
Multiplierless Decimation and Commercial

Postfiltering of a Discrete-Time Signal

by

Mark Allan Story

Submitted to the Department of Electrical Engineering and
Computer Science

in partial fulfillment of the requirements for the degree of

Master of Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1997

@ Mark Allan Story, MCMXCVII. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis

document in whole or in part, and to grant others the right to do so.

Author
Department of Electrical Engineering and Computer Science

March 14, 1997

Certified by ,...............
Anantha Chandrakasan

Assistant Professor
... .2 2is Supervisop

Accepted by
Arthur C. Smith

Chairman, Departmental Committee on Graduate Students

MAR 2 11997

Multiplierless Decimation and Commercial Postfiltering of

a Discrete-Time Signal

by

Mark Allan Story

Submitted to the Department of Electrical Engineering and Computer Science
on March 14, 1997, in partial fulfillment of the

requirements for the degree of
Master of Engineering

Abstract

This thesis, presents the design of a digital filtering system for an analog microchip. A
digital decimator is placed directly on the microchip with the analog circuitry. This
decimator is a modification of the standard Cascaded Integrator Comb decimator.
Further digital filtering is accomplished off-chip using Altera FLEX8000 PLDs. A
technique is developed to cope with delays in first-order highpass and lowpass IIR
filters. An FIR lowpass filter is modified to correct for passband attenuation caused
by the decimator.

Thesis Supervisor: Anantha Chandrakasan
Title: Assistant Professor

Acknowledgments

First I would like to thank the people of Tektronix, who made this thesis project

possible. Special thanks to Dan Knierim, who was my direct mentor. His continual

help and direction were invaluable to me throughout the project. His efforts during

my untimely completion of this thesis are especially appreciated. Thanks to Dan

Wolaver, for entrusting this portion of design work to me as a thesis project, and for

helping me during it.

Also at Tektronix, Thanks to Tim Bennington-Davis and Bob Woolhiser, for find-

ing the project and making my place in it. Thanks to Ray Veith, for his ready ear

and sound advice. Thanks to Tom Lane, for his help with troublesome software from

outside Tektronix. Thanks to Phil Schniter, for his help and direction on signal pro-

cessing issues. Thanks to Steve Blazo, for helping me see the context of the project.

And thanks to the rest of the people of Tektronix, for making me comfortable at

Tektronix and helping me to enjoy my time there.

Thanks to Professor Anantha Chandrakasan at MIT, for his help, patience, and

hard work as my thesis advisor. Thanks also to Anne Hunter, for her patience and

assistance.

Thanks to Caleb Chrome and Jeff Richardson of Altera Corporation, for their

help finding information about Altera hardware.

Thanks to my parents for making it possible for me to come to MIT, as well as to

Gramma, for her special financial help. Thanks to my whole family, for their support

throughout my stay here. Thanks to my friends in Oregon and in Boston for all of

the fun times we shared.

Contents

1 Introduction

2 Decimator Analysis

2.1 Cascaded Integrator Comb Decimators

2.2 Modification of Cascaded Integrator Comb Decimator .

2.3 Our Specific Decimator

2.4 Signal "W rapping"

3 Decimator Implementation

3.1 Chip Boundary

3.2 Unwrapping Bit Extender

3.3 Accumulators

3.4 Intermediate Stage and Decimation

3.5 Output

3.6 Carry-Chain Pipeline Slant

3.7 Control

3.8 Conclusion

4 Recursive Filters

4.1 Structure for IIR Filters

4.2 Pipelining Recursive Loops

4.3 Signal "Wrapping" Effects

4.4 Multipliers

32

.... 33

. 33

. 36

. 38

. 40

. 4 3

.. 44

.. 45

50

.. 50

. 52

. 56

.. 59

5 Implementation of Off-chip Filters 63

5.1 Summary of Altera FLEX8000 Capabilities 66

5.2 Directly Implemented Filters 67

5.3 Filters with Loop Delays 77

5.4 FIR Lowpass Filters 86

5.5 Troublesome Filters 86

5.6 Input Functions 90

6 Conclusion 92

A Unwrapping Bit Extender Optimization 94

B FIR Filter Plots 96

C MATLAB Code for FIR Filters 101

C.1 firs.m 101

C.2 remezfit.m 103

C.3 quantize.m 104

List of Figures

2-1 Structure of a K-stage CIC decimator with decimation factor M. (Scal-

ing factor (M)K ignored.) 16

2-2 Frequency response magnitude of an 6-long rectangular filter R'(Q).. 17

2-3 Frequency responses of (a) NumB() (b) DeB(Q) (c) RM'(Q) 18

2-4 A 2,1(M, w), the ratio of second-stopband aliasing to first-stopband alias-

ing, as a function of M, in the limit as w --+ 0 19

2-5 Decomposition of a 6-long rectangular filter, Frequency domain: (a)

dashed line: R'(Q), (b) dash-dotted line: R'(3M), (c) solid line: R'(Q) =

R'(Q) -R(3Q) 21

2-6 Decomposition of a 6-long rectangular filter, Time domain. (a) r [n],

(b) r'[, (c) r'[n] = r'[n] *r 22
2-7 Structure of an improved CIC decimator with K CIC stages and L

intermediate stages. Decimation factor M. 22

2-8 Comparison of typical CIC decimators with a typical improved-CIC

decimator. In all cases, decimation factor M = 6, and frequency re-

sponses are normalized to 1 at Q = 0. (a) Solid line: An improved CIC

decimator with K = 2 CIC stages and L = 1 intermediate stage. (b)

Dashed line: A CIC decimator with K = 2 stages. (c) Dash-dotted

line: A CIC decimator with K = 3 stages. 23

2-9 Frequency response (detail of first few stopbands), versus input refer-

enced frequency Q; and normalized stopband aliasing, versus output

referenced frequency w, of three candidate decimators. First stopbands

are highlighted with dash-dotted lines, and the second stopbands are

highlighted with dashed lines. Other stopbands are plotted with dot-

ted lines, and the passband is plotted with a solid line. Notice in

the stopband aliasing plots that the stopbands have been normalized

by dividing by the passband response, to account for later filters that

correct passband attenuation. 25

3-1 Partition of the decimator between the analog chip and PLDs 33

3-2 Straightforward unwrap extender implementation. XO..X13 are data

input signals, UES8..UES13 are control signals, and YO..Y26 are data

output signals. 35

3-3 Improved unwrap extender implementation. XO..X13 are data input,
UES8..UES13 are control signals, and YO..Y26 are data output. . . . 37

3-4 Implementation of the three accumulators. 38

3-5 Implementation of the intermediate stage and the decimation 39

3-6 Timing diagram for intermediate stage control signals, with M = 12.

Both signals are shown asserted high, that is, a high signal enables the

register or makes the latch transparent. 39

3-7 M ultiplexor circuit.42

3-8 Overall circuit 47

3-9 Timing diagram for control signals when M = 16. 48

3-10 Timing diagram for control signals when M = 12. 48

3-11 Timing diagram for control signals when M = 4. 48

3-12 Timing diagram for control signals when M = 2 49

4-1 Direct Form structures to implement equation 4.1 51

4-2 Alternate structures to implement equation 4.2 51
4-3 IIR filter structure, without extra delays in the large loop. 53

4-4 Modified IIR filter structure, with extra delays in the large loop. . . . 54

4-5 Sum of powers of two multiplier forms using two adders. (a) multiplies

by 2-'(1 ± 2-m ± 2-"). (b) multiplies by 2-'(1 ± 2-m)(1 2-n). . . . 62

5-1 Filtering System. 64

5-2 Simplified timing diagram for Altera FLEX8000. 67

5-3 IIR filter structures, without pipelined loops, including coefficient mul-

tipliers. "Zero pad" modules add zeros onto the LSP, "sign extend"

modules add bits identical to the sign bit onto the MSP, and "truncate"

modules truncate the LSP. 69

5-4 Maximum Clock Frequency, as a function of Ab, using the circuit with

no extra loop delay elements. The solid line represents an A-2 speed

grade FLEX81188, and the dashed line represents an A-3 speed grade

FLEX8820. 76

5-5 IIR filter structures with pipelined loops, including coefficient multi-

pliers. "Zero pad" modules add zeros onto the LSP, "sign extend"

modules add bits identical to the sign bit onto the MSP, and "trun-

cate" modules truncate the LSP 78

5-6 Maximum Clock Frequency, as a function of Ab, for an adder with

input from the same row. The solid line represents an A-2 speed

grade FLEX81188, and the dashed line represents an A-3 speed grade

FLEX8820. 80

5-7 IIR filter structures with pipelined loops and accumulators, including

coefficient multipliers. "Zero pad" modules add zeros onto the LSP,

"sign extend" modules add bits identical to the sign bit onto the MSP,

and "truncate" modules truncate the LSBs. 82

5-8 Maximum Clock Frequency as a function of Ac, for an adder with an

input from a different row. The solid line represents an A-2 speed

grade FLEX81188, and the dashed line represents an A-3 speed grade

FLEX8820. 84

MHz data

B-2 Frequency

MHz data

B-3 Frequency

MHz data

B-4 Frequency

MHz data

B-5 Frequency

MHz data

B-6 Frequency

MHz data

B-7 Frequency

MHz data

B-8 Frequency

rate.

response and passband detail of the FIR filter for the 8.448

rate. Includes the effect of decimator passband attenuation.

response and passband detail of the FIR filter for the 34.368

rate. Includes the effect of decimator passband attenuation.

response and passband detail of the FIR filter for the 51.84

rate. Includes the effect of decimator passband attenuation.

response and passband detail of the FIR filter for the 139.264

rate. Includes the effect of decimator passband attenuation.

response and passband detail of the FIR filter for the 155.52

rate. Includes the effect of decimator passband attenuation.

response and passband detail of the FIR filter for the 622.08

rate. Includes the effect of decimator passband attenuation.

response and passband detail of the FIR filter to be used

with the 250 kHz highpass filter in the 622.08 MHz data rate, cascaded

with that filter. Includes the effect of decimator passband attenuation

and the 250 kHz IIR filter.

97

97

98

98

99

99

100

100

5-9 Filter to correct ripple of the 400kHz lowpass filter for the 44.736 MHz

data rate. This implements the impulse response h[n] = 6[n - 5] -

Em Er=l i6[n- m-5] -hfix[n- 5]. Here, m = (2-5)(1 + 2-1+2 - 4)

0.0489. The portion of the circuit below the dashed line should be

placed on the same row...........................

5-10 Input functions: Three first-differencers complete the decimation, and

a first-differencer followed by an accumulator "unwraps" the input by

r bits.....................................

A-1 A single bit of a first-differencer followed by an accumulator

B-1 Frequency response and passband detail of the FIR filter for the 2.048

List of Tables

2.1 Chosen decimation rates 27

2.2 Minimum By required by each data rate. Because of implementation

details to be explained in section 3.5, values for VMSB in parentheses,

where given, should be used instead of the ones given by the formula. 30

3.1 Output pins. Note from the 51.84 MHz rate that no more than 21 pins

are needed for any data rate. 41

3.2 Control signals which do not vary with time. 45

4.1 All possible coefficients which may be realized with two adders, while

increasing the data path by no more than 8 bits. The maximum per-

centage error from such a coefficient to the number halfway between it

and the previous coefficient is also given. Thus the maximum possible

error between any desired coefficient and its implementation is 1.734%. 61

5.1 Filters to be implemented. 64

5.2 Timing parameter values for FLEX8820 and FLEX81188 68

5.3 Filters which may be implemented without adding delay elements in

the loop, using FLEX8820s in the A-3 speed grade. The data path

width b is 16 bits. 74

5.4 Filters which may be implemented without adding delay elements in

the loop, using FLEX81188s in the A-2 speed grade. The data path

width b is 24 bits. Coefficient Implementation, frequency error, and

Ciir are the same as in the previous table 75

5.5 Filters which may be implemented with k = 3 delay elements in the

loop, using FLEX8820s in the A-3 speed grade. The data path width

b is 16 bits. Boldface indicates a missed specification. 80

5.6 Filters which may be implemented with k = 3 delay elements in the

loop, using FLEX81188s in the A-2 speed grade. The data path width

b is 24 bits. Coefficient Implementation, frequency error, ripple, and

Ciir are the same as in the previous table. Boldface indicates a missed

specification 81

5.7 Filters which may be implemented with k = 4 delay elements in the

loop, using FLEX8820s in the A-3 speed grade. The data path width

b is 16 bits. Boldface indicates a missed specification. 85

5.8 Filters which may be implemented with k = 4 delay elements in the

loop, using FLEX81188 chips in the A-2 speed grade. The data path

width b is 24 bits. Several coefficient implementations, and therefore

frequency error and ripple, have changed from the previous table. Ciir

is the same as in the previous table, however. Boldface indicates a

missed specification. 85

5.9 Symmetric FIR filter coefficients. Cfir = O a3 gives the scale con-

stant for each filter 87

5.10 Filters implemented with rounded coefficients. 88

5.11 FIR filter coefficients for use with the 250 kHz highpass filter for the

622.08 MHz base data rate. 89

Chapter 1

Introduction

This thesis presents the design of a digital filtering system for the output signal of a

microchip being designed by Tektronix, Inc. This signal may have any of ten sample

rates, ranging up to more than 600 MHz. The signal must be filtered to isolate two

frequency bands: a "bandpass" frequency band, and a "lowpass" frequency band at

very low frequencies to measure long-term drift. The user may wish to examine both

bands simultaneously. Part of the system will be implemented on the chip itself, and

part of it will be implemented in Altera FLEX8000 Programmable Logic Devices.

This signal has the unusual property that it is unbounded. However, its first dif-

ference is bounded, i.e. the difference between one sample and the previous sample

is limited. Since we know that a sample value may not differ by more than a certain

limit from the previous sample value, we may represent the signal with a finite num-

ber of bits. The filters must be able to filter the unbounded signal, given its finite

representation.

A sample rate above 600 MHz is much too fast for reasonable digital filter imple-

mentations, including Altera FLEX8000s as planned. However, since both frequency

bands of interest are well below the sample rate, we may decimate the signal before

the final filtering. Because of the high speed, this will have to be done on the chip.

For satisfactory performance, any aliased energy should be attenuated at least 60dB,

by the combination of the decimating filter and the lowpass filters specified in table

5.1. Furthermore, the decimator must implement multiple decimation rates, over a

wide enough range to accommodate all sample rates. The decimator must use as few

of the chip resources as possible, so that the main functions of the chip can use more

chip area and more power. We will use a modified Cascaded Integrator-Comb (CIC)

decimator, as developed by Hogenauer[5].

The CIC decimator will attenuate the passband slightly, and leave some aliased

energy at frequencies above the frequencies of interest in the two bands. For both

bands, the filters will remove aliased energy not in the passband. The CIC attenuation

will not be a problem for the "lowpass" band, because the band is narrow enough

that the attenuation is insignificant. However, the attenuation of the CIC filters is

significant in the "bandpass" band. For this band, an FIR filter will be used to both

compensate for the attenuation of the CIC filter in the passband and to simulate the

third-order butterworth lowpass portion of the "bandpass" frequency response.

Chapter 2 lays an analytical foundation for the decimator. I will examine the

Cascaded Integrator Comb decimator, and propose a modification to reduce compu-

tation. The number of integrators and combs required for this application will be

identified. Finally, the requirements imposed by the unboundedness of the signal will

be examined.

Chapter 3 outlines the circuitry necessary for the portions of the decimator which

will be implemented on the microchip. A portion of the decimator which may be

implemented in the FLEX8000 PLD hardware will be identified. Special circuitry

for dealing with the unboundedness of the signal will be developed. The amount of

hardware which will be required by the decimator will be quantified, and requirements

of control circuitry will be given.

Chapter 4 lays an analytical foundation for problems encountered with the first-

order recursive filters. The chosen structure is presented, and methods are developed

for dealing with delay elements in recursive loops and unbounded signals. The im-

plementation of coefficient multiplication will be presented.

Chapter 5 outlines the implementation of the filters in the Altera FLEX8000 ar-

chitecture. The capabilities of FLEX8000s are first summarized. Circuits for direct

implementation of the recursive filters are presented, and filters for which the sample

m

rates are too high for direct implementation are identified. Circuits for implemen-

tation of the remaining filters are developed, using delay elements in the recursive

loops. Filters which are not satisfactorily implemented by these circuits are dealt

with individually. FIR filter coefficients for emulating the third-order lowpass filters

are given. Also, the portions of the decimator which were not placed on the microchip

are implemented.

Chapter 2

Decimator Analysis

The on-chip decimating prefilter required must have very low complexity so that it

may be implemented on the same chip as the analog functions. At least 60dB of

stopband attenuation is required. However, because a lowpass filter with a cutoff

frequency no higher than about w, ' will be required on the output, we have a

very wide "don't-care" band of about 4 < w < -F in which aliasing is acceptable

on the output of the decimator. Thus the decimator filter may have a series of

wide "don't-care" bands of 2N + - < < 7-r + Z, where M is the decimation

rate. (Throughout this paper, (2 will denote discrete-time frequencies of the input

signal, and w will denote discrete-time frequencies of the decimated output signal.)

Furthermore, FIR filters must be used for higher cutoff frequencies, so the filters may

be designed to compensate for modest passband attenuation which may be caused

by the decimator. The IIR lowpass filters used (with a few exceptions which will be

dealt with later) have much lower cutoff frequencies. So some passband attenuation

is acceptable, except at very low frequencies. Lastly, the decimator should work for

a wide range of decimation rates, specifically 2 < M < 16.

The Cascaded Integrator Comb (CIC) decimator introduced by Hogenauer [5] fits

these specifications very well. Only a handful of adders and registers are required to

implement such a decimator. Furthermore, the decimation rate may be changed by

simply changing the downsampling rate: the structure of the filter does not need to

be changed. The trade-off for the simplicity is a narrow stopband (which requires

-- K Integrator stages -- (-- K comb stages --

Figure 2-1: Structure of a K-stage CIC decimator with decimation factor M. (Scaling
factor (1)K ignored.)

This has the same frequency response, referenced to the high sample rate fs, as

K cascaded M-long rectangular filters. The M-length rectangular filter, which will

be referred to as rM[n], is:

M-1

rT[n] = (U[n] - uf[n- M]) = M 6(n - k)
k=0

The frequency response, which will be referred to as RM (Q), is:

RM(Q) = sin(1M) e-j9(M-1)
sin(Q)

Because it is more convenient for the analysis of the decimator to normalize frequency

responses to unit magnitude at Q = 0, we will also define r'[n] = yrM[n] and

wide "don't-care" bands) and significant passband attenuation, both of which are

acceptable. Thus the CIC decimator is a good starting point for this decimating

prefilter. However, careful analysis reveals a way to improve the performance of a

CIC decimator.

2.1 Cascaded Integrator Comb Decimators

A K-stage CIC decimator with decimation rate M consists of K "integrator" stages

operating at the high input sampling rate fs, followed by an M-sample downsampler,

followed by K "comb" stages operating at the low output sampling rate L . See figure

2-1.

I

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Figure 2-2: Frequency response magnitude of an 6-long rectangular filter R'(Q).

Figure 2-2 illustrates the frequency response magnitude of the 6-long rectangular

filter R'(Q). Note that the zeros fall at Q = 2iN (1 < N < M - 1), the centers of the

stopbands of the decimator. We have some output passband w,, which is small with

respect to 7r for practical CIC decimators. Thus the passband of R'(Q) is IpI < • ,

and the stopbands are 2,N-wp < s < 2irN+wp If one rectangular filter providesM - - M

insufficient stopband attenuation, we can cascade K rectangular filters. This K-stage

CIC filter frequency response magnitude is simply I(R'(D))KI.

We may decompose R' (D) into the response due to the numerator,

NumrB() = sin(MQ)e -j Q(m2-)

the response due to the denominator,

1 1

DenB(Q) M sin(' Q)

and a linear phase term with magnitude 1 at all frequencies.

Figure 2-3 illustrates this for a 6-long rectangular filter. To examine the aliasing

at the decimated frequency w due to the Nth stopband, we evaluate !R'(Q)I at

R'r(Q) = nRme(Q).

