(t)dt) (6.20)

yd,2(t) = ezp (f ild(t ) dt) ep (f kd,(t)dt) cos ( t kdi(t)dt (6.21)

The roots of the GHAME vehicle's three modes along the Shuttle reentry trajectory

are substituted into the above equations, and the characteristic motions of the lateral-

directional behavior are predicted. The GMS approximations to the characteristic

reentry dynamics associated with the roll convergence and spiral divergence modes

are shown in Fig.6-11 and 6-12. Since the roll convergence roots remain in the left-

half plane, it is expected that its response is stable. As seen in Fig.6-11, this is in fact

the case. Similarly, the response of the spiral mode is unstable due to the fact that

its roots remain in the right-half of the complex plane through out the entire reentry

trajectory. Also, the dynamics of the spiral mode diverges faster than the roll mode

converges. The characteristic motions of the dutch roll mode during reentry are shown

in Figs.6-13 and 6-14. The first of these figures represents the sine wave component
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of the dutch roll motions. The cosine component, Ydr2, is shown in Fig.6-14. Both

plots show that the dutch roll reentry dynamics are damped oscillations with high

frequency and little damping. There is little change in either as the GHAME vehicle

progresses along the trajectory.

The responses shown in Figs.6-11 through 6-14 are approximations to the charac-

teristic motions associated with each of the GHAME vehicle's three lateral-directional

modes. In order to predict the complete lateral-directional behavior during reentry,

the approximations to each of the modes are combined in a linear fashion. The full

GMS approximation to the solution of Eq.6.11 is given by

y(t) = Clye(t) + C ÷ys(t) + C3Ydl(t)+ C4ydr2(t) (6.22)

where C1, C2,Cs, and C4 are arbitrary constants dependent on initial conditions of

the original differential equation. Using this linear combination of the characteristic

modal motions, the lateral-directional reentry behavior of the GHAME vehicle is

predicted for two different sets of initial conditions. In order to assess the accuracy of

the GMS approximations, numerical solutions are also obtained for both sets of initial

conditions. Fig.6-15 shows both GMS and numerical approximations to the reentry

lateral-directional dynamics for the initial conditions y"'(0) = 1, y"(0) = 0, y'(0) = 0,

and y(O) = 0. The GMS and numerical solutions for the initial conditions y"'(0) = 0,

y"(O) = 0, y'(0) = 1, and y(O) = 0 are plotted in Fig.6-16. It can be seen for both sets

of initial conditions that the GMS approximations are virtually indistinguishable from

the numerical solutions. Since the characteristic motion associated with the spiral

divergence mode is unstable, the full lateral-directional behavior of the GHAME

vehicle during reentry is also unstable. The first set of initial conditions produces

a response containing enough of the dutch roll motions to exhibit some oscillatory

behavior. The dynamics for the second set of initial conditions contain very little

of the dutch roll motions and therefore produces a response which appears to be

non-oscillatory.

In this section, the lateral-directional dynamics of the GHAME vehicle along
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the Space Shuttle reentry trajectory were predicted by employing fourth order GMS

approximations. The GMS solutions were indistinguishable from numerical solutions,
and once again proved themselves to be accurate. The lateral-directional reentry

behavior of the GHAME vehicle was shown to be unstable due to the instability

of the characteristic motion associated with the spiral divergence mode. Since the

lateral-directional variable y is a dominant approximation to the actual variables Av,

Ar and Aq0, these parameters should possess the same unstable behavior found in

the above analysis.

6.5 Sensitivity Analysis

In this section, the sensitivity of the GHAME vehicle's lateral-directional reentry dy-

namics to the stability derivatives detailed in section 3.3 is studied. The effects of

changing these stability derivatives on the dynamics of the vehicle are determined

by employing the GMS approximations to the motions associated with each of the

lateral-directional modes. Once again, due to the analytical forms of these GMS ap-

proximations, it is possible to conduct a sensitivity analysis by partial differentiation

with respect to the stability derivatives. As noted in section 4.4, partial differenti-

ation does not provide a true sensitivity analysis due to the fact that the stability

derivatives themselves are functions of time. In order to determine the exact sensitiv-

ity of the dynamics to these parameters, variational calculus is necessary. However,
partial differentiation is justified by Ramnath's asymptotic sensitivity theory and is

employed in this study.

