
Implementation of Time Delay Control to

Magnetic Bearings

by

John Wetzel

B.S.. Mechanical Engineering (1984)
State University of New York at Buffalo

M.S.. Mechanical Engineering (1992)
Massachusetts Institute of Technology

Submitted to the Department of
Mechanical Engineering in Partial

Fulfillment of the Requirements for the
Engineer's Degree in Mechanical Engineering

at the

Massachusetts Institute of Technology

June 1997

O John Wetzel 1997
All rights reserved

The author hereby grants to MIT permission to reproduce and to
distribute publicl•P Iyies of th sis do ument in whole or part.

Signature of Author K

/ / DIepartment of Mechanical Engineering
June 1997

Certified by
Professor Kamal Youcef-Toumi

Thesis Supervisor

Accepted by ..
Professor Ain A. Sonin

S"' Chairman, Department Committee

JUL 2 '1997

Implementation of Time Delay Control to
Magnetic Bearings

by

John Wetzel

Submitted to the Department of
Mechanical Engineering in Partial

Fulfillment of the Requirements for the
Engineer's Degree in Mechanical Engineering

ABSTRACT
Magnetic bearings possess characteristics that make them ideal for solving certain classes

of engineering problems. One characteristic is their ability to achieve and maintain very high
rotational speeds due to low friction. Another characteristic is their inability to contaminate the
working fluid due to lack of lubrication and absence of metal to metal contact. However,
magnetic bearings pose many interesting challenges to the engineer. The inherent characteristics
of magnetic bearings are such that they are open loop unstable and therefore require feedback
control. This instability also requires that the controller be extremely robust. The application
used as a test platform is a high speed turbopump. The electromagnetic fields generated by each
of the five axes of the turbopump are inherently nonlinear as are the equations of motion of the
rotor. The system is also subject to disturbances caused by rotor gyroscopic forces, rotor
imbalance, and rotor bending modes.

This control algorithm chosen to control this turbopump application is Time Delay Control
(TDC). TDC was chosen because it uses information from previous sampling interval(s) to
estimate unmodeled system dynamics. This estimation is then used to augment the ideal control
signal produced by a desired dynamics reference model and thereby produce the final control
action. In this way, TDC becomes a powerful technique for controlling nonlinear systems and
systems subject to a disturbance rich environment. However, TDC is a relatively recent control
algorithm in which design has thus far been primarily a trial and error process. This thesis will
document one attempt to move the design process beyond trial and error.

The three main themes of the thesis are the modeling, design, and implementation of TDC
to magnetic bearings. To measure the success of the modeling, design, and implementation
processes, the theoretical, digital, and analog controller closed loop frequency responses and
disturbance rejection responses are compared in the case where the rotor is not spinning. Also
the disturbance rejection responses are compared for both the analog and digital controllers when
the rotor is spun at low and medium speeds. The results show that the digital controller has a
significantly higher bandwidth, higher maximum closed loop gain, and significantly less
compliance overall then the analog controller when the rotor is not spinning. The digital
controller also exhibits better stiffness at low rotor speeds but begins to lose stability at medium
rotor speeds.

Acknowledgment

Special thanks to Professor Kamal Youcef-Toumi for his guidance and infinite patience.

I would also like to thank Tom Allen, the best boss I could ever hope for. He has only one
concern -- keep the sponsor happy. This allowed me to rearrange my schedule on certain weeks
so that I could spend more hours of my thesis.

I would also like to thank John Maglio. While he had nothing to do with my thesis, his
friendship was a major contributor to my ability to remain sane.

Thanks also to Ting-Jen Yeh my partner in crime in the lab. He represents the high degree of
talent that MIT is capable of turning out. His dedication was an inspiration and his keen mind
inspired me to greater heights. Without his help and encouragement, I don't believe this thesis
would have been possible. I learned more from him in the lab then in all my studies at MIT.

Finally I would like to the Coca Cola Bottling Co. and the Mars Candy Co. (the manufacturer
of Snickers candy bars). Together they comprise the breakfast of champions.

I've made some mistakes now baby
but I did the best I could,
it takes what it takes and sometimes
it takes longer then it should.

-Patty Smythe

Contents

1 Introduction 1
1.1 Motivation and Background 1
1.2 Scope and Content of Thesis 2

2 System Description and Analysis 4
2.1 Physical Description ... 4

2.1.1 Turbopum p ... 5
2.1.2 Controller .. 6
2.1.3 Auxiliary Vacuum Pump 8

2.2 System Analysis .. 8
2.2.1 Driver Best Fit System Analysis 8
2.2.2 Theoretical Turbopump System Analysis 12
2.2.3 Best Fit Turbopump System Analysis 17
2.2.4 Best Fit Open Loop System Analysis 21

2.3 Summary and Remarks 24

3 Time Delay Control Algorithm 25
3.1 Time Delay Control Law 25
3.2 Implementation Simplifications 28

3.2.1 Constant Control Distribution Matrix, B(X,t) 29
3.2.2 Error Dynamics Matrix Equals Reference Model Matrix (Ae = A) . 29
3.2.3 Final System Specific Simplifications 30

3.3 Summary and Remarks 31

4 Controller Description and Design 32
4.1 Physical Description .. 32

4.1.1 DSP Board ... 32
4.1.2 I/O Controller Board 34
4.1.3 I/O Interface Board 35

4.2 Controller Design .. 35
4.2.1 Sampling Rate Determination 37
4.2.2 Velocity Derivation 47
4.2.3 Optimal Controller Determination 47

4.3 Controller Implementation 49
4.3.1 Parallel versus Serial Processing 50
4.3.2 Digital Controller Program Structure 51

4.4 Other Implementation Issues
4.4.1 Bending Modes
4.4.2 Sensor Noise
4.4.3 Anti-Aliasing Filter
4.4.4 D/A Glitch

4.5 Filter Design
4.5.1 Low Pass Filter Design ...
4.5.2 Notch Filter Design

4.6 Manual Tuning
4.7 Summary and Remarks

5 Controller Evaluation
5.1 The Manual Tuning Process
5.2 Static Test Results

5.2.1 Axial Bearing Test Results
5.2.2 Radial Bearing Test Results

5.3 Dynamic Test Results
5.3.1 Axial Bearing Test Results
5.3.2 Radial Bearing Test Results

5.4 Summary and Remarks

6 Conclusions and Recommendations

A Magnetic Circuit Analysis
A.1 Ampere's Law
A.2 The Magnetic Circuit
A.3 Radial Bearing Magnetic Circuit ..
A.4 Axial Bearing Magnetic Circuit ...
A.5 Magnetic Bearing Driver

B Rotor Mechanics
B.1 Time Derivatives With Respect
B.2 Forces
B.3 Moments

C Turbopump Equations of Motion
C 1 XTli I: V -FAMX

C.2
C.3
C.4
C.5

to an Intermediate

1n nVeallllllL UaLtoUL Vo o nVJL

Linearization of the Magnetic Force Equations .
Radial Bearing Linearization
Axial Bearing Linearization
Linearized Equations of Motion

D Hybrid System Modeling
D.1 Purely Continuous System

Reference

.

Frame

.•

100
100
104
105
107
111

113
113

D.1.1 Open Loop System
D.1.2 Closed Loop System
D.1.3 Poles of the Closed Loop Characteristic Equation

D.2 Purely Digital System
D.2.1 Open Loop System
D.2.2 Closed Loop System

D.3 Derivatives and Noise

E System Analysis Data
E.1 Theoretical versus Actual Pump Transfer Function
E.2 Best Fit versus Actual Pump Transfer Function
E.3 Best Fit versus Actual Driver Transfer Function
E.4 Best Fit versus Actual Plant Transfer Function
E.5 Best Fit Pump Transfer Function Program Listings

E.5.1 M atlab Script
E.5.2 C Source

E.6 Best Fit Driver Transfer Function Program Listings
E.6.1 M atlab Script
E.6.2 C Source

F Static Experimental Plots
F.1 Graph Production Details

F.1.1 Closed Loop Frequency Response Details
F.1.2 Disturbance Rejection Plot Details

F.2 Closed Loop Frequency Response
F.2.1 Analog Controller
F.2.2 Digital Controller

F.3 Disturbance Rejection
F.3.1 Analog Controller
F.3.2 Digital Controller

F.4 Closed Loop Frequency Response Comparison
F.5 Disturbance Rejection Comparison
F.6 Closed Loop Frequency Response Performance Values ...
F.7 Disturbance Rejection Performance Values

G Dynamic Experimental Plots
G.1 Graph Production Details
G.2 Disturbance Rejection at 15000 RPM

G.2.1 Analog Controller
G.2.2 Digital Controller

G.3 Disturbance Rejection at 28000 RPM
G.3.1 Analog Controller
G.3.2 Digital Controller

G.4 Disturbance Rejection Comparison at 15000 RPM

194
................... 195
................... 196
................... 196
................... 199
................... 202
................... 202
................... 205
................... 208

113
115
117
118
118
120
122

124
125
133
140
147
153
153
156
162
162
165

172
173
173
173
174
174
177
180
180
183
186
189
192
193

G.5 Disturbance Rejection Comparison at 28000 RPM 211
G.6 Disturbance Rejection Performance Values at 15000 RPM 214
G.7 Disturbance Rejection Performance Values at 28000 RPM 215

H Assorted Program Listings 216
H.1 Controller Parameter Determination Programs 216

H .1.1 lim its.c ... 216
H .1.2 m at2text.c ... 231
H.1.3 mat2tiff.c 233
H .1.4 crosses.c .. 251
H.1.5 getsubset.c .. 263
H.1.6 uniqcount.c 266
H.1.7 settlestats.m 269
H.1.8 compli.c ... 272
H.1.9 comp2text.c 295

H.2 System Response Programs 300
H.2.1 PrtAllData.m 300
H.2.2 DigClosePlot.m 303
H.2.3 DigPlotComp.m 305
H.2.4 DigStabFunc.m 308

H.3 Component Model Programs 309
H.3.1 ConAmpIdeal.m 310
H.3.2 ConPumpIdealNoAmp.m 311
H.3.3 ConPumpNoAmp.m 312
H.3.4 DigControl.m 314
H.3.5 DigPump.m 315
H.3.6 DigPumpIdeal.m 316
H.3.7 DigPumpNoAmp.m 317

H.4 Miscellaneous Programs 318
H.4.1 NoiseSpect.m 318
H.4.2 PhaseFix.m 319
H.4.3 veltest.m ... 320

I Digital Controller Listing 322
I.1 Digital Controller Details 322

I.1.1 Architecture File 323
1.1.2 Controller Assembly File 324

J DSP Programming Environment 356
J.1 Digital Controller Assembling and Operation 356
J.2 Digital Controller Testing 358
J.3 Auxiliary Program Listings 359

J.3.1 dumpdsp.c ... 359
J.3.2 reset.asm .. 364

I __· __ _____·___·I___·___·

J.3.3 startdsp.c .. 369
J.3.4 stopdsp.c .. 371
J.3.5 readdsp.c 372
J.3.6 sineint.asm ... 376

K The Rest of the Story 386
K.1 Digital Controller Testing 386
K.2 The Project Box ... 388
K.3 Turbopump Noise ... 389
K.4 Radial Bearing Coupling Experiments 390

viii
Vlll

List of Figures

2-1 Physical System Layout .. 4
2-2 Turbopump Cutaway ... 5
2-3 Radial Bearing Diagram ... 6
2-4 Axial Bearing Diagram ... 6
2-5 Magnetic Bearing Controller Board 7
2-6 Axial Bearing Best Fit versus Actual Driver Transfer Function Magnitude Plot 10
2-7 Axial Bearing Best Fit versus Actual Driver Transfer Function Phase Plot 10
2-8 Radial Bearing 2X Best Fit versus Actual Driver Transfer Function Magnitude Plot . 11
2-9 Radial Bearing 2X Best Fit versus Actual Driver Transfer Function Phase Plot 11
2-10 Axial Bearing Theoretical versus Actual Turbopump Transfer Function Magnitude Plot

... 15
2-11 Axial Bearing Theoretical versus Actual Turbopump Transfer Function Phase Plot . 15
2-12 Radial Bearing 2X Theoretical versus Actual Turbopump Transfer Function Magnitude Plot

...... ... 16
2-13 Radial Bearing 2X Theoretical versus Actual Turbopump Transfer Function Phase Plot

.. ... 16
2-14 Axial Bearing Best Fit versus Actual Turbopump Transfer Function Magnitude Plot

.. 19
2-15 Axial Bearing Best Fit versus Actual Turbopump Transfer Function Phase Plot ... 19
2-16 Radial Bearing 2X Best Fit versus Actual Turbopump Transfer Function Magnitude Plot

.. 20
2-17 Radial Bearing 2X Best Fit versus Actual Turbopump Transfer Function Phase Plot

........ ... 20
2-18 Axial Bearing Best Fit versus Actual Open Loop Transfer Function Magnitude Plot

... 22
2-19 Axial Bearing Best Fit versus Actual Open Loop Transfer Function Phase Plot ... 22
2-20 Radial Bearing 2X Best Fit versus Actual Open Loop Transfer Function Magnitude Plot

... 23
2-21 Radial Bearing 2X Best Fit versus Actual Open Loop Transfer Function Phase Plot

........ ... 23
4-1 Controller Hardware ... 33
4-2 Radial Bearing 2X Closed Loop Frequency Response as a Function of Sampling Rate

. 38
4-3 Radial Bearing 2X Disturbance Rejection Response as a Function of Sampling Rate 38
4-4 Four Dimensional Parameter Space Mapping 41
4-5 Radial Bearing 2X Four Dimensional Parameter Space Stability Plot 42
4-6 Bearing Aggregate Stable Space Plot 43

4-9 Backward Difference and Central Difference Velocity Comparisons
4-10
4-11
4-12
4-13
4-14
4-15
4-16
4-17
4-18
5-1
5-2
5-3
5-4
5-5

Peak From Underdamped Poles
Rotor Assembly Bending Modes
Position Sensor Noise Spectrum
D/A Sine Wave Time Series
D/A Zero Crossing Anomaly
Low Pass Filter Frequency Response
Low Pass Filter Phase Response
Notch Filter Frequency Response
Notch Filter Phase Response

Axial Bearing Static Closed Loop Frequency Response ...
Axial Bearing Static Disturbance Rejection Response
Radial Bearing 2X Static Closed Loop Frequency Response
Radial Bearing 2X Static Disturbance Rejection Response .
Axial Bearing Dynamic Disturbance Rejection Response - 1

5-6 Axial Bearing Dynamic Disturbance Rejection Response - 28000 RPM
5-7 Radial Bearing 2X Dynamic Disturbance Rejection Response - 15000 RPM
5-8 Radial Bearing 2X Dynamic Disturbance Rejection Response
A-2 Typical Magnetic Circuit
A-3 Magnetic Circuit Diagram
A-4 Faraday's Experimental Apparatus
A-5 Magnetic Energy to Mechanical Work Sample Circuit
A-6 Turbopump Radial Bearing
A-7 Radial Bearing Magnetic Pole
A-8 Radial Bearing Flux Lines........................
A-9 Radial Bearing Magnetic Circuit
A-10 Radial Bearing Pole Composition
A-11 Axial Bearing Configuration
A-12 Axial Bearing Magnetic Circuit
A-13 Coil Current to Control Signal Relationship
B-1 Fixed and Intermediate Reference Frames
B-2 Rotor Forces and Reference Frames
B-3 Rotor Inclination 1
B-4 Rotor Inclination 2
B-5 Rotor Inclination 3
B-6 Rotor Center of Gravity
D-1 Continuous Time Open Loop Block Diagram
D-2 Continuous Time Open Loop Root Locus Diagram
D-3 Continuous Time Closed Loop System Block Diagram
D-4 Continuous Time Controller Block Diagram
D-5 Discrete Time Open Loop Block Diagram
D-6 Discrete Time Open Loop Root Locus Diagram
D-7 Discrete Time Open Loop Root Locus Diagram
D-8 Discrete Time Closed Loop Block Diagram

28000
.....

.....

.....

. . . .

.....

.....

.....

.....

.....

... e.

.....

. . . .

. . .o .

.....

.....

.....

.....

.....

.

. . . .

. . . .

. . . .

.. o . . .

. . . .

RPM

...

....

....e . o .

....

....

....

....

....

.. e..

....

. . .o .

.o . . .

....

....

....

.. o..

....

. . . .

. . . .

. . . .

o. . .

. . . .

. . . .

. . . .

. . . .

....... 71

...... 72

...... 79

...... 79

...... 81

...... 82

...... 83

...... 83

...... 83

...... 84

...... 86

...... 86

...... 86

...... 88

...... 91

...... 94

...... 95
...... 95
...... 95
...... 95
...... 113
...... 114
...... 115
...... 115
...... 118
....... 120
...... 120
...... 120

........

..... e...

.........

.........

.........

..... e...

5000 RPM .

System Block Diagram and Test Points 124
Axial Bearing Theoretical versus Actual Pump Transfer Function Magnitude Plot .. 127
Axial Bearing Theoretical versus Actual Pump Transfer Function Phase Plot 127
Radial Bearing IX Theoretical versus Actual Pump Transfer Function Magnitude Plot

E-5 Radial Bearing
E-6 Radial Bearing

E-7 Radial Bearing
E-8 Radial Bearing

1X Theoretical versus
1Y Theoretical versus
lY Theoretical versus

1Y Theoretical versus
2X Theoretical versus

................................. 129
Actual Pump Transfer Function Phase Plot .. 129
Actual Pump Transfer Function Magnitude Plot
. 130

Actual Pump Transfer Function Phase Plot .. 130
Actual Pump Transfer Function Magnitude Plot

.. 131
E-9 Radial Bearing 2X Theoretical versus Actual Pump Transfer Function Phase Plot .. 131
E-10 Radial Bearing 2Y Theoretical versus Actual Pump Transfer Function Magnitude Plot

Radial Bearing 2Y Theoretical versus Actual Pump Transfer Function Phase Plot
Axial Bearing Best Fit versus Actual Pump Transfer Function Magnitude Plot ...
Axial Bearing Best Fit versus Actual Pump Transfer Function Phase Plot
Radial Bearing 1X Best Fit versus Actual Pump Transfer Function Magnitude Plot

E-15 Radial Bearing ..X Best Fit versus Actual Transfer Function Phase
E-15 Radial Bearing 1X Best Fit versus Actual Pump Transfer Function Phase
E-16 Radial Bearing 1Y Best Fit versus Actual Pump Transfer Function

..............Radial Bearing ..Y Best
Radial Bearing 1Y2X Best
Radial Bearing 2X Best

Radial Bearing 2X Best
Radial Bearing 2Y Best

Fit versus Actual Pump
Fit versus Actual Pump

Fit versus Actual Pump
Fit versus Actual PumpFit versus Actual Pump

.............Transfer Function
Transfer Function
Transfer Function

Transfer Function
Transfer Function

Plot
Magnitude Plot

Phase Plot
Magnitude Plot

Phase Plot
Magnitude Plot

Radial Bearing 2Y Best Fit versus Actual Pump Transfer Function Phase Plot

Radial Bearing 2Y Best Fit versus Actual Pump Transfer Function Phase Plot ...
Axial Bearing Best Fit versus Actual Driver Transfer Function Magnitude Plot
Axial Bearing Best Fit versus Actual Driver Transfer Function Phase Plotude Plot
Radial Bearing IX Best Fit versus Actual Driver Transfer Function Magnitude Plot
Radial Bearing 1X Best
Radial Bearing 1Y Best
Radial Bearing 1Y Best
Radial Bearing 1Y
Radial Bearing 2X

Best
Best

E-29 Radial Bearing 2X Best
E-30 Radial Bearing 2Y Best
E-30 Radial Bearing 2Y Best

.....................................Fit versus Actual Driver Transfer Function Phase Plot
Fit versus Actual Driver Transfer Function Phase Plotlot
Fit versus Actual Driver Transfer Function Magnitude Plot
...
Fit versus Actual Driver Transfer Function Phase Plot ...
Fit versus Actual Driver Transfer Function Magnitude Plot
Fit versus Actual Driver Transfer Function Pha..
Fit versus Actual Driver Transfer Function Phase Plot ...
Fit versus Actual Driver Transfer Function Magnitude Plot

E-31 Radial Bearing 2Y Best Fit versus Actual Driver Transfer Function Phase Plot ...
E-32 Axial Bearing Best Fit versus Actual Plant Transfer Function Magnitude Plot

132
132
135
135

136
136

137
137

138
138

139
139
142
142

143
143

144
144

145
145

146
146
148

E-1
E-2
E-3
E-4

E-11
E-12
E-13
E-14

E-17
E-18

E-19
E-20

E-21
E-22
E-23
E-24

E-25
E-26

E-27
E-28

E-33 Axial Bearing Best Fit versus Actual Plant Transfer Function Phase Plot
E-34 Radial Bearing 1X Best Fit versus Actual Plant Transfer Function Magnitude Plot

Radial Bearing IX Best
Radial Bearing 1Y Best

Radial Bearing 1Y Best
Radial Bearing 2X BestRadial Bearing 2X Best

Fit versus Actual Plant Transfer
Fit versus Actual Plant Transfer

Fit versus Actual Plant Transfer
Fit versus Actual Plant TransferFit versus Actual Plant Transfer

E-35
E-36

E-37
E-38

E-39
E-40

E-41
F-1

148

...... 149
Function Phase Plot 149
Function Magnitude Plot
................... 150
Function Phase Plot 150
Function Magnitude Plot
... 15 1
Function Phase Plot 151
Function Magnitude Plot
................... 152
Function Phase Plot 152
................... 172

F-2 Axial Bearing Analog Controller Closed Loop Frequency Response Magnitude Plot
.. 174

F-3 Radial Bearing 1X Analog Controller Closed Frequency Response Magnitude Plot . 174
F-4 Radial Bearing 1Y Analog Controller Closed Loop Frequency Response Magnitude Plot

.. 175
F-5 Radial Bearing 2X Analog Controller Closed Loop Frequency Response Magnitude Plot

.. 175
F-6 Radial Bearing 2Y Analog Controller Closed Loop Frequency Response Magnitude Plot

.. 176
F-7 Axial Bearing Digital Controller Closed Loop Frequency Response Magnitude Plot

.. 177
F-8 Radial Bearing 1X Digital Controller Closed Frequency Response Magnitude Plot .. 177
F-9 Radial Bearing lY Digital Controller Closed Loop Frequency Response Magnitude Plot

.. 178
F-10 Radial Bearing 2X Digital Controller Closed Loop Frequency Response Magnitude Plot

.. 178
F-11 Radial Bearing 2Y Digital Controller Closed Loop Frequency Response Magnitude Plot

... 179
F-12 Axial Bearing Analog Controller Disturbance Rejection Magnitude Plot 180
F-13 Radial Bearing 1X Analog Controller Disturbance Rejection Magnitude Plot 180
F-14 Radial Bearing lY Analog Controller Disturbance Rejection Magnitude Plot 181
F-15 Radial Bearing 2X Analog Controller Disturbance Rejection Magnitude Plot 181
F-16 Radial Bearing 2Y Analog Controller Disturbance Rejection Magnitude Plot 182
F-17 Axial Bearing Digital Controller Disturbance Rejection Magnitude Plot 183
F-18 Radial Bearing lX Digital Controller Disturbance Rejection Magnitude Plot 183
F-19 Radial Bearing 1Y Digital Controller Disturbance Rejection Magnitude Plot 184
F-20 Radial Bearing 2X Digital Controller Disturbance Rejection Magnitude Plot 184
F-21 Radial Bearing 2Y Digital Controller Disturbance Rejection Magnitude Plot 185

Axial Bearing Closed Loop Frequency Response Magnitude Comparison Plot
Radial Bearing IX Closed Loop Frequency Response Magnitude Comparison Plot

186

..................................Radial Bearing 2X Best Fit versus Actual Plant Transfer....
Radial Bearing 2X Best Fit versus Actual Plant Transfer
Radial Bearing 2Y Best Fit versus Actual Plant Transfer

Radial Bearing 2Y Best Fit versus Actual Plant Transfer
System Block Diagram and Test Points.............

F-22
F-23

..186
F-24 Radial Bearing 1Y Closed Loop Frequency Response Magnitude Comparison Plot

... 187
F-25 Radial Bearing 2X Closed Loop Frequency Response Magnitude Comparison Plot

... 187
F-26 Radial Bearing 2Y Closed Loop Frequency Response Magnitude Comparison Plot

.. 188
F-27 Axial Bearing Disturbance Rejection Magnitude Comparison Plot 189
F-28 Radial Bearing 1X Disturbance Rejection Magnitude Comparison Plot 189
F-29 Radial Bearing lY Disturbance Rejection Magnitude Comparison Plot 190
F-30 Radial Bearing 2X Disturbance Rejection Magnitude Comparison Plot 190
F-32 Radial Bearing 2Y Disturbance Rejection Magnitude Comparison Plot 191
G-1 System Block Diagram and Test Points 194
G-2 Axial Bearing Analog Controller Disturbance Rejection Magnitude Plot at 15000 RPM

.. 196
G-3 Radial Bearing IX Analog Controller Disturbance Rejection Magnitude Plot at 15000 RPM

.. 196
G-4 Radial Bearing 1Y Analog Controller Disturbance Rejection Magnitude Plot at 15000 RPM

.. 197
G-5 Radial Bearing 2X Analog Controller Disturbance Rejection Magnitude Plot at 15000 RPM

.. 197
G-6 Radial Bearing 2Y Analog Controller Disturbance Rejection Magnitude Plot at 15000 RPM

.. 198
G-7 Axial Bearing Digital Controller Disturbance Rejection Magnitude Plot at 15000 RPM

.. 199
G-8 Radial Bearing IX Digital Controller Disturbance Rejection Magnitude Plot at 15000 RPM

.. 199
G-9 Radial Bearing 1Y Digital Controller Disturbance Rejection Magnitude Plot at 15000 RPM

... . 200

G-10 Radial Bearing 2X Digital Controller Disturbance Rejection Magnitude Plot at 15000 RPM
....200

G-11 Radial Bearing 2Y Digital Controller Disturbance Rejection Magnitude Plot at 15000 RPM
.. 201

G-12 Axial Bearing Analog Controller Disturbance Rejection Magnitude Plot at 28000 RPM
... . 202

G-13 Radial Bearing 1X Analog Controller Disturbance Rejection Magnitude Plot at 28000
RPM 202

G-14 Radial Bearing 1Y Analog Controller Disturbance Rejection Magnitude Plot at 28000
RPM ... 203

G-15 Radial Bearing 2X Analog Controller Disturbance Rejection Magnitude Plot at 28000
RPM 203

G-16 Radial Bearing 2Y Analog Controller Disturbance Rejection Magnitude Plot at 28000
RPM .. . 204

G-17 Axial Bearing Digital Controller Disturbance Rejection Magnitude Plot at 28000 RPM

xiii
X11l

..205
G-18 Radial Bearing 1X Digital Controller Disturbance Rejection Magnitude Plot at 28000 RPM

.. 205
G-19 Radial Bearing lY Digital Controller Disturbance Rejection Magnitude Plot at 28000 RPM

... 206
G.20 Radial Bearing 2X Digital Controller Disturbance Rejection Magnitude Plot at 28000 RPM

... 206
G-21 Radial Bearing 2Y Digital Controller Disturbance Rejection Magnitude Plot at 28000 RPM

.. 207
G-22 Axial Bearing Disturbance Rejection Magnitude Comparison Plot at 15000 RPM . 208
G-23 Radial Bearing 1X Disturbance Rejection Comparison Plot at 15000 RPM 208
G-24 Radial Bearing 1Y Disturbance Rejection Magnitude Comparison Plot at 15000 RPM

... 209
G-25 Radial Bearing 2X Disturbance Rejection Magnitude Comparison Plot at 15000 RPM

. 209
G-26 Radial Bearing 2Y Disturbance Rejection Magnitude Comparison Plot at 15000 RPM

.. 210
G-27 Axial Bearing Disturbance Rejection Magnitude Comparison Plot at 28000 RPM . 211
G-28 Radial Bearing IX Disturbance Rejection Magnitude Comparison Plot at 28000 RPM

................... 211
G-29 Radial Bearing 1Y Disturbance Rejection Magnitude Comparison Plot at 28000 RPM

.. 212
G-30 Radial Bearing 2X Disturbance Rejection Magnitude Comparison Plot at 28000 RPM

. .. 212
G-31 Radial Bearing 2Y Disturbance Rejection Magnitude Comparison Plot at 28000 RPM

.. 213

xiv

Chapter 1

Introduction

1.1 Motivation and Background

Magnetic bearings may not be as common as their conventional counterparts but they do
possess specific characteristics that make them ideal for solving certain classes of engineering
problems. One such characteristic is their ability to achieve and maintain very high rotational
speeds. This makes magnetic bearings ideal for such applications as flywheels. The California
Zero Emissions Vehicle program is forcing auto makers to take a hard look at flywheels as
energy storage elements in electric vehicles [4, 21, 5, 15]. Electric vehicles use and produce
large, short term bursts of electric power. Conventional batteries are unable to meet these power
demands but flywheels have no such limitation. Flywheels also have a higher energy density
then conventional batteries and weight is an important consideration in vehicle design. Also
flywheels have the possibility of outlasting conventional batteries which must be replaced after
three years of normal use. Electric utilities are also researching the use of flywheels to meet
peak energy demands. Instead of constructing costly additional powerplants, some utilities are
proposing constructing flywheel substations which can be powered up during off peak night time
hours for use during the day [10].

Another characteristic of magnetic bearings is that they require no lubrication which might
contaminate the working fluid. They have therefore found application in turbopumps used in
microprocessor production facility clean rooms. They are also used in cryogenic turbopumps
where the heat produced by conventional bearings pollutes the working fluid [11]. Magnetic
bearings have also found application in extremely high temperature surroundings where normal
lubricants cake or burn off.

Magnet bearings are not without their own unique problems. Unlike contact bearings,
magnetic bearings are active devices. This necessitates that magnetic bearings have their own
power supply and controller. Also in critical applications, emergency power supplies may also
be necessary. Even if emergency power is provided for, magnetic bearings usually have
conventional backup bearings in case the bearings should fail or the external loading capacity is
exceeded. Finally magnetic bearings are much more expensive than conventional contact
bearings.

The foundation of magnetic bearings goes back to 1842 when Earnshaw demonstrated that
magnetic suspension could be achieved if at least one axis was actively controlled [9]. This led
directly to the two degree of freedom magnetic suspension or the semi-passive suspension. The

load capacity, stiffness, and damping of these first magnetic bearings was very poor but they did
see service in some light duty applications.

It wasn't until 1957 that technology had advanced enough to allow the development of the
first active magnetic suspension. By the mid 1960s, many research teams were involved in
developing actively controlled magnetic suspension systems. Currently active magnetic bearings
see service in high-speed centrifuges, compressors, rocket motor turbopumps, and flywheels.

As the use of magnetic bearings became more widespread, the problems of control become
more apparent. Classical control theory requires that the mathematical model of the system be
completely known. In practical applications involving magnetic bearings, the model parameters
may be time varying or poorly known. Also magnetic bearings are expected to operate in
environments where unforeseen disturbances exist. In such cases, fixed gain controllers may not
provide satisfactory performance.

This thesis will be dealing with the control technique of Time Delay Control (TDC)
proposed by Youcef-Toumi and Ito in 1986 [24]. TDC depends upon the direct estimation of
uncertainties through time delay. TDC uses past observations of the state variables and control
signal, as well as the current error signal to estimate the unmodeled dynamics of the system.
This estimate is then used to augment the ideal control signal produced using a desired dynamics
reference model. The use of past observations to estimate unmodeled dynamics makes this
algorithm extremely powerful when applied to nonlinear plants having unknown dynamics and
subject to unpredictable disturbances. Up to this point, there has been a lack of documented
examples of the design process used to implement a Time Delay controller. Previous research
has been conducted and guidelines have been formulated for designing a Time Delay controller
[17]. However, these guidelines are vague and there is no evidence that they were ever directly
used to design a controller. This paper will document the entire design process regardless of
whether an adequate controller is produced or not. This will allow later researchers to benefit
from the successes or failures described herein. There is however reason for optimism that a
successful Time Delay controller will be designed. Previous research conducted using TDC on
one axis of this same application has produced encouraging results [17, 23].

1.2 Scope and Content of Thesis

The main themes of this thesis deal with the modeling, design, and implementation of a
digital controller using the TDC algorithm to a magnetic levitated turbopump. The modeling
portion describes the procedure used to determine the theoretical model transfer function. One
method used to determine this transfer function is based upon the derivation of the equations of
motion for the rotor and comparing their theoretical response to the actual system response.
Another method is to use the general form of the transfer function derived from the equations
of motion and recursively changing the coefficients in the numerator and denominator to obtain
the best fit response to the actual system response. From the results obtained by using both of
these methods, the most accurate theoretical transfer function is obtained.

The design portion examines how variations in the parameters of the digital controller
effect closed loop system stability in an effort to determine the optimal sampling rate for the
controller. The remaining parameters of the digital controller are determined by their effect on

several important system performance measures. These measures include compliance, bandwidth,
and maximum closed loop gain. These measures are of particular importance due to assumptions
made during the modeling process and the operating environment to which this application is
subjected.

The implementation portion addresses issues that arise from the process of mating a
theoretical controller to actual hardware. These issues include control loop algorithm efficiency,
integrator windup, noisy sensors, and proper filtering. This application also relied on a custom
designed controller board which has its own nonstandard interface implementation and exhibits
design flaws as most customized designed boards do. The effect that these anomalies have upon
the controller implementation is also documented.

This thesis is organized into six chapters and eleven appendices. Chapter 2 describes the
physical components that make up the turbopump and its subsystems. This chapter also
determines the theoretical open loop transfer function from the actual system response. Chapter
3 briefly describes the Time Delay Control Law and the simplifications used to increase the
computational efficiency of the algorithm. Increased efficiency decreases computation time
which allows higher sampling rates. Chapter 4 describes the physical components that comprised
the digital controller. This chapter also presents the controller design criteria and issues specific
to implementing a digital controller using this particular hardware. Chapter 5 evaluates digital
controller performance under both nonspinning and spinning conditions. Chapter 6 summarizes
the findings of this thesis and presents recommendations for further research. The appendices
are included to fill in the details. They are not required to understand the thesis but may be of
interest to researchers duplicating or verifying this work.

Chapter 2

System Description and Analysis

In this chapter, a physical description of the turbopump and all pertinent subsystems is
provided. The theoretical open loop response based upon the linearized equations of motion of
the rotor is then compared to the actual system response of the axial bearing axis and one radial
bearing axis. Next the recursive best fit open loop response is determined from the actual system
response. Finally, the choice is made as to whether to use the theoretical response or the best
fit response to model the open loop system.

2.1 Physical Description

2-1 Physical System Layout

Bearing Control Lines Power Line

Power PowerConditioner Transistors

Power Power
Transformers Amplifier

Rotor
Speed

Controller

Backup
Power Controller and
Supply Sensor Boards

Auxiliary
Vacuum

Pump

I I D~W1)

I

The system is composed of three major components: 1) the turbopump, 2) the controller,
and 3) the auxiliary vacuum pump (see Figure 2.1). The turbopump is connected to the
controller through an umbilical cord which contains the bearing control lines, sensor carrier wave
lines, sensor position signal lines, turbopump motor control lines, and turbopump motor speed
sensor lines. The turbopump is also connected to the auxiliary vacuum pump through a flexible
metal tube. The maximum operating speed of this turbopump is 45,000 rpm. Its normal
operating speed is 30,000 rpm.

2.1.1 Turbopump

2-2 Turbopump Cutaway

As shown in Figure 2.2, the turbopump is a multi-vane rotor suspended by two radial magnetic
bearings and one axial magnetic bearing. Each magnetic bearing has an accompanying position
sensor and touchdown bearing. The touchdown bearings are provided in case of controller failure
and are of the conventional ball bearing variety. The rotational velocity of the rotor is governed

touchdown bear

radial paitioa enam

tochdown bear

thrust bear

motor

irins 2

aition sensor

by an induction motor located midway along the rotor. The upper radial bearing is designated
as radial bearing 1 and the lower radial bearing is designated radial bearing 2.

Each radial bearing is composed of a
ring of laminated, ferromagnetic material
having eight poles. Each pole is wound with
N turns of wire. Each radial bearing has an
x and y axis composed of two opposing pole
pairs. The lines of magnetic flux flow from
one pole, through the rotor, back through the
opposing pole, and into the ring. When the
centerline of the rotor is positioned at the
centerline of the radial bearing, the clearance
between rotor and the poles of the radial
bearing is approximately 250 pm. The
clearance between the rotor and the
touchdown bearings at this same position is
approximately 200 pm.

The axial bearing is composed of an
upper and lower ring of ferromagnetic Erý . .,.X,•
material having a U-shaped cross-sectional
area. The inner leg of the U is wound with 2-3 Radial Bearing Diagram
N turns of wire. The lines of magnetic flux
flow from one leg of the U, through the disk
which is attached to the rotor, back through
the opposite leg of the U, and into the ring.
When the disk is positioned equidistant from
the upper and lower axial bearing rings, the
clearance is approximately 400 pm.

2.1.2 Controller

The controller is made up of a number
of subsystems (see Figure 2.1). Most of
these subsystems are devoted to meeting theP d U f h _

, IwcU VuO•ul b LUIVpUIIP. 1110 2-4 Axial Bearing Diagram
power conditioner is responsible for
converting the AC power supplied to the
controller to the 24 VDC used by the controller. The power transformers convert the 24 VDC
power to 15 VDC for use by the power amplifier and 12 VDC used by the controller/sensor
integrated circuit boards. The backup power supply is a battery with sufficient energy to allow
the system to shutdown gracefully in the event of a power outage. The rotor speed controller is
comprised of two integrated circuit boards and is responsible for monitoring the rotor speed,
controlling the acceleration and deceleration rates during startup and shutdown, and providing
power to the rotor induction motor during normal operation. One of these boards was modified

by replacing two resistors with variable resistors. This modification allows the final operating
speed of the rotor to be adjusted through trial and error. The sensor integrated circuit board is
responsible for generating a 50 KHz carrier wave for use by the position sensors.

The analog compensator is located on
the controller integrated circuit board. There
is a controller board for each bearing of the
turbopump. The radial bearing controller oFilth
board is responsible for both the x and y axis
whereas the axial bearing is responsible for Sensor Compensator
only the z axis and is therefore not a fully Electronics Electronics Driver
populated circuit board. The sensor
electronics portion of the board (see Figure Addr

2.5) is responsible for comparing the sensor A
board carrier signal to the signal returned
from the position sensor. Using these two
signals, the board derives the proper position 2-5 Magnetic Bearing Controller Board
signal for each axis. This position signal is
then sent to a test point, and the adder. The
test point allows the signal to be viewed on an oscilloscope and is also used for input into the
digital controller. The adder is a modification performed by the turbopump manufacturer to
allow disturbances to be injected into the position signal ahead of the compensator. From the
adder, the signal leads to the compensator electronics portion of the board. After the proper
control signal is determined, the compensator sends the signal through a gain before being sent
to the driver. The board was modified just before the gain by adding a switch. This switch
determines whether the control signal from the analog compensator or the digital controller will
be used. Also after the switch, a test point was added to allow disturbances to be injected into
the control signal before the driver. The gain following the switch is adjusted by a variable
resistor on the edge of the board. The driver is responsible for dividing the control signal
between the two opposing pole pairs that comprise an axis of a radial bearing or between the
upper and lower ring of the axial bearing. The driver performs this function based upon control
signal magnitude and whether the signal is negative or positive. The final element on the
controller board is the notch filter. The notch filter cancels that portion of the control signal that
might excite the second bending mode. It operates by isolating the necessary frequency
components from the control signal, inverting these components, and adding them back into the
control signal and thereby canceling their effect. This was added by the manufacturer for use
by the analog compensator. However, the modification applies the cancellation signal after the
analog/digital controller switch. Therefore, the board was modified further by adding another
switch to cancel the contribution of this filter when an axis is under digital control.

The two signals produced by the driver are then sent to the power amplifier. The power
amplifier in turn uses the power transistors to produce the final bearing coil current. The power
transistors are located at the rear of the controller directly in front of the cooling fan. Each
power transistor is also attached to a large heat sink.

~I

2.1.3 Auxiliary Vacuum Pump

The auxiliary vacuum pump was provided by the manufacturer to ensure that the system
would behave correctly when the rotor is spinning. The turbopump exhaust is blocked by a clear
plastic disk that allows viewing the rotor during all phases of operation. Blocking the exhaust
meant that the system would not be operating within its normal environment. To help
compensate for this, a vacuum pump was attached and run prior to and during all tests in which
the rotor was spinning. The auxiliary vacuum pump is not needed when the rotor is not spinning.

2.2 System Analysis

The determination of the transfer function for the driver and the turbopump relied on the
theoretically derived rotor equations of motion and recursive, brute force techniques. The goal
was to derive the open loop transfer function that would accurately represent the actual system
response provided by an HP 3562A Dynamic System Analyzer. In the case of the driver, the
theoretical equations representing the electrical components of the subsystem would be too
difficult to derive and therefore only a recursive technique was used to derive the transfer
function. The turbopump however provided the opportunity to apply both a recursive and a
theoretical technique to obtain the best transfer function.

The recursive technique is based upon the researcher estimating the general form of the
transfer function and recursively trying different values for the numerator and denominator until
a suitably accurate transfer function was obtained. This technique can be prohibitively time
consuming when applied to many high-order systems but proved relatively fast for this particular
system. During each pass of the algorithm, the bode plot of the transfer function guess was
compared against that of the actual system. First the estimated magnitude data was multiplied
by a gain derived from the difference between DC gains of the two plots. Then at each data
point, the square of the difference between the estimated and actual magnitudes was calculated
and summated. The same was done for the estimated and actual phase plots as well. The
summation of the total error of magnitude and phase plots produced the total error of the guess.
The estimate that produced the smallest error was deemed the best fit transfer function.

The only data presented in the remainder of this chapter corresponds to the axial bearing
and radial bearing 2X which is representative of the other radial bearing axes. A more detailed
presentation of the system analysis methodology and data is presented in Appendix E.

2.2.1 Driver Best Fit System Analysis

The actual driver response was obtained by inputting a swept sine disturbance at the
analog/digital controller switch test point and monitoring the driver output at a test point between
the driver and the power amplifier. All tests were performed on the turbopump when the rotor
was not spinning. The form of the transfer function used in the recursive analysis was derived
by analyzing the actual driver magnitude and phase responses. The best fit transfer function form

X(s) A 1

U(s) s +A2

The values derived from the best fit recursive analysis for A, and A2 are,

In order to directly compare the response of the best fit transfer function to that of the actual
system, the units of the transfer function must be comparable. Therefore the best fit transfer
function uses the following conversion factors,

Finally, mention should be made of the phase plot for the axial bearing. Normally when
the bearing is at its equilibrium position, the driver produces relatively equal control currents for
each of the opposing sides of the bearing. The major difference between the opposing control
signals is generally that one is negative and one is positive. The test point chosen for all of the
best fit analyses was purposely chosen to be positive control current test point. In this way, the
phase would not have to be adjusted. However, the axial bearing must support the weight of the
rotor. Due to the particular implementation of the driver, the control signal required is large
enough such that the lower bearing is unpowered. Hence there is only one possible test point
which can be used for the axial bearing and its value happens to be negative. Therefore the
phase is shifted appropriately.

Figures 2.6, 2.7, 2.8, and 2.9 represent the best fit recursive analysis of the driver transfer
function magnitude and phase plots for both the axial and 2X radial bearing.

Parameter Axial Rad2X

A, 14707.770 11112.759

A2 13310.000 11140.000

Conversion Factor Axial Rad2X

Control Signal (A/V) 2.776 1.159

Driver Signal (V/A) 0.3 0.3

2-6 Axial Bearing Best Fit versus Actual Driver Transfer Function Magnitude Plot

2-7 Axial Bearing Best Fit versus Actual Driver Transfer Function Phase Plot

10

Uj i i

-4 I...
-6 ----

- A ctual4 i-8 .
Theoretical

-10 7 7 7 .7

-12 -
-14

61-
0.1 1 10 100 1,000 10,000

Sampling Frequency (Hz)

o. . ,..

S---- Actual
Theoretical

i i i i i i i i i i i i i f i l l .,i i

-160

-180

-200

j -220

-240

-260

-280

-300

201f
0.1 1 10 100 1,000 10,000

Sampling Frequency (Hz)

''' -'-'-'-'''-

.. c.c r

1~- 1

2-8 Radial Bearing 2X Best Fit versus Actual Driver Transfer Function Magnitude
Plot

u

-20

-40

-60

-80

-100

-120

-140

1 LA

0.1 1 10 100 1,000 10,000

Sampling Frequency (Hz)

2-9 Radial Bearing 2X Best Fit versus Actual Driver Transfer Function Phase Plot

...... "..... V.........

- Actual
STheoretical N

" " ' ' ' " " " " ' i i•i'

-10

-15

-20

-25

_I2fI

0.1 1 10 100 1,000 10,000

Sampling Frequency (Hz)

:::T. . . .' :L ::: .. .

S\--
............ .., I

Theoretical

i i i ii i i i i i i i ii" " "ii i: : : :

______ _ _ ______ _ ______. _______ _ _ _ ____
.. ,..

. --

2.2.2 Theoretical Turbopump System Analysis

The actual turbopump response was obtained by inputting a swept sine disturbance at the
test point between the driver and the power amplifier and monitoring the position signal at the
appropriate test point. All tests were performed on the turbopump when the rotor was not
spinning. The theoretical transfer function was derived from the linearized rotor equations of
motion. For an in depth analysis of the rotor equations of motion, consult Appendices A, B, and
C. The gyroscopic force terms of the linearized equations of motion can be ignored because the
rotor was not spinning. Also the coupling forces generated by the same axis of the opposing
bearing will be treated as disturbances in an effort to simplify the model and therefore they are
ignored. These two assumptions create a theoretical transfer function having the following form,

A(s)

U(s)

P
s2_Q

The values of the variables P and Q
magnetic bearings,

Axial

were derived from the physical characteristics of the

Radial

P oN 2A uo

2mh 2

IoN 2A u2

2mho'

Where: Po =

N =
A =

m =-

b=

U0 =
Io
ho =

2I oN2Acosp + Io

ho2

4 poN A cos + IO
(M If 4

2 .

air permeability
number of wire turns
magnetic flux area
angle between pole and centerline of pole pair
rotor mass
distance from rotor center of gravity to bearing
moment of inertia, radial direction
bias current
axial bearing equilibrium current
nominal air gap between bearing and rotor

The values of the parameters that define the physical characteristics of the
were provided by the manufacturer. They are,

Substituting the appropriate
bearing equations yields,

each magnetic bearing

values for the bearing characteristic parameters into the appropriate

Due to the location of available test points, the actual transfer function encompasses not only the
magnetic bearings but also the power amplifier. However, the theoretical transfer function is
derived from the linearized rotor equations of motion and therefore ignores the power amplifier.
The contribution of the power amplifier was determined by comparing the DC gains of the actual
and theoretical transfer functions. The power amplifier is assumed to be constant gain amplifier
having the form Al/A 2. The values obtained for the power amplifier are,

Parameter Axial Radial

Po (N/A2) 1.26 x 10-6 1.26 x 10-6

N 133 100

A (m2) 7.0 x 104 9.75 x 10'5

P (degrees) N/A 22.5

m (Kg) 2.2 2.2

B (m) N/A 0.0691

Ir (Kg'm2) N/A 8.285 x 10-3

Io (A) N/A 0.5

uo (A) 1.007 N/A

ho (m) 4.0 x 104 2.5 x 10-4

Parameter Axial Rad2X

P 22.162 18.720

Q 55403.757 74881.133

Parameter Axial Rad2X

A1 1.000 1.906

A2 1.138 1.000

I '

Finally, in order to directly compare the response of the theoretical transfer function to that of
the actual system, the units of the transfer function must be comparable. Therefore the
theoretical transfer function uses the following conversion factors,

Again, mention should be made of the phase plot for the axial bearing. Normally when
the bearing is at its equilibrium position, the driver produces relatively equal control currents for
each of the opposing sides of the bearing. The major difference between the opposing control
signals is generally that one is negative and one is positive. The test point chosen for all of the
best fit analyses was purposely chosen to be positive control current test point. In this way, the
phase would not have to be adjusted. However, the axial bearing must support the weight of the
rotor. Due to the particular implementation of the driver, the control signal required is large
enough such that the lower bearing is unpowered. Hence there is only one possible test point
which can be used for the axial bearing and its value happens to be negative. Therefore the
phase is shifted appropriately.

Figures 2.10, 2.11, 2.12, and 2.13 represent the theoretical analysis of the turbopump
transfer function magnitude and phase plots for both the axial and 2X radial bearing.

Conversion Factor Axial Rad2X

Position Signal (V/m) 9450.0 25000.0

Driver Signal (V/A) 0.3 0.3

4U

20

0

-20

S-40

-60

-80

It nn
0.1 1 10 100 1,000 10,000

Sampling Frequency (Hz)

2-10 Axial Bearing Theoretical versus Actual Turbopump Transfer Function Magnitude Plot

2-11 Axial Bearing Theoretical versus Actual Turbopump Transfer Function Phase Plot

15

-/

.........-o -- i -i --i iiii -

• . ,1 1 1 . .,, , . 1 1 1 , . .,,.,1 . . . , ,. , . , ,

50

0 " - .. ' ' ' .

0 .. :. .ilii : : : :: : :: ::

-100 -
S ActualPC - Theoretical :

~ -iso

S-200 -2. ":

-250

-300
0.1 1 10 100 1,000 10,000

Sampling Frequency (Hz)

1··

2-12 Radial Bearing 2X Theoretical versus Actual Turbopump Transfer Function Magnitude Plot

2-13 Radial Bearing 2X Theoretical versus Actual Turbopump Transfer Function Phase Plot

16

4U

30 • •:·.... !..............
20 S:

-10 Actualu_:::: : : .; .' .':::_•\PO -20 ; .. ••Theoretical:7 . -... . -. •. •
-30
-40-50 . i. i i ii iii.i .i iii i.i. ii..607 - .Ii i - i i • ---- .\ .:.....i: i . : ::.• -320 [- --I- -- Theoreticarl ii.:i.::.: i....i.i.:.:-;;;:: :...:...:;.•i :•... •: . .:.:.:' o • .. i i i i + ...+ +i + + -e14rii .. .i+ i+. .. \irii+i16o ...• +• + ... + + + ii .. i i +i .. i+ i i! .~...~ .i!

-6 0 •- :~.• . ii1, i,, i i i i i •i i 0i :i ; i i i
0.1 1 10 100 1,000 10,000

Sampling Frequency (Hz)

-200

.400

-500 ... - Actual 4 - -

Theoretical00

-600-700i.

-800

-00RR i ii i-800 -- - ' - :-':-'-:',',- ---- : , -:', ',',: :-:· '. - ' : -:: ':::- i-- : i -'-:-I i I'- - I -·' :--:': · ·
, . .A t a o::::: i : : :::i: : : : :::: : X : : : ::

0.1 1 10 100 1,000 10,000

Sampling Frequency (Hz)

· A

-- + _

2.2.3 Best Fit Turbopump System Analysis

The previous section showed that the theoretical transfer function provides a fairly accurate
picture of the turbopump frequency response. However, the theoretical response becomes less
accurate as the frequency increases. It is important that the transfer function used to design the
digital controller be as accurate as possible within the probable bandwidth of the controller.
Therefore the theoretical analysis was not used in the controller design. Instead, a best fit
recursive analysis was performed on the actual frequency response using a transfer function form
derived from the theoretical analysis. The assumption was also made that the digital controller
bandwidth would comfortably fall below 1000 Hz. Therefore, the best fit recursive analysis was
optimized to produce a transfer function using the data points between 0.1 and 1000 Hz.
However, this limits the validity of the model to 1000 Hz and therefore any controller designed
using this model must provide adequate signal attenuation beyond this frequency.

As stated earlier, the actual turbopump response was obtained by inputting a swept sine
disturbance at the test point between the driver and the power amplifier and monitoring the
position signal at the appropriate test point. All tests were performed on the turbopump when
the rotor was not spinning. The best fit transfer function was derived from the theoretical
transfer function and therefore has the following form,

X() P
U(s) s 2-Q

The values derived from the best fit recursive analysis for P and Q are,

Again, in order to directly compare the response of the best fit transfer function to that of the
actual system, the units of the transfer function must be comparable. Therefore the best fit
transfer function uses the following conversion factors,

Finally, mention is again made of the phase plot for the axial bearing. The driver normally
produces comparatively equal control currents for each half of the bearing. The major difference

Parameter Axial Rad2X

P 7.990 16.926

Q 22739.568 35530.574

Conversion Factor Axial Rad2X

Position Signal (V/m) 9450.0 25000.0

Driver Signal (V/A) 0.3 0.3

"

is generally that one control current is negative and one is positive. The test point chosen for
all of the best fit analyses was purposely chosen to be positive control current test point. In this
way, the phase would not have to be adjusted. However, the axial bearing must support the
weight of the rotor. Due to the particular implementation of the driver, the control signal
required is large enough such that the lower bearing is unpowered. Hence there is only one
possible test point which can be used for the axial bearing and its value happens to be negative.
Therefore the phase is shifted appropriately.

Figures 2.14, 2.15, 2.16, and 2.17 represent the best fit recursive analysis of the turbopump
transfer function magnitude and phase plots for both the axial and 2X radial bearing.

20

0

- -20

-40

-60

-80

A0-A
0.1 1 10 100 1,000 10,000

Sampling Frequency (Hz)

2-14 Axial Bearing Best Fit versus Actual Turbopump Transfer Function Magnitude Plot

50
S::::: ::::::

i-i-i ! : ::ii- :-:1 !ii4. i -, 1 i i i

.......- •...

-2 00 ----- --i -i-- - -- -- i --, . .

S-200...........
-250 ------

-300
0.1 1 10 100 1,000 10,000

Sampling Frequency (Hz)
Sampling Frequency (Hr)

2-15 Axial Bearing Best Fit versus Actual Turbopump Transfer Function Phase Plot

19

i~ ~ ~ ~~~~. . iiiiiiiiiii.

Theoretical
..

... i 1.1. 1,-:: i ::
:·: :':""-"

2-16 Radial Bearing 2X Best Fit versus Actual Turbopump Transfer Function Magnitude Plot

2-17 Radial Bearing 2X Best Fit versus Actual Turbopump Transfer Function Phase Plot

20

If

20

0

-20

-40

-60

0.1 1 10 100 1,000 10,000

Sampling Frequency (HZ

~· ' · · ""'·

:-·:-:.:.:.:::. --... :...:..:..:.: :.:.:;.....:...:.~: : : : : ----- :---:--:-:-:-: ::;-..--: ·- :..:.:-:-:-:.:-

·I··-····-·I·· ·I-··t·l-··--·l--·C ·~-·-CI~~·----N·- · (--l·~-·-r··C-··· -C-·~··C-I···I-)-(·
(·

C :: : : ::::::: : Y:::::::

I "

_ .. -I.s -- -cre i. .- rrrrr-----1 _ ~
Theoretical

B

-r

4

-IUU
-200

-300

I -400

-500
-600

-700

-800

-ann
0.1 1 10 100 1,000 10,000

Sampling Frequency (H)

A...- Acr.al .

Th7eoretical

S

-..

'"

2.2.4 Best Fit Open Loop System Analysis

The best fit recursive analysis has been done for both the driver and turbopump
subsystems. As a verification of this analysis, the combined transfer function of these two
subsystems is compared to the actual system response. The actual driver response was obtained
by inputting a swept sine disturbance at the analog/digital controller switch and monitoring the
position signal at the appropriate test point. All tests were performed on the turbopump when
the rotor was not spinning. The best fit open loop transfer function form is,

1 (s) vAl P

U(s) s +A2) s -Q

The values derived from the previous best fit analyses are,

In order to directly compare the response of the best fit transfer function to that of the actual
system, the units of the transfer function must be comparable. Therefore the best fit transfer
function uses the following conversion factors,

Figures 2.18, 2.19, 2.20, and 2.21 represent the best fit recursive analysis of the open loop
transfer function magnitude and phase plots for both the axial and 2X radial bearing.

Parameter Axial Rad2X

A1 14707.770 11112.759

A2 13310.000 11140.000

P 7.990 16.926

Q 22739.568 35530.574

Conversion Factor Axial Rad2X

Control Signal (A/V) 2.776 1.159

Position Signal (V/m) 9450.0 25000.0

0

-20

j40

-60

-80

a10

0.1 1 10 100 1,000 10, 00

Sampling Frequency (Hz)

2-18 Axial Bearing Be t

2-19 Axial Bearing Best Fit versus Actual Open Loop Transfer Function Phase Plot

22

-200.;-. .•

250 i.i.i. i......i:,.iii.... ..

-450 ...0....... .
-300 i!-600

6- 5 0 ,. . . . , . , , , , , . ,

0.1 1 10 100 1,000 10,000

Sampling Frequency (H7)

I ---- ~-~~---~

Themefrcical
. 4 ---.

. .

20 . : : :

0

-60 IT ' .. 1: I . '""ITI A-8 i i i i i i i i i i i i i i i i i i i •..........1.--0-',i .. "...!ii ! ... ' .

0.1 1 10 100 1,000 10,000

Sampling Frequency (Hz)

2-20 Radial Bearing 2X Best Fit versus Actual Open Loop Transfer Function Magnitude Plot

-400

-800-900 :... : : :::. ,.:..'

-900
0.1 1 10 100 1,000 10,000

Sampling Frequency (Hz)

2-21 Radial Bearing 2X Best Fit versus Actual Open Loop Transfer Function Phase Plot

23

411

-I`- "

2.3 Summary and Remarks

This chapter described the process used to determine the open loop transfer function that
would be employed in designing the digital controller. The turbopump transfer function was
analyzed using a theoretical transfer function based upon the rotor equations of motion and using
a best fit recursive analysis. The theoretical analysis showed fairly accurate agreement with the
actual system response. However, the theoretical response grew progressively worst with
increasing frequency. This conclusion becomes more apparent when all the bearing responses
are reviewed as in Appendix E. Therefore, the results of the best fit recursive analysis will be
used to design the digital controller. The best fit recursive analysis was also optimized to return
the best possible correlation between the range of 0.1 and 1000 Hz. The upper bound was
chosen to be 1000 Hz because this was deemed sufficiently greater then the bandwidth of the
controller and because the actual system response became exceedingly less well behaved beyond
that frequency for all of the bearing axes. Any theoretical analysis of the driver circuit was
deemed too complicated and therefore only a best fit recursive analysis was performed on the
driver subsystem. Finally, both the driver and turbopump subsystem transfer functions were
combined and compared with the actual open loop system response. The good correlation
between the plots offered verification that best fit recursive analysis had yielded a highly accurate
transfer function below 1000 Hz. However, using the best fit recursive analysis effectively
removes any correlation between the physics of the turbopump and the open loop transfer
function.

Chapter 3

Time Delay Control Algorithm

This chapter is a review of the Time Delay Control law. This chapter also describes
modifications made to the Control law in the actual controller to decrease processing time. First,
the Time Delay Control law equations are derived based upon systems having an unknown
distribution matrix. Finally, the specific simplifications that were made to the Time Delay
Control law to increase its efficiency and the potential ramifications these simplifications have
on the controller effectiveness are described. Most of these simplifications are applicable to the
Time Delay Control law in general but a few are specific to the hardware on which it will be
implemented.

3.1 Time Delay Control Law

The dynamic equations governing any system may be described by the following [22]:

0t) F-Xt) +Ii•,t) + B(Xt) •(t) +J(X,U,t) +D(t)
dt

(3.1)

where: X(t)
U(t)
F(X,t)
H(X,t)
B(X,t)
J(x,U,t)
D(t)
t

(nx 1) plant state vector,
(rx 1) control vector,
(nx 1) nonlinear vector representing known part of system dynamics,
(nx 1) nonlinear vector representing unknown part of system dynamics,
(nxr) arbitrary estimate of the control distribution matrix,
(nx 1) distribution matrix error estimation vector,
(nx 1) unknown disturbance vector,
time.

The distribution matrix error estimation vector J(X,U,t) represents the difference between the
actual unknown distribution matrix and our estimate of that matrix or,

J(x, ,t) = G(X,U,t) -B(X,t)(t) (3.2)

where: G(X,U,t)
B(X,t)
U(t)

= (nxl)
= (nxr)

= (rxl)

actual unknown distribution matrix,
arbitrary estimate of the control distribution matrix,
control vector,

Let the desired dynamics reference model that we would ideally wish the actual plant to imitate
be a linear time-invariant system given by:

= A Xm(t) + BR(t)
dt (3.3)

where: Xm(t) = (nx 1) model state vector,
Am = (nxn) constant, stable matrix vector,
Bm = (nxr) constant command matrix,
R(t) = (rx 1) command vector.

We now define the error vector as
desired dynamics reference model

the difference between the actual plant state vectors and the
state vectors,

E(t) = X,(t) -Xt)

The objective is to force the error E(t) to vanish with a desired dynamics:

dE(t) AAt)dt

Combining Eq. (3.1), Eq.
the error dynamics:

(3.3), Eq. (3.4), and Eq. (3.5) yields the following equation governing

dE dX r dX

dt dt dt

= Ae,Y.+B R-F-H-J-D-BU
= A(E +X) +B)+ -F-H-J-D -BU
= AE+[-F-H-J-D +A.X+BR-BU]

Now assume that there is a control U that satisfies the following requirement,

-F-H- J-D +A, +BP -BU = KE

(3.4)

(3.5)

(3.6)

(3.7)

where K is an (nxn) error feedback matrix. The substitution of Eq. (3.7) into Eq. (3.6) yields,

dE (A,+K)E = AE (3.8)

As the Eq. (3.8) indicates, any desired error system matrix Ae can be obtained from the proper
choice of the error feedback gain matrix K. The control action U must be selected so that it
satisfies the requirements of Eq. (3.6). The best approximation of this solution is given by,

U = BI[-F-H-J-D+A, X+B,,R-KE] (3.9)

where: B+ is a pseudo-inverse matrix defined as ((B rB)- B T)

The constraint of Eq. (3.7) can always be met for systems that can be expressed in canonical
form. However, such a constraint would severely limit the usefulness of TDC. Therefore, the
only method of obtaining the desired error dynamics is by ensuring that the control action
satisfies the above equation. Since the terms H(X,t), J(X,U,t), and D(t) are all unknown in the
above equation, we must obtain an estimate for these terms. If the controller is sampling at a
fast enough rate, these terms can be estimated from their values at the previous sampling instant.
In other words,

H ,t) +J(X,U,t) +D(t) a HM ,t-7) +JX,U,t-7 +D(t-7 (3.10)

where: T = small time delay.

Rewriting Eq. (3.1) for the previous sampling interval,

A(t-T) = Ft,t-7) +Ir,t- +B(X,t- u(t-7 +J(X,U,t-7) +D(t-7) (3.11)

Rearranging,

IA,t-t) +J(,U,t-7 +D(t-7) = i(t-7) -Xt-T) -B(X,t- 7)(t-) (3.12)

Substituting Eq. (3.12) into Eq. (3.10),

l ,t) +J(X,U,t) +D(t) a Xlt- - FX,t-7 -B(X,t- U(t-7 (3.13)

The time delay control law is obtained by substituting Eq. (3.13) into Eq. (3.9) and is given by,

u(t) = B+(X;t)[-Ft) -Jt-T) +FX,t-T) +B(X~-T)t-T) +At)+B (t)-KE(t)] (3.14)

_ ~ · _···l~l~·__L_·· __·~1_~4_1

The time delay control law can be easily understood when it is divided into its four
constituent parts:

1. A pseudo-inverse matrix, B*(X,t), which nullifies the control matrix B(X,t) found in
the constraining equation -F-H-D+AmX+BmR-BU = KE

2. A undesired dynamics term, -F(X,t)-(t-1• +FX,t-7)+B(X,t-7)U(t-7), which
attempts to cancel the undesired known dynamics F(X,t), the unknown nonlinear
dynamics H(X,t), the error in estimating the distribution matrix J(X,U,t), and the
unexpected disturbance D(t). These last three terms are estimated from the previous
sampling interval and are represented by X(t-) - FýX,t-) -B(X,t-7) U(t-7).

3. A desired dynamics reference model term, AmX(t)+BmR(t), which inserts the ideal
system response.

4. An error feedback term, KE(t), which adjusts the error dynamics to compensate for
the difference between the ideal error response and the actual reference model's
response.

In essence, the time delay control algorithm first computes the ideal control action based
on the current state of the system and the desired dynamics reference model. It then estimates
the current unknown system dynamics using the state of the system at the previous sampling
interval(s), the final control action at the previous sampling interval(s), and the current error.
Using this estimate, the ideal control action is augmented to compensate for the unknown system
dynamics to produce the final control action. Because the time delay control algorithm uses
information from the previous sampling interval(s) to determine the unknown system dynamics,
it is critical for stability that the unknown system dynamics not change significantly between
sampling intervals. Therefore, a sufficiently small sampling interval is a necessary condition for
stability. Also, in the above derivation, the control distribution matrix B is assumed to be known
and linear.

3.2 Implementation Simplifications

As previously stated, a necessary condition for stability when using time delay control
is that the sampling interval must be sufficiently small. Sufficiently small however is a rather
vague term and differs from system to system. One of the variables that determine the maximum
theoretical sampling rate of a controller is control algorithm efficiency. In order to make the
algorithm as efficient as possible, certain simplifications were made to the algorithm to decrease
the computation time required to produce the final control action. This section will examine the
simplifications made to the time delay control algorithm and their implications on system
performance. The form of the time control algorithm used in this section is a slightly different
version of the one described by Eq. (3.14),

U(t) = B'(Xt) -F(X,t) -(t-T) + FXt-T) +B(Xt-T)U(t-T)
+A. (t) +B.R(t) - , -A)E(t) (3.15)

3.2.1 Constant Control Distribution Matrix, B(X,t)

If the control distribution matrix is assumed to be time and position invariant, then the
time delay control algorithm becomes,

U(t) = (t-7) +[-F(Xt) -~(t-T) +FX,t-T) +A~(t) +B.R(t) -ý -A.)E(t)] (3.16)

This simplification eliminates the recalculation of both the control matrix and the pseudo inverse
matrix at each sampling interval. This is particularly important for multi-input systems but may
be of a lesser concern for single-input systems. This simplification also eliminates all division
operations from the algorithm because the reciprocal of the distribution matrix can be computed
previously and stored for use during input signal processing. This is particularly important for
efficient signal processing because most (if not all) digital signal processors require significantly
more cycles to divide than to multiply. For instance, the processor used by this controller
requires one cycle to multiply two floating point numbers and seven cycles to divide two such
numbers. The disadvantage of this simplification is that the control is less refined. The term
B+(X,t) is essentially the feedback gain of the controller. In this turbopump application, a gain
calculated at each sampling interval would allow the controller to apply higher gains depending
upon the rotor distance from the nominal center of the bearings. This could lead to better system
response and disturbance rejection properties. It would also lead to a greater lag between
position signal acquisition and control action application due to longer calculation times. Also
the distribution matrix is a function of time which could allow for smaller feedback gains during
the startup phase of the turbopump which would give the magnetic bearings and position sensors
time to settle before control was applied.

3.2.2 Error Dynamics Matrix Equals Reference Model Matrix (Ae = Am)

If the error dynamics matrix (A) is assumed to be equal to.the desired dynamics reference
model matrix (Am), then the time delay control algorithm becomes,

u(t) = U(t-) + [- Ot) - (t-T) + .F t-T) +AX(t) +BR(t)]

or (3.17)

L(t) = U(t-)+ [-F(Xt) -X(t-T)+FYt-T)+A Xt)+BR(t)]

This simplification can be rewritten in an equivalent manner as K = 0. The advantage of this
simplification is the elimination of a multiplication step. For multi-input systems this would
become a matrix multiplication elimination. The physical interpretation of this simplification
requires some clarification. The Time Delay Control algorithm contains a desired dynamics

__ ___

reference model and an error dynamics model. The desired dynamics reference model represents
the ideal trajectory that we would like the system to follow. This is the command following
portion of the algorithm. The error dynamics model represents the response we would like the
system to take in response to any error between the actual state variables and the desired
dynamics reference model state variables. This is the disturbance rejection portion of the
algorithm. Setting the desired dynamics reference model matrix equal to the error dynamics
matrix effectively eliminates the contribution that the command following portion of the
algorithm has upon the system response. We are not interested in the trajectory of the system
but merely in the difference between the actual state variables and the reference variables. The
ramification of ignoring the command following portion of the algorithm for this particular
system is that the response during the startup phase will be less then optimal particularly for the
axial magnetic bearing. At startup, the rotor is generally the farthest it will be from the
equilibrium position. The use of the command following portion of the algorithm would provide
optimal response during this phase. Without it, the system is subject to large overshoots and
longer settling times. However the startup phase is such a brief portion of the time that the
controller spends controlling the turbopump that the added algorithm efficiency derived from
such a simplification is justified.

3.2.3 Final System Specific Simplifications

The final simplifications to the Time Delay Control Algorithm are related specifically to
the system we are working on and therefore may not be generally applicable. The first
simplification is specifying that all the dynamics of the system are unknown or F(X,t) = 0.
Therefore,

U(t) = U(t-7) +![-V(t-T) +A (t) +BR(t)] (3.18)

This places a greater reliance on the ability of the Time Delay Control algorithm to correctly
compensate for the unmodeled dynamics. This in turn places greater emphasis on the proper
choice of the controller sampling rate. This simplification increases the efficiency of the
algorithm but it also most likely requires a higher sampling rate which may actually negate the
efficiency gains.

The final simplification pertains to the reference signal. For this particular system that
reference signal is zero and therefore,

U(t) = U(t-7)- ~a(t-T) -AA•t)] (3.19)

The above equation represents the limit to how efficient the Time Delay Control algorithm can
become.

3.3 Summary and Remarks

This chapter introduced the Time Delay Control Algorithm and demonstrated how it uses
information from the previous sampling interval(s) to predict the uncertain system dynamics.
This characteristic is the compelling reason for using Time Delay Control with this magnetic
bearing turbopump application. The attractive magnet force applied by each magnetic bearing
is proportional to the square of the coil current and inversely proportional to the square to the
gap between the rotor and bearing. Therefore, the equations of motion of the rotor are inherently
nonlinear. Also the system is subject to disturbances characteristic of rotating machinery such
as rotor gyroscopic effects, rotor imbalance, and rotor flexibility. It is impractical to design a
controller using a model which incorporates all these properties and therefore the model must be
simplified. For this application, this simplification entails linearizing the equations of motion and
ignoring most of the rotor dynamic effects. It is hoped that the inherent strengths of Time Delay
Control with compensate for the deficiencies in a controller designed using such a simplified
model.

Time Delay Control is not without its own problems. It is a necessary condition of Time
Delay Control that the sampling interval be sufficiently small. There is currently, however, no
method for quantifying sufficiently small nor for determining the optimum sampling interval.
Therefore this researcher simplified the control law if an effort to make it more efficient. The
increased efficiency of the algorithm would allow for faster sampling rates thereby increasing the
range of possible sampling intervals from which to determine the optimum sampling interval.
These simplifications are also necessary because, due to cost considerations, all five axes will be
controlled using only one processor. This requires that the control algorithm must be processed
five times per sampling interval and therefore algorithm efficiency is of paramount importance.
These simplifications however come at a price. Most of these simplifications primarily effect
the startup phase of the control process and will probably lead to less than ideal initial time
responses. However, the exclusion of all known system dynamics from the control algorithm
places more importance on determining the optimal sampling interval.

__.

Chapter 4

Controller Description and Design

This chapter describes the hardware that constitutes the controller and the design process
used to arrive at the final controller design. A detailed account of the process to determine the
sampling rate and the other controller parameters required by the Time Delay Control (TDC)
algorithm is also provided. Next the actual structure of the program is examined in an effort to
explain how system dynamics and hardware limitations actually effect the controller
implementation. Then the system characteristics that were not accounted for in the theoretical
model but which must be addressed during the implementation process are examined. Finally,
the design methods used to produce the filters necessary for proper operation are provided and
the manual tuning process is outlined.

4.1 Physical Description

The digital controller hardware has the following three major components: 1) the Digital
Signal Processor (DSP) board, 2) the Input/Output (I/O) Controller board, and 3) the I/O Interface
board. Both the DSP board and the I/O Controller board occupy slots on a Personal Computer
(PC) bus and draw power through that bus. Only the DSP board is addressable using ports
allocated from the PC's free port address space. The address of the port is set through jumpers
on the DSP board. The DSP board and the I/O Controller board are physically connected by two
ribbon cables located at the top edge of each board. The I/O Controller board and the I/O
Interface board communicate via a ribbon cable which attaches to external connectors located on
each board. The I/O Interface board is a circuit board having a leg at each corner to allow it to
be free standing. This is the only board situated outside the PC. Figure 4-1 displays each board
and the components that comprise their circuitry.

4.1.1 DSP Board

The primary components of the DSP board are the DSP chip, the memory, the timer chip,
and the PC interface logic chips. The DSP chip is an Analog Devices ADSP-21020. The chip
natively supports integer and floating point operations, has sixteen 48-bit general purpose
registers, an accumulator, a multiplier, and a barrel shifter. The chip supports interrupts and the
register set can be split to support nested interrupts. The chip can address up to 16 Megawords

ctors

Note: component locations in diagram approximate

4-1 Controller Hardware

of 48-bit program memory and 4 Gigawords of 48-bit data memory on separate buses. The data
memory can be partitioned into program and data subspaces so that programs can execute code
residing in data memory. The DSP chip has a clock speed of 33 MHZ and each instruction
executes in one clock tick. The chip is capable of executing two instructions per clock tick
provided that one instruction uses only the general registers and the accumulator, multiplier, or
shifter and the other instruction uses the general registers and a program or data memory
operation.

The board is populated with 32 Kilowords of 48-bit program and data memory. The first
256 words of program memory are reserved for the interrupt vector table. The program memory
address space at 800000h is mapped to two A/D registers on the I/O Controller board which
allows values to be passed between the two boards. The data memory address space at
20000000h is mapped to other registers on the DSP board. These registers allow communication
between other components on the board such as the timer chip and the PC Interface logic chips.
The data memory address space at 40000000h is also mapped to three registers on the I/O
Controller board. Two of these three registers maps the D/A registers and the other one controls

____ ___ L_·l

the number of A/Ds and D/As that are to be used.
The timer chip has a 33 MHZ clock speed and is addressed through two registers. One

register holds the current count and the other is the reload register. At each clock tick, the
current count register is decremented. When the register reaches zero, an interrupt is generated
and the value in the reload register is placed in the current counter register. The value in the
reload register is the number of clock ticks between interrupts and therefore corresponds directly
to the required sampling rate.

The PC Interface logic chips are responsible for handling all communication between the
DSP and the PC. These chips contain registers that allow the uploading or downloading of data
to and from program and data memory. They also provide a status register that can be used to
quickly send one word of data to the PC. The PC Interface logic chips are incapable of
generating interrupts on the PC bus and therefore polling the status register is the only way of
obtaining real time information from the DSP board.

4.1.2 I/O Controller Board

The I/O Controller board has the following four components: 1) the Analog-to-Digital
converter (A/D), 2) the A/D First In, First Out queue (FIFO), 3) the Digital-to-Analog converter
(D/A), and 4) the D/A FIFO. Both FIFOs map a register into the DSP board address space so
that the DSP chip can transmit values to the D/A FIFO and received values from the A/D FIFO.
The number values sent to or received from the FIFOs must be equal to the value specified in
the channel register. This register is also mapped to the DSP address space and allows for up
to seven A/Ds and D/As to be chosen. If the values sent or received is not equal to the channel
register value, garbage values will be returned or the FIFOs will fill up depending upon
circumstances. Two other registers are also mapped into the DSP address space and these are
the A/D and D/A status registers. They show when a conversion is taking place and whether the
FIFO is full or empty.

The A/D is a 14-bit design having a range of ±5V. The A/D data is a left-shifted twos
complement binary number. The D/A is a 16-bit design also having a range of ±5V. The D/A
data is essentially a twos-complement value with the sign bit negated. Normally A/Ds and D/As
produced by the same manufacturer and populating the same board have the same bitness. It was
probably cost constraints that prevented the A/Ds from also being 16-bit. Also, A/Ds and D/As
produced by the same manufacturer and populating the same board usually have the same method
of representing data values for reasons of consistency. However, on this board, the D/A data
values have a somewhat awkward representation.

Finally, the relationship between the number in the channel register and what A/Ds or
D/As are addressed must be elaborated on. If the programmer specifies one A/D for instance in
the channel register, the first A/D is accessed. If two A/Ds are specified, the first two A/Ds are
accessed. If three A/Ds are specified, the first three A/Ds are accessed and so on. The
ramifications of this design decision is that the A/Ds are not individually addressable. Therefore,
if the programmer only wants the value from the fifth A/D, five A/Ds must be specified in the
channel register and the program must wait for five conversion processes to take place. The
program then must retrieve four values from the A/D FIFO and throw them away in order to get

to the fifth value. This same process also applies to the D/A except five valid values must be
loaded into the FIFO before conversion. Also there is no way to specify that only one
conversion process should take place -- either A/D or D/A. A program can only specify that a
full conversion process should take place. When a conversion process is triggered by a program.
First the number of D/A data values specified in the channel register are converted and then the
number of A/D data values specified in the channel register are converted. Depending upon the
implementation, this could lead to wasted time doing unnecessary conversions.

4.1.3 I/0 Interface Board

The I/O Interface board consists of seven A/D connectors, five D/A connectors, and their
associated filters. The connectors mimic those found on most oscilloscopes and test equipment.
The filters are second order Butterworth designs implemented using an RC circuit. The cutoff
frequency can be altered by replacing the resistor packs on the board. However, changing the
resistor packs also changes the DC offset of the associated A/Ds and D/As. Generally, the DC
offset increases as the cutoff frequency decreases.

4.2 Controller Design

A controller is only as good as the theoretical model it was designed to control. The
degree to which the theoretical model mimics the actual system determines how well the
controller performs initially and how much manual tuning will be necessary to obtain satisfactory
performance. The process of designing a robust controller requires that the engineer have some
feel for what performance measures are important. The importance of a particular performance
measure is in part dictated by how the application is to be used. For instance, a robot arm would
require a strong emphasis on command following whereas an aircraft autopilot would require a
strong emphasis on disturbance rejection.

In this turbopump, as with all turbomachinery applications, disturbance rejection is the
critical performance measure. Command following does play a minor role during the startup
phase when the magnetic bearings are just being powered up and the rotor is at an unknown
position. The startup phase however lasts on the order of seconds while the operating phase lasts
on the order of hours or even days. With turbomachinery, the bearings are subject to
disturbances brought about by gyroscopic forces, rotor imbalance, and rotor flexibility. This
turbopump also operates at high rotational speeds thus magnifying these effects.

Disturbance rejection takes on a greater importance when the simplifications to the system
model are reviewed. The original linearized equations of motion of the rotor have the following
form,

Radial Bearing 1X

4C,klo 4Ck,• 2C kIo 2Cklo
S= -- + x - C4fl + C4 f2 + - U- I + UX2

___ __· I _· Ir·

Axial Bearing

4 Ukl 2kloZ z+ -u
3 2

The axial bearing equation of motion lends itself well to classical design techniques but
further simplifications must be performed on the radial bearing equation of motion. The first
simplification is that the controller will be designed for the case when the rotor is not spinning.
This simplification means that all gyroscopic effects will be ignored in the design process.
Therefore manual tuning on the actual system will almost assuredly be required. This manual
tuning however can be minimized if the gyroscopic effects are treated as a disturbance thereby
placing further emphasis on disturbance rejection performance. With this simplification, the
radial bearing equation of motion becomes,

4CUkIl. 4CzkIo 2C, ko 2C3,koXl + h0 X2 + Ux + UXh3 3 2 1 2 U

The final assumption is that the contribution to the radial bearing equations of motion attributable
to the coupling between the radial bearings can be treated as a disturbance. The radial bearing
equation of motion then takes on the form of the axial bearing equation of motion,

4C kl 2CUkloX = 13'Ox + U2 ,

Now the radial bearing equation of motion is also in a form that makes it possible to utilize
classical design techniques. However the net effect of all these assumptions is an increased
reliance on good disturbance rejection and manual tuning.

These assumptions were carried out in the Chapter 2 during the system identification
phase of the design process. During that phase, it became apparent that the most accurate
transfer function was obtained by using a best fit recursive technique. However, this technique
was optimized to produce the most accurate fit up to 1000 Hz. The region above 1000 Hz is
dominated by high frequency dynamics. Including this region in the best fit recursive analysis
tends to create a derived transfer function which is less accurate within the 100 to 1000 Hz
region. The 100 to 1000 Hz region lies within the probable bandwidth of our controller while
the region above 1000 Hz does not. Therefore, the best fit recursive analysis ignores high
frequency region and any controller designed using this transfer function must provide adequate
attenuation of the control signal after 1000 Hz to prevent excitation of unmodeled system
dynamics at higher frequencies.

Now the choice of Time Delay Control (TDC) as the control algorithm becomes apparent.
TDC utilizes information from the previous sampling interval(s) as well as the current error
signal to determine the unmodeled dynamics at the previous interval. Provided that the sampling
interval is sufficiently small, the unmodeled dynamics will not change significantly during this

interval. Therefore the control algorithm has an estimate of the present unmodeled dynamics and
augments the control signal to compensate. It is hoped that this augmentation will be sufficient
to compensate for the coupling effects, gyroscopic effects, and any other disturbances the system
may encounter.

This may seem like too much to ask considering the number and the nature of the
simplifications made but previous research suggests otherwise. TDC has been applied separately
to both the axial bearing and a radial bearing with encouraging results. However, what is
missing in all previous work is a rigorous systematic procedure for designing a controller using
TDC. This thesis will not attempt to define a definitive design procedure but merely to document
one attempt at rigorous design so that others learn and perhaps carry the process further.

4.2.1 Sampling Rate Determination

A necessary condition for stability of the Time Delay Control (TDC) algorithm is that the
sampling interval be sufficiently small such that the unmodeled system dynamics do not change
appreciably between sampling intervals. To date, previous research has not addressed how to
determine the appropriate sampling rate. Generally, the sampling rate has been determined by
engineering experience or hardware limitations. These methods are fine for research purposes
but quite unsatisfactory given real world economic constraints. Sampling at a higher than
required rate may not adversely effect performance but it can lead to the use of higher priced
hardware then otherwise would be required.

The use of TDC as the controller algorithm also places additional emphasis on proper
sampling rate determination. The simplified TDC law derived in Chapter 3 was defined as,

v(t) = (4t-7)-I[A(t-7) -AeX(t)]

Taking the Laplace transform and computing the transfer function yields,

U(s) e"ss -A
X(s) B(1 -e-'T)

This transfer function demonstrates that TDC can be thought of as a nonlinear form of PID
control. It also demonstrates that the sampling rate effects both the derivative and integral
portions of this PID controller. When a continuous time control algorithm is implemented
digitally, the sampling rate normally just effects the stability of the system and is a function of
the Nyquist frequency. With TDC, the sampling rate not only effects system stability but also
system performance. Figures 4-2 and 4-3 show how the sampling rate effects the performance
of radial bearing 2X when the remaining controller variables are held constant.