Frequency Response Magnitude

Frequency Response Magnitude.^2

Figure 2-3: Frequency responses of (a) NumB(Q) (b) (c) R1'(Q)

S= 2rN + ± , with -7r < w < 7. Note that the magnitude response at a given

frequency w due to the numerator, INums(Q) = | sin(-FN +), is the same for all

N. Therefore, The ratio of aliasing at w from the Nfh stopband to the aliasing at

w from the NJh stopband is the ratio of the responses to due to the denominators.

Therefore,

IR1(Q = 27N 1 w > IR'(= 2N 2

exactly when
rTN1 w .(N 2 w

Isin(+)I < sin(+)IM 2M1 M 2M

But since IDenB(Q)| = M sin !Q is monotonically increasing for 0 < Q < 7, this

implies that N1 < N2 for positive frequency stopbands (i.e. N 1,2 < 1M and -7 <

w < 7, or N1,2 = M and -r < w < 0). This tells us that for a given w, the greatest

aliasing comes from the lower frequency stopbands (i.e. lower N). So the aliasing

from the first stopband (N = 1) is always the greatest. This is the main result of

this section. (The frequency response with N=0 is of course greater, but this is the

passband.) Furthermore, the aliasing from the second positive-frequency stopband

(when it exists, i.e. for M > 4) is always the next greatest. So we only need to

compare the first stopband to the second stopband to see how much worse the first

I

.0

C

Ca
-1

"&
1

1

0 5 10 15 20
M

Figure 2-4: A 2 ,1(M, w), the ratio of second-stopband
ing, as a function of M, in the limit as w -+ 0.

25 30

aliasing to first-stopband alias-

Figure 2-4 shows that A2,1(M, w) increases monotonically with increasing M for

small w. It is easy to show that A2,1(M,w) increases with Iwl (for all M and Iwl < 7r).

So one stage of a CIC decimator always attenuates other stopbands by at least a factor

of V2 more than the first stopband. For larger M, other stopbands are attenuated

by about a factor of 2 more than the first stopband. For a K-stage CIC decimator,

19

stopband is.

The ratio of the first-stopband aliasing to the second-stopband aliasing is

sin(2 -)A 2,1(M,w) = M 2M

sin(M 2M)

For M = 4, this reduces to

sin (E - D) 2 cos _ 2
sin(f - f) v2(cos 0 - sin s) V/(1 - tan s)

For small w, A 2 ,1(M, w) e v, and specifically A2,1(M, w) > V2. As M -+ c,

27r W 4i - w
A2,1(M,) M 2M =

7r 02 27" --
M 2M

We see that for small w, A 2,1 (M, w)) 2, and specifically A 2,1(M, w) > 2.

the other stopbands are attenuated by a factor of at least (Jv)K more than the

first stopband, and by about 2K for larger M. Thus the first stopband will often be

significantly worse than the other stopbands. This suggests that the performance of

a CIC decimator could be enhanced by attenuating the first stopband.

2.2 Modification of Cascaded Integrator Comb

Decimator

The previous section showed that the first stopband could be significantly worse than

the others. This section presents a way to improve the performance of the first stop-

band using less hardware than would be required to improve the CIC performance by

simply using a higher order CIC decimator. This method requires that the decimation

rate M be divisible by 2.

Suppose then that M is divisible by two. Then

R(sin(M) e M--l) sin(1 M) sin(MQ)R() =M2 --Q) 2 M 12 sn3T
M sin() M sin(Q) 2 sin(e1_)

RI (Q) = RI (Q) -RI(M(Q)
2 2

or, in the time domain,

1M-1 M1S2 2n
rM[n] = M O E 6in - k]]M :60 - k] r[

r [n] = r. [n] r[[2n
2

where r-' [-] is sloppy notation for

2n 1 M
'[M = (6[n] + • [- 2

to emphasize that r' [~ is a 2-long rectangular filter with M -1 zeros inserted between

the taps. Figures 2-6 and 2-5 illustrate this in the frequency domain and the time

domain, respectively, for M = 6. Notice that R'(hMQ) puts zeros at odd-numbered

stopbands, while R'M (Q) puts zeros at even-numbered stopbands. Therefore, R'(2MQ)
2

is responsible for almost all of the attenuation in the first stopband. Since we wish

to attenuate the first stopband, we will look at R'(mQ). For notational convenience,

I will define gy[n] = r'[2-, gM[n] = 2g Y [n], G' (Q) = R'(MQ), and GM(Q) =

2GF (Q).

Frequency Response Magnitude

100

10-

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Figure 2-5: Decomposition of a 6-long rectangular filter, Frequency domain: (a)
dashed line: R'(Qt), (b) dash-dotted line: R'(3Q), (c) solid line: R'(Q) = R'(Qt) •
R' (3Q)

Notice in figure 2-6 that the filter gM[n] has only two non-zero coefficients, both

of which are 1. Therefore only one adder is required to implement this filter. Fur-

thermore, because the nonzero coefficients are ! samples apart, we may decimate by

2M ahead of the filter. Therefore only one register is needed to implement this filter,

which becomes a 2-long rectangular filter.

Recall that each CIC stage requires two adders and two registers. Therefore, gM[n]

provides almost as much first-stopband attenuation as one extra CIC stage (i.e. one

integrator stage and one comb stage), while using about half as much hardware. This

(a)

0.

0.

0 2 4 6 0 2 4 6 0 2 4 6

Figure 2-6: Decomposition of a 6-long rectangular filter, Time domain. (a) r' [n], (b)
r1, (c) r' [n] - 1r [n] * r [].

suggests a design procedure for improving CIC decimators. The improved decimator

should use the minimum number of CIC stages, K, to attenuate the second stopband

to specifications. This CIC filter should then be cascaded with the minimum number

of intermediate GM(Q) stages, L, to attenuate the first stopband to specifications.

The improved decimator is shown in figure 2-7. Figure 2-8 compares an improved CIC

decimator with K = 2 CIC stages and L = 1 intermediate stage to CIC decimators

with K = 2 stages and K = 3 stages.

<- K Integrator stages --) - L intermediate stages --- <- K comb stages -

Figure 2-7: Structure of an improved CIC decimator with K CIC stages and L
intermediate stages. Decimation factor M.

Notice that this is equivalent to a multistage decimation technique. If we use K

cascaded RM (Q) filters, decimate by ý, use K + L GM(Q) filters, and decimate by

2, then this decimator filter will have the same frequency response as our improved

CIC decimator. We used more filtering in the final decimation stage than in the

others because the final decimation stage always has the tightest requirements for

filters [3]. However, because of the CIC filter structure, we were able to combine K

RM (Q) filters and K GM(Q) filters into K RM(Q) filters when implementing them.

These observations suggest that we decimate using more than 2 stages, splitting

(

CIC and Improved CIC Normalized Frequency Response Magnitudes

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Figure 2-8: Comparison of typical CIC decimators with a typical improved-CIC deci-
mator. In all cases, decimation factor M - 6, and frequency responses are normalized
to 1 at Q - 0. (a) Solid line: An improved CIC decimator with K = 2 CIC stages
and L = 1 intermediate stage. (b) Dashed line: A CIC decimator with K = 2 stages.
(c) Dash-dotted line: A CIC decimator with K = 3 stages.

R. (Q) into R (Q) and Ga (Q). We would then use K cascaded RM (Q) stages,

K + J Gm (Q) stages, and K + J + L GM(Q) stages. However, J stages of Gm (Q)

2and GM(Q) require 2 adders each, while RM (Q) implements G m(Q) and GM(Q) as
well as Rm (Q) simultaneously using only 2 adders. So it is best to use only 2-stage

decimation.

Another idea would be to use a more complex filter in place of L stages of GM(Q).

However, because of the simplicity of RM(Q) that implements the other stages, the

second stopband will not be attenuated sufficiently to require the use of a more

complex filter. Furthermore, because the filter would be implemented between the

integrator and comb stages, complex filters would cause register growth problems.

/

2.3 Our Specific Decimator

The practical limit for the speed of the IIR filters in Altera FLEX8000 hardware

was found to be near 45 MHz. Therefore all signals need to be decimated below 45

MHz by the on-chip decimator. We will see in chapter 5 (see table 5.1) that the

highest-frequency passband cutoff will be the 5 MHz lowpass filter for the 622.08

MHz data rate. Decimating by 16 gives an output frequency of 38.88 MHz, which is

acceptable for the Altera hardware. This leaves the 5 MHz lowpass filter cutoff at

w = 2r 5MHz = .257. -r. Therefore, the decimator must be able to decimate by 16,

while keeping aliasing 60 dB below the passband for a stopband width of .257 -7.

Figure 2-9 demonstrates the performance of three candidate decimators: A CIC

decimator with K = 4, a CIC decimator with K = 3, and an improved CIC decimator

with K = 3, L = 1. Each has decimation factor M = 16. On the left is a frequency

response plot for each decimator showing detail of the first several stopbands. The

frequency response is plotted versus Q, the radian frequency with respect to the high

input data rate. The passband is represented by a solid line, while the first and

second stopbands are highlighted with dash-dotted and dashed lines, respectively.

Other stopbands are shown by dotted lines.

On the right is a stopband aliasing plot for each decimator, depicting the pro-

portion of aliased response to frequencies in the stopbands to the response of the

passband. The output of the decimator will be passed through an FIR filter which

will correct stopband attenuation thus amplifying signals in the stopband aliased to

the same frequency. Therefore, it is insufficient simply to guarantee that the decima-

tor frequency response attenuates the stopband by 60 dB. Instead, we must divide

the stopband response at the decimated radian frequency w by the passband response

at that frequency. So in these plots, each stopband aliasing response is normalized

by dividing by the passband response. Again, the first and second stopbands are

highlighted with dash-dotted and dashed lines, respectively. Note that there are two

lines for each stopband in the plot. The greater one corresponds to the response of

the left side of the positive stopband, and therefore, by symmetry, the response of

CIC Frequency Response; K=4

0.1 0.2 0.3 0.4 0.5QJTCC
CIC Frequency Response; K=3

I

I .
\.I .

I .I !I. I \ "| 1 · ":I II

0 0.1 0.2 0.3 0.4 0.5
Qj/r

100

10- 1

10- 2

10-3

10-4

10
- 5

0 0.2 0.4 0.6
0/er

CIC Stopband Aliasing; K=3

10- 1

10-2

10 - 3

10-4

10'
- 5

Improved CIC Freq. Response; K=3, L=1

0.1 0.2 0.3 0.4
./r

0 0.2 0.4 0.6
O)/R

0.8 1

Improved CIC Stopband Aliasing; K=3, L=1

100

10- 1

10-2

10 - 3

10
- 4

10r
- 5

0.5 0 0.2 0.4 0.6 0.8
(0/7r

Figure 2-9: Frequency response (detail of first few stopbands), versus input referenced
frequency Q; and normalized stopband aliasing, versus output referenced frequency
w, of three candidate decimators. First stopbands are highlighted with dash-dotted
lines, and the second stopbands are highlighted with dashed lines. Other stopbands
are plotted with dotted lines, and the passband is plotted with a solid line. Notice in
the stopband aliasing plots that the stopbands have been normalized by dividing by
the passband response, to account for later filters that correct passband attenuation.

I .

I:

I..1

0

100

10- 1

10- 2

10- 3

10- 4

1 n
- 5

100

10- 1

10-2

10-3

10-4

10
- 5

/

/"

// - / /~~ ~ ~~~ .. .-..:; :

/// /) ,, ,,~ ~~ ~~:... : ."'
.11 // / '"' " " " """'" ':: " "

//

I, /

I,

0-1

10-2

10-3

10
- 4

1 0
- 5

I \

Il

II ,I

I i'

0

/ , ..

)/ ' . -'{ ! .:

. . . .

'',7
2 ::~·

/

CIC Stopband Aliasing; K=4I

-

L

the right side of the corresponding negative stopband. The lesser line for a given

stopband corresponds to the right side of the positive stopband and the left side of

the corresponding negative stopband.

For convenience in analyzing the decimators, I have placed an "x" to mark the

specified limit: that the stopbands should be attenuated 60 dB below the stopband

at w = .257 - -. The CIC decimator meets this specification with K = 4, but not

with K = 3. However, note that the second stopband does meet the specification

with K = 3. So we try using an improved CIC decimator with K = 3, L = 1. This

does meet the specification. We will choose the improved CIC decimator with K = 3,

L = 1, since it requires less hardware.

To insure that other filters don't require more Altera FLEX8000 hardware than

is necessary to implement the 622.08 MHz data rate, we will want to use no more

FIR filter taps for the other filters than we use for the 622.08 MHz data rate. The

number of filter taps required tends to increase with decreasing transition band width

[3]. The transition band width is proportional to M:

Af
Aw = -• 27rM

fr

where Aw is the decimated discrete-time transition band width, Af is the continuous-

time transition band width resulting from the third-order lowpass filter, and fr is the

data rate before decimation. Therefore, too small a value for M may increase the

number of filter taps required.

However, w, must also remain low enough so that no aliasing occurs, and w, is

also proportional to M.

wC = - 27rM
fr

Therefore, too large a value for M will result in excessive aliasing in the decimator.

Thus we have a tradeoff for M. We must keep M large enough that wc is not

much less than .257. 7 for other data rates, so that FIR filters with a similar number

of filter taps may be implemented for other data rates. But we must keep M small

enough that an improved CIC decimator with K = 3 and L = 1 will be adequate.

We expect the decimator to have similar stopband attenuation at other decimation

rates, so if w, is not much greater than .257 - 7, the decimator should be adequate.

Table 2.1 shows decimation rates that were found to work well. All w, are within the

passband, so a stronger decimator is not required, and w~ is high enough such that

no more FIR filter taps are required. Notice that the decimation rates were chosen

primarily to place w, in the right place. This often resulted in decimated data rates

much lower than the practical limit of about 45MHz for the Altera hardware.

Input Lowpass Decimation Output Passband Lowpass
Data Rate Cutoff f, Rate M Data Rate Width Cutoff w~

(MHz) (kHz) (MHz) (F) (7r)

1.544 N/A 1 1.544 N/A N/A
2.048 200 1 2.048 N/A .195
6.312 N/A 1 6.312 N/A N/A
8.448 400 2 4.224 .224 .189

34.368 800 4 8.592 .254 .186
44.736 N/A 1 44.736 N/A N/A

51.84 400 12 4.32 .281 .185
139.264 3500 4 34.816 .254 .201

155.52 1300 12 12.96 .281 .201
622.08 5000 16 38.88 .281 .257

Table 2.1: Chosen decimation rates.

2.4 Signal "Wrapping"

The input signal x[n] which we want to decimate and filter is a type of random walk

process. That is, as n grows, x[n] will drift far from x[0]. Thus x[n] is unbounded, and

may not be represented directly as a twos-complement integer using a finite number

of bits. Instead, only the least significant Bx bits of x[n] are available. We will refer

to this as xs8p[n]. However, it will be shown that if

Ix[n] - x[n - 1]l < 2 8 "- (2.1)

x[n] may be reconstructed unambiguously from x,,s[n], except for a constant offset

k. This offset is unimportant for the final output. Intuitively, what is happening

is that xisp[n] "wraps around" from positive to negative values whenever x[n] grows

by 2 B"- 1 , or from negative to positive values whenever x[n] decreases by 2 B. - 1 As

long as |x[n] - x[n - 1]1 < 2 B -l , we can determine whether it "wrapped" upwards

or downwards.

Let x'[n] = x[n] - x[n - 1]. Then we have

n
x[n]= [0]+ E x'[k]

k=l

so we may reconstruct x[n] from x'[n] (to within a constant offset) using an accumula-

tor. Furthermore, since x[n] and therefore x'[n] are integers, x'[n] may be represented

in twos-complement form using Bx bits, if |x'[n] < 2BX-1. Under twos-complement

addition and subtraction, only the least significant Bx bits of x[n] are needed to cal-

culate the least significant BX bits of x'[n]. Therefore xlsp[n] - x1,p[n - 1] = x'[n] =

x[n] - x[n - 1]. Thus we may reconstruct x[n] from xpp[n] (to within a constant

offset) by taking the first difference and accumulating the result; i.e.

x[n] = [O] + (Zsp[k] - [k - 1])
k=l

Therefore if 2.1 holds, xlsp[n] specifies x[n] to within a constant offset x[0].

Now suppose we want to decimate x[n] by M. Let yf[n] be the filtered signal

x[n] * h[n] with h[n] being an FIR filter with integer coefficients. Then y[n] = yf[Mn]

is the filtered and decimated signal. However, x[n], yf[n], and y[n] may not be

represented using a finite number of bits. So we wish to filter and decimate xzS,[n] in

such a way that yields y1sp[n], the least significant By bits of y[n]. As above, this may

be used to reconstruct y[n]. Thus we must find By such that |y[n] - y[n - 1]| < 2B - 1

We have that

y[n]- y[n - 1]= (x[k] - [k - M])h[n - k]
k=-oo

00

Iy[n] - y[n - 11 < 1 I(x[k] - x[k - M]). Ih[n - k]l
k=-oo

with equality when the sign of x[k] - x[k - M] is the same as the sign of h[n - k].
From 2.1 we have

|y[n] - y[n - 1] < M -2B x - 1 Ih[k]l
k=-oo

Therefore,

By = [B, + log 2(M) + log2(Ih[k])] (2.2)
k=-oo

The first term is the number of input bits, and the third term is due to the filter gain.

The second term is required for resolving "wraps" when we are decimating a signal,

since the input signal might "wrap" more than once.

This tells us that the following method may be used for generating ylsp[n]. First,

generate x[n] from xlsp[n] by taking the first difference and accumulating the result.

Then, conceptually filter and decimate x[n] with ideal hardware capable of handling

arbitrarily large values of x[n] to produce y[n]. Finally, discard all but the least

significant By bits of y[n], yielding ylsp[n]. Also discard all hardware used to calculate

discarded bits of y[n]. Since our decimator uses only adders and registers, only the

least significant By bits of the adders and registers are necessary to calculate y',p[n].

Therefore, the total filter we need to implement consists of a Bx-bit first-differencer, a

B,-bit accumulator, and an improved-CIC decimator with By-bit adders and registers.

Now we must determine By in terms of Bx, K, L, and M. The Z-transform of

rM[] is RM(z) M - -, while the Z-transform of gM[n] is GM(z) 1 + z 2

Therefore the Z-transform of the whole filter is

M-1

H(z) = (RM(z))K(GM(z))L = (-n)K(1 + z-A)L

n=O

Then we have that

E h[k] = H(z) z=1 = MK - 2 L (2.3)
k=Since both rM[are nonnegative, h[n] is nonnegative and h[] = h[n] for

Since both rm[n] and gm[n] are nonnegative, h[n] is nonnegative and h[n] = |h[n]| for

By= [Bx + (K + 1)log2 (M) + L]

For our decimator, K = 3 and L = 1, so

By = [Bx + 41og2(M)+ 11

Table 2.2 gives Bx and By for each data rate. Note that the highest By is 27 bits,

for the 51.84 MHz data rate. Therefore the decimator must use a 27-bit high data

path.

Table 2.2:

Input rate Bx M By VMSB
(MHz)

1.544 16 1 16 1
2.048 16 1 16 1
6.312 14 1 14 1
8.448 14 2 19 2 (8)

34.368 12 4 21 4
44.736 11 1 11 1

51.84 11 12 27 18.963
139.264 10 4 19 4 (16)

155.52 10 12 26 18.963
622.08 8 16 25 16

Minimum By required by each data rate. Because of implementation
details to be explained in section 3.5, values for VMSB in parentheses, where given,
should be used instead of the ones given by the formula.

The gain of our filter, from equation 2.3, is M 3 -2. We have also added By - Bx

[4 log2 (M) + 1] bits above the MSB of the input. Therefore, calling the value of the

MSB of the decimator input to be 1, the value of the MSB of the decimator output is

2 By-Bx 2 [41og 2(M)1
VMSB M

This factor is listed in table 2.2. For the 8.448 MHz and 139.264 MHz data rates,

all n. Plugging into equation 2.2 gives

implementation details to be described in section 3.5 will require a different value for

VMSB than given by the above formula. These values are placed in parentheses in

table 2.2. The values in parentheses should be used.

