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Abstract

The colimit functor does not take weakly equivalent diagrams to weakly equivalent
spaces. We explain why this is a difficulty for homotopy theorists and explain some
of the reasons one might be interested in a functor similar to the colimit with slightly
different properties. We show how for diagrams which are cofibrant in the model
category structure on diagrams the colimit functor is well-behaved with respect to
homotopies, and we describe how this leads to the definition of the homotopy colimit
functor. We show that the homotopy colimit is the total left derived functor of the
colimit functor on the category of diagrams of spaces. We also prove that just as
the colimit functor is adjoint to the constant diagram functor in the category of
diagrams, the homotopy colimit functor is adjoint to the constant diagram in the
homotopy category of diagrams.
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1. WHAT IS THE HOMOTOPY COLIMIT AND WHY SHOULD YOU

CARE ANYWAY?

The first question is always, why should you read this paper? Why
would one consider the concept of homotopy colimits at all? The name
is certainly suggestive: the homotopy colimit is a version of the colimit
that is somehow "right" for homotopy theory. So then the question
becomes, what is wrong with the usual colimit, from the point of view
of homotopy theory?

The basic problem is that colimits are not homotopy invariant. Pre-
cisely, if D and E are two diagrams and f: D -+ E is a weak equiv-
alence on each space in the diagrams, it is not necessarily true that
the colimit of D is weakly equivalent to the colimit of E. Here is an
example: consider the diagrams

i iS1 -- • D2  and S1  i

D2

The colimit of the first diagram will be S2 whereas the colimit of the
second will be a point. Those are not hard to see; in the first diagram,
you are gluing the two disks together along the image of the circle in
each (their boundaries), so you get a sphere; in the second diagram,
you are gluing the two points together along the image of the circle in
each (the points themselves), so you get a single point. Clearly a point
and a 2-sphere are not weakly equivalent.

From the point of view of homotopy theory, this is clearly a big
problem. The first requirement for pretty much any concept in ho-
motopy theory is that it be homotopy invariant, because we generally
want to be working in the homotopy category' of whatever model cat-
egory we're dealing with. In this paper, we will deal in particular with
the model categories of pointed and unpointed topological spaces and
pointed and unpointed simplicial sets.

Notation 1.1. The symbol Spc will denote any of the following four
model categories: pointed topological spaces, unpointed topological
spaces, pointed simplicial sets, and unpointed simplicial sets.

We can restate the problem that colim is not homotopy invariant
in terms of the homotopy category by saying that there is no functor

'If you are not reasonably familiar with model categories, you might want to
go read [1], an excellent introduction. It also includes a discussion of homotopy
pushouts and homotopy pullbacks in a similar vein to the discussion here.



that can fill in the bottom part of this square and make the diagram
commute:

(1.2) SpcZ colim S Spc

Ho(Spc3) -? Ho Spc

But hold on a minute! We are talking about the homotopy category
of diagrams Ho(Spcg) when we don't even know what the model cate-
gory structure on diagrams is, or for that matter if there even is one.
Happily, it turns out that there is one (in fact, there is more than one,
for different sorts of diagrams). The structure that will be useful in this
context is for the category of diagrams of fixed but arbitrary shape in
topological spaces or simplicial sets.

Theorem 1.3. Let 3 be a small category. Then there is a model cate-
gory structure on the category SpcJ of diagrams D: 3 --+ Spc in which:

1. A weak equivalence is a map D -+ E in which D, -+ E, is a
weak equivalence in Spc for every a E Ob(J).

2. A fibration is a map D -- E in which Dc -+ Ec is a fibration in
Spc for every a C Ob(3).

3. A cofibration is a map that has the left lifting property with re-
spect to the trivial fibrations.

We won't prove this theorem in this paper; see [2].
So now that we know more about what Diagram 1.2 means, let's

think about it just a bit. What does it tell us about what the homotopy
colimit might be? Since the colimit is not homotopy-invariant, we can't
hope to find a functor making the diagram commute, but we'd like the
homotopy colimit to be something as close to that as possible. Instead
of asking for it to commute on the nose, let's say that there should
be a natural transformation from the composite in one direction to
the composite in the other direction. But we'd like some sense of it
being as close as possible, so we'd like to add in some kind of universal
property; we probably want a requirement about other such functors
with natural transformations factoring in some way. The "total derived
functor" is exactly the concept we are looking for.