As with the approximation of the actual lateral-directional dynamics, the sensi-

tivity of vehicle motions to the stability derivatives is developed by first considering

the motions associated with each of the modes. The sensitivity of the characteristic

modal motions is determined by partially differentiating Eqs.6.17 through 6.21 with

respect to the stability derivatives. For example, the sensitivity of the roll conver-

gence and spiral divergence motions to the directional stability derivative is given

by partially differentiating Eqs.6.17 and 6.18 with respect to N. . After, shifting the
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differentiation inside the integral, this lead to

yrc kt Ok, '

j= exp ) ko d t dt (6.23)

=yp ezp k, dt) kdt, i (6.24)_N (o 0 N a6.24

In order to determine the sensitivity of the dutch roll motions, only the fast GMS

solution is considered. The slow solution has little effect on the approximation, and for

the purposes of simplicity, it is disregarded. The sensitivity of the sine-like and cosine-

like dutch roll motions to the directional stability term is determined by differentiating

the fast GMS solution contained in Eqs.6.20 and 6.21. Again, after shifting the

differentiation inside the integral, this results in

0 Ydr (t kdrr dt exp ( kdrirdtt sinl ( ' + (6.25)

dO(t kdri t exp kdrd) cos ( kdridt

NYdr I rr dt exp ( kdrrdt COS kdridt) - (6.26)

(ft O0'.i dt) exp (ft kdrdt) sin (ft kdridt

The differentiation can be accomplished in the same manner for the other stability

derivatives, and their sensitivities can be obtained simply by replacing N,, with the

parameter of choice in the above equations. In Eqs 6.23 through 6.26, the partial
derivatives O' _ , and -9-k still need to be determined before the sensitivity

ON, ON,' ON, ON,

of each characteristic motion is obtained. It is known that the coefficients of the

algebraic equation which determine the mode roots are functions of the stability

derivatives as defined by Eq.6.12 through 6.15. Also, the roots can be explicitly

written as functions of the coefficients. Therefore, in order to obtain partial derivatives

of the roots with respect to the stability derivative, the chain rule is employed. Since

the process relating the roots of Eq.6.22 to its coefficients is rather tedious, the details
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of the complete differentiation are left for Appendix B. The results of the chain

rule differentiation and root information is substituted into the above equations to

complete the analysis. The sensitivities of the GHAME vehicle's lateral-directional

reentry modal motions with respect to the seven stability derivatives are shown in

Figs.6-17 through 6-44. The results of the dutch roll mode are separated into the

sensitivities of the sine and cosine components.

In order to obtain the sensitivity of the full lateral-directional reentry dynamics,

a linear combination is employed once more. Without considering the dependence

of initial and boundary conditions on the parameter, differentiating the linear GMS

approximation to the full dynamics given in Eq.6.22 leads to

-y Oyre V±O! J d P l dr+ 2S O, + y, + O, ++ C4 2 (6.27)ON, N, 8 ON, 8NN, N,

where C1 , C2, C3 , and C4 are constants previously determined by the initial condi-

tions of the original differential equation. Justification for this procedure is based on

Ramnath's work on GMS sensitivity theory. It is evident from section 6.4 that the

full lateral-directional response of the GHAME vehicle is very much dependent on

the initial conditions. The initial conditions determine the amount of influence that

each of the modes of motion has on the full response. Since initial conditions can be

chosen arbitrarily and the presence of each mode can vary, it is meaningless to study

the sensitivity of the GHAME vehicle lateral-directional dynamics for a specific set

of initial conditions. Much more insight is gained by considering the sensitivities of

each mode of motion which are combined to obtain the full sensitivity.

It is clear from studying Figs.6-17 through 6-44 that the sensitivities of the modal

motions associated with respect to each of the stability derivatives exhibit similar

patterns of behavior. First, all of the stability derivatives have the most influence on

the spiral divergence mode. A change in any of the seven stability derivatives will

have a greater effect on the dynamics of the spiral mode than on either of the roll

convergence or dutch roll modes. The roll convergence dynamics are almost as sensi-

tive as the spiral divergence motions, however, are not quite as affected by variations
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in the stability derivatives. Variations in any stability derivative has the least effect

on the motions associated with the dutch roll mode. Its sensitivity is several orders

of magnitude less than the sensitivities of the other two modes. Therefore, lateral-

directional responses which contain relatively greater portions of the spiral divergence

mode are more sensitive to changes in the stability derivatives than responses which

may contain relatively greater portions of either the roll convergence or dutch roll

modes.

Although variations in any of the seven stability derivatives will affect the spiral

mode more than the other two, each of the stability derivatives does not affect a

particular motion in the same manner. It is evident from Figs.6-17 through 6-44 that

each of the modal motions is more sensitive to the directional derivative, N, than any

of the other stability derivatives. The roll convergence, spiral divergence, and dutch

roll motions are each more affected by changes in N, than any of the other six stability

derivatives. An equal change in the dihederal term, L, has almost as much affect,

however, the other derivatives have sensitivities which are several orders of magnitude

less than the sensitivity with respect to the directional derivative. This behavior of the

GHAME vehicle is similar to that of a conventional aircraft whose lateral-directional

motions are also most sensitive to N, and L,,. Since the directional stability term

is very much a function of the vertical tail size of the aircraft, the GHAME vehicle

vertical tail size has great implications on its reentry lateral-directional dynamics. Of

the other stability derivatives, the plots reveal that L,, Y,, and Np have the least

effect on the dynamics. Particularly, the sensitivity of each modal motion to Lp

remains relatively very small for up to approximately 500 seconds into the trajectory.

Compared to the sensitivities of modal motions to N,, and L,, variations in Lp, Y,,

and Np have virtually no effect on the lateral-directional reentry dynamics of the

GHAME vehicle.

