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Abstract

Te scat te ri" f electrt s b1 the J.ialds of other
ectrons in a plasma has been investigat.j ed, and a method

devised for .andlin.g it• has bee- found that this pro-

cess has *a-n important effect an the velocity distribution
der certain coiton, amey: when --- is small, andnder certain aondltlon, ..... !AL %A

Sce Such conditions actually occur ep erime-etally

rd for them "thi theory predicat that the 3 stributi•" n

will be nearly maxwellian.

The scattering at small angles is more important than

that at large angles. Or the velocity distribution is

m:aintained principall by by many small changes in energy

rather than by less frequent large changes. The exact

size, ( , chosen for the potential hill used in computing

the scattering cross section is of relatively small im-

portance. This approxi 'atin, then, is nt eritical.

Fa.rl. satisfactory distribution functions have been

u.d fr dschLarges in which inelasti c coliisiors are un-

important z•d . also for some in which ionization cannuot be

neglected.
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I - Introduction

Many measurements made with probes in gas discharges

have shown the existence of electronic velocity distribu-

tions of Maxwell - Boltzmann form, with very high average

energies. Such results are, in particular, found when the

electron density is high, and the net space charge (elec-

trons plus positive ions) is low, as in the plasma of a

low pressure are. This form of distribution requires a

very high rate of exchange of energy among the electrons.

In theoretical studies, this electronic interaction

has been considered only by Langmuir (/1) and Gabor (9 ).

Of the two, Gabor's account is the more complete. It is not,

however, satisfactory. He takes into account only the

electrostatic phenomena, and is thus unable to compare their

relative importance with that of collision processes and

the macroscopic field. In his calculations, Uabor consit-

ers the electrons to be scattered by the fields of partial-

ly shielded, stationary positive ions. Because of the great

mass of the positive ions, this cannot lead to as rapid a

change in $he velocity distribution as will the scattering

of electrons by electrons. Furthermore, his methods of aver-

aging are somewhat obscure.

At low electron densities, the electronic interactions

can be neglected, as is shown by the quite good agreement

of theory with experimental data. (7,2/)



Since these interactions increase with the square of the

density, while the number of collisions with atoms in-

creases with the first power, at some density the two ef-

fects willbe equally important.

The object of this thesis is first, to find a means

of calculating the mutual interactions of the electrons;

second, to discover the exact conditions under which they

become important; third to find approximately the form of

the velocity distribution in the cases in which neither

process can be neglected.

The discussion willbe limited to discharges between

large, plane-parallel electrodes, so that only one direction

in space can be singled out. It will be assumed that the

positive ion and electron densities are equal, and that

the drift current is small compared to therandom electron

current..It will be assumed further that the discharge is

homogeneous in space, so that diffusion can be neglected.

The simplest mode of exchange of energy among the

electrons is that between individual pairs, or by "col-

lisions". Among more complicated processes is that sug-

gested by Langmuir of "plasma oscillations". It is the

mutual collisions which will be investigated in this paper.

The problem is simplifiedb y considering only the

following processes:



a acceleration by the field,

b elastic collisions with atoms,

c inelastic collisions with atoms, (excitation and
ionization)

d mutual collision.

Collisions between ellectrons will be infrequent com-

pared to collisions with atoms, but they are important.

When two electrons collide, each is likely to suffer a con-

iderable change in energy, while when one collides with an

atom elastically,it loses on the average, only afraction m

of its energy. Collisions with ions will be as infrequent

as those with other electrons, and will result in as little

an energy change as a collision with an atom. Accordingly,

electron-ion collisions will be neglected.

Let7) be the electron density, and 7J fdy the number

of electrons per cm! in an element dý' of velocity space.

f will depend on only the absolute velocity u, and the an-

gle m that this velocity makes with the field.

f= f(u,cosa)

As f is nearly spherically symmetrical, it can be develop,

ed in terms of spherical harmonics, the first two terms

giving:

f = f (u2 ) + f (u')cosa

and f will be much smaller than r .

Following ioltzmann and Lorentz, the usual procedure

to determine the distribution function would be to find



the number of electrons entering and leaving each small el-

ement of velocity space per second on account of each type

of process, and to set the sum equal to zero. in our prob-

lem, this involves too many successive integrations orthe

unknown function f, and is unmanageable.

two equations are necessary to determine f and f .

These will be an energy balance and a momentum balance equa-

tion. The first can be obtained by requiring the net num-

ber of electrons leaving each central sphere of velocity

space to be zero. The second is found by placing a similar

requirement on the number leaving a region on one side of a

plane perpendicular to the direction of the field. The

first will mean that there will be just as many electrons

having an initial velocity u, less than any given value w,

which acquire in unit time avelocity greater than w, as

there are having initial velocity greater than w and final

velocity less than w. The second equation expresses a

similar balance of the changes in velocity component ux par-

allel to the field.

II - The General Equations

Consider the energy balance equation, inv6lving pro-

cesses a,b,c,and d.
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a Electric field E,

In time dt, an electon moving in a field E increases

its velocity by an amountEdt cosD. The number per sec.
m

that leave the central sphere of radius w will be:

2n7_E7V (fo + f•cosm) cosm sino dm
m 0

or

4•h7eE wat (we)
3m

b Elastic Collisions,

An electron of velocity u, colliding elastically

with an atom at rest, loses speed in amountsu =

u (1 - cos ), where 0 is the angle between the initial

and final velocity directions*.

Let:
N = atomic density

w = angle u makes with field E

J= corresponding azimuthal angle

cTa( u, 8) = atomic cross section for elastic scat-
ering at angle e

Then the number per sec. of electrons originally having a

vectorial velocity in the element u' sinm dw dY) which

are scattered by angles between 0 and e + dG will be:



N n u" f sino o d 9V. 2n u cr(u, e) sineaed

The only electrons able to cross the sphere w due to elas-

tic collisions will be those for which w<u<w + Su. The

number per sec. entering such a sphere will be:

Tr2n N •o w a f sine dm" 2# / f u -a sinBd4
If Q = 2s , CT- ( 1- cois) sinT d a ,

this is
21TNflm w4 Q / (f + f coso ) sinm dw

M o

Or, finally,

4nNTm • q
M o

o Inelastic collisions,

Let: Letm us = excitation energy
e

m us = ionization energy
2 i

Q.(u) = cross section for ionization

Q (u) a cross section for excitatione
It is assumed that when an electron excites an atom

by collision, it loses just an energy 1 m us. Electrons

with velocity greater than / wi + us will not enter the
e

sphere w in this way. It is also assumed that there is

just one ionization energy, and that the surplus kinetic



energy in an ionizing process is equally divided between

the two resulting electrons. An electron will make, on the

average, N u Qe exciting, and N u Qi ionizing collisions

per sec. Then the number per sec. entering the sphere w is,

/wa + ua
2r N 1w e Qe (u) u8 du f (f + f cosaO) sine dnW eo

7w 14+ u T
+ 2 N 7 w 2Q (u) u" du I f + f coso) sin dW

w + u's w-2+ ul=n N)? W Qe(u) fo u du + 2/ Q fl u3 du

Let J(w) be defined by setting the above expression

equal to 4n N NJ(w).

d Mutual collisions,

The mutual collisions of electrons are much more com-

plicated,

Let:
u = initial velocity of electron considered,

V t It scattering electron,

U = velocity of center of gravity,

u = velocity of first electron relative to C.G.

u'~ ' corresponding quantities after
collision,

0 = scattering angle reffered to C.G.