Definition 1.4. Let F: e -+ D be a functor between model categories.
Let ye: C -+ Ho(C) and 7y,: D -+ Ho(D) denote the natural maps from
the model categories e and 9D to their homotopy categories. Then
the total left derived functor of F is a functor LF: Ho(C) -+ Ho(D)
together with a natural transformation t: LF o -ye "yD o F with the



following universal property: Suppose G: Ho(e) -+ Ho(tD) is another
functor and s: G o ye -+ y~ oF is a natural transformation.

LF
Ho(C) Ho(D)

Then there exists a unique natural transformation s': G - LF such
that the composite natural transformation

(1.5) Go ye - (LF) o 'e -7- oF

is the natural transformation s.

If a total left derived functor exists then by the usual argument
it is unique, but one does not know that a random functor between
model categories will have a total left derived. We will show that the
total derived functor of the colimit does exist by giving an explicit
construction of it, and we will then define the homotopy colimit to
be exactly that functor (see Section 4). But before we embark on the
project of constructing the homotopy colimit, we will look first at some
other motivations for it.

2. ANOTHER REASON FOR HOMOTOPY COLIMITS

One of the remarkable things about mathematics is the way that
seemingly unrelated issues connect. There are other ways that a ho-
motopy theorist might have come up with the idea that something
related to the colimit but a little bit different would be handy. If you
play around in homotopy theory enough, you will find that there are
situations when colimits behave nicely if things are somehow "cofi-
brant enough," but not otherwise. For example, the cofiber of a map
f: A -+ X can be cooked up by taking the colimit of the diagram
* +- A 4 X, if f is a cofibration. Even if f isn't a cofibration, the
colimit of that diagram will be X/A, but f must be a cofibration to
guarantee that X/A will be weakly equivalent to the cone on X by f,
X Uf CA. An example of this (which has to be thought through with
some care) is to take f to be the embedding of a half-open line segment
into the plane along the closed topologist's sine curve.

It turns out that solving the problem about colimit failing to be
homotopy-invariant solves this problem too, and it's yet another rea-
son that homotopy colimits come in handy. So, in the specific example
above, as long as the spaces in the diagram are themselves cofibrant



then the homotopy colimit of the diagram will be the cofiber (see Sec-
tion 4)

3. ADJOINTNESS

There is yet another approach to homotopy colimits that is worth
thinking about. It leads to a different universal property that we would
like the homotopy colimit to have. In another example of the remark-
able way that mathematics ties together, it will turn out that we can
define homotopy colimits in a way that satisfies both universal proper-
ties.

Colimit is defined in terms of a universal property: given a diagram
D, the colimit is defined to be a space X, together with maps from
each space in D to X making all triangles commute, such that, given
another space Z and maps from each space in D to Z making all
triangles commute, there exists a unique map from X to Z making
everything commute. For example, let's consider the case that D is a
pushout diagram C +- A -+ B. Then for any map from D to a space
Z there exists a unique dotted arrow in the following diagram making
the diagram commute:

(3.1) A > B

1 1
C X =colimD

Z

This can be expressed equivalently by the following adjointness re-
lation:

Homsp,(colim D, Z) = Homs•,, (D, AZ)

where AZ is the diagram having the same shape as D, with every space
in the diagram equal to Z and every map equal to the identity map (A
is known as the "constant diagram functor"). It would be worthwhile
to stop and think this through if this formulation is unfamiliar to you.

It is natural to ask if we might not be able to give a description of
the homotopy colimit that is analogous to this definition of the colimit.
The answer is yes.

The first approach that I would think of to finding a universal prop-
erty similar to that of colim that hocolim might satisfy would be to
essentially replace every map in the diagram by a homotopy class of
maps. Then, by adding "up to homotopy" anywhere it makes sense,



this would lead us to the idea that the homotopy colimit of a diagram
D would be a space X together with maps to it from the spaces in D,
commuting up to homotopy, such that the following property holds:

For any space Z with maps from each space in D to
(3.2) Z that commute up to homotopy, there is a map from

X to Z, unique up to homotopy, that makes everything
commute up to homotopy.