While determination of the proper sampling is crucial in producing a stable system, it is
not the only factor. There are other controller parameters that also effect the stability of the
system and these parameters cannot be ignored in determining the proper sampling rate. Thus

4-2 Radial Bearing 2X Closed Loop Frequency Response as a Function of Sampling Rate

S•1

0.1 1 10 100 1,000

Frequency (HZ)

4-3 Radial Bearing 2X Disturbance Rejection Response as a Function of Sampling Rate

0.5

-2.

-1.

.2

.1 1 10 100 1,ooo000

Frequency (Hr)

I0

0.1

I 0.01

10 00

............

... i.

the effect that sampling rate has on the stability of the system must be viewed in concert with
the effects the other parameters also have upon system stability.

The equations of motion of the rotor define the acceleration in terms of control current
and rotor position. Therefore the state variables of the controller must mimic the physics of the
system and hence,

x a11 a12 1
i aL21 a22 x

Obviously az2 = 1 and a22 = 0. The acceleration component has the following form,

x = al;i+al2x or i-all,-a 12x = 0

The Laplace transform of the above takes on a familiar form,

s 2- ats-al2) S

Thus,

-a11 = 2C(n

where: C
0n

and

= damping ratio
= natural frequency

The simplified TDC law now becomes,

1 (t-l)+2t(ant) +Gx(t)u(t) = -(t-) -

Since a necessary condition for stability is that the unknown system dynamics do not change
appreciably between sampling intervals, this implies,

g(t-7) = (t)

Finally, the simplified TDC law becomes,

U(t) = v(t-7 - [it-) +2(arn(t-) +)]Blr,~'Lsl~~~

2
-a 12 =12 (on,

__·_I_~~_ __ Ir···

The reason for the substitution of the velocity terms in the above equation will become apparent
later. The TDC law requires both the acceleration and the velocity of the rotor whereas the
system only provides the position signal. Therefore the derivative must be calculated and for the
time delayed values, a backward difference representation is used,

At-7 = x(t)-x(t-27) + 0(7)2
2T

The velocity is derived by the position signal supplied by the position sensor. The acceleration
however is derived using the previously derived velocity. This introduces a problem because a
characteristic of differentiators is that they amplify signal noise. Therefore, it is quite possible
that the actual acceleration derived from the velocity approximation may be overwhelmed by the
signal noise especially in applications where the sensor is particularly noisy.

Finally, the parameter B is the conversion factor between acceleration and control current.
This conversion factor is defined by the physical characteristics of the magnetic bearings. If this
conversion factor is denoted as b, then the value of parameter B is defined as,

1 K
B b

where: K = feedback gain

Throughout the remainder of this thesis, B will be referred to as the feedback gain and not by
its separate components. As such it is not a true gain but does contain the conversion factor and
has the appropriate units.

The parameters of the controller have thus been defined as,

T = sampling interval
B = feedback gain
S= damping ratio
(= natural frequency

The objective is to determine how variations of the four controller parameters effect the stability
of the closed loop system. In an effort to visualize this four dimensional variable space, a two
dimensional plot was created in which each element of that plot was itself a two dimensional
plot. Figure 4-4 is provided as an aid in understanding this visualization technique. The overall
plot has a horizontal axis which charts the sampling interval and a vertical axis which charts the
feedback gain. Each elemental plot has a horizontal axis which charts the damping ratio and a
vertical axis which charts the natural frequency. All of these plots have their origin at the top
left corner with the horizontal variable increasing from left to right and the vertical variable

B1
B2

B3

T2

VV
KYK
KY

-

K
4-4 Four Dimensional Parameter Space Mapping

_^ __ CIIIIYI--- - --LIIII·~_~YI-.·-II-~ ^IIII11YI~--)-- II~

-T

i

4-5 Radial Bearing 2X Four Dimensional Parameter Space Stability Plot

41 m winms

""I*~m!~WH~· ' uw~m luwims·

-'. tI~llffmq~i qm0
nwN*,~l\U~blIuqp~

.'..WtS~!" gqYIIal*

- u~rlVlll rnmpq

.'·~

SII",u ltI~lnhIItf.

'9

'9

'4r

.9

.9r

*1,

.9(

VWR%" !

'(J

1'

r '
' I

I'

'I

'V

'V

'Ir

increasing from top to bottom. Within each elemental plot, a stable system was denoted by a
plotted point. This four dimensional space was converted to a two dimensional plot by laying
the elemental plots end to end. The axis lines delineating the elemental plots were then removed
so as not to be confused with the plotted data.

Figure 4-5 represents just such a plot for radial bearing 2X. The parameter ranges over
which the data is plotted are,

One notable trend is that the stability data is clustered into contiguous regions and not scattered
throughout each elemental plot. The damping ratio and natural frequency parameters exhibit
trends that are somewhat different from the remaining parameters. Both the damping ratio and
natural frequency have increasingly larger stability zones as their values increase. Eventually
these stability zones peak and then begin to decrease as the values continue to increase. On the
other hand, the sampling interval exhibits increasingly larger stability zones as its value increases
whereas the feedback gain parameters exhibit the opposite trend. However, the emphasis is to
determine the optimal sampling rate and stability alone is not sufficient to allow such a
determination.

The next step is to define just what constitutes the optimal sampling interval. The
assumption is made that the optimal sampling interval is the interval which produces the largest
aggregate stability region. As the aggregate stability region increases, the upper and lower
bounds of the remaining parameters that produce stable systems also increases. As the parameter
ranges increase, the number of possible stable controllers increases. As the number of possible
controllers increase, the likelihood of finding the optimal controller within that region also
increases. Simply put, the larger the aggregate stable space, the greater the probability of finding
the optimal controller within that stable space. The aggregate stable space is merely the sum of
the plotted stable systems having a common sampling interval. This assumption by itself does
not alter the conclusions from the current analysis because the plot clearly shows that as the
sampling interval decreases, the aggregate stability space increases. Figure 4-4 displays the
aggregate stable space as a function of decreasing sampling interval for all five axes.

Parameter Range

Sampling Interval (1/Hz) 1/1000 -1/ 50000

Feedback Gain 10 - 1000

Damping Ratio 0.1 - 10

Natural Frequency (rads/sec) 100 - 1000

140,000

120,000

100,000

80,000

60,000

40,000

20,000

0
0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000 5o,ooo

Sampling Rate (Hz)

4-6 Bearing Aggregate Stable Space Plot

Using the aggregate stability space assumption, a further constraint is placed upon the
analysis. Given the set of points defined by the four controller parameters that produce stable
closed loop systems, how many also produce bandwidths that fall within the probable bandwidth
of the optimal controller. The upper bound of the bandwidth of the controller is defined by the
use of the best fit transfer function as the model of the open loop system. This model is only
valid up to 1000 Hz and therefore the bandwidth upper bound must also conform to that limit.
However there is the added constraint that the control signal be adequately attenuated at the
model limit of 1000 Hz. The theoretical closed loop system has six zeroes and seven poles.
Therefore the slope at high frequencies will be -20 dB/decade. Assuming a maximum gain of
-20 dB at 1000 Hz and a slope of -20 dB/decade, the maximum bandwidth upper bound of
approximately 200 Hz. The determination of the lower bound however is still a matter of
engineering experience which later must be verified by the actual system performance. Ideally,
the bandwidth of the system should be as close to the maximum allowable as possible. Therefore
the lower bound was chosen as 100 Hz.

160 XO

b~l

Sampling Rate (;Hzk
4-7 Aggregate Stable Systems having Bandwidth between 100 and 200 Hz

Figure 4-5 shows the results of this added constraint. Not only is there a maximum
aggregate stable space for each axis but that maximum falls within the attainable minimum
sampling interval set by the combined factors of DSP chip speed, I/O hardware conversion rates,
and algorithm efficiency. This figure also highlights a problem with using TDC as the control
algorithm for this particular application. TDC requires that the sampling interval be sufficiently
small for stability to be assured. However, given the current assumptions in the present analysis,
the optimum sampling interval is different for each axis. Yet, if only one DSP chip is to be used,
then only one sampling interval can be chosen. Hence, there is a high probability that the
theoretically optimum controller will never be realized if TDC is the control algorithm.

This also raises the question of which sampling interval to choose. For this particular
application, the failure of one axis causes the entire system to fail. Therefore the system
sampling interval should be optimal sampling interval of the axis that is most likely to fail first.
Again, engineering experience dictated that either the 2X or 2Y radial bearing would be the first
to fail due to their larger distance from the rotor center of gravity. Later testing on the actual
system would prove this assumption correct. Given all of these factors, the sampling rate of the
system was set at 10000 Hz.

t

I[

·i

Maximum Bandwidth Cutoff (lt)

4-8 Optimal Sampling Rate versus Bandwidth Constraint Upper Bound

There are also problems associated with this method of determining the optimal sampling
rate. The sampling rate at which the maximum aggregate stable systems are produced varies with
substantially with the upper bound of the allowable bandwidth as shown in Figure 4-6. Ideally,
the bandwidth upper bound should be approximated initially and modified once the bandwidth
of the actual closed loop system is obtained experimentally. This in turn would lead to a new
optimal sampling rate which would cause the bandwidth of the actual closed loop system to
change again. Hence the optimal sampling rate analysis becomes a recursive process which halts
when there is little change in either the sampling rate or the actual closed loop system bandwidth.
This recursive method was not used by this researcher due to the lack of easy access to a system
analyzer.

The purpose of the sampling interval analysis was to eliminate the use of engineering
experience as the criteria for its determination. In that regard it has not been wholly successful.
However, it is the contention of this researcher that using engineering experience to estimate the
upper and lower bounds of the probable bandwidth of the closed loop system is a far better
proposition then basing its determination on experience alone.

V0

4.2.2 Velocity Derivation

Previously, the simplified TDC law was shown to be,

1 !(t- +2• (o (t) +.x(t)
~t) = r~t-1• - B (t - 7) -jot)

A necessary condition for stability is that the unknown system dynamics not change appreciably
between sampling intervals. This implies,

g(t-7) -i-(t)

This provides an opportunity to choose which term should be used to represent the velocity in
this implementation of the TDC law. The proper choice is related to the method by which each
term is determined when implemented in digital form. The choice then becomes one between
the backward difference representation or the central difference representation,

it) = 3x(t)-4x(t-7)+x(t-27) + 0(72
2T

i(t•-d x(t)-x(t-27) + 0(7?
2T

The best representation was determined by calculating the velocity returned by each difference
formula from a sample of the noise generated by the position sensors. This noise sample was
obtained by sampling the position signal of each axis when the magnetic bearings of all the axes
were unpowered. Figure 4-7 shows a portion of the results from such an analysis when
performed on the 2X radial bearing. Clearly, the central difference representation is less
responsive to the sensor noise and therefore i(t-7) was chosen as the term to represent the
velocity in the TDC law.

4.2.3 Optimal Controller Determination

With the value of the sampling interval resolved, there still remains the question as to how
the values of the remaining controller parameters will be determined. Many assumptions were
made in the radial bearing equations of motion to reduce their complexity enough to allow the
use of classical design techniques. Due to these assumptions, the major requirement of the
controller is that it be as stiff as possible. Therefore the maximum value of the disturbance
rejection plot is of paramount importance. Due to the use of the best fit transfer function as the
open loop model of the system, there must be adequate attenuation of closed loop system at and
above 1000 Hz. Another design criteria is to maximize the bandwidth of the closed loop system.
Higher bandwidth allows the system to react to higher frequency signals. This leads to faster rise
times and generally faster system response.

A nn02

0.0015

0.001

0

-0.0005

-0.001

-0.0015

-0.002
0 20 40 60 80 100

4-9 Backward Difference and Central Difference Velocity Comparisons

Finally, the maximum closed loop gain must not exceed 10 dB. This design criteria
requires some explanation. The response of the closed loop is dominated by two underdamped
poles. If the closed loop system is viewed as a purely analog system (i.e. the digital controller
can be accurately represented by Laplace transforms), these poles lie in the left half plane
symmetrical to the real axis. As the parameters of the controller change, these poles move within
the left half plane region. However, as the poles move closer to the right half plane, the system
becomes more oscillatory. The movement of these poles closer to the right half plane also
produces a bode plot with a maximum
mvanitude exhihitina sp niked annnp.e nrtac a

shown in Figure 4-8. Therefore, the final
criteria is that the maximum closed loop gain
shall not exceed 10 dB. This upper bound
effectively limits how oscillatory the closed
loop system will become.

The performance criteria outlined
above provide guidelines for designing the
controller. However, the majority of these
criteria are vague and provide no concrete
numerical values on which to base
calculations. The question is then how does

~dC1 ~ i ~r~llr i.r·~ h i i~

10

-10

-30

-dA

one esgn a contro er usng t ese c

4-10 Peak From Underdamped Poles

0.1 1 10 100 1,100
saa.ir Zas & i)

--

--.................................

...-- ····. ···.·..................··

-................

-4- 4- 4 44

- ·· · · : ·· · · · · ; ·· :·:i................ ; ·;;·::

The remainder of this section with describe one method of designing a controller using the above
criteria. It is by no means the only way nor is it the best way to approach this design problem.

The vagueness of the performance criteria and the magnitude of the aggregate stable space
necessitated a brute force approach. From the data used the map the four dimensional stable
space, a subset of the stable systems having a sampling interval equal to the optimum sampling
interval was removed. Using this subset, a histogram of each of the parameters B, C, and wa was
produced. Using the mean and standard deviation of each histogram, the outliers of each
parameter were removed thus compressing the upper bound and lower bound of each parameter.
A program was written that recursed through the allowable range of each parameter and
calculated the following,

1. System stability
2. Maximum compliance
3. Maximum closed loop gain
4. Bandwidth
5. Closed loop gain at 1000 Hz

From this data, all unstable systems and systems with maximum closed gains in excess of 10 dB
were removed. The remainder was sorted by increasing maximum compliance, bandwidth,
increasing maximum closed loop gain, and gain at 1000 Hz. This data would be the basis on
which the final controller would be designed. This analysis was performed on each individual
axis.

This produced a large number of possible controllers but considering the assumptions
made to simplify the model, this number would most likely drop substantially when tested on the
actual hardware. This was especially true when examining the beginning of the sorted controller
list. The controllers having small maximum compliances had small values for the feedback gain
parameter B. Experience with the turbopump system suggested that controllers having such small
feedback gains would not produce stable systems. Due to the number of simplifications made
to the theoretical model, the controller list was not viewed as a strictly quantitative solution.
However the data could be used qualitatively, thus providing a starting point and also
enumerating trends in how parameter variations effected different performance criteria.

4.3 Controller Implementation

Considerable engineering went into designing the digital controller in the form of analysis
and simulations. However, designing the controller is only half the battle. Careful engineering
must also go into the implementation of such a controller on the given hardware. Such aspects
as DSP chip architecture and speed, memory sizes, and 1/O board conversion rates are all taken
into account during the implementation process. The implementation process took on added
significance given the inflexible design of the I/0 Controller board. This section attempts to
explain the design decisions made during the implement process and shed some light on the
somewhat complex structure of the final program.

4.3.1 Parallel versus Serial Processing

Perhaps the most critical design decision concerned the control signal processing
paradigm. Parallel processing is one way in which the control signals could be processed and
this was method that the I/O Controller board designer assumed would be used. With parallel
processing, a conversion process is triggered which causes all D/As to output the control signal
values calculated during the previous sampling interval. After all output values have been
converted, the I/O Controller turns its attention to the A/Ds and converts all incoming values for
processing by the DSP chip. The digital controller would then sequentially examine each input
value form the A/D FIFO, calculate the proper control signal, and place the control signal value
in the D/A FIFO. The controller would then wait till the next sampling interval to trigger a
conversion process which would again send out the values in the D/A FIFO and replenish the
A/D FIFO with new converted values.

The advantage of this technique is reducing the overhead associated with the A/D and
D/A conversion process. The disadvantage is that the control signal calculated from information
gathered during the current sampling interval is not applied until the beginning of the next
sampling interval. This time lag means that the control signal may be outdated and therefore
could actually degrade system performance. Of course, all digital controllers are subject to
computational lags but good engineering should keep these lags to the bare minimum.

There is a method that the digital controller can employ that will reduce the time delay
to a minimum. When the timer triggers the digital controller, the controller can notify the I/O
Controller board that there are no D/As before triggering the conversion process. Then after
determining the updated control signals, the controller can place the values in the D/A FIFO,
notify the I/O Controller board that there are no A/Ds, and trigger a conversion process. This
technique eliminates the lag spent waiting for the next timer event to occur. There is however
a lag induced by that requirement that all control signals for all the D/As must be calculated prior
to triggering the conversion event. This lag becomes worse as the number of axis under digital
control increases. There is also a slight increase in computation time incurred from wait states
imposed by the I/0 Controller board while updating the number of A/Ds and D/As in use during
each conversion process.

The alternative to parallel processing is serial processing. However, due to the design of
the I/O Controller board, this form of processing incurs substantial overhead. With serial
processing, the controller is only processing the values for one axis. Since the A/Ds and D/As
are not individually addressable, the conversion process must take place for all axes as in the
parallel processing method. Only one of the values however is required and therefore the
controller incurs the overhead of converting unnecessary values. For this particular system, the
A/D conversion time was approximately 20 ms per axis. In fact, the overhead incurred through
unnecessary conversions was longer then the control algorithm computation time.

Another disadvantage of serial processing is that the computation time for each axis must
be significantly less than the sampling interval. With parallel processing the average computation
time per axis is merely the sampling interval divided by the number of axes. If the value of the
input causes one axis to take a little longer to compute, the extra time could be regained by an
easy computation on another axis. With serial processing, the computation and conversion time
must be one-fifth the sampling interval or interrupts will be lost. With the added overhead of

the conversion process inherent to serial processing, the algorithm efficiency becomes of
paramount importance.

Given the disadvantages outlined above, parallel processing would seem to be the obvious
choice. However, serial processing has one important advantage when used with a system of this
type. Parallel processing outputs all of the values simultaneously and inputs all the values
simultaneously. In a system where coupling between one or more of the axes is expected, this
method enhances the coupling effect. Serial processing by its very nature allows some control
of the coupling effect through proper choice of axis computation order. For instance, if radial
bearing 1X and radial bearing 2X are assumed to be coupled, the order of computation might be
1X, then 1Y, then 2X, then 2Y. The time in between processing IX and 2X would allow some
of the coupling effects to appear in the other bearing. Therefore the digital controller would have
the chance to compensate for the changes induced by the control signal imparted on another axis.
This advantage was deemed important enough to offset all previously cited disadvantages and
serial processing was chosen as the computational method.

4.3.2 Digital Controller Program Structure

Algorithm efficiency is particularly important with this application and the structure of
the controller program reflects that. Any variable that might possibly require modification is
defined as a constant at the top of the program. The vast majority of the code calculates the
variables needed in the control algorithm from these constants during the initialization phase.
For instance, the values of (and w,, are defined as constants for each axis at the top of the
program. The initialization code then calculates the value of 2(w," for use by the control
algorithm and stored as a variable in data memory. If the algorithm requires division by a
constant, the reciprocal is calculated during the initialization process and stored in a data variable.
This is required because the division process takes seven cycles while the multiplication process
only requires one.

Data variables stored in data memory can be accessed directly by name or indirectly by
using pointers. The DSP chip can process two instructions per cycle if one instruction involves
on chip calculation and the other involves memory access. However that memory access must
be through pointers and not through direct addressing. Therefore pointers are used throughout
the control algorithm. The data variables are organized in memory in the order in which they
will be used in the program. There is no overhead incurred when data memory is addressed
sequentially therefore careful organization of data variables improves processing speed.

The maximum amperage that can be drawn by all five axes is ten amps. Therefore the
controller limits the maximum control signal to two amps. The control signal is checked before
being sent to the D/A FIFO and truncated to ± 2 amps if required. The TDC algorithm utilizes
the value of the previous control signal to compute the current control signal. If for some reason
the system is unresponsive, the value increases until the system reacts. For high gain controllers,
the control signal can build quickly but because of the amperage limit, the system will saturate.
Thus the system exhibits the same characteristics normally attributed to integrator windup. In
order to prevent this, if the control signal exceeds ± 2 amps, not only is the output control signal
truncated but the value of the control signal stored in data memory is also truncated.

The initialization phase is also responsible for calculating conversion factors, initializing
the timer chip, and setting the DSP chip into interrupt mode. After completing all these tasks,
the program runs in an endless loop waiting for a timer interrupt. When a timer interrupt is
generated, the processor jumps to the interrupt table which in turn jumps to the digital controller
routine. The routine queries the axis number data variable and immediately triggers a conversion
event. Since this will take some time, the algorithm initializes all the pointers based upon the
axis number. The routine then polls the I/O Controller board waiting for the conversion to
complete. Upon completion, the conversion factor is applied to the proper input value and the
control signal is calculated. After testing for saturation, the routine notifies the I/O Control board
that there are five D/As and no A/Ds. It then stuffs five values into the D/A FIFO and triggers
a conversion event. The routine polls the I/O Controller board waiting for the conversion to
complete and then updates the data memory variables for the next interrupt, notifies the I/O
Controller board that there are five A/Ds and no D/As, and increments the axis number data
variable.

4.4 Other Implementation Issues

The objective thus far has been to design a robust digital controller employing the TDC
law using classical design techniques. This could only be achieved by making specific
simplifications to the model. Therefore, certain characteristics of the system and the hardware
were ignored during the modeling process. However, these and other characteristics cannot be
ignored during the implementation process because of their detrimental effect on the robustness
of the controller. This section briefly describes certain system characteristics that were deemed
to have a detrimental effect on overall stability and the methods used to remove their harmful
effects.

4.4.1 Bending Modes

A significant problem inherent to high speed turbomachinery is rotor flexibility.
Precautions must be taken to ensure that the control signal does not excite the major bending
modes of the rotor which could lead to instability. Figure 4-9 is a frequency response plot
provided by the manufacturer which displays the bending modes of a typical rotor assembly. Of
particular concern are the first two bending modes at 1045 and 2230 Hz. One of the criteria in
the design of the digital controller was that there be adequate control signal attenuation at 1000
Hz due to the limitations of the theoretical model. However, this attenuation may not be
sufficient to guarantee that the first or second bending mode will not be excited. Therefore, as
an added measure of insurance, notch filters were added to the system at the first two bending
mode frequencies. Both filters were implemented in hardware using op amps and breadboards.
These filters were incorporated in a filter box which lies underneath the I/O Interface board. All
signals coming to the A/Ds and from the D/As must first pass through this filter box. A switch
was also installed that would bypass the first bending mode notch filter. No provision was made

to bypass the second bending mode.

4-11 Rotor Assembly Bending Modes

4.4.2 Sensor Noise

An important consideration in controller implementation is sensor noise. The sensor noise
was obtained by capturing the sensor signal while the magnetic bearings were unpowered. In this
mode, the rotor would be resting on the axial touchdown bearing and therefore essentially
motionless. This captured data was then corrected to remove any offset since the rotor is not
guaranteed to be in the center of the magnetic bearings when they are unpowered. A power
spectrum analysis was carried out on this corrected data and the results plotted. Figure 4-10
shows that results of this power spectrum analysis of the 2X radial bearing. The results in this
figure are representative of the data obtained from the other sensors. As shown, this system is
particularly noisy at approximately the 200 Hz region which lies within the probable bandwidth
of the controller. To minimize the impact of this noisy sensor, a notch filter was implemented
in software to attenuate signals within this region. A software implementation was chosen so that
the notch position and notch width could be easily changed to tailor each filter to the needs of
each axis. Obviously, this would increase the control algorithm computation time but the added

A A

-4U

-50

-60

-70

-90

-100

_Ila
0 2,000 4,000 6,000 8,000 10,000

Frequency (HZ)

versatility of the software implementation was important enough to warrant the delay. Special
emphasis was placed on implementing a very efficient software notch filter in order to minimize
the extra computation time needed.

4-12 Position Sensor Noise Spectrum

4.4.3 Anti-Aliasing Filter

There were two problems associated with the design of the filters used by A/Ds and D/As
on the I/O Interface board. The first problem stems from the choice of filters used. The I/O
Interface board was designed for very fast sampling rates. Therefore, the filters would also have
to be very fast so that the actual signal level would be obtained quickly. In the instance of the
D/A, a slower filter may not reach the required signal level before the next sampling interval
changes the level. Fast filters require fast rise times and herein lies the problem. The choice of
filter was a second-order Butterworth filter. As with all second-order systems, very fast rise
times lead to very high overshoots which in turn introduces noise into the signal. These
overshoots were very noticeable when viewed on an oscilloscope. An experiment was conducted
in which a function generator was connected to an A/D and the HP System Analyzer was
connected to a D/A. A small program was written which at each sampling interval, grabbed a

value from the A/D and output it directly to the D/A. Using this program, the HP System
Analyzer captured a time series output of the D/A while inputting a simple sine wave via the
function generator. The results of this experiment are shown in Figure 4-11.

To alleviate this filter induced noise, I 1
the filter box contains low-pass filters for the
D/As having a cutoff frequency of 15 KHz. Ml,
These were implemented in hardware and Lw

proved sufficient to remove most of the au0,
energy of the spike. The same filters are also .

used for the A/Ds but there is no way to
place a filter between the filters and the A/D
FIFO. There is probably very little danger of am
tht filtersC c r"r.tnr + the A/ i nl b e ane Q .Lii

the A/D settling time is most likely far 9 " ,.995 90l Ma0•29902,3 9S 9.,0 9U, L&
slower then the filter settling time. 4-13 D/A Sine Wave Time Series

The second problem again arises due
to the filters. Whereas the first problem
primarily concerned the D/As, this particular problem effects the A/Ds. The filters are designed
so that the cutoff frequency can be adjusted by replacing resistor packs on the I/O Interface
board. A characteristic of the design of this board is that changing the cutoff frequency of the
filters changes the DC offset of the A/Ds. To determine the DC offset, a number of values are
read from the A/Ds that have been grounded. The average is taken and this value is used in the
digital controller to determine the actual position signal. The table below lists the different
offsets calculated for different cutoff frequencies.

Filter Cutoff 10261 Hz 3386 Hz 2822 Hz 940 Hz

Offset (Volts) 1.028460 0.258709 0.031324 -2.700709

The design of the digital controller was based upon a theoretical model which was valid up till
1000 Hz. Since the performance of the controller could not be accurately predicted for higher
frequency signals, the A/D anti-aliasing filter was set to a cutoff frequency of 1000 Hz. This
resulted in a decrease in the effective dynamic range of the A/D from ±5.0 volts to ±2.3 volts.
For the radial bearings, this would limit the position signal to ±92 pm or 36.8 percent of the
bearing gap. Since it was impossible to guarantee that the controller would or could limit the
amount of deviation of the rotor to ±92 pm of center, the filter on the 1/O Interface board was
set to a cutoff frequency of 2 KHz and a 1 KHz lowpass filter was implemented in software.
This would of course require extra cycles in the control algorithm but the A/D dynamic range
was needed.

4.4.4 D/A Glitch

The D/A also exhibited one
characteristic which to a large exte
alleviated by the 15 KHz lowpass
Figure 4-12 shows the results of a timi
capture of the D/A output using t
System Analyzer. As in the p:
experiment, the function generator inp
simple sine wave into the A/D and tha
was outputted to the D/A. When the

other "
nt was 415

filter. i "
e series .us
he HP .s
revious 44

utted a -
it value " aws M ... 01s am ass M .. ass sw
e value "w(MO

output gets very small, the D/A value tends 4-14 D/A Zero Crossing Anomaly
to spike to a very large magnitude. This
occurs quite regularly and can be seen readily
using an oscilloscope. It is unclear just what is caused this glitch but it has been speculated that
the D/As do not handle the transition from negative to positive values correctly or that the
transition to a value of zero is handled badly.

4.5 Filter Design

The previous section outlined how filters were used to eliminate destabilizing system
dynamics and compensate for hardware design deficiencies. Whenever possible, these filters
were implemented in hardware for speed reasons and to minimize computation time. However,
certain filters required software implementation and the design of these filters is the subject of
this section. With all filter design, a compromise must be made between filter characteristics and
processor resources [16, 20].

4.5.1 Low Pass Filter Design

A fourth-order Butterworth analog filter was chosen as the basis for the low pass filter
design. This filter provides good attenuation in over a reasonably small frequency range and the
computation time requirements were not unrealistic. Designing a Butterworth filter is a cookbook
process [14]. The order of the filter determines the limits of the filter characteristics. Given the
following,

a, = cutoff frequency
K, = cutoff frequency attenuation
w2 = target frequency
K2 = target frequency attenuation

Normally o, is known and K, is -3 dB. Of the remaining parameters, 2 and K2, defining one
also defines the other since the order of filter has already been defined. For instance, the low
pass filters used with each bearing axis had the design parameters of w, = 1 KHz, K, = -3 dB,
and K2 is -30 dB. The target frequency was determined using the following,

2 2e, 2 2xo,S = tan and 12 tan
1 T T T2 T

10-K/lO- 1og0 lo 10(1
21og0o 10

Using these equations, 2 = 2090 Hz which should provide adequate attenuation. What remains
is the conversion of the analog filter to a digital format. A fourth-order Butterworth filter has
the following form.

Is) _ 1

A(s) s4 +2.613s3 +3.414s 2 +2.613s +1

The conversion process begins by applying an order correction factor, s = s/n, where n is the
order of the filter. Then the filter is transformed using the Tustin approximation,

2 z-1$s-

Tz+1

The final form then becomes,

I(z) 1+4z-1 +6z-2 +4z-3 +z-4

X(z) 206.8088 -489.8232z - +478.2204z -2 -217.9162z -3 +38.7102z -4

The response of this filter is shown in Figures 4-13 and 4-14. This filter was implemented at
a cost of 18 additional cycles.

Ir ··_·___ __

50

0

-50

-100

-150

-200

-250

-300
0.1 1 10 100

Frequency (Hz)
1,000 10,000

4-15 Low Pass Filter Frequency Response

0

-50

-100

-150

-200

-250

-300

-350

-400
0. 1 10 100

Frequency (Hz)

4-16 Low Pass Filter Phase Response

4.5.2 Notch Filter Design

The notch filter is necessary to remove sensor noise from the position signal. This filter
is a purely digital design having the following form,

y(t) _ x(t) - 2 cos o Tx(t-) +x(t-27
x(t) c(LA2 (aLA2'

1x(t) -2 4 coso0 Tx(t-7) 1- 4 x(t-2)

The parameter wo is the notch frequency and the parameters a, L, and Ao effect the notch depth
and width. Typical notch filter values are wo = 220 Hz, a = L = 0.25, and Ao = 1.0. The
response of this filter is shown in Figures 4-15 and 4-16. This filter was implemented at a cost
of 9 cycles.

1 10 100
Frequency (Hz)

1,000 10,000

100
80

60

40

20

0
-20

-40

-60
-80

-100
0. 1 1 10 100

Frequency (Hz)

4-17 Notch Filter Frequency Response

1,000 10,000

-25

-30
0.1 1,000 10,000

4-18 Notch Filter Phase Response

....... ... 71-'

................ 'ii

..

** * * * ****** * * *****

· · · ! · · · ·)·I!: · :)? ··........... .! ·

1

z ''''

-···· · · i · · ·, (:·, · I · · · · : ·..........:~

..

:· iit i

7 T

-~~~'`"'``"'''""~~"."''

7 7

4.6 Manual Tuning

With all of the simplifications that were necessary to allow classical design techniques
to be used in designing the digital controller, there would be no way to avoid manual tuning.
Not only would the controller require manual tuning but also the notch filter which removed
sensor noise must be tuned to the appropriate frequency and notch width. The tuning process
would rely on the sorted stable controller lists that were created for each bearing.

The initial step is to determine the sensor noise notch filter's notch frequency. This
required sampling the sensor output while the bearings were unpowered. A power spectrum
analysis was then carried out on this data to determine the notch frequency. Next, reasonable
values for the parameters (and o, were set so that the proper feedback gain B could be obtained.
Experimentation had shown that of the remaining parameters, the feedback gain had the strongest
effect on system stability. The values chosen for the parameters (and aW were 1.0 and 100.0
respectively. It is important that the trial and error determination of the feedback gain must be
carried out on all five bearings simultaneously. Any attempt to tune each axis individually by
using the analog controller for the remaining axes would lead to an unstable system when all five
axes were under digital control. After the feedback gain for each axis has been determined, then
the parameters (and w,, can be tuned to optimize system performance.

Ideally the fine tuning of the parameters would be accomplished using a system analyzer
to look at the frequency response and disturbance rejection curves generated by each axis. In the
absence of a system analyzer, a reasonable analysis can be performed using a function generator
and an oscilloscope. The function generator is used to supplied a low amplitude disturbance at
the appropriate test point and the oscilloscope will be used to monitor the position signal. Using
this technique, the maximum closed loop gain and bandwidth of each axis can be determined as
well as maximum compliance of the system. When the performance of the system seems
satisfactory, the rotor of the turbopump can be spun to a suitable speed and stability can be
ascertained. When testing with the rotor of the turbopump spinning, make sure that the first test
speed is the highest speed the digital controller must meet. If the digital controller remains stable
at the highest speed, it will remain stable at the slower speeds.

4.7 Summary and Remarks

In this chapter, the controller design process has been outlined. A major requirement for
stability of the TDC law is that the sampling interval be sufficiently small such that the system
dynamics do not change significantly between sampling intervals. An analysis of the effect of
the controller design parameters showed that there is no obvious optimal sampling rate.
Therefore, statistical methods were employed to determine the sampling rate. The remaining
controller design parameters were chosen based upon the performance requirements of the
system. Using these requirements, the controller should have the smallest compliance possible,
the maximum closed loop gain should be below 10 dB, there should be proper signal attenuation
at 1000 Hz, and the bandwidth to the controller should be maximized. Possible controllers

meeting these requirements were ranked and used during the manual tuning phase.
The controller program structure was examined and design decisions defended. Other

implementation issues specific to this application were presented and techniques for minimizing
their detrimental effects on system stability were outlined. Some of these implementation issues
were related to characteristics of the system and others were related to the hardware used to
implement the controller. The techniques used to minimize stability problems caused by these
characteristics consisted primarily of implementing filters and the filter design methods were
presented. Finally, a brief account of the manual tuning methodology was presented.

The obvious conclusion from this chapter is that the problem of designing a controller for
this particular system just got considerably harder. The design decision to use TDC and the
limitation of having only one sampling rate for all axes means that an optimal controller will
never be realized. Add to that the bending modes, noisy sensor, and hardware bugs and this
problem becomes worse. Also, the simplifications necessary to allow classical design techniques
to be used calls into question the validity of the stability analysis used to determine the sampling
rate and the other controller parameters. The controller will only be as good as the theoretical
model it was designed to control and therefore everything hinges on the how well the theoretical
system response matches the actual system response.

Chapter 5

Controller Evaluation

This chapter compares the results of the performance of the digital, analog, and wherever
possible the theoretical controllers. The first section describes the manual tuning process. The
ease or difficulty associated with the manual tuning process is a good indicator of the validity
of the theoretical model. The second section presents the system performance when the rotor is
not spinning. Throughout this chapter, the radial 2X bearing was chosen to represent the
response of a typical radial bearing. Both the closed loop frequency response and the disturbance
rejection response are presented during static testing. The third section presents the system
performance when the rotor is spinning at 15000 and 28000 RPM. Only the disturbance rejection
response is presented because the closed loop frequency response conveys little information since
command following is of minor importance in this particular application. The final section
summarizes the results.

5.1 The Manual Tuning Process

There were problems with the manual tuning process almost immediately. Due to the
assumptions made during the modeling process, the most important system performance criteria
was the maximum compliance. The dominant characteristic of systems having a low maximum
compliance as predicted by the theoretical model was high feedback gain. However, it became
apparent that such high feedback gains predicted by the theoretical model would lead to an
unstable system. Another critical simplification of the theoretical model was that coupling could
be treated as a disturbance. This simplification implies that any coupling between bearings is
small when compared to forces exerted by the bearings themselves. The validity of this
assumption was tested by manually tuning each radial bearing while the appropriate coupled
bearing was under analog control. If coupling was indeed small between these two bearings,
little or no adjustment would have to be made when both coupled bearings were under digital
control. This was not the case however. In fact all four radial bearing controllers had to be
manually tuned simultaneously.

Simultaneously tuning four radial bearings requires a systematic approach. This
researcher was able to obtain a stable system in a timely fashion by setting the damping ratio
and natural frequency to approximate values (i.e. (= 1.0, & = 100) and varying the value of the
feedback gains. Once an approximate value of the feedback gain was obtained for each bearing,
the values of the damping ratio and natural frequency could be tuned to improve system

performance. System performance was determined by using a function generator and an
oscilloscope to monitor the disturbance rejection response of each bearing. As demonstrated by
the theoretical model, the stability region was a contiguous area and is not a random scattering
of stable systems distributed throughout the entire variable range. Therefore it was only a matter
of finding the right parameters that yielded a stable controller and, through trial and error,
probing for the limits of the stability region. Using this technique, this researcher was able to
develop a stable controller able to yield good performance up to 15000 RPM in a relatively short
time.

However, developing a controller that remained stable up to 28000 RPM was another
matter. Simply varying the parameters of the controller was not yielding a controller stable
enough to pass the 25000 RPM range. Time and again it was the lower bearing which failed first
and caused the analog control box to shut down the system. Stability above this 25000 RPM
range only came after this researcher replaced the hardware implementation of the first bending
mode notch filter with a software implementation. This allowed the notch filter cutoff frequency,
notch depth, and notch width to be varied individually for each bearing. Altering the
characteristics of the first bending mode notch filter also influenced the performance of the
system at lower frequencies. It would turn out that the cutoff frequency of the notch filter would
effect system performance enough to allow a greater operating speed. By varying the parameters
of the notch filter as well as the parameters of the controller, this researcher was able to develop
a stable controller capable of 28000 RPM after much trial and error. The notch filter
implemented in software was of the following form,

y(z) - z 2 -2coso Tz+1

X(Z) 2 aLA , 2) I OLA02 2
z - 2 1 - cosoTz + 1) z

Where: T = sampling interval
u90o = notch frequency
a, L, Ao = parameters effecting notch depth and width

The final values of the notch filter parameters are the following,

Parameter Axial RadlX RadlY Rad2X Rad2Y

?o0 (Hz) 950 1000 960 1100 1100

a 0.20 0.20 0.20 0.20 0.20

L 0.20 0.20 0.20 0.20 0.20

Ao 1.00 1.00 1.00 1.00 1.00

Note that the above table presents the values for the notch filter used by the axial bearing.
The axial bearing would not be effected by the first bending mode but the code used to control

each bearing axis is common to all bearings. Including a notch filter in the axial bearing
controller allowed streamlined code development and did not compromise axial bearing stability.
Obviously the first bending mode cannot be different for each bearing axis. What moving the
notch filter does provide is better controller performance and stability at high frequencies.

5.2 Static Test Results

This section displays the results of the closed loop frequency response and disturbance
rejection response of the axial bearing and one axis of a particular radial bearing when the rotor
is not spinning. The 2X radial bearing was chosen to represent the response of a typical radial
bearing axis because this axis was the most likely to fail during testing and therefore represents
the worst case response. In all cases, the theoretical response is the predicted response of the
digital controller using the theoretical plant model. Both the analog and digital responses were
determined using an HP System Analyzer.

5.2.1 Axial Bearing Test Results

5-1 Axial Bearing Static Closed Loop Frequency Response

63

.:..

.I·~-- I--- · ·i: -\-;-- ---- ;·-:-- ::-- -- · ·

.. . ..
- • -Analog i iiiii

-- Theore.cal

..... i.....

Au

10

S-20
-30

-40

-CIA

0.1 1 10 100 1,000 10,000

Frequency (Hz)

-"I

,,

' '""" ~ ' ~""" ' '""" ' '~'~""

Figure 5-1 displays the closed loop frequency response of the axial bearing under digital
and analog control as well as the predicted theoretical response. The following table shows the
important performance values used as design criteria for the digital controller. These
performance values are derived from the data points used to display the graphs in Figure 5-1.

Analyzing this data leads to the following conclusions,

1. The theoretical response is not an accurate indicator of actual digital controller
performance because of the very simple model used. Both the bandwidth and
the peak gain of the digital controller are twice that of the theoretical model.

2. The digital controller has a bandwidth which is approximately fifty percent
greater then the analog controller but it also has a peak gain which is
approximately 1.7 times greater then the analog controller.

3. At frequencies beyond the bandwidth of the controller, the slopes of both the
analog and digital controllers are approximately equal.

Figure 5-1 displays the most important findings in this thesis. Remember that the axial bearing
is not subject to coupling effects and therefore the simplification of treating coupling effects as
disturbances was not needed. Also the axial bearing is not subject to gyroscopic effects even if
the rotor was spinning, which it isn't in this case, and therefore the simplification of treating
gyroscopic effects as a disturbance was also not needed. The only simplification made in the
case of the axial bearing was linearizing the inherently nonlinear equations of motion. Therefore,
the linearization process must account for the discrepancy. The use of a very simple model is
believed to be the cause of this anomaly.

Figure 5-2 displays the disturbance rejection response of the axial bearing under digital
and analog control as well as the predicted theoretical response. The following table shows the
important performance values used as design criteria for the digital controller. These
performance values are derived from the data points used to display the graphs in Figure 5-2.

Parameter Analog Digital Theoretical

Peak Compliance (Microns/Newton) 24.14 3.80 4.11

Compliance @ 1000Hz (Microns/Newton) 0.135 0.247 0.003

Parameter Analog Digital Theoretical

Peak Gain (dB) 8.06 12.50 6.33

Bandwidth @ -3dB (Hz) 134.01 195.09 91.64

Gain @ 1000Hz (DB) -32.82 -18.53 -25.55

1IUu

10

•• 0.001

A AAAI

0.1 1 10 100 1,000 10,000

Frequency (IHz)

5-2 Axial Bearing Static Disturbance Rejection Response

Analyzing this data leads to the following conclusions,

1. The theoretical response accurately predicts actual digital controller response at and
below 20 Hz. However, the theoretical response becomes progressively less accurate
as frequency increases.

2. The digital controller has significantly better disturbance rejection properties at and
below 10 Hz. However, the fact that the analog controller has significantly worse
disturbance rejection properties in this region and yet produces very stable operation
leads one to believe that the low frequency disturbance rejection is of low importance
as a controller design criteria for this bearing axis.

3. At frequencies beyond 100 Hz, the disturbance rejection properties of both the analog
and digital controllers are approximately equal.

Disturbance rejection was considered the most important design criteria and the accurate
prediction of the low frequency disturbance rejection response by the theoretical model lends
credibility to the use of the theoretical model as a design tool when disturbance rejection is the
most important performance characteristic. From the standpoint of disturbance rejection, the
digital controller is significantly better then the analog controller when the rotor is not spinning.

.,,. ,
............ ,.

:... . :::: :

--- -- Th e.oretr.al

. ,

5.2.2 Radial Bearing Test Results

5-3 Radial Bearing 2X Static Closed Loop Frequency Response

Figure 5-3 displays the closed loop frequency response of radial bearing 2X under digital
and analog control as well as the predicted theoretical response. The following table shows the
important performance values used as design criteria for the digital controller. These
performance values are derived from the data points used to display the graphs in Figure 5-3.

Analyzing this data leads to the following conclusions,

66

,.,..,,,. ,,,.,..,......~-'

†

:~. ~

.. :::

N:

JU

0

-10

-20

-30

-40

C5

lI1

..........

Analog

Digital

Theoretical

0.1 1 10 100 1,000 10,000

Frequency (Hz)

Parameter Analog Digital Theoretical

Peak Gain (dB) 8.51 8.59 9.13

Bandwidth @ -3dB (Hz) 152.46 326.15 77.35

Gain @ 1000Hz (DB) -25.19 -15.27 -30.68

1. The theoretical response is not an accurate indicator of actual digital controller
performance. The peak gain of the theoretical model is approximately equal
to that of the actual digital controller but the bandwidth of the digital controller
is four times greater then that of the theoretical model.

2. The digital controller has a bandwidth which is over twice that of the analog
controller though their peak gains are approximately equal.

3. At frequencies beyond the bandwidth of the controller, the slope of the digital
controller is less then that of the analog controller.

As with the axial bearing, the bandwidth predicted by the theoretical model is not an accurate
indicator of the actual digital controller bandwidth. The theoretical model however does seem
to accurately predict the peak gain of the digital controller but this is true only for the lower
bearing (axes 2X and 2Y). In the case of the upper bearing (axes IX and 1Y), the peak gain
predicted by the theoretical model is significantly higher then the actual digital controller
response. The digital controller has significantly better bandwidth then the analog controller but
the slope of the digital controller is significantly less then that of the analog controller in the high
frequency regions. This high frequency region is where the major bending modes of the rotor
are located which could cause stability problems when the rotor is spinning.

iu

1

0.1

0.01

n nf 1

0.1 1 10 100 1,000 10,000

Frequency (Hz)

5-4 Radial Bearing 2X Static Disturbance Rejection Response

Figure 5-4 displays the disturbance rejection response of radial bearing 2X under digital
and analog control as well as the predicted theoretical response. The following table shows the

L~~~ ~~~.... °° ",.

F i i i iii. •i i .• i : -z -• i • i i i i i ii i iI i il- ii i i i~~i}...,i~i .iiii'

-..- Analog
Digital

.Theoretical

,,

important performance values used as design criteria for the digital controller. These
performance values are derived from the data points used to display the graphs in Figure 5-4.

Parameter Analog Digital Theoretical

Peak Compliance (Microns/Newton) 3.30 2.47 4.47

Compliance @ 1000Hz (Microns/Newton) 0.027 0.051 0.003

Analyzing this data leads to the following conclusions,

1. The theoretical response accurately predicts actual digital controller response
at and below 5 Hz. The theoretical response becomes progressively less
accurate as frequency increases. The difference between the theoretical
maximum compliance and the actual digital controller maximum compliance
is significant.

2. The digital controller has significantly better disturbance rejection properties
at and below 10 Hz. As with the axial bearing, the fact that the analog
controller has significantly worse disturbance rejection properties in this region
and yet produces very stable operation leads one to believe that the low
frequency disturbance rejection is of low importance as a controller design
criteria for the radial bearings.

3. At frequencies beyond 100 Hz, the disturbance rejection properties of both the
analog and digital controllers are approximately equal.

Whereas the theoretical model is a good predictor of actual digital controller response up to 5
Hz for the lower bearing, that characteristic frequency is 10 Hz for the upper bearing. However
the difference between the predicted maximum compliance and the actual maximum compliance
is significantly greater for the upper bearing then for the lower bearing. The disparity between
maximum compliance of the theoretical and digital controllers was not a characteristic of the
axial bearings. This points toward bearing coupling as the most likely cause of this increased
stiffness.

5.3 Dynamic Test Results

This section displays the results of the disturbance rejection response of the axial bearing
and one axis of a particular radial bearing when the rotor is spinning at 15000 and 28000 RPM.
The closed loop frequency response is absent from the dynamic tests because the command
following response of the system is of little importance in the case where the rotor is spinning.
The 2X radial bearing was chosen to represent the response of a typical radial bearing axis
because this axis was the most likely to fail during testing and therefore represents the worst case
response. Both the analog and digital responses were determined using an HP System Analyzer.

5.3.1 Axial Bearing Test Results

5-5 Axial Bearing Dynamic Disturbance Rejection Response - 15000 RPM

Figure 5-5 displays the disturbance rejection response of the axial bearing under digital
and analog control while the rotor is spinning at 15000 RPM. The following table shows the
important performance values used as design criteria for the digital controller. These
performance values are derived from the data points used to display the graphs in Figure 5-5.

DigitalParameter

24.45Peak Compliance (Microns/Newton)

Compliance @ 1000Hz (Microns/Newton) 0.121

Analyzing this data leads to the following conclusions,

1. The digital controller has significantly better disturbance rejection
properties at and below 10 Hz.

2. For the majority of the frequencies beyond 10 Hz, the disturbance rejection
properties of the digital controller is somewhat worse then that of the
analog controller.

69

7.00

0.121

* , : ;--

.• , ,,. .- •1, ,. ,.,...... . ./ I t~:::: : ::~-~: : T`~4-1"
/ : ::::: : ~::: : ::::A

... ... 1..".

'Ut,

10

I0.

J. .

I I: :
---- Analog

Digital

0.01

0.1 1 10 100 1,ooo000 10,000
Frequency (Hz)

" " " IJ~ ' I ~ " I I I I I I I I I I I I I I I I I

knalog

5-6 Axial Bearing Dynamic Disturbance Rejection Response - 28000 RPM

Figure 5-6 displays the disturbance rejection response of the axial bearing under digital
and analog control while the rotor is spinning at 28000 RPM. The following table shows the
important performance values used as design criteria for the digital controller. These
performance values are derived from the data points used to display the graphs in Figure 5-6.

Analyzing this data leads to the same conclusions as in the previous case. The disturbance
rejection performance of the axial bearing is virtually the same for each controller regardless of
the rotor speed as one would expect. The digital controller has superior performance at lower
frequencies but is slightly worse at higher frequencies. After 400 Hz, the magnitudes of the
compliance are sufficiently small such that any difference between the analog and digital
controllers is negligible. There is a uniform increase in compliance between the static case and
the dynamic cases. This is probably caused by the axial forces generated by the rotating vanes
of the turbopump.

70

IUU

10

0 .1

0.01

n nfl
0.1 1 10 100 1,000 10,000

Frequency (Hz)

,. ' ,....... 1 , ..
, / .. ~.. e .. c....~.~.. r. *... ·.. . .·.e

Analog
Digital

.. .. ~.... . . ,, 'V. ~..... .

.

Parameter Analog Digital

Peak Compliance (Microns/Newton) 22.73 6.94

Compliance @ 1000Hz (Microns/Newton) 0.027 0.277

5.3.2 Radial Bearing Test Results

0.1

0.01

O 1ei

0.1 1 10 100 1,000 10,000

Frequency (HZ)

5-7 Radial Bearing 2X Dynamic Disturbance Rejection Response - 15000 RPM

Figure 5-7 displays the disturbance rejection response of radial bearing 2X under digital
and analog control while the rotor is spinning at 15000 RPM. The following table shows the
important performance values used as design criteria for the digital controller. These
performance values are derived from the data points used to display the graphs in Figure 5-7.

Analyzing this data leads to the following conclusions,

-.-- - Analog

: :::::: : ::,: :77777.::: ,
:::::: .,,.,,,.;

::::: :.,.,,,, :I

Parameter Analog Digital

Peak Compliance (Microns/Newton) 3.51 2.72

Compliance @ 1000Hz (Microns/Newton) 0.037 0.030

: : :: •. , : : :: : / .: : : : : : :: :

-o'i... . "• : '; :'::" " " ::":: ' ' -:' --' : " i c " ''': : : :\ii , i i 'i 'i ...

1. The digital controller has significantly better disturbance rejection
properties at and below 10 Hz.

2. Between 10 and 100 Hz, the digital controller displays disturbance
rejection properties that are either better then or equal to that of the
analog controller.

3. For the majority of the frequencies beyond 100 Hz, the disturbance
rejection properties of the digital controller is somewhat worse then that
of the analog controller.

The digital controller has slightly worse disturbance rejection properties then the analog controller
above 100 Hz but above 300 Hz, the magnitudes of the compliance are sufficiently small such
that any difference between the two controllers is negligible. Overall, at this particular speed,
the digital controller is a significantly better controller then the analog one.

5-8 Radial Bearing 2X Dynamic Disturbance Rejection Response - 28000 RPM

Figure 5-8 displays the disturbance rejection response of radial bearing 2X under digital
and analog control while the rotor is spinning at 28000 RPM. The following table shows the
important performance values used as design criteria for the digital controller. These
performance values are derived from the data points used to display the graphs in Figure 5-8.

1,

1

0.1

S0.01

0.1 1 10 100 1,000 10,000

Frequency (Hz)

. , , ,, . ..777..--7,-..

::::: j iiii j~i~i ::::
: ::::

filf: I-:":::: Iiij

... : ..:.::

" " " 'm m

Analyzing this data leads to the following conclusions,

1. The digital controller has significantly better disturbance rejection
properties at and below 10 Hz.

2. Between 10 and 100 Hz, the digital controller displays disturbance
rejection properties that are either better then or equal to that of the
analog controller.

3 For the majority of the frequencies beyond 100 Hz, the disturbance
rejection properties of the analog controller are on average approximately
2.2 times better then that of the digital controller.

The inability of the digital controller to exhibit better stiffness in the high frequency region would
lead to stability problems at this rotor speed. The spike exhibited by both the analog and digital
controllers in the 11 Hz region is due to coupling between the upper and lower bearing. Under
normal operation, the position signals of the upper and lower bearings are sinusoidal waves
having different amplitudes and frequencies. However at the frequency of the spike, the position
signals of both the upper and lower bearings had the same amplitude and the same frequency.
This spike is a characteristic exhibited by all the bearings at this speed. Though it is not apparent
from Figure 5-8, the digital controller is on the edge of instability at this speed.

5.4 Summary and Remarks

During the digital controller design stage, it became apparent that the theoretical model
was much worse then expected. The theoretical model returned values of the feedback gain that
were so high that they would never yield a stable system. The inaccuracy of the theoretical
model was verified by the data from the static closed loop frequency response of the radial and
axial bearings. The use of a very simple model to represent the response of the open loop system
accounts for the large discrepancies between the theoretical and actual system response.

The theoretical model was much more accurate at predicting the actual disturbance
rejection response of the digital controller. However the theoretical model grew less accurate as
frequency increased. In the case of the radial bearings, the theoretical model in some ways
predicted worst response then the actual digital controller exhibited. During static testing and
when the rotor was spinning at 15000 RPM, the shapes of the analog and digital controllers are
similar though their magnitudes vary somewhat. The digital controller exhibit significantly

Parameter Analog Digital

Peak Compliance (Microns/Newton) 6.13 5.36

Compliance @ 1000Hz (Microns/Newton) 0.028 0.175

greater compliance in the high frequency region when rotor speed was increased to 28000 RPM.
This high frequency region is where the major bending modes lie and therefore system stability
was compromised in the case of the digital controller. The shape of the disturbance rejection
response remained relatively constant for the axial bearing during static and dynamic testing.
However the digital controller did show a uniform increase in compliance during dynamic testing
probably due to axial forces generated by the rotating vanes of the turbopump.

Chapter 6

Conclusions and Recommendations

The goal of this researcher's work was to model, design, and implement a digital
controller which used the Time Delay Control (TDC) algorithm to control the five axes of a
magnetically levitated turbopump. The final success or failure of the resulting digital controller
is directly related to how well each of these three tasks were performed. Therefore, the success
of each stage of the process with be analyzed in the light of the final digital controller
performance.

The modeling process is based upon the proper determination of the theoretical open loop
transfer function which imitates the characteristics of the actual open loop transfer function. The
actual open loop transfer function was determined for each axis using a system analyzer while
the turbopump was under analog control. At first, the actual transfer function was compared with
the theoretical transfer function derived from the physics governing the operation of each axis
of a magnetic bearing. Superior results were obtained by recursively testing various values in
the numerator and denominator of a transfer function having the same form as the transfer
function derived from the physics of the magnetic bearing. The response of each guess was
compared against the actual system response using a least squares error estimation to determine
the best fit transfer function. This yielded consistently better results across all bearings. The
recursive analysis was limited to frequencies below 1000 Hz because the high frequency
dynamics of the system tended to make the best fit transfer function less accurate within the
probable bandwidth of the controller. This same recursive analysis was applied to the analog
controller driver to produce the final open loop transfer function.

The modeling process would proved to be flawed. For both the axial and radial bearings,
the theoretical analysis predicted stable systems which were in fact unstable when applied to the
actual system. The closed loop frequency response of the axial bearing was significantly
different from the actual system response. The radial bearing closed loop frequency response of
the theoretical analysis was expected to differ from the actual system response because coupling
was ignored in the theoretical model. However the radial bearing theoretical frequency response
was far worse then expected. This researcher theorizes that the poor performance of the
theoretical model is in part due to the determination of the actual open loop system frequency
response. The inherent characteristics of magnetic bearings ensures that the system is open loop
unstable. This requires that the system be under active control during testing. With such a
system, the equilibrium position is determined by the controller and may vary from controller to
controller. The system analyzer will in turn linearize the response about this equilibrium point.

In a highly nonlinear system, the characteristics at different equilibrium points may be
significantly different and therefore their linearized responses may also vary significantly. Thus
the open loop frequency response could be controller dependent.

The next task was the design of the digital controller. The problem was that no one had
attempted or at least documented a rigorous design procedure for TDC. The primary reason for
simplifying the radial equations of motion was so that classical design techniques could be
employed. Classical design techniques would allow a design procedure to be tested and
evaluated. It would have been extremely difficult to use multi-input multi-output design
techniques using a control algorithm in which single input single output design techniques
amounted to merely trial and error. Of particular importance was evaluation of the proper
sampling rate. After analyzing how system stability was effected by changes in the parameters
of the controller, this researcher decided to use statistics to deduce the proper sampling rate.
However, this technique required that the theoretical model could accurately determine whether
the system was stable and its bandwidth. The theoretical model has since proved significantly
inaccurate and therefore compromises the results obtained from this analysis. It does not
however compromise the validity of the design technique in general.

It also became apparent that the drawbacks of using TDC outweighed its benefits for this
particular application. TDC uses information from previous sampling interval(s) to estimate
unmodeled system characteristics. For this particular system, these unmodeled characteristics are
coupling and gyroscopic effects. However, the most important parameter effecting TDC's
performance and stability is the sampling rate. If TDC is represented as a PID controller, the
sampling rate also determines the integrator value. Ideally, since the characteristics of each
magnetic bearing axis can differ significantly, each bearing axis should be controlled by a
controller with a sampling rate tailored to needs of each axis. This would not be feasible using
one DSP chip and it would be economically unfeasible to use more DSPs. Therefore the
integration value was constant across all axes which led to a less flexible design process. This
also meant that the controller should be optimized to provide the best performance on the bearing
axis that was most likely to fail first. However, it was impossible to determine the bearing most
likely to fail first with any certainty until a working controller was in place. One sampling rate
for all bearing axes also meant that creating an optimal controller for this application was very
unlikely.

The final task was implementing the digital controller. This also was not problem free.
One of the state variables required by the digital controller was the velocity of the rotor at each
sampling interval. The turbopump did not have a velocity sensor however so the position was
differentiated to provide the current velocity. The TDC law required differentiation of the state
variables which meant that the acceleration was calculated from the second derivative of the
position signal. Differentiation by its very nature amplifies the noise inherent in the signal.
Therefore, it is very likely that noise component of the position signal overwhelmed the signal
component in the calculated acceleration value. The I/O Interface board also produced high
amplitude spikes when crossing zero and the anti-aliasing filters exhibited large overshoots both
of which added high frequency noise to the control signal. Steps were taken to remove this high
frequency noise through an auxiliary low pass filter having a cutoff frequency of approximately
15000 Hz. However, it was the inability of the controller to reduce compliance in the region
between 1000 Hz and 10000 Hz which eventually limited the rotor speed to 28000 RPM. This

may have been exasperated by noise produced by the I/0 Interface board.
This researcher's recommendations consists of two parts. The first part concerns

recommendations pertaining to the turbopump application. The second part concerns
recommendations pertaining to the TDC law.

Further research was be performed in an effort to enhance the accuracy of the theoretical
model. The use of a very simple model provided inaccurate theoretical responses which
controller design difficult. Different methods for incorporating bending modes and gyroscopic
effects into the theoretical model must be investigated and verified against the actual system
response. Until a more accurate model is developed, all further controller design will have to
rely on trail and error to a very large extent.

As far as TDC law is concerned, there is only one recommendation. More basic research
should be performed to find a procedure for designing Time Delay controllers with particular
emphasis on determination of the proper sampling rate. With other digital control algorithms,
the sampling rate is determined by the Nyquist frequency and the anti-aliasing filter cutoff
frequency. This usually leaves the designer with plenty of choices with no penalty for sampling
at a greater then necessary rate. However with TDC, the sampling rate also effects system
performance and therefore sampling rate determination takes on an added importance. This
importance may also vary with the type of application and the number of simplifications imposed
to the TDC law. This particular application is a very challenging one and this Time Delay
controller performed as well as or better then other digital controllers designed for this same
application.

Appendix A

Magnetic Circuit Analysis

A.1 Ampere's Law

The discovery that currents produce magnetic
effects was made by Hans Christian Oersted d ----------- C
in 1820 [18]. Today the quantitative
relationship between current I and the

magnetic field B is written as Ampere's Law,

fg.d = ~oi (A.1) h

Now Ampere's Law is applied to an ideal
solenoid. An ideal solenoid is one in which A-1 Ideal Solenoid
its length is much greater than its diameter.
The field outside the coil is assumed to be essentially zero and that the field inside the coil is
assumed to be essentially uniform. Applying Ampere's Law to the rectangular path abcd in
Figure A-1 yields,

b c d a
B•dl = Bd + *dl + .+dl + If, (A.2)

a b c d

The first integral on the right is Bh. The second and fourth integrals are zero because BdI = 0
(.Ldr). The third integral is zero because by definition, the magnetic field is zero for all points
outside the coil of an ideal solenoid. Thus,

fB. l = Bh = to iN (A.3)

This relation holds quite well for actual solenoids at interior points near the center of the

solenoid. It shows that B is independent of the diameter and length of the solenoid and that B8

is constant over the solenoid cross-sectional area.

The term magnetic flux iis now introduced. Flux is a property of all vector fields and
is defined for both open and closed surfaces as,

dXi = i*d O (A.4)

A.2 The Magnetic Circuit

In problems involving magnetic devices, the engineer is concerned with the quantities of

magnetic flux (S and magnetic field B that occupy three-dimensional space. Fortunately in most
instances the only space of interest is occupied by ferromagnetic materials except for small air
gaps. These ferromagnetic materials with their high permeabilities effectively confine the
magnetic flux to themselves just as copper wires confine the electrical current or as pipes confine
a fluid. The net effect on this confinement is that our three dimensional field problem becomes
essentially a one dimensional circuit problem [7]. Consider the magnetic circuit shown below,

A-2 Typical Magnetic Circuit A-3 Magnetic Circuit Diagram

The magnetomotive force of the coil produces flux which is confined to the iron and to part of
the air in the air gap having the same cross-sectional area as the iron. This is analogous to a
magnetomotive force source driving flux through two series-connected reluctances (reluctance
is to flux as resistance is to electrical current). This analogy between the magnetic circuit and
the electrical circuit carries through in many other respects. This magnetic circuit analogy will
be used to model the magnetic bearings of our turbopump.

Before the magnetic circuit model of the turbopump's magnetic bearings is analyzed, the
magnetic circuit terms analogous to their electrical circuit counterparts need to be established.
The electrical terms of most importance are voltage source, current, and resistance. In magnetic

___ __· __ ·_ _ I·__

circuits, voltage is analogous to magnetomotive force which is defined from Ampere's Law,

Fm = f* d (A.5)

the magnetic field is divided by the material permeability to allow the magnetomotive force to
be independent of the material conducting the magnetic field. Ampere's Law for a solenoid has
been previously derived therefore the magnetomotive force of a solenoid is.

Fm.= f- d- IN = IN (A.6)

The magnetic circuit equivalent of electrical current is referred to as magnetic flux which was
previously defined as

s

The magnetic circuit equivalent of electrical resistance referred to as reluctance now
attention. From Ohm's Law

, V

(A.7)

needs

i (A.8)

Where: R = electrical resistance
V = voltage drop across resistance
I = electrical current through resistance

For an analogous magnetic circuit,

Fm
Rm (A.9)

Where: Rm =
Fm

magnetic reluctance
magnetomotive force
magnetic flux

To derive reluctance, a magnetic circuit is assumed to exist having a constant magnetic flux
density B over a known constant area A and that the circuit has a total path length L

BL
F L

R m_ B _
D BA pA

(A.10)

Thus the impediment to flow of magnetic flux is
inversely proportional to the material cross-sectional

Finally a formula for the amount of
energy storeu in me magnetuc hIeld oU a ina•gneut
circuit is derived. This in turn requires the
introduction of Faraday's Law. Faraday,
using the apparatus in Figure A-4, conducted
experiments into the relationship between
electricity and magnetism. The formula
bearing his name that describes this
relationship as it relates to a solenoid of N
t11l i ;
LUrLn a

e = -N
dt

directly proportional to path length and
area and permeability.

A-4 Faraday's Experimental Apparatus
(A.11)

e is the electromotive force or voltage that resists the change in flux. The power used by the
electrical coils of the solenoid to produce the magnetic field is defined as

P = iv (A.12)

The energy stored in the magnetic field must then be

E =fiv dt (A.13)

Using Faraday's Law and changing the sign to denote the EMF transferred as opposed to resisting
the change

dteE=fNI dt (1

Magnetic flux 0 was previously defined as

(A.15)

Fialy orul orth monto

(A.14)

(= .dA

Since the cross-sectional area of our magnetic bearing is essentially constant and at all times
parallel to the magnetic flux,

0 = BA dO = AdB (A.16)

Remember, the magnetic field of a solenoid was previously defined as

B- =IN IN - BI (A.17)1 At

Substituting Eq. (A.16) and Eq. (A.17) into Eq. (A.14) yields

BlA 1 IAE2E fBIA dB E - B2 (A.18)
Pt 2 tL

Now a formula that defines the energy stored
in a magnetic field of a magnetic circuit by a
solenoid present in the same circuit has been
derived. It is now possible to show that
mechanical work can be done by extracting
energy stored in the magnetic field. To
describe how this is feasible, consider the
sample magnetic circuit in Figure A-5. This
circuit is comprised of an exciting coil placed
on a ferromagnetic core equipped with a
movable element called a relay armature.
Currently the exciting coil is energized from
a constant voltage source and the gap is at its "I
equilibrium position. Suppose R is adjusted A-5 Magnetic Energy to Mechanical Work Sample
such that the magnetic flux induced in the Circuit
circuit increases while the relay armature is
held fast. The net effect of the additional
energy supplied by the source is an increase in the stored magnetic energy. Now suppose that
R was adjusted as previously described but this time the relay armature is allowed to move. In
this instance the armature does move implying that some of the magnetic energy stored in the
field has been converted to mechanical work. The nature of this conversion of magnetical energy
to mechanical work manifests itself in a change in the air gap and therefore a change in the
reluctance of the magnetic circuit.

Before continuing, the equation describing the energy stored in a magnetic circuit will be
defined using terms representative of our magnetic circuit analogy. Previously, stored magnetic
energy was defined as

E- llA B2
2 p

Recall that for a magnetic circuit, magnetomotive force is defined as,

BIF = IN -

Also, magnetic flux was defined as,

D = BA

Hence

1E = 2F, D2A.3 Radial Bearing Magnetic Circuit

A.3 Radial Bearing Magnetic Circuit

A-6 Turbopump Radial Bearing A-7 Radial Bearing Magnetic Pole

The physical structure of the magnetic radial bearings used by this particular turbopump is shown
in Figures A-6 and A-7. The radial bearings consist of a ring of laminated ferromagnetic
material having 8 poles. Each pole is wound with N turns of wire. The lines of magnetic flux
generated from this bearing structure is represented by the Figure A-8. The equivalent magnetic
circuit of our magnetic bearing is represented in Figure A-9.

(A.19)

(A.20)

(A.21)

(A.22)

_ ______· _·L_·_~

Flux Lines

A-8 Radial Bearing Flux Lines A-9 Radial Bearing Magnetic Circuit

Assuming that the rotor of the turbopump is equidistant from both poles at any given time
and that both poles can be modeled as solenoids having an equal number of turns,

F, = F2 and Rgj = Rg2 (A.23)

The force exerted by the bearings on the rotor shaft is defined as

dE d 1 4)
dx dx (2

dE dE dA
-dx d

1 de
2 dx
2

(A.24)

Previously the magnetic flux was defined as

F

Rm

Therefore,

1 2d I
2 F'dx R T

T
where R, defines the total reluctance of the magnetic circuit.
supplied by two coils in series each having N turns therefore,

(A.25)

(A.26)

The magnetomotive force is

F, = F +F2 = 2NI

(A.27)

F = 2N22 d

The combined reluctance of the circuit is comprised of
two air gaps, and the rotor shaft in series.

T = R
Rm R+ RgI + Rg2

the reluctance of the bearing stator, the

+ RR (A.29)

Recall that reluctance was defined as the following

L
R. -1 ItA (A.30)

Therefore

T Ls
R

PsA
2x

goA

LR
+ R

gRA (A.31)

Where: Ls

Ps
x
g-o
LR
9R

= stator flux path length
= stator material permeability
= air gap
= air permeability
= rotor flux path length
= rotor material permeability

Since the stator and the rotor shaft are composed of ferromagnetic materials, their reluctances are
considerably smaller than that of the air gaps. This is primarily due to the great difference in
the permeabilities of ferromagnetic materials (between 1000 and 10000) and air (4n x 107).
Thus the reluctance of the circuit simplifies to

T 2x
R, -

110A
1 PoAor I 0

RT 2x
M

Substituting Eq. (A.32) into Eq. (A.28) yields,

F = 2N2I2 (d (A33dc 2x

hence

(A.28)

(A.32)

ItoN12 2 A

x
2

__ _ ..·____·_ I_·

(A.33)

The sign denotes the that the force exerted by
the bearings on the rotor is an attractive
force. The radial bearing is physically
comprised of one ring having 8 poles.
However, the radial bearing is viewed as
being comprised of two bearing axes
composed of two opposing pole pairs - two
poles adjacent to one another with a mirror
image on the opposing side. The calculated
attractive force F represents the contributions
of a pole pair on one side of the bearing axis.
The geometry of these adjacent poles is such
that the attractive force is not applied along
the centerline of the pole pair but at an angle.

Iaking into account pole geometry, Lth A-10 Radial Bequation for the force exerted by a virtual
bearing on the rotor is defined as,

F oN2 r2A cosp pON I;A cosp
F =-

where the subscripts r and I denote right and left respectively and
centerline to the pole centerline. In this instance, P = 22.50.

A.4 Axial Bearing Magnetic Circuit

earing Pole Composition

(A.34)

p is the angle of the pole pair

A-11 Axial Bearing Configuration A-12 Axial Bearing Magnetic Circuit

The physical structure on our particular turbopump magnetic axial bearings is shown in

Wiinngs

Figure A-11. The axial bearings consist of an upper and lower ring of ferromagnetic material
having a U-shaped cross-section. The inner leg of this U is wound with N turns of wire. The
lines of magnetic flux generated by the windings flow along the U and into a disk that is press
fit to the rotor shaft. The equivalent magnetic circuit of our magnetic bearing is represented in
Figure A-12.

As with the radial bearing , the rotor disk is assumed to be equidistant from both poles
at any given time and therefore,

Rg, = Rg2 (A.35)

The force exerted by the bearings on the rotor disk is defined as

12 d 1F 4= - ~) (A.36)

where RmT defines the total reluctance of the magnetic circuit. The magnetomotive force is
supplied by one coil having N turns therefore,

Fm = NI (A.37)

hence

F =N22 1 (A.38)

The combined reluctance of the circuit is comprised of the reluctance of the bearing stator, the
two air gaps, and the rotor disk in series.

RT = Rs , + Rg2 + Rd (A.39)

Therefore

r _ Ls 2x Ld
R + - + (A.40)

CpsA CRoA d

Where: Ls
11s
x
g.o
Ld
ld

stator flux path length
stator material permeability
air gap
air permeability
rotor disk flux path length
rotor disk material permeability

Since the stator and the rotor disk are composed of ferromagnetic materials, their reluctances are
considerably smaller than that of the air gaps. This is primarily due to the great difference in
the permeabilities of ferromagnetic materials (between 1000 and 10000) and air (4nt x 10-).
Thus the reluctance of the circuit simplifies to

T 2x
me -RM ROA 1 _ro A

or 2x
RT 2xM,

(A.41)

Substituting Eq. (A.41) into Eq. (A.38) yields

F N22 dF-
2 dr 2x

X 2oN2
2 A

4x 2 (A.42)

The sign denotes the that the force exerted by the bearings on the rotor is an attractive
force. Note that due to the shape of the axial bearing, the area of the inner pole is less than that
of the outer pole. Therefore the area A is the average area of both the inner and outer poles.
As with the radial bearings, the attractive force F represents the contributions of both legs on one
side of the rotor disk. The total force exerted by both the upper and lower legs on the rotor disk

F oN2 IA 0oN2IA
F =

4xt
(A.43)

4Xb

where the subscripts t and b denote top and bottom respectively.

A.5 Magnetic Bearing Driver

Each radial bearing is composed of pole pairs on opposing sides of the rotor. The attractive
force exerted by each pole pair is proportional to the current supplied. However, the controller
supplies only one current to control both opposing pole pairs. It is the task of the driver to
divide this single control current to each of the individual pole pairs.

Another characteristic of magnetic bearings is their startup latency. There is a time lag
from when the actual control current is applied to an unpowered magnetic bearing till when the
rotor is subject to the attractive magnetic force. This is of particular concern for the radial
bearings because the rotor's normal movement about the equilibrium point would constantly cause
the controller to turn opposing sides of the bearing off and on. There is also the problem that
small corrections (and therefore small control currents) applied to any one side of a radial
bearing would be consumed by losses
inherent to magnetic bearings. In order to
overcome these limitations the driver is also [I

- -- -- ---- -- , -- - -

responsible for implementing a bias current
whenever the control current falls below a
certain value signifying that the rotor is close i
to the equilibrium point. When within this
range, the driver adds or subtracts a certain
proportion of the control current from the
bias current and sends the resulting current as
to the respective sides of the radial bearing.
In this way, the coil currents are rising and
falling with respect to the control current and -2J .is -1 .as e as t L.s 2]
not constantly being turned off and on. I __ i

The graphical representation of the A-13 Coil Current to Control Signal
relationship between the bearing coil current Relationship
and the control current for this particular
turbopump application is shown in Figure
A-13. This driver mechanism produces three distinct operating zones which alter the form of the
attractive magnetic force equation derived earlier. For purposes of analysis, u will denote the
control current and uo will denote the maximum current at which the driver uses a bias current
to derive the magnetic bearing coil currents. Therefore, the driver relies on a bias current when
-uo < u < uO. For this particular turbopump, uo = 1A. In this analysis, the x axis alone is chosen
to represent the radial bearings but the y axis could have just as easily been chosen. Also, the
values of x , x, , x, , and xb are replaced with an equivalent representation that uses the output
from the position sensor and the nominal distance from the poles to the bearing center ho . The
three different forms of the magnetic force equation are as follows:

Case 1: -uo > u

Radial Bearing Axial Bearing

F = -oN2 Acosu F = oN2Au 2

(ho +x)2 4(ho +x)2

Case 2: -uo<u<uo

Radial Bearing

F = oN ' A cosp(lo+0.5u)
2 _ iN' 2Acosp(1 -O.5u)2

(ho -X)2 (ho +x)2

Axial Bearing

F = poN2A(1o+0.5u)2

4(ho-X)
0oN2A(lo-O.5u) 2

4(ho +x)2

Case 3: uo < u

Radial Bearing Axial Bearing

F = oN2'Au'

4(ho -x)2
F t= oN Acospu 2

(ho -x)2

The importance of understanding these three cases becomes apparent during the linearization
process. The radial bearings will obviously fall within the criteria of case 2 but the axial
bearing, which must compensate for the weight of the rotor assembly, it not as easy to
categorize.

Appendix B

Rotor Mechanics

B.1 Time Derivatives With Respect to an Intermediate
Reference Frame

B-1 Fixed and Intermediate Reference Frames

Let R be the position vector of the origin of the intermediate frame with respect to the

y

y

origin of the fixed reference frame, and let 6 denote the angular velocity vector of the
intermediate frame with respect to the fixed reference frame. Now suppose that the position

vector A is fixed with respect to the intermediate reference frame.

The vector 1 can be represented in the following form with respect to the intermediate
reference frame oxyz [19],

A=AAx x+ AY a + AzaU (B.1)

In general, the scalar components of this vector will vary with time and the unit vectors will vary

in orientation when viewed from Oxyz. Hence, the time rate of change of vector A with respect
to the fixed reference frame is,

= A x + AyY + A + Ax - + A, + Az (B.2)
dt) 0 Xt dt

The first three terms represent the rate of change of A with respect to the intermediate reference
frame. The last three terms represent the contribution due to rotation of the intermediate
reference frame with respect to the fixed reference frame. The first three terms can be written
in the equivalent form,

dA = A•X + Au + Aza (B.3)

As stated earlier, the last'three terms are due to the rotation of the intermediate reference frame.

Translational motion is ignored because this motion does not alter the direction of A as seen

from Oxyz. Also the magnitude of A is fixed for these terms and thus the vector cannot change

as a result of this motion. The line of action of A however, will change as seen from the fixed
reference frame Ox,,,z but a change of line of action does not signify a change in the vector.
Therefore,

di2 dz2 dz S
A x +A Y +A Z AZX A + AY x2 + A(x Z

X dt dt dt X y y z z

= ×x(Au + Ay + Az) (B.4)

Consequently,

do
dt) W,

+ 5 xA (B.5)

Since A is an arbitrary vector, the derivative rule for vectors using intermediate reference frame
is

dt dtrel

B.2 Forces

Newton's law states that linear momentum and force are related in the following way,

d d

dt dt

(B.6)

(B.7)

Applying the derivative rule for vectors using intermediate reference frame to the velocity vector
yields,

d d rd=v - (x - (A + r + -+ r
dt dt dt dt

d-
F= M- R +i +=Zxr)

dt

F = R +=+ x* + x* +6x +x(xr

All points of interest in lie within the rigid body of the rotor hence F = i = 0

F = m + xF+ 6 x xr

(B.8)

(B.9)

(B.10)

(B.11)

The steady state operation of the turbopump is of primary interest.

acceleration w is assumed to be negligible. Therefore,

At this stage, the angular

F = m[R+Bx(6xr] (B.12)

The external forces F must be measured relative
to the fixed reference frame. In the model of
the turbopump, these forces originate from the
magnetic bearings present in the pump housing.
Since the pump housing remains stationary with
respect to the fixed reference frame, no further
analysis is required with regards to external
forces.

The acceleration term R is merely the
acceleration of the intermediate reference frame
with respect to the fixed reference frame. The
intermediate reference frame has been purposely
chosen to lie at the center of mass of the rotor.

Therefore R is the acceleration of the center of
mass of the rotor as viewed from the fixed
reference frame. The last term is the angular
velocity of the intermediate reference frame with
respect to the fixed reference frame i6 and the
distance from the intermediate reference frame
to the point where the force is applied F'. It is
assumed that the external forces applied by the
cross-sectional area of the rotor hence

B-2 Rotor Forces and Reference Frames

magnetic bearings act at the center of the

r = r Z (B.13)

The angular velocity of the intermediate frame 6 will be more difficult to determine. The rotor
of the turbopump has an angular velocity of

) = UEx + (A & y + Q oa (B.14)

The z component of the angular velocity is by far the largest component but the other
components cannot be ignored until further analysis is performed to determine the magnitudes
of the angular velocities in both the ux and uA direction that are allowable due to the clearances
between the rotor and the magnetic bearing in both these directions [1].

Using the Euler angles there are three possible worst cases [6]:

1. The rotor is inclined such that opposing ends of the rotor contact the

bearings in the f direction.
2. The rotor is inclined such that opposing ends of the rotor contact the

bearings in the i direction.
3. The rotor is inclined such that opposing ends of the rotor contact the

bearings 7/4 radians from the principle axes in the xy plane.

B-3 Rotor Inclination 1 B-4 Rotor Inclination 2 B-5 Rotor Inclination 3

Before examining each of these cases, the
relative magnitudes of the tolerances of the radial
bearings will be examined. Assuming that the XYZ
axes lie on the center line of the radial bearing, the
clearance between the rotor and the radial bearings is
shown at the right.

If the rotor is positioned such that its principle
axes lie along the centerline of the radial bearings and
midway between the axial bearings, then the lengths that
correspond to those shown in Figure B-6 are:

a = 0.0238 m, b = 0.0691 m

Now each of the three worst cases is examined.

Case 1: Rotor contacting radial bearings in f direction.
Since the radial bearings lie in the housing, the
force is always applied a distance of a-z from
the origin where z is the distance the axial
bearing varies from nominal center. Since a > z,
this difference will be ignored in this and the
remaining cases. Therefore

ru, = 0.000125f + 0.0238k (B.15)

ruz - 0.0238k = ak

i direction -0.000125 m

f direction + 0.000125 m

k direction ± 0.0002 m

I . 1

B-6 Rotor Center of Gravity

I I

I

Y

I I

i

(B.16)

Case 2: Rotor contacting radial bearings in f direction.
This case is very similar to Case 1

r =• = 0.000125 i + 0.0238 k (B.17)

r i - 0.0238k = ak (B.18)

Case 3: Rotor contacting the radial bearings midway in both the i and j directions.

r^2 = 0.000125cos -i + 0.000125sinjf + 0.0238k (B.19)4 4

ri2 - 0.0238k = ak (B.20)

For all intensive purposes, the intermediate reference varies so little from the basic reference
frame that their unit vectors are equivalent.

Uk =k

Sj (B.21)

U• =

This same analysis is applied to the angular velocity vector. It is assumed that the angular
velocity terms in the zx and y directions are negligible in comparison to the angular velocity

in the ue direction. For this particular turbopump, the angular velocity in the Ua direction ranges
from 12000-45000 rpm or 1250-4710 rad/sec. Such large magnitudes could translate into
substantial angular velocities in the ^x and y directions if the rotor varies from true vertical
relative to the fixed reference frame. Now the angular velocity is examined in the same manner
as the position vector using the three worst cases. In this analysis, an average angular velocity
of 3240 rad/sec will be used.

Case 1: Rotor contacting radial bearings in j direction.

= sin arctan 0.000125 + cosarc o.oool000125s
0.0238 0.0238]

= O[sin(0.00525)f + cos(0.00525)A] (B.22)

sin(0.00525) - 0.00525

cos(0.00525) - 1.0 (B.23)

S= [0.00525j + k = 17j + 3240k

Sxr F= (17 + 3240k) x (0.000125f + 0.0238k)

= (0.4046 -0.405)1
(B.25)

Case 2: Rotor contacting radial bearing in the 1i direction.
Again, this case is very similar to Case 1 hence

6 = ~[0.00525 1 + k] = 17 + 3240 k

Qx=' =(171' + 3240k) x (0.0001251' + 0.0238 k

= (-0.4046 + 0.405)j

(B.26)

(B.27)

Case 3: Rotor contacting the radial bearings midway in both the :" and f directions.