Chapter 3

Decimator Implementation

As noted previously, the digital signal to be filtered has a very high sample rate, which

may be up to 622.08 MHz. This is too fast for most digital technologies. However,

the analog system producing the signal is designed for a very high-speed fabrication

process, which allows high-speed digital circuitry also. Therefore the decimator may

be placed on the same chip as the analog system.

To lower switching noise, the decimator will use differential current-mode logic

cells designed for use on primarily analog chips. Unlike common CMOS or TTL logic

families, differential current-mode logic does not support AND or OR gates with high

numbers of inputs particularly well. Instead, the best way to estimate complexity

is to count the number of logic "trees" used. One differential current-mode tree

may implement a 2:1, 3:1, or 4:1 multiplexor. A 2:1 multiplexor may be wired in a

feedback configuration to form a latch, and two of these may be cascaded to form

a flip-flop. Standard techniques use 3:1 or 4:1 multiplexors to form flip-flops which

have features such as a "clear" or "enable" input, or multiple inputs, while still using

only two trees. Alternately, one tree may implement any single-output 3-input logic

function. Since a one-bit full adder has 3 inputs and 2 outputs, a full adder may be

implemented with two trees-one to generate the "sum" output and one to generate

the "carry" output. Subtracters also require two trees per bit. Logic inverters require

no hardware in differential logic, since switching the differential signals inverts the

logic signal.

Accumulators Intermeaiate atage lrst-uillerencers

Figure 3-1: Partition of the decimator between the analog chip and PLDs.

3.2 Unwrapping Bit Extender

We determined in section 2.4 that "unwrapping" the signal could be done by taking

the first difference, and bit extending and accumulating the result, truncating at the

3.1 Chip Boundary

We see from figure 2-7 that the comb stages operate at the lower sample rate, which

is the rate the Altera FLEX8000 PLDs will use to implement the filters. Therefore

the comb stages may also be implemented on the PLDs. This will reduce the amount

of expensive on-chip area consumed by the decimator, and reduce the amount of

power the chip will have to dissipate. Note also that the intermediate stage will only

need to perform one addition for each clock cycle at the low sample rate, since the

decimate-by-two will ignore every second output of the intermediate stage. However,

implementing the intermediate stage on the PLDs would require the output pins to

operate at a faster rate, consuming more power. The output pin drivers consume

much more power than a small amount of logic. Therefore, the intermediate stage

will be implemented on the analog chip, even though the calculations could be done

at a slower rate. The three integrator stages and the unwrapping bit extender will

also be implemented on the analog chip. Figure 3-1 shows how the decimator will be

partitioned between the analog chip and the PLDs. The portion of the decimator to

be implemented on the analog chip will be covered in this chapter, and the remainder

of the decimator will be implemented in section 5.6.

Implemented On-chip Implemented on PLDs

higher number of bits. We also determined that we need to unwrap the input to a

new bit width By of 27 bits. However, recall from table 2.2 that different input data

rates which need to be decimated have different values for Bx, ranging from 8 to 14.

(Two data rates have B, = 16, but these data rates do not need to be decimated, and

therefore they do not need to be unwrapped.) Therefore the first differencer must be

14 bits high, to allow for all possible B_. However, those bits which are not used will

contain incorrect values. Therefore, we need to put a 2:1 multiplexor on input bits 8

though 13, to select whether the output of the first-differencer or the bit-extend bit

will be used as the input to the accumulator. The 6 bit signal comprising the select

inputs to the multiplexors will be called "UNWRAP EXTEND SELECT." It selects

which bits should be taken from the input and which ones should be calculated by

the unwrapping method, using a thermometer code. The resulting logic diagram is

shown in figure 3-2.

However, several trees may be saved over the diagram in figure 3-2. Notice that the

least significant B. bits of the output of the accumulator are the same as the inputs

to the first differencer, since the output is just a bit-unwrapped version of the input.

Furthermore, we will show in appendix A that the Bh carry bit of the accumulator

is the same as the inverted B h borrow bit of the first-differencer. Therefore the trees

which calculate the first Bx sum and carry bits of the accumulator are not needed,

and neither are the accumulator register trees for the least significant Bx bits. The

first Bx - 1 output bits of the first-differencer are not needed either, since they are

only used to calculate the least significant part of the accumulator, which we are not

using, and the carry signal into the most significant part, which is the same as the

inverted borrow bit. (The B th output bit of the first-differencer is used to sign-extend

the first-difference.) Since Bx varies, the most efficient way to take advantage of this

fact is to simply eliminate the sum, carry, and borrow trees we do not need when

BX = 8, the minimum.

To assure that the output of the decimator starts at the correct value, the accumu-

lator register and first-differencer register should be equipped with a "clear" signal,
which should be used to clear the registers when the chip is powered up or when the

Key:

K 1-bit full adder
(two trees)

I I IS1-bit full subtractor
(two trees)

] 1-bit flip-flop
(two trees)

1-bit 2:1 multiplexor
(one tree)

Trees generating signals with No

Connection (N.C.) not counted.

Total: 168 trees

UES8..13= UNWRAP EXTEND SELECT

Xl

XO

1 0

Figure 3-2: Straightforward unwrap extender implementation. XO..X13 are data
input signals, UES8..UES13 are control signals, and YO..Y26 are data output signals.

I I
I I

chip changes from one sample rate to another. This signal will be called "REGISTER

CLEAR." Without this signal, all output values would be offset by the initial value

in the accumulator register minus the value in the most significant 6 bits of the initial

value in the first-differencer register.

To pipeline the decimator, the output of the unwrapping bit extender will be

taken from the accumulator registers, rather than directly from the sum outputs of

the accumulator adders. Therefore we do not need extra registers to pipeline this

stage. The bottom 8 bits of the unwrapping bit extender do not have accumulator

hardware; instead the output is the same as the input. Therefore, the pipelined

output will be taken from the register already used for the first-differencer. Figure

3-3 shows the resulting circuit diagram for the first-differencer.

The 14-bit first-differencer uses 48 trees-two for each of 14 flip-flops in the reg-

ister, one for each of 13 carry signals, and one for each of the 7 most significant bits

in the difference, recalling that the 7 least significant difference bits are not needed.

The 27-bit accumulator uses 75 trees-two for each of 19 flip-flops in the register,

one for each of 18 carry signals, and one for each of 19 sum signals, recalling that

no accumulator is used for the 8 least significant bits. 6 trees are used for the 2:1

multiplexors which allow multiple values of Bx. So the unwrapping bit extender uses

129 logic trees.

3.3 Accumulators

Following the unwrapping bit extender, the decimator uses three accumulators, with

bit width By = 27. To pipeline the decimators, the output of the accumulators will be

taken from the accumulator registers, rather than directly from the sum outputs of the

accumulator adders. Because the decimator contains three first-differencers off-chip

at the decimated rate, initial values in these three accumulators will be subtracted out

of the output. Therefore, no "clear" signal needs to be placed on these accumulators

for normal chip operation. (For testing purposes, a "clear" signal may be desirable

for these registers anyway. This would not require any addtional trees.) Each 27-

Key:

1-bit full adder
(two trees)

Y26

Y14

Y13

1-bit full subtractor
(two trees)

1-bit flip-flop
(two trees)

1-bit 2:1 multiplexor
(one tree)

Trees generating signals with No

Connection (N.C.) not counted.

Total: 129 trees

UES8..13 = UNWRAP EXTEND SELECT

X1

XO

Figure 3-3: Improved unwrap extender implementation. XO..X13 are data input,
UES8..UES13 are control signals, and YO..Y26 are data output.

I I
I

bit accumulator uses 107 trees-two for each flip-flop in the register and two for each

adder bit except the top one, which does not need to generate a carry signal. The three

accumulators together use 321 trees. Figure 3-4 illustrates the three accumulators.

Key: X26 Y26

1-bit full adder
(two trees)

F 1-bit flip-flop
(two trees) Xl

Trees generating signals with No

Connection (N.C.) not counted.
xo

Total: 321 trees

Y1

YO

0 0 0

Figure 3-4: Implementation of the three accumulators.

3.4 Intermediate Stage and Decimation

The final on-chip section of the decimator implements the intermediate stage while

decimating the signal down to the output frequency. For development in earlier

sections, we decimated by M implemented a filter with impulse response 6[n]+6[n-1],

and decimated by 2. However, this is the same as implementing a filter with impulse

response 6[n] + 6[n- M], and then decimating by M. Also note that since we decimate

immediately following the filter, we only need to calculate one output value every M

clock cycles in an output cycle. Therefore there is no reason why the intermediate

stage should calculate "correct" values for the output of the filter during the remaining

clock cycles. For minimum hardware complexity, the remaining clock cycles will

calculate meaningless values.

Figure 3-5 shows a circuit for implementing this stage. First, we will use a trans-

parent latch on one input of an adder to record one of the input samples v[n] at time

no. The output of the intermediate stage for no < n < no + M is v[no] + v[n] So

Key: X26

1-bit full adder
(two trees)

FQ1 1-bit flip-flop with enable Xi(two trees)

F-• 1-bit transparent latch
S(one tree)

XO
Trees generating signals with No

Connection (N.C.) not counted.

Total: 134 trees

Y26

YI

YO

ENABLE

Figure 3-5: Implementation of the intermediate stage and the decimation.

CLOCK

LATCH

DECIMATOR
ENABLE

Figure 3-6: Timing diagram for intermediate stage control signals, with M = 12.
Both signals are shown asserted high, that is, a high signal enables the register or
makes the latch transparent.

when n = no + M, the output is v[no] + v [no + -], which is what we want. So during

each M clock cycles, the latch should be made transparent during the first half only

of clock cycle 0, latching the first needed sample when it is available. The decimating

register should be enabled during clock cycle M, when the second needed sample is

available. Figure 3-6 presents the sample timing diagram for these control signals for

the case of M = 12. All devices are 27 bits wide. The latch uses 27 trees, the adder

uses 53 trees, and the output register uses 54 trees, for a total of 134 trees.

3.5 Output

Because of the gain of the decimation filter, for high decimation rates M, the output

bit width is greater than the signal-to-noise ratio justifies. Therefore we wish to lower

the width of the data path by truncating several of the least significant bits. We will

model this truncation as adding uncorrelated white noise with mean [p = 2Bt-1 and

variance 0 2 = 1-22Bt, where Bt is the number of bits truncated. We will allow

truncation as long as the standard deviation of the noise added to the final output

is no more than half of the standard deviation of the noise at the output due to the

roundoff inherent in digitizing the signal we are decimating.

Output pins and output drivers are costly compared to both off-chip and on-chip

circuitry. Therefore, we will perform truncation in such a way to minimize the data

path width going from the chip to the Altera PLDs. The transfer function from the

output pins to the output of the decimator is the convolution of the three comb filters,

which is

hcombs[n] = 6[n] - 36[n - M] + 36[n - 2M] - 6[n - 3M]

The variance gain of this transfer function is

00

Sh ombs [n] = 20
n=-oo

Therefore the noise variance at the output caused by truncation at the output pins is

12 = 20. ---22Bt

Zero bits are truncated at the input, so the noise variance at the output caused by

inherent noise at the input is due to the variance gain of the total transfer function.

This gives
2 00

gout - 12 20 h2[n]
n= -oo

For the standard deviation of the noise added by the truncation to be no more than

half of the standard deviation of the inherent noise at the input,

1 1 1
20 - 2 2B <--1-2° h2[]

12 - 4 12 n= -oo

which gives us

The number of output

significant bit required

Table 3.1 shows that 21

1 1 0
Bt < 2log2(E h2[n

n2 80=-co-

pins required by any given data rate is By - Bt, the most

minus the number of LSBs truncated at the output pins.

output pins are needed for the 51.84 MHz data rate.

Input rate B,, M By Bt B-yBt
(MHz)

1.544 16 1 16 0 16
2.048 16 1 16 0 16
6.312 14 1 14 0 14
8.448 14 2 19 0 19

34.368 12 4 21 2 19
44.736 11 1 11 0 11

51.84 11 12 27 6 21
139.264 10 4 19 2 17

155.52 10 12 26 6 20
622.08 8 16 25 7 18

Table 3.1: Output pins. Note from the 51.84 MHz
are needed for any data rate.

rate that no more than 21 pins

Also note that the mean of the output caused by truncation at the output pins is

-out = 2 Bt- Z hcombs[n] = 0
n=-oo

since the transfer function of the combs puts three zeros at Q = 0. Therefore, as with

CIC decimators [5], using rounding does not have an advantage over truncation.

Since we have 21 output pins, we will use all of them for all of the data rates

(unless By < 21), and some data rates will therefore have less noise due to output

pin truncation than we decided to allow. Multiplexors will be required to shift the

output of the intermediate stage such that the most significant bit By of the output

of the intermediate stage corresponds to the most significant bit of the output pins.

Furthermore, since some data rates do not require decimation, the multiplexors will

allow the user to bypass the decimator circuitry. Note from table 3.1 that there are

4 different values of By which will require that those data rates be multiplexed such

that bit By matches the MSB of the output pins and as few LSB's as possible are

truncated.

The 8.448 MHz and 139.264 MHz data rates have By = 19, which is less than the

number of output pins. For these data rates, we will make the LSB of the decimator

output correspond to the LSB of the output pins by multiplexing as if By = 21. This

gives two additional properly unwrapped MSBs at the output. Because of this, VMSB

in table 2.2 is raised by a factor of four. This new value is placed in parentheses in

table 2.2.

We therefore need a 5:1 multiplexor for each output pin, so that the control

circuitry may choose any of the 4 values of By > 21, or the undecimated data when

M = 1. A 5:1 multiplexor requires 2 trees, and we need one for each output pin, so the

multiplexors use 42 trees. Figure 3-7 illustrates the multiplexors. A three-bit control

signal, OUTPUT MULTIPLEXOR SELECT, is connected to the select inputs of the

multiplexor to select which output bits to use.

S lect certain bits

6.. 26 ;
5 .. 25 001 Output

Decimator output 0. .26 t7 4.. 24 010 Pins

OUTPUT

Decimator input 6 SEULTIPLEXOR

Add zeros as LSB's to make 21 bits

Figure 3-7: Multiplexor circuit.

3.6 Carry-Chain Pipeline Slant

Because of the high speeds required of the decimator, it is necessary to pipeline the

carry chains in the decimator into 4 stages. Figure 3-8 illustrates the pipelining of

the entire circuit. The first stage calculates the least significant part, bits 0 through

6. The second stage similarly calculates bits 7 through 13, the third stage calculates

bits 14 through 20, and the fourth stage calculates the most significant part, bits 21

through 26. A seven-bit register is needed to initiate the pipeline "slant," and another

6 seven-bit registers are needed to realign the bits at the end of the calculation. 15

more one-bit registers are used for pipelining the carry chains. In the unwrapping

bit extender, an additional sign-extend signal is required, so 2 more registers pipeline

this signal. These 66 registers require 132 trees.

Note that the Intermediate Stage and Decimation block, described in section 3.4,

has been partitioned. An output register which is enabled only when a new value is

calculated will provide the cleanest output signal. Therefore, the decimation register

will be the last part of the decimator before the output. The pipeline "slant" will be

re-aligned before reaching the decimation register, and the output multiplexor will

also be implemented before the decimation register. Since the output multiplexor

reduces the bit width by 6 bits, 12 fewer trees are needed for the decimation register.

For one pipeline stage of the accumulators, the critical signal path begins in the

LSB (for that pipeline stage) of the register for the input or the accumulator register,

and follows the carry chain through 7 trees (6 for the fourth pipeline stage) to the MSB

(for that pipeline stage) of the accumulator register, or to the carry chain register.

The critical path of the first, second, or third pipeline stage of the intermediate stage

begins in the LSB of the input register, and follows the carry chain through 7 trees to

the MSB of the output register, or to the carry chain register. For the fourth pipeline

stage, the carry chain passes through 6 trees, and then the sum passes through 2

multiplexor trees, for a total of 8 trees. The first, third, and fourth pipeline stages

of the unwrapping bit extender are similar to the accumulators and the intermediate

stages, with critical paths passing through 7 or 6 trees in the carry chain. However,

note from figure 3-3 that the longest signal path from input bit 7 to output bit 13 of

the unwrapping extender (the second pipeline stage) passes through 9 trees, including

the multiplexor, the adder, and the subtracter.

In most cases, the critical signal path passes through 7 trees between registers. But

for the fourth pipeline stage of the accumulator and the second pipeline stage of the

unwrapping bit extender, the critical path passes through 8 or 9 trees. Fortunately, it

is possible to use faster gates for those critical signal paths than for the others. This

would be more efficient than adding extra pipeline stages.

3.7 Control

There will be some additional digital circuitry on the chip which is not part of the

decimation. It is likely that the control circuitry for the decimator may be smoothly

integrated with the other control circuitry, and therefore the control circuitry itself will

not be designed. However, this section will describe the control signals collectively.

One control signal, REGISTER CLEAR, is used to initialize the registers in the

unwrapping bit extender to zero, so that there is not an offset accumulated into the

input during the unwrap-extend. This signal should be asserted for at least one clock

cycle when the chip is powered up, or when the data rate mode is changed. Note that

the registers used for pipelining the unwrapping-extender should also be equipped

with clear inputs, which should be connected to REGISTER CLEAR.

Two control signals, UNWRAP EXTEND SELECT and OUTPUT MULTIPLEXOR

SELECT, depend on which data rate mode is chosen, and do not vary with time.

UNWRAP EXTEND SELECT is a 6-bit signal which depends on Bx, the input bit

width. OUTPUT MULTIPLEXOR SELECT is a 3-bit signal which depends on B,,

the output bit width. Table 3.2 shows the appropriate logic signals for each data rate.

The other control signals are responsible for control of the intermediate stage and

decimation. Figure 3-6 showed the proper timing for the intermediate stage without

pipelining of the carry chain, with M = 12. With pipelining, a separate latch signal

is required for each stage. Note that each latch signal is only asserted for the first

_ _i___ ___

Input rate M B, UNWRAP By OUTPUT
(MHz) EXTEND MULTIPLEXOR

SELECT SELECT

1.544 1 16 don't care 16 100
2.048 1 16 don't care 16 100
6.312 1 14 don't care 14 100
8.448 2 14 111111 19 011

34.368 4 12 111100 21 011
44.736 1 11 don't care 11 100
51.84 12 11 111000 27 000

139.264 4 10 110000 19 011
155.52 12 10 110000 26 001
622.08 16 8 000000 25 010

Table 3.2: Control signals which do not vary with time.

half of the clock cycle. The DECIMATOR ENABLE signal should be asserted M2

cycles after the latch signal for the fourth stage is asserted, since no registers were

inserted between the fourth stage and the decimation register when the carry chains

were pipelined. Figures 3-9, 3-10, 3-11, and 3-12 show the proper timing for M = 16,

M = 12, M = 4, and M = 2, respectively. When M = 1, the decimator is not

used and the input is multiplexed around to the decimation register. Therefore, the

DECIMATOR ENABLE signal should be permanently asserted, and the latch signals

may do anything.

3.8 Conclusion

On the chip, then, we will implement the unwrapping bit extender, the three accu-

mulators, and the intermediate stage, as shown in figure 3-8. The unwrapping bit

extender requires 129 trees. The accumulators require 321 trees total. The interme-

diate stage and decimation require 122 trees, including the savings of 12 trees noted

in section 3.6. The output multiplexor used 42 trees. 132 trees more are required to

pipeline the carry chains into four stages. Therefore 746 trees are required to imple-

ment the on-chip portion of the decimator. This does not include hardware which

will implement the control signals described in section 3.7.

o.

0

Inpu

LATCH LATCH LATCH LATCH

KEY: E
Unwrapping Extender Accumulator Intermediate Stage Registers Output Multiplexor

Clock

First Stage Latch

Second Stage Latch

Third Stage Latch

Fourth Stage Latch

Decimator Enable

Figure 3-10: Timing

1 2 3 4 10 12

n

diagram for control signals when = 12.
diagram for control signals when M = 12.