Unfortunately, I would be wrong. To see what is going on, let's rephrase
things in terms of adjointness. If hocolim D and D are cofibrant and
Z is fibrant, then (3.2) can be expressed by the adjointness relation

(3.3) HomHospc(hocolim(D), Z) = Hom(HoSpc)J (D, A(Z))

Let's trace through this carefully to see that it is equivalent in that
case.

Note that the right hand Hom is taken in the category (Ho Spc)9 . The
first thing we need to do to decode (3.3) is to understand this category.
The objects of (Ho Spc)l are diagrams in which the maps are zigzags,
i.e., composites of actual maps going forward and weak equivalences
going backward. In the case where the domain is cofibrant and the
target is fibrant, we can think of a zigzag as a homotopy class of maps.
So if we consider the special case of an object of (Ho Spc)' in which
the spaces which are domains are cofibrant and the spaces which are
targets are fibrant, the maps in the diagram will be homotopy classes
of maps. Okay, now that we understand the objects, let's consider the
maps. A map between two objects D, E E (Ho Spc) j is, for each space
in D, a map in Ho Spc to the corresponding space in E. In general, a
map in Ho Spc will be a zigzag, but if the domain is cofibrant and the
target is fibrant, it will be a homotopy class of maps. So we can think
of a map between D and E in (Ho Spc) j as a bunch of little homotopy
classes of maps between the spaces.

So now let's see why (3.3) is equivalent to (3.2) in the case that D
and hocolim D are cofibrant and Z is fibrant. The left hand side of
(3.3) is straightforward enough: it is just homotopy classes of maps
between hocolim D and Z. For the right hand side, first note if Z is
fibrant, then AZ will be fibrant as well (that falls straight out of the
definition). So the right hand side will be exactly maps from the spaces
in D to Z that commute up to homotopy. So (3.3) tells us that if we
have maps from the spaces in D to Z commuting up to homotopy, we
can get a map from hocolim D to Z that is unique up to homotopy.
That is exactly (3.2).

Note that (3.2) is exactly the property that the colimit in the homo-
topy category would have. As it turns out, there is no colimit functor



in the homotopy category, so it is certainly a good thing that that is
not what the homotopy colimit is defined to be!

But I promised you at the beginning of the section that the homo-
topy colimit does satisfy an adjointness property similar to that of the
colimit. I just chose the wrong one. The property hocolim does have
is

(3.4) HomHoSpc(hocolim(D), Z) = HomHo(Spci) (D, A(Z))

Note that this time, the right hand Hom is taken in the category
Ho(Spc') rather than (HoSpc)f. We'll prove that the homotopy co-
limit satisfies this later on, after we've defined hocolim, but for now
let's just try to figure out what this new property means.

Let's again start by carefully sorting out what category Ho(Sp&c) is.
The objects are the same as the objects of SpcO (normal diagrams with
actual maps which commute on the nose). The morphisms are zigzags,
which, when the domain is cofibrant and the target is fibrant, we can
think of as homotopy classes of maps of diagrams. So let's pause and
think about what a homotopy class of maps between diagrams actually
is. We define a homotopy in the obvious way. First, we define D x I
to be the diagram obtained from D by crossing all the objects with I;
then, if D and E are two diagrams, we define two maps f, g: D -+
E to be homotopic if there is a map H: D x I -+ E that restricts
appropriately to f and g; finally, we use that definition of homotopy
to divide up our maps into homotopy classes. So a homotopy class of
maps between diagrams is a sort of coherent homotopy class between
the individual maps between spaces.

Now let's go back to (3.4) and start with the special case where D
and hocolim D are cofibrant and Z is fibrant so that our Homs all
become homotopy classes of maps (recall that if Z is fibrant then AZ
will be too). Then, denoting homotopy classes of maps from X to Y
by [X, Y], the property becomes

(3.5) [hocolim D, Z]sp, = [D, A(Z)]8spc

Now this looks just like the property that colim satisfies, except that
we have homotopy classes of maps instead of honest-to-God maps. A
natural thing to wonder about, then, is the behavior of colim with
respect to homotopies - does the colimit preserve homotopies itself,
i.e., is the following equation true for the colimit as well?

(3.6) [colim D, Z]sp3  = [D, A(Z)] sp~

If not, how does it fail? We know that it is not homotopy-invariant,
but that is a different issue.



Surprisingly enough, it turns out that the colimit does preserve ho-
motopies.