= corresponding azimuthal angle,

0-(i,8) = mutual scattering cross section for
angle 8 ,

S= angle between directions of u and v,



= corresponding azimuthal angle,

= angle between directions of U and u,

It U and '

A• = corresponding azimuthal angle,

7/ = angle v makes with the field EXi

Fig. 1 shows the geometry of a collision of an elec-

tron of velocity u with one of velocity v. Their relative

velocity is 2 U. Vectorially:

1 1U= 1( u * v ) 1u = )

u = U * T

Algebraically:

I 4 tui = u' + v -2uv coa (

2 4 U4 = us + 9+2uv cos 9(

After collision the velocity of the first particle is:

u= U + . u = u', or u, u , V, v alllie on the same

sphere of radius T •. 0 and 99 are the polar angles of i'

about 1 as an axis, and /) and A4 are the polar angles of

the same velocity about the axis U . The polar angles of

v about the axis u are and 2 . a-depends on the

relative velocity.

I f u lies in the element of velocity space dd"u ,
and v in the element drv , the number of such collisions

per sec. is:

2iOcXr, 8) sin( dod ' 9f(u,cosc) f(v,cosY) dyu d~yv

To find the rate at which elbctrons of velocity u- w
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are given a velocity u'> w by mutual collision, this ex-

pression must be integrated: first, over allvalues of G

and on that portion of the sphere of radius u which lies

outside the sphere of radius w; second, over a domain of

Yv (velocity space of second electron) such that the

sphere u cuts the sphere w; third, over a domain off u
with u< w. The rate at which the reverse process takesa

place is found by integrating over 0 and B on that part

of the sphere u inside the sphere w; over a part of the

X ; and over apart of ru with u>w.

Because of symmetry, it is more convenient to use A

and , than 8 and 9.

cos8 = cosScos - e~n Ssinj cosL

F'or the purposes of integration, sinGdOd / can be

replaced by sinA dý dA, . Then ' will run from -rr to n,

and A from 0 to 3A , where ~ is the value of A on

the. circle of intersection of the spheres u and w. On

this circle, vectorially: U + U = w , or o + U" + 2u Ucos%

- W cos2wo - u2 - v

4 4U T

Also,
U4 + U2 + 2uU cos = u4



whence,

5 cos S uM -•a

In the integration over X Y, v,%, and can be

used as variables, if cosy in f(v,cos7) is replaced by

cos 6 cosf+ sin5 sin/Tcosq .

since -l1< cos /) 1, and since, through U and u,

cosA depends on/ , c(must be restricted. ±xpanding

expression 4 for cosA ,

u' + v*- 4Ulv2co r>,ý> 4W* + u* + v*1 -qw (u +. v )

6 cos (u + v' , -a

Because u" + V;> w, cos -/>0. When u and v

are on the same side of sphere w, (that is, when u and v

are both greater or both less than w) the fraction is

less than one,and it follows that < ( (T - •. When u

and v are on opposite sides of sphere w, there is no re-

striction on/ , as the fraction is greater than one. In

this case it is possible to let (6 = 0. Then the limits:

are always 2( and T - 2( .

The number of electrons leaving the sphere because of

mutual collisions is:
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n 2nr -r 2X
I± = udau fo f(u,coso)sin~dm fo d vdv j sin (d

o

-rr 2
TT

sifnl d A fc - (u ,T )d/0
-TI

Tsln•~ •- I,( , d.,,,
-n1

The order of integration can be changed:

TT -2o XT
I = 21' f u'du J vadv J uB sinXd( iof(u,cosw)sinadm

2rr 2rr
"of f(v,cosv)d ad d/

Expanding f and substituting for cos 7-'

2TT 2rr
f(f(v,cos)v)d = f (va) + f (v2)(cosýcosw + sin'sin•ocos)

= 2r(va) + if (v')cosX cosm)

Taking the product of this result with f(u,cosa),

fr.f.(ua) + f (uO)cos , 1f.(v) a) (+)iosfco sin(owdo

= 2f fua)f (us) + 2f (u')f (v'a
o 0 3 .1

f is much smaller than f

is negligible.

, so the product

Let:

Z
•. oB Cfo0
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Then: a

I = 16na h kf (ua)uadu ft (v')vadv uB sind

Turning to the electrons entering the sphere due to

mutual collisions, let:

IT Tn
B = sinA dA f9 (u,0 )da

The number entering is: 10

I = 161·T ns ff (u*)usdu if (v')vadv j uB sindX
0 o oa ' a

the four processes a,b,c, and d have now been cal-

culated, and the energy equation can be written symbolical-

ly:

11

a + b + 0 + d = 0 , or:

4 .M1tý gf -4~ýAQwt f + I -I - 4rrN J = 0
3m I M o a

This must be true for all values of w.

If the mutual scattering terms are omitted, and the

inelastic terms J considered constant, one can derive

from this equation, by one differentiation, Lq. 8 of Morse,

Allis and Lamar (with diffusion left out).

-, E (waf) , ma d (w ) = O
2w dw . M 2v dw o

4TrN2J is the number of electrons entering the sphere

due to inelastic impacts.
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The mutual collisions of electrons will not be as im-

portant in the momentum balance equation as in tIhenergy

relation. In collisions with atoms,electrons of energy H

undergo a change of energy of the order H.* In correspond-

ing encounters with other electrons, the change is of the

order H . On the other hand, this is not true of the
2

changes in momentum. Electrons are scattered by atoms near-

ly isotropically, and lose almost all of their directed

momentum. The pair interactions of electrons will be neg-

ligible for the purposes ofthis equation, because they are

so much less frequent than collisions with atoms. The in-

elastic impacts, which are also much less frequent than

the elastic, will be neglected too.

An equation corresponding to eq.ll can be set up for

momentum balance. This leads to:

12 -E dd + NQwf = 0

which is equation 7 of Morse, Allis, and Lamar. Its MIri-

vation from the integral form is given in the appendix.

So far, those integrations have been performed which

involve only the geometry of the mutual scattering process.