1234

Clock

First Stage Latch

Second Stage Latch

Third Stage Latch

Fourth Stage Latch

Decimator Enable

Figure 3-11: Timing diagram for control signals when M = 4.

fl
[]

1 2 3 4 12 16

Clock

First Stage Latch _

Second Stage Latch

Third Stage Latch

Fourth Stage Latch

Decimator Enable

Figure 3-9: Timing diagram for control signals when M = 16.

First Stage I

Second Stag

Third Stage

Fourth Stagi

Decimator E

1234

Clock YLJ]JTFVVVVV=

Latch _ - _ -

e Latch n -]

Latch _ l n - n f

e Latch - -

Enable

Figure 3-12: Timing diagram for control signals when M = 2.

I____ __

Chapter 4

Recursive Filters

The specifications require a number of lowpass and highpass filters which simulate

first-order analog filters. With a few exceptions which will be dealt with separately,

these filters have very low cutoff frequencies, relative to the sample rate. This chapter

outlines methods for dealing with problems encountered in implementing the filters.

4.1 Structure for IIR Filters

Because of the low cutoff frequencies of most of our filters, the filter structures shown

in figure 4-2 offer several advantages over direct form structures such as the ones

shown in figure 4-1. The advantages will be mentioned as they are encountered.

Performing an impulse invariance filter transformation on a first-order analog low-

pass filter yields a system function of the form

1
H(z) = 1 (4.1)1-az-l

where a = e- 2 ý , with analog cutoff frequency F, and sampling frequency F, (using

F, as the sampling frequency for the impulse invariance transformation as well). This

system function is directly implemented by the direct form lowpass structure in figure

4-1 (a). The lowpass structure in figure 4-2 (a) implements the system function

EZ- 1

H(z) 1- 11 - (1 - e)z-1 (4.2)

which is identical when a = 1 - e, except for a delay term and a multiplicative

constant. This delay term does not matter; and a registered output is preferable

anyway. The multiplicative constant does not matter either, as the instrument will

have to appropriately scale the final output.

(a) Lowpass Filter (b) Highpass Filter

y[n]

Figure 4-1: Direct Form structures to implement equation 4.1

(a) Lowpass Filter (b) Highpass Filter

y[n]

Figure 4-2: Alternate structures to implement equation 4.2

The analogous highpass filter with system function

1 - z- 1

H(z) = 1 -1 - az-

is implemented by the direct form highpass structure in figure 4-1 (b). The highpass

w[n]

I1

x[n] w[n]

(4.3)

structure in figure 4-2 (b) implements the same system function when a = 1-e. Notice

that the highpass structure in figure 4-2 (b) is identical to the lowpass structure,

except that a different node is defined as the output. Thus properties developed for

this structure apply to both highpass and lowpass forms.

Note that H(z)lz=1 = 1 for our lowpass structure in figure 4-2(a), so our lowpass

filters will have a D.C. gain of 1. However, H(z) z=- 1 = Cii, = 2 1 for our

highpass structure in figure 4-2(b), so we will need to scale the output of our filters

appropriately if E is not small enough.

4.2 Pipelining Recursive Loops

For the higher sample rates, we will see in section 5.3 that the propagation delay

along the large loop is greater than the sampling interval. Because of this, we will

have to insert delay elements into the large loop. The accumulator loop, however,

may be pipelined without inserting delays into the accumulator loop.

We will use a technique similar to standard look-ahead computation [6] to com-

pensate for the delay in our structure. However, when the cutoff frequency w, is

very small, the effect of delay in the large loop is, surprisingly, negligible. To provide

intuitive justification for this, suppose that delay is introduced into the e coefficient

multiplier in figure 4-3. Because e m w, is very small, y[n] changes very little from

sample to sample. Therefore, inserting delay should not change y[n] much. Similarly,

w[n] = x[n] - y[n] should not change much either. We will find that our intuition

holds, and the frequency response is not greatly affected when delay is inserted into

the large loop.

The difference equation for the lowpass output is

y[n] = cx[n - 1] + (1 - e)y[n - 1]

If we rewrite this as

y[n] = ex[n - 1] + y[n - 1] - cy[n - 1] (4.4)

x[n] w[n]

y[n]

Figure 4-3: IIR filter structure, without extra delays in the large loop.

then we have separated the input term, cx[n- 1], the accumulator loop term, y[n- 1],

and the large loop term, -Ey[n - 1]. The large loop contains the input adder and

the coefficient multiplier, so we may have to insert delay elements to allow time for

propagation delays.

Substituting 4.4 into the large loop term of the same equation (but not into the

accumulator loop term) yields

y[n] = ex[n - 1] - 62x[n - 2] + y[n - 1] - E(1 - E)y[n - 2] (4.5)

Now, the large loop term e(1-e)y[n-2] has an extra delay element in it. Furthermore,

the input terms may be expressed as a convolution,

Ex[n - 1] - E2x[n - 2] = E(6[n] - c6[n - 1]) * x[n - 1]

Defining e' = e(1 - E) and hfix[n] = ý(6[n] - c6[n - 1]) gives us

y[n] = hfix[n] * e'x[n - 1] + y[n - 1] - e'y[n - 2]

This difference equation may be implemented as shown in figure 4-4, with k=1, except

for an additional latency of 1. The large loop now has an extra delay element in it, so

that we can divide the large loop propagation delay into two parts. The accumulator

I

loop still has one delay. The difference is that the coefficient has changed from C to

e', and we filter the input with an FIR filter hfix[n] to correct the effects of the extra

delays. But the output of the filter is the same, except for the additional latency of

1.

x[n] E w[n]-g,

v[n]

y[n-k]

Figure 4-4: Modified IIR filter structure, with extra delays in the large loop.

Now suppose we need k extra delays in the large loop. If we repeat our strategy

of substituting equation 4.4 into the large loop term, substituting k times, we derive

k

y[n] = cx[n-1]- 2 Em-lx[n - 1] y [n) k y [n - k - 1] (4.6)
m=1

This may be expressed as

y[n] = hfix[n] * e'x[n - 1] + y[n - 1] - e'y[n - k - 1]

where E' = E(1 - E)k and

k

hfix [n] = (6[n] - (1-)m-6[n - m])
m=1

Figure 4-4 implements this, except for an additional latency of k.

This strategy will also work for the highpass output. Note that y[n] depends only

on the signal labelled v[n]. Specifically, from figure 4-3,

OO'

y[n] = E v[n]
n=O

Since we showed above that the lowpass output did not change except for an additional

latency of k, and since the delay of k lies between v[n] and y[n-k], v[n] did not change

either. From figure 4-3, we see that v[n] = ew[n]. But working backwards from v[n],
we see that the highpass output is ,ii, not w[n] = . Therefore, the highpass

output of a filter with extra delay elements in the large loop and correction filter

hfiz[n] is cw[n]. Therefore, this strategy also works for the highpass output, but the

highpass output should be multiplied by '- to yield w[n].

The above methods have no advantage over look-ahead computation with direct

form structures, since we still need a correction filter. However, the fact that E is very

small gives us an additional option. Note that the frequency response of hfix2 [n] at

w = 0 is

hf ix [n] = (1- E)k= 1
n=--oo

So for lowpass filters, without changing the frequency response of the IIR filter at

w = 0, we may approximate

hfix[n] I 6[n]

for small enough c. Therefore we can simply eliminate hfix[n] from the filter, without

exceeding the maximum allowable ripple. The ability of the IIR filter to retain the

shape of its frequency response when delays are added to the coefficient accrues from

having no extra delays in the accumulator loop.

For highpass filters, the frequency response at w = 0 is 0, so normalizing hfix[n]

to have unit frequency response at w = 0 does not help. Instead, it works well to

simply eliminate the small terms, and use the approximation

hfTherefore w[n]] should be multiplied by whenht used. This cancels the

Therefore w[n] should be multiplied by ~ when hfix[n] is not used. This cancels the

__

factor of " due to the extra loop delays.

When c is small, but not small enough for the approximation above to be valid,

we may make the stronger approximation

hf i [n] (6[n] -
k

Emr 6[n - m])
m=1

where cm = 1(E + (1 - E)k-1). This allows us to implement hfi-x[n] using only one

coefficient multiplier.

4.3 Signal "Wrapping" Effects

Recall from section 2.4 that our signal may have infinite amplitude, and may "wrap

around" from positive to negative values. As long as the input x[n] has the property

that Ix[n] - x[n - 1]I < 2B - 1 , the signal may be reconstructed unambiguously from

xlP[n], its least significant Bx bits.

Consider a filter without extra delay elements. The difference equation for the

highpass output is

w[n] = x[n] - x[n - 1] + (1 - E)w[n - 1]

Rearranging, and substituting a = 1 - e gives

w[n] - aw[n - 1] = x[n] - x[n - 1]

Therefore,

Iw[n] - cw[n - 1]j < 2 BX
-1

Substituting n - 1 for n and multiplying both sides by a gives

alw[n - 1] - aw[n - 211 < 2B-1

(4.7)

Combining these two inequalities gives us

Iw[n] - ao2W[n - 2]1 < 2B- - 1 + a2Bx- 1

Repeating this process N times gives us

N
jw[n] - a"Nw[n - 2]J < 2 B-1 E a k

k=0

As N -- oc, since jal < 1,

1 1
jw[n] < 2 Bx- = - 2B_

1-a E

Therefore Iw[n]l is limited and does not "wrap."

Suppose also that we wish to know w[n] to a precision of +±. Then to represent

w[n], we require a data path width of

B, = [log 2 (l2Bx) - log2 (VMSB)] - [log 2(q) - log 2(VMsB)J (4.8)

Where VMSB is the value of the MSB of the output of the decimator, given in table

2.2. Note that if we ignore the bit quantization,

B, , BB - log 2(qc) (4.9)

Our structure may be simply modified to work properly with input xlp,[n] rather

than x[n]. Since w[n] may be represented using B, bits, our input adder only needs

to be B, bits wide. Therefore, we do not need bits of x[n] and y[n] more significant

than the MSB of w[in] to calculate w[n] correctly. Therefore these highpass filters

will work using xzlp[n], "unwrapped" to the level of the MSB of w[n], as described in

section 2.4. Specifically, xlsp[n] should be "unwrapped" by r bits, where

r = [log 2(12B") - log 2(VMsB)] (4.10)
6

More significant bits would only affect more significant bits of wi[n], which we may

obtain by sign-extending the MSB of w[n], since Iw[n]l < 12B-1

Since E is so small, Iw[n]l < 12BX-1 may result in a data path that is far too large.

In that case, we may be able to guarantee instead that jw[n]I < 2, for some P. Then

B, = [log 2 (P) - og2(VMsB)] - [log 2 (q) - log2(VMSB)J (4.11)

and

r = [log 2 (P) - 0g 2(VMsB)] (4.12)

The amplitude of w[in] will be limited whether the filter is actually being used as a

highpass filter or a lowpass filter. Furthermore, since y[n] is calculated directly from

w[n], we may calculate y[n] from lsp,,[n]. Therefore lowpass filters with this structure

will work with "wrapping" signals also. Note that the lowpass output will not have

a limited amplitude. Therefore, we will only calculate ysi,[n]. However, it should be

noted that the carry-out signal of the accumulator may be used to calculate ylsp[n]

to any desired bit height.

Note that the carry-out bit of the input adder should be ignored. When an adder

has Bw bits of input for both inputs, the output normally requires Bw + 1 bits, with

the carry-out as the extra bit. However, this extra bit would be incorrect, since the

correct value would depend also on one bit of x[n] which is not part of xzlp[n].

When there are extra delays in the large loop, and no filter hfix[n] is used, we need

to guarantee that the highpass output is bounded, so that these filters will work with

wrapping signals also. We define the highpass output of a filter with extra delays

as w'[n], i.e. w[n] = *w'[n], hfAi[n]. Then we need to find a bound P' such that

iw'[n]l < !. For the purpose of finding the bound, therefore, let us consider placing

a correction filter hfi-x[n] after the highpass output w'[n]. Since the IIR filter and

hfix[n] are linear time-invariant systems, changing the order of the cascade does not

change the total system, so the output of hfix[n] will be -,w[n]. The output of a

filter cannot be more than the maximum magnitude of the input times the sum of

the magnitudes of its coefficients. The input to hfix[n] is w'[n], which is bounded by

Iw'[n] < <. Therefore,
SP' /0

E 2
n=O

However, P is defined as the limit such that lw[n]l < -, so -Jw[n]l < ý- Therefore,

a sufficient bound P' is given by

EP P' 0

n=O

Solving for P' gives

P' =t

Thus we have a bound Iw'[n] < T where P' is given above, and filters with extra

delays in the large loop will work with wrapping signals if we can bound the ideal

output by |w[n]l < :. Then, P' rather than P should be used in equation 4.11 to

determine Bw, and in equation 4.12 to determine r.

The approximation to the correction filter will only be used in one instance, for

a lowpass filter in the "bandpass" band, where highpass filters have already removed

the wrapping. However, in the more general case where hfix[n], or its approximation

given in section 4.2, may need to be used on a wrapping signal, it is straightforward

to apply the techniques of section 2.4 to the correction filter.

4.4 Multipliers

General purpose multipliers can be very complex. However, we only need to design

one special-purpose multiplier for each filter, to multiply by the coefficient we need

for that filter. For this purpose, we may multiply by a sum of a small number of

powers of two by adding the input to itself, shifted. For example, we may multiply

a data stream by 10 = 21 + 23 using one adder, by shifting the data left by 1 bit,

shifting the data left by 3 bits, and then adding the two shifted data streams.

We want to use as few adders as possible for the coefficient multiplication, to

fit the system on the smallest amount of Altera hardware possible and to lower the

propagation delay around the large loop. Furthermore, rounding the outputs of the

multipliers may cause the coefficient e to effectively change values when the amplitude

of the input is small. Because of this, the output of the multipliers will not be rounded

except when necessary. Therefore, we need to limit the maximum shift allowable, so

that the adders will not become too large. Our constraint is that the cutoff frequency

may not vary by more than ±2%.

Since w, = 27r F is the discrete-time cutoff frequency, oa = e-wc. Taking the first

order term in the Taylor expansion yields the approximation a 1 - w•. However,

recall that a = 1 - c. Therefore e • w•. Since the cutoff frequencies w, are very low,

this approximation is very good. Therefore, if our coefficient e is within ±2%, our

cutoff frequency will be within ±2%, as required. Since there is only one coefficient,

movement of the cutoff frequency is the only effect of coefficient rounding.

Using two adders, there are two independent ways of using shifts to generate the

coefficients c. The structure in figure 4-5 (a) will multiply by any coefficient of the

form 2-S(l±2-m±2-n). The structure in figure 4-5 (b) will multiply by any coefficient

of the form 2-'(1 ± 2-m)(1 ± 2-n).

We may find such a coefficient in a straightforward manner. First, express e as

E = En 2-"', where s' = [- log 2 EJ. This gives .5 < c, < 1. An exhaustive search of all

possible coefficients which are between .5 and 1, which use no more than two adders

and which increase the data width by no more than 9 bits, is straightforward and

quick using MATLAB. Table 4.1 indicates that there will always be such a coefficient

within ±1.734% of any possible coefficient E,. Furthermore, most coefficients may be

approximated much more closely than that. Therefore two adders and a data path

width increase of 9 bits is sufficient to keep the cutoff frequency within ±2%. Without

loss of generality, we may choose m and n such that m < n. Notice that all of the

values listed in the table for en < .82 include a factor of 2- 1 , and their 2- m term is

added into the expression. For these coefficients, s = s' + 1. For coefficients with

,n > .82, the 2
- m term is subtracted, and s = s'.

The way we are implementing coefficient multipliers demonstrates one advantage

of the structure we are using, as shown in figure 4-2, when our cutoff frequency is

Coefficient
0.5019531250
0.5039062500
0.5058593750
0.5078125000
0.5097656250
0.5117187500
0.5136718750
0.5156250000
0.5175781250
0.5195312500
0.5234375000
0.5273437500
0.5292968750
0.5312500000
0.5332031250
0.5351562500
0.5390625000
0.5449218750
0.5468750000
0.5546875000
0.5585937500
0.5605468750
0.5625000000
0.5644531250
0.5664062500
0.5703125000
0.5781250000
0.5800781250
0.5859375000
0.5937500000
0.5976562500
0.6054687500
0.6093750000
0.6152343750
0.6171875000
0.6210937500
0.6230468750
0.6250000000
0.6269531250
0.6289062500
0.6328125000
0.6347656250
0.6406250000
0.6445312500
0.6562500000
0.6640625000
0.6875000000
0.7031250000
0.7187500000
0.7265625000
0.7343750000
0.7382812500
0.7421875000
0.7441406250
0.7460937500
0.7480468750

Max Err.Two Adder Realization
(2-1)(1 + 2-8)
(2-')(1 + 2-7)
(2-1)(1 + 2

- 7 + 2-8)
(2-1)(1 + 2-6)
(2-1)(1 + 2-6 + 2-8)
(2-1)(1 + 2-6 + 2- 7

)
(2-1)(1 + 2- 5 - 2-8)
(2-1)(1 + 2- 5)
(2-1)(1 + 2-5 + 2-8)
(2-1)(1 + 2-5 + 2- 7)

(2-1)(1 + 2- 5
+ 2-6)

(2-1)(1 + 2- 4
- 2-7)

(2-1)(1 + 2- 4
- 2-8)

(2-1)(1 + 2 - 4
)

(2-1)(1 + 2-4 + 2-8)

(2-1)(1 + 2 - 4
+ 2-7)

(2-1)(1 + 2-4 + 2-6)
(2-1)(1 + 2-3)(1 - 2

- 5
)

(2-1)(1 + 2- 4
+ 2- 5

)
(2-1)(1 + 2- 3

- 2-6)
(2-1)(1 + 2- 3

- 2-7)
(2-1)(1 + 2 - 3

- 2-8)
(2-1)(1 + 2- 3

)
(2-1)(1 + 2-3 + 2-8)
(2-1)(1 + 2- 3

+ 2- 7
)

(2-1)(1 + 2- 3
+ 2-6)

(2-1)(1 + 2-3 + 2- 5
)

(2-1)(1 + 2-3)(1 + 2- 5
)

(2-1)(1 + 2-2)(1 - 2
- 4

)
(2-1)(1 + 2- 3

+ 2- 4)

(2-1)(1 + 2-3)(1 + 2- 4
)

(2-1)(1 + 2-2)(1 - 2- 5
)

(2-1)(1 + 2-2 - 2-5)

(2-1)(1 + 2-2)(1 - 2-6)
(2-1)(1+ 2-2 - 2-6)
(2-1)(1 + 2-2 - 2-7)
(2-1)(1 + 2-2 - 2-8)
(2-1)(1 + 2-2)
(2-1)(1 + 2-2 + 2-

8)
(2-1)(1 + 2-2 + 2-7)
(2-1)(1 + 2-2 + 2-6)
(2-1)(1 + 2-2)(1 + 2-6)
(2-1)(1 + 2-2 + 2- 5

)
(2-1)(1 + 2-2)(1 + 2- 5

)
(2-1)(1 + 2-2 + 2- 4)

(2-1)(1 + 2-2)(1 + 2- 4
)

(2-1)(1 + 2-2 + 2-3)
(2-1)(1 + 2-2)(1 + 2- 3

)
(2-1)(1 + 2

- 1 - 2-4)

(2-1)(1 + 2-1)(1 - 2 - 5
)

(2-1)(1 + 2
- 1 (1 2- 5)

(2-1)(1 + 2-1)(1 - 2 - 6
)

(2-1)(1 + 2- 1
- 2-6)

(2-1)(1 + 2-1)(1 - 2-7)
(2-1)(1 + 2- 1 - 2-7)
(2-1)(1 + 2- 1

- 2-8)

0.195 %
0.194 %
0.193 %
0.193 %
0.192 %
0.191 %
0.190 %
0.190 %
0.189 %
0.188 %
0.375 %
0.372 %
0.185 %
0.184 %
0.183 %
0.183 %
0.364 %
0.541 %
0.179 %
0.709 %
0.351 %
0.175 %
0.174 %
0.173 %
0.173 %
0.344 %
0.680 %
0.169 %
0.503 %
0.662 %
0.328 %
0.649 %
0.322 %
0.478 %
0.158 %
0.315 %
0.157 %
0.156 %
0.156 %
0.156 %
0.310 %
0.154 %
0.459 %
0.304 %
0.901 %
0.592 %
1.734 %
1.124 %
1.099 %
0.541 %
0.535 %
0.265 %
0.264 %
0.131 %
0.131 %
0.131 %

Coefficient
0.7500000000
0.7519531250
0.7539062500
0.7558593750
0.7578125000
0.7617187500
0.7656250000
0.7734375000
0.7812500000
0.7968750000
0.8125000000
0.8203125000
0.8437500000
0.8476562500
0.8593750000
0.8613281250
0.8671875000
0.8710937500
0.8730468750
0.8750000000
0.8769531250
0.8789062500
0.8828125000
0.8886718750
0.8906250000
0.9023437500
0.9062500000
0.9082031250
0.9218750000
0.9296875000
0.9335937500
0.9355468750
0.9375000000
0.9394531250
0.9414062500
0.9453125000
0.9531250000
0.9609375000
0.9648437500
0.9667968750
0.9687500000
0.9707031250
0.9726562500
0.9765625000
0.9804687500
0.9824218750
0.9843750000
0.9863281250
0.9882812500
0.9902343750
0.9921875000
0.9941406250
0.9960937500
0.9980468750
1.0000000000

All possible coefficients which may be realized with two adders, while
increasing the data path by no more than 8 bits. The maximum percentage error
from such a coefficient to the number halfway between it and the previous coefficient
is also given. Thus the maximum possible error between any desired coefficient and
its implementation is 1.734%.

