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ABSTRACT

Magnetic bearings possess characteristics that make them ideal for solving certain classes
of engineering problems. One characteristic is their ability to achieve and maintain very high
rotational speeds due to low friction. Another characteristic is their inability to contaminate the
working fluid due to lack of lubrication and absence of metal to metal contact. However,
magnetic bearings pose many interesting challenges to the engineer. The inherent characteristics
of magnetic bearings are such that they are open loop unstable and therefore require feedback
control. This instability also requires that the controller be extremely robust. The application
used as a test platform is a high speed turbopump. The electromagnetic fields generated by each
of the five axes of the turbopump are inherently nonlinear as are the equations of motion of the
rotor. The system is also subject to disturbances caused by rotor gyroscopic forces, rotor
imbalance, and rotor bending modes.

This control algorithm chosen to control this turbopump application is Time Delay Control
(TDC). TDC was chosen because it uses information from previous sampling interval(s) to
estimate unmodeled system dynamics. This estimation is then used to augment the ideal control
signal produced by a desired dynamics reference model and thereby produce the final control
action. In this way, TDC becomes a powerful technique for controlling nonlinear systems and
systems subject to a disturbance rich environment. However, TDC is a relatively recent control
algorithm in which design has thus far been primarily a trial and error process. This thesis will
document one attempt to move the design process beyond trial and error.

The three main themes of the thesis are the modeling, design, and implementation of TDC
to magnetic bearings. To measure the success of the modeling, design, and implementation
processes, the theoretical, digital, and analog controller closed loop frequency responses and
disturbance rejection responses are compared in the case where the rotor is not spinning. Also
the disturbance rejection responses are compared for both the analog and digital controllers when
the rotor is spun at low and medium speeds. The results show that the digital controller has a
significantly higher bandwidth, higher maximum closed loop gain, and significantly less
compliance overall then the analog controller when the rotor is not spinning. The digital
controller also exhibits better stiffness at low rotor speeds but begins to lose stability at medium
rotor speeds.
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Chapter 1

Introduction

1.1 Motivation and Background

Magnetic bearings may not be as common as their conventional counterparts but they do
possess specific characteristics that make them ideal for solving certain classes of engineering
problems. One such characteristic is their ability to achieve and maintain very high rotational
speeds. This makes magnetic bearings ideal for such applications as flywheels. The California
Zero Emissions Vehicle program is forcing auto makers to take a hard look at flywheels as
energy storage elements in electric vehicles [4, 21, S, 15]. Electric vehicles use and produce
large, short term bursts of electric power. Conventional batteries are unable to meet these power
demands but flywheels have no such limitation. Flywheels also have a higher energy density
then conventional batteries and weight is an important consideration in vehicle design. Also
flywheels have the possibility of outlasting conventional batteries which must be replaced after
three years of normal use. Electric utilities are also researching the use of flywheels to meet
peak energy demands. Instead of constructing costly additional powerplants, some utilities are
proposing constructing flywheel substations which can be powered up during off peak night time
hours for use during the day [10].

Another characteristic of magnetic bearings is that they require no lubrication which might
contaminate the working fluid. They have therefore found application in turbopumps used in
microprocessor production facility clean rooms. They are also used in cryogenic turbopumps
where the heat produced by conventional bearings pollutes the working fluid [11]. Magnetic
bearings have also found application in extremely high temperature surroundings where normal
lubricants cake or burn off.

Magnet bearings are not without their own unique problems. Unlike contact bearings,
magnetic bearings are active devices. This necessitates that magnetic bearings have their own
power supply and controller. Also in critical applications, emergency power supplies may also
be necessary. Even if emergency power is provided for, magnetic bearings usually have
conventional backup bearings in case the bearings should fail or the external loading capacity is
exceeded. Finally magnetic bearings are much more expensive than conventional contact
bearings.

The foundation of magnetic bearings goes back to 1842 when Earnshaw demonstrated that
magnetic suspension could be achieved if at least one axis was actively controlled [9]. This led
directly to the two degree of freedom magnetic suspension or the semi-passive suspension. The
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load capacity, stiffness, and damping of these first magnetic bearings was very poor but they did
see service in some light duty applications.

It wasn't until 1957 that technology had advanced enough to allow the development of the
first active magnetic suspension. By the mid 1960s, many research teams were involved in
developing actively controlled magnetic suspension systems. Currently active magnetic bearings
see service in high-speed centrifuges, compressors, rocket motor turbopumps, and flywheels.

As the use of magnetic bearings became more widespread, the problems of control become
more apparent. Classical control theory requires that the mathematical model of the system be
completely known. In practical applications involving magnetic bearings, the model parameters
may be time varying or poorly known. Also magnetic bearings are expected to operate in
environments where unforeseen disturbances exist. In such cases, fixed gain controllers may not
provide satisfactory performance.

This thesis will be dealing with the control technique of Time Delay Control (TDC)
proposed by Youcef-Toumi and Ito in 1986 [24]. TDC depends upon the direct estimation of
uncertainties through time delay. TDC uses past observations of the state variables and control
signal, as well as the current error signal to estimate the unmodeled dynamics of the system.
This estimate is then used to augment the ideal control signal produced using a desired dynamics
reference model. The use of past observations to estimate unmodeled dynamics makes this
algorithm extremely powerful when applied to nonlinear plants having unknown dynamics and
subject to unpredictable disturbances. Up to this point, there has been a lack of documented
examples of the design process used to implement a Time Delay controller. Previous research
has been conducted and guidelines have been formulated for designing a Time Delay controller
[17]. However, these guidelines are vague and there is no evidence that they were ever directly
used to design a controller. This paper will document the entire design process regardless of
whether an adequate controller is produced or not. This will allow later researchers to benefit
from the successes or failures described herein. There is however reason for optimism that a
successful Time Delay controller will be designed. Previous research conducted using TDC on
one axis of this same application has produced encouraging results [17, 23].

1.2 Scope and Content of Thesis

The main themes of this thesis deal with the modeling, design, and implementation of a
digital controller using the TDC algorithm to a magnetic levitated turbopump. The modeling
portion describes the procedure used to determine the theoretical model transfer function. One
method used to determine this transfer function is based upon the derivation of the equations of
motion for the rotor and comparing their theoretical response to the actual system response.
Another method is to use the general form of the transfer function derived from the equations
of motion and recursively changing the coefficients in the numerator and denominator to obtain
the best fit response to the actual system response. From the results obtained by using both of
these methods, the most accurate theoretical transfer function is obtained.

The design portion examines how variations in the parameters of the digital controller
effect closed loop system stability in an effort to determine the optimal sampling rate for the
controller. The remaining parameters of the digital controller are determined by their effect on

2



several important system performance measures. These measures include compliance, bandwidth,
and maximum closed loop gain. These measures are of particular importance due to assumptions
made during the modeling process and the operating environment to which this application is
subjected.

The implementation portion addresses issues that arise from the process of mating a
theoretical controller to actual hardware. These issues include control loop algorithm efficiency,
integrator windup, noisy sensors, and proper filtering. This application also relied on a custom
designed controller board which has its own nonstandard interface implementation and exhibits
design flaws as most customized designed boards do. The effect that these anomalies have upon
the controller implementation is also documented.

This thesis is organized into six chapters and eleven appendices. Chapter 2 describes the
physical components that make up the turbopump and its subsystems. This chapter also
determines the theoretical open loop transfer function from the actual system response. Chapter
3 briefly describes the Time Delay Control Law and the simplifications used to increase the
computational efficiency of the algorithm. Increased efficiency decreases computation time
which allows higher sampling rates. Chapter 4 describes the physical components that comprised
the digital controller. This chapter also presents the controller design criteria and issues specific
to implementing a digital controller using this particular hardware. Chapter 5 evaluates digital
controller performance under both nonspinning and spinning conditions. Chapter 6 summarizes
the findings of this thesis and presents recommendations for further research. The appendices
are included to fill in the details. They are not required to understand the thesis but may be of
interest to researchers duplicating or verifying this work.



Chapter 2

System Description and Analysis

In this chapter, a physical description of the turbopump and all pertinent subsystems is
provided. The theoretical open loop response based upon the linearized equations of motion of
the rotor is then compared to the actual system response of the axial bearing axis and one radial
bearing axis. Next the recursive best fit open loop response is determined from the actual system
response. Finally, the choice is made as to whether to use the theoretical response or the best
fit response to model the open loop system.

2.1 Physical Description

Bearing Control Lines Power Line
Power
Conditioner Transistors
Power Power
Transformers Amplifier
Rotor
Speed
Controller
Backup
Power Controller and
Supply Sensor Boards
(Battery)
Auxiliary
Vacuum
Pump

2-1 Physical System Layout



The system is composed of three major components: 1) the turbopump, 2) the controller,
and 3) the auxiliary vacuum pump (see Figure 2.1). The turbopump is connected to the
controller through an umbilical cord which contains the bearing control lines, sensor carrier wave
lines, sensor position signal lines, turbopump motor control lines, and turbopump motor speed
sensor lines. The turbopump is also connected to the auxiliary vacuum pump through a flexible
metal tube. The maximum operating speed of this turbopump is 45,000 rpm. Its normal
operating speed is 30,000 rpm.

2.1.1 Turbopump

|
! \
touchdown bearing I | 1
: )
L
L
L

{ l— radial bearing 1
radial position sensors
induction motor
radial bearing 2
|
touchdown bearing
thrust bearing 3 inductive position sensor
|
[

2-2 Turbopump Cutaway

As shown in Figure 2.2, the turbopump is a multi-vane rotor suspended by two radial magnetic
bearings and one axial magnetic bearing. Each magnetic bearing has an accompanying position
sensor and touchdown bearing. The touchdown bearings are provided in case of controller failure
and are of the conventional ball bearing variety. The rotational velocity of the rotor is governed
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by an induction motor located midway along the rotor. The upper radial bearing is designated
as radial bearing 1 and the lower radial bearing is designated radial bearing 2.

Each radial bearing is composed of a
ring of laminated, ferromagnetic material
having eight poles. Each pole is wound with
N turns of wire. Each radial bearing has an
x and y axis composed of two opposing pole
pairs. The lines of magnetic flux flow from
one pole, through the rotor, back through the
opposing pole, and into the ring. When the
centerline of the rotor is positioned at the
centerline of the radial bearing, the clearance
between rotor and the poles of the radial
bearing is approximately 250 pm. The
clearance between the rotor and the
touchdown bearings at this same position is
approximately 200 pm.

The axial bearing is composed of an
upper and lower ring of ferromagnetic
material having a U-shaped cross-sectional
area. The inner leg of the U is wound with 2.3 Radial Bearing Diagram
N turns of wire. The lines of magnetic flux
flow from one leg of the U, through the disk
which is attached to the rotor, back through
the opposite leg of the U, and into the ring.
When the disk is positioned equidistant from
the upper and lower axial bearing rings, the
clearance is approximately 400 pum.

Rotor ]
2.1.2 Controller

The controller is made up of a number T I
of subsystems (see Figure 2.1). Most of Windings
these subsystems are devoted to meeting the Stator

power demands of the turbopump. The
power conditioner is responsible for
converting the AC power supplied to the
controller to the 24 VDC used by the controller. The power transformers convert the 24 VDC
power to 15 VDC for use by the power amplifier and 12 VDC used by the controller/sensor
integrated circuit boards. The backup power supply is a battery with sufficient energy to allow
the system to shutdown gracefully in the event of a power outage. The rotor speed controller is
comprised of two integrated circuit boards and is responsible for monitoring the rotor speed,
controlling the acceleration and deceleration rates during startup and shutdown, and providing
power to the rotor induction motor during normal operation. One of these boards was modified

2-4 Axial Bearing Diagram
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by replacing two resistors with variable resistors. This modification allows the final operating
speed of the rotor to be adjusted through trial and error. The sensor integrated circuit board is
responsible for generating a 50 KHz carrier wave for use by the position sensors.

The analog compensator is located on
the controller integrated circuit board. There

is a controller board for each bearing of the —]

turbopump. The radial bearing controller Notch
board is responsible for both the x and y axis

whereas the axial bearing is responsible for Sensor | Compensator

only the z axis and is therefore not a fully Electronics | Electronics | Driver
populated circuit board. The sensor

electronics portion of the board (see Figure

2.5) is responsible for comparing the sensor L] Adder

board carrier signal to the signal returned
from the position sensor. Using these two
signals, the board derives the proper position 2.5 Magnetic Bearing Controller Board

signal for each axis. This position signal is

then sent to a test point, and the adder. The

test point allows the signal to be viewed on an oscilloscope and is also used for input into the
digital controller. The adder is a modification performed by the turbopump manufacturer to
allow disturbances to be injected into the position signal ahead of the compensator. From the
adder, the signal leads to the compensator electronics portion of the board. After the proper
control signal is determined, the compensator sends the signal through a gain before being sent
to the driver. The board was modified just before the gain by adding a switch. This switch
determines whether the control signal from the analog compensator or the digital controller will
be used. Also after the switch, a test point was added to allow disturbances to be injected into
the control signal before the driver. The gain following the switch is adjusted by a variable
resistor on the edge of the board. The driver is responsible for dividing the control signal
between the two opposing pole pairs that comprise an axis of a radial bearing or between the
upper and lower ring of the axial bearing. The driver performs this function based upon control
signal magnitude and whether the signal is negative or positive. The final element on the
controller board is the notch filter. The notch filter cancels that portion of the control signal that
might excite the second bending mode. It operates by isolating the necessary frequency
components from the control signal, inverting these components, and adding them back into the
control signal and thereby canceling their effect. This was added by the manufacturer for use
by the analog compensator. However, the modification applies the cancellation signal after the
analog/digital controller switch. Therefore, the board was modified further by adding another
switch to cancel the contribution of this filter when an axis is under digital control.

The two signals produced by the driver are then sent to the power amplifier. The power
amplifier in turn uses the power transistors to produce the final bearing coil current. The power
transistors are located at the rear of the controller directly in front of the cooling fan. Each
power transistor is also attached to a large heat sink.




2.1.3 Auxiliary Vacuum Pump

The auxiliary vacuum pump was provided by the manufacturer to ensure that the system
would behave correctly when the rotor is spinning. The turbopump exhaust is blocked by a clear
plastic disk that allows viewing the rotor during all phases of operation. Blocking the exhaust
meant that the system would not be operating within its normal environment. To help
compensate for this, a vacuum pump was attached and run prior to and during all tests in which
the rotor was spinning. The auxiliary vacuum pump is not needed when the rotor is not spinning.

2.2 System Analysis

The determination of the transfer function for the driver and the turbopump relied on the
theoretically derived rotor equations of motion and recursive, brute force techniques. The goal
was to derive the open loop transfer function that would accurately represent the actual system
response provided by an HP 3562A Dynamic System Analyzer. In the case of the driver, the
theoretical equations representing the electrical components of the subsystem would be too
difficult to derive and therefore only a recursive technique was used to derive the transfer
function. The turbopump however provided the opportunity to apply both a recursive and a
theoretical technique to obtain the best transfer function.

The recursive technique is based upon the researcher estimating the general form of the
transfer function and recursively trying different values for the numerator and denominator until
a suitably accurate transfer function was obtained. This technique can be prohibitively time
consuming when applied to many high-order systems but proved relatively fast for this particular
system. During each pass of the algorithm, the bode plot of the transfer function guess was
compared against that of the actual system. First the estimated magnitude data was multiplied
by a gain derived from the difference between DC gains of the two plots. Then at each data
point, the square of the difference between the estimated and actual magnitudes was calculated
and summated. The same was done for the estimated and actual phase plots as well. The
summation of the total error of magnitude and phase plots produced the total error of the guess.
The estimate that produced the smallest error was deemed the best fit transfer function.

The only data presented in the remainder of this chapter corresponds to the axial bearing
and radial bearing 2X which is representative of the other radial bearing axes. A more detailed
presentation of the system analysis methodology and data is presented in Appendix E.

2.2.1 Driver Best Fit System Analysis

The actual driver response was obtained by inputting a swept sine disturbance at the
analog/digital controller switch test point and monitoring the driver output at a test point between
the driver and the power amplifier. All tests were performed on the turbopump when the rotor
was not spinning. The form of the transfer function used in the recursive analysis was derived
by analyzing the actual driver magnitude and phase responses. The best fit transfer function form



is,

) _ 4

Us) s+4,

The values derived from the best fit recursive analysis for A; and A, are,

Parameter Axial Rad2X
A, 14707.770 11112.759
A, 13310.000 11140.000

In order to directly compare the response of the best fit transfer function to that of the actual
system, the units of the transfer function must be comparable. Therefore the best fit transfer
function uses the following conversion factors,

Conversion Factor Axial Rad2X
Control Signal (A/V) 2.776 1.159
Driver Signal (V/A) 03 0.3

Finally, mention should be made of the phase plot for the axial bearing. Normally when
the bearing is at its equilibrium position, the driver produces relatively equal control currents for
each of the opposing sides of the bearing. The major difference between the opposing control
signals is generally that one is negative and one is positive. The test point chosen for all of the
best fit analyses was purposely chosen to be positive control current test point. In this way, the
phase would not have to be adjusted. However, the axial bearing must support the weight of the
rotor. Due to the particular implementation of the driver, the control signal required is large
enough such that the lower bearing is unpowered. Hence there is only one possible test point
which can be used for the axial bearing and its value happens to be negative. Therefore the
phase is shifted appropriately.

Figures 2.6, 2.7, 2.8, and 2.9 represent the best fit recursive analysis of the driver transfer
function magnitude and phase plots for both the axial and 2X radial bearing.
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2.2.2 Theoretical Turbopump System Analysis

The actual turbopump response was obtained by inputting a swept sine disturbance at the
test point between the driver and the power amplifier and monitoring the position signal at the
appropriate test point. All tests were performed on the turbopump when the rotor was not
spinning. The theoretical transfer function was derived from the linearized rotor equations of
motion. For an in depth analysis of the rotor equations of motion, consult Appendices A, B, and
C. The gyroscopic force terms of the linearized equations of motion can be ignored because the
rotor was not spinning. Also the coupling forces generated by the same axis of the opposing
bearing will be treated as disturbances in an effort to simplify the model and therefore they are
ignored. These two assumptions create a theoretical transfer function having the following form,

Xs) __P
Us) s2-Q

The values of the variables P and Q were derived from the physical characteristics of the
magnetic bearings,

Axial Radial
2 1 b2
uoNzAuo 2u,N Acosﬁ(;+z) I,
p=-0 "% P -
2mh(,2 h02
2
PoNzAu()z 4|.10N2Acosﬁ(%+"—") Io2
0-2—> o - 3
2mh, hy

Where: p, = air permeability
N = number of wire turns
A = magnetic flux area
B = angle between pole and centerline of pole pair
m = rotor mass ,
b = distance from rotor center of gravity to bearing
I, = moment of inertia, radial direction
I, = bias current
u, = axial bearing equilibrium current
h, = nominal air gap between bearing and rotor

12



The values of the parameters that define the physical characteristics of the each magnetic bearing
were provided by the manufacturer. They are,

Parameter Axial Radial
Ho (N/A?) 1.26 x 10°¢ 1.26 x 10
N 133 100
A (m?) 7.0 x 10 9.75 x 10°
p (degrees) N/A 22.5
m (Kg) 22 2.2
B (m) N/A 0.0691
I, (Kg'm?) N/A 8.285 x 107
I, (A) N/A 0.5
u, (A) 1.007 N/A
h, (m) 4.0 x 10 2.5 x 10*

Substituting the appropriate values for the bearing characteristic parameters into the appropriate
bearing equations yields,

Parameter Axial Rad2X
P 22.162 18.720
Q 55403.757 74881.133

Due to the location of available test points, the actual transfer function encompasses not only the
magnetic bearings but also the power amplifier. However, the theoretical transfer function is
derived from the linearized rotor equations of motion and therefore ignores the power amplifier.
The contribution of the power amplifier was determined by comparing the DC gains of the actual
and theoretical transfer functions. The power amplifier is assumed to be constant gain amplifier
having the form A/A,. The values obtained for the power amplifier are,

Parameter Axial Rad2X
A, 1.000 1.906
A, 1.138 1.000
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Finally, in order to directly compare the response of the theoretical transfer function to that of
the actual system, the units of the transfer function must be comparable. Therefore the
theoretical transfer function uses the following conversion factors,

Conversion Factor Axial Rad2X
Position Signal (V/m) 9450.0 25000.0
Driver Signal (V/A) 0.3 0.3

Again, mention should be made of the phase plot for the axial bearing. Normally when
the bearing is at its equilibrium position, the driver produces relatively equal control currents for
each of the opposing sides of the bearing. The major difference between the opposing control
signals is generally that one is negative and one is positive. The test point chosen for all of the
best fit analyses was purposely chosen to be positive control current test point. In this way, the
phase would not have to be adjusted. However, the axial bearing must support the weight of the
rotor. Due to the particular implementation of the driver, the control signal required is large
enough such that the lower bearing is unpowered. Hence there is only one possible test point
which can be used for the axial bearing and its value happens to be negative. Therefore the
phase is shifted appropriately.

Figures 2.10, 2.11, 2.12, and 2.13 represent the theoretical analysis of the turbopump
transfer function magnitude and phase plots for both the axial and 2X radial bearing.
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2.2.3 Best Fit Turbopump System Analysis

The previous section showed that the theoretical transfer function provides a fairly accurate
picture of the turbopump frequency response. However, the theoretical response becomes less
accurate as the frequency increases. It is important that the transfer function used to design the
digital controller be as accurate as possible within the probable bandwidth of the controller.
Therefore the theoretical analysis was not used in the controller design. Instead, a best fit
recursive analysis was performed on the actual frequency response using a transfer function form
derived from the theoretical analysis. The assumption was also made that the digital controller
bandwidth would comfortably fall below 1000 Hz. Therefore, the best fit recursive analysis was
optimized to produce a transfer function using the data points between 0.1 and 1000 Hz.
However, this limits the validity of the model to 1000 Hz and therefore any controller designed
using this model must provide adequate signal attenuation beyond this frequency.

As stated earlier, the actual turbopump response was obtained by inputting a swept sine
disturbance at the test point between the driver and the power amplifier and monitoring the
position signal at the appropriate test point. All tests were performed on the turbopump when
the rotor was not spinning. The best fit transfer function was derived from the theoretical
transfer function and therefore has the following form,

Xs) . P

Us) s2-Q

The values derived from the best fit recursive analysis for P and Q are,

Parameter Axial Rad2X
P 7.990 16.926
Q 22739.568 35530.574

Again, in order to directly compare the response of the best fit transfer function to that of the
actual system, the units of the transfer function must be comparable. Therefore the best fit
transfer function uses the following conversion factors,

Conversion Factor Axial Rad2X
Position Signal (V/m) 9450.0 25000.0
Driver Signal (V/A) 0.3 03

Finally, mention is again made of the phase plot for the axial bearing. The driver normally
produces comparatively equal control currents for each half of the bearing. The major difference
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is generally that one control current is negative and one is positive. The test point chosen for
all of the best fit analyses was purposely chosen to be positive control current test point. In this
way, the phase would not have to be adjusted. However, the axial bearing must support the
weight of the rotor. Due to the particular implementation of the driver, the control signal
required is large enough such that the lower bearing is unpowered. Hence there is only one
possible test point which can be used for the axial bearing and its value happens to be negative.
Therefore the phase is shifted appropriately.

Figures 2.14, 2.15, 2.16, and 2.17 represent the best fit recursive analysis of the turbopump
transfer function magnitude and phase plots for both the axial and 2X radial bearing.
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2.2.4 Best Fit Open Loop System Analysis

The best fit recursive analysis has been done for both the driver and turbopump
subsystems. As a verification of this analysis, the combined transfer function of these two
subsystems is compared to the actual system response. The actual driver response was obtained
by inputting a swept sine disturbance at the analog/digital controller switch and monitoring the
position signal at the appropriate test point. All tests were performed on the turbopump when
the rotor was not spinning. The best fit open loop transfer function form is,

(%
U(S) S"'Az Sz—Q

The values derived from the previous best fit analyses are,

Parameter Axial Rad2X
A 14707.770 11112.759
A, 13310.000 11140.000
P 7.990 16.926
Q 22739.568 35530.574

In order to directly compare the response of the best fit transfer function to that of the actual
system, the units of the transfer function must be comparable. Therefore the best fit transfer
function uses the following conversion factors,

Conversion Factor Axial Rad2X
Control Signal (A/V) 2.776 1.159
Position Signal (V/m) 9450.0 25000.0

Figures 2.18, 2.19, 2.20, and 2.21 represent the best fit recursive analysis of the open loop
transfer function magnitude and phase plots for both the axial and 2X radial bearing.
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2.3 Summary and Remarks

This chapter described the process used to determine the open loop transfer function that
would be employed in designing the digital controller. The turbopump transfer function was
analyzed using a theoretical transfer function based upon the rotor equations of motion and using
a best fit recursive analysis. The theoretical analysis showed fairly accurate agreement with the
actual system response. However, the theoretical response grew progressively worst with
increasing frequency. This conclusion becomes more apparent when all the bearing responses
are reviewed as in Appendix E. Therefore, the results of the best fit recursive analysis will be
used to design the digital controller. The best fit recursive analysis was also optimized to return
the best possible correlation between the range of 0.1 and 1000 Hz. The upper bound was
chosen to be 1000 Hz because this was deemed sufficiently greater then the bandwidth of the
controller and because the actual system response became exceedingly less well behaved beyond
that frequency for all of the bearing axes. Any theoretical analysis of the driver circuit was
deemed too complicated and therefore only a best fit recursive analysis was performed on the
driver subsystem. Finally, both the driver and turbopump subsystem transfer functions were
combined and compared with the actual open loop system response. The good correlation
between the plots offered verification that best fit recursive analysis had yielded a highly accurate
transfer function below 1000 Hz. However, using the best fit recursive analysis effectively
removes any correlation between the physics of the turbopump and the open loop transfer
function.
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Chapter 3

Time Delay Control Algorithm

This chapter is a review of the Time Delay Control law. This chapter also describes
modifications made to the Control law in the actual controller to decrease processing time. First,
the Time Delay Control law equations are derived based upon systems having an unknown
distribution matrix. Finally, the specific simplifications that were made to the Time Delay
Control law to increase its efficiency and the potential ramifications these simplifications have
on the controller effectiveness are described. Most of these simplifications are applicable to the
Time Delay Control law in general but a few are specific to the hardware on which it will be
implemented.

3.1 Time Delay Control Law

The dynamic equations governing any system may be described by the following [22]:

%‘(;tl = FX) +H(X,0) + BX,) Ul) + JX,Uyf) + Dt G.1)

where: X(t) = (nx1) plant state vector,
U(t) = (rx1) control vector,
F(X;t) = (nx1) nonlinear vector representing known part of system dynamics,
H(X,t) = (nx1) nonlinear vector representing unknown part of system dynamics,
B(X,t) = (nxr) arbitrary estimate of the control distribution matrix,
J(X,U,t) = (nx1) distribution matrix error estimation vector,
D(t) = (nx1) unknown disturbance vector,
t = time.

The distribution matrix error estimation vector J(X,U,t) represents the difference between the
actual unknown distribution matrix and our estimate of that matrix or,

JX,Us) = GX,Uy)-BX,1)U) (3.2)
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where: G(X,U,t) = (nx1) actual unknown distribution matrix,
B(X,t) = (nxr) arbitrary estimate of the control distribution matrix,
U() = (rx1) control vector,

Let the desired dynamics reference model that we would ideally wish the actual plant to imitate
be a linear time-invariant system given by:

d’f;,"(t) = AX,(t)+B R(t) (3.3)

where: X (t) = (nx1) model state vector,
A, =(nxn) constant, stable matrix vector,
B,, = (nxr) constant command matrix,
R(t) =(rx1) command vector.

We now define the error vector as the difference between the actual plant state vectors and the
desired dynamics reference model state vectors,

El) = X, (1) -X) (3.4)

The objective is to force the error E(t) to vanish with a desired dynamics:

%(,L) = A E) 3.5)

Combining Eq. (3.1), Eq. (3.3), Eq. (3.4), and Eq. (3.5) yields the following equation governing
the error dynamics:

dE _ Xy _dX
dt  dr

dt
- A X, +BR-F-H-J-D-BU

= A(E+X)+B R-F-H-J-D-BU (3:6)
= A[E+[-F-H-J-D+A,X+B,R-BU|

Now assume that there is a control U that satisfies the following requirement,
-F-H-J-D+A X+B _R-BU = KE 3.7
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where K is an (nxn) error feedback matrix. The substitution of Eq. (3.7) into Eq. (3.6) yields,

L - (A, +K)E = AE (3.39)

As the Eq. (3.8) indicates, any desired error system matrix A, can be obtained from the proper
choice of the error feedback gain matrix K. The control action U must be selected so that it
satisfies the requirements of Eq. (3.6). The best approximation of this solution is given by,

U=B'[-F-H-J-D+A,X+B,R-KE] (3.9)

where: B is a pseudo-inverse matrix defined as ((B T B)'IB T )

The constraint of Eq. (3.7) can always be met for systems that can be expressed in canonical
form. However, such a constraint would severely limit the usefulness of TDC. Therefore, the
only method of obtaining the desired error dynamics is by ensuring that the control action
satisfies the above equation. Since the terms H(Xt), J(X,U,t), and D(t) are all unknown in the
above equation, we must obtain an estimate for these terms. If the controller is sampling at a
fast enough rate, these terms can be estimated from their values at the previous sampling instant.
In other words,

HX) +JX,U1) +Dft) = HX,t-T)+ JX,Ut-T) + Dft-T) (3.10)
where: T = small time delay.