It is now necessary to consideir the cross-section function

O-. The true form of this is difficult to handle; so it

is worthwhile to postpone its treatment, and to consider
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first the assumption that Cr is constant. This would be

true if the electrons behaved like hard spheres. 'he dif-

ficulties arising from the form of 0- will be avoided, and

it will be possible to show clearly the peculiarities of

mutual collisions, as well as the method of handling them.

First, the energy and momentum equations can be com-

bined to eliminate f •

13 -4TQfr Ln E d
uM 3Qf m d I- w-f + (I - I ) -4N J

M o 3NQ m dw o a

= 0

The four terms come from the elastic collisions, thefield,

mutual collisions, and inelastic collisions respectively.

III - Constant Cross Section

it is convenient to represent mutual collisions on

a diagram of the v*,u a plane. (Fig.2) Each point stands

for the velocities of a pair of particles. Because of the

conservation of energy, every point PI'epresenting the re-

sult of a collision between a pair P, will lie on a 450

diagonal line through P. Points in the shadea region, for

which us + va<w a , cannot lead to collisions in which a

particle crosses the sphere w. The lines u = w, and

v = w divide the plane into four quadrantg,each of which

must be treated separately. In 2 (u(W,v>w) and 4 (u>w

and v<w), the angle .o = 0 , because u and v lie on op-



V= w

U

4

t= w

A"iy
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posite sides of sphere w. In 1 (u<w,v<w) and 3 (u>w,vw),

o< X-< T
0 2

Integration over quadrants 1 and 2 gives the electron

flux across the line u = w in an increasing direction; over

3 and 4, the flux in a decreasing direction.

Tr-o

= u B sinXdX9

= S B sinX d?

= f B sinX dX
- f asnXX

Quad. 1

From eq's. 7 and 9,

B -
1 0

sin ad~ C~ d•/A
-T

= 2 cr(l - cosAo)

sin)d' / fr--dA = 2n~(1 + cos 0o)
-iT

Repeating eq's. land 2,

4u' = us + Vo - 2uvcos

4U* = u2 + v2 + 2uvcos X

Eliminating cos (X
4U" = 2u2 + 2v - 4 u

15

Let :

14

B'

B'

3B'

B'
4

B = f
?b
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When u and v are held constant,

4udu = uv sindd X

sindXaX= 47d.
U V

Substituting for cos~o from eq.4,

B = 21Td 1 - 2w - us- v••.31 1 2f U u

B = 2O + - us
a 4 u T I

Thus the integration over 2 can be replaced by one over

U, if the proper limits are found. Let the limits on a

be u and u ,
. 8a

u<u , sothat when,

U=u

O U=U
a

For Quad's.2 and 4, X. = 0 , and
0

4 g = (u - v)
I

, 4 U
a

thus :

(U + V)a

Since u is essentially positive,

Quad.

(v - u)1/2

u (v + u)1/2

For quad's.l and 3, from inequality 6,

cosa' = (u•" v- 8  W)
u lv

(u - v)1/2

(u + v)1/2

wm,

IV
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Using this value for cosX.,

4 u2 = u' + v -2wJ us + v -

4 u- = u2 + v2 + 2wJ u" + Vt ' wa

Let s = u + v - wa 1/2 ms" is the energy of the

two particles in excess of that necessary to produce a col-

lision in which one electron crosses the level w,. In terms

of s,
4u= (W - 8

4 _U = (w + 8)a

This gives:

(w - s)1/2
(w + s)L/2

(s - w)1/2
(s + w)1/2

The integrals of equations 14(over X) can now be

thrown into the forms:

S 8 -(w+s) 1/2 _
B' - 8 (w s) /2 1

1 uv (~w-s)1/2

- "42uJ au u du•
26/ 2u +2vO-4 773

B'u- v8Tr- _U+ (mw-s)Jv 2ua*2va-4us (w]+s)1/2
uv 3 8(ws) 1/2

1 UV3 (w-e)1/21 uv3
16a

Similarly:

B'= (s+w) /2
3 (s-w) 1/ 2

"g udu
2 a- 5a 4

2i~~4ZuLL

u

8



BJ = 8T___3u ca
3 3uv

s (v+u)1/2
uv lv-u)1/2

- udu
2u / 2u'+2Va-4iU J

B' = 4 1T-u(3vQ - 3w* + 2u*)
S 3uv

B' - 8 -(u+v)1/2[_
Svu (u-v)1/2

2u I" " udu

2 / •u+2,' -4 u

16d'

B'
0

3' = T y(3w- - v")

and B' can be simplified by taking advantage of
4

the symmetry in u and v. They appear eq.13 as terms of

I - I , say 16ai- "• , where
3 8

w
I' = • (u')usdu f (v')vadv B'

o o a

- f f(u')usdu f f(v')v'av B'

Substituting B' and B' from eq's.16',

I' =•0L Jf(us)udu fa (v2)vdv u(3v' -3,~ +2u')

S4cfr- f(u)du f (v') vdv v (3w - vS)3 0

16b

18

B'
a

16c'

An
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Because of the symmetry of I' in u and v, 2ua cab be sub-

tracted from the bracket in the first integrand, if 2v a is

subtracted from that in the second.

I' = 41r- f (uO)u.du ff (vs)vdv (v' w)
0o o V-

W
- 4 ra-f f (u')u'ndu f f (v')v'dv S. "* )

Wo o o U -

But this is equivalent to taking:

16c B' - 4  - (v a _ wa)

16d B' -= 4  (wa - v)--- u

The functions B' derived here are much simpler than

the ones to be calculated later for the shielded Coulomb

field. They do show, however, the same symmetry properties

in u and v.

If all processes except the mutual interactions are

neglected, the solution of the balance equations willbe a

maxwellian distribution.

-us/wa
f =Ae o

This fact can be used to chebk the calculations. The u',v9
plane can be divided into strips between the diagonal lines

u2 + v a = c S and u4 + vs = ca + c a . The first integration

may be carried out along the length of these strips, instead
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of along lines parallel to the ua or va axis. The maxwellian

distribution function has the unnque property of being cons-

tant along such a diagonal line. In other words, for this

function and this path of integration, the f's disappear

from the inner integral. It turns out that the BI functions

can then be integrated. The result is zero for every value

of ca, showing that the mutual collisions do not change this

distribution, This was a valued check on the correctness

complicated expressions derived 2rxm from the assumption

of a shielded potential hole.

IV - Calculation of Cross-Section

The force between two electrons in the plasma is --

when they are very close, where r is their distance of

separation. When r is larger, this force is reduced. Be-

cause the space is macroscopically neutral, at very large

distances r the force between electrons will be zero.

There is a space charge of positive ions,which, as far as

the faster moving electrons 6ze concerned, is nearly uni-

formly distributed. Near each electron there will be,on

average, a defliciency of other electrons, leaving an

average net positive density which "shields" the electrons

from each other.