Two Adder Realization
(2)(1 + 2-)
(2-1)(1 + 2 - 1 + 2-

8)
(2-1)(1 + 2 - 1 + 2-7)
(2-1)(1 + 2-1)(1 + 2- 7

)
(2-1)(1 + 2 - 1

+ 2-6)
(2-1)(1 + 2-1)(1 + 2-6)
(2-1)(1 + 2 - 1

+ 2- 5
)

(2-1)(1 + 2-1)(1 + 2- 5)
(2-1)(1 + 2 - 1

+ 2- 4)

(2-1)(1 + 2-1)(1 + 2- 4)

(2-1)(1 + 2- 1 + 2- 3)
(20)(1 - 2-3)(1 - 2- 4)

(20)(1 - 2-3 - 2-5)
(20)(1 - 2-3)(1 - 2-5)
(20)(1 - 2-3 - 2-

6)

(20)(1 - 2-3)(1 - 2-6)
(20)(1 - 2-

3
- 2-7)

(20)(1 - 2-3 - 2-8)

(20)(1 - 2-3 - 2-
9)

(20)(1 - 2-
3
)

(20)(1 - 2-3 + 2- 9)
(20)(1 - 2-3 + 2- 8)

(20)(1 - 2-3 + 2- 7)

(20)(1 - 2-3)(1 + 2
-

6)
(20)(1 - 2-3 + 2- 6

)
(20)(1 - 2-3)(1 + 2

- 5
)

(20)(1 - 2-3 + 2- 5
)

(20)(1 - 2-4)(1 - 2-5)

(20)(1 - 2- 4
- 2-6)

(20)(1 - 2-4 - 2-7)
(20)(1 - 2

- 4
- 2-8)

(20)(1 - 2-4 - 2-9)
(20)(1 - 2- 4)

(20)(1 - 2-4 + 2
- 9

)
(20)(1 - 2-4 -+ 2- 8)

(20)(1 - 2-4 + 2
- 7)

(20)(1 - 2-4 + 2- 6
)

(20)(1 - 2-5 - 2-7)
(20)(1 - 2-

5
- 2-8)

(20)(1 - 2
- 5 - 2-9)

(20)(1 - 2-5)
(20)(1 - 2-5 + 2

- 9
)

(20)(1 - 2-5 + 2-8)
(20)(1 - 2-5 +2 - 7)

(20)(1 - 2-6 - 2-8)
(20)(1 - 2-6 - 2-9)
(20)(1 - 2- 6

)
(20)(1 - 2-6 + 2-

9)

(20)(1 - 2-6 + 2- 8)

(2o)(1 - 2-7 - 2-9)
(20)(1 - 2-7)
(20)(1 - 2-7 + 2 - 9)

(20)(1 - 2
- 8)

(2°)(1 -2
- 9

)
1

Max Err.
0.130 %
0.130 %
0.130 %
0.129 %
0.129 %
0.257 %
0.256 %
0.508 %
0.503 %
0.990 %
0.971 %
0.478 %
1.408 %
0.231 %
0.686 %
0.114 %
0.339 %
0.225 %
0.112 %
0.112 %
0.111 %
0.111 %
0.222 %
0.331 %
0.110 %
0.654 %
0.216 %
0.108 %
0.747 %
0.422 %
0.210 %
0.104 %
0.104 %
0.104 %
0.104 %
0.207 %
0.412 %
0.408 %
0.203 %
0.101 %
0.101 %
0.101 %
0.101 %
0.200 %
0.200 %
0.100 %
0.099 %
0.099 %
0.099 %
0.099 %
0.099 %
0.098 %
0.098 %
0.098 %
0.098 %

Table 4.1:

(a) (b)

Figure 4-5: Sum of powers of two multiplier forms using two adders. (a) multiplies
by 2-'(1 ± 2- m ± 2-n). (b) multiplies by 2-'(1 ± 2-m)(1 ± 2-n).

very low. If, instead, we had chosen to use a direct form structure, then we would

have had to multiply by oa rather than e. Because a is very close to 1, the most

efficient way to implement the coefficient multiplication by a, using powers of two

again, would have been to multiply by 1- e. This would have required one more adder

(actually a subtracter), and then E could be implemented as above, using two adders.

So though the lowpass direct form structure seems to have more adders, there is not

a real savings when the cutoff frequency is very low. Instead, since s in figure 4-5 is

very large, the data path would have been very wide using the direct form structure,

and all of the adders would have to be very wide. Instead, for our structure, the wide

data path is confined to the accumulator loop, and only the accumulator adder needs

to be very wide. Consider, for example, the 10 Hz lowpass filter required for the 1.544

MHz sample rate. w, = .00004641, and s = [- log 2 Wj = 15. Therefore we would

need 15 more bits in the data path if we used a direct form structure. Instead, for

our structure, the wide data path is confined to the accumulator loop, and only the

accumulator adder needs to be very wide.

Chapter 5

Implementation of Off-chip Filters

This chapter will show how to implement the filtering system, using Altera FLEX8000

Programmable Logic Devices. These devices are based on SRAM technology, so they

may be reprogrammed almost instantly by the system when the user selects a new

filter configuration. This means that the FLEX8000's will only have to implement

one filter configuration at a time. Therefore, we only need enough FLEX8000 pro-

grammable hardware to implement the largest configuration.

The filtering system is pictured in figure 5-1. The user may wish to have access to

two bands simultaneously. These bands are the "lowpass" band and the "bandpass"

band. The filter for the "lowpass" band should consist of a first-order lowpass filter

with a filter cutoff at either 10 Hz or 100 Hz, which the user may select. The filter

for the "bandpass" band should consist of a third- or first-order (depending on the

base data rate) butterworth lowpass filter and a first-order highpass filter. The filter

cutoffs for these filters are specified in table 5.1. Furthermore, it is possible that the

input to the filter would contain an additive ramp signal, with slope such that our

limit on the first difference given in 4.3 is satisfied. Because the first-order highpass

filter places only one zero at w = 0, this can result in an D.C. offset on wi[n], and

therefore on the output of the "bandpass" band. The user may wish to remove this

offset. Because we showed in section 4.3 that w[n] is bounded, one more highpass

filter is sufficient to remove this offset. Because of this, the user should be able to use

an additional first-order highpass filter with a filter cutoff of 0.2 Hz. Note that since

the 0.2 Hz highpass filter follows another highpass filter, this filter does not have to

deal with "wrapping," and the data path width requirement given in equations 4.8

and 4.11 are relaxed. First-order filter frequency cutoffs should deviate no more than

2% from the given values. Third-order filter cutoffs should be within 5% of the given

values. For no filter should the passband ripple exceed 2%.

HPF
"A

HPF
"B "
HPF
I IC"

LPF "Bandpass"
,,D,, - Output

100 H
LPF "Lowpass"

Output
10 Hz '
LPF

Figure 5-1: Filtering System.

input rate 10 100 0.2 HPF HPF HPF LPF LPF
Hz Hz Hz "A" "B" "C" "D" "D"

(MHz) LPF LPF HPF (Hz) (kHz) (kHz) (kHz) order

1.544 10 100 0.2 10 8 40 1
2.048 10 100 0.2 20 0.7 18 200 3
6.312 10 100 0.2 10 3 60 1
8.448 10 100 0.2 20 3 80 400 3

34.368 10 100 0.2 100 10 800 3
44.736 10 100 0.2 10 30 400 1

51.84 10 100 0.2 10 .5 20 400 3
139.264 10 100 0.2 200 10 3500 3

155.52 10 100 0.2 10 1 65 1300 3
622.08 10 100 0.2 10 5 250 5000 3

Table 5.1: Filters to be implemented.

In addition to the filtering system, we also need to place part of the decimator

From

Decimator

on the Altera hardware, as well as an unwrapping bit extender. Recall from section

3.1 that 3 first-differencers were required to be implemented off-chip, as part of the

decimator. Also, recall from section 4.3 that we will need to "unwrap" the input to

extend the MSB to allow proper filtering of a "wrapping" signal. Furthermore, we

need to correct passband attenuation from the decimator, for those data rates which

required a decimator.

To give flexibility to the product designers, two designs are presented here. One

design implements all of the filters with 16-bit data paths. This design requires

one FLEX8820 and one FLEX81188, both in the A-3 speed grade. The 10 Hz or

100 Hz lowpass filter, the 0.2 Hz highpass filter, the "bandpass" highpass filter, the

unwrapping bit extender, and the remainder of the decimator will be placed on the

FLEX8820. A 16-tap FIR filter will be placed on the FLEX81188, for those data

rates requiring a third-order butterworth lowpass filter for the "bandpass" band. The

FIR filter will emulate the third-order filter, while correcting passband attenuation

of the decimator. For those data rates requiring a first-order lowpass filter for the

"bandpass" band, this filter will be placed on the FLEX81188. Those data rates

using first-order lowpass filters for the bandpass band do not use the decimator, so

no correction for passband attenuation is required.

A second design implements the filters with 24-bit data paths. This design re-

quires one FLEX81188 and two FLEX8820s, all in the A-2 speed grade. The func-

tions implemented above on the FLEX8820 are implemented in the FLEX81188, and

the functions implemented above on the FLEX81188 are implemented on the two

FLEX8820s.

Furthermore, the product designers will be able to choose the number of bits r

from section 4.3, by which the signal will be "unwrapped." This will allow the bits

to be chosen which make the best compromise between maximum highpass signal

amplitude P and precision q, given in section 4.3.

5.1 Summary of Altera FLEX8000 Capabilities

The Altera FLEX8000 architecture is well suited to structures such as ours. Details

relevant to our implementation will be summarized here. For a full description of

the architecture, refer to the Altera Data Book [2]. We will use FLEX8820s and

FLEX81188s.

In the configuration we are interested in, a single Logic Element ("LE") consists

of two three-input lookup tables and an output register. These lookup tables may be

programmed by the user. The output of one three-input lookup table, which will be

called the "sum" lookup table, may go either to the register or directly to the output.

The other lookup table, which will be called the "carry" lookup table, generates a

carry chain signal, which has a dedicated, fast connection to the next LE. Since a

one-bit full adder or subtracter has three inputs and two outputs, with the carry

output going to the next bit, one logic element may be used to implement an adder

or a subtracter.

Eight LEs are grouped together in a Logic Array Block ("LAB"). Each LAB is

connected to other LABs on its row by a row interconnection channel. FLEX8820s

and FLEX81188s have 21 LABs per row, and therefore 168 LEs per row. Each LAB

is also connected to a column interconnection channel, which connects to the row

channels for other rows. FLEX8820s have 4 rows, and FLEX81188s have 6 rows. The

output of an LE is directed to the row channel if the signal will be used by an LE

in another LAB on the same row. If the output of an LE will be used by an LE in

a LAB on a different row, the output is directed to the column channel. A signal in

a column channel then may be directed to any row channel, and then to the correct

LE. A carry chain also connects the last LE in a LAB to the first LE in the next

LAB.

A simplified block diagram in figure 5-2 shows the timing parameters which we

will need. Table 5.2 describes the timing parameters and gives the values for A-2 and

A-3 speed grades, in the FLEX8820s and FLEX81188s, which we will use. Timing

parameters for other FLEX8000 chips are similar or identical, except that tro, = 6.2ns

for the FLEX81500, the largest FLEX8000 chip. Unfortunately, at the time this

work was done, Altera software which would have been needed to design, simulate,

and program the chips was not working properly. Because of this, no simulations or

experimental data are available. The timing parameters in table 5.2 will be used for

all calculations and plots. However, the actual values are guaranteed to be no worse

than these parameters.

row channel

I trow <

com

gate t su

n
0
c

t col------>

-~tl

t cico

tcgen- lookup
cgen----ý'-

Ilo
t labcarr

I

only if next LE
is in another LAB

N'_ý

Carry out (to next LE)

Figure 5-2: Simplified timing diagram for Altera FLEX8000.

5.2 Directly Implemented Filters

The circuit in figure 5-3 shows our filter structure, including the coefficient multipliers.

In 5-3(a), The input adder is b bits wide, so it uses b LEs. The first coefficient adder

is b + m + 1 bits wide, including the carry-out signal. No carry-out signal is required

for the second coefficient adder, since 0 < m < n. Therefore, the second coefficient

adder is b + n + 1 bits wide. The accumulator is b + n + s bits wide, and the highpass

CD

Parameter Description A-2 grade A-3 grade
value (ns) value (ns)

tlit "Sum" look-up table delay. 2.0 2.5
tclut Carry chain-to-lookup table delay. 0.0 0.0
tgate Gate delay. 0.0 0.0
tcico Carry-in, carry-out delay. 0.4 0.5
tcgen Carry-out generation delay. 0.4 0.5
tco LE register clock-to-output delay. 0.4 0.5
tcomb Combinatorial output delay. 0.4 0.5
tsu Register setup time. 0.8 1.1
tlabcarry Additional carry chain delay incurred 0.3 0.3

by carrying to the next LAB.
tlocal Local interconnect delay. 0.5 0.6
tro, Row channel delay. 5.0 5.0
tcol Column channel delay. 3.0 3.0

Table 5.2: Timing parameter values for FLEX8820 and FLEX81188.

output register, which we need for highpass filters only, is b bits wide. It should be

noted that truncating, rather than rounding, the y[n] term in the input adder does

not hurt the output. This is equivalent to adding an offset equal to half the value

of the LSB from the input. However, this offset will be removed from the highpass

output win].

Furthermore, some extra LEs will be used as buffers to lower the fanout of some

signals. The value listed for tro,,, in the Altera Data Book is valid for a fanout of

no more than 4 [2]. Most outputs of the input adder drive 4 signals-one bit each

of the output register, the unshifted input of the first coefficient adder, the shifted

input of the first coefficient adder, and the shifted input of the second coefficient

adder. However, because of the sign extending necessary for the shifted inputs to

the coefficient adders, the MSB of the input adder also drives m extra sign extend

bits of the first coefficient adder and n extra sign extend bits of the second coefficient

adder. Therefore, the MSB has a fanout of 4 + m + n. The carry chain may be used

to repeat the MSB in the next LE. In this way, we may use [41 - 1 LEs to

buffer the output so that no LE output drives more than 4 LE inputs, as required.

Similarly, [4] - 1 LEs are needed to buffer the MSB of the second coefficient adder,

Figure 5-3: IIR filter structures, without pipelined loops, including coefficient multi-
pliers. "Zero pad" modules add zeros onto the LSP, "sign extend" modules add bits
identical to the sign bit onto the MSP, and "truncate" modules truncate the LSP.

;nniit nAArp in mt drrlpr

X

which is sign-extended s - 1 bits. The buffering requires

4+m+n s
4= 1+-1 - 24 4

LEs. The total number of LEs for a highpass filter in the form of figure 5-3(a) is

5b + s + m + 2n + 2 + q

A lowpass filter will not require the output register for w[n], since y[n] is the output.

Therefore

4b + s + m + 2n + 2 + q

LEs are required for a lowpass filter of the form of figure 5-3(a).

For a highpass filter of the form of figure 5-3(b), the second coefficient adder re-

quires b + m + n + 1 LEs and the accumulator requires b+m+n+s LEs. Furthermore,

because the shifted input to the second coefficient adder comes from the first coef-

ficient adder rather than the input adder, the buffering is different. We must use

[3+] - 1 LEs to buffer the MSB of the input adder, [l+2] - 1 LEs to buffer the

MSB of the first coefficient adder, and F[1 - 1 LEs to buffer the MSB of the second

coefficient adder. Therefore the buffering requires

3+m +n
1=± F+r 1±+1-34 4 4

LEs. The total number of LEs for a highpass filter in the form of figure 5-3(b) is

5b + s + 3m + 2n + 2 + q

A lowpass filter will not require the output register for win], since y[n] is the output.

Therefore

4b + s + 3m + 2n + 2 + q

LEs are required for a lowpass filter of the form of figure 5-3(b).

The longest delay in the circuit will be the time for the LSB of the input signal

to propagate to the MSB of the accumulator register. First, let us consider one

particular signal path from the LSB of the input to the MSB of the output register.

The path begins in a register on a different row than our filter. The signal incurs

delay t,, in the register, t,,o in the column channel, trow in the row channel, and tlocal

when it reaches the LAB where the LSB of the input adder is located. So the time

into the first LAB is

ti n - tc o + tcol + trow + t1ocal

The path then follows the carry chain, incurring delay tcgen in the carry lookup

table, generating the carry signal. If the data path width is b, then we incur b - 2

delays of tcico to get to the top of the carry chain. Recall from section 4.2 that the

carry-out signal from the MSB of the input adder is ignored, so we do not calculate

it. Depending on where in a LAB the LSB of the input adder is located, we could

incur up to [r] delays of tlabcarry. At the end of the carry chain, the path incurs

delay ttl, before reaching the lookup table. The time required for the carry chain is

a function of b:

Tchain(b) = tcgen + (b - 2) - tcico + r b tlabcarry + tclut

We then incur a delay of t1ut calculating the sum bit of the input adder. After

delays tgate and tcomb, our signal reaches the output of the MSB of the input adder.

Each sum output of the adder goes to two inputs of the first coefficient adder: one

shifted right, and one unshifted. The signal path that is shifted m bits to the right is

the longer path. From the MSB of the input adder, the signal incurs delays trow and

tlocal to get to the input of the lookup tables of the second coefficient adder. Note

that we did not incur a delay from the column channel, since we are able to put the
whole filter on one row. So the time required for a signal to propagate through a sum

lookup table to the input of another adder is

tnext = tlut + tgate + tcomb + trow + tlocal

M

The signal then incurs a delay of Tchain(m + 1) in reaching the carry-out bit of the

first coefficient adder.

A similar path runs through the second coefficient adder, incurring delays of tnext

and Tchain(n). To reach the accumulator adder, the signal again incurs a delay of tnext.

The signal reaches the end of the carry chain after a further delay of Tchain(S - 1).

