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THE MUTUAL LNTYERACTIONS OF PLASMA ELECTRONS
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Abstract

devised for handling 1it, It has beern found that thi
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cgss has an important eff:zet Qn the velcoeity distribution

™
. . _ I -
under certain conditlons, namely: when ) i3 small, and

-22— large,. Such conditicns actually occur experimentally
and for them this theory predicts that the digtributicn

will e nearly maxwelllan.

The scattering at srall angles i1s more important than
that at largs angles, Or tne velccity distribution is
maintained principally by many small changes in energy
rather than by less frequent large changes. The exact
size, & , chosen for the potential hiil used in computlag

the geatitering coross section is of relatively small inm-

portance. This approximation, then, is nobt critical,
Palrly satisfactcory dlilstribution functions have bLeen

found for dlscliarges in which inelasitic colligicns zre un-
important and alse for scme in which ilonizatlion cannct be

neglected.
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I - Introduction

Many measurements made with probes in gas discharges
have shown the existence of electronic velocity distribu=~
tions of Maxwell - Boltzmamn form, with very high average
energles. Such results are, in particular, found when the
electron denslity 1s high, and the net space charge (elec-
trons plus positive ions) is low, as in the plasmag of g
low pressure arc. This form of distribution requires a
very high rate of exchange of energy among the electrons.

In theoretical studles, this electronic interaction
has been considered only by Langmuir (/4) and Gabor (9 )
Of the two, Gabor's account is the more éomplete. It 1s not,
however, satisfactory. He takes into account only the
electrostatic phenomena, and is thus unable to compare their
relative lmportance with that of collislon processes and
the macroscopic fleld. In his calculations, Gabor consld-
ers the electrons to be scattered by the filelds of partial-
ly shlelded, statlonary positive ions. Because of the great
mass of the positive lons, this cmnnot lead to as rapid a
change in $he velocity distributiom as will the scattering

of electrons by electrons. Purthermore, his methods of aver-

aging are somewhat obscure.
At low electron denslties, the electronlc interactions
can be neglected, as is shown by the quite good agreement

of theory with experimental data. ( 7,2/)



Since these lnteractions increase with the square of the
density, while the number of colllsions with atoms in=-
creases With the first powef, at some density the two ef=
fects willbe equally important.

The object of this thesis is first, to find a means

of caleculating the mutual interactions of the electrons;

gecond, to dlscover the exact condltions under which they
become lmportant; third to find approximately the form of
the velocity distribution in the cases in which neither
process can be neglected.

The discussion willbe limited to dlscharges between
large, plane-parallel electrodes, so that only one direction
in space can be singled oute It will be assumed that the
positive ion and electron densities are equal, and that
the drift current 1s small compared to therandom electron
current.. It will be assumed further that the discharge is
homogeneous 1in space, so0 that diffusion can be neglected.

The simplest mode of exchange of energy among the
electrons 1is that between individual pairs, or by "col-
lisions". Among more complicated processes is tha; sug=
gested gy Langmulr of "plasma oscillations". It is the
mutual collisions whicﬁ will be investigatéd in this paper.

The problem is simplified Wy considering only the

following processes:



a acceleration by the field,

b elastic collisions with atoms,

¢ inelastic collisions with atoms, (eicitation and
ionizathon)

d mutual collision.

Collisions between ellectrons wlll be infrequent com=
pared to collisions with atoms, but they are important.
When two electrons collide, each 1s likely to suffer a con-
iderable change in energy, while when one collides with an
atom elastically,it loses on the average, only afraction m
of 1ts energy. Collisiong with ions will be as infrequeng
as those with other electrons, and will result in as 1little
an energy change as a collision with an atom. Accordingly,
electron=ion collislions will be neglected.

Let 7] be the electron density, and 7] fdy the number
of electrons per cm? in an element dl’ of velocity space.

f will depend on only the absolute velocity u, and the an-
gle o that this velocity makes with the field.

f= f(u,cosw)
As £ 1s nearly spherically gymmetrical, it can be develop=
ed in terms of gpherical harmonics, the first two terms
giving:

= fo(ua) + fl(u')cosw

and £ Wwi1ill be much smaller than ra.

Following soltzmann and Lorentz, the usual procedure

to determine the distribution function would be to find
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the number of electrons entering and leaving each small el=-
ement of veloclty space per second on account of each type
of process, and to set the sum equal to zero. ln our probe
lem, this involves too many successive integrations orthe
unknown function f, and is unmanageable.

Two equations are necessary to determine f° and f1 .
These will be an energy balance and a momentum balance equa-
tion. The first can be obtained by requiring the net nume
ber of electrons lesaving each central sphere of velocity
gpace to be zero. %The second is found by plaeing a similar
requirement on the number leaving a region on one gide of a
plane perpendicular to the direction of the field. The
first will mean that there wlll be Just as many electrons
having an initial velocity u, less than any given value w,
which acquire in unit time avelocity greater than w, as
there are having initlal velocity greater than w and final
velocity less than w. The second equation expresses a
gimilar balance of the changes in velocity component Uy par-

allel to the fileld.
ITI - The General Equations

Consider the energy balance equation, invélving pro-

cesses a,b,c,and d.



g Electric fleld E,
In time dt, an electon moving in a field E increases

its velocity by an amount £E;4 ,,g,, LHBE number per sec.
m
that leave the central sphere of radius w will be:
™
2ng BN (fo + fycoso) cosw sinm do
m O
or

4nLE 2 )
-B.ﬁ..-w £ (w®)

b Elastic Collisions,
An electron of veloclty u, colliding elastically

with an atom at rest, loses speed in amountdu =

%1 (L - cos @), where © 1is the angle between the initial
and final veldcity directionss

Let:
N = atomic density

® = angle u makes with fleld E
y/ = corresponding azimuthal angle

0,( u,8) = atomic cross section for elastic scab-

ering at angle &
Then the number per sec. of electrons originally having a
vectorial veloclity in the element u® sine dw 4 ¥ which

are scattered by angles between &€ and 6 + 46 will be:



NNNu® £ sinw do d¥° 21 u 0y (u, &) sinbab
The only electrons able to cross the sphere w due to elage
tic colllsions will be those for which w<u<w + § u. The

number per sece entering such a sphere will be:

Ui s
an NJ) [ w® £ sinw do* 2w [ §u o, sinfab
- o

i
If Q,=211f00"3( l-cosf) sinb a4 6,

this 1is T
Q_T%,D_m.w"' Q Js (£ + £ cose ) simo do

Oor, finally,

41TN“m W’* Q fo

M

¢ Inelastie collisions,

Let: 1
5o u; = excitation energy
-3‘ m u; = ionization energy
cross sectlon for lonization

L
E
]

Qe(u) ®m cross section for excitation

It ig assumed that when an electron exeites an atom

by collision, it loses just an energy %- m ug. Electrons

wlth veloelty greater than 7/ za& 4 ug will not enter the

sphere w in thls waye. It is also assumed that there is
Just one ionization energy, and that the surplus kinetiec



energy in an ilonizing process 1s equally divided between

the two resulting electrons. An electron will make, on the

average, N u Qe exclting, and N u Qi ionizing collisions

per sec. Then the number per sec. entering the sphere w 1is,
/w® + ug s 1

an N7) [ Q (u) u® du j'o (fg + £ cosw)’ sino do
w2+ u; . it

42 N7] jw | 2Qq (u) u® du l,o (£, + fz cosw) sinw dm

/e - ug s w2+ u -
= 47 N7} fw Qe(u) £ u® au + 2jw Q fz u® du
Let J(w) be defined by setting the above expression

equal to 4w N 7] J(w).

4 Mutual collisions,

The mutual collisions of electrons are much more come-

plicated.

Let:

@
I

J -

Inltial veloclty of electron considered,
" " " scattering electron,

vel;city of ;ente; of gravity,

veloclity of first electron relative £0 C.Ge

u', v! = corresponding quantities after
collision,

scattering angle reffered to C.G.

corresponding azimuthal angle,

J1(4,0) = mutual scattering cross section for

%:

angle € ,

angle between directions of u and v,



72 = corresponding azimuthsgl angle,
5 = angle between directions of U and 1,
A=" " " " U and T
M = corresponéing azimx;thal az';gle,

7 = angle v makes with the fleld E3d

Filg. 1 shows the geometry of a collision of an elec~
tron of velocity u with one of velocity v+ Thelr relative

velocity 1s 2 W, Vectorially:

1
U:E(U*V)’ -&:%(u-v)

u=U=T
Algebraically:
1 T2 = u? + v® -2uv cos X
2 4U‘=u“+v‘+2uvco§7(
After collision the velocity of the first particle is:
u'=U+T. u=1u'y, oru, u', v, v' alllie on the same

sphere of radius W . & and f are the polar angles of U
about U as an axis, and A and M are the polar angles of
the same velocity about the axis U . The polar angles of
v about the axis u are X and 77 o (g depends on the
relative velocltye.

I £ u 1lies in the element of velocity space dafu ,
and Vv in the element da/v s the number of such colllisions

per sec., 1is:
. 2.
2UuoTd, 6) sinf ap d‘fcnf(u,cosco) £(v,cosy) dy, 477

To find the rate at which elactrons of wvelocity u< w






are given a velocity u'>w by mutual collision, this ex-
pression must be integrated: first, over allvalues of &

and :f on that portion of the sphere of radius u which lies
outside the sphere of radius w; second, over a domain of
a/v (velocity space of second electron) such that the
sphere u cuts the sphere w; third, over a domain of r u

with u<w. vThe rate at which the reverse process takes >
place is found by integrating over @ and g/ on that part

of the sphere u inside the sphere w; over a part of the
J'v 3 and over apart of ), With u>w.

Because of symmetry, 1t is more convenient to use A

and 4 than & and % .
3 cos @ = cosdcos ) - etn §sin] cos U

or the purposes of integration, sinéfdé&d Cﬁ can be
replaced by sinAdAa . rhen M will run from =-m to m,
and ) from O to )0, where )o is the value of A on
the. circle of intersection of the spheres uU and w. On

this circle, vectorially: U+ U=w , or U® + U* + 2U UcosX

]

w

a 2
cog ) = -2 = u® - v
4 ° 40T
Also, _ - ]
u® + U + 2uU cos§ = u®



whence,
- _u? - y®
5 cos § —ITw

In the integration over J v, v,%, and 7 can be
used as variables, if cosy in f(v,cosz) 1is replaced by
cos§ cosF+ sing sinX co87]

Since -lg cos) < 1, and since, through U and 3,
cos A depends on X , X must be restricted. sxpanding |

expression 4 for cos /\° ,
b}

u* 4 v* = dutvicod X 2> W% + u* + v* —4w®(u® +. v®)

ey

B(..a 3 <
3 wo(us® + v® <« w*)
cos j(s o

Because u* + v®> w?, cos*X¥>0. When u and v
are on the same side of sphere w,(that i1s, when u and v
are both greater or both less than W) the fraction isg
less than one,and it follows that X< A< m=- X, - When u
and vV are on opposite sides of sphere w, there is no re-
gtriction onﬁ’ » &8 the fraction is greater than one. 1In
this case it 18 possible to let Xc = 0. +then the limits - .
are always » and m - 7(° .