It is evident from the plots in Figs.6-17 through 6-44 that the sensitivities of the

characteristic spiral divergence motion with respect to all the stability derivatives

grow unbounded. This is to be expected since the actual spiral mode dynamics are

unstable. The sensitivities of the roll convergence and dutch roll modes both grow
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rapidly at approximately 600 seconds into the trajectory. The time histories of the

roll convergence and dutch roll sensitivity variations are exhibited for the specific

values of the vehicle parameters and trajectory flown in this investigation. As seen

in Appendix B, this is due to the nature of the partial differentiation which renders

the sensitivities proportional to the time integrals of various parameters. A possible

explanation is that the increasing behavior of these integrals forces the sensitivities

of the roll convergence and dutch roll motions to exhibit rapidly increasing behavior

before the convergence of the true dynamics can take effect. However, the sensitivi-

ties of roll convergence and dutch roll motions with respect to the derivatives, LP, L,,

and Np all have an instant which their values become zero before they experience the

rapid increase and subsequent convergence. The sensitivities of the roll convergence

and dutch roll motions with respect to L, and Np are zero at approximately 600

seconds into the shuttle trajectory. The sensitivity of the motions to Lp is zero at

approximately 500 seconds into the trajectory. Although the effects of changing Lp

and Np on the lateral-directional reentry dynamics are minimal, there are moments in

the trajectory where such variations will have absolutely no effect on roll convergence

and dutch roll motions. This is significant for the stability derivative L" which has

relatively great effect on the dynamics throughout the trajectory except for this par-

ticular section where it becomes zero before increasing rapidly and then converging..
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Chapter 7

Handling Qualities

7.1 Overview

The issue of handling qualities with regard to the GHAME vehicle is considered in

this chapter. First, the handling qualities of the GHAME vehicle during reentry along

the optimal Space Shuttle trajectory are determined. This is accomplished by com-

paring the reentry values of certain vehicle parameters with specifications designed

to differentiate levels of handling qualities. The specifications are taken from a set of

military standards for flying qualities of piloted vehicles. Also, GMS theory is em-

ployed to briefly consider the handling qualities of a generic second order time-varying

system. By comparing the responses of systems with differing characteristic root be-

havior, general conclusions are drawn regarding the relationship between system root

movement and handling qualities.

7.2 GHAME Vehicle Reentry Handling Qualities

The handling qualities of the GHAME vehicle during reentry along the Shuttle tra-

jectory are studied in this section. The level of handling quality is determined by

comparing GHAME vehicle reentry parameters to a set of military specifications.

These specifications are taken from 'Military Specification: Flying Qualities of Pi-

loted Airplanes'[13] which contains the handling quality requirements of all United
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States military aircraft. For the purposes of this military document, the GHAME

vehicle is classified as Class III aircraft which is described as a large, heavy, low-

to-medium maneuverability aircraft. Also, the optimal Shuttle reentry trajectory is

assumed to be of flight phase category B. This part of a mission is described as a phase

normally accomplished using gradual maneuvers without precision tracking although

accurate flight path control may be required.

The specifications to meet flying quality requirements are presented such that the

handling qualities are separated into three levels. Level 1 represents flying qualities

which are clearly adequate for accomplishing a particular flight phase. If the handling

qualities allow the completion of a flight phase but only after a significant increase

in pilot workload, then they are Level 2. Finally, Level 3 flying qualities represent

dynamics which allow the vehicle to be controlled safely but only with excessive pilot

workload. In terms of a well known subjective rating system, Level 1 corresponds to

Cooper-Harper ratings of 1 through 3, while Level 2 represents Cooper-Harper ratings

of 4 through 6. A Cooper-Harper rating between 6 and 9 corresponds to handling

quality Level 3.[13, 14] Requirements necessary to be classified into one of these

levels are made on each of the longitudinal and lateral-directional modes. As seen in

Chapter 5, the behavior of the GHAME vehicle phugoid mode during reentry is quite

abnormal, and it is not considered in this section. The handling quality requirements

for a Class III vehicle in the Category B flight phase are shown in Tables 7.1 through

7.3.[13]

The damping ratios and the natural frequencies of the dutch roll and short period

modes of the GHAME vehicle during reentry are calculated from their respective

characteristic roots shown in Figs.5-8 and 6-8. Since, the roots of these modes vary

along the reentry trajectory, the damping ratios and natural frequencies are functions

of time. If the roots are defined as k = kI, + ikl, then the damping ratio and natural

frequency are given by

c = -k,/(kr + k2 )½ (7.1)

Wn = (k,2 + kZ ) (7.2)
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Min. ( Max. (
Level 1 0.30 2.00
Level 2 0.20 2.00
Level 3 0.15 -

Table 7.1: Short Period Requirements for Handling Qualities

Min. Min. (w,, Min. w,
Level 1 0.08 0.15 0.40
Level 2 0.02 0.10 0.40
Level 3 0 - 0.40

Table 7.2: Dutch Roll Requirements for Handling Qualities

Table 7.3: Roll Convergence and Spiral Divergence Requirements for Handling Qual-
ities
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Roll Convergence Spiral Divergence
Max. time constant Min. time to double amplitude

Level 1 1.4 sec. 20.0 sec.
Level 2 3.0 sec. 8.0 sec.
Level 3 10.0 sec. 4.0 sec.