Rewriting Eq. (3.1) for the previous sampling interval,

X(e-7) = FXt-T)+HXt-T) + BX,t-T) Ut-T) + JX, Uz -T) + D¢ -T) @11

Rearranging,

HXt-T)+JX,Ut-T) +D¢-T) = X(t-T) - FX;t-T) - BXt-T) U(t-T) (3.12)

Substituting Eq. (3.12) into Eq. (3.10),

HX.)+JX,U8)+D{f) = X(t-T) - FX¢-T) - BX,t-T) Ule-T) (3.13)

The time delay control law is obtained by substituting Eq. (3.13) into Eq. (3.9) and is given by,

U) = B ()|~ FOG)-X0-T) + FOGe-T) + BX+-T)UG-T) + A, X0) + BR()-KEW) | (3.14)
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The time delay control law can be easily understood when it is divided into its four
constituent parts:

1. A pseudo-inverse matrix, B*(X,t), which nullifies the control matrix B(X,t) found in
the constraining equation -F-H-D+A _X+B_R-BU = KE

2. A undesired dynamics term, -F(X;)-X{t-T)+F(X,t-T)+B(X,t-T)Ut-T), which
attempts to cancel the undesired known dynamics F(X,t), the unknown nonlinear
dynamics H(X,t), the error in estimating the distribution matrix J(X,U,t), and the
unexpected disturbance D(t). These last three terms are estimated from the previous
sampling interval and are represented by X{¢-T)- F(X,t-T) - B(X,t-T)U{t-T).

3. A desired dynamics reference model term, A X(t)+B_ R(t), which inserts the ideal
system response.

4. An error feedback term, KE(t), which adjusts the error dynamics to compensate for
the difference between the ideal error response and the actual reference model's
response,

In essence, the time delay control algorithm first computes the ideal control action based
on the current state of the system and the desired dynamics reference model. It then estimates
the current unknown system dynamics using the state of the system at the previous sampling
interval(s), the final control action at the previous sampling interval(s), and the current error.
Using this estimate, the ideal control action is augmented to compensate for the unknown system
dynamics to produce the final control action. Because the time delay control algorithm uses
information from the previous sampling interval(s) to determine the unknown system dynamics,
it is critical for stability that the unknown system dynamics not change significantly between
sampling intervals. Therefore, a sufficiently small sampling interval is a necessary condition for
stability. Also, in the above derivation, the control distribution matrix B is assumed to be known
and linear.

3.2 Implementation Simplifications

As previously stated, a necessary condition for stability when using time delay control
is that the sampling interval must be sufficiently small. Sufficiently small however is a rather
vague term and differs from system to system. One of the variables that determine the maximum
theoretical sampling rate of a controller is control algorithm efficiency. In order to make the
algorithm as efficient as possible, certain simplifications were made to the algorithm to decrease
the computation time required to produce the final control action. This section will examine the
simplifications made to the time delay control algorithm and their implications on system
performance. The form of the time control algorithm used in this section is a slightly different
version of the one described by Eq. (3.14),

Ul) = B (X.t) - FiX;t) - X(-T) + F(X,t-T) + BX;t-T)U(¢-T)
+A4,X(t)+B R(t)-(A, —Am)E(t)]
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3.2.1 Constant Control Distribution Matrix, B(X,t)

If the control distribution matrix is assumed to be time and position invariant, then the
time delay control algorithm becomes,

Ul) = U-1)+ 1| - FXt) -Xle-T) + FXt-T) +4,X0) + BRU) -(4,-4,)E0)|  3.16)

This simplification eliminates the recalculation of both the control matrix and the pseudo inverse
matrix at each sampling interval. This is particularly important for multi-input systems but may
be of a lesser concern for single-input systems. This simplification also eliminates all division
operations from the algorithm because the reciprocal of the distribution matrix can be computed
previously and stored for use during input signal processing. This is particularly important for
efficient signal processing because most (if not all) digital signal processors require significantly
more cycles to divide than to multiply. For instance, the processor used by this controller
requires one cycle to multiply two floating point numbers and seven cycles to divide two such
numbers. The disadvantage of this simplification is that the control is less refined. The term
B*(X,t) is essentially the feedback gain of the controller. In this turbopump application, a gain
calculated at each sampling interval would allow the controller to apply higher gains depending
upon the rotor distance from the nominal center of the bearings. This could lead to better system
response and disturbance rejection properties. It would also lead to a greater lag between
position signal acquisition and control action application due to longer calculation times. Also
the distribution matrix is a function of time which could allow for smaller feedback gains during
the startup phase of the turbopump which would give the magnetic bearings and position sensors
time to settle before control was applied.

3.2.2 Error Dynamics Matrix Equals Reference Model Matrix (A, = A,)

If the error dynamics matrix (A,) is assumed to be equal to the desired dynamics reference
model matrix (A,), then the time delay control algorithm becomes,

U) = Ue-1)+L] - FXe) - Xe-T) + FX4-T) +4,X(t) + B R()|
or (3.17)

Ult-1)+5| - FIX)-X(e-T) + F=T) + A XIe) + BR()|

ule)

This simplification can be rewritten in an equivalent manner as K = 0. The advantage of this
simplification is the elimination of a multiplication step. For multi-input systems this would
become a matrix multiplication elimination. The physical interpretation of this simplification
requires some clarification. The Time Delay Control algorithm contains a desired dynamics
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reference model and an error dynamics model. The desired dynamics reference model represents
the ideal trajectory that we would like the system to follow. This is the command following
portion of the algorithm. The error dynamics model represents the response we would like the
system to take in response to any error between the actual state variables and the desired
dynamics reference model state variables. This is the disturbance rejection portion of the
algorithm. Setting the desired dynamics reference model matrix equal to the error dynamics
matrix effectively eliminates the contribution that the command following portion of the
algorithm has upon the system response. We are not interested in the trajectory of the system
but merely in the difference between the actual state variables and the reference variables. The
ramification of ignoring the command following portion of the algorithm for this particular
system is that the response during the startup phase will be less then optimal particularly for the
axial magnetic bearing. At startup, the rotor is generally the farthest it will be from the
equilibrium position. The use of the command following portion of the algorithm would provide
optimal response during this phase. Without it, the system is subject to large overshoots and
longer settling times. However the startup phase is such a brief portion of the time that the
controller spends controlling the turbopump that the added algorithm efficiency derived from
such a simplification is justified.

3.2.3 Final System Specific Simplifications

The final simplifications to the Time Delay Control Algorithm are related specifically to
the system we are working on and therefore may not be generally applicable. The first
simplification is specifying that all the dynamics of the system are unknown or F(Xt) = 0.
Therefore,

Ul) = Ut-1)+1[ - X(e-1) +4 Xe) + B R(r)| (3.18)

This places a greater reliance on the ability of the Time Delay Control algorithm to correctly
compensate for the unmodeled dynamics. This in turn places greater emphasis on the proper
choice of the controller sampling rate. This simplification increases the efficiency of the
algorithm but it also most likely requires a higher sampling rate which may actually negate the
efficiency gains.

The final simplification pertains to the reference signal. For this particular system that
reference signal is zero and therefore,

) = Ue-1)-1{X(r-1) -4 Xt0)| 3.19)

The above equation represents the limit to how efficient the Time Delay Control algorithm can
become.
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3.3 Summary and Remarks

This chapter introduced the Time Delay Control Algorithm and demonstrated how it uses
information from the previous sampling interval(s) to predict the uncertain system dynamics.
This characteristic is the compelling reason for using Time Delay Control with this magnetic
bearing turbopump application. The attractive magnet force applied by each magnetic bearing
is proportional to the square of the coil current and inversely proportional to the square to the
gap between the rotor and bearing. Therefore, the equations of motion of the rotor are inherently
nonlinear. Also the system is subject to disturbances characteristic of rotating machinery such
as rotor gyroscopic effects, rotor imbalance, and rotor flexibility. It is impractical to design a
controller using a model which incorporates all these properties and therefore the model must be
simplified. For this application, this simplification entails linearizing the equations of motion and
ignoring most of the rotor dynamic effects. It is hoped that the inherent strengths of Time Delay
Control with compensate for the deficiencies in a controller designed using such a simplified
model.

Time Delay Control is not without its own problems. It is a necessary condition of Time
Delay Control that the sampling interval be sufficiently small. There is currently, however, no
method for quantifying sufficiently small nor for determining the optimum sampling interval.
Therefore this researcher simplified the control law if an effort to make it more efficient. The
increased efficiency of the algorithm would allow for faster sampling rates thereby increasing the
range of possible sampling intervals from which to determine the optimum sampling interval.
These simplifications are also necessary because, due to cost considerations, all five axes will be
controlled using only one processor. This requires that the control algorithm must be processed
five times per sampling interval and therefore algorithm efficiency is of paramount importance.
These simplifications however come at a price. Most of these simplifications primarily effect
the startup phase of the control process and will probably lead to less than ideal initial time
responses. However, the exclusion of all known system dynamics from the control algorithm
places more importance on determining the optimal sampling interval.
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Chapter 4

Controller Description and Design

This chapter describes the hardware that constitutes the controller and the design process
used to arrive at the final controller design. A detailed account of the process to determine the
sampling rate and the other controller parameters required by the Time Delay Control (TDC)
algorithm is also provided. Next the actual structure of the program is examined in an effort to
explain how system dynamics and hardware limitations actually effect the controller
implementation. Then the system characteristics that were not accounted for in the theoretical
model but which must be addressed during the implementation process are examined. Finally,
the design methods used to produce the filters necessary for proper operation are provided and
the manual tuning process is outlined.

4.1 Physical Description

The digital controller hardware has the following three major components: 1) the Digital
Signal Processor (DSP) board, 2) the Input/Output (I/O) Controller board, and 3) the I/O Interface
board. Both the DSP board and the I/O Controller board occupy slots on a Personal Computer
(PC) bus and draw power through that bus. Only the DSP board is addressable using ports
allocated from the PC’s free port address space. The address of the port is set through jumpers
on the DSP board. The DSP board and the I/O Controller board are physically connected by two
ribbon cables located at the top edge of each board. The I/O Controller board and the I/O
Interface board communicate via a ribbon cable which attaches to external connectors located on
each board. The I/O Interface board is a circuit board having a leg at each corner to allow it to
be free standing. This is the only board situated outside the PC. Figure 4-1 displays each board
and the components that comprise their circuitry.

4.1.1 DSP Board

The primary components of the DSP board are the DSP chip, the memory, the timer chip,
and the PC interface logic chips. The DSP chip is an Analog Devices ADSP-21020. The chip
natively supports integer and floating point operations, has sixteen 48-bit general purpose
registers, an accumulator, a multiplier, and a barrel shifter. The chip supports interrupts and the
register set can be split to support nested interrupts. The chip can address up to 16 Megawords
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of 48-bit program memory and 4 Gigawords of 48-bit data memory on separate buses. The data
memory can be partitioned into program and data subspaces so that programs can execute code
residing in data memory. The DSP chip has a clock speed of 33 MHZ and each instruction
executes in one clock tick. The chip is capable of executing two instructions per clock tick
provided that one instruction uses only the general registers and the accumulator, multiplier, or
shifter and the other instruction uses the general registers and a program or data memory
operation.

The board is populated with 32 Kilowords of 48-bit program and data memory. The first
256 words of program memory are reserved for the interrupt vector table. The program memory
address space at 800000h is mapped to two A/D registers on the I/O Controller board which
allows values to be passed between the two boards. The data memory address space at
20000000h is mapped to other registers on the DSP board. These registers allow communication
between other components on the board such as the timer chip and the PC Interface logic chips.
The data memory address space at 40000000h is also mapped to three registers on the I/O
Controller board. Two of these three registers maps the D/A registers and the other one controls
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the number of A/Ds and D/As that are to be used.

The timer chip has a 33 MHZ clock speed and is addressed through two registers. One
register holds the current count and the other is the reload register. At each clock tick, the
current count register is decremented. When the register reaches zero, an interrupt is generated
and the value in the reload register is placed in the current counter register. The value in the
reload register is the number of clock ticks between interrupts and therefore corresponds directly
to the required sampling rate.

The PC Interface logic chips are responsible for handling all communication between the
DSP and the PC. These chips contain registers that allow the uploading or downloading of data
to and from program and data memory. They also provide a status register that can be used to
quickly send one word of data to the PC. The PC Interface logic chips are incapable of
generating interrupts on the PC bus and therefore polling the status register is the only way of
obtaining real time information from the DSP board.

4.1.2 1/0 Controller Board

The 1/O Controller board has the following four components: 1) the Analog-to-Digital
converter (A/D), 2) the A/D First In, First Out queue (FIFO), 3) the Digital-to-Analog converter
(D/A), and 4) the D/A FIFO. Both FIFOs map a register into the DSP board address space so
that the DSP chip can transmit values to the D/A FIFO and received values from the A/D FIFO.
The number values sent to or received from the FIFOs must be equal to the value specified in
the channel register. This register is also mapped to the DSP address space and allows for up
to seven A/Ds and D/As to be chosen. If the values sent or received is not equal to the channel
register value, garbage values will be returned or the FIFOs will fill up depending upon
circumstances. Two other registers are also mapped into the DSP address space and these are
the A/D and D/A status registers. They show when a conversion is taking place and whether the
FIFO is full or empty.

The A/D is a 14-bit design having a range of +5V. The A/D data is a left-shifted twos
complement binary number. The D/A is a 16-bit design also having a range of £5V. The D/A
data is essentially a twos-complement value with the sign bit negated. Normally A/Ds and D/As
produced by the same manufacturer and populating the same board have the same bitness. It was
probably cost constraints that prevented the A/Ds from also being 16-bit. Also, A/Ds and D/As
produced by the same manufacturer and populating the same board usually have the same method
of representing data values for reasons of consistency. However, on this board, the D/A data
values have a somewhat awkward representation.

Finally, the relationship between the number in the channel register and what A/Ds or
D/As are addressed must be elaborated on. If the programmer specifies one A/D for instance in
the channel register, the first A/D is accessed. If two A/Ds are specified, the first two A/Ds are
accessed. If three A/Ds are specified, the first three A/Ds are accessed and so on. The
ramifications of this design decision is that the A/Ds are not individually addressable. Therefore,
if the programmer only wants the value from the fifth A/D, five A/Ds must be specified in the
channel register and the program must wait for five conversion processes to take place. The
program then must retrieve four values from the A/D FIFO and throw them away in order to get
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to the fifth value. This same process also applies to the D/A except five valid values must be
loaded into the FIFO before conversion. Also there is no way to specify that only one
conversion process should take place -- either A/D or D/A. A program can only specify that a
full conversion process should take place. When a conversion process is triggered by a program.
First the number of D/A data values specified in the channel register are converted and then the
number of A/D data values specified in the channel register are converted. Depending upon the
implementation, this could lead to wasted time doing unnecessary conversions.

4.1.3 1/0 Interface Board

The I/O Interface board consists of seven A/D connectors, five D/A connectors, and their
associated filters. The connectors mimic those found on most oscilloscopes and test equipment.
The filters are second order Butterworth designs implemented using an RC circuit. The cutoff
frequency can be altered by replacing the resistor packs on the board. However, changing the
resistor packs also changes the DC offset of the associated A/Ds and D/As. Generally, the DC
offset increases as the cutoff frequency decreases.

4.2 Controller Design

A controller is only as good as the theoretical model it was designed to control. The
degree to which the theoretical model mimics the actual system determines how well the
controller performs initially and how much manual tuning will be necessary to obtain satisfactory
performance. The process of designing a robust controller requires that the engineer have some
feel for what performance measures are important. The importance of a particular performance
measure is in part dictated by how the application is to be used. For instance, a robot arm would
require a strong emphasis on command following whereas an aircraft autopilot would require a
strong emphasis on disturbance rejection.

In this turbopump, as with all turbomachinery applications, disturbance rejection is the
critical performance measure. Command following does play a minor role during the startup
phase when the magnetic bearings are just being powered up and the rotor is at an unknown
position. The startup phase however lasts on the order of seconds while the operating phase lasts
on the order of hours or even days. With turbomachinery, the bearings are subject to
disturbances brought about by gyroscopic forces, rotor imbalance, and rotor flexibility. This
turbopump also operates at high rotational speeds thus magnifying these effects.

Disturbance rejection takes on a greater importance when the simplifications to the system
model are reviewed. The original linearized equations of motion of the rotor have the following
form,

Radial Bearing 1X

4C,k1L AC,kI; . . 2C, kI, 2C, kI,
= — %t —% - CY + Oy + ——u, + ——u,
hO ho ho "o
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Axial Bearing

7 4 2kI
= —z+ —u,
mhg mhy

The axial bearing equation of motion lends itself well to classical design techniques but
further simplifications must be performed on the radial bearing equation of motion. The first
simplification is that the controller will be designed for the case when the rotor is not spinning.
This simplification means that all gyroscopic effects will be ignored in the design process.
Therefore manual tuning on the actual system will almost assuredly be required. This manual
tuning however can be minimized if the gyroscopic effects are treated as a disturbance thereby
placing further emphasis on disturbance rejection performance. With this simplification, the
radial bearing equation of motion becomes,

ACkI? AC,kI2 2C, kI, 2C, kI,
= 130x1+ 330x2+ lzou + 320
hy hy hq hy

*; £}

The final assumption is that the contribution to the radial bearing equations of motion attributable
to the coupling between the radial bearings can be treated as a disturbance. The radial bearing
equation of motion then takes on the form of the axial bearing equation of motion,

4C, k12 2C,kl,
170 xl + 1*%0

3 2

hy hy

1

%y

Now the radial bearing equation of motion is also in a form that makes it possible to utilize
classical design techniques. However the net effect of all these assumptions is an increased
reliance on good disturbance rejection and manual tuning.

These assumptions were carried out in the Chapter 2 during the system identification
phase of the design process. During that phase, it became apparent that the most accurate
transfer function was obtained by using a best fit recursive technique. However, this technique
was optimized to produce the most accurate fit up to 1000 Hz. The region above 1000 Hz is
dominated by high frequency dynamics. Including this region in the best fit recursive analysis
tends to create a derived transfer function which is less accurate within the 100 to 1000 Hz
region. The 100 to 1000 Hz region lies within the probable bandwidth of our controller while
the region above 1000 Hz does not. Therefore, the best fit recursive analysis ignores high
frequency region and any controller designed using this transfer function must provide adequate
attenuation of the control signal after 1000 Hz to prevent excitation of unmodeled system
dynamics at higher frequencies.

Now the choice of Time Delay Control (TDC) as the control algorithm becomes apparent.
TDC utilizes information from the previous sampling interval(s) as well as the current error
signal to determine the unmodeled dynamics at the previous interval. Provided that the sampling
interval is sufficiently small, the unmodeled dynamics will not change significantly during this
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interval. Therefore the control algorithm has an estimate of the present unmodeled dynamics and
augments the control signal to compensate. It is hoped that this augmentation will be sufficient
to compensate for the coupling effects, gyroscopic effects, and any other disturbances the system
may encounter.

This may seem like too much to ask considering the number and the nature of the
simplifications made but previous research suggests otherwise. TDC has been applied separately
to both the axial bearing and a radial bearing with encouraging results. However, what is
missing in all previous work is a rigorous systematic procedure for designing a controller using
TDC. This thesis will not attempt to define a definitive design procedure but merely to document
one attempt at rigorous design so that others learn and perhaps carry the process further.

4.2.1 Sampling Rate Determination

A necessary condition for stability of the Time Delay Control (TDC) algorithm is that the
sampling interval be sufficiently small such that the unmodeled system dynamics do not change
appreciably between sampling intervals. To date, previous research has not addressed how to
determine the appropriate sampling rate. Generally, the sampling rate has been determined by
engineering experience or hardware limitations. These methods are fine for research purposes
but quite unsatisfactory given real world economic constraints. Sampling at a higher than
required rate may not adversely effect performance but it can lead to the use of higher priced
hardware then otherwise would be required.

The use of TDC as the controller algorithm also places additional emphasis on proper
sampling rate determination. The simplified TDC law derived in Chapter 3 was defined as,

Ul = Ue-1)-L[Xte-1) -4, X0
Taking the Laplace transform and computing the transfer function yields,

us) _ e Ts-A,

Xls) Bll-e™™)

This transfer function demonstrates that TDC can be thought of as a nonlinear form of PID
control. It also demonstrates that the sampling rate effects both the derivative and integral
portions of this PID controller. When a continuous time control algorithm is implemented
digitally, the sampling rate normally just effects the stability of the system and is a function of
the Nyquist frequency. With TDC, the sampling rate not only effects system stability but also
system performance. Figures 4-2 and 4-3 show how the sampling rate effects the performance
of radial bearing 2X when the remaining controller variables are held constant.

While determination of the proper sampling is crucial in producing a stable system, it is
not the only factor. There are other controller parameters that also effect the stability of the
system and these parameters cannot be ignored in determining the proper sampling rate. Thus
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the effect that sampling rate has on the stability of the system must be viewed in concert with
the effects the other parameters also have upon system stability.

The equations of motion of the rotor define the acceleration in terms of control current
and rotor position. Therefore the state variables of the controller must mimic the physics of the
system and hence,

Obviously a,; = 1 and a,, = 0. The acceleration component has the following form,

au an|x

X =a,xX+a,x or X-a,%-a,x =0
The Laplace transform of the above takes on a familiar form,

(sz-ans—alz) Xs)

Thus,

2
-a,; = 2Qo0, and -a, = 0,

where: { = damping ratio
w, = natural frequency

The simplified TDC law now becomes,

1 [He-T) +2{ 0, 41) + )
e - 1) -x()

Since a necessary condition for stability is that the unknown system dynamics do not change
appreciably between sampling intervals, this implies,

He-T) = )

Finally, the simplified TDC law becomes,

uy = Ur-1)-5

o) = U= 2 [#e-1) + 200, e-1) + )
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The reason for the substitution of the velocity terms in the above equation will become apparent
later. The TDC law requires both the acceleration and the velocity of the rotor whereas the
system only provides the position signal. Therefore the derivative must be calculated and for the
time delayed values, a backward difference representation is used,

#-1) = 2H2D oy

The velocity is derived by the position signal supplied by the position sensor. The acceleration
however is derived using the previously derived velocity. This introduces a problem because a
characteristic of differentiators is that they amplify signal noise. Therefore, it is quite possible
that the actual acceleration derived from the velocity approximation may be overwhelmed by the
signal noise especially in applications where the sensor is particularly noisy.

Finally, the parameter B is the conversion factor between acceleration and control current.
This conversion factor is defined by the physical characteristics of the magnetic bearings. If this
conversion factor is denoted as b, then the value of parameter B is defined as,

1_X
B b

where: K = feedback gain

Throughout the remainder of this thesis, B will be referred to as the feedback gain and not by
its separate components. As such it is not a true gain but does contain the conversion factor and
has the appropriate units.

The parameters of the controller have thus been defined as,

T =sampling interval
B = feedback gain
{ = damping ratio
w, = natural frequency

The objective is to determine how variations of the four controller parameters effect the stability
of the closed loop system. In an effort to visualize this four dimensional variable space, a two
dimensional plot was created in which each element of that plot was itself a two dimensional
plot. Figure 4-4 is provided as an aid in understanding this visualization technique. The overall
plot has a horizontal axis which charts the sampling interval and a vertical axis which charts the
feedback gain. Each elemental plot has a horizontal axis which charts the damping ratio and a
vertical axis which charts the natural frequency. All of these plots have their origin at the top
left corner with the horizontal variable increasing from left to right and the vertical variable
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increasing from top to bottom. Within each elemental plot, a stable system was denoted by a
plotted point. This four dimensional space was converted to a two dimensional plot by laying
the elemental plots end to end. The axis lines delineating the elemental plots were then removed
so as not to be confused with the plotted data.

Figure 4-5 represents just such a plot for radial bearing 2X. The parameter ranges over
which the data is plotted are,

Parameter Range
Sampling Interval (1/Hz) 1/1000 -1/ 50000
Feedback Gain 10 - 1000
Damping Ratio 0.1-10
Natural Frequency (rads/sec) 100 - 1000

One notable trend is that the stability data is clustered into contiguous regions and not scattered
throughout each elemental plot. The damping ratio and natural frequency parameters exhibit
trends that are somewhat different from the remaining parameters. Both the damping ratio and
natural frequency have increasingly larger stability zones as their values increase. Eventually
these stability zones peak and then begin to decrease as the values continue to increase. On the
other hand, the sampling interval exhibits increasingly larger stability zones as its value increases
whereas the feedback gain parameters exhibit the opposite trend. However, the emphasis is to
determine the optimal sampling rate and stability alone is not sufficient to allow such a
determination.

The next step is to define just what constitutes the optimal sampling interval. The
assumption is made that the optimal sampling interval is the interval which produces the largest
aggregate stability region. As the aggregate stability region increases, the upper and lower
bounds of the remaining parameters that produce stable systems also increases. As the parameter
ranges increase, the number of possible stable controllers increases. As the number of possible
controllers increase, the likelihood of finding the optimal controller within that region also
increases. Simply put, the larger the aggregate stable space, the greater the probability of finding
the optimal controller within that stable space. The aggregate stable space is merely the sum of
the plotted stable systems having a common sampling interval. This assumption by itself does
not alter the conclusions from the current analysis because the plot clearly shows that as the
sampling interval decreases, the aggregate stability space increases. Figure 4-4 displays the
aggregate stable space as a function of decreasing sampling interval for all five axes.
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Using the aggregate stability space assumption, a further constraint is placed upon the
analysis. Given the set of points defined by the four controller parameters that produce stable
closed loop systems, how many also produce bandwidths that fall within the probable bandwidth
of the optimal controller. The upper bound of the bandwidth of the controller is defined by the
use of the best fit transfer function as the model of the open loop system. This model is only
valid up to 1000 Hz and therefore the bandwidth upper bound must also conform to that limit.
However there is the added constraint that the control signal be adequately attenuated at the
model limit of 1000 Hz. The theoretical closed loop system has six zeroes and seven poles.
Therefore the slope at high frequencies will be -20 dB/decade. Assuming a maximum gain of
-20 dB at 1000 Hz and a slope of -20 dB/decade, the maximum bandwidth upper bound of
approximately 200 Hz. The determination of the lower bound however is still a matter of
engineering experience which later must be verified by the actual system performance. Ideally,
the bandwidth of the system should be as close to the maximum allowable as possible. Therefore
the lower bound was chosen as 100 Hz.
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Figure 4-5 shows the results of this added constraint. Not only is there a maximum
aggregate stable space for each axis but that maximum falls within the attainable minimum
sampling interval set by the combined factors of DSP chip speed, I/O hardware conversion rates,
and algorithm efficiency. This figure also highlights a problem with using TDC as the control
algorithm for this particular application. TDC requires that the sampling interval be sufficiently
small for stability to be assured. However, given the current assumptions in the present analysis,
the optimum sampling interval is different for each axis. Yet, if only one DSP chip is to be used,
then only one sampling interval can be chosen. Hence, there is a high probability that the
theoretically optimum controller will never be realized if TDC is the control algorithm.

This also raises the question of which sampling interval to choose. For this particular
application, the failure of one axis causes the entire system to fail. Therefore the system
sampling interval should be optimal sampling interval of the axis that is most likely to fail first.
Again, engineering experience dictated that either the 2X or 2Y radial bearing would be the first
to fail due to their larger distance from the rotor center of gravity. Later testing on the actual
system would prove this assumption correct. Given all of these factors, the sampling rate of the
system was set at 10000 Hz.
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There are also problems associated with this method of determining the optimal sampling
rate. The sampling rate at which the maximum aggregate stable systems are produced varies with
substantially with the upper bound of the allowable bandwidth as shown in Figure 4-6. Ideally,
the bandwidth upper bound should be approximated initially and modified once the bandwidth
of the actual closed loop system is obtained experimentally. This in turn would lead to a new
optimal sampling rate which would cause the bandwidth of the actual closed loop system to
change again. Hence the optimal sampling rate analysis becomes a recursive process which halts
when there is little change in either the sampling rate or the actual closed loop system bandwidth.
This recursive method was not used by this researcher due to the lack of easy access to a system
analyzer.

The purpose of the sampling interval analysis was to eliminate the use of engineering
experience as the criteria for its determination. In that regard it has not been wholly successful.
However, it is the contention of this researcher that using engineering experience to estimate the
upper and lower bounds of the probable bandwidth of the closed loop system is a far better
proposition then basing its determination on experience alone.
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4.2.2 Velocity Derivation

Previously, the simplified TDC law was shown to be,

- v T2 ) )
S

A necessary condition for stability is that the unknown system dynamics not change appreciably
between sampling intervals. This implies,

He-1) = #{f)

This provides an opportunity to choose which term should be used to represent the velocity in
this implementation of the TDC law. The proper choice is related to the method by which each
term is determined when implemented in digital form. The choice then becomes one between
the backward difference representation or the central difference representation,

) = 3x{t) - 4x(t-T) +x{t-21) | ofT?

2T

A1) = 2220 opry

The best representation was determined by calculating the velocity returned by each difference
formula from a sample of the noise generated by the position sensors. This noise sample was
obtained by sampling the position signal of each axis when the magnetic bearings of all the axes
were unpowered. Figure 4-7 shows a portion of the results from such an analysis when
performed on the 2X radial bearing. Clearly, the central difference representation is less
responsive to the sensor noise and therefore X{¢t-7) was chosen as the term to represent the
velocity in the TDC law.

4.2.3 Optimal Controller Determination

With the value of the sampling interval resolved, there still remains the question as to how
the values of the remaining controller parameters will be determined. Many assumptions were
made in the radial bearing equations of motion to reduce their complexity enough to allow the
use of classical design techniques. Due to these assumptions, the major requirement of the
controller is that it be as stiff as possible. Therefore the maximum value of the disturbance
rejection plot is of paramount importance. Due to the use of the best fit transfer function as the
open loop model of the system, there must be adequate attenuation of closed loop system at and
above 1000 Hz. Another design criteria is to maximize the bandwidth of the closed loop system.
Higher bandwidth allows the system to react to higher frequency signals. This leads to faster rise
times and generally faster system response.
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Finally, the maximum closed loop gain must not exceed 10 dB. This design criteria
requires some explanation. The response of the closed loop is dominated by two underdamped
poles. If the closed loop system is viewed as a purely analog system (i.e. the digital controller
can be accurately represented by Laplace transforms), these poles lie in the left half plane
symmetrical to the real axis. As the parameters of the controller change, these poles move within
the left half plane region. However, as the poles move closer to the right half plane, the system
becomes more oscillatory. The movement of these poles closer to the right half plane also

produces a bode plot with a maximum
magnitude exhibiting a spiked appearance as
shown in Figure 4-8. Therefore, the final
criteria is that the maximum closed loop gain
shall not exceed 10 dB. This upper bound
effectively limits how oscillatory the closed
loop system will become.