A suitable approximation to the interaction potential

is: a -r/l
V = .. .

r
This defines a potential "hill" whose radius is measured
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by a. The value to be assigned to ( is uncertain. A low-

er limit is the mean distance of separation of the particle&,
_-L -4

1 3. This may be of the order 10 cm. An obvious, but

certainly excessive upper limit is the size of the apparatus,

say lcm. It turns out that this enormous range foro is

reflected in the results by an altogether smaller effect.

o( cannot, however, be infinite, for this would give the

coulomb potential, and with it, an infinite collision cross

section. No value willbe specified for this parameter at

present.

The cross section-(U(, 8) for this potential hill is

found with the aid of quantum mechanics. The Born approx-

imation can be used. (29)

Let the wave function! of the two electrons be a

product of two functions, one representing the motion of

the center of gravity, and the other, V/, representing re-

lative motion. If ' be approximated by the sum of a

plane wave, , and aspherically scattered wave, , then

ikx - ikx
Let: e ikx , where x and x I are the distances

ofthe two electrons from the center of gravity, and

k - 2nmu
h

Then the first apprwoximation to the siation of Schr6dinger' s



e -r/w(
equation, with V = Le

r

7..= A4m A .

, gives:

4k 2 s in g

Or since = 1 ,
',

h /

This can be written:

17 cr(iu6') /6z-274

(4kA sin2".9 + -J-

1

2 To

where,

32= h
18

1/10 measures the size of the hill din terms of A,

the wavelength corresponding to the relative velocity 2u.

,132 is a very small number. Measured in volts,
L -2= A••MU = -30

92 150 he
16 n• Vm2Vr

- 16
7= 0.95" 10

Vr oe

If the electronic density is 10 per cc., and d is set equal

to 77 3

-460T
and if 0 is larger, 13 5

by so much the smaller.

22

+ (2

--

2.
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It is this term in the denominator of-,- that pre-

vents the cross section from becoming infinite at small

angles,as it would for a Coulomb field. It will be the

controlling part for distant encounters. Since it is so

small, it will scareely affect g-for large angles. These

correspond to close encounters, and scattering by a nearly

purecoulomb field.

V - Integration over the Angles

In this section, the functions B and B' are calculated.

Equation 17 capalso be written:

J= 1
- 4ma 4  (1+29 -cos)

iby equation 2 for coso , this becomes
,-= .. Y 1

m (1+2,8' -coss8cos•,+sinSsinjcos/)

When this is integrated over/, and 3 , we obtain the

functions B, and B, which are given on page 24. The

details of this and the following calculations are given

in the appendix.

These functions B are to be integrated over %, T he

results are the B' functions. Exactly as was done in the

case of constant cross section, an integration over u is

substituted for that over X.

sin d( = 4u du
uv
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A new symbol "a" is defined,

a = 2h
4nd mw w

where Aw is the wavelength corresponding to the velocity w.

Since~3 is extremely small, "a" also is very small.

It is found upon evaluating the integrals over u,

that:

# F A I IB1 = 2T ,2 S- we -u +w a
miw xauv 2wa

B •A u - W -u -w a

1 -wIatuv 2wa

Ž 'wZa uv 2Wa=B 2 T w _ U W+wm a

B = 2 A V - u2-w -w a
S -~i uv 2w a

These may be compared with eq's.

-I1

tan 2was
wx-ul +wa -aJ

-t
tan 2w au

wtuR +w4 a0

tan 2w a 1
- w

tan 2wav
, which list the

16, which list the

corresponding quantities for 0Q = constant.

The functions B' are large near the line u = w, and

decrease rapidly away from it. In quadrants 2 and 3, they

are independent of v. In quadrants 3 and 4 they are asymp-

totic to zero as u becomes large, and B' is zero when v=O.

B' is zero at u = 0 , and B' = 0 along the line u + v = w
2

19a

19ce
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These functions are plotted in fig.3. In this figure,

the value 6.1 was used for "a", so that the peaks are not

so sharp.

The B' functions would,when multiplied by the distribu-

tion function, be very difficult to integrate. Therefore

approximations are made. Over most of the plane, it is

satisfactory to expand the arc-tangent functions, retaining

only terms through the order ao . But this expansion

breaks down for utw4(wa . Hence, in a narrow strip about

the u = w line, some other method must be used. Over the

width of this strip, the product f(uO)f(va ) does not

change anywhere nearly as rapidly as Bt . So the distribu-

tion product is expanded, and the exact form of BI is re-

tained.

fWhen w2 - u>> wa ,

20a B' = 2_. 4 s3
m" uv 3(wi-u)•3-1

20c B' 2= ýa 4u" + 2u
m~ uv 3(w ' -U ) W '-

20b B' = 2rTA 4-3

muv 3T(U Yz-20' BI = 2n a 4 4v + 2v

These expressions no longer containg "a", which is as-

sociated with small angle scattering. They represent that

part of the flux across the level u = w ,whichis caused by

collisions in which there is a comparatively large exchange
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of energy. They become infinite at u = w , while the more

exaxt expressions do not. Outside of a strip of width tw"

(fig.2) on each side of this line, they are very good ap-

proximations. (t>Ž a) Inside this strip the other approxi-

mation is used. The number "t" must be so chosen that on

the one hand, t>> a, and on the other, so that the expan-

sion of f(u2)f(9V)
o 0 is sufficiently precise inside the strip.

I t is shown later that this choice is not critical.

In order that the approximation in the interior of the
under

strip may give a correct result fgrxkhz conditions giving

rise to a maxwellian distribution, the product f,(us) (va )

is expanded along lines us* va= constant. 'or this pur-

pose the variables x and y are introduced.

21 x = u+v us = x + v
S2/2

y = us, va v =X - r

/2 /2
Let

u( u)=(vs) (X,y)

Then (x,y) (x,yo) + (xy yj

where y = y - y , and y. is to be so chosen that the

point (x,y,) lies on the line u = w .

Let Sj represent the strip integrals of the jth quad-

rant. Below, symbols Hj,k (j= 1,2,3,4 ; k= 1,2) are used

temporarily to show more clearly the structure of the Sj's.

( B1uv) willbe carried along as a single function,of either
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u and v', orx and y , depending on which set is in use at

the moment.

= •Sj 4= An f(u;)(v2) j9 du' dv2L/V

n= 4 2  ( BtL v) (x, yo) + 9i (X,yY Ydy1 dx

For the first integration, x is held constant, and there-

fore g(x,y,) and [ ('Yx,y ) are also constant.