Calculating the final sum bit for the of the accumulator incurs a delay of tlut. Finally,

after a delays of tgate and t,,, the signal has reached the end of the signal path, ready

for another clock edge. The delay from the end of the accumulator carry chain to the

accumulator register is

tout = t1ut + tgate + tsu

The total propagation delay for the whole path is

tin + 3 ' tnext + tout + Tchain (b) + Tchain(m + 1) + Tchain () + Tchain(s - 1)

Many signal paths similar to the one above lead from the LSB of the input to the

MSB of the accumulator register. These paths follow al bits of the carry chain in the

input adder before following a sum bit to the first coefficient adder, where they follow

a2 bits of that carry chain, follow a sum bit to the second coefficient adder, follow

a3 bits of that carry chain, follow a sum bit to the accumulator, and follow a4 bits

of the carry chain to the MSB. However, in all cases al + a2 + a3 + a4 = Ab, where

Ab = b + m + n + s. Therefore, the number of carry delays does not change. However,
some paths might incur more tlabcarry delays than others. The propagation delay for

one of these paths is
4

tin + 3 tnext + tout + E Tchain(ak)
k=1

Now suppose that a = a2 =a 3 = 1, and a4 = b + m + n + s - 3. Then [o1 = 1, so

Y~4= Tchain(ak) becomes

4 - tcgen + (Ab - 8) . tcico + (3 + FAb - 71) tlabcarry + 4 tclut

I

Therefore, the worst possible propagation delay of the whole circuit is

tin + 3 tnext + tout + 4 " tcgen + (Ab - 8)' tcico + (3 + FAb - 7]) tlabcarry + 4 tclut (5.1)

Note that the buffers do not affect timing, if we use them intelligently. The first

MSB output should be used to drive the most critical signals. In this case, the most

critical signal is the non-sign-extended input of the first coefficient adder. The first

few sign-extended bits are also critical. Because every tcico delay incurred by the carry

chain buffering yields 4 output signals, the buffering will not affect our timing.

The propagation delay of the circuit in figure 5-3(b) is slightly different. Notice

that the shifted input to the second adder comes from the input adder. For all

speed grades and all coefficients with a maximum shift of no more than 9, tnext >

Tchain(n). Therefore, a shifted input bit to the second coefficient adder will already

be calculated when the output of the first coefficient adder becomes valid. Therefore,

if Ab = b + m + s, the worst possible propagation delay of the whole circuit is given

by 5.1.

Figure 5-4 plots the maximum clock frequency resulting from expression 5.1 against

Ab. A filter may be implemented without resorting to extra delay tactics developed in

section 4.2 if the maximum clock frequency is greater than the decimated data rate.

Table 5.3 lists the filters which may be implemented with 16 bit data paths in A-3

speed grade FLEX8820s, while table 5.4 lists the filters which may be implemented

with 24 bit data paths in A-2 speed grade FLEX81188s. In both cases, all of the

filters were implemented for the base data rates 1.544 MHz, 2.048 MHz, 6.312 MHz,

8.448 MHz, 34.368 MHz, 51.840 MHz, and 155.520 MHz. For each of these base data

rates, the decimated data rate was below 13 MHz. The actual frequency cutoff error

was always below 2%, as required. Also, each filter required no more than 168 LEs,

so each filter may be implemented on one row.

If we had chosen the closest value of En from table 4.1 as described in section 5.4,

the 0.2 Hz highpass filters for the 8.448 MHz and 34.368 base data rates with data

path width b = 24 would have consumed more than 168 LEs, and would therefore

Filter

1.544, 10 Hz LPF
1.544, 100 Hz LPF
1.544, 0.2 Hz HPF
1.544, 10 Hz HPF
1.544, 8 kHz HPF
1.544, 40 kHz LPF
2.048, 10 Hz LPF
2.048, 100 Hz LPF
2.048, 0.2 Hz HPF
2.048, 20 Hz HPF
2.048, 700 Hz HPF
2.048, 18 kHz HPF
6.312, 10 Hz LPF
6.312, 100 Hz LPF
6.312, 0.2 Hz HPF
6.312, 10 Hz HPF
6.312, 3 kHz HPF
6.312, 60 kHz LPF
8.448, 10 Hz LPF
8.448, 100 Hz LPF
8.448, 0.2 Hz HPF
8.448, 20 Hz HPF
8.448, 3 kHz HPF
8.448, 80 kHz HPF
34.368, 10 Hz LPF
34.368, 100 Hz LPF
34.368, 0.2 Hz HPF
34.368, 100 Hz HPF
34.368, 10 kHz HPF
51.840, 10 Hz LPF

51.840, 100 Hz LPF
51.840, 0.2 Hz HPF
51.840, 10 Hz HPF
51.840, 500 Hz HPF
51.840, 20 kHz HPF
155.520, 10 Hz LPF
155.520, 100 Hz LPF
155.520, 0.2 Hz HPF
155.520, 10 Hz HPF
155.520, 1 kHz HPF
155.520, 65 kHz HPF

Decimated
Data Rate

(MHz)
1.544
1.544
1.544
1.544
1.544
1.544
2.048
2.048
2.048
2.048
2.048
2.048
6.312
6.312
6.312
6.312
6.312
6.312
4.224
4.224
4.224
4.224
4.224
4.224
8.592
8.592
8.592
8.592
8.592
4.320
4.320
4.320
4.320
4.320
4.320

12.960
12.960
12.960
12.960
12.960
12.960

Coefficient
Implementation

(2-15)(1 + 2-2)(1 + 2- 4)

(2-11)(1 - 2- 3 -2 - 5)

(2-20)(1 -2- 3)(1 - 2- 5)
(2-15)(1 + 2-2)(1 + 2- 4)

(2-5)(1 + 2-6 + 2- 7)
(2-3)(1 + 2-3)(1 + 2- 4)

(2- 15)(1 + 2 - 8)
(2-12)(1 + 2-2 + 2- 7)

(2-21)(1 + 2-2)(1 + 2- 5)

(2-14)(1 + 2-8)
(2-9)(1 + 2- 4 + 2- 5)
(2-4)(1 - 2-3 - 2-6)
(2-17)(1 + 2-2 + 2- 4)

(2-14)(1 + 2- 1 + 2- 3)
(2-22)(1 - 2-3 _2-5)
(2-17)(1 + 2-2 + 2- 4)

(2-9)(1 + 2-1)(1 + 2-6)
(2-4)(1 - 2-4 - 2

- 7)

(2-16)(1 - 2-5 +2
- 7

)
(2-13)(1 + 2-2 - 2- 5)
(2-22)(1 + 2-2 - 2 -

8)
(2-15)(1 - 2- 5 + 2- 7)
(2-8)(1 + 2-3 + 2-6)

(2-3)(1 - 2-3)(1 + 2- 5)
(2-17)(1 - 2-5 - 2-7)

(2-14)(1 + 2-3)(1 + 2- 4)

(2-23)(1 + 2-2)(1 - 2-6)
(2-14)(1 + 2-3)(1 + 2- 4)

(2-7)(1 - 2- 4 - 2-8)
(2-16)(1 - 2- 4 + 2-6)
(2-13)(1 + 2- 3 + 2- 4)
(2-22)(1 + 2-2 - 2- 5)
(2-16)(1 - 2

- 4
+ 2-6)

(2-11)(1 + 2-1)(1 - 2-7)
(2-5)(1 - 2-4 - 2-6)

(2- 8)(1 + 2-2)(1 + 2-6)
(2-15)(1 + 2-1)(1 + 2- 4)

(2-24)(1 + 2- 1 + 2- 3)

(2-18)(1 + 2-2)(1 + 2-6)
(2-11)(1 - 2

- 7
)

(2-5)(1 - 2-7)

Table 5.3: Filters which may be implemented without adding delay elements in the
loop, using FLEX8820s in the A-3 speed grade. The data path width b is 16 bits.

Percent
Frequency

Error
0.4 %
1.3 %
0.7 %
0.4 %
0.2 %
0.6 %
0.1 %
0.1 %
0.2 %
0.1 %
0.4 %
0.0 %
0.6 %
0.4 %
1.0 %
0.6 %
0.2 %
0.2 %
0.2 %
0.0 %
0.1 %
0.2 %
0.1 %
0.6 %
0.3 %
0.2 %
0.3 %
0.2 %
0.1 %
0.0 %
0.3 %
0.1 %
0.0 %
0.0 %
0.5 %
0.1 %
0.3 %
0.1 %
0.1 %
0.0 %
0.1 %

LEs

100
94

127
116
112
88
86
99

126
101
110
104
99
91
124
115
109
91
107
96
130
122
109
106
109
102
130
118
113
104
95

123
120
113
107
108
96

119
124
94
87

Ab

37
30
44
37
27
26
39
30
44
38
29
23
35
31
41
35
32
24
37
31
40
36
27
27
38
37
47
37
27
36
32
40
36
35
25
42
36
41
42
34
28

Maximum
Clock Rate

(MHz)
17.513
18.762
16.420
17.513
19.305
19.493
20.202
18.762
16.420
20.408
18.939
20.202
17.825
18.587
16.835
17.825
18.315
19.881
17.513
18.587
16.978
17.668
19.305
19.305
17.361
17.513
16.026
17.513
19.305
17.668
18.315
16.978
17.668
17.825
19.685
16.694
17.668
16.835
16.694
21.277
22.883

Ciir

1.000
1.000
1.000
1.000
1.016
1.000
1.000
1.000
1.000
1.000
1.001
1.028
1.000
1.000
1.000
1.000
1.001
1.000
1.000
1.000
1.000
1.000
1.002
1.060
1.000
1.000
1.000
1.000
1.004
1.000
1.000
1.000
1.000
1.000
1.015
1.000
1.000
1.000
1.000
1.000
1.016------

Decimated Coefficient Percent Maximum
Filter Data Rate Implementation Frequency LEs Ab Clock Rate Ciir

(MHz) Error (MHz)
1.544, 10 Hz LPF 1.544 (2-'5)(1 + 2-2)(1 + 2-4) 0.4 % 132 45 18.450 1.000

1.544, 100 Hz LPF 1.544 (2-")(1 - 2- 3 - 2- 5) 1.3 % 126 38 19.569 1.000
1.544, 0.2 Hz HPF 1.544 (2-20)(1 - 2-3)(1 - 2- 5) 0.7 % 167 52 17.452 1.000
1.544, 10 Hz HPF 1.544 (2-15)(1 + 2-2)(1 + 2-4) 0.4 % 156 45 18.450 1.000
1.544, 8 kHz HPF 1.544 (2-5)(1 + 2-6 + 2- 7) 0.2 % 152 35 20.040 1.016

1.544, 40 kHz LPF 1.544 (2-3)(1 + 2-3)(1 + 2- 4) 0.6 % 120 34 20.202 1.000
2.048, 10 Hz LPF 2.048 (2-15)(1 + 2-8) 0.1 % 110 47 21.231 1.000
2.048, 100 Hz LPF 2.048 (2-12)(1 + 2-2 + 2- 7) 0.1 % 131 38 19.569 1.000
2.048, 0.2 Hz HPF 2.048 (2-21)(1 + 2-2)(1 + 2-5) 0.2 % 166 52 17.452 1.000
2.048, 20 Hz HPF 2.048 (2-14)(1 + 2-8) 0.1 % 133 46 21.413 1.000
2.048, 700 Hz HPF 2.048 (2-9)(1 + 2-4 + 2- 5) 0.4 % 150 37 19.724 1.001
2.048, 18 kHz HPF 2.048 (2-4)(1 - 2-3 - 2-6) 0.0 % 144 31 20.833 1.028
6.312, 10 Hz LPF 6.312 (2-17)(1 + 2-2 + 2- 4) 0.6 % 131 43 18.727 1.000

6.312, 100 Hz LPF 6.312 (2-14)(1 + 2- 1 + 2- 3) 0.4 % 123 39 19.417 1.000
6.312, 0.2 Hz HPF 6.312 (2-22)(1 - 2-3 - 2- 5) 1.0 % 164 49 17.825 1.000
6.312, 10 Hz HPF 6.312 (2-17)(1 + 2-2 + 2- 4) 0.6 % 155 43 18.727 1.000
6.312, 3 kHz HPF 6.312 (2-9)(1 + 2-1)(1 + 2-6) 0.2 % 149 40 19.157 1.001
6.312, 60 kHz LPF 6.312 (2-4)(1 - 2-4 - 2- 7) 0.2 % 123 32 20.534 1.000
8.448, 10 Hz LPF 4.224 (2-16)(1 - 2-5 + 2- 7) 0.2 % 139 45 18.450 1.000
8.448, 100 Hz LPF 4.224 (2-13)(1 + 2-2 - 2-5) 0.0 % 128 39 19.417 1.000
8.448, 0.2 Hz HPF 4.224 (2-22)(1 + 2-2) 0.2 % 129 48 20.921 1.000
8.448, 20 Hz HPF 4.224 (2-15)(1 - 2-5 + 2- 7) 0.2 % 162 44 18.587 1.000
8.448, 3 kHz HPF 4.224 (2-s)(1 + 2-3 + 2-6) 0.1 % 149 35 20.040 1.002
8.448, 80 kHz HPF 4.224 (2-3)(1 - 2-3)(1 + 2- 5) 0.6 % 146 35 20.040 1.060
34.368, 10 Hz LPF 8.592 (2-17)(1 - 2-5 - 2- 7) 0.3 % 141 46 18.315 1.000
34.368, 100 Hz LPF 8.592 (2-14)(1 + 2-3)(1 + 2- 4) 0.2 % 134 45 18.450 1.000
34.368, 0.2 Hz HPF 8.592 (2-23)(1 + 2-2 - 2-6) 0.6 % 166 49 17.825 1.000
34.368, 100 Hz HPF 8.592 (2-14)(1 + 2-3)(1 + 2- 4) 0.2 % 158 45 18.450 1.000
34.368, 10 kHz HPF 8.592 (2-7)(1 - 2- 4

- 2-8) 0.1 % 153 35 20.040 1.004
51.840, 10 Hz LPF 4.320 (2-16)(1 - 2-4 + 2-6) 0.0 % 136 44 18.587 1.000
51.840, 100 Hz LPF 4.320 (2-13)(1 + 2-3 + 2- 4) 0.3 % 127 40 19.157 1.000
51.840, 0.2 Hz HPF 4.320 (2-22)(1 + 2-2 - 2- 5) 0.1 % 163 48 17.953 1.000
51.840, 10 Hz HPF 4.320 (2-16)(1 - 2-4 + 2-6) 0.0 % 160 44 18.587 1.000
51.840, 500 Hz HPF 4.320 (2-")(1 + 2-1)(1 - 2- 7) 0.0 % 153 43 18.727 1.000
51.840, 20 kHz HPF 4.320 (2-5)(1 - 2-4 - 2-6) 0.5 % 147 33 20.367 1.015
155.520, 10 Hz LPF 12.960 (2-18)(1 + 2-2)(1 + 2-6) 0.1 % 140 50 17.699 1.000

155.520, 100 Hz LPF 12.960 (2-15)(1 + 2-1)(1 + 2- 4) 0.3 % 128 44 18.587 1.000
155.520, 0.2 Hz HPF 12.960 (2-24)(1 + 2- 1 + 2- 3) 0.1 % 159 49 17.825 1.000
155.520, 10 Hz HPF 12.960 (2-18)(1 + 2-2)(1 + 2-6) 0.1 % 164 50 17.699 1.000
155.520, 1 kHz HPF 12.960 (2-11)(1 - 2- 7) 0.0 % 126 42 22.173 1.000
155.520, 65 kHz HPF 12.960 (2-5)(1 - 2- 7) 0.1 % 119 36 23.585 1.016

Table 5.4: Filters which may be implemented without adding delay elements in the
loop, using FLEX81188s in the A-2 speed grade. The data path width b is 24 bits.
Coefficient Implementation, frequency error, and Ciir are the same as in the previous
table.

0

Maximum Clock Rate vs. Ab

25

20

15

10

25 30 35 40
Ab

45 50 55 60

Figure 5-4: Maximum Clock Frequency, as a function of Ab, using the circuit with no
extra loop delay elements. The solid line represents an A-2 speed grade FLEX81188,
and the dashed line represents an A-3 speed grade FLEX8820.

not fit on one row of a FLEX8820. Instead, we chose other close coefficients cn which

required fewer LEs to implement, without raising the frequency cutoff error above

2%.

Some of the filters in tables 5.3 and 5.4 used coefficient multipliers which only

needed 1 adder. The propagation delays for these filters were lower by tne,,t than

given by 5.1. The number of LEs required was also lower.

Recall from section 4.1 that highpass filters have an unwanted scaling factor of

Ciir = 2 This factor is given in the tables. The instrument should use this constant

as a scaling factor to interpret the output. Specifically, the instrument should divide

the answer by Ciir to correct for the extra gain in the highpass filters.

5

0
2(0

I

............ ". : .. .-

- --.

..... I•

.........

5.3 Filters with Loop Delays

The remaining filters will have to be implemented with extra delays in the loop, so

that the incoming data rate will not violate the propagation delays. In section 4.2,

we showed that we could correct the effects of extra loop delays by cascading the

input with an FIR correction filter hfix[n]. We then showed that for e very small, the

effects of this filter were negligible, so it could be eliminated. In this section, we will

implement the remaining filters using extra loop delays of k = 3 or k = 4, without

implementing correction filters hfix[n]. (Extra loop delays of k = 1 or k = 2 were not

useful, because of the large gap between the decimated data rates below 13 MHz and

the ones above 34 MHz.) For all but a few of these filters, the resulting ripple will be

below our ripple limit of 2%.

In figure 5-5(a), the input adder, first coefficient adder, second coefficient adder,

and accumulator adder are b, b + m + 1, b + n +1, and b + s + n bits wide, respectively.

Recall that each LE includes a register, so a register placed directly on the output

of an adder indicates that these registers are used. An additional b bit wide register

is required on the data path from the first coefficient adder to the the shifted input

of the second coefficient adder, because the output of the first coefficient adder is

registered. This additional register is implemented in separate LEs.

To prevent fanout of more than 4, we need c = [- 2] - 1 additional LEs buffering

the MSB of the register storing the output of the input adder for the shifted input of

the second coefficient adder, F4+4+c] - 1 LEs buffering the MSB of the input adder,
and [4] - 1 LEs buffering the MSB of the second coefficient adder. This requires

4 4

LEs. The total number of LEs for a filter of the form of figure 5-5(a) is

5b + s + m + 2n + 2 + q

Because the shifted input to the second coefficient adder comes from the first

input adder input adder

Figure 5-5: IIR filter structures with pipelined loops, including coefficient multipliers.
"Zero pad" modules add zeros onto the LSP, "sign extend" modules add bits identical
to the sign bit onto the MSP, and "truncate" modules truncate the LSP.

coefficient adder for the circuit in figure 5-5(b), this circuit does not need a register

for the shifted input to the second coefficient adder. For this circuit,

3+m +n s
4= 1+ -1-34 4 4

buffer LEs are needed to prevent excessive fanout. The total number of LEs for a

filter of the form of figure 5-5(b) is

4b + s + 3m + 2n + 2 + q

The critical path of this circuit is the path from the LSB of the output of the

second coefficient adder register to the MSB of the accumulator. The path incurs

delay tin - tcol between the LSB of the second coefficient adder and the LSB of the

accumulator. (tool is not required since the whole filter will be located on one row.) If

we define Ab = b + s + n for the circuit in figure 5-5(a), or Ab = b + s + n + m for the

circuit in figure 5-5(b), then the carry chain incurs delay Tchain(Ab). Finally, delay

of tout is incurred in reaching the register. If s, m, and n are small, it is possible for

the input adder carry chain to be the critical path, since an additional delay of t,,o

is incurred by the input signal, which comes from another row. However, this does

not occur for any of our filters. Therefore, the maximum propagation delay for this

circuit is the delay for an adder with an input from the same row, which is

tin - tcol + Tchain(Ab) + tout (5.2)

Figure 5-6 plots the maximum clock frequency resulting from expression 5.2 against

Ab. Tables 5.5 and 5.6 show that a handful of filters may be implemented with k = 3,
for b = 16 bit data paths in A-3 speed grade FLEX8820s, and b = 24 bit data paths

in A-2 speed grade FLEX8820s, respectively. The ripple was calculated by MAT-

LAB, by taking the maximum value of the magnitude of difference between the ideal

discrete-time filter response without extra delay elements and the filter response with

extra delay elements, and dividing by the magnitude of the ideal filter. Note, how-

ever, that the 250 kHz highpass filter for the 622.08 MHz base data rate has more

than 2% ripple. This will be dealt with in section 5.5.