The number of electrons leaving the sphere because of

mutual collisions 1isg:
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i 21 -,
I =7f’f u?du fo £(u,cosw) sinwdw 'fo dw [ viav j}( sinY adx

Ao : .
‘ fﬂ f(v,cosv)dyi * 2u fﬁ sinp d A fﬂ(f('ﬁ,e)d/d
-7 -T7
Let: Ao mor
, 5=/ emad [o[5,0(5,2,4)]au
4 -0

The order of integration can be changed:

m - Xo
I = 27® [ uPau [ viav j)g iIBlsin)’d)( f:rf(u,cosw)sinldm

21 2m
‘of f(v,cos2)dy [aY¥

Expanding f and substituting for cos z2/

2y L3 (s \ '
fof(v,cosw)dq = J'o[;‘c(v ) + fl(v ) (cos¥ cosw + siny sinwcosq)]

'd7)

2n(i‘¢(v°) + fl(v“)cosXcosm)
Taking the product of this result with f(u,cosw),

T
fb‘ fo(u‘) + f‘l(u")oosa)] '[fo(v‘) + f‘l(vg)cos Xcoszn] sinwdm

= 2f gu)r_(u®) + %fl (u*)£ (v®)

fl 1s much smaller than f , so the product
[

©rr ‘is negligible.

i3
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Then: §8

-%
I = 16n2 ) * ffo(u’a)u”du ffo(v’)vsév ?7.( 5B‘lsin',(d X

Turning to the electrons entering the sphere due to

mutual collisions, let:
Ri T
9 B = %_s:.n/\ aA fg’; (1,0 )au
The number entering is: 10

I = 16m®n® j'fo(u“)u“du ffo(v‘)v"dv 1};(0 ii'Basin?(d%

rhe four processes a,b,c, and d have now been cal-

culated, and the energy equatlon can be written symbolical-

ly:
a + b + ¢ + d = 0 , or:
11 dnlBye g *%wa* f + I -1 =48 J =0
3m i M o 1 R '

This must be true for all values of w.

If the mutual scattering terms are omitted, and the
inelastic terms J considered constant, one can deriwe
from this equation, by one differentiation, zg. 8 of Morse,
Allis and Lamar (with diffusion left out).

ow  dw ( fl) M 2v dw(Wngo) =0

AN NI 1is the number of electrons entering the sphere

due to inelastic impactse
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The mutual collisions of electrons will not be as im-
portant in the momentum palance equation as in the energy
relation. In collisions with atoms,electrons of energy H
undergo a change of energy of the order ﬁﬁ- In corresponde
ing encounters with other electrons, the change is of the
order g e« On the other hand, this is not true of the
changes in momentum. Electrons are scattered by atoms neare
ly isotropically, and lose almost all of their directed
momentum. The palr interactions of electrons will be neg-
ligible for the purposes ofthis equation, because they are
so much legs frequent than collisions with atoms. The ine
elastic impacts, which are also much less frequent than
the elastic, will be neglected too.

An equation corresponding to eg.ll can be set up for

momentum balance. 'this leads to:

12 2E d . =
=< o & f, tNwr =0

which 1s equation 7 of Morse, Allis, and Lamar. Its deei-

vation from the integral form 1s given in the appendixe.

8o far, those integrations have been performed which
involve only the geometry of the mutual scattering process.
It 1s now necessary to consider the cross-section function
J . The true form of this is difficult to handle; so it

is worthwhile to postpone its treatment, and to consider
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first the assumption that O is constant. This would be
true if the electrons behaved like hard spheres. ‘“The dif-
ficulties arising from the form of g will be a&oided, and
it will be possible to show clearly the peculiarities of

mutual collisions, as well as the method of handling them.

- FPirst, the energy and momentum eguations can be com=
bined to eliminate fz'
13 4N ep _ 4m ,eE)" 4 _ _
.__N_IQLZLN £, - g (o) Ve, * (I - I) -4
= 0
The four terms come from the elastic collisions, thefield,

mutual collisions, and inelastic collislons respectively.
III - Constant Cross Bection

It 1s convenient to represent mutual collisions on

® plane. (Fig.2) Each point stands

a diagram of the v®,u
for the velocities of a pailr of particles. Because of the
conservation of energy, every point Plrepresenting the re-
sult of a collision between a pair P, will lie on g 452
diagonal line through P. Points in the shaded region, for
which u® + v®<w®, cannot lead to collisions in which a
particle crosses the sphere w. The lines u = w, and

v =W dilvide the plane into four quadrantg,each of which

must be treated separately. In 2 (udw,vdw) and 4 (ww

and ww), the anglejxo= O , becaugse u and v lie on op-



V=w

27 \w*
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poslite sides of sphere w. In 1 (u<w,v<w) and 3 (uyw,vw),

os X< &,
o 2

Integration over quadrants 1 and 2 glves the electron
flux across the line u = w in an increasing direction; over

3 and 4, the flux in a decreasing direction.

Let: A
B! = f?‘ U B sinXa¥X Quad. 1
1 ° 1
ﬂ —
B'=/f UB sinX ax 2
s ° 2
14
et
B! = f%a u B sin Xax 3
v= g X 4
B! = [, u Basin)( a

From eq's. 7 and 9,

o m
B1=J]: sinddA [ gma
-1

= 2no (1 = cos ,\c)

i

J;\e sin Ad A f:qr" a4 =2mg(l + cos),)

B
]

Repeating eq's. land 2,
4u® = u® + v® - 2uvcos X
4y
Eliminating cos X ,

u? + v® + 2uvcos ¥
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When u and v are held constant,
4udn = uv sinXa A
sinXd X = _4u du
uv

Substituting for c:oss%° from eqe,

_ _ow® - y® . y®
Bj. 2770"[1 4 U0 u ]

] ms-us-v’]
B‘ 2 i1l + oS

Thas the integration over X can be replaced by one over
u, 1f the proper limits are found. Let the limits on u
be u and u , u<u , sothat when,

1 2 PR

‘X=7(°’ EZG;
7(=T|'-?( ’ —u.":‘——’-‘

°

For Quad's.2 and 4, 9(° =0, and thus:

4ﬁz=(u-v)“ ,4G:=(u+v)'

Since u 18 essentlally positive,

Quad. 2 4
El = (v = u)l/2 , (u - w)1/2
u = (v + w)1l/2 (u + v)1/2

For guad's.l and 3, from inequality 6,

B 3 a
cos® A = (U » v® - wd)
° u v
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Using this value for cosﬁ(o,

4 0% = u® + v® -ow/ u + v ¥~ w?

et g% =u® + v® - w®, 1/2 ms® is the energy of the
two particles in excess of that necessary to produce a col=-
lision in which one electron crosses the level w. In terms

of =8,

4 E: = (w - g)®
4 t_.f: =(w + g)®
This gives:
Qhiad. 1 3
Ei = (w - 8)1/2 (s = w)1l/2
a = (w + 8)1/2 (s + w)1/2

The integrals of equations lﬁ(overjX) can now be

thrown into the forms:

811 (w+s)1/2
B! eng- [ - .] u du
1 U (w-g)l1l/2 2u/ 2u +2v -4u®

_ _ —(w+s)1/2
8ng~ [g“+ (wo-g?)/ 2u3t2v"--’+u’]
3

Bl
1

uv 8
(w=s)1/2
16a gt = 81 g
== 1 uva
Similarly: y
(s+w)l/2_
st =2 [1 wf - o a5
(s-w)1/2 U +avE 4 >



3 = Sng e
150 Bs = 3uv "
Bt < Bn }v+u)1/2§ L w® - s
8 uv Y. _ : .
(v-u)1/2 2u / 2u®+oviau®

- -

|
C\
o
t
i

Anoy(3v® - Zw® + 2ub)
Juv

~ -

R Qi
4 - I - -
(u-v)1/2 2U / 2ud+oviaa®
1 . AT g .
164" B‘ = v v(3w v )

18

B; and B; can be simplified by taking advantage of

the symmetry in u and v. They appear eq.l> as terms of

Il - I. s, say lGB’jjﬁfI} ; Where

w ©
I'={ fo(u')u'du {/fo(v’)v‘dv B,

w

Substituting;B; and B; from eq's.l1l6’,

- fmfo(ua)u'du V}of‘gv‘)v"dv By

. W
I!' = ﬁﬂéz'fcf (u®)udu fx} (v¥) vav u(3v® -3w2+2u®)
° W e .‘ |

2

o

@© w
AngT g £, (u*)udu {,fo(v')vdv v(3w® - v¥)
w : . L
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Because of the symmetry of I' in u and v, 2u® csh be sub-
tracted from the bracket in the first integrand, if 2v?® 1is

gubtracted from that in the second.

-

I' = 40 fo (u‘)u’dﬁ fd% (v®)vRav LE:_%NE:l
o 0 1'70 ] -

W
- 4n¢r'f°; (U*)uau [ £ (v®)viav iﬂ:_ﬁfZZL
w [+ o o ‘

-

But this is equivalent to taking:

16¢ B! = 30T (y8 _ )
_— -] v
164 B! = ﬁ‘g-i’f(w' - v®)

The functions B' derived here are much simpler than
the ones to be calculated later for the shielded Coulomb
field. They do show, however, the same symmetry properties
in u and v.

If all processes except tiane mutual interactions are
neglected, the solution of the balance equations willbe a

maxwellian distribution.

-u® /i ®
f =4A4Ae . °

(-]

Thls fact can be used to chekk the calculations. the u®,v®
plane can be divided into strips between the diagonal linss

u? + v® = c® and u® + v® = ¢® + Ac® . The first integration

may be carried out along the length of these strips, instead
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% ,xis. The maxwellian

of along lines parallel to the u™ or v
distribution function has the unﬁue property of belng consg-
tant along such a diagonal line. In other words, for this
function and this path of integration, the f's disappear
from the inner integral. It turns out that the Bi functionms
can then be integrated. The result is zero for every value
of ¢®, showing that the mutual collisions do not change this
distribution, This was a valued check on the correctness
complicated expressions derived fmam from the assumptilon

of a shielded potential hole.

IV - Calculatlion of Cross-Section

The force between two electrons in the plasma is 4%%
when they are very close, where r is their distance ofr
separation. Wwhen r 1s larger, this force 1s reduced. Be=-
cause the space 1s macroscopically neutral, at very large
distances r the force between electrons will be zero.
There 1s a space charge of positive ions,which, as far as
the faster moving electrons &®Be concerned, 1s nearly uni-
formly distributed. Near each electron there will be,on
average, a def@iciency of other electrons, leaving an
average net positive density which "shields" the electrons
from each other. " “

A suitable approximation to the interaction potential

is: 8 ~r/d
v =2
r
This defines a potential "hill" whose radius is measured
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by & . The value to be assigned to¢f is uncertain. A low-
er 1limit 1s the mean distance of separation of the particled,
774i- This may be of the order 10_4 cm. An obvious, but
certainly excesslve upper limit is the size of the apraratus,
say leme It turns out that this enormous range forygf is
reflected in the results by an altogether smaller effect.