Proposition 3.7. Let [ , ] denote homotopy classes of maps. Then
for any cofibrant diagram DE Spcj and any fibrant space Z,

(3.8) [colim D, Z]spC = [D, A(Z)]sp8 c

Before we prove this, we will need to prove a couple of lemmas.
The first thing we will need to do is to show that (3.6) makes sense.
Homotopy is an equivalence relation only if the domain is cofibrant and
the target is fibrant. We know that D is cofibrant and Z is fibrant, but
we need to know that colim D is cofibrant as well. Fortunately, this is
true, and not too hard to prove.

Lemma 3.9. If D is a cofibrant diagram, then colim D
space.

Proof. Since the constant diagram functor A preserves
tions, this follows from statement 2 in Lemma 4.3.

is a cofibrant

trivial fibra-
O

We will also need the following lemma.

Lemma 3.10. For any diagram D E Spcj,

colim(D x I) - (colim D) x I

Proof. It suffices to show that

Homgsp(colim(D x I), Z) = Homsp (colim(D) x I, Z)

for all
taking

(3.11)

Z C Spc. This is true basically because colim and the functor
X to X x I are both left adjoints:

Homgsp(colim(D x I), Z) = Homsypc(D x I, AZ)

= Homspci(D, (AZ)')

= Homsp, (D, A(Z'))

= Homsp,(colim(D), Z')

= Homsp,(colim(D) x I, Z)

Now we are in a position to prove our proposition.

Proof of Proposition 3.7. By the universal property of the colimit, we
know that maps f, g: D -+ AZ yield maps f, : colim D -+ Z and,
going the other direction, that maps p, q: colim D -+ Z yield maps
P5, 4: D -+ AZ. Then the questions at hand are these: if f and g are



homotopic, will f and § be homotopic, and if if p and q are homotopic,
will f and 4 be homotopic?

So suppose that H: D x I -+ AZ is a homotopy between f, g: D -

AZ. We are looking for a map from (colim D) x I to AZ that restricts
appropriately to f and §. The obvious first thing to think about is
the colimit of H, H: colim(D x I) -+ Z. By the preceding lemma,
colim(D x I) = (colim D) x I, so H is also a map from (colim D) x I to
Z. The reader can verify that H restricts appropriately to f and g by
tracing through the isomorphism between (colim D) x I and colim(D x
I) outlined in the lemma above.

The proof that homotopic maps p, q: colim D -+ Z yield homotopic
maps 1, 4: D -4 AZ is similar. O

Hmm. What's happening here? I have claimed that the homotopy
colimit will satisfy the adjointness property (3.4) once we have defined
it. Furthermore, we know that (3.4) is equivalent to the adjointness
property (3.5) when D and hocolim D are cofibrant and Z is fibrant.
And we know that in that case colimit itself satisfies (3.6). This sure
makes it seem like hocolim and colim are pretty closely related on cofi-
brant diagrams. Actually, if we put all of this information together
correctly, we can conclude that they must be equal on cofibrant dia-
grams.

So let's see, in order to show that hocolim(D) = colim(D) as ele-
ments in the homotopy category, it suffices to show that

HomHospc(hocolim D, Z) = HomHospc(colim D, Z)

for all spaces Z. Letting Z' be a fibrant approximation for Z, we have

HomH spc(hocolim D, Z) = HomHosp,(hocolim D, Z')
= HomHo(,pc) (D, AZ') by (3.4)
= [D, AZ']Spcg

= [colim D, Z']spc by (3.6)
= HomHo8pc(colim D, Z)

So this tells us that when we define the homotopy colimit, we'd
better define it to be equal to the colimit on cofibrant diagrams with
cofibrant homotopy colimits. But knowing that, we actually know how
to define it everywhere, since we want the homotopy colimit of weakly
equivalent diagrams to be weakly equivalent. So we can define the
homotopy colimit of an arbitrary diagram D to be the colimit of a
cofibrant approximation D. That is exactly what we will do in the
next section.



This is actually a pretty reasonable thing for the definition to be.
After all, we commented in Section 2 that colim often behaves nicely
on cofibrant things anyway.

4. DEFINITION AND PROOF OF PROPERTIES OF HOMOTOPY

COLIMITS

We now know that we need to define the homotopy colimit of a
diagram D to be the colimit of a cofibrant approximation D. How-
ever, there is a technical difficulty with this definition: we must know
that it doesn't matter which cofibrant approximation we choose. The
following proposition takes care of that difficulty for us.