Maximum Clock Rate vs. Ab

N
I

4-W

0Eoo

E
:3
E
,X

20 25 30 35 40 45 50 55 60
Ab

Figure 5-6: Maximum Clock Frequency, as a function of Ab, for an adder with input
from the same row. The solid line represents an A-2 speed grade FLEX81188, and
the dashed line represents an A-3 speed grade FLEX8820.

Dec. Max.
Data Coefficient Freq. Clock Peak

Filter Rate Implementation Error LEs Ab Rate Ripple Ciir
(MHz) (MHz)

139.264, 100 Hz LPF 34.816 (2-16)(1 + 2- + 2- 4) 0.4 % 114 36 34.843 0.01% 1.000
139.264, 200 Hz HPF 34.816 (2-15)(1 + 2- 3 + 2- 4) 0.4 % 113 35 35.461 0.01% 1.000
139.264, 10 kHz HPF 34.816 (2-9)(1 - 2- 4 - 2-6) 0.4 % 112 31 38.610 0.55% 1.001
622.080, 250 kHz HPF 38.880 (2-5)(1 + 2- 3 - 2 - s) 0.1 % 111 29 40.161 12.87% 1.020

Table 5.5: Filters which may be implemented with k = 3 delay elements in the loop,
using FLEX8820s in the A-3 speed grade. The data path width b is 16 bits. Boldface
indicates a missed specification.

Pipelining the carry chains of the accumulators in figure 5-5 results in the circuits

shown in figure 5-7. In 5-7(a), the input adder, first coefficient adder, and second

coefficient adder are b, b + m + 1, and b + n + 1 bits wide, respectively. A separate b

bit wide register stores the output of the input adder, which is needed by the shifted

/

Dec. Max.
Data Coefficient Freq. Clock Peak

Filter Rate Implementation Error LEs Ab Rate Ripple Ciir
(MHz) (MHz)

139.264, 100 Hz LPF 34.816 (2-1)(1 + 2 - + 2- 4) 0.4 % 154 44 36.101 0.01% 1.000
139.264, 200 Hz HPF 34.816 (2-15)(1 + 2- 3 + 2- 4) 0.4 % 153 43 36.630 0.01% 1.000
139.264, 10 kHz HPF 34.816 (2-9)(1 - 2- 4 - 2-6) 0.4 % 152 39 39.370 0.55% 1.001

622.080, 250 kHz HPF 38.880 (2-5)(1 + 2- 3 - 2 - s) 0.1 % 151 37 40.650 12.87% 1.020

Table 5.6: Filters which may be implemented with k = 3 delay elements in the
loop, using FLEX81188s in the A-2 speed grade. The data path width b is 24 bits.
Coefficient Implementation, frequency error, ripple, and Ciir are the same as in the
previous table. Boldface indicates a missed specification.

input of the second coefficient adder. The first stage accumulator is b + n + 1 bits

wide, but an additional LE is required for a register for the carry-out signal. Another

register stores the MSB of the second coefficient adder, for sign extension in the second

stage accumulator. The second stage accumulator is s - 1 bits wide. If b > s - 1, a

separate b-s + 1 bit wide register is used to store bits from the first stage accumulator

which are used by the input adder.

To prevent fanout of more than 4, we need c = [2] - 1 additional LEs buffering

the MSB of the register storing the output of the input adder for the shifted input of

the second coefficient adder, [4+4+-] - 1 LEs buffering the MSB of the input adder,

d = F[] - 1 additional LEs in the register storing the MSB of the second coefficient

adder for the second stage accumulator, and 1+d - 1 LEs buffering the MSB of the

second coefficient adder. This requires

4+m+c 1+dq=c+ 4 +d+ I 1-2
4 4

LEs. The total number of LEs for a filter of the form of figure 5-7(a) is

5b + s + m + 2n + max(b - s + 1,0) + 4 + q

Because the shifted input to the second coefficient adder comes from the first

coefficient adder for the circuit in figure 5-7(b), this circuit does not need a register

/

input adder

Figure 5-7: IIR filter structures with pipelined loops and accumulators, including
coefficient multipliers. "Zero pad" modules add zeros onto the LSP, "sign extend"
modules add bits identical to the sign bit onto the MSP, and "truncate" modules
truncate the LSBs.

/

inputadder

for the shifted input to the second coefficient adder. For this circuit,

3+m 1+d
4 4

buffer LEs are needed to prevent excessive fanout. The total number of LEs for a

filter of the form of figure 5-7(b) is

4b + s + 3m + 2n + max(b - s + 1,0) + 4 + q

There are three possible critical paths in these circuits, depending on the values

of b, s, m, and n. If s- 1 > b+ n + 2 for 5-7(a), or if s- 1 > b+ m + n + 2 for 5-7(b),
then the critical path may follow the carry chain of the second stage accumulator. If

not, then the critical path may follow the carry chain of the first stage accumulator,

which includes an extra carry chain delay for the carry-out signal. In either case,
because the input to the circuit comes from a different row, the carry chain of the

input adder may be the critical path, even though it will always be shorter than the

carry chains of all of the other adders.

We therefore define Ab = max(s - 1, b + n + 2) for 5-7(a), or Ab = max(s - 1, b +

m + n + 2) for 5-7(b). The maximum propagation delay time is then the propagation

delay for an adder with an input from the same row, given by expression 5.2, which we

used for k = 3. Likewise, the maximum clock frequency allowed by the accumulator

may be found using the new Ab in the plot of figure 5-6, as for k = 3.

For the input adder, since the output of the MSB may need to be buffered (be-

fore the register) to satisfy the fanout conditions of the shifted input to the second

coefficient adder, we define Ac = b + [4 c - 1. Because the input signal comes

from a different row, the maximum propagation delay allowed by the input adder is

the delay for an adder with an input from a different row, which is

tin + Tchain(Ac) + tout (5.3)

Figure 5-8 plots the maximum frequency resulting from expression 5.3 against A,.

The maximum frequency allowed by the circuit is the lesser of the frequency allowed

by the input adder, and the frequency allowed by the accumulator adders.

Tables 5.7 and 5.8 list the b = 16 and b = 24 implementations, respectively.

For the 44.736, 0.2 Hz HPF filter and the 44.736, 20kHz HPF filter in table 5.7, I

chose alternate coefficients n, other than the closest value, to reduce Ab and raise the

maximum clock rate above the decimated data rate. For 4 filters in table 5.8 (44.736,

100 Hz LPF; 44.736, 0.2 Hz HPF; 139.264, 10 Hz LPF; and 622.08, 100 Hz LPF), I

also chose an alternate coefficient En, to fit the filter within the 168 LEs available on

a single row. Unfortunately, several filters in the table are still unacceptable. These

filters will be corrected in section 5.5. Note that some of these filters use a coefficient

requiring only one adder. For these filters, the second coefficient adder in figure 5-

7(b) should be replaced with a register, to keep the number of extra delays the same.

Reducing the number of delays would change the value of the coefficient required.

Maximum Clock Rate vs. Ac

50

450

CD 53.5. †.. -

E

15E

10 ..

5-

0
15 20 25 30 35

Ac

Figure 5-8: Maximum Clock Frequency as a function of Ac, for an adder with an
input from a different row. The solid line represents an A-2 speed grade FLEX81188,
and the dashed line represents an A-3 speed grade FLEX8820.

Dec. Max.
Data Coefficient Freq. Clock Peak

Filter Rate Implementation Error LEs Ab Rate Ripple Ciir
(MHz) (MHz)

44.736, 10 Hz LPF 44.736 (2-20)(1 + 2-1)(1 - 2-6) 0.3 % 109 25 44.248 0.00% 1.000
44.736, 100 Hz LPF 44.736 (2-16)(1 - 2- 4 - 2-6) 0.2 % 125 24 45.249 0.01% 1.000
44.736, 0.2 Hz HPF 44.736 (2-25)(1 - 2- 4) 0.5 % 106 24 45.249 0.00% 1.000
44.736, 10 Hz HPF 44.736 (2-20)(1 + 2-1)(1 - 2-6) 0.3 % 109 25 44.248 0.00% 1.000
44.736, 30 kHz HPF 44.736 (2-8)(1 + 2- 4) 0.4 % 84 22 47.393 1.71% 1.002
44.736, 400 kHz LPF 44.736 (2-5)(1 + 2-2)(1 + 2- 3) 1.0 % 99 23 46.296 25.72% 1.000
139.264, 10 Hz LPF 34.816 (2-19)(1 - 2- 4 + 2- 7) 0.1 % 131 25 44.248 0.00% 1.000
139.264, 0.2 Hz HPF 34.816 (2-25)(1 + 2-2)(1 - 2- 5) 0.0 % 117 25 44.248 0.00% 1.000
622.080, 10 Hz LPF 38.880 (2-19)(1 - 2-3)(1 - 2- 5) 0.0 % 113 26 42.735 0.00% 1.000
622.080, 100 Hz LPF 38.880 (2-16)(1 + 2- 4 - 2-8) 0.0 % 130 26 42.735 0.01% 1.000
622.080, 0.2 Hz HPF 38.880 (2-25)(1 + 2-3)(1 - 2- 5) 0.5 % 120 26 42.735 0.00% 1.000
622.080, 10 Hz HPF 38.880 (2-19)(1 - 2-3)(1 - 2- 5) 0.0 % 113 26 42.735 0.00% 1.000
622.080, 5 kHz HPF 38.880 (2-10)(1 - 2-3)(1 - 2- 4) 0.5 % 106 25 44.248 0.32% 1.000

Table 5.7: Filters which may be implemented with k = 4 delay elements in the loop,
using FLEX8820s in the A-3 speed grade. The data path width b is 16 bits. Boldface
indicates a missed specification.

Dec. Max.
Data Coefficient Freq. Clock Peak

Filter Rate Implementation Error LEs Ab Rate Ripple Cii,
(MHz) (MHz)

44.736, 10 Hz LPF 44.736 (2-20)(1 + 2-1)(1 - 2-6) 0.3 % 146 33 44.053 0.00% 1.000
44.736, 100 Hz LPF 44.736 (2-16)(1 - 2-4)(1 - 2- 5) 1.3 % 153 35 42.017 0.01% 1.000
44.736, 0.2 Hz HPF 44.736 (2-25)(1 - 2- 4) 0.5 % 138 30 45.045 0.00% 1.000
44.736, 10 Hz HPF 44.736 (2-2o)(1 + 2-1)(1 - 2 - 6) 0.3 % 146 33 44.053 0.00% 1.000
44.736, 30 kHz HPF 44.736 (2-8)(1 + 2- 4) 0.4 % 116 30 45.872 1.71% 1.002
44.736, 400 kHz LPF 44.736 (2-5)(1 + 2-2)(1 + 2- 3) 1.0 % 139 31 45.045 25.72% 1.000
139.264, 10 Hz LPF 34.816 (2-19)(1 - 2- 4) 0.9 % 130 30 45.045 0.00% 1.000
139.264, 0.2 Hz HPF 34.816 (2-25)(1 + 2-2)(1 - 2- 5) 0.0 % 149 33 44.053 0.00% 1.000
622.080, 10 Hz LPF 38.880 (2-19)(1 - 2-3)(1 - 2- 5) 0.0 % 151 34 42.735 0.00% 1.000
622.080, 100 Hz LPF 38.880 (2-16)(1 + 2 - 4) 0.3 % 126 30 45.045 0.01% 1.000
622.080, 0.2 Hz HPF 38.880 (2-25)(1 + 2-3)(1 - 2- 5) 0.5 % 152 34 42.735 0.00% 1.000
622.080, 10 Hz HPF 38.880 (2-19)(1 - 2-3)(1 - 2- 5) 0.0 % 151 34 42.735 0.00% 1.000
622.080, 5 kHz HPF 38.880 (2-10)(1 - 2-3)(1 - 2- 4) 0.5 % 146 33 44.053 0.32% 1.000

Table 5.8: Filters
using FLEX81188
Several coefficient

which may be implemented with k = 4 delay elements in the loop,
chips in the A-2 speed grade. The data path width b is 24 bits.
implementations, and therefore frequency error and ripple, have

changed from the previous table. Ciir is the same as in the previous table, however.
Boldface indicates a missed specification.

5.4 FIR Lowpass Filters

For most of the lowpass filters for the "bandpass" bands, we require third-order

butterworth filters. However, emulating the magnitude rolloff of a third-order but-

terworth filter in the passband and attenuating more heavily in the stopband is also

sufficient. For those data rates which used the decimator, we also need to correct for

passband attenuation. 16-tap symmetric FIR filters with 8 bit coefficients were found

to be adequate. Altera offers programs which will implement symmetric FIR filters

on FLEX8000s [1, 7]. With a 16 bit data path, such a filter will fit on a FLEX81188,

or with a 24 bit data path, such a filter may be split between two FLEX8820s [4].

Because MATLAB functions provide a simple way to implement optimal equiripple

filters with multiple bands, we may use a "brute-force" method to emulate the third-

order butterworth passband rolloff. A piecewise linear ideal response is made to

follow a path emulating the butterworth filter, while correcting the effects of the

stopband attenuation of the decimator. The corners between the the line segments

are made to be arbitrarily narrow "don't-care" bands. A transition band separates the

piecewise linear passband from the stopband. By varying the transition bandwidth,

the passband edge of the final piecewise linear passband segment, and the weighting

functions, we may find an FIR filter which is satisfactory. The MATLAB code used

to implement this may be found in appendix C, and the resulting frequency responses

may be found in appendix B. Table 5.9 gives the coefficients for the filter. Because

of uncertainty about the capabilities of the Altera software, the largest coefficient is

normalized to the largest 8-bit twos-complement number, 127/128, rather than to 1.

Cf -= •"O aj gives a scaling constant which should be used to interpret the output.

5.5 Troublesome Filters

We may raise the maximum clock rate of several of the filters in tables 5.7 and 5.8

by rounding a few LSBs from the second coefficient adder. We prefer not to use

truncation here, because that would introduce an offset equal to half the value of

Base Data Rate ao,a15 al,a 14 a2,a13 a3,a12 a4,all a5,alo a6,a9 a7,a8 Cfir

2.048 MHz -4/128 -10/128 -13/128 -5/128 19/128 58/128 100/128 127/128 4.250
8.448 MHz -4/128 -9/128 -12/128 -5/128 19/128 58/128 100/128 127/128 4.281
34.368 MHz -5/128 -10/128 -12/128 -4/128 22/128 60/128 101/128 127/128 4.359
51.84 MHz -5/128 -10/128 -12/128 -4/128 22/128 61/128 101/128 127/128 4.375

139.264 MHz -2/128 -7/128 -12/128 -9/128 11/128 50/128 96/128 127/128 3.969
155.52 MHz -2/128 -7/128 -12/128 -9/128 11/128 50/128 96/128 127/128 3.969
622.08 MHz 1/128 -1/128 -7/128 -14/128 -7/128 28/128 83/128 127/128 3.281

Table 5.9: Symmetric FIR filter coefficients. Cfir a gives the scale constant
for each filter.

the LSB of the part not discarded by truncation. This in turn will produce a small

offset in wi[n]. For the lowpass filters, this does not matter; however rounding will

not require extra hardware as long as the number of bits to be removed by rounding

is less than n.

These filters would be implemented using the circuits in figure 5-7, with minor

modifications. As long as the number of bits to be removed by rounding is less than

n, then the rounded part of the adder output is due only to the shifted input. The

MSB of the discarded part may be used in place of the carry-in signal to the LSB of

the remaining part, if we are adding the shifted term. If we are subtracting the shifted

term, the MSB of the discarded part should be inverted, and used as the borrow-in

signal to the LSB of the remaining part.

For each LSB rounded, the second coefficient adder and the first stage accumulator

are shortened by one carry chain. Table 5.10 shows the number of bits which should

be rounded to adequately raise the maximum clock rate. Rounding a multiplier can

cause the coefficient E to effectively change values when the amplitude of the input

is very small. However, since we are only rounding 1 or 3 bits, this should not be a

problem. Note that for all cases, n is greater than the number of bits discarded.

For the 44.736 MHz data rate, the lowpass filter in the "bandpass" band is required

to be a first-order lowpass filter with a cutoff of 400 kHz, rather than a third-order

filter. Because the cutoff of this filter is not as small, relative to the data rate, as the

other filters, the approximations we made relying on e being very small are not as

good for this filter. But because of the high data rate, we needed to insert a few loop

delays. This caused a horrible ripple of 25.72%, far above the maximum acceptable

Speed Coefficient Bits Maximum Clock
Filter b Grade Implementation Rounded LEs Ab Rate (MHz)

44.736, 10 Hz LPF 16 A-3 (2-C)(1 + 2-')(1 - 2
-) 1 106 24 45.249

44.736, 10 Hz HPF 16 A-3 (2-20)(1 + 2-1)(1 - 2-6) 1 106 24 45.249
44.736, 10 Hz LPF 24 A-2 (2-20)(1 + 2-1)(1 - 2 - 6) 1 143 32 44.843
44.736, 100 Hz LPF 24 A-2 (2-16)(1 - 2-4)(1 - 2- 5) 3 144 32 44.843
44.736, 10 Hz HPF 24 A-2 (2-20)(1 + 2-1)(1 - 2 - 6) 1 143 32 44.843

Table 5.10: Filters implemented with rounded coefficients.

ripple of 2%.

Recall from section 4.2 that we may cascade our IIR filter with hfix[n] to correct

the effects of the loop delay. Furthermore, since we do not need to implement a

third-order filter and since we do not need to correct for passband attenuation of

the decimator, we do not use an FIR filter for this data rate. The IIR lowpass

filter for the "bandpass" band only consumes one row. Therefore, we have 5 unused

rows on the FLEX81188, if we are using 16-bit data paths, or 7 unused rows on

the two FLEX8820s, if we are using 24-bit data paths. So we may implement the

approximation to hfix[n] given in equation 4.7 on the chip(s) normally used for the

FIR filter. Figure 5-9 shows a circuit which will accomplish this, using 24 bit data

paths. Note, however, that we did not include the factor of 1. Besides that, the

factor e, cannot be implemented exactly, so , is not quite right anyway. Therefore,

the instrument will have to divide by Ciir = .8467 ~ - in this case. This number was

determined experimentally. The resulting peak ripple is 1.536%.

The lower portion of the circuit uses 168 LEs, including fanout buffering, so it

exactly fits on one row. The longest carry chain is Ab = 31, so figure 5-6 shows that

the lower portion of the circuit will function at the required 44.736 MHz data rate.

The carry chains in the upper portion of the circuit are pipelined, since the 34 bit

carry chain was too long even for signals from the same row. With a maximum carry

chain length of A, = 18, the upper portion will easily function at 44.736 MHz with

inputs from the other row, as seen by figure 5-8. The upper portion of the circuit

consumes an additional 153 LEs-most of another row.

For the 16 bit case, our data path is 8 bits less wide. This means the longest carry

chain in the lower portion is Ab = 23, and in the upper portion is Ac = 14. Figures

Figure 5-9: Filter to correct ripple of the 400kHz lowpass filter for the 44.736 MHz
data rate. This implements the impulse response h[n] = 6[n - 5] - cm Em =, 6[n -
m - 5] K hfix[n - 5]. Here, Em = (2-5)(1 + 2-1 + 2- 4) = 0.0489. The portion of the
circuit below the dashed line should be placed on the same row.

5-6 and 5-8 show that this circuit will function at 44.736 MHz.

Because the cutoff frequency of the 250 kHz highpass filter for the 622.08 MHz

base data rate is also not as small relative to the decimated sample rate of 38.88 MHz

as other filters, this filter also had excessive ripple. Since we are already using the

FIR filter to correct the effects of passband attenuation, we may include the shape

of the ripple in this algorithm, and correct the ripple. Thus we get a separate FIR

filter which should only be used with the 250 kHz highpass filter. Figure B-8 plots

the total frequency response resulting from using the FIR filter coefficients given by

table 5.11. An additional scaling factor was also used, bringing the correct scaling

constant for the IIR and FIR filters to C = 3.213.