Sl i cta 0.000125 c + 0.000125 : J + ctan 0.000125) "
= smiarctan 0 cos-z + sin- + cos arctan

0.0238 / 4 0.0238) 4 0.0238/

= 0 sin(0.00525)cos-" 1k + sin(0.00525)sin " f + cos(0.00525)
4 4] (B.28)

= 0[0.00371 1 + 0.00371f + k] = 121 + 12] + 3240k

6xr" = (121' + 12j + 3240k) x (0.00008841' + 0.0000884j + 0.0238k)

= (0.2856 -0.2864)1 + (-0.2856 +0.2864)f + (0.00106 -0.00106)

Therefore, the last term of Eq. (B-12) becomes

Sx (x r = Zx = 0

(B.29)

(B.30)

~I_~I1I_ I____II_·C___·LI~__l__i

(B.24)

Finally,

F- mR (B.31)

(B.32)
F, + F, = mx c
Fy, + F = mYc
Fz = Mm(-g)

B.3 Moments

The moment M and the moment of momentum H are related in the following way,

Sdfi di
dt dt

using the vector derivative formula [8]

d Idt
=; d + & x &

\dt~

(B.33)

The moment of momentum for a rigid body is

H1 = I6 (B.34)

Where I is the inertia tensor and 63 is the angular velocity vector of the rigid body. Also for a
rigid body, the inertia tensor does not vary with time hence,

M = Ic + x I (B.35)

Since the intermediate reference has been purposely chosen to lie along the principle axes of the
rotor

'xx

Ic=0C 0

0

00

I,0

01

Irr

=0

0

00
Irr 0
0 1

(B.36)

Now the term 0 xIcO5 is examined. Previously 6 was shown to have an average magnitude of

65 = 12i + 12j + 3240 k (B.37)

Since wo = oy<ý

and

Therefore

6 - 3240k (B.38)

(B.39)Ic
5

Iwk A

M = Ic + (xa)

Mr
MyAdý

- ~J, + IZZ6yz = -aF ,
=/Irry - x Toz = aFq J

= I6 d = Rotor Torque

(B.40)

+ bF
- bF'2 (B.41)

Moments in the z direction are merely the torque supplied by the motor to maintain a constant
angular velocity and are therefore of little interest to us and shall be ignored. Finally,

Irr• X + I y z =
IrA y - I= (x Z =

-aFy, + bFy2
aFxl - bFx2

(B.42)

Appendix C

Turbopump Equations of Motion

This appendix builds on fundamentals outlined in the previous two appendices and derives the
turbopump equations of motion. The first section begins with the generalized nonlinear equations
of motion and simplifies these equations given the geometric limitations of the turbopump
system. Next the linearization formula is introduced. Then the linearized equations of the
motion for the radial bearings are derived while the next section does likewise for the axial
bearing. Finally, the final form of the linearized turbopump equations of motion are presented.

C.1 Nonlinear Equations of Motion

The equations governing the motion of the rotor are the following,

Fx + Fx2 = m£c
FYI + Fy2 = mYc

Fz = m(c-g) (C.1)
I, Ox + I=6y = -aFy, + bFy2
IrrO + xz = aFx - bFx2

Rearranging,

c- +
m m

_ Fyl Fy2

m m
F

m (C.2)

- aFy, _ bF2 I y z

ay -I I,., I,,. I,.

100

In the following analysis, the subscript 1 denotes the upper bearing location, the subscript 2
denotes the lower bearing location, and the subscript c denotes the rotor center of gravity. The
distance to where the forces F,, and FY, are applied to the rotor are

X1 = x C + asin•O

Yl = Yc - asin9x (C.3)
a = z 1 - Zc

The distance to where the Fx2 and Fy2 are applied to the rotor is

x 2 = C - bsin0y
Y2 = Ye + b sini x (C.4)
b = zc - z2

Differentiating to obtain acceleration,

i· = ic + dsin0y + acos(0)y

l, = ýc - asinOx - acosex x (C.5)
d = i- ic

9 = -c + dsinEy + dcos9 4y + dcos9 - asiney y + acos9 YO
S= .c- dsinx - cos0x - dcos 0 + asin=0 - acos0x x (C.6)

First movement in the z direction is examined. At the equilibrium conditions, when the center
of mass of the rotor is positioned at the origin of the inertial reference frame, a = 0.0238 m. The
maximum possible deviation of the center of mass from equilibrium conditions is the maximum
travel allowed by the magnetic bearings. This distance is equal to ± 0.00025. The maximum
possible error when assuming a is equal to its steady state value is,

= 0.00025
ERROR = = 0.0105 = 1.05% (C.7)

0.0238

Therefore a very small error is incurred by assuming the following

a = a., 6 = d = 0 (C.8)

101

The equations for acceleration now simplify to

= - ain +acos
-aco2s0 (C.9)

. = Yc + a,,sin9x x - a,,cos9X3 XX

T +h + ,.,kb t+;, . +l A ,
oVW L'm~ i.axmum. conrLULtL .,. U Lt Ojt+ V %an x an t / VY ".%

examined. Due to symmetry of the rotor, our analysis of the
contribution of the angle Ox also applies equally to that of Oy At the
equilibrium point, a = 0.0238 m. The maximum allowable rotation
about any axis is related to the clearance between the rotor and the each
individual magnetic bearing when both of their centerlines are equal.
For the radial bearings, the clearance is equal to 0.000125 m. Therefore

@ AX= arc 0.000125 - 0.00525 (C.10)
0.0238

sinO3x" 93,cos in .MX1
(C.11)

cos A- I1

Substituting Eq. (C-11) into Eq. (C-9) yields

, = xc- a,, E + a,, y (C.12)
Yj = Yc + a,, 0 ' - as 6x

Since Ox and O6 are likely to be extremely small, the final simplified equation for the acceleration
at the point where the forces F,1 and Fy, are applied is,

l = c + a,A
Y :c -a3 s(C.13)yj = yc - a,, x

Likewise, this same analysis can be performed for the acceleration at the point where the forces
Fx2 and Fy2 are applied and the ensuing simplified equation would be

Y2 = Rc - bs, A
(C.14)

Y2 = + bs, Ax

102

4 .9

Mt

IL

Substituting Eq. (C-2) into Eq. (C-13) and Eq. (C-14) yields,

Fx Fx2 Fxl
X- + x+

m m Irr

Fxi Fx2 abFxi

2 - + -2
m m Irr

_ Fy+ FyZ abFy,

m m I,

ab Fx

Irr

b2 Fx

abFy,

Irr

Irr

I,r

'rr

bI,

Irr

Rearranging,

a+ - Fx j +

aIrr)·
ab Fx 1 +

+b F ,+
- F, +

/

i
(

ab

Irr

+ Fx 2)

ab) F2 +
IrrI

+ b 2 .,Fy2 Y
,, /

(alrr
x z

y bI(bI
6A~0

All of the above variables are known except for the angular velocities in the x and y direction.
To determine these unknowns, Chasle's Theorem is applied. Chasle's Theorem states any motion
of a rigid body can be decomposed into a translation of a point on the rigid body and a rotation
of the rigid body about the same point. This theorem when applied to the derivatives of
translation yields,

1 = 2C + (Ocr1 (C.17)

Applying this equation to our rotor yields

103

(C.15)

X =

=2 (
(C.16)

N

x = e + a
i2 = c - b

Solving for xc and equating both equations yields,

xi - a = + b6

Solving for Y

S_ 1 - X 2
a a+b

Likewise, solving for Ox

a_2 -+b
a+b

Substituting Eq.
of motion

(C-20) and Eq. (C-21) into Eq. (C-16) produces the final simplified equations

Vxl

VY

VyJ

VZ

I-+ a.)F + I+ F2
m IX,J m ,j x2

I- F + -I+ F

m Irr l m Irr)
I - ab) FY + I-+ a 2)

F.

aI , + a ,
(a+b)l,r + (a+b)l

ble, bH.r+ a-_ - yb .
(a +b),, 1 (a +b)4,r 2

+ I aI

(a+b)lrr (a+b) 2

bIl + (bI[, '

(a +b)1,r (a +b)1,r

M

C.2 Linearization of the Magnetic Force Equations

It can be seen that since the force exerted by the magnetic bearings is nonlinear, that the
equations of motion of the rotor are nonlinear. Therefore, linearizing the magnetic bearing force

104

(C.18)

(C,19)

(C.20)

(C.21)

xl'2

x2

Vy1

Vy2

(C.22)

L J

equation about the equilibrium position of the rotor is the obvious next step. Given a system
of nonlinear equations having the following form [12],

L \J .

The linearization process utilizing Taylor series expansion and discarding all terms higher than
first order yields

j=1
1=1

Auj (C.24)

xo denotes the nominal operating point corresponding to
form, the above equation becomes

A' = I *Ae + A*Aui
where

af,
aX2

Bf2

&x2

Bin

aX2

QK2BAafn

&n

Bin

Bun
--p --U

C.3 Radial Bearing Linearization

The state equations representing the attractive magnetic force
turbopump by one axis of each radial bearing are

the nominal input u. In vector matrix

(C.25)

(C.26)

u-.9u
---- U

af,
a"2

Bf2

au2

afn

au2

applied to the rotor of our

Ba

QK2Bn

afn

ft'j

.l = x2

oMN2Acosp(Io-0.5u)2

m(ho +x,

+oN2A cosp lo+0.5 u)
m(ho -X l

105

(C.27)

"I-

.r•u_

where: = air permeability constant
= number of solenoid wire turns
= solenoid cross-sectional area
= magnetic solenoid bias current
= rotor assembly mass
= rotor equilibrium state position
= control current
= bearing position sensor value

The above equations assume that the control current will be small enough so that the driver is
applying a bias current to each side of the magnetic bearing axis. This is a reasonable
assumption because a rotor that is not spinning is not subjected to any forces in the x and y
directions. Differentiating each term of the linearization matrix yields,

=0 af,
aX2

af2 0

af2 2 PoN 2Acosp(o1 -O0.5u)2

ax1 m(h. +x,f
9oiN 2A cosp(lo - 0.5 u)

af, 0
ar

2PoN2AcosP(I1 +0.5u)2

m(ho -x,
PoN 2A cosp(Io + 0.5 u)

m(ho +x,)2

If the inertia reference frame is chosen such that it coincides with rotor center of mass, then the
equilibrium point becomes yo = 0, xo = 0, and uo = 0. Evaluating the terms of the linearization
matrix about the equilibrium point yields

afx
axi

-0 af,
ax2 -1

af2 2 goN 2A cospIIo

ax1 mho

af2 o0N 2A cosP3/ 0

Br m h02

af2 0 af-0

ax2 ar
2 oN2A cospl 0 4 toN 2A cos

3 3

mho mho

p2o

Therefore, the linear magnetic force is

1r 0 1 AX 0

= 4 0oN2Alo + 2poN 2 Alo U

h2 3 2
m h, m ho

106

afx
ax1

af2
ar

(C.28)

(C.29)

(C.30)

· · ····

m (ho -x,ý

4 oN2A cospIo 2 toNA cosp o
F.yX. 2) = (x'Y)(12) + h0 2 uc,yX12) (C.31)

C.4 Axial Bearing Linearization

The state equations representing the attractive magnetic force applied to the disk attached to the
rotor of our turbopump by the axial bearing are

il = x2

=roN 2A(1o -0.5u)'
4m(ho +x1)

where:

(C.32)+ poN2A(Io +0.5u)2
4m(ho -xl)

Po = air permeability constant
N = number of solenoid wire turns
A = solenoid cross-sectional area
Io = magnetic solenoid bias current
m = rotor assembly mass
ho = rotor equilibrium state position
u = control current
x, = bearing position sensor value

The above equations assume that the control current will be small enough so that the driver is
applying a bias current to each side of the magnetic bearing axis. This assumption will have to
be verified later to determine its acceptability because the rotor is constantly being subjected to
the force of gravity in the axial direction. Differentiating each term of the linearization matrix
yields,

ax2
-1

af2 p 0NA(lo-0.5 u)
axi 2m(ho +xl)

afi2 9oNA(-O 0.5 u)
ar 4m(ho +x)2

af2 - a'f -
aO2 ar
+ oN2A(Io + 0.5u)

2 m(ho -XY

+ oNA(Io + 0.5 u)
4m(ho -x)2

If the inertia reference frame is chosen such that it coincides with rotor center of mass, then the
equilibrium point becomes xo = 0. However, the value of uo is not obvious because unlike the

107

af,
axl

(C.33)

·I_·_ ___·___~^__I ~·

radial bearing, the attractive force most compensate for the weight of the rotor.
determine uo, Eq. (C-32) is evaluated with x ,= x = 0 and I = g

to N 2A (Io -0.5 u)2 + oN 2A (Io + 0.5 u)2
g= -+

4mh o 4mho
toN 2AIou

2mho

In order to

(C.34)

Rearranging,

2mgho
U =

CroN'Alo
(C.35)

Substituting the values supplied by the manufacturer into Eq. (C-35) yields u = 0.885 which
corresponds to the case uo > u > -uo. Therefore the previously assumed driver equation is correct
and re-evaluating Eq. (C-33) with zo = 0, uz = 0.885 yields,

af2 _ oN2A (Io - 0.443)2

a, 2mh 3
+oN2A (/o +0.443) p N2A (+0.1961

3
L mn o mno

(C.36)af2 _ oN2A(Io-0.4 4 3) + goN 2A(Io + 0 .443)_ toNN2 Alo

ar 4mh o 4mh2 2mho

Therefore, the linear magnetic force is

108

Parameter Axial Radial

Air Permeability, go (N/A2) 1.26 x 10' 1.26 x 10"6

Mass, m (Kg) 2.2 2.2

Number of Wire Turns, N 133 100

Magnetic Flux Area, A (m2) 7.0 x 10" 9.75 x 10-

Bias Current (A) 0.5 0.5

Centerline Distance, ho (m) 4.0 x 10' 2.5 x 10'

0x 0 81 0

SoN2A +0.196 + N2A (C.37)
mh: 2 2mb0

or,

Po NA (o +0.196 PON 2Alo
Fz = z + u2 (C.38)

h0 2ho

The theoretical analysis thus far has shown that the control signal necessary to maintain
the rotor in the equilibrium position lies within the range uo > u > -u .o In actuality, by
monitoring the driver test points of the axial bearing, the control signal necessary to maintain the
rotor in the equilibrium position lies within the range u > uO The reason for this discrepancy can
be explained by the omission of the power amplifier in the theoretical analysis of the system.
The analysis thus far assumed that the output signal from the driver is applied directly to the
magnetic bearings. In actuality, the driver output signal first passes through a power amplifier
before being sent to the magnetic bearings. This does not effect the analysis of the radial
bearings because omission of the power amplifier would only decrease the signal required from
the driver and therefore the equilibrium position would remain in the range uo > u > -uo. In
Appendix E, the power amplifier is assumed to be a constant having a form of A/A2. The values
for each component of this gain are determined by comparing the DC gains of the actual system
response between the driver output test port and the position signal test port with the theoretical
system response from the linearized equations of motion. This analysis shows that for the axial
bearing alone, the power amplifier actually attenuates the driver signal and that the values are
A, = 1.0, A2 = 1.138. Using this information, Eq. (C-34) becomes,

Lo N2A (I - 0.5 u)2Ai P N2A (10 + 0.5u)2 A1
g= -

2 2
4mh02A, 4 m ho' A

N2 AiOuA 2 4mhA 2 (C.39)11oN AlouA,
2m hoA2

Rearranging,

2mgh AA2
u = (C.40)

1 loN2A1oA,

Substituting the values supplied by the manufacturer into Eq. (C-40) yields u = 1.007 which
corresponds to the case u > uo. Therefore actual state equations representing the attractive

109

_ ·_^_~·r _·_· __ _I ··~--I---LLT··L_

magnetic force applied to the disk attached to the rotor of our turbopump by the axial bearing
are now

Xl = X2

- oN'AU2 (C.41)

4m(ho -x1)

Differentiating each term of the linearization matrix yields,

af, a -i aj- a=-0
2x, x aX2 ar

af2 j.oN 2A u2

axi 2m(ho -x1 (C.42)

_f 2 loN 2'Au

ar 2m(ho -xl)

If the inertia reference frame is chosen such that it coincides with rotor center of mass, then the
equilibrium point becomes Yo = 0, xo = 0, and uo = 1. Evaluating the terms of the linearization
matrix about the equilibrium point yields

f a af, -I af2 - af,-
x ax,2 ax2 ar
af 2 -oN 2Au

ax1 2mh (C.43)

af2 I oN2Au 0

ar 2mh2

The numerical value of uo could have been substituted into Eq. (C-43) but this would probably
lead to confusion later because the dimensions of the remaining variables would not produce a
suitable answer. Therefore, the linear magnetic force is

Ax 0 1x 1 0

= oN'Au 2 + JLoN2AUo U (C.44)
S 2ho 2mho

or,

110

2
oN2Au h

2ho3

I 0N2Auo+ u,
2ho

C.5 Linearized Equations of Motion

Given the following constants,

(a +b)Irr

C3 -(m

(C.46)
C,-(b ,

C (
5; (a+ +6) I

Substituting Eq. (C.31) and Eq. (C.45) into Eq. (C.22), the final linearized equations of motion
then become,

111

(C.45)

k = poN2A, C, +,1

4 =(

· ^____1_ _· __·_I__~I_ ______II_ _·~_·_

0 0

0 0

0 0

0 0

0 0

4ClkcosolO2 43kcosplI

4CzkcosplJ 4Ckcospl,

o ho

0 0

0 0

0 0

0 0 1 0 0 0 O

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

0 0

0 0

0 0

4CIkcosrpl 4Czkcosplo'

4C3 kcosplo 4Czkcosplo'

ho h

0

0

0

0

2Clkcosplo 2C 3kcosPlo

2c3kcos•Io 2C2kcosPlo

ho h

0 0 0

0 0 0

0 0 2CIkcos*Io 2C3kcoosIo
h: h:

0 0 2C3kcosplo 2C2kcospl°

0 0 0 0

0

2
2mho,

0

0

00

00

1 0

0 0 0 0 1

0o o -C4 C4 0

0o o0 C -C5s 0

C4 -C4, o o o0

-C5 C5 0 0 0

2,4o

112

(C.47)

Kxl

Vyl

Vy2

Appendix D

Hybrid System Modeling

In this appendix, different approaches are used to model the hybrid system. First, the digital
controller is modeled as a continuous time system thereby allowing the entire system to analyzed
using continuous time design methods. Then the plant is modeled as a discrete time system
thereby allowing the entire system to analyzed using discrete time design methods. Finally, the
effects of using derivatives in the discrete time controller are analyzed.

D.1 Purely Continuous System

All calculations were applied to the radial bearing equations. This same analysis also applies to
the axial bearings but the results are not shown in the interest of brevity.

D.1.1 Open Loop System

The block diagram of the open loop system is shown in Figure D-1.
bearing equation represented in the block diagram by G(s) is,

4Cklox
Vxl 3 X1

h0

4Cz3kI'
+ 3 X2 -C41

h0

Assuming that the coupling between bearings
can be treated as a disturbance (x2 and ux2
have little or no effect on x,) and that the
rotor is not rotating (C4 = 0) [12],

X 0 lx 0
SOv 2
43 + 2Cja,
h:-o [J0

(D.2)

2Clkl o
+ C4 - 2 + 2 Uxhe

The linearized radial

2CkI o+ hU
h2 (D.1)

D-1 Continuous Time Open Loop Block
Diagram

113

R(s) X(s)SG(s) -

-

[1 0][x] u (D.3)

Taking the Laplace transform,

s s) + EU(s) (D.4)

X(s) = D[sl -A]'B + E (D.5)
R(s)

X(s) = [1 0]{ 2 4CkJ 4CkI2 2C Cko + [0] (D.6)
R(s) 2

o h J ho

2C, kIo

X(s) h2

R(s) s 2 4CkI02 (D.7)

Recall that the constant C was defined as

Recall that the constant C, was defined as

c = I + (D.8)
m I,

Figure D-2 displays the root locus diagram of
the transfer function represented by Eq. (D.7).
Since the constant C, is always positive, a
pole of the characteristic equation lies in the
right half plane. Therefore the magnetic
radial bearing is unstable in the absence of
control and at best marginally stable under
proportional control.

'N

-Mi

-50s -2i -1us -iff -O5 9 so o 5s 39M 3ra
ReldA%*

D-2 Continuous Time Open Loop Root Locus Diagram

114

......................................

D.1.2 Closed Loop System

D-3 Continuous Time Closed Loop System Block Diagram

The block diagram of the closed loop system is shown in Figure D-3. H(s) represents the digital
controller, K represents the control gain, A(s) represents the control current driver which is
responsible for generating the bias current and dividing the control current between both sides
of the bearing axis, and G(s) represents the turbopump. From the block diagram, the individual
block equations are,

E(s)
U(s)

W(s)
f(s)A(S)

X(s) - R(s)
I(s)E(s)
KU(s)
A(s) Ps)
G(s) W(s)

(D.9)

Rearranging yields

KA(s)G(s)B(s)
KA(s)G(s)B(s)- 1

115

R(f)

x(s)
R(s)

(D.10)

__II·___~_ _L1_1_··^_~_·_~ 1 ·__~I__~·__··__· I_ _ ~L

D-4 Continuous Time Controller Block Diagram

Figure D-4 shows the block diagram representation of the digital controller in a continuous time
form. The continuous time digital controller approximation is,

()= -(e -Tss 2 + a22 s+ a 21)
(s) = B(1e -)

B (1 -e-"

The continuous time turbopump approximation is,

2CkIo

2

2 4ClkoI
s

S'-Q

The continuous time control current driver approximation is,

A(s) Al
S + A.

Substituting Eq. (D.11), Eq. (D.12), and Eq. (D.13) into Eq. (D.10) yields,

(D.11)

(D.12)

(D.13)

-K(A) p(

_ s+ A2 S2 _ B(-eTs)

e-Ts(2 + a22 + a21

B(_-e-Ts)

116

X(s)
R(s)

(D.14)

_ _

-K
s+A2 S2-Q

or,

A_ AiKP(e 2" - as + a 2 1)
P(s) B(1-e-kT)s' +[4B(1-e-Tr)+AIKPeT-]s 2+[aAIKP-BQ(1-e-"T)]s+[a 2 1A1 KP- A2BQ(1-e-r)] (D.15)

D.1.3 Poles of the Closed Loop Characteristic Equation

The closed loop characteristic equation can be written as

B(1 -e-)s' + 2B+ (AIKP -A2 B)e-]s + [(a22A,KP - BQ) +BQeT']s

+ [(a2 AIKP -A 2 BQ) +A2BQe Ts]

If order to determine whether the system is stable, the roots of the characteristic equation
must be found. This implies that the continuous time representation of time delay e-r must be
represented in some other analogous form. One such analogous form is the Taylor series
approximation [12],

e -" = 1 - Ts + T 2s- -2 +s3 (D.16)
2! 3!

The Taylor series expansion is an infinite series. The accuracy of this approximation is directly
related to the number of terms used and this in turn is directly related to the time delay T. As
the time delay decreases, the number of terms necessary for an accurate approximation also
decreases.

Another analogous form is to approximate the time delay as a polynomial function,

-rTs 1
e Ta(D.17)

[1 +(Ts/n)]"

In this form, the accuracy improves as the value of n approaches infinity. However, as n
decreases, the slope of the associated polynomial decreases and therefore the function reaches
its final value at an ever increasing time. Obviously, the final value must be reached before the
next sampling interval so once again the value of n is tied to the time delay or sampling rate.

Both approximations are therefore tied to the sampling rate. However, the sampling rate
of the digital controller is a controller variable which forces the approximation to be a variable.
This would make the stability analysis unnecessarily complicated and therefore modeling the
closed loop system as a purely continuous time system was dropped from consideration.

117

II_·__ _li~··i_ _ _···___~_· _ L

D.2 Purely Digital System

All calculations were applied to the radial bearing equations. This same analysis also applies to
the axial bearings but the results are not shown in the interest of brevity.

D.2.1 Open Loop System

The block diagram of the discrete
time open loop system is shown in Figure
D-5. The linearized radial bearing equation
represented in the block diagram by G(s) is,

4C1 klo 2
xl 3 Xl

h3
4C 3 kk12

+ x, -C• 1,3

D-1 Discrete Time Open Loop Block Diagram

+ C42 + 2C k1
ho

2C klo

h0
(D.18)

Again assuming
have little or no

that the coupling between bearings can be treated as a
effect on x,) and that the rotor is not rotating (C4 = 0)

disturbance
[2, 13, 20]

x 0 1x 0

=, 4CkIo 0 + 2CkIlo U

ho' h

S] 1 0= x +[0]u

Taking the LaPlace transform,

sX *(s) = AX*(s) + BU*(s)
Y *(s) = DX*(s) + EU*(s)

X*(s) - D[sI-A]-'B + E
T *(s)

118

1" -e'" wo G () x)
sa G(s)

&ap.and Hold

(x2 and ux2

(D.19)

(D.20)

(D.21)

(D.22)

X*(s) = [1 0] _4C1 4C1C,4k 2 Cklo I + [0] (D.23)
T*(s) h Lho J]

2C kIo

X*(s) h o _ p
2 2_ (D.24)

T *(s) 2 4CIok s -Q
3

h0

The z-transform of the open loop system is,

= -i --1,[= 1-zj

Using a backward difference variable transformation such that s = yields,
zT

z -Z P K

(D.25)z -1 K z z 2 Kz T

= P•"--2(- Te~ -@-eV T)+- -•+•k-e-N-)]

For discrete time systems, stability is assured if poles of the characteristic equation lie within the
unit circle. Figure D-6 shows that for a particular proportional gain, the system becomes
marginally stable when both poles equal 1. However, the system is unstable in the abscence of
any control because one pole lies outside the unit circle and proportional control can only briefly
bring the system to marginal stability.

119

___~~__~^I____·_ ·_ ~I~ ___LI _~1___1··

-.1 4 -41 - -is -I 4a I L I

D-6 Discrete Time Open Loop Root Locus Diagram

I
ReaAxis

D-7 Discrete Time Open Loop Root Locus Diagram

D.2.2 Closed Loop System

D-8 Discrete Time Closed Loop Block Diagram

The block diagram of our closed loop system is shown in Figure D-8 above. H(s) represents the

digital controller, K represents the control gain, represents an idealized sample and hold

element, A(s) represents the control current driver which is responsible for generating the bias
current and dividing the control current between both sides of the bearing axis, and G(s)
represents the turbopump. To further simplify the analysis, the sample and hold, amplifier, and
the turbopump are combined,

(1 -e -T)AP

s(s +A2)(s'2 - Q)

120

V/01

('.3

6-

A J

as

(D.26)

The z-transform of the above is calculated using the same process employed in our open loop
equation analysis.

'z) = (1 -z-') At)
SL +A2 2•

=(j)[•I+ A +__

z__ L aA2 + +

S - (D.27)
K, -e2-A%-e- /B-e\T +K2ý-lý-e-vC`-evVC)

+Kx(·-1 -e-A2 _ - ev'+K, -1 -e A2-e-v"O

From the block diagram, the individual block equations are,

E(z) = X(z) -R(z)
7(z) = B(z)E~z)
U(Z) = KY(z) (D.28)
X(z) = F(z) (z)

Rearranging yields

X(z) _ KB(z)F(z) (D.29)
R(z) KB(z)JTz) - 1

The digital controller receives only position input and therefore must approximate both the
velocity v(t), v(t-T), and the acceleration a(t-T). The backward difference velocity approximation
is,

t) = 3 x(t)-4x(t - 7) + x(t - 2) 2 (D.30)2T

121

____l_~~·_i~i· I··---·-l_~l-L. ---- ~ -- I -- ·-- ~~ ---L·_l~l -~1_··I__I _ - ·--- II ·- -~~·I_·I · _*·II

The central difference velocity approximation is,

yt)=- x(t)-x(t-I-2Y7)+y2
2T

The central difference acceleration approximation is,

a(t-- 7) v(t) -v(t - 2)+()2
2T

- 2x(t)-4x(t-7)-2x(t-27)+4x(t-37)-x(t-47) +O(7)
4 T2

Using Eq. (D.31) and Eq. (D.32), the digital controller transfer function becomes,

--1[2(3a 22T+2a2z T2+ 1)z4 -4(1 +2a22•z 3 +2(a22T-1)z2 +4z-1]

1) 4TBz 3 ((z -1)

- (Mz4z -MZ 3 +M3Z2 +MZ -M5)

Bz3 (z - 1)

Substituting Eq. (D.27) and Eq. (D.33) into Eq. (D.29) yields,

MIZ4-z'I+M3z2+M4Z-MS)

A(z)
R(z) MIZ 4 -M 2z

3 ++M~z2 +M4-M11

Bz 3(- 1) /

or,

Al(z)
RXZ)

A KPT 4M z4-M z3 +M.z2+A~z-A4)

•1KPT4'M,-B(1 +A2 7)]4 -[AKPT4M M2+ 3B(+A7)+ B(I -QT2)]z
+[A1KPT4M,+3B(4 +3A2)-B(- QT2)]z2+ KPT4M4+A 2BT+4B)z-(A4KPTMs+B)

D.3 Derivatives and Noise

In conventional calculus, differentiation of a function is a well-defined formal procedure that is
highly dependent on the form of the function. Many different rules and techniques are employed
for different functions. Digital computers however can only use the simple instructions of
addition, subtraction, multiplication, and division along with some logical operations to determine

122

(D.31)

(D.32)

(D.33)

(D.34)

(D.35)

-K~lS ~ lr t Il 2 *1ApT4ZI

A1A~l~ eTt-rlApT4 z 2 2) (.

the derivative of a function. Therefore a technique which employs only these simple instructions
to calculate function derivatives is needed. Such a technique is known as finite difference
calculus and is employed by the control algorithm of our particular digital controller. There are
however drawbacks to using derivatives in a control algorithm [3]. Differentiators are noise
amplifiers. For instance, assume that a position signal that has a noise component is being
differentiated,

x(t) = sint+10-3 sin103 t

In this particular example, the high frequency noise component has an amplitude that is one
thousand times smaller then the actual position signal. Now taking the derivative,

v(t) = cost+cos103 t

Differentiating the signal has magnified the amplitude of the noise component a thousand times.
Now taking the second derivative,

a(t) = -sint - 103 sin103 t

Now the high frequency noise component has overwhelmed the actual signal. This exact scenario
is happening in the digital controller used by this application. The state variables of the
controller are position and velocity but the physical system is only capable of providing the
position signal. Therefore the controller computes the missing velocity signal by differentiating
the position signal using finite difference calculus. This velocity term is in turn differentiated
to obtain the acceleration which is needed to determine the control signal. It is extremely likely
that this acceleration term is primarily noise and therefore severely compromises the robustness
of this controller.

123

__ ~L_~· _ ·_^ ·~_

Appendix E

System Analysis Data

E-1 System Block Diagram and Test Points

This appendix presents graphically the results of the system analysis of different
components of the turbopump. The actual system analysis data was obtained using the Hewlett
Packard HP 3562A Dynamic System Analyzer across the appropriate test points. Refer to Figure
E-1 for the location of the test points in relation to the system components. Also included are
the source listings of the programs used to obtain the numerical values associated with each
transfer function numerator and denominator.

124

Drver
stignat

Test Point

Parition
Teot Poit

"'.9

E.1 Theoretical versus Actual Pump Transfer Function

The theoretical pump transfer function is obtained from the linearized equations of motion.
These equations are further simplified by assuming that any coupling between axes of each
bearing is negligible and therefore can be treated as a disturbance, and that the rotor is not
spinning and therefore all gyroscopic terms are zero. Using these assumptions, the transfer
functions for each respective type of bearing is,

Axial

X(s)
U(s)

ILON2 A

2mhý

2 It0N
2A

24h 0

Radial

2 poN 2AC cos •I

X(s) h:

U(s) s2 4CoN2ACcosp•,
h3

The table below represents the
turbopump manufacturer.

important magnetic bearing variable values as provided by the

To simplify the analysis, the transfer functions representing linearized equations of motion of all
the magnetic bearings will share the same format,

AXs)
U(s)

P

s2 -Q

125

Parameter . Axial Radial

Air Permeability, Po (N/A2) 1.26 x 10-6 1.26 x 10-6

Mass, m (Kg) 2.2 2.2

Number of Wire Turns, N 133 100

Magnetic Flux Area, A (m2) 7.0 x 104 9.75 x 10-5

Bias Current (A) 0.5 0.5

Centerline Distance, h0 (m) 4.0 x 10-4 2.5 x 10-4

- '~"-~"

The representative values of P and Q are,

Parameter Axial RadlX RadlY Rad2X Rad2Y

P 22.162 9.496 9.496 18.720 18.720

Q 55403.757 37984.062 37984.062 74881.133 74881.133

The actual transfer function is obtained using the Dynamic System Analyzer. The input
was a swept sine wave having a range of 0.1 Hz to 10 KHz. The sine wave is incremented
linearly and has an amplitude of 0.1 Volts. The input was applied to the driver signal test point
and the output was obtained from the position test point (see Figure E-1). The actual transfer
function encompasses not only the magnetic bearings but also the power amplifier. However,
the theoretical transfer function is derived from the linearized rotor equations of motion and
therefore ignores the power amplifier. The contribution of the power amplifier was determined
by comparing the DC gains of the actual and theoretical transfer functions. The power amplifier
is assumed to be constant gain amplifier having the form A/A 2. The values obtained for the
power amplifier are,

Parameter Axial RadiX RadlY Rad2X Rad2Y

A1 1.000 3.682 3.736 1.906 1.821

A2 1.138 1.000 1.000 1.000 1.000

Finally, either the actual transfer function data or the theoretical transfer function data
must be converted to compatible units for comparison purposes. The actual transfer function has
units of V/V and the theoretical transfer function data has units of m/A. The conversion factors
are,

Conversion Factor Axial RadiX RadlY Rad2X Rad2Y

Position Signal 9450.0 25000.0 25000.0 25000.0 25000.0
(V/m)

Driver Signal (V/A) 0.3 0.3 0.3 0.3 0.3

The actual transfer function versus theoretical transfer function plots begin on the next page.
Note that the axial bearing phase plots seem to disagree with the value expected from the transfer
function. This discrepancy is due to the normal operation of the driver. In the case of the radial
bearings, the control signal at the equilibrium point is such that the driver produces magnetic coil
currents that are both positive and negative in magnitude. The driver test point that corresponded
to the positive coil current was used to obtain the actual pump transfer function plots so that the

126

phase plots would not require correction. However, the axial bearing driver only produces a
negative magnetic coil current when the bearing is in its equilibrium position. Therefore, the
numerator of the theoretical transfer function was inverted to obtain the proper phase.

127

~~-----··l~··l~··-C-·11-1 -I-.--..-- --.-· I-- --1 II -··--li~·~

E-2 Axial Bearing Theoretical versus Actual Pump Transfer Function Magnitude Plot

E-3 Axial Bearing Theoretical versus Actual Pump Transfer Function Phase Plot

128

20

0-20

Theoredical

S-60

-

1-0

.IB

0.1 1 10 100 1,000 10,000

Sampling Frequency (Hz)

50

: : --::: :::

-50 i" .-

SActual
Theoretical

-300 r

0.1 1 10 100 1,000 10,0002,00 : : : ::: I . ::-3000.1 1 10 100 1,000 10,000SamnpUng Frequency (3IP)

In

- -

0 i . .i i..... :" "...30
20...... . ..

2 0 " " ": : ' ": .4..

10 ... ;" ."! ".!?".,i: :": ::• ':............. .. N : ! ! i! ! .. " .i.

-t o iiii! ;

'0m

-10

-40 ' 4 'i"-:
-50 .14:4..1. ...'

-'IF

0.1 1 10 100 1,000 10,000

Sampling Frequency (HZ)

E-4 Radial Bearing 1X Theoretical versus Actual t

E-5 Radial Bearing 1X Theoretical versus Actual Pump Transfer Function Phase Plot

129

0

-100 - H iii .

.... '. i i i...

-300 '- :

S-00 -Actual.

Theoretical

-5 0 0 -* , . . . * ,.,: , ..

-600

-700

800• ':• -4o .. .a t a i:.•...i.. i !ii " ":\ ' " '
..." " '• •" • \!" ' i

-G~
0.1 1 10 100 1,000 10,000

Sampling Frequency (Hz)

Agh

Ah I

~~- -^.~11-~~~'~-~-411~~~-·--. 1~·-1-·.-~··--- -~I------ -L -i_ -I~·-·-____· ._ II_-.-YL-·- ~-·-- ..·· ·~ · YII--·-~~·I·_Y-I-I ·--~-·-

E-6 Radial Bearing 1Y Theoretical versus Actual Pump Transfer Function Magnitude Plot

.100

-200 .

-300 .

-400 A
Actual

--5100 Theoretical .•E., 50 - -a•.,i '".....
r .: : f

-600 I

-700 .

-00 --

,,',
, , .*11 *' ' '•:' . ' ':•• • : : : ',• : ' ',

0.1 1 10 100 1,000 10,000

Sampling Frequency (Hz)

E-7 Radial Bearing 1Y Theoretical versus Actual Pump Transfer Function Phase Plot

130

40

20 ,.
...,. .,

,,,

.... . i i!....... .i i !. i ii.i0o:...............

.

-10 Actual
-20 Theoretcal
-30 I •;

... . :.. ... : : : : : : :.:.--- - T I CIC. i \

-50

-6 .0 I :..... ...,
.. .. .'.,:". ' .,"..,..".• • • ' • • '. '•, '

0.1 1 10 100 1,000 10,000

Sampling Frequency (HZ)

IdA

'A

I-

E-8 Radial Bearing 2X Theoretical versus Actual t

E-9 Radial Bearing 2X Theoretical versus Actual Pump Transfer Function Phase Plot

131

4040-

20

10

,, 0i.... i.:.. i ... :-10

-40 -- -...

-50 ...---i--- ii

-6 0e... ...1 .1 1 ;,..
-7a-/

0.1 1 10 100 1,000 10,000

Sampling Frequency (Hz)
r· r r -'I A ---- I · k Ar -! ·- A TM -

-.uu

-200

-300 --

-4 00

- Actual .-500 -
Theoreic al .

.

-800
,- ', , , I , .,,,

0.1 1 10 100 1,000 10,000

Sampling Frequency (Hz)

IrAAA

E-10 Radial Bearine 2Y Theoretical versus Actual PumP Transfer Function Magnitude Plot

0.1 1 10 100 1,000 10,000
SamplUng Frequency (Hz)

.. ..

I,- Actual
STh1eoreti0cal 1

....'... ..·..-I
-k oela !i i i :

E-11 Radial Bearing 2Y Theoretical versus Actual Pump Transfer Function Phase Plot

132

30 ii iii ii i i

0"i ' "2010
o.......... 4 -' i

-10 tActual

-10 .,...
7-60)

-100

-200

-300

-400

-500

S-600

-700

-800

-900
0 10 100

Sampling Frequency (HZ)

rn

I1

E-0 adalBeria Y hereicl erusAcua PmnTrnserF ctonMayntue lo

1,000 10,000ooo

E.2 Best Fit versus Actual Pump Transfer Function

The best fit pump transfer function is derived by using the general form of the theoretical
pump transfer function and recursively trying different values for the numerator and the
denominator. The general form is,

X(s) P
U(s) s2 -Q

For each recursive attempt, initially P = 1.0 and a different value of Q is used. The bode plot
of this guess is calculated and P is updated so that the DC gains of this guess and the actual bode
plot are equal. The data points of the bode plot of each guess and the data points of the actual
bode plot are taken at the same frequency values. The square of the difference between the
current guess data points and the actual data points is calculated over the desired frequency range
of the best fit model. These error values are summated for both the magnitude and the phase
plots to produce the cumulative error for each guess. The guess that produces the least
cumulative error is deemed the best fit pump transfer function.

The validity of the best fit analysis depends upon frequency range, guess value range, and
iteration granularity. The frequency range of this particular best fit analysis is between 0.1 and
1000 Hz. The range was limited to 1000 Hz because the actual pump bode plot displays large
phase and magnitude changes beyond this frequency indicative of a higher then second order
system. Calculating the best fit transfer function over the entire frequency range would cause
the transfer function to be less accurate at lower frequencies. The analysis was limited to 1000
Hz in order to provide the most accurate best fit transfer function within the probable bandwidth
of the digital controller. By limiting the analysis to 1000 Hz, a digital controller derived using
this transfer function must be constrained to provide adequate attenuation of the control signal
after 1000 Hz.

Guess value range was based upon the form of the theoretical pump transfer function and
the data from the actual pump transfer function plots. Using this information, the theoretical
transfer function exhibits the following form,

Xs) K
S 2- 2

Therefore the guess value range is from 0.1 Hz to 10 KHz. Each value taken from this range
is converted to rads/sec and squared to provide the next possible guess to be evaluated. By
analyzing the actual pump transfer function plots, the range could have been reduced further but
a conservative approach was taken.

Iteration granularity refers to the numerical difference between guesses. The finer the
iteration granularity, the more possible guesses are evaluated and therefore the more accurate the
best fit transfer function returned. However finer granularities increase computation time

133

·111·_··__·_~^ _ __ ~_I~____ ·_ ___l···~_·l_____~i···I _

significantly. This best fit analysis used variable iteration granularities based upon the guess
value range. The iteration granularities are,

0.1 - 1 Hz 1 - 10 10 - 100 Hz 100- 1000 1000 - 10000 Hz
Hz Hz

Iteration 0.01 0.1 1.0 10.0 10.0
Granularity

Using the process described previously, the representative values of P and Q are,

Parameter Axial RadlX RadlY Rad2X Rad2Y

P 7.990 7.123 8.296 16.926 15.113

Q 22739.568 7737.770 8882.644 35530.574 32201.348

Finally, either the actual transfer function data or the best fit transfer function data must
converted to compatible units for comparison purposes. The actual transfer function has units
V/V and the best fit transfer function data has units of m/A. The conversion factors are,

Conversion Factor Axial RadlX RadlY Rad2X Rad2Y

Position Signal (V/m) 9450.0 25000.0 25000.0 25000.0 25000.0

Driver Signal (V/A) 0.3 0.3 0.3 0.3 0.3

The actual transfer function versus best fit transfer function plots begin on the next page. Note
that the axial bearing phase plots seem to disagree with the value expected from the transfer
function. This discrepancy is due to the normal operation of the driver. In the case of the radial
bearings, the control signal at the equilibrium point is such that the driver produces magnetic coil
currents that are both positive and negative in magnitude. The driver test point that corresponded
to the positive coil current was used to obtain the actual pump transfer function plots so that the
phase plots would not require correction. However, the axial bearing driver only produces a
negative magnetic coil current when the bearing is in its equilibrium position. Therefore, the
numerator of the best fit transfer function was inverted to obtain the proper phase.

134

E-12 Axial Bearing Best Fit versus Actual Pump Transfer Function Magnitude Plot

E-13 Axial Bearing Best Fit versus Actual Pump Transfer Function Phase Plot

135

40

20..

..

. " , ".'0 - '- 20
Thevore ical

I ii i iii i i i l-40

-60 : .,

-80

-100
0.1 1 10 100 1,000 10,000

Sampling Frequency (HZ)

-200 : , ,.

-250- .100 -" -1 5 0 .. ' .. .: i .

S i iii
: : :: : : '. : :: . : :::. .

-300
0.1 1 10 100 1,000 10,000

Sampling Frequency (HZ)

~I-..~.- ·..II-·-· ·- --- --····----· --- --

I

E-14 Radial Bearing 1X Best Fit versus Actual Pump Transfer Function Magnitude Plot

E-15 Radial Bearing 1X Best Fit versus Actual Transfer Function Phase Plot

136

4U

20

0

-20

-40

.60

-IA

--- Actual
Theoretical

" " e I r: ---- --' Iii i i ii i ii ii i ii ii i ii ii i i ii i

0.1 1 10 100 1,000 10,000

Sampling Frequency (Hr)

U

-100

-200

-300

-400

0 -500

-600

-700

n0lA

0.1 1 10 100 1,000 10,000

Sampling Frequency (Hz)

!.. .r .. i E

A: : : :: :-N

-,Atual... i ::: iii·i:

...iL Jiii

,,.

.ii
" :

IA
• , - ' ,:' !i: : : : ::: : : : :::::: : : : :

L i i iiiii i i ii'i'iii , i i i i i :::!i'i i i ii ii
I~i i i:i:: : : :::::: k•\ iiii:i iii::

.... i . i.. .i ! i.i....,i 2i .. ! i. !.! i .!.... i...:.. !.: .:.i i ! !..i..: .!. !.:.:.:.

4(

20 ---

~0IF

-20 - .S-40 I

-60 -- --

0.1 1 10 100 1,000 10,000

Sampling Frequency (Hz)

E-16 Radial Bearing 1Y Best Fit versus Actual Pump Transfer Function Magnitude Plot

E-17 Radial Bearing 1Y Best Fit versus Actual Pump Transfer Function Phase Plot

137

-200 . . .
...- ,.

-300 ------

-4 00.::
h - Actual

Theorecal.
600

.....

-700 -

.800

-"0""
0.1 1 10 100 1,000 10,000

Sampling Frequency (Hz)

1A

I

E-18 Radial Bearing 2X Best Fit versus Actual Pump Transfer Function Magnitude Plot

E-19 Radial Bearing 2X Best Fit versus Actual Pump Transfer Function Phase Plot

138

4U

20

0

-20

-40

-60

8n

0.1 1 10 100 1,000 10,000

Sampling Frequency (Hz)

.i. i. ..

A~ctualj

Theoretical:

_---:-:r:-----------:- :--:-:::-::---:--: ·:-::-::-- :---::--:-I-L
............ .

--̀' c'''c'i'`i ccf ~~``i'~I'i'' ''~i'~ '''''c'' I' i'l'''~''i~' ~ ~~i'~:~~:

-IUU

-200

-300

I -400

-500

S-600

-700

-800

-_on
0.1 1 10 100 1,000 10,000

Sampling Frequency (HZ)

..........

Thieoretical i~·

..

i............

...

41

20

0

-20

1 40
-60

-80

Slin

0.1 1 10 100 1,000 10,000

Sampling Frequency (Hz)

E-20 Radial Bearing 2Y Best Fit versus Actual Pump Transfer Function Magnitude Plot

E-21 Radial Bearing 2Y Best Fit versus Actual Pump Transfer Function Phase Plot

139

a- i i

-Actual
S Theoretical

..i i
:::

:

-100

-200 - :::......... ...

-300

-00 Actual...Theoretical
.-600..... I , .

.

....

...

..

-800

-900 ' ' '
0.1 1 10 100 1,000 10,000

Sampling Frequency (Hz)

-

E.3 Best Fit versus Actual Driver Transfer Function

By examining the magnitude and phase plots of the actual driver transfer function, the
general form of the best fit driver transfer function is determined to be,

X(s) A'
U(s) s +A 2

A brute force recursive method was used to determine the actual values of the numerator and
denominator of the best fit transfer function. For each recursive attempt, initially A, = 1.0 and
a different value of A2 is used. The bode plot of this guess is calculated and A, is updated so that
the DC gains of this guess and the actual bode plot are equal. The data points of the bode plot
of each guess and the data points of the actual bode plot are taken at the same frequency values.
The square of the difference between the current guess data points and the actual data points is
calculated over the desired frequency range of the best fit model. These error values are
summated for both the magnitude and the phase plots to produce the cumulative error for each
guess. The guess that produces the least cumulative error is deemed the best fit driver transfer
function.

The validity of the best fit analysis depends upon frequency range, guess value range, and
iteration granularity. The frequency range of this particular best fit analysis is between 0.1 and
1000 Hz. The range was limited to 1000 Hz because the actual driver bode plot displays large
phase and magnitude changes beyond this frequency indicative of a higher then second order
system. Calculating the best fit transfer function over the entire frequency range would cause
the transfer function to be less accurate at lower frequencies. The analysis was limited to 1000
Hz in order to provide the most accurate best fit transfer function within the probable bandwidth
of the digital controller. By limiting the analysis to 1000 Hz, a digital controller derived using
this transfer function must be constrained to provide adequate attenuation of the control signal
after 1000 Hz.

The guess value range is from 0.1 Hz to 100 KHz. Each value taken from this range is
converted to rads/sec and squared to provide the next possible guess to be evaluated. By
analyzing the actual driver transfer function plots, the range could have been reduced further but
a conservative approach was taken.

Iteration granularity refers to the numerical difference between guesses. The finer the
iteration granularity, the more possible guesses are evaluated and therefore the more accurate the
best fit transfer function returned. However finer granularities increase computation time
significantly. This best fit analysis used variable iteration granularities based upon the guess
value range. The iteration granularities are,

1 - 10 Hz 10 - 100 Hz 0.1 - 1 KHz 1 - 10 KHz 10- 100
KHz

Iteration 0.1 1.0 10.0 10.0 10.0
Granularity

140

Using the process described previously, the representative values of A, and A2 are,

Parameter Axial RadlX RadlY Rad2X Rad2Y

A1 14707.770 13105.209 13043.913 11112.759 12273.613

A2 13310.000 13130.000 13080.000 11140.000 12290.000

Finally, either the actual transfer function data or the best fit transfer function data must
be converted to compatible units for comparison purposes. The actual transfer function has units
of V/V and the best fit transfer function data has units of A/A. The conversion factors are,

Conversion Factor Axial RadlX RadlY Rad2X Rad2Y

Control Signal (A/V) 2.776 1.175 1.165 1.159 1.144

Driver Signal (V/A) 0.3 0.3 0.3 0.3 0.3

The control signal conversion factors require some explanation. This conversion factor is used
by the digital controller to convert the calculated control current to an appropriate value for the
D/A converters which are voltage devices. Therefore, these conversion factors are merely the
DC gains of the driver transfer functions. In the case of the radial bearings, the conversion
factors are the averages of the DC gains from the two coil current control signals produced by
the driver.

The actual transfer function versus best fit transfer function plots begin on the next page.
Note that the axial bearing phase plots seem to disagree with the value expected from the transfer
function. This discrepancy is due to the normal operation of the driver. In the case of the radial
bearings, the control signal at the equilibrium point is such that the driver produces magnetic coil
currents that are both positive and negative in magnitude. The driver test point that corresponded
to the positive coil current was used to obtain the actual driver transfer function plots so that the
phase plots would not require correction. However, the axial bearing driver only produces a
negative magnetic coil current when the bearing is in its equilibrium position. Therefore, the
numerator of the best fit transfer function was inverted to obtain the proper phase.

141

---- - ·-- --· ·--- I~ i~-

E-22 Axial Bearing Best Fit versus Actual Driver Transfer Function Magnitude Plot

E-23 Axial Bearing Best Fit versus Actual Driver Transfer Function Phase Plot

142

i
I

.~.~. I -_L -_ _ · · ·iI i iiiiill_ __~_ i i i •_

J-'- -'- --- -- '. __1 · '.·. LI-· ·.· ·--~J ---.

U

-2

-4

-6

-8
-10

-12

-14

14

..... h e.....i I ~Theoretical : ::: : : : :::::::: :::::::: i :

V V

0.1 1 10 100 1,000 10,000

Sampling Frequency (Hz)

-IU

-180

-200

-220

-240

S-260

-280

-300

_3"A

0.1 1 10 100 1,000 10,000

Sampling Frequency (Hz)

·

. ~..,~~~ .. ~...~. ~'''~'''`''

-i I

I

.

.

.

: I --- TheoreticalIiiii ii~ 1

A::

.

...

.i7 .. •2

E-24 Radial Bearing 1X Best Fit versus Actual Driver Transfer Function Magnitude Plot

E-25 Radial Bearing 1X Best Fit versus Actual Driver Transfer Function Phase Plot

143

... - -.'. ." . • i- .:-- •:..-.. •- 7 -.:-., . :
" ' "

: :
................

. . . . ~ tu~ ii i ::i : i. iiiiii::,

Theoretical
_ ...:.=.~-:.=- ..: i .-·i ·- ! j. I - ----- L • L.. .i- --

..........:. .:. .:. .:. :. ' . .. '. ..: ..:: ..:. .• ;:. .. •. . :.. :.i...
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! i ! ! ! ! i ! ! ! ! ! ! ! i ! ,• !

i~~' i i ii i i ii ii i ii i ii ii iii•
.

-10

-15

-20

-25

-in

0.1 1 10 100 1,000 10,000

Sampling Frequency (Hz)

. h

S Actual :
-- Theoretical i i i i iiii i i i iiiii

..I
........ I-1-i- -i-..-i.-.--i-.-.-.i. .i-.-!-.-.--l - i-.-i- .-.-.-: -:--

......... i----i-oio i-i-:- io --i -.. i --i-o- i- i oo-:-:- o-:--i: -it-ii i o-i-i -:-:- -ii:o---: --: oo- i -,•-)· -·: ii. :.
', ' i i i ', : ' ', • '. ; ', ', ; ~ i ', i ; ' ; ', .i ' ', i , ,

U

-20

-40

-60

, -80

• -100

-120

-140

I LA

0.1 1 10 100 1,000 10,000

Sampling Frequency (Hz)

.~.. ·'--'--5'-- -- - '- - I- -- -' L -·-·- -- - -- - 1-- 1~- - - - - - - -- -

.

`'''~'~'~''

.,...,.,.

I I I I I I I .

E-26 Radial Bearing 1Y Best Fit versus Actual Driver Transfer Function Magnitude Plot

E-27 Radial Bearing 1Y Best Fit versus Actual Driver Transfer Function Phase Plot

144

-10

-15
- A Actual '

OE Theoretical
-20......

_In

0.1 1 10 100 1,000 10,000

Sampling Frequency (Hz)

0

-20

-40

-60

-80

. -100

-120

-140

1 Al

0.1 1 10 100 1,000 10,000

Sampling Frequency (Hz)

Actual
Theoretical.......

-------------- l- -- ' --- -~-·i---ii
---- --- --

...........-----

I

.-...

-10

-15

-20

-25

30I
-,p

0.1 1 10 100 1,000 10,000

Sampling Frequency (Hz)

E-28 Radial Bearing 2X Best Fit versus Actual Driver Transfer Function Magnitude Plot

U

-20

-40

j -60

1-100

-120

-140

-1uu•

0.1 1 10 100 1,000 10,000

Sampling Frequency (Hz)

E-29 Radial Bearing 2X Best Fit versus Actual Driver Transfer Function Phase Plot

145

, , . , , . :. . o ,,,, , , ° ,.. ,.. .: .

-i i i Actual
Theretical ::::: : : :::::

. , , , , , o-;-~- ;·", i-i·--i", : ', ",,!",,':-- ·! !ii!','
o ~ ~~ ~ ~~~~~ , . ., o , . o,, , , o ,

, ~ ~~ ~~~~~~ . ° , o , , , o , , ,,
o ~ ~ ~ ~ ~ :: , ., ,.o , o o ,,, o o ,

o ~ ~~ ~~~~~ , ., , ,. . o , oo,
o-- , h o eia . ., o.o ,, ,,,

,: ,:: ., . ,, . o , ,
,--~-~-- : , -- C-- ·'- L ,: , ° ,,,. , , , o , . ,, o . , ,,, :;; ; ; ; ; , '

:--': i..::::
................... N"

.... ' I..i

I; ; : -i -:::: : i;; ; : -: --:- l i i-:r I i- i iiii i i · i i

Actual : I4 ,:: -----.

-.. ..".."."i.i. ". ".:." " .". :. :. . :...:.": '.........- .:- ' ' '

, ,,,

.. .. ., : ' ' : , .': : :..:.., .. : ,---' -: :-;- -:, , , .

~-"~ '- I·-I-.---·~·II._-~UC

-g .-

E-30 Radial Bearing 2Y Best Fit versus Actual Driver Transfer Function Magnitude Plot

E-31 Radial Bearing 2Y Best Fit versus Actual Driver Transfer Function Phase Plot

146

-1 0- - . ..

-12...

-14... .

. -16

Actual ..189S-8 .Theoretical .

S-20:\:

-22 ------:

-24

-22 °:...... i.!: ' !i':........... . : : : :......." "-26

-28
0.1 1 10 100 1,000 10,000

Sampling Frequency (Hz)

.i ... iiii .. ii i i

_ --- -- Actual

-- Theoretical

U

-20

-40

-60

-80

-100

-120

-140

1 IC

0.1 1 10 100 1,000 10,000

Sampling Frequency (Hz)

'''''

: .:: : : : : : ::: : : : : : :: :: : :! i !! i i i ! ! ! i ! i i i i i " . .• !i i :i

.... ,

', ·, ; ;: , i , ' i , ' ' ', ,, ; i i i i i , ' , \ , f ' "

: ::::·: a

is~I 1 1111111 1 1 1111111 1 1 1111111 1 1 1111111 1 1 111111
-I....

E.4 Best Fit versus Actual Plant Transfer Function

The best
individually but

fit transfer functions for both the pump and the driver have been determined
the summation of these components must be compared to the actual plant

transfer function. The general form of the best fit plant transfer function is,

X(s) =U(s)

A1

S +A2

P

s2-Q)

the representative values of P, Q, A1 and A2 are,

Parameter Axial RadlX RadlY Rad2X Rad2Y

P 7.990 7.123 8.296 16.926 15.113

Q 22739.568 7737.770 8882.644 35530.574 33201.348

A1 14707.770 13105.209 13043.913 11112.759 12273.613

A 2 13310.000 13130.000 13080.000 11140.000 12290.000

Finally, either the actual transfer function data or the best fit transfer function data must
be converted to compatible units for comparison purposes. The actual transfer function has units
of V/V and the best fit transfer function data has units of m/A. The conversion factors are,

Conversion Factor Axial RadlX RadlY Rad2X Rad2Y

Control Signal (AN) 2.776 1.175 1.165 1.159 1.144

Position Signal 9540.0 25000.0 25000.0 25000.0 25000.0
(V/m)

The actual transfer function versus best fit transfer function plots begin on the next page.

147

E-32 Axial Bearing Best Fit versus Actual Plant Transfer Function Magnitude Plot

E-33 Axial Bearing Best Fit versus Actual Plant Transfer Function Phase Plot

148

2U

0

-20

-40

-60

-80

-inn
0.1 1 10 100 1,000 10,000

Sampling Frequency (Ht)

Actual,,
Th- leoreficall

'I
'I

-1JU

-200

-250

-300

-350

S-400

'-450

-500

-550

-600

CI50

0.1 1 10 100 1,000 10,000

Sampling Frequency (HIz)

..............-..............
................ ._ '. . . .:. .:. .:.:. i ' ...: .:: - ., ." . .-.' . .- : '.. " .. ' '. ':. , . . .: . . .

A ctualI.
Theoretical

S i i ii. . i i i ii.iii i i i i iii..?..- ...i...... N -! . . " !ii - • -•- -- - - - -Theoreti ca i: :::: 'i :,i 1.. ." : :
L.. .:..I:1:...:. I..j ~iii...~...~ . . i.j. i.. .. ~:.....l

ii:i: ::: ii i i ·- :

1_

- r
..

4U

20

0

-40

L -60

-80

_10AA

0.1 1 10 100 1,000 10,000

Sampling Frequency (Hz)

E-34 Radial Bearing IX Best Fit versus Actual Plant Transfer Function Magnitude Plot

-IUU

-200

-300

-400

-500

-600

• -700

-800

-900

-I~v

0.1 1 10 100 1,000 10,000

Sampling Frequency (Hz)

E-35 Radial Bearing 1X Best Fit versus Actual Plant Transfer Function Phase Plot

149

.......I r .::ii iir .: .: :-:- : i

IIUBBS555

•- I.JJiL LTheorecdcal-! !!!!i!!!i!!i i i !! -:--

..:.: ..: :

S. I
.l....... : : : :. .!i!!iii~ ~ ~~ ~~ t : : :: \ i . .
. , , . .

.: . :. : . . .:.,. . . . ; . : . . ., ; :. ;: . ', . : . ', : . . . ,. . . ,
. : : : : : : ' , \ : . .
' : : : : : : : ' : : : ; : : : : : ; : : : : : : : : :: : ; :::: :ii ,• !ir---- !]... =i ... i iiil

--; : -- ,- : :,' -: -: -\a : :

•~ ~~~~~~~~~~~~~~i : :: :: :::: ::::: ',,!,

.

; ; 1111111 ; ;;;;;;I I 1 1111111 1 1 1111111 1 1 111111\

ll·I·

4U

20

0

--20
-40

-60

-80

0AA

0.1 1 10 100 1,000 10,000

SampUing Frequency (1)

E-36 Radial Bearing 1Y Best Fit versus Actual Plant Transfer Function Magnitude Plot

-100
1.

-200 . .•..-. ...o.o1i i 1 1• 1 11 1 1.. .i
-300

-400

-500 \

S-600 ~-00 : ::::
-1,000 U .10'100,'00. 10.0..

-Sgoo ..-6 0 0 T h e o ret.. •..•=:: .i ..c.a.l .ii: .~ .:ii.................:ii...•...........,......

,8 0, , , , ,, , , , . ., , • . , , . ,

-9 0 0-!--ii! ! i !!

Sar~filng Frequenc~y (Hr)
E-37 Radial Bearing 1Y Best Fit versus Actual Plant Transfer Function Phase Plot

150

1A

--- k coctialActualr
Theoretka

J A J J A

0
..-20

Theoregical-40 7.

-80

0.1 1 10 100 1,000 10,000
Sampling Frequency (HZ)

E-38 Radial Bearing 2X Best Fit versus Actual Plant Transfer Function Magnitude Plot

E-39 Radial Bearing 2X Best Fit versus Actual Plant Transfer Function Phase Plot

151

-200

-300.

-400

- Actual
0 .. '.. Theorei al :.:::: :-600 o

.

-1,000 : ' ,

0.1 1 10 100 1,000 10,000

Sampling Frequency (Hz)

1A

411

20 -

0-

-2 0

-- Actua0

* -40 i

-60

-80
1 ' "

0.1 1 10 100 1,000 10,000

Sampling Frequency (Hz)

E-40 Radial Bearing 2Y Best Fit versus Actual Plant Transfer Function Magnitude Plot

E-41 Radial Bearing 2Y Best Fit versus Actual Plant Transfer Function Phase Plot

152

-100

-200

-400
-500

-600 I ---- Theoredeal
-70 0j .. i...

9-0oo I..II

-1,100

0.1 1 10 100 1,000 10,000

Sampling Frequency (H•)

IA

E.5 Best Fit Pump Transfer Function Program Listings

The following section contains two listings of programs used to determine the best fit
transfer function for the turbopump magnetic bearing subsystem. The first listing is a Matlab
script which determines and graphically displays the best fit transfer function. The second listing
is a C source listing which performs the same function as the Matlab script but has no graphing
capabilities. It is however substantially faster then the Matlab script.

E.5.1 Matlab Script

function [1 = FindOpenFunc(bearing)
% This attempts to find the corresponding transfer function of the open
% loop system from data returned by the system analyzer

if(nargin -= 1)
disp('Syntax error');
disp('FindOpenFunc(bearing)');
disp('where:');
disp(' bearing - vacuum pump bearing number');
disp(' 0 = axial bearing');
disp(' 1 = radial 1X bearing');
disp(' 2 = radial 1Y bearing');
disp(' 3 = radial 2X bearing');
disp(' 4 = radial 2Y bearing');
error;

end

if(bearing == 0)
magname = '/usr/tmp/sysanal/axt7psmg.dat';
phsname = '/usr/tmp/sysanal/axt7psph.dat';
bearname = 'Axial';
sengain = 9450.0; % Volts/meter

elseif(bearing == 1)
magname = '/usr/tmp/sysanal/lxt6psmg.dat';
phsname = '/usr/tmp/sysanal/lxt6psph.dat';
bearname = 'RadlX';
sengain = 25000.0; % Volts/meter

elseif(bearing == 2)
magname = '/usr/tmp/sysanal/lyt8psmg.dat';
phsname = '/usr/tmp/sysanal/lyt8psph.dat';
bearname = 'RadlY';
sengain = 25000.0; % Volts/meter

elseif(bearing == 3)
magname = '/usr/tmp/sysanal/2xt6psmg.dat';
phsname = '/usr/tmp/sysanal/2xt6psph.dat';
bearname = 'Rad2X';
sengain = 25000.0; % Volts/meter

elseif(bearing == 4)
magname = '/usr/tmp/sysanal/2yt8psmg.dat';
phsname = '/usr/tmp/sysanal/2yt8psph.dat';
bearname = 'Rad2Y';
sengain = 25000.0; % Volts/meter

else
disp(['bearing number out of range: ' num2str(bearing)]);
error;

end

% Some constants
ampgain = 1.0/0.3; % Amps/Volt
dcavg = 10; % number of values to average to get DC gain

153

mytitle = [bearname ' Bearing Open Loop Transfer Function Best Fit ' ...
'(Range = 0.1 - '];

fid = fopen(magname);
if(fid < 3)
disp(['unable to open magnitude data file: ' magname]);
error;

end
[mag, count] = fscanf(fid, '%f %f', [2 inf]);
mag = mag';
fclose(fid);

fid = fopen(phsname);
if(fid < 3)

disp(['unable to open phase data file: ' phsname]);
error;

end
[phs, count] = fscanf(fid, '%f %f', [2 inf]);
phs = phs';
fclose(fid);

% Smooth phase anomalies
for ii = 2:size(phs,l);
if(abs(phs(ii-1,2)-phs(ii,2)) > 180.0)

if(phs(ii-1,2) >= 0.0)
phs(ii,2) = phs(ii,2)+360.0;

else
phs(ii,2) = phs(ii,2)-360.0;

end
end

end

% Limit frequency range because the data from the system analyzer is very
% dirty after 1000 Hz
limit = 1;

if(limit == 1)
ii = max(find(mag(:,l) < 1000.0));
mag = mag(l:ii,:);
phs = phs(l:ii,:);
mytitle = [mytitle '1000 Hz)'];

else
mytitle = [mytitle '10000 Hz)'];

end

% Assume that the transfer function of the open loop system has the same form
% as that derived from the dynamic equations of motion namely P^2/(s^2 - Q^2)
% Set up range of numbers to test as Q
begin = 1.0;
endd = 10000.0;

ind = begin;
range = [begin];
while(ind < endd)

inc = ind/10.0;
if(inc > 10.0)
inc = 10.0;

end
range = [range [ind+inc:inc:ind*10.0]];
ind = ind * 10.0;

end

resid = zeros(length(range),3);

vartype = 'Var Type = Ideal';

nw = mag(:,1)*2*pi;

inc = 1;

154

if(bearing == 0)
opnum = -(sengain * ampgain); % convert to Volts/Volts

else
opnum = sengain * ampgain; % convert to Volts/Volts

end

more off;
for ii = l:length(range)

opden = [1 0 -((2*pi*range(ii))^2)];
[tmag, tphs, w] = bode(opnum, opden, nw);
if(bearing == 3)

tphs = tphs + 360.0;
end
tmag = 20.0*logl0(tmag);
gain = 0; % find average gain by checking DC gain -- > gain is numerator
for jj = l:dcavg
gain = gain + (mag(jj,2)-tmag(jj));

end
gain = gain/dcavg;
tmag = gain+tmag;
resid(ii,:) = [0 0 0];
for jj = l:length(mag)
resid(ii,l) = resid(ii,l) + ((mag(jj,2) - tmag(jj))^2);
resid(ii,2) = resid(ii,2) + ((phs(jj,2) - tphs(jj))^2);

end
resid(ii,l) = resid(ii,l)/length(mag);
resid(ii,2) = resid(ii,2)/length(mag);
resid(ii,3) = resid(ii,l) + resid(ii,2);
if(fix(rem(ii,100)) == 0)

disp([num2str(ii) ' of ' num2str(length(range))]);
end

end

[x, ii] = min(resid(:,3));
x = x(1);
ii = ii(1);
opden = [1 0 -((2*pi*range(ii))^2)];
[tmag, tphs, w] = bode(opnum, opden, nw);
if(bearing == 3)

tphs = tphs + 360.0;
end
tmag = 20.0*logl0(tmag);
gain = 0; % find average gain by checking DC gain -- > gain is numerator
for jj = l:dcavg

gain = gain + (mag(jj,2)-tmag(jj));
end
gain = gain/dcavg;
tmag = tmag + gain;
opnum = opnum * (10^(gain / 20.0));

msg = sprintf('%.3f',
opnum_title = ['P = '
msg = sprintf('%.3f',
opden_title = ['Q = '

abs(opnum/(ampgain * sengain)));
, msg];
abs(opden(length(opden))));
, msg];

msg = ['Plotting best residual magnitude (R = ' num2str(x) ' val =
num2str(range(ii)) ' Gain = ' num2str(10^(gain/20.0)) ')'];

disp(msg);

weight = 'phase weighted';

clf;
subplot(2,1,1);

semilogx(mag(:,l), mag(:,2), '-');
xlabel('Frequency (Hz)');
ylabel('Magnitude (dB)');
title(mytitle);

155

·~ ·I--. ̂··- I11~-Yn·rrT-U---··---^IUIYI~~1·L~

hold on;
subplot(2,1,2);
semilogx(phs(:,l), phs(:,2), '-');
xlabel('Frequency (Hz)');
ylabel('Phase (degrees)');

hold on;

subplot(2,1,1);
semilogx(mag(:,1),
hold off;

tmag, '--');

subplot(2,1,2);
semilogx(phs(:,1), tphs,

title([vartype ', ' opnum_title ', ' opden_title ', ' weight]);

hold off;
more on;

E.5.2 C Source

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>

#define
#define
#define

STATUS_OK
STATUS_NOK
PI

#define VOLTCONV

0
1
3.14159265358979323846

0.3 /* Ohms, V = IR */

int ConBode(float *num, float *den, int numsize, int densize, float *freq,
int fsize, float **mag, float **phase);

float sen_gain[5] = { 9450.0, 25000.0, 25000.0, 25000.0, 25000.0 };

int main(int argc, char **argv)

int i, k, off, dcavg;
int bearing, size, psize;
char *magname, *phsname, *bearname;
char *buffer, *ptr;
float sengain, ampgain, tl, t2, t3, t4;
float *freq, *mag, *phase;
float *pltval, *pltres, *tmag, *tphs;
float num[l], den[3];
FILE *ifp;

if(argc != 2)
{
fprintf(stderr, "Sy
fprintf(stderr, "Fi
fprintf(stderr, "wh
fprintf(stderr,
fprintf(stderr,
fprintf(stderr,
fprintf(stderr,
fprintf(stderr,
fprintf(stderr,ATUSNOK);
return(STATUSNOK);

'ntax error\n");
ndOpenFunc(bearing)\n");
ere:\n");

bearing - vacuum pump bearing number\n");
0 = axial bearing\n");
1 = radial 1X bearing\n");
2 = radial 1Y bearing\n");
3 = radial 2X bearing\n");
4 = radial 2Y bearing\n");

bearing = strtol(argv[l], NULL, 10);

156

I.--.);

switch(bearing)

case 0:
magname = "/usr/sysanal/axt7psmg.dat";
phsname = "/usr/sysanal/axt7psph.dat";
bearname = "Axial";
break;

case 1:
magname = "/usr/sysanal/lxt6psmg.dat";
phsname = "/usr/sysanal/lxt6psph.dat";
bearname = "RadlX";
break;

case 2:
magname = "/usr/sysanal/lyt8psmg.dat";
phsname = "/usr/sysanal/lyt8psph.dat";
bearname = "RadlY";
break;

case 3:
magname = "/usr/sysanal/2xt6psmg.dat";
phsname = "/usr/sysanal/2xt6psph.dat";
bearname = "Rad2X";
break;

case 4:
magname = "/usr/sysanal/2yt8psmg.dat";
phsname = "/usr/sysanal/2yt8psph.dat";
bearname = "Rad2Y";
break;

default:
fprintf(stderr, "bearing number out of range: %d\n", bearing);
return(STATUS_NOK);
break;

I

ampgain = VOLT_CONV / sen_gain[bearing];
dcavg = 10;

if((buffer = (char *) calloc(80, sizeof(char))) == NULL)
{
fprintf(stderr, "Out of memory error (%d)\n", LINE);
return(STATUS_NOK);

if((freq = (float *) calloc(3000, sizeof(float))) == NULL)

fprintf(stderr, "Out of memory error (%d)\n", _LINE);
free(buffer);
return(STATUS_NOK);

m
mag = (float *) (((unsigned) freq) + (1000 * sizeof(float)));
phase = (float *) (((unsigned) mag) + (1000 * sizeof(float)));

if((ifp = fopen(magname, "r")) == NULL)
{

fprintf(stderr, "Unable to open analog closed loop magnitude file:
"%s\n", magname);

return(STATUS_NOK);

k = 0;
while(fgets(buffer, 80, ifp))

{
if((i = strlen(buffer)) == 79)
fprintf(stderr, "Possible input buffer overflow\n");

if(buffer[i-l] == '\n')
buffer[--i] = '\0';

freq[k] = (float) strtod(buffer, &ptr);
mag[k++] = (float) strtod(ptr, NULL);

}

157

I~ F·_I__·_·LCIII__LII__lilqC-.~.l

if(!feof(ifp))
{
fprintf(stderr, "Error while reading magnitude file\n");
free(buffer);
free(freq);
return(STATUS_NOK);

)
fclose(ifp);

if((ifp = fopen(phsname, "r")) == NULL)
{
fprintf(stderr, "Unable to open analog closed loop phase file:

"%s\n", phsname);
return(STATUS_NOK);

k = 0;
while(fgets(buffer, 80, ifp))

{
if((i = strlen(buffer)) == 79)
fprintf(stderr, "Possible input buffer overflow\n");

if(buffer[i-1] == '\n')
buffer[--i] = '\0';

freq[k] = (float) strtod(buffer, &ptr);
phase[k++] = (float) strtod(ptr, NULL);

if(!feof(ifp))
{
fprintf(stderr, "Error while reading phase file\n");
free(buffer);
free(freq);
return(STATUS_NOK);

fclose(ifp);

size = k;

/* smooth phase anomalies */
while(phase[0] > 170.0)

phase[0] -= 360.0;
for(i=l; i<size; i++)

{
if(fabs(phase[i-l]-phase[i]) > 170.0)

{
if(phase[i-1] >= 0.0)
phase[i] += 360.0;

else
phase[i] -= 360.0;

if(freq[i] <= 1000.0)
k = i;

)

size = k + 1;

/*
* assume that the denominator of the transfer function is third order
* (physics of magnetic bearing is second order, power amplifier is
* first order)
*/

psize = 100;
if((pltval = (float *) calloc(psize, sizeof(float))) == NULL)

{
fprintf(stderr, "Out of memory error (%d)\n", _LINE);
free(buffer);
free(freq);
return(STATUS_NOK);

158

pltval[0] = tl = 1.0;
t2 = 10000.0;
k= 1;

while(tl < t2)

t3 = tl / 10.0;
if(t3 > 10.0)

t3 = 10.0;
t4 = tl * 10.0;
for(tl+=t3; tl<t4; tl+=t3)

{
pltval[k++] = tl;
if(k == psize)

psize += 100;
if((pltval = (float *) realloc(pltval, psize*sizeof(float)))

== NULL)

fprintf(stderr, "Out of memory error (%d)\n", _LINE);
free (buffer);
free(freq);
return (STATUS_NOK);

pltval[k++] = tl = t4;

psize = k;

if((pltres = (float *) calloc(3*psize, sizeof(float))) == NULL)

fprintf(stderr, "Out of memory error (%d)\n", _LINE);
free (buffer);
free(freq);
free (pltval);
return (STATUS_NOK);

den[0] = 1.0;
den[l] = 0.0;

t4 = pltval[0];
if (bearing)
num[0] = 1.0;

else
num[0] = -1.0;

for(i=0; i<psize; i++)

den[2] = 2.0*PI*pltval[i];
den[2] *= -(den[21);
if(ConBode(num, den, 1, 3, freq, size, &tmag, &tphs))

fprintf(stderr, "Error encountered in ConBode (%d) \n", __LINE);
free (buffer);
free(freq);
free (pltval);
free (pltres);
return (STATUS_NOK);

while(tphs[0] > 170.0)
tphs[0] -= 360.0;

for(k=1; k<size; k++)

while(fabs(tphs[k-1]-tphs[k]) > 170.0)

if(tphs[k-1] >= 0.0)

159

_ _I· ·_____ ___·__·~·____I^·_1·__~___ ·I__

tphs[k] += 360.0;
else
tphs[k] -= 360.0;

tl = 0.0;
for(k=0; k<dcavg; k++)

ti += (mag[k]-tmag[k]);
tl /= ((float) dcavg);
off = i * 3;
pltres[off] = pltres[off+l] = pltres[off+2] = 0.0;
for(k=0; k<size; k++)

{
t2 = mag[k] - tmag[k] - tl;
t3 = phase[k] - tphs[k];
pltres[off] += (t2 * t2);
pltres[off+1] += (t3 * t3);

}
pltres[off] /= ((float) size);
pltresloff+1] /= ((float) size);
pltres[off+2] = pltres[off] + pltres[off+l];
free(tmag);
free(tphs);

#if 1
if(pltval[i] >= t4)

printf("%8.lf\n", t4);
t4 *= 10.0;

#else
printf("%8.1f\n", pltval[i]);

#endif

k = 0;
for(i=1; i<psize; i++)

if(pltres[(i*3)+2] < pltres[(k*3)+2])
k = i;

den[2] = 2.0*PI*pltval[k];
den[2] *= -(den[2]);
if(ConBode(num, den, 1, 3, freq, size, &tmag, &tphs))

fprintf(stderr, "Error encountered in ConBode (%d)\n", _LINE_);
free(buffer);
free(freq);
free(pltval);
free(pltres);
return(STATUS_NOK);

tl = 0.0;
for(k=0; k<dcavg; k++)

ti += (mag[k]-tmag[k]);
ti /= ((float) dcavg);
t2 = (float) pow(10.0, (double) (tl/20.0));
printf("%s: P = %.3f, Q = %.3f\n", bearname, t2 * ampgain, fabs(den[2]));
free(buffer);
free(freq);
free(pltval);
free(pltres);
free(tmag);
free(tphs);

return(STATUS_OK);

int ConBode(float *num, float *den, int numsize, int densize, float *freq,
int fsize, float **mag, float **phase)

160

int i, j, k;
float *mg, *ph, inc;
float frq, ansr, ansi;

if((mg = (float *) calloc(fsize, sizeof(float))) == NULL)
{

fprintf(stderr, "Out of memory error - DigBode.\n");
return(l);

if((ph = (float *) calloc(fsize, sizeof(float))) == NULL)
{
fprintf(stderr, "Out of memory error - DigBode.\n");
free(mg);
return(l);}

for(i=0; i<fsize; i++)
{
frq = 2.0 * PI * freq[i];
mg[i] = ph[i] = ansi = 0.0;
ansr = num[numsize-l];
for(j=0; j<numsize-1; j++)

if(num[j] != 0.0)

k = numsize - 1 - j;
if((k/2)%2 == 1)
inc = -1.0;

else
inc = 1.0;

if(k%2 == 1)
ansi += (inc * num[j] * ((float) pow(frq,

else
ansr += (inc * num[j] * ((float) pow(frq,

(double) k)));

(double) k)));

mg[i] += (20.0 * logl0(sqrt(pow(ansr,2.0) + pow(ansi,2.0))));
ph[i] += (180.0 * atan2(ansi, ansr) / PI);
ansi = 0.0;
ansr = den[densize-l];
for(j=0; j<densize-l; j++)

{
if(den(j] != 0.0)

{
k = densize - 1 - j;
if((k/2)%2 == 1)

inc = -1.0;
else
inc = 1.0;

if(k%2 == 1)
ansi += (inc * den[j] * ((float) pow(frq, (double) k)));

else
ansr += (inc * den[j] * ((float) pow(frq, (double) k)));

)
mg[i] -= (20.0 * logl0(sqrt(pow(ansr,2.0) + pow(ansi,2.0))));
ph[i] -= (180.0 * ((float) atan2(ansi, ansr)) / PI);

if(mag)
(*mag) = mg;

if(phase)
{
for(i=0; i<fsize; i++)

{
while(fabs(ph[i-1]-ph[i]) > 180.0)

{

161

Le~Li ---~- ·--· ^·c·s~--~~u-crurr~-um~i-u~r~irir

frq = ph[i] - 360.0;
if(fabs(ph[i-1]-ph[i]) > fabs(ph[i-1]-frq))
ph[i] = frq;

else
ph[i] += 360.0;

}

(*phase) = ph;

return(0);

E.6 Best Fit Driver Transfer Function Program Listings

The following section contains two listings of programs used to determine the best fit
transfer function for the turbopump driver subsystem. The first listing is a Matlab script which
determines and graphically displays the best fit transfer function. The second listing is a C
source listing which performs the same function as the Matlab script but has no graphing
capabilities. It is however substantially faster then the Matlab script.