¢ cennot, however, be infinite, for this would give the
Coulomb potential, and with it, an infinite collision cross

section. No value willbe specified for this parameter at

presente.

The cross section@ (u, @) for this potential hill is
found with the aid of quantum mechanics. ‘‘he Born approxe
imation can be used.(29)

Let the wave funotnnxg?of the two electrons bve a
product of two functions, one repregenting the motion of
the center of gravity, and the other,yu,:representing re=-
lative motion. If yV be approximated by the sum of g
plane wave,’u, and aspherically scattered wave, Y, then

° KAk '
J— 2z, /
g =T 2
(%1
ikx/ - ikx2
Let: ¢/°= e s, Where x, and x, are the distances

f vl
ofthe two electrons from the center of gravity, and

_ 2nmu
k"h

Then the first apprwoximation to the sdution of Schrddinger's
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2 -/
equation, with V = ._«Ig_ e % s, glves:
2 2
W = Arm e 1
! 2 2 .26 i
h 4k T gin” & 4+
2 Y

Or since l %‘1= 1,

2
g = /4ﬂzm£z) 1
a,
\ =& (e sin”2a+_o_(g. ?

This can be written:

— 4
17 g‘(u,9)= L

£ .
J6 M4 ' 2 2 )2
T [ 1 )
where,

Z= hﬂ- - I ) %
2 s (4 of P l 2 mX

1/16 measures the size of the hill « in terms ofA.,

the wavelength corresponding to the relative velocity 2u.

,ﬁz is a very small number. Measured in volts,

L. =3 - LV 2_ 150 nL®
2 ™ 300 ! VZ] 16 n’u’mlvr
7
2—= 0095. le
a3 E:

If the electronic density is lO’zper cc., and f 1s set eqmal
iy
to 9) 3
gr= 49°
v 2 2
T / and if 4 is larger, ﬂ.[s

by so much the smallers
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It 1s this term ﬁ;z in the denominator of g, that pre=-
vents the cross section from becoming infinite at small
angles,as 1t would for a Coulomb field. It will be the
controlling part for distant encounters. Since it is sgo
small, 1t will scareely affect g~ for large angles. these
correspond to cloge encounters, and scattering by a nearly

puregoulomb fielde.

V - Integration over the Angles
In this section, the functions B and B' are calculated.
BEquation 17 capalso be written:

i 1
4m U4 (1l+282 -cosg )?

O":

By equation 2 for cos@ , this becomes

o= 24 1
EnaT4 Eﬂ-e,@‘-cosScos;\.-&-sinssin)cos/u)*

When this 1s integrated over 4 and A , we obtain the
functions B, and B, which are given on page 24. The
details of this and the following calculations are given
in the appendix.
XXHAX XX BN EAXRFIAXEAX

These‘functions B are to be integrated over %« , T he-
results are the B3 functions. Exactly as was done in the
case of constant cross section, an integration over u 1is

substituted for that over %X.

ginq 4« = ﬂ%vgﬁ—
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Yomiz?

owme®

- L//rnz yhd

/2/3’24'/) cos Ao — ¢cos =

- 4‘/ﬁ#~/-ﬁ 2}[466' #ﬁz—Z/Zﬁ2+/)co\S°( cos Agreos 2ot caszﬂo}%

(Z)/J)zf/) cos )o — cos L

+
4{8 “y BZ) {‘fﬁ’“f ‘:‘[)’2—2/2/32*/)605 X cos Ao+ cos oK+ coszlo}i—

)
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A new symbol "a" is defined,

a = 2h = 25@ = )W

Lol mw W 2mof

where )\w is the wavelength corresponding to the velocity w,
Since @3 1s extremely small, "a" also is very small.
It is found upon evaluating the integrals over ﬁ',

that ¢

2 A 2 2 = |
193 B, = 21 g4 r.sm -w-u"+w' a  tan 2w as
mAw*aiuv 2wWa, WX Wi g
- i 2 2 -4
19¢ By = 8. ¢4 ru - wrad-w?a?  tan 27au
miw 2g2uv 2w g, WwEUA +WE g *
[ « [ 2 2 -l
19b B3 = . 2n 2 W - Y-w+w a_ tan 2‘vaw
: mMAwigRuyv 2Wa -Wt4wd g
= d
‘ M 2 2 a -1
194 B! = on g4 v = u*-w*-w a~ tan 2wav
WX gfuv 2w a, U* -Wi +waAgA

These may be compared with eq's. 16, which list the
corresponding quantities for ¢~ = constante.

The functions BS are large near the line u = w, and
decrease rapldly away from it. In quadrants 2 and 3, they
are independent of v. In quadrants 3 and 4 they are asymp-
totlec to zero as u becomes large, and B‘; is zero when v=0.

B; is zero at u =0 , and B! = O along the line '+ vz w?
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These functions are plotted in fig.3. In this figure,
the value ©.1 was used for "a", so that the peaks are not
S0 sharp. o

The Bs functions would,when multiplied by the distribu-
tion function, be very difficult to integrate. ‘therefore
approximations are made. Over most of the plane, it 1s
satisfactory to expand the arc-tangent functions, retaining
only terms through the order a® . But thls expansion
breaks down for [ﬁﬁﬁCW‘a . Hence, in a narrow strip about
the u = w line, some other method must be used. Over the
width of thls strip, the product f£(u®)f(v®) does not
change anywhere nearly as raplidly as Bi « S0 the distribu-
tion product 1s expanded, and the exact form of Bj is re-

tained.

When wo- u®>>w?a ,

201 B, = 2n {,4 g3
miuv = 3(Wi-uzr)#
20¢ B! = 2w’ ([  4u® + _2u
m*uv | 3(w*-uz)2 Wh=112%
201 By = 2me” _ 4w
nZfuv - Z(@E=w) = v
204 B, = on e[ 4w + 2V &
m*uv |3{d-wZ)* uf-w®

These expressions no longer containg "a", which is as~
gsociated with small angle scattering. They represent that
part of the flux across the level u = w ,whichis caused by

collisions in which there is a comparatively large exchange
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of energy. They become infinite at u = w , while the more
exaxt expressions do not. Outside of a strip of width tw?®
(fig.2) on each side of this 1line, they are very good ap=
proximatéons. (t>> a) Inside thls strip the other approxi=

‘mation is used. The number "t" must be so chosen that on
the one hand, t>>a, and on éhé other, so that the expan-

sion of f(u®)f(v®)
° ° i1g sufficiently precise inside the strip.

I t is shown later that this choice is not critical.

In order that the approximation in the interior of the
gtrip may give a correct result ggiiihx conditions giving
rise to a maxwelllan distribution, the product £(u®)f(v®)

is expanded along lines u®# v®= constant. ror this pur-

pose the variables x and y are introduced.

21 x = u4y? uw = x+ v
2 e
vy = ul~ v® v® = x - v

/2 /2

Let
T gut)gve) = %(x,y)

Then ?(x,y) _.“—’CP(x,yo) + J}%—(x,y] v
where i =Y - Vo » and y, 18 to be‘%o chosen that the
point (x,y,) lies on the line u=w .,

Let Sj represent the strip integrals of the jth quad-
rant. Below, symbols Hj K (3= 1,2,3,4 ; k= 1,2) are used

b

temporarily to show more clearly the structure of the Sj's.

( Bsuvj willbe carried along as a single function,of either
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u* and v¢, orx and y , depending on which set is in use at

the moment.

53

4R ‘7)2,[@@5;(11"' JE(v? )lgé.u’civa vy
‘245 2 (f B' (x,70) + g (x,v)} ¥, d,de
PN S [S4m ) { Pix, l;ﬁ? ¢ (x J];ZS y

For the first integration, x is held constant, and there-

fore C/(x,y,) and [57 (x,y)] are also constant.
[+

Let . |
Hy1 = J (Bj{iw) dy,
H =/ (B"izv Y‘ ay,

Once having obtained this forTmfor Sys 1t 1s more con-

venient to evaluate H " and S, by returning to the
variables u® and v®. J» J

=/2u® - x , y°=/§w3-x
Y, =¥ - Yo = /2(ul~ w®)

In the first integration,

dy, = /2au®
22a H, = /2 [ (Bav)
22b = 2/ (BJguv)(u - W*)‘ au?

The limits on u? are: for the first and second quadrants,

w2(1-t) and w?; for the third and fourth, w® and w®(1l+t).

Also,
% (x,jt. )‘“ = f‘(Wa)f;(Vs) , and
r[ﬁ‘ﬁ? 'yl/"f (w?)1{v®) - fz;w")f;(va)
- Where £! (Wh) a f‘,(wa) ., ﬁ,(_) ;} fpor)

qw*
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As u®= w® when ¥y = Yo, throughout the second integration,

x=w? + g dx = P
/2 , /2 °

substituting allthis in the expression for SJ s 23

Sy = 47N £ (w?) JE(v®)E, av® + [ o' (W) E(vR) - £(wR)E' (W3
iz : “H,, dv?
2
Neglecting terms of higher oeder thajnthe second in a,

;_{4', "1"' ~ Eﬁ'(ﬂq v - 4‘?3
2 ’_‘ mfz. 2Wa 5 w

3

The expliclit calculations are in the appendix.
Becaugse the integrals fromquadrants 3 and 4 are sub=-

tracted from those of gquadrants 1 and 2 to find the net flumx,
all terms willdisappear which contain/, a and t otherwise

than in the logarithm alone.
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Agsembling all terms from both approx imgtions, the
total contribution to the balance ecuation 13 1s written
out explicitly on page 31, eq. 25. That form was used as
the frame of the numerical computations.

In order to verify that errors have not crept into
our rather complicated calculations, proof is given in the
appendix that both the values of B} listed in eq's. 19,
and the approximate forms, permit an equilibrium solution
of ilaxwell-Boltxmann form.

Let I, -1I,= 8n3;’:ﬂ“ w K
where K 1ig a factor of dimensions{jﬁé] ,repregsenting the

integrals of eqg.25. The balance equation 13 is then:

2
-Nom wir, - 1 (Eg)w d £, - N +28%¢%nw® k = O
M 3NQ \ m dw m*

Letting 4
1 =n2e R = E=e this becomeg:
NG € g
26 -nw* £, -1wd £ -J+2mw®K =0

M ) aw

2

£ corregponds to the parameter of the Townsgend

E
D

theory. "i" is a measure of the intensity of ionization.

The function K can be separated into two parts: those

terms containg the factor 1n t ; and the remainder. The
2a
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former come from the narrow strip, and correspond roughly
to smallangle collisions, in which little energy is trans-
fered. vhe latter come mostly from the regiomns of the

u?,v?® plane outside of the strip of width tw®, and resre-

sent close collisions with large energy exchanges.