The performance criteria outlined
above provide guidelines for designing the
controller. However, the majority of these
criteria are vague and provide no concrete
numerical values on which to base
calculations. The question is then how does
one design a controller using these criteria.
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The remainder of this section with describe one method of designing a controller using the above
criteria. It is by no means the only way nor is it the best way to approach this design problem.

The vagueness of the performance criteria and the magnitude of the aggregate stable space
necessitated a brute force approach. From the data used the map the four dimensional stable
space, a subset of the stable systems having a sampling interval equal to the optimum sampling
interval was removed. Using this subset, a histogram of each of the parameters B, ¢; and w, was
produced. Using the mean and standard deviation of each histogram, the outliers of each
parameter were removed thus compressing the upper bound and lower bound of each parameter.
A program was written that recursed through the allowable range of each parameter and
calculated the following,

1. System stability

2. Maximum compliance

3. Maximum closed loop gain
4. Bandwidth

5. Closed loop gain at 1000 Hz

From this data, all unstable systems and systems with maximum closed gains in excess of 10 dB
were removed. The remainder was sorted by increasing maximum compliance, bandwidth,
increasing maximum closed loop gain, and gain at 1000 Hz. This data would be the basis on
which the final controller would be designed. This analysis was performed on each individual
axis.

This produced a large number of possible controllers but considering the assumptions
made to simplify the model, this number would most likely drop substantially when tested on the
actual hardware. This was especially true when examining the beginning of the sorted controller
list. The controllers having small maximum compliances had small values for the feedback gain
parameter B. Experience with the turbopump system suggested that controllers having such small
feedback gains would not produce stable systems. Due to the number of simplifications made
to the theoretical model, the controller list was not viewed as a strictly quantitative solution.
However the data could be used qualitatively, thus providing a starting point and also
enumerating trends in how parameter variations effected different performance criteria.

4.3 Controller Implementation

Considerable engineering went into designing the digital controller in the form of analysis
and simulations. However, designing the controller is only half the battle. Careful engineering
must also go into the implementation of such a controller on the given hardware. Such aspects
as DSP chip architecture and speed, memory sizes, and I/O board conversion rates are all taken
into account during the implementation process. The implementation process took on added
significance given the inflexible design of the I/O Controller board. This section attempts to
explain the design decisions made during the implement process and shed some light on the
somewhat complex structure of the final program.
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4.3.1 Parallel versus Serial Processing

Perhaps the most critical design decision concerned the control signal processing
paradigm. Parallel processing is one way in which the control signals could be processed and
this was method that the I/O Controller board designer assumed would be used. With parallel
processing, a conversion process is triggered which causes all D/As to output the control signal
values calculated during the previous sampling interval. After all output values have been
converted, the I/O Controller turns its attention to the A/Ds and converts all incoming values for
processing by the DSP chip. The digital controller would then sequentially examine each input
value form the A/D FIFO, calculate the proper control signal, and place the control signal value
in the D/A FIFO. The controller would then wait till the next sampling interval to trigger a
conversion process which would again send out the values in the D/A FIFO and replenish the
A/D FIFO with new converted values.

The advantage of this technique is reducing the overhead associated with the A/D and
D/A conversion process. The disadvantage is that the control signal calculated from information
gathered during the current sampling interval is not applied until the beginning of the next
sampling interval. This time lag means that the control signal may be outdated and therefore
could actually degrade system performance. Of course, all digital controllers are subject to
computational lags but good engineering should keep these lags to the bare minimum.

There is a method that the digital controller can employ that will reduce the time delay
to a minimum. When the timer triggers the digital controller, the controller can notify the I/O
Controller board that there are no D/As before triggering the conversion process. Then after
determining the updated control signals, the controller can place the values in the D/A FIFO,
notify the I/O Controller board that there are no A/Ds, and trigger a conversion process. This
technique eliminates the lag spent waiting for the next timer event to occur. There is however
a lag induced by that requirement that all control signals for all the D/As must be calculated prior
to triggering the conversion event. This lag becomes worse as the number of axis under digital
control increases. There is also a slight increase in computation time incurred from wait states
imposed by the I/O Controller board while updating the number of A/Ds and D/As in use during
each conversion process.

The alternative to parallel processing is serial processing. However, due to the design of
the I/O Controller board, this form of processing incurs substantial overhead. With serial
processing, the controller is only processing the values for one axis. Since the A/Ds and D/As
are not individually addressable, the conversion process must take place for all axes as in the
parallel processing method. Only one of the values however is required and therefore the
controller incurs the overhead of converting unnecessary values. For this particular system, the
A/D conversion time was approximately 20 ms per axis. In fact, the overhead incurred through
unnecessary conversions was longer then the control algorithm computation time.

Another disadvantage of serial processing is that the computation time for each axis must
be significantly less than the sampling interval. With parallel processing the average computation
time per axis is merely the sampling interval divided by the number of axes. If the value of the
input causes one axis to take a little longer to compute, the extra time could be regained by an
easy computation on another axis. With serial processing, the computation and conversion time
must be one-fifth the sampling interval or interrupts will be lost. With the added overhead of
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the conversion process inherent to serial processing, the algorithm efficiency becomes of
paramount importance.

Given the disadvantages outlined above, parallel processing would seem to be the obvious
choice. However, serial processing has one important advantage when used with a system of this
type. Parallel processing outputs all of the values simultaneously and inputs all the values
simultaneously. In a system where coupling between one or more of the axes is expected, this
method enhances the coupling effect. Serial processing by its very nature allows some control
of the coupling effect through proper choice of axis computation order. For instance, if radial
bearing 1X and radial bearing 2X are assumed to be coupled, the order of computation might be
1X, then 1Y, then 2X, then 2Y. The time in between processing 1X and 2X would allow some
of the coupling effects to appear in the other bearing. Therefore the digital controller would have
the chance to compensate for the changes induced by the control signal imparted on another axis.
This advantage was deemed important enough to offset all previously cited disadvantages and
serial processing was chosen as the computational method.

4.3.2 Digital Controller Program Structure

Algorithm efficiency is particularly important with this application and the structure of
the controller program reflects that. Any variable that might possibly require modification is
defined as a constant at the top of the program. The vast majority of the code calculates the
variables needed in the control algorithm from these constants during the initialization phase.
For instance, the values of ¢ and w, are defined as constants for each axis at the top of the
program. The initialization code then calculates the value of 2{w, for use by the control
algorithm and stored as a variable in data memory. If the algorithm requires division by a
constant, the reciprocal is calculated during the initialization process and stored in a data variable.
This is required because the division process takes seven cycles while the multiplication process
only requires one.

Data variables stored in data memory can be accessed directly by name or indirectly by
using pointers. The DSP chip can process two instructions per cycle if one instruction involves
on chip calculation and the other involves memory access. However that memory access must
be through pointers and not through direct addressing. Therefore pointers are used throughout
the control algorithm. The data variables are organized in memory in the order in which they
will be used in the program. There is no overhead incurred when data memory is addressed
sequentially therefore careful organization of data variables improves processing speed.

The maximum amperage that can be drawn by all five axes is ten amps. Therefore the
controller limits the maximum control signal to two amps. The control signal is checked before
being sent to the D/A FIFO and truncated to + 2 amps if required. The TDC algorithm utilizes
the value of the previous control signal to compute the current control signal. If for some reason
the system is unresponsive, the value increases until the system reacts. For high gain controllers,
the control signal can build quickly but because of the amperage limit, the system will saturate.
Thus the system exhibits the same characteristics normally attributed to integrator windup. In
order to prevent this, if the control signal exceeds + 2 amps, not only is the output control signal
truncated but the value of the control signal stored in data memory is also truncated.
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The initialization phase is also responsible for calculating conversion factors, initializing
the timer chip, and setting the DSP chip into interrupt mode. After completing all these tasks,
the program runs in an endless loop waiting for a timer interrupt. When a timer interrupt is
generated, the processor jumps to the interrupt table which in turn jumps to the digital controller
routine. The routine queries the axis number data variable and immediately triggers a conversion
event. Since this will take some time, the algorithm initializes all the pointers based upon the
axis number. The routine then polls the I/O Controller board waiting for the conversion to
complete. Upon completion, the conversion factor is applied to the proper input value and the
control signal is calculated. After testing for saturation, the routine notifies the I/O Control board
that there are five D/As and no A/Ds. It then stuffs five values into the D/A FIFO and triggers
a conversion event. The routine polls the I/O Controller board waiting for the conversion to
complete and then updates the data memory variables for the next interrupt, notifies the I/O
Controller board that there are five A/Ds and no D/As, and increments the axis number data
variable.

4.4 Other Implementation Issues

The objective thus far has been to design a robust digital controller employing the TDC
law using classical design techniques. This could only be achieved by making specific
simplifications to the model. Therefore, certain characteristics of the system and the hardware
were ignored during the modeling process. However, these and other characteristics cannot be
ignored during the implementation process because of their detrimental effect on the robustness
of the controller. This section briefly describes certain system characteristics that were deemed
to have a detrimental effect on overall stability and the methods used to remove their harmful
effects.

4.4.1 Bending Modes

A significant problem inherent to high speed turbomachinery is rotor flexibility.
Precautions must be taken to ensure that the control signal does not excite the major bending
modes of the rotor which could lead to instability. Figure 4-9 is a frequency response plot
provided by the manufacturer which displays the bending modes of a typical rotor assembly. Of
particular concern are the first two bending modes at 1045 and 2230 Hz. One of the criteria in
the design of the digital controller was that there be adequate control signal attenuation at 1000
Hz due to the limitations of the theoretical model. However, this attenuation may not be
sufficient to guarantee that the first or second bending mode will not be excited. Therefore, as
an added measure of insurance, notch filters were added to the system at the first two bending
mode frequencies. Both filters were implemented in hardware using op amps and breadboards.
These filters were incorporated in a filter box which lies underneath the I/O Interface board. All
signals coming to the A/Ds and from the D/As must first pass through this filter box. A switch
was also installed that would bypass the first bending mode notch filter. No provision was made

52



to bypass the second bending mode.
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4-11 Rotor Assembly Bending Modes

4.4.2 Sensor Noise

An important consideration in controller implementation is sensor noise. The sensor noise
was obtained by capturing the sensor signal while the magnetic bearings were unpowered. In this
mode, the rotor would be resting on the axial touchdown bearing and therefore essentially
motionless. This captured data was then corrected to remove any offset since the rotor is not
guaranteed to be in the center of the magnetic bearings when they are unpowered. A power
spectrum analysis was carried out on this corrected data and the results plotted. Figure 4-10
shows that results of this power spectrum analysis of the 2X radial bearing. The results in this
figure are representative of the data obtained from the other sensors. As shown, this system is
particularly noisy at approximately the 200 Hz region which lies within the probable bandwidth
of the controller. To minimize the impact of this noisy sensor, a notch filter was implemented
in software to attenuate signals within this region. A software implementation was chosen so that
the notch position and notch width could be easily changed to tailor each filter to the needs of
each axis. Obviously, this would increase the control algorithm computation time but the added
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versatility of the software implementation was important enough to warrant the delay. Special
emphasis was placed on implementing a very efficient software notch filter in order to minimize
the extra computation time needed.
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4-12 Position Sensor Noise Spectrum

4.4.3 Anti-Aliasing Filter

There were two problems associated with the design of the filters used by A/Ds and D/As
on the I/O Interface board. The first problem stems from the choice of filters used. The I/O
Interface board was designed for very fast sampling rates. Therefore, the filters would also have
to be very fast so that the actual signal level would be obtained quickly. In the instance of the
D/A, a slower filter may not reach the required signal level before the next sampling interval
changes the level. Fast filters require fast rise times and herein lies the problem. The choice of
filter was a second-order Butterworth filter. As with all second-order systems, very fast rise
times lead to very high overshoots which in turn introduces noise into the signal. These
overshoots were very noticeable when viewed on an oscilloscope. An experiment was conducted
in which a function generator was connected to an A/D and the HP System Analyzer was
connected to a D/A. A small program was written which at each sampling interval, grabbed a
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value from the A/D and output it directly to the D/A. Using this program, the HP System
Analyzer captured a time series output of the D/A while inputting a simple sine wave via the
function generator. The results of this experiment are shown in Figure 4-11.

To alleviate this filter induced noise,
the filter box contains low-pass filters for the
D/As having a cutoff frequency of 15 KHz. aore
These were implemented in hardware and sors
proved sufficient to remove most of the S aon
energy of the spike. The same filters are also
used for the A/Ds but there is no way to i
place a filter between the filters and the A/D
FIFO. There is probably very little danger of sent
the filters corrupting the A/D signal because [T ottt e b bt el
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the A/D settling time is most likely far Time (secy)
slower then the filter settling time. - : ;

The second problemgagain arises due 4-13 D/A Sine Wave Time Series
to the filters. Whereas the first problem
primarily concerned the D/As, this particular problem effects the A/Ds. The filters are designed
so that the cutoff frequency can be adjusted by replacing resistor packs on the I/O Interface
board. A characteristic of the design of this board is that changing the cutoff frequency of the
filters changes the DC offset of the A/Ds. To determine the DC offset, a number of values are
read from the A/Ds that have been grounded. The average is taken and this value is used in the
digital controller to determine the actual position signal. The table below lists the different
offsets calculated for different cutoff frequencies.

a0l7

[X) 5]

0012

Filter Cutoff 10261 Hz 3386 Hz 2822 Hz 940 Hz
Offset (Volts) | 1.028460 0.258709 0.031324 | -2.700709

The design of the digital controller was based upon a theoretical model which was valid up till
1000 Hz. Since the performance of the controller could not be accurately predicted for higher
frequency signals, the A/D anti-aliasing filter was set to a cutoff frequency of 1000 Hz. This
resulted in a decrease in the effective dynamic range of the A/D from +5.0 volts to +2.3 volts.
For the radial bearings, this would limit the position signal to #92 um or 36.8 percent of the
bearing gap. Since it was impossible to guarantee that the controller would or could limit the
amount of deviation of the rotor to £92 um of center, the filter on the I/O Interface board was
set to a cutoff frequency of 2 KHz and a 1 KHz lowpass filter was implemented in software.
This would of course require extra cycles in the control algorithm but the A/D dynamic range
was needed.
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4.4.4 D/A Glitch
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4.5 Filter Design

The previous section outlined how filters were used to eliminate destabilizing system
dynamics and compensate for hardware design deficiencies. Whenever possible, these filters
were implemented in hardware for speed reasons and to minimize computation time. However,
certain filters required software implementation and the design of these filters is the subject of
this section. With all filter design, a compromise must be made between filter characteristics and
processor resources [16, 20].

4.5.1 Low Pass Filter Design

A fourth-order Butterworth analog filter was chosen as the basis for the low pass filter
design. This filter provides good attenuation in over a reasonably small frequency range and the
computation time requirements were not unrealistic. Designing a Butterworth filter is a cookbook
process [14]. The order of the filter determines the limits of the filter characteristics. Given the
following,

w, = cutoff frequency
K, = cutoff frequency attenuation
w, = target frequency
K, = target frequency attenuation
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Normally o, is known and KX is -3 dB. Of the remaining parameters, @, and K,, defining one
also defines the other since the order of filter has already been defined. For instance, the low
pass filters used with each bearing axis had the design parameters of w, = 1 KHz, K, = -3 dB,
and K, is -30 dB. The target frequency was determined using the following,

2 21w, 27
Q=2tan"" and Q =2t
T T T T
[ &0
log 10 -1
0y
n =

210gm( %)

Using these equations, w, = 2090 Hz which should provide adequate attenuation. What remains
is the conversion of the analog filter to a digital format. A fourth-order Butterworth filter has
the following form.

Hs) _ 1
Xis)  s%+2.61353+3.41452+2.6135 +1

The conversion process begins by applying an order correction factor, s = s/n, where n is the
order of the filter. Then the filter is transformed using the Tustin approximation,

_2z-1
s ==
Tz+1
The final form then becomes,
Mz) _ 1+4z71+622+422+27*

Xz)  206.8088 -489.8232z ! +478.2204z 2 -217.9162z % +38.7102z *

The response of this filter is shown in Figures 4-13 and 4-14. This filter was implemented at
a cost of 18 additional cycles.
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4.5.2 Notch Filter Design

The notch filter is necessary to remove sensor noise from the position signal. This filter
is a purely digital design having the following form,

A _ ) - 2cos @, Tx{t-T) +x{t-27T)
072128 ooy 1-26) s

4

The parameter ), is the notch frequency and the parameters @, L, and A, effect the notch depth
and width. Typical notch filter values are w, = 220 Hz, @ = L = 0.25, and A, = 1.0. The
response of this filter is shown in Figures 4-15 and 4-16. This filter was implemented at a cost
of 9 cycles.
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4.6 Manual Tuning

With all of the simplifications that were necessary to allow classical design techniques
to be used in designing the digital controller, there would be no way to avoid manual tuning.
Not only would the controller require manual tuning but also the notch filter which removed
sensor noise must be tuned to the appropriate frequency and notch width. The tuning process
would rely on the sorted stable controller lists that were created for each bearing.

The initial step is to determine the sensor noise notch filter’s notch frequency. This
required sampling the sensor output while the bearings were unpowered. A power spectrum
analysis was then carried out on this data to determine the notch frequency. Next, reasonable
values for the parameters ¢ and w, were set so that the proper feedback gain B could be obtained.
Experimentation had shown that of the remaining parameters, the feedback gain had the strongest
effect on system stability. The values chosen for the parameters ¢ and w, were 1.0 and 100.0
respectively. It is important that the trial and error determination of the feedback gain must be
carried out on all five bearings simultaneously. Any attempt to tune each axis individually by
using the analog controller for the remaining axes would lead to an unstable system when all five
axes were under digital control. After the feedback gain for each axis has been determined, then
the parameters ¢ and w, can be tuned to optimize system performance.

Ideally the fine tuning of the parameters would be accomplished using a system analyzer
to look at the frequency response and disturbance rejection curves generated by each axis. In the
absence of a system analyzer, a reasonable analysis can be performed using a function generator
and an oscilloscope. The function generator is used to supplied a low amplitude disturbance at
the appropriate test point and the oscilloscope will be used to monitor the position signal. Using
this technique, the maximum closed loop gain and bandwidth of each axis can be determined as
well as maximum compliance of the system. When the performance of the system seems
satisfactory, the rotor of the turbopump can be spun to a suitable speed and stability can be
ascertained. When testing with the rotor of the turbopump spinning, make sure that the first test
speed is the highest speed the digital controller must meet. If the digital controller remains stable
at the highest speed, it will remain stable at the slower speeds.

4.7 Summary and Remarks

In this chapter, the controller design process has been outlined. A major requirement for
stability of the TDC law is that the sampling interval be sufficiently small such that the system
dynamics do not change significantly between sampling intervals. An analysis of the effect of
the controller design parameters showed that there is no obvious optimal sampling rate.
Therefore, statistical methods were employed to determine the sampling rate. The remaining
controller design parameters were chosen based upon the performance requirements of the
system. Using these requirements, the controller should have the smallest compliance possible,
the maximum closed loop gain should be below 10 dB, there should be proper signal attenuation
at 1000 Hz, and the bandwidth to the controller should be maximized. Possible controllers
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meeting these requirements were ranked and used during the manual tuning phase.

The controller program structure was examined and design decisions defended. Other
implementation issues specific to this application were presented and techniques for minimizing
their detrimental effects on system stability were outlined. Some of these implementation issues
were related to characteristics of the system and others were related to the hardware used to
implement the controller. The techniques used to minimize stability problems caused by these
characteristics consisted primarily of implementing filters and the filter design methods were
presented. Finally, a brief account of the manual tuning methodology was presented.

The obvious conclusion from this chapter is that the problem of designing a controller for
this particular system just got considerably harder. The design decision to use TDC and the
limitation of having only one sampling rate for all axes means that an optimal controller will
never be realized. Add to that the bending modes, noisy sensor, and hardware bugs and this
problem becomes worse. Also, the simplifications necessary to allow classical design techniques
to be used calls into question the validity of the stability analysis used to determine the sampling
rate and the other controller parameters. The controller will only be as good as the theoretical
model it was designed to control and therefore everything hinges on the how well the theoretical
system response matches the actual system response.
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Chapter 5

Controller Evaluation

This chapter compares the results of the performance of the digital, analog, and wherever
possible the theoretical controllers. The first section describes the manual tuning process. The
ease or difficulty associated with the manual tuning process is a good indicator of the validity
of the theoretical model. The second section presents the system performance when the rotor is
not spinning. Throughout this chapter, the radial 2X bearing was chosen to represent the
response of a typical radial bearing. Both the closed loop frequency response and the disturbance
rejection response are presented during static testing. The third section presents the system
performance when the rotor is spinning at 15000 and 28000 RPM. Only the disturbance rejection
response is presented because the closed loop frequency response conveys little information since
command following is of minor importance in this particular application. The final section
summarizes the results.

5.1 The Manual Tuning Process

There were problems with the manual tuning process almost immediately. Due to the
assumptions made during the modeling process, the most important system performance criteria
was the maximum compliance. The dominant characteristic of systems having a low maximum
compliance as predicted by the theoretical model was high feedback gain. However, it became
apparent that such high feedback gains predicted by the theoretical model would lead to an
unstable system. Another critical simplification of the theoretical model was that coupling could
be treated as a disturbance. This simplification implies that any coupling between bearings is
small when compared to forces exerted by the bearings themselves. The validity of this
assumption was tested by manually tuning each radial bearing while the appropriate coupled
bearing was under analog control. If coupling was indeed small between these two bearings,
little or no adjustment would have to be made when both coupled bearings were under digital
control. This was not the case however. In fact all four radial bearing controllers had to be
manually tuned simultaneously.

Simultaneously tuning four radial bearings requires a systematic approach. This
researcher was able to obtain a stable system in a timely fashion by setting the damping ratio
and natural frequency to approximate values (i.e. = 1.0, & = 100) and varying the value of the
feedback gains. Once an approximate value of the feedback gain was obtained for each bearing,
the values of the damping ratio and natural frequency could be tuned to improve system
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performance. System performance was determined by using a function generator and an
oscilloscope to monitor the disturbance rejection response of each bearing. As demonstrated by
the theoretical model, the stability region was a contiguous area and is not a random scattering
of stable systems distributed throughout the entire variable range. Therefore it was only a matter
of finding the right parameters that yielded a stable controller and, through trial and error,
probing for the limits of the stability region. Using this technique, this researcher was able to
develop a stable controller able to yield good performance up to 15000 RPM in a relatively short
time.

However, developing a controller that remained stable up to 28000 RPM was another
matter. Simply varying the parameters of the controller was not yielding a controller stable
enough to pass the 25000 RPM range. Time and again it was the lower bearing which failed first
and caused the analog control box to shut down the system. Stability above this 25000 RPM
range only came after this researcher replaced the hardware implementation of the first bending
mode notch filter with a software implementation. This allowed the notch filter cutoff frequency,
notch depth, and notch width to be varied individually for each bearing. Altering the
characteristics of the first bending mode notch filter also influenced the performance of the
system at lower frequencies. It would turn out that the cutoff frequency of the notch filter would
effect system performance enough to allow a greater operating speed. By varying the parameters
of the notch filter as well as the parameters of the controller, this researcher was able to develop
a stable controller capable of 28000 RPM after much trial and error. The notch filter
implemented in software was of the following form,

He) _ z2-2cosw Tz +1

x(z) 2 2)2
z%-2 1—“I;A° cosw, Tz + l—“L:“ z

Where: T = sampling interval
@, = notch frequency
a, L, A, = parameters effecting notch depth and width

The final values of the notch filter parameters are the following,

Parameter Axial Rad1X RadlY Rad2X Rad2Y

@, (Hz) 950 1000 960 1100 1100
o 0.20 0.20 0.20 0.20 0.20
L 0.20 0.20 0.20 0.20 0.20
A, 1.00 1.00 1.00 1.00 1.00

62



Note that the above table presents the values for the notch filter used by the axial bearing.

The axial bearing would not be effected by the first bending mode but the code used to control

each bearing axis is common to all bearings. Including a notch filter in the axial bearing

controller allowed streamlined code development and did not compromise axial bearing stability.

Obviously the first bending mode cannot be different for each bearing axis. What moving the
notch filter does provide is better controller performance and stability at high frequencies.

5.2 Static Test Results

This section displays the results of the closed loop frequency response and disturbance
rejection response of the axial bearing and one axis of a particular radial bearing when the rotor
is not spinning. The 2X radial bearing was chosen to represent the response of a typical radial
bearing axis because this axis was the most likely to fail during testing and therefore represents
the worst case response. In all cases, the theoretical response is the predicted response of the
digital controller using the theoretical plant model. Both the analog and digital responses were
determined using an HP System Analyzer.

5.2.1 Axial Bearing Test Results
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Figure 5-1 displays the closed loop frequency response of the axial bearing under digital
and analog control as well as the predicted theoretical response. The following table shows the
important performance values used as design criteria for the digital controller. These
performance values are derived from the data points used to display the graphs in Figure 5-1.

Parameter Analog Digital Theoretical
Peak Gain (dB) 8.06 12.50 6.33
Bandwidth @ -3dB (Hz) 134.01 195.09 91.64
Gain @ 1000Hz (DB) -32.82 -18.53 -25.55

Analyzing this data leads to the following conclusions,

1. The theoretical response is not an accurate indicator of actual digital controller
performance because of the very simple model used. Both the bandwidth and
the peak gain of the digital controller are twice that of the theoretical model.

2. The digital controller has a bandwidth which is approximately fifty percent
greater then the analog controller but it also has a peak gain which is
approximately 1.7 times greater then the analog controller.

3. At frequencies beyond the bandwidth of the controller, the slopes of both the
analog and digital controllers are approximately equal.

Figure 5-1 displays the most important findings in this thesis. Remember that the axial bearing
is not subject to coupling effects and therefore the simplification of treating coupling effects as
disturbances was not needed. Also the axial bearing is not subject to gyroscopic effects even if
the rotor was spinning, which it isn’t in this case, and therefore the simplification of treating
gyroscopic effects as a disturbance was also not needed. The only simplification made in the
case of the axial bearing was linearizing the inherently nonlinear equations of motion. Therefore,
the linearization process must account for the discrepancy. The use of a very simple model is
believed to be the cause of this anomaly.

Figure 5-2 displays the disturbance rejection response of the axial bearing under digital
and analog control as well as the predicted theoretical response. The following table shows the
important performance values used as design criteria for the digital controller. These
performance values are derived from the data points used to display the graphs in Figure 5-2.

Parameter Analog | Digital | Theoretical
Peak Compliance (Microns/Newton) 24.14 3.80 4.11
Compliance @ 1000Hz (Microns/Newton) 0.135 0.247 0.003
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5-2 Axial Bearing Static Disturbance Rejection Response

Analyzing this data leads to the following conclusions,

1. The theoretical response accurately predicts actual digital controller response at and
below 20 Hz. However, the theoretical response becomes progressively less accurate
as frequency increases.

2. The digital controller has significantly better disturbance rejection properties at and
below 10 Hz. However, the fact that the analog controller has significantly worse
disturbance rejection properties in this region and yet produces very stable operation
leads one to believe that the low frequency disturbance rejection is of low importance
as a controller design criteria for this bearing axis.

3. At frequencies beyond 100 Hz, the disturbance rejection properties of both the analog
and digital controllers are approximately equal. '

Disturbance rejection was considered the most important design criteria and the accurate
prediction of the low frequency disturbance rejection response by the theoretical model lends
credibility to the use of the theoretical model as a design tool when disturbance rejection is the
most important performance characteristic. From the standpoint of disturbance rejection, the
digital controller is significantly better then the analog controller when the rotor is not spinning.
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5.2.2 Radial Bearing Test Results
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5-3 Radial Bearing 2X Static Closed Loop Frequency Response

Figure 5-3 displays the closed loop frequency response of radial bearing 2X under digital
and analog control as well as the predicted theoretical response. The following table shows the
important performance values used as design criteria for the digital controller. These
performance values are derived from the data points used to display the graphs in Figure 5-3.

Parameter Analog Digital Theoretical
Peak Gain (dB) 8.51 8.59 9.13
Bandwidth @ -3dB (Hz) 152.46 326.15 77.35
Gain @ 1000Hz (DB) -25.19 -15.27 -30.68

Analyzing this data leads to the following conclusions,
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1. The theoretical response is not an accurate indicator of actual digital controller
performance. The peak gain of the theoretical model is approximately equal
to that of the actual digital controller but the bandwidth of the digital controller
is four times greater then that of the theoretical model.

2. The digital controller has a bandwidth which is over twice that of the analog
controller though their peak gains are approximately equal.

3. At frequencies beyond the bandwidth of the controller, the slope of the digital
controller is less then that of the analog controller.

As with the axial bearing, the bandwidth predicted by the theoretical model is not an accurate
indicator of the actual digital controller bandwidth. The theoretical model however does seem
to accurately predict the peak gain of the digital controller but this is true only for the lower
bearing (axes 2X and 2Y). In the case of the upper bearing (axes 1X and 1Y), the peak gain
predicted by the theoretical model is significantly higher then the actual digital controller
response. The digital controller has significantly better bandwidth then the analog controller but
the slope of the digital controller is significantly less then that of the analog controller in the high
frequency regions. This high frequency region is where the major bending modes of the rotor
are located which could cause stability problems when the rotor is spinning.
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5-4 Radial Bearing 2X Static Disturbance Rejection Response

Figure 5-4 displays the disturbance rejection response of radial bearing 2X under digital
and analog control as well as the predicted theoretical response. The following table shows the
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important performance values used as design criteria for the digital controller. These
performance values are derived from the data points used to display the graphs in Figure 5-4.