The natural frequency of the short period mode is plotted against its damping ratio

in Fig.7-1. Likewise, Fig.7-2 shows the dutch roll natural frequency plotted against

its damping ratio. It is interesting to note that except scaling,the behavior seen in

these two plots is quite similar. This is to be expected since the behavior of the roots

seen in Figs.5-8 and 6-8 also exhibit similar behaviors.

The information shown in Figs.7-1 and 7-2 is compared to the handling quality

requirements of Tables 7-1 through 7-3 to determine whether the short period and

dutch roll modes of the GHAME vehicle insure adequate handling qualities during

reentry. Upon analysis, it is clear that the short period behavior is quite inadequate in

terms of handling qualities. It is not until the vehicle is at the end of the trajectory

that the short period damping ratio satisfies minimum Level 3 requirements. The

dutch roll reentry behavior also has poor implications on the handling qualities of

the GHAME vehicle. Fig.7-2 shows although dutch roll natural frequency by itself

satisfies Level 1 requirements, C and Cw,, only satisfy Level 3 specifications. Therefore,

dutch roll behavior induces a handling quality rating of Level 3 during reentry. It is

obvious that neither of the GHAME vehicle's two oscillatory modes induce adequate

handling qualities in the aircraft during reentry. At Level 3, the dutch roll behavior

allows the vehicle to be controlled safely, but only after excessive workload on the

pilot. The short period reentry behavior does not even qualify for Level 3 status

and renders the GHAME vehicle uncontrollable during reentry along the Shuttle

trajectory.

The handling quality specifications for the roll convergence and spiral divergence

modes are expressed in terms of time parameters concerning the amplitude of their re-

spective responses. The roll convergence requirement is placed on the time constant

which is defined as the time required for the amplitude of a response to decay to

ezp(-1) times its original value. From the characteristic response shown in Fig.6-11,

the time constant of the GHAME vehicle's roll convergence mode is approximately

750 seconds. This does not even satisfy the handling qualities requirements for Level

3. The roll convergence behavior of the GHAME vehicle also renders it uncontrollable

during reentry. The spiral divergence mode, however, does exhibit favorable behavior
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with regard to handling qualities. Fig.6-12 shows that the time for the spiral diver-

gence characteristic response to double its amplitude is approximately 300 seconds.

This clearly satisfies the Level 1 handling qualities requirement detailed in Table 7-

3. Although the spiral divergence behavior is favorable to handling qualities, the

other three modes only represent handling quality ratings of Level 3 or poorer. The

GHAME vehicle is clearly uncontrollable during reentry along the Shuttle trajectory.

7.3 Handling Qualities of a Generic Second Order

System

In this section, the handling qualities and of a generic time-varying second order

system is studied in order to determine the general effects of varying characteristic

root behaviors. The responses of the systems are approximated using the second

order GMS solutions developed in section 3.2. A generic time-varying second order

system can be expressed by the equation

• + wi(t)y + wo(t)y = 0 (7.3)

The response of this system is then governed by the roots of the algebraic equation

s2 + W18 + 0o = 0 (7.4)

If the system is autonomous, then the two coefficient of Eq.7.3 are constant and the

response is described by a pair of roots which remain fixed with time. However, if

the coefficients wl and w0 vary with time, than the characteristic roots do not remain

stationary. The path and speed of the characteristic roots in the complex plane are

determined by the nature of the two coefficients. The effects of simple variations in

the path and speed of the roots on the response and handling qualities is examined

in this section. In order to accomplish this, systems having the same characteristic

roots at the initial and final time are considered. The path and speed at which the
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roots get from the initial point to the final point are varied and the their responses

are compared.

In order to gain insight with regards to handling qualities, the initial and final

points of the characteristic roots for the systems to be considered are chosen such that

they represent two different levels of handling quality ratings. If the characteristic

roots are a pair of complex conjugates in the form k = k, + ki, then they are set such

that

k,(0) = -. 054 ki(0) = .8984 (7.5)

k,(T) = -. 225 ki(T) = 1.483 (7.6)

where T is the total time the roots of the system take to travel from the initial point

to their final position. It follows from Eq.7.1 and 7.2 that

wn(0) = .9 rads/sec C(0) = .06 (7.7)

w,(T) = 1.5 rads/sec ((T) = .15 (7.8)

If it is assumed that the generic second order system represents a dutch roll mode,

then upon comparing the above natural frequency and damping ratio values to Table

7-2, the initial point is of Level 2 handling qualities. Similarly, the system exhibits

Level 1 handling qualities at the final time. The roots are now allowed to move from

the Level 2 point to the Level 1 point in varying ways. The responses of these differing

root behaviors are compared to each other as well as to those of two constant systems

where the roots remain fixed at the Level 1 and Level 2 points.