K contains a numBer of rather complicated integrals,
and a solution of equation 26 dannét be found directly. It
1s necessary to select a #mmx function having the properties
to be expected 1n a solution, and to test it by substi-
tuting 1t In the equation. For most choices, the integrals

will have to be evaluated hy numerical quadrature.

VI - Specilal Sases
_A
The first special case investigated was that in which
the effects of the field, the elastic collisions, and mu-
tual collisions were included but the effects of inelastic
impacts neglected. Then J = 0.
It 1s known that 1f the mutual interaction is also neg-

lebted, the distribution function has the form:

..W‘/Qw:
fo = Ae :

When only the pair collisions are considered, the distri-

bution 1s maxwellian:

-w® /w8
fo =Ae .

The function chosen as a trial solution is:

-(gw®/wl) =(1l-g) (wh/2w2y
27 fo = e : .



| -g(w?/w?) = (1-g) (wh/2w?) -P
27 f = A e : = A e
2mid 2mwJ

with 0 g<£ 1
At g = 1 oF O, this reduces to one or the other of those
above. g and w, are parameters which are to be determined
so as to give the best approximation to a solution ofeq26.
g is a measure of the relative importance of electron-
electron an electron-atom collisions. The number of elec-
trons having speeds between w and we dw 1s: 4n wof(w®)aw

Taking the derivative,

-p
d whr(w®) =4 wRle
dw . dw
— - 8 _ &1 5
2w - g bd {1-g) g_‘)
The derivative 1is zero at ° °
1 -gw?® - (l-g) w*=0 |,
w: v?:' or when w® = w®
o

-

w 1is themefore the most probable velocity. "A" is a normal-
[+] " .

ization constant such that

w0, _
1=24AfwtePaw
FO

letting ° oo -8z -(1l-g)z®
7 = W8 3 l=A f Z e daz o
-y - 3 -}
w
]
And A 1s a function of g alone.
Define:
Int = 1nt +nw , or: a = _2h = Ag
2a 2a, W ° 4m(mw° 21
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From pp. 22 and 25,

oy

-y
a = 2:0.975 - 10
° =T

(-]

¥ 1s the energy 1/2 « mw®

© [

volts. If o 1s of the order/0 & and v $Sa few volts, a

expressed in electron
- ©
is of the order 1 . 10 . a.° is introduced to separsate
the dependance of K on the parameters (, g, and w from

©

that on w o

Define: X! = 4X°w,6 % K~
o €

Then:
K' = KJP

K' 1s a dimensionless function of only In t. , g,
2a

[

and w/ﬁ; .

Substituting in equation 26, and dividing by wa A.é“p,
-
W

e

-nmwtw® +30% lgw(l-g) W |+ ALK = O
i °w 345, [ it
[ (]
Rearranging:
23

' . 2 a - 1-
1AK %g gqrg:[w: §5‘( s)]

Becaugse of and t only apear in the equatlon through
their logarithms, the results are not critically dependent
on the exact values glven them. In: the numerical calcu-
lations, t was chosen equal to 1 . This 1s safely
larger than a, and is small enougﬁSSo that the error in the

expansion of f£(u?)f(v®) willbe small.
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It 1s seen that 4 1 K' is linemr in w’/w: , or
AK'=%x + k wl/w®
1 8 °

This is an condition that K' must satisfy 1n order that
fo may be a solution, In fig, = 4 =zmé=& K8 is plotted as a
function’of‘w“/wgo , for g =0 , and g =0.7%2 . These curves
are seen to be fairly stralght over the range containing
most of the electrons. (w’<14wj) The agreement is best for
the larger values of g. The amount of agreement measures
the correctness of the function fu which has been assumed.
‘'he deviatiom of the curves at high velocities indicates

that the function gives too many high speed particles.

The slopes and inter_cepts of the straight portions of
the curves similar to fig. 4 (but containg the factor A)
are plotted in fig's. 5 and 6 as the functions kland k‘ ?f
g and lnaU . i

From eq. 28 follow equations 29 an 29°¢.
‘ - _ .
2 1k = %es

29' 1k =-2@% (l-g) + m w*
3‘3 Mo°

- 2

These equations can be solved for g andw‘ in terms of
the parameters 1,&%*, and 1n a_ « In particular, g and
ws/@&?® are functions of log a and the ratio ¢* */1i only.
This is shown in fig. 7 , where lines of constant- g and

‘ g
constant w*/& ® are plotted on the log 2, , &*/1 plane.

-~ K






o 5
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Empirical equations for g and w° are:

2.46 log a - 2_p%/1
3

30" wes = M[-2.92I- 239 log a, + g] (1-g)

€T m e /T 3

It has been mentioned that K consisgs of two parts.
One does not contsin the parameter=av That 1s, 1v is indepen
dent of the size of the potential hill. It corresponds maln-
1y to collisicns involving a large change of energy. THe
second part, that containg the factor ln t/2a ,corresponds
to glancing collisions with small energy exchanges These
glancing collisions are much more numerous than the first o
kind, and it 1s interesting to see which type is themore
important. Table I gives data for two values of a° that
fall in the experimental range. Column 2 gives that part of
the functlon WY LK’ e which is independent of 1n t/2a .
solumns 3 and 5 list that part of the same functlon con-
ing the factor. Columns 4 and 6 give the sums of 2 with

% and 5 respectively.
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It is seen that the larger part 1is that containing ln a ,
o

or that representing small angle collisions.

It i1s Interesting to see if conditions can exist for
which this theory would preddict a large value of g.

A search through the literature shows that thare are
very few papers on th subeject of gaseous conduction which
present enough data to determine gllthree parameters. rlhe
required data are:

the gas used

a
b thia atomic density

c the field strength

o the electronic density

e an estimate of the average energy

Among the few papers giving all this dataare,one by
Te Jo Killian (M), and one by A.H. van Gorcum (8 ). In
Killian‘s work, the gas pressure was so low (a few barg)
thatflthe mean free path of the electrons was comparable
to the'tube diameter or larger. Plainly, this theory 1is
inapplicable to such a cése.

‘Van_Gorcum reports work done on neon at a pressure
of 4.7 mm.Hg. at 0°C . In the well developed plasma, he
found by probe measurements that the electrons seemed to
have very nearly a Maxwell distributlion. 1he values found

for the guantitles listed above clustered ghbout those in
table N .

17 -3 10 &3 ,
1.67 16 cm 9.5 « 10 em 0.93 voltfem 2.7 e.ve
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17 =3 10 =3
1.67 10 em 9.5+10 ¢n 0.93 volts/cm 2.7 e.v.

Table N,

For neon, Q=0.28 cm®
If eV. = 1 mw® then for a maxwellian distribution,
300 & °,
V=2¥
-] 3 av
-1 -4
For this case, taking o = J] 3= 2.19° 10 we have}
. -5
28® = 1.93, a = 6.6 - 10 , 1log a = -4.18
31 v

then from equation 30, B = 0.84 ..

This 1s quite a large value for g, and hence the mu=-

tual collislons are very important « If w, 1s calculated

from eq. 3@' , and V =1 mw® ,

°calec 2 °calc

v = 1l.39 e. v.
Scale :

From the experiment,

vV = 1.8 CaVe
o . =
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These values are in falrly good agreement, considering
the roughness of the approximationsa, and the fact that ion-
ization has been neglected in the computations.

If of is chosen to ecqual 1 em , it is found that:

g = 0.9, and V = l.45 e.v.
®cale
The agreement betweenthese two theoretical results is
astonishing 1in view of the violently differing values of
ol that were used.

In discussing measurements made with probes in a plasma,
1t 1s usual to plot the logarithm of the electron current
to the probe against the retarding voltage. for a maxwel-
ilan distribution, the resulting curve is a straight line:
log 1, = ¢ + V/V°

In the general case, the current to the probe can bhe

calculated from the equation: (5)
L= £(w?) (W= 20¥) w aw

/22V/ n ( m )
It may be mentioned here that probe measurements are no-
toriously treacherous.

In fig.8 , log i is plottec against V¥ for the func-

P
tlons obtained by setting g equal to 0.5, 0.8 , 1.0 .
The corresponding curves given by van Gorcum are gtuite a
bit straighter than the one given here for g = 0.8 .
This would indicate that the mutual interactions axre of
evengreater lmportance than 1s predicted by this sheory.

On the other hand, the condlitions in his tube weyre . much




2
4.0 1.0 2o —“% 30 %o
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more complicated than those assumed here. this fact may - .

account for part of the divergence.

B.

—————

Inelastlc collisions can be taken into account by ase
suming tha_tnevery electron which acquires a veloclty great-
errntha a fixed value LA suffers such a collisﬁ? and loses
all its energy. Thig assumption is equivalent to setting
£(w®) = O.for w) Wy o and J¢w®) = constant = J for we oW,
®q. 26 takes the form |
32 :,'_%w* 5 -31._8%_&;30 + 2mw®K = (W<Wi),

The assumptlion may be expected to be good except
near W = Wy andnear w =0 . fo must be sharply cut off
at LA In an actual discharge, it 1s not zero at this
polnt,but only very small , and decreasing very rapidly for
wpw; « Near the origin +thR function may be expected to
be largey,for the assumption that the electrons undergoing
aninelastic collision lose all their egf%y gives an ex-

cesslve piling up there.

Two forms of distribution function were tested:

__Wa/wa
a g = A In w% e °
© 2T1W° W'-'
2w ® fy3
b f = _A_(1- ﬁ}e ’
T2 w;?
Consider function a . let
W = 3, W = ‘A
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Then -7

1 :f:ozi'ln e adz

1
AZ
Eqation 32 becomes

-2 -2
~m Aw z® Inl e +gQ‘-'A(zlnL ® 1) e
i ° AZ 3w AZ

+ 8¢ =
v?»CK. R 7 )
©

Wh T K = wa ) . 1 \ .
ere " . K ) and K‘ 1s dimensionless

This is of tiie form ~
-7 - Y
Cz® Inl e +F(zlml +1) e #»(K,= 2mw]
A2 AZ ,
The terms on the left represnt collisions with atoms,
acceleration bythefleld, and mutual collisions,respectively.
K.(z,h, 1In a.c) was evaluated by numerical integration.

Values of A used weee 1/2.08 and 1/4.16 . (i.e.,

-2
wefwd= 2,08 or 4.16) Curves of K (z,A) ,(z' In 1 )e
s Y
: A
-z -
and (z In 1 + 1) e are shown in fig's.9 and/O. K‘ is
Az

finite at z = 0, but is very large for smallvalues of z
trom the form of the curves, it 1s plain that no cholce of
the parameters C, F, and can satlsfy the eguation. <thils
function is not, then, a satisfactory solution.

I t 13, however, interesting, to compare the relative
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magnlitudes of those terms of K' which contain the factor
1n t/2a° and those which do not. ‘*hese values are given in
tableX I[ -and- o <The actual factor used was

§o3m b

Colum 2 contains thevalue of the terms indepndent of this
quantity. @olumns 3 and 5 , the values of the terms contain
ing it, and Col's. the sums.