E.6.1 Matlab Script

function [] = FindAmpFunc(bearing)
% This attempts to find the corresponding transfer function of the amp/driver
% from data returned by the system analyzer

if(nargin -= 1)
disp('Syntax error');
disp('FindAmpFunc(bearing)');
disp('where:');
disp(' bearing - vacuum pump bearing number');
disp(' 0 = axial bearing');
disp(' 1 = radial 1X bearing');
disp(' 2 = radial 1Y bearing');
disp(' 3 = radial 2X bearing');
disp(' 4 = radial 2Y bearing');
error;

end

if(bearing == 0)
magname = '/usr/tmp/sysanal/axcnt7mg.dat';
phsname = '/usr/tmp/sysanal/axcnt7ph.dat';
bearname = 'Axial';

elseif(bearing == 1)
magname = '/usr/tmp/sysanal/lxcnt6mg.dat';
phsname = '/usr/tmp/sysanal/lxcnt6ph.dat';
bearname = 'RadlX';

elseif(bearing == 2)
magname = '/usr/tmp/sysanal/lycnt8mg.dat';
phsname = '/usr/tmp/sysanal/lycnt8ph.dat';
bearname = 'RadlY';

elseif(bearing == 3)
magname = '/usr/tmp/sysanal/2xcnt6mg.dat';
phsname = '/usr/tmp/sysanal/2xcnt6ph.dat';
bearname = 'Rad2X';

elseif(bearing == 4)
magname = '/usr/tmp/sysanal/2ycnt8mg.dat';
phsname = '/usr/tmp/sysanal/2ycnt8ph.dat';

162

bearname = 'Rad2Y';
else

disp(['bearing number out of range: ' num2str(bearing)]);
error;

end

% Some constants
ampgain = (0.3 0.3 0.3 0.3 0.3]; % Volts/Amp
dcgain = [2.776 1.175 1.165 1.159 1.144]; % Amps/Volt
convfact = 1.0 / (ampgain(bearing+l) * dcgain(bearing+l));
dcavg = 10; % number of values to average to get DC gain

mytitle = [bearname ' Bearing Amp/Driver Transfer Function Best Fit
'(Range = 0.1 - '];

fid = fopen(magname);
if(fid < 3)
disp(['unable to open magnitude data file: ' magname]);
error;

end
[mag, count] = fscanf(fid, '%f %f', [2 infl);
fclose(fid);

fid = fopen(phsname);
if(fid < 3)
disp(['unable to open phase data file: ' phsname]);
error;

end
[phs, count] = fscanf(fid, '%f %f', [2 inf]);
fclose(fid);

% Smooth phase anomalies
[phs(2,:)] = PhaseFix(bearing, phs(2,:));

% Limit frequency range because the data from the system analyzer is very
% dirty after 1000 Hz
limit = 1;

if(limit == 1)
ii = max(find(mag(1,:) < 1000.0));
mag = mag(:,l:ii);
phs = phs(:,l:ii);
mytitle = [mytitle '1000 Hz)'];

else
mytitle = [mytitle '10000 Hz)'];

end

% Assume that the transfer function of the open loop system has the same form
% as that derived from the dynamic equations of motion namely A1/(s + A2)
% Set up range of numbers to test as A2
begin = 100.0;
endd = 100000.0;

ind = begin;
range = [begin];
while(ind < endd)

inc = ind/10.0;
if(inc > 10.0)

inc = 10.0;
end
range = (range (ind+inc:inc:ind*10.0]];
ind = ind * 10.0;

end

resid = zeros(length(range),3);
vartype = 'Var Type = Ideal';
nw = mag(1,:)*2*pi;
inc = 1;
if(bearing == 0)

163

_ I _ _·_ I_ __i I-L·-_··Y~YL~IC·I*-

opnum =
else

opnum =
end

-1.0;

1.0;

more off;
for ii = l:length(range)
opden = [1 range(ii)];
[tmag, tphs, w] = bode(opnum, opden, nw);
if(bearing == 0)
while(tphs(1) > 90.0)

tphs(l) = tphs(1) - 360.0;
end

end
[tphs] = PhaseFix(bearing, tphs);
tmag = 20.0*logl0(tmag);
gain = 0; % find average gain by checking DC gain -- > gain is numerator
for jj = 1:dcavg
gain = gain + (mag(2,jj)-tmag(jj));

end
gain = gain/dcavg;
tmag = gain+tmag;
resid(ii,:) = [0 0 0];
for jj = 1:length(mag)
resid(ii,l) = resid(ii,l) + ((mag(2,jj) - tmag(jj))^2);
resid(ii,2) = resid(ii,2) + ((phs(2,jj) - tphs(jj))^2);

end
resid(ii,l) = resid(ii,l)/length(mag);
resid(ii,2) = resid(ii,2)/length(mag);
resid(ii,3) = resid(ii,l) + resid(ii,2);
if(fix(rem(ii,100)) == 0)
disp([num2str(ii) ' of ' num2str(length(range))]);

end
end

[x, ii] = min(resid(:,3));
x = x(1);
ii = ii(1);
opden = [1 range(ii)];
[tmag, tphs, w] = bode(opnum, opden, nw);
if(bearing == 0)
while(tphs(1) > 90.0)

tphs(1) = tphs(1) - 360.0;
end

end
[tphs] = PhaseFix(bearing, tphs);
tmag = 20.0*logl0(tmag);
gain = 0; % find average gain by checking DC gain -- > gain is numerator
for jj = 1:dcavg

gain = gain + (mag(2,jj)-tmag(jj));
end
gain = gain/dcavg;
tmag = tmag + gain;
opnum = opnum * (10^(gain / 20.0));

msg = sprintf('%.3f',
opnum_title = ['Al =
msg = sprintf('%.3f',
opden_title = ['A2 =

abs(opnum) *convfact);
', msg];
range(ii));

', msg];

msg = ['Plotting best residual magnitude (R = ' num2str(x) ' val = '
num2str(range(ii)) ' Gain = ' num2str(10^(gain/20.0)) ')'];

disp(msg);

weight = 'phase weighted';

clf;
subplot(2,1,1);

164

semilogx(mag(l,:), mag(2,:), '-');
xlabel('Frequency (Hz)');
ylabel('Magnitude (dB)');
title(mytitle);

hold on;

subplot(2,1,2);

semilogx(phs(l,:), phs(2,:), '-');
xlabel('Frequency (Hz)');
ylabel('Phase (degrees)');

hold on;

subplot(2,1,1);
semilogx(mag(l,:),
hold off;

subplot(2,1,2);
semilogx(phs(l,:),

tmag, '--');

tphs, '--');

title([vartype ', ' opnum_title ', ' opdentitle ', ' weight]);

hold off;
more on;

E.6.2 C Source

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>

#define
#define
#define

STATUS_OK
STATUS_NOK
PI

#define VOLT_CONV

float dig_gain[51 =

0
1
3.14159265358979323846

0.3 /* Ohms, V = IR */

{ 2.776 1.175 , 1.165

int ConBode(float *num, float *den, int numsize, int
int fsize, float **mag, float **phase);

int main(int argc, char **argv)
{

int i, k, off, dcavg;
int bearing, size, asize;
char *magname, *phsname, *bearname;
char *buffer, *ptr;
float voltconv, ampgain, tl, t2, t3, t4;
float *freq, *mag, *phase;
float *ampval, *ampres, *tmag, *tphs;
float num[l], den[2];
FILE *ifp;

if(argc != 2)

fprintf(stderr,
fprintf(stderr,
fprintf(stderr,
fprintf(stderr,
fprintf(stderr,
fprintf(stderr,
fprintf(stderr,

densize, float *freq,

"Syntax error\n");
"FindAmpFunc(bearing)\n");
"where:\n");

bearing - vacuum pump bearing number\n");
0 = axial bearing\n");

1" 1 = radial 1X bearing\n");
9" 2 = radial 1Y bearing\n");

165

, 1.159 , 1.144);

fprintf(stderr, " 3 = radial 2X bearing\n");
fprintf(stderr, " 4 = radial 2Y bearing\n");
return(STATUS_NOK);

I

bearing = strtol(argv[1], NULL, 10);

switch (bearing)
{
case 0:
magname = "/usr/tmp/sysanal/axcnt7mg.dat";
phsname = "/usr/tmp/sysanal/axcnt7ph.dat";
bearname = "Axial";
break;

case 1:
magname = "/usr/tmp/sysanal/lxcnt6mg.dat";
phsname = "/usr/tmp/sysanal/lxcnt6ph.dat";
bearname = "RadlX";
break;

case 2:
magname = "/usr/tmp/sysanal/lycnt8mg.dat";
phsname = "/usr/tmp/sysanal/lycnt8ph.dat";
bearname = "RadlY";
break;

case 3:
magname = "/usr/tmp/sysanal/2xcnt6mg.dat";
phsname = "/usr/tmp/sysanal/2xcnt6ph.dat";
bearname = "Rad2X";
break;

case 4:
magname = "/usr/tmp/sysanal/2ycnt8mg.dat";
phsname = "/usr/tmp/sysanal/2ycnt8ph.dat";
bearname = "Rad2Y";
break;

default:
fprintf(stderr, "bearing number out of range: %d\n", bearing);
return(STATUS_NOK);
break;

I

dcavg = 10;
ampgain = 1.0 / (VOLTCONV * dig_gain[bearing]);

if((buffer = (char *) calloc(80, sizeof(char))) == NULL)
{
fprintf(stderr, "Out of memory error (%d)\n", _LINE_);
return(STATUS_NOK);

I

if((freq = (float *) calloc(3000, sizeof(float))) == NULL)

fprintf(stderr, "Out of memory error (%d)\n", LINE_);
free(buffer);
return(STATUS_NOK);

I
mag = (float *) (((unsigned) freq) + (1000 * sizeof(float)));
phase = (float *) (((unsigned) mag) + (1000 * sizeof(float)));

if((ifp = fopen(magname, "r")) == NULL)
{
fprintf(stderr, "Unable to open analog closed loop magnitude file:

"%s\n", magname);
return(STATUS_NOK);

)

k = 0;
while(fgets(buffer, 80, ifp))

(
if((i = strlen(buffer)) == 79)

166

fprintf(stderr, "Possible input buffer overflow\n");
if(buffer[i-l] == '\n')
buffer[--il = '\0';

freq[k] = (float) strtod(buffer, &ptr);
mag[k++] = (float) strtod(ptr, NULL);

if(!feof(ifp))
{
fprintf(stderr, "Error while reading magnitude file\n");
free(buffer);
free(freq);
return(STATUS_NOK);

)
fclose(ifp);

if((ifp = fopen(phsname, "r")) == NULL)
{
fprintf(stderr, "Unable to open analog closed loop phase file:

"%s\n", phsname);
return(STATUS_NOK);

k = 0;
while(fgets(buffer, 80, ifp))
{
if((i = strlen(buffer)) == 79)
fprintf(stderr, "Possible input buffer overflow\n");

if(buffer[i-l] == '\n')
buffer[--i] = '\0';

freq[k] = (float) strtod(buffer, &ptr);
phase[k++] = (float) strtod(ptr, NULL);

if(!feof(ifp))
{
fprintf(stderr, "Error while reading phase file\n");
free(buffer);
free(freq);
return(STATUS_NOK);

fclose(ifp);

size = k;

/* smooth phase anomalies */
while(phase[0] > 170.0)
phase[0] -= 360.0;

for(i=l; i<size; i++)

if(fabs(phase[i-1]-phase[i]) > 170.0)
{

if(phase[i-l1 >= 0.0)
phase[i] += 360.0;

else
phase[i] -= 360.0;

if(freq[i] <= 1000.0)
k = i;

size = k + 1;

/*
* assume that the denominator of the transfer function is third order
* (physics of magnetic bearing is second order, power amplifier is
* first order)
*/

167

1 II _II I IYI~ ~__·_I___ .·^-_1·-D1~·---··---Ill·~

asize = 100;
if((ampval = (float *) calloc(asize, sizeof(float))) == NULL)
{

fprintf(stderr, "Out of memory error (%d)\n", __LINE_);
free(buffer);
free(freq);
return(STATUS_NOK);

ampval[0] = tl = 1.0;
t2 = 100000.0;
k = 1;

while(tl < t2)
{

t3 = tl / 10.0;
if(t3 > 10.0)

t3 = 10.0;
t4 = tl * 10.0;
for(tl+=t3; tl<t4; tl+=t3)
{
ampval[k++] = tl;
if(k == asize)
{
asize += 100;
if((ampval = (float *) realloc(ampval, asize*sizeof(float)))

== NULL)
{
fprintf(stderr, "Out of memory error (%d)\n", __LINE_);
free(buffer);
free(freq);
return(STATUS_NOK);

)

ampval[k++] = tl = t4;

asize = k;

if((ampres = (float *) calloc(3*asize, sizeof(float))) == NULL)
{
fprintf(stderr, "Out of memory error (%d)\n", _LINE_);
free(buffer);
free(freq);
free(ampval);
return(STATUS_NOK);

den[0] = 1.0;
t4 = ampval[0];
if (!(bearing))
num[0] = -1.0;

else
num[0) = 1.0;

for(i=0; i<asize; i++)

den[l] = ampval[i];
if(ConBode(num, den, 1, 2, freq, size, &tmag, &tphs))
{

fprintf(stderr, "Error encountered in ConBode (%d)\n", LINE_);
free(buffer);
free(freq);
free(ampval);
free(ampres);
return(STATUSNOK);

if(!bearing)
while(tphs([0] > 90.0)

168

tphs[0] - 360.0;
while(tphs[0] > 170.0)

tphs[0] -= 360.0;
for(k=1; k<size; k++)

{
while(fabs(tphs[k-1]-tphs[k]) > 170.0)

{
if(tphs[k-11] >= 0.0)
tphs[k] += 360.0;

else
tphs[k] -= 360.0;

}
}

tl = 0.0;
for(k=0; k<dcavg; k++)

tl += (mag[k]-tmag[k]);
tl /= ((float) dcavg);
off = i * 3;
ampres[off] = ampres[off+l] = ampres[off+2] = 0.0;
for(k=0; k<size; k++)

{
t2 = mag[k] - tmag[k] - tl;
t3 = phase[k] - tphs[k];
ampres[off] += (t2 * t2);
ampres[off+l] += (t3 * t3);

}
ampres[off] /= ((float) size);
ampres[off+1] /= ((float) size);
ampres[off+2] = ampres[off] + ampres[off+l];
free(tmag);
free(tphs);

#if 1
if(ampval[i] >= t4)

{
printf("%8.1f\n", t4);
t4 *= 10.0;

}
#else

printf("%8.1f\n", ampval[i]);
#endif

}

k = 0;
for(i=l; i<asize; i++)
if(ampres[(i*3)+2] < ampres[(k*3)+2])

k = i;
den[l] = ampval[k];
if(ConBode(num, den, 1, 2, freq, size, &tmag, &tphs))

{
fprintf(stderr, "Error encountered in ConBode (%d)\n", _LINE_);
free(buffer);
free(freq);
free(ampval);
free(ampres);
return(STATUS_NOK);

}
tl = 0.0;
for(k=0; k<dcavg; k++)

tl += (mag[k]-tmag[k]);
tl /= ((float) dcavg);
t2 = (float) pow(10.0, (double) (tl/20.0));
printf("%s: Al = %.3f, A2 = %.3f\n", bearname, t2*ampgain, den[l]);

free(buffer);
free(freq);
free(ampval);
free(ampres);
free(tmag);
free(tphs);

169

return(STATUS_OK);

It ConBode(float *num, float *den, int numsize, int densize, float *freq,
int fsize, float **mag, float **phase)

int i, j, k;
float *mg, *ph, inc;
float frq, ansr, ansi;

if((mg = (float *) calloc(fsize, sizeof(float))) == NULL)

fprintf(stderr, "Out of memory error - DigBode.\n");
return(l);

if((ph = (float *) calloc(fsize, sizeof(float))) == NULL)
{
fprintf(stderr, "Out of memory error - DigBode.\n");
free(mg);
return(l);

for(i=0; i<fsize; i++)
{
frq = 2.0 * PI * freq[i];
mg[i] = ph[i] = ansi = 0.0;
ansr = num[numsize-1];
for(j=0; j<numsize-l; j++)

{
if(num[j] != 0.0)

k = numsize - 1 - j;
if((k/2)%2 == 1)
inc = -1.0;

else
inc = 1.0;

if(k%2 == 1)
ansi += (inc * num[j]

else
ansr += (inc * num[j]

* ((float) pow(frq,

* ((float) pow(frq,

(double) k)));

(double) k)));

}
mg[i] += (20.0 * logl0(sqrt(pow(ansr,2.0)
ph[i] += (180.0 * atan2(ansi, ansr) / PI);
ansi = 0.0;
ansr = den[densize-l];
for(j=0; j<densize-l; j++)

{
if(den[j] != 0.0)

{
k = densize - 1 - j;
if((k/2)%2 == 1)

inc = -1.0;
else
inc = 1.0;

if(k%2 == 1)
ansi += (inc * den[j]

else
ansr += (inc * den[j]

+ pow(ansi,2.0))));

* ((float) pow(frq,

* ((float) pow(frq,

(double) k)));

(double) k)));

}
mg[i] -=
ph[i] -=

(20.0 * logl0(sqrt(pow(ansr,2.0) + pow(ansi,2.0))));
(180.0 * ((float) atan2(ansi, ansr)) / PI);

if(mag)
(*mag) = mg;

170

ir

if (phase)
{
for(i=0; i<fsize; i++)

{
while(fabs(ph[i-11-ph[i]) > 180.0)

{
frq = ph[i] - 360.0;
if(fabs(ph[i-1]-ph[il) > fabs(ph[i-l]-frq))
ph[i] = frq;

else
ph[i] += 360.0;

}
}

(*phase) = ph;
}

return (0);
I

171

~__I__··1I~1LL_ ___LYIII__LI_·__I_·Y_^- ~-_-. i

Appendix F

Static Experimental Plots

F-1 System Block Diagram and Test Points

This appendix presents graphically the closed loop response and the disturbance rejection
plots of each axis when the turbopump rotor is not spinning. The first section describes the
specifics of how the plots were obtained. The next two sections present these graphs for the
analog and the digital controller respectively. The fourth section presents the analog, digital, and
theoretical responses superimposed to aid in comparing the various controllers. The various plots
were obtained using the Hewlett Packard HP 3562A Dynamic System Analyzer using the
appropriate test points. Refer to Figure F-1 for the location of the test points in relation to the
system components. The final two sections present important performance measures obtained
from the plots in this appendix.

172

Driver

Tet Point

Position
Teat Point

F.1 Graph Production Details

F.1.1 Closed Loop Frequency Response Details

The closed loop frequency graphs were obtained by inputting a swept sine wave having
an amplitude of 0.01 Volts and ranging from 0.1 to 10000 Hz. For the analog controller, the
swept sine wave was applied at the position signal adder. For the digital controller, the swept
sine wave was applied to an auxiliary adder which was placed between the position signal test
point and the A/D. The output for both controllers was obtained by monitoring the position
signal test point.

F.1.2 Disturbance Rejection Plot Details

The disturbance rejection plots were obtained by inputting a swept sine wave having an
amplitude of 0.03 Volts and ranging from 0.1 to 10000 Hz. For both the analog and digital
controller, the swept sine wave was applied at the control signal adder and the output was
obtained by monitoring the position signal test point. The magnitude graph obtained using the
system analyzer has units of VN which must be converted using the following conversion factor,

(24
PON A2

Axial

1 x 106m)

m

Sensor

Conversion
Factor

Radial

2
mN I x 106pmI

2 2oN2A C, cos Io m)21LON 010

Sensor

Conversion

Factor

The values of the conversion factor for each axis is shown below.

Axial RadiX RadlY Rad2X Rad2Y

Conversion Factor 2.1704 1.9147 1.9147 0.9712 0.9712

Only the magnitude plots will be presented in the remainder of this appendix as
convey little useful information.

the phase plots

173

-"- -

F.2 Closed Loop Frequency Response

F.2.1 Analog Controller

JU

0

-10

-20

-30

-40

03l
-. I

0.1 1 10 100 1,000 10,000

Frequency (Hz)

F-2 Axial Bearing Analog Controller Closed Loop Frequency Response Magnitude Plot

F-3 Radial Bearing 1X Analog Controller Closed Frequency Response Magnitude Plot

174

10
-0 IJ...~.......-lo

-35 -........
2 0 •. -:. 4 .. ,, ..-. •. ,,•.. : ,..---.•,,:.- - ..: ..,. ... -.. -. . -: :-, --,:.-3
-3 5 I ...
.40 ...

0.1 1 10 100 1,ooo000 10,000
Frequency (Hz)

1

i . . ii ii i i i

·~-rlr -·-·~--............ ... :.. ..;',

..

.

F-4 Radial Bearing 1Y Analog Controller Closed Loop Frequency Response Magnitude Plot

F-5 Radial Bearing 2X Analog Controller Closed Loop Frequency Response Magnitude Plot

175

JU

0 .i-s ...~-.-..-..i...... ..-- --- .-.--.i..... ...-i i i- i ! .. -i --i i i ii-i i i--5-I

-10.
-1 5 -- --- -- I -. e
-20

! -252

-30 . i-..i- .-i- i. iii i.--i.....i ii.ii i. -i-i-i. i i iii . i-30 ----
-35
-',,~ iiiii iiii iiiii iiii iiii

0.1 1 10 100 1,000 10,000

Frequency (HZ)

LU

0

-10

-20

-30

-40

CA-'I,

10 100 1.000 10.000

Frequency (HI)

I"--

I-

0.1

F-6 Radial Bearing 2Y Analog Controller Closed Loop Frequency Response Magnitude Plot

176

F.2.2 Digital Controller

F-7 Axial Bearing Digital Controller Closed Loop Frequency Response Magnitude Plot

F-8 Radial Bearing 1X Digital Controller Closed Frequency Response Magnitude Plot

177

20

10

0

_-0

-40

-CA

0.1 1 10 100 1,000 10,000

Frequency (H1)

10

0

-10

L20

-30

-40
Iro

.1 -
100 1,000 10,0000.1

Frequency (1HO

-i i rii i i i r i i i -el ii.. : ... i '.: i '. '.'.•'.'.~ • , ,,....•. . : ' :.',, '. .. ,.''.

........ :.....••••• •••• •••• i••i••••• •••• ••!•••ii~••i• •.••i•••
·'·'_· ·--~ -·~· · C -·- J-·-·-C)· - - - - -·- - - (· · I..·. L ~-·-·~· · · - - ~- - -~ · ~· · · C ~ ·1~1- - - - · 1- · ·)· · L -~ _·_C L

I

F-9 Radial Bearing 1Y Digital Controller Closed Loop Frequency Response Magnitude Plot

F-10 Radial Bearing 2X Digital Controller Closed Loop Frequency Response Magnitude Plot

178

JU
S...................... i '

-5-S :... i ii i ,i :.. i ii .'..:ii
110

-5 - 0 -

-2S

-30 .

-35

0.1 1 10 100 1,000 10,000

Frequency (HY)

1J

0

-5

-10

-15

-20

-25

-30

-•S

10 100 1,000 10,000ooo

Frequency (Hz)

•A

-.1
0.1

5 -----10

-15 -----........

24 -20

-25

-30

-35-2 5

-40
- ----. ;A'--t', -::.. . ., -- '--- W-,'-:. . .-- l-i -- ;f . . .; :- ,-;.-: I -

0.1 1 10 100 1,000 10,000

Frequency (Hz)

F-11 Radial Bearing 2Y Digital Controller Closed Loop Frequency Response Magnitude Plot

179

-- -·l··l.ll··Y ·--- ^--

F.3 Disturbance Rejection

F.3.1 Analog Controller

F-12 Axial Bearing Analog Controller Disturbance Rejection Magnitude Plot

1U

,1N

0.1

0.01

0O. 01F

0.1 1 10 100 1,000 10,000

Frequency (HY)

F-13 Radial Bearing 1X Analog Controller Disturbance Rejection Magnitude Plot

180

10IUU

0.1

0.01

0O01
0.1 1 10 100 1,000 10,000

Frequency (IIH

IAA
:: : : ::::::: : : :::::::

: :::
i iii ::

: :
: ::::: :

: :
'--'."'.'"""-- .'---'. j :~:::::~~~ : : ~~~:~~:-: :~::::~-- ~ ': -- :--: ~::-:-:-:-

::::: 17 : ::::::: : :::::::
: ::

r··'''" ' ' ""~'-·--~-'-~·'-5'-'·-·--·1--'--'-L -'··.···. ---· ~·..C-~-l·~ll~l -··.. i -1
i ·

· · · · · '·····'
'··

· · · · · · · · · · · · · · "··'··
·

.·.·.·.'.....1...·...'..'.··::::.....:..'··

· '·
· '·

·
· · ·

·
·

iiiii
: :iiji :1 i ..: i i i i~-n .,;.:.:.,,,.,,.,,.....: ::: .::: i i
.... i i

i:::: ::::: : :::::

i i
-.....5..:..3.) · · : : : "'

i i i .:...: .·--·-,· ·.-

: : : :

;;: :
ii iii i iiii i ii

JU

0.1

0.01

An An

0.1 1 10 100 1,000 10,000

Frequency (H4)

F-14 Radial Bearing 1Y Analog Controller Disturbance Rejection Magnitude Plot

F-15 Radial Bearing 2X Analog Controller Disturbance Rejection Magnitude Plot

181

lU

1

0.1

0.01

II hnl
V·gWA

100 1.000 10,0000.1

Frequency (Hz)

. 4- ' 4-" '. .

'U

11

0.1

S 0.01

0001 UA

0.1 1 10 100 1,000 10,000

Frequency (HI)

F-16 Radial Bearing 2Y Analog Controller Disturbance Rejection Magnitude Plot

182

.--. i.

.. , , ,

.'..""""

:'.'.:: " " '~~' : :: ': ', ' ':,: ...

11 11111

F.3.2 Digital Controller

SI JU

0.01

0.1
0.001

A 00I0

0.1 1 10 100 1,o00 10,000

Frequency (HZ)

F-17 Axial Bearing Digital Controller Disturbance Rejection Magnitude Plot

1

i1

u 0.1

A Al

0.1 1 10 100 1,000 10,000

Frequency (HIZ

F-18 Radial Bearing 1X Digital Controller Disturbance Rejection Magnitude Plot

183

"-~- I-- "

_.....~..~.r · ·. 2 .~... .

. l.. 1 I ... 1 ...'..'·...... ~..~.~' ''

..- -1

I I.. r N

VA. -

F-19 Radial Bearing lY Digital Controller Disturbance Rejection Magnitude Plot

F-20 Radial Bearing 2X Digital Controller Disturbance Rejection Magnitude Plot

184

0U

t°.,

' ', "" " . "., ,:. " "' ''; '

0.1 1 10 100 1,000 10,000

Frequency (Hz)

iu

0.1

0.01

nA I

Frequency (H)

,,

--m ram'

v·vvr

0.1 100 1.000 10.000

iu

1

0.1

0.01

0.001

000

0.1 1 10 100 1,000 10,000

Frequency (Hz)

F-21 Radial Bearing 2Y Digital Controller Disturbance Rejection Magnitude Plot

185

""'

"
: :::: i i iii : :::: iiiii i i i i i i ii::::: """
:::ii Ciiii iiiii iii'" .i...i..i.i.j.iiii.i..i._..... 1..1.. l.i. 1 :::: : ~::::::1~:.. ... :. .. :. i :: :: : ::::::: i-i-i-i

iI : ::: ~~ii , , :: : ::::::
i i iiii ::::: :::: : : : ::::: ~ iiii

i i : : i::::... ..:.. .: i ii
iiiii iiiii: ·

: : : i ii j i ~iuiiii iiiii i i:::::::: : :::
iii~i :: illiii i~ii:: i i ii::...... ~. ..,.......,,,..,... ..,.....,.,.,,,,,.. ...,......,.,...,,, ,.....,..

:: ii :::ii ::::::iiiii .:::::
i ::ii : : i:: : ::::: i i i : : i i i i i i: : i ii : : i i\i

ii :: :: :: ::::i- i i ·:'----·'---l-2-i -:- i li----·i--l-- i -I -:-I i'-----'--'·:- c-:-I :-·----:-·-i-·:-l·i
i iiii i : ·: : ii: ii iii::::: II II:::

F.4 Closed Loop Frequency Response Comparison

F-22 Axial Bearing Closed Loop Frequency Response Magnitude Comparison Plot

F-23 Radial Bearing IX Closed Loop Frequency Response Magnitude Comparison Plot

186

..

f .6.

91
10

0

-10

-20

-30

.40

-A

il '"''' i i i.... zoJilii. iiii.. .. !'i~.
-- Analog

Digital
nTheoretical

U..

0.1 1 10 100 1,000 10,000

Frequency (Hz)

10

-10
. _ _ _ _ i\i i ! r1. .

-20 ...---T.. '.eoreica

-310

-40

-CA
-. [. . : " """' '' ':. . . "" "" " """ "" "' '', .; : ; • , .' : : i '0.1 1 10 100 1,000 10,000

Frequency (Hz

I 1 1111111 1 1 1111111 1 1 1111111 1 1 1111111 1 1 111111

lU

10

0 : : :.- ..- ..._ •,•: ::::::::i :::::::::-

F-24 Radial Bearing 1Y Closed Loop Frequency Response Magnitude Comparison Plot

I1

0

S-10

-20

-30

-40

0.1 1 10 100 1,000 10,000

Frequency (Hz)

F-25 Radial Bearing 2X Closed Loop Frequency Response Magnitude Comparison Plot

187

-10 Analog
Digital

-20 The..... eoretdcal

-30

04-

S,, , , , , , , . °," ' , , ° , ,,

0.1 1 10 100 1,000 10,000

Frequency (1;)

i i i ii.. .I i i........ .. "

...

...

Analog

I liii? I Iii-I

I

20

10

0

-10

-20

-30

-40

-50

LAC

0.1 1 10 100 1,000 10,000

Frequency (Hz)
F-26 Radial Bearing 2Y Closed Loop Frequency Response Magnitude Comparison Plot

188

1

L1

.

.. . .

na o

DigitalA
- -"-.....·· - •,Teet c..... 1"....,. .*cal.

...... .l'...•...

i i i i i --ii' ' '
9 1 1 1 1 f l i p I I I I f e l I I f I f e l l f

-1
-

F.5 Disturbance Rejection Comparison

lo

0.1

0.01

0.001

0nnn0

0.1 1 10 100 1,000 10,000

Frequency (Hz)

F-27 Axial Bearing Disturbance Rejection Magnitude Comparison Plot

IOU

S10

0.1

0.01

AAnni

0.1 1 10 100 1,000 10,000

Frequency (1HO

F-28 Radial Bearing 1X Disturbance Rejection Magnitude Comparison Plot

189

........

4 4444- --- 4- *e 4' -,5i

.~.~.........~
. ' 4r r

. ...

. :j:j... .

- --- Analog
, ., , , ,,,, , , , ,,,

.Theoreidcal

...i~ ~ ~ ~ 111 1~i:! i iiiiii i iii
:~~~ ~ :·· : : '. :: : . , ::, :, :: :

__

' '""" ' ' '""" ' ' '""" ' ' '""" ' ' ' ""'' I

100

F-29 Radial Bearing 1Y Disturbance Rejection Magnitude Comparison Plot

10-

0.00 ' ' ": "' " "

0.001
0.1 1 10 100 1,000 10,000

Frequency (H)

F-30 Radial Bearing 2X Disturbance Rejection Magnitude Comparison Plot

190

10

1

0.1

0.01

0.001

....i i i ii i iii i~ iiil... .j i i li ii! i iii i i......... i i l

-Analog
Digita,...... :Theore c: ...- ·-- '-....... .. i•........

i i i iiiii~i i ii i " i! !! !

10 100

Frequency (1:1

0.1 1,00ooo 10o,00ooo

'U

M1

0.1

0.01

0.001

AAAvUI

0.1 1 10 100 1,000 10,000

Frequency (Hz)

F-32 Radial Bearing 2Y Disturbance Rejection Magnitude Comparison Plot

191

S--Analog
Digjtal. Theore.cal.... ...S.....

F.6 Closed Loop Frequency Response Performance Values

Parameter Rad 1X Rad 1Y

Analog Digital Theoretical Analog Digital Theoretical

Peak Gain (DB) 8.00 5.68 11.79 7.94 5.41 7.49

Bandwidth @ -3dB (Hz) 104.06 157.93 53.85 88.96 283.09 51.82

Gain @ 1000Hz (dB) -31.61 -14.35 -33.72 -33.73 -7.38 -33.53

Parameter Rad2X Rad2Y

Analog Digital Theoretical Analog Digital Theoretical

Peak Gain (DB) 4.19 4.84 9.13 8.78 5.53 10.51

Bandwidth @ -3dB (Hz) 152.46 326.15 77.35 167.88 249.09 68.63

Gain @ 1000Hz (dB) -25.19 -15.27 -30.68 -23.41 -9.47 -31.61

192

Parameter Axial

Analog Digital Theoretical

Peak Gain (DB) 8.06 12.50 6.33

Bandwidth @ -3dB (Hz) 134.01 195.09 91.64

Gain @ 1000Hz (dB) -32.82 -18.53 -25.55

F.7 Disturbance Rejection Performance Values

Parameter RadlX RadlY

Analog Digital Theoretical Analog Digital Theoretical

Peak Compliance 8.52 4.59 10.87 8.47 5.75 11.57
(Microns/Newton)

Compliance @ 1000Hz 0.031 0.139 0.003 0.088 0.082 0.003
(Microns/Newton)

Parameter Rad2X Rad2Y

Analog Digital Theoretical Analog Digital Theoretical

Peak Compliance 3.30 2.47 4.47 3.27 2.93 5.63
(Microns/Newton)

Compliance @ 1000Hz 0.027 0.051 0.003 0.023 0.117 0.003
(Microns/Newton)

193

Parameter Axial

Analog Digital Theoretical

Peak Compliance 24.14 3.80 4.11
(Microns/Newton)

Compliance @ 1000Hz 0.135 0.247 0.003
(Microns/Newton)

MMOIMEOVN

Appendix G

Dynamic Experimental Plots

G-1 System Block Diagram and Test Points

This appendix presents graphically the disturbance rejection plots of each axis when the
turbopump rotor is spinning at 15000 and 28000 RPM. The first section describes the specifics
of how the plots were obtained. The next two sections present the disturbance rejection graphs
for the analog and the digital controller respectively. The fourth section presents the analog, and
digital responses superimposed to aid in comparing the various controllers. The various plots
were obtained using the Hewlett Packard HP 3562A Dynamic System Analyzer using the
appropriate test points. Refer to Figure G-1 for the location of the test points in relation to the
system components. The final two sections present important performance measures obtained
from the plots in this appendix.

194

Driver
Sit Point

Test Point

Poartion
Teat Point

G.1 Graph Production Details

The disturbance rejection plots were obtained by inputting a swept sine wave having an
amplitude of 0.03 Volts and ranging from 0.1 to 10000 Hz. For both the analog and digital
controller, the swept sine wave was applied at the control signal adder and the output was
obtained by monitoring the position signal test point. The magnitude graph obtained using the
system analyzer has units of V/V which must be converted using the following conversion factor,

Axial Radial

2: I Sensor
2h 1 x 10m) * Conversionj

PON 2A m Factor

2

2 poN2A C, cosPI, 0(· M

Sensor

Conversion

Factor

The values of the conversion factor for each axis is shown below.

Axial RadlX Radl Y Rad2X Rad2Y

Conversion Factor 2.1704 1.9147 1.9147 0.9712 0.9712

Only the magnitude plots will be presented in the remainder of this appendix
convey little useful information. Of note are the spikes exhibited by both the

as the phase plots
analog and digital

controllers in the 11 Hz region when the rotor was spun at 28000 RPM. These spikes are due
to coupling between the upper and lower bearing. Under normal operation, the position signals
of the upper and lower bearings are sinusoidal waves having different amplitudes and frequencies.
However at the frequency of the spike, the position signals of both the upper and lower bearings
had the same amplitude and the same frequency.

195

I"

G.2 Disturbance Rejection at 15000 RPM

G.2.1 Analog Controller

G-2 Axial Bearing Analog Controller Disturbance Rejection Magnitude Plot at 15000 RPM

G-3 Radial Bearing IX Analog Controller Disturbance Rejection Magnitude Plot at 15000 RPM

196

JuU

10

0.1

0. 01

n nnr

0.1 1 10 100 1,000 10,000

Frequency (11

0.1

1001

.1 1 1 100oo 1,oo00 16,00
Frequency (HY)

... ..I .1 1
''' ''

... jl· '
· '

· '
· '

'I-:-'-:-:-:-:' ----- :---:·-:·-:-~ -:-:-:-:···--'---~· !-i-:-ff~!··---1--
'

"' ' ' """'

'''
'

"' ' ' """'
'

'

-'-·i-.-.-".-·--· -.---!--:··:-i;·'' ;i;i··-··i·-
'

"" ' ' '~""' ~ ' """
"' ' ' """

'
"' ' ' """'
'''

II I 1 1(11111. i I I-· - I I I· · ·I I I I I I l

"·:·i-i~ · ~i- ·····.......................··--i····~·-i-ii~i

Au

I
a 0.

IJ V

A Al

0.1 1 10 100 1,000 10,000

Frequency (Hz)

G-4 Radial Bearing lY Analog Controller Disturbance Rejection Magnitude Plot at 15000 RPM

G-5 Radial Bearing 2X Analog Controller Disturbance Rejection Magnitude Plot at 15000 RPM

197

....A

'U

11

0.1

0.01

n nAl

100 1,000 10,0000.1

Frequency (H)

'"IAJ

v~-----I··~-·r··· ~·1·lrl····-·1-·-1· · 1· ·.- r ~·1-1·1-·---~-·-r- ~·(-I-1111·-·-·r·- · I-

'

·

iiiii :::: ii ::::: : ::::::~::::: ::: :::::iiiii iiiii Irlli ::::
i i iii :::

V·VVI

G-6 Radial Bearing 2Y Analog Controller Disturbance Rejection Magnitude Plot at 15000 RPM

198

I1

0.1

S0.01

a Aa1

0.1 1 10 100 1,000 1o,ooo

Frequency (Hr)

iii iii i~~i\ i i i
..... ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~i "----; '-. -. -'-' '. '- •-.'-' .. -- ; •-1-. '- •- -- '-.-1 :'-.

•----:-:-- -, --- :---: ,: , ,,,,-i---:-- , ~ ~ :t~---- , , , ,,,, , , , , ,,,,

•---- s-r~.i , . ,,,, , . ,, ,. .i ,-- - - - , , .,. .- - :;

,- - - - : , , , ,, ,, , ,, , , , ,

, , , , , , , , , ,
,~:: i ,, , , ,,, ,_.. .. .•, ., ,. :..: .: -: - ., . . ,.•, . -:-: : •

. ~ jj .:
.~ ~

.~~~~~~~~

.~~ ~ . .: o

,,~ ~~~~~~~~~~~~~~~~~ ,, ,, :'',:, .: :,,,, ,:,:,,,, ,, ,,., . .
i

i i o

. ~~~ ~ ::

.~~~~~~~~~~~ . . .: :....
.~~~ .:

.~~:::

m11g 1111 Jt . .

G.2.2 Digital Controller

1U

0.01

A AI

0.1 1 10 100 1,000 10,000

Frequency (H)

G-7 Axial Bearing Digital Controller Disturbance Rejection Magnitude Plot at 15000 RPM

G-8 Radial Bearing 1X Digital Controller Disturbance Rejection Magnitude Plot at 15000 RPM

199

10

1
SI

0 9.1

A AV

0.1 1 10 100 1,000 1,000ooo

Frequency (HZ

__ I

·

... ,..... ~
.

· .
· .

...... ~..~..r.·. ~.·.rr'.....3I.. r..~. ~.t r.~.~~.....~...~.~. r.e I r rl....~r ~..~.. I.~.·.r r ~r.....r.. r..c.~. r.~

.. i i ii ii.. ..i i i ii ii.. .-i i i i i i !! ! ! ! ii i! -C··i·r· ·1 ·-r5··· -··-·-·I~I
0 ,,., ,

. . 0 , . ,. , 0 . , , ,, , , o , . . , 0

, . , , ,0 o o 0 , , . ° , o ° , ,,
,· , , ,, , ,L , . .°., °C ,I ,·· C I , ,, , 0 · 1) · L~I(I ~ C·~l CL~~

.~~~~~~~~~~ , , , o . ° ,

·(· ·)······ (· · · · · · · ·
(

· I I 1 11111·1 1 1 111·1)(

G-9 Radial Bearing 1Y Digital Controller Disturbance Rejection Magnitude Plot at 15000 RPM

lU

0.1

0IIIl
11 din

0.1 1 10 100 1,000 10,000
Frequency (H)

G-10 Radial Bearing 2X Digital Controller Disturbance Rejection Magnitude Plot at 15000 RPM

200

1U

O 0.1

'In
0.1 1 10 100 1,000 10,000

Frequency (H4)

S.

·
·

· · ·

'· · · · · · · · · ·
· · · ' · · · · · · ·

·
· ·
· '

~..... r..~..·..·. J.'.'.5······-··-/~ -·l··'·L~-'·'·'..·- · ~··.C·~·l·'. I~~I-··-~LR..'.. L · C.'.'. LCC·....5··~··'···· 1 · '

· "

'
· · ·, · I ,····II · I~···I···

I ·

... · . · i
4.. i~ i... j ••..

· ·· ·

.. ,.,,....... . ~........ ~..,..,.......
.

.. ,.... ,.,...... . .. ,......

·
· · · · ·- ~·-~-·C·)· ~·)··············-· ·- · I·-I··~-·-(~--·· · ~~·-·r·~·····~···· · nii~-~ -r-·-r·rr-----r--r- -I- -·-~··-·-I-

7 .,
· '

· '
· '

· '

'"

·' ·'
·'·'' 'I 1 1111111 1 1 1111111 1 1 1111111 1 1 1111111 1 1 111111

'U

o..
1

tO)I

A lt

0.1 1 10 100 1,000 10,000

Frequency (Hz)

G-11 Radial Bearing 2Y Digital Controller Disturbance Rejection Magnitude Plot at 15000 RPM

201

-

'"

:: iiiii i:::: ijjjii ii:::: iiii: :i~i~i i i iii i i : : i iiii ::: : : i i : : i i i ii
:::: :::·: ::

~_·__.l+-~--C-·- ~-:-:-:-:------·- -- l_-'_~_LI-·-·-'- _ _--~-·-5-1_1 i-~-i-~CII-----'-·. 1 ,'1
i I Iii~Ii~ i : : : i i i i i.rrri.....i ii~iiii :: :::i~:::: : ::::: : :

i i i i i iiii i i iiii ' i : :: ::: i I i i i i.-.·.?-----,·--r· -,-,·,·: : i i i i i ~i i:·: i i i i
:·· : : :::

: ::::: ii~i i i iii~ii ~ i i ~iiiii
::::: ::i iii : :::: j j i I :\: :

i i ii I : ::: : :
: ::: ::::: ::

ii~iiii ::::: : : : : : i i ii...:::: :::::: :::::
i iii : : :: : ::::::: : : : : ::::: : : : ::::::: :: :::: iiii

G.3 Disturbance Rejection at 28000 RPM

G.3.1 Analog Controller

luU

10

0.1

A 01

0.1 1 10 100 1,000 10,000

Frequency (H)

G-12 Axial Bearine Analog Controller Disturbance Reiection Magnitude Plot at 28000 RPM

IUu

1

0.1

wQwA
8*1

0.1 1 10 100 1,000 10,000

Frequency (Hg)

G-13 Radial Bearing 1X Analog Controller Disturbance Rejection Magnitude Plot at 28000 RPM

202

rrr

,,,

..

..

... ..

-- -- -- --..
..

........ ...

....... · · ·.... ·l~~t~..............
I.

· · ·

·
· · ·
· · ·

· · ·
· · · · · · · · · · · ~ · · · · · · · ·

· · ·
· ·
· ·

-----· I··~--C-C ~·l-CC·-·-.·-·---L· -'·~-L~-·-'-'-L -\---'-··C·)-I-CL 1I1·.... L--·'-·L-I-··CLIC-- --- C-·~··'--'- I-'·'·C· · '
·

· · · ~· · · · '····
'··

· · · · · · · · · · ·

·

'·'
I·· · ~ I II·,··\ I · · I'·'·

II 1 1~·111~
I··
· I·

I ·
I ·

I··
· · · · ·· ~I··· · , ~·····~

·
· · ~ · , · · · · · ·r ~ ~ ~~~r···iii\r\ · I~r\·····

~.....~..~..~.s r.~.·.r·......·...l .. ·. ~. ~ ~.·.·~.....~...c.~. ·. ·. · · · ·..... ·... ·..·. ~ .·.~··r r.~r-~~e ~- rr-rs~·. ·. ·. ·. ·.I·· I 1 · 11,~1·
· · · · · · · · · · ·

· · ·
·

· · ·
,·· · · · · · · · ·

I ·
I·· · · · · · · · ·
· · ·

G-1 Aia Barng Aa-myConroh isurane U-ecionMamiud Potat2800RP

G-14 Radial Bearing 1Y Analog Controller Disturbance Rejection Magnitude Plot at 28000 RPM

G-15 Radial Bearing 2X Analog Controller Disturbance Rejection Magnitude Plot at 28000 RPM

203

IUU

10

I

0.1

A Al
0.1 1 10 100 1,000 10,000

Frequency (Ht)

'U

11

0.1

0.01

1 o1o
g AV.VVA

100 1.000 10,0000.1

Frequency (Hz)

'~I """~ I`

.. -- --iii l i i i i i i i l i i i

'C·-~-·C-C~-I·C*·--- ·-······-···-·-· ~ -)·l~·_·_·~·_·C·~·· -I··~~·-·_·_1-)· · · 1··1)11 1 · · II(··(
(I

(· (1 1(11111 1 1 · 1)1(·1

I ·I' ' ' ' '". ' I . n,- , , , , , , "! I . , , , , ,

G-16 Radial Bearing 2Y Analog Controller Disturbance Rejection Magnitude Plot at 28000 RPM

204

10I'U

11

0.1

0.01

A AI

0.1 1 10 100 1,000 10,000
Frequency (14)

I -

'" ""'

G.3.2 Digital Controller

G-17 Axial Bearing Digital Controller Disturbance Rejection Magnitude Plot at 28000 RPM

'IU

0.01

0001l
0.1 1 10 100 1,000 10,000

Frequency (Hz)

G-18 Radial Bearing 1X Digital Controller Disturbance Rejection Magnitude Plot at 28000 RPM

205

'U

AAI

011
aJ 0.1

* *

0.1 1 10 100 1,000 10,000

Frequency (Hz)

,i·c-:s~
iii~~i~....i ii i ..i i .

i .@ o 6 , 4 4 ° "
mJF 11 Je

J , -P..... . . .•

'
'

'''
· - · · -~ · - ~- -C · I· ~··CCI_ - - - · · · · · - · · -)- -'·· ~····~- - · · · ~- · · C · ~· · · C · · ·1· · - · · 1 - · · · · · 1 · ~ · '·C L L· · - · · · C · · ~- -C · · · · -·

· · '

I·· 1 1 1·1·1··

)
·

· · ·
)

G-19 Radial Bearing 1Y Digital Controller Disturbance Rejection Magnitude Plot at 28000 RPM

G-20 Radial Bearing 2X Digital Controller Disturbance Rejection Magnitude Plot at 28000 RPM

206

JUU

10

S0.1

f0I
h l 0.1 1 10 100 1,000 10,000

Frequency (HZ

10

0.1

10.01

Frequency (Hz)

IAA

:::::: '""'
:::::: :::::: ::::

::::: : ::::::: : : ::::::: : : ::::::: : ::::::

iiiiii i i iiiiiii i ~ iiiiiii i i iiiiiii i i iiiiii
::::: : : :::::::

:::::: : ::::::: : :::::::
::::: ::::: ::::-·····C- ~-·C·'-~·'.C·-·-··- ··'···l·-····-L ~·'·'~.....~ . C. J·I-··L~II····-I·- ·'··L·C : : LLC·····C·-~-
: :::: : :::

: :
: ::::

::::: ::::: ::::: ::::: : :i i i : :::::: ::~ :::::::::: ::::: : : ::::::: : : ::::::: :::: '"::::: ::.... ::::::::: : /r ::::::: : : : ::::::\/\: : ::::::: : : ::::::
_-----;-.,. ;-:-;;:--·--~--;- -:- -:-; ;-:-:~. -...;...;.;.;.:.;;; ;..-..a---:--:·~ ·:-;;;;--·-·;--;- -:- -:-;·:-:-:·

: :::::
::::: ::::: :I : ~::\:::: iiiii:::::: ::::: :::: : :% : :::: :::::: :::::::: ::::::::: :::::::::: ::::::::: :::::

: :::: :::
i 'i~c ci'''~''i~'~~''i' 'i` I : : : : J. i-iiiii i i\i i
::::: :::: iiiiii iiii~i

: ::::
:::::: : ::::::: : : ::::::: : :::::::
::::: : : ::::::: : : ::::::: : : ::::::: : ::::::
::::: ::::" ::::: :::::.. :::: :::::::::: :::::: :::::

11 111

--

0.01-0.1 10O0O 1,0ooo00 10o,00ooo

JU

1

U 0.1

A A

0.1 1 10 100 1,000 10,000

Frequency (Hz)

G-21 Radial Bearing 2Y Digital Controller Disturbance Rejection Magnitude Plot at 28000 RPM

207

ii' ::.. ::: i : ::: : : i iiii i : : II: ::::: ::::::::: : ::::::::: :::::: :::: i ii ij:j
::::ii j ijii

::::: i i i~ ::::: i i ii.,::: :::::
iiiii I ~i~i i~.iiiij i i iii.~i

----'--~--~-~-i-:'~---j/~--i--ii-i-i:--- :::i ::::::::~ : ::::::: : ::::::: i iii: ::
:::ji ::iii ' i iii

:iij : :iii iiii i : :::
-5·-r ..i.~.~... ...~... ~..~.,i.~,i.~.~,i.....i·...~.,i..i.,..i, i i i i : : i:::: ii::: ':::: iiiii:::: ::: :::::

:::: :::::: ·:::: ii:ii:::: .::::: iijijj i i i
i iijjii j i jiiiiij i i iiijj
:::: i i i i 1 i::::: : : ::::::i ':iii

G.4 Disturbance Rejection Comparison at 15000 RPM

G-22 Axial Bearing Disturbance Rejection Magnitude Comparison Plot at 15000 RPM

G-23 Radial Bearing IX Disturbance Rejection Comparison Plot at 15000 RPM

208

*.,~::::: ---....:::- --- . ·- · ·----· L···· I···II·

* .. ~-.

JUU

10

o.1

O.01

..i i i i i

. ° 1 . 1AnalogDigitalS: :I !! !
..iii

0.1 1 10 100 1,000 10,000

Frequency (Hr)

...............
V

//i i i i~ ii i i SIii i: : :::::: /!'•
i i i ii! : : ::•

': : : '7 . ::/ . , j . . , . .' ' .' ,' '.
.' . : : . / "'

.-

- - - -Analogr

'U

I

0.1

A01

0.1 1 10 100 1,000 10,000

Frequency (HO)

IAIL

'^"" '

j
::::: I ~~ rt
: :::: i i i ii i i iiijiii
i :::: ~iiii
i i iii i i i : : :
: : i i i i i ::: : : ::::: i i

1~ 111

LU

1

1 0.1

A0A

0.1 1 10 100 1,000 10,000

Frequency (Hz)

G-24 Radial Bearing 1Y Disturbance Rejection Magnitude Comparison Plot at 15000 RPM

1

0.1

0.010001,

0.1 1 10 100 1,000 10,000

Frequency (iz)

G-25 Radial Bearing 2X Disturbance Rejection Magnitude Comparison Plot at 15000 RPM

209

iii. _

/:: .i

-. --- Analog
Digital

-I-m

. \.

-··-- C··--' '· -i~. ';. '~...~,.
.

"

. .* Analog
z......-..-.. -- Di t l i

1 1 1111111 1 1 1111111 1 1 1111111 1 1 1111111 1 1 111111

'"

: : : :1

1 1 1111(11 1 1 1111111 1 1 1111111 1 1 1111111 1 1 111111

G-26 Radial Bearing 2Y Disturbance Rejection Magnitude Comparison Plot at 15000 RPM

210

111

0.1

S0.01

A hAA

0.1 1 10 100 1,000 10,000

Frequency (Hr)

i~~ K1 -, ~.
-.. ..2 s:•• ! iii ... i iii• •rrr• i I i .,,, i /

..... i..j..i i- -iis ··.iii v..i. -
i: 1:

N I

.... ~..~.. c. c~.·. rc·......~... r..l.

r~r·r··

G.5 Disturbance Rejection Comparison at 28000 RPM

100

10

I
0.1

0i
0.01

A AAI
0.1 1 10 100 1,000 10,000

Frequency (Hz)

G-27 Axial Bearing Disturbance Rejection Magnitude Comparison Plot at 28000 RPM

'UU

I 10

I 1

I 0.1

a
0.01

0 1

0.1 1 10 100 1,000 10,000

Frequency (Hz)

G-28 Radial Bearing 1X Disturbance Rejection Magnitude Comparison Plot at 28000 RPM

211

_-, , 0 , , , , ,
.. ' ' ' '

S: .:../2 .\:. :::: : : :::::::
.. r....

~~::,
L.:.: .:.:.... , . :. .: ::::.... :.. : , •:::.~: .. '..:... . : '.: ,, , ..'.:." : 'I"• •;" : :'•" ii• "" : :" :"_-• -:- -•-•i~-••i. ...i- • - . ..

- - i---! - p '---i i. ...-- --.- .-.•

Anualog
' ~Digkdr

I-·---- ·J·- ···:-- ··-:.............··:

__

r:. .:. .i .: . ::... ..

,. -:, J J - I• 1 1. 1, L... .,

---Analog
Digial

..,' '.'.. , ', ' ',',. .
......

° .r
..

t .°...

. • , i.. ..i -i -i ! oiii-: -:o :: •i iii.. .i -io i- --i ..:.. .i --- io- i-- i ... o- -i -- --ii
i i ! i i i ii! i i i i i i i i i ! i i i iii :. :. :: ::..: : '. .

'•An'^"

1
I t 1111111 1 1 1111111 1 1 111111) 1 1 1111111 1 1 1(1111

w **r

G-29 Radial Bearing 1Y Disturbance Rejection Magnitude Comparison Plot at 28000 RPM

10

0

20.1

0.001
0.1 1 10 100 1,000 10,000

Frequency (Hz)
G-30 Radial Bearing 2X Disturbance Rejection Magnitude Comparison Plot at 28000 RPM

212

JUU

100

10 .
/, ~ ,, `P -.-•- !-i•:-:--•:--- .. -;:- :: -:: i!-:-i!-- !-'-i--i:;:J -- (t.-----; • i --! -:--:-:-:-:-i

0.1

0.0.1
A I

Frequency (HZ)

...... Digital ~ ii. i~~i il

J

i1

100 1,000 10o,00ooo

. 0.1

S0.01

n 1n3r

10,0001,0000.1 1

Frequency (Hz)

G-31 Radial Bearing 2Y Disturbance Rejection Magnitude Comparison Plot at 28000 RPM

213

10 0
V·VVI

G.6 Disturbance Rejection Performance Values at 15000
RPM

Parameter RadiX RadlY

Analog Digital Analog Digital

Peak Compliance (Microns/Newton) 7.37 5.29 7.22 6.43

Compliance @ 1000Hz (Microns/Newton) 0.123 0.615 0.069 0.689

Parameter Rad2X Rad2Y

Analog Digital Analog Digital

Peak Compliance (Microns/Newton) 3.51 2.72 3.63 3.26

Compliance @ 1000Hz (Microns/Newton) 0.037 0.030 0.086 0.179

214

Parameter Axial

Analog Digital

Peak Compliance (Microns/Newton) 24.45 7.00

Compliance @ 1000Hz (Microns/Newton) 0.121 0.121

G.7 Disturbance Rejection Performance Values at 28000
RPM

Parameter RadiX RadlY

Analog Digital Analog Digital

Peak Compliance (Microns/Newton) 12.02 9.95 11.34 12.18

Compliance @ 1000Hz (Microns/Newton) 0.027 0.203 0.060 0.184

Parameter Rad2X Rad2Y

Analog Digital Analog Digital

Peak Compliance (Microns/Newton) 6.13 5.36 6.71 6.67

Compliance @ 1000Hz (Microns/Newton) 0.028 0.0175 0.036 0.759

215

Parameter Axial

Analog Digital

Peak Compliance (Microns/Newton) 22.73 6.94

Compliance @ 1000Hz (Microns/Newton) 0.027 0.277

Appendix H

Assorted Program Listings

The appendix provides the listings of the programs used to determine the values of the
controller parameters and to model the theoretical system. Where speed was essential and
graphical presentation of the data was unnecessary, the programs were written in C. Otherwise
the programs were written as Matlab scripts. This appendix is comprised of four sections. The
first section lists programs used to determine the optimal sampling rate. This section also lists
programs that provided important system response values such as maximum compliance,
controller bandwidth, and maximum closed loop gain over a range of values for damping ratio,
natural frequency, and feedback gain. The second section lists programs used to display the
actual system responses obtained from the system analyzer and the theoretical responses predicted
by the model. The third section lists programs that return different aspects of the components
of the theoretical model. The last section lists certain miscellaneous programs which were used
in one form or another during the course of designing or analyzing the controller and its
response.

H.1 Controller Parameter Determination Programs

This section lists programs used to determine the optimal sampling rate. Also listed here
are the programs that provided the large file of system response values such as bandwidth,
maximum compliance, and maximum closed loop gain given the controller design parameters of
damping ratio, natural frequency, and feedback gain. These programs were run in a specific
order with one program building on the results of the previous ones. The listings below are
presented in the order in which they were initially run.

H.1.1 limits.c

The program recursively computes the eigenvalues of the closed loop system for a range
of values of sampling rate, damping ratio, natural frequency, and feedback gain. From the
eigenvalue data, the stability of the system is determined and the results are saved in a binary
character array in an effort to conserve disk space.

#include <stdlib.h>

216

#include <stdio.h>
#include <string.h>
#include <math.h>

#ifdef NMALLOC
#include "nmalloc.h"
#endif

#define RADIX 2.0
#define NR_END 1
#define MAXM 8

#define SIGN(a,b) ((b) >= 0.0 ? fabs(a) : -fabs(a))
#define MYERR le-8
#define OVERSHOOT 0.1
#define MAXSETTLE 0.6
#define BHATSIZE 100
#define DAMP_SIZE 19
#define FREQSIZE 100
#define SAMPSIZE 50

void DigStabFunc(double Al, double A2, double P, double Q, double newt,
double a22, double a21, double *J1, double *J2, double *J3,
double *J4, double *J5, double *M1, double *M2, double *M3,
double *M4, double *N1, double *N2, double *N3, double *N4);

int DigReference(double bfreq, double efreq, double dfreq, double bT,
double eT, double dT, double initx, double initu, double maxt,
double **settle, int *n);

int DigStep(int bearing, double b, double damp, double freq, double T,
double initx, double initu, double maxt, double P, double Q,
double Al, double A2, double **y, double **u, double **t, int *n);

int zrhqr(double a[], int m, double rtr[], double rti[]);
void balanc(double **a, int n);
int hqr(double **a, int n, double wr[], double will);
double **matrix(long nrl, long nrh, long ncl, long nch);
void free_matrix(double **m, long nrl, long nrh, long ncl, long nch);

void main(int argc, char **argv)
{
int i, j, k, 1, m, begin;
int curcols, currows, ebara, axis;
int ibeg, jbeg;
char buffer[2000], *filename;
FILE *fp;
double P, Q, Al, A2;
double bhat, freq, damp, newt;
double a21, a22;

#ifdef STEP
int setsize;
double *settle;
double *y, *u, *t, initx, initu, over, set;

#endif
double subtot[9], rroots[9], iroots[9];
double J1, J2, J3, J4, J5, M1, M2, M3, M4, N1, N2, N3, N4;

ebara = 0;
begin = axis = 0;

if(argc < 2 jj argc > 6)
fprintf(stderr, "Syntax error\n");
fprintf(stderr, "Syntax: limits filename [-a n] [-b m]\n");
fprintf(stderr, 0 where: filename - binary array filename\n");
fprintf(stderr, " -b n -> start integer [0-10000]\n");
fprintf(stderr, " -a m -> bearing axis [0-4]\n");
exit(l);

for(i=l; i<argc; i++)

217

__ _ _II·____I i__~l__l_____·

if(i == 1)
filename = argv[1];

else if(argv[i][0] == '-')

if(argv[i][1] == 'b')
begin = atoi(argv[i+1]);

else if(argv[i][1] == 'a')
axis = atoi(argv[i+1]);

)

curcols = (SAMP_SIZE * DAMP_SIZE);
currows = 0;

if(begin)

if((fp = fopen(filename, "r+")) == NULL)
{
fprintf(stderr, "Unable to open file \"%s\" (r+)\n", filename);
exit(l);

}
currows = begin;

else

if((fp = fopen(filename, "w+")) == NULL)

fprintf(stderr, "Unable to open file \"%s\" (w+)\n", filename);
exit(l);

fseek(fp, OL, SEEK_SET);

if(!fwrite((void *) &currows, sizeof(int), 1, fp))
{
fprintf(stderr, "row data write failed\n");
fclose(fp);
exit(l);

)
if(!fwrite((void *) &curcols, sizeof(int), 1, fp))
{
fprintf(stderr, "columns data write failed\n");
fclose(fp);
exit(l);

}

if(ebara)

switch(axis)

default:
case 0:
P = 11.081;
Q = 27701.879;
Al = 1666.622;
A2 = 1700.000;
break;

case 1:
P = 10.278;
Q = 41113.653;
Al = 14222.428;
A2 = 4370.000;
break;

case 2:
P = 10.278;
Q = 41113.653;
Al = 14575.775;

218

A2 = 4030.000;
break;

case 3:
P = 20.263;
Q = 81050.754;
Al = 4027.457;
A2 = 2450.000;
break;

case 4:
P = 20.263;
Q = 81050.754;
Al = 4108.477;
A2 = 2600.000;
break;

else
{
switch (axis)

{
default:
case 0:

P = 7.990;
Q = 22739.569;
Al = 11097.006;
A2 = 13310.0;
break;

case 1:
P = 7.123;
Q = 7737.770;
Al = 4619.584;
A2 = 13130.0;
break;

case 2:
P = 8.296;
Q = 8882.644;
Al = 4558.848;
A2 = 13080.0;
break;

case 3:
P = 16.926;
Q = 35530.576;
Al = 3863.909;
A2 = 11140.0;
break;

case 4:
P = 15.113;
Q = 33201.349;
Al = 4212.3;
A2 = 12290.0;
break;

#ifdef STEP
switch (axis)

{
default:
case 0:

initx = -0.0002;
initu = 1.167;
break;

case 1:
case 2:
case 3:
case 4:

initx = 0.0001;
initu = 0.0;
break;

219

}
#endif

/*
* newt = [1000:1000:50000];
* damp = [[0.1:0.1:0.9] [1:1:10]];
* freq = [10:10:1000];
* bhat = [10:10:1000];
*/

subtot[8] = 1.0;

#ifdef STEP
/* get maximum settling times for given frequencies */
if(DigReference(10.0, 1000.0, 10.0, 1000.0, 50000.0, 1000.0,

0.0, 1.0, MAXSETTLE, &settle, &setsize))
{
fprintf(stderr, "Error encountered in DigReference - limits.\n");
exit(l);

}
#endif

if(begin)
{

fseek(fp, (currows * curcols * sizeof(char)) + (2 * sizeof(int)),
SEEK_SET);

ibeg = (int) (currows / 100);
jbeg = (int) (currows % 100);

)
else

ibeg = jbeg = 0;

begin = 0;
for(i=ibeg; i<BHAT_SIZE; i++) /* bhat loop */
{
bhat = (10.0 + (i * 10.0));
for(j=jbeg; j<FREQ_SIZE; j++) /* freq loop */
{
freq = (10.0 + (j * 10.0));
a21 = freq * freq;
for(k=0; k<SAMP_SIZE; k++) /* time delay loop */
{
newt = 1000.0 + (k * (1000.0));
for(l=0; 1<DAMP_SIZE; 1++) /* damp loop */

{
if(l < 10)
damp = ((1 + 1) * 0.1);

else
damp = (1 - 9.0);

a22 = 2.0 * damp * freq;
DigStabFunc(Al, A2, P, Q, newt, a22, a21, &J1, &J2, &J3,

&J4, &J5, &M1, &M2, &M3, &M4, &Nl, &N2, &N3,
&N4);

subtot[7] = ((J1*M2)/bhat)+(N2-1.0);
subtot[6] = (((J1*M3)+(J2*M2))/bhat)+(N3-N2);
subtot[5] = (((J1*M4)+(J2*M3)+(J3*M2))/bhat)+(N4-N3);
subtot[4] = (((J2*M4)+(J3*M3)+(J4*M2))/bhat)-N4;
subtot[3] = ((J3*M4)+(J4*M3)+(J5*M2))/bhat;
subtot[2] = ((J4*M4)+(J5*M3))/bhat;
subtot[l] = (J5*M4)/bhat;

if(zrhqr(subtot, 8, rroots, iroots))
{
fprintf(stderr, "Eigenvalue calculation problem ");
fprintf(stderr, "(i = %d j = %d k = %d 1 = %d)\n",

i, j, k, 1);
for(m=1; m<=8; m++)
{
iroots[m] = 0.0;

220

rroots[m] = 2.0;

for(m=l; m<=8; m++)
if((rroots[m]*rroots[m])+(iroots[m]*iroots[m]) > 1.0)
break;

if(m == 9)
{

#ifdef STEP
if(DigStep(axis, bhat, damp, freq, 1.0/newt, initx,

initu, 1.1*settle[(k*FREQ_SIZE)+j], P, Q, Al,
A2, &y, &u, &t, &setsize))

{
fprintf(stderr, "DigStep calculation problem ");
fprintf(stderr, "(i = %d j = %d k = %d 1 = %d)\n",

i, j, k, 1);
buffer[(k*DAMP_SIZE)+l] = 2;

)
over = initx;
set = 1.0;
for(m=0; m<setsize; m++)
{
if(initx > 0.0 && y[m] < over)
over = y[m];

else if(initx < 0.0 && y[m] > over)
over = y[m];

if(fabs(y[m]) > fabs(0.05 * initx))
set = 1.0;

else if(set == 1.0)
set = tim];

#if 0
fprintf(stderr, "%f %f\n", over, set);

#endif
if(fabs(over) < fabs(OVERSHOOT * initx) && set != 1.0)
{
buffer[(k*DAMP_SIZE)+1] = 1;
begin++;

)
else
buffer[(k*DAMP_SIZE)+1] = 2;

free(y);
free(u);
free(t);

#else
buffer[(k*DAMPSIZE)+l] = 1;
begin++;

#endif

else
buffer[(k*DAMP_SIZE)+l] = 2;

)
if(fwrite((void *) buffer, sizeof(char), curcols, fp) != curcols)

fprintf(stderr, "data write failed\n");
fclose(fp);
exit(l);

currows++;

fseek(fp, OL, SEEKSET);
if(!fwrite((void *) &currows, sizeof(int), 1, fp))

{
fprintf(stderr, "row data write failed\n");
fclose(fp);
exit(l);

221

if(!fwrite((void *) &curcols, sizeof(int), 1, fp))
{

fprintf(stderr, "columns data write failed\n");
fclose(fp);
exit(l);

)
fflush(fp);
fseek(fp, (currows * curcols * sizeof(char)) + (2 * sizeof(int)),

SEEK_SET);

if(jbeg)
jbeg = 0;

printf("%3d of %3d (%d)\n", i+1, BHAT_SIZE, begin);

fclose(fp);
exit(0);

void DigStabFunc(double Al, double A2, double P, double Q, double T,
double a22, double a21, double *J1, double *J2, double *J3,
double *J4, double *J5, double *Ml, double *M2, double *M3,
double *M4, double *N1, double *N2, double *N3, double *N4)

(
double K1, K2, K3, K4, L1, L2, L3, L4, T1, T2, sq;

T1 = 1/T;
T2 = T1*T1;
sq = sqrt(Q);

#ifdef BACKWARD
/* central difference acceleration and backward difference velocity */
J1 = (3.0/(4.0(T2)))+((3.0*a22)/(2.0*Tl))+(a21);
J2 = (-4.0/(4.0(T2)))-((4.0*a22)/(2.0*TI));
J3 = (-2.0/(4.0(T2)))+(a22/(2.0*TI));
*J4 = 1.0/(T2);
J5 = -1.0/(4.0(T2));

#else
/* central difference acceleration and velocity */
J1 = (1.0/(4.0(T2)))+(a22/(2.0*T1))+(a21);
*J2 = 0.0;
J3 = (-2.0/(4.0(T2)))-(a22/(2.0*TI));
*J4 = 0.0;
J5 = 1.0/(4.0(T2));

#endif

K1 = (-AI*P)/(A2*Q);
K2 = (-Al*P)/(A2*((A2*A2)-Q));
K3 = (AI*P)/(2.0*Q*(A2-sq));
K4 = (AI*P)/(2.0*Q*(A2+sq));

L1 = exp(-A2*T1);
L2 = exp(-sq*T1);
L3 = exp(sq*T1);
L4 = 1;

*M1 = 0;
M2 = (-KI(Ll+L2+L3))-(K2*(L2+L3+L4))-(K3*(LI+L3+L4))-(K4*(LI+L2+L4));
M3 = (KI((LI*L2)+(L3*(Ll+L2))))+(K2*((L2*L4)+(L3*(L2+L4))))+

(K3*((L*L4) + (L3* (L+L4)))) + (K4* ((L*L4) + (L2*(L+L4))));
*M4 = (-Kl*LI*L2*L3)-(K2*L2*L3*L4)-(K3*Li*L3*L4)-(K4*LI*L2*L4);

*N1 = 1.0;
*N2 = -LI-L2-L3;
*N3 = (LI*L2)+(LI*L3)+(L2*L3);
*N4 = -(LI*L2*L3);

222

int zrhqr(double a[], int m, double rtr[], double rti[l)
{
int j, k;
double **hess, xr, xi;

hess = matrix(1,MAXM,1,MAXM);
if(m > MAXM II a[m] == 0.0)

{
fprintf(stderr, "bad args in zrhqr\n");
free_matrix(hess, 1, MAXM, 1, MAXM);
return(1);

for (k=l; k<=m; k++)
{
hess[l] [k] = -a[m-k]/a[m];
for(j=2;j<=m;j++)
hess[j] [k] = 0.0;

if(k != m)
hess(k+1][k] = 1.0;

balanc(hess, m);
if(hqr(hess,m,rtr,rti))

{
free_matrix(hess, 1, MAXM, 1,MAXM);
return (1);

for(j=2; j<=m; j++)
{
xr = rtr[j];
xi = rti[j];
for(k=j-1; k>=l; k--)

{
if(rtr[k] <= xr)

break;
rtr[k+l] = rtr[k];
rti[k+l] = rti(k];

rtr[k+l] = xr;
rti[k+1] = xi;

free_matrix(hess,1,MAXM,1,MAXM);
return (0);

void balanc(double **a, int n)
{

int last,j,i;
double s,r,g,f,c,sqrdx;

sqrdx = RADIX*RADIX;
last = 0;
while(last == 0)

{
last = 1;
for(i=1; i<=n; i++)

{
r = c = 0.0;
for(j=1; j<=n; j++)

if(j != i)
{

c += fabs(a[j] [i]);
r += fabs(a[i][j]);

if(c && r)
{

g = r/RADIX;

223

f = 1.0;
s = c+r;
while (c<g)

{
f *= RADIX;
c *= sqrdx;

g = r*RADIX;
while(c > g)

f /= RADIX;
c /= sqrdx;

if((c+r)/f < 0.95*s)
{
last = 0;
g = 1.0/f;
for(j=l; j<=n; j++)

a[i][j] *= g;
for(j=l; j<=n; j++)

a[j][i] *= f;

int hqr(double **a, int n, double wr[], double wi[])

int nn, m, 1, k, j, its, i, mmin;
double z, y, x, w, v, u, t, s, r, q, p, anorm;

anorm = fabs(a[l] [1]);
for(i=2; i<=n; i++)

for(j=(i-l); j<=n; j++)
anorm += fabs(a[i][j]);

nn=n;
t=0.0;
while(nn >= 1)

{
its = 0;
do

for(l=nn; 1>=2; 1--)
{
s = fabs(a[l-l] [l-l])+fabs(a[l][1]);
if(s == 0.0)

s=anorm;
if((double)(fabs(a[l][1-11) + s) == s)
break;

x = a[nn][nn];
if(l == nn)

{
wr[nn] = x+t;
wi[nn--] = 0.0;

else

y = a[nn-l][nn-l];
w = a[nn][nn-1]*a[nn-1][nn];
if(l == (nn-l))

{
p = 0.5*(y-x);
q = p*p+w;
z = sqrt(fabs(q));
x += t;
if(q >= 0.0)

{

224

z = p+SIGN(z,p);
wr[nn-1] = wr[nn] = x+z;
if(z)
wr[nn] = x-w/z;

wi[nn-1] = wi[nn] = 0.0;
)

else

wr[nn-1] = wr[nn] = x+p;
wi[nn-1] = -(wi[nn] = z);

}
nn -= 2;

}
else

{
if(its == 30)
{
fprintf(stderr, "Too many iterations in hqr\n");
return (1) ;

}
if(its == 10 11 its == 20)

(
t += x;
for(i=1; i<=nn; i++)

a[i] [i] -= x;
s = fabs(a[nn] [nn-l])+fabs(a[nn-1] [nn-2]);
y = x = 0.75*s;
w = -0.4375*s*s;

}
++its;
for(m=(nn-2); m>=l; m--)

{
z = a[m] [m];
r = x-z;
s = y-z;
p = (r*s-w)/a[m+l] [m]+a[m][m+l];
q = a[m+l] [m+l]-z-r-s;
r = a[m+2] [m+l];
s = fabs(p)+fabs(q)+fabs(r);
p /= s;
q /= s;
r /= s;
if(m == 1)
break;

u = fabs(a[m][m-l])*(fabs(q)+fabs(r));
v = fabs(p)*(fabs(a[m-1] [m-1])+fabs(z)+fabs(a[m+] [m+1]));
if((double)(u+v) == v)
break;

}
for(i=m+2; i<=nn; i++)
{
a[i][i-2] = 0.0;
if(i != (m+2))

a[i] [i-3] = 0.0;
}

for(k=m; k<=nn-1; k++)
{
if(k != m)

{
p = a[k] [k-l];
q = a[k+1] [k-1];
r = 0.0;
if(k != (nn-1))
r = a[k+2] [k-1];

if((x = fabs(p)+fabs(q)+fabs(r)) != 0.0)
{

p /= x;
q /= x;
r /= x;

225

_ ___ ..___^

if((s = SIGN(sqrt(p*p+q*q+r*r),p)) != 0.0)

if(k == m)
{
if(l != m)

a[k][k-l] = -a[k][k-l];
}

else
a[k][k-l] = -s*x;

p += s;
x = p/s;
y = q/s;
z = r/s;
q /= p;
r /= p;
for(j=k; j<=nn; j++)

{
p = a[k][j]+q*a[k+l] [j];
if(k != (nn-l))

{
p += r*a[k+2][j];
a[k+21[j] -= p*z;

)
a[k+l][j] -= p*y;
a[k][j] -= p*x;

mmin = nn<k+3 ? nn : k+3;
for(i=l; i<=mmin; i++)

{
p = x*a[i] [k]+y*a[i][k+l];
if(k != (nn-l))

{
p += z*a[i][k+2];
a[i] [k+2] -= p*r;

a[i][k+l] -= p*q;
a[i][k] -= p;

)

I
} while(l < nn-1);

return(0);

double **matrix(long nrl, long nrh, long ncl, long nch)
{
long i, nrow = nrh-nrl+l, ncol = nch-ncl+l;
double **m;

/* allocate pointers to rows */
if((m = (double **) malloc((size_t) ((nrow+NR_END) * sizeof(double *))))

== NULL)
{
fprintf(stderr, "allocation failure 1 in matrix()\n");
exit(l);

}
m += NREND;
m -= nrl;

/* allocate rows and set pointers to them */
if((m[nrl] = (double *) malloc((sizet)((nrow*ncol+NR_END)*sizeof(double))))

== NULL)

fprintf(stderr, "allocation failure 2 in matrix()\n");

226

exit (1);

m[nrl] += NR_END;
m[nrl] -= ncl;

for(i=nrl+l; i<=nrh; i++)
m[i]=m[i-l]+ncol;

return(m);

void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)

free((char *)
free((char *)

(m[nrl]+ncl-NR_END));
(m+nrl-NR_END));

int DigStep(int bearing, double b, double damp, double freq, double T,
double initx, double initu, double maxt, double P, double Q,
double Al, double A2, double **y, double **u, double **t, int *n)

i, j, k, ttsize, uptsize;
ble a22, a21, g, divs, rT, maxx;
ble *tt, *upt, *ty, *tu, cx[5];
ble px[2], pxdot[2], am[5], vm[3], xm, cuT,
ble ampx, ampu, accel, vel, ampxdot, maxu;
ble rkt[2][4], rk[4];

[y, u, t] = DigStep(bearing, b, damp, freq,
bearing - vacuum pump bearing number

0 = axial bearing
1 = radial 1X bearing
2 = radial 1Y bearing
3 = radial 2X bearing
4 = radial 2Y bearing

b - controller gain (b hat)
damp - controller damping ratio
freq - controller natural frequency
T - controller sampling interval
initx - initial position
initu - initial control
maxt - maximum response time

cu;

T, initx, initu, maxt)

a22 = 2.0 * damp * freq;
a21 = freq * freq;
g = 9.807;
divs = 10.0;
rT = T / divs;
(*u) = (*y) = (*t) = NULL;
(*n) = 0;

ttsize = ((int) ((maxt / T) + 0.5)) + 1;

if((tt = (double *) calloc(ttsize, sizeof(double))) == NULL)
{
fprintf(stderr, "Out of memory error - DigStep.\n");
return(l);

uptsize = ((int) ((maxt / rT) + 0.5)) + 1;

if((upt = (double *) calloc(uptsize, sizeof(double))) == NULL)
{
fprintf(stderr, "Out of memory error - DigStep.\n");
free(tt);

227

int
dou
dou
dou
dou:
dou
/*

return(1);

if((ty = (double *)
{
fprintf(stderr,
free(tt);
free(upt);
return(1);

)

if((tu = (double *)
{
fprintf(stderr,
free(tt);
free(upt);
free(ty);
return(1);

}

calloc(uptsize, sizeof(double))) == NULL)

"Out of memory error - DigStep.\n");

calloc(uptsize, sizeof(double))) == NULL)

"Out of memory error - DigStep.\n");

for(i=1; i<uptsize; i++)
upt[i] = upt[i-1] + rT;

for(j=0,i=10; i<uptsize; i+=10)
tt[j++] = upt[i];

for(i=0; i<5; i++)
cx[i] = initx;

if(!bearing)
{
maxx = 0.0002;
maxu = 3.0;

else
{

maxx = 0.0001;
maxu = 2.0;

px[1] = pxdot[0] = pxdot[l] = 0.0;
px[O] = initx;

#ifdef BACKWARD
am[O] = 3.0; am[1] = -4.0; am[2] = -2.0; am[3] = 4.0; am[4] = -1.0;

#else
am[0] = 1.0; am[l] = 0.0; am[2] = -2.0; am[3] = 0.0; am[4] = 1.0;

#endif
for(i=0; i<5; i++)

am[i] /= (4.0 * (T * T));

#ifdef BACKWARD
vm[0] = 3.0 * a22; vm[l] = -4.0 * a22; vm[2] = a22;

#else
vm[0] = a22; vm[l] = 0.0; vm[2] = -a22;

#endif
for(i=0; i<3; i++)
vm[i] /= (2.0 * T);

xm = a21;
cuT = cu = initu;

ampx = ampu = initu;

rk[0] = rk[3] = 1.0/6.0;
rk[1] = rk[2] = 1.0/3.0;

for(j=i=0; i<uptsize; i++)
{

if(upt[i] == tt[j])

228

/* update controller position variables */
for(k=4; k>0; k--)

cx[k] = cx[k-l];
cx[O] = px[0];
/* determine control signal */
for(accel=0.0,k=0; k<5; k++)
accel += (am[k] * cx[k]);

for(vel=0.0,k=0; k<3; k++)
vel += (vm[k] * cx[k]);

cu = cuT - ((accel + vel + (xm*cx[0]))/b);
if(cu > maxu)

cu = maxu;
else if(cu < -maxu)

cu = -maxu;
cuT = cu;
j++;

/* determine amplified control */
rkt[0][0] = (-A2*ampx) + (Al*cu);
ampxdot = ampx + (rkt[0][01*(rT/2));
rkt[0][1] = (-A2*ampxdot) + (Al*cu);
ampxdot = ampx + (rkt[0][l]*(rT/2));
rkt[0][2] = (-A2*ampxdot) + (Al*cu);
ampxdot = ampx + (rkt[0] [2]*rT);
rkt[0][3] = (-A2*ampxdot) + (Al*cu);
for(ampxdot=0.0,k=0; k<4; k++)
ampxdot += (rkt[0][k]*rk[k]);

ampx += (ampxdot * rT);
ampu = ampx;

/* determine new position */
rkt[0] [0] = px[l] ;
rkt[l][0] = (Q*px[0]) + (P*ampu);
pxdot[0] = px[0O] + (rkt[0][0]*(rT/2));
pxdot[l] = px[l] + (rkt[l][0]*(rT/2));
rkt[0][1] = pxdot[l];
rkt[l][l] = (Q*pxdot[O]) + (P*ampu);
pxdot[0] = px[O] + (rkt[0][l]*(rT/2));
pxdot[l] = px[l] + (rkt[l][l]*(rT/2));
rkt[0][2] = pxdot[l];
rkt[l][2] = (Q*pxdot[0]) + (P*ampu);
pxdot[0] = px[O] + (rkt[0][2]*rT);
pxdot[l] = px[l] + (rkt[l][2]*rT);
rkt[0][3] = pxdot[l];
rkt[l][3] = (Q*pxdot[0]) + (P*ampu);
pxdot[0] = pxdot[l] = 0.0;
for(k=0; k<4; k++)

{
pxdot[l] += (rkt[0][k]*rk[k]);
pxdot[l] += (rkt[l][k]*rk[k]);

if(bearing == 0)
pxdot[l] -= g;

f{y(j),t(j)}
y*(j+I/2)
f{y*(j+1/2),t(j+1/2))
y**(j+1/2)
f{y**(j+1/2),t(j+1/2)}
y*(j+l)
f{y*(j+l),t(j+l)}

f(y(j),t(j)}
f{y(j),t(j)}
y*(j+i1/2)
y*(j+i/2)
f{y*(j+1/2),t(j+1/2)}
f(y*(j+1/2),t(j+1/2)}
y**(j+1/2)
y**(j+1/2)
f{y**(j+1/2),t(j+1/2)}
f{y**(j+1/2),t(j+1/2)}
y*(j+l)
y*(j+l)
f{y*(j+l),t(j+l)}
f{y*(j+l) ,t(j+l))

/* save values for plotting
ty[i] = px[0];
tu[i] = cu;

/* update variables */
px[0] += (pxdot[0] * rT);
px[l] += (pxdot[l] * rT);

if(px[0] > maxx)
px[0] = maxx;

else if(px[0] < -maxx)
px[0] = -maxx;

229

free(tt);

(*y) = ty;
(*u) = tu;
(*t) = upt;
(*n) = uptsize;

return(0);

int DigReference(double bfreq, double efreq, double dfreq, double bT,
double eT, double dT, double initx, double initu, double maxt,
double **settle, int *n)

{
int i, j, k, fsize, tsize, setsize, ee, bb;
double *time, upt, *freq, output, *set;

(*settle) = NULL;
(*n) = 0;

tsize = ((int) (((eT - bT) / dT) + 0.5)) + 1;
fsize = ((int) ((efreq - bfreq) / dfreq)) + 1;
setsize = fsize * tsize;

if((time = (double *) calloc(tsize, sizeof(double))) == NULL)
{
fprintf(stderr, "Out of memory error - DigReference.\n");
return(1);

}

if((freq = (double *) calloc(fsize, sizeof(double))) == NULL)
{
fprintf(stderr, "Out of memory error - DigReference.\n");
free(time);
return(1);

}

if((set = (double *) calloc(setsize, sizeof(double))) == NULL)
{
fprintf(stderr, "Out of memory error - DigReference.\n");
free(time);
free(freq);
return(1);

for(time[0]=bT,i=1; i<tsize; i++)
time[i] = time[i-11 + dT;

for(freq[0]=bfreq,i=1; i<fsize; i++)
freq[i] = freq[i-1] + dfreq;

for(i=0; i<tsize; i++)
{

for(j=0; j<fsize; j++)
{
ee = (int) (maxt*time[i]);
bb = 1;
k = ee >> 1;
while(k != 0)

upt = k / time[i];
/*

* This equation is the solution of the inverse Laplace transform
* of a second order system having a damping ratio of 1.0 and
* determining the closest sampling time to that point

230

*!
output = 1.0 - ((1.0 + (freq[j]*upt)) * exp(-freq[j] * upt));
if(output < 0.95)
bb = k;

else
ee = k;

k = bb + ((ee - bb) >> 1);
if(k == ee II k == bb)

{
set[(i*fsize)+j] =
k = 0;

k / time[i];

free(time);
free(freq);

(*settle) = set;
(*n) = setsize;

return(0);

H.1.2 mat2text.c

This program examines the binary character matrix produced by limits.c and creates a text
file listing the values of sampling rate, damping ratio, natural frequency, and feedback gain that
produced stable systems. This program made it possible to create and delete the considerably
larger text file from the smaller binary file at any time.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define MEMERR(x) \
fprintf(stderr, "Out of memory error - %s (%d)\n", x, _LINE__);