Let

Hj,1 = ' (BCtv) dy,

j,2 (B y dy

Then Sj = 41f2, ff (x,y )Hj,1dx * J& (,y) Hj,2dxJ

Once having obtained this forfmfor Sj, it is more con-

venient to evaluate H and S by returning to the
variables us and v. j,k j

y = •u - x , y0 = J2w - x

S= y - o = /2( u a - wa)

In the first integration,

dy, = /2dus

22a H = r2 / (Bjiv) duo

22b H J= 2f (B uv)(ua- a), dttd
The limits on u s are: for the first and second quadrants,

- wa(1-t) and wa; for the third and fourth, w2 and w4 (l+t).

lso, (x,, ) = f,(w')f(va), and

hf I Y(we f• (w)ro(V) - 2) (v( )

where f"(ws) d_ ff(ws) (
d4 WL
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As us= wa when y = y , throughout the second integration,
__w + drx= di9x = We + ya dx =
/2 /2

substituting allthis in the expression for Sj , 23

Sj = 4rr"Tý2f(w) j f(v")-ii. dv + f f'(wa)f(vs) - f(vrs)f'('j

Neglecting terms of higher order thanthe second in a,

24 J-eH o 1 a q To i vhe - -

l 2wae 3w hta

• 77 7____

-7 -7.., ,

The explicit- calculations are in the appendix.

Because the integrals fromquadrqnts 3 and 4 are sub-

tracted from those of quadrants 1 and 2 to find the net flxx,
all terms willdisappear which contain: a and t otherwise

than in the logarithm alone.
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Assembling all terms from both approx imations, the

total contribution to the balance ecuation 13 is written

out explicitly on page 31, eq. 25. That form was used as

the frame of the numerical computations.

In order to verify that errors have not crept into

our rather complicated calculations, proof is given in the

appendix that both the values of B' listed in eq's. 19,

and the approximate forms, permit an equilibrium solution

of iaxwell-Boltxmann form.

Let II - I2 = 8r9i" 1W K
m)

where K is a factor of dimensions V-6 ,representing the

integrals of eq.25. The balance equation 13 is then:

-NQm wf - 1 d f - NJ + 2_a__P KW = 0
M 3NQ m dw mA.

Letting
Letti = r = E-a , this becomes:

m2NQ mNQ

26 -m wA f - 1 dw f - J + 2nri w 3 K = 0-o

C corresponds to the parameter E of the Townsend

theory. "i" is a measure of the intensity of ionization.

The function K can be separated into two parts: those

terms containg the factor In t ; and the remainder. The
2a
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former come from the narrow strip, and correspond roughly

to smallangle collisions, in which little energy is trans-

fered. ihe latter come mostly from the regions of the

u ,va plane outside of the strip of width tw', and repre-

sent close collisions with large energy exchanges.

K contains a number of rather complicated integrals,

and a solution of equation 26 cannot be found directly. It

is necessary to select a tenc function having the properties

to be expected in a solution, and to test it by substi-

tuting it in the equation. For most choices, the integrals

will have to be evaluated by numerical quadrature.

VI - Special Cases

A

The first special case investigated was that in which

the effects of the field, the elastic collisions, and mu-

tual collisions were included but the effects of inelastic

impacts neglected. Then J = 0.

It is known that if the mutual interaction is also neg-

lected, the distribution function has the form:

-w'4/2w,'
fo =Ae

When only the pair collisions are considered, the distri-

bution is maxwiellian:

-awe/wa
fo =.A e

The function chosen as a trial solution is:

-(w/w) -(l-g)(W /e2w,- f= A e
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-'g(w'/w2) - (-g)(w4/2w*) -p
27 f = A e = e

2niw 3  2nwt3

with 0< g, 1 .
At g = 1 or 0 , this reduces to one or the other of those

above. g and w0 are parameters which are to be determined

so as to give the best approximation to a solution ofeq26.

g is a measure of the relative importance of electron-

electron an electron-atom collisions. The number of elec-

trons having speeds between w and w* dw is: 4n wff(wO)dw

Taking the derivative,
-Pd wtf(w') = d weP

dw dw

= 2w - gw -g1-g) w'

The derivative is zero at

I -g (-g) w* =0
w~T zW or when w- = wt

w is thenefore the most probable velocity. "A" is a normal-
0

ization constant such that

1= 2A fw e - a dw
7r 0

WO-

Letting 0 o -gz -(l-g) z
, Z e dz .

WW0

And A is a function of g alone.

Define:
In t = In t + In w , or: a = 2h

2a 2a.' w 4r0mwo 2nd
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From pp. 22 and 25, -U

a = 2*0.975 * 10
o oV

o

V is the energy 1/2 * mwe expressed in electron
0 @-q -

volts. If o( is of the order/O , and V S a few volts, a
o4 0

is of the order 1 * 10 • a is introduced to separate
0

the dependance of K on the parameters 0(, g, ,and w from

that on w ,

Define: K' = 4~w 6  K
A" w -@o e 1

Then: Al K' = w KeP
4TrNawb W

o 0

K' is a dimensionless function of only In t , g,
2a

and w/w .

- mw'w -o + & g * (l-g)wj + AiK' = 0

Re arranging:

0

Because 0( and t only apear in the equation through

their logarithms, the results are not critically dependent

on the exact values given them. In:, the numerical calcu-

lations, t was chosen equal to 1 . This is safely
25

larger than a, and is small enough so that the error in the

expansion of f(ua)f(v4 ) willbe small.
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It is seen that A i K' is linear in •w/wa , or

A K' = k + k wa/w
I B o

This is an condition that K' must satisfy in order that

f may be a solution. In fig. 4 ana~ K8 is plotted as a
0

function of w*/wI , for g = 0 , and g =0.732 . These curves
0

are seen to be fairly straight over the range containing

most of the electrons. (w8<4w2 ) The agreement is best for
0

the larger values of g. The amount of agreement measures

the correctness of the function f which has been assumed.
O

The deviation of the curves at high velocities indicates

that the function gives too many high speed particles.

The slopes and inter-cepts of the straight portions of

the curves similar to fig. 4 (but containg the factor A)

are plotted in fig's. 5 and 6 as the functions k and k of

g and Ilna

From eq. 28 follow equations 29 an 29'.

29 i :- gel

29' k = - 2Oa (l-g) + m w*
aO

These equations can be solved for g andw in terms of

the parameters i,e*, and In ao . In particular, g and

w*/C* are functions of log a and the ratio 40 /i only.

This is shown in fig. 7 , where lines of constant g and

constant w'/t a are plotted on the log a 8 */i plane.
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Empirical equations for g and w are:

30 g = 0.26 + 2.4 6 log a,
0.26 * 2.4 log a.- 2 2/i

3

30' W, = M -2.92 - 239 logao + 2](1-g)

It has been mentioned that K consists of two parts.

One does not contain the parameter a That is, iu is indepen

aent of the size of the potential hill. It corresponds main-

ly to collisions involving a large change of energy. The

second part, that containg the factor In t/2a ,corresponds

to glancing collisions with small energy exchange. These

glancing collisions are much more numerous than the first

kind, and it is interesting to see which type is themore

important. Table I gives data for two values of a that
0

fall in the experimental range. Column 2 gives that part of

the function w7•K' e , which is independent of In t/2a

uolumns 3 and 5 list that part of the same function con-

ing the factor. Columns 4 and 6 give the sums of 2 with

3 and 5 respectively.