Parameter Analog | Digital | Theoretical
Peak Compliance (Microns/Newton) 3.30 247 447
Compliance @ 1000Hz (Microns/Newton) 0.027 0.051 0.003

Analyzing this data leads to the following conclusions,

1. The theoretical response accurately predicts actual digital controller response
at and below 5 Hz. The theoretical response becomes progressively less
accurate as frequency increases. The difference between the theoretical
maximum compliance and the actual digital controller maximum compliance
is significant.

2. The digital controller has significantly better disturbance rejection properties
at and below 10 Hz. As with the axial bearing, the fact that the analog
controller has significantly worse disturbance rejection properties in this region
and yet produces very stable operation leads one to believe that the low
frequency disturbance rejection is of low importance as a controller design
criteria for the radial bearings.

3. At frequencies beyond 100 Hz, the disturbance rejection properties of both the
analog and digital controllers are approximately equal.

Whereas the theoretical model is a good predictor of actual digital controller response up to 5
Hz for the lower bearing, that characteristic frequency is 10 Hz for the upper bearing. However
the difference between the predicted maximum compliance and the actual maximum compliance
is significantly greater for the upper bearing then for the lower bearing. The disparity between
maximum compliance of the theoretical and digital controllers was not a characteristic of the
axial bearings. This points toward bearing coupling as the most likely cause of this increased
stiffness.

5.3 Dynamic Test Results

This section displays the results of the disturbance rejection response of the axial bearing
and one axis of a particular radial bearing when the rotor is spinning at 15000 and 28000 RPM.
The closed loop frequency response is absent from the dynamic tests because the command
following response of the system is of little importance in the case where the rotor is spinning,
The 2X radial bearing was chosen to represent the response of a typical radial bearing axis
because this axis was the most likely to fail during testing and therefore represents the worst case
response. Both the analog and digital responses were determined using an HP System Analyzer.
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5.3.1 Axial Bearing Test Results
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5-5 Axial Bearing Dynamic Disturbance Rejection Response - 15000 RPM

Figure 5-5 displays the disturbance rejection response of the axial bearing under digital
and analog control while the rotor is spinning at 15000 RPM. The following table shows the
important performance values used as design criteria for the digital controller. These
performance values are derived from the data points used to display the graphs in Figure 5-5.

Parameter Analog Digital
Peak Compliance (Microns/Newton) 24.45 7.00
Compliance @ 1000Hz (Microns/Newton) 0.121 0.121

Analyzing this data leads to the following conclusions,

1. The digital controller has significantly better disturbance rejection
properties at and below 10 Hz.
2. For the majority of the frequencies beyond 10 Hz, the disturbance rejection

properties of the digital controller is somewhat worse then that of the
analog controller.
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5-6 Axial Bearing Dynamic Disturbance Rejection Response - 28000 RPM

Figure 5-6 displays the disturbance rejection response of the axial bearing under digital
and analog control while the rotor is spinning at 28000 RPM. The following table shows the
important performance values used as design criteria for the digital controller. These
performance values are derived from the data points used to display the graphs in Figure 5-6.

Parameter Analog Digital
Peak Compliance (Microns/Newton) 22.73 6.94
Compliance @ 1000Hz (Microns/Newton) 0.027 0.277

Analyzing this data leads to the same conclusions as in the previous case. The disturbance
rejection performance of the axial bearing is virtually the same for each controller regardless of
the rotor speed as one would expect. The digital controller has superior performance at lower
frequencies but is slightly worse at higher frequencies. After 400 Hz, the magnitudes of the
compliance are sufficiently small such that any difference between the analog and digital
controllers is negligible. There is a uniform increase in compliance between the static case and
the dynamic cases. This is probably caused by the axial forces generated by the rotating vanes
of the turbopump.
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5.3.2 Radial Bearing Test Results
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5-7 Radial Bearing 2X Dynamic Disturbance Rejection Response - 15000 RPM

Figure 5-7 displays the disturbance rejection response of radial bearing 2X under digital
and analog control while the rotor is spinning at 15000 RPM. The following table shows the

important performance values used as design criteria for the digital controller.

performance values are derived from the data points used to display the graphs in Figure 5-7.

Parameter Analog | Digital
Peak Compliance (Microns/Newton) 3.51 2.72
Compliance @ 1000Hz (Microns/Newton) 0.037 0.030

Analyzing this data leads to the following conclusions,

71




1. The digital controller has significantly better disturbance rejection
properties at and below 10 Hz.

2. Between 10 and 100 Hz, the digital controller displays disturbance
rejection properties that are either better then or equal to that of the
analog controller.

3. For the majority of the frequencies beyond 100 Hz, the disturbance
rejection properties of the digital controller is somewhat worse then that
of the analog controller.

The digital controller has slightly worse disturbance rejection properties then the analog controller
above 100 Hz but above 300 Hz, the magnitudes of the compliance are sufficiently small such
that any difference between the two controllers is negligible. Overall, at this particular speed,
the digital controller is a significantly better controller then the analog one.
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5-8 Radial Bearing 2X Dynamic Disturbance Rejection Response - 28000 RPM

Figure 5-8 displays the disturbance rejection response of radial bearing 2X under digital
and analog control while the rotor is spinning at 28000 RPM. The following table shows the
important performance values used as design criteria for the digital controller. These
performance values are derived from the data points used to display the graphs in Figure 5-8.
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Parameter Analog Digital

Peak Compliance (Microns/Newton) 6.13 5.36
Compliance @ 1000Hz (Microns/Newton) 0.028 0.175

Analyzing this data leads to the following conclusions,

1. The digital controller has significantly better disturbance rejection
properties at and below 10 Hz.

2. Between 10 and 100 Hz, the digital controller displays disturbance
rejection properties that are either better then or equal to that of the
analog controller.

3 For the majority of the frequencies beyond 100 Hz, the disturbance
rejection properties of the analog controller are on average approximately
2.2 times better then that of the digital controller.

The inability of the digital controller to exhibit better stiffness in the high frequency region would
lead to stability problems at this rotor speed. The spike exhibited by both the analog and digital
controllers in the 11 Hz region is due to coupling between the upper and lower bearing. Under
normal operation, the position signals of the upper and lower bearings are sinusoidal waves
having different amplitudes and frequencies. However at the frequency of the spike, the position
signals of both the upper and lower bearings had the same amplitude and the same frequency.
This spike is a characteristic exhibited by all the bearings at this speed. Though it is not apparent
from Figure 5-8, the digital controller is on the edge of instability at this speed.

5.4 Summary and Remarks

During the digital controller design stage, it became apparent that the theoretical model
was much worse then expected. The theoretical model returned values of the feedback gain that
were so high that they would never yield a stable system. The inaccuracy of the theoretical
model was verified by the data from the static closed loop frequency response of the radial and
axial bearings. The use of a very simple model to represent the response of the open loop system
accounts for the large discrepancies between the theoretical and actual system response.

The theoretical model was much more accurate at predicting the actual disturbance
rejection response of the digital controller. However the theoretical model grew less accurate as
frequency increased. In the case of the radial bearings, the theoretical model in some ways
predicted worst response then the actual digital controller exhibited. During static testing and
when the rotor was spinning at 15000 RPM, the shapes of the analog and digital controllers are
similar though their magnitudes vary somewhat. The digital controller exhibit significantly
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greater compliance in the high frequency region when rotor speed was increased to 28000 RPM.
This high frequency region is where the major bending modes lie and therefore system stability
was compromised in the case of the digital controller. The shape of the disturbance rejection
response remained relatively constant for the axial bearing during static and dynamic testing.
However the digital controller did show a uniform increase in compliance during dynamic testing
probably due to axial forces generated by the rotating vanes of the turbopump.
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Chapter 6

Conclusions and Recommendations

The goal of this researcher’s work was to model, design, and implement a digital
controller which used the Time Delay Control (TDC) algorithm to control the five axes of a
magnetically levitated turbopump. The final success or failure of the resulting digital controller
is directly related to how well each of these three tasks were performed. Therefore, the success
of each stage of the process with be analyzed in the light of the final digital controller
performance.

The modeling process is based upon the proper determination of the theoretical open loop
transfer function which imitates the characteristics of the actual open loop transfer function. The
actual open loop transfer function was determined for each axis using a system analyzer while
the turbopump was under analog control. At first, the actual transfer function was compared with
the theoretical transfer function derived from the physics governing the operation of each axis
of a magnetic bearing. Superior results were obtained by recursively testing various values in
the numerator and denominator of a transfer function having the same form as the transfer
function derived from the physics of the magnetic bearing. The response of each guess was
compared against the actual system response using a least squares error estimation to determine
the best fit transfer function. This yielded consistently better results across all bearings. The
recursive analysis was limited to frequencies below 1000 Hz because the high frequency
dynamics of the system tended to make the best fit transfer function less accurate within the
probable bandwidth of the controller. This same recursive analysis was applied to the analog
controller driver to produce the final open loop transfer function.

The modeling process would proved to be flawed. For both the axial and radial bearings,
the theoretical analysis predicted stable systems which were in fact unstable when applied to the
actual system. The closed loop frequency response of the axial bearing was significantly
different from the actual system response. The radial bearing closed loop frequency response of
the theoretical analysis was expected to differ from the actual system response because coupling
was ignored in the theoretical model. However the radial bearing theoretical frequency response
was far worse then expected. This researcher theorizes that the poor performance of the
theoretical model is in part due to the determination of the actual open loop system frequency
response. The inherent characteristics of magnetic bearings ensures that the system is open loop
unstable. This requires that the system be under active control during testing. With such a
system, the equilibrium position is determined by the controller and may vary from controller to
controller. The system analyzer will in turn linearize the response about this equilibrium point.
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In a highly nonlinear system, the characteristics at different equilibrium points may be
significantly different and therefore their linearized responses may also vary significantly. Thus
the open loop frequency response could be controller dependent.

The next task was the design of the digital controller. The problem was that no one had
attempted or at least documented a rigorous design procedure for TDC. The primary reason for
simplifying the radial equations of motion was so that classical design techniques could be
employed. Classical design techniques would allow a design procedure to be tested and
evaluated. It would have been extremely difficult to use multi-input multi-output design
techniques using a control algorithm in which single input single output design techniques
amounted to merely trial and error. Of particular importance was evaluation of the proper
sampling rate. After analyzing how system stability was effected by changes in the parameters
of the controller, this researcher decided to use statistics to deduce the proper sampling rate.
However, this technique required that the theoretical model could accurately determine whether
the system was stable and its bandwidth. The theoretical model has since proved significantly
inaccurate and therefore compromises the results obtained from this analysis. It does not
however compromise the validity of the design technique in general.

It also became apparent that the drawbacks of using TDC outweighed its benefits for this
particular application. TDC uses information from previous sampling interval(s) to estimate
unmodeled system characteristics. For this particular system, these unmodeled characteristics are
coupling and gyroscopic effects. However, the most important parameter effecting TDC'’s
performance and stability is the sampling rate. If TDC is represented as a PID controller, the
sampling rate also determines the integrator value. Ideally, since the characteristics of each
magnetic bearing axis can differ significantly, each bearing axis should be controlled by a
controller with a sampling rate tailored to needs of each axis. This would not be feasible using
one DSP chip and it would be economically unfeasible to use more DSPs. Therefore the
integration value was constant across all axes which led to a less flexible design process. This
also meant that the controller should be optimized to provide the best performance on the bearing
axis that was most likely to fail first. However, it was impossible to determine the bearing most
likely to fail first with any certainty until a working controller was in place. One sampling rate
for all bearing axes also meant that creating an optimal controller for this application was very
unlikely.

The final task was implementing the digital controller. This also was not problem free.
One of the state variables required by the digital controller was the velocity of the rotor at each
sampling interval. The turbopump did not have a velocity sensor however so the position was
differentiated to provide the current velocity. The TDC law required differentiation of the state
variables which meant that the acceleration was calculated from the second derivative of the
position signal. Differentiation by its very nature amplifies the noise inherent in the signal.
Therefore, it is very likely that noise component of the position signal overwhelmed the signal
component in the calculated acceleration value. The I/O Interface board also produced high
amplitude spikes when crossing zero and the anti-aliasing filters exhibited large overshoots both
of which added high frequency noise to the control signal. Steps were taken to remove this high
frequency noise through an auxiliary low pass filter having a cutoff frequency of approximately
15000 Hz. However, it was the inability of the controller to reduce compliance in the region
between 1000 Hz and 10000 Hz which eventually limited the rotor speed to 28000 RPM. This
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may have been exasperated by noise produced by the I/O Interface board.

This researcher’s recommendations consists of two parts. The first part concerns
recommendations pertaining to the turbopump application. The second part concerns
recommendations pertaining to the TDC law.

Further research was be performed in an effort to enhance the accuracy of the theoretical
model. The use of a very simple model provided inaccurate theoretical responses which
controller design difficult. Different methods for incorporating bending modes and gyroscopic
effects into the theoretical model must be investigated and verified against the actual system
response. Until a more accurate model is developed, all further controller design will have to
rely on trail and error to a very large extent.

As far as TDC law is concerned, there is only one recommendation. More basic research
should be performed to find a procedure for designing Time Delay controllers with particular
emphasis on determination of the proper sampling rate. With other digital control algorithms,
the sampling rate is determined by the Nyquist frequency and the anti-aliasing filter cutoff
frequency. This usually leaves the designer with plenty of choices with no penalty for sampling
at a greater then necessary rate. However with TDC, the sampling rate also effects system
performance and therefore sampling rate determination takes on an added importance. This
importance may also vary with the type of application and the number of simplifications imposed
to the TDC law. This particular application is a very challenging one and this Time Delay
controller performed as well as or better then other digital controllers designed for this same
application.
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Appendix A

Magnetic Circuit Analysis

A.1 Ampere's Law

The discovery that currents produce magnetic
effects was made by Hans Christian Oersted clf— ----------- -©
in 1820 [18]. Today the quantitative : :
relationship between current / and the 000000000000000
magnetic field B is written as Ampere's Law, —T ‘\ : : l N—-
! | |
oo B m— | g T "p | — B
fB-dl = Wi (A1) — p— \_’
In

Now Ampere's Law is applied to an ideal

solenoid. An ideal solenoid is one in which A-1 Ideal Solenoid

its length is much greater than its diameter.

The field outside the coil is assumed to be essentially zero and that the field inside the coil is
assumed to be essentially uniform. Applying Ampere's Law to the rectangular path abcd in
Figure A-1 yields,

- = —

fﬁ-df = }"-cﬂ" + [B-dl + [B-dl + [B-dl (A2)

Q‘\h
0 S—
] 0

The first integral on the right is Bh. The second and fourth integrals are zero because Bdl =0

(B'_Ldf ) The third integral is zero because by definition, the magnetic field is zero for all points
outside the coil of an ideal solenoid. Thus,

fﬁ-df = Bh = u,iN (A3)

This relation holds quite well for actual solenoids at interior points near the center of the

solenoid. It shows that B is independent of the diameter and length of the solenoid and that B
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is constant over the solenoid cross-sectional area.

The term magnetic flux ®is now introduced. Flux is a property of all vector fields and
is defined for both open and closed surfaces as,

S

dd = B (A4)

A.2 The Magnetic Circuit

In problems involving magnetic devices, the engineer is concerned with the quantities of

magnetic flux & and magnetic field B that occupy three-dimensional space. Fortunately in most
instances the only space of interest is occupied by ferromagnetic materials except for small air
gaps. These ferromagnetic materials with their high permeabilities effectively confine the
magnetic flux to themselves just as copper wires confine the electrical current or as pipes confine
a fluid. The net effect on this confinement is that our three dimensional field problem becomes
essentially a one dimensional circuit problem [7]. Consider the magnetic circuit shown below,

Curremt

e & = .

Flux

A-2 Typical Magnetic Circuit - A-3 Magnetic Circuit Diagram

The magnetomotive force of the coil produces flux which is confined to the iron and to part of
the air in the air gap having the same cross-sectional area as the iron. This is analogous to a
magnetomotive force source driving flux through two series-connected reluctances (reluctance
is to flux as resistance is to electrical current). This analogy between the magnetic circuit and
the electrical circuit carries through in many other respects. This magnetic circuit analogy will
be used to model the magnetic bearings of our turbopump.

Before the magnetic circuit model of the turbopump's magnetic bearings is analyzed, the
magnetic circuit terms analogous to their electrical circuit counterparts need to be established.
The electrical terms of most importance are voltage source, current, and resistance. In magnetic
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circuits, voltage is analogous to magnetomotive force which is defined from Ampere's Law,
B -
F, = f;-dl (A.S)

the magnetic field is divided by the material permeability to allow the magnetomotive force to
be independent of the material conducting the magnetic field. Ampere's Law for a solenoid has
been previously derived therefore the magnetomotive force of a solenoid is.

£

The magnetic circuit equivalent of electrical current is referred to as magnetic flux which was
previously defined as

df = BN _ v (A6)

i

' |t

® = [B-dd A7)

The magnetic circuit equivalent of electrical resistance referred to as reluctance now needs
attention. From Ohm's Law

14
R=— (A8)
Where: R = electrical resistance
V = voltage drop across resistance
I = electrical current through resistance
For an analogous magnetic circuit,
F
R, = E’” (A9)

Where: R, = magnetic reluctance
F,, = magnetomotive force
® = magnetic flux
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To derive reluctance, a magnetic circuit is assumed to exist having a constant magnetic flux
density B over a known constant area A and that the circuit has a total path length L

Rotm_ W L (A.10)
0] BA p4d

Thus the impediment to flow of magnetic flux is directly proportional to path length and
inversely proportional to the material cross-sectional area and permeability.

Finally a formula for the amount of
energy stored in the magnetic field of a magnetic 9
circuit is derived. This in turn requires the T T
introduction of Faraday's Law. Faraday, Swich /' AN
using the apparatus in Figure A-4, conducted /
experiments into the relationship between E { N ¢ A~
electricity and magnetism. The formula Y J
bearing his name that describes this Y
relationship as it relates to a solenoid of N S
turns is

dd A-4 Faraday’s Experimental Apparatus

= -N2&Z
e 5 (A.11)

e is the electromotive force or voltage that resists the change in flux. The power used by the
electrical coils of the solenoid to produce the magnetic field is defined as

P =iv (A.12)
The energy stored in the magnetic field must then be
E = [iv dt (A.13)

Using Faraday's Law and changing the sign to denote the EMF transferred as opposed to resisting
the change

dd
E = [NIZ2 &
[ ~ (A.14)

Magnetic flux @ was previously defined as

® - (B-dd (A.15)
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Since the cross-sectional area of our magnetic bearing is essentially constant and at all times
parallel to the magnetic flux,

®=B4d = db=AdB (A.16)

Remember, the magnetic field of a solenoid was previously defined as

IN
B=EZ - IN-= A17)

BiA 114
E=[——dB = E-=_—B (A.18)

Now a formula that defines the energy stored
in a magnetic field of a magnetic circuit by a
solenoid present in the same circuit has been
derived. It is now possible to show that
mechanical work can be done by extracting
energy stored in the magnetic field. To
describe how this is feasible, consider the N
sample magnetic circuit in Figure A-5. This
circuit is comprised of an exciting coil placed
on a ferromagnetic core equipped with a
movable element called a relay armature.
Currently the exciting coil is energized from '
a constant voltage source and the gap is at its
equilibrium position. Suppose R is adjusted A5 Magnetic Encrgy to Mechanical Work Sample
such that the magnetic flux induced in the Circuit
circuit increases while the relay armature is
held fast. The net effect of the additional
energy supplied by the source is an increase in the stored magnetic energy. Now suppose that
R was adjusted as previously described but this time the relay armature is allowed to move. In
this instance the armature does move implying that some of the magnetic energy stored in the
field has been converted to mechanical work. The nature of this conversion of magnetical energy
to mechanical work manifests itself in a change in the air gap and therefore a change in the
reluctance of the magnetic circuit.

Before continuing, the equation describing the energy stored in a magnetic circuit will be
defined using terms representative of our magnetic circuit analogy. Previously, stored magnetic
energy was defined as
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F, =1IN = Bl
' [
Also, magnetic flux was defined as,
® = B4
Hence
E=1ro
2

(A.19)

(A.20)

(A21)

(A.22)

Air Gap

o1l

o1l

A-6 Turbopump Radial Bearing

A-7 Radial Bearing Magnetic Pole

The physical structure of the magnetic radial bearings used by this particular turbopump is shown
in Figures A-6 and A-7. The radial bearings consist of a ring of laminated ferromagnetic
material having 8 poles. Each pole is wound with N turns of wire. The lines of magnetic flux
generated from this bearing structure is represented by the Figure A-8. The equivalent magnetic

circuit of our magnetic bearing is represented in Figure A-9.
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Oy
&)W
- =
R,
Flux Lines
A-8 Radial Bearing Flux Lines A-9 Radial Bearing Magnetic Circuit

Assuming that the rotor of the turbopump is equidistant from both poles at any given time
and that both poles can be modeled as solenoids having an equal number of turns,

=F, ad R, =R, (A23)

The force exerted by the bearings on the rotor shaft is defined as

F=-% _4d[1lp 4
ac ax\2 "
(A.24)
dE _dEdD _ 1. 4P
dc dbdce 2 "d
Previously the magnetic flux was defined as
FM
¢ = — (A.25)
m
Therefore,
_1l2d| 1
F=Sh— R_T) (A.26)

where R,,,T defines the total reluctance of the magnetic circuit. The magnetomotive force is
supplied by two coils in series each having N turns therefore,

F, =F +F, = 2NI (A27)
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hence

_ 22 d| 1
m

The combined reluctance of the circuit is comprised of the reluctance of the bearing stator, the
two air gaps, and the rotor shaft in series.

T
R, =R;+R, +R, + Ry (A.29)

Recall that reluctance was defined as the following

L
R = —
m " oA (A.30)
Therefore

L 2% L
Ry == + + X A31
Tond A pd @3D

Where: Lg = stator flux path length
us = stator material permeability
X =air gap
K, = air permeability
Ly =rotor flux path length
Ur = rotor material permeability

Since the stator and the rotor shaft are composed of ferromagnetic materials, their reluctances are
considerably smaller than that of the air gaps. This is primarily due to the great difference in
the permeabilities of ferromagnetic materials (between 1000 and 10000) and air (4% x 107,
Thus the reluctance of the circuit simplifies to

R r ~ .__.2x or _l. o~ HOA
m po A R T 2% (A.32)
Substituting Eq. (A.32) into Eq. (A.28) yields,
22 d | Pt B N*I°4
F = 2N*I Z\ 25 = —T (A.33)
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The sign denotes the that the force exerted by
the bearings on the rotor is an attractive
force. The radial bearing is physically
comprised of one ring having 8 poles.
However, the radial bearing is viewed as
being comprised of two bearing axes
composed of two opposing pole pairs - two
poles adjacent to one another with a mirror
image on the opposing side. The calculated
attractive force F represents the contributions
of a pole pair on one side of the bearing axis.
The geometry of these adjacent poles is such
that the attractive force is not applied along
the centerline of the pole pair but at an angle.
Taking into account pole geometry, the
equation for the force exerted by a virtual
bearing on the rotor is defined as,

TN L

N7

A-10 Radial Bearing Pole Composition

P o N2I? A cosp _ NI Acosp

2

X,

- (A.34)
X

where the subscripts r and / denote right and left respectively and B is the angle of the pole pair
centerline to the pole centerline. In this instance, p = 22.5°.

A.4 Axial Bearing Magnetic Circuit

Rotor ]

)

f |

Stator Windings

A-11 Axial Bearing Configuration

A-12 Axial Bearing Magnetic Circuit

The physical structure on our particular turbopump magnetic axial bearings is shown in
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Figure A-11. The axial bearings consist of an upper and lower ring of ferromagnetic material
having a U-shaped cross-section. The inner leg of this U is wound with N turns of wire. The
lines of magnetic flux generated by the windings flow along the U and into a disk that is press
fit to the rotor shaft. The equivalent magnetic circuit of our magnetic bearing is represented in
Figure A-12.

As with the radial bearing , the rotor disk is assumed to be equidistant from both poles
at any given time and therefore,

R, =R, (A.35)

The force exerted by the bearings on the rotor disk is defined as

——] (A.36)

where R,,,T defines the total reluctance of the magnetic circuit. The magnetomotive force is
supplied by one coil having N turns therefore,

F, = NI (A37)

hence

poNrd( 1

The combined reluctance of the circuit is comprised of the reluctance of the bearing stator, the
two air gaps, and the rotor disk in series.

R, =R;+R, +R, +R, (A.39)

Therefore

+ + (A.40)
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Where: Lg = stator flux path length
us = stator material permeability
X =airgap
K, = air permeability
L, =rotor disk flux path length
K, = rotor disk material permeability

Since the stator and the rotor disk are composed of ferromagnetic materials, their reluctances are
considerably smaller than that of the air gaps. This is primarily due to the great difference in
the permeabilities of ferromagnetic materials (between 1000 and 10000) and air (4w x 107).
Thus the reluctance of the circuit simplifies to

2x 1 l»loA
or — =

RT «

Substituting Eq. (A.41) into Eq. (A.38) yields

F

272 A N2I%°4
_ N i( Ho ] ol (A42)

2 dx\ 2x 4x2

The sign denotes the that the force exerted by the bearings on the rotor is an attractive
force. Note that due to the shape of the axial bearing, the area of the inner pole is less than that
of the outer pole. Therefore the area A is the average area of both the inner and outer poles.
As with the radial bearings, the attractive force F represents the contributions of both legs on one
side of the rotor disk. The total force exerted by both the upper and lower legs on the rotor disk
is,

2 2 r2
_ WNJA p NI 4
i ax? ax? @4
t b

where the subscripts ¢ and b denote top and bottom respectively.

A.S Magnetic Bearing Driver

Each radial bearing is composed of pole pairs on opposing sides of the rotor. The attractive
force exerted by each pole pair is proportional to the current supplied. However, the controller
supplies only one current to control both opposing pole pairs. It is the task of the driver to
divide this single control current to each of the individual pole pairs.
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Another characteristic of magnetic bearings is their startup latency. There is a time lag
from when the actual control current is applied to an unpowered magnetic bearing till when the
rotor is subject to the attractive magnetic force. This is of particular concern for the radial
bearings because the rotor's normal movement about the equilibrium point would constantly cause
the controller to turn opposing sides of the bearing off and on. There is also the problem that
small corrections (and therefore small control currents) applied to any one side of a radial
bearing would be consumed by losses '
inherent to magnetic bearings. In order to
overcome these limitations, the driver is also
responsible for implementing a bias current N
whenever the control current falls below a . /
certain value signifying that the rotor is close B bed
to the equilibrium point. When within this
range, the driver adds or subtracts a certain
proportion of the control current from the

bias current and sends the resulting current es | >

to the respective sides of the radial bearing. //’/

In this way, the coil currents are rising and N R ——— .

falling with respect to the control current and 2 s 2 a5 0 s 1 15 2
Control Current

not constantly being turned off and on.

The graphical representation of the
relationship between the bearing coil current
and the control current for this particular
turbopump application is shown in Figure
A-13. This driver mechanism produces three distinct operating zones which alter the form of the
attractive magnetic force equation derived earlier. For purposes of analysis, # will denote the
control current and u, will denote the maximum current at which the driver uses a bias current
to derive the magnetic bearing coil currents. Therefore, the driver relies on a bias current when
-uy < u < u, For this particular turbopump, u,= 1A. In this analysis, the x axis alone is chosen
to represent the radial bearings but the y axis could have just as easily been chosen. Also, the
values of x, , x, , x, , and x, are replaced with an equivalent representation that uses the output
from the position sensor and the nominal distance from the poles to the bearing center k,. The
three different forms of the magnetic force equation are as follows:

A-13 Coil Current
Relationship

to Control Signal

Case 1: -uy>u

Radial Bearing Axial Bearing
poN24cosPu? poN24u?
(hy *x)? 4(hy +x)’
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Case 2: -u,<u<u,

Radial Bearing

_ BN AcosB(1, + 0.5u) BN 2 AcosB(I, - 0.5uf?
(o =%} (1o )

Axial Bearing

o MoNA+05uP N4, -0.5u

4(hy -xJ? 4(h0 +x)?
Case 3: yy<u
Radial Bearing Axial Bearing
poN?AcosPu? Fe pN?A4u?
(ho - x)? 4(hy -x)?

The importance of understanding these three cases becomes apparent during the linearization
process. The radial bearings will obviously fall within the criteria of case 2 but the axial
bearing, which must compensate for the weight of the rotor assembly, it not as easy to
categorize.
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Appendix B

Rotor Mechanics

B.1 Time Derivatives With Respect to an Intermediate
Reference Frame

X

B-1 Fixed and Intermediate Reference Frames

Let R be the position vector of the origin of the intermediate frame with respect to the
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origin of the fixed reference frame, and let @ denote the angular velocity vector of the
intermediate frame with respect to the fixed reference frame. Now suppose that the position

vector 4 is fixed with respect to the intermediate reference frame.