#define FUNCERR(x,y) \
fprintf(stderr, "Error encountered in %s - %s (%d)\n", x, y, LINE_);

#define STATUS_OK 0
#define STATUS_NOK 1

void main(int argc, char **argv)
{
int i,j;
int begrow, begcol, rows, cols, mag;
int matrows, matcols;
char *infile, *outfile, *buffer;
FILE *ifp, *ofp;
float freq, time, damp, bhat;

begrow = begcol = rows = cols = mag = 0;

if(argc < 3)

fprintf(stderr, "syntax error ...\n\n");
fprintf(stderr, "Syntax: mat2text infile outfile [-r n] [-c m]");
fprintf(stderr, " [-nr 1] [-nc k]\n");

231

_ I__i

fprintf(stderr, " where: infile -> matrix pathname\n");
fprintf(stderr, " outfile -> text file pathname\n");
fprintf(stderr, " -r n -> start at nth row\n");
fprintf(stderr, " -c m -> start at mth column\n");
fprintf(stderr, " -nr 1 -> convert 1 rows\n");
fprintf(stderr, " -nc k -> convert k columns\n");
exit(1);

for(i=1; i<argc; i++)
{

if(i == 1)
infile = argv[i];

else if(i == 2)
outfile = argv[i];

else if(argv[i][0] == '-')

if(argv[i][1] == 'r')
begrow = atoi(argv[i+l]);

else if(argv[i][1] == 'c')
begcol = atoi(argv[i+l]);

else if(argv[i][1] == 'n')
{
if(argv[i][2] == 'r')

rows = atoi(argv[i+l]);
else if(argv[i][2] == 'c')

cols = atoi(argv[i+ll);

if((ifp = fopen(infile, "r")) == NULL)
{

fprintf(stderr, "Unable to open input file \"%s\"\n\n", infile);
exit(l);

if((ofp = fopen(outfile, "w")) == NULL)

fprintf(stderr, "Unable to open output file \"%s\"\n\n", outfile);
exit(l);

if(!fread((void *) &matrows, sizeof(int), 1, ifp))

fprintf(stderr, "Error encountered reading from \"%s\"\n\n", infile);
fclose(ifp);
fclose(ofp);
exit ();

if(!fread((void *) &matcols, sizeof(int), 1, ifp))

fprintf(stderr, "Error encountered reading from \'%s\"\n\n", infile);
fclose(ifp);
fclose(ofp);
exit(l);

I

if(!rows)
rows = matrows;

if(!cols)
cols = matcols;

if(!mag)
mag = 1;

if(begrow+rows > matrows)

232

fprintf(stderr,
"Requested rows (%d) is greater than matrix rows (%d)\n\n",
begrow+rows, matrows);

fclose(ifp);
fclose(ofp);
exit(l);

if(begcol+cols > matcols)
{
fprintf(stderr,

"Requested columns (%d) is greater than matrix columns (%d)\n\n",
begcol+cols, matcols);

fclose(ifp);
fclose(ofp);
exit(l);

if(begrow)
fseek(ifp, begrow*matcols, SEEK_CUR);

if((buffer = (char *) calloc(matcols, sizeof(char))) == NULL)

MEMERR("mat2text);
fclose(ifp);
fclose(ofp);
exit(l);

for(i=0; i<rows; i++)

if(fread((void *) buffer, sizeof(char), matcols, ifp) != matcols)

fprintf(stderr, "Data read error ...\n");
fclose(ifp);
fclose(ofp);
exit(l);

for(j=begcol; j<begcol+cols; j++)
if(buffer[j] == 1)

if(j%19 < 10)
damp = ((j%19) + 1) * 0.1;

else
damp = (j%19) - 9.0;

time = 1000.0 + (((int) j/19) * 1000.0);
freq = 10.0 + (((begrow + i)%100) * 10.0);
bhat = 10.0 + (((int) ((begrow + i) / 100)) * 10.0);
fprintf(ofp, "%7.1f %5.2f %6.1f %6.lf\n", time, damp,

bhat, freq);

fclose(ifp);
fclose(ofp);
exit(0);

H.1.3 mat2tiff.c

This program examines the binary character matrix produced by limits.c and creates a
TIFF file using the four dimensional mapping technique described in a previous chapter. This

233

allowed this researcher to visualize the effect that changes in controller variables had on closed
loop system stability. This program made it possible to create and delete this TIFF file from
the binary file at any time.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>

#define MEMERR(x) \
fprintf(stderr, "Out of memory error - %s (%d)\n", x, _LINE_);

#define FUNCERR(x,y) \
fprintf(stderr, "Error encountered in %s - %s (%d)\n", x, y, __LINE_);

#define STATUS_OK 0
#define STATUS_NOK 1

#define FIELDNUM
#define STRIPSIZE

18
8*1024

#ifdef TIFF_COMP
#define HASH_SIZE 101
enum { LZW_Initialize,
#endif

typedef union i_tiffoff
{

LZW_Compress, LZW_Cleanup };

unsigned int uint;
unsigned short ushort[2];

} iTiffOff;

#define
#define
#define
#define

ITiffOfflnt(p)
ITiffOffShort(p)
ITiffOffShortHigh(p)
ITiffOffShortLow(p)

(p).uint)
(p).ushort)
((p).ushort)[0])
((p).ushort)[1])

typedef struct i_tiffdir
{
unsigned short Tag;
unsigned short Type;
int Length;
iTiffOff Offset;

} iTiffDirStruct, *iTiffDir;

ITiffDirTag(p)
ITiffDirType(p)
ITiffDirLength(p)
ITiffDirOffset(p)
ITiffDirOffsetShort(p)

((p)->Tag)
((p)->Type)
((p)->Length)
(ITiffOffInt((p)->Offset))
(ITiffOffShortHigh((p)->Offset))

Tag Types */
BYTE 1
ASCII 2
SHORT 3
LONG 4
RATIONAL 5

Tags */
NEW_SUBFILE_TYPE
IMAGE_WIDTH
IMAGE_LENGTH
BITS_PERSAMPLE
COMPRESSION
PHOTOMETRIC_INTERPRETATION
DOCUMENT_NAME

254
256
257
258
259
262
269

234

#define
#define
#define
#define
#define

/* TIFF
#define
#define
#define
#define
#define

/* TIFF
#define
#define
#define
#define
#define
#define
#define

#define STRIP_OFFSETS 273
#define SAMPLES_PER_PIXEL 277
#define ROWS_PER_STRIP 278
#define STRIP_BYTE_COUNTS 279
#define X_RESOLUTION 282
#define Y_RESOLUTION 283
#define PLANAR_CONFIGURATION 284
#define RESOLUTION_UNIT 296
#define SOFTWARE 305
#define DATE_TIME 306
#define COLOR_MAP 320

/* Tiff Color Representations */
#define RGB_COLOR 2
#define PALETTE COLOR 3

/* Compression type defines */
#define NO_COMPRESS 1
#define HUFFMAN COMPRESS 2
#define LZW_COMPRESS 5
#define PACKBITS_COMPRESS 32773

#ifdef TIFF_COMP
/* hash table member */
typedef struct i_tiffhash

struct i_tiffhash *Next;
unsigned char *Values;
unsigned int Size;
unsigned int Index;

} iTiffHashStruct, *iTiffHash;

#define ITiffHashNext(p) ((p)->Next)
#define ITiffHashChars(p) ((p)->Values)
#define ITiffHashSize(p) ((p)->Size)
#define ITiffHashIndex(p) ((p)->Index)

/* compressed data buffer union */
typedef union i_lzwvalue

unsigned int Integer;
unsigned char Byte[4];

} iLZWValueUnion, *iLZWValue;

#define ILZWValueInt(p) ((p).Integer)
#define ILZWValueByte(p) ((p).Byte)

/* LZW table constants */
#define LZWClear 256
#define LZWEOI 257

#endif

static int WriteTIFFMatrix(FILE *ifp, FILE *ofp, int begrow, int begcol,
int rows, int cols, int rowlen, int compress,
int color_type, int mag);

#ifdef TIFF_COMP
static void TiffCompressLZW(void *old, int size, int bytes, void *new,

int *newsize, int flag);
#endif

void main(int argc, char **argv)
{
int i,j;
int begrow, begcol, rows, cols, mag;
int matrows, matcols;
char *infile, *outfile;
FILE *ifp, *ofp;

235

_ -_-__ _~_··_II _ 1~__1__1 1·_1·___1__1_;)__·1·__· _·~·

begrow = begcol = rows = cols = mag = 0;

if(argc < 3)

fprintf(stderr,
fprintf(stderr,
fprintf(stderr,
fprintf(stderr,
fprintf(stderr,
fprintf(stderr,
fprintf(stderr,
fprintf(stderr,
fprintf(stderr,
fprintf(stderr,
exit(l);

"syntax error ...\n\n");
"Syntax: mat2tiff infile outfile [-r n] [-c m]");

[-nr 1] [-nc k] [-m j]\n");
where: infile -> matrix pathname\n");

outfile -> TIFF pathname\n");
* -r n -> start at nth row\n");

-c m -> start at mth column\n");
-nr 1 -> convert 1 rows\n");
-nc k -> convert k columns\n");
-m j -> magnify j times\n\n");

for(i=1; i<argc; i++)

if(i == 1)
infile = argv[i];

else if(i == 2)
outfile = argv[i];

else if(argv[i][0] == '-')

if(argv[i][1] == 'r')
begrow = atoi(argv[i+ll);

else if(argv[i] [1] == 'c')
begcol = atoi(argv[i+l]);

else if(argv[i][1] == 'm')
mag = atoi(argv[i+l]);

else if(argv[i][1] == 'n')

if(argv[i][2] == 'r')
rows = atoi(argv[i+l]);

else if(argv[i][2] == 'c')
cols = atoi(argv[i+1]);

(ifp = fopen(infile, "r")) == NULL)

fprintf(stderr, "Unable to open input
exit(l);

if((ofp = fopen(outfile, "w")) == NULL)
{

file \"%s\"\n\n", infile);

fprintf(stderr, "Unable to open output file \"%s\"\n\n", outfile);
exit(l);

if(!fread((void *) &matrows, sizeof(int), 1, ifp))
{
fprintf(stderr, 'Error encountered reading from \"%s\"\n\n", infile);
fclose(ifp);
fclose(ofp);
exit(l);

if(!fread((void *) &matcols, sizeof(int), 1, ifp))
{
fprintf(stderr, "Error encountered reading from \"%s\"\n\n", infile);
fclose(ifp);
fclose(ofp);
exit(l);

236

i

if(

if(!rows)
rows = matrows;

if(!cols)
cols = matcols;

if(!mag)
mag = 1;

if(begrow+rows > matrows)

fprintf(stderr,
"Requested rows (%d) is greater than matrix rows (%d)\n\n",
begrow+rows, matrows);

fclose(ifp);
fclose(ofp);
exit(l);

if(begcol+cols > matcols)
{
fprintf(stderr,

"Requested columns (%d) is greater than matrix columns (%d)\n\n",
begcol+cols, matcols);

fclose(ifp);
fclose(ofp);
exit(l);

if(begrow)
fseek(ifp, begrow*matcols, SEEK_CUR);

if(WriteTIFFMatrix(ifp, ofp, begrow, begcol, rows, cols, matcols,
LZW_COMPRESS, PALETTE_COLOR, mag) != STATUSOK)

FUNCERR("WriteTIFFMatrix", "mat2tiff");
fclose(ifp);
fclose(ofp);
exit(l);

f
fclose(ifp);
fclose(ofp);
exit(0);

/***************************** MODULE INFORMATION ***************************
* NAME OF MODULE : WriteTIFFNetgraph
* DESCRIPTION

static int WriteTIFFMatrix(FILE *ifp, FILE *ofp, int begrow, int begcol,
int rows, int cols, int rowlen, int compress,
int color_type, int mag)

int i, j, k, m, index, size;
int shift, bytes, pindsize;
int *pixind;
short temp;
long diroff, offset, max;
iTiffDir *expdir;
const char *whoami = "mat2tiff vl.0";
char *date;
void *strip, **rgb;

#ifdef TIFF_COMP
void *cstrip;
int 1, cstrsize;
unsigned int *coffsets, *csizes;

#endif

237

··___· ·411_ 11 I_ ___ ·_I ··~I I·__I ~

unsigned short red, green, blue;
struct tm *tstruc;
time_t tmstr;
char *image;
unsigned long pix;

/* write TIFF file header */

#if defined(0OS2) 1 defined(MIPSEL)
fprintf(ofp, "II");

#else
fprintf(ofp, "MM");

#endif

bytes = sizeof(unsigned char);

if(color_type != PALETTE_COLOR)
bytes *= 3;

size = FIELDNUM;
if(color_type != PALETTE_COLOR)
size--;

if((expdir = (iTiffDir *) calloc(size, sizeof(iTiffDir)))
== NULL)

{
MEMERR("WriteTIFFMatrix");
return(STATUS_NOK);

for(i=0; i<size; i++)
if((expdir[i] = (iTiffDir) calloc(l, sizeof(iTiffDirStruct))) == NULL)

{
MEMERR("WriteTIFFMatrix");
for(; i>=0; i--)

if(expdir[i])
free((char *) expdir[il);

if(expdir)
free((char *) expdir);

return(STATUS_NOK);

ITiffDirTag(expdir[O]) = 42;
fwrite((void *) &ITiffDirTag(expdir[0]), sizeof(char),

sizeof(ITiffDirTag(expdir[0])), ofp);
ITiffDirOffset(expdir[O0]) = 12;
fwrite((void *) &ITiffDirOffset(expdir[l0), sizeof(char),

sizeof(ITiffDirOffset(expdir[O])), ofp);
ITiffDirOffset(expdir[0]) = 0;
fwrite((void *) &ITiffDirOffset(expdir[0]), sizeof(char),

sizeof(ITiffDirOffset(expdir[0])), ofp);

/* write TIFF Image file directory entry */
ITiffDirTag(expdir[O]) = size;
if(fwrite((void *) &ITiffDirTag(expdir[0]), sizeof(char),

sizeof(ITiffDirTag(expdir[01)), ofp) !=
sizeof(ITiffDirTag(expdir[0])))
goto werrorl;

/* get file offset so we can write TIFF directory later */
diroff = ftell(ofp);

/* write dummy TIFF directory */
for(i=0; i<size; i++)

if(fwrite((void *) expdir[i], sizeof(char), sizeof(*expdir[i]), ofp) !=
sizeof(*expdir[i]))

goto werrorl;

238

if(fwrite((void *) &ITiffDirOffset(expdir[0]), sizeof(char),
sizeof(ITiffDirOffset(expdir[O])), ofp) !=

sizeof(ITiffDirOffset(expdir[0])))
goto werrorl;

/* 0 write NewSubfileType field */
index = 0;
ITiffDirTag(expdir[index]) = NEW_SUBFILE_TYPE;
ITiffDirType(expdir[index]) = LONG;
ITiffDirLength(expdir[index]) = 1;
ITiffDirOffset(expdir[index]) = 0; /* default */

/* 1 write ImageWidth field */
index++;
ITiffDirTag(expdir[index]) = IMAGE_WIDTH;
ITiffDirType(expdir[index]) = LONG;
ITiffDirLength(expdir[index]) = 1;
ITiffDirOffset(expdir[index]) = mag * cols;

/* 2 write ImageLength field */
index++;
ITiffDirTag(expdir[index]) = IMAGE_LENGTH;
ITiffDirType(expdir[index]) = LONG;
ITiffDirLength(expdir[index]) = 1;
ITiffDirOffset(expdir[index]) = mag * rows;

/* 3 write BitsPerSample field */
index++;
ITiffDirTag(expdir[index]) = BITS_PER_SAMPLE;
ITiffDirType(expdir[index]) = SHORT;
temp = 8;
if(color_type == PALETTE_COLOR)

ITiffDirLength(expdir[index]) = 1;
ITiffDirOffsetShort(expdir[index]) = temp;

else
{
ITiffDirLength(expdir[index]) = 3;
ITiffDirOffset(expdir[index]) = ftell(ofp);

for(i=0; i<3; i++)
if(fwrite((void *) &temp, sizeof(char), sizeof(temp), ofp) !=

sizeof(temp))
goto werrorl;

)
shift = (int) temp; /* save for RGB correction */

/* 4 write Compression field - packbits recommended, easy to implement */
index++;
ITiffDirTag(expdir[index]) = COMPRESSION;
ITiffDirType(expdir[index]) = SHORT;
ITiffDirLength(expdir[index]) = 1;

#ifdef TIFF_COMP
switch(compress)

c
case LZW_COMPRESS:
case NO_COMPRESS:

ITiffDirOffsetShort(expdir[index]) = compress; /* LZW compression */
break;

default:
ITiffDirOffsetShort(expdir[index]) = NO_COMPRESS; /* No compression */
break;

#else
ITiffDirOffsetShort(expdir[index]) = NO _COMPRESS; /* No compression */

#endif

/* 5 write PhotometricInterpretation field */

239

__~L_ ~·___·_··~_· __ ·· ~_____1 1_·_·1·_1_

index++;
ITiffDirTag(expdir[index]) = PHOTOMETRIC_INTERPRETATION;
ITiffDirType(expdir[index]) = SHORT;
ITiffDirLength(expdir[index]) = 1;
switch(colortype)

{
case RGB_COLOR:
case PALETTE_COLOR:

ITiffDirOffsetShort(expdir[index]) = color_type;
break;

default: /* pixel values are RGB */
ITiffDirOffsetShort(expdir[index]) = RGB_COLOR;
break;

)

/* 6 write DocumentName field */
index++;
ITiffDirTag(expdir[index]) = DOCUMENT_NAME;
ITiffDirType(expdir[index]) = ASCII;
i = strlen("No Name")+1;
ITiffDirLength(expdirlindex)) = i;
ITiffDirOffset(expdir[index]) = ftell(ofp);
fwrite((void *) "No Name", sizeof(char), i, ofp);
if(i%2 > 0)

if(fwrite((void *) (((unsigned int) "No Name')+i-1), sizeof(char),
1, ofp) != sizeof(char))

goto werrorl;

/* 8 write SamplesPerPixel field */
index = 8;
ITiffDirTag(expdir[index]) = SAMPLES_PER_PIXEL;
ITiffDirType(expdir[index]) = SHORT;
ITiffDirLength(expdir[index]) = 1;
/* 3 = RGB, 1 = bilevel, grayscale, palette color */
if(color_type == RGB_COLOR)

ITiffDirOffsetShort(expdir[index]) = 3;
else

ITiffDirOffsetShort(expdir[index]) = 1;

/* 11 write XResolution field - Pixels per Centimeter */
index = 11;
ITiffDirTag(expdir[index]) = XRESOLUTION;
ITiffDirType(expdir[index]) = RATIONAL;
ITiffDirLength(expdir[index]) = 1;
ITiffDirOffset(expdir[index]) = ftell(ofp);
i = (int) (((1280.0/356.0) + 0.5) * 10);
if(fwrite((void *) &i, sizeof(char), sizeof(int), ofp) != sizeof(int))
goto werrorl;

i = 1;
if(fwrite((void *) &i, sizeof(char), sizeof(int), ofp) != sizeof(int))
goto werrorl;

/* 12 write YResolution field - Pixels per Centimeter */
index++;
ITiffDirTag(expdirlindex]) = Y_RESOLUTION;
ITiffDirType(expdir[index]) = RATIONAL;
ITiffDirLength(expdir[index]) = 1;
ITiffDirOffset(expdir[index]) = ftell(ofp);
i = (int) (((1024.0/284.0) + 0.5) * 10);
if(fwrite((void *) &i, sizeof(char), sizeof(int), ofp) != sizeof(int))
goto werrorl;

i = 1;
if(fwrite((void *) &i, sizeof(char), sizeof(int), ofp) != sizeof(int))
goto werrorl;

/* 13 write PlanarConfiguration field */
index++;
ITiffDirTag(expdir[index]) = PLANAR_CONFIGURATION;
ITiffDirType(expdir[index]) = SHORT;

240

ITiffDirLength(expdir[index]) = 1;
ITiffDirOffsetShort(expdir[index]) = 1; /* samples stored contiguously */

/* 14 write ResolutionUnit field */
index++;
ITiffDirTag(expdir[index]) = RESOLUTION_UNIT;
ITiffDirType(expdir[index]) = SHORT;
ITiffDirLength(expdir[index]) = 1;
ITiffDirOffsetShort(expdir[index]) = 3; /* centimeter */

/* 15 write Software field */
index++;
ITiffDirTag(expdir[index]) = SOFTWARE;
ITiffDirType(expdir[index]) = ASCII;
i = strlen(whoami)+l;
ITiffDirLength(expdir[index]) = i;
ITiffDirOffset(expdir[index]) = ftell(ofp);
if(fwrite((void *) whoami, sizeof(char), i, ofp) != i)

goto werrorl;
if(i%2 > 0)

if(fwrite((void *) (((unsigned int) whoami)+i-1), sizeof(char), 1, ofp) !=
1)

goto werrorl;

/* 16 write DateTime field */
index++;
ITiffDirTag(expdir[index]) = DATE_TIME;
ITiffDirType(expdir[index]) = ASCII;
if((date = (char *) calloc(20, sizeof(char))) != NULL)

(
ITiffDirLength(expdir[index]) = 20;
tmstr = time(NULL);
tstruc = localtime(&tmstr);
sprintf(date, "%04d:%02d:%02d %02d:%02d:%02d', tstruc->tm_year+1900,

tstruc->tm_mon, tstruc->tm_mday, tstruc->tm_hour, tstruc->tm_min,
tstruc->tm_sec);

ITiffDirOffset(expdir[index]) = ftell(ofp);
if(fwrite((void *) date, sizeof(char), 20, ofp) != 20)
goto werrorl;

else
{
ITiffDirLength(expdir[index]) = 0;
ITiffDirOffset(expdir[index]) = 0;

free(date);

/* 17 write ColorMap field */
if(colortype == PALETTE_COLOR)

(
index++;
ITiffDirTag(expdir[index]) = COLOR_MAP;
ITiffDirType(expdir[index]) = SHORT;
temp = 8;
ITiffDirLength(expdir[index]) = 3*(l<<temp);
ITiffDirOffset(expdir(index]) = ftell(ofp);
temp = 0;
for(i=0; i<ITiffDirLength(expdir[index]); i++)
if(fwrite((void *) &temp, sizeof(short), sizeof(char), ofp) !=

sizeof(char))
goto werrorl;

/* 9 write RowsPerStrip field */
/* recommended that this be set such that the size of each strip is */
/* about 8K bytes. */
index = 9;
if((i = (int) (STRIPSIZE/(ITiffDirOffset(expdir[1])*bytes))) < 1)

241

i = 1;
size = ITiffDirOffset(expdir[l])*bytes;

)
else

size = i*ITiffDirOffset(expdir[1])*bytes;

ITiffDirTag(expdir[index]) = ROWS_PER_STRIP;
ITiffDirType(expdir[index]) = LONG;
ITiffDirLength(expdir[index]) = 1;
ITiffDirOffset(expdir[index]) = i;

/* 10 write StripByteCounts field */
index = 10;
ITiffDirTag(expdir(index]) = STRIPBYTE_COUNTS;
ITiffDirType(expdir[index]) = LONG;
ITiffDirLength(expdir[index]) =

(int) (ITiffDirOffset(expdir[2])/ITiffDirOffset(expdir[9]));
if(ITiffDirOffset(expdir[2])%ITiffDirOffset(expdir[9]) > 0)

ITiffDirLength(expdir[index])++;
if(ITiffDirLength(expdir[index]) > 1)

ITiffDirOffset(expdir[index]) = ftell(ofp);

offset = ITiffDirOffset(expdir[1])*bytes;
offset *= ITiffDirOffset(expdir[2]);
while(offset > size)

{
if(fwrite((void *) (&size), sizeof(char), sizeof(int), ofp) !=

sizeof(int))
goto werrorl;

offset -= size;
)

if(offset)
{
if(ITiffDirLength(expdir[index]) > 1)

{
if(fwrite((void *) (&offset), sizeof(char), sizeof(int), ofp) !=

sizeof(int))
goto werrorl;

else
ITiffDirOffset(expdir[index]) = offset;

/* 7 write StripOffsets field */
index = 7;
if(size%2 > 0) /* make sure size is even so offsets are correct */

size++;
ITiffDirTag(expdir[index]) = STRIP_OFFSETS;
ITiffDirType(expdir[index]) = LONG;
ITiffDirLength(expdir[index]) = ITiffDirLength(expdir[10]);
ITiffDirOffset(expdir[index]) = offset = ftell(ofp);
if(ITiffDirLength(expdir[index]) > 1)

{
offset += (ITiffDirLength(expdir[index])*sizeof(int));
for(i=0; i<ITiffDirLength(expdir[index]); i++)

{
if(fwrite((void *) (&offset), sizeof(char), sizeof(unsigned int),

ofp) != sizeof(int))
goto werrorl;

offset += size;

)

image = NULL;
if((image = (char *) calloc(mag*rowlen, sizeof(char))) == NULL)
{
MEMERR("WriteTIFFMatrix");
goto werrorl;

242

/* allocate memory for netgraph drawing routine */
if((strip = (void *) calloc(size, sizeof(char))) == NULL)

{
MEMERR("WriteTIFFMatrix");
goto werror2;

pindsize = 2;

/* needed in order for werror3 to work properly */
pixind = NULL;

#ifdef TIFF_COMP
csizes = coffsets = NULL;
cstrip = NULL;

#endif

if((rgb = (void **) calloc(pindsize, sizeof(void *))) == NULL)

MEMERR("WriteTIFFMatrix");
goto werror3;

}

if((pixind = (int *) calloc(pindsize, sizeof(int))) == NULL)

MEMERR("WriteTIFFMatrix");
goto werror3;

}

#ifdef TIFF_COMP
if(ITiffDirOffsetShort(expdir[4]) != NO COMPRESS)

{
if((coffsets = (unsigned int *) calloc(ITiffDirLength(expdir[10]),

sizeof(unsigned int))) == NULL)

MEMERR("WriteTIFFMatrix");
goto werror3;

}

if((csizes = (unsigned int *) calloc(ITiffDirLength(expdir[10]),
sizeof(unsigned int))) == NULL)

MEMERR("WriteTIFFMatrix");
goto werror3;

)

if((cstrip = (void *) calloc(size, sizeof(char))) == NULL)

MEMERR("WriteTIFFMatrix");
goto werror3;

}

if(ITiffDirOffsetShort(expdir[4]) == LZW_COMPRESS)
TiffCompressLZW(NULL, 0, 0, NULL, &cstrsize, LZW_Initialize);

if(cstrsize != STATUS_OK)

FUNCERR("TiffCompressLZW", "WriteTIFFMatrix");
goto werror3;

}
1 = 0;

}
#endif

/* get Netgraph pixel/RGB values */
k = bytes;
if(color_type != PALETTE_COLOR)
k /= 3;

for(i=0; i<2; i++)

243

_.··· __YI___·_ _____r

if((rgb[i) = (void *) calloc(3, k)) == NULL)
{
MEMERR("WriteTIFFMatrix");
goto werror4;

}
pixind[i] = i+l;
if(i)

{
((unsigned char *) rgb[i])[0] = 255;
((unsigned char *) rgb[i])[l] = 255;
((unsigned char *) rgb[i])[2] = 255;

}
else

(unsigned char {rgb[i])[0 = 0;
((unsigned char *) rgb[i])[l] = 0;
((unsigned char *) rgb[i])[2] = 0;

/* write pixel RGB data */
max = size/bytes;
offset = 0;
m = mag;

for(i=0; i<mag*rows; i++)
{
if(mag > 1)

{
if(m == mag)

{
for(j=0; j<rowlen; j++)

{
if(!fread((void *) (((unsigned int) image)+(j*mag)),

sizeof(char), 1, ifp))
goto werror4;

for(k=l; k<mag; k++)
image[(j*mag)+k] = image[j*mag];

}
m = 0;

}
}

else
if(fread((void *) image, sizeof(char), rowlen, ifp) != rowlen)
goto werror4;

for(j=0; j<mag*cols; j++)
{

if(colortype == PALETTE_COLOR)
memcpy((void *) (((unsigned int) strip)+offset),

(void *) (((unsigned int) image)+begcol+j), bytes);
else

{
pix = (unsigned long) (((unsigned int) image)+begcol+j);
for(k=0; k<pindsize; k++)
if(pixind[k] == pix)
break;

if(k)
memcpy((void *) (((unsigned int) strip)+offset), rgb[k],

bytes);
}

offset += (bytes);
}

if((offset+(mag*cols*bytes)) > size)
{

#ifdef TIFF COMP
if(ITiffDirOffsetShort(expdir[4]) != NO_COMPRESS)

244

if(ITiffDirOffsetShort(expdir[4]) == LZWCOMPRESS)
TiffCompressLZW(strip, max, bytes, cstrip, &cstrsize,

LZW_Compress);
csizes[1] = (unsigned int) cstrsize;
coffsets[l++] = (unsigned int) ftell(ofp);

#if 0
printf("l = %d Offset = %d Compressed size = %d\n",

1-1, coffsets[1-1], cstrsize);
#endif

if(cstrsize%2 > 0)
cstrsize++;

if(fwrite(cstrip, sizeof(char), cstrsize, ofp) != cstrsize)
goto werror4;

else
if(fwrite(strip, bytes, max, ofp) != max)

goto werror4;
#else

if(fwrite(strip, bytes, max, ofp) != max)
goto werror4;

#endif
offset = 0;
if(color_type != PALETTE_COLOR)

for(k=0;
k<ITiffDirOffset(expdir[ll])*ITiffDirOffset(expdir[9]);
k++)

memcpy((void *) (((unsigned int) strip)+(k*bytes)),
rgb[0], bytes);

m++;
#if 0

printf("line = %d\n*, i);
#endif

I

if(offset)

#ifdef TIFF_COMP
if(ITiffDirOffsetShort(expdir[4]) != NO_COMPRESS)

{
if(ITiffDirOffsetShort(expdir[4]) == LZW_COMPRESS)

TiffCompressLZW(strip, offset, bytes, cstrip, &cstrsize,
LZW_Compress);

csizes[l] = (unsigned int) cstrsize;
coffsets[l1] = (unsigned int) ftell(ofp);

#if 0
printf("l = %d Offset = %d Compressed size = %d\nu,

1-1, coffsets[1-1], cstrsize);
#endif

if(cstrsize%2 > 0)
cstrsize++;

if(fwrite(cstrip, sizeof(char), cstrsize, ofp) != cstrsize)
goto werror4;

else
if(fwrite(strip, bytes, offset, ofp) != offset)
goto werror4;

#else
if(fwrite(strip, bytes, offset, ofp) != offset)
goto werror4;

#endif

if(image)
free((char *) image);

#ifdef TIFF_COMP
if(ITiffDirOffsetShort(expdir[4]) != NO_COMPRESS)

245

if(ITiffDirOffsetShort(expdir[4]) == LZW_COMPRESS)
TiffCompressLZW(NULL, 0, 0, NULL, &cstrsize, LZW_Cleanup);

if(ITiffDirLength(expdir[7]) > 1)

#if 0
printf("Offsets offset = %d\n", ITiffDirOffset(expdir[7]));

#endif
fseek(ofp, ITiffDirOffset(expdir[7]), SEEK_SET);
if(fwrite((void *) coffsets, sizeof(unsigned int),

ITiffDirLength(expdir[7]), ofp) !=
ITiffDirLength(expdir[7]))

goto werror4;

else
ITiffDirOffset(expdir[7]) = coffsets[0];

if(ITiffDirLength(expdir[10]) > 1)
{
fseek(ofp, ITiffDirOffset(expdir[10]), SEEK_SET);
if(fwrite((void *) csizes, sizeof(unsigned int),

ITiffDirLength(expdir[10]), ofp) !=
ITiffDirLength(expdir[10]))

goto werror4;

else
ITiffDirOffset(expdir[101) = csizes[O];

#endif

for(i=0; i<pindsize; i++)

if(color_type == PALETTE_COLOR)

offset = ITiffDirOffset(expdir[17]) + (pixind[i]*sizeof(short));
red = (unsigned short) ((unsigned char *) rgb[i])[0];
green = (unsigned short) ((unsigned char *) rgb[i])[l];
blue = (unsigned short) ((unsigned char *) rgb[i])[2];
red = red * ((1 << shift)+l1);
green = green * ((1 << shift)+1);
blue = blue * ((1 << shift)+l);
fseek(ofp, offset, SEEK_SET);
if(fwrite((void *) &red, sizeof(char), sizeof(unsigned short), ofp)

!= sizeof(unsigned short))
goto werror4;

offset += ((l<<shift)*sizeof(short));
fseek(ofp, offset, SEEKSET);
if(fwrite((void *) &green, sizeof(char), sizeof(unsigned short), ofp)

!= sizeof(unsigned short))
goto werror4;

offset += ((1<<shift)*sizeof(short));
fseek(ofp, offset, SEEK_SET);
if(fwrite((void *) &blue, sizeof(char), sizeof(unsigned short), ofp)

!= sizeof(unsigned short))
goto werror4;

)
free((char *) rgb[i]););

free((char *) rgb);
#ifdef TIFF_COMP

free((char *) coffsets);
free((char *) csizes);
free((char *) cstrip);

#endif

free((char *) pixind);
free((char *) strip);

246

fseek(ofp, diroff, SEEK.SET);

size = FIELDNUM;
if(color_type != PALETTE_COLOR)

size--;

for(i=0; i<size; i++)
if(fwrite((void *) expdir[i], sizeof(char), sizeof(*expdir[i]), ofp) =

sizeof(*expdir[i]))
goto werror4;

for(i=0; i<size; i++)
free((char *) expdir[i]);

free((char *) expdir);

return(STATUS_OK);

werror4:
for(i=O; i<pindsize; i++)

if(rgb[i])
free((char *) rgb[i]);

if(rgb)
free((char *) rgb);

#ifdef TIFF_COMP
if(ITiffDirOffsetShort(expdir[4]) != NOCOMPRESS)

if(ITiffDirOffsetShort(expdir[4]) == LZW_COMPRESS)
TiffCompressLZW(NULL, 0, 0, NULL, &cstrsize, LZW_Cleanup);

}
#endif

werror3:
#ifdef TIFF_COMP

if(coffsets)
free((char *) coffsets);

if(csizes)
free((char *) csizes);

if(cstrip)
free((char *) cstrip);

#endif
if(pixind)

free((char *) pixind);
free((char *) strip);

werror2:
if(image)

free((char *) image);

werrorl:
size = FIELDNUM;
if(color_type != PALETTE_COLOR)

size--;
for(i=0; i<size; i++)

free((char *) expdir[i]);
free((char *) expdir);
fprintf(stderr, "Error encountered writing to file - WriteTIFFMatrix.\n");
return(STATUS_NOK);

#ifdef TIFF_COMP
/***************************** MODULE INFORMATION ***************************
* NAME OF MODULE : TiffCompressLZW
* DESCRIPTION

static void TiffCompressLZW(void *old, int size, int bytes, void *new,
int *newsize, int flag)

static iTiffHash *hashtab = NULL;

247

~___· __ __ II ~__I_

static int hashsize = 0;
int i, j, chars, bsize, shift, bits;
unsigned int hashval;
iTiffHash val, nextval;
unsigned char *ptr, *nptr;
iLZWValueUnion lzwun;

if(flag == LZW_Initialize)
{
if(hashtab)

fprintf(stderr, "Tiff hash table is not NULL during initialization -
TiffCompressLZW\n');

(*newsize) = STATUS_NOK;
return;

if((hashtab = (iTiffHash *) calloc(HASHSIZE, sizeof(iTiffHash)))
== NULL)

{
MEMERR("TiffCompressLZW");
(*newsize) = STATUS_NOK;
return;

}
hashsize = 0;
(*newsize) = STATUS_OK;
return;

)
else if(flag == LZW_Cleanup)
{
if(!hashtab)

(
fprintf(stderr, "Tiff hash table is NULL during cleanup -

TiffCompressLZW\n');
(*newsize) = STATUS_OK;
return;

}
for(i=0; i<HASH_SIZE; i++)

(
if((val = hashtab[i]))
{

do {
nextval = ITiffHashNext(val);
free((char *) val);
val = nextval;

} while(val);

free((char *) hashtab);
hashtab = NULL;
hashsize = 0;

}
else

if(!old)

fprintf(stderr, "Input buffer passed is NULL - TiffCompressLZW\n");
(*newsize) = STATUS_NOK;
return;

if(!size)
{
fprintf(stderr, "Input buffer size passed is 0 - TiffCompressLZW\n");
(*newsize) = STATUS_NOK;
return;

if(!new)

fprintf(stderr, "Output buffer passed is NULL - TiffCompressLZW\n');
(*newsize) = STATUS_NOK;

248

return;

bsize = bytes*size;
ptr = (unsigned char *) old;

#if 0
for(i=0; i<bsize; i++)

if(i%16 == 0)
printf("\n");

printf("%02x ", ptr[i]);
}

printf("\n");
#endif

memset(new, 0, bsize);
bits = 9;
shift = 23;
nptr = (unsigned char *) new;
ILZWValueInt(lzwun) = LZWClear;

#if 0
printf("%5d ", ILZWValueInt(lzwun));

#endif
ILZWValueInt(lzwun) <<= shift;

#if 0
printf("%02x%02x%02x%02x Ox%08x\n", ILZWValueByte(lzwun)[0],

ILZWValueByte(lzwun)[1], ILZWValueByte(lzwun)[2],
ILZWValueByte(lzwun)[3], nptr);

#endif
*nptr I= ILZWValueByte(lzwun)[0];
*(++nptr) = ILZWValueByte(lzwun)[1];
*(nptr+l) := ILZWValueByte(lzwun)[2];
shift--;
ptr = (unsigned char *) old;
ILZWValueInt(lzwun) = (unsigned int) (*ptr);
chars = 2;

for(i=1; i<bsize; i++)

for(hashval=0,j=0; j<chars; j++)
hashval = (ptr[j] + (31 * (hashval + j)));

hashval = hashval % HASH_SIZE;
if((val = hashtab[hashval]))

do {
if(chars == ITiffHashSize(val))

if(!memcmp(ptr,(void *) ITiffHashChars(val), chars))
break;

val = ITiffHashNext(val);
) while(val);
if(val)

ILZWValueInt(lzwun) = ITiffHashIndex(val);
chars++;

}
)

if(!val)

#if 0
printf("%5d ", ILZWValueInt(lzwun));

#endif
ILZWValueInt(lzwun) <<= shift;

#if 0
printf("%02x%02x%02x%02x Ox%08x\n", ILZWValueByte(lzwun)[0],

ILZWValueByte(lzwun)[1], ILZWValueByte(lzwun)[2],
ILZWValueByte(lzwun)[3], nptr);

#endif
*nptr I= ILZWValueByte(lzwun)[0];
*(++nptr) = ILZWValueByte(lzwun)[1];
*(nptr+l) = ILZWValueByte(lzwun)[2];
shift -= (bits - 8);

249

__I_·__~_~·__I_ II__ _ ·~ ~~·I___··I~

if((j = (sizeof(int)<<3) - bits - shift) >= 8)
{
shift = (sizeof(int)<<3) - bits - (j - 8);
nptr++;

}
if((val = (iTiffHash) calloc(l, sizeof(iTiffHashStruct)))

== NULL)
{
MEMERR("TiffCompressLZW");
(*newsize) = STATUS_NOK;
return;

hashsize++;
if((hashsize+LZWEOI+1) == (l<<bits))
{
bits++;
shift--;

}
if(bits > 12)
fprintf(stderr, "hash table overflow");

ITiffHashNext(val) = hashtab[hashval];
ITiffHashIndex(val) = LZWEOI + hashsize;
ITiffHashChars(val) = ptr;
ITiffHashSize(val) = chars;
hashtab[hashval] = val;
ptr = &(ptr[chars-1]);
ILZWValueInt(lzwun) = (unsigned int) *ptr;
chars = 2;

ILZWValueInt(lzwun) <<= shift;
*nptr I= ILZWValueByte(lzwun)[0];
*(++nptr) = ILZWValueByte(lzwun)[1];
*(nptr+l) = ILZWValueByte(lzwun)[2];
shift -= (bits - 8);
if((j = (sizeof(int)<<3) - bits - shift) >= 8)

shift = (sizeof(int)<<3) - bits - (j - 8);
nptr++;

}
ILZWValueInt(lzwun) = LZWEOI;
ILZWValueInt(lzwun) <<= shift;
*nptr 1= ILZWValueByte(lzwun)[0];
*(++nptr) = ILZWValueByte(lzwun)[1];
*(nptr+l) = ILZWValueByte(lzwun)[2];
(*newsize) = (int) (((unsigned int) nptr) - ((unsigned int) new) + 1);
if(shift < 16)

(*newsize)++;

for(i=0; i<HASH_SIZE; i++)
{

#if 0
printf("Hash index = %3d ", i);

#endif
if((val = hashtab[i]))

do {
nextval = ITiffHashNext(val);

#if 0
printf("Value = ");
for(j=0; j<ITiffHashSize(val); j++)
printf("%02x", ITiffHashChars(val)[j]);

printf("(%3d) ", ITiffHashIndex(val));
#endif

free((char *) val);
val = nextval;

} while(val);

250

hashtab[i] = NULL;
#if 0

printf("\n");
#endif

)
hashsize = 0;

)

#endif

H.1.4 crosses.c

This program recurses through a range of values for the controller parameters sampling
rate, damping ratio, natural frequency, and feedback gain, determines whether the system is
stable, determines the theoretical closed loop frequency response, determines the system
bandwidth and maximum closed loop gain, and increments a counter pertaining to which
frequency decade the bandwidth and maximum gain lie in. The totals are accumulated for each
sampling rate and then written to a text file.

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <values.h>

#ifdef NMALLOC
#include "nmalloc.h"
#endif

#define RADIX 2.0
#define NR_END 1
#define MAXM 8

#define SIGN(a,b) ((b) >= 0.0 ? fabs(a) : -fabs(a))

#define MYERR le-8

void DigStabFunc(double Al, double A2, double P, double Q, double newt,
double a22, double a21, double *J1, double *J2, double *J3,
double *J4, double *J5, double *M1, double *M2, double *M3,
double *M4, double *N1, double *N2, double *N3, double *N4);

int DigBode(double *num, double *den, int numsize, int densize, double ts,
double begfreq, double endfreq, double **mag, double **freq,
int *magsize);

int zrhqr(double a[], int m, double rtr[], double rti[]);
void balanc(double **a, int n);
int hqr(double **a, int n, double wr[], double will);
double **matrix(long nrl, long nrh, long ncl, long nch);
void free_matrix(double **m, long nrl, long nrh, long ncl, long nch);

void main(int argc, char **argv)
{
int i, j, k, 1, m, ind, begin;
int ebara, axis, total[4], good[4], magsize;
int defout, sizet, sizeb, sized, sizef;
double maxb, minb, maxd, mind, maxf, minf;
char buffer[200], *limfile, *outfile;
FILE *ifp, *ofp;
double P, Q, Al, A2;
double bhat, freq, damp, newt;

251

II I· ·· __~·_~ __~ _1____1_··1·_ 11-1·11___11

double a21, a22;
double subtot[9], rroots[9], iroots[9];
double J1, J2, J3, J4, J5, M1, M2, M3, M4, N1, N2, N3, N4;
double *t, num[8], den[8];
double *mag, *frq, max;

#ifdef DETAILS
int details[36], n;
double test[4][9] = { {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9),

(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0),
(10.0, 20.0, 30.0, 40.0, 50.0,
60.0, 70.0, 80.0, 90.0 },
{100.0, 200.0, 300.0, 400.0, 500.0,
600.0, 700.0, 800.0, 900.0 1);

char *buf;
FILE *ofp2;

#endif

ebara = defout = 0;
begin = axis = 0;
limfile = outfile = NULL;

if(argc < 2 1| argc > 7)

fprintf(stderr,
fprintf(stderr,
fprintf(stderr,
fprintf(stderr,
fprintf(stderr,
fprintf(stderr,
exit(l);

"Syntax error\n");
"Syntax: crosses limits_file [outfile] [-a n] [-b m]\n");

where: limits_file - filename of range data\n");
outfile - output filename\n");

" -a n -> bearing axis [0-4]\n");
H -b m -> begin time [0-49]\n");

for(i=1; i<argc; i++)

if(argv[i][0] == '-')
{

if(argv[i][1] == 'a')
axis = atoi(argv[++il);

else if(argv[i] [1] == 'b')
begin = atoi(argv[++i]);

else if(limfile == NULL)
limfile = argv[i];

else if(outfile == NULL)
outfile = argv[i];

if((ifp = fopen(limfile, "r")) == NULL)

fprintf(stderr, "Unable to open limits file \"%s\" (r)\n", limfile);
exit(l);

if(outfile == NULL)
{
ofp = stdout;
defout = 1;

else if((ofp = fopen(outfile, "w")) == NULL)
{

fprintf(stderr, "Unable to open output file \"%s\" (w)\n", outfile);
fclose(ifp);
exit(l);

#ifdef DETAILS
if(!defout)
{
if((buf = (char *) calloc(strlen(outfile)+10, sizeof(char))) == NULL)

252

fprintf(stderr, "Out of Memory Error (%d) - crosses\n", __LINE_);
fclose(ifp);
if(!defout)

fclose(ofp);
exit ();

}
strcpy(buf, outfile);
strcat(buf, ".details");
if((ofp2 = fopen(buf, "w")) == NULL)

{
fprintf(stderr, "Unable to open output file \"%s\"
fclose(ifp);
if(!defout)

fclose(ofp);
exit ();

}
free(buf);

#
#endif

(w)\n", buf);

sizet = 0;
maxb = maxd = maxf = 0.0;
minb = mind = minf = 1000.0;
t = NULL;
while(fgets(buffer, 200, ifp))

{
if(sscanf(buffer, "%lf %lf %1f %lf %1f %1f %lf\n", &subtot[0],

&subtot[l], &subtot[2], &subtot[3], &subtot[4], &subtot[5],
&subtot[6])

!= 7)

fprintf(stderr, "Error encountered reading limit file (sscanf)\n");
fclose(ifp);
if(!defout)

{

#ifdef DETAILS

#endif

fclose(ofp);

fclose(ofp2);

exit (1);

sizet++;
if((t = (double *) realloc(t, sizet*7*sizeof(double))) == NULL)

{

#ifdef DETAILS

#endif

fprintf(stderr,
fclose(ifp);
if(!defout)
{

"Out of Memory Error (%d) - crosses\n", __LINE_);

fclose(ofp);

fclose(ofp2);

exit (1);

for(i=0; i<7; i++)
t[((sizet-l)*7)+i]

if(mind > subtot[l])
mind = subtotll];

if(maxd < subtot[2])
maxd = subtot[2];

if(minb > subtot[3])
minb = subtot[3];

if(maxb < subtot[4])
maxb = subtot[4];

if(minf > subtot[5])
minf = subtot[5];

= subtot[i];

253

· I __ · _·____·_ __~~_~_I ~~ I_

if(maxf < subtot[6])
maxf = subtot[6];

}

for(i=0; i<7; i++)
subtot[i] = 0.0;

fclose(ifp);

sizeb = ((int) (((maxb - minb) / 10.0) + 0.5)) + 1;
sized = ((int) (((maxd - mind) / 0.1) + 0.5)) + 1;
sizef = ((int) (((maxf - minf) / 10.0) + 0.5)) + 1;

if(ebara)

switch(axis)

default:
case 0:

P = 11.081;
Q = 27701.879;
Al = 1666.622;
A2 = 1700.000;
break;

case 1:
P = 10.278;
Q = 41113.653;
Al = 14222.428;
A2 = 4370.000;
break;

case 2:
P = 10.278;
Q = 41113.653;
Al = 14575.775;
A2 = 4030.000;
break;

case 3:
P = 20.263;
Q = 81050.754;
Al = 4027.457;
A2 = 2450.000;
break;

case 4:
P = 20.263;
Q = 81050.754;
Al = 4108.477;
A2 = 2600.000;
break;

}

else

switch (axis)
{
default:
case 0:

P = 7.990;
Q = 22739.568;
Al = 13324.943;
A2 = 13310.0;
break;

case 1:
P = 7.123;
Q = 7737.770;
Al = 13105.209;
A2 = 13130.0;
break;

case 2:
P = 8.296;

254

Q = 8882.644;
Al = 13043.913;
A2 = 13080.0;
break;

case 3:
P = 16.926;
Q = 35530.574;
Al = 11112.759;
A2 = 11140.0;
break;

case 4:
P = 15.113;
Q = 33201.348;
Al = 12273.613;
A2 = 12290.0;
break;

}

subtot[8] = 1.0;

for(i=begin; i<sizet; i++) /* time loop */
{

#ifdef DETAILS
memset((char *) &details[0], 0, 36*sizeof(int));

#endif
total[0] = total[l] = total[2] = total[3] = 0;
good[0] = good[l] = good[2] = good[3] = 0;
newt = t[(i*7)];
for(j=0; j<sizeb; j++) /* bhat loop */

{
bhat = minb + (10.0 * j);
if(bhat < t[(i*7)+3] II bhat > t[(i*7)+4])
continue;

for(k=0; k<sizef; k++) /* freq loop */
{

freq = minf + (k * 10.0);
if(freq < t[(i*7)+5] 1I freq > t[(i*7)+6])

continue;
a21 = freq * freq;
for(1=0; 1<sized; 1++) /* damp loop */

{
damp = mind + (1 * 0.1);
if(damp < t[(i*7)+1] II damp > t[(i*7)+2])
continue;

a22 = 2.0 * damp * freq;
DigStabFunc(Al, A2, P, Q, newt, a22, a21, &J1, &J2, &J3,

&J4, &J5, &M1, &M2, &M3, &M4, &N1, &N2, &N3,
&N4);

subtot[7] = ((J1*M2)/bhat)+(N2-1.0);
subtot[6] = (((J1*M3)+(J2*M2))/bhat)+(N3-N2);
subtot[5] = (((J1*M4)+(J2*M3)+(J3*M2))/bhat)+(N4-N3);
subtot[4] = (((J2*M4)+(J3*M3)+(J4*M2))/bhat)-N4;
subtot[3] = ((J3*M4)+(J4*M3)+(J5*M2))/bhat;
subtot[2] = ((J4*M4)+(J5*M3))/bhat;
subtot[l] = (J5*M4)/bhat;
if(zrhqr(subtot, 8, rroots, iroots))

{
fprintf(stderr, "Eigenvalue calculation problem ");
fprintf(stderr, "(i = %d j = %d k = %d 1 = %d)\n",

i, j, k, 1);
for(m=1; m<=8; m++)

{
iroots[m] = 0.0;
rroots[m] = 2.0;

}

for(m=1; m<=8; m++)
if((rroots[m]*rroots[m])+(iroots[m]*iroots[m]) > 1.0)

255

-. ,.~=*u~-~-lr~Lllurr- --L-Y~Llc~

break;
if(m == 9)

{
num[0]
num[l]
num[2]
num [3]
num[4]
num 5]
num[6]
num[7]
den [0]
den[l]
den[2]
den [3]
den [4]
den [5]
den [6]
den[7]

if(DigBode(num, den, 8, 8, newt, 0.1, 1000.0, &mag,
&frq, &magsize))

fprintf(stderr, "Bod
fprintf(stderr, "(i

i, j, k, 1);

for(max=0.0,ind=m=0;
if(mag[m] > max)

Le calculation
= %d j = %d

problem ");
k = %d 1 = %d)\n",

m<magsize; m++)

max = mag[m];
ind = m;

for(m=ind; m<magsize;
if(mag[m] < -3.0)

ind = m-l;
break;

if(frq[ind] < 1.0)
m = 0;

else if(frq[ind] <
m = 1;

else if(frq[ind] <
m = 2;

else if(frq[ind] <
m = 3;

else
m = 4;

if(m < 4)
{

m++)

10.0)

100.0)

1000.0)

if(max < 10.0)
good[m]++;

total[m]++;
for(n=0; n<9; n++)

if(test[m][n] > frq[ind])
break;

details[(m*9)+(n-l)]++;

free(mag);
free(frq);

#ifdef DEBUG
printf("t = %7.1f, b = %6.1f, d = %3.1f, f = %6.lf\n", newt, bhat, damp,

256

1.0;
J1*M2;
(J1*M3)+(J2*M2);
(J1*M4)+(J2*M3)+(J3*M2);
(J2*M4)+(J3*M3)+(J4*M2);
(J3*M4)+(J4*M3)+(J5*M2);
(J4*M4)+(J5*M3);
(J5*M4);
bhat;
(bhat*(N2-1.0))+(J1*M2);
(bhat*(N3-N2))+(J2*M2)+(J1*M3);
(bhat*(N4-N3))+(J3*M2)+(J2*M3)+(Jl*M4);
(bhat*(-N4))+(J4*M2)+(J3*M3)+(J2*M4);
(J5*M2)+(J4*M3)+(J3*M4);
(J5*M3)+(J4*M4);
(J5*M4);

else
{

freq);
#endif

}
fprintf(ofp, "%7.lf %d (%d) %d (%d) %d (%d) %d (%d)\n', newt, good[0],

total[0], good[l], total[l], good[2], total[2], good[3],
total[3]);

fflush(ofp);
if(!defout)
{

#ifdef DETAILS
for(j=0; j<36; j++)
{

if(!j)
fprintf(ofp2, "%7.lf", newt);

fprintf(ofp2, " %d", details[j]);
}

fprintf(ofp2, "\n");
fflush(ofp2);

#endif
printf("%3d of %3d (%d, %d, %d, %d)\n', i+1, sizet, total[0],

total[l], total[2], total[3]);
}

}

if(!defout)
{
fclose(ofp);

#ifdef DETAILS
fclose(ofp2);

#endif
}

exit(0);

void DigStabFunc(double Al, double A2, double P, double Q, double T,
double a22, double a21, double *J1, double *J2, double *J3,
double *J4, double *J5, double *M1, double *M2, double *M3,
double *M4, double *N1, double *N2, double *N3, double *N4)

{
double K1, K2, K3, K4, L1, L2, L3, L4, TI, T2, sq;

T1 = 1/T;
T2 = T1*T1;
sq = sqrt(Q);

#ifdef BACKWARD
/* central difference acceleration and backward difference velocity */
J1 = (3.0/(4.0(T2)))+((3.0*a22)/(2.0*T1))+(a21);
J2 = (-4.0/(4.0(T2)))-((4.0*a22)/(2.0*TI));
J3 = (-2.0/(4.0(T2)))+(a22/(2.0*Ti));
*J4 = 1.0/(T2);
J5 = -1.0/(4.0(T2));

#else
/* central difference acceleration and velocity */
J1 = (1.0/(4.0(T2)))+(a22/(2.0*Tl))+(a21);
*J2 = 0.0;
J3 = (-2.0/(4.0(T2)))-(a22/(2.0*TI));
*J4 = 0.0;
J5 = 1.0/(4.0(T2));

#endif

K1 = (-AI*P)/(A2*Q);
K2 = (-Ai*P)/(A2*((A2*A2)-Q));
K3 = (AI*P)/(2.0*Q*(A2-sq));
K4 = (AI*P)/(2.0*Q*(A2+sq));

L1 = exp(-A2*T1);
L2 = exp(-sq*Tl);

257

1··_~_1··~_1_ ~---11--_11-_-n111-~ -.·-·1--·-1 1.-- ---- --- I-~~~~ ------·-II~_

L3 = exp(sq*Tl);
L4 = 1;

*M1 = 0;
M2 = (-K1(Ll+L2+L3))-(K2*(L2+L3+L4))-(K3*(Ll+L3+L4))-(K4*(L1+L2+L4));
M3 = (K1((L1*L2)+(L3*(Ll+L2))))+(K2*((L2*L4)+(L3*(L2+L4))))+

(K3* ((L1*L4) + (L3* (L+L4)))) + (K4* ((L*L4) + (L2*(L+L4))));
*M4 = (-Kl*Ll*L2*L3)-(K2*L2*L3*L4)-(K3*L1*L3*L4)-(K4*L1*L2*L4);

*N1 = 1.0;
*N2 = -L1-L2-L3;
*N3 = (L1*L2)+(Ll*L3)+(L2*L3);
*N4 = -(Ll*L2*L3);

int zrhqr(double al], int m, double rtr[], double rti[])
{
int j, k;
double **hess, xr, xi;

hess = matrix(l,MAXM,1,MAXM);
if(m > MAXM II a[m] == 0.0)

{
fprintf(stderr, "bad args in zrhqr\n");
free_matrix(hess,l,MAXM,1,MAXM);
return(l);

for(k=l;k<=m;k++)

hessl] [k] = -a[m-k]/a[m];
for(j=2;j<=m;j++)

hess[j [k] = 0.0;
if(k != m)

hess[k+l][k] = 1.0;

balanc(hess, m);
if(hqr(hess,m,rtr,rti))

{
free_matrix(hess,l,MAXM,1,MAXM);
return(1);

for(j=2; j<=m; j++)

xr = rtr[j];
xi = rti[j];
for(k=j-l; k>=l; k--)

if(rtr[k] <= xr)
break;

rtr[k+l] = rtr[k];
rti[k+l] = rti[k];

rtr[k+l] = xr;
rti[k+l] = xi;

free_matrix(hess,l,MAXM,1,MAXM);
return(0);

void balanc(double **a, int n)

int last,j,i;
double s,r,g,f,c,sqrdx;

sqrdx = RADIX*RADIX;
last = 0;
while(last == 0)

258

last = 1;
for(i=l; i<=n; i++)

{
r = c = 0.0;
for(j=l; j<=n; j++)

if(j .= i)
{

c += fabs(a[j] [i]);
r += fabs(a[i] [j]);

)
if(c && r)

{
g = r/RADIX;
f= 1.0;
s = c+r;

while (c<g)
{

f *= RADIX;
c *= sqrdx;

g = r*RADIX;
while(c > g)

{
f /= RADIX;
c /= sqrdx;

if((c+r)/f < 0.95*s)
{
last = 0;
g = 1.0/f;
for(j=l; j<=n; j++)

a[il[j] *= g;
for(j=l; j<=n; j++)

a[j] [i] *= f;

int hqr(double **a, int n, double wr[], double wi[])
{

int nn, m, 1, k, j, its, i, mmin;
double z, y, x, w, v, u, t, s, r, q, p, anorm;

anorm = fabs(a[l [11);
for(i=2; i<=n; i++)

for(j=(i-1); j<=n; j++)
anorm += fabs(a[i][j]);

nn=n;
t=0.0;
while(nn >= 1)

{
its = 0;
do {

for(l=nn; 1>=2; 1--)
{
s = fabs(a[l-1][l-l])+fabs(a[l][I]);
if(s == 0.0)

s=anorm;
if((double)(fabs(a[l][1-11) + s) == s)
break;

x = a[nn] [nn];
if (== nn)

{
wr[nn] = x+t;

259

wi[nn--] = 0.0;
}

else
{
y = a[nn-1] [nn-1];
w = a[nn] [nn-l]*a[nn-l] [nn];
if(l == (nn-1))
{
p = 0.5*(y-x);
q = p*p+w;
z = sqrt(fabs(q));
X += t;
if(q >= 0.0)

{
z = p+SIGN(z,p);
wr[nn-1] = wr[nn] = x+z;
if(z)
wr[nn] = x-w/z;

wi[nn-l] = wi[nn] = 0.0;
}

else
(
wr[nn-1] = wr[nn] = x+p;
wi[nn-1] = -(wi[nn] = z);

}
nn -= 2;

}
else

if(its == 30)
{
fprintf(stderr, "Too many iterations in hqr\n");
return (1);

}
if(its == 10 11 its == 20)
{

t += X;
for(i=l; i<=nn; i++)

a[i] [i] -= x;
s = fabs(a[nn] [nn-l])+fabs(a[nn-1] [nn-2]);
y = x = 0.75*s;
w = -0.4375*s*s;

++its;
for(m=(nn-2); m>=l; m--)
{

z = a[m] [m];
r = x-z;
s = y-z;
p = (r*s-w)/a[m+l] [m]+a[m] [m+l];
q = a[m+ll] [m+l]-z-r-s;
r = a[m+2][m+l];
s = fabs(p) +fabs(q)+fabs(r);
p /= s;
q /= s;
r /= s;
if(m == 1)
break;

u = fabs(a[m][m-l])*(fabs(q)+fabs(r));
v = fabs(p)*(fabs(a[m-1] [m-l])+fabs(z)+fabs(a[m+] [m+l]));
if((double)(u+v) == v)
break;

}
for(i=m+2; i<=nn; i++)

{
a[i][i-2] = 0.0;
if(i != (m+2))
a[i][i-3] = 0.0;

}

260

for(k=m; k<=nn-1; k++)
{

if(k != m)
{

p = a[k][k-l];
q = a[k+l] [k-1];
r = 0.0;
if(k != (nn-l))
r = a[k+2] [k-1];

if((x = fabs(p)+fabs(q)+fabs(r)) != 0.0)
{

p /= x;
q /= x;
r /= x;

}

if((s = SIGN(sqrt(p*p+q*q+r*r),p)) != 0.0)
{
if(k == m)

{
if(l != m)

a[k] [k-1] = -a[k] [k-1];

else
a[k] [k-l] = -s*x;

p += s;
x = p/s;
y = q/s;
z = r/s;
q /= p;
r /= p;
for(j=k; j<=nn; j++)

{
p = a[k][j]+q*a[k+l] [j];
if(k != (nn-1))

{
p += r*a[k+2] [j];
a[k+2][j] -= p*z;

a[k+1] [j] -= p*y;
a[k] [j] -= p*x;

}
mmin = nn<k+3 ? nn : k+3;
for(i=l; i<=mmin; i++)

p = x*a[i][k]+y*a[il[k+l];
if(k != (nn-1))

{
p += z*a[i][k+2];
a[i] [k+2] -= p*r;

a[i] [k+l] -= p*q;
a[i] [k] -= p;

}
}

}
}

} while(l < nn-1);
}

return(0);

double **matrix(long nrl, long nrh, long ncl, long nch)
{
long i, nrow = nrh-nrl+l, ncol = nch-ncl+l;
double **m;

/* allocate pointers to rows */

261

I ~~CII___·__II_·~·LIX·~^*L(.-.~IP1II1-i ~-~I

if((m = (double **) malloc((size_t) ((nrow+NR_END) * sizeof(double *))))
== NULL)
{

fprintf(stderr, "allocation failure 1 in matrix()\n");
exit(l);

m += NR_END;
m -= nrl;

/* allocate rows and set pointers to them */
if((m[nrl] = (double *) malloc((sizet)((nrow*ncol+NR_END)*sizeof(double))))

== NULL)
{
fprintf(stderr, "allocation failure 2 in matrix()\n");
exit(l);

I
m[nrl] += NR END;
m[nrl] -= ncl;

for(i=nrl+l; i<=nrh; i++)
m[i]=m[i-l]+ncol;

return(m);

void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
{
free((char *) (m[nrl]+ncl-NR_END));
free((char *) (m+nrl-NREND));

int DigBode(double *num, double *den, int numsize, int densize, double ts,
double begfreq, double endfreq, double **mag, double **freq,
int *magsize)

int i, j, sampsize, dec;
double *mg, *fq, inc, t;
double frq, ansr, ansi;

t = 1.0/ts;
dec = (int) (loglO(endfreq) - logl0(begfreq));
sampsize = dec * 81;
sampsize += 2;

if((mg = (double *) calloc(sampsize, sizeof(double))) == NULL)

fprintf(stderr, "Out of memory error - DigBode.\n");
return(1);

if((fq = (double *) calloc(sampsize, sizeof(double))) == NULL)

fprintf(stderr, "Out of memory error - DigBode.\n");
free(mg);
return(l);

inc = begfreq / 10.0;
fq[0] = begfreq;
for(i=0; i<dec; i++)

{
for(j=0; j<81; j++)

fq[(i*81)+j+l] = fq[(i*81)+j] + inc;
inc *= 10.0;

fq[sampsize-1] = endfreq;

262

for(i=0; i<sampsize; i++)
(

frq = 2.0 * M_PI * fq[i];
ansr = ansi = 0.0;
mg[i] = 20.0 * logl0(num[0]);
for(j=1; j<numsize; j++)

if(num[j] != 0.0)

inc = frq * t * (numsize - 1 - j);
ansr += (num[j] * cos(inc));
ansi += (num[j] * sin(inc));

}

mg[i] += (20.0 * loglO(sqrt(pow(ansr,2.0) + pow(ansi,2.0))));
ansr = ansi = 0.0;
for(j=0; j<densize; j++)

if(den(j] != 0.0)

inc = frq * t * (densize - 1 - j);
ansr += (den[j] * cos(inc));
ansi += (den[j] * sin(inc));

mg[i] -= (20.0 * logl0(sqrt(pow(ansr,2.0) + pow(ansi,2.0))));

if(mag)
(*mag) = mg;

if(freq)
(*freq) = fq;

if(magsize)
(*magsize) = sampsize;

return(0);

H.1.5 getsubset.c

This program reads each line of the file produced by mat2text.c and prints all lines that
match a specific value in a specific column. The column and value are command line parameters
to the program. This program was used to create a text file of the stable systems that conformed
to a particular sampling rate from the set of all systems which were stable over many sampling
rates.

#include <stdio.h>
#include <stdlib.h>

#define BUFSIZE 1024

void main(int argc, char **argv)

int i, col, line, once, once_size;
char *infile, *outfile, *buffer;
char name[80];
FILE *ifp, *ofp;
FILE **ofps;
float *values;
float finp[4], value;

263

I ____ __ __·_ __II·__11_____

if(argc < 2)
{
fprintf(stderr,
fprintf(stderr,
fprintf(stderr,
fprintf(stderr,
fprintf(stderr,
fprintf(stderr,
fprintf(stderr,
fprintf(stderr,
fprintf(stderr,
fprintf(stderr,
fprintf(stderrl);
exit(1);

"Syntax: getsubset infile
"[-v value]\n");
f" where: infile
t" outfile
"(default = stdout)\n");
1" -c n

[outfile] [-c n] ");

- input pathname\n");
- output pathname ");

- column interested in ");
"(default = 0)\n");
" -v value - keep records value ");
"(default = 0.0)\n");
" -once - create file for each ");
"unique value in column\n\n");

infile = argv[l];
outfile = NULL;
once = col = 0;
value = 0.0;

if(argc > 2)
{
for(i=2; i<argc; i++)

if(!(strcmp(argv[i],"-c")))
col = atoi(argv[i+l]);

else if(!(strcmp(argv[i],"-v")))
value = (float) atof(argv[i+l]);

else if(!(strcmp(argv[i],"-once")))
once = 1;

else if(!outfile)
outfile = argv[i];

if(col > 3)
{
fprintf(stderr, "only four columns expected\n\n");
exit(l);

if((ifp = fopen(infile, "r")) == NULL)
{
fprintf(stderr, "unable to open input file \"%s\"\n\n", infile);
exit(l);

if(!once && outfile)
if((ofp = fopen(outfile, "w")) == NULL)

fclose(ifp);
fprintf(stderr, "unable to open output file \"%s\"\n\n", outfile);
exit(l);

}
else if(once && !outfile)

outfile = "getsub";

if((buffer = (char *) calloc(BUFSIZE, sizeof(char))) == NULL)
{
fprintf(stderr, "Out of memory error - getsubset (%d)\n\n",

_LINE);
fclose(ifp);
if(outfile)

fclose(ofp);
exit(l);

if(once)

264

ofps = NULL;
values = NULL;
once_size = 0;

line = 0;

while(fgets(buffer, BUFSIZE, ifp))
{

line++;
sscanf(buffer, "%f %f %f %f", &finp[0], &finp[l], &finp[2], &finp[3]);

if(once)

for(i=0; i<once_size; i++)
if(finp[col] == values[i])
break;

if(i == once_size)
{
if((ofps = (FILE **) realloc(ofps, (once_size+l)*sizeof(FILE *)))

== NULL)

fprintf(stderr, "Out of memory error - getsubset (%d)\n\n",
LINE);

fclose(ifp);
for(i=0; i<once_size; i++)

fclose(ofps[i]);
exit(l);

}
if((values =

(float *) realloc(values, (once_size+l)*sizeof(float)))
== NULL)

{
fprintf(stderr, "Out of memory error - getsubset (%d)\n\n",

LINE);
fclose(ifp);
for(i=0; i<once_size; i++)

fclose(ofps[i]);
exit(l);

values[once_size] = finp[col];
sprintf(name, "%s.%d", outfile, (int) finp[col]);
if((ofps[once_size] = fopen(name, "w")) == NULL)

{
fclose(ifp);
fprintf(stderr, "unable to open output file \"%s\"\n\n",

outfile);
for(i=0; i<once_size; i++)

fclose(ofps[i]);
exit(l);

fprintf(ofps[once_size], "%s", buffer);
once_size++;

}
else

fprintf(ofps[i], "%s", buffer);
}

else if(finp[col] == value)
{
if(outfile)

fprintf(ofp, "%s", buffer);
else

printf("%s", buffer);

if(line%100000 == 0)
fprintf(stderr, "Processed %d records ...\n", line);

free(buffer);

265

I__;_~___i_~~_~_YIUI~------ir I-~III~-~1~BXI~·YIIW~I -~--l-Lll^i

fclose(ifp);
if(!once && outfile)

fclose(ofp);
if(once)

{
for(i=0; i<once_size; i++)

fclose(ofps[i]);
free(values);
free(ofps);

exit(0);

H.1.6 uniqcount.c

This program reads the text file produced by getsubset.c and a text file containing a list
of the unique values and the number of times they occur for a given column. The column is
specified as a command line parameter. This was used to quickly produce the histogram data
for display in Matlab. This could have been handled directly by Matlab but it would have been
very slow and memory intensive.

#include <stdio.h>

#define BUFSIZE 1024
#define ALLOC_INC 100

float *fsort;

int sortme(void *eleml, void *elem2);

void main(int argc, char **argv)
{
int i, col, *num, got, uniq;
int line, *sortind;
char *infile, *outfile, *buffer;
FILE *ifp, *ofp;
float finp[4];
float *fout;

if(argc < 2)
{
fprintf(stderr, "Syntax: uniqcount infile [outfile] [-c n]\n");
fprintf(stderr, " where: infile - input pathname\n");
fprintf(stderr, " outfile - output pathname ");
fprintf(stderr, "(default = stdout)\n");
fprintf(stderr, ' -c n - column interested in ");
fprintf(stderr, "(default = 0)\n\n");
exit(l);

infile = argv[1];
outfile = NULL;
col = 0;

if(argc > 2)
{

for(i=2; i<argc; i++)
{
if(!(strcmp(argv[i],"-c')))

col = atoi(argv[i+l1);

266

else if(!outfile)
outfile = argv[i];

)

if(col > 3)
{
fprintf(stderr, "only four columns expected\n\n");
exit(1);

if((ifp = fopen(infile, "r")) == NULL)
{

fprintf(stderr, "unable to open input file \"%s\"\n\n", infile);
exit(l);

if(outfile)
if((ofp = fopen(outfile, "w")) == NULL)

fclose(ifp);
fprintf(stderr, "unable to open output file \"%s\"\n\n", outfile);
exit(l);

if((buffer = (char *) calloc(BUFSIZE, sizeof(char))) == NULL)
{
fprintf(stderr, "Out of memory error - uniqcount (%d)\n\n",

LINE) ;
fclose(ifp);
if(outfile)

fclose(ofp);
exit(l);

if((fout = (float *) calloc(ALLOC_INC, sizeof(float))) == NULL)
{
fprintf(stderr, "Out of memory error - uniqcount (%d)\n\n",

LINE);
free(buffer);
fclose(ifp);
if(outfile)

fclose(ofp);
exit(l);

if((num = (int *) calloc(ALLOC_INC, sizeof(int))) == NULL)
{

fprintf(stderr, "Out of memory error - uniqcount (%d)\n\n",
LINE);

free(buffer);
free(fout);
fclose(ifp);
if(outfile)

fclose(ofp);
exit ();

got = ALLOCINC;

if(!(fgets(buffer, BUFSIZE, ifp)))
{
fprintf(stderr, "Couldn't read first line of input file\n\n");
free(buffer);
free(fout);
free(num);
fclose(ifp);
if(outfile)

fclose(ofp);

267

LCi-·1ULIIC~~ I. ·- -- -I-..- .--·- I -----~-·----^lli*ll-111~1

exit(1);

sscanf(buffer, "%f %f %f %f", &finp[O], &finp[l], &finp[2], &finp[3]);

fout[0] = finp[coll;
num[0] = 1;
line = uniq = 1;

while(fgets(buffer, BUFSIZE, ifp))
{
line++;
sscanf(buffer, "%f %f %f %f", &finp[O], &finp[l], &finp[2], &finp[3]);

for(i=0; i<uniq; i++)
if(fout[i] == finp[col])
{
num[i]++;
break;

if(i == uniq)
{

if(uniq == got)
{
if((fout =

(float *) realloc(fout, (got+ALLOC_INC)*sizeof(float)))
== NULL)
{
fprintf(stderr, "Out of memory error - uniqcount (%d)\n\n",

LINE);
free(buffer);
free(num);
fclose(ifp);
if(outfile)

fclose(ofp);
exit(l);

if((num =
(int *) realloc(num, (got+ALLOC_INC)*sizeof(int)))

== NULL)
{
fprintf(stderr, "Out of memory error - uniqcount (%d)\n\n",

LINE_);
free(buffer);
free(fout);
fclose(ifp);
if(outfile)

fclose(ofp);
exit(l);

got += ALLOC_INC;
)

fout[uniq] = finp[col];
num[uniq] = 1;
uniq++;

if(line%100000 == 0)
fprintf(stderr, "Processed %d records ...\n", line);

if((sortind = (int *) calloc(got, sizeof(int))) == NULL)
{
fprintf(stderr, "Out of memory error - uniqcount (%d)\n\n",

LINE_);
free(buffer);
free(fout);
free(num);
fclose(ifp);

268

if (outfile)
fclose(ofp);

exit ();
I

for(i=O; i<uniq; i++)
sortind[i] = i;

fsort = fout;

fprintf(stderr, "Sorting unique (%d) records ...\n", uniq);

qsort((void *) sortind, uniq, sizeof(int), sortme);

if(outfile)
{
for(i=O; i<uniq; i++)

fprintf(ofp, "%f %d\n", fsort[sortind[i]], num[sortind[i]]);
I

else

for(i=O; i<uniq; i++)
printf("%f %d\n", fsort[sortind[i]], num[sortind[i]]);

free (buffer);
free(fout);
free(num);
free(sortind);
fclose(ifp);
if (outfile)

fclose(ofp);
exit (0);

int sortme(void *eleml, void *elem2)

int i = *((int *) eleml);
int j = *((int *) elem2);

if(fsort[i] == fsort[j])
return (0);

else if(fsort[i] > fsort[j])
return(1);

else
return(-1);

H.1.7 settlestats.m

The Matlab script reads the text files produced by getsubset.c for each bearing axis, plots
the histograms of the damping ratio, natural frequency, and feedback gain, and calculates the
mean and standard deviation of each controller parameter. The mean and standard deviation are
used to further restrict the controller parameters range of values in the compli.c program to speed
calculations.

% print histogram stats from stability matrix after mat2text conversion

fname = str2mat('/usr/tmp/axial.cut',
'/usr/tmp/radlx.cut', ...

269

'/usr/tmp/radly.cut', ...
'/usr/tmp/rad2x.cut',
'/usr/tmp/rad2y.cut');

fvalname = str2mat('/usr/tmp/axial.val', '/usr/tmp/radlx.val', ...
'/usr/tmp/radly.val', '/usr/tmp/rad2x.val', '/usr/tmp/rad2y.val');

bearname = str2mat('Axial', 'RadlX', 'RadlY', 'Rad2X', 'Rad2Y');

histname = str2mat(' sampling time delay histogram', ...
' damping ratio histogram', ' bhat histogram', ' frequency histogram');

valname = str2mat(' sampling time delay histogram counts', ...
' damping ratio histogram counts', ' bhat histogram counts',
' frequency histogram counts');

colname = str2mat('Sampling Rate', 'Damping Ratio', 'Bhat', 'Frequency');

myprinter = '-Pshiva';

% set print variable to 1 if you want hardcopy results
printme = 0;

% set test variable to 0 if no subset required
test = [1 12000];

for ii=l:size(bearname,1)
fid = fopen(fname(ii,:),'r');

if(fid < 3)
disp(['Unable to open "' fname(ii,:) '"']);

else
[d,count] = fscanf(fid,'%7f %5f %6f %6f',[4 inf]);
d = d';

fclose(fid);

for jj=1:size(histname,1);
s = sort(d(:,jj));
u = zeros(size(s));
u(1) = s(1);
11 = 1;
for kk=2:1length(s)

if(s(kk) -~= s(kk-1))
11 = 11+1;
u(ll) = s(kk);

end
end

u = u(1:11);

if(size(u,1) -~= 1)
[n,x] = hist(d(:,jj),u);
bar(x,n);
if(test(l) == 0)

title([bearname(ii,:) deblank(histname(jj,:))]);
else

title([bearname(ii,:) deblank(histname(jj,:)) ' ('
deblank(colname(test(1),:)) ' = ' num2str(test(2)) ')']);

end
if(printme == 1)
orient landscape;
command = ['print -dps ' myprinter ' -h'];
eval (command) ;

end

out = [x(:) n(:)];
out = out';

270

if(printme == 1)
fid = fopen(fvalname(ii,:),'w');

if(fid < 3)
disp(['Unable to open "' fvalname(ii,:) '" ']);

else

if(test(1) == 0)
count = fprintf(fid,'%s%s\n\n', bearname(ii,:),

deblank(valname(jj,:)));
else
count = fprintf(fid,'%s%s (%s = %f)\n\n', bearname(ii,:), ...

deblank(valname(jj,:)), deblank(colname(test(1),:)),
test(2));

end
command = sprintf('%f %4d',out(:,1));
n = length(command)-4;
if(length(deblank(colname(jj,:)))+4 > n)
n = length(deblank(colname(jj,:)))+4;

end
count = fprintf(fid,'%-*sQuantity\n', n, deblank(colname(jj,:)));
for kk=l:size(out,2)
count = fprintf(fid,'%-*f %4d\n',n,out(:,kk));

end
count = fprintf(fid,'\nmean = %f std dev = %f\n\n', ...

mean(d(:,jj)), std(d(:,jj)));

fclose(fid);

command = ['!enscript ' myprinter ' -h -2rG ' fvalname(ii,:)];
eval(command);

end
else

if(test(l) == 0)
command = sprintf('%s%s\n', bearname(ii,:),

deblank(valname(jj,:)));
else

command = sprintf('%s%s (%s = %f)\n', bearname(ii,:),
deblank(valname(jj,:)), deblank(colname(test(1),:)), test(2));

end
disp(command);
command = sprintf('%f %4d',out(:,1));
n = length(command)-4;
if(length(deblank(colname(jj,:)))+4 > n)
n = length(deblank(colname(jj,:)))+4;

end
command = sprintf('%-*sQuantity', n, deblank(colname(jj,:)));
disp(command);
for kk=l:size(out,2)
command = sprintf('%-*f %4d',n,out(:,kk));
disp(command);

end
command = sprintf('\nmean = %f std dev = %f\n\n', ...

mean(d(:,jj)), std(d(:,jj)));
disp(command);
disp('Press any key to continue ...');
pause;
disp(' ');

end
else

disp('hist command returned empty matrices');
end

end
end

end

271

H.1.8 compli.c

This program uses the mean standard deviation calculated by settlestats.m to determine
the range of values for the controller variables of damping ratio, natural frequency, and feedback
gain. Using these newly calculated ranges, the gain at 1000 Hz, bandwidth, maximum
compliance, maximum steady state control signal, and maximum closed loop gain are calculated
and output to a binary file to conserve disk space.