-0 .55

-0.0091

+0.102

+0.00201

L. .

-0.461 -0.742

-&,2695 -0.07562

+0 .222 +034

+0.00513 +0. iyl74

-G.ES -

-OU .Ot

+0.00729

+0.007319

-. 785

-0I.97

-0.1080

+0.418

+0.00990

Table I

0.6342

1.356

.7352

b.464
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I t is seen that the larger part is that containing In a ,

or that representing small angle collisions.

It is interesting to see if conditions can exist for

which this theory would predlict a large value of g.

A search through the literature shows that thare are

very few papers on th subeject of gaseous conduction which

present enough data to determine allthree parameters. The

required data are:

a the gas used

b th~ atomic density

c the field strength

d the electronic density

e an estimate of the average energy

Among the few papers giving all this dataare,one by

T. J. Killian (II), and one by A.H. van Gorcum (8). In

Killian's work, the gas pressure was so low (a few bars)

that*: the mean free path of the electrons was comparable

to the tube diameter or larger. Plainly, this theory is

inapplicable to such a case.

Van Gorcum reports work done on neon at a pressure

of 4.7 mm.Hg. at 00 C . In the well developed plasma, he

found by probe measurements that the electrons seemed to

have very nearly a Maxwell distribution. The values found

for the auantities listed above clustered about those in

table .

17 -3 10 -3
1.67. 1 cm 9.5 * 10 cm 0.93 volt/cm 2.7 e.v.
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17 -3
1.67* 10 cm

10 -3

O10 -3
9.5*10 cm

Table E

Vav

0.93 volts/cm 2.7 e.v.

For neon, Q•

If eV, =1 mw
300 o

0.28 cms

then for a maxwellian distribution,

V = 2 ao 7 av
3

For this case, taking ci1

2p8 = 1.93,
31

then from equation 30,

9 .1 -4
- 7)= 2.19" 10 we have;

-5
a = 6.6 10 , log a = -4.18

U 0

g=0.-184... .

This is quite a large value for g, and hence the mu-

tual collisions are very important . If w is calculatedV l m w a

from eq. $0' , and

calc

V =1 mwO
Ocalc 2 calc

= 1.39 e. v.

From the experiment,

V = 1.8 e.v.
o

38
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These values are in fairly good agreement, considering

the roughness of the approximations, and the fact that ion-

ization has been neglected in the computations.

If d is chosen to equal 1 am , it is found that:

g = 0.91 , and V cal 1.45 e.v.
Ocalc

The agreement betweenthese two theoretical results is

astonishing in view of the violently differing values of

d that were used.

In discussing measurements made with probes in a plasma,

it is usual to plot the logarithm of the electron current

to the probe against the retarding voltage, for a maxwel-

lian distribution, the resulting curve is a straight line:

log ip = c + V/V
In the general case, the current to the probe can be

calculated from the equation: (5 )

0o1= f(w') (wa- 2QV) w dw
SIVim (Vm )

It may be mentioned here that probe measurements are no-

toriously treacherous.

In fig.8 , log ip is plotted against V for the func-

tions obtained by setting g equal to 0.5 , 0.8 , 1.0 .

The corresponding curves given by van Gorcum are qtite a

bit straighter than the one given here for g = 0.8 .

This would indicate that the mutual interactions are of

evengreater importance than is predicted by this theory.

On the other hand, the conditions in his tube Were much

mppe than thoQ ~zzumed
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more complicated than those assumed here. ihis fact may

account for part of the divergence.

B-

Inelastic collisions can be taken into account by as-

suming tha tnevery electron which acquires a velocity great-

erntha a fixed value w suffers such a collisin and loses
1A

all its energy. This assumption is equivalent to setting

f(w') = O.for w> wi , and J w = constant = j for w< wi .

Eq. 26 takes the form

* Zw'W t -w w 4f + 2niw 3K= j (w<W)

The assumption may be expected to be good except

near w = wi andnear w = 0 * f must be sharply cut off

at wi . In an actual discharge, it is not zero at this

point,but only very small , and decreasing very rapidly for

w>w i . Near the origin thb function may be expected to

be large,gor the assumption that the electrons undergoing

aninelastic collision lose all their enrgy gives an ex-

cessive piling up there.

Two forms of distribution function were tested:

OW"/we

a A in ew
2nw, wL

Mw 4//W
b f = - w e

Consider function a Let

w =w0 A
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Then -z
1 =f z In e dz
A s

Eqation 32 becomes

-Z -Z
m A w z2 in 1 e + 2 A (z In 1 * 1) e
M z 3 w Az

+ Aa•K = trJ
m a IIIw.

Where K = w3 K and K is dimensionless.
a ~A )

This is of the form

-Z -Z
-Cza In 1 e + F(z In 1 + 1) e * LK,= 2rj

The terms on the left represnt collisions with atoms,

acceleration bythefield, and mutual collisions,respectively.

K (z),, In a ) was evaluated by numerical integration.
a a

Values of A used ware 1/2.08 and 1/4.16 . (i.e., -z
wi/wa= 2.08 or 4.16) Curves of K (z,A ) ,/za In I eZ

and z in i + 1 e are shown in fig's.9 and/O. K is

finite at z = 0, but is very large for smallvalues of z

From the form of the curves, it is plain that no choice of

the parameters U, F, and can satisfy the equation. This

function is not, then, a satisfactory solution.

I t is, however, interesting, to compare the relative
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magnitudes of those terms of Ka which contain the factor

In t/2a and those which do not. these values are given in

tabled f n . The actual factor used was

S+ In t
9 3 2a

Column 2 contains thevalue of the terms indepndent of this

quantity. Columns 3 and 5 , the values of the terms contain-

ing it, and Uol's. the sums.

Here , as in the case ma where ionization is neglected,

the terms representing the effect of small angle collisions

are the more imporgant.
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i

+2.2(65

+U. 'bU

-0.0240

-0.008C>'

+0 ,006
.'- '0'o

-0.0079

+0.032.

+2.312

-0.1110

-0.5713

t .447±1

-0.437

-0.244

+0. 276

4

+4.188

+0.639

-(3• 132

+A 1054

-u.583

-0 252

+0.308

+4 ;14

-0.172

-VC 7 37
-C0.79

-0.675

-0.3 66

+0.403

+0.57O

-0.235

+U.07539

-0.24

-0.374

+0. 435

20

7 3

+5,817 +b.U09

-u.233 +0.517

-1,.143 -1.168

-0.301 -0.307

+0.0868 +0.0937

-0.919

-0.487

+0.530

-1.065

-0,495

+0,568

Table 11

W IV

0.2~5

0.50

1.00].00
Li.~

'300

1A " 2.08

1ý z- 4.16

~nr;~



It has been seen that the most important of the mutual

collisions are the glancing ones. Tihe integrals are greatly

simplified if the others are neglected, that is, if only

the terms containg the factor In t/2a are considered.