Base Data Rate ao,als al,a4 a2,a13 a3,a12 a4,all a5,alo0 a6,a9 7,a C
622.08 MHz 1/128 -1/128 -8/128 -16/128 -11/128 24/128 82/128 127/128 3.213

Table 5.11: FIR filter coefficients for use with the 250 kHz highpass filter for the
622.08 MHz base data rate.

X

5.6 Input Functions

Recall from section 3.1 that for data rates using the decimator, three first-differencers

were to be implemented in Altera hardware, to complete the decimator. There are

21 bits of output from the decimator, so the first-differencers will be 21 bits wide. To

handle signal "wrapping" as described in section 4.3, another first-differencer and an

accumulator will be required to "unwrap" the input by r bits. (Because r may be

small, and because of the Altera architecture, the hardware-saving technique devel-

oped in Appendix A and used in section 3.2 gives little or no savings in complexity

here.) We will be unable to fit all of the input functions on one row; therefore the

maximum frequency of the adders except for the first first-differencer is given in table

5-8. If, for example, r may be up to 12, we will need to pipeline the carry chain of

the accumulator, which will be 21 + r bits wide. We will also, then, pipeline the carry

chains of all of the adders implementing the input functions. Pipelining with 16 bits

in the LSP, as in figure 5-10, satisfies all timing constraints.

Figure 5-10: Input functions: Three first-differencers complete the decimation, and a
first-differencer followed by an accumulator "unwraps" the input by r bits.

Each first-differencer requires one subtracter and one additional register. Each

first-differencer consumes 21 LEs for the subtracter, 21 LEs for the additional register,

and 1 more LE to register the carry chain, for a total of 43 LEs. The final first

differencer, used for "unwrapping" the signal, may need 3 additional LEs to buffer

the MSB, which will be sign-extended by r bits. Together, the four first-differencers

consume 175 LEs. An additional 5 LEs are required for a register to initiate the

pipelining offset. The accumulator requires 21 + r LEs, plus 1 additional LE to

register the carry chain. Finally, 19 - r or 11 - r LEs are required for a register

X[I

to undo the offset, for b = 24 bits or b = 16 bits, respectively. Therefore, the input

functions require a total of 221 LEs or 213 LEs, for b = 24 or b = 16 bits, respectively.

The pipeline offset register, the first 3 first-differencers, and the LSP of the fourth

first-differencer may fit on one row, together consuming 167 of the 168 LEs on a row.

For b = 16 bits, there is plenty of room on the rows with the three IIR filters for

the remaining 46 LEs. Therefore, all of our functions will fit in the four rows of a

FLEX8820, with b = 16. However, with b = 24, our other IIR filters consumed most

of the rows they were on. There are not enough LEs to implement the remaining 54

LEs. Therefore, we will need to use a FLEX81188, the next larger size, with 6 rows.

For those data rates not using the decimator, we only need to "unwrap" the input

by r bits. This requires only the final first-differencer and the accumulator from figure

5-10. Furthermore, we will only have Bx bits of input from the chip, where B. is given

in table 2.2, so the input data path will be B, bits wide, rather than 21 bits wide.

Chapter 6

Conclusion

This thesis presented the design of a filtering system for an analog microchip. The

filtering system included a decimator to lower the sample rate of the signal coming

from the chip, and filters to isolate desired frequency bands for the user.

Chapter 2 laid the analytical foundation for the decimator. A close look at the

Cascaded Integrator Comb decimator showed that the computation could be reduced

by factoring out an intermediate stage which attenuated the first stopband (as well as

the other odd-numbered stopbands). We chose to use K = 3 integrator-comb stages

and L = 1 intermediate stage, to attenuate our stopband by at least 60dB. The

unboundedness of the signal was retained without loss of information, by partially

"unwrapping" the input signal, and using a wide enough data path.

Chapter 3 outlined the circuitry necessary for the portion of the decimator which

was implemented on the microchip. The comb, or first-differencer, stages, were placed

in the FLEX8000 hardware, saving on-chip resources. An unwrapping bit extender

was developed and optimized. The decimator required 746 logic trees.

Chapter 4 laid the analytical foundation for the first-order recursive filters. A

filter was developed to correct for delay elements in the large recursive loop. This

filter was then shown to be negligible for filters with low cutoffs relative to the sample

rate, such as most of the required filters. Criteria for dealing with "wrapping" effects

were developed. Coefficients which could be implemented using no more than two

adders were listed, and shown to be adequate.

Chapter 5 outlined the implementation of the filters in the Altera FLEX 8000

architecture. Most of the filters were implemented directly, without extra delays in

the large recursive loop. However, the high decimated sample rates of the 44.736

MHz, 139.264 MHz, and 622.08 MHz base data rates necessitated k = 3 or k = 4

extra delay elements in the loop. A few filters still had too much delay, so coefficient

outputs were rounded by 1 or 3 bits to shorten carry chains. One filter at the 44.736

MHz base data rate had too much ripple, due to a cutoff frequency that was not low

enough to justify approximations developed in chapter 4. A stronger approximation,

utilizing an approximate correction filter, corrected the ripple. Another filter at the

622.08 MHz data rate also had too much ripple. The FIR filter was modified to

correct this ripple, as well as the passband attenuation of the decimator. For all

data rates utilizing the decimator, FIR filters satisfactorily correcting the decimator

passband attenuation were presented. Finally, the portion of the decimator reserved

for the FLEX8000 architecture was implemented. Using 24 bit data paths, the entire

system fit on one FLEX81188 and two FLEX8820s, using the A-2 speed grade. Using

16 bit data paths, the system fit on one FLEX8820 and one FLEX81188, using the

A-3 speed grade.

Appendix A

Unwrapping Bit Extender

Optimization

In section 3.2, we were able to save circuitry by removing the LSP of the accumulator

used to "unwrap" the input signal. Here, we show that this was valid.

Figure A-1 shows a single bit of a first-differencer followed by an accumulator.

Mixing logic notation with signal processing notation, we refer to the stored value of

A and S as Az - 1 and Sz - 1, respectively.

B C
In in

Figure A-1: A single bit of a first-differencer followed by an accumulator.

The logical expressions for adders and subtracters give us:

Bout = A -Az - 1 + A - Bi + Az - 1 - Bin

D = A Az - 1 .- in + A Az - 1 - in + A Az-1 - Bin + AAzi- 1 Bin

S=D - D Sz
- 1

-C in +D- DSz
-

nCin +D- Sz
- 1

- Cin +D. Sz
- 1

Cin

Suppose that Sz-1 = Az-1 , i.e. the previous output of the accumulator is the same

as the previous input to the first-differencer. Also suppose that Cin = Bin. Then we

may eliminate Sz-1 and Ci, from the expressions, yielding

Cout = D Az -1 + D -B•, + Az - 1 -Bif

S = D Az-1 B B , +DAz- - Bin + D Az -1 . -in + D Az - . Bi•

Substituting D into the expression for Cout yields

Cout = Az -1 -Bin + A - Bin + A. Az-1 = Bout

Substituting D into the expression for S yields

S=A

When this circuit begins operation, then, we may set Az-' = Sz-1 = 0 for every

bit in the unwrapping bit-extender. For the LSB of the first differencer, Bin = 1 and

Cin = 0 = Bin. Therefore Cout = Bout, and we must have Cout = Bout for the next

significant bit. Recursively, this shows that Cin = Bi, for every bit. Now, S = A for

every bit also. Therefore, Sz-1 = Az-1 for the next clock cycle, for every bit in the

unwrapping bit-extender.

The only outputs of one bit of an accumulator are S and Cout. But Cout = Bout

and S = A. Therefore, for every bit in the unwrapping bit-extender for which we

have A and Bout, we do not need an accumulator.

Appendix B

FIR Filter Plots

This appendix contains plots of the FIR filters shown in table 5.9. The responses

shown include the effects of passband attenuation of the decimator (if a decimator

is used for that data rate), so these filters have successfully corrected the passband

attenuation. Ideal third-order butterworth lowpass filter responses are shown with

dashed lines. Dotted lines in the passband plots at right show the performance limits.

The inside pair of dotted lines plots frequency error of ±2% with ±1% ripple. The

outside pair of dotted lines plots frequency error of ±5% with ±2% ripple.

For the 250 kHz highpass filter for the 622.08 MHz data rate, a separate FIR filter

is used. The coefficients for this filter are given in table 5.11. This filter corrects

excessive ripple in the IIR 250 kHz filter, as well as passband attenuation caused by

the decimator. Figure B-8 plots the magnitude response of the total filter, including

the IIR 250 kHz filter, the decimator attenuation, and the FIR filter.

100

aC

O

S10

0)

Co--,
CZ10-2

E
S10-3

Z

10- 4

106
Frequency (Hz)

Figure B-1: Frequency response and
MHz data rate.

Log-Log

100

a,

o

C 10- 1

a

.-0C

E
0 1 i10
Z

10
-4

.....yquist

0 0.05 0.1 0.15
Frequency (MHz)

passband detail of the FIR filter for the 2.048

Passband

1

a 0.95
C
r0

60.85

c 0.8
o

N 0.75

E
0 0.7
z

0.65

v.
105 106

Frequency (Hz)
0.1 0.2 0.3 0.4

Frequency (MHz)

Figure B-2: Frequency response and passband detail of the FIR filter for the 8.448
MHz data rate. Includes the effect of decimator passband attenuation.

97

1

a 0.95
CO

0

U/ 0.9
a)

6 0.85

cz 0.8

N 0.75

E
0 0.7z

0.65

06

.• ". . . .

.... i , . .
..: ' ,..

V.

.; .. '. ":

".\ .'.

..!iix '
i !!

PassbandLog-Log

" i: .. i ... i ...!...

....

.. .., , - ; %...

-: · : :. : :,: ·:.: : , .., : : : : : :. :

...i • ..j ,,. i : .,,~i , ...i i i i

·I

: :

· ··

t

t

-06•

Passband

a) 0.95
U,

0
C.U) 0.9a)

0.85

c 0.8

D 0.75

E
0 0.7Z

0.65

0.6

Frequency (Hz)
0 0.2 0.4 0.6 0.8

Frequency (MHz)

Figure B-3: Frequency response and passband detail of the FIR filter for the 34.368
MHz data rate. Includes the effect of decimator passband attenuation.

Log-Log Passband

.., ' .. .
.-

.. . . :.. , . . •

.. i. i. i. . .• \ : ' . .

.........i: :' : • . .

...... '.-.......................

105 106
Frequency (Hz)

U.95

0.9

0.85

0.8

0.75

0.65

0 0.1 0.2 0.3 0.4
Frequency (MHz)

Figure B-4: Frequency response and passband detail of the FIR filter for the 51.84
MHz data rate. Includes the effect of decimator passband attenuation.

F

F

Log-Log

..\

..',

. \

A AJ

Log-Log

0.95

0.9

0.85

0.8

0.75

0.7

a)
u,C
0
C)oa)
a)

_0

a)r"CO

N
CaE
0
z

v.U

Frequency (Hz)

Passband

.N.
i '' " i " •" "

'... \'."...

.. i.. .. ,

i i .'.\"i. '. - i.. :. ° . . , .. '
..

...i.: ,.

.. :... :. :. , \ .

0 1 2 3 4
Frequency (MHz)

Figure B-5: Frequency response and passband detail of the FIR filter for the 139.264
MHz data rate. Includes the effect of decimator passband attenuation.

Log-Log
. • ' . '

I~~~ i ~lr....... .. N ujqu~t:i:
. q

" ! !ri i i ir i !i i• i i? ! i-= : ; .. .: .: ;~2 2 . . . · :· · · :i·- · ·· .= = = = • · · ·-

: " 1": " " : : ".'" :' ". ; " ' : : " " : " i\ : ": "~:: "': :. ' ' ! " ""

.............. i i rii l.~r~ii.. I::: :1: :::::::::::::::;:: : :::: ::: `:::::::: :: ::::: :::":!:::!::•~~~I ... :::x

\L A

7 7 7 A i

106
Frequency (Hz)

0.95

0.9

0.85

0.8

0.75

0.7

0.65

107

Passband
·............

:..

.

.........-

.. .. 'i -

..

...

...............
-· i · . · · · ·- · ·· . .•~~· i. ·· ·

0.5
Frequency (MHz)

Figure B-6: Frequency response and passband detail of the FIR filter for the 155.52
MHz data rate. Includes the effect of decimator passband attenuation.

99

0.65

IU

106

100

0 0-1
a)

0--

S10-34
z

S10 -4

A A•

n0a

Passband

107
Frequency (Hz)

iNyquii s i-ii: i • ! i i ii :i~i............. i

\.y.jN ist···: ·
:::·:::: : : :: :::: i ::: i i~ : :, : : : i : :!: :!: i ::l•i~ -

" .•;•.......""""... "• ::t ... • ""• •'" :

::: ;;: : : : : : : :::I: ::~::~:::: : ::: j: : :. ; : :: :1::\ :

::: ::: ::: ::: ::: ::: : :::::: :: :: : " i !i.:.! ::: I::...........

......................

.......

2 4
Frequency (MHz)

Figure B-7: Frequency response and passband detail of the FIR filter for the 622.08
MHz data rate. Includes the effect of decimator passband attenuation.

PassbandLog-Log

0.95

0.9

0.85

0.8

0.75

0.65

106

Frequency (Hz) Frequency (MHz)

Figure B-8: Frequency response and passband detail of the FIR filter to be used with
the 250 kHz highpass filter in the 622.08 MHz data rate, cascaded with that filter.
Includes the effect of decimator passband attenuation and the 250 kHz IIR filter.

100

100

O
1010 - 2

C -
0) 10
C)

zo10Z

-4

1

0.95
c-O

U) 0.9
a)

0.85
0)co 0.8

N 0.75

0 0.7
z

0.65

0.6
106

a)
CO

0aC
U'
CD
a)

a)CDCZ

N

CZE
0z

Nyquist
.I:

.. . ..

........ . .' i

.........

..

.... .. .

104

Log-Log

Iv

. - '"..

... , . " '.

..• " .:

- --

iv

.o.

06
.o

Appendix C

MATLAB Code for FIR Filters

C.1 firs.m

% firs.m: Generates FIR filters to compensate for CIC passband attenuation

% and simulate 3rd order lowpass rolloffs.

ffilters=[2.048e6 1 200e3 .85 .23 28;

8.448e6 2 400e3 .62 .28 7;

34.368e6 4 800e3 .71 .25 7;

51.84e6 12 400e3 .71 .25 7;

139.264e6 4 3500e3 .53 .35 7;

155.52e6 12 1300e3 .53 .35 7;

622.08e6 16 5000e3 .5 .4 5];

fbitrates=ffilters(:,);

fdecimation=ffilters(:,2);

fcutoffs=ffilters(:,3);

wpassfacts=ffilters(:,4); % passband cutoff related to 3-pole cutoff

dcband=ffilters(:,5); % don't-care band width

stopweights=ffilters(:,6); % weight of stopband

fsamplerates=fbitrates./fdecimation;

101

normcutoffs=2*fcutoffs./fsamplerates;

wpass=normcutoffs.*wpassfacts;

wstop=wpass+dcband;

coefbits=8; % Coefficient precision.

taps=16; % Number of taps in the filters.

specpoints=128; % Number of points nyquist divided into for

% piecewise compensation.

specfreqs=(fsamplerates/2)*((0:specpoints-l)/specpoints);

for x=l:length(fcutoffs)

if fdecimation(x)>1

tweak=[1 1;zeros((fdecimation(x)/2)-1,2)];

tweak=tweak(:);

cicl=boxcar(fdecimation(x));

decimator=conv(conv(cicl, cicl),conv(cicl,tweak));

decimatorft=abs(fft(decimator,specpoints*2*fdecimation(x))).';

decimatorfudge(x)=1/sum(decimator); %normalize DC attenuation to 1.

qdecfudge(x)=sum(decimator)/(2 ^ (ceil(log2(sum(decimator)))));

% ^- use to compensate for decimators.

compensator=l./decimatorft(1:specpoints);

firlpfl=remezfit(taps,compensator,wstop(x),wpass(x),stopweights(x));

firlpf(x,:)=quantize(firlpfl/max(firlpfl),coefbits).';

firlpffta=abs(fft(firlpf(x,:),specpoints*2)); %raw fft.

firfudge(x)=1/sum(firlpf(x,:)); %normalize DC attenuation to 1.

firlpfft(x,:)=firlpffta*firfudge(x); %normalized frequency response.

decresponse(x,:)=decimatorft(1:4*specpoints)*decimatorfudge(x);

102

m

wholeresponse(x,:)=decresponse(x,:).*[firlpfft(x,:) firlpfft(x,:)];

plotfreqs(x,:)=(0:4*specpoints-1)*2*fsamplerates(x)/(4*specpoints);

modelresponse(x,:)=sqrt(1./(((plotfreqs(x,:)/fcutoffs(x)) .6)+1));

else % no decimator to compensate for

firlpfl=remez(taps-1,[O wpass(x) wstop(x) 11,[1 1 0 0],[1 stopweights(x)]);

firlpf(x,:)=quantize(firlpfl/max(firlpfl),coefbits);

firlpffta=abs(fft(firlpf(x,:),specpoints*2)); %raw fft.

firfudge(x)=1/sum(firlpf(x,:)); %normalize DC attenuation to 1.

firlpfft(x,:)=firlpffta*firfudge(x); .normalized frequency response.

decresponse(x,:)=ones(1,4*specpoints); %filler to keep matrices even.

decimatorfudge(x)=1;

wholeresponse(x,:)=(abs(fft(firlpf(x,:),specpoints*4))*firfudge(x));

plotfreqs(x,:)=(0:4*specpoints-1)*fsamplerates(x)/(4*specpoints);

modelresponse(x,:)=sqrt(l./(((plotfreqs(x,:)/fcutoffs(x)).^6)+1));

end; %if

end; .for

C.2 remezfit.m

function y=remezfit(taps, curve, ws, wp, wsweight)

%function y=remezfit(taps, curve, ws, wp, wsweight)

curvepoints = length(curve);

delta=l/(curvepoints*50);

wpindex = floor(wp*curvepoints);

103

bandedges = (O:wpindex-1)/curvepoints.';

bandedgem=[bandedges(1:wpindex-1)+delta;bandedges(2:wpindex)-delta];

bandedgepairs = [bandedgem(:); ws; 1];

curve = curve(:);

curve = curve(l:wpindex);

magsm = [curve(1:wpindex-1), curve(2:wpindex)] .';

mags = [magsm(:); 0; 0];

weights = [ones(wpindex-1,1); wsweight];

y = remez(taps-1, bandedgepairs, mags, weights).';

C.3 quantize.m

function y = quantize(infilter, bits)

% quantizes a filter to a certain number of bits such that the largest tap has

% a value of 2^(bits-1)-1.

infilter = infilter/max(infilter);

posbits = bits-1; % half the numbers are negative

y = round((pow2(posbits)-1)*infilter);

104

m

Bibliography

[1] Application note 73: Implementing FIR filters in FLEX devices. Altera Corpora-

tion, San Jose, CA, January 1996.

[2] Altera, San Jose, CA. 1995 Data Book, 1995.

[3] Ronald E. Crochiere and Lawrence R. Rabiner. Multirate Digital Signal Process-

ing. Prentice-Hall, Englewood Cliffs, NJ, 1983.

[4] Caleb Crome. Senior Megacore Development Engineer, Altera Corporation. Per-

sonal communication, February 1997.

[5] Eugene B. Hogenauer. An economical class of digital filters for decimation and

interpolation. IEEE Transactions on Acoustics, Speech, and Signal Processing,

29(2):155+, April 1981.

[6] Keshab K. Parhi and David G. Messerschmitt. Look-ahead computation: Im-

proving iteration bound in linear recursions. In Proc. IEEE Int. Conf. Acoust.,

Speed, Signal Processing Symposium on the Theory of Computing, Dallas, TX,

April 1987.

[7] Leo Petropoulos. Replace digital signal processors with HCPLDs. Electronic

Design, pages 99+, September 1995.

105