Here , as in the case =mR where ionization is neglected,
the termg represending the effect of small angle collisions

are the more imporgant.



S/9 + £/3 In t /e,

W a;"l’;’c s 10 15 =

3

[
B
¢
N
M
= =2

0,.8 +2.276 +2,812 +4,888 +d, 514 +5, 490 +5,817 +5,095

0.50  +0.750 ~0.1110  +0.63Y  ~0.178  40.57%  —0.233 40,517
L/ = 8,08 L.00 _0.0248 _0.5713  -0.5YE  -G.uno ~0.832  -1.143  —1.168

5.00 -0.0085¢  -0.1562  -0,1633 -0.338  -0.385  -0.301  -0.307

4,00 V.00853 02,0471 +0,0840 U LUETY +0,0739 +0,0868 +0,0937

5,50 —v . 148 ~0,437 -U.583 -0.875 - -0.919 -1,065

O
m
DI
g

|

O
©
=3
>

1A = 4.18  1.00 -0,00v9  -0.244  -0.352  -0.386 -0.487  -0,495

L.00 +0.,032 +0.278 +0, 303 +0,403 +0,435 +0,530 +0,560

Tzble JI
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It has been gseen that the most important of the mutual
collislons are the glancing ones. The integrals are greatly
simplified if the others are neglected, that is, if only

the terms containg the factor 1lm t/2a are comsidered.

Nows
/"z‘f" 4 £, 28, 2

2,

24

where a; =
Y m 2
Except vBry near w = 0, the term 21n w/'wi wil be

small compared to 1n t/2a€ o« It will be neglected.

Then (eq.24)
é"ﬂ'leﬂz ) z , 0
LI —= W’-'é'z; L lrd) [ £ for2 Joter?
el
-ff[a,zj / /(,.Z)J,,? )[/4‘/‘2/ //0_2/_“ duZ

<2

/'/wz) ”3/' fer?) e ?

7hHe expression 1y brackerts s

/ //a»« Bu? / £re?) £ /VZJ//az,,z
,///uz 34,/ /f/af///w//wg Aer 2

+
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We can now verify that the Maxwell @istribution is
the equilibrium solutlion with #the mutual interaction abe

breviated in thls manner. For, let

_ elser2
£bla?) K rewd)- Ate T =
Then
/52 s /% ra e /02)/

Or.z,--'[2=0 o

e f(/rﬂ/hf ) yéﬂfra/ form

/wv/ £ Vart)der? e Kfart) // ) 2

gy an 1» /egrd Fron éy n,ar ’-{5
/. 3 > ast
£/w"///{ ,,,z,/+/_¢3 »4/”2/'?3’/{.£WZJW
/%7l o o wl

mr
= (2] . -‘2/ ¢ ¢
£ lewr?) /z/ {;’C/" Jeter? Jubsfzfafm;fb(s
/

e

22 é’ﬂ'e'77.w-3 y P
1,- 5= =5 5 & f-hre ottt

,&d’

st -t
fiart) [ 2ot 3 ot wf
O a7 k o w’j



We now make an assumption about £ . Let:
]

—w* fw?
£ = A (1 - w2 e
°  Zrw® wy
]
. — 3 JRRY. |
Defingng: z = vt%a_ , A = ;73
i 1
In terms of 1z ,
-z
8y — 2, —
£ (W ) = f‘o(woz) = ofmé (- A 2) e
- o
/ -Z

1= Je
T J, (1- Az)z e dz

The upper 1limit is 1/j , since £ =0 when 1z > 1/3 o

Calculating the field term in eq. 32,

| -w® S
wd £ (w®) = 24 (—W' . wh - W',e~—~ 9
aw ° 2mwe \ w® wewy ﬁ'?_'
© [+} ©
-z
==24 {1 + X - Az) z e
27w}
lLikewlse, w3 /w3
£'= -A f1 - w®_ 41 ,e oo
°  Dmwe (w® w"w“i v
o ° o 1
z



Consider the integrals in I:. - Ia .

@ 8 /.3
) w -v®/w
/7 £ (v®ave = A [fL (1 - v“)e ° av®
w? ° WS wd ws .
(-]

/
A -y
= A ]Z(l-)y)e dy
27w

o

when we set y = v*/w?®
o

Under the same substitution,
V]Q

3 < s P
/ gs_fo(r yav

23 =y
A/, y7A1-p ) e ay
2™ 2 | ,

=

and

Z -
A %‘(l -Ay) e dy
o [, ¥ AY)

wH

/ vt ("')’d.v’a

o
]

Evaluating these three integrals,

- -/
fw fo(v‘)dv‘ = A [(1 - A - Az) e i + e B]

w? 2w

"Wa 3 2 ]

J° %}rfo(v )av :éﬁ%:m[r;(%) __r;(7/2)]
w®

jo vw:_?fa(vﬂdv‘:_é_nﬁm[r;(%)*c('f/))]

b

Substituting these in eq. 33 for I:. - Ia
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33" I -L =287%TA 544

m2_wg347* 3 Zai

(/#2-2z) €2 [(1-Aaz)e? +26%]
Ly (14 2-22) €2 [ [7135) - [ (%)]

3L (1z)ez [ 3)-T7 (%))

/ /e bdlance eguation 32 then becomes:
e—tﬁzwa'/lzl(/-ﬂz)e'z +.§-—f—fé°zz (/1+A-2z ) e

+A‘ LK, =2m)

2q;

where _:38_ _A_L JﬁZ&:K 5 /V—([; = 2w K

A s zR times the expression /1
braces, and (s dimensionless.
57.36 (s of the form

37 'C’Z’(/ Az)e +Fz(1tA-az)e*+ M K721/

7 he functiops ZV/ﬂZ}éfz (/+A-pz)e%, and
/\/3 are ,o/o?"l‘ed n f(’j.'f. !/ and /2
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Suppose that the values of N,fl, =, and a_ are given,.

e |
/%k i1s the correct disg-

If the function a (1 - w“/hf) N
tribution function for this discharge, equation 3§ will be
satisfied for all values of 2z (or w®/w®). But the function
was assumed ad hoc. Hence the problem mﬁst be considered
from the opposite point of view. we ask, " Are there any
values 8f the psrameters N, 77, a_, E for'éhich equation 36
is satisfled for all or nearly all values of z2". If such

a set be found we will have a problem to which o&r f° ls a
sdution. There are really only three independent parameters
in eq. 36, as ig seen when it is written as eq. 37. They are
As G/F , and M/F® . The problem is to find what, if any,
values of these parameters will make M. the sum of the

terms on the left of 36 nearly constant -- and positive.

We can pick 4 arbitrarily, and then may be able to find,

by a lest scuares method,a reasonably satisfactory peir of
values for G/F and?ﬂfF « 'lhis procedure was followed.

In fig(gif%éz values of this sum are photted for the sets

A, u/F, C/F tabulated below.

1/A 2.2 4.y
C/F 0.63 0.42
e 6.56 53.0

Table IT
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the curves are fairly level except at the lower end.
The degree to which they approximate g hor_izontal line is
ameasure of the correctness of the chosen function. Lt is
seen that the fit is reigoably good,except the distribution
function gives too few slow electirons.

rrom the tabulated values of the ratios, the relations

among the parameters of the discharge can be found.

Semi- logarithmic curves of brobe current vs voltage

are plotted for this type of distribution. (fig./s).
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VIi Conclusions

vy 1 L] . S N PR - -~ . LR
72 have considered scme of Lhae srocsesgss taking
EN

low pressure, The most difficult problem arcse when

the collisions of particleg of gqual mass were con-

e L) -

We have oSeen interested pri-
marily in the velocity distribution function of the elec-
trqus, Twe balance equations in this unknown function
were get up. Ore, expressing conservatiocn of Znergy,
required that the number of elactrons acquiring in unit
time a speed greater than any value, w, be squal tc the

number lesing energy and falling below thig spead, The

i

fi1eld. From these,one non-linear inteurs: equation was
?

5
Ki

The geometry o0f the mutual scattering procegss was
examined and the nscessary integrations performed inscfar
as these depended onily on this gecmetry, This much of
the werk applies to any type of cross section function
irregpective of its dependence on relative velocity or

scattering angle, A8 an example, the calculation for

e
k)
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e case of slastic spheres was carrisd oub

99
)
ot
¢t
I
@

peint where integrations over the distributisn function,
£, became necessary.

In the secend part of this thesis the eross section
function O is derived for electron-electron collisions.
This was dene ©Y means of a wave-mechanical approach.

For the interaction potertial a shielded Coulomb field,

S
Vo= 7%— €?°5a’ was used, Next, these integra-
tlcns depending on o~ but not on £ were carried out, In
view of the relative ccmplexity of the resuiting expres-
silons, twe different approximations were made. Cne was
valll when the veloelty v of the particle was very nearly
equal the velocity w, This corresponded 4o grazing col=
lilsions or small angle scattering, The other was used
when v was appreeiably different from W, and corresporded
to close ccilisions, or large angle scattering by a pure
Zn the third part we attempt lc £ind funeticns which
2re solutlions of the preblen. 7aen the term  reprs-
csenting lInelastic impacte is disregarded in the equation,

1t is found that the funetion

- Y o_2_ g, 4,
f = 2,,',2,;3 g T e Y

1s a fairly good anrroximate sclution. Here the parameter
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range of veloclties. In other words, the wvslccity dis-

tribution is maintained mainly Ly many exchangss of small

-

amountes of energy rather than Ty less freguent large

changes.

The mutual interactlon of elsctrons becomes impori-

ant when EZ% is large and _E_ small, where 77 is the
N N Q

lectron density, E the field strength, N the atomic den-

@

"~

sity, and Q the atomic elastic cross sectlon for 2lsc-
trons. This can be pictured as follows. The electron-
glectron collisions tend ©o get up a lMaxwell distribution.
This is disturbed by the collisions with atons, The
number of encounters of a glven elsctron with others is
proportional to 77, and the number of collisions with
atoms to NQ. The first fraction measures the relative
frequency of ;he two types of collision, The field also
tends tc disturd the equilibriunm disztridbution, It adds
energy and impcses a drift on the elsctions, A measure
of its effect is the field sgsirengih ﬁimes the mean free
E

% My 3 e
path, This is ¥ o

b

(42}
b

2

;g
[

The Townsend discharge, with very small 77,
amples of the casés where this mutual interaction is cer-
tainly negligible,

In the plasma of an arc, on the other hand, the con-

ditions are such that this mutual collision process is
b



(@]
1

very important indeed, The calzulations show that it
very largely determines the form of the distribution, A
comparison with one of the rare complete sets of experi-
mental data showed a falrly gocd check,

A single electron-electron collision cannot change
the mean energy of ths distribution. But the agzgregate
of such sncounters does change the form of the distribu-

tion and, in particular, alters the most probable ve-

d

locity,. In this way the rate is changed at which other
vrocegses btake place and the mutual encounters may very
well lezad to a different mean energy.