Now ;

& -t _& ~teZen '

Except very near w = 0, the term 21n w/wi wil be

small compared to In t/2a' . It will be neglected.

Then (eq.Ze)

7__r 3- _ 2

j toi3

4 ~ J 7_0-2), 2 f
p 4

0~f

:3
-.. 3

.&.# Z

$ T~f0
4f (/V2) GZW 2

7he expr-ess/'on /7 6- nec *ke s is

'~4K7S d~L~c7I ";·, c Ifo (U2/ r 2 /742

74 3
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We can now verify that the Maxwell aistribution is

the equilibrium solution with the mutual interaction ab-

breviated in this manner. For, let
22 2- e2e --. 2

- A) 2 -wd

Then

aJ· urOC fidJ t'2)j I--
VJor -I = o

Peh/w y Ao 9e nera/ 4Pd
00

/0 '4r2)c&Z U

n
A , .

a, '7 e~, /ePg- 7a, hy 00vo1
AA~r AA-r2.

.- 1~r . •d z£,,.<..vl 3 /••!C,-j
2< l/-·C/~4r27~ 44Crg

7r de 2 3

2r

SSuAs( t(;.•7, 1/ rs
i71 2 -jf

on

BdAA r

o 0

AAT

33
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We now make an assumption about f

-wx/wa
f A l - wa e 0

0 1

Defingtg: a = wa

1w

In terms of z ,

f (wO) = f (z) = A
a o 0 2 rnw

-z
(1- ) z) e

-A -z
f e d2z

The upper limit is 1/A , since f" = 0 when z > / .

Calculating the field term in eq. 32,

w d f (w2 ) = 2A -we w -
dw 2vla W-* w w•

A O o i

= 2_A - 1 ;1 - Az)

w /iw

-Z
z e

Likewise,
-A 1

o o

0w w

a 0

-Wa /W a
+ 1 e o+1

2.

-z
= -A . I (1 + A -o z) e

0 0

45

* Let:

1w
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Consider the integrals in I - I
I a

f (v=)dv" A fi i - v e vwe ° 2 wa  w T

o

= A (1 - y) e dy

0

when we set y = v-/wa
0

Under the same substitution,

af
@o

and

Jo

v3 f (TV ) dv4 =
w- o

v f (-V) =

A
2nw z

z -y
J y (1 - y y) e a3r0

z, -y
A y-"(1- 3 y) e dy

2naw z
2,iow

Evaluating these three integrals,

fJ f (v) dv = A (1- 2 - Az) e
w ° 2inw

Svf 0 (va)d9v =

W a

f v f (v3)dvaiva

+ e ]

2rnw z3/', L z ) ]

2nwAz -

Substituting these in eq. 33 for I - I
1 2,
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(/-A-z)e- 2 +,Iýj
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hn 32 then becomes:

---t"; (0+3 -ez )e-z

K3T3 2 27t

where
3 .A93-,<,21-x"Gr3 #zpit), __ . X3 4 rNQ -

47rivQ
= 27 1a/

'S z- ft im es

braces, and/

E7. 36

ý2 -Cz.2-Az

T-he functions
K, are p /o 7

exp ress ion /AI
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Suppose that the values of i~,77, E, and a are given,.

If the function A (1 - w ) e is the correct dis-

tribution function for this discharge, equation 36 will be

satisfied for all values of z (or w'/wa). But the function

was assumed ad hoc. hence the problem must be considered

from the opposite point of view. we ask, " Are there any

values 6f the parameters N, 4, a , E for which equation 36

is satisfied for all or nearly all values of z2". If such

a set be found we will have a problem to which our f is a
0

slution. There are really only three independent parameters

in eq. 36, as is seen when it is written as eq. 737. They are

A, u/F , and r/F . The problem is to find what, if any,

values of these parameters will make *k. the sum of the

terms on the left of 36 nearly constant -- and positive.

We can pickj arbitrarily, and then may be able to find,

by a lest squares method,a reasonably satisfactory pair of

values for c/F and)F . This procedure was followed.
/3',',AI

In fig(s. the values of this sum are t)otted for the sets

S, U/F, C/F tabulated below.

/ 2.2 4 .-

C/F 0.63 0.42

?V/F 6.56 33.0

Ta ble -lT
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The curves are fairly level except at the lower end.

The degree to which they approximate a horfizontal line is

ameasure of the correctness of the chosen function. It is

seen that the fit is reasoably good,except the distribution

function gives too few slow electrons.

zrom the babulated values of the ratios, the relations

among the parameters of the discharge can be found.

Semi- logarithmic curves of probe current vs voltage

are plotted for this type of distribution. (fig./•).
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VII Conclusions

"·e have considered some of the processes t~king

place in a simJpliflied model of the plasma or 'positive

cl -C n region of a c • •• •• tz l dischtrge tough gas at

low pressure. The most difficult problem arose when

c 2 c li sions of particles of equal mass were con-

sidered.

The first part of this paper deals with this ques-

tion in a jen-era way. We have been interested pri-

marrly in the velocity distribution function of the elec-

trqns. Two balance equations in this unknbwn function

were set up. One, expressing conservation of energy,
rq quire that the number of electrons acquiring in unit

time a speed greater than any value, w, be equal to the

number losing energy and falling below this speed. The
second expressed balance of the momentum parallel to the

fiel d. From these, one non-linear integral equation was

derived.

The geometry of the mutual scattering process was

examined and the necessary integrations performed insofar
as these depended only on this geometry. This much of

the work applies to any type of cross section function

irrespective of its dependence on relative velocity or
scattering a nle. As an example, the calculation fo



the case of elastic spheres was carried out upto to the

point where integrations over the distribution function,

f, became necessary.

In the second part of this thesis the cross section

Cun o.n o- is derived for electron-electron collisisons.
This was done by means of a wave-miechanical approach.
For the interaction potential a shielded Coulomb field,

- - was used. Next, th ose integra-
tions depending on r- but not on f were carried out. In
view of the relative complexity of the resulting expres-

slons, two different approximations were made. One was
valid when the velocity v of the pariticle was very nearly
equal the velocity w. This corresponded to grazing col-
lisions or small angle scattering. The other was used
when v was appreciably different fm , and correspoonded
to close cllisions, or large angle scattering by a pure

Coulomb field.