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>

#define RADIX 2.0
#define NREND 1
#define MAXM 8

#define SIGN(a,b) ((b) >= 0.0 ? fabs(a) : -fabs(a))

#define MYERR le-8
#define OVERSHOOT 0.1
#define MAXSETTLE 0.6
#define MYSAMPLE 20000.0
#define SAMP_SIZE 1
#define PI 3.141592654
#ifdef NOISE
#ifdef CLOSE_TEST
#define SAVENUM 5
#else
#define SAVENUM 4
#endif
#else
#define SAVENUM 3
#endif

void DigStabFunc(double Al, double A2, double P, double Q, double newt,
double a22, double a21, double *J1, double *J2, double *J3,
double *J4, double *J5, double *M1, double *M2, double *M3,
double *M4, double *N1, double *N2, double *N3, double *N4);

int DigReference(double bfreq, double efreq, double dfreq, double bT,
double eT, double dT, double initx, double initu, double maxt,
double **settle, int *n);

#ifdef NOISE
int DigGetNoiseData(int bearing, FILE *ifp, int size, int offset,

double *noise);
int DigStepWithNoise(int bearing, double b, double damp, double freq, double T,

double initx, double initu, double maxt, double P,
double Q, double Al, double A2, double *noise, double **y,
double **u, double **t, int *n);

#endif
int DigStep(int bearing, double b, double damp, double freq, double T,

double initx, double initu, double maxt, double P, double Q,
double Al, double A2, double **y, double **u, double **t, int *n);

int DigBode(double *num, double *den, int numsize, int densize, double ts,
double begfreq, double endfreq, double **mag, double **freq,
int *magsize);

int zrhqr(double a[], int m, double rtr[], double rti[]);
void balanc(double **a, int n);
int hqr(double **a, int n, double wr[], double wi[]);
double **matrix(long nrl, long nrh, long ncl, long nch);
void free matrix(double **m, long nrl, long nrh, long ncl, long nch);

void main(int argc, char **argv)
{

272

int i, j, 1, m, begin;
int curcols, currows, ebara, axis;
int ibeg, jbeg, setsize;
int bhat_size, damp_size, freq_size;
float *buffer;
char *filename;
FILE *fp, *ifp;
double P, Q, Al, A2;
double bbhat, ebhat, bdamp, edamp, bfreq, efreq;
double bhat, freq, damp;
double a21, a22, *settle, mysettle, udelta, ufinal, umax;
double *y, *u, *t, initx, initu, over, set, overu, setu;
double subtot[9], rroots[9], iroots[9];
double Jl, J2, J3, J4, J5, M1, M2, M3, M4, Ni, N2, N3, N4;
double num[8], den[8], *mag, *frq, compl;

#ifdef NOISE
int nsize;
double *noise;
char *fnames[] = {

"/tmp/axial20k.dat",
"/tmp/radlx20k.dat",
"/tmp/radly20k.dat",
"/tmp/rad2x20k.dat",
"/tmp/rad2y20k.dat"
};

#endif
int magsize;

ebara = 0;
begin = axis = 0;

if(argc < 2)) argc > 6)
{

fprintf(stderr, "Syntax error\n");
fprintf(stderr, "Syntax: compli filename [-a n] [-b m]\n");
fprintf(stderr, " where: filename - binary array filename\n");
fprintf(stderr, " -b n -> start integer [0-1000000]\n");
fprintf(stderr, " -a m -> bearing axis [0-4]\n");
exit(l);

for(i=l; i<argc; i++)
{
if(i == 1)

filename = argv[l];
else if(argv[i] [0] == '-')

{
if(argv[i][l] == 'b')
begin = atoi(argv[i+l]);

else if(argv[i][1] == 'a')
axis = atoi(argv[i+l]);

}

currows = 0;

if(begin)
{
if((fp = fopen(filename, "r+")) == NULL)
{

fprintf(stderr, "Unable to open file \"%s\" (r+)\n", filename);
exit(l);

}
}

else
{
if((fp = fopen(filename, "w+")) == NULL)

{
fprintf(stderr, "Unable to open file \"%s\" (w+)\n", filename);

273

exit(1);

if(ebara)
{
switch (axis)

{
default:
case 0:

P = 11.081;
Q = 27701.879;
Al = 1666.622;
A2 = 1700.000;
bdamp = floor((4.033827 - 2.101680) * 10.0) / 10.0;
edamp = ceil((4.033827 + 2.101680) * 10.0) / 10.0;
bbhat = floor(402.967777 - 254.562878);
ebhat = ceil(402.967777 + 254.562878);
bfreq = floor((527.319758 - 238.103058) / 10.0) * 10.0;
efreq = ceil((527.319758 + 238.103058) / 10.0) * 10.0;
break;

case 1:
P = 10.278;
Q = 41113.653;
Al = 14222.428;
A2 = 4370.000;
bdamp = floor((4.033827 - 2.101680) * 10.0) / 10.0;
edamp = ceil((4.033827 + 2.101680) * 10.0) / 10.0;
bbhat = floor(402.967777 - 254.562878);
ebhat = ceil(402.967777 + 254.562878);
bfreq = floor((527.319758 - 238.103058) / 10.0) * 10.0;
efreq = ceil((527.319758 + 238.103058) / 10.0) * 10.0;
break;

case 2:
P = 10.278;
Q = 41113.653;
Al = 14575.775;
A2 = 4030.000;
bdamp = floor((4.033827 - 2.101680) * 10.0) / 10.0;
edamp = ceil((4.033827 + 2.101680) * 10.0) / 10.0;
bbhat = floor(402.967777 - 254.562878);
ebhat = ceil(402.967777 + 254.562878);
bfreq = floor((527.319758 - 238.103058) / 10.0) * 10.0;
efreq = ceil((527.319758 + 238.103058) / 10.0) * 10.0;
break;

case 3:
P = 20.263;
Q = 81050.754;
Al = 4027.457;
A2 = 2450.000;
bdamp = floor((4.033827 - 2.101680) * 10.0) / 10.0;
edamp = ceil((4.033827 + 2.101680) * 10.0) / 10.0;
bbhat = floor(402.967777 - 254.562878);
ebhat = ceil(402.967777 + 254.562878);
bfreq = floor((527.319758 - 238.103058) / 10.0) * 10.0;
efreq = ceil((527.319758 + 238.103058) / 10.0) * 10.0;
break;

case 4:
P = 20.263;
Q = 81050.754;
Al = 4108.477;
A2 = 2600.000;
bdamp = floor((4.033827 - 2.101680) * 10.0) / 10.0;
edamp = ceil((4.033827 + 2.101680) * 10.0) / 10.0;
bbhat = floor(402.967777 - 254.562878);
ebhat = ceil(402.967777 + 254.562878);
bfreq = floor((527.319758 - 238.103058) / 10.0) * 10.0;
efreq = ceil((527.319758 + 238.103058) / 10.0) * 10.0;
break;

274

else

switch(axis)
{
default:
case 0:

P = 7.990;
Q = 22739.569;
Al = 11097.006;
A2 = 13310.0;
bdamp = floor((3.272777 - (1.25 * 2.717406)) * 10.0) / 10.0;
edamp = ceil((3.272777 + (1.25 * 2.717406)) * 10.0) / 10.0;
bbhat = floor(370.414059 - (1.25 * 271.290529));
ebhat = ceil(370.414059 + (1.25 * 271.290529));
bfreq = floor((347.082893 - (1.25 * 232.298166)) / 10.0) * 10.0;
efreq = ceil((347.082893 + (1.25 * 232.298166)) / 10.0) * 10.0;
break;

case 1:
P = 7.123;
Q = 7737.770;
Al = 4619.584;
A2 = 13130.0;
bdamp = floor((3.918438 - (1.25 * 2.817466)) * 10.0) / 10.0;
edamp = ceil((3.918438 + (1.25 * 2.817466)) * 10.0) / 10.0;
bbhat = floor(328.021404 - (1.25 * 279.017239));
ebhat = ceil(328.021404 + (1.25 * 279.017239));
bfreq = floor((276.262071 - (1.25 * 209.387555)) / 10.0) * 10.0;
efreq = ceil((276.262071 + (1.25 * 209.387555)) / 10.0) * 10.0;
break;

case 2:
P = 8.296;
Q = 8882.644;
Al = 4558.848;
A2 = 13080.0;
bdamp = floor((3.814237 - (1.25 * 2.808301)) * 10.0) / 10.0;
edamp = ceil((3.814237 + (1.25 * 2.808301)) * 10.0) / 10.0;
bbhat = floor(332.704460 - (1.25 * 278.550625));
ebhat = ceil(332.704460 + (1.25 * 278.550625));
bfreq = floor((285.769852 - (1.25 * 212.645306)) / 10.0) * 10.0;
efreq = ceil((285.769852 + (1.25 * 212.645306)) / 10.0) * 10.0;
break;

case 3:
P = 16.926;
Q = 35530.576;
Al = 3863.909;
A2 = 11140.0;
bdamp = floor((3.412286 - (1.25 * 2.731543)) * 10.0) / 10.0;
edamp = ceil((3.412286 + (1.25 * 2.731543)) * 10.0) / 10.0;
bbhat = floor(349.211106 - (1.25 * 273.471228));
ebhat = ceil(349.211106 + (1.25 * 273.471228));
bfreq = floor((336.787694 - (1.25 * 226.591365)) / 10.0) * 10.0;
efreq = ceil((336.787694 + (1.25 * 226.591365)) / 10.0) * 10.0;
break;

case 4:
P = 15.113;
Q = 33201.349;
Al = 4212.3;
A2 = 12290.0;
bdamp = floor((3.550881 - (1.25 * 2.756218)) * 10.0) / 10.0;
edamp = ceil((3.550881 + (1.25 * 2.756218)) * 10.0) / 10.0;
bbhat = floor(343.223786 - (1.25 * 275.796596));
ebhat = ceil(343.223786 + (1.25 * 275.796596));
bfreq = floor((335.875802 - (1.25 * 225.363705)) / 10.0) * 10.0;
efreq = ceil((335.875802 + (1.25 * 225.363705)) / 10.0) * 10.0;
break;

}

275

if(bdamp < 0.0)
bdamp = 0.1;

if(bbhat < 0.0)
bbhat = 2.0;

if(bfreq < 0.0)
bfreq = 10.0;

#ifdef NOISE
noise = NULL;
nsize = 0;

#endif

switch(axis)
{
default:
case 0:

initx = -0.0002;
initu = 1.167;
break;

case 1:
case 2:
case 3:
case 4:

initx = 0.0001;
initu = 0.0;
break;

* newt =
* damp =
* freq =
* bhat =
*/

bhat_size
freq_size
damp_size

0.00015;
[1:0.1:7];
[250:10:700];
[100:2:700];

= ((int) ceil((ebhat - bbhat) / 2.0)) + 1;
= ((int) ceil((efreq - bfreq) / 10.0)) + 1;
= ((int) ceil((edamp - bdamp) / 0.1)) + 1;

curcols = (damp_size * SAMP_SIZE);
currows = (int) (((float) begin) / ((float) curcols));

fseek(fp,
if(!fwrite

{
fprint
fclose
exit(1

if(!fwrite
{

fprint
fclose
exit (1

if((buffer
== NULL

fprint
exit(1);

OL, SEEK_SET);
!((void *) &currows, sizeof(int), 1, fp))

:f(stderr, "row data write failed\n");
(fp);

[);

f((void *) &curcols, sizeof(int), 1, fp))

:f(stderr, "columns data write failed\n");
(fp);

.);

= (float *) calloc(damp_size*freq_size*SAVENUM, sizeof(float)))
)ftderr Out of memory error - om e

:f(stderr, "Out of memory error - compliance.\n");

/* get maximum settling times for given frequencies */
if(DigReference(10.0, 1000.0, 10.0, 1000.0, 50000.0, 1000.0,

0.0, 1.0, MAXSETTLE, &settle, &setsize))

fprintf(stderr, "Error encountered in DigReference - compliance.\n");
free(buffer);

276

exit(l);
)

mysettle = (MYSAMPLE - 1000.0) / 1000.0;
if((mysettle - floor(mysettle)) <= (ceil(mysettle) - mysettle))
mysettle = floor(mysettle);

else
mysettle = ceil(mysettle);

/* 100 = size of frequency value range */
j = ((int) mysettle) * 100;
mysettle = settle[j];

free(settle);

#ifdef NOISE
if((ifp = fopen(fnames[axis], "r")) == NULL)

{
fprintf(stderr, "Unable to open noise file \"%s\" - compliance.\n",

fnames[axis]);
free(buffer);
exit(l);

#endif

if(begin)
{
ibeg = (int) (((float) currows) / ((float) freq_size));
jbeg = (int) (currows - (ibeg * freq_size));
fseek(fp, (currows*curcols*SAVENUM*sizeof(float)) + (2 * sizeof(int)),

SEEK_SET);

else
ibeg = jbeg = 0;

begin = 0;
for(i=ibeg; i<bhat_size; i++) /* bhat loop */

{
bhat = (bbhat + (i * 2.0));
for(j=jbeg; j<freq_size; j++) /* freq loop */

{
freq = (bfreq + (j * 10.0));
a21 = freq * freq;
for(l=0; l<damp_size; 1++) /* damp loop */

{
damp = (bdamp + (1 * 0.1));
a22 = 2.0 * damp * freq;
DigStabFunc(Al, A2, P, Q, MYSAMPLE, a22, a21, &Jl1, &J2, &J3, &J4,

&J5, &M1, &M2, &M3, &M4, &N1, &N2, &N3, &N4);
subtot[8] = 1.0;
subtot[7] = ((Jl*M2)/bhat)+(N2-1.0);
subtot[6] = (((Jl*M3)+(J2*M2))/bhat)+(N3-N2);
subtot[5] = (((J1*M4)+(J2*M3)+(J3*M2))/bhat)+(N4-N3);
subtot[4] = (((J2*M4)+(J3*M3)+(J4*M2))/bhat)-N4;
subtot[3] = ((J3*M4)+(J4*M3)+(J5*M2))/bhat;
subtot[2] = ((J4*M4)+(J5*M3))/bhat;
subtot[l] = (J5*M4)/bhat;
if(zrhqr(subtot, 8, rroots, iroots))

{
fprintf(stderr, "Eigenvalue calculation problem ");
fprintf(stderr, "(i = %d j = %d 1 = %d)\n", i, j, 1);
goto error;

for(m=l; m<=8; m++)
if((rroots[m]*rroots[m])+(iroots[m]*iroots[m]) > 1.0)
break;

if(m == 9)
{
if(DigStep(axis, bhat, damp, freq, MYSAMPLE, initx,

initu, 0.6, P, Q, Al, A2, &y, &u,

277

&t, &setsize))

fprintf(stderr, "DigStep calculation problem ");
fprintf(stderr, "(i = %d j = %d 1 = %d)\n", i, j, 1);
goto error;

}
if(axis)

ufinal = 0.0;
else

{
for(m=0; m<setsize; m++)

if(t[m] >= mysettle)
break;

ufinal = setsize-m;
udelta = 0.0;
for(; m<setsize; m++)
udelta += u[m];

ufinal = udelta / ufinal;
}

udelta = fabs(0.05 * initx);
for(m=setsize-1; m>=0; m--)
if(fabs(y[m]) > udelta)

set = t[m];
break;
)

free(y);
free(u);
free(t);

#ifdef NOISE
if((int) ((2.0*set*MYSAMPLE)+0.5) > nsize)

nsize = (int) ((2.0*set*MYSAMPLE)+0.5);
if((noise =

(double *) realloc(noise, nsize*sizeof(double)))
== NULL)

{
fprintf(stderr,

"Out of memory error - compliance.\n");
exit(l);

if(DigGetNoiseData(axis, ifp, nsize, 1000, noise))

fprintf(stderr,
"DigGetNoiseData error - compliance.\n");

exit(1);
}

if(DigStepWithNoise(axis, bhat, damp, freq, MYSAMPLE, initx,
initu, 2.0*set, P, Q, Al, A2, noise, &y,
&u, &t, &setsize))

fprintf(stderr, "DigStepWithNoise calculation problem ");
fprintf(stderr, "(i = %d j = %d 1 = %d)\n, i, j, 1);
goto error;

}
overu = 0.0;
for(m=0; m<setsize; m++)

if(t[m] < set)
continue;

if(fabs(u[m]-ufinal) > overu)
overu = fabs(u[m]-ufinal);
)

free (y);
free(u);
free(t);

#endif
#ifdef CLOSE_TEST

278

num[0] = 1.0;
num[l] = J1*M2;
num[2] = (Jl*M3)+(J2*M2);
num[31 = (J1*M4)+(J2*M3)+(J3*M2);
num[4] = (J2*M4)+(J3*M3)+(J4*M2);
num[5] = (J3*M4)+(J4*M3)+(J5*M2);
num[61 = (J4*M4)+(J5*M3);
num[7] = (J5*M4);
den[0] = bhat;
den[l] = (bhat*(N2-1.0))+(Jl*M2);
den[2] = (bhat*(N3-N2))+(J2*M2)+(J1*M3);
den[3] = (bhat*(N4-N3))+(J3*M2)+(J2*M3)+(J1*M4);
den[4] = (bhat*(-N4))+(J4*M2)+(J3*M3)+(J2*M4);
den[5] = (J5*M2)+(J4*M3)+(J3*M4);
den[6] = (J5*M3)+(J4*M4);
den[7] = (J5*M4);
if(DigBode(num, den, 8, 8, MYSAMPLE, 0.1, 1000.0, &mag, &frq,

&magsize))
{
fprintf(stderr, "Bode calculation problem ");
fprintf(stderr, "(i = %d j = %d 1 = %d)\n",

i, j, 1);
goto error;

#if 0
for(m=0; m<magsize; m++)
printf("%6.2f %8.5f\n", frq[m], mag[m]);

exit(0);
#endif

udelta = -1000.0;
set = -1.0;
for(m=0; m<magsize; m++)
{

if(mag[m] > udelta)
udelta = mag[m];

if(mag[m] < 0.0 && mag[m-l] > 0.0)
set = frq[m-l];

}
over = mag[magsize-l];
free(mag);
free(frq);

#endif
num[0] = P;
num[l] = bhat*M2;
num[2] = bhat*(M3-M2);
num[3] = bhat*(M4-M3);
num[4] = bhat*(-M4);
num[5] = num[6] = num[7] = 0.0;
den[0] = bhat;
den[l] = (bhat*(N2-1.0))+(Jl*M2);
den[2] = (bhat*(N3-N2))+(J2*M2)+(Jl*M3);
den[3] = (bhat*(N4-N3))+(J3*M2)+(J2*M3)+(Jl*M4);
den[4] = (bhat*(-N4))+(J4*M2)+(J3*M3)+(J2*M4);
den[5] = (J5*M2)+(J4*M3)+(J3*M4);
den[6] = (J5*M3)+(J4*M4);
den[7] = (J5*M4);
if(DigBode(num, den, 8, 8, MYSAMPLE, 0.1, 1000.0, &mag, &frq,

&magsize))
{
fprintf(stderr, "Bode calculation problem ");
fprintf(stderr, "(i = %d j = %d 1 = %d)\n",

i, j, 1);
goto error;

}
#if 0

for(m=0; m<magsize; m++)
printf("%6.2f %8.5f\n", frq[m], mag[m]);

exit(0);
#endif

279

compl = mag[0];
for(m=1; m<magsize; m++)

if(mag[m] > compl)
compl = mag[m];

}
buffer[(j*SAVENUM*dampsize)+(l*SAVENUM)] = (float) over;
buffer[(j*SAVENUM*damp_size)+(l*SAVENUM)+1] = (float) set;
buffer[(j*SAVENUM*damp size)+(1*SAVENUM)+2] = (float) compl;

#ifdef NOISE
#ifdef CLOSE_TEST

buffer[(j*SAVENUM*damp_size)+(l*SAVENUM)+3] = (float) overu;
buffer[(j*SAVENUM*dampsize)+(1*SAVENUM)+4] = (float) udelta;

#else
buffer[(j*SAVENUM*damp_size)+(l*SAVENUM)+3] = (float) overu;

#endif
#endif

free(mag);
free(frq);
begin++;

}
else /* m != 8 */
{
error:
buffer[(j*SAVENUM*dampsize)+(l*SAVENUM)] = 0.0;
buffer[(j*SAVENUM*damp_size)+(l*SAVENUM)+l] = (float) -1.0;
buffer[(j*SAVENUM*dampsize)+(l*SAVENUM)+2] = (float) 0.0;

#ifdef NOISE
#ifdef CLOSE_TEST

buffer[(j*SAVENUM*dampsize)+(1*SAVENUM)+3] = (float) 0.0;
buffer[(j*SAVENUM*damp_size)+(l*SAVENUM)+4] = (float) 0.0;

#else
buffer[(j*SAVENUM*damp_size)+(l*SAVENUM)+3] = (float) 0.0;

#endif
#endif

} /* damp loop */
) /* freq loop */

if(jbeg)
jbeg = 0;

currows++;
} /* bhat loop */

if(fwrite((void *) buffer, sizeof(float), damp_size*freq_size*SAVENUM,
fp) != damp_size*freq_size*SAVENUM)

fprintf(stderr, "data write failed\n");
fclose(fp);
exit(l);

}

fseek(fp, OL, SEEK_SET);
if(!fwrite((void *) &currows, sizeof(int), 1, fp))
{
fprintf(stderr, "row data write failed\n");
fclose(fp);
exit(l);

}
if(!fwrite((void *) &curcols, sizeof(int), 1, fp))
{
fprintf(stderr, "columns data write failed\n");
fclose(fp);
exit(l);

}
fflush(fp);
fseek(fp, (currows*curcols*SAVENUM*sizeof(float)) + (2 * sizeof(int)),

SEEKSET);
printf("%3d of %3d (%d)\n", i+1, bhat_size, begin);

fclose(fp);

280

fclose(ifp);
free(buffer);
exit(0);

void DigStabFunc(double Al, double A2, double P, double Q, double T,
double a22, double a21, double *J1, double *J2, double *J3,
double *J4, double *J5, double *M1, double *M2, double *M3,
double *M4, double *N1, double *N2, double *N3, double *N4)

double K1, K2, K3, K4, L1, L2, L3, L4, T1, T2, sq;

T1 = 1.0/T;
T2 = TI*T1;
sq = sqrt(Q);

#ifdef BACKWARD
/* central difference acceleration and backward difference velocity */
J1 = (3.0/(4.0(T2)))+((3.0*a22)/(2.0*Tl))+(a21);
J2 = (-4.0/(4.0(T2)))-((4.0*a22)/(2.0*Tl));
J3 = (-2.0/(4.0(T2)))+(a22/(2.0*Tl));
*J4 = 1.0/(T2);
J5 = -1.0/(4.0(T2));

#else
/* central difference acceleration and velocity */
J1 = (l.0/(4.0(T2)))+(a22/(2.0*Tl))+(a21);
*J2 = 0.0;
J3 = (-2.0/(4.0(T2)))-(a22/(2.0*TI));
*J4 = 0.0;
J5 = 1.0/(4.0(T2));

#endif

K1 = (-Al*P)/(A2*Q);
K2 = (-Al*P)/(A2*((A2*A2)-Q));
K3 = (AI*P)/(2.0*Q*(A2-sq));
K4 = (AI*P)/(2.0*Q*(A2+sq));

L1 = exp(-A2*T1);
L2 = exp(-sq*T1);
L3 = exp(sq*T1);
L4 = 1;

*M1 = 0;
M2 = (-Kl(LI+L2+L3))-(K2*(L2+L3+L4))-(K3*(LI+L3+L4))-(K4*(Ll+L2+L4));
M3 = (Kl((LI*L2)+(L3*(LI+L2))))+(K2*((L2*L4)+(L3*(L2+L4))))+

(K3*((L*L4) + (L3*(L+L4)))) +(K4* ((L*L4) + (L2*(L+L4))));
*M4 = (-KI*Ll*L2*L3)-(K2*L2*L3*L4)-(K3*Ll*L3*L4)-(K4*Ll*L2*L4);

*N1 = 1.0;
*N2 = -Ll-L2-L3;
*N3 = (Ll*L2)+(LI*L3)+(L2*L3);
*N4 = -(LI*L2*L3);

int zrhqr(double a[], int m, double rtr[], double rti[])
(
int j, k;
double **hess, xr, xi;

hess = matrix(1,MAXM,1,MAXM);
if(m > MAXM II a[m] == 0.0)
{
fprintf(stderr, "bad args in zrhqr\n");
freematrix(hess,1,MAXM,1,MAXM);
return(l);

281

for (k=1; k<=m; k++)

hess[l [k] = -a[m-k]/a [m];
for(j=2;j<=m; j++)
hess[j] [k] = 0.0;

if(k != m)
hess[k+l] [k] = 1.0;

)
balanc(hess, m);
if(hqr(hess,m,rtr,rti))

{
free_matrix(hess,, MAXM,1,MAXM);
return (1);

for(j=2; j<=m; j++)
{
xr = rtr[j];
xi = rti[j];
for(k=j-l; k>=l; k--)

{
if(rtr[k] <= xr)
break;

rtr[k+1] = rtr[k];
rti[k+l] = rti[k];

rtr[k+l] = xr;
rti[k+1] = xi;

)
free_matrix(hess,1,MAXM,1,MAXM);
return(0);

void balanc(double **a, int n)
{

int last,j,i;
double s,r,g,f,c,sqrdx;

sqrdx = RADIX*RADIX;
last = 0;
while(last == 0)

{
last = 1;
for(i=l; i<=n; i++)

{
r = c = 0.0;
for(j=1; j<=n; j++)

if(j != i)
{

c += fabs(a[jl[il);
r += fabs(a[i] [j]);

if(c && r)
{

g = r/RADIX;
f = 1.0;
S = c+r;
while (c<g)

{
f *= RADIX;
c *= sqrdx;

g = r*RADIX;
while(c > g)

{
f /= RADIX;
c /= sqrdx;

)

282

if((c+r)/f < 0.95*s)
{
last = 0;
g = 1.0/f;
for(j=1; j<=n; j++)

a[il[j] *= g;
for(j=l; j<=n; j++)

a[j] [i] *= f;

int hqr(double **a, int n, double wr[], double wi[])
{

int nn, m, 1, k, j, its, i, mmin;
double z, y, x, w, v, u, t, s, r, q, p, anorm;

anorm = fabs(a[l] [1]);
for(i=2; i<=n; i++)

for(j=(i-l); j<=n; j++)
anorm += fabs(a[i][j]);

nn=n;
t=0.0;
while(nn >= 1)

{
its = 0;
do {

for(l=nn; 1>=2; 1--)
{
s = fabs(a[l-l][l-l])+fabs(a[l][l]);
if(s == 0.0)
s=anorm;

if((double)(fabs(a[l][1-1]) + s) == s)
break;

}
x = a[nn][nn];
if(l == nn)

{
wr[nn] = x+t;
wi[nn--] = 0.0;

}
else

{
y = a[nn-l] [nn-l];
w = a[nn][nn-l]*a[nn-1][nn];
if(l == (nn-l))

{
p = 0.5*(y-x);
q = p*p+w;
z = sqrt(fabs(q));
x += t;
if(q >= 0.0)

{
z = p+SIGN(z,p);
wr[nn-l] = wr[nn] = x+z;
if(z)
wr[nn] = x-w/z;

wi[nn-l] = wi[nn] = 0.0;
}

else
{

wr[nn-1] = wr[nn] = x+p;
wi[nn-l] = -(wi[nn] = z);

}
nn -= 2;

}

283

else
{
if(its == 30)

fprintf(stderr, "Too many iterations in hqr\n");
return (1);

I
if(its == 10 11 its == 20)

t += x;
for(i=1; i<=nn; i++)

a[i)[i] -= x;
s = fabs(a[nn][nn-l])+fabs(a[nn-l][nn-2]);
y = x = 0.75*s;
w = -0.4375*s*s;

++its;
for(m=(nn-2); m>=l; m--)

z = a[m][m];
r = x-z;
s = y-z;
p = (r*s-w)/a[m+1][m]+a[m][m+l];
q = a[m+ll[m+l]-z-r-s;
r = a[m+2][m+l];
s = fabs(p)+fabs(q)+fabs(r);
p /= s;
q /= s;
r /= s;
if(m == 1)
break;

u = fabs(a[m][m-lJ)*(fabs(q)+fabs(r));
v = fabs(p)*(fabs(a[m-1][m-ll])+fabs(z)+fabs(alm+l][m+l]));
if((double)(u+v) == v)
break;

for(i=m+2; i<=nn; i++)

a[i][i-2] = 0.0;
if(i != (m+2))

a[il[i-3] = 0.0;

for(k=m; k<=nn-1; k++)
{
if(k != m)

p = a[k][k-1];
q = a[k+l][k-1];
r= 0.0;
if(k != (nn-1))
r = a[k+2] [k-1];

if((x = fabs(p)+fabs(q)+fabs(r)) != 0.0)

p /= x;
q /= x;
r /= x;

)
if((s = SIGN(sqrt(p*p+q*q+r*r),p)) != 0.0)

{
if(k == m)

if(l != m)
a[k][k-1] = -a[k][k-l];

else
a[k] [k-l] = -s*x;

p += s;
x = p/s;

284

y = q/s;
z = r/s;
q /= p;
r /= p;
for(j=k; j<=nn; j++)

p = a[k][j]+q*a[k+ll[j];
if(k != (nn-1))

p += r*a[k+2][j];
a[k+2][j] -= p*z;

a[k+l][j] -= p*y;
a[k][j] -= p*x;

mmin = nn<k+3 ? nn : k+3;
for(i=l; i<=mmin; i++)

p = x*a[i][k]+y*a[i)[k+l];
if(k != (nn-1))

p += z*a[i][k+2];
a[i][k+2] -= p*r;

a[i][k+l] -= p*q;
a[i][k] -= p;

)

)

) while(l < nn-1);

return(0);

double **matrix(long nrl, long nrh, long ncl, long nch)

long i, nrow = nrh-nrl+l, ncol = nch-ncl+1;
double **m;

/* allocate pointers to rows */
if((m = (double **) malloc((sizet) ((nrow+NR_END) * sizeof(double *))))

== NULL)

fprintf(stderr, "allocation failure 1 in matrix()\n");
exit ();

m += NREND;
m -= nrl;

/* allocate rows and set pointers to them */
if((m[nrl] = (double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double))))

== NULL)

fprintf(stderr, "allocation failure 2 in matrix()\n");
exit(1);

I
m[nrl] += NR_END;
m[nrl] -= ncl;

for(i=nrl+l; i<=nrh; i++)
m[i]=m[i-l]+ncol;

return(m);

I

285

void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
(
free((char *) (m[nrl]+ncl-NREND));
free((char *) (m+nrl-NR_END));

int DigReference(double bfreq, double efreq, double dfreq, double bT,
double eT, double dT, double initx, double initu, double maxt,
double **settle, int *n)

int i, j, k, fsize, tsize, setsize, ee, bb;
double *time, upt, *freq, output, *set;

(*settle) = NULL;
(*n) = 0;

tsize = ((int) (((eT - bT) / dT) + 0.5)) + 1;
fsize = ((int) ((efreq - bfreq) / dfreq)) + 1;
setsize = fsize * tsize;

if((time = (double *) calloc(tsize, sizeof(double))) == NULL)

fprintf(stderr, "Out of memory error - DigReference.\n");
return(1);

)

if((freq = (double *) calloc(fsize, sizeof(double))) == NULL)

fprintf(stderr, "Out of memory error - DigReference.\n");
free(time);
return(1);

if((set = (double *) calloc(setsize, sizeof(double))) == NULL)

fprintf(stderr, "Out of memory error - DigReference.\n");
free(time);
free(freq);
return(1);

for(time[0]=bT,i=l; i<tsize; i++)
time[i] = time[i-1] + dT;

for(freq[0]=bfreq,i=1; i<fsize; i++)
freq[i] = freq[i-1] + dfreq;

for(i=0; i<tsize; i++)

for(j=0; j<fsize; j++)

ee = (int) (maxt*time[il);
bb = 1;
k = ee >> 1;
while(k != 0)

upt = k / time[i];
/*
* This equation is the solution of the inverse Laplace transform
* of a second order system having a damping ratio of 1.0 and
* determining the closest sampling time to that point
*/

output = 1.0 - ((1.0 + (freq[j]*upt)) * exp(-freq[j] * upt));
if(output < 0.95)
bb = k;

else
ee = k;

k = bb + ((ee - bb) >> 1);

286

if(k == ee II k == bb)
{
set[(i*fsize)+j] = k / time[i];
k = 0;

I

free(time);
free(freq);

(*settle) = set;
(*n) = setsize;

return(0);

#ifdef NOISE
int DigGetNoiseData(int bearing, FILE *ifp, int size, int offset,

double *noise)
{
int i, j;
char buf[80];
float temp;
double mean, conv;

if(Iifp I1 !noise i1 !size)
return(l);

for(i=0; i<offset; i++)
{
if(!fgets(buf, 80, ifp))
{
fprintf(stderr, "Could not read file to offset (%d) - DigGetNoiseData.\n",

offset);
return(l);

}
}

for(mean=0.O,i=0; i<size; i++)
{
if(!fgets(buf, 80, ifp))
{

fseek(ifp, OL, SEEK_SET);
for(j=0; j<offset; j++)
{
if(!fgets(buf, 80, ifp))
{
fprintf(stderr,

"Could not read file to offset (%d) - DigGetNoiseData.\n",
offset);

return(l);
}

}
if(!fgets(buf, 80, ifp))
{
fprintf(stderr, "Could not read file to size (%d) - DigGetNoiseData.\n",

size);
return(1);

}
}

if(sscanf(buf, "%f", &temp) != 1)
{

fprintf(stderr, "Error encountered in sscanf - DigGetNoiseData.\n");
return(l);}

287

noise[i] = (double) temp;
mean += noise[i];

rewind(ifp);

if(bearing)
convy = 5.0/(8192.0*25000.0);

else
convy = 5.0/(8192.0*9450.0);

mean /= ((double) size);
for(i=0; i<size; i++)
noise[i] = (noise[i] - mean) * conv;

return(0);

int DigStepWithNoise(int bearing, double b, double damp, double freq, double T,
double initx, double initu, double maxt, double P,
double Q, double Al, double A2, double *noise, double **y,
double **u, double **t, int *n)

int i,
double
double
double
double
double

j, k, ttsize, uptsize;
a22, a21, g, divs, rT, maxx, T1;
*tt, *upt, *ty, *tu, cx[5];
px[2], pxdot[2], am[5), vm[3], xm, cuT,
ampx, ampu, accel, vel, ampxdot, maxu;
rkt[2][4], rk[4];

cu;

[y, u, t] = DigStep(bearing, b, damp, freq,
bearing - vacuum pump bearing number

0 = axial bearing
1 = radial 1X bearing
2 = radial IY bearing
3 = radial 2X bearing
4 = radial 2Y bearing

b - controller gain (b hat)
damp - controller damping ratio
freq - controller natural frequency
T - controller sampling interval
initx - initial position
initu - initial control
maxt - maximum response time

T, initx, initu, maxt)

T1 = 1.0/T;
a22 = 2.0 * damp * freq;
a21 = freq * freq;
g = 9.807;
divs = 10.0;
rT = T1 / divs;
(*u) = (*y) = (*t) = NULL;
(*n) = 0;

ttsize = ((int) ((maxt * T) + 0.5)) + 1;

if((tt = (double *) calloc(ttsize, sizeof(double))) == NULL)
{

fprintf(stderr, "Out of memory error - DigStep.\n");
return(l);

uptsize = ((int) ((maxt / rT) + 0.5)) + 1;

if((upt = (double *) calloc(uptsize, sizeof(double))) == NULL)

288

fprintf(stderr,
free(tt);
return(l);

if((ty = (double *)
{
fprintf(stderr,
free(tt);
free(upt);
return(l);

if((tu = (double *)

fprintf(stderr,
free(tt);
free(upt);
free(ty);
return(l);

}

"Out of memory error - DigStep.\n");

calloc(uptsize, sizeof(double))) == NULL)

"Out of memory error - DigStep.\n");

calloc(uptsize, sizeof(double))) == NULL)

"Out of memory error - DigStep.\n");

for(i=l; i<uptsize; i++)
upt[i] = upt[i-l] + rT;

for(j=0,i=10; i<uptsize; i+=10)
tt[j++] = upt[i];

for(i=0; i<5; i++)
cx[i] = initx;

if(!bearing)

maxx = 0.0002;
maxu = 3.0;

else

maxx = 0.0001;
maxu = 2.0;

}

px[l] = pxdot[0] = pxdot[l] = 0.0;
px[0] = initx;

#ifdef BACKWARD
am[0] = 3.0; am[l] = -4.0; am[2] = -2.0; am[3] = 4.0; am[41 = -1.0;

#else
am[0] = 1.0; am[l] = 0.0; am[2] = -2.0; am[31 = 0.0; am[4] = 1.0;

#endif
for(i=0; i<5; i++)

am[i] /= (4.0 * (Tl * T1));

#ifdef BACKWARD
vm[0] = 3.0 * a22; vm[l] = -4.0 * a22; vm[2] = a22;

#else
vm[0] = a22; vm[l] = 0.0; vm[2] = -a22;

#endif
for(i=0; i<3; i++)
vm[i] /= (2.0 * T1);

xm = a21;
cuT = cu = initu;

ampx = ampu = initu;

rk[0] = rk[3] = 1.0/6.0;
rk[l] = rk[2] = 1.0/3.0;

289

for(j=i=0; i<uptsize; i++)
{

if(upt[i] == tt[j])

/* update controller position variables */
for(k=4; k>0; k--)

cx[k] = cx[k-1];
cx[O] = px[0] + noise[j];
/* determine control signal */
for(accel=0.0,k=0; k<5; k++)
accel += (am[k] * cx[k]);

for(vel=0.0,k=0; k<3; k++)
vel += (vm[k] * cx[k]);

cu = cuT - ((accel + vel + (xm*cx[Ol))/b);
if(cu > maxu)
cu = maxu;

else if(cu < -maxu)
cu = -maxu;

cuT = cu;
j++;

/* determine amplified control */
rkt[0][0] = (-A2*ampx) + (Al*cu);
ampxdot = ampx + (rkt[0][0]*(rT/2));
rkt[0][l] = (-A2*ampxdot) + (Al*cu);
ampxdot = ampx + (rkt[0][1]*(rT/2));
rkt[0][2] = (-A2*ampxdot) + (Al*cu);
ampxdot = ampx + (rkt[0] [2]*rT);
rkt[0][3] = (-A2*ampxdot) + (Al*cu);
for(ampxdot=0.0,k=0; k<4; k++)
ampxdot += (rkt(0][k]*rk[k]);

ampx += (ampxdot * rT);
ampu = ampx;

/* determine new position */
rkt[0][0] = px[l];
rkt[l][0] = (Q*px[O]) + (P*ampu);
pxdot[0] = px[O] + (rkt[0][0]*(rT/2));
pxdot[l] = px[l] + (rkt[1][0]*(rT/2));
rkt[0][1] = pxdot[l];
rkt[l][1] = (Q*pxdot[O]) + (P*ampu);
pxdot[0] = px[O] + (rkt[Ol][1*(rT/2));
pxdot[1] = px[l] + (rkt[l][1]*(rT/2));
rkt[0][2] = pxdot[l];
rkt[1][2] = (Q*pxdot[O]) + (P*ampu);
pxdot[0] = px[0] + (rkt[0][2]*rT);
pxdot[l] = px[l] + (rkt[l][2]*rT);
rkt[0][3] = pxdot[l];
rkt[l][3] = (Q*pxdot[O]) + (P*ampu);
pxdot[0] = pxdot[1] = 0.0;
for(k=0; k<4; k++)

pxdot[0] += (rkt[O][k]*rk[k]);
pxdot[l] += (rkt[l][k]*rk[k]);

if(bearing == 0)
pxdot[l] -= g;

f{y(j),t(j))
y*(j+1/2)
f{y*(j+1/2), t(j+1/2)
y**(j+1/2)
f{y**(j+1/2),t(j+1/2))
y*(j+1)
f{y*(j+l),t(j+l))

f{y(j),t(j)}
f{y(j),t(j)
y*(j+1/2)
y*(j+1/2)
f{y*(j+1/2),t(j+1/2)
f{y*(j+1/2),t(j+1/2)
y**(j+1/2)
y**(j+1/2)
f{y**(j+1/2),t(j+1/2)
f{y**(j+1/2),t(j+1/2)}
y*(j+1)
y*(j+1)
f{y*(j+l),t(j+l)}
f{y*(j+l),t(j+1)}

/* save values for plotting */
ty[i] = px[0];
tu[i] = cu;

/* update variables */
px[O] += (pxdot[O] * rT);
px[l] += (pxdot[l] * rT);

/* compensate for touchdown
if(px[0] > maxx)

bearings */

290

px[0] = maxx;
else if(px[0] < -maxx)

px[0] = -maxx;

free(tt);

(*y) = ty;
(*u) = tu;
(*t) = upt;
(*n) = uptsize;

return(0);

#endif

int DigStep(int bearing, double b, double damp, double freq, double T,
double initx, double initu, double maxt, double P, double Q,
double Al, double A2, double **y, double **u, double **t, int *n)

i, j, k, ttsize, uptsize;
ble a22, a21, g, divs, rT, maxx, T1;
ble *tt, *upt, *ty, *tu, cx[5];
ble px[2], pxdot[2], am[5], vm[3], xm, cuT,
ble ampx, ampu, accel, vel, ampxdot, maxu;
ble rkt[2][4], rk[4];

[y, u, t] = DigStep(bearing, b, damp, freq,
bearing - vacuum pump bearing number

0 = axial bearing
1 = radial 1X bearing
2 = radial 1Y bearing
3 = radial 2X bearing
4 = radial 2Y bearing

b - controller gain (b hat)
damp - controller damping ratio
freq - controller natural frequency
T - controller sampling interval
initx - initial position
initu - initial control
maxt - maximum response time

cu;

T, initx, initu, maxt)

T1 = 1.0/T;
a22 = 2.0 * damp * freq;
a21 = freq * freq;
g = 9.807;
divs = 10.0;
rT = T1 / divs;
(*u) = (*y) = (*t) = NULL;
(*n) = 0;

ttsize = ((int) ((maxt / T1) + 0.5)) + 1;

if((tt = (double *) calloc(ttsize, sizeof(double))) == NULL)

fprintf(stderr, "Out of memory error - DigStep.\n");
return(1);

uptsize = ((int) ((maxt / rT) + 0.5)) + 1;

if((upt = (double *) calloc(uptsize, sizeof(double))) == NULL)

fprintf(stderr, "Out of memory error - DigStep.\n");
free(tt);

291

int
dou
dou
dou
dou
dou
/*

return(l);

if((ty = (double *)
{
fprintf(stderr,
free(tt);
free(upt);
return(1);

if((tu = (double *)

fprintf(stderr,
free(tt);
free(upt);
free(ty);
return(1);

}

calloc(uptsize, sizeof(double))) == NULL)

"Out of memory error - DigStep.\n");

calloc(uptsize, sizeof(double))) == NULL)

"Out of memory error - DigStep.\n");

for(i=l; i<uptsize; i++)
upt[i] = upt[i-1] + rT;

for(j=0,i=10; i<uptsize; i+=10)
tt[j++] = upt[i];

for(i=0; i<5; i++)
cx[i] = initx;

if(!bearing)
{

maxx = 0.0002;
maxu = 3.0;

else

maxx = 0.0001;
maxu = 2.0;

)

px[l] = pxdot[0] = pxdot[l] = 0.0;
px[O] = initx;

#ifdef BACKWARD
am[0] = 3.0; am[l] = -4.0; am[2] = -2.0; am[3] = 4.0; am[4] = -1.0;

#else
am[0] = 1.0; am[l] = 0.0; am[2] = -2.0; am[3] = 0.0; am[4] = 1.0;

#endif
for(i=0; i<5; i++)

am[i] /= (4.0 * (TI * TI));

#ifdef BACKWARD
vm[0] = 3.0 * a22; vm[l] = -4.0 * a22; vm[2] = a22;

#else
vm[O] = a22; vm[l] = 0.0; vm[2] = -a22;

#endif
for(i=0; i<3; i++)
vm[i] /= (2.0 * Ti);

xm = a21;
cuT = cu = initu;

ampx = ampu = initu;

rk[0] = rk[3] = 1.0/6.0;
rk[1] = rk[2] = 1.0/3.0;

for(j=i=0; i<uptsize; i++)

if(upt[i] == tt[j])

292

/* update controller position variables */
for(k=4; k>0; k--)

cx[k] = cx[k-1];
cx[0] = px[O];
/* determine control signal */
for(accel=0.0,k=0; k<5; k++)
accel += (am[k] * cx[k]);

for(vel=0.0,k=0; k<3; k++)
vel += (vm[k] * cx[k]) ;

cu = cuT - ((accel + vel + (xm*cx[01))/b);
if(cu > maxu)
cu = maxu;

else if(cu < -maxu)
cu = -maxu;

cuT = cu;
j++;

/* determine amplified control */
rkt[0][0] = (-A2*ampx) + (Al*cu);
ampxdot = ampx + (rkt[0][0O]*(rT/2));
rkt[0][l] = (-A2*ampxdot) + (Al*cu);
ampxdot = ampx + (rkt[0][l]*(rT/2));
rkt[0][2] = (-A2*ampxdot) + (Al*cu);
ampxdot = ampx + (rkt[0][2]*rT);
rkt[0][3] = (-A2*ampxdot) + (Al*cu);
for(ampxdot=0.0,k=0; k<4; k++)
ampxdot += (rkt[0][k]*rk[k]);

ampx += (ampxdot * rT);
ampu = ampx;

/* determine new position */
rkt[0][0] = px[l] ;
rkt[l][0] = (Q*px[0]) + (P*ampu);
pxdot[0] = px[0] + (rkt[0][0]*(rT/2));
pxdot[l] = px[l] + (rkt[l] [0]*(rT/2));
rkt[0] [1] = pxdot[l] ;
rkt[l][1] = (Q*pxdot[0]) + (P*ampu);
pxdot[0] = px[0] + (rkt[0][l]*(rT/2));
pxdot[l] = px[l] + (rkt[1l[l]*(rT/2));
rkt[0][2] = pxdot[l] ;
rkt[l][2] = (Q*pxdot[O]) + (P*ampu);
pxdot[0] = px[0] + (rkt[0][2]*rT);
pxdot[l] = px[l] + (rkt[l] [2]*rT);
rkt[0][3] = pxdot[l];
rkt[l][3] = (Q*pxdot[0]) + (P*ampu);
pxdot[0O] = pxdot[l] = 0.0;
for(k=0; k<4; k++)

f{y(j),t(j)}
y*(j+1/2)
f{y*(j+1/2),t(j+1/2))
y**(j+1/2)
f{y**(j+1/2),t(j+1/2)
y*(j+l)
f{y*(j+l),t(j+l)}

f{y(j),t(j)}
f(y(j),t(j)}
y*(j+1/2)
y*(j+1/2)
f{y*(j+1/2),t(j+1/2)}
f{y*(j+1/2),t(j+1/2)}
y**(j+1/2)
y**(j+1/2)
f{y**(j+1/2),t(j+1/2)}
f{y**(j+1/2),t(j+1/2)}
y*(j+l)
y*(j+l)
f{y*(j+l),t(j+l)}
f{y*(j+l),t(j+l)}

pxdot[0] += (rkt[0][k]*rk[k]);
pxdot[l] += (rkt[l][k]*rk[k]);

if(bearing == 0)
pxdot[l] -= g;

/* save values for plotting */
ty[i] = px[0];
tu[i] = cu;

/* update variables */
px[O] += (pxdot[O] * rT);
px[l] += (pxdot[l] * rT);

if(px[0] > maxx)
px[O] = maxx;

else if(px[0] < -maxx)
px[0] = -maxx;

293

free(tt);

(*y) = ty;
(*u) = tu;
(*t) = upt;
(*n) = uptsize;

return(0);

int DigBode(double *num, double *den, int numsize, int densize, double ts,
double begfreq, double endfreq, double **mag, double **freq,
int *magsize)

{
int i, j, sampsize, dec;
double *mg, *fq, inc, t;
double frq, ansr, ansi;

t = 1.0/ts;
dec = (int) (logl0O(endfreq) - logl0(begfreq));
sampsize = dec * 81;
sampsize += 2;

if((mg = (double *) calloc(sampsize, sizeof(double))) == NULL)
{

fprintf(stderr, "Out of memory error - DigBode.\n");
return(l);

}

if((fq = (double *) calloc(sampsize, sizeof(double))) == NULL)
{
fprintf(stderr, "Out of memory error - DigBode.\n");
free(mg);
return(l);

}

inc = begfreq / 10.0;
fq[0] = begfreq;
for(i=0; i<dec; i++)
{
for(j=0; j<81; j++)

fq[(i*81)+j+l] = fq[(i*81)+j] + inc;
inc *= 10.0;

}
fq[sampsize-l] = endfreq;

for(i=0; i<sampsize; i++)
{

frq = 2.0 * PI * fq[i];
ansr = ansi = 0.0;
mg[i] = 20.0 * logl0(num[0]);
for(j=l; j<numsize; j++)
{

if(num[j] != 0.0)
{

inc = frq * t * (numsize - 1 - j);
ansr += (num[j] * cos(inc));
ansi += (num[j] * sin(inc));

}
}

mg[i] += (20.0 * logl0(sqrt(pow(ansr,2.0) + pow(ansi,2.0))));
ansr = ansi = 0.0;
for(j=0; j<densize; j++)
{
if(den[j] != 0.0)

294

inc = frq * t * (densize - 1 - j);
ansr += (den[j] * cos(inc));
ansi += (den[j] * sin(inc));

mg[i] -= (20.0 * loglO0(sqrt(pow(ansr,2.0) + pow(ansi,2.0))));

if(mag)
(*mag) = mg;

if(freq)
(*freq) = fq;

if(magsize)
(*magsize) = sampsize;

return(0);

H.1.9 comp2text.c

This program reads the binary file produced by compli.c and outputs the values of the
damping ratio, natural frequency, feedback gain, gain at 1000 Hz, bandwidth, maximum
compliance, maximum steady state control signal, and maximum closed loop gain to a text file.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>

#define MEMERR(x) \
fprintf(stderr, "Out of memory error - %s (%d)\n", x, _LINE_);

#define FUNCERR(x,y) \
fprintf(stderr, "Error encountered in %s - %s (%d)\n", x, y, __LINE_);

#define STATUS_OK 0
#define STATUS_NOK 1
#ifdef NOISE
#ifdef CLOSE_TEST
#define SAVENUM 5
#else
#define SAVENUM 4
#endif
#else
#define SAVENUM 3
#endif

void main(int argc, char **argv)
{
int i,j;
int begrow, begcol, rows, cols, mag;
int matrows, matcols;
int bhat_size, damp_size, freq_size, ebara, axis;
char *infile, *outfile;
FILE *ifp, *ofp;
float freq, damp, bhat, *buffer;
float bbhat, ebhat, bdamp, edamp, bfreq, efreq;

begrow = begcol = rows = cols = mag = axis = 0;
ebara = 0;
infile = outfile = NULL;

295

if(argc < 2)
{

fprintf(stderr,
fprintf(stderr,
fprintf(stderr,
fprintf(stderr,
fprintf(stderr,
fprintf(stderr,
fprintf(stderr,
fprintf(stderr,
fprintf(stderr,
fprintf(stderr,
exit(1);

}

"syntax error ...\n\n");
"Syntax: comp2text infile [outfile] [-r n] [-c m]");
" [-nr 1] [-nc k] [-a x]\n");

where: infile -> matrix pathname\n");
outfile -> text file pathname\n");
-r n -> start at nth row\n");

" -c m -> start at mth column\n");
-nr 1 -> convert 1 rows\n");
-nc k -> convert k columns\n");
-a x -> bearing axis (Def=O)\n");

for(i=1; i<argc; i++)

if(argv[i][0] == '-')

if(argv[i][1] == 'r')
begrow = atoi(argv[++i]);

else if(argv[i][1] == 'c')
begcol = atoi(argv[++i]);

else if(argv[i][l] == 'a')
axis = atoi(argv[++i]);

else if(argv[i)[1] == 'n')

if(argv[i][2] == 'r')
rows = atoi(argv[++i]);

else if(argv[i][2] == 'c')
cols = atoi(argv[++i]);

if(

{

if(

else if(infile == NULL)
infile = argv(i];

else if(outfile == NULL)
outfile = argv[i];

(ifp = fopen(infile, "r")) == NULL)

fprintf(stderr, "Unable to open input file \"%s\"\n\n", infile);
exit(l);

outfile)

if((ofp = fopen(outfile, "w")) == NULL)

fprintf(stderr, "Unable to open output file \"%s\"\n\n", outfile);
exit(l);

else
ofp = stdout;

if(!fread((void *) &matrows, sizeof(int), 1, ifp))
{

fprintf(stderr, "Error encountered reading from \"%s\"\n\n", infile);
fclose(ifp);
if(outfile)

fclose(ofp);
exit ();

if(!fread((void *) &matcols, sizeof(int), 1, ifp))

fprintf(stderr, "Error encountered reading from \"%s\"\n\n", infile);
fclose(ifp);

296

if(outfile)
fclose(ofp);

exit(l);

if(!rows)
rows = matrows;

if(!cols)
cols = matcols;

if(!mag)
mag = 1;

if(begrow+rows > matrows)
{
fprintf(stderr,

"Requested rows (%d) is greater than matrix rows (%d)\n\n",
begrow+rows, matrows);

fclose(ifp);
if(outfile)

fclose(ofp);
exit(l);

if(begcol+cols > matcols)
{
fprintf(stderr,

"Requested columns (%d) is greater than matrix columns (%d)\n\n",
begcol+cols, matcols);

fclose(ifp);
if(outfile)

fclose(ofp);
exit(l);

if(begrow)
fseek(ifp, begrow*matcols*SAVENUM, SEEK_CUR);

if((buffer = (float *) calloc(matcols*SAVENUM, sizeof(float))) == NULL)
{
MEMERR("mat2text");
fclose(ifp);
if(outfile)

fclose(ofp);
exit ();

if(ebara)

switch(axis)

default:
case 0:
bdamp = floor((4.033827 - 2.101680) * 10.0) / 10.0;
edamp = ceil((4.033827 + 2.101680) * 10.0) / 10.0;
bbhat = floor(402.967777 - 254.562878);
ebhat = ceil(402.967777 + 254.562878);
bfreq = floor((527.319758 - 238.103058) / 10.0) * 10.0;
efreq = ceil((527.319758 + 238.103058) / 10.0) * 10.0;
break;

case 1:
edamp = ceil((4.033827 + 2.101680) * 10.0) / 10.0;
bbhat = floor(402.967777 - 254.562878);
ebhat = ceil(402.967777 + 254.562878);
bfreq = floor((527.319758 - 238.103058) / 10.0) * 10.0;
efreq = ceil((527.319758 + 238.103058) / 10.0) * 10.0;
break;

case 2:

297

bdamp = floor((4.033827 - 2.101680) * 10.0) / 10.0;
edamp = ceil((4.033827 + 2.101680) * 10.0) / 10.0;
bbhat = floor(402.967777 - 254.562878);
ebhat = ceil(402.967777 + 254.562878);
bfreq = floor((527.319758 - 238.103058) / 10.0) * 10.0;
efreq = ceil((527.319758 + 238.103058) / 10.0) * 10.0;
break;

case 3:
bdamp = floor((4.033827 - 2.101680) * 10.0) / 10.0;
edamp = ceil((4.033827 + 2.101680) * 10.0) / 10.0;
bbhat = floor(402.967777 - 254.562878);
ebhat = ceil(402.967777 + 254.562878);
bfreq = floor((527.319758 - 238.103058) / 10.0) * 10.0;
efreq = ceil((527.319758 + 238.103058) / 10.0) * 10.0;
break;

case 4:
bdamp = floor((4.033827 - 2.101680) * 10.0) / 10.0;
edamp = ceil((4.033827 + 2.101680) * 10.0) / 10.0;
bbhat = floor(402.967777 - 254.562878);
ebhat = ceil(402.967777 + 254.562878);
bfreq = floor((527.319758 - 238.103058) / 10.0) * 10.0;
efreq = ceil((527.319758 + 238.103058) / 10.0) * 10.0;
break;

}

else
{
switch(axis)

{
default:
case 0:
bdamp = floor((3.272777 - (1.25 * 2.717406)) * 10.0) / 10.0;
edamp = ceil((3.272777 + (1.25 * 2.717406)) * 10.0) / 10.0;
bbhat = floor(370.414059 - (1.25 * 271.290529));
ebhat = ceil(370.414059 + (1.25 * 271.290529));
bfreq = floor((347.082893 - (1.25 * 232.298166)) / 10.0) * 10.0;
efreq = ceil((347.082893 + (1.25 * 232.298166)) / 10.0) * 10.0;
break;

case 1:
bdamp = floor((3.918438 - (1.25 * 2.817466)) * 10.0) / 10.0;
edamp = ceil((3.918438 + (1.25 * 2.817466)) * 10.0) / 10.0;
bbhat = floor(328.021404 - (1.25 * 279.017239));
ebhat = ceil(328.021404 + (1.25 * 279.017239));
bfreq = floor((276.262071 - (1.25 * 209.387555)) / 10.0) * 10.0;
efreq = ceil((276.262071 + (1.25 * 209.387555)) / 10.0) * 10.0;
break;

case 2:
bdamp = floor((3.814237 - (1.25 * 2.808301)) * 10.0) / 10.0;
edamp = ceil((3.814237 + (1.25 * 2.808301)) * 10.0) / 10.0;
bbhat = floor(332.704460 - (1.25 * 278.550625));
ebhat = ceil(332.704460 + (1.25 * 278.550625));
bfreq = floor((285.769852 - (1.25 * 212.645306)) / 10.0) * 10.0;
efreq = ceil((285.769852 + (1.25 * 212.645306)) / 10.0) * 10.0;
break;

case 3:
bdamp = floor((3.412286 - (1.25 * 2.731543)) * 10.0) / 10.0;
edamp = ceil((3.412286 + (1.25 * 2.731543)) * 10.0) / 10.0;
bbhat = floor(349.211106 - (1.25 * 273.471228));
ebhat = ceil(349.211106 + (1.25 * 273.471228));
bfreq = floor((336.787694 - (1.25 * 226.591365)) / 10.0) * 10.0;
efreq = ceil((336.787694 + (1.25 * 226.591365)) / 10.0) * 10.0;
break;

case 4:
bdamp = floor((3.550881 - (1.25 * 2.756218)) * 10.0) / 10.0;
edamp = ceil((3.550881 + (1.25 * 2.756218)) * 10.0) / 10.0;
bbhat = floor(343.223786 - (1.25 * 275.796596));
ebhat = ceil(343.223786 + (1.25 * 275.796596));
bfreq = floor((335.875802 - (1.25 * 225.363705)) / 10.0) * 10.0;
efreq = ceil((335.875802 + (1.25 * 225.363705)) / 10.0) * 10.0;

298

break;

}

if(bdamp < 0.0)
bdamp = 0.1;

if(bbhat < 0.0)
bbhat = 2.0;

if(bfreq < 0.0)
bfreq = 10.0;

bhat_size = ((int) ceil((ebhat - bbhat) / 2.0)) + 1;
freq_size = ((int) ceil((efreq - bfreq) / 10.0)) + 1;
damp_size = ((int) ceil((edamp - bdamp) / 0.1)) + 1;

for(i=0; i<rows; i++)

if(fread((void *) buffer, sizeof(float), matcols*SAVENUM, ifp)
!= matcols*SAVENUM)

fprintf(stderr, "Data read error ...\n");
fclose(ifp);
if(outfile)
fclose(ofp);

exit(l);
}

/*
* i = bhat, j = freq, 1 = damp
* buffer[(j*SAVENUM*damp_size)+(l*SAVENUM)] = 0.0;
* buffer[(j*SAVENUM*damp_size)+(1*SAVENUM)+1] = (float) -1.0;
* buffer[(j*SAVENUM*damp_size)+(l*SAVENUM)+2] = (float) 0.0;
*/
for(j=begcol; j<begcol+cols; j++)
{
if(buffer[(j*SAVENUM)+1] > 0.0)
{
bhat = (bbhat + (((begrow+i)/freq_size) * 2.0));
freq = (bfreq + (((begrow+i)%freq size) * 10.0));
damp = (bdamp + (j * 0.1));

#ifdef NOISE
#ifdef CLOSE_TEST

fprintf(ofp, "%5.2f %6.1f %6.1f %6.2f %6.2f %6.2f %6.4f %5.2f\n",
damp, freq, bhat, buffer[(j*SAVENUM)],
buffer[(j*SAVENUM)+1], buffer[(j*SAVENUM)+2],
buffer[(j*SAVENUM)+3], buffer[(j*SAVENUM)+4]);

#else
fprintf(ofp, "%5.2f %6.1f %6.1f %6.2f %6.2f %6.2f %6.4f\n",

damp, freq, bhat, buffer[(j*SAVENUM)],
buffer[(j*SAVENUM)+1], buffer[(j*SAVENUM)+2],
buffer[(j*SAVENUM)+3]);

#endif
#else

fprintf(ofp, "%5.2f %6.1f %6.1f %6.2f %6.2f %6.2f\n",
damp, freq, bhat, buffer[(j*SAVENUM)],
buffer[(j*SAVENUM)+1], buffer[(j*SAVENUM)+2]);

#endif

fclose(ifp);
if(outfile)
fclose(ofp);

exit(0);

I

299

H.2 System Response Programs

The section lists the programs that display the actual and theoretical system responses.
The actual closed loop and disturbance rejection responses are plotted from data obtained from
the system analyzer. The theoretical responses are determined from the best fit model and the
parameters of bearing number, sampling interval, damping ratio, natural frequency, and feedback
gain provided by the user.

H.2.1 PrtAllData.m

The Matlab script plots the actual and theoretical system responses using the data obtained
from the system analyzer and the best fit system model. All of the responses are plotted on the
same graph to facilitate easy comparison.

function [] = PrtAllData(w, units)

if(nargin < 1 I nargin > 2)
disp('Syntax error ... ');
disp('PrtAllData(which, units)');
disp('where: which - what data to
disp(' ''DIST-30"'
disp(' "DIST-15"'
disp(' ''DIST''
disp(' ''CLOOP''
disp(' ''STARTUP''
disp(' ''ALL''
disp(' units - what units t
disp(' ''VOLTS''
disp(' ''FORCE''
error;

end

if(-isstr(w))
disp('Syntax error ...');
disp('PrtAllData(which, units)');
disp('where: which - what data to
disp(' ''DIST-30"'
disp(' "DIST-15"'
disp(' ''DIST''
disp(' "CLOOP"'
disp(' "STARTUP"''
disp(' ''ALL''
disp(' units - what units t
disp(' ''VOLTS''
disp(' ''FORCE''
error;

end

if(nargin == 2)
if(-isstr(units))
disp('Syntax error ... ');
disp('PrtAllData(which, units)');
disp('where: which - what data to
disp(' ''DIST-30"'
disp(' ''DIST-15''
disp(' ''DIST''
disp(' "CLOOP"''
disp(' ''STARTUP''

print');
Digital Disturbance plot (30000 rpm)');
Digital Disturbance plot (15000 rpm)');
Digital Disturbance plot (static)');
Closed-loop plot (static)');
Initial startup plot (static)');
All of the above plots');
o use on y axis');
raw system analyzer plot (default)');
microns/Newton');

print');
Digital Disturbance plot (30000 rpm)');
Digital Disturbance plot (15000 rpm)');
Digital Disturbance plot (static)');
Closed-loop plot (static)');
Initial startup plot (static)');
All of the above plots');
o use on y axis');
raw system analyzer plot (default)');
microns/Newton');

print');
Digital Disturbance plot (30000 rpm)');
Digital Disturbance plot (15000 rpm)');
Digital Disturbance plot (static)');
Closed-loop plot (static)');
Initial startup plot (static)');

300

disp('
disp('
disp('
disp('
error;

end
else
units = 'volts';

end

''ALL''
units - what units

''VOLTS''
''FORCE''

All of the above plots');
to use on y axis');

raw system analyzer plot (default)');
microns/Newton');

printme = 0;
myprinter = ' -Phayden';
temp_file = ' /tmp/matplot';
avg_len = 8000;
startup_pts = 4000;
sengain = [9450.0 25000.0 25000.0 25000.0 25000.0];
ampgain = [2.776 1.175 1.165 1.159 1.144];
meter_conv = (2 .5)./(8192*sengain);
offset = [1 1 1 1 1; 3015 3293 4247 3238 3525];
bhat = [170 160 180 260 260];
freq = [100 130 110 100 100];
damp = [0.85 1.0 1.05 1.90 1.80];
T = 1/10000;
wa = zeros(l,5);
mass = 2.2;

% volts/meter
% amps/volt

w = lower(deblank(w));
units = lower(deblank(units));

if(strcmp(units,'force'))
distconv = [];
for ii=1:5

[dir_num, file_num] = ConPumpNoAmp(ii-1);
distconv = [distconv (1e6 / (dir_num * mass * sengain(ii)))];

end
elseif(-strcmp(units, 'volts'))
disp(['unknown units: ' units]);
error;

end

cmpstrs = str2mat('dist-30', 'dist-15', 'dist', 'cloop', 'startup', 'all');

dirs = str2mat('/usr/tmp/disturb/digital/dynamic/rpm3, ...
'/usr/tmp/disturb/analog/dynamic/rpm30',
'/usr/tmp/disturb/digital/dynamic/rpml5', ...
'/usr/tmp/disturb/analog/dynamic/rpml5', ...
'/usr/tmp/disturb/digital/static', ...
'/usr/tmp/disturb/analog/static', ...
'/usr/tmp/closloop/digital', '/usr/tmp/closloop/analog',
'/usr/tmp/startup/digital', '/usr/tmp/startup/analog');

dir_num = 2;

file_com = str2mat('axialmg.dat', 'radlxmg.dat', 'radlymg.dat',
'rad2xmg.dat', 'rad2ymg.dat');

file_diff = str2mat('axial.in', 'radlx.in', 'radly.in', 'rad2x.in',
'rad2y.in', ...
'axial.in', 'radlx.in', 'radly.in', 'rad2x.in', 'rad2y.in');

files = str2mat(file_com, file_com, file_com, file_com, file_com,
file_com, filecom, file_com, file_diff);

file_num = 5;

legend_str = str2mat('Digital', 'Analog', 'Theory');
line_type = str2mat('g-', 'r-.', 'y.);
axis_str = str2mat('Axial', 'RadlX', 'RadlY', 'Rad2X', 'Rad2Y');
title_str = str2mat('Dynamic Disturbance Rejection at 28000 rpm',

'Dynamic Disturbance Rejection at 15000 rpm',
'Static Disturbance Rejection',
'Static Closed Loop Response',
'Static Time Response');

301

x_labels = str2mat('Frequency (Hz)', 'Frequency (Hz)', 'Frequency (Hz)',
'Frequency (Hz)', 'Time (secs)');

if(strcmp(units,'volts'))
ylabels = str2mat('Compliance (Volts/Volts)', ...

'Compliance (Volts/Volts)', 'Compliance (Volts/Volts)',...
'Gain', 'Position (meters)');

else
y_labels = str2mat('Compliance (Microns/Newton)', ...

'Compliance (Microns/Newton)', 'Compliance (Microns/Newton)', ...
'Gain', 'Position (meters)');

end

for ii=l:size(cmpstrs,1)-1
if(strcmp(w,deblank(cmpstrs(ii,:))))
wa(ii) = 1;

end
end

if(strcmp(w,deblank(cmpstrs(size(cmpstrs,1),:))))
wa = ones(1,5);

end

if(-any(wa))
disp('nothing to do ...');
return;

end

more off;

for ii=1:5
if(wa(ii) == 1)

for jj=1:file_num
hold off;
for kk=l:dir_num

tstr = [deblank(dirs(((ii-l)*dir_num)+kk,:)) '/'
deblank(files(((ii-1)*dirnum*filenum)+
((kk-1) *filenum)+jj,:))];

fid = fopen(tstr, 'r');
if(fid > 2)
dat = [];
if(ii < 5) % log plots

[dat] = fscanf(fid, '%f %f', [2 inf]);
else % time plots

[avg] = fscanf(fid, '%d', [1 inf]);
dat(1,:) = [O:T:(length(avg)-l)*T];
dat(2,:) = avg;
avg = mean(dat(2,size(dat,2)-avglen:size(dat,2)));
dat(2,:) = dat(2,:)-avg; % eliminate A/D offset

end
fclose(fid);
% ------------- plot data
if(ii < 5)

if(ii < 4 & strcmp(units,'force'))
loglog(dat(l,:),distconv(jj)*(10.^(dat(2,:)/20)),

deblank(line_type(kk,:)));
else

semilogx(dat(l,:),dat(2,:),deblank(line_type(kk,:)));
end

else
plot(dat(1,1:startup_pts),

dat(2,offset(kk,jj):offset(kk,jj)+startup_pts-l)* ...
meter conv(jj),deblank(line_type(kk,:)));

end
hold on;

else
disp(['unable to open file "' tstr '"']);

end
end
if(ii == 3) % Static Disturbance rejection

302

[m,h] = DigPlotComp(jj-l,bhat(jj),damp(jj),freq(jj),T,units);
if(strcmp(units,'force'))

loglog(h,m,deblank(linetype(3,:)));
else

semilogx(h,20*logl0(m),deblank(linetype(3,:)));
end

elseif(ii == 4) % Static Closed Loop response
[m,p,h] = DigClosePlot(jj-1,bhat(jj),damp(jj),freq(jj),T);
semilogx(h,20*logl0(m),deblank(line_type(3,:)));

elseif(ii == 5) % Startup Initial Condition response
end
title([deblank(axis_str(jj,:)) ' ' deblank(title_str(ii,:))]);
xlabel(deblank(x_labels(ii,:)));
ylabel(deblank(y_labels(ii,:)));
if(ii > 2)

legend(deblank(line_type(1,:)), deblank(legend_str(1,:)), ...
deblank(line_type(2,:)), deblank(legend_str(2,:)), ...
deblank(line_type(3,:)), deblank(legendstr(3,:)));

else
legend(deblank(linetype(1,:)), deblank(legendstr(1,:)), ...

deblank(line_type(2,:)), deblank(legend_str(2,:)));
end
if(printme == 1)
orient landscape;
tstr = ['print -dps' tempfile];
eval(tstr);
tstr = ['!lpr -h' myprinter temp_file '.ps'];
eval(tstr);

end
hold off;
disp('Press any key to continue ...');
pause;

end
end

end

more on;

H.2.2 DigClosePlot.m

This Matlab script returns the magnitude, phase, and frequency range of the closed loop
frequency response of the system given the bearing number, feedback gain, damping ratio, natural
frequency, and sampling interval. If no output arguments are provided, the closed loop frequency
response is plotted instead.

function [mag, phase, w] = DigClosePlot(bearing, bp,drat,freq,samp)
% Plots closed loop Bode plot

if(nargin < 5)
disp('Four input arguments required.');
disp('Syntax: [mag, phase, w] = DigClosePlot(bearing, B,rat,freq,samp)');
disp(' bearing - vacuum pump bearing number');
disp(' 0 = axial bearing');
disp(' 1 = radial 1X bearing');
disp(' 2 = radial 1Y bearing');
disp(' 3 = radial 2X bearing');
disp(' 4 = radial 2Y bearing');
disp(' B - control function divisor');
disp(' rat - controller damping ratio');
disp(' freq - controller natural frequency');
disp(' samp - controller sampling interval');
error;

end;

303

ebara = 0;

if(ebara -~= 1)
[opnum, opden] = ConPumpIdealNoAmp(bearing);
[ampnum, ampden] = ConAmpIdeal(bearing);

else
[opnum, opden] = ConPumpNoAmp(bearing);
[ampnum, ampden] = ConAmp(bearing);

end

P = opnum;
Q = abs(opden(length(opden)));

Al = ampnum;
A2 = abs(ampden(length(ampden)));

a21 = freq^2;
a22 = 2*drat*freq;

[J1,J2,J3,J4,J5,M1,M2,M3,M4,N1,N2,N3,N4] ...
DigStabFunc(A1,A2,P,Q,samp,a22,a21);

clnum = [(J1*M2) (J1*M3)+(J2*M2) (J1*M4)+(J2*M3)+(J3*M2) ...
(J2*M4)+(J3*M3)+(J4*M2) (J3*M4)+(J4*M3)+(J5*M2) (J4*M4)+(J5*M3) ...
(J5*M4)];

clden = [bp (Jl*M2)+(bp*(N2-1)) (Jl*M3)+(J2*M2)+(bp*(N3-N2)) ...
(JI*M4)+(J2*M3)+(J3*M2)+(bp*(N4-N3)) ...
(J2*M4)+(J3*M3)+(J4*M2)-(bp*N4) (J3*M4)+(J4*M3)+(J5*M2) ...
(J4*M4)+(J5*M3) (J5*M4)];

begin = 0.1;
endd = 1000.0;
ind = begin;
range = [begin];
while(ind < endd)

inc = ind/10.0;
range = [range [ind+inc:inc:ind*10.0]];
ind = ind * 10.0;

end

[tmag, tphase] = dbode(clnum,clden,samp,2*pi*range);

if(nargout == 0)
if(bearing == 0)

fid = fopen('/usr/tmp/closloop/analog/axialmg.dat', 'r');
mytitle = 'Axial';

elseif(bearing == 1)
fid = fopen('/usr/tmp/closloop/analog/radlxmg.dat', 'r');
mytitle = 'RadiX';

elseif(bearing == 2)
fid = fopen('/usr/tmp/closloop/analog/radlymg.dat', r');
mytitle = 'RadlY';

elseif(bearing == 3)
fid = fopen('/usr/tmp/closloop/analog/rad2xmg.dat', 'r');
mytitle = 'Rad2X';

elseif(bearing == 4)
fid = fopen('/usr/tmp/closloop/analog/rad2ymg.dat', 'r');
mytitle = 'Rad2Y';

end
if(fid > 0)

[dat, ind] = fscanf(fid, '%f %f', [2 inf]);
fclose(fid);
semilogx(dat(l,:), dat(2,:),'-');
hold on;
semilogx(range, 20*logl0(tmag),'--');
hold off;
xlabel('Frequency (Hz)');
ylabel('Magnitude (dB)');

304

title([mytitle ' Bearing Close Loop Bode Plot (B = ' num2str(bp) .
', Nat Freq = ' num2str(freq) ', Damp Ratio = ' num2str(drat) ')']);

[m, ind] = max(dat(2,:));
band = min(find(dat(2,min(ind):size(dat,2))<0));
band = dat(l,band+min(ind));
e = min(find(dat(l,min(ind):size(dat,2))>=1000));
e = dat(2,e+min(ind));
disp(['Analog: max = ' num2str(m) ', bandwidth = ' num2str(band) ...

', final = ' num2str(e)]);
[m, ind] = max(tmag);
m = 20*logl0(m);
band = min(find(20*logl0(tmag(min(ind):length(tmag)))<0));
band = range(band+ind);
e = min(find(range(min(ind):length(range))>=1000));
e = 20*logl0(tmag(min([e+min(ind) length(tmag)])));
disp(['Digital: max = ' num2str(m) ', bandwidth = ' num2str(band) ...

', final = ' num2str(e)]);
else
semilogx(range, 20*logl0(tmag),'-');
xlabel('Frequency (Hz)');
ylabel('Magnitude (dB)');
title([mytitle ' Bearing Close Loop Bode Plot (B = ' num2str(bp) ...

', Nat Freq = ' num2str(freq) ', Damp Ratio = ' num2str(drat) ')']);
[m, ind] = max(tmag);
m = 20*logl0(m);
band = min(find(20*logl0(tmag(min(ind):length(tmag)))<0));
band = range(band+ind);
e = min(find(range(min(ind):length(range))>=1000));
e = 20*logl0(tmag(e+min(ind)));
disp(['max = ' num2str(m) ', bandwidth = ' num2str(band) ', final =

num2str(e)]);
end

elseif(nargout == 1)
mag = tmag;

elseif(nargout == 2)
mag = tmag;
phase = tphase;

elseif(nargout == 3)
mag = tmag;
phase = tphase;
w = range;

end

H.2.3 DigPlotComp.m

This Matlab script returns the magnitude and frequency range of the disturbance rejection
frequency response of the system given the bearing number, feedback gain, damping ratio, natural
frequency, and sampling interval. If no output arguments are provided, the disturbance rejection
frequency response is plotted instead.

function [mag,w] = DigPlotComp(bearing, B, damp, freq, samp, units)
% plot compliance transfer function of closed loop system

volt = 0;
if(nargin < 5 1 nargin > 6)

disp('Wrong number of arguments ...');
disp('[mag] = DigPlotComp(bearing, B, damp, freq, samp, units)');
disp('where:');
disp(' bearing - vacuum pump bearing number');
disp(' 0 = axial bearing');
disp(' 1 = radial 1X bearing');
disp(' 2 = radial 1Y bearing');
disp(' 3 = radial 2X bearing');

305

disp(' 4 = radial 2Y bearing');
disp(' B - Controller B hat');
disp(' damp - Controller Damping Ratio');
disp(' freq - Controller Natural Frequency');
disp(' samp - Controller sampling delay');
disp(' units - y axis units');
disp(' ''volts'' - Volts/Volts (default)');
disp(' ''force'' - Microns/Newton');
error;

elseif(nargin == 6)
units = lower(deblank(units));
if(strcmp(units, 'volts'))
volt = 1;

elseif(-strcmp(units,'force'))
disp(['unknown units requested: ' units]);
error;

end
end

voltconv = [9450.0 25000.0 25000.0 25000.0 25000.0];
ampgain = [2.776 1.175 1.165 1.159 1.144];
mass = 2.2;

if(bearing == 0)
fname = '/usr/tmp/disturb/analog/static/axialmg.dat';
mytitle = 'Axial';

elseif(bearing == 1)
fname = '/usr/tmp/disturb/analog/static/radlxmg.dat';
mytitle = 'RadlX';

elseif(bearing == 2)
fname = '/usr/tmp/disturb/analog/static/radlymg.dat';
mytitle = 'RadlY';

elseif(bearing == 3)
fname = '/usr/tmp/disturb/analog/static/rad2xmg.dat';
mytitle = 'Rad2X';

elseif(bearing == 4)
fname = '/usr/tmp/disturb/analog/static/rad2ymg.dat';
mytitle = 'Rad2Y';

else
disp(['unknown bearing number: ' num2str(bearing)]);
error;

end

% flag set if Ebara supplied variables are to be used
ebara = 0;

if(ebara ~= 1)
[opnum, opden] =
tP = opnum;
[opnum, opden] =
[ampnum, ampden]
type = 'Ideal';

else
[opnum, opden] =
tP = opnum;
[ampnum, ampden]
type = 'Ebara';

end

% volts/meter
% amps/volt

ConPumpNoAmp(bearing);

ConPumpIdealNoAmp(bearing);
= ConAmpIdeal(bearing);

ConPumpNoAmp(bearing);

= ConAmp(bearing);

P = opnum;
Q = abs(opden(length(opden)));

Al = ampnum;
A2 = abs(ampden(length(ampden)));

a21 = freq^2;
a22 = 2*damp*freq;

begin = 0.1;

306

endd = 1000.0;
ind = begin;
range = [begin];
while(ind < endd)

inc = ind/10.0;
range = [range [ind+inc:inc:ind*10.0]1;
ind = ind * 10.0;

end

minmax = 10000;
minparm = zeros(1,4);

num = zeros(1,8);
den = zeros(1,8);

[J1,J2,J3,J4,J5,M1,M2,M3,M4,N1,N2,N3,N4] = DigStabFunc(A1,A2,P,Q,samp,a22,a21);
% check stability first
subtot(1) = 1;
subtot(2) = ((J1*M2)+(J2*M1)+(B*(N2-N1)))/((J1*M1)+(B*N1));
subtot(3) = ((J1*M3)+(J2*M2)+(J3*M1)+(B*(N3-N2)))/((J1*M1)+(B*N1));
subtot(4) = ((J1*M4)+(J2*M3)+(J3*M2)+(J4*M1)+(B*(N4-N3))) ...

/((J1*M1)+(B*Nl));
subtot(5) = ((J2*M4)+(J3*M3)+(J4*M2)+(J5*M1)-(B*N4)) ...

/((Jl*M1)+(B*N1));
subtot(6) = ((J3*M4)+(J4*M3)+(J5*M2))/((Jl*M1)+(B*Nl));
subtot(7) = ((J4*M4)+(J5*M3))/((J1*M1)+(B*N1));
subtot(8) = (J5*M4)/((J1*M1)+(B*N1));
rt = abs(roots(subtot));
if(isempty(find(rt > 1.0)))
% Ok its stable so compute compliance
den(l) = B;
den(2) = (J1*M2)+(B*(N2-1));
den(3) = (J1*M3)+(J2*M2)+(B*(N3-N2));
den(4) = (J1*M4)+(J2*M3)+(J3*M2)+(B*(N4-N3));
den(5) = (J2*M4)+(J3*M3)+(J4*M2)-(B*N4);
den(6) = (J3*M4)+(J4*M3)+(J5*M2);
den(7) = (J4*M4)+(J5*M3);
den(8) = (J5*M4);
num(l) = 0;
num(2) = B*M2;
num(3) = B*(M3-M2);
num(4) = B*(M4-M3);
num(5) = -B*M4;
num(6:8) = zeros(l,3);
if(volt == 1)
num = num * voltconv(bearing+l) * ampgain(bearing+l);

else
num = (1e6 * num)/(tP * mass);
distconv = le6 / (tP * mass * voltconv(bearing+l));

end
[tmag] = dbode(num,den,samp,2*pi*range);

else
disp('System unstable: roots follow');
for ii=l:length(rt)
disp(sprintf('%.4f', rt(ii)));

end
return;

end

if(nargout == 0)
fid = fopen(fname, 'r');
if(fid > 2)

[dat, ind] = fscanf(fid, '%f %f', [2 inf]);
fclose(fid);
if(volt == 1)
semilogx(dat(l,:), dat(2,:),'g-');
hold on;
semilogx(range, 20*logl0(tmag), 'r--');
hold off;

307

ylabel('Magnitude (Volts/Volts)');
m = max(dat(2,:));
disp(['Analog: max = ' num2str(m)]);
m = max(tmag);
m = 20*log10(m);
disp(['Digital: max = ' num2str(m)]);

else
loglog(dat(l,:), distconv*(10. ^ (d a t (2 , :) /20)), 'g - ') ;

hold on;
loglog(range, tmag, 'r--');
hold off;
ylabel('Magnitude (microns/Newton)');
m = max(dat(2,:));
m = m/20;
disp(['Analog: max = ' num2str(m)]);
m = max(tmag);
disp(['Digital: max = ' num2str(logl0(m))]);

end
title([mytitle ' Bearing Compliance (B = ' num2str(B) ...

', Nat Freq = ' num2str(freq) ...
', Damp Ratio = ' num2str(damp) ')']);

xlabel('Frequency (Hz)');
else

if(volt == 1)
semilogx(range, 20*log10(tmag), 'g-');
ylabel('Magnitude (Volts/Volts)');
m = max(tmag);
m = 20*log10(m);
disp(['Digital: max = ' num2str(m)]);

else
loglog(range, tmag, '-');
ylabel('Magnitude (microns/Newton)');
m = max(tmag);
disp(['Digital: max = ' num2str(logl0(m))]);

end
title([mytitle ' Bearing Compliance (B = ' num2str(B) ...

', Nat Freq = ' num2str(freq) ', Damp Ratio = ' num2str(damp) ')']);
xlabel('Frequency (Hz)');

end
elseif(nargout == 1)

mag = tmag;
else

mag = tmag;
w = range;

end

H.2.4 DigStabFunc.m

This Matlab script returns the parameters necessary to compute the appropriate transfer
function for both the closed loop system frequency response and the disturbance rejection
frequency response. This script was used instead of Matlab's internal functions because rounding
errors were producing false poles.

function [J1,J2,J3,J4,J5,M1,3,M ,M4,N1,N2,N3,N4] ...
DigStabFunc3(A1,A2,P,Q,T,a22,a21)

% Function that evaluates constants for DigStability

if(nargin -= 7 1 nargout -= 13)
disp('Wrong number of arguments ...');
disp('[J1,J2,J3,J4,J5,M1,M2,M3,M4,N1,N2,N3,N4] =
disp(' DigStabFunc(A1,A2,P,Q,T,a22,a21)');
error;

end

308

[m,n] = size(a22);

if(n -= 1 & m -= 1)
disp('a22 must be scalar');
error;

end

[m,n] = size(a21);

if(n -= 1 & m -= 1)
disp('a21 must be scalar');
error;

end

[m,n] = size(T);
sq = sqrt(Q);
if(-isreal(sq))
sq = abs(sq);

end

J1 = (1/(4.*(T^2)))+(a22/(2.*T))+(a21);
J2 = 0;
J3 = (-2/(4.*(T^2)))-(a22/(2.*T));
J4 = 0;
J5 = 1/(4*(T^2));

%J1 = (3./(4.*(T.^2)))+((3*a22)./(2.*T))+(a21*ones(m,n));
%J2 = (-4./(4.*(T.^2)))-((4*a22)./(2.*T));
%J3 = (-2./(4.*(T.^2)))+(a22./(2.*T));
%J4 = 1./(T.^2);
%J5 = -1./(4.*(T.^2));

K1 = (-A1*P)/(A2*Q);
K2 = (-A1*P)/(A2*((A2^2)-Q));
K3 = (A1*P)/(2*Q*(A2-sq));
K4 = (A1*P)/(2*Q*(A2+sq));

L1 = exp(-A2.*T);
L2 = exp(-sq.*T);
L3 = exp(sq.*T);
L4 = 1;

%M1 = K1+K2+K3+K4;
M1 = zeros(m,n);
M2 = (-K1*(L1+L2+L3))-(K2*(L2+L3+L4))-(K3*(L1+L3+L4))-(K4*(L1+L2+L4));
M3 = (K1*((L1.*L2)+(L3.*(L1+L2))))+(K2*((L2.*L4)+(L3.*(L2+L4))))+

(K3*((L1.*L4)+(L3.*(L1+L4))))+(K4*((L1.*L4)+(L2.*(L1+L4))));
M4 = (-K1*L1.*L2.*L3)-(K2*L2.*L3.*L4)-(K3*L1.*L3.*L4)-(K4*L1.*L2.*L4);

N1 = ones(m,n);
N2 = -L1-L2-L3;
N3 = (L1.*L2)+(L1.*L3)+(L2.*L3);
N4 = -(L1.*L2.*L3);

return;

H.3 Component Model Programs

This section lists the programs that return the transfer functions of various components
of the theoretical model. These components are represented in both their continuous and digital
forms.