The vector 4 can be represented in the following form with respect to the intermediate
reference frame o,,, [19],

A=44 +A44 + A4 (B.1)

In general, the scalar components of this vector will vary with time and the unit vectors will vary

in orientation when viewed from Oyy,. Hence, the time rate of change of vector A with respect
to the fixed reference frame is,

a dg vdg vdg +a % 4B, B
=Ad +Ad4 +Ad + + +
dt Om X X Yy zZ Z X dt y dt z dt (BoZ)

The first three terms represent the rate of change of A with respect to the intermediate reference
frame. The last three terms represent the contribution due to rotation of the intermediate
reference frame with respect to the fixed reference frame. The first three terms can be written
in the equivalent form,

d(a. : A i A i A
[E) = Axux + Ayuy + Azuz (B.3)
Oz

As stated earlier, the last'three terms are due to the rotation of the intermediate reference frame.
Translational motion is ignored because this motion does not alter the direction of 4 as seen
from Oyy,. Also the magnitude of 4 is fixed for these terms and thus the vector cannot change

as a result of this motion. The line of action of A4 however, will change as seen from the fixed
reference frame Oyy, but a change of line of action does not signify a change in the vector.
Therefore,

di, dii di,
+ A2 + A2 =AU + A D% + A%
* dt v dt zdt * * 4 4 z z B.4)
- Gsx(fxux r A, Azuz) )
= GSXA
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Consequently,

d4 dA >
—_— = _ ‘BXA
( dt]o ( dt)o ' B.5)
XYZ oz

Since A4 is an arbitrary vector, the derivative rule for vectors using intermediate reference frame
is

d
4. (—) + B (B.6)
rel

B.2 Forces

Newton’s law states that linear momentum and force are related in the following way,

=

d d
F = E(mﬁ) = ’”EE(V) B.7)

Applying the derivative rule for vectors using intermediate reference frame to the velocity vector
yields,

d d(z dR dF
V = — = IR + == + Z + dxF B.
7= dt( A i dr ’ (B.8)
F = m2(R +7 vax7) (B.9)
dt
F = m[R +7 +®XF +@xF+®xF +Bx(@x7) (B.10)

All points of interest in lie within the rigid body of the rotor hence # = 7 =0

F = mR +&xi+@dx@x7) (B.11)

The steady state operation of the turbopump is of primary interest. At this stage, the angular

acceleration @ is assumed to be negligible. Therefore,

F = m[R +&x(@x7) (B.12)
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The external forces F must be measured relative
to the fixed reference frame. In the model of
the turbopump, these forces originate from the
magnetic bearings present in the pump housing.
Since the pump housing remains stationary with
respect to the fixed reference frame, no further
analysis is required with regards to external
forces.

The acceleration term R is merely the
acceleration of the intermediate reference frame
with respect to the fixed reference frame. The
intermediate reference frame has been purposely
chosen to lie at the center of mass of the rotor.

Therefore K is the acceleration of the center of
mass of the rotor as viewed from the fixed
reference frame. The last term is the angular
velocity of the intermediate reference frame with
respect to the fixed reference frame & and the B.2 Rotor Forces and Reference Frames
distance from the intermediate reference frame

to the point where the force is applied 7. It is

assumed that the external forces applied by the magnetic bearings act at the center of the
cross-sectional area of the rotor hence

A

F=rd, (B.13)

The angular velocity of the intermediate frame @ will be more difficult to determine. The rotor
of the turbopump has an angular velocity of

d=wid +oid + Qi (B.14)

The z component of the angular velocity is by far the largest component but the other
components cannot be ignored until further analysis is performed to determine the magnitudes

of the angular velocities in both the 4, and ﬁy direction that are allowable due to the clearances
between the rotor and the magnetic bearing in both these directions [1].

Using the Euler angles there are three possible worst cases [6]:

1. The rotor is inclined such that opposing ends of the rotor contact the

bearings in the f direction.
2. The rotor is inclined such that opposing ends of the rotor contact the
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bearings in the { direction.
3. The rotor is inclined such that opposing ends of the rotor contact the
bearings m/4 radians from the principle axes in the xy plane.

1 i

B-3 Rotor Inclination 1 B-4 Rotor Inclination 2 B-5 Rotor Inclination 3

Before examining each of these cases, the
relative magnitudes of the tolerances of the radial { direction +0.000125 m
bearings will be examined. Assuming that the XYZ R
axes lie on the center line of the radial bearing, the |J direction +0.000125 m
clearance between the rotor and the radial bearings is

‘N . . i .
shown at the right. k direction 0.0002 m

If the rotor is positioned such that its principle
axes lie along the centerline of the radial bearings and
midway between the axial bearings, then the lengths that

correspond to those shown in Figure B-6 are:

a=0.0238 m, b =0.0691 m

Now each of the three worst cases is examined.

Case 1: Rotor contacting radial bearings in f direction.
Since the radial bearings lie in the housing, the
force is always applied a distance of a—z from
the origin where z is the distance the axial b
bearing varies from nominal center. Since a > z,
this difference will be ignored in this and the
remaining cases. Therefore

ri, = 0.000125; + 0.0238% (B.15)

. . B-6 Rotor Center of Gravity
rd, =~ 0.0238k = ak (B.16)
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Case 2: Rotor contacting radial bearings in i direction.
This case is very similar to Case 1

rii_ = 0.0001257 + 0.0238% (B.17)
ri_ = 0.0238k = ak (B.18)
Case 3: Rotor contacting the radial bearings midway in both the { and j directions.

rd, = 0.000125cos 27 + 0.000125sin%f + 0.0238% (B.19)

ri, = 0.0238% = ak (B.20)

For all intensive purposes, the intermediate reference varies so little from the basic reference
frame that their unit vectors are equivalent.

i, =k
i, =] (B.21)
g =1

~

This same analysis is applied to the angular velocity vector. It is assumed that the angular
velocity terms in the #, and z’iy directions are negligible in comparison to the angular velocity
in the &, direction. For this particular turbopump, the angular velocity in the #, direction ranges
from 12000-45000 rpm or 1250-4710 rad/sec. Such large magnitudes could translate into
substantial angular velocities in the #_ and ﬁy directions if the rotor varies from true vertical

relative to the fixed reference frame. Now the angular velocity is examined in the same manner
as the position vector using the three worst cases. In this analysis, an average angular velocity
of 3240 rad/sec will be used.

Case 1. Rotor contacting radial bearings in f direction.

@D = Q[sin(arctan 0.000125 )/ + cos(arctan 0.000125 ) k]
0.0238 0.0238

- ) (B.22)
= Q[sin(0.00525) + cos(0.00525) ]

sin(0.00525) ~ 0.00525

c0s(0.00525) = 1.0 (B.23)
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® = Q[0.005257 + £] = 177 + 3240k (B.24)

ax7 = (177 + 3240£) x (0.000125] + 0.0238 %)
= (0.4046 -0.405){

- B.25
.3 (B.25)

Case 2: Rotor contacting radial bearing in the { direction.
Again, this case is very similar to Case 1 hence

& = Q[0.005257 + £ = 171 + 3240 (B.26)

A
.

0.4046 +0.405);

dx7 = (177 + 32404 x (0.0001257 + 0.0238 %)
(

- B.27
.3 B.27)

* and ¢ directions.

Case 3: Rotor contacting the radial bearings midway in both the ; ]

sinZf + cosfarctan 222012 £
4 00238

0.000125
0.0238

0000125
0.0238

® = Q[sin(arctan )cos%z’ + sin(arctan

= n[sin(o.ooszs)cosii‘ + 5in(0.00525)sin 2§ + cos(0.00525) lé]
4 4 (B.28)
= 0[0.00371 7 + 0.003715 + k| = 127 + 12] + 3240£

OXF

(127 + 12 + 3240%) x (0.00008847 + 0.0000884; + 0.0238%)
(0.2856 -0.2864)F + (-0.2856 +0.2864); + (0.00106 -0.00106) £
~ 0

(B.29)

Therefore, the last term of Eq. (B-12) becomes

dx(@xA = @x0 =0 (B.30)
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Finally,

oy
R

3
2y

or

Fxl + Fx2 mx”C
FyI + Fyz = my,
F = m(ic—g)

z

B.3 Moments

The moment M and the moment of momentum H are related in the following way,

2]

Y.
ar

4
dt

using the vector derivative formula [8]

The moment of momentum for a rigid body is

H=1I&

(B.31)

(B.32)

(B.33)

(B.34)

Where I is the inertia tensor and @ is the angular velocity vector of the rigid body. Also for a

rigid body, the inertia tensor does not vary with time hence,

M=106+&xI&

(B.35)

Since the intermediate reference has been purposely chosen to lie along the principle axes of the

rotor

1,0 0] [I. oo
I,=10 1, 0|=[01 0
0 0 0 0 I

IZZ
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Now the term &xI & is examined. Previously @& was shown to have an average magnitude of

@ = 12§ + 12f + 3240k (B.37)
Since w, = 0, 4w,
@ ~ 3240k (B.38)
and
I.& = Lok (B.39)
Therefore
M=106-+ (®x1.3) (B.40)

Mx = Irro'ox + Izzooycoz = —aFyI + bez

My = I”o'oy -Lww, = aF, - bF, (B.41)

zZzZ X 2z

M, = I o, = Rotor Torque

Moments in the z direction are merely the torque supplied by the motor to maintain a constant
angular velocity and are therefore of little interest to us and shall be ignored. Finally,

Lo +L o =-aF, +bF,

Irra’)}' B Iuwxwz = anI - beZ (B.42)

99



Appendix C

Turbopump Equations of Motion

This appendix builds on fundamentals outlined in the previous two appendices and derives the
turbopump equations of motion. The first section begins with the generalized nonlinear equations
of motion and simplifies these equations given the geometric limitations of the turbopump
system. Next the linearization formula is introduced. Then the linearized equations of the
motion for the radial bearings are derived while the next section does likewise for the axial
bearing. Finally, the final form of the linearized turbopump equations of motion are presented.

C.1 Nonlinear Equations of Motion

The equations governing the motion of the rotor are the following,

Rearranging,

F, + F, =mi;,

Fyl + Fyz = my,

F, = m(z-g) (C.1)

+ 1,08, = -aF, + bF,
+1.00 = aF, - bF,
By, Fa

m m

m m
L
m (C.2)
-aF, bF, 108,

I, I, I,
aF, _bF, 1,66,

I, I, I,



In the following analysis, the subscript I denotes the upper bearing location, the subscript 2
denotes the lower bearing location, and the subscript ¢ denotes the rotor center of gravity. The
distance to where the forces F,, and F, are applied to the rotor are

X, =Xo + asin®y
Y1 = Yc ~ asin@, (C.3)
a=z -z,
The distance to where the F,, and F), are applied to the rotor is
X, = Xc - bsin®
Y, = Yc + bsin®, (C4)

b=2z,-2

Differentiating to obtain acceleration,

%, = %o + dsin®, + acos® O,
Y, = Vo - asin®, - acos® O, (C.5)
a =i -z,

.. . .. - . 13 - 2 A\
= + + + - +
X =X asm@y acos®y®y acos®y®y asm®y®y acos @y@y

J, = Jo - dsin@®, - dcos®,0, - dcos®, O + asin@x@i - acos® O, (C.6)
=1z -z

First movement in the z direction is examined. At the equilibrium conditions, when the center

of mass of the rotor is positioned at the origin of the inertial reference frame, a = 0.0238 m. The

maximum possible deviation of the center of mass from equilibrium conditions is the maximum

travel allowed by the magnetic bearings. This distance is equal to + 0.00025. The maximum
possible error when assuming a is equal to its steady state value is,

ERROR = 2200925 _ 9105 - 1.05% €
0.0238

Therefore a very small error is incurred by assuming the following

a=a a=d=290 (C.8)
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The equations for acceleration now simplify to

X, =X, - aﬂsm@yéy + a”cos@yOy

, (C9)
N

" . 2 :
Vo + a“sm®x®x - a“cos®x€')x

Now the maximum contributions made by the angles 6, and 6, are
examined. Due to symmetry of the rotor, our analysis of the
contribution of the angle 6, also applies equally to that of £,. At the T
equilibrium point, a = 0.0238 m. The maximum allowable rotation
about any axis is related to the clearance between the rotor and the each
individual magnetic bearing when both of their centerlines are equal.
For the radial bearings, the clearance is equal to 0.000125 m. Therefore

0.000125 .
) =mm4———-=OMQ5
MAX 0.0238 ) (€10

0.00012§

sin®, =0, .

cos®, . ~1 (C.11)

Substituting Eq. (C-11) into Eq. (C-9) yields

|
R
I
Q
@
>

v 2 2
¥ = + a”@)y

. C.12
jr’1=jic+a@92—a“9x (13

Since 6, and 6, are likely to be extremely small, the final simplified equation for the acceleration
at the point where the forces F; and F,, are applied is,

¥ =X, + asséy 13
-}.;1 = j;C - asséx

Likewise, this same analysis can be performed for the acceleration at the point where the forces
F,; and F, are applied and the ensuing simplified equation would be

'£2 = ‘fC - bsséy

. (C.14)
343

j;C + bsséx
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Substituting Eq. (C-2) into Eq. (C-13) and Eq.

Rearranging,

Y

2

%

2!

2
Fy By a’F, abF, al 0.6,
m m I, I, I,
F, , Fy, _abF, bF, b1 0.6,
m m I, I, I,
Fy  F, a’F, abF, al 6,
m m I I I
2
F, , F, abF, b'F, 100,
m m I I I,

2 al
l+_‘1_) Fxl + l_a_b Fx2 — Gxgz
m I m I I
1 ab 1 b2 bl
—’;1'—}— Fxl + ;+I_ FxZ 1_2 6Jcez

2 al
L.a\p |12 p | Z=lge
m I |~ m I |7 S
1 ab 1 b2 bl,
;“T Fy] + —+I— Fy2 I_ @y@z

(C-14) yields,

(C.15)

(C.16)

All of the above variables are known except for the angular velocities in the x and y direction.
To determine these unknowns, Chasle's Theorem is applied. Chasle’s Theorem states any motion
of a rigid body can be decomposed into a translation of a point on the rigid body and a rotation

of the rigid body about the same point.
translation yields,

X, =X, T W1

Applying this equation to our rotor yields
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¥ =X, +ab,

%, = % - b8,
Solving for x, and equating both equations yields,
X - a®y =X, + b@y

Solving for Qy

ey - X X

a+b
Likewise, solving for Gx

ex - Y, =0

a+b

(C.18)

(C.19)

(C.20)

(C.21)

Substituting Eq. (C-20) and Eq. (C-21) into Eq. (C-16) produces the final simplified equations

of motion
X Vo
Xy Vy2
y 1 vyl
843 Vy2
Z v,
. 1. a? 1 ab al,®,
Var ‘m +I_ F at m L Fx2 > @+b)l
r ”w m
. - 1 ab 1 az bluez
Vo2 )P T B o
L4d w t44
. 1 az 1 ab alnex
| ) et (w ) e ey
m m Lo d
v Labp L, (1,a\p | ks
y2 m I ) VY m 1] 2 @+b),
0 Fl
vz ; - £

C.2 Linearization of the Magnetic Force Equations

Y

Y

al 6,
@y,
bI,8,
@+d),
alnéx
\ @),
bI_6,

@+b),

Y2

2

(C.22)

It can be seen that since the force exerted by the magnetic bearings is nonlinear, that the
equations of motion of the rotor are nonlinear. Therefore, linearizing the magnetic bearing force
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equation about the equilibrium position of the rotor is the obvious next step. Given a system
of nonlinear equations having the following form [12],

ﬁdtﬂ = A%, ) (C23)

The linearization process utilizing Taylor series expansion and discarding all terms higher than
first order yields

at - 3 TED o, + § D

4 u, (C.24)

1 X J=1 uj

O’ﬂo 0’“0

7

x, denotes the nominal operating point corresponding to the nominal input u, In vector matrix
form, the above equation becomes

Az’ = A'A% + B'Ail (C.25)
where
LA % % Y
ox, % » ouy Ou, ou,,
A* = | & &x,, B* = | o ou,, (C.26)
LA AN A LA AN A
ax,  ox, Y . ou,  ou, N -

C.3 Radial Bearing Linearization

The state equations representing the attractive magnetic force applied to the rotor of our
turbopump by one axis of each radial bearing are

X =X,
X, = _ BoN?4cosp(l,-0.5uf . uo N4 cosp(l, +0.5uf’ (C27)
m(hy +x,} m(hy - x,f
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where: u, = air permeability constant
N = number of solenoid wire turns
A = solenoid cross-sectional area
I, = magnetic solenoid bias current
m = rotor assembly mass

rotor equilibrium state position

control current

x; = bearing position sensor value

e
[

&
]

The above equations assume that the control current will be small enough so that the driver is
applying a bias current to each side of the magnetic bearing axis. This is a reasonable
assumption because a rotor that is not spinning is not subjected to any forces in the x and y
directions. Differentiating each term of the linearization matrix yields,

W, W, %, %
oxy 0x, ox, or

% _ 2mN ?AcosB(I,-0.5u)? . 24 N4 cosP(I, +0.5u}?

3, Mg+, — (C28)
P _ BN 2AcosB(I, - 0.5u) . HoN?4cosP(I, +0.5u)

or m(ho +x,f m(ho -x,}

If the inertia reference frame is chosen such that it coincides with rotor center of mass, then the
equilibrium point becomes y, = 0, x, = 0, and », = 0. Evaluating the terms of the linearization
matrix about the equilibrium point yields

h, B, B, H_,

ox, ox, ox, or

of, 2pNdcosPl; 2pN?Acospl;  4p,N>AcosPI;

—_— = + =

ax, mh mh mh (€.29)
of, poN?dcosBl, p,N?*4cospl, 2p N24cospl,

_= + =

or m h02 m h: mhl

Therefore, the linear magnetic force is

A%, 0 1||Ax, 0
| = | apgnrar? + |2p,N%41, [u (C.30)
A%, :h’ -0l A, mhy
0
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or,

4p N2Acosply
hy

2p,N24cosPl,
hy

Fesxa = (ey)z + U )1.2) (C.31)

C.4 Axial Bearing Linearization

The state equations representing the attractive magnetic force applied to the disk attached to the
rotor of our turbopump by the axial bearing are

X =X,
_ uoN 24 (IO -0.5 u)2 . ],loN 2A (Io +0.5 u)z (C.32)

"2 = 4m(h0 +xl)2 4m(h° —Jcl)2

where: y, = air permeability constant
N = number of solenoid wire turns
A = solenoid cross-sectional area
I, = magnetic solenoid bias current
m = rotor assembly mass
h, = rotor equilibrium state position
u = control current
x, = bearing position sensor value

The above equations assume that the control current will be small enough so that the driver is
applying a bias current to each side of the magnetic bearing axis. This assumption will have to
be verified later to determine its acceptability because the rotor is constantly being subjected to
the force of gravity in the axial direction. Differentiating each term of the linearization matrix
yields,

By K, B, B

ox, ox, ox, or

o, B NAL-0.5uf  p NAlL,+05uf

> 3 * (C.33)
1 m(ho +xl)3 2m(h0 —xl)3

% _ WN'AL-05u)  p N4l +0.5u)

or 4m(ho +xl)2 4m(h0 —xl)2

If the inertia reference frame is chosen such that it coincides with rotor center of mass, then the
equilibrium point becomes x, = 0. However, the value of u, is not obvious because unlike the
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radial bearing, the attractive force most compensate for the weight of the rotor.

determine %, Eq. (C-32) is evaluated with x,=x,=0and ¢ = g

B N?A(L,-0.54p . o N2A(I +0.5up

4mh} 4mh}
_ Wk N?4Lu
2mho2
Rearranging,

2mgho2

poN241,
Parameter Axial Radial
Air Permeability, p, (N/A2) 126 x 10° 126 x 10%
Mass, m (Kg) 2.2 2.2
Number of Wire Turns, N 133 100
Magnetic Flux Area, A (m?) 7.0x10* 9.75x 10
Bias Current (A) 0.5 0.5
Centerline Distance, h, (m) 4.0x10* 2.5x10*

In order to

(C39)

(C.35)

Substituting the values supplied by the manufacturer into Eq. (C-35) yields u = 0.885 which
corresponds to the case u, > u > -u, Therefore the previously assumed driver equation is correct

and re-evaluating Eq. (C-33) with z, = 0, u, = 0.885 yields,

o,  HNA(L,-0.443F  p N’A(I,+0.443)  p N4
= + =

0xy 2mho3 2mho3 mh(,3

o,  WN’A(L,-0.443)  p N?A4(I,+0.443)  p N>AJ,

—_— = + =

or 4mh] 4mhg 2mhg

Therefore, the linear magnetic force is
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Ay 0 1{ |Ax, 0

| = | nod2a{i? +0.196) 0 + | N4l lu (C.37)
sz mh: sz 2mh?
0
o,
hoN2A(I2+0.196) N4l
% 20,

The theoretical analysis thus far has shown that the control signal necessary to maintain
the rotor in the equilibrium position lies within the range u, > ¥ > -u ., In actuality, by
monitoring the driver test points of the axial bearing, the control signal necessary to maintain the
rotor in the equilibrium position lies within the range u > », The reason for this discrepancy can
be explained by the omission of the power amplifier in the theoretical analysis of the system.
The analysis thus far assumed that the output signal from the driver is applied directly to the
magnetic bearings. In actuality, the driver output signal first passes through a power amplifier
before being sent to the magnetic bearings. This does not effect the analysis of the radial
bearings because omission of the power amplifier would only decrease the signal required from
the driver and therefore the equilibrium position would remain in the range uy, > u > -u, In
Appendix E, the power amplifier is assumed to be a constant having a form of A/A, The values
for each component of this gain are determined by comparing the DC gains of the actual system
response between the driver output test port and the position signal test port with the theoretical
system response from the linearized equations of motion. This analysis shows that for the axial
bearing alone, the power amplifier actually attenuates the driver signal and that the values are
A, = 1.0, A, = 1.138. Using this information, Eq. (C-34) becomes,

N4, -0.5u 4, . o N>A(l,+0.5uf 4,

g 2 2
4mhi A, 4mhi A,
2 (C.39)
_ eN“ALud,
2mhl 4,
Rearranging,
2mghlA
£% % (C.40)

uy-=-=--——
uN2AI A,

Substituting the values supplied by the manufacturer into Eq. (C-40) yields u = 1.007 which
corresponds to the case u > u, Therefore actual state equations representing the attractive
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magnetic force applied to the disk attached to the rotor of our turbopump by the axial bearing
are now

X =x,
g o oA (C.41)
2 4m(ho —xl)2

Differentiating each term of the linearization matrix yields,

h_y Ky %, %,
ax, ox, ox, o
of, BNAu?

-3—351- 2m(h0 —xl)3

of, poN24u

or 2m(ho —xl)2

(C42)

If the inertia reference frame is chosen such that it coincides with rotor center of mass, then the
equilibrium point becomes y, = 0, x, = 0, and u, = 1. Evaluating the terms of the linearization
matrix about the equilibrium point yields

hoo Xy %, &K,

ox, ox, ox, or

df, BN 2Au02

¥ 2mh (C43)
o,  mN4y,

or 2mho2

The numerical value of u, could have been substituted into Eq. (C-43) but this would probably
lead to confusion later because the dimensions of the remaining variables would not produce a
suitable answer. Therefore, the linear magnetic force is

AJEI 0 1 Axl 0
= | pN24u? + | p N2 Au, (U C.44
o[22 ) | s
mh, 2mh?

or,
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2 (C.45)

C.5 Linearized Equations of Motion

Given the following constants,

(C.46)
c, =( aI,e,), C, = ( u,e,)

Substituting Eq. (C.31) and Eq. (C.45) into Eq. (C.22), the final linearized equations of motion
then become,
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0 0
0 0
0 0
0 0
0 0
4C keosPl;  4C;kcospl]
hy ky
4CkoosBly  4C kcosPly
ko hy
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
2C,keosPl,  2C;kcospl,
ko ko
2CkeosBl, 2C,kcosBl,
ky ko
] 0
0 0
0 0

0 0
0 0
0 0
0 0
0 0
0 0
0 0

4C keosBl;  4C,kcosply

h k
4Ckeosply  4C;keospl]
h K
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

2C,keospl, 2C;kcosl,

hy ky
2C;kconply,  2C;kcosl,

ky h

0 0
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0

o O O O O

1 0
0 1
0 0
0 0
0 0
0 0
0 0
c, -C,
-Cs G
0 0
Fuxl.
ux)
uyl
uy2
L ]

o O ©

—

_ O O O O

(C.47)



Appendix D

Hybrid System Modeling

In this appendix, different approaches are used to model the hybrid system. First, the digital
controller is modeled as a continuous time system thereby allowing the entire system to analyzed
using continuous time design methods. Then the plant is modeled as a discrete time system
thereby allowing the entire system to analyzed using discrete time design methods. Finally, the
effects of using derivatives in the discrete time controller are analyzed.

D.1 Purely Continuous System

All calculations were applied to the radial bearing equations. This same analysis also applies to
the axial bearings but the results are not shown in the interest of brevity.

D.1.1 Open Loop System

The block diagram of the open loop system is shown in Figure D-1. The linearized radial
bearing equation represented in the block diagram by G(s) is,

. ACkL}  4CkIL .. 2Ck,  2CkI,
Var = Tt 5 O O Uy (D.1)
hy hy hy hy
Assuming that the coupling between bearings
can be treated as a disturbance (x, and u,,
have little or no effect on x,) and that the Xi
rotor is not rotating (C, = 0) [12], R(s) G (S) L
x 0 1i=x 0 .
5 = |4CkI} oll v +|2C k1, lu D.2)
%S hy D-1 Continuous Time Open Loop Block

Diagram
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b= ||+l ®3)
4
Taking the Laplace transform,
sX(s) = AX(s) + BU(s) D4
s) = DX(s) + EUs) (D4)
s -
-’-% - D[sI-A]"'B+E ®.5)
1 s 1| o
X) 11 0 wenifacuiz |Uacim,|+[o] .6)
R(S) S e e 2
ho hy hy
2C, k1,
Xs) . __ M
R(s) 2 ACKL (D.7)
hy
Recall that the constant C, was defined as
1 a? ‘o
C = —_— —
S8 e [
Figure D-2 displays the root locus diagram of | § ™ g
the transfer function represented by Eq. (D.7). L *
Since the constant C, is always positive, a b
pole of the characteristic equation lies in the
right half plane. Therefore the magnetic - |
radial bearing is unstable in the absence of L o
control and at best marginally stable under <350 200 150 160 S0 0 S0 160 IS0 300 350
proportional control. Real Axs

D-2 Continuous Time Open Loop Root Locus Diagram
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D.1.2 Closed Loop System

R(s)

E(s)

Ul Ve e X

H(s)

A(s) G(s) >

D-3 Continuous Time Closed Loop System Block Diagram

The block diagram of the closed loop system is shown in Figure D-3. H(s) represents the digital
controller, K represents the control gain, A(s) represents the control current driver which is
responsible for generating the bias current and dividing the control current between both sides
of the bearing axis, and G(s) represents the turbopump. From the block diagram, the individual

block equations are,

Els) = X(s) - Rls)
o - K0
Ws) = Als)Vs) (D.9)
X(s) = Gls)Ws)
Rearranging yields
X(s) _  KA(s)G{s)Hs)
Ris)  KA(s)Gls)Hs) - 1 (D.10)
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D-4 Continuous Time Controller Block Diagram

Figure D-4 shows the block diagram representation of the digital controller in a continuous time

form. The continuous time digital controller approximation is,

|, -Ts 2
(e s +(122S+021)

Bl -¢°™)

His) =

The continuous time turbopump approximation is,

2C,k,

The continuous time control current driver approximation is,

Als) =

s+4,

Substituting Eq. (D.11), Eq. (D.12), and Eq. (D.13) into Eq. (D.10) yields,

e

Xs) _ s+, )\ s2-0 Bl -e™)

R(S) K A4, P (c'T‘32+a22: +a21) -1
( “"z) ( s’-Q) Bt -¢7")
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or,

X _ A, KPle™"s? +ays +ay)
RS Bl -e ™ +[4,B{l - e D)+ 4,KPe 2 +[a,4,KP - BO(l - e s +[ayed,KP - 4,801 - o] (D.15)

D.1.3 Poles of the Closed Loop Characteristic Equation

The closed loop characteristic equation can be written as

B(1 - & ™)s® +[4,B + (4, KP - 4,B)e "]s* +|a,4,KP - BQ) + BQe s
+[ay4,KP - 4,B0) + 4,BQe ™

If order to determine whether the system is stable, the roots of the characteristic equation
must be found. This implies that the continuous time representation of time delay e™ must be
represented in some other analogous form. One such analogous form is the Taylor series
approximation [12],

T2s? 733
X 3 + ... (]),16)

e =1-Ts+

The Taylor series expansion is an infinite series. The accuracy of this approximation is directly
related to the number of terms used and this in turn is directly related to the time delay 7. As
the time delay decreases, the number of terms necessary for an accurate approximation also
decreases.

Another analogous form is to approximate the time delay as a polynomial function,

- 1
e Ts

" il @1

In this form, the accuracy improves as the value of »n approaches infinity. However, as n
decreases, the slope of the associated polynomial decreases and therefore the function reaches
its final value at an ever increasing time. Obviously, the final value must be reached before the
next sampling interval so once again the value of n is tied to the time delay or sampling rate.
Both approximations are therefore tied to the sampling rate. However, the sampling rate
of the digital controller is a controller variable which forces the approximation to be a variable.
This would make the stability analysis unnecessarily complicated and therefore modeling the
closed loop system as a purely continuous time system was dropped from consideration.
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D.2 Purely Digital System

All calculations were applied to the radial bearing equations. This same analysis also applies to
the axial bearings but the results are not shown in the interest of brevity.