When inelastic impacts were taken into account in
finding an approximate distribution function, it was con-
gidered that their effect was merely to cause electrons
acquiring a velocity greater than some value w, to lose
all their esnsrgy. A more exact treatment ls desirabls,
This would be posSible using the complete balance equa~
tion 13 with approximate lonization and excitation prob-
abilities. In this way the form of the distribution above
the critical pcientials conuld be found and the intensity

of ionlzation caleculated. An examination by power serles

of the abridged equation 31 shows that £ must have a loga~

rithmic singularity at the orizin, This 13 caugsed by the
plling up of low velocity electrons, which results from



the crude way in which the inelastic collisions are

handled, The more correct itreataent would remove bthig

difficulty,
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k wave number
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[av]

mass of electren
atomic density

electronic "

&DS‘ZBgﬁé

QE,Q‘ exclitation, lonization e¢ross section
ke
r distance
3, integrals
v o ) 2 -2
s veloelty, s = u™ + NY - w
t 2t w° = width of gtrip
dt element of time
U veloelty of center of gravity
u relocity

u,u' half relative velsoity
ut,v,v' <velocities
u velocity parallel field

u i, excliatlion, ionization velccities

v potantial

7 retarding pcientlial, probe

7 energy {volisa)

o)

T energy of relative motion [volts)
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] w
W, Or o velccity
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APPENDIX T
o (v, 0) = 20 : /
- 4m’o* //+ 2/5’2— cosd cos A + sindcos A 605/11)2
B, = [ smAdd [ Todu

]

B, = ) sindap [ oo

Let L = [/: O’a//u
* Setfing )/,Z = [+ 28° the /ﬁ/eym/ 15 of fhe forsm:

e 7 C//,L
4m2041/27 /p+§cos/u/2
with o = 7z~ co50 cos A g = sindsin A

Then, éy Frerce’s Short Tasle of //7/€ny/5 75 708
300 - )

/ - e’ ‘ Zp ﬁan ‘/ Z tan z/,j
4y (p*g7)* 7

/- Znz* p
dmc* (p*- 72}”
Now, — p*- 9*

= 74- Zyzrosgcosﬂ + cos'd cos?A - sin* A sin° S
=y o sin’d - ZyfcosTcos A + cos?A

2ne” | y?~ cos d'cos )
T 4mtot /}/ 51n*8 - Zy*cos S cosA + c,cszx?]s/z




Ao /
- But B, =/o LsinAdA, and setting x = cosA

5 - 2/7434/' (v?- xcosd)dx
L Amo? cos A, //0’4- 7'1‘+ xz/%

where  p'= y* sin’d, 4= - ?)/Zcoscs’.
By Prerces /62 170

5 2/7{’4/ y? 2( 2z g’) cosd (g’ + zp/’
" 4dm*o7 /4/0/‘ f’z/ //9/+ ?{r‘/’ IZ/,/Z cos A

2//2 /Zyz/.?.r 2y’cosd) + Zcosd(- 2y cosd 2)/{ 25/'/7/
7Y (4/" Zsin'd- Py caszzfy//fs/'nzd‘- Z)’zx cos{+ x*) % oz 2,

2/1,? )/.,77.. COSC? ,
. i 4”72[74//')'4’/)/)’4‘/* cos’d - Z/zx cosd+ 1972

cosA,

Zre” / ycos A, - cosd
4/7704//4// (v /+ cosd- 2y cosd 2354, - cosd, )%

B, is obtained the same way using A, ard T
as the limits of &

27e” yicosd - cosd
5, " 4 04// // // /+ cos*d - Zy*cosdcos A, + 505/9)/

/fememéer/ny that (. egs. 4 and 5/

sz‘ uzq ’VZ uz—”z
cosA, = . cosd = ,
4 Ui ‘ U5
2 wa’
)/‘= Z/B 1/ = + /

2v°
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2
. L wa
and letTing A= 0 Zp’ ?

//C

?
B / =
h2 /6/775/& z//+

Zé‘ // 2w u'- VZ_ w” 1/2

45 4UG —
4(? 2 46«“2 /Zw uz—(rzj(a{(//‘/i /sz-u"'-y?/+(u-v//"
/(" 77~ /6U%5* 16955

E upper sign s ysed For B,, Mhe lower For
[2w™ u’ vz/ff(/?wz-az- )’ v+ (u Al
and AU = U+ Z,°- 457

B, =
', /M%{# -2//

(2w P )+ 0wt )
0/:%4/1151/}7— CCZ(sz-az-zfz//afuz}v‘/Xé"/u v)- 166 f/wzuz//u 585" %

= 4w u?)"

Let: g = §E4 (% v - 822w o vt )
b= $E5 (P vP) - [667+ (w™ u/)?
k= 64T

Thern

_Zﬁe4 v i (w? u///
5/2'" — /

o lem' dlg+ ko 2 kg*)z?

Now :

/

= Xe . 4 02_2 -
B, = /; 0@-5/)7}"0’1 = = 7z Bd

uyr J,
o



where Ffor

Sigri
(=1, /- /', 20 = w-s, Zu, = w+Ss -
(=2, /=1, 20, = v-u, 20, =vru | -
t=3 =2 20, = s-w ZU,=s+w
(=4 j=2, Zu, = wu-v, 20,= urv | +
g - 27e” // £ (2w o)+ 5 lw™ u/a,_
é. - 2 + .
4/77#4(7/ 4% it /&’+U/[g+éu~/é _/
5«#7‘//17 z=0°
! oie” / “2 % #ﬁ/u of %2 (' a’/a’z / VAT V/dz
2 4/7725 LIU‘/ A +bz—/rz /ﬂv‘z/l/ *hz- Az

By Prerces 49 /6/

/ Zre* [ L, 01% [wisA, ., A Ckz Z
B' = U, - q—ﬂf /—/i fa
¢ A3y /2 “ $lg ! 2Vk ”ZVZ’. yf-,éz-kzzz/
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2Vé /Fyfkf“

o Z2g-bhe (e 2bH)2
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214{7/7-;%&“ }{7%/72“ /4242/2/ @

Fxamine terms 1r order ard 53/ 7004//'0/77‘ :

Quadrant / J,- o -
” Z ” -

\ 3 ‘o

4 ;L

%)

The first arc lasgen? Term is
7 ( (3,-9 /)¢
g,0,+ 4%

Then this term becorme-,

f/‘/y 700&//'0/7 7‘5,
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w'-s+ 442
” 2 —btan’ - 42&(4#2
Zf —_
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3 - 4ran’ 4
52 gt 442
[/62" /l/'z"" 442J

Consider the secord carc /‘ngeﬂf Tersr :

VE = 42

h=2kz = 865w ) - 16 4%+ (0P P - 324757
Inserting fhe appropriate valvss of U and i,

h - Zkz, h- 2kz,
Quadr. /or 3 | (w’d*)2 166% /68%ws (w0? u’)- 1662 164 s
Y Zors | (Wil KEN 68wy | (WPl [68E 168%y

Also. 7he radical s
g+hz-kz? = 84%0% v L2uwE Ut vt v?)
+ (887 i) I L% /q/luijf - /6457
Inserting 0= d,=%(wrs), for quadar. [ 1his Secomes
O )= 4 (w0-3) ] 8- ares) 2 s )

(w* w??
-+ y /w+ s, z

Now.

8l vY)- 4lwres)?= 8u’ 805 4w Burs - du’- 492 4w?*
= Lw? Sws + 45% = 4(w-s)?
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//w+5)2[2/a2+7/2/"_ wE Dws s e vt ) (0 s
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Il

= ;;-//wz- ) wrs)+ 4#2/2(/—5//2
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Similarly  for the Jower /imit o, = 3 (w-s),
[9" hz, - /(z,_z/ = Z’/{wf <) (w-s)+ 4/2/w+52/]2 .
/r guaa’ramL zZ
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= (/73u7/02u2+ sz— uz— ’z/y = 27 /Vz— uz//wz- az/
Therefore , / g+ hz, - /r'zZz/Z

(w? &) (v u)?

2 + 28wt ki u) + 48 - )”
= Z/ //w’i uZ//?/‘+ a/+ 4@2/7/'-»&1,/]2 .




Likewise, For 7he sarme guadram‘

/g+/72 - k2] = 4//w W u)+ 442 /7/+u//

The expressions for f'aaa’ram‘ F are The same as

for y(‘/aa’ram‘ !/, and for gaaa’ram‘ 4 as for 2, since

v, and 0, enter an/‘y /i thelr sguares and Fourth

powers. But they car be Wr///‘eﬂ
L/7+ /2 - A’ZZZ'Z = ?;(//u{ wls+w)+ 442 (s- wj/z

/g«- Az, - /(2,2]3 = ‘;L//u{ wi/a‘ w/+ 4&2/5+ w//Z
/7+AZZ-”</ZZZ/4= Z///’“{wzj/”*zd+4£z/u'?/'//72
[9’* hz - /(Z,ZZL = é//uz- wiy/uﬂ//ﬂ“ 4%/a+1f//2

let a’- a = -a = -a = wia®
The expressions above are of The Formm
L(al2q,+ 4425 )"
where when a=/, {£=2

a= 2, L=/

Then 1he second arc-rtangent ferms 1 B decorre,

/ncloding the armli Liguous  5/9r7

Cuau.
@ d, Y a’- /6%~ 166%ws =t 0 at 8% I66%s
85 45[‘,%%5}* 4&”7&/-5]]4 45/, Y-s)+ 44 /w+5f
/ - /6 8% [66%uy P af- /66% )65
7 fan 4@/@"/% u)+ 46%(v- uy(f Y u/+4fz1f+z4/}



Quad |
@ ‘ a'32 Far” a34 /687 /68 w. Y a,4~ /6E8% 16 £ ws

- ar
il el Ty
al-166% 165wy L P 1687 168
0/74{@ (t+ v/ 4E7 - l/%_ a 454“4 (- g//+4//a+2//

//7’6/8/’ 7o €q. 5/ fable 54 and the st For g+ bz - k7%
These can be reduced 7o

Auad. 2

a, -~/ - 4£S h
/ + Tan @ ————;
4 a’+ 4
i ; - 44y
2 27 e a7 242
> @
a, - 4w
3 Tan
¢ aJZ + 48%
af » -4y
‘ 22 I

lonsider rnow 7he 1hird arc- /aﬂgenf Ferm
$h-gr &k = Y (wh ) (2wt dt vt v
= 42/11/4i 2w us 2w ?wzvia4+ 4/7

£ w* v¥)”

I

Also.  2g- 6%+ (bt 20%h)z = 16475 v zz/zw vty
-8 I8 B )% B8 ) 1665 (P 328757
= é{éﬁf /5!4/2/u+z//+4u/‘4ﬁ [Z/szaz v fo: ) (wid ﬁoa/zxiay&j/
+ 4w uz/"'zézj :



/F now we /et
/5/2 =B = ‘/632 = /542 = wh ot
then
~2w-ut v Nut v = (a%ei)ats”) = a’ g”*
For all 7000//-4:/'77‘5.
29-L% + (h+ 26% )z

= g/ &M“v‘/ﬁ’??uizfzﬁfr’&jf 4’/72/514—/3 V-a®s §(v5 i) OZZ

+4a47?