Initially, only systems with roots moving from the Level 2 point to the Level 1

point in a straight line with constant speed are considered. The straight line root

trajectory of these systems is shown in Fig.7-3. The total time allowed for the roots to

travel from initial to final point is varied in order to determine how the speed of root

movement affects the response. The specifications of the systems considered as well

as the two constant systems are shown in Table 7.4. The solutions to the systems

in Table 7.4 are approximated using second order GMS theory and are plotted in
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Root
Trajectory

Straight Line
Straight Line
Straight Line
Straight Line
Straight Line
Straight Line
Straight Line

Initial Root
Position
Level 1
Level 2
Level 2
Level 2
Level 2
Level 2
Level 2
Level 2
Level 2

Final Root
Position
Level 1
Level 2
Level 1
Level 1
Level 1
Level 1
Level 1
Level 1
Level 1

Total Trajectory
Time, T

800 sec.
250 sec.
125 sec.
50 sec.
25 sec.
5 sec.
1 sec.

Table 7.4: Straight Root Trajectory Systems

Figs.7-4 through 7-6. It is evident from Fig.7-4 that as the root speed between initial

and final points increases, the frequency and the settling time of the response both

decrease. As the speed of the roots is increased further, Fig. 7-5 shows that the

responses of the systems approach the solution to the constant system with roots

fixed at the Level 1 point. Conversely, as the speed of the roots is decreased greatly,

the responses of the systems approach the Level 2 constant system as seen in Fig.7-

6. In general, as the speed of the roots increases from slow to fast, the behavior of

the response changes from exhibiting similar behavior to the solution of the system

with fixed roots at the initial point to the solution of the system with root, con·tant

at the final point. This implies that if a second order time-varying system possesses

characteristic roots which travel in a straight line at constant speed, then the handling

qualities of the system fall in between the behavior of the systems with fixed roots at

the initial and final positions. No matter how fast or slow the roots travel between

the two points shown in Fig.7-3, the resulting behavior never exceeds the handling

quality ratings of Case 1 and 2.

Three different systems are now considered whose characteristic roots do not nec-

essarily travel between the initial and final points in a straight line or with constant

speed. The specifications of these three systems are shown in Table 7.5. The acceler-

ation of the roots along the straight line trajectory of Case 10 is detailed in Fig.7-7.
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Case 1
Case 2
Case 3
Case 4
Case 5
Case 6
Case 7
Case 8
Case 9

Root
Speed

Const.
Const.
Const.
Const.
Const.
Const.
Const.
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Root Initial Root Final Root Total Trajectory Root
Trajectory Position Position Time, T Speed

Case 10 Straight Line Level 2 Level 1 50 sec. Accel.
Case 11 See Fig.7-8 Level 2 Level 1 50 sec. Const.
Case 12 See Fig.7-8 Level 2 Level 1 50 sec. Const.

Table 7.5: Miscellaneous Systems

The response of this accelerating system is compared to the Case 5 response in Fig.7-8

because they initially share the same root velocity. The non-straight line trajectories

of Case 11 and 12 are shown in Figs. 7-9. These two curved trajectory systems are

compared to the Case 6 system due to the fact that they possess equal trajectory

times. Their responses are shown in Fig.7-10.

Fig.7-8 shows that the response of the Case 10 system initially mirrors the response

of Case 5, but later exhibits greater frequency and damping. Upon examination of

the second order GMS approximations detailed in Chapter 2, this behavior becomes

clear. Initially, the roots of both systems travel with the same velocity along the same

path, and therefore, they experience the same response. Later, when the roots of the

Case 10 system have accelerated to greater speed, they experience smaller values of k,

and greater values of ki than those of the Case 5 system. Hence, the response exhibits

higher frequency and greater damping. It is evident that even if the roots are allowed

to accelerate or decelerate along the straight line trajectory, the responses of such

systems still falls in between the behavior exhibited by the Case 1 and 2 constant

systems.

The responses of the two systems with the curved root trajectories shown in Fig.7-9

also behave as would be expected from the nature of the GMS approximations. Al-

though they possess equal trajectory time, Fig.7-9 shows that the characteristic roots

of the Case 11 system experience greater values of ki and smaller values of k, than

those of the Case 6 system. Hence, the Case 11 response exhibits higher frequency,

but less damping than the Case 6 response. Similar arguments can be employed

to explain the response of the Case 12 system which exhibits smaller frequency and
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greater damping than the Case 6 response. It is concluded upon examination of the

GMS equations that no matter what the speed of the characteristic roots, as long as

their path does not stray beyond the rectangular boundaries defined by their initial

and final points, the resulting handling qualities behavior falls in between those of

the constant systems with roots fixed at initial and final points.
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Chapter 8

Summary and Conclusions

8.1 Summary and Conclusions

In this work, the reentry dynamics and handling qualities of the Generic Hypersonic

Aerodynamic Model Example vehicle were examined along a Space Shuttle optimal

trajectory. The analysis of both the longitudinal and lateral-directional reentry mo-

tions was conducted through asymptotic approximations provided by Generalized

Multiple Scales theory developed by Ramnath.