D.2.1 Open Loop System

The block diagram of the discrete
time open loop system is shown in Figure

D-5. The linearized radial bearing equation —ﬂq 1-¢7 -t.l.('-). G(S) ﬂ).
represented in the block diagram by G(s) is, §
Sample and Hold

D-1 Discrete Time Open Loop Block Diagram

4CkIF  4C,kI2 C 2Ck,  2Gk
5 = 5 4t T X2 "G Oy Uy ——— Uy, (D.18)
hy hy hy hy

Again assuming that the coupling between bearings can be treated as a disturbance (x, and u,,
have little or no effect on x;) and that the rotor is not rotating (C, = 0) [2, 13, 20]

X 0 1fx 0
p = 4Clk]°2 ol v + 2CI:I° U (D.19)
h: ko

[1 0][x
bl =" | |+ 00l B2
Taking the LaPlace transform,
sX*(s) = AX*(s) + BU*(s)
Y*(s) = DX*(s) + EU™(s) (D.21)
X's) . plsr-A|"B+E
0 [s1-A] (D.22)
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) s 1Yl o

X (S) = [1 0] . 4C|klg' 4Clk102 2C kI, +[0] (D‘23)
T*(s) S I | Y
2C, kI,
X'(s) hy __P
T*(s) 2 _4CH; -0 (D-24)
TR

The z-transform of the open loop system is,
(=)ot - ;%’L-[‘f?“ll
, @L-[e - e8]
Bl
-ife]

Using a backward difference variable transformation such that s = i’z;;) yields,

-2 e8] - -l Q)])

v x|

_ (z \Ee, Br | K D25
\z lz-t ,_-vor ,_,voOr
zZ-e z—-e

_ P2ke ”%-e“@’)+@-9(=-=””)+kﬁ(z-e'ﬁ’)]
of 2e-eve, Ve

For discrete time systems, stability is assured if poles of the characteristic equation lie within the
unit circle. Figure D-6 shows that for a particular proportional gain, the system becomes
marginally stable when both poles equal 1. However, the system is unstable in the abscence of
any control because one pole lies outside the unit circle and proportional control can only briefly
bring the system to marginal stability.
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d 0.5

25 L P BN B | Laea oL L L L -0,5 s — -
25 3 25 2 AS I 4S5 0 &S I LS 0.5 1 1.5
Real Axis Real Axis
D-6 Discrete Time Open Loop Root Locus Diagram D-7 Discrete Time Open Loop Root Locus Diagram

D.2.2 Closed Loop System

R(s)
| é) E(s) H(s) T(s) X Ve 1= | VO, 409 we), G X
S

D-8 Discrete Time Closed Loop Block Diagram

The block diagram of our closed loop system is shown in Figure D-8 above. H(s) represents the

)

digital controller, K represents the control gain, represents an idealized sample and hold

element, A(s) represents the control current driver which is responsible for generating the bias
current and dividing the control current between both sides of the bearing axis, and G(s)
represents the turbopump. To further simplify the analysis, the sample and hold, amplifier, and
the turbopump are combined,

R - (1-e™4,P

e (D.26)
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The z-transform of the above is calculated using the same process employed in our open loop
equation analysis.

Fe) = (1-z “)[,(“ j; QJ'
- )

K L
S
( )[Klz " K: | Kg ]

z-e T z-¢VOT 7 VOT
ey o

e B eV
S A A

D.27)

From the block diagram, the individual block equations are,

Uz) = KT(z) (D.28)

Rearranging yields

Xz) _ _KHE)Fz)
Rz) KHR)FZ)-1 (D.29)

The digital controller receives only position input and therefore must approximate both the
velocity v(?), w(t-T), and the acceleration a(z-T). The backward difference velocity approximation
is,

o) = 340 4{;? +:46-21) , oy (D.30)
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The central difference velocity approximation is,

at-T) = X(L).;V(L‘Z_T)_+o(7)2

_ 2x0) -4x{t-T) -2x{t -2T) +4x{t -37) -x(t -47) O[T}
4T?

Using Eq. (D.31) and Eq. (D.32), the digital controller transfer function becomes,

4—';—2[2(3%T+2a21 T? + l)z“ -4(1+2a,,T)z° +2(a,, T-1)2> +4z - 1]

He) = Bz3(z-1)

—(Mlz4 —M223 +M3z2 +M,z 'Ms)
Bz3(z-1)

Substituting Eq. (D.27) and Eq. (D.33) into Eq. (D.29) yields,

K A, PT*s} Myz*-Myz3 + Myz? + Mz~ M
+ - -OT2%2-22+ 3,
Xz) _ [1+4,7-1J0 -07%2-2241] Bz3-1)
R(Z) -Xl AJ’T‘Z’ ( Mlz‘—Mzz3 +M322+M42-Ms) _
[1+4, -1t -07%)2-22+1] Bz3G-1)
or,
Xt) _ A KPT'M,z*-M,2° + My2* + M,z - M)

Re)  [4,KPT*M,-B(1+4,T)z*-[4,KPT* M, +3B(1 +4,7)+B(1 - Q772>
+[4,KPT*M, +3B(4+34,1)- B(1- QT2+

D.3 Derivatives and Noise

(KPT*M,+4,BT+4B)z-(4, KPT*M,+B)

(D.31)

(D.32)

(D.33)

(D.34)

(D.35)

In conventional calculus, differentiation of a function is a well-defined formal procedure that is
highly dependent on the form of the function. Many different rules and techniques are employed
for different functions. Digital computers however can only use the simple instructions of
addition, subtraction, multiplication, and division along with some logical operations to determine
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the derivative of a function. Therefore a technique which employs only these simple instructions
to calculate function derivatives is needed. Such a technique is known as finite difference
calculus and is employed by the control algorithm of our particular digital controller. There are
however drawbacks to using derivatives in a control algorithm [3]. Differentiators are noise
amplifiers. For instance, assume that a position signal that has a noise component is being
differentiated,

x{f) = sint+1073sin10%¢

In this particular example, the high frequency noise component has an amplitude that is one
thousand times smaller then the actual position signal. Now taking the derivative,

W) = cost+cos10%¢

Differentiating the signal has magnified the amplitude of the noise component a thousand times.
Now taking the second derivative,

alf) = -sint-10*sin10°¢

Now the high frequency noise component has overwhelmed the actual signal. This exact scenario
is happening in the digital controller used by this application. The state variables of the
controller are position and velocity but the physical system is only capable of providing the
position signal. Therefore the controller computes the missing velocity signal by differentiating
the position signal using finite difference calculus. This velocity term is in turn differentiated
to obtain the acceleration which is needed to determine the control signal. It is extremely likely
that this acceleration term is primarily noise and therefore severely compromises the robustness
of this controller.
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Appendix E

System Analysis Data

Signal
Test Point
Power Position
Driver Amp Sensor
Control Position
Si; Control LY/
A Signal 4
Test Point
Ce

Switch
l— DA Digital AD

Controller

Position
Test Poimt

E-1 System Block Diagram and Test Points

This appendix presents graphically the results of the system analysis of different
components of the turbopump. The actual system analysis data was obtained using the Hewlett
Packard HP 3562A Dynamic System Analyzer across the appropriate test points. Refer to Figure
E-1 for the location of the test points in relation to the system components. Also included are
the source listings of the programs used to obtain the numerical values associated with each
transfer function numerator and denominator.
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E.1 Theoretical versus Actual Pump Transfer Function

The theoretical pump transfer function is obtained from the linearized equations of motion.
These equations are further simplified by assuming that any coupling between axes of each
bearing is negligible and therefore can be treated as a disturbance, and that the rotor is not
spinning and therefore all gyroscopic terms are zero. Using these assumptions, the transfer
functions for each respective type of bearing is,

Axial Radial
RoN?4 2p,N2AC,cosPl,
Xs) . 2mh Xs) _ "
Us) g2 =tV 24 Us) §2_ 4p N?AC,cospIZ
2mhy hy

The table below represents the important magnetic bearing variable values as provided by the
turbopump manufacturer.

Parameter . Axial Radial
Air Permeability, p, (N/A?) 1.26 x 10° 1.26 x 10°
Mass, m (Kg) 2.2 2.2
Number of Wire Turns, N 133 100
Magnetic Flux Area, A (m?) 7.0 x 10™ 9.75 x 10°
Bias Current (A) 0.5 0.5
Centerline Distance, h, (m) 4.0 x 10* 2.5 x 10*

To simplify the analysis, the transfer functions representing linearized equations of motion of all
the magnetic bearings will share the same format,

Xs) _ P

Us) s-Q
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The representative values of P and Q are,

Parameter Axial RadiX RadlY Rad2X Rad2Y
P 22.162 9.496 9.496 18.720 18.720
Q 55403.757 37984.062 37984.062 | 74881.133 74881.133

The actual transfer function is obtained using the Dynamic System Analyzer. The input
was a swept sine wave having a range of 0.1 Hz to 10 KHz. The sine wave is incremented
linearly and has an amplitude of 0.1 Volts. The input was applied to the driver signal test point
and the output was obtained from the position test point (see Figure E-1). The actual transfer
function encompasses not only the magnetic bearings but also the power amplifier. However,
the theoretical transfer function is derived from the linearized rotor equations of motion and
therefore ignores the power amplifier. The contribution of the power amplifier was determined
by comparing the DC gains of the actual and theoretical transfer functions. The power amplifier
is assumed to be constant gain amplifier having the form A/A,. The values obtained for the
power amplifier are,

Parameter Axial RadlX RadlY Rad2X Rad2Y
A, 1.000 3.682 3.736 1.906 1.821
A, 1.138 1.000 1.000 1.000 1.000

Finally, either the actual transfer function data or the theoretical transfer function data
must be converted to compatible units for comparison purposes. The actual transfer function has
units of V/V and the theoretical transfer function data has units of m/A. The conversion factors
are,

Conversion Factor Axial Rad1X RadlY Rad2X Rad2Y
Position Signal 9450.0 25000.0 25000.0 25000.0 25000.0
(V/m)
Driver Signal (V/A) 0.3 0.3 0.3 0.3 0.3

The actual transfer function versus theoretical transfer function plots begin on the next page.
Note that the axial bearing phase plots seem to disagree with the value expected from the transfer
function. This discrepancy is due to the normal operation of the driver. In the case of the radial
bearings, the control signal at the equilibrium point is such that the driver produces magnetic coil
currents that are both positive and negative in magnitude. The driver test point that corresponded
to the positive coil current was used to obtain the actual pump transfer function plots so that the
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phase plots would not require correction. However, the axial bearing driver only produces a
negative magnetic coil current when the bearing is in its equilibrium position. Therefore, the
numerator of the theoretical transfer function was inverted to obtain the proper phase.
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E.2 Best Fit versus Actual Pump Transfer Function

The best fit pump transfer function is derived by using the general form of the theoretical
pump transfer function and recursively trying different values for the numerator and the
denominator. The general form is,

Xs) . _P
Us) s2-0

For each recursive attempt, initially P = 1.0 and a different value of Q is used. The bode plot
of this guess is calculated and P is updated so that the DC gains of this guess and the actual bode
plot are equal. The data points of the bode plot of each guess and the data points of the actual
bode plot are taken at the same frequency values. The square of the difference between the
current guess data points and the actual data points is calculated over the desired frequency range
of the best fit model. These error values are summated for both the magnitude and the phase
plots to produce the cumulative error for each guess. The guess that produces the least
cumulative error is deemed the best fit pump transfer function.

The validity of the best fit analysis depends upon frequency range, guess value range, and
iteration granularity. The frequency range of this particular best fit analysis is between 0.1 and
1000 Hz. The range was limited to 1000 Hz because the actual pump bode plot displays large
phase and magnitude changes beyond this frequency indicative of a higher then second order
system. Calculating the best fit transfer function over the entire frequency range would cause
the transfer function to be less accurate at lower frequencies. The analysis was limited to 1000
Hz in order to provide the most accurate best fit transfer function within the probable bandwidth
of the digital controller. By limiting the analysis to 1000 Hz, a digital controller derived using
this transfer function must be constrained to provide adequate attenuation of the control signal
after 1000 Hz.

Guess value range was based upon the form of the theoretical pump transfer function and
the data from the actual pump transfer function plots. Using this information, the theoretical
transfer function exhibits the following form,

Xs) __K
U(s) 52 -

Therefore the guess value range is from 0.1 Hz to 10 KHz. Each value taken from this range
is converted to rads/sec and squared to provide the next possible guess to be evaluated. By
analyzing the actual pump transfer function plots, the range could have been reduced further but
a conservative approach was taken.

Iteration granularity refers to the numerical difference between guesses. The finer the
iteration granularity, the more possible guesses are evaluated and therefore the more accurate the
best fit transfer function returned. However finer granularities increase computation time
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significantly. This best fit analysis used variable iteration granularities based upon the guess
value range. The iteration granularities are,

0.1-1Hz 1-10 10 - 100 Hz 100 - 1000 1000 - 10000 Hz
Hz Hz
Iteration 0.01 0.1 1.0 10.0 10.0
Granularity

Using the process described previously, the representative values of P and Q are,

Parameter Axial Rad1X RadlY Rad2X Rad2Y
P 7.990 7.123 8.296 16.926 15.113
Q 22739.568 7737.770 8882.644 35530.574 32201.348

Finally, either the actual transfer function data or the best fit transfer function data must
be converted to compatible units for comparison purposes. The actual transfer function has units

of V/V and the best fit transfer function data has units of m/A. The conversion factors are,

Conversion Factor Axial Rad1X RadlY Rad2X Rad2Y
Position Signal (V/m) 9450.0 25000.0 25000.0 25000.0 25000.0
Driver Signal (V/A) 0.3 0.3 0.3 0.3 0.3

The actual transfer function versus best fit transfer function plots begin on the next page. Note
that the axial bearing phase plots seem to disagree with the value expected from the transfer
function. This discrepancy is due to the normal operation of the driver. In the case of the radial
bearings, the control signal at the equilibrium point is such that the driver produces magnetic coil
currents that are both positive and negative in magnitude. The driver test point that corresponded
to the positive coil current was used to obtain the actual pump transfer function plots so that the
phase plots would not require correction. However, the axial bearing driver only produces a
negative magnetic coil current when the bearing is in its equilibrium position. Therefore, the
numerator of the best fit transfer function was inverted to obtain the proper phase.
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E.3 Best Fit versus Actual Driver Transfer Function

By examining the magnitude and phase plots of the actual driver transfer function, the
general form of the best fit driver transfer function is determined to be,

Xs) _ A
Us) s+4,

A brute force recursive method was used to determine the actual values of the numerator and
denominator of the best fit transfer function. For each recursive attempt, initially A, = 1.0 and
a different value of A, is used. The bode plot of this guess is calculated and A, is updated so that
the DC gains of this guess and the actual bode plot are equal. The data points of the bode plot
of each guess and the data points of the actual bode plot are taken at the same frequency values.
The square of the difference between the current guess data points and the actual data points is
calculated over the desired frequency range of the best fit model. These error values are
summated for both the magnitude and the phase plots to produce the cumulative error for each
guess. The guess that produces the least cumulative error is deemed the best fit driver transfer
function.

The validity of the best fit analysis depends upon frequency range, guess value range, and
iteration granularity. The frequency range of this particular best fit analysis is between 0.1 and
1000 Hz. The range was limited to 1000 Hz because the actual driver bode plot displays large
phase and magnitude changes beyond this frequency indicative of a higher then second order
system. Calculating the best fit transfer function over the entire frequency range would cause
the transfer function to be less accurate at lower frequencies. The analysis was limited to 1000
Hz in order to provide the most accurate best fit transfer function within the probable bandwidth
of the digital controller. By limiting the analysis to 1000 Hz, a digital controller derived using
this transfer function must be constrained to provide adequate attenuation of the control signal
after 1000 Hz.

The guess value range is from 0.1 Hz to 100 KHz. Each value taken from this range is
converted to rads/sec and squared to provide the next possible guess to be evaluated. By
analyzing the actual driver transfer function plots, the range could have been reduced further but
a conservative approach was taken.

Iteration granularity refers to the numerical difference between guesses. The finer the
iteration granularity, the more possible guesses are evaluated and therefore the more accurate the
best fit transfer function returned. However finer granularities increase computation time
significantly. This best fit analysis used variable iteration granularities based upon the guess
value range. The iteration granularities are,

1-10Hz 10-100Hz | 0.1-1KHz | 1-10KHz 10 - 100
KHz

Iteration 0.1 1.0 10.0 10.0 10.0
Granularity

140



Using the process described previously, the representative values of A; and A, are,

Parameter Axial Rad1X RadlY Rad2X Rad2Y
A, 14707.770 13105.209 13043.913 11112.759 12273.613
A, 13310.000 13130.000 13080.000 11140.000 12290.000

Finally, either the actual transfer function data or the best fit transfer function data must
be converted to compatible units for comparison purposes. The actual transfer function has units
of V/V and the best fit transfer function data has units of A/A. The conversion factors are,

Conversion Factor Axial Rad1X RadlY Rad2X Rad2Y
Control Signal (A/V) 2.776 1.175 1.165 1.159 1.144
Driver Signal (V/A) 0.3 0.3 0.3 0.3 0.3

The control signal conversion factors require some explanation. This conversion factor is used
by the digital controller to convert the calculated control current to an appropriate value for the
D/A converters which are voltage devices. Therefore, these conversion factors are merely the
DC gains of the driver transfer functions. In the case of the radial bearings, the conversion
factors are the averages of the DC gains from the two coil current control signals produced by
the driver.

The actual transfer function versus best fit transfer function plots begin on the next page.
Note that the axial bearing phase plots seem to disagree with the value expected from the transfer
function. This discrepancy is due to the normal operation of the driver. In the case of the radial
bearings, the control signal at the equilibrium point is such that the driver produces magnetic coil
currents that are both positive and negative in magnitude. The driver test point that corresponded
to the positive coil current was used to obtain the actual driver transfer function plots so that the
phase plots would not require correction. However, the axial bearing driver only produces a
negative magnetic coil current when the bearing is in its equilibrium position. Therefore, the
numerator of the best fit transfer function was inverted to obtain the proper phase.
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E.4 Best Fit versus Actual Plant Transfer Function

The best fit transfer functions for both the pump and the driver have been determined

individually but the summation of these components must be compared to the actual plant
transfer function. The general form of the best fit plant transfer function is,

Xis)

Uts)

_| A
s+4,

the representative values of P, O, A; and A, are,

|72

Parameter Axial RadlX RadlY Rad2X Rad2Y
P 7.990 7.123 8.296 16.926 15.113
Q 22739.568 7731.770 8882.644 35530.574 | 33201.348
A, 14707.770 13105.209 | 13043913 | 11112.759 12273.613
A, 13310.000 13130.000 | 13080.000 | 11140.000 12290.000

Finally, either the actual transfer function data or the best fit transfer function data must
be converted to compatible units for comparison purposes. The actual transfer function has units
of V/V and the best fit transfer function data has units of m/A. The conversion factors are,

Conversion Factor Axial Rad1X RadlY Rad2X Rad2Y
Control Signal (A/V) 2.776 1.175 1.165 1.159 1.144
Position Signal 9540.0 25000.0 25000.0 25000.0 25000.0
(V/m)

The actual transfer function versus best fit transfer function plots begin on the next page.
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E.5 Best Fit Pump Transfer Function Program Listings

The following section contains two listings of programs used to determine the best fit
transfer function for the turbopump magnetic bearing subsystem. The first listing is a Matlab
script which determines and graphically displays the best fit transfer function. The second listing
is a C source listing which performs the same function as the Matlab script but has no graphing
capabilities. It is however substantially faster then the Matlab script.

E.5.1 Matlab Script

function [] FindOpenFunc (bearing)
% This attempts to find the corresponding transfer function of the open

% loop system from data returned by the system analyzer

if (nargin ~= 1)
disp('Syntax error'):;
disp ('FindOpenFunc (bearing) ') ;
disp('where:');

disp (' bearing - vacuum pump bearing number');
disp(' 0 = axial bearing');
disp (" 1 = radial 1X bearing'):
disp(' 2 = radial 1Y bearing');
disp (' 3 = radial 2X bearing');
disp(’ 4 = radial 2Y bearing');
error;

end

if (bearing == 0)
magname = '/usr/tmp/sysanal/axt7psmg.dat’;
phsname = '/usr/tmp/sysanal/axt7psph.dat’';
bearname = 'Axial’';
sengain = 9450.0; % Volts/meter

elseif (bearing == 1)
magname = '/usr/tmp/sysanal/lxt6psmg.dat’;
phsname = '/usr/tmp/sysanal/lxtépsph.dat’';
bearname = 'RadlX’';
sengain = 25000.0; % Volts/meter

elseif (bearing == 2)
magname = '/usr/tmp/sysanal/lyt8psmg.dat’;
phsname = '/usr/tmp/sysanal/lyt8psph.dat’;
bearname = 'RadlyY’;
sengain = 25000.0; % Volts/meter

elseif (bearing == 3)
magname = '/usr/tmp/sysanal/2xtépsmg.dat’;
phsname = '/usr/tmp/sysanal/2xt6épsph.dat’;
bearname = 'Rad2X';
sengain = 25000.0; % Volts/meter

elseif (bearing == 4)
magname = '/usr/tmp/sysanal/2yt8psmg.dat’;
phsname = '/usr/tmp/sysanal/2yt8psph.dat’;
bearname = 'Rad2Y’';
sengain = 25000.0; % Volts/meter

else

disp(['bearing number out of range:
error;
end

% Some constants
ampgain = 1.0/0.3;
dcavg = 10;

% Amps/Volt
% number of values

' num2str (bearing)l):

to average to get DC gain
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mytitle = [bearname ' Bearing Open Loop Transfer Function Best Fit ' ...
'(Range = 0.1 - '];

fid = fopen(magname) ;

if(fid < 3)
disp(['unable to open magnitude data file: ' magname]);
error;

end

[mag, count] = fscanf(fid, '%f %£f', [2 inf]);

mag = mag';

fclose(£fid);

fid = fopen(phsname) ;

if(fid < 3)
disp(['unable to open phase data file: ' phsname]);
error;

end

[phs, count] = fscanf(fid, '%f $f', [2 inf]);

phs = phs';

fclose(fid);

% Smooth phase anomalies
for ii = 2:size(phs,1);
if(abs(phs(ii-1,2)-phs(ii,2)) > 180.0)
if(phs(ii-1,2) >= 0.0)
phs(ii,2) = phs(ii,2)+360.0;
else
phs(ii,2) = phs(ii,2)-360.0;
end
end
end

% Limit frequency range because the data from the system analyzer is very
% dirty after 1000 Hz
limit = 1;

if(limit == 1)

ii = max(find{mag(:,1) < 1000.0));

mag = mag(l:ii,:);

phs = phs(1l:1ii,:);

mytitle = [mytitle '1000 Hz) '};
else

mytitle = [mytitle '10000 Hz)']l;
end

% Assume that the transfer function of the open loop system has the same form
% as that derived from the dynamic equations of motion namely P*2/(s”*2 - Q"2)
% Set up range of numbers to test as Q

begin = 1.0;

endd = 10000.0;

ind = begin;
range = [begin];
while(ind < endd)
inc = ind/10.0;
if(inc > 10.0)
inc = 10.0;
end
range = [range [ind+inc:inc:ind*10.0]1];
ind = ind * 10.0;
end

resid = zeros(length(range),3);
vartype = 'Var Type = Ideal';
nw = mag(:,1)*2*pi;

inc = 1;
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if (bearing == 0)

opnum = -(sengain * ampgain); % convert to Volts/Volts
else

opnum = sengain * ampgain; % convert to Volts/Volts
end
more off;

for ii = 1l:length(range)
opden = [1 0 -({2*pi*range(ii))~2)1];
[tmag, tphs, w] = bode(opnum, opden, nw) ;
if (bearing == 3)
tphs = tphs + 360.0;
end
tmag = 20.0*logl0 (tmag) ;
gain = 0; % find average gain by checking DC gain --> gain is numerator

for jj = l:dcavg
gain = gain + (mag(jj,2)-tmag(jj));
end

gain = gain/dcavg;
tmag = gain+tmag;
resid(ii,:) = [0 0 O];
for jj = 1:length(mag)
resid(ii,1) = resid(ii,1) + ((mag(jj,2) - tmag(jj))"2);
resid(ii,2) = resid(ii,2) + ((phs(3jj,2) - tphs(jj))"2);
end
resid(ii,1)
resid(ii, 2)

resid(ii, 1) /length(mag);
resid(ii,2)/length(mag);

resid(ii,3) = resid(ii,1l) + resid(ii,2);
if (fix(rem(ii, 100)) == 0)
disp([num2str(ii) ' of ' num2str(length(range))l);
end
end

[x, ii] = min(resid(:,3));
x = x(1);
ii = ii(1);
opden = [1 0 -((2*pi*range(ii))"2)];
[tmag, tphs, w] = bode(opnum, opden, nw);
if (bearing == 3)

tphs = tphs + 360.0;

tmag = 20.0*logl0(tmag) ;

gain = 0; % find average gain by checking DC gain --> gain is numerator
for jj = l:dcavg

gain = gain + (mag(jj,2)-tmag(jj));
end

gain = gain/dcavg;
= tmag + gain;
opnum = opnum * (10%{(gain / 20.0));

msg = sprintf('%.3f', abs(opnum/(ampgain * sengain)));
opnum_title = ['P = ', msgl;

msg = sprintf('%.3f', abs(opden(length(opden))});
opden_title = ['Q = ', msgl;

msg = ['Plotting best residual magnitude (R = ' num2str(x) ' wval =
num2str (range(ii)) ' Gain = ' num2str(10~(gain/20.0}) ')'l;
disp(msg) ;

weight = 'phase weighted';

clf;
subplot(2,1,1);

semilogx(mag(:,1), mag(:,2), '-');
xlabel ( 'Frequency (Hz)');

ylabel ('Magnitude (dB)');
title(mytitle);
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hold on;

subplot(2,1,2);

semilogx(phs(:,1), phs(:,2), '-');
xlabel ('Frequency (Hz)');

ylabel ('Phase (degrees)');

hold on;

subplot(2,1,1);
semilogx(mag(:,1), tmag, '--');

hold off;

subplot(2,1,2);

semilogx(phs(:,1), tphs, '--');

title([vartype ', ' opnum title ', ' opden_title ', ' weight]);
hold off;

more on;

E.5.2 C Source

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>

#define STATUS_OK 0
#define STATUS_NOK 1
#define PI 3.14159265358979323846

#define VOLT_CONV 0.3 /* Ohms, V = IR */

int ConBode(float *num, float *den, int numsize, int densize, float *freq,
int fsize, float **mag, float **phase);

float sen_gain[5] = { 9450.0, 25000.0, 25000.0, 25000.0, 25000.0 };

int main(int argc, char **argv)

{
int i, k, off, dcavg;
int bearing, size, psize;
char *magname, *phsname, *bearname;
char *buffer, *ptr;
float sengain, ampgain, tl, t2, t3, t4;
float *freq, *mag, *phase;
float *pltval, *pltres, *tmag, *tphs;
float num{1l], den[3];
FILE *ifp;

if(argc 1= 2)

{
fprintf(stderr, "Syntax error\n"):;
fprintf (stderr, "FindOpenFunc (bearing)\n");
fprintf (stderr, "where:\n");
fprintf (stderr, * bearing - vacuum pump bearing number\n");
fprintf (stderr, " axial bearing\n");
fprintf(stderr, " radial 1X bearing\n");
fprintf (stderr, " radial 1Y bearing\n");
fprintf(stderr, * radial 2X bearing\n");
fprintf (stderr, * radial 2Y bearing\n");
return (STATUS_NOK) ;

}

bearing = strtol(argv{l], NULL, 10);

WP o
I nuwnn
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switch(bearing)

{
case 0:
magname
phsname
bearname
break;
case 1:
magname
phsname
bearname
break;
case 2:
magname
phsname
bearname
break;
case 3:
magname
phsname
bearname
break;
case 4:
magname
phsname
bearname
break;
default:
fprintf (s

nn

" /usr/sysanal/axt7psmg.
" /usr/sysanal/axt7psph.

= "Axial*;

* /usr/sysanal/lxt6psmg

" /usr/sysanal/lxt6psph.

= "RadlX";

" /usr/sysanal/lyt8psmg.
" /usr/sysanal/lyt8psph.

= "Radly";

" /usr/sysanal/2xt6psmg

" /usr/sysanal/2xt6psph.

= "Rad2X";

v /usr/sysanal/2yt8psmg.
" /usr/sysanal/2yt8psph.