The expressior Véh-g+ké* appears both oulside
ond under the tan' opercior, and can be rep/iced
1n both /J/aces 5y gﬂz= * b lw™ 2/7 also remern-
bering that  Vg+hz-z°  has Ihe form

F (a’2q, + 442 25,),

the third arc-tfangen? Ferms becorre

L) K 2l 25 ]+ 48280 80l e 45

B 248" 3 (2> 2g,+ 447 25,)
y g’fﬁf “l6l 472/ ve ) 4(7,7+ 4&%2'/61 27 a’ 8/ u?&j+4a§7}

248% 3(a* 25,+ 48 25, )

-/an

where [he + 5195 row applies /o guadrants /[ and 3,
and the - sign 1o fguaa/ranfs 2 and 4.
These carr be redvced 7o

44’/52/7/_2 - ‘7/ )
(% 457 467+ 1667 ;- 0)°

7 btan’



/0

—g/m" 44810,-0) o 46(0,-5)
- 2 - TG Y/

#
a‘+r 4£° i az+/52+ 447

Then combining all ferms making vo the B;’s
(52, 53 55 56)

. ,‘ ,
/ £ /z - 4¢. L 456 ~ 4
B, = Zme s=Etan™ s Lo ban ~Llan™ i
Iy aiBLHE 4 atd  aiddt a’gi 4"

/7 / 7 ,2 4{ - /
B, = Z:f u-dtan™ u Z b L b han S -Lian hu
Lrmé u a4 248 alHt ai+#* a% 4, 2, 442

4 , :
’ - 4£ o #’ ‘72{ -/ ‘72{
Bl- T Lottt 2L Doy Ty Yy
I uy, lev;ﬁjf 45 44 dj"+ 4¢? a,’f%’z djzf/éf,zf 447
P , 2 , ”
54/= e v-dian’ i - X fon! #9V+ dlan il */foﬁ_/z i
4”;2 Zay. a‘/Z*/gVZ*‘;Z{I 4g d#z* 4£Z ayl* 4{2 a,,*)ﬂff #I
Now
2 tan > {;fu . = ra Farr! 4l
wy a;+p, 48 wy v uie 447
4 s
= fan™ Ftv = L fan™ 4; -
uv Uy + B+ 4E° wy w- v 44°

These are symmetrical in w cnd v, and. as in

The case where o = constanl, we are perrmitied

b subtract The First from B If we also sustract
the second From B,

Then finally:



/ 2me® w4465, . 4és
B = S - Tan™ ———
Im*#uy 44 W= s 4%

/ 27e? wiaf- 447, 44u
B, = —/u - Jar —
Am*é uy 44 w- wr 4¢

/ 2771/4 u’ wz+ 44* _y dbuw
= - 7arn " —————
Ly 44 U~ W+45’/

>

Il

Since 24 = wa, these are the sarme as
eguaf/'ons /9  of the main Text

_7 z 2 g2 ) ]
54/ Zzlf e w- w44 Far 45] .
It ur 44 w'-w 4¢*

//



APPENDIX 1]
STRIP INTEGRALS

The tunctions ‘o be calculated are Fhe Hik.
By their definition, and egs. 27

At = J18us)di’
1 Hie = [(Bluv)(u’ w)du’
Limits on u® are
Quadrants | & 2 wi(l-t) 7o w?

. 34 4 2w’ fo w¥l+1),
and The infegration Is carried ouvt along the
/ine &+ v'= (P /)Wt

feplace u® by the dimensionless variable
u? |

z=—-/.
w

Then along the path of infegration,
vi= () w'- W = wilez)
¥4 2 2 V4 4
s w+rv- w = we
du’ = widz
/nser//'/?g thease ) egua//'ons /9 /0’, 5/-/,
2re® /—Z+a72¢/ _ fac/

B = —5 we - ——=—= tan
! miwaAuy Za -Z+a

ar

4



I re’ (-Z+a’ ., Zac
uUB’ - z 7/ ¢ 2 / 7arn™ -
mwa ‘ 2 7

wrB, = 277€ /Z+ _ /Z a/ ’/_257_@7

y e / (z+a®), ;a/
HVBJ = - Jor -
m wa 20 Z+

ub’54/ _ 27e /l/— (z- a/f o o

mwd Z+G’J

7'/78/7,' Wf‘/'f/'/yg

)
2re*w 47/ = l—/—f /79.),
m’a?
3 > N
27/26 w /
2.2 /2 "“/L/j,z
ma Z

-

and also replacing z by z'= -z for guadrants
/ ond 2, we have:

+ 3\
7//,/::‘/v/—-za' ™! Zacd

z+ a’

5/77//,2 //— z'ea’? i a/

?7/2,,3/‘/[/7—2?——2&7"201//20/’
Zxa?
_ ’ - Z’—G‘?]L ., ZaVl-z’ ”
P~ _o A




/4

z z >
#,, // 222 ton &"/dz
o / Ja Z+QZ (
‘ 4 zfaz Za |
le =0//— > Tan Z“:;:/ZQ/Z

¢ 5 Vv
77’4,/ - //1/52-2 - EZ‘_Q_ Jar™’ ZaVc*z az
(7] a

z+ra’t

7
z-a‘ ZaVc*z
., =/‘/VC‘?-2— > farn™’ Z/ZG/Z
A a Z+a )

Since z' /s only a dummy variable, the orirme
can be dropped.

/ntegrating by parts:

¢ z
Z+a ., Zac
%— Za ' oo V 2

=%Z - & +a7;m7_/ s ot (z+azjz/—2‘ac]a7é

4a z+a* 4af (z+a")%+ 4a’c’ )/,

/ (z+ az/; Zac ¢z 24 Zoc 7°
=fcz - an’' T2 -5 - i :
4a z+a® 2 9 2. g

At 7z =0 this expressiorn /s

-i-acﬂfan‘/—z—c ~ gyl &
(4 a °(Z ™~ 2¢/ -

s/nce a /s very small.

/F t >> 2ac. The arc fangent terms can be
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expanded when z =1 The upper /imit g/ves
approximately:

ct clt+ad® 2a%’ Za%’ al dac’

F 2 7 3(t+ed?)  tea® T2 3¢

Retaining only second order terms /n a,

2 2 3
7_/// ~ ﬁac-azp— da‘c

2 7

o2 and v the secord

2

Now at u- w, wo’
/h/egmz‘/o/; we obtain

— V4 y 3
o) ~ Tav'_ a’v  Ha'v @
3

/,
/ 2w’ w 3wt

|
\9’3'

we replace c by %

%, may be found From 1his by setting < =/

or v = W

o) ~ 79 _ _z_4a
3,/~22’a_ @

3t
¢ Z+a’ 2ac
B GH/,z :// - Tan™ /ZC/Z
0 Z+d
cz? ZZ + 5’a Y277+ 32°2°) - Zac)dz
=/ 2 /Za (z+a%)*+ 4a%*

/ fz+§’azf i Zac/ /-cz at | 4a%c% /
~ an == /-] /=~ o7
Z /Za Z+ / 3 6 3 (7:a)% 4%

'A’ga/ﬁ retarning an/y terms //7/'01/7/7 second oraer o/ a,

cz? 77% 37%% | Zac  cz® abz 44t
/e "—’/— - 7an e —/n//Z'+a/+4oc_/

4 /Za Z+~aQ



V%)

Now
~ 2t3-+3tzazfaﬂ-/ Zac 1J/ Zac  Sa%’ [Z¢%3ta°
/2a l+a’ t+at 3/f+az/3 /Za
- ctt  ak%t  da’c’
-3 ¢ 2
and

z 3 Z 3
42 Ctnflrra)s 4o = F2Eint

At z=0, the /ogar/f/?m ferm /5 4; = ¢n Zac -

4a’’ [/ 2a’y’ [/ tw
~ 4 bn =X
3 /3 Zac/ /3 7 204/

Likewise,
4a°/ / 5’22_:‘: ‘
Consider
4/ //VC——Z—_ a;‘ _ ZaV Z/ 4y
Let = Ytz p- g‘-

z = /- 2/ dz =-2c’rdr .

4,“-‘% /czf)// —-//—/‘/o]fan -

//77‘57/0//'/75 by parts :

/(ct}% //—r/o//aﬂ/f;/‘/cjz

Zor
2 ~2rar) .
=y (- 2rdr)




/7

==
(: < (/-r rp?)* 2p(1+r%p )a/r
4/0 (1-r% p?)%+ 4rip?

Call Fhis /ntegral terrm G . Thenr
I et | 20 (/+r%p%)
G = “C“/ ¢ %/ﬁrﬁoz’//’ 4 2 2L _F s/ dr

p P [)- r3py)is 4p%r
l/_z_——t_

:2; /o/r+——+/o/'/ 4p*tan” /——/{{—;—

Svbstituting z baock,

% =—/c-/ t/j////zaz/], -/Zal/cz

£
e VeZ 2 (c%z)% a¥ciz g L Zale*z
+ " -
Z 7 6 2 ac’fan’ zZ+a’ A

NG t)%+ Vet t . a’Ve*-t  a’
% 2 2 Z

 J(t-a¥ L VTE Td ], Z
- 73 + acffan Foa? 7 -4-+ac far Z

fxpanding the arc fangents.
| (c* 1)? CVeTE ViRt ak LT

I A s
. J”azl/cz—z‘+ dai(c* f)g_ 2dctve Z, aﬁ/j_
V4 6t . 2Zc

Jo second order /n a,



or

Likewise, selting ¢ =/,

T * 4a?
?/z,/ ~ 7€+’£— 3; \

Now Take

/8

) C;'_@— - - o
77’4)2 =w/‘.;l/cz—zo’z —‘:27,/ [//—fyi //—ry/ojfwﬂ/_rﬁ/ozFZra/f/.