In the third part we attempt to find functions which
ae so••tions of the problem. "hen the term repre-
senting inelastic Impacts is disregarded in the equation,

it is found that the fl.nction

7( 3 ie

is a fairly ood a - : -roximate s•lution. Here the parameter



a .ueasure o0, the rat e iOportace f .' the mutal'U

C'llisions. hen the inelastle te rm 1 Ire the func-
tion

was acceptable, though it gave too few low velocity elec-

trons.

These trial functions were not expect• d to be exact
solutions but they served to test the ascul p tons an. to

indicate the relative importarce of the various processes.

The result of the calculations on mutual collisions

can be cler~ly divided into two parts. The first is a

true Gollision pror•ess with large angle scattering ~b a

Coulomb field. It is independent of the approximati-on

ad of t:h sieO, Oh, f te ptential hill,. h.ýe second

part represents small a egl~ e scattering and is of a d.i-

f'raction natre, It contairs the factor-; ,L Here
t is the width of the strip 'he uV lane an d-- •-e uL aa" plstne, anda,
is the electron wavelengti. Thus this depen-s both o

t:he -pro•• mation involvIn• t, and on the assu~ptions con-

erning -( . The dependence s not criteal, however,

A c7hane n th e value f o rom- 10-4 to i produced onl. a

trelattive s s eona chage i the fna result. It tutrn

out that this second part is the largest over most of the



range of velocities. In other words, the velocity dis-

tribution is maintained mainly by many exchanfges of small

amounts of energ rather than by less fre;quent large

ch anges.

The mutual interaction of electrons becomes import-

ant when -I is large and -E. small, where 2/ is the
NQ N Q

electron density, E the field strength, N the atomic den-

sity, and Q the atomic elastic cross section for elec-

trons. This can be pictured as follows. The electron-

electron collisions tend to set up a Maxwell distribution.

This is disturbed by the collisions with atoms. The

number of encounters of a given electron with others is

proportional to 7 , and the number of collisions with

atoms to NQ. The first fraction measures the relative

frequency, of the two types of collision. The field also

tends to disturb the equilibrium distribution, It adds

energy and imposes a drift on the electrons. A measure

of its effect is the field strength times the mean free
E

path. This is

The Townsend discharge, with very small 92, is an ex-

amprle of the cases where this mutual interaction is cer-

tain.ly negligible.

In the plasma of an arc, on the other hand, the con-

ditions are such that thIs mutual collision process is
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very important rndeed. The cal3ulations ,•how that it

very largely determines the form of the distribution. A

comparison with one of the rare complete sets of expeeri-

mental data showed a fairly go. check.

A si• gle electron-electron collision catnnot change

the mean energy of the distribution. But the aggregate

of such encounters does change the fo.rm of the distribu-

t ion and, in particular, alters the most probable ve-

locity. In this way the rate is chanSed at which other

processes take place and the mutual encounters may very

well lead to a different mean energy.

When inelastic impacts were taken into account in

finding an approximate distribution function, it was con-

sidered that their effect was merely to cause electrons

acquiring a velocity greater than some value w, to lose

all their energy. A more exact treatment is desirable.

This would be possble usg• • the complete balance equa-

tion 13 with approximate ionization and excitation prob-

abilities. In this way the form of the distribution above

the critical potentials could be found and the intensity

of ionization calculated. An exiaination by power series

of the abridged equation 31 shows that f must have a loga-

rithmic singularity at the ritgn. This is caused by the

piling up of low velocity electrons, which results from



the crude way in which the inelastUz ollisions are
ý%V, vj'. Collisions are

han dled. The more correct treatment wuld remove thi,

".jLff j. /~R J
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The namber of electrone per ".., hazvinh speeds in the

range -~ - du, ..... .elocitis parallel t the field in the

r ane e + * is

2r 77 2? (a fl (a -zd) da .

n ti~ di , the field increases the velocity of each

particle parallel to the field an amount - da Then,

per unit time, the number of particles for wihich this com-

ponent of velocity increases from leas than _ to greater

than ( is

27T7 T 00
/0 f

§~dt i/-''ydl- L-e gdZne u i-na m(nn tnz 'V

277Y-nf-e
(-ut ~f/y4Ja'.

In the case of elastic collisions with atoms, we neglect

the energy loss, and consider only the scatterinm,

Let 0, 9 Ie polar angles about a

VP "! " , of -U

The number of electrons scattered . er c, cer second at

0

--- /

d tJ/ý



angles in range

a7mwdwdy 'u

$sin 6dBd out of a velocity space element

is

N'77 *1f cosq, uca%, ('up 8jsz 9d6a'p/ndcn dw d .

The velocities are scattered over a sphere of radius U4.

The number of electrons leaving in this way the region of ve-

locity space to the left of plane y is found by integrating

with respect to 8 and 0 for that part of the sphere to

the-right of the plane, and with respect to 60 , L , and U

for such values as make the initial velocity lie to the left

of the plane, i.e,,
, (/, c-/ adfs u,

Now si6lOded can be replaced by si/n/d•ad
for purposes of inteTration, if it is remembered that

cos 9 = cos W cos0 + si c)s/inA s/nU

Then limits of

and :

and F are simpler than those of 0

0 o 27r
A, ,o fo 77, where cos5. / .

Now if we let

X: = COS OW Z = COS ,

and write

our expression becomes:

- Y 0 eor z tjc/zj2ff#
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Similarly, the number scattered into the region to the

left of the plane is

The net number leaving by collision is the difference

of these two expressions, These differ only in the inter-

change of the limits for ZX , and Z , since (X, Z..J,

is symmetrical in X and Z , Therefore the f term

disappears. Requiring the total number leaving due to

both field and collisions to be zero, we obtain

(u 2'}u + 27r J/ ai #4z; z/j}f

-4 xdxJ dzj/u, zf, 0 .

Now, a similar equation can be written for the plane

271 T, e 4V/Z eE o 2i777 +/
!w,/31/

Z77

V04'zA6 f(Z,iI4au
• -M

But, since

1(-x, -z
we can replace X by -X , and Z by -Z in the integ-

rals, and the collision term then becomes identical with

the correspondint term in the equation for +
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Adding the two equations,

the restriction .ivide by , and differentiate with respect to-- zdz ddzjt, xt,, Z, ,Jd , - 0

-o hiThe absol1ute value eglas can nob w be dropped, by making

-eEor 
r

the transformation to , is

N = COSU = -- co I - i o n5/ COS
4-
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The equation then is

'77 /yQ

Divide by

ef d

and differentiate

1yj /y/Qy,/yfoyZ
rn dy

This is equation quoted in the main paper,

If the equations for + and - / are subtracted in-

stead of added, we obtain:

47r1e f
77? y u 0.

It is impossible to satisfy this as'well as the pre-

vious equation and

J was approximated

the energy equation

'by 10f f, COSi)

SIt enters because

and sho-:os just

what has been ne•lected,
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APPEDIT• I1V

TEI I•I•L LIT AT AS A CIECK SOLUTION

We wish to show that the
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