The reentry angle-of-attack perturbations of the vehicle were predicted by ap-

plying second order GMS solutions to the linear differential equation developed by

Vinh and Laitone. GMS approximations showed that the dynamics of the GHAME

vehicle angle-of-attack perturbations along the Shuttle optimal trajectory behave as

damped oscillations with increasing frequency. Comparison with numerical integra-

tion approximations showed the GMS solutions to be of considerable accuracy. The

fast part of the GMS solution predicted the frequency variations of the true dynamics

extremely well while the amplitude changes were incorporated by the slow solution.

The GMS approximations to the angle-of-attack perturbations were also compared

with constant coefficient solutions applied after freezing the system at its initial point.

Although such 'frozen' approximations are employed often in engineering analysis, it

was shown that such methods totally misrepresent the angle-of-attack perturbations

after only half a cycle of the dynamics.
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The sensitivity of the angle-of-attack perturbations to the aerodynamic coeffi-

cients CLa, CGa, and Cm, was studied through partial differentiation of the GMS

solutions. It was seen that the sensitivity of the dynamics to these three parameters

oscillate with the same frequency behavior of the actual dynamics. Changes in the

three aerodynamic coefficients have the greatest effect on angle-of-attack perturba-

tions at approximately 50,000 to 60,000 vehicle lengths into the reentry trajectory.

The parameter C,, was shown to have much greater influence on the second or-

der longitudinal dynamics than either of the other two parameters. GHAME vehicle

angle-of-attack perturbations were found to be 2000 times more sensitive to variations

in C,, than to C,, and 500 times more sensitive than to changes in CL,. Finally,

the second order longitudinal dynamics was investigated using a stability criterion.

The dynamics were shown to be closest to instability at approximately the same time

that the vehicle was most sensitive to changes in the aerodynamic coefficients.

The full fourth order longitudinal dynamics of the GHAME vehicle along the

Shuttle reentry trajectory were examined after deriving a fourth order time-varying

differential equation from the linearized equations of motion. The longitudinal sta-

bility derivatives were estimated along the reentry trajectory for use in the fourth

order GMS approximations. It was seen that the stability derivatives of the GHAME

vehicle exhibit the same behavior as those of conventional aircraft with regards to

sign convention. The angle-of-attack stability term, Ma remained negative through-

out the entire trajectory to insure static stability of the longitudinal dynamics. It was

also seen that values of the derivative M,, were extremely small as desired for design

purposes. Mv was found to be statically most destablizing at approximately 60,000

vehicle lengths into the trajectory. Since the parameter remained negative throughout

the entire reentry, it had no negative effects on the dynamic stability. The stability

derivatives were employed to determine the characteristic roots associated with each

of the longitudinal modes of motion. The characteristic roots of the phugoid mode

were found to contain several 'turning' points where the roots changed from being

complex to real pairs. Such a behavior represents deep mathematical difficulties was

considered beyond the current scope to predict phugoid mode motions.
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GMS solutions to the short period mode showed its reentry behavior to be one

of damped oscillations. Unlike the angle-of-attack perturbations, there were no fre-

quency variations of significance. Also, the GMS fast solution to short period motions

were virtually identical with the full GMS approximation. Once again, the GMS ap-

proximation was compared to numerical solutions in order to determine accuracy.

Although the asymptotic approximations slightly over shot the amplitude of short

period dynamics, they were still of considerable accuracy. Due to the behavior of

the phugoid mode roots, a complete analysis of the full GHAME vehicle fourth order

longitudinal dynamics could not be accomplished with GMS theory. However, the

accuracy of the asymptotic method was again demonstrated in predicting the reentry

short period behavior of the vehicle.

In order to study the lateral-directional reentry dynamics of the GHAME vehicle,

once again, a fourth order time-varying linear differential equation was derived form

the equation of motions. The lateral-directional stability derivatives were estimated

along the reentry trajectory employing the equations in Appendix A. With the excep-

tion of the dihederal derivative LV, the lateral-directional stability derivatives of the

GHAME vehicle exhibited the same sign behavior as those of conventional aircraft.

Since, the GHAME vehicle has no dihederal in the main wings, the values of L, were

relatively small. Again with the exception of L,, all of the derivatives increased their

effect on the vehicle dynamics as the GHAME vehicle progressed further into the

atmosphere.

The characteristic roots associated with each of the vehicles modes of motion

were found and the GMS approximations were employed to predict the dynamics

associated with each of these modes. The the roll convergence mode was found to

be stable, while the spiral divergence mode exhibited unstable behavior. The char-

acteristic motions of the dutch roll mode were shown to be damped oscillations with

little damping and virtually no variations in the frequency. Once again, there was

little difference between the GMS fast solution and the full GMS approximations to

dutch roll motions. The asymptotic solutions to each of the mode dynamics were

linearly combined for two sets of different initial conditions to obtain approximations
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to the complete lateral-directional reentry motions. Due to the instability of the spi-

ral divergence mode, the full lateral-directional dynamics were found to be unstable

regardless of the initial conditions. Once again comparisons between the GMS solu-

tions and numerical solutions showed the asymptotic approximations to be of great

accuracy.