Proposition 4.1. The colimit functor preserves weak equivalences be-
tween cofibrant diagrams, i.e., if f: D -ý E is a weak equivalence of
cofibrant diagrams, then f,: colim D -± colim E is also a weak equiv-
alence.

We will need two general lemmas about model categories:

Lemma 4.2. (K. Brown) Let F: C -± D be a functor between model
categories. If F carries acyclic cofibrations between cofibrant objects
to weak equivalences, then F preserves all weak equivalences between
cofibrant objects.

Proof. Let g: X -+ Y be a weak equivalence between cofibrant objects
in C. We will find a factorization of g as g = kj where j is a trivial
cofibration and k is a trivial fibration that has a right inverse 1 that is
a trivial cofibration. Then by the two-out-of-three axiom for a model
category, F(k) will be a weak equivalence, since id = k o 1 and id and
F(1) will each be weak equivalences. So then F(g) will be a weak
equivalence as well.

Consider the map g Hid: XIIY -+ Y that is g on X and the identity
on Y. We can factor this map as

X II Y -- Z - Y

where m is a cofibration and j is a trivial fibration by MC5, the fac-
torization axiom for model categories. We can use this factorization to
get a factorization of g as g = j o m o ix, where ix is just the injection
of X into X II Y.

The factorization of g that we are looking for will be j o k where
k = m o ix. The map that we will want as a right inverse to j is the
map 1: Y -+ Z that is the composition Y - X II Y 14 Z. It is easy to
see that it is a right inverse, since j o = j o m o i = (g II id) o iy = id.



X 9

X IIgY Z Y

y id

We need only show now that k and I are trivial cofibrations. Since
X and Y are cofibrant, ix and iy are cofibrations. Since m is a cofi-
bration by assumption, then k = m o ix and 1 = mo iy are themselves
cofibrations. Since g = j o k and g and j are already known to be weak
equivalences, k is a weak equivalence. Similarly, since id = j ol and id
and j are weak equivalences, 1 is a weak equivalence.

Lemma 4.3. Suppose that F: C -- D and G: D -+ C are an adjoint
pair, so that Hom (F(X),Y) = Home(X,G(Y)) for all X E C and
Y E D. Then

1. If G preserves fibrations, F preserves trivial cofibrations.
2. Similarly, if G preserves trivial fibrations, then F preserves cofi-

brations.

Proof. Suppose G preserves fibrations. We want to show that F pre-
serves trivial cofibrations, so we want to show that if f: A -+ B is a
trivial cofibration in C, then F(f): F(A) -4 F(B) is a trivial cofibra-
tion in A), i.e., that F(f): F(A) -+ F(B) has the left lifting property
with respect to all fibrations in ?D. So let g: X - Y be a fibration in
§D. Suppose we are given the commutative diagram on the left, and
consider also the adjoint diagram on the right:

F(A) u X and A -- + G(X)

F(f) '9 f O G(g)
F(B) v_ Y B ~ G(Y)

Since G preserves fibrations, we can get a lift w: B -- G(X) in the
left-hand diagram. Thus w0: F(B) -+ X is a lift in the right-hand
diagram.

The second statement follows from a similar argument. O

Proof of Proposition 4.1. The constant diagram functor A preserves fi-
brations. Thus, by Lemma 4.3, the colimit functor preserves trivial



cofibrations, and therefore by Lemma 4.2, it preserves all weak equiv-
alences between cofibrant objects. OE

So with that fact proven, we can (finally!) define the homotopy co-
limit.

Definition 4.4. Let D be a diagram. Then hocolim(D) is defined to
be the colimit of D, where D is a functorial cofibrant approximation
to D.

Recall that any model category has functorial cofibrant approxima-
tions. We need the approximation to be functorial to make hocolim
itself functorial.

So now we have a definition. But to know that it is a reasonable
one, we need to know that it satisfies a bunch of conditions. Above all,
it had better be homotopy invariant. It had also better be the total
derived functor. We also want to know that it satisfies our adjointness
condition. Fortunately, all these things are easy to check.

Proposition 4.5. The homotopy colimit is homotopy invariant, i.e.,
if D is weakly equivalent to E, then hocolim D r hocolim E.