= "Rad2yY";

tderr,

return (STATUS_NOK) ;

break;
}

"bearing number out of range:

dat";
dat";

.dat";

dat";

dat";
dat";

.dat";

dat*";

dat";
dat";

%$d\n", bearing);

ampgain = VOLT_CONV / sen_gain[bearing];

dcavg 10;

if ((buffer
{
fprintf (s

return (STATUS_NOK) ;

}

if((freq (£
{

fprintf (s
free(buff

(char *) calloc(80, sizeof(char))) == NULL)
tderr, "Out of memory error (%d)\n", _LINE_ );
loat *) calloc (3000, sizeof(float))) == NULL)
tderr, "Out of memory error (%d)\n", _LINE );
er);

return (STATUS_NOK) ;

(float
(floa

mag
phase

if((ifp
{

fprintf (s

fopen (magname,

*) (((unsigned) freq) +
t *) (((unsigned)

||rn))

tderr, "Unable to

*$s\n", magname) ;
return (STATUS_NOK) ;

mag) + (1000 * sizeof(float

(1000 * sizeof(float)));
1))

== NULL)

open analog closed loop magnitude file:

}
k = 0;
while (fgets(buffer, 80, ifp))
{
if((i = strlen(buffer)) == 79)
fprintf (stderr, "Possible input buffer overflow\n");
if (buffer[i-1] == '\n’)
buffer[--i] = *'\0"';
freql[k] = (float) strtod(buffer, &ptr);
mag[k++] = (float) strtod(ptr, NULL);
}
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if(!feof(ifp))
{

fprintf(stderr, "Error while reading magnitude file\n");
free(buffer);

free(freq);

return (STATUS_NOK) ;

}
fclose(ifp);

if((ifp = fopen(phsname, "r")) == NULL)
{
fprintf(stderr, "Unable to open analog closed loop phase file: "
"$s\n", phsname);
return (STATUS_NOK) ;
}

k = 0;
while(fgets(buffer, 80, ifp))
{
if((i = strlen(buffer)) == 79)
fprintf (stderr, "Possible input buffer overflow\n");

if (buffer[i-1] == '\n"')
buffer[--i] = '\0’';
freqlk] = (float) strtod(buffer, &ptr);

phasel[k++] = (float) strtod(ptr, NULL);

if(!feof(ifp))
{

fprintf (stderr, "Error while reading phase file\n");
free(buffer);

free(freq);

return (STATUS_NOK) ;

}
fclose(ifp);
size = k;

/* smooth phase anomalies */

while(phase[0] > 170.0)
phase[0] -= 360.0;

for(i=1; i<size; i++)

if (fabs (phase[i-1]1-phase[i]) > 170.0)
{

if (phase[i-1] >= 0.0)
phase[i] += 360.0;
else
phase[i] -= 360.0;

if(freq[i] <= 1000.0)
k = 1i;

}
size = k + 1;

/*

* assume that the denominator of the transfer function is third order
* (physics of magnetic bearing is second order, power amplifier is

* first order)

*/
psize = 100;
if((pltval = (float *) calloc(psize, sizeof(float))) == NULL)
{
fprintf(stderr, *"Out of memory error (%d)\n*, __LINE );

free(buffer);
free(freq);
return (STATUS_NOK) ;
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}

pltval[0] = t1 = 1.0;
t2 = 10000.0;

k =1;
while(tl < t2)
{
t3 = t1 / 10.0;
if(t3 > 10.0)
t3 = 10.0;
td = t1 * 10.0;
for(tl+=t3; tl<t4; tl+=t3)
{
pltval[k++] = tl1;
if(k == psize)
{
psize += 100;
if((pltval = (float *) realloc(pltval, psize*sizeof(float)))
== NULL)
{
fprintf (stderr, "Out of memory error (%d)\n", _LINE__);
free(buffer);
free(freq);
return (STATUS_NOK) ;
}
}
}
pltvalik++] = tl = t4;
}

psize = k;

if((pltres = (float *) calloc(3*psize, sizeof(float))) == NULL)
{
fprintf (stderr, "Out of memory error (%d)\n", _ _LINE_ );
free(buffer);
free(freq) ;
free(pltval);
return (STATUS_NOK) ;
}

den[0] 1.0;
den[1] 0.0;
t4 = pltval(0];
if (bearing)
num[0] = 1.0;
else
num[0] = -1.0;
for(i=0; i<psize; i++)
{
den[2] = 2.0*PI*pltvallil];
den[2] *= -(den[2]):
if (ConBode (num, den, 1, 3, freq, size, &tmag, &tphs))
{
fprintf (stderr, "Error encountered in ConBode (%d)\n", _LINE );
free(buffer);
free(freq);
free(pltval);
free(pltres);
return (STATUS_NOK) ;

}
while(tphs{0] > 170.0)
tphs[0] -= 360.0;
for(k=1; k<size; k++)
while(fabs (tphs[k-1]-tphs([k]) > 170.0)
{

if (tphs([k-1] >= 0.0)
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tphs[k] += 360.0;
else
tphs[k] -= 360.0;

}
tl = 0.0;
for(k=0; k<dcavg; k++)
tl += (maglk]-tmag(k]):
tl /= ((float) dcavg);
off = i * 3;
pltres[off] = pltres[off+l] = pltres[off+2] = 0.0;
for(k=0; k<size; k++)
{
t2 mag(k] - tmag[k] - tl1;
t3 = phaselk] - tphs(k];
pltres[off] += (t2 * t2);
pltres[off+1] += (t3 * t3);

}
pltres(off] /= ((float) size);
pltres[off+l] /= ((float) size);
pltres[off+2] = pltres[off] + pltres[off+l}];
free(tmag) ;
free(tphs);
#if 1
if(pltvallil >= t4)
{

printf('%8.1f\n", t4);

t4 *= 10.0;
}
#else
printf("%8.1f\n", pltvallil);
#endif
}
k =0;

for(i=1; i<psize; i++)
if(pltres[(i*3)+2] < pltres[(k*3)+21)
k =1i;
den([2] = 2.0*PI*pltvallk];
den([2] *= -(den(2]);
if (ConBode (num, den, 1, 3, freq, size, &tmag, &tphs))
{
fprintf(stderr, "Error encountered in ConBode (%d)\n*, _ LINE_ );
free(buffer);
free(freq);
free(pltval);
free(pltres);
return (STATUS_NOK) ;
}
tl = 0.0;
for (k=0; k<dcavg; k++)
tl += (mag[k]-tmag(k]);
tl /= ((float) dcavg);
t2 = (float) pow(10.0, (double) (t1/20.0));
printf("$s: P = %.3f, Q = %.3f\n", bearname, t2 * ampgain, fabs(den[2])):
free(buffer);
free(freq);
free(pltval);
free(pltres);
free(tmag);
free(tphs);

return (STATUS_OK) ;

int ConBode(float *num, float *den, int numsize, int densize, float *freq,
int fsize, float **mag, float **phase)
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{
int i, j, k;
float *mg, *ph, inc;
float frq, ansr, ansi;

if((mg = (float *) calloc(fsize, sizeof(float))) == NULL)
{

fprintf (stderr, "Out of memory error - DigBode.\n");
return(l);

}
if((ph = (float *) calloc(fsize, sizeof(float))) == NULL)
{
fprintf (stderr, "Out of memory error - DigBode.\n");
free(mg) ;
return(1l);

}

for(i=0; i<fsize; i++)
{
frg = 2.0 * PI * freql[i];
mg{i] = phl[i] = ansi = 0.0;
ansr = num[numsize-1];
for(j=0; j<numsize-1; j++)

if (num[j] !'= 0.0)
{

k = numsize - 1 - j;
if((k/2)%2 == 1)
inc = -1.0;
else
inc = 1.0;
if (k%2 == 1)
ansi += (inc * num{j] * ((float) pow(frqg, (double) k)));
else
ansr += (inc * num([j] * ((float) pow(frqg, (double) k)));
}
}
mg[i] += (20.0 * loglO(sqgrt(pow(ansr,2.0) + pow(ansi,2.0))));
ph[i] += (180.0 * atan2(ansi, ansr) / PI);
ansi = 0.0;
ansr = den[densize-1];
for(j=0; j<densize-1; j++)

if(den(j] !'= 0.0)
{

k = densize - 1 - j;
if((k/2)%2 == 1)

inc = -1.0;
else
inc = 1.0;
if (k%2 == 1)
ansi += (inc * den(j] * ((float) pow(frqg, (double) k)));
else
ansr += (inc * den[j] * ((float) pow(frqg, (double) k)));
}
}
mg[i] -= (20.0 * loglO(sqgrt(pow(ansr,2.0) + pow(ansi,2.0))));
ph(i] -= (180.0 * ((float) atan2(ansi, ansr)) / PI);
}
if (mag)
(*mag) = mg;
if (phase)
{

for(i=0; i<fsize; i++)

while(fabs (ph[i-1]-ph[i]) > 180.0)
{
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frq = ph[i] - 360.0;

if(fabs(ph[i-1]-ph[i]) > fabs(ph[i-1]-frq))
phl(i] = frq;

else
ph[i] += 360.0;

}
(*phase) = ph;

return(0) ;

E.6 Best Fit Driver Transfer Function Program Listings

The following section contains two listings of programs used to determine the best fit
transfer function for the turbopump driver subsystem. The first listing is a Matlab script which
determines and graphically displays the best fit transfer function. The second listing is a C
source listing which performs the same function as the Matlab script but has no graphing
capabilities. It is however substantially faster then the Matlab script.

E.6.1 Matlab Script

function [] = FindAmpFunc (bearing)
% This attempts to find the corresponding transfer function of the amp/driver
% from data returned by the system analyzer

if (nargin ~= 1)
disp('Syntax error');
disp('FindAmpFunc (bearing)');
disp('where:');
disp(’ bearing - vacuum pump bearing number');

disp (' 0 = axial bearing');
disp (' 1 = radial 1X bearing');
disp(' 2 = radial 1Y bearing');
disp("* 3 = radial 2X bearing');
disp (" 4 = radial 2Y bearing'):;
error;

end

if (bearing == 0)
magname = '/usr/tmp/sysanal/axcnt7mg.dat’';

phsname ' /usr/tmp/sysanal/axcnt7ph.dat’';
bearname = 'Axial’;

elseif (bearing == 1)
magname = '/usr/tmp/sysanal/lxcntémg.dat’;
phsname = '/usr/tmp/sysanal/lxcntéph.dat’;
bearname = 'RadlX';

elseif (bearing == 2)
magname = '/usr/tmp/sysanal/lycnt8mg.dat’;

phsname = '/usr/tmp/sysanal/lycnt8ph.dat';
bearname = 'RadlyY’;

elseif (bearing == 3)
magname = '/usr/tmp/sysanal/2xcntémg.dat’;
phsname = ‘'/usr/tmp/sysanal/2xcntéph.dat’;
bearname = 'Rad2X’';

elseif (bearing == 4)
magname = '/usr/tmp/sysanal/2ycnt8mg.dat’';
phsname = '/usr/tmp/sysanal/2ycnt8ph.dat’;
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bearname = 'Rad2y’;

else
disp(['bearing number out of range: ' num2str(bearing)]);
error;

end

% Some constants

ampgain = [0.3 0.3 0.3 0.3 0.31; % Volts/Amp

dcgain = [2.776 1.175 1.165 1.159 1.144}; % Amps/Volt
convfact = 1.0 / (ampgain(bearing+l) * dcgain(bearing+1));

dcavg = 10; % number of values to average to get DC gain

mytitle = [bearname ' Bearing Amp/Driver Transfer Function Best Fit ' ...
'(Range = 0.1 - '}];

fid = fopen(magname);

if(fid < 3)
disp(['unable to open magnitude data file: ' magname]);
error;

end

[mag, count] = fscanf(fid, '$f %f', [2 inf]);

fclose(£fid);

fid = fopen(phsname) ;
if (fid < 3)
disp(['unable to open phase data file: ' phsname]);
error;
end
[phs, count] = fscanf(fid, '%f %f', [2 inf]);
fclose(fid);

% Smooth phase anomalies
[phs(2,:)] = PhaseFix(bearing, phs(2,:));

% Limit frequency range because the data from the system analyzer is very
$ dirty after 1000 Hz
limit = 1;

if(limit == 1)

ii = max(find(mag(l,:) < 1000.0));

mag = mag(:,1:ii);

phs = phs(:,1:1ii);

mytitle = [mytitle '1000 Hz)'];
else

mytitle = [mytitle '10000 Hz)'l;
end

$ Assume that the transfer function of the open loop system has the same form
% as that derived from the dynamic equations of motion namely Al/(s + A2)

% Set up range of numbers to test as A2

begin = 100.0;

endd = 100000.0;

ind = begin;

range = [beginl];

while(ind < endd)
inc = ind/10.0;
if(inc > 10.0)

inc = 10.0;
end
range [range {ind+inc:inc:ind*10.0]1];

ind = ind * 10.0;
end

resid = zeros(length(range),3);
vartype = 'Var Type = Ideal';
nw = mag(l,:)*2*pi;

inc = 1;

if (bearing == 0)
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opnum = -1.0;
else

opnum = 1.0;
end

more off;
for ii = l:length(range)
opden = [l range(ii)];
[tmag, tphs, w] = bode(opnum, opden, nw);
if (bearing == 0)
while(tphs(1l) > 90.0)
tphs (1) = tphs(l) - 360.0;
end
end
[tphs] = PhaseFix(bearing, tphs);
tmag = 20.0*1ogl0(tmag) ;
gain = 0; % find average gain by checking DC gain --> gain is numerator
1:dcavg
gain + (mag(2,3jj)-tmag(jj));

th

[e]

o]
-
[

(]

gain/dcavg;
tmag gain+tmag;
resid(ii,:) = [0 0 0];
for jj = l:length{(mag)
resid(ii,1l) = resid(ii,l) + ((mag(2,3jj) - tmag(jj))"2);
resid(ii,2) = resid(ii,2) + ((phs(2,33j) - tphs(jj))*2);
end
resid(ii, 1)
resid(ii, 2)
resid(ii, 3)

Q
o
-
o]
n

resid(ii,1)/length(mag);
resid(ii, 2)/length(mag);
resid(ii,1) + resid(ii,2);

o

if (fix(rem(ii, 100)) == 0)
disp([num2str(ii) ' of ' num2str(length(range))]);
end
end

[x, ii) = min(resid(:,3));
X = x(1);
ii = 1i(1);
opden = [l range(ii)];
[tmag, tphs, w] = bode(opnum, opden, nw);
if (bearing == 0)
while(tphs (1) > 90.0)
tphs(l) = tphs(l) - 360.0;
end
end
[tphs] = PhaseFix(bearing, tphs):;
tmag = 20.0*1ogl0(tmag) ;

gain = 0; % find average gain by checking DC gain --> gain is numerator
for jj = 1l:dcavg
gain = gain + (mag(2,3jj)-tmag(jj));
end
gain gain/dcavg;

tmag = tmag + gain;
opnum = opnum * (10%(gain / 20.0));

msg = sprintf('%.3f', abs(opnum)*convfact);

opnum_title = ['Al = ', msgl;

msg = sprintf('%.3f', range(ii));

opden_title = ['A2 = ', msg];

msg = ['Plotting best residual magnitude (R = ' num2str(x) ' wval = '
num2str (range(ii)) ' Gain = ' num2str(10~(gain/20.0)) ')'l;

disp (msg) ;

weight = 'phase weighted';

clf;
subplot(2,1,1);

164



semilogx (mag(l,:), mag(2,:), '-');
xlabel ('Frequency (Hz)');
ylabel ('Magnitude (dB)');

title(mytitle);
hold on;
subplot(2,1,2);

'-');

semilogx(phs(1,:), phs(2,:),
xlabel ('Frequency (Hz)');
vlabel ('Phase (degrees)');

hold on;
subplot(2,1,1);

semilogx(mag(l,:),
hold off;

'--t);

tmag,

subplot(2,1,2);
semilogx(phs (1, :),

t-=t)g

tphs,

title([vartype ', ' opnum_title ',

hold off;
more on;

E.6.2 C Source

<stdio.h>
<string.h>
<stdlib.h>
<math.h>

#include
#include
#include
#include

#define
#define
#define

STATUS_OK
STATUS_NOK
PI

wrF o

.14159265358979323846

#define VOLT_CONV .3 /* Ohms, V

float dig_gain[5] { 2.776 , 1.175 ,

int ConBode(float *num, float *den, int nums

int fsize,

int main(int argc, char **argv)
{

int i, k, off, dcavg;

' opden_title ',

' weightl]);

IR */

1.165 ,  1.159 , 1.144};

ize, int densize, float *freq,

float **mag, float **phase);

int bearing, size, asize;
char *magname, *phsname, *bearname;
char *buffer, *ptr;
float voltconv, ampgain, tl, t2, t3, t4;
float *freq, *mag, *phase;
float *ampval, *ampres, *tmag, *tphs;
float num[1l], den[2];
FILE *ifp;
if (argc != 2)
{
fprintf (stderr, "Syntax error\n");
fprintf (stderr, "FindAmpFunc (bearing)\n");

fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,

"where:\n") ;

bearing - vacuum pump bearing number\n"');
axial bearing\n");

radial 1X bearing\n");
radial 1Y bearing\n");

" 1
" 2
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fprintf (stderr, * 3 = radial 2X bearing\n");
fprintf (stderr, " 4 = radial 2Y bearing\n");
return (STATUS_NOK) ;

}

bearing = strtol(argv[l], NULL, 10);

switch(bearing)
{
case 0:
magname "/usr/tmp/sysanal/axcnt7mg.dat”;

phsname Y/usr/tmp/sysanal/axcnt7ph.dat"®;
bearname = "Axial";
break;

case 1:
magname = "/usr/tmp/sysanal/lxcntémg.dat"”;
phsname = "/usr/tmp/sysanal/lxcntéph.dat”;
bearname = "RadlX";
break;

case 2:
magname = “/usr/tmp/sysanal/lycnt8mg.dat";
phsname = */usr/tmp/sysanal/lycnt8ph.dat";
bearname = *Radly*;
break;

case 3:
magname = "/usr/tmp/sysanal/2xcntémg.dat";
phsname = */usr/tmp/sysanal/2xcntéph.dat";
bearname = "Rad2X*;
break;

case 4:
magname = "/usr/tmp/sysanal/2ycnt8mg.dat";
phsname = */usr/tmp/sysanal/2ycnt8ph.dat*;
bearname = "Rad2Y*;
break;

default:

fprintf (stderr, "bearing number out of range: %d\n", bearing);
return (STATUS_NOK) ;
break;

}

dcavg = 10;
ampgain = 1.0 / (VOLT_CONV * dig_gainl[bearing]):

if((buffer = (char *) calloc(80, sizeof(char))) == NULL)
{

fprintf (stderr, "Out of memory error (%d)\n", _ LINE_ );
return (STATUS_NOK) ;
}

if((freq = (float *) calloc(3000, sizeof(float))) == NULL)
{

fprintf (stderr, "Out of memory error (%d)\n", _ LINE_ );
free(buffer);
return (STATUS_NOK) ;
}
mag = (float *) (((unsigned) freq) + (1000 * sizeof(float)));
phase = (float *) (((unsigned) mag) + (1000 * sizeof(float))):

if((ifp = fopen(magname, "r")) == NULL)
fprintf (stderr, "Unable to open analog closed loop magnitude file:
"$s\n", magname);
return (STATUS_NOK) ;
}

k = 0;
while(fgets (buffer, 80, ifp))
{

if((i = strlen(buffer)) == 79)
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fprintf (stderr, "Possible input buffer overflow\n");

if (buffer[i-1] == '\n')

buffer{--i] = '\0';
freqlk] = (float) strtod(buffer, &ptr);
mag[k++] = (float) strtod(ptr, NULL);

}
if (! feof(ifp))
{
fprintf (stderr, "Error while reading magnitude file\n");
free(buffer) ;
free(freq):;
return (STATUS_NOK) ;
}
fclose(ifp);
if((ifp = fopen(phsname, "r")) == NULL)
fprintf (stderr, "Unable to open analog closed loop phase file: "

"$s\n", phsname);
return (STATUS_NOK) ;

}
k = 0;
while (fgets(buffer, 80, ifp))
{
if((i = strlen(buffer)) == 79)
fprintf (stderr, "Possible input buffer overflow\n");
if (buffer(i-1] == *'\n')

buffer[--i] = '\0’';
freq(k] = (float) strtod(buffer, &ptr);
phase[k++] = (float) strtod(ptr, NULL);
}

if (1 feof (ifp))
{

fprintf (stderr, "Error while reading phase file\n");
free(buffer);

free(freq);

return (STATUS_NOK) ;

}
fclose(ifp);
size = k;

/* smooth phase anomalies */

while(phase[0] > 170.0)
phase[0] -= 360.0;

for(i=1; i<size; i++)

if (fabs (phase[i-1]-phase[i]) > 170.0)
{

if (phasel[i-1] >= 0.0)
phase[i] += 360.0;
else
phase[i] -= 360.0;

}
if (freq[i] <= 1000.0)
k = 1i;
}

size = k + 1;

/*

* agssume that the denominator of the transfer function is third order
(physics of magnetic bearing is second order, power amplifier is

* first order)

*x/

*
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asize = 100;
if((ampval = (float *) calloc(asize, sizeof(float))) == NULL)
{

fprintf (stderr, *Out of memory error (%4)\n*, __LINE _);
free(buffer);
free(freq);
return (STATUS_NOK) ;
}

ampval[0] = t1 = 1.0;
t2 = 100000.0;
k = 1;

while(tl < t2)
{

t3 = tl1 / 10.0;
if(t3 > 10.0)
t3 = 10.0;
td = t1 * 10.0;
for(tl+=t3; tl<t4d; tl+=t3)

ampval [k++] = tl1;
if(k == asize)
{
asize += 100;
if ((ampval = (float *) realloc(ampval, asize*sizeof(float)))

== NULL)
{
fprintf (stderr, "Out of memory error (%d)\n", __LINE_ ):
free(buffer);
free(freq);
return (STATUS_NOK) ;
}

}
}
ampval [k++] = tl1 = t4;

asize = k;

if((ampres = (float *) calloc(3*asize, sizeof(float))) == NULL)
{
fprintf (stderr, "Out of memory error (%d)\n", __LINE__);
free(buffer);
free(freq);
free (ampval) ;
return (STATUS_NOK) ;
}

den([0] = 1.0;
t4 = ampvall0];
if (! (bearing))
num([0] = -1.0;
else
num[0] = 1.0;
for(i=0; i<asize; i++)
{
den[l] = ampval(il;
if (ConBode(num, den, 1, 2, freq, size, &tmag, &tphs))
{
fprintf (stderr, "Error encountered in ConBode (%d)\n", __LINE__);
free(buffer);
free(freq) ;
free(ampval) ;
free (ampres) ;
return (STATUS_NOK) ;

}
if (!bearing)
while(tphs{0] > 90.0)
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tphs[0] -= 360.0;
while(tphs{[0] > 170.0)
tphs{0] -= 360.0;
for(k=1; k<size; k++)

while(fabs (tphs[k-1]-tphs[k]) > 170.0)

{
if(tphs(k-1] >= 0.0)
tphs[k] += 360.0;
else
tphs([k] -= 360.0;
}
tl = 0.0;

for(k=0; k<dcavg; k++)
tl += (maglk)-tmagl[kl);
tl /= ((float) dcavg);
off =i * 3;
ampres[off] = ampres[off+l] = ampres[off+2] = 0.0;
for(k=0; k<size; k++)
{
t2 mag{k] - tmagi{k] - tl1;
t3 phase[k] - tphs[k];
ampres[off] += (t2 * t2);
ampres[off+l] += (t3 * t3);

}
ampres [off] /= ((float) size);
ampres[off+l] /= ((float) size);

ampres [off+2] = ampres[off] + ampres[off+l];
free(tmag) ;
free(tphs);
#if 1
if (ampval[i] >= t4)
{

printf("%8.1f\n", t4):;

td *= 10.0;
#else
printf("%$8.1f\n", ampvallil);
#endif
}
k = 0;

for(i=1; i<asize; i++)
if (ampres[(i*3)+2] < ampres[(k*3)+2])
k = i;
den[l] = ampvallk];
if (ConBode(num, den, 1, 2, freq, size, &tmag, &tphs))
{
fprintf (stderr, "Error encountered in ConBode (%d)\n"
free(buffer);
free(freq);
free(ampval) ;
free(ampres) ;
return (STATUS_NOK) ;
}
tl = 0.0;
for (k=0; k<dcavg; k++)
tl += (mag(k]-tmagl(kl);
tl /= ((float) dcavg);
t2 = (float) pow(10.0, (double) (tl1/20.0));
printf("%s: Al = %$.3f, A2 = %.3f\n", bearname, t2*ampgain, den[1l]);

LINE__);

[R—

free (buffer) ;
free(freq);
free(ampval) ;
free (ampres) ;
free(tmag) ;
free(tphs);
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int ConBode(float *num, float *den, int numsize, int densize,

{

return (STATUS_OK) ;

int fsize, float **mag, float **phase)

int i, j, k:
float *mg, *ph, inc;
float frq, ansr, ansi;

if((mg = (float *) calloc(fsize, sizeof(float))) == NULL)
{
fprintf (stderr, "Out of memory error - DigBode.\n");
return(l);
}
if((ph = (float *) calloc(fsize, sizeof(float))) == NULL)
{
fprintf (stderr, "Out of memory error - DigBode.\n");
free(mg);
return(1l);
}
for(i=0; i<fsize; i++)
{
frq = 2.0 * PI * freqlil];
mg[i] = ph([i] = ansi = 0.0;

ansr = num[numsize-1];
for(j=0; j<numsize-1; j++)

if (numfj] != 0.0)
{

k = numsize - 1 - j;
if((k/2)%2 == 1)

inc = -1.0;
else

inc = 1.0;
if (k%2 == 1)

float *freq,

ansi += (inc * num([j] * ((float) pow(frqg, (double) k)));

else

}
}

ansr += (inc * num[j] * ((float) pow(frqg, (double) k)));

mg[i] += (20.0 * loglO(sqrt(pow(ansr,2.0) + pow(ansi,2.0))));

ph[i] += (180.0 * atan2(ansi, ansr) / PI);
ansi = 0.0;

ansr = den[densize-1};

for(j=0; j<densize-1; j++)

if (den[j] != 0.0)
{

k = densize - 1 - j;
if((k/2)%2 == 1)

inc = -1.0;
else
inc = 1.0;
if (k%2 == 1)
ansi += (inc * den[j] * ((float) pow(frg, (double) k)));
else
ansr += (inc * den[j] * ((float) pow(frq, (double) k)));
) }
mg[i] -= (20.0 * loglO(sqrt(pow(ansr,2.0) + pow(ansi,2.0))));
ph(i] -= (180.0 * ((float) atan2(ansi, ansr)) / PI);
}
if (mag)

(*mag) = mg;
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if (phase)
{
for (i=0; i<fsize; i++)
{
while (fabs (ph[i-1]1-ph[i]) > 180.0)
{

frg = ph{il - 360.0;
if (fabs(ph[i-1]1-ph[i]) > fabs(ph[i-1]-frq))
ph(i] = frq;
else
ph{i] += 360.0;
}
(*phase) = ph;

return(0);

171



Appendix F

Static Experimental Plots

Signal
Test Point
Power Position
Driver Amp Sensor
Control
“ "
Test Point
Anall é
Ci
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L DA Digital AD

Controller

Position
Test Point

F-1 System Block Diagram and Test Points

This appendix presents graphically the closed loop response and the disturbance rejection
plots of each axis when the turbopump rotor is not spinning. The first section describes the
specifics of how the plots were obtained. The next two sections present these graphs for the
analog and the digital controller respectively. The fourth section presents the analog, digital, and
theoretical responses superimposed to aid in comparing the various controllers. The various plots
were obtained using the Hewlett Packard HP 3562A Dynamic System Analyzer using the
appropriate test points. Refer to Figure F-1 for the location of the test points in relation to the
system components. The final two sections present important performance measures obtained
from the plots in this appendix.
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F.1 Graph Production Details

F.1.1 Closed Loop Frequency Response Details

The closed loop frequency graphs were obtained by inputting a swept sine wave having
an amplitude of 0.01 Volts and ranging from 0.1 to 10000 Hz. For the analog controller, the
swept sine wave was applied at the position signal adder. For the digital controller, the swept
sine wave was applied to an auxiliary adder which was placed between the position signal test
point and the A/D. The output for both controllers was obtained by monitoring the position
signal test point.

F.1.2 Disturbance Rejection Plot Details

The disturbance rejection plots were obtained by inputting a swept sine wave having an
amplitude of 0.03 Volts and ranging from 0.1 to 10000 Hz. For both the analog and digital
controller, the swept sine wave was applied at the control signal adder and the output was
obtained by monitoring the position signal test point. The magnitude graph obtained using the
system analyzer has units of V/V which must be converted using the following conversion factor,

Axial Radial
2] ] Sensor mh? P Sensor
.( 1x10 llm) ¢| Conversion 5 -( 1x10 p.m) o| Conversion
po N4 m Foctor 2u,N24C,cosPI, m Factor
The values of the conversion factor for each axis is shown below.
Axial RadlX RadlY Rad2X Rad2Y
Conversion Factor 2.1704 1.9147 1.9147 0.9712 0.9712

Only the magnitude plots will be presented in the remainder of this appendix as the phase plots
convey little useful information.
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F.2 Closed Loop Frequency Response

F.2.1 Analog Controller
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F.2.2 Digital Controller
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F.3 Disturbance Rejection

F.3.1 Analog Controller
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F.3.2 Digital Controller

10

o
S
=

Compliance (Microns/Newton)
®
=

0.0001 AR R R R H R A I R
0.1 1 10 100 1,000 10,000

Frequency (Hy)

F-17 Axial Bearing Digital Controller Disturbance Rejection Magnitude Plot

10¢

S
~

Compliance (Microns/Newton)

bl

0.01 R R R R I S N R S A
0.1 1 10 100 1,000

Frequency (Hy)

10,000

F-18 Radial Bearing 1X Digital Controller Disturbance Rejection Magnitude Plot

183



10¢

............

..........