The sensitivity of the reentry lateral-directional dynamics to each of the stability

derivatives was determined through partial differentiation of the the GMS approxi-

mations to each of the mode motions. Spiral mode dynamics were found to be most

sensitive to changes in any of the stability derivatives. Roll convergence motions were

almost as sensitive, however, effects of variations in the stability derivatives were sev-

eral orders of magnitude less for dutch roll dynamics than either of the other two

modes. Reentry lateral-directional dynamics which contain proportionally greater

amounts of the spiral divergence mode will experience greater sensitivity to the sta-

bility derivatives. Also, it was seen that the directional derivative N, has the most

effect on all modal motions. Changes in N, affected the roll convergence, spiral diver-

gence, and dutch roll dynamics more than any of the other derivatives. The sensitivity

of motions to L, were comparable to those of N, , however, effects of changing the

other stability derivatives on the dynamics were orders of magnitude less. Especially

the parameter L, which remained relatively very small for a significant part of the

trajectory. The sensitivities of spiral mode motions with respect to the different sta-

bility derivatives grew unbounded due to the behavior of the actual dynamics. The

roll convergence and dutch roll sensitivities exhibited rapidly increasing behavior at

approximately 500 seconds into the trajectory. It was seen that the sensitivity of roll

convergence and dutch roll motions to the derivatives LP, L,, and Np became zero

shortly before this rapid increase and subsequent convergence.

Finally, the handling qualities of the GHAME vehicle along the Shuttle trajectory

were examined by comparing reentry parameters with a set of flying quality specifi-

cations. It was found that the short period handling qualities do not qualify for Level

3 status, and render the GHAME vehicle uncontrollable. The dutch roll mode exhib-

ited handling qualities of Level 3 which represents controllable behavior but only after
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excessive workload on the flight crew. The GMS approximation to the roll conver-

gence motion was employed to determine that the time constant of its response also

did not meet Level 3 specifications. Only the spiral divergence reentry behavior was

found to represent satisfactory handling qualities. In general, the handling qualities

of the GHAME vehicle along the Shuttle reentry trajectory were found to be clearly

inadequate.

The way in which variations in the characteristic root behavior affect the handling

qualities was studied by considering a generic second order system. Through the

nature of the GMS solutions, it was determined that as long as the path of the

characteristic roots do not go beyond the rectangle defined by its initial and final

points, the handling quality behavior falls in between those of the constant systems

with roots fixed at the initial and final points. Also, it was found that the faster

the roots of a system roots move, the handling quality behavior approaches that of

the constant system with fixed roots at the final point. become more Conversely,

the slower the characteristic roots travel along a path, the behavior of the system

approaches that of the constant system defined by the initial point. As long as the

path of roots does not extend beyond the rectangle defined by the initial and final

root positions, the handling quality behavior of the system falls in between those of

the constant system defined by these points.

8.2 Suggestions for Further Work

The following is suggested for further work regarding the GHAME vehicle and GMS

theory:

* The reentry dynamics of the GHAME vehicle be studied for a trajectory which

is designed for an aircraft closer to configuration of the GHAME vehicle.

* GMS control theory be utilized to stabilize the lateral-directional reentry dy-

namics and improve the handling qualities of the GHAME vehicle.
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* Human factors issues be considered in determining the optimal manner of pre-

senting a flight crew with the stability information in Chapter 2.

* Further theoretical investigation of the GMS method be conducted to better

determine when only the 'fast' solution is adequate for accurate approximation

of solutions to linear differential equations.

* The implications of characteristic root behavior on the response of a system be

studied further. This may lead to the use of GMS theory in the design process

of systems which exhibit non-autonomous behavior.
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Appendix A

Stability Derivative Estimation

A.1 Longitudinal Stability Derivatives

The following equation are used to estimate the longitudinal stability derivatives of

the GHAME vehicle along the Shuttle reentry trajectory.[9, 10, 11]

reA

2g
Dv C L

VCz (CD
Mn OCD

2 OMno

La/V pVSL
2m

(CL

Ma gcCM
CL kma

M, O 8Cm
2 OM.,o

(A.1)

Ly / Vo a2CLV2CL
Mo OCL )

2 OMnO

(A.2)

(A.3)

(A.4)

(A.5)

2gc
VCL k ( m (A.6)
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gc 2

M 2VCLk2 Cm (A.7)
2VCLCk,

A.2 Lateral-Directional Stability Derivatives

The following equations are employed to approximate the GHAME vehicle lateral-

directional stability derivatives along the Shuttle reentry trajectory.[9, 10, 11]

L, CY 9 (A.8)

gb
L, V C--- (A.9)

L,. , 2VCk C. (A.10)

LP M 2V C- k C1, (A.11)
2VCLk '

gb

N,, V CLk CNO (A.12)