Proof. This falls right out of the definition. If D is weakly equivalent
to E, then

hocolim(D) = colim(D) 4f colim(E) = hocolim(E)

and we know from Proposition 4.1 that f* is a weak equivalence. O

The next thing we would like to show is that the homotopy colimit
is the total left derived functor of the colimit. But recall that a to-
tal left derived functor is not just a functor but a pair consisting of a
functor and a natural transformation. In our case, we want a natu-
ral transformation t : hocolim o 7spcj -- 78p, o colim, where 7Y8, and

aperi are the natural functors from Spc to Ho(Spc). Thus tD will be
a morphism in the homotopy category from hocolim(D) to colim(D).
Since hocolim(D) = colim(D), we can define tD = colim(pD), where
PD: D -+ D is the cofibrant approximation map.

Proposition 4.6. The homotopy colimit is the total left derived func-
tor of the colimit.

Proof. We need to show that hocolim and t have the universal prop-
erty for the total left derived functor (see Definition 1.4). So let



G: Ho(Spc5) -+ Ho(Spc) be another functor with a natural transfor-
mation s: G o Yspc --+ ,•p o colim.

Sp colim S pc

7%PCj 1 9) hocolim {Y8PC

Ho(Spc") Ho(Spc)G

Define a natural transformation s': G -+ hocolim by s'D, = SbG(pD),
where PD: D -+ D is the cofibrant approximation map. We must now
check that to s' o7yspj = s. Let D be an element of Spc&. Then we must
show that tDOS' (D) = SD (watch out- s'o-y-op• is not the composite

of two natural transformations; it is defined by (s'o oySpc)D = S7jpoj(D)).
Now

toD o s87ppe(D) = colim(pD) o s o G(p5  )

Since G is a functor, G(pf,) = G(pD)- 1 , and since s is a natural
transformation, colim(pD)osb = SDo G(PD). Thus, as we had wanted,

tD o STsp'(D) = SD o G(PD) o G(pD- 1 = SD

Adjointness is easier.

Proposition 4.7. For all spaces Z, the homotopy colimit satisfies the
adjointness property

HomHo(Spc) (hocolim D, Z) = HOmHo(Spc) (D, AZ)

Proof. Let Z' be a fibrant approximation for Z.

HomHo(8•c) (hocolim D, Z) = HomHo(Spc) (colim D, Z)

= HomHo(8pc) (colim D, Z')

= [colim D, Z']sp

= [D, AZ']spc3
= HomHo(spc)(D, AZ')

= HomHo(spcJ)(D, AZ')
= HOmHo(Spc3)(D, AZ)



As a final check to make sure that this definition has the properties
we were looking for, let's go back to one of our motivating examples.
Recall that colimits frequently work nicely when things are somehow
sufficiently cofibrant, but not in general. In particular, taking the co-
limit of the diagram

(4.8) A X

reliably gives the cofiber only if the map A - X is a cofibration. I
assured you then that the homotopy colimit of that diagram would
give you the cofiber as long as A and X were cofibrant, regardless
of whether the map is a cofibration; now that we have defined the
homotopy colimit, let's verify this.

So how do we take the homotopy colimit of that diagram? Well, we
take a cofibrant approximation and then take the colimit of that. So the
first question is how to take a cofibrant approxiation to Diagram 4.8.
We defined a cofibration in the model category on diagrams to be a
map with the left lifting property with respect to acyclic fibrations.
Yuck! It is completely unclear what such a thing would be.

It turns out that a diagram of the shape of Diagram 4.8 is cofibrant
if the spaces themselves are cofibrant and the maps are cofibrations.
This can be checked directly from the definition with some effort; there
are also explicit descriptions of all the cofibrations in the model cat-
egory on diagrams (see [2]) which will yield this particular case. Be
warned, however, that it is not true that a diagram of arbitrary shape
is cofibrant if the spaces are cofibrant and the maps are cofibrations.

So given that, we need a cofibrant approximation to the particular
Diagram 4.8. Since A and X are cofibrant, the following diagram will
do the trick:

(4.9) A --- XUf(A x I)

CA

Now we can compute the homotopy colimit of Diagram 4.8.

hocolim(Diagram 4.8) = colim(Diagram 4.9) = XUf(CA)

and this is indeed the cofiber of f.
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