309

H.3.1 ConAmpIdeal.m

The Matlab script returns the numerator and denominator of the transfer function obtained
from performing a recursive best fit analysis on the actual driver transfer function.

function [ampnum, ampden] = ConAmpIdeal(bearing)
% Continuous model Amp transfer function
% All values were derived using the FindAmpFunc programs

if(nargin == 0)
disp('One input argument required: [ampnum, ampden] = ConAmpIdeal(bearing)');
disp(' bearing - vacuum pump bearing number');
disp(' 0 = axial bearing');
disp(' 1 = radial 1X bearing');
disp(' 2 = radial 1Y bearing');
disp(' 3 = radial 2X bearing');
disp(' 4 = radial 2Y bearing');
error;
end

if(bearing == 0)
Al = 11097.020;
A2 = 13310.0;
elseif(bearing == 1)
Al = 4619.585;
A2 = 13130.0;
elseif(bearing == 2)
Al = 4558.846;
A2 = 13080.0;
elseif(bearing == 3)
Al = 3863.909;
A2 = 11140.0;
elseif(bearing == 4)
Al = 4212.303;
A2 = 12290.0;
end

anum = Al;
aden = [1 A2];

if(nargout == 0)
[n, m] = size(anum);
msg = ['ampnum = [' sprintf('%1.3f',anum(1))];
for i=2:m
msg = [msg ' ' sprintf('%1.3f',anum(i))];

end
msg = [msg ']'];
disp(' ');
disp(msg);
disp(' ');
[n, m] = size(aden);
msg = ['ampden = [' sprintf('%1.3f',aden(1))];
for i=2:m
msg = [msg ' ' sprintf('%1.3f',aden(i))];
end
msg = [msg ']'];
disp(msg);
disp(' ');
else
ampnum = anum;
ampden = aden;
end

310

H.3.2 ConPumpIdealNoAmp.m

The Matlab script returns the numerator and denominator of the transfer function obtained
from performing a recursive best fit analysis on the actual turbopump transfer function.

function [opnum, opden] = ConPumpIdealNoAmp(bearing)
% linearized ebara pump state space equations

if(nargin == 0)
disp('One input argument required: [opnum, opden] = ConPumpIdealNoAmp(bearing)');
disp(' bearing - vacuum pump bearing number');
disp(' 0 = axial bearing');
disp(' 1 = radial 1X bearing');
disp(' 2 = radial 1Y bearing');
disp(' 3 = radial 2X bearing');
disp(' 4 = radial 2Y bearing');
error;

end

% Convert from state-space representation to
if(bearing == 0)
P = 7.990;
Q = 22739.569;
elseif(bearing == 1)
P = 7.123;
Q = 7737.770;
elseif(bearing == 2)
P = 8.296;
Q = 8882.644;
elseif(bearing == 3)
P = 16.926;
Q = 35530.576;
elseif(bearing == 4)
P = 15.113;
Q = 33201.349;
end

transfer function

onum = P;
oden = [1 0 -Q];

if(nargout == 0)
[n, m] = size(onum);
msg = ['opnum = [' sprintf('%1.3f',onum(1))];
for i=2:m
msg = [msg ' ' sprintf('%l.3f',onum(i))];
end
msg = [msg ']'];
disp(' ');
disp(msg);
disp(' ');
[n, m] = size(oden);
msg = ['opden = [' sprintf('%1.3f',oden(1))];
for i=2:m
msg = [msg ' ' sprintf('%1.3f',oden(i))];
end
msg = [msg ']'];
disp(msg);
disp(' ');
else

opnum = onum;
opden = oden;
end

311

H.3.3 ConPumpNoAmp.m

The Matlab script returns the numerator and denominator of the transfer function obtained
from the system parameters provided by the turbopump manufacturer.

function [opnum, opden] = ConPumpNoAmp(bearing)
% linearized ebara pump state space equations with no amp included

if(nargin == 0)
disp('One input argument required: [opnum, opden] = ConPumpNoAmp(bearing)');
disp(' bearing - vacuum pump bearing number');
disp(' 0 = axial bearing');
disp(' 1 = radial 1X bearing');
disp(' 2 = radial 1Y bearing');
disp(' 3 = radial 2X bearing');
disp(' 4 = radial 2Y bearing');
error;

end

% Constants
axlm = 2.2;
radm = 2.2;
a = 0.0238;
b = 0.0691;
irr = 0.008285;
izz = 0.001555;
g = 9.81;
gamma = (12000.0*2.0*pi)/60.0;
io = 0.5;
axlh0 = 0.0004;
radh0 = 0.00025;
axlag = 0.0007;
radag = 0.0000975;
mu = 0.00000126;
% axln = 133.0/2;
axln = 133.0;
radn = 100.0;
angle = (pi / 180) * (45 / 2);

% Calculate often used constants for bearings
Cl = ((1.0/radm) + ((a^2)/irr));
C2 = ((1.0/radm) + ((b^2)/irr));
C3 = ((1.0/radm) - ((a*b)/irr));
C4 = ((a*izz)/((a+b)*irr));
C5 = ((b*izz)/((a+b)*irr));
krad = mu*(radn^2)*radag;
eleml = (4.0*krad*(io^2)*cos(angle))/(radh0^3);
elem2 = (2.0*krad*io*cos(angle))/(radh0^2);
kaxl = mu*(axln^2)*axlag;
% elem3 = (4.0*kaxl*(io^2))/(axlm*(axlh0^3));
% elem4 = (2.0*kaxl*io)/(axlm*(axlh0^2));
elem3 = kaxl/(2.0*axlm*(axlh0^3));
elem4 = kaxl/(2.0*axlm*(axlh0^2));

% Create 10x10 A matrix filled with zeroes
A = [zeros(5),eye(5);zeros(5,10)];

% Create 10x5 B matrix filled with zeroes
B = [zeros(10,5)];

% Create 10x10 C Identity matrix
C = eye(10);

% Create D matrix
D = zeros(10,5);

312

% Fill A matrix will proper
A(6,1) = Cl*eleml; A(6,2) =
A(7,1) = C3*eleml; A(7,2) =
A(8,3) = C1*eleml; A(8,4) =
A(9,3) = C3*eleml; A(9,4) =
A(10,5) = elem3;

% Fill B matrix will proper
B(6,1) = elem2*Cl; B(6,2) =
B(7,1) = elem2*C3; B(7,2) =
B(8,3) = elem2*C1; B(8,4) =
B(9,3) = elem2*C3; B(9,4) =
B(10,5) = elem4;

elements
C3*eleml; A(6,8) =
C2*eleml; A(7,8) =
C3*eleml; A(8,6) =
C2*eleml; A(9,6) =

-C4; A(6,9)
C5; A(7,9)
C4; A(8,7)

-C5; A(9,7)

elements
elem2*C3;
elem2*C2;
elem2*C3;
elem2*C2;

if(bearing == 0) % axial bearing
aa(1,1:2) = A(5,9:10); aa(2,1) = A(10,5); aa(2,2) = A(10,10);
ab(l,l) = B(5,1); ab(2,1) = B(10,5);
ac = zeros(2); ac(l,l) = 1.0;
ad = zeros(2,1);

elseif(bearing == 1)
ra(1,1:2) = A(1,5:6); ra(2,1) = A(6,1); ra(2,2) = A(6,6);
rb(1,1) = B(l,l); rb(2,1) = B(6,1);
rc = zeros(1,2); rc(l,l) = 1.0;
rd = 0;
elseif(bearing == 2)
ra(1,1:2) = A(3,7:8); ra(2,1) = A(8,3); ra(2,2) = A(8,8);
rb(l,l) = B(3,3); rb(2,1) = B(8,3);
rc = zeros(l,2); rc(l,l) = 1.0;
rd = 0;
elseif(bearing == 3)
ra(1,1:2) = A(2,6:7); ra(2,1) = A(7,2); ra(2,2) = A(7,7);
rb(l,l) = B(2,2); rb(2,1) = B(7,2);
rc = zeros(l,2); rc(l,l) = 1.0;
rd = 0;
elseif(bearing == 4)
ra(1,1:2) = A(4,8:9); ra(2,1) = A(9,4); ra(2,2) = A(9,9);
rb(l,l) = B(4,4); rb(2,1) = B(9,4);
rc = zeros(l,2); rc(l,l) = 1.0;
rd = 0;

end

% Convert from state-space representation to transfer function
if(bearing == 0)
[onum, oden] = ss2tf(aa, ab, ac, ad);
onum = onum(1,3);
% Remove rounding error
oden(2) = 0;

else
[onum, oden] = ss2tf(ra, rb, rc, rd);
onum = onum(l,3);
% Remove rounding error
oden(2) = 0;
end

if(nargout == 0)
[n, m] = size(onum);
msg = ['opnum = [' sprintf('%l.3f',onum(1))];
for i=2:m
msg = [msg ' ' sprintf('%1.3f',onum(i))];
end
msg = [msg ']'];
disp(' ');
disp(msg);
disp(' ');
[n, m] = size(oden);
msg = ['opden = [' sprintf('%l.3f',oden(1))];
for i=2:m
msg = [msg ' ' sprintf('%l.3f',oden(i))];
end

313

= C4;
= -C5;
= -C4;
= C5;

msg = [msg ']'];
disp(msg);
disp(' ');
else
opnum = onum;
opden = oden;
end

H.3.4 DigControl.m

This Matlab script returns the transfer function of the digital controller given the bearing
number, feedback gain, natural frequency, damping ratio, and sampling interval.

function [hnum, hden] = DigControl(bearing,B,freq,damp,T)
% Continuous linearized controller transfer function

if(nargin < 5)
disp('Five input arguments required: [hnum, hden] =

DigControl(bearing,B,freq,damp,T)');
disp(' B - digital controller gain (divisor)');
disp(' freq - digital controller model natural frequency');
disp(' damp - digital controller model damping ratio');
disp(' T - digital controller sampling interval');
disp(' bearing - vacuum pump bearing number');
disp(' 0 = axial bearing');
disp(' 1 = radial 1X bearing');
disp(' 2 = radial 1Y bearing');
disp(' 3 = radial 2X bearing');
disp(' 4 = radial 2Y bearing');
error;
end

% Defining linear controller constants
a22 = 2.0*damp*freq;
a21 = freq^2;
bplus = B;

% the controller model is a second order model having the following form:

% U(t) = U(t-T) - 1/B*[a(t-T) + a22*v(t) + a21*x(t)]

% where: U = control action
% a = acceleration
% v = velocity
% x = position

% Velocity algorithm - backward difference accurate to T^2

% v(t) = [3x(t) - 4x(t-T) + x(t-2T)]/2*T v(z)/x(z) = [3z^2 - 4z + 1]/2*T*z^2

velnum = [3/(2*T) -4/(2*T) 1/(2*T)];
velden = [1 0 0];

% Acceleration algorithm - central difference accurate to T^2

% a(t) = [v(t) - v(t-2T)]/2*T
% = {[3x(t) - 4x(t-T) + x(t-2T)] - (3x(t-2T) - 4x(t-3T) + x(t-4T)]})/4*T^2
% a(z)/x(z) = [3z^4 - 4z^3 - 2z^2 + 4z - 1]/4*T^2*z^4

accnum = [3/(4*(T^2)) -4/(4*(T^2)) -2/(4*(T^2)) 4/(4*(T^2)) -1/(4*(T^2))];
accden = [1 0 0 0 0];

% Define controller

314

% [(z- 1)/z] U(z) = -1/B * [a(z) + a22*v(z) + a21*x(z)

%connum = -(accnum + conv((a22*velnum),deconv(accden,velden)) + (a21*accden));
%conden = bplus*accden;

% multiply by z/(z-1)
%[conden, r] = deconv(conden,[1 0]);
%conden = conv(conden, [1 -1]);

J1 = (1/(4.*(T^2)))+(a22/(2.*T))+(a21);
J2 = 0;
J3 = (-2/(4.*(T^2)))-(a22/(2.*T));
J4 = 0;
J5 = 1/(4*(T^2));

connum = -[J1 J2 J3 J4 J5];
conden = [B -B 0 0 0];

if(nargout == 0)
[n, m] = size(connum);
msg = ['hnum = [' sprintf('%1.3f',connum(1))];
for i=2:m
msg = [msg ' ' sprintf('%l.3f',connum(i))];
end
msg = [msg ']'];
disp(' ');
disp(msg);
disp(' ');
[n, ml = size(conden);
msg = ['hden = [' sprintf('%1.3f',conden(1))];
for i=2:m
msg = [msg ' ' sprintf('%1.3f',conden(i))];
end
msg = [msg ']'];
disp(msg);
disp(' ');
else
hnum = connum;
hden = conden;

end

H.3.5 DigPump.m

This Matlab script returns the discrete time transfer function of the driver and turbopump
components. The turbopump transfer function on which this function is based uses the
parameters provided by the manufacturer. The driver transfer function on which this function
is based on a recursive best fit analysis.

function [opnum, opden] = ConPump(bearing)
% linearized ebara pump state space equations

if(nargin == 0)
disp('One input argument required: [opnum, opden] = ConPump(bearing)');
disp(' bearing - vacuum pump bearing number');
disp(' 0 = axial bearing');
disp(' 1 = radial 1X bearing');
disp(' 2 = radial 1Y bearing');
disp(' 3 = radial 2X bearing');
disp(' 4 = radial 2Y bearing');
error;

end

315

[onum, oden] = ConPumpNoAmp(bearing);

[ampnum, ampden] = ConAmpIdeal(bearing);

onum = conv(ampnum, onum);
oden = conv(ampden, oden);

if(nargout == 0)
[n, m] = size(onum);
msg = ['opnum = [' sprintf('%1.3f',onum(1))];
for i=2:m
msg = [msg ' ' sprintf('%1.3f',onum(i))];
end
msg = [msg ']'];
disp(' ');
disp(msg);
disp(' ');
[n, m] = size(oden);
msg = ['opden = [' sprintf('%1.3f',oden(1))];
for i=2:m
msg = Imsg ' ' sprintf('%1.3f',oden(i))];
end
msg = [msg ']'];
disp(msg);
disp(' ');
else
opnum = onum;
opden = oden;

end

H.3.6 DigPumpIdeal.m

This Matlab script returns the discrete time transfer function of the driver and turbopump
components. The turbopump and driver transfer function on which this function is based on a
recursive best fit analysis.

function [opnum, opden] = DigPumpIdeal(bearing, T)
% linearized ebara pump state space equations

if(nargin < 2)
disp('Two input argument required: [opnum, opden] = DigPumpIdeal(bearing, T)');
disp(' T - controller sampling period');
disp(' bearing - vacuum pump bearing number');
disp(' 0 = axial bearing');
disp(' 1 = radial lX bearing');
disp(' 2 = radial 1Y bearing');
disp(' 3 = radial 2X bearing');
disp(' 4 = radial 2Y bearing');
error;

end

[opnum, opden] = ConPumpIdealNoAmp(bearing);
P = opnum(size(opnum,2));
Q = abs(opden(size(opden,2)));

[ampnum, ampden] = ConAmpIdeal(bearing);

Al = ampnum;
A2 = abs(ampden(size(ampden,2)));

K1 = -(Al*P)/(A2*Q);
K2 = -(A1*P)/(A2*((A2^2)-Q));
K3 = (A1*P)/(2*Q*(A2-sqrt(Q)));

316

K4 = (Al*P)/(2*Q*(A2+sqrt(Q)));

L1 = exp(-A2*T);
L2 = exp(sqrt(Q)*T);
L3 = exp(-sqrt(Q)*T);
L4 = 1;

onum = K1*conv([l -Ll],conv([l -L2], [1 -L3]));
onum = onum + (K2*conv([l -1], conv([1 -L2],[1 -L3])));
onum = onum + (K3*conv([l -1], conv([l -L1],[1 -L2])));
onum = onum + (K4*conv([l -1], conv([l -L1],[1 -L3])));

if(-isreal(onum))
onum = real(onum);
end

oden = conv([1 -LI], conv([l -L2], [1 -L3]));
if(-isreal(oden))
oden = real(oden);
end

if(nargout == 0)
[n, m] = size(onum);
msg = ['opnum = [' sprintf('%1.3f',onum(1))];
for i=2:m
msg = [msg ' ' sprintf('%1.3f',onum(i))];
end
msg = [msg ']'];
disp(' ');
disp(msg);
disp(' ');
[n, m] = size(oden);
msg = ['opden = [' sprintf('%l.3f',oden(1))];
for i=2:m
msg msg sg ' ' sprintf('%1.3f',oden(i))];
end
msg = [msg ']'];
disp(msg);
disp(' ');
else

opnum = onum;
opden = oden;

end

H.3.7 DigPumpNoAmp.m

This Matlab script returns the discrete time transfer function of the turbopump
components. The turbopump and driver transfer function on which this function is based on the
parameters provided by the turbopump manufacturer.

function [opnum, opden] = DigPumpNoAmp(bearing, T)
% linearized ebara pump state space equations

if(nargin < 2)
disp('Two input argument required: [opnum, opden] = DigPumpNoAmp(bearing, T)');
disp(' T - controller sampling period');
disp(' bearing - vacuum pump bearing number');
disp(' 0 = axial bearing');
disp(' 1 = radial 1X bearing');
disp(' 2 = radial 1Y bearing');
disp(' 3 = radial 2X bearing');
disp(' 4 = radial 2Y bearing');
error;

317

end

[onum, oden] = ConPumpNoAmp(bearing);

P = onum(l);
Q = abs(oden(length(oden)));

K1 = -P/Q;
K2 = P/(2*Q);
K3 = P/(2*Q);

L1 = 1;
L2 = exp(-sqrt(Q)*T);
L3 = exp(sqrt(Q)*T);

onum = K1*(conv([1 -L2], [1 -L3]));
onum = onum + (K2*(conv([l -LI], [1 -L3])));
onum = onum + (K3*(conv([l -LI], [1 -L2])));

if(-isreal(onum))
onum = real(onum);

end

oden = conv([1 -L2], [1 -L3]);
if(-isreal(oden))

oden = real(oden);
end

if(nargout == 0)
[n, m] = size(onum);
msg = ['opnum = [' sprintf('%1.3f',onum(1))];
for i=2:m
msg = [msg ' ' sprintf('%1.3f',onum(i))];

end
msg = Cmsg ']'];
disp(' ');
disp(msg);
disp(' ');
[n, m] = size(oden);
msg = ['opden = [' sprintf('%1.3f',oden(1))];
for i=2:m
msg = [msg ' ' sprintf('%1.3f',oden(i))];

end
msg = [msg ']'];
disp(msg);
disp(' ');

else
opnum = onum;
opden = oden;

end

H.4 Miscellaneous Programs

This section lists miscellaneous programs that were used for data analysis during the
course of writing this thesis.

H.4.1 NoiseSpect.m

This Matlab script performs a power spectrum analysis upon data obtained from
monitoring the position sensor signal when the bearings of the turbopump were unpowered. This
function produces the sensor noise graph.

318

function [density, w] = NoiseSpect(bearing, T)

if(nargin -~= 2)
disp('[density, w] = NoiseSpect(bearing, T)');
disp('where:');
disp(' bearing - vacuum pump bearing number');
disp(' 0 = axial bearing');
disp(' 1 = radial 1X bearing');
disp(' 2 = radial 1Y bearing');
disp(' 3 = radial 2X bearing');
disp(' 4 = radial 2Y bearing');
disp(' T - sampling interval');
error;

end

if(bearing == 0)
filename = '/tmp/axiall0k.dat';

elseif(bearing == 1)
filename = '/tmp/radlxl0k.dat';

elseif(bearing == 2)
filename = '/tmp/radlyl0k.dat';

elseif(bearing == 3)
filename = '/tmp/rad2xl0k.dat';

elseif(bearing == 4)
filename = '/tmp/rad2yl0k.dat';

end

fid = fopen(deblank(filename), 'r');
if(fid < 3)

disp(['Unable to open input file
error;

end

' deblank(filename) ...]);

[dat] = fscanf(fid, '%d', [1 infl);
fclose(fid);

avg = mean(dat);
dat = dat - avg;
nfft = 1024;
off = 6;

[p,w] = spectrum(dat,nfft,0,hanning(nfft),l/T);

if(nargout == 0)
plot(w(off:size(w,1),l),p(off:size(p,1),1));

else
density = p(off:size(p,l));
w = w(off:size(w,1));

end

H.4.2 PhaseFix.m

This Matlab script attempts to smooth the phase data obtained by the system analyzer.
The system analyzer normally saves the phase data in a form in which the data ranges from
±1800. This form causes the phase data to jump around when the value approaches -1800. This
script attempts to eliminate such jumps by not limiting the minimum value to -180'.

function [phase] = PhaseFix(bearing, phdata)
% This attempts to fix phase data from system analyzer

if(nargin -= 2)
disp('Syntax error');
disp('[phase] = PhaseFix(bearing, phdata)');

319

disp('where:');
disp(' bearing - vacuum pump bearing number');
disp(' 0 = axial bearing');
disp(' 1 = radial 1X bearing');
disp(' 2 = radial 1Y bearing');
disp(' 3 = radial 2X bearing');
disp(' 4 = radial 2Y bearing');
disp(' phdata - analyzer phase data');
error;

end

phase = phdata;

% insure that initial phase is positive
while(phase(1) > 170.0)

phase(l) = phase(l) - 360.0;
end

% smooth phase anomalies
for ii=2:length(phase);
while(abs(phase(ii-1)-phase(ii)) > 170.0)

if(phase(ii-1) >= 0.0)
phase(ii) = phase(ii)+360.0;

else
phase(ii) = phase(ii)-360.0;

end
end

end

H.4.3 veltest.m

This Matlab script reads the sensor position data obtained when the turbopump bearings
are unpowered and applies central difference and forward difference representations of the
velocity function to determine which is better suited for this noisy environment.

function [] = veltest(bearing)

if(bearing == 0)
infile = '/tmp/axiall0k.dat';

elseif(bearing == 1)
infile = '/tmp/radlxl0k.dat';

elseif(bearing == 2)
infile = '/tmp/radlylOk.dat';

elseif(bearing == 3)
infile = '/tmp/rad2xl0k.dat';

elseif(bearing == 4)
infile = '/tmp/rad2yl0k.dat';

end

fid = fopen(infile, 'r');
if(fid > 2)

[dat,count] = fscanf(fid, '%d', [1 inf]);
fclose(fid);
count = mean(dat);
dat = dat - count;
cvel = zeros(1,length(dat));
fvel = zeros(1,length(dat));
for ii = 3:length(dat)-1
cvel(ii) = (dat(ii+l)-dat(ii-1)) * 10000 / 2;
fvel(ii) = ((3*dat(ii))-(4*dat(ii-1))+dat(ii-2)) * 10000 / 2;

end
for ii = 1:50:length(dat)
plot(fvel(ii:ii+50),'y-');

320

hold on;
plot(cvel(ii:ii+50), 'g-');
hold off;
pause;

end
end

321

Append I

Digital Controller Listing

This appendix provides a brief explanation of important aspects of the digital controller
program and the actual listings of both the architecture file and the controller assembly file.

1.1 Digital Controller Details

The digital controller is composed of an Architecture File (AF) and the Controller
Assembly File (CAF). The AF describes the memory layout that the processor is constrained by.
The AF is used by the assembler to resolve the absolute memory locations necessary to
successfully assemble the CAF. The AF describes the interrupt vector table, the Program
Memory (PM) address range, the Data Memory (DM) address range, and the registers of
auxiliary components that are mapped in the PM and DM address space. The AF also provides
named aliases for these addresses so that these names can be used instead of the actual addresses
as references in the CAF.

The CAF contains the native DSP assembly language instructions that implement the
control algorithm. The CAF defines variable names to all of the registers mapped in either the
PM or DM address range. In this way, the program can treat reads and writes to these registers
as simply reads and writes to and from any other memory location. The file also modifies the
interrupt vector table located at the front of the PM address space to alter the behavior of the
processor when it receives a reset and timer interrupt. This file also defines the instructions that
will be loaded in the PM address space and the provides names for the variables loaded into the
DM address space. Any program variable that could possibility require alteration during the
controller design process is aliased to a name (i.e. the #define statements) that is used throughout
the controller program. In this way changes can be made quickly that effect the entire controller.
The variables used within the actual control loop are organized in their order of use in DM so
that the control loop can be optimized to use indirect addressing. Indirect addressing allows for
two instructions to the be implemented in one cycle thus increasing the efficiency of the control
loop.

The PM contains the initialization code and the control loop. The initialization code uses
the named aliases of the program variables to compute the DM variables that will be used in the
control loop. This increases the delay from program initiation to controller initiation but allows
for changes to be made quickly and easily to the controller. Wherever possible, the initialization
code removes division operations from the control loop by calculating reciprocals. After

322

calculating all of the control loop variables, the initialization code initializes the I/O Controller
board and sets the number of A/Ds and D/As. Next the initial control signals are sent to the
D/As and all DM variables calculated during the control loop are initialized to zero. Finally the
timer counter register is set to the appropriate value calculated from the desired sampling rate and
processor interrupts are allowed. The processor then enters an idle state waiting for an interrupt
to occur.

The timer interrupt directs program execution to the control loop. The control loop
queries the bearing number variable to determine which is the axis of interest and signals the A/D
to start the conversion process. Next, certain memory pointer registers are initialized to point to
the areas in the DM that contain the variables applicable to the axis of interest. The program
then waits till the A/D conversion process has finished. The A/D offset is subtracted from the
value and the signal is processed by the low-pass filter and the sensor notch filter. The value
is then converted to the proper units and the control action calculates the proper control action.
The control action is tested if it exceeds the user defined control signal limit and is then passed
through a notch filter to remove frequencies that might excite the first bending mode. The
control loop variables are updated for the next interrupt and the control signal is sent to the D/A.
The controller waits for the D/A conversion process to complete before incrementing the bearing
number variable and returning from the interrupt.

This program is downloaded to the DSP controller board using a utility run from the
Personal Computer (PC) command line. Another PC command line utility is then used to trigger
a DSP reset. This in turn triggers the reset interrupt which initializes certain memory access chip
registers and jumps to the program initialization code which starts the controller.

I.1.1 Architecture File

.SYSTEM EBARA;

.PROCESSOR = ADSP21020;

.SEGMENT /ROM /BEGIN=0x000000 /END=0x000007 /PM emu_svc;

.SEGMENT /RAM /BEGIN=0x000008 /END=0x00000F /PM rst_svc;

.SEGMENT /ROM /BEGIN=0x000010 /END=0x000017 /PM resrvdl;

.SEGMENT /ROM /BEGIN=0x000018 /END=0x00001F /PM sovf_svc;

.SEGMENT /RAM /BEGIN=0x000020 /END=0x000027 /PM tmzh_svc;

.SEGMENT /ROM /BEGIN=0x000028 /END=0x00002F /PM irq3_svc;

.SEGMENT /ROM /BEGIN=0x000030 /END=0x000037 /PM irq2_svc;

.SEGMENT /ROM /BEGIN=0x000038 /END=0x00003F /PM irql_svc;

.SEGMENT /ROM /BEGIN=0x000040 /END=0x000047 /PM irq0_svc;

.SEGMENT /ROM /BEGIN=0x000048 /END=0x00004F /PM resrvd2;

.SEGMENT /ROM /BEGIN=0x000050 /END=0x000057 /PM resrvd3;

.SEGMENT /ROM /BEGIN=0x000058 /END=0x00005F /PM cb7_svc;

.SEGMENT /ROM /BEGIN=0x000060 /END=0x000067 /PM cbl5_svc;

.SEGMENT /ROM /BEGIN=0x000068 /END=0x00006F /PM resrvd4;

.SEGMENT /ROM /BEGIN=0x000070 /END=0x000077 /PM tmzl_svc;

.SEGMENT /ROM /BEGIN=0x000078 /END=0x00007F /PM fix_svc;

.SEGMENT /ROM /BEGIN=0x000080 /END=0x000087 /PM flto_svc;

.SEGMENT /ROM /BEGIN=0x000088 /END=0x00008F /PM fltu_svc;

.SEGMENT /ROM /BEGIN=0x000090 /END=0x000097 /PM flti_svc;

.SEGMENT /ROM /BEGIN=0x000098 /END=0x00009F /PM resrvd5;

.SEGMENT /ROM /BEGIN=0x0000AO /END=0x0000A7 /PM resrvd6;

.SEGMENT /ROM /BEGIN=0x0000A8 /END=0x0000AF /PM resrvd7;

.SEGMENT /ROM /BEGIN=0x0000BO /END=0x0000B7 /PM resrvd8;

.SEGMENT /ROM /BEGIN=0x0000B8 /END=0x0000BF /PM resrvd9;

323

/BEGIN=0x0000CO
/BEGIN=0x0000C8
/BEGIN=0x0000DO
/BEGIN=0x0000D8
/BEGIN=0x0000EO
/BEGIN=0x0000E8
/BEGIN=0x0000FO
/BEGIN=0x0000F8

/END=0x0000C7
/END=0x0000CF
/END=0x0000D7
/END=0x0000DF
/END=0x0000E7
/END=0x0000EF
/END=0x0000F7
/END=0x0000FF

/PM sft0_svc;
/PM sftlsvc;
/PM sft2_svc;
/PM sft3_svc;
/PM sft4_svc;
/PM sft5 svc;
/PM sft6_svc;
/PM sft7_svc;

.SEGMENT /RAM /BEGIN=0x000100 /END=0x007FFF /PM pm_code;

.SEGMENT /RAM /BEGIN=0x00000000 /END=0x00007FFF /DM dm_data;

.BANK /PMO /WTSTATES=O /WTMODE=INTERNAL /BEGIN=OX000000;

.BANK /DMO /WTSTATES=0 /WTMODE=INTERNAL /BEGIN=OX00000000;

.BANK /DM1 /WTSTATES=1 /WTMODE=INTERNAL /BEGIN=0X40000000;

.SEGMENT /PORT /BEGIN=0X800000

.SEGMENT /PORT /BEGIN=0X800001
/END=0X800000 /PM ioadin;
/END=0X800001 /PM iostat;

.SEGMENT /PORT /BEGIN=0X20000000 /END=0X20000000

.SEGMENT /PORT /BEGIN=0X20000001 /END=0X20000001

.SEGMENT /PORT /BEGIN=0X20000002 /END=0X20000002

.SEGMENT /PORT /BEGIN=0X40000000 /END=0X40000000

.SEGMENT /PORT /BEGIN=0X40000001 /END=0X40000001

.SEGMENT /PORT /BEGIN=0X40000002 /END=0X40000002

/DM status;
/DM timer;
/DM digio;

/DM iodaout;
/DM iocntrl;
/DM iochans;

.ENDSYS;

1.1.2 Controller Assembly File

(Contrlll.asm - uses only the ADSP timer.

{ The following ports are found on the ADSP board

.SEGMENT /DM status;

.VAR DSPSTAT;

.ENDSEG;

.SEGMENT /DM timer;

.VAR DSPTIMER;

.ENDSEG;

{ The following ports are found on the 32-channel ADC board

.SEGMENT /PM ioadin;

.VAR ADFIFO;

.ENDSEG;

.SEGMENT /PM iostat;

.VAR IOSTAT;

.ENDSEG;

.SEGMENT /DM iodaout;

.VAR DAFIFO;

.ENDSEG;

.SEGMENT /DM iochans;

.VAR CHANNELS;

.ENDSEG;

.SEGMENT /DM iocntrl;

.VAR CONTROL;

.ENDSEG;

324

.SEGMENT

.SEGMENT

.SEGMENT

.SEGMENT

.SEGMENT

.SEGMENT

.SEGMENT

.SEGMENT

/ROM
/ROM
/ROM
/ROM
/ROM
/ROM
/ROM
/ROM

(division macro - if there is a quicker way, just change macro }
{ macro requires the following: }
(FO = numerator }
(F12 = denominator }

{--
{ Division Algorithm - Given Q = D/N, multiply N and D by the same set }
{ of factors, Rn. }
S N x RO x R1 x ... x Rn
{ Q = ----------------------
S D x RO x R1 x ... x Rn }

{ }
{ Choose Rn such that as the number of factors increases, the I
{ denominator approaches 1. The quotient is then approximately equal }
{ to the numerator. }
{ I
{ RO is the seed provided by the RECIPS instruction. Succssive Rn are }
{ calculated by the following formula: }
{ Ri = 2-D(i-1) }
{ }
{ NOTE: The macro uses the following registers: }
{ FO, F7, F11, F12)
{ These registers will be over-written upon exit from macro. }
(--
#define div Fl1 = 2.0; \

FO = RECIPS F12, F7 = FO; \
F12 = F0*F12; \
F7 = FO*F7, FO = F11-F12; \
F12 = FO*F12; \
F7 = FO*F7, FO = F11-F12; \
F12 = FO*F12; \
F7 = FO*F7, FO = F11-F12; \
FO = FO*F7

#define DIV F11 = 2.0; \
FO = RECIPS F12, F7 = FO; \
F12 = FO*F12; \
F7 = FO*F7, FO = F11-F12; \
F12 = FO*F12; \
F7 = FO*F7, FO = F11-F12; \
F12 = FO*F12; \
F7 = FO*F7, FO = F11-F12; \
FO = FO*F7

{--
{ Axial bearing constants }
{ }
{ AXIAL_NATFREQ natural frequency }
{ AXIAL_DAMP damping ratio }
{ AXIAL_PERIOD period constant (divisor = axial_period*T) }
{ AXIAL_BPLS B+ matrix/scalar }
{ AXIAL_SENGAIN sensor gain (volts/meter) }
{ AXIAL_AMPGAIN amp gain (amps/volt) }
{ AXIAL_INITSIG initial control signal (Amps) }
{ AXIAL_MAXU maximum control signal (Amps) }
-{--

#define AXIAL_NATFREQ 100.0
#define AXIAL_DAMP 0.85
#define AXIAL_PERIOD 2.0
#define AXIAL_BPLS 170.0
#define AXIAL_SENGAIN 9450.0
#define AXIAL_AMPGAIN 2.515
#define AXIAL_INITSIG -1.0
#define AXIAL_MAXU 2.0

{ Radial bearing constants - common }

325

#define RAD_PERIOD

{---
{ Radial bearing constants - bearing 1X)
{)
{ RAD1X_NATFREQ natural frequency)
{ RADIX_DAMP damping ratio)
{ RADIX_PERIOD period constant (divisor = radlx_period*T) }
{ RAD1X_BPLS B+ matrix/scalar)
{ RAD1X_SENGAIN sensor gain (volts/meter))
{ RAD1X_AMPGAIN amp gain (amps/volt) }
{ RADIX_INITSIG initial control signal (Amps) }
{ RAD1X_MAXU maximum control signal (Amps) }

#define RADIX_NATFREQ
#define RAD1X_DAMP
#define RAD1X_BPLS
#define RAD1X_SENGAIN
#define RAD1X_AMPGAIN
#define RAD1X_INITSIG
#define RAD1X_MAXU

130.0
1.00

160.0
25000.0
1.175
0.0
2.0

({--)
{ Radial bearing constants - bearing 1Y

RADIY_NATFREQ
RADlY_DAMP
RAD1Y_PERIOD
RAD1Y_BPLS
RAD1Y_SENGAIN
RADlY_AMPGAIN
RADIY_INITSIG
RAD1Y_MAXU

natural frequency
damping ratio
period constant (divisor = radly_period*T)
B+ matrix/scalar
sensor gain (volts/meter)
amp gain (amps/volt)
initial control signal (Amps)
maximum control signal (Amps)

}
}

{--}

#define RAD1Y_NATFREQ
#define RAD1Y_DAMP
#define RAD1Y_BPLS
#define RAD1Y_SENGAIN
#define RADlY_AMPGAIN
#define RAD1Y_INITSIG
#define RAD1Y_MAXU

110.0
1.05

180.0
25000.0
1.165
0.0
2.0

{--)
(Radial bearing constants - bearing 2X

RAD2X_NATFREQ
RAD2X_DAMP
RAD2X_PERIOD
RAD2X_BPLS
RAD2X_SENGAIN
RAD2X_AMPGAIN
RAD2X_INITSIG
RAD2X_MAXU

natural frequency
damping ratio
period constant (divisor = rad2x_period*T)
B+ matrix/scalar
sensor gain (volts/meter)
amp gain (amps/volt)
initial control signal (Amps)
maximum control signal (Amps)

(--

#define RAD2XNATFREQ 100.0
#define RAD2X_DAMP 1.90
#define RAD2X_BPLS 260.0
#define RAD2X_SENGAIN 25000.0
#define RAD2X_AMPGAIN 1.159
#define RAD2X_INITSIG 0.0
#define RAD2X MAXU 2.0

{--
f Radial bearing constants - bearing 2Y }
{ }

326

2.0

{ RAD2Y_NATFREQ natural frequency
{ RAD2Y_DAMP damping ratio
{ RAD2Y_PERIOD period constant (divisor = rad2y_period*T)
{ RAD2Y_BPLS B+ matrix/scalar
{ RAD2Y_SENGAIN sensor gain (volts/meter)
{ RAD2Y_AMPGAIN amp gain (amps/volt)
{ RAD2Y_INITSIG initial control signal (Amps)
{ RAD2Y_MAXU maximum control signal (Amps)

#define RAD2Y_NATFREQ 100.0
#define RAD2YDAMP 1.80
#define RAD2Y_BPLS 260.0
#define RAD2Y_SENGAIN 25000.0
#define RAD2Y_AMPGAIN 1.144
#define RAD2Y_INITSIG 0.0
#define RAD2Y_MAXU 2.0

{ D/A board does not output 0 when zero sent. These offsets
{ were determined through experimentation

#define DAOOFFSET Ox0000000C
#define DA1OFFSET OxFFFFFFE6
#define DA20FFSET OxFFFFFFE6
#define DA3OFFSET OxFFFFFFE6
#define DA4OFFSET 0x00000027

#define DAOCUROFF 0.0000
#define DAlCUROFF 0.0000
#define DA2CUROFF 0.0000
#define DA3CUROFF 0.0000
#define DA4CUROFF 0.0000

{ A/D board does not return 0 with no input. These offsets
(were determined through experimentation

#define ADOOFFSET 0x00000918
#define AD1OFFSET Ox000008Bl
#define AD20FFSET 0x000008F6
#define AD30FFSET 0x000008E6
#define AD40FFSET Ox000000AF
#define AD50FFSET 0x0000088D
#define AD6OFFSET 0x00000926

{ D/A constants
#define DAVOLTSMAX 5.0
#define DAVOLTSMIN -5.0
#define DABITSMAX 32768.0

{ A/D constants
#define ADVOLTSMAX 5.0
#define ADVOLTSMIN -5.0
#define ADBITSMAX 8192.0

{--
{ Timer constants
{ }
{ CPUSPEED CPU speed (Hz)
{ SMPLSPEED Sampling Rate (Hz)
{--
#define CPUSPEED 33333333.333
#define SMPLSPEED 10000.0

#define BEARTOT 5
#define SAVEOFFSET 256
#define SAVEBEAR 3
#define DELAY 30000

#ifndef NO_FILTER

327

(Filter variables
#define FILON2
#define FILON3
#define FILON4
#define FILON5
#define FILOK1 2
#define FILOK2 -4
#define FILOK3 4
#define FILOK4 -2
#define FILOK5
#define FIL1N2
#define FIL1N3
#define FIL1N4
#define FIL1N5
#define FIL1K1 2
#define FIL1K2 -4
#define FIL1K3 4
#define FIL1K4 -2
#define FIL1K5
#define FIL2N2
#define FIL2N3
#define FIL2N4
#define FIL2N5
#define FIL2K1 2
#define FIL2K2 -4
#define FIL2K3 4
#define FIL2K4 -2
#define FIL2K5
#define FIL3N2
#define FIL3N3
#define FIL3N4
#define FIL3N5
#define FIL3K1 2
#define FIL3K2 -4
#define FIL3K3 4
#define FIL3K4 -2
#define FIL3K5
#define FIL4N2
#define FIL4N3
#define FIL4N4
#define FIL4N5
#define FIL4K1 2
#define FIL4K2 -4
#define FIL4K3 4'
#define FIL4K4 -2
#define FIL4K5
#endif

4.0
6.0
4.0
1.0
06.8088
89.8232
78.2204
17.9162
38.7102
4.0
6.0
4.0
1.0
06.8088
89.8232
78.2204
17.9162
38.7102
4.0
6.0
4.0
1.0
06.8088
89.8232
78.2204
17.9162
38.7102
4.0
6.0
4.0
1.0

06.8088
89.8232
78.2204
17.9162
38.7102
4.0
6.0
4.0
1.0

06.8088
89.8232
78.2204
17.9162
38.7102

#ifndef NOINOTCHFILTER
INFILOCOSWT
INFILOALPHA
INFILOL
INFILOAO
INFIL1COSWT
INFIL1ALPHA
INFIL1L
INFIL1AO
INFIL2COSWT
INFIL2ALPHA
INFIL2L
INFIL2AO
INFIL3COSWT
INFIL3ALPHA
INFIL3L
INFIL3AO
INFIL4COSWT
INFIL4ALPHA
INFIL4L
INFIL4AO

0.990461426
0.25
0.25
1.0
0.990461426
0.25
0.25
1.0
0.990461426
0.25
0.25
0.8
0.951056516
0.25
0.25
0.9
0.951056516
0.25
0.25
1.0

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

328

#endif

#ifndef
#define
#define
#define
#define
#define
#define
#define
#de fine
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#endif

NO_NOTCH_FILTER
NFILOCOSWT 0.827080574
NFILOALPHA 0.20
NFILOL 0.20
NFILOAO 1.0
NFIL1COSWT 0.809016994
NFIL1ALPHA 0.20
NFIL1L 0.20
NFIL1AO 1.0
NFIL2COSWT 0.823532598
NFIL2ALPHA 0.20
NFIL2L 0.20
NFIL2AO 1.0
NFIL3COSWT 0.770513243
NFIL3ALPHA 0.20
NFIL3L 0.20
NFIL3AO 1.0
NFIL4COSWT 0.770513243
NFIL4ALPHA 0.20
NFIL4L 0.20
NFIL4AO 1.0

(Axial bearing variable storage locations

.SEGMENT /DM dm_data;

(Common radial bearing variable storage locations

.VAR AXIALXO;

.VAR AXIAL X1;

.VAR AXIAL X2;

.VAR AXIAL_VO;

.VAR AXIAL_V1;

.VAR AXIAL_V2;

.VAR AXIALAO;

.VAR AXIAL _U1;

.VAR AXIALUO;

.VAR AXIAL CONV1;

.VAR AXIALPERIOD2;

.VAR AXIALA22;

.VAR AXIALA21;

.VAR AXIAL_BPLUS;

.VAR AXIAL_CONV2;

(First radial bearing variable storage locations - X direction }

.VAR RAD1X_XO;

.VAR RAD1X_X1;

.VAR RAD1X_X2;

.VAR RAD1X_VO;

.VAR RAD1XV1;

.VAR RAD1X_V2;

.VAR RAD1X_AO;

.VAR RAD1X_U1;

.VAR RAD1X_UO;

.VAR RAD1X_CONV1;

.VAR RAD1X_PERIOD2;

.VAR RAD1X_A22;

.VAR RADIX A21;

.VAR RAD1X_BPLUS;

.VAR RAD1X_CONV2;

{ First radial bearing variable storage locations - Y direction }

.VAR RAD1Y_XO;

.VAR RAD1Y_X1;

329

.VAR RAD1YX2;

.VAR RAD1YVO;

.VAR RAD1YV1;

.VAR RAD1YV2;

.VAR RAD1Y_AO;

.VAR RAD1Y_U1;

.VAR RAD1Y_U0;

.VAR RAD1Y_CONV1;

.VAR RAD1Y_PERIOD2;

.VAR RAD1Y_A22;

.VAR RAD1Y_A21;

.VAR RAD1YBPLUS;

.VAR RAD1Y_CONV2;

{ Second radial bearing variable storage locations - X direction }

.VAR RAD2X_XO;

.VAR RAD2XX1;

.VAR RAD2XX2;

.VAR RAD2X_VO;

.VAR RAD2X_V1;

.VAR RAD2X_V2;

.VAR RAD2X_AO;

.VAR RAD2XU1;

.VAR RAD2X_U0;

.VAR RAD2X_CONV1;

.VAR RAD2X_PERIOD2;

.VAR RAD2X_A22;

.VAR RAD2X_A21;

.VAR RAD2X_BPLUS;

.VAR RAD2X_CONV2;

{ Second radial bearing variable storage locations - Y direction }

.VAR RAD2YXO;

.VAR RAD2Y_X1;

.VAR RAD2YX2;

.VAR RAD2YVO;

.VAR RAD2Y_V1;

.VAR RAD2Y_V2;

.VAR RAD2Y_AO;

.VAR RAD2Y_U1;

.VAR RAD2Y_UO;

.VAR RAD2Y_CONV1;

.VAR RAD2Y_PERIOD2;

.VAR RAD2Y_A22;

.VAR RAD2Y_A21;

.VAR RAD2Y_BPLUS;

.VAR RAD2Y_CONV2;

{ Conversion factors
.VAR VOLT2BITS;
.VAR BITS2VOLT;

{ A/D input registers - required because of less than ideal
{ I/O board configuration (somebody hit Jim) }

.VAR ADOINPUT;

.VAR AD1INPUT;

.VAR AD2 INPUT;

.VAR AD3 INPUT;

.VAR AD4 INPUT;

{ D/A offset registers - required because of less than ideal
{ I/O board configuration (somebody hit Jim)

.VAR ADOOFF;

.VAR AD1OFF;

.VAR AD2OFF;

330

.VAR AD30FF;

.VAR AD40FF;

#ifndef NO_FILTER
{ Filter constants
.VAR FILOXCN1;
.VAR FIL1XCN1;
.VAR FIL2XCN1;
.VAR FIL3XCN1;
.VAR FIL4XCN1;
.VAR FILOX4;
.VAR FIL1X4;
.VAR FIL2X4;
.VAR FIL3X4;
.VAR FIL4X4;
.VAR FILOXCN5;
.VAR FIL1XCN5;
.VAR FIL2XCN5;
.VAR FIL3XCN5;
.VAR FIL4XCN5;
.VAR FILOYCN5;
.VAR FILlYCN5;
.VAR FIL2YCN5;
.VAR FIL3YCN5;
.VAR FIL4YCN5;
.VAR FILOX3;
.VAR FIL1X3;
.VAR FIL2X3;
.VAR FIL3X3;
.VAR FIL4X3;
.VAR FILOXCN4;
.VAR FILlXCN4;
.VAR FIL2XCN4;
.VAR FIL3XCN4;
.VAR FIL4XCN4;
.VAR FILOYCN4;
.VAR FIL1YCN4;
.VAR FIL2YCN4;
.VAR FIL3YCN4;
.VAR FIL4YCN4;
.VAR FILOX2;
.VAR FIL1X2;
.VAR FIL2X2;
.VAR FIL3X2;
.VAR FIL4X2;
.VAR FILOXCN3;
.VAR FIL1XCN3;
.VAR FIL2XCN3;
.VAR FIL3XCN3;
.VAR FIL4XCN3;
.VAR FILOYCN3;
.VAR FIL1YCN3;
.VAR FIL2YCN3;
.VAR FIL3YCN3;
.VAR FIL4YCN3;
.VAR FILOX1;
.VAR FIL1X1;
.VAR FIL2X1;
.VAR FIL3Xl;
.VAR FIL4Xl;
.VAR FILOXCN2;
.VAR FIL1XCN2;
.VAR FIL2XCN2;
.VAR FIL3XCN2;
.VAR FIL4XCN2;
.VAR FILOYCN2;
.VAR FIL1YCN2;
.VAR FIL2YCN2;
.VAR FIL3YCN2;

331

.VAR FIL4YCN2;
#endif

#ifndef NO_INOTCH_FILTER
.VAR INFILOX2;
.VAR INFIL1X2;
.VAR INFIL2X2;
.VAR INFIL3X2;
.VAR INFIL4X2;
.VAR INFILOX1;
.VAR INFIL1XI;
.VAR INFIL2X1;
.VAR INFIL3X1;
.VAR INFIL4X1;
.VAR INFILODK2;
.VAR INFIL1DK2;
.VAR INFIL2DK2;
.VAR INFIL3DK2;
.VAR INFIL4DK2;
.VAR INFILODK1;
.VAR INFIL1DK1;
.VAR INFIL2DK1;
.VAR INFIL3DK1;
.VAR INFIL4DK1;
.VAR INFILONK1;
.VAR INFIL1NK1;
.VAR INFIL2NK1;
.VAR INFIL3NK1;
.VAR INFIL4NK1;
#endif

{ Positive maximum control current values
.VAR AXIAL_MAX_CUR;
.VAR RADIX_MAX_CUR;
. VAR RADlY_MAX_CUR;
.VAR RAD2X_MAX_CUR;
.VAR RAD2Y_MAX_CUR;

#ifndef NO_NOTCH_FILTER
.VAR NFILOX2;
.VAR NFIL1X2;
.VAR NFIL2X2;
.VAR NFIL3X2;
.VAR NFIL4X2;
.VAR NFILOX1;
.VAR NFIL1X1;
.VAR NFIL2X1;
.VAR NFIL3X1;
.VAR NFIL4X1;
.VAR NFILODK2;
.VAR NFIL1DK2;
.VAR NFIL2DK2;
.VAR NFIL3DK2;
.VAR NFIL4DK2;
.VAR NFILODK1;
.VAR NFIL1DK1;
.VAR NFIL2DK1;
.VAR NFIL3DK1;
.VAR NFIL4DK1;
.VAR NFILONK1;
.VAR NFIL1NK1;
.VAR NFIL2NK1;
.VAR NFIL3NK1;
.VAR NFIL4NK1;
#endif

.VAR DAOCRTOFF;

.VAR DA1CRTOFF;

.VAR DA2CRTOFF;

332

.VAR DA3CRTOFF;

.VAR DA4CRTOFF;

{ D/A offset registers - required because of less than ideal }
(I/O board configuration (somebody hit Jim) }

.VAR DAOOFF;

.VAR DAlOFF;

.VAR DA2OFF;

.VAR DA3OFF;

.VAR DA4OFF;

(D/A output registers - required because of less than ideal }
{ I/O board configuration (somebody hit Jim) }

.VAR DAOCONTROL;

.VAR DAlCONTROL;

.VAR DA2CONTROL;

.VAR DA3CONTROL;

.VAR DA4CONTROL;

{ Program flow control variables

.VAR BEAR_NUM;

{ Variables needed to save data in memory for later dumping

.VAR SAVE_BEARING;

.VAR INPUT_OFFSET;

.VAR OUTPUT_OFFSET;

.VAR SAVE_END;

.VAR DELAYCOUNT;

.VAR UNDER.COUNT;

.ENDSEG;

.SEGMENT /PM rst_svc;

{--------------------------------------- ----------------------------
{ At reset, the BANK registers are as follows: }
{ PMBANK1 = 0x800000 I
{ DMBANK1 = 0x20000000 }
{ DMBANK2 = 0x40000000 }
{ DMBANK3 = 0x80000000 }
{ These values, by coincidence, are perfect for our I/O board }
(--

(--
{ The default value of PMWAIT at reset is Ox0003DE. This corresponds }
{ to the following: }
{ bit 13 = 0 (No automatic wait state) }
{ bits 12-10 = 000 (memory page size = 256 words) }
{ bits 9-7 = 111 (7 PMBANK1 wait states) }
{ bits 6-5 = 10 (Int. and Ext. wait state ack mode) }
{ bits 4-2 = 111 (7 PMBANKO wait states) }
{ bits 1-0 = 10 (Int. and Ext. wait state ack mode) }
{ }
{ For our setup, the DSP board accesses memory at 0 wait states and }
{ accesses all ports and 1 wait state. Therefore: }
{ bit 13 = 0 (No automatic wait state) }
{ bits 12-10 = 100 (memory page size = 4096 words) }
{ bits 9-7 = 001 (1 PMBANK1 wait state) }
{ bits 6-5 = 10 (Int. and Ext. wait state ack mode) }
{ bits 4-2 = 000 (0 PMBANKO wait states) }
{ bits 1-0 = 10 (Int. and Ext. wait state ack mode) }
(--

PMWAIT = 0x0010C2;

333

{---
{ The default value of DMWAIT at reset is Ox000F7BDE. This corresponds }
{ to the following: }
(bit 23 = 0 (No automatic wait state) }
{ bits 22-20 = 000 (memory page size = 256 words) }
{ bits 19-17 = 111 (7 DMBANK3 wait states) }
{ bits 16-15 = 10 (Int. and Ext. wait state ack mode) }
{ bits 14-12 = 111 (7 DMBANK2 wait states) }
{ bits 11-10 = 10 (Int. and Ext. wait state ack mode) }
{ bits 9-7 = 111 (7 DMBANK1 wait states) }
{ bits 6-5 = 10 (Int. and Ext. wait state ack mode) }
{ bits 4-2 = 111 (7 DMBANKO wait states) }
{ bits 1-0 = 10 (Int. and Ext. wait state ack mode) }
{ }
{ For our setup, the DSP board accesses memory at 0 wait states and }
{ accesses all ports and 1 wait state. Therefore: }
{ bit 23 = 0 (No automatic wait state) }
{ bits 22-20 = 100 (memory page size = 4096 words) }
{ bits 19-17 = 001 (1 DMBANK3 wait states) }
{ bits 16-15 = 10 (Int. and Ext. wait state ack mode) }
{ bits 14-12 = 001 (1 DMBANK2 wait states) }
{ bits 11-10 = 10 (Int. and Ext. wait state ack mode) }
{ bits 9-7 = 000 (0 DMBANK1 wait state) }
{ bits 6-5 = 10 (Int. and Ext. wait state ack mode) }
{ bits 4-2 = 000 (0 DMBANKO wait states) }
{ bits 1-0 = 10 (Int. and Ext. wait state ack mode) }
{---

DMWAIT = 0x00431842;

{---
(Set FLAG2 to output mode so we can trigger I/O board conversion when }
{ we need to. }
(--

MODE2 = 0x00020000;

JUMP initialize;
.ENDSEG;

.SEGMENT /PM pm_code;

initialize:

{ initialize registers }

IMASK = 0;
MODE1 = 0x00012000;

I0 = 0;
Ii = 0;
12 = 0;
13 = 0;
14 = 0;
15 = 0;
16 = 0;
17 = 0;
MO = 0;
M1 = 0;
M2 = 0;
M3 = 0;
M4 = 0;
M5 = 0;
M6 = 0;
M7 = 0;
LO = 0;
L1 = 0;

334

L2 = 0;
L3 = 0;
L4 = 0;
L5 = 0;
L6 = 0;
L7 = 0;

{ Make sure FLAG2 toggle is initially zero.
BIT CLR ASTAT 0x00200000;

{ Calculate D/A conversion factor
FO = DABITSMAX;
F12 = DAVOLTSMAX;
DIV;
DM(VOLT2BITS) = FO;

{ Calculate A/D conversion factor
F12 = ADBITSMAX;
FO = ADVOLTSMAX;
DIV;
DM(BITS2VOLT) = FO;

{ Setup variables required to saving data in memory for later recall
RO = SAVEOFFSET;
DM(INPUT OFFSET) = RO;
R1 = ASHIFT RO BY 1;
R2 = 0x8000;
R2 = R2-R1;
R2 = ASHIFT R2 BY -1;
R1 = R2+RO;
DM(OUTPUT_OFFSET) = R1;
R1 = Rl+R2;
DM(SAVE_END) = R1;
RO = DELAY;
DM(DELAY_COUNT) = RO;

{ Initialize A/D offset variables
BO = ADOOFF;
RO = ADOOFFSET;
DM(IO,1) = RO;
RO = ADlOFFSET;
DM(IO,1) = RO;
RO = AD20FFSET;
DM(IO,1) = RO;
RO = AD3OFFSET;
DM(IO,1) = RO;
RO = AD40FFSET;
DM(IO,1) = RO;

{ Initialize A/D offset variables
BO = AXIAL_MAX CUR;
RO = AXIAL_MAXU;
DM(IO,1) = RO;
RO = RADIX_MAXU;
DM(IO,1) = RO;
RO = RADlY_MAXU;
DM(IO,1) = RO;
RO = RAD2X_MAXU;
DM(IO,1) = RO;
RO = RAD2Y_MAXU;
DM(IO,1) = RO;

{ Initialize D/A offset variables
BO = DAOOFF;
RO = DAOOFFSET;
DM(IO,1) = RO;
RO = DAIOFFSET;
DM(IO,1) = RO;
RO = DA20FFSET;

335

DM(IO,1) = RO;
RO = DA30FFSET;
DM(IO,1) = RO;
RO = DA40FFSET;
DM(IO,1) = RO;

{ Initialize D/A current offset variables
BO = DAOCRTOFF;
F1 = DM(VOLT2BITS);
FO = DAOCUROFF;
FO = FO*F1;
DM(IO,1) = FO;
FO = DAlCUROFF;
FO = F0*F1;
DM(IO,1) = FO;
FO = DA2CUROFF;
FO = FO*F1;
DM(IO,1) = FO;
FO = DA3CUROFF;
FO = FO*F1;
DM(IO,1) = FO;
FO = DA4CUROFF;
FO = FO*F1;
DM(IO,1) = FO;

{ Initialize all control signals to zero
BO = DAOOFF;
B1 = DAOCONTROL;
FO = DABITSMAX;
R1 = FIX FO;
LCNTR = 5;
DO adj UNTIL LCE;

RO = DM(IO,1);
RO = RO+R1;

adj: DM(I1,1) = RO;

#ifndef NO_FILTER
{ Initialize low-pass filter constants

LCNTR = 5;
DO dofil2 UNTIL LCE;

BO = FILOXCN1;
R3 = CURLCNTR;
R4 = R3-1;
IF NE JUMP fil2_1;
M3 = 4;
F12 = FIL4K1;
F1 = FIL4K2;
F2 = FIL4K3;
F3 = FIL4K4;
F4 = FIL4K5;
F5 = FIL4N2;
F6 = FIL4N3;
F8 = FIL4N4;
F9 = FIL4N5;
JUMP calcfil2;

fil2_1:
R4 = R4-1;
IF NE JUMP fil2_2;
M3 = 3;
F12 = FIL3K1;
F1 = FIL3K2;
F2 = FIL3K3;
F3 = FIL3K4;
F4 = FIL3K5;
F5 = FIL3N2;
F6 = FIL3N3;
F8 = FIL3N4;
F9 = FIL3N5;

336

JUMP calcfil2;
fil2_2:

R4 = R4-1;
IF NE JUMP fi12_3;
M3 = 2;
F12 = FIL2K1;
Fl = FIL2K2;
F2 = FIL2K3;
F3 = FIL2K4;
F4 = FIL2K5;
F5 = FIL2N2;
F6 = FIL2N3;
F8 = FIL2N4;
F9 = FIL2N5;
JUMP calcfil2;

fil2_3:
R4 = R4-1;
IF NE JUMP fi12_4;
M3 = 1;
F12 = FIL1KI;
Fl = FIL1K2;
F2 = FIL1K3;
F3 = FIL1K4;
F4 = FIL1K5;
F5 = FIL1N2;
F6 = FIL1N3;
F8 = FILlN4;
F9 = FIL1N5;
JUMP calcfil2;

fil2_4:
M3 = 0;
F12 = FILOK1;
Fl = FILOK2;
F2 = FILOK3;
F3 = FILOK4;
F4 = FILOK5;
F5 = FILON2;
F6 = FILON3;
F8 = FILON4;
F9 = FILlN5;

calcfil2:
FO = DM(IO,M3);
FO = 1.0;
DIV;
DM(IO,10) = FO;
F4 = F4*FO;
F4 = -F4;
DM(I0,5) = F4;
DM(IO,10) = F9;
F3 = F3*FO;
F3 = -F3;
DM(IO,5) = F3;
DM(IO,10) = F8;
F2 = F2*FO;
F2 = -F2;
DM(I0,5) = F2;
DM(IO,10) = F6;
Fl = Fl*FO;
Fl = -Fl;
DM(I0,5) = Fl;

dofil2: DM(I0,5) = F5;
#endif

#ifndef NOINOTCHFILTER
{ Initialize notch filter constants

LCNTR = 5;
DO doinfil UNTIL LCE;

337

BO
R3
R4
IF
M3
F1
F2
F3
F4
JUM

= INFILODK2;
= CURLCNTR;
= R3-1;
NE JUMP infil_l;

4;
INFIL4ALPHA;
INFIL4L;
INFIL4AO;
INFIL4COSWT;
calcinfil;

R4 = R4-1;
IF NE JUMP infil_2;
M3 = 3;
Fl = INFIL3ALPHA;
F2 = INFIL3L;
F3 = INFIL3AO;
F4 = INFIL3COSWT;
JUMP calcinfil;

R4 = R4-1;
IF NE JUMP infil_3;
M3 = 2;
Fl = INFIL2ALPHA;
F2 = INFIL2L;
F3 = INFIL2AO;
F4 = INFIL2COSWT;
JUMP calcinfil;

R4 = R4-1;
IF NE JUMP infil_4;
M3 = 1;
Fl = INFIL1ALPHA;
F2 = INFILIL;
F3 = INFIL1AO;
F4 = INFIL1COSWT;
JUMP calcinfil;

M3 = 0;
Fl = INFILOALPHA;
F2 = INFILOL;
F3 = INFILOAO;
F4 = INFILOCOSWT;

calcinfil:
FO = DM(IO,M3);
FO = Fl*F2;
F2 = F3;
F3 = F3*F2;
FO = FO*F3;
F12 = 4.0;
DIV;
Fl = 1.0;
FO = FI-FO;
F1 = FO;
FO = FO*F1;
FO = -FO;
DM(IO,5) = FO;
F2 = 2.0;
F2 = F2*F4;
FO = F1*F2;
DM(I0,5) = FO;
F2 = -F2;

doinfil: DM(I0,5) = F2;
#endif

#ifndef NONOTCHFILTER
{ Initialize notch filter constants

338

infill:

infil_2:

infil_3:

infil_4:

P

LCNTR = 5;
DO donfil UNTIL LCE;

BO = NFILODK2;
R3 = CURLCNTR;
R4 = R3-1;
IF NE JUMP nfil_l;
M3 = 4;
Fl = NFIL4ALPHA;
F2 = NFIL4L;
F3 = NFIL4AO;
F4 = NFIL4COSWT;
JUMP calcnfil;

nfil_1:
R4 = R4-1;
IF NE JUMP nfil_2;
M3 = 3;
F1 = NFIL3ALPHA;
F2 = NFIL3L;
F3 = NFIL3AO;
F4 = NFIL3COSWT;
JUMP calcnfil;

nfil_2:
R4 = R4-1;
IF NE JUMP nfil 3;
M3 = 2;
Fl = NFIL2ALPHA;
F2 = NFIL2L;
F3 = NFIL2AO;
F4 = NFIL2COSWT;
JUMP calcnfil;

nfil_3:
R4 = R4-1;
IF NE JUMP nfil_4;
M3 = 1;
Fl = NFIL1ALPHA;
F2 = NFIL1L;
F3 = NFIL1AO;
F4 = NFILlCOSWT;
JUMP calcnfil;

nfil_4:
M3 = 0;
Fl = NFILOALPHA;
F2 = NFILOL;
F3 = NFILOAO;
F4 = NFILOCOSWT;

calcnfil:
FO = DM(IO,M3);
FO = Fl*F2;
F2 = F3;
F3 = F3*F2;
FO = FO*F3;
F12 = 4.0;
DIV;
Fl = 1.0;
FO = Fl-FO;
Fl = FO;
FO = FO*F1;
FO = -FO;
DM(I0,5) = FO;
F2 = 2.0;
F2 = F2*F4;
FO = Fl*F2;
DM(I0,5) = FO;
F2 = -F2;

donfil: DM(I0,5) = F2;
#endif

{---

339

{ Initialize all bearing constants.
{
{ Constants:
{ ?????_A21
{ ?????_A22
{ ?????_CONV1
{ ?????_CONV2
{ ?????_PERIOD2
{ ?????BPLUS

{ Uses:
{ ?????_DAMP
{ ?????_NATFREQ
{ ?????_SENGAIN
f ?????_AMPGAIN
{ ?????_PERIOD
{ ?????_BPLUS
{---

{ set-up bearing constant a21 (alm)
(a21 = 2*?????_damp*????? natfreq

FO = 2.0;
BO = AXIAL_A21;
LCNTR = 5;
DO doa21l UNTIL LCE;

R3 = CURLCNTR;
R4 = R3-1;
IF NE JUMP radl_a21;
F1 = RAD2Y_DAMP;
F2 = RAD2Y_NATFREQ;
JUMP calca2l;

R4 = R4-1;
IF NE JUMP rad2_a21;
F1 = RAD2X DAMP;
F2 = RAD2X_NATFREQ;
JUMP calca2l;

R4 = R4-1;
IF NE JUMP rad3_a21;
F1 = RAD1Y DAMP;
F2 = RAD1Y_NATFREQ;
JUMP calca2l;

R4 = R4-1;
IF NE JUMP rad4_a21;
F1 = RAD1X DAMP;
F2 = RAD1X_NATFREQ;
JUMP calca2l;

Fl = AXIAL DAMP;
F2 = AXIAL NATFREQ;

F3 = FO*F1;
F3 = F3*F2;

DM(I0,15) = F3;

{ set-up bearing constant a22 (a2m)
{ a22 = ?????_natfreq*?????_natfreq

BO = AXIALA22;
LCNTR = 5;
DO doa22 UNTIL LCE;

R3 = CURLCNTR;
R4 = R3-1;
IF NE JUMP radl_a22;

340

I

radl_a21:

rad2_a21:

rad3_a21:

rad4_a21:

calca2l:

doa2 1:

Fl = RAD2Y_NATFREQ;
F2 = RAD2Y_NATFREQ;
JUMP calca22;

radl_a22:
R4 = R4-1;
IF NE JUMP rad2_a22;
Fl = RAD2X_NATFREQ;
F2 = RAD2X_NATFREQ;
JUMP calca22;

rad2_a22:
R4 = R4-1;
IF NE JUMP rad3_a22;
Fl = RADlY_NATFREQ;
F2 = RADlY_NATFREQ;
JUMP calca22;

rad3_a22:
R4 = R4-1;
IF NE JUMP rad4_a22;
Fl = RADIX_NATFREQ;
F2 = RADIX_NATFREQ;
JUMP calca22;

rad4_a22:
Fl = AXIAL NATFREQ;
F2 = AXIAL NATFREQ;

calca22: F3 = Fl*F2;

doa22: DM(IO,15) = F3;

{ set-up bearing conversion factor for A/D
{ ?????_convl = bits2volt/?????_sengain)
{ ?????_sengain - position sensor conversion factor }

BO = AXIAL_CONV1;
LCNTR = 5;
DO doconvl UNTIL LCE;

FO = DM(BITS2VOLT);
R3 = CURLCNTR;
R4 = R3-1;
IF NE JUMP radl_convl;
F12 = RAD2Y_SENGAIN;
JUMP calcconvl;

radl convl:
R4 = R4-1;
IF NE JUMP rad2_convl;
F12 = RAD2X_SENGAIN;
JUMP calcconvl;

rad2_convl:
R4 = R4-1;
IF NE JUMP rad3_convl;
F12 = RADlY_SENGAIN;
JUMP calcconvl;

rad3_convl:
R4 = R4-1;
IF NE JUMP rad4_convl;
F12 = RADIX_SENGAIN;
JUMP calcconvl;

rad4_convl:
F12 = AXIAL_SENGAIN;

calcconvl: DIV;

doconvl: DM(IO,15) = FO;

{ set-up bearing conversion factor for D/A
{ ?????_conv2 = volt2bits/?????_ampgain
{ ?????_ampgain - current to D/A volts conversion factor

341

BO = AXIAL_CONV2;
LCNTR = 5;
DO doconv2 UNTIL LCE;

FO = DM(VOLT2BITS);
R3 = CURLCNTR;
R4 = R3-1;
IF NE JUMP radl_conv2;
F12 = RAD2Y_AMPGAIN;
JUMP calcconv2;

radl_conv2:
R4 = R4-1;
IF NE JUMP rad2_conv2;
F12 = RAD2X_AMPGAIN;
JUMP calcconv2;

rad2_conv2:
R4 = R4-1;
IF NE JUMP rad3_conv2;
F12 = RADlY_AMPGAIN;
JUMP calcconv2;

rad3_conv2:
R4 = R4-1;
IF NE JUMP rad4_conv2;
F12 = RADIX_AMPGAIN;
JUMP calcconv2;

rad4_conv2:
F12 = AXIAL_AMPGAIN;

calcconv2: DIV;

doconv2: DM(I0,15) = FO;

(set-up axial bearing 2*PERIOD constant

FO = SMPLSPEED;
F12 = AXIAL_PERIOD;

DIV;

DM(AXIALPERIOD2) = FO;

(set-up radial bearing 2*PERIOD constant }

FO = SMPLSPEED;
F12 = RAD_PERIOD;

DIV;

DM(RAD1X_PERIOD2) = FO;
DM(RADlY_PERIOD2) = FO;
DM(RAD2X_PERIOD2) = FO;
DM(RAD2Y_PERIOD2) = FO;

{ set-up radial bearing BPLUS constant }

BO = AXIALBPLUS;
LCNTR = 5;
DO dobplus UNTIL LCE;

FO = 1.0;
R4 = CURLCNTR;
R4 = R4-1;
IF NE JUMP radl_bplus;
F12 = RAD2Y_BPLS;
JUMP calcbplus;

radl_bplus:
R4 = R4-1;
IF NE JUMP rad2_bplus;

342

F12 = RAD2X_BPLS;
JUMP calcbplus;

rad2_bplus:
R4 = R4-1;
IF NE JUMP rad3_bplus;
F12 = RAD1Y_BPLS;
JUMP calcbplus;

rad3_bplus:
R4 = R4-1;
IF NE JUMP rad4_bplus;
F12 = RAD1X_BPLS;
JUMP calcbplus;

rad4_bplus:
F12 = AXIAL BPLS;

calcbplus: DIV;

dobplus: DM(I0,15) = FO;

{ initialize I/O board }
{ }
{ DM(40000000) - DM(DAFIFO) }
{ Read - undefined }
{ Write - write data to D/A Fifo }
{ 14-bit, sign extended, right justified }
{ }
(DM(40000001) - DM(CHANNELS) }
{ Read - undefined }
{ Write - number of A/D and D/A channels }
{ bits 2-0: number of A/D channels }
{ bits 5-3: number of D/A channels }
{ }
{ DM(40000002) - DM(CONTROL) }
{ Read - undefined }
{ Write - I/O board control register }
{ bits 2-0: go mode }
{ bits 4-3: IRQ mode }
{ bit 5: analog reset }
{ }
{ PM(800000) - PM(ADFIFO) }
{ Read - read data from A/D }
{ 14-bit, sign extended, right-justified }
{ Write - undefined }
{ }
{ PM(800001) - PM(ADSTAT) }
{ Read - A/D conversion status register }
{ bit 0: D/A busy = 1
{ bit 1: A/D busy = 1 }
{ bit 2: D/A FIFO empty = 0 }
{ bit 3: A/D FIFO empty = 0 }
{ bit 4: A/D FIFO full = 0 }
{ bit 5: D/A FIFO full = 0 }
{ Write - undefined }
{ }
{--

{--
{ Set angular reset state to low. When in this state, we can safely
{ set the number of A/Ds and D/As. We can also safely set the go-mode
{ and/or the interrupt mode.