N, M 2 CN, (A.13)
2VCLk2

2 (A.14)Np 9b 2 CN, (A.14)20CLkz
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Appendix B

Fourth Order Lateral-Directional

Sensitivity Differentiation

The differentiation is carried out for N, in this section, however, the general process

is the same for the other stability derivatives. We start with the equation

84 + wa;s + W2s 2 + •Is + wo = 0 (B.1)

where the coefficients are as defined in Eqs6.12 through 6.15. This equation which

defines the roots describing the lateral-directional motion is rewritten as[12]

x3 +pzX + qx + r = 0 (B.2)

P = -W 2

q = w3 W2 - 4wo

(B.3)

(B.4)

(B.5)r = 4w2Wo O WWo - oW2

a = 3(3q - p2) (B.6)
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b= -(2p' - 9pq + 27r)27

+ +4 T7

B - + ( + a T

2 4 F7
then one root of Eq.B.2 is given by

S= A + B - p/3

Now let,

- w2 +

D = (3 2
D=4w

4w3w2 - 84 - w3)
4R

(B.11)

(B.12)

(B.13)
E= -- w + +22 - W1 -

4 4R

Then, the roots representing the three lateral-directional modes of motion are given

by
w3  Rk,, - + -
4 2

w3  R
kP - + 24 2

k w
4

D+ T

D
2

R
2

(B.15)

(B.16)

(B.17)kdr, - 22

We will now concentrate on finding 8, but again the same procedure can

for the other roots. We can write that

be followed

+ Arc ON,
8Ow ON, Okr Ow3

8w3 ON,,

(B.7)

(B.8)

(B.9)

(B.10)

ON,
Okr,, Owo
Owo O8N, + 1 ON,

Owl ON,,
(B.18)
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Differentiating Eqs.6.12 through 6.15 with respect to N,, we get

aw$O = 0 (B.19)ONv

8w2O 2 = (B.20)
ON,

Ow = -vL (B.21)

O0= -L, (B.22)
O N,

These four equations are in terms of parameters which are known for the shuttle

trajectory and can be directly substituted into Eq.B.18. We must now determine the

partial derivative of k,, with respect to the w's. Differentiating Eq.B.14, we get

k - 1 = 0,1,2 (B.23)
Own 2 Ow, 2 Ow,

6Okrc,, 1 OR 1 OD 1
j (B.24)

Ow3  20 w3  20w 4

In order to evaluate the above two expressions, we are now left to determine the

partial derivatives of D and R with respect to the w's. Differentiating Eq.B.11 leaves

BR 1 (zOR = R-1 n = 0,1 (B.25)
Own 2 k8w4

OR 1 Be
R -1 1 + ) (B.26)

• R - 1 -s + O (B.27)Ow3 2 2 O83

Also differentiating Eq.B.12, we get

OD 1 1 ORO D - 1 [-2R - (4w3  -8 1 - W o (B.28)Owo 2 4R 2  0

OD 1 [ 2  R 2 1 OR
O D 1 -2R (4wos - 8wl - W )  (B.29)

S 2 Owl R 4Ra 8
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8D 1D-1 [ 2R OR W3 1(4sw - 8wl - w 2 (B30)Ow2  2 - Ow2 
+ R 4R2  - - )8-2

__D 1 r _ OR 1OD 1 D- 2R 0R + 1- (4w2 - 3w2)- (B.31)

1 dR 3
(4wsw2- 8w - w 3)- + -w3s

4R2  3 2

Eqs.B.25 through B.31 are substituted into Eqs.B.23 and B.24 which are in turn sub-

stituted into Eq.B.18. The expression for k is now in terms of trajectory parameters8N,

which are all known except for the partial derivatives of z with respect to the w's.

We differentiate Eq.B.10 which results in

8e BA 8B 1 8pS- O + n = 0, 1, 2, 3 (B.32)
Own Ow, Own 3Own

In order to determine the above expression, we finally differentiate Eqs.B.3 through

B.9 with respect to the w's. This results in the following.

O = 0 n = 0,1,3 (B.33)

p (B.34)
Ow2

q -4 (B.35)

q W3 (B.36)
OWi

oq 0 (B.37)
Ow2

q= W (B.38)
OW3

OrOwr -w + 4W2 (B.39)

Or
- -2wo (B.40)FWl
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OrOr 4wo
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2•2 1q  8p 1 2q Or
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1 1• A-2 a a

3 2 4 4 27On

1 A-2 1 +1 b(b + 3)-

= 0, 1, 2, 3

n = 0,1,2,3
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o,n

n = 0, 1,2, 3

OB

Own
SB-2 ( + .- a2 +

54 4 27 • O

1 1 1 (b2 3 ']
3 4T 27 Own

(B.46)

n = 0,1,2, 3

We substitute the above equations into Eq.B.32 then subsequently substitute the

resulting expression into Eq.B.18. This finally results in an expression of '4c in8N,

terms of the w's which are known along the trajectory. Eq.B.18 is calculated in this

way and then substituted into the final sensitivity equation shown in Eq.6.
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