Integrating by paris,

7 25 //-/*/J W-r)7 L 2rp e
3, -3t ey -—/ / it

ey _.C_///"z/f P11 (1 r%pt) Zpdr
Zp 2 (/- /“Zﬂ/o‘7+ 4o'r*

(al/ /‘/}é infegral G, , 'hen fo second order in p

ﬁ;



/9

/6 /03//" /)
6;"“2/ / BRI R T )

Z‘r ﬁ/‘ zx‘ lior /—‘ é’cfaz /r lar
i 12 b

Call Ihe last integral Gy . Then, setting
2000 ()t = (P T pE )

52 //_ C
(:}zé’ s = / tlb / ”bz /dr
F /’ L) e, r

_ XC/O /, /&/0,+/" : %ﬂ/&z-ﬂ-/“/
300 0 -26  b-r “-7/92 be-r/

Now, 06 = (1+p), and if p2= Ae'® p*= 4o7°
with A real, then p={, 1ple® bt = 1p¥e?,
also  p%+ pf = Z//—/a‘y,zor //+/072505é’ = ?//—/02/,

z

/- 2z
056 = Z s5/m8 = £

pr /+p"
J N A [/+/0/215//7<9 F1p0
o = Vipie?,  po< Vg et
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b= ply == mpt Dpl -%;'—/ = -ﬁﬁ/;%—ﬂ

b+ r _ /+/-+1 /+r/ + —[faﬁ‘/~r2+/o2

p-r / r+z/0 (/r/%/o

/bz+/‘ _ S+ - [f) _ (/+r)2+22 P c'fan'//*fz;z
bo-r /- r-2p ‘///~r/z+/02

b/ /0+f__ ) +/// (hr)op ,2/'0/]
> éz /o L(7+p T %

/bzz-'/&/bz-/-f' /*/&//r/vﬂ b Zor
- /wzf/ i 2

Then, dropping ferms of higher order In p

5 2 ¥4 2
G; = ~ 3_Lg; - pl <t [(//:;/;/9
Pl 7t p

Assembling the Jerrns of H,, ,

” —Zz‘/c i 4687 4 ///f/’ﬁ//,»/f /7/;0/"@
2 55 2 /g

/Zf Zp/‘ 2r /4/7/‘/0/‘ Zf—ch/ //+r/+/o
Z

— —— p — o ——

5737 3 3f’/,"3 (1) p?

/ . . . /i co. -/ C
/11 substituting in Fre 1 mils and vsing p= =

-2t [c* Z/Z 4(c* t/z Ac Ve a:’z}i Vit (cit)F

Mae ™ 3 5 TG e T/ R s




2/

s s
L a'c*t)? atl Vet ci et Vet Tat’ a%eit)?

/5 9 g J 3 3 7 &

d%? 2Nt a¥’ Zad [erVeii)5at Zah 4chaf
+ - > - &{ - 7 7 “//fl FE
A 2 2 3 et t)iat 3 a

Since >t D a*

(c+ Ver-t )% a? /6c* 4% a’ 4%
P e T P e T

Lxvanding 7he arc- fangent,

/_fi_a_é/zf S ZaVert /_3 a 5/2/24;62-7 8a'lc2t)?
ba 4 an t+at - 662— 4 tra? - 3/5('7"&2/3
UYL JHNEE dUNTE 4aiett)?

(ollecting terms

,, 6a%° 42e2E)? 8a%F 4a%3, ¢

M, = - - # yex -t + t

%2 9 g 3 7 Zac
da%’ Ao’ ¢

B 9+ 3&’Zac

da*y’ //

tw
= Jw’ 3 * n av .
567‘7‘/’/77 c= /.

| 4a‘// A
=Tl )

In view of the defipitions of W /575. 60, 61), the equations
67 z%mug/} 69 ore e/awmfém‘ 70 egs L4 of the marn Fex?
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NE NRATAN MITES TR TT oM a7
MOMENTUL BUUATION

The aumber o¥ electrons peor ¢.,c., neviaz sSpeeds in the
range W+ dw 20l valocitizs varallel to the field in the
range é * d§ is

\ £+ 2 f( 2)]
Yor NS () 7 () wdnde
t*éz dt , the fisld incraases the 7elocity of ssch
narticle rallsl to the fi21d an nt .___t.‘ t Thern
;.;ar C.... = _‘?a«k [=3 S e [739) ae Ilu -~ &“ amom- 9] m » P ete-F e ’

per unit time, the number of particles for which this eom-
vonent of velonlf" incrsases from less than y’ to greater

han y is

%7"7 “udu [ e Bp)ae
7 o 2

=2L77waa’u/§ L, f ”ffya’z‘— iz dzf/
ot I/ m u 1t

=’.£ii!§iééf a?Qsz.+ ;/Zf/’aéz, ‘i:’
Sy

In the case of slastic collisions with = toms, we neglect

the ensrgy loss, and consider only the scattering,
be polar anglazs about w

¢
% " " " " f,of U
/J, i '

at
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angles in range sin0dldé out of a velocity space slement

ufs/nwa’wd;ﬁ au is

N7}, cosw) i’ (u, 6)sin 0dbdg sinw dwdy .

The velocities are scattersd over a sphere of radius &,.
The number of electrons leaving in this way the region of ve-
locity space to the left of plane 7 is found by integrating
with respect to ¢ and ¢ for that part of the sphere to
the right of the plane, and with respect to & , ¢ , and «
for such values as make the initial velocity lie to the left

of the plane, 1i.,e,.,
@ 2 T . n )
N77 A/}; y wdu ‘4 .y AIA cafa/.f/ﬂajdw[ ay. ﬁ; (1. 6)s1n 6’d€/£(¢

Now §/n0d0dg  can ve replaced by sinAdAdu

for purposes of integration, if it is remsmbered that
cos @ = coswcosA + sinwsinAsinu
Then limits of A and M are simpler than those of &
and '¢ :
Mo, 0 o 2

A, A, to m, where cosA, = z—i—/

Now if we let

Z = cosw, Z = cosA,

and write 8 = 6(zx, z; ,u/,

our expression becones:

/V??%;a%\%‘%ﬁ +f.r/a’.z.'[zg’¢‘/;/ % [« ﬁ/x,z,'/x//a(z/z’?// :

=7
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Similarly, the number scattered into tne region to the

left of the plane is

zn ’a’u//f fx)c/x/d;ﬁ/" fu, 6062, o)

The net number leaving by 0011131on is the difference
0of these two expressions, These differ only in the inter-
chaﬁge of the limits for X , and Z | since 6/x, Z, ,U«/
is symmetrical in X and < . Therefore the ]ﬁ term
disappears. Requiring the total number leaving due to

both field and collisionsg to be zero, we obtain

271’7735 /Z‘f yf}a’zw ZW/VW/. ufa/y/ xa/.t/'c//a"ﬁ/ﬂ/ﬂ//]/”ﬁ

_A'xdxj/‘udz'[@/u, H/.z,z,'/()/a)/u/ =0

Now, a similar equation can be written for tha plane

at—y

27/?77'/21/ yf/a’u+27f/\/7_7/21/0//”//“/2/ Gfuble 2 )l

79/
/ Yz
-’[—; xa(r//‘ az 6;,/11, 5/.232,'/4//a’/tf/ =

But, siace

G (x, -2 p4)= 0 (2.2, p)

we can replace X Dby -X

, and Z by -Z in the integ-
rals, and the collision term then becomes identical with

the corresponding term in the equation for +}V.
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Adding the two equations,

LTV ES® | o Y y . |
m /"/fdzw 47/'/V?Zujfa’zz///xa{t/g'a’z agﬁ) ‘9/122,'/1//242’/4
, v
—»/,;":"xdx—/ a’zZogfu,e/x,zJ.#Z/d/%g

The absolute value signs can now be dropped, by making

the restriction y > 0.
Divide by 47777, and differentiate with respect to }/ .

IONON I T
! a.za/x'[g[u, 6z, i /a,/u ‘Z//Q/Z O'ﬁ“g ’7#/]4//1

/) ri 27
+Z[xdx[§/u 67/.2:,& /u/j7a’,u/ 7

F .. @, / 2"
A u],’a’zz[ 2 Lle [0 2 pff el = 0.

Fow the intesrals in X  and /,L cover the whole syphers,

hey can bpe repnlaced by intesrsls in and ¢ .

dxdy = - sinfdodg.
Since 9/60.5&), cosﬂ, ,u] has become 9/605&)) 6‘05)0,'/1),

F'};

Therefore +1

the transformation to 0 , 525 is

Y

X = CoOSW = a-'cosﬁ -5/ A, s/nbcos,
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/(?___ a’x/d‘/u 62 ) o

T 27 J
-_-//ymﬂc/é"/‘ —g*gw5€+ o7 J/m9co.s¢/o‘ (u €/d¢

(7]

_4ry (/ c0s6)c; (1. 6)du = £ Q)
ﬂ- ©

+3

The equation then is

a w
=yl ly)+ N (u) @w)du = 0
vh v Ny

Divide by U , and differentiate azain:

123 a/f/y’/+/\/é?/y/yf/y/ 0.

This is equation quoted irn the main paper,
If the equations for +y and iy sre subtracted in-

gtead of added, we obtain:

ffff/?/u%a’u -0
7 Sy

It is impossible to satisfy this as'well as the pre-
vions equation and ths energy aquaticn. It enters because
j[ was approximated by Jﬂ f‘JC cOSGJ , and shows just

what hag bheen nezlected,
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APPENDIX IV
THE MAXVELLIAN AZ A CHECK SOLUTIORN
We wish to show that the é;/ functions integrate to
zero along a path wir vt = /Cz+/) 2w’
There are two cases, c¢°> / , ana ¢%2< /.
Along this path

‘ 2
vi= (% )wrd dAviw® = cfw®

z z
When ?/‘2:- W, w' = c*w?
4
Dropping the constant factor —Z—Wé} , the expres-
miw'a

sions 1o be evaluanted ars:

Case /. c%?> /:
7wl awt Zwau 2u2w+aw y Zz.m
R [ [u- 228U 4y 1 LWt ) 1 e / for 22 )
A Jwa winsta’ wiwras

iy wrutdw?, | Zwa Vs -
- /Vc+/—u - ——Jar'
2

La? Zwa wrwva®

lase 7. c*< /:

riazwzazaif lwau w Ura w Zwac
- - - + -
%- Tan™ du + / 177 /d z

lwa wiusa® wiara

e

2
lwa 2w a?

Ww®
@4 wiuraw’ _ szm 2
- du”.
w

Let z-—--/ ard z=-z, as 11 Appendix [l Then




Z8

Z+d .Z""d
////_—\— Za/c:?a’z )‘

/c ; P Z
——':/‘////—Z—ﬁ'faﬂ Z/ / ;a/d/‘? ;0: dz’

[ g 2

Using resvlts from Appendix /-

/ 22 / 7 ,23 b4 7
__/z/// (ia z/"al// V/z+ /;z/+ azz/—/.z

a
e/

—alan”’ Ya /-—/—-//2 dv‘a Jarn~ Zf:/

/;/“Z //2’&/2/ _,Zﬂ//c_? 4/6_?/

// *+aQ i‘an // A é/m/ //aﬂ/ 220 2
c=/+a

/ /- 2 2
"/—f‘a /0/7 //C KC a/*-a%ﬂ”/z/dz '?a/"' 0 .




R[22 7D L all-z' avi-z’ " ez’
— = - +afran + * [—=
w’ Z 4a 222 2 )./ 7
K’ y 207”2/2 ¢tz a‘Vc*z
/0” 7 2 - 7
2+a’) Z

/Z‘az/i acyfﬂ - Zﬂ/—_
4a

z+a’

c//— 2/ //- : 2/ 2/t Zac  act
/-c%a® |
/c//c‘7 //c+ lac ja’ ), _, Z
+ac faﬂ J-cod? é*ac an ——

- a
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