{ Control Register: [default - DM(0x40000002)]
{ bits 2-0 -> go mode
{ bits 5-3 -> IRQ mode
{ bit 6 -> Status select
{ bit 7 -> Analog reset
{ }

343

{ Go-Mode: selects the type of event that triggers IO conversion. }
{ 0 -> trigger conversion on high level of FLAG2)
{ 1 -> trigger conversion on high level of TIMEXP }
(2 -> trigger conversion after ADBUSY and DABUSY flags are low }
{ 3 -> trigger conversion when D/A FIFO is not empty I
{ 4 -> trigger conversion when A/D FIFO is empty }
{ 5 -> trigger conversion when external trigger is high }

{ IR-Mode: selects what event will trigger an interrupt to the DSP }
{ board. Either IRQ2 or IRQ3 are used depending on jumpers. }
(Interrupts are generated when line is asserted low. }
{ 0 -> interrupt generated when ADBUSY and DABUSY are 0 }
{ 1 -> interrupt generated when A/D FIFO is not empty I
(2 -> interrupt generated when D/A FIFO is empty I
{ 3 -> interrupt generated when A/D FIFO is full }
{ 4 -> interrupt generated when D/A FIFO is full }
{ 5 -> interrupt generated when A/D overflows I
{ 6 -> interrupt generated when external trigger is high }

--

RO = OxO;
DM(CONTROL) = RO;

(--
{ Set BEARTOT A/D channels and BEARTOT D/A channels. When a conversion }
{ is triggered, both the A/D and D/A conversions are triggered. }
{)
{ Number of Channels Register: [default - DM(0x40000001)])
{ bits 2-0 -> number of A/D channels }
{ bits 5-3 -> number of D/A channels }
f--

{ send initial control signals first so set number of A/Ds to zero
RO = BEARTOT;
R1 = LSHIFT RO BY 3;
DM(CHANNELS) = R1;

(--
{ We are done so we can turn off angular reset }

{ Control Register: [default - DM(0x40000002)] }
{ bits 2-0 -> go mode }
{ bits 5-3 -> IRQ mode }
{ bit 6 -> Status select)
{ bit 7 -> Analog reset }
{--

RO = 0x80;
DM(CONTROL) = RO;

{ send initial bearing control signals)

BO = DAOCONTROL;
B1 = AXIALCONV2;
B2 = DAOCRTOFF;
B3 = AXIALUl;
LCNTR = BEARTOT;
DO initbear UNTIL LCE;

R4 = CURLCNTR;
R4 = R4-1;
IF NE JUMP radl_initl;
FO = RAD2Y MAXU;
Fl = RAD2YINITSIG;
JUMP calcinitl;

radl_initl:
R4 = R4-1;
IF NE JUMP rad2_initl;

344

FO = RAD2XMAXU;
Fl = RAD2X_INITSIG;
JUMP calcinitl;

rad2_initl:
R4 = R4-1;
IF NE JUMP rad3_initl;
FO = RAD1YMAXU;
F1 = RADlY_INITSIG;
JUMP calcinitl;

rad3_initl:
R4 = R4-1;
IF NE JUMP rad4_initl;
FO = RADIX MAXU;
F1 = RAD1X_INITSIG;
JUMP calcinitl;

rad4_initl:
FO = AXIAL MAXU;
F1 = AXIAL_INITSIG;

calcinitl:
COMP(F1,FO);
IF GT F1 = FO;
FO = -FO;
COMP(F1,FO);
IF LT F1 = FO;

DM(I3,15) = Fl; { ?????_Ul

F3 = DM(I1,2); { ?????_CONV2 }
Fl = F1*F3;

F3 = DM(I2,5); { DA?CRTOFF }
F1 = F1+F3;

R3 = DM(I2,-4); { DA?OFF
F3 = FLOAT R3;

F1 = F1+F3;
F2 = DABITSMAX;
F1 = F2+Fl;
RO = FIX Fl;

initbear: DM(I0,1) = RO; { DA?CONTROL }

{---
{ Send D/A value(s) to FIFO. [default - DM(0x40000000)] }
{ }
{ The values sent to the D/A FIFO follow an odd convention which is }
{ best shown by the value range. The range of values for our particular}
{ D/A is: }
{ +5V = 1111 1111 1111 1111 }
{ OV = 1000 0000 0000 0000 }
{ -5V = 0000 0000 0000 0000 }
{)
{ Sample code for converting a FIFO value to floating point is as }
{ follows: }
{ RO = PM(ADFIFO); }
{ R1 = ASHIFT RO BY 16; }
{ R1 = PASS R1; }
{ IF LT RO = BCLR R1 BY 31; }
{ IF GE RO = BSET R1 BY 31; }
{ R1 = ASHIFT RO BY -18; }
(FO = FLOAT R1; }
{ }
{ Sample code for converting floating point numbers to a FIFO value is }
{ as follows: }
{ R7 = 8192; }
{ R1 = FIX FO; }

345

{ RO = R1+R7; 3
{ RO = ASHIFT RO BY 2;
{---

{ Initial values have been calculated, so lets send them out

BO = DAOCONTROL;
LCNTR = BEARTOT;
DO initsendl UNTIL LCE;

RO = DM(IO,1);
initsendl: DM(DAFIFO) = RO;

{ Wait for A/D conversion }
{)
{ Status Register: [default - PM(0x800001)] }
{ bits 0 -> 1 if D/A is busy }
{ bits 1 -> 1 if A/D is busy }
{ bit 2 -> 0 if D/A FIFO is empty)
{ bit 3 -> 0 if A/D FIFO is empty }
{ bit 4 -> 0 if D/A FIFO is full }
(bit 5 -> 0 if A/D FIFO is full }
{)
{ Note: Make sure that both D/A and A/D are not busy before reading }
{ from A/D FIFO otherwise bogus values are obtained. }
(---

{ Toggle FLAG2 to signal I/O board to start conversion

BIT SET ASTAT 0x00200000;
NOP; NOP;
BIT CLR ASTAT 0x00200000;

R1 = 0x03;
waitl: RO = PM(IOSTAT);

R7 = RO AND R1;
IF NE JUMP waitl;

{ Get A/D value(s) from FIFO. [default - PM(0x800000)])
{ }
{ The values obtained are 14-bit 2^s-complement values sign extended to }
{ the left. 2^s complement is obtained by negating the real value and)
{ adding 1. The range of values for our particular A/D is: }
{ }
{ +5V = 0001 1111 1111 1111)
(OV = 0000 0000 0000 0000 }
{ -5v = 1110 0000 0000 0001 }
{)
{ Sample code for converting 2^s complement notation to floating point }
{ is as follows: }
{ R1 = FEXT RO BY 0:14 (SE); }
{ FO = FLOAT R1; }
{)
{ Sample code for converting floatin point numbers to 2^s complement }
{ notation is as follows: }
(RO = FIX FO; }
{ }
--

{ We have sent the initial control signal, now it is okay to read the }
{ initial positions reported by the sensors so that derivatives can be I
{ calculated. }

{ Set angular reset state to low. When in this state, we can safely I
{ set the number of A/Ds and D/As. We can also safely set the go-mode }
{ and/or the interrupt mode. }

346

{---
RO = Ox0;
DM(CONTROL) = RO;

{ get initial position signals so set number of D/As to zero

RO = BEARTOT;
DM(CHANNELS) = RO;

{---
{ We are done so we can turn off angular reset
{--}

RO = 0x80;
DM(CONTROL) = RO;

{ Toggle FLAG2 to signal I/O board to start conversion

BIT SET ASTAT 0x00200000;
NOP; NOP;
BIT CLR ASTAT 0x00200000;

wait2:
R1 = 0x03;
RO = PM(IOSTAT);
R7 = RO AND R1;
IF NE JUMP wait2;

{ Read A/D values and store

LCNTR = BEARTOT;
BO = ADOINPUT;
B1 = ADOOFF;
B2 = AXIAL_X1;
B3 = AXIAL_CONV1;
DO getinit UNTIL LCE;

RO = PM(ADFIFO);
DM(IO,1) = RO;
R1 = FEXT RO BY 0:14 (SE);
R3 = DM(I1,1);
R1 = R1+R3;
FO = FLOAT R1;
F2 = DM(I3,15);
Fl FO*F2;
DM(I2,1) = Fl;
DM(I2,14) = Fl;

{ AD?INPUT

{ AD?OFF

?????_CONVi

?????_Xl
?????_X2

{ initialize axial data locations to zero

FO = 0.0;
DM(AXIALV2) = FO;
DM(AXIAL_V1) = FO;
DM(AXIAL_VO) = FO;
DM(AXIAL_AO) = FO;

{ initialize first radial data locations to zero

DM (RADIX_V2)
DM (RAD1XV1)
DM(RAD1XVO)
DM (RAD1X_A0)
DM(RAD1Y_V.2)
DM(RAD1YV1)
DM(RAD1Y_VO)
DM (RAD1Y_AO)

= FO;
= FO;
= FO;
= FO;
= FO;
= FO;
= FO;
= FO;

{ initialize second radial data locations to zero

DM(RAD2X_V2) = FO;

347

getinit:

DM(RAD2XV1) = FO;
DM(RAD2XVO) = FO;
DM(RAD2X_AO) = FO;
DM(RAD2YV2) = FO;
DM(RAD2Y_V1) = FO;
DM(RAD2Y_VO) = FO;
DM(RAD2Y_AO) = FO;

#ifndef NO_FILTER
LCNTR = 5;
BO = FILOX4;
FO = 0.0;
M3 = -44;
DO filinit UNTIL LCE;

DM(I0,15) = FO;
DM(I0,15) = FO;
DM(I0,15) = FO;

filinit: DM(I0,M3) = FO;
#endif

#ifndef NO_INOTCH_FILTER
LCNTR = 5;
BO = INFILOX2;
FO = 0.0;
DO infilinit UNTIL LCE;

DM(I0,5) = FO;
infilinit: DM(IO,-4) = FO;
#endif

#ifndef NO_NOTCH_FILTER
LCNTR = 5;
BO = NFILOX2;
FO = 0.0;
DO nfilinit UNTIL LCE;

DM(I0,5) = FO;
nfilinit: DM(IO,-4) = FO;
#endif

{ initialize indirect addressing mode registers for radial bearings }

RO = 0;
DM(BEAR_NUM) = RO;

{--
{ initialize bearing sampling period of ADSP timer. The timer is
{ assumed to run at the same speed as the ADSP chip (33.33 MHZ)
{--

{ multiply SMPLSPEED by BEARTOT

R1 = BEARTOT;
FO = FLOAT R1;
F12 = SMPLSPEED;
F12 = FO*F12;

FO = CPUSPEED;
DIV;
R1 = FIX FO;
RO = R1-1;

TPERIOD = RO;
TCOUNT = RO;

{ Set up input/output save pointers in last address registers
16 = DM(INPUT_OFFSET);
17 = DM(OUTPUTOFFSET);

{ Save initial input/output values

348

#ifdef RAW

#endif

#ifdef PLOT

RO = DM(DELAY_COUNT);
R1 = PASS RO;
IF NE JUMP initskip;
RO = 16;
R1 = DM(OUTPUT_OFFSET);
RO = RI-RO;
IF EQ JUMP initskip;
M3 = SAVEBEAR;
BO = ADOINPUT;
RO = DM(M3,IO);
DM(I6,1) = RO;
BO = DAOCONTROL;
RO = DM(M3,IO);
DM(I7,1) = RO;

= DM(DELAY_COUNT);
= PASS RO;
NE JUMP initskip;

RO = 16;
R1 = DM(OUTPUT_OFFSET);
RO = RI-RO;
IF EQ JUMP initskip;
M3 = SAVEBEAR;
BO = ADOINPUT;
RO = DM(M3,IO);
RO = FEXT RO BY 0:14 (SE);
DM(I6,1) = RO;
BO = DAOCONTROL;
RO = DM(M3,IO);
R1 = OXF000;
RO = RO-R1;
DM(I7,1) = RO;

#endif

{ Reset interrupt latch register

initskip:
IRPTL = OxO;

{ Allow timer interrupts

BIT SET IMASK 0x12;

{ Turn on timer

BIT SET MODE2 0x20;

{ Allow interrupt generation

BIT SET MODE1 Ox1000;

gag: IDLE;
JUMP gag;

{ radial bearing control loop }

rad_calc:

R1 = 0x03;
RO = PM(IOSTAT);
R2 = RO AND R1;
IF NE JUMP rwaitl;

{ Read A/D values and store

349

rwaitl:

B2 = ADOINPUT;
LCNTR = BEARTOT, DO rreadl UNTIL LCE;

RO = PM(ADFIFO);
DM(I2,1) = RO;rreadl:

= ADOINPUT;
= DM(I2,M3);
= DM(I2,5);

= FEXT RO BY 0:14 (SE);
= DM(I2,5);
= R1+R2;

#ifdef NO_FILTER
FO = FLOAT RI, F2 = DM(I1,l);

#else
FO = FLOAT RI, F4 = DM(I2,5);
FO = FO*F4, F4 = DM(I2,5);
F5 = PASS F4, F1 = DM(I2,5);
F1 = Fl*F4, F3 = DM(I2,5);
F3 = F3*F4, F4 = DM(I2,5);
FO = FO+F1, F1 = DM(I2,-20);
F5 = F5+F3, DM(I2,25) = F4;
F1 = Fl*F4, F3 = DM(I2,5);
F3 = F3*F4, F4 = DM(I2,5);
FO = FO+F1, F1 = DM(I2,-20);
F5 = F5+F3, DM(I2,25) = F4;
F1 = Fl*F4, F3 = DM(I2,5);
F3 = F3*F4, F4 = DM(I2,5);
FO = FO+F1, Fl = DM(I2,-20);
F5 = F5+F3, DM(I2,25) = F4;
F1 = F1*F4, F3 = DM(I2,-10);
F3 = F3*F4;
FO = FO+F1;
F5 = F5+F3, DM(I2,15) = FO;

#ifdef NOINOTCH_FILTER
FO = FO+F5, F2 = DM(I1,1);

#else

#endif
#endif

(DUMMY READ
{ AD?INPUT

(AD?OFF

(?????_CONV1

FIL?XCN1
FIL?X4
FIL?XCN5
FIL?YCN5
FIL?X3
FIL?XCN4
FIL?X4
FIL?YCN4
FIL?X2
FIL?XCN3
FIL?X3
FIL?YCN3
FIL?Xl
FIL?XCN2
FIL?X2
FIL?YCN2

{ FIL?X1

{ ?????_CONV1

FO = FO+F5;

#ifndef NO_INOTCH_FILTER
F2 = DM(I2,10);
F4 = PASS F2, F3 = DM(I2,5);
F2 = F2*F3, F3 = DM(I2,-10);
FO = FO+F2, F2 = DM(I2,15);
F5 = F2*F3, F3 = DM(I2,-20);
FO = FO+F5, DM(I2,5) = F2;
F2 = F2*F3, DM(I2,20) = FO;
FO = FO+F2;
FO = FO+F4, F2 = DM(I1,1);

#endif

INFIL?X2
INFIL?DK2
INFIL?DK1
INFIL?X1
INFIL?NK1
INFIL?X2
INFIL?X1

{ multiply by conversion factor to get proper units

FO = F2*FO;

{ store XO

DM(I0,2) = FO; { ?????_XO

{ determine velocity using central difference formula }

F1 = DM(I0,1);
FO = FO-FI, F2 = DM(I1,0);

{ ?????_X2 }
{ ?????_PERIOD2 }

FO = FO*F2;

{ store velocity value }

350

DM(IO,2) = FO; { ?????_VO

(determine acceleration using smoothing differentiation formula
{ accel = (1/6T)*[v(k)+3v(k-l)-3v(k-2)-v(k-3)]

{ determine acceleration using central difference formula }

F1 = DM(IO,1); { ?????_V2

FO = FO-FI, F2 = DM(Il,1); (?????_PERIOD2

FO = FO*F2, F1 = DM(I1,1); { ?????_A22

{ store acceleration value)

DM(IO,-6) = FO; { ?????_AO

{---
{ Compute control function }
{ }
{ u(t) = u(t-l) - (1/bplus)*[a(t) + (a21*v(t)) + ((a22*x(t))] }
{ I
{ For an ideal second order system }
{ }
{ a21 = 2.0*rad??_damp*rad??_natfreq I
{ a22 = rad??_natfreq*rad??_natfreq }
{---

(determine a22*x(t))

F2 = DM(IO,3);

F3 = F2*F1, F1 = DM(IO,4);

{ determine a(t) + (a22*x(t)) }

F3 = FO+F3, FO = DM(Il,1);

{ determine a21*v(t))

FO = FO*F1;

{ determine a(t) + (a22*x(t)) + (a21*v(t))

F3 = F3+FO, FO = DM(Il,1);

{ divide temporary result by AXIAL_BPLUS)

F3 = F3*FO, FO = DM(IO,1);

(get final value of u(t) }

F1 = FO-F3, F2 = DM(I2,5);

{ test if u(t) greater than maximum allowable

COMP(F1,F2), FO = DM(I1,-6);
IF GT F1 = F2;

F2 = -F2;
COMP(F1,F2);
IF LT F1 = F2;

{ store u(t) value }

DM(IO,-l) = Fl;

#ifndef NO_NOTCH_FILTER
F2 = DM(12,10);

{ ?????_XO

{ ?????_VO

{ ?????_A21

{ ?????_BPLUS

{ ?????_Ul

{ ?????_MAX_CUR

amperage)

{ ?????_CONV2

{ ?????_UO

{ NFIL?X2

351

= PASS F2, F3 = DM(I2,5);
= F2*F3, F3 = DM(I2,-10);
= F1+F2, F2 = DM(I2,15);
= F2*F3, F3 = DM(I2,-20);
= F1+F5, DM(I2,5) = F2;
= F2*F3, DM(I2,20) = Fl;
= F2+F1;
= F1+F4;

(multiply by conversion factor to obtain proper units }

Fl = FO*F1, F2 = DM(I2,5);

{ add offset value)

Fl = Fl+F2, R2 = DM(I2,5);
F2 = FLOAT R2, FO = DM(I1,-3);
F1 = Fl+F2, DM(IO,-3) = FO;

{ convert floating-point number to integer)

F2 = DABITSMAX;
Fl = Fl+F2, F3 = DM(IO,-l);
RO = FIX Fl, DM(Il,-1) = F3;

{ update control signal storage location }

DM(I2,O) = RO;

{ DA?CRTOFF

{ DA?OFF
{ ?????_UO
{ ?????_Ul

{ ?????_Vl
{ ?????_V2

{ DA?CONTROL

{--
{ Set angular reset state to low. When in this state, we can safely }
{ set the number of A/Ds and D/As. We can also safely set the go-mode }
{ and/or the interrupt mode. }
{--

RO = Ox0;
DM(CONTROL) = RO;

{ set A/Ds to zero to speed up conversion
RO = BEARTOT;
R1 = LSHIFT RO BY 3;
DM(CHANNELS) = R1;

{--
{ We are done so we can turn off angular reset }
(--

RO = 0x80;
DM(CONTROL) = RO;

{ control values have been calculated, so lets send them out

B2 = DAOCONTROL;
LCNTR = BEARTOT,DO rsend2 UNTIL LCE;

RO = DM(I2,1);
DM(DAFIFO) = RO;rsend2:

{ Toggle FLAG2 to signal I/O board to start conversion

BIT SET ASTAT 0x00200000;
F3 = DM(IO,-2);
DM(I1,-2) = F3;
BIT CLR ASTAT 0x00200000;

{ update control variables }

FO = DM(IO,-I);

{ ?????_V0 }
{ ?????_Vl)

{ ????? Xl)

352

#endif

{ NFIL?DK2
{ NFIL?DKl
{ NFIL?X1
{ NFIL?NK1
{ NFIL?X2
{ NFIL?X1

DM(Il,-1) = FO;

FO = DM(IO,0); { ?????_XO }
DM(I1,0) = FO; { ?????_Xl }

{ Save new output values
#ifdef RAW

RO = DM(DELAY_COUNT);
R1 = RO-1;
DM(DELAY_COUNT) = R1;
R1 = PASS R1;
IF GT JUMP sskip4;
DM(DELAY_COUNT) = RO;
RO = 17;
R1 = DM(SAVE_END);
RO = RI-RO;
IF EQ JUMP sskip4;
RO = M3;
R1 = SAVEBEAR;
RO = RO-R1;
IF NE JUMP sskip4;
BO = ADOINPUT;
RO = DM(M3,IO);
DM(I6,1) = RO;
BO = DAOCONTROL;
RO = DM(M3,IO);
DM(I7,1) = RO;

#endif

#ifdef PLOT
RO = DM(DELAY_COUNT);
R1 = RO-1;
DM(DELAY_COUNT) = R1;
R1 = PASS R1;
IF GT JUMP sskip4;
DM(DELAY_COUNT) = RO;
RO = 17;
R1 = DM(SAVE_END);
RO = RI-RO;
IF EQ JUMP sskip4;
RO = M3;
R1 = SAVEBEAR;
RO = RO-R1;
IF NE JUMP sskip4;
BO = ADOINPUT;
RO = DM(M3,IO);
RO = FEXT RO BY 0:14 (SE);
DM(I6,1) = RO;
BO = DAOCONTROL;
RO = DM(M3,IO);
R1 = OXF000;
RO = RO-R1;
DM(17,1) = RO;

#endif

sskip4: RO = DM(BEAR_NUM);
RO = R0+1;
DM(BEAR_NUM) = RO;
R1 = BEARTOT;
COMP(RO,R1);
IF NE RTI;
RO = 0;
DM(BEAR_NUM) = RO;

{ return }

RTI;

353

{ ?????_X2)

sample:
--
{ Set angular reset state to low. When in this state, we can safely)
{ set the number of A/Ds and D/As. We can also safely set the go-mode)
{ and/or the interrupt mode.
-(--

RO = Ox0;
DM(CONTROL) = RO;

{ set D/As to zero and A/Ds to number of bearings to control
RO = BEARTOT;
DM(CHANNELS) = RO;

{--)
{ We are done so we can turn off angular reset
-{--

RO = Ox80;
DM(CONTROL) = RO;

{ Toggle FLAG2 to signal I/O board to start conversion

BIT SET ASTAT 0x00200000;
RO = DM(BEAR_NUM);
M3 = RO;
BIT CLR ASTAT 0x00200000;

RO = DM(BEAR.NUM);
R1 = PASS RO;
IF EQ JUMP rad_calc (DB);
BO = AXIAL_XO;
B1 = AXIAL_CONV1;

radl:
R1 = R1 - 1;
IF EQ JUMP rad_calc (DB);
BO = RAD1X_XO;
B1 = RAD1X_CONV1;

rad2:
R1 = R1 - 1;
IF EQ JUMP rad_calc (DB);
BO = RAD1Y_XO;
B1 = RAD1Y_CONV1;

rad3:
R1 = R1 - 1;
IF EQ JUMP rad_calc (DB);
BO = RAD2X_XO;
B1 = RAD2X_CONV1;

rad4:
JUMP rad_calc (DB);
BO = RAD2YXO;
B1 = RAD2YCONV1;

.ENDSEG;

.SEGMENT /PM tmzh_svc;

JUMP sample;

.ENDSEG;

.SEGMENT /PM fltu_svc;

R15 = DM(UNDER_COUNT);
R15 = R15+1;

354

DM(UNDER_COUNT) = R15;
BIT CLR STKY Ox01;
RTI;

.ENDSEG;

355

Appendix J

DSP Programming Environment

This appendix describes the process of assembling, linking, and downloading controller
assembly files to the DSP board. The second section describes the controller testing procedure
that must be performed before the new controller is allowed to control the actual hardware. The
final section contains listings of the auxiliary programs necessary to download code and upload
data to the DSP board. All of the programs in the section are Disk Operating System (DOS)
command line programs which are run on the Personal Computer (PC) that holds the DSP board.
The actual writing, assembling, and linking may be performed on any PC and the finished
program transferred via floppy to the PC that holds the DSP board.

J.1 Digital Controller Assembling and Operation

It is recommended that all controllers be written in assembly language for two reasons.
First, the code will be faster, the instruction set is small and therefore easy to learn, and the
notation is simple and therefore very easy to master. Second, since we are using a custom
designed DSP board, assembly language will have to be used at some point to address the I/O
Controller board. If you choose to write your controller in C, it is recommended that you
initially write a C callable library in assembly language which accesses the I/O Controller board.

The controller assembly file can be written with any editor that can save the file as ASCII
text. The extension of the file should be ASM. To assemble the file, use the following
command,

asm2lk controlr.asm

This assembles the controller file controlr.asm and produces the controlr.obj object code file.
Some controller files are more complicated then others and may use ifdef statements. If this is
the case, this file should be assembled with the required defines set. For example,

asm2lk -Ddefine controlr.asm

After the file has been successfully assembled, the object code must be linked into a binary form.
To link the file, use the following command,

356

ld21k -a pump -o controlr controlr.obj

The linker converts the object code having a default extension of OBJ to a binary image file
having the default extension of EXE. This file is in a binary form which is incompatible with
DOS binary files even though it has the same extension. Running an EXE file created by ld21k
from the DOS command line will cause the computer to hang. The a flag denotes the
architecture file which is to be used during the linking process. The architecture file is assumed
to have a default extension of ACH. The o flag specifies the name of the resulting binary image
file. The final stage is to convert the binary image file to a form that allows for easy
downloading to the DSP board. This is accomplished by invoking the PROM splitter,

spl21k -pm -ram -a pump -f B -o controlr controlr.exe

The splitter converts the binary image file having a default extension of EXE to an ASCII file
containing the hex representation of the binary file having the default extension of STK. The pm
flag denotes that only Program Memory (PM) segments should be converted. If the original
assembly file contained initialized Data Memory (DM) variables, the splitter program should be
rerun using the dm flag. The ram flag denotes that only memory addresses denoted as RAM
addresses in the architecture file should be converted. The a flag denotes the architecture file
which is to be used by the splitter. The architecture file is assumed to have a default extension
of ACH. The o flag specifies the name of the resulting STK file. The f flag denotes the format
of the output file. For this application, the byte-wise stacked format (B) is specified.

All of the above steps can be performed on any PC running DOS. The next phase is
downloading the STK file, starting the DSP chip, and stopping the DSP chip. This phase begins
with the following command,

reset

This is a BAT file which holds the following commands,

stopdsp
dumpdsp reset.stk
startdsp
stopdsp

The stopdsp program stops any program currently executing on the DSP board. The dumpdsp
program dumps the byte-wise stacked ASCII file to the appropriate memory locations on the DSP
board. The reset.stk byte-wise stacked file is a simple program that zeros the values of the D/As.
When a program is stopped using stopdsp the last values sent to the D/As will remain active until
replaced. This program replaces these values with zeros. The startdsp program triggers a reset
interrupt on the DSP chip which effectively starts the downloaded program.

The digital controller files are downloaded to the DSP board next using the following
command,

357

dumpdsp controlr.stk

The dumpdsp program must be run twice if both PM and DM byte-wise stacked format files were
created. To start the downloaded program, use the following command

startdsp

This program triggers a reset interrupt on the DSP chip which starts the program running. Verify
that all of the switches on the analog circuit boards of all the axes being controlled by the digital
controller program are in the down position before starting the controller ("D" is for "Down" and
for "Digital"). For best results, power up the analog controller before starting the digital
controller. To stop the digital controller, power down the analog controller and use either the
stopdsp or reset commands.

J.2 Digital Controller Testing

It is extremely important that the turbopump be spared the punishment inflicted by an
unstable controller. Therefore, the researcher should not use a new digital controller until it has
been thoroughly tested. Before testing the new controller with the actual hardware, two initial
steps should be performed. This section describes each step of the process.

The first step is to run the controller through the simulator and exhaustively test that the
calculations performed in the control loop and initialization code (if any) are correct. The
simulator is a program which mimics the DSP chip in software. The simulator can be invoked
with the following command,

sim2lk -a pump -d ports.dat -e controlr.exe

Before running the simulator, verify that the mouse driver is loaded. The a flag denotes the
architecture file to be used by the simulator. The e flag denotes the binary image file to load
into the simulator. Finally, the d flag denotes the file which describes the files which the
simulator should access which reading or writing to ports mapped in the DSP chip address space.
When your program reads from a port, the simulator reads the data from the file designated in
the port description file. Writing data to a port also causes the simulator to write that data to the
file designated in the port description file. The following is an example of a typical port
description file,

port pm 800000 hex n ioadin.dat null
port pm 800001 fix y iostat.dat null
port dm 20000000 fix n null status.dat
port dm 20000001 fix n null timer.dat
port dm 20000002 hex n null null
port dm 40000000 fix n null iodaout.dat
port dm 40000001 fix n null iocntrl.dat
port dm 40000002 fix n null iochans.dat

358

The port description file is composed of seven columns. Column one designates that the memory
address is a port. Column two designates which memory segment the port is mapped into.
Column three designates the physical address of the memory mapped port. This address must
agree with the address specified in the architecture file. Column four designates the type of data
contained in the file. Possible values include hexadecimal, fixed point, and floating point.
Column five denotes whether the file should be accessed as a circular buffer. If y is denoted,
the file is treated as a circular buffer and the simulator will read from the beginning of file after
it reaches the end of the file. Column six designates the name of the file that the simulator will
read from when a read operation is performed by the assembly code. A value of null designates
that the port is write only. Finally, column seven designates the name of the file that the
simulator will write to when a write operation is performed by the assembly code. A value of
null designates that the port is read only.

It is very important that the researcher perform the tedious process of verifying that the
controller is performing the desired calculations correctly. Errors creep into code in very
unexpected ways and only careful attention to detail will ferret them out. It is recommended that
the data used as the input from the A/Ds be a properly sampled sine wave. This will give the
most realistic results because the actual position signal is sinusoidal in nature.

The next stage of the testing process involves testing the program on the DSP board. One
limitation of the simulator is that it emulates the interaction between the program and the
memory mapped ports using files. Because this interface is emulated, it is always successful.
That may not be the case using the actual hardware. In an effort to test the hardware access
code, a function generator should be attached to one input of an oscilloscope and then to the A/D
of one axis of the I/O Interface Board. The D/A of the I/O Interface Board should be attached
to the remaining input of the oscilloscope. The controller program can now be tested on the
actual hardware without effecting the turbopump. The output of the function generator should
be a sine wave of low amplitude and the output of the D/A should be a sine-like wave having
the appropriate phase lag. The controller should also respond appropriately to changes in
amplitude, offset, and frequency. Only after passing these two tests should the controller actually
be tested on the turbopump hardware.

J.3 Auxiliary Program Listings

J.3.1 dumpdsp.c

This DOS C program reads a byte-wise stacked format file and downloads the necessary
data contained in that file to the memory locations specified within that file. The program can
be run multiple times to download the separate PM and DM files that must be generated by the
PROM splitter program. The separate byte-wise stacked format files can be concatenated and
downloaded as a single entity provided that the file contains only one end of data header. This
program has the following syntax,

359

dumpdsp filename.ext [/a:xxxxl

The a flag denotes the base port address of the DSP board in hexadecimal format. The program
defaults to a default base port address of 0300h which corresponds to the default base port
address of the DSP board.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <conio.h>

#define BUFSIZE 1024
#define STATUS_OK 0
#define STATUS_NOK 1
#define MEMERR(str) \

fprintf(stderr, "Out of Memory Error - %s (%d)\n", str, _LINE_)
#define FUNCERR(strl, str2) \

fprintf(stderr, "Error encountered in %s - %s (%d)\n", strl, str2, LINE_)
#define DEAD_HEADER "000000000000000000000000\n"

typedef struct Hex40_struct
{
unsigned short dmdh;
unsigned short dmdm;
unsigned char dmdl;
unsigned char pad;

} Hex40Struct, *Hex40;

typedef struct Hex48_struct
unsigned short pmdh;
unsigned short pmdh;
unsigned short pmdm;
unsigned short pmdl;

} Hex48Struct, *Hex48;

int asc2hexi(char *hex);
long asc2hexl(char *hex);
int getheader(char *buffer, int *type, short *addr, int *hline);
void asc2hex40(char *buffer, Hex40Struct *hex40);
void asc2hex48(char *buffer, Hex48Struct *hex48);
void upload_DSP(short addr, int type, short base, unsigned short *data);

int main(int argc, char **argv)

int i, j;
int line, hline, type;
short addr, base;
char *filename, *hex, *buffer;
FILE *fp;
Hex40Struct hex40;
Hex48Struct hex48;

filename = NULL;
base = line = 0;
if(argc > 1)

for(i=l; i<argc; i++)

if(!(strncmpi(argv[i], "/a:", 2)))

hex = &argv[i] [3];
base = asc2hexi(hex);

else
filename = argv[i];

360

if((argc < 2) 11 (!filename))

fprintf(stderr, "DumpDSP infile.ext [/a:0000]\n\n");
fprintf(stderr, " where: infile.ext = byte-stacked formatted file.\n");
fprintf(stderr, " /a = DSP board address.\n");
fprintf(stderr, " (default = 0300h)\n");
exit(l);

}

if(!base)
base = 0x300;

if((fp = fopen(filename, "r")) == NULL)

fprintf(stderr, "Unable to open byte-stacked formatted file %s\n\n",
filename);

exit(l);

if((buffer = (char *) calloc(BUFSIZE, sizeof(char))) == NULL)

MEMERR("DumpDSP");
fclose(fp);
exit(l);

hline = 1;
while(fgets(buffer, BUFSIZE, fp))

if(strlen(buffer) == BUFSIZE-1)

fprintf(stderr, "Input buffer overflow - exitting ...\n\n");
exit(l);

line++;
if(line == hline)

if(!strcmp(buffer, DEAD_HEADER))

fprintf(stdout, "Finished processing file (line %d)...\n",
line);

fclose(fp);
free(buffer);
exit(0);

if(getheader(buffer, &type, &addr, &hline) != STATUS_OK)

FUNCERR("getheader", "DumpDSP");
fclose(fp);
free(buffer);
exit(l);

else if(type == 0x80)
fprintf(stdout, "Processing PM data (line %d)...\n", line);

else if(!type)
fprintf(stdout, "Processing DM data (line %d)...\n", line);

else

fprintf(stdout,
"Unknown type encountered (type %x, line %d)...\n",
type, line);

fclose(fp);
free(buffer);
exit(l);

continue;

361

switch (type)
{
case 0: /* write to DM address space */

asc2hex40(buffer, &hex40);
upload_DSP(addr, type, base, (unsigned short *) &hex40);
break;

case 0x80: /* write to PM address space */
asc2hex48(buffer, &hex48);
upload_DSP(addr, type, base, (unsigned short *) &hex48);
break;

}
addr++;

}
fprintf(stderr, "WARNING - Termination header not found\n");

fclose(fp);
free(buffer);

exit(0);

int asc2hexi(char *hex)

int i, shift, ret;

ret = 0;
shift = strlen(hex)-l;
for(i=shift; i>=0; i--)
{
hex[i] -= '0';
if(hex[i] > 9) /* assume upper case (A = 0x41) */
hex[i] -= 0x07;

if(hex[i] > 15) /* could be lower case (a = 0x61) */
hex[i] -= 0x20;

if(hex[i] < 0 1 hex[i] > 15)
{

fprintf(stderr, "Bad hex value (%s) - asc2hex\n", hex);
return(0);

}
ret += (hex[i] << ((shift - i) << 2));

}
return(ret);

}

long asc2hexl(char *hex)
{

int i, shift;
long ret;

ret = 0;
shift = strlen(hex)-l;
for(i=shift; i>=0; i--)
{
hex[i) -= '0';
if(hex[i] > 9) /* assume upper case (A
hex[i] -= 0x07;

if(hex[i] > 15) /* could be lower case
hex[i] -= 0x20;

if(hex[i] < 0 1I hex[i] > 15)

fprintf(stderr, "Bad hex value (%s)
return(0);

ret += (hex[i] << ((shift - i) << 2));
}

return(ret);
I

= 0x41) */

(a = 0x61) */

- asc2hex\n", hex);

362

int getheader(char *buffer, int *type, short *addr, int *hline)

int width;
union {
unsigned short nib[2];
unsigned long tot;
} temp;

buffer[2] = '\0';
width = asc2hexi(buffer);
if(width > (sizeof(long) << 3))
{
fprintf(stderr, "Address width too large (%d) - getheader\n", width);
return(STATUS_NOK);

buffer[6] = '\0';
(*type) = asc2hexi(&buffer[4]);
buffer[24] = '\0';
temp.tot = asc2hexl(&buffer[161);
if((*type) == 0x80)

(*hline) += ((int) (temp.tot/6));
else if(!(*type))

(*hline) += ((int) (temp.tot/5));
else

fprintf(stderr, "Unknown type (%d) - getheader\n", (*type));
return(STATUS_NOK);

I
(*hline)++;
buffer[16] = '\0';
temp.tot = asc2hexl(&buffer[8]);
if(temp.nib[l] != 0) /* remember - little endian */
{
fprintf(stderr, "Bogus address (%ld) - getheader\n", temp.tot);
return(STATUS_NOK);

(*addr) = temp.nib[0];

return(STATUS_OK);

void asc2hex40(char *buffer, Hex40Struct *hex40)

buffer[10] = '\0';
hex40->pad = (unsigned char) '\0';
hex40->dmdl = (unsigned char) asc2hexi(&buffer[81);
buffer[8] = '\0';
hex40->dmdm = asc2hexi(&buffer[4]);
buffer[4] = '\0';
hex40->dmdh = asc2hexi(buffer);

void asc2hex48(char *buffer, Hex48Struct *hex48)

buffer[12] = '\0';
hex48->pmdl = asc2hexi(&buffer[8]);
buffer[8] = '\0';
hex48->pmdm = asc2hexi(&buffer[4]);
buffer[4] = '\0';
hex48->pmdh = asc2hexi(buffer);

}

363

void upload_DSP(short addr, int type, short base, unsigned short *data)
{

if (type)
{

outpw(base+0x10, addr);
outpw(base+0xl8, data[2]);
outpw(base+0xl6, data[l]) ;
outpw(base+0xl4, data[0]);
outpw(base+0x2, Ox01);

else

outpw(base+0xl2, addr);
outpw(base+0xle, data[2]);
outpw(base+0xlc, data[l]);
outpw(base+0xla, data[O]);
outpw(base, Ox01);

J.3.2 reset.asm

This DSP assembly program places appropriate values into the D/A registers so that all
the D/As on the I/O Interface Board output zero volts. After triggering a D/A conversion, the
program waits for the conversion to finish, and enters an idle state until the DSP chip is stopped.
The values sent to the D/As are the offsets determined by other means. Whenever the resistor
packs on any of the D/As is changed, the offsets must be corrected and this program must be
updated to the new values. If you are using this program as part of the reset.bat file, remember
that reassembling the assembly code results in a reset.exe file being created. If this file is not
deleted, when the user types the reset command on the command line, the reset.exe will be
executed instead of reset.bat and the machine will hang.

{ reset.asm

{ The following ports are found on the DSP board

.SEGMENT /DM status;

.VAR DSPSTAT;

.ENDSEG;

.SEGMENT /DM timer;

.VAR DSPTIMER;

.ENDSEG;

.SEGMENT /DM digio;

.VAR DIGIO;

.ENDSEG;

{ The following ports pertain in the A/D and conversion process }

.SEGMENT /PM ioadin;

.VAR ADFIFO;

.ENDSEG;

.SEGMENT /PM iostat;

.VAR IOSTAT;

.ENDSEG;

364

.SEGMENT /DM iodaout;

.VAR DAFIFO;

.ENDSEG;

.SEGMENT /DM iocntrl;

.VAR CONTROL;

.ENDSEG;

.SEGMENT /DM iochans;

.VAR CHANNELS;

.ENDSEG;

{ the following non-existent ports are for debugging purposes }

{.PORT AD_CON_REG2; }
{.PORT AD_DATA_REG2;)
{.PORT DA_CON_REG2; }
{.PORT DA_DATA_REG2;}

{ division macro - if there is a quicker way, just change macro }
{ macro requires the following: }
{ FO = numerator }
{ F12 = denominator }

{--
{ Division Algorithm - Given Q = D/N, multiply N and D by the same set }
{ of factors, Rn. }
S N x RO x R1 x ... x Rn
{ Q = ----------------------
{ D x RO x R1 x ... x Rn
{)
{ Choose Rn such that as the number of factors increases, the }
{ denominator approaches 1. The quotient is then approximately equal }
{ to the numerator. }
{ I
{ RO is the seed provided by the RECIPS instruction. Succssive Rn are }
{ calculated by the following formula: }
{ Ri = 2-D(i-1) }
{ I
{ NOTE: The macro uses the following registers: }
{ FO, F7, F11, F12 I
{ These registers will be over-written upon exit from macro.)
{--
#define div F11 = 2.0; \

FO = RECIPS F12, F7 = FO; \
F12 = FO*F12; \
F7 = FO*F7, FO = F11-F12; \
F12 = F0*F12; \
F7 = FO*F7, FO = F11-F12; \
F12 = FO*F12; \
F7 = FO*F7, FO = F11-F12; \
FO = FO*F7

#define DIV F11 = 2.0; \
FO = RECIPS F12, F7 = FO; \
F12 = F0*F12; \
F7 = FO*F7, FO = F11-F12; \
F12 = FO*F12; \
F7 = FO*F7, FO = F11-F12; \
F12 = FO*F12; \
F7 = FO*F7, FO = F11-F12; \
FO = FO*F7

{ Without TJs filter
{#define ADOOFFSET 0x01CA)
{#define AD1OFFSET 0x0204}
{#define AD2OFFSET 0x0234}
{#define AD3OFFSET 0x02451

365

{#define AD4OFFSET 0X0252)
(#define AD5OFFSET 0x0252}
({#define AD60FFSET 0x0261)

#define ADOOFFSET 0x00001076
#define AD1OFFSET Ox0000107A
#define AD2OFFSET Ox0000107A
#define AD30FFSET Ox0000107B
#define AD40FFSET Ox0000107B
#define AD50FFSET Ox000008DO
#define AD60FFSET Ox0000090C

(Without TJs filter
{#define DAOOFFSET Ox020E)
{#define DA1OFFSET Ox01B3)
{#define DA2OFFSET Ox01F2}
{#define DA30FFSET 0x01E6}
({#define DA40FFSET 0x0230)

#define DAOOFFSET 0x00000003
#define DA1OFFSET Ox00000000
#define DA2OFFSET Ox00000001
#define DA30FFSET OxFFFFFFFF
#define DA4OFFSET OxFFFFFFFF

{ D/A constants
#define DAVOLTSMAX 5.0
#define DAVOLTSMIN -5.0
#define DABITSMAX 8192.0

({ A/D constants
#define ADVOLTSMAX 5.0
#define ADVOLTSMIN -5.0
#define ADBITSMAX 8192.0

.SEGMENT /DM dm_data;

.VAR VOLT2BITS;

.VAR DAOOFF;

.VAR DAlOFF;

.VAR DA2OFF;

.VAR DA30FF;

.VAR DA4OFF;

.ENDSEG;

.SEGMENT /PM rst_svc;

(--
{ At reset, the BANK registers are as follows: }
{ PMBANK1 = 0x800000 }
{ DMBANK1 = 0x20000000 }
{ DMBANK2 = 0x40000000 }
{ DMBANK3 = 0x80000000 }
{ These values, by coincidence, are perfect for our I/O board }
(--

(--
{ The default value of PMWAIT at reset is Ox0003DE. This corresponds I
{ to the following: }
{ bit 13 = 0 (No automatic wait state) }
(bits 12-10 = 000 (memory page size = 256 words) }
{ bits 9-7 = 111 (7 PMBANK1 wait states) }
{ bits 6-5 = 10 (Int. and Ext. wait state ack mode) }
{ bits 4-2 = 111 (7 PMBANKO wait states) }
{ bits 1-0 = 10 (Int. and Ext. wait state ack mode) }
{)

366

(For our setup, the DSP board accesses memory at 0 wait states and }
{ accesses all ports and 1 wait state. Therefore: }
{ bit 13 = 0 (No automatic wait state))
(bits 12-10 = 100 (memory page size = 4096 words) }
{ bits 9-7 = 001 (1 PMBANK1 wait state) }
{ bits 6-5 = 10 (Int. and Ext. wait state ack mode) }
{ bits 4-2 = 000 (0 PMBANKO wait states))
{ bits 1-0 = 10 (Int. and Ext. wait state ack mode) }
{--

PMWAIT = Ox0010C2;

{---
{ The default value of DMWAIT at reset is Ox000F7BDE. This corresponds }

to the following:
bit 23
bits 22-20
bits 19-17
bits 16-15
bits 14-12
bits 11-10
bits 9-7
bits 6-5
bits 4-2
bits 1-0

0
000
111
10
111
10
111
10
111
10

(No automatic wait state)
(memory page size = 256 words)
(7 DMBANK3 wait states)
(Int. and Ext. wait state ack mode)
(7 DMBANK2 wait states)
(Int. and Ext. wait state ack mode)
(7 DMBANK1 wait states)
(Int. and Ext. wait state ack mode)
(7 DMBANKO wait states)
(Int. and Ext. wait state ack mode)

}
For our setup, the DSP board accesses memory at 0 wait states and }
accesses all ports and 1 wait state. Therefore: }

bit 23 = 0 (No automatic wait state) }
bits 22-20 = 100 (memory page size = 4096 words) }
bits 19-17 = 001 (1 DMBANK3 wait states) }
bits 16-15 = 10 (Int. and Ext. wait state ack mode) }
bits 14-12 = 001 (1 DMBANK2 wait states) }
bits 11-10 = 10 (Int. and Ext. wait state ack mode) }
bits 9-7 = 000 (0 DMBANK1 wait state) }
bits 6-5 = 10 (Int. and Ext. wait state ack mode) }
bits 4-2 = 000 (0 DMBANKO wait states) }
bits 1-0 = 10 (Int. and Ext. wait state ack mode) }

{--

DMWAIT = 0x00431842;

{ Set FLAG2 to output mode so we can trigger I/O board conversion when }
{ we need to. }
(--

MODE2 = 0x00020000;

.ENDSEG;
JUMP initialize;

.SEGMENT /PM pm_code;

initialize:

{ initialize registers-}

IMASK = 0;
MODE1 = 0x0012000;

I0 = 0;
I1 = 0;
12 = 0;
13 = 0;
14 = 0;
I5 = 0;

367

16 = 0;
17 = 0;
MO = 0;
M1 = 0;
M2 = 0;
M3 = 0;
M4 = 0;
M5 = 0;
M6 = 0;
M7 = 0;
LO = 0;
L1 = 0;
L2 = 0;
L3 = 0;
L4 = 0;
L5 = 0;
L6 = 0;
L7 = 0;

--
{ This program does the following: }
{ 1. Triggers A/D conversion on one channel
{ 2. Polls A/D status register to see when conversion complete
{ 3. Pushes A/D value out to D/A
{ 4. returns to step 1
--

BIT CLR ASTAT 0X00200000;

BO = DAOOFF;
RO = DAOOFFSET;
DM(IO,1) = RO;
RO = DA1OFFSET;
DM(I0,1) = RO;
RO = DA2OFFSET;
DM(I0,1) = RO;
RO = DA3OFFSET;
DM(IO,1) = RO;
RO = DA40FFSET;
DM(I0,1) = RO;

FO = DABITSMAX;
F12 = DAVOLTSMAX;
DIV;
DM(VOLT2BITS) = FO;

{ Reset I/O board
RO = OxO;
DM(CONTROL) = RO;

RO = 5;
R1 = LSHIFT RO BY 3;
DM(CHANNELS) = R1;

RO = Ox80;
DM(CONTROL) = RO;

R4 = 0x03;
wait: RO = PM(IOSTAT);

R1 = RO AND R4;
IF NE JUMP wait;

DM(DSPSTAT) = R1;
F2 = DABITSMAX;
R2 = FIX F2;
LCNTR = 5;
BO = DAOOFF;
DO adj UNTIL LCE;

R1 = DM(IO,1);
R2 = R1+R2;

368

RO = ASHIFT R2 BY 2;
adj: DM(DAFIFO) = RO;

BIT SET ASTAT 0x00200000;
NOP; NOP;
BIT CLR ASTAT 0x00200000;

gag: IDLE;
JUMP gag;

.ENDSEG;

.SEGMENT /PM tmzhsvc;

. ENDSEG;

J.3.3 startdsp.c

This DOS C program triggers a reset interrupt on the DSP chip which initiates DSP
program execution. This program has the following syntax,

startdsp [/a:xxxx]

The a flag denotes the base port address of the DSP board in hexadecimal format. The program
defaults to a default base port address of 0300h which corresponds to the default base port
address of the DSP board. This program also has two undocumented flags. The h flag prints
syntax information. The s flag instructs the program to constantly poll the status register of the
DSP board and print the contents to the screen. Using this flag will require using Ctrl-Break to
stop execution. The use of this flag allows a program running on the DSP chip to communicate
with the DOS command line.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <conio.h>
#include <dos.h>

#define STATUS_OK 0
#define STATUS_NOK 1
#define MEMERR(str) \

fprintf(stderr, "Out of Memory Error - %s (%d)\n", str, LINE_)
#define FUNCERR(strl, str2) \
fprintf(stderr, "Error encountered in %s - %s (%d)\n", strl, str2, LINE)

int asc2hexi(char *hex);

void main(int argc, char **argv)
{
int i;
union {

unsigned short word;
unsigned char nib[2];

} stat;
short base;
char *hex;

369

_ · __~·_ __ __I· __·__I

base = stat.word = 0;
if(argc > 1)

{
for(i=l; i<argc; i++)

{
if(!(strncmpi(argv[i], "/a:", 3)))

{
hex = &argv[i][3];
base = asc2hexi(hex);

else if(!(strcmpi(argv[i], "/s")))
{

stat.word = 1;

else if(!(strncmpi(argv[i], "/h", 2)))
{

fprintf(stderr, "StartDSP [/a:0000]\n\n");
fprintf(stderr, " where: /a = DSP board address.\n");
fprintf(stderr, " (default = 0300h)\n");
exit(0);

if(!base)
base = 0x300;

outpw(base+0x04, Ox01);

if(stat.word)
{

while(1)
{
sleep(1);
stat.word = OxO;
stat.word = inpw(base+0x10);
fprintf(stderr, "Status = %02X%02X\n", stat.nib[1], stat.nib[0]);

exit(0);

int asc2hexi(char *hex)
{
int i, shift, ret;

ret = 0;
shift = strlen(hex)-l;
for(i=shift; i>=0; i--)

{
hex[i] -= '0';
if(hex[i] > 9) /* assume upper case (A = 0x41) */
hex[i] -= 0x07;

if(hex[i] > 15) /* could be lower case (a = 0x61) */
hex[i] -= 0x20;

if(hex[i] < 0 II hex[i] > 15)
{
fprintf(stderr, "Bad hex value (%s) - asc2hex\nH, hex);
return(0);

ret += (hex[i] << ((shift - i) << 2));

return(ret);
}

370

J.3.4 stopdsp.c

This DOS C program triggers a reset interrupt on the DSP chip which stop its execution.
This program has the following syntax,

stopdsp [/a:xxxx]

The a flag denotes the base port address of the DSP board in hexadecimal format. The program
defaults to a default base port address of 0300h which corresponds to the default base port
address of the DSP board. This program also has the undocumented h flag which prints syntax
information.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <conio.h>

#define STATUS_OK 0
#define STATUS_NOK 1
#define MEMERR(str) \
fprintf(stderr, "Out of Memory Error - %s (%d)\n", str, _LINE_)

#define FUNCERR(strl, str2) \
fprintf(stderr, "Error encountered in %s - %s (%d)\n", strl, str2, LINE_)

int asc2hexi(char *hex);

int main(int argc, char **argv)

int i;
short base;
char *hex;

base = 0;
if(argc > 1)

for(i=1; i<argc; i++)
{
if(!(strncmpi(argv[i], "/a:", 3)))

hex = &argv[i] [3];
base = asc2hexi(hex);

else if(!(strncmpi(argv[i], "/h", 2)))
{

fprintf(stderr, "StopDSP [/a:0000]\n\n");
fprintf(stderr, " where: /a = DSP board address.\n");
fprintf(stderr, " (default = 0300h)\n");
exit (0);

if(!base)
base = 0x300;

outpw(base+0x04, Ox00);

exit (0);

371

int asc2hexi(char *hex)
{
int i, shift, ret;

ret = 0;
shift = strlen(hex)-l;
for(i=shift; i>=0; i--)

{
hex[i] -= '0';
if(hex[i] > 9) /* assume upper case (A = 0x41) */
hex[i] -= 0x07;

if(hex[i] > 15) /* could be lower case (a = 0x61) */
hex[i] -= 0x20;

if(hex[i] < 0 (hex[i] > 15)
{

fprintf(stderr, "Bad hex value (%s) - asc2hex\n", hex);
return(0);

ret += (hex[i] << ((shift - i) << 2));
}

return(ret);

J.3.5 readdsp.c

This DOS C program reads data from the memory on the DSP Board and outputs this data
to a file. This program has the following syntax,

readdsp filename.ext [/a:xxxxx] [/(pmldm)] [/r:xxxx-xxxxJ [] [/f] [/u] [/i]

The a flag denotes the base port address of the DSP board in hexadecimal format. The program
defaults to a default base port address of 0300h which corresponds to the default base port
address of the DSP board. The pm flag denotes that program memory should be read. The dm
flag denotes that data memory should be read. If neither the pm or the dm flag are present, the
data memory segment is assumed. The r flag denotes the range of memory addresses that should
be read in hexadecimal format. If the r is not present, the default address range is 0000-7FFEh
(Note: reading the 7FFFh data value causes the program to hang). The default format of the data
output to the desired file is hexadecimal format. The data format can be changed by using the
f, u, and i flags denote floating point, unsigned integer, and signed integer data respectively.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <conio.h>

#define HEX 0
#define INT 1
#define UNSIGNED 2
#define FLOAT 3

#define BUFSIZE 1024
#define STATUS_OK 0
#define STATUS_NOK 1
#define MEMERR(str) \

fprintf(stderr, "Out of Memory Error - %s (%d)\n", str, _LINE_)
#define FUNCERR(strl, str2) \

372

fprintf(stderr, "Error encountered in %s - %s (%d)\n", strl, str2, _LINE_)

typedef struct Hex40_struct
{
unsigned short dmdh;
unsigned short dmdm;
unsigned char dmdl;
unsigned char pad;

} Hex40Struct, *Hex40;

typedef struct Hex48_struct
{
unsigned short pmdh;
unsigned short pmdm;
unsigned short pmdl;

} Hex48Struct, *Hex48;

int asc2hexi(char *hex);
void download_DSP(short addr, int type, short base, unsigned short *data);
void conv_endian(unsigned char *data, int type, unsigned char *ans);

void main(int argc, char **argv)

int i, j;
int type, output;
short brange, erange;
short addr, base;
char *filename, *hex;
unsigned char conv[6];
FILE *fp;
Hex40Struct hex40;
Hex48Struct hex48;

filename = NULL;
base = 0x300;
brange = type = 0;
erange = Ox7ffe;
output = HEX;
if(argc > 1)

for(i=l; i<argc; i++)

if(!(strncmpi(argv[i], "/a:",
{
hex = &argv[i)[3];
base = asc2hexi(hex);

else if(!(strncmpi(argv[i],
{
type = 0x80;

else if(!(strncmpi(argv[i],

3)))

/pm", 3)))

/dm", 3)))

type = 0;

else if(!(strncmpi(argv[i], "/i", 2)))

output = INT;
}

else if(!(strncmpi(argv[i],
{
output = FLOAT;

}
else if(!(strncmpi(argv[i],

{
output = UNSIGNED;

e
else if(!(strncmpi(argv[i],

"/f", 2)))

"/u", 2)))

"/r:", 3)))

373

If

to

hex = strchr(&argv[i][3], '-');
erange = (short) asc2hexi(&hex[ll);
*hex = '\0';
brange = (short) asc2hexi(&argv[i][31);

else
filename = argv[i];

if((argc < 2) 11 (!filename))
{
fprintf(stderr, "ReadDSP outfile.ext [/a:0000] [/(pmldm)] ");
fprintf(stderr, "[/r:0000-0000] [/f] [/i] [/u]\n\n");
fprintf(stderr, " where: infile.ext = byte-stacked formatted file.\n');
fprintf(stderr, " /a = DSP board address.\n");

fprintf(stderr, " (default = 0300h)\n");
fprintf(stderr, " /pm = download PM data.\n");
fprintf(stderr, " (default = DM)\n");
fprintf(stderr, " /dm = download DM data (default)\n");
fprintf(stderr, " /r = data range\n");
fprintf(stderr, " (default PM = 0000-7FFEh)\n");
fprintf(stderr, " (default DM = 0000-7FFEh)\n");
fprintf(stderr, " /i = integer output format\n");
fprintf(stderr, " /f = floating point output format\n");
fprintf(stderr, " /u = unsigned integer output format\n");
exit(l);

)
if(erange > Ox7ffe)

erange = Ox7ffe;
if(brange > erange)

brange = 0;

if((fp = fopen(filename, "w")) == NULL)

fprintf(stderr, "Unable to open output file %s\n\n",
filename);

exit(l);

for(addr=brange; addr<=erange; addr++)

switch(type)
{
case 0: /* write to DM address space */

download_DSP(addr, type, base, (unsigned short *) &hex40);
switch(output)

default:
case HEX:
fprintf(fp, "%04X%04X%02X\n", hex40.dmdh, hex40.dmdm,

hex40.dmdl);
break;
case INT:
conv_endian((unsigned char *) &hex40, type, conv);
fprintf(fp, "%ld\n", *((long *) &conv[2]));
break;
case UNSIGNED:
conv_endian((unsigned char *) &hex40, type, conv);
fprintf(fp, "%lu\n", *((unsigned long *) &conv[2]));
break;
case FLOAT:
conv_endian((unsigned char *) &hex40, type, conv);
fprintf(fp, "%f\n", *((float *) &conv[2]));
break;

break;
case 0x80: /* write to PM address space */

374

download_DSP(addr, type, base, (unsigned short *) &hex48);
switch(output)

default:
case HEX:
fprintf(fp, "%04X%04X%04X\n", hex48.pmdh, hex48.pmdm,

hex48.pmdl);
break;
case INT:
conv_endian((unsigned char *) &hex48, type, conv);
fprintf(fp, "%1d\n", *((long *) &conv[2]));
break;
case UNSIGNED:
conv_endian((unsigned char *) &hex48, type, conv);
fprintf(fp, "%lu\n", *((unsigned long *) &conv[2]));
break;
case FLOAT:

conv_endian((unsigned char *) &hex48, type, &conv[2]);
fprintf(fp, "%f\n', *((float *) conv));
break;

break;

fclose(fp);
exit(0);

int asc2hexi(char *hex)
{
int i, shift, ret;

ret = 0;
shift = strlen(hex)-1;
for(i=shift; i>=0; i--)
{
hex[i] -= '0';
if(hex[i] > 9) /* assume upper case (A = 0x41) */
hex[i] -= 0x07;

if(hex[i] > 15) /* could be lower case (a = 0x61) */
hex[i] -= 0x20;

if(hex[i] < 0 II hex[i] > 15)
{
fprintf(stderr, "Bad hex value (%s) - asc2hex\n", hex);
return(0);

ret += (hex[i] << ((shift - i) << 2));
)

return(ret);

void download_DSP(short addr, int type, short base, unsigned short *data)
{

if(type)

outpw(base+0x10, addr);
data[0] = inpw(base+0x2);
data[2] = inpw(base+0x18);
data[l] = inpw(base+0x16);
data[0] = inpw(base+0x14);

)
else
{

outpw(base+0x12, addr);

375

I _~·_____ __ _I__ I_ _· __··__1__ ·_·

data[0] = inpw(base);
data[2] = inpw(base+0xle);
data[l] = inpw(base+0xlc);
data[0] = inpw(base+0xla);

void conv_endian(unsigned char *data, int type, unsigned char *ans)

if (type)

ans[0] = data[4];
ans[l] = data[5];

}
else

ans[0] = data[5];
ans[l] = data[4];

ans[2] = data[2];
ans[3] = data[3];
ans[4] = data[0];
ans[5] = data[l];

J.3.6 sineint.asm

This DSP assembly program is a timer interrupt driven program which takes the value
received from the each A/D and outputs it to its corresponding D/A. This program is used to
verify that all the DSP related hardware is in working order. Normally a function generator
producing a sine wave is attached to the A/D and an oscilloscope is attached to the D/A to check
system operation.

{ SineInt.asm }

{ The following ports are found on the ADSP board

.SEGMENT /DM status;

.VAR DSPSTAT;

.ENDSEG;

.SEGMENT /DM timer;

.VAR DSPTIMER;

.ENDSEG;

{ The following ports are found on the 32-channel ADC board

.SEGMENT /PM ioadin;

.VAR ADFIFO;

. ENDSEG;

.SEGMENT /PM iostat;

.VAR IOSTAT;

. ENDSEG;

.SEGMENT /DM iodaout;

.VAR DAFIFO;

.ENDSEG;

376

.SEGMENT /DM iochans;

.VAR CHANNELS;

.ENDSEG;

.SEGMENT /DM iocntrl;

.VAR CONTROL;

.ENDSEG;

{ division macro - if there is a quicker way, just change macro }
{ macro requires the following:)
(FO = numerator }
{ F12 = denominator }

(--------------------------------------- ----------------------------
{ Division Algorithm - Given Q = D/N, multiply N and D by the same set }
{ of factors, Rn. }
S N x RO x R1 x ... x Rn }

{ Q = ----------------------
{ D x RO x R1 x ... x Rn }
{ }
{ Choose Rn such that as the number of factors increases, the }
{ denominator approaches 1. The quotient is then approximately equal }
{ to the numerator.
{)
{ RO is the seed provided by the RECIPS instruction. Succssive Rn are }
{ calculated by the following formula: }
{ Ri = 2-D(i-1)

{ NOTE: The macro uses the following registers: }
(FO, F7, F11, F12 }
{ These registers will be over-written upon exit from macro. }
(--

#define div F11 = 2.0; \
FO = RECIPS F12, F7 = FO; \
F12 = FO*F12; \
F7 = FO*F7, FO = F11-F12; \
F12 = FO*F12; \
F7 = FO*F7, FO = Fll-F12; \
F12 = FO*F12; \
F7 = FO*F7, FO = Fll-F12; \
FO = FO*F7

#define DIV F11 = 2.0; \
FO = RECIPS F12, F7 = FO; \
F12 = FO*F12; \
F7 = FO*F7, FO = Fll-F12; \
F12 = FO*F12; \
F7 = FO*F7, FO = Fll-F12; \
F12 = FO*F12; \
F7 = FO*F7, FO = F11-F12; \
FO = FO*F7

(D/A board does not output 0 when zero sent. These offsets }
(were determined through experimentation }

(Without TJs board
{#define DAOOFFSET 0x020E}
{#define DA1OFFSET Ox01B3)
{#define DA2OFFSET 0x01F2}
{#define DA3OFFSET 0x01E6}
{#define DA4OFFSET 0x0230}

(With the low pass filter and Butterworth bandwidth 2.83k}
#define DAOOFFSET 0x00000003
#define DA1OFFSET Ox00000000
#define DA2OFFSET Ox00000001
#define DA3OFFSET OxFFFFFFFF
#define DA4OFFSET OxFFFFFFFF

377

_ __ _

{ A/D board does not return 0 with no input. These offsets
{ were determined through experimentation

{ With the low pass
{#define ADOOFFSET
{#define AD1OFFSET
{#define AD20FFSET
{#define AD3OFFSET
(#define AD40FFSET
(#define AD50FFSET
{#define AD60FFSET

#define ADOOFFSET
#define AD1OFFSET
#define AD20FFSET
#define AD30FFSET
#define AD40FFSET
#define AD50FFSET
#define AD60FFSET

{ D/A constants
#define DAVOLTSMAX
#define DAVOLTSMIN
#define DABITSMAX

{ A/D constants
#define ADVOLTSMAX
#define ADVOLTSMIN
#define ADBITSMAX

filter and Butterworth bandwidth 2.83k}
0x00000907)
Ox000008E6}
0x00000905}
0x00000904}
0x000008D5}
0x000008E4}
0x00000926}

Ox00000918
Ox000008B1
0x000008F6
0x000008E6
Ox000000AF
0x0000088D
0x00000926

5.0
-5.0
32768.0

5.0
-5.0
8192.0

(Timer constants
#define CPUSPEED 33333333.333
#define SMPLSPEED 20000.0

#define BEARTOT 5
#define SAVEOFFSET 256
#define SAVEBEAR 0
#define DELAY 0

.SEGMENT /DM dm_data;
{ Conversion factors
.VAR VOLT2BITS;
.VAR BITS2VOLT;

.VAR ADOINPUT;

.VAR AD1INPUT;

.VAR AD2INPUT;

.VAR AD3INPUT;

.VAR AD4INPUT;

.VAR ADOOFF;

.VAR AD10FF;

.VAR AD20FF;

.VAR AD30FF;

.VAR AD40FF;

.VAR DAOOFF;

.VAR DAlOFF;

.VAR DA20FF;

.VAR DA30FF;

.VAR DA4OFF;

.VAR DAOCONTROL;

.VAR DAlCONTROL;

.VAR DA2CONTROL;

.VAR DA3CONTROL;

.VAR DA4CONTROL;

378

{ Variables needed to save data in memory for later dumping }

.VAR SAVE_BEARING;

.VAR INPUTOFFSET;

.VAR OUTPUT_OFFSET;

.VAR SAVE_END;

.VAR DELAY_COUNT;

.ENDSEG;

.SEGMENT /PM rst_svc;

(--
{ At reset, the BANK registers are as follows: }
{ PMBANK1 = 0x800000)
{ DMBANK1 = 0x20000000 }
{ DMBANK2 = 0x40000000)
{ DMBANK3 = 0x80000000 }
{ These values, by coincidence, are perfect for our I/O board }
(--

(--
{ The default value of PMWAIT at reset is Ox0003DE. This corresponds }
{ to the following:
{ bit 13 = 0 (No automatic wait state) }
{ bits 12-10 = 000 (memory page size = 256 words) }
{ bits 9-7 = 111 (7 PMBANK1 wait states) }
{ bits 6-5 = 10 (Int. and Ext. wait state ack mode) }
{ bits 4-2 = 111 (7 PMBANKO wait states) }
{ bits 1-0 = 10 (Int. and Ext. wait state ack mode) }
{ I
{ For our setup, the DSP board accesses memory at 0 wait states and }
{ accesses all ports and 1 wait state. Therefore: }
{ bit 13 = 0 (No automatic wait state) }
{ bits 12-10 = 100 (memory page size = 4096 words) }
{ bits 9-7 = 001 (1 PMBANK1 wait state) }
{ bits 6-5 = 10 (Int. and Ext. wait state ack mode) }
{ bits 4-2 = 000 (0 PMBANKO wait states) }
{ bits 1-0 = 10 (Int. and Ext. wait state ack mode) }
(--

PMWAIT = 0x0010C2;

(--
{ The default value of DMWAIT at reset is Ox000F7BDE. This corresponds }
{ to the following: }
{ bit 23 = 0 (No automatic wait state) }
{ bits 22-20 = 000 (memory page size = 256 words) }
{ bits 19-17 = 111 (7 DMBANK3 wait states))
{ bits 16-15 = 10 (Int. and Ext. wait state ack mode) }
{ bits 14-12 = 111 (7 DMBANK2 wait states) }
{ bits 11-10 = 10 (Int. and Ext. wait state ack mode) }
{ bits 9-7 = 111 (7 DMBANK1 wait states) }
{ bits 6-5 = 10 (Int. and Ext. wait state ack mode) }
{ bits 4-2 = 111 (7 DMBANKO wait states) }
{ bits 1-0 = 10 (Int. and Ext. wait state ack mode) }
{ I
{ For our setup, the DSP board accesses memory at 0 wait states and }
{ accesses all ports and 1 wait state. Therefore: }
{ bit 23 = 0 (No automatic wait state) I
{ bits 22-20 = 100 (memory page size = 4096 words) }
{ bits 19-17 = 001 (1 DMBANK3 wait states) I
{ bits 16-15 = 10 (Int. and Ext. wait state ack mode) }
{ bits 14-12 = 001 (1 DMBANK2 wait states) }
{ bits 11-10 = 10 (Int. and Ext. wait state ack mode) }
{ bits 9-7 = 000 (0 DMBANK1 wait state) }
{ bits 6-5 = 10 (Int. and Ext. wait state ack mode) }
{ bits 4-2 = 000 (0 DMBANKO wait states) I
{ bits 1-0 = 10 (Int. and Ext. wait state ack mode))

379

~~_I II·_ ·~_~__·__I · __I·I ____I_

{---
DMWAIT = 0x00431842;

{---
{ Set FLAG2 to output mode so we can trigger I/O board conversion when
{ we need to.

MODE2 = 0x00020000;

JUMP initialize;
.ENDSEG;

.SEGMENT /PM pm_code;

initialize:

{ initialize registers }

IMASK = 0;
MODE1 = 0x00012000;

I0 = 0;
Ii = 0;
12 = 0;
13 = 0;
14 = 0;
15 = 0;
16 = 0;
17 = 0;
MO = 0;
M1 = 0;
M2 = 0;
M3 = 0;
M4 = 0;
M5 = 0;
M6 = 0;
M7 = 0;
LO = 0;
L1 = 0;
L2 = 0;
L3 = 0;
L4 = 0;
L5 = 0;
L6 = 0;
L7 = 0;

{ This program does the following:
(1. Triggers A/D conversion on one channel
{ 2. Polls A/D status register to see when conversion complete }
{ 3. Pushes A/D value out to D/A
{ 4. returns to step 1 }
{---

{ Make sure FLAG2 toggle is initially zero.
BIT CLR ASTAT 0x00200000;

{ Calculate D/A conversion factor
FO = DABITSMAX;
F12 = DAVOLTSMAX;
DIV;
DM(VOLT2BITS) = FO;

{ Calculate A/D conversion factor
F12 = ADBITSMAX;
FO = ADVOLTSMAX;

380

DIV;
DM(BITS2VOLT) = FO;

BO = DAOCONTROL;
F3 = 0.0;
F2 = DM(VOLT2BITS);
F4 = DABITSMAX;
LCNTR = BEARTOT;
DO adj UNTIL LCE;

F1 = F3*F2;
F1 = Fl+F4;
RO = FIX Fl;

adj: DM(I0,1) = RO;

{ Setup variables required to saving data in memory for later recall
RO = SAVEOFFSET;
DM(INPUTOFFSET) = RO;
R1 = ASHIFT RO BY 1;
R2 = 0x8000;
R2 = R2-R1;
R2 = ASHIFT R2 BY -1;
R1 = R2+RO;
DM(OUTPUT_OFFSET) = R1;
R1 = R1+R2;
DM(SAVEEND) = R1;
RO = SAVEBEAR;
DM(SAVE_BEARING) = RO;
RO = DELAY;
DM(DELAY_COUNT) = RO;

BO = ADOOFF;
RO = ADOOFFSET;
DM(IO,1) = RO;
RO = AD1OFFSET;
DM(I0,1) = RO;
RO = AD2OFFSET;
DM(IO,1) = RO;
RO = AD3OFFSET;
DM(I0,1) = RO;
RO = AD4OFFSET;
DM(IO,1) = RO;

BO = DAOOFF;
RO = DAOOFFSET;
DM(I0,1) = RO;
RO = DA1OFFSET;
DM(I0,1) = RO;
RO = DA2OFFSET;
DM(IO,1) = RO;
RO = DA30FFSET;
DM(I0,1) = RO;
RO = DA4OFFSET;
DM(IO,1) = RO;

{ Reset I/O board
RO = Ox0;
DM(CONTROL) = RO;

{--
{ Release angular reset (don^t know why) and set go mode to flag2 toggle)

{ Control Register: [default - DM(0x40000002)]
{ bits 2-0 -> go mode (0 = go on toggle of FLAG2)
((1 = go on interrupt)
{ bits 5-3 -> IRQ mode
{ bit 6 -> Status select
{ bit 7 -> Analog reset)
--

381

~ __ _I····

RO = 0x80;
DM(CONTROL) = RO;

{ Set timer sampling period and counter

R1 = BEARTOT;
FO = FLOAT R1;
Fl2 = SMPLSPEED;
F12 = FO*F12;

FO = CPUSPEED;
DIV;
R1 = FIX FO;
RO = R1-1;

TPERIOD = RO;
TCOUNT = RO;

{ Set up input/output save pointers in last address registers
16 = DM(INPUT_OFFSET);
17 = DM(OUTPUT_OFFSET);
M3 = DM(SAVE_BEARING);

{ Reset interrupt latch register
BIT SET IRPTL OxO;

({ Allow timer interrupts
BIT SET IMASK 0x12;

{ Turn on timer
BIT SET MODE2 0x20;

{ Allow interrupt generation
BIT SET MODE1 Ox1000;

gag: IDLE;
JUMP gag;

sample:

{ Set 1 A/D channel and 0 D/A channels. When a conversion is triggered,)
{ both the A/D and D/A conversions are triggered. Therefore, I set the }
{ the number of D/A to 0 so that nothing goes out. }
{ }
{ Number of Channels Register: [default - DM(0x40000001)] }
{ bits 2-0 -> number of A/D channels }
{ bits 5-3 -> number of D/A channels }
{--

RO = BEARTOT;
DM(CHANNELS) = RO;

{ Toggle FLAG2 to signal I/O board to start conversion
BIT SET ASTAT 0x00200000;
NOP; NOP; NOP;
BIT CLR ASTAT 0x00200000;

(--
{ Wait for A/D conversion }
{ I
{ Status Register: [default - PM(0x800001)] }
{ bits 0 -> 1 if D/A is busy }
{ bits 1 -> 1 if A/D is busy }
{ bit 2 -> 0 if D/A FIFO is empty }
{ bit 3 -> 0 if A/D FIFO is empty }
{ bit 4 -> 0 if D/A FIFO is full }
{ bit 5 -> 0 if A/D FIFO is full }

382

{ }
{ Note: Make sure that both D/A and A/D are not busy before reading }
{ from A/D FIFO otherwise bogus values are obtained. }
{--

R1 = 0x03;
wait: RO = PM(IOSTAT);

R7 = RO AND R1;
IF NE JUMP wait;

(--
{ Get A/D value(s) from FIFO. [default - PM(0x800000)] }
{ }
{ The values obtained are 14-bit 2^s-complement values sign extended to)
{ the left. 2^s complement is obtained by negating the real value and }
{ adding 1. The range of values for our particular A/D is:)
{)
{ +5V = 0001 1111 1111 1111)
{ OV = 0000 0000 0000 0000)
{ -5V = 1110 0000 0000 0001 1
{)
{ Sample code for converting 2^s complement notation to floating point }
{ is as follows: }
(R1 = FEXT RO BY 0:16 (SE); }
{ FO = FLOAT RO;)
{)
{ Sample code for converting floatin point numbers to 2^s complement }
{ notation is as follows: I
(FO = FIX RO;
{ I
(--

BO = ADOINPUT;
LCNTR = BEARTOT;
DO readl UNTIL LCE;

RO = PM(ADFIFO);
readl: DM(I0,1) = RO;

BO = ADOINPUT;
LCNTR = BEARTOT;
DO convert UNTIL LCE;

Ii = I0;
RO = DM(IO,1);
RO = FEXT RO BY 0:14 (SE);
R1 = DM(5,Il);
R1 = R0+R1;
FO = FLOAT R1;
F1 = DM(BITS2VOLT);
F1 = FO*F1;
FO = DM(VOLT2BITS);
FO = FO*F1;
R1 = DM(10,Il);
F1 = FLOAT R1;
FO = FO+F1;
F1 = DABITSMAX;
F1 = Fl+FO;
RO = FIX Fl;

convert: DM(15,I1) = RO;

{--
{ Set 1 A/D channel and 0 D/A channels. When a conversion is triggered,)
{ both the A/D and D/A conversions are triggered. Therefore, I set the)
{ the number of D/A to 0 so that nothing goes out. I
{ I
{ Number of Channels Register: [default - DM(0x40000001)])
{ bits 2-0 -> number of A/D channels)
{ bits 5-3 -> number of D/A channels)
{--

RO = BEARTOT;

383

R1 = LSHIFT RO BY 3;
DM(CHANNELS) = R1;

BO = DAOCONTROL;
LCNTR = BEARTOT;
DO dummy2 UNTIL LCE;

RO = DM(I0,1);
dummy2: DM(DAFIFO) = RO;

{ Save original input value before we over-write it

#ifdef RAW
RO = DM(DELAY_COUNT);
R1 = PASS RO;
IF NE JUMP sskip3;
RO = 16;
R1 = DM(OUTPUT_OFFSET);
RO = Rl-RO;
IF EQ JUMP sskip3;
B1 = ADOINPUT;
RO = DM(Il,M3);
RO = DM(I1,0);
DM(I6,1) = RO;

#endif

#ifdef PLOT
RO = DM(DELAY_COUNT);
R1 = PASS RO;
IF NE JUMP sskip3;
RO = 16;
R1 = DM(OUTPUT_OFFSET);
RO = RI-RO;
IF EQ JUMP sskip3;
B1 = ADOINPUT;
RO = DM(Il,M3);
RO = DM(Il,0);
RO = FEXT RO BY 0:14 (SE);
DM(I6,1) = RO;

#endif

sskip3:
{ Toggle FLAG2 to signal I/O board to start conversion

BIT SET ASTAT 0x00200000;
NOP; NOP; NOP;
BIT CLR ASTAT 0x00200000;
NOP; NOP; NOP;

R1 = 0x03;
wait2: RO = PM(IOSTAT);

R7 = RO AND R1;
IF NE JUMP wait2;

{ Save new output values
#ifdef RAW

RO = DM(DELAY_COUNT);
R1 = PASS RO;
IF NE JUMP sskip4;
RO = 17;
R1 = DM(SAVE_END);
RO = RI-RO;
IF EQ JUMP sskip4;
B1 = DAOCONTROL;
RO = DM(Il,M3);
RO = DM(II,0);
DM(I7,1) = RO;

#endif

#ifdef PLOT
RO = DM(DELAY_COUNT);

384

R1 = PASS RO;
IF NE JUMP sskip4;
RO = 17;
R1 = DM(SAVE_END);
RO = RI-RO;
IF EQ JUMP sskip4;
B1 = DAOCONTROL;
RO = DM(II,M3);
RO = DM(I1,0);
RO = FEXT RO BY 0:16;
F1 = DABITSMAX;
R1 = FIX Fl;
RO = RO-R1;
DM(I7,1) = RO;

#endif

sskip4:
RO = DM(DELAY_COUNT);
R1 = PASS RO;
IF EQ JUMP ret;
RO = RO-1;
DM(DELAY_COUNT) = RO;

ret:
R1 = PM(IOSTAT);
DM(DSPSTAT) = R1;

RTI;

.ENDSEG;

.SEGMENT /PM tmzh_svc;

JUMP sample;

.ENDSEG;

385

~m __ 1UIIL__Y___L_~IULII11lilil~(~l

Appendix K

The Rest of the Story

During the course of writing this thesis, there were certain pieces of information that this
researcher thought would be of value to anyone working with the application but were difficult
to justify including in the body of the thesis. This final appendix is an effort to fill the gaps in
the information given thus far and to discuss certain issues that will help any student wishing to
work on this system in the future.

K.1 Digital Controller Testing

Your digital controller should be tested under both static and dynamic conditions. By
static, I'm referring to the state in which the rotor is not spinning. Dynamic refers to the case
where the rotor is spinning. Static testing is most easily performed with the clear plastic disk
removed from the top of the turbopump. Controller failure can manifest itself in three ways.
The first way is when the rotor alternates hitting the touchdown bearings on each side of a
particular axis. This failure mode is obvious due to the noise it generates. The second way is
when the rotor hits the touchdown bearing on one side of a particular axis, remains there for
some time, moves toward the middle of the bearing, and strikes the same or the opposing
touchdown bearing of the same axis. This failure mode is characterized by a sharp rap every
time the rotor strikes the touchdown bearing. The third and final way is when the rotor strikes
one side of a particular axis and stays there indefinitely. This failure mode is characterized by
one sharp rap and then nothing.

The proper way to determine if the controller is working satisfactorily is to monitor the
position signals of each axis. The easiest way however is to reach through the top of the
turbopump and give the rotor a spin. Spinning the rotor by hand is also be used to test controller
robustness. Once you believe you have a stable system, reach down through the turbopump top
and give the rotor a small spin. Remember that the rotor is magnetically levitated and subject
to almost no friction and therefore it will take very little effort to spin the rotor. You want to
provide just enough momentum to spin the rotor approximately one revolution. This slow
revolution with automatically cause the rotor to stop at its worst case position. This worse case
position may be due to rotor imbalance or controller dynamics. Whatever the cause, at this worst
case position, the displacement of the rotor is greatest and in the case of a marginally stable
controller, can lead to instability.

386

Once a stable controller has been produced during static testing, its time to move on to
dynamic testing. The clear plastic disk must now be reinstalled so spinning the rotor manually
is not an option. Once a stable controller is produced during static testing, it is normally
sufficient to monitor one axis of both the upper and lower bearing to determine stability. The
final speed of the rotor is determined by two precision potentiometers mounted on the project box
which normally sits on top of the analog controller box. The relationship between the
potentiometer resistance values and the rotor speed must be determined by trial and error using
the analog controller. Once the potentiometers are set in the appropriate values using the analog
controller, determine the potentiometer resistances using an ohm meter. Do not rely on the
values on the potentiometer dials.

Now that the rotor speed is set, turn on the auxiliary vacuum pump. The manufacture
could not guarantee proper operation if there was an absence of vacuum at the intake. Therefore
they provided an auxiliary vacuum pump to supply the necessary intake vacuum. Before starting
the auxiliary vacuum pump, verify that the oil level is at the center of the circle in the clear
circular indicator. If oil level is low, add the oil provided by the manufacturer. When the
auxiliary vacuum pump is turned on, it will emit a small amount of oily smoke so perhaps
opening a window is appropriate. Let the auxiliary vacuum pump operate for some time to
assume that sufficient vacuum has built up.

Next, start the analog controller box and your digital controller. Check the position
signals to verify that the system is stable. Push the start button to start the rotor spinning. When
the start button is pushed, the RPM indicator will show the current speed and the "accelerating"
light will be on. The rotor takes approximately fifteen minutes to reach is final operating speed
no matter how high or low that final speed is. As the rotor approaches its final speed, the
"accelerating" light goes out and the RPM indicator increases very slowly. Wait until the RPM
indicator steadies before doing any further testing. Once testing is complete, push the stop
button. This will cause the "decelerating" light to come on and the RPM indicator to fall. Wait
till the rotor reaches about 300 RPM before turning the analog control box off and letting the
touchdown bearings bring the rotor to a halt.

When the digital controller fails during the course of testing (and it will fail), the most
important thing you can do is to do nothing. The worst possible thing that you could do is turn
off the analog controller box. Instead just sit there and smile because everyone within hearing
distance will know something went wrong. Not only will the rotor be hitting the touchdown
bearings with all the intensity of a jackhammer, but the turbopump will purge vacuum thereby
making a loud hissing noise. The analog controller box will also be lit up like a Christmas tree
but more important, the rotor will automatically be decelerating. Generally, the digital controller
will be able to regain stability at some point as the rotor decelerates. Dynamic testing is best
performed when there is nobody else in the lab. Also, it is almost a certainty that the first
bearing to fail will be one of the axis of the lower bearing (2X or 2Y) so monitor that bearing
carefully during dynamic testing.

It is a good practice to periodically adjust the position sensors. This is best accomplished
with the aid of helper. Remove the clear plastic disk from the top of the turbopump. Remove
the ribbon cable connectors from the power amplifier circuit board. This board lies between the
analog controller circuit boards and the actual power amplifier heat sinks at the back. Removing
each ribbon cable isolates the controller from the bearing leaving that bearing unpowered. Turn

387

·_ __· _ ·· _·_ _____I···__ Il·--L·l·~

on the analog controller box and monitor the position signal. Turning on the box allows the
position sensors to work but since the controllers are disconnected from the power amps, the
rotor is lying on its touchdown bearings. Have your helper move the rotor through its entire
displacement range and using an oscilloscope monitor the maximum and minimum voltage
returned. Adjust the position sensor offsets by turning the proper potentiometer for each axis on
the analog controller circuit boards. A properly adjusted position sensor has the same minimum
and maximum absolute value.

Finally, I would like to discuss the manual tuning process. Manually tuning the axial
bearing digital controller can be performed while the analog controller controls the radial
bearings. However, you can not manually tune a radial bearing axis while any of the other axes
are under analog control. The radial bearing tuning process must be performed while all of the
radial bearings are under digital control to produce meaningful results. Also, testing a digital
controller on just one radial bearing axis while leaving the remaining radial bearing axes under
analog control will produce meaningless results. Results obtaining using this method only show
how good the analog controllers are and say nothing about the performance of the digital
controller. It is important that the all radial bearings be treated as a complete system and not as
individual entities because their performance is closely coupled.

K.2 The Project Box

The Project box is the aluminum box which generally sits on top of the analog controller
box. The back face of the box contains two DB-25 ports, one male and one female. One port
connects to a ribbon cable which in turn connects with various test points on the analog
controller boards. The other port connects to another ribbon cable which attaches to the filter
box underneath the I/O Interface Board. The top of the box contains two high precision
potentiometers and five switches. The potentiometers are responsible for determining the rotation
speed of the rotor. The switches were meant to control whether the analog or digital controller
was in use however this was abandoned due to implementation difficulties. The sloping front
face of the box contains one DB-50 port. This allows monitoring of all of the signals entering
and leaving the Project box.

The decision was made at one point to try to provide easy access to the majority of the
test points on the analog circuit boards. Prior to this time, access to the test points was provided
by circuit board extenders which allowed the entire analog control board to extend beyond its
protective enclosure. This provided complete access to the board but also placed the board in
harm's way. There were only two of these extender boards so they had to be swapped often
which lead to snarled wiring and bent components due to the tight clearances between boards.
After much discussion, a design was agreed upon which would allow access to all important test
points and yet allow the boards to remain in their protective enclosure. Because of the tight
clearances between boards and between the board enclosure and the front panel, ribbon cable was
chosen as the signal conveyor.

At first, we decided to place the controller switches on the project box. This necessitated
bringing the analog board signal all the way from the analog board, through the ribbon cable to
the project box switch, and back through the ribbon cable to the analog board. However, after

388

completing the necessary connections, both the analog and digital controllers refused to work.
The resistance across the ribbon cable and switch were not measurable using a digital ohm meter
so increased resistance did not seem to be a likely problem. After much trial and error, the only
solution was to mount the switches on each of the circuit boards.

In retrospect, maybe ribbon cable was not such a good idea. Perhaps there was cross-over
interference or noise induced by the other signals carried along the ribbon cable. The only way
to eliminate interference between signals on a ribbon cable is to place a ground as the wire
between any two signal carrying wires. Such a change would also have doubled the size of the
ribbon cable and made very clumsy to work with. However, since this modification was not
carried out, it does raise the question of whether other signals are also being effected by this
ribbon cable configuration. Previous to the ribbon cable modification, the signals were carried
by everyday speaker wire which has thicker insulation which holds both a signal and ground wire
side by side. The project box did however allow greater simultaneous access to all of the test
points which proved very convenient.

In an effort to eliminate any possible sources of noise from the system, the position signal
adders on each of the analog controller boards were disabled. Disabling took the form of
soldering a wire from the input of the adder to the output. Also the connection between the input
and the first op-amp was broken and the adder test points were grounded. The adder was no
longer needed because by then we had obtained all of the possible system analysis data. These
modifications can be easily undone by looking at the circuit board and the circuit schematic
provided by the manufacturer.

Another switch was added to each circuit board to eliminate a notch filter added by the
manufacturer. This notch filter attenuated signals that might excite the second bending mode.
However this notch filter was not implemented as one might expect. The notch filter was
actually a band pass filter which only passed frequencies that would excite the second bending
mode. However, the signal produced from the band pass filter was the opposite sign of the input
signal. This negative signal was added to the control signal thereby canceling any signals having
frequencies within the bandpass filter range. The problem was that the band pass filter took its
input before the point where the output of the digital controller was spliced back into the analog
control board and added its negative signal after that point. In order to remove the noise that this
filter would create when the digital controller was operative, a switch was used to ground the
signal emulating from the band pass filter.

K.3 Turbopump Noise

The noise referred to in this section is the audible noise emitted by the turbopump. Under
analog control, the turbopump emits very little noise during both static and dynamic operation.
However this is not the case with all of the entirely digital controllers implemented thus far.
This is particularly true during static testing when the clear plastic disk on top of the turbopump
was removed. Even with the disk in place, the turbopump emits a high pitched whine which
would probably make it unusable in a typical work environment. The noise is not painful but
it is very uncomfortable. The noise does tend to decrease as the digital controller low pass
filter's cutoff frequency decreases.

389

Accompanying this noise is vibration of the turbopump housing. This is not a visible
vibration but it can be felt when actually touching the housing. To dampen this vibration, I
placed thick manuals on top of the turbopump housing in the hope of altering the dynamic
characteristics of the housing. This seemed to have the effect of increasing system stability at
higher RPMs. The final height of the manuals placed on top of the housing was thirteen inches.

K.4 Radial Bearing Coupling Experiments

An effort was made to determine the coupling transfer function between the same axes
of the upper and lower bearing. This section will outline the procedure for these experiments
and the reason for their abandonment. The experiments were performed satisfactorily for the
upper bearing and I will use the test procedure for the IX radial bearing as an example. The
analog controller box was turned on with the 1X, 1Y, and axial axes under analog control. Both
the 2X and 2Y axes were unpowered. The swept sine input from the HP System Analyzer was
attached to the 1X radial bearing control signal adder. The output to the System Analyzer was
attached to the position signal of the 2X bearing. The position signals of both the 2X and 2Y
axes were monitored to assure that the rotor did not contact the touch down bearings during
testing. Any contact would require retesting and perhaps lowering the amplitude of the input
disturbance signal.

When this procedure was used to determine the coupling transfer function of the lower
bearing, we ran into problems. When testing the upper bearing with an powered lower bearing,
the rotor would naturally rest near the center of the unpowered bearing. However, with an
unpowered upper bearing and a lower bearing under analog control, the rotor would lean to one
side or the other of the unpowered bearing. This was perfectly natural considering the center of
gravity of the rotor assembly is much closer to the upper bearing then to the lower bearing.
However, this leaning always resulted in the rotor contacting the touch down bearings during
testing. We then decided that this leaning may be considerably less if the turbopump was tested
while upside down. In this way, the unpowered bearing would again be below the powered
bearing. However, when the turbopump was turned over, the axial bearing refused to move the
rotor to the equilibrium position. The rotor remained in contact with the touch down bearings
of the axial upper bearing. Using both the analog and digital controller to control the axial
bearing had no effect. These experiments were abandoned soon afterward. I guess the
manufacturer never considered the case where a buyer might mount the turbopump on the ceiling.

390

[1] R. N. Arnold and L. Maunder, Gyrodynamics and its Engineering Applications, Academic
Press, N.Y., 1961

[2] K. J. Astrom and B. Wittenmark, Computer Controlled Systems, Prentice-Hall, Englewood
Cliffs, N.J., 1984

[3] M. Athans, Lecture Notes in Multivariable Control Systems, Department of Electrical
Engineering, Massachusetts Institute of Technology, 1993

[4] Battery and EV Technology, HYBRID VEHICLES: SatCon Develops Award Winning
Technology, Vol. 20, No. 9, Jan., 1996

[5] Birch and Stuart, "Advanced Research at BMW", Automotive Engineering, Vol. 102, No.
10, Pg. 12, Oct., 1994

[6] S. H. Crandall, D. C. Karnopp, and E. F. Kurtz, Dynamics of Mechanical and
Electromechanical Systems, pp 224-246, R. E. Krieger Publishing Co., Malabar, FL., 1982

[7] V. Del Toro, Electrical Engineering Fundamentals, Prentice-Hall, Englewood Cliffs, N.J.,
1986

[8] A. D. Dimarogonas and S. A. Paipets, Analytical Methods in Rotor Dynamics, pp 41-71,
Applied Science Publishers, New York, N.Y., 1983

[9] S. Earnshaw, "On the Nature of Molecular Forces", Transactions at the Cambridge
Philosophical Society, Vol. 7, Pg. 97-112, 1842

[10] T. Elliott, "Electric Energy Storage Hinges on Three Leading Technologies", Power, Vol.
139, No. 8, Pg. 42, Aug., 1995

[11] W. Klages, "The Cyroturbo: A New Concept in Vacuum Technology", Solid State
Technology, Vol. 37, No. 4, Pg. 63, Apr., 1994

[12] B. C. Kuo, Automatic Control Systems Fourth Edition, Prentice-Hall, Englewood Cliffs,
N.J., 1982

[13] B. C. Kuo, Analysis and Synthesis of Sampled-Data Control Systems, Prentice-Hall,
Englewood Cliffs, N.J., 1963

[14] P. A. Lynn and W. Fuerst, Introductory Digital Signal Processing with Computer
Applications, John Wiley and Sons, N.Y., 1989

[15] L. O'Connor, "Electric Vehicles Move Closer To Market", Mechanical Engineering -
CIME, Vol. 117, No. 3, Pg. 82, Mar., 1995

391

_···_____ _ _ .. __I·il _ 1_·_~_1·__1~11_^ ·~· · ____·_____~~_·__I · I______I~ L_~_·lII_·_ I __II__··

[16] A. V. Oppenheim and R. W. Schafer, Digital Signal Processing, pp. 195-230, Prentice-Hall,
Englewood Cliffs, N.J., 1975

[17] S. Reddy, "Theory of Time Delay Control and Application to Magnetic Bearings", Ph.D.
thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology, Sep.,
1992

[18] F. W. Sears, M. W. Zemansky, and H. D. Young, University Physics, Addison-Wesley,
Reading, MA., 1987

[19] I. H. Shames, Engineering Mechanics, Prentice-Hall, Englewood Cliffs, N.J., 1980

[20] S. M. Shinners, Control System Design, pp. 350-416, John Wiley and Sons, N.Y., 1964

[21] Urban Transport News, CalStart Announces Projects for Hybrid Electric Bus Technology,
Vol. 24, No. 3, Jan. 1996

[22] J. Wetzel, "Time Delay Control of Magnetic Bearings", M.S. thesis, Department of
Mechanical Engineering, Massachusetts Institute of Technology, Jan., 1992

[23] K. Youcef-Toumi, I. Vithiananthan, and S. Reddy, "Implementation of Time Delay
Control to Active Magnetic Bearings, Final Report", Laboratory of Manufacturing and
Productivity Report, Massachusetts Institute of Technology, Sep., 1989

[24] K. Youcef-Toumi and 0. Ito, "Model Reference Control using Time Delay for Nonlinear
Plants with Unknown Dynamics", Proceeding of the International Federation of Automatic
Control World Congress, Munich, Federal Republic of Germany, July, 1987

392