PRI
bl L L L

0.01 R i ; S I
0.1 1 10 100 1,000 10,000
Frequency (Hy)

F-19 Radial Bearing 1Y Digital Controller Disturbance Rejection Magnitude Plot

10p

0. l E

0. 01 E

Compliance (Microns/Newton)

.-l

0.001 I
0.

10 100 1,000 10,000

Frequency (H)

F-20 Radial Bearing 2X Digital Controller Disturbance Rejection Magnitude Plot

184




10

S
~

0.001 |

Compliance (Microns/Newton)
S
S

YY) LA S S S S R R A
01 1 10 100 1,000 10,000

Frequency (Hy)

F-21 Radial Bearing 2Y Digital Controller Disturbance Rejection Magnitude Plot

185



F.4 Closed Loop Frequency Response Comparison
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F.5 Disturbance Rejection Comparison
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F.6 Closed Loop Frequency Response Performance Values

192

Parameter Rad1X RadlY

Analog | Digital | Theoretical | Analog | Digital | Theoretical
Peak Gain (DB) 8.00 5.68 11.79 7.94 541 7.49
Bandwidth @ -3dB (Hz) 104.06 | 157.93 53.85 88.96 | 283.09 51.82
Gain @ 1000Hz (dB) -31.61 | -14.35 -33.72 -33.73 | -7.38 -33.53
Parameter Rad2X Rad2Y

Analog | Digital | Theoretical | Analog | Digital | Theoretical
Peak Gain (DB) 4.19 4.84 9.13 8.78 5.53 10.51
Bandwidth @ -3dB (Hz) 152.46 | 326.15 77.35 167.88 | 249.09 68.63
Gain @ 1000Hz (dB) -25.19 | -15.27 -30.68 -23.41 | -9.47 -31.61
Parameter Axial

Analog | Digital | Theoretical
Peak Gain (DB) 8.06 12.50 6.33
Bandwidth @ -3dB (Hz) 134.01 | 195.09 91.64
Gain @ 1000Hz (dB) -32.82 | -18.53 -25.55




F.7 Disturbance Rejection Performance Values

193

Parameter Rad1X RadlY

Analog | Digital | Theoretical | Analog | Digital { Theoretical
Peak Compliance 8.52 4.59 10.87 8.47 5.75 11.57
(Microns/Newton)
Compliance @ 1000Hz 0.031 | 0.139 0.003 0.088 | 0.082 0.003
(Microns/Newton)
Parameter Rad2X Rad2Y

Analog | Digital | Theoretical | Analog | Digital | Theoretical
Peak Compliance 3.30 247 447 3.27 2.93 5.63
(Microns/Newton)
Compliance @ 1000Hz 0.027 | 0.051 0.003 0.023 | 0.117 0.003
(Microns/Newton)
Parameter Axial

Analog | Digital | Theoretical
Peak Compliance 24.14 3.80 4.11
(Microns/Newton)
Compliance @ 1000Hz 0.135 | 0.247 0.003
(Microns/Newton)




Appendix G

Dynamic Experimental Plots
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Position
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G-1 System Block Diagram and Test Points

This appendix presents graphically the disturbance rejection plots of each axis when the
turbopump rotor is spinning at 15000 and 28000 RPM. The first section describes the specifics
of how the plots were obtained. The next two sections present the disturbance rejection graphs
for the analog and the digital controller respectively. The fourth section presents the analog, and
digital responses superimposed to aid in comparing the various controllers. The various plots
were obtained using the Hewlett Packard HP 3562A Dynamic System Analyzer using the
appropriate test points. Refer to Figure G-1 for the location of the test points in relation to the
system components. The final two sections present important performance measures obtained
from the plots in this appendix.
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G.1 Graph Production Details

The disturbance rejection plots were obtained by inputting a swept sine wave having an
amplitude of 0.03 Volts and ranging from 0.1 to 10000 Hz. For both the analog and digital
controller, the swept sine wave was applied at the control signal adder and the output was
obtained by monitoring the position signal test point. The magnitude graph obtained using the
system analyzer has units of V/V which must be converted using the following conversion factor,

Axial Radial
. ho, . Sensor m h02 . Sensor
5 -( 1x10 pm) o| Conversion 5 -( 1x10 "m) o| Conversion
BoN"4 " Factor 21, NAC, cospl, " Factor
The values of the conversion factor for each axis is shown below.
Axial RadlX RadlY Rad2X Rad2Y
Conversion Factor 2.1704 1.9147 1.9147 0.9712 0.9712

Only the magnitude plots will be presented in the remainder of this appendix as the phase plots
convey little useful information. Of note are the spikes exhibited by both the analog and digital
controllers in the 11 Hz region when the rotor was spun at 28000 RPM. These spikes are due
to coupling between the upper and lower bearing. Under normal operation, the position signals
of the upper and lower bearings are sinusoidal waves having different amplitudes and frequencies.
However at the frequency of the spike, the position signals of both the upper and lower bearings

had the same amplitude and the same frequency.
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G.2 Disturbance Rejection at 15000 RPM
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G.2.2 Digital Controller
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G.3 Disturbance Rejection at 28000 RPM
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G.3.2 Digital Controller
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G4

Disturbance Rejection Comparison at 15000 RPM
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G.5 Disturbance Rejection Comparison at 28000 RPM
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G.6 Disturbance Rejection Performance Values at 15000
RPM

Parameter Rad1X RadlY
Analog Digital Analog Digital
Peak Compliance (Microns/Newton) 7.37 5.29 7.22 6.43
Compliance @ 1000Hz (Microns/Newton) 0.123 0.615 0.069 0.689
Parameter Rad2X Rad2Y
Analog Digital Analog Digital
Peak Compliance (Microns/Newton) 3.51 2.72 3.63 3.26
Compliance @ 1000Hz (Microns/Newton) 0.037 0.030 0.086 0.179
Parameter Axial
Analog Digital
Peak Compliance (Microns/Newton) 24.45 7.00
Compliance @ 1000Hz (Microns/Newton) 0.121 0.121
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G.7 Disturbance Rejection Performance Values at 28000
RPM

Parameter RadlX RadlyY

Analog Digital Analog Digital

Peak Compliance (Microns/Newton) 12.02 9.95 11.34 12.18
Compliance @ 1000Hz (Microns/Newton) 0.027 0.203 0.060 0.184
Parameter Rad2X Rad2Y

Analog Digital Analog Digital

Peak Compliance (Microns/Newton) 6.13 5.36 6.71 6.67
Compliance @ 1000Hz (Microns/Newton) 0.028 0.0175 0.036 0.759
Parameter Axial

Analog Digital
Peak Compliance (Microns/Newton) 22.73 6.94
Compliance @ 1000Hz (Microns/Newton) 0.027 0.277
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Appendix H

Assorted Program Listings

The appendix provides the listings of the programs used to determine the values of the
controller parameters and to model the theoretical system. Where speed was essential and
graphical presentation of the data was unnecessary, the programs were written in C. Otherwise
the programs were written as Matlab scripts. This appendix is comprised of four sections. The
first section lists programs used to determine the optimal sampling rate. This section also lists
programs that provided important system response values such as maximum compliance,
controller bandwidth, and maximum closed loop gain over a range of values for damping ratio,
natural frequency, and feedback gain. The second section lists programs used to display the
actual system responses obtained from the system analyzer and the theoretical responses predicted
by the model. The third section lists programs that return different aspects of the components
of the theoretical model. The last section lists certain miscellaneous programs which were used
in one form or another during the course of designing or analyzing the controller and its
response.

H.1 Controller Parameter Determination Programs

This section lists programs used to determine the optimal sampling rate. Also listed here
are the programs that provided the large file of system response values such as bandwidth,
maximum compliance, and maximum closed loop gain given the controller design parameters of
damping ratio, natural frequency, and feedback gain. These programs were run in a specific
order with one program building on the results of the previous ones. The listings below are
presented in the order in which they were initially run.

H.1.1 limits.c

The program recursively computes the eigenvalues of the closed loop system for a range
of values of sampling rate, damping ratio, natural frequency, and feedback gain. From the
eigenvalue data, the stability of the system is determined and the results are saved in a binary
character array in an effort to conserve disk space.

#include <stdlib.h>
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#include <stdio.h>
#include <string.h>
#include <math.h>

#ifdef NMALLOC
#include "nmalloc.h"
#endif

#define RADIX 2.0
#define NR_END 1
#define MAXM 8

#define SIGN(a,b) ((b) >= 0.0 ? fabs(a) : -fabs(a))
#define MYERR le-8

#define OVERSHOOT 0.1
#define MAXSETTLE 0.6
#define BHAT_ SIZE 100
#define DAMP_SIZE 19
#define FREQ_SIZE 100
#define SAMP_SIZE 50

void DigStabFunc (double
double
double
double
int DigReference(double
double
double

Al, double A2, double P, double Q, double newt,

a22, double a2l, double *J1, double *J2, double *J3,
*J4, double *J5, double *M1, double *M2, double *M3,
*M4, double *N1, double *N2, double *N3, double *N4);
bfreq, double efreq, double dfreq, double bT,

eT, double dT, double initx, double initu, double maxt,
**gettle, int *n);

int DigStep(int bearing, double b, double damp, double freq, double T,
double initx, double initu, double maxt, double P, double Q,
double Al, double A2, double **y, double **u, double **t, int *n);
int zrhqr(double al[l, int m, double rtr[], double rtil]):

void balanc(double **a,
int hqr(double **a, int

int n);
n, double wr[], double will);

double **matrix(long nrl, long nrh, long ncl, long nch);

void free_matrix(double

**m, long nrl, long nrh, long ncl, long nch);

void main(int argc, char **argv)

{

int i, j, k, 1, m, begin;

int curcols, currows,
int ibeg, jbeg;

ebara, axis;

char buffer[2000], *filename;

FILE *fp;
double P, Q, Al, A2;

double bhat, freq, damp, newt;

double a2l, a22;
#ifdef STEP

int setsize;

double *settle;

double *y, *u, *t, initx, initu, over, set;

#endif

double subtot[9], rrootsi{9], iroots([9];

double J1, J2, J3, J4,

ebara = 0;

begin = axis = 0;

if(arge < 2 || arge >
{

J5, M1, M2, M3, M4, N1, N2, N3, N4;

6)

fprintf (stderr, *Syntax error\n");
fprintf (stderr, "Syntax: 1limits filename [-a n] [-b m]l\n");

fprintf (stderr, "
fprintf (stderr, "
fprintf (stderr, "
exit(1l);

}

for(i=1; i<argc; i++)

where: filename - binary array filename\n");
-b n -> start integer [0-10000]\n");
-a m -> bearing axis [0-4]\n*);
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if(i == 1)
filename = argv[l];
else if(argvii)[0] == '-')

if(argv[i] [1] == 'b')
begin = atoi(argv([i+l]);

else if(argv([i] (1] == 'a‘')
axis = atoi(argv[i+l]);

}

curcols
currows

(SAMP_SIZE * DAMP_SIZE);
0;

if (begin)
{
if((fp = fopen(filename, "r+")) == NULL)
{

fprintf (stderr, "Unable to open file \"%s\"

exit(1l);
}
currows = begin;
}

else

{
if((fp = fopen(filename, "“w+")) == NULL)
{

fprintf (stderr, "Unable to open file \"%$s\"

exit(1l);
}
}

fseek(fp, OL, SEEK_SET);

if(!fwrite((void *) &currows, sizeof(int), 1, £fp))

fprintf (stderr, "row data write failed\n");

fclose(fp);
exit(1);

if (! fwrite((void *) &curcols, sizeof(int), 1, £fp))

{
fclose(£fp);
exit(l);

}

if (ebara)
{

fprintf(stderr, *“columns data write failed\n");

switch(axis)

{
default:
case 0:
P 11.081;
Q 27701.879;
Al = 1666.622;
A2 = 1700.000;
break;
case 1:
P = 10.278;
Q = 41113.653;
Al = 14222.428;
A2 = 4370.000;
break;
case 2:
P = 10.278;
Q:
A

41113.653;
1 = 14575.775;
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A2 = 4030.000;
break;
case 3:
P = 20.263;
Q = 81050.754;
Al = 4027.457;
A2 = 2450.000;

P = 20.263;
0 = 81050.754;
Al = 4108.477;
a2 o

}
else

switch(axis)
{
default:
case 0:
= 7.990;
= 22739.569;

P

Q

Al = 11097.006;
A2 =

7.123;
737.770;
1 = 4619.584;
2_

P PO
"o
~ 3

P = 8.296;

Q = 8882.644;
Al = 4558.848;
A2 =

= 16.926;

Q = 35530.576;

Al = 3863.909;
= 11140.0;

P =
Q = 33201.349;
Al = 4212.3;

}

#ifdef STEP
switch(axis)

{
default:
case 0:
initx
initu
break;
case 1:
case 2:
case 3:
case 4:
initx
initu
break;

-0.0002;
1.167;

0.0001;
0.0;
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}
#endif

/*

* newt = [1000:1000:50000];

* damp = [[0.1:0.1:0.9] [1:1:10]];
* freq = [10:10:1000];

* bhat = [10:10:1000];

*/

subtot([8] = 1.0;

#ifdef STEP
/* get maximum settling times for given frequencies */
if (DigReference(10.0, 1000.0, 10.0, 1000.0, 50000.0, 1000.0,
0.0, 1.0, MAXSETTLE, &settle, &setsize))
{

fprintf (stderr, "Error encountered in DigReference - limits.\n");
exit(1l);

}
#endif
if (begin)
{
fseek(fp, (currows * curcols * sizeof(char)) + (2 * sizeof(int)),
SEEK_SET) ;

(int) (currows / 100);
(int) (currows % 100);

ibeg
jbeg

else
ibeg = jbeg = 0;

begin = 0;
for(i=ibeg; i<BHAT_SIZE; i++) /* bhat loop */
{

bhat = (10.0 + (i * 10.0));
for(j=jbeg; j<FREQ_SIZE; j++) /* freq loop */
{

freq = (10.0 + (3 * 10.0));
a2l = freq * freq;

for(k=0; k<SAMP_SIZE; k++) /* time delay loop */
{
newt = 1000.0 + (k * (1000.0));
for(1=0; 1<DAMP_SIZE; 1l++) /* damp loop */
if(l < 10)
damp = ((1 + 1) * 0.1);
else

damp = (1 - 9.0);
a22 = 2.0 * damp * freq;
DigStabFunc(Al, A2, P, Q, newt, a22, a2l, &J1, &J2, &J3,
&J4, &J5, &M1, &M2, &M3, &M4, &N1, &N2, &N3,
&N4) ;

subtot[7] = ((J1*M2) /bhat)+(N2-1.0);

subtot[6] = (((J1*M3)+(J2*M2))/bhat)+(N3-N2);
subtot[5] = (((J1*M4)+(J2*M3)+(J3*M2)) /bhat)+ (N4-N3);
subtot[4] = (((J2*M4)+(J3*M3)+(J4*M2)) /bhat)-N4;
subtot[3] = ((J3*M4)+ (J4*M3)+(J5*M2)) /bhat;

subtot[2] = ((J4*M4)+(J5*M3)) /bhat;

subtot[1l] = (J5*M4) /bhat;

if (zrhqgr (subtot, 8, rroots, iroots))

fprintf (stderr, "Eigenvalue calculation problem ");
fprintf(stderr, "(i = %@ j =% k=% 1 = %d)\n"
i, 3, k, 1);
for(m=1; m<=8; m++)
{

iroots[m] = 0.0;
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rroots[m] = 2.0

}

-

}

for(m=1; m<=8; m++)
if ((rrootsm] *rroots[m])+(iroots[m] *iroots[m]) > 1.0)
break;

if(m == 9)
{

if (DigStep(axis, bhat, damp, freq, 1.0/newt, initx,
initu, l.1l*settle[(k*FREQ_SIZE)+j], P, Q, Al,
A2, &y, &u, &t, &setsize))

#ifdef STEP

{
fprintf (stderr, "DigStep calculation problem ");
fprintf(stderr, "(i = %d j =%d k=% 1 = %d)\n",
i, 3, k, 1);
buffer[ (k*DAMP_SIZE)+1l] = 2;

}
over = initx;
set = 1.0;
for (m=0; m<setsize; m++)
{
if(initx > 0.0 && y[m] < over)
over = y[m];
else if(initx < 0.0 && y[m] > over)
over = y[m];
if (fabs(y[m]) > fabs(0.05 * initx))
set = 1.0;
else if(set == 1.0)
set = t[m];
}
#if 0
fprintf (stderr, "%f %f\n", over, set):
#endif
if (fabs (over) < fabs (OVERSHOOT * initx) && set != 1.0)
{
buffer[ (k*DAMP_SIZE)+1l] = 1;
begin++;
}
else
buffer{ (k*DAMP_SIZE)+1l] = 2;
free(y);
free(u);
free(t);
#else
buffer{ (k*DAMP_SIZE)+1] = 1;
begin++;
#endif
}
else
buffer{ (k*DAMP_SIZE)+l] = 2;
}
if (fwrite((void *) buffer, sizeof(char), curcols, fp) != curcols)

fprintf(stderr, "data write failed\n");
fclose(fp);
exit(1l):

}

currows++;

fseek(fp, OL, SEEK_SET);
if(!fwrite((void *) &currows, sizeof(int), 1, £fp))

fprintf (stderr, "row data write failed\n");

fclose(fp):
exit(1l);
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i

if(!1fwrite((void *) &curcols, sizeof(int), 1, £fp))

fprintf(stderr, "columns data write failed\n");
fclose(£fp);
exit(l);

}
fflush(fp);
fseek (fp, (currows * curcols * sizeof(char)) + (2 * sizeof(int)),
SEEK_SET) ;
}

f (jbeg)
jbeg = 0;

printf(*%3d of %3d (%d)\n*, i+l, BHAT_SIZE, begin);

}

fclose(fp):
exit(0);

}

void DigStabFunc(double Al, double A2, double P, double Q, double T,

double a22, double a2l, double *J1, double *J2, double *J3,
double *J4, double *J5, double *M1l, double *M2, double *M3,
double *M4, double *N1l, double *N2, double *N3, double *N4)

double K1, K2, K3, K4, L1, L2, L3, L4, T1, T2, sq;

Tl
T2

sq
#ifdef

1/T;
T1*T1;
sqrt(Q);

BACKWARD

/* central difference acceleration and backward difference velocity */

*J1
*J2
*J3
*J4
*J5
#else

nuwu

(3.0/(4.0%(T2)))+((3.0*a22)/(2.0*T1))+(a21);
(-4.0/(4.0*(T2)))-((4.0*%a22)/(2.0*T1));
(-2.0/(4.0*(T2)))+(a22/(2.0*T1));

1.0/(T2);

-1.0/(4.0*(T2));

/* central difference acceleration and velocity */

*J1
*J2
*J3
*J4
*J5
#endif

K1
K2
K3
K4

L1
L2
L3
L4

*M1
*M2
*M3

nuu

(1.0/(4.0*(T2)))+(a22/(2.0*T1))+(a2l);
0.0;

(-2.0/(4.0*%(T2)))-(a22/(2.0*T1));

0.0;

1.0/(4.0*%(T2));

(-Al1*P) / (A2*Q) ;
(-A1*P) / (A2* ((A2*A2)-Q));
(A1*P) /(2.0*Q* (A2-sq));
(A1*P) /(2.0*Q* (A2+8q)) ;

exp (-A2*T1);
exp (-sq*Tl);
exp (sq*Tl);

’

0;
(-K1*(L1+L2+L3) ) - (K2* (L2+L3+L4) ) - (K3*(L1+L3+L4) ) - (K4* (L1+L2+L4));
(K1* ((L1*L2)+(L3*(L1+L2))) )+ (K2* ((L2*L4)+ (L3* (L2+L4))) )+

(K3* ((L1*L4) +(L3*(L1+L4))))+(K4* ((L1*L4)+(L2*(L1+L4))));

*M4

*N1
*N2
*N3
*N4

(-K1*L1*L2*L3) - (K2*L2*L3*L4) - (K3*L1*L3*L4) -~ (K4*L1*L2*L4) ;

1.0;

-L1-L2-L3;

(L1*L2)+ (L1*L3)+(L2*L3);
-(L1*L2*L3);
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}

int zrhqgr(double al], int m, double rtr([], double rti[])

{
int j, k;
double **hess, xr, xi;

hess = matrix(1l,MAXM, 1,MAXM) ;
if(m > MAXM || a(m] == 0.0)
{

fprintf (stderr, "bad args in zrhqgr\n");
free_matrix(hess,1l,MAXM, 1, MAXM) ;
return(l);

}
for (k=1; k<=m; k++)

{
hess[1][k] = -alm-k]/alm];
for (j=2;j<=m;j++)
hess[jl[k] = 0.0;
if(k !=m)
hess{k+1][k] = 1.0;

balanc(hess, m);
if (hgr (hess,m,rtr,rti))

free_matrix(hess,1,MAXM, 1,MAXM) ;
return(l);

for(j=2; j<=m; j++)
xr = rtr(jl;

xi = rtil3jl;
for (k=j-1; k>=1; k--)

if(rtr[k] <= xr)

break;
rtr[k+1] = rtrl(k]l;
rti[k+1l] = rtilk];
}
rtrlk+l] = xr;
rtilk+1l] = xi;

}
free_matrix(hess,1l,MAXM, 1,MAXM) ;
return(0);

void balanc(double **a, int n)
{

int last,j,i;

double s,r,g, f,c,sqrdx;

sqrdx = RADIX*RADIX;
last = 0;
while(last == 0)
{
last = 1;
for(i=1; i<=n; i++)
{
r=c¢=0.0;
for(j=1; j<=n; j++)
if(3 !'= i)
{
c += fabs(aljl[il);
r += fabs(al[il[j]);

}
if(c && r)

{
g = r/RADIX;
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1.0;
s c+r;
while(c<g)

wn

f *= RADIX;
c *= sqrdx;
}
g = r*RADIX;
while(c > g)
{
f /= RADIX;
¢ /= sqQrdx;

}
if((c+xr)/f < 0.95*g)
{

last = 0;

g=1.0/f;

for(j=1; j<=n; j++)
alil (3] *= g;

for(j=1; j<=n; j++)
aljl{il *= £;

int hgr(double **a, int n, double wr[], double wi[])
{

int nn, m, 1, k, j, its, i, mmin;

double z, y, x, w, Vv, u, t, s, r, q, p, anorm;

anorm = fabs(a[l][1]);
for(i=2; i<=n; i++)
for(j=(i-1); j<=n; j++)
anorm += fabs(al[i][j]);
nn=n;
t=0.0;
while(nn >= 1)
{
its = 0;
do {
for(l=nn; 1>=2; 1--)
{
s = fabs(a[l-1]1[1-1]))+fabs(al[l]l[1]);
if(s == 0.0)
s=anorm;
if ((double) (fabs(all]l[1-1]) + s) == s)
break;

x = al[nn] [nn];

if(1 == nn)
{
wr[nn] = x+t;
wi[nn--] = 0.0;
else
{
y = a[nn-1][nn-1];
w = a[nn] [nn-1]*a[nn-1][nn];
if(1 == (nn-1))
{
p = 0.5*%(y-x);
q = p*p+w;
z = sqrt(fabs(q));
X += t;
if(g >= 0.0)
{
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z = p+SIGN(z,p);

wr[nn-1] = wrnn] = x+z;
if(z)
wr[nn] = x-w/z;
wi[nn-1] = wi[nn] = 0.0;
}
else
wr[nn-1] = wr[nn] = x+p;
wi[nn-1] = -(wi{nn] = z};
}
nn -= 2;
}
else
{
if(its == 30)
{

fprintf(stderr, "Too many iterations in hqgr\n");
return(l);

}
if(its == 10 || its == 20)
{

t += x;
for(i=1l; i<=nn; i++)
alil[i] -= x;
fabs(a[nn] [nn-1])+fabs(a[nn-1] [nn-2]);
x = 0.75*s;
-0.4375*s*s;

s
Yy
w
}

++its;
for (m=(nn-2); m>=1; m--)

a[m] [m];

X-Z;

v-z;

(r*s-w)/aim+l] [m]+a[m] [m+1];
alm+l] [m+1l]-z-r-s;

a[m+2] [m+1];

fabs (p) +fabs(q) +fabs (r) ;

.
1

FRQUURQT KRN

rh
LI o N L | [ (O [ (A

It n

I~

1)

RE
i ]

o

-~

u fabs (alm] [m-1]) * (fabs(q) +fabs(r));
v = fabs(p) *(fabs(a[m-1] [m-1])+fabs (z)+fabs(a[m+1] [m+1]));
if ((double) (u+v) == v)

break;

for(i=m+2; i<=nn; i++)
{
a[i]l[i-2]) = 0.0;
if(i !'= (m+2))
al[i] [i-3] = 0.0;

}
for (k=m; k<=nn-1; k++)

if(k = m)
{

alk] [k-1];

alk+1][k-1];

0.0;
k != (nn-1))

= alk+2][k-1]1;

(x = fabs(p)+£fabs(q)+fabs(r)) != 0.0)

B-R Q'

th
L e S I (I |}

i
P /= X;
q /= x;
r /= x;
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}
}
if((s = SIGN(sqrt(p*p+qg*qg+r*r),p)) != 0.0)
(
if(k == m)
{

if(l !'= m)
a[k]l[k-1] = -alk][k-1];

else
alk] [k-1] = -s*x;

p
x
b4
z
q
r
£

or(j=k; j<=nn; j++)

p = alk][jl+g*alk+1]1[3]:
if(k != (nn-1))
{
p += r*alk+2][]];
alk+2][j] -= p*z;

alk+1][j] -= p*y;
alkl[j]) -= p*x;
}
mmin = nn<k+3 ? nn : k+3;
for(i=1l; i<=mmin; i++)
{
p = x*a[i] [k]l+y*a[i] [k+1];
if(k !'= (nn-1))
{

p += z*a[i] [k+2];
ali] [k+2]) -= p*r;

alil[k+1] -= p*q;
alil [k] -= p;

}
}
} while(l < nn-1);

return(0);

double **matrix(long nrl, long nrh, long ncl, long nch)

{
long i, nrow = nrh-nrl+l, ncol = nch-ncl+l;
double **m;
/* allocate pointers to rows */
if((m = (double **) malloc((size_t) ((nrow+NR_END) * sizeof (double *))))
== NULL)
{
fprintf (stderr, "allocation failure 1 in matrix()\n");
exit(1);
}
m += NR_END;
m -= nrl;

/* allocate rows and set pointers to them */
if((m[nrl] = (double *) malloc((size_t) ( (nrow*ncol+NR_END) *sizeof (double))))
== NULL)

fprintf (stderr, "allocation failure 2 in matrix()\n");
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ex

}
m[nrl]
m[nrl]

it(l);
+= NR_END;
-= ncl;

for(i=nrl+l; i<=nrh; i++)

m[i]

return

void fre

free((
free((
}

=m[i-1]+ncol;

(m) ;

e_matrix(double **m, long nrl, long nrh, long ncl, long nch)

char *) (m{nrl]+ncl-NR_END));
char *) (m+nrl-NR_END));

int DigStep(int bearing, double b, double damp, double freq, double T,
double initx, double initu, double maxt, double P, double Q,
double Al, double A2, double **y, double **u, double **t, int *n)

int i,
double
double
double
double
double

~
*

*»

ly,

* % ¥ ok % F % ¥ ¥ % F F X *

/

az22
a2l

divs =
xrT =
(*u)
(*n)

|\I:OII [}

nn3

ttsize
if((tt
{

fp
re

uptsiz

if ((up
{

fprintf (stderr,

fr

j, k, ttsize, uptsize;

a22, a2l, g, divs, rT, maxx;

*tt, *upt, *ty, *tu, cx[5];

px[2], pxdot[2], am{5], wvm[3], xm, cuT,
ampx, ampu, accel, vel, ampxdot, maxu;
rkt{2]1[4], rk[4];

u, t] = DigStep(bearing, b, damp, freq,
bearing - vacuum pump bearing number

0 axial bearing
radial 1X bearing
radial 1Y bearing

3 radial 2X bearing

4 radial 2Y bearing
b - controller gain (b hat)
damp - controller damping ratio
freq - controller natural frequency
T - controller sampling interval
initx - initial position
initu - initial control
maxt - maximum response time

1
2

2.0 * damp * freq;
freq * freq:;
807;
10.0;
/ divs;
(*y) = (*t) = NULL;
0;

= ((int) ((maxt / T) + 0.5)) + 1;

cu;

T,

initx, initu, maxt)

= (double *) calloc(ttsize, sizeof(double))) == NULL)

rintf (stderr, "Out of memory error - DigStep.\n");

turn(l);

e = ((int) ((maxt / rT) + 0.5)) + 1;

t = (double *) calloc(uptsize, sizeof(double))) == NULL)

ee(tt);
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return(l);

}
if((ty = (double *)
{

fprintf (stderr,
free(tt);
free(upt);
return(l);
}
if((tu
{

(double *)

fprintf (stderr,
free(tt);
free(upt);
free(ty);
return(l);

}

for(i=1; i<uptsize;
upt[i] upt([i-1]

for(j=0,1i=10; i<upts
tt[j++] upt[i];

for (i=0;
cx[i)

i<5; i++)
initx;

if (1bearing)
{

maxx

maxu

0.0002;
3.0;

else

{
maxx
maxu

}

px[1]
px[0]

0.0001;
2.0;

pxdot[0]
initx;

p

#ifdef BACKWARD
am[0] = 3.0; am{1]
#else
am([0]
#endif
for (i=0;
am[i]

1.0; am[1]

i<5; i++)
/= (4.0 * (T

#ifdef BACKWARD
vm[0]
#else
vm[0]
#endif
for (i=0;
vm[i] /=
xm a2l;
cuT cu

a22; vm[1]

i<3; i++)
(2.0 * 7)

initu;

ampx ampu = initu;

rk([0]
rk[1]

rk[3]
rk[2]

1.0/
1.0/

for(j=i=0; i<uptsize

if(upt[i] == tt]

= 3.0 * a22; vm[1]

calloc(uptsize, sizeof(double))) == NULL)

7

*Out of memory error - DigStep.\n");

calloc(uptsize, sizeof (double))) == NULL)

*Out of memory error - DigStep.\n");

i++)
+ rT;

ize; i+=10)

xdot [1] 0.0;

-4.0; am[2] -2.0; am[3] = 4.0; am[4] =

0.0; am[2]

-2.0; am[3]

= 0.0; am[4]

*T));

*

-4.0 a22; vm[2]

a22;
0.0; vm[2]

-a22;

.
’

6.0
3

-0
i++)

.
1

in
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/* update controller position variables */

for(k=4; k>0; k--)
cx[k] = cx[k-1];
cx[0] = px[0];

/* determine control signal */

for(accel=0.0,k=0; k<5; k++)
accel += (am([k] * cx[k]);

for(vel=0.0,k=0; k<3; k++)
vel += (vm[k] * cx[k]);

cu = cuT - ((accel + vel + (xm*cx[0]))/b);

if(cu > maxu)
cu = maxu;
else if(cu < -maxu)

cu = -maxu;
cuT = cu;
J++7

}

/* determine amplified control */
rkt[0] [0] = (-A2*ampx) + (Al*cu);

ampxdot = ampx + (rkt[0][0]*(rT/2));
rkt[0] (1] = (-A2*ampxdot) + (Al*cu);
ampxdot = ampx + (rkt[0][1]*(rT/2));
rkt[0][2] = (-A2*ampxdot) + (Al*cu);

ampxdot = ampx + (rkt[0]([2]*rT);

rkt[0]1[3] = (-A2*ampxdot) + (Al*cu);

for (ampxdot=0.0,k=0; k<4; k++)
ampxdot += (rkt[0][k]*rk([k]);

ampx += (ampxdot * rT);

ampu = ampx;

/* determine new position */

rkt[0][0] = px[1];

rkt[1]1[0] = (Q*px([0]) + (P*ampu);
pxdot [0] = px[0] + (rkt[0][0]*(xT/2));
pxdot[1l] = px[1] + (rkt[1]1([0]*(xrT/2));
rkt[01[1] = pxdot[1l];

rkt{1]{1] = (Q*pxdot[0]) + (P*ampu);
pxdot[0] = px[0] + (xrkt[0][11*(rT/2));
pxdot[1l] = px[1] + (rkt[1][1]1*(rT/2));
rkt[0][2] = pxdot[1l];

rkt[1]1[2] = (Q*pxdot(0]) + (P*ampu);
pxdot[0] = px[0] + (rkt([0][2]*rT);
pxdot[1l] = px[1] + (rkt{1l]1([2]*rT);
rkt{0][3] = pxdot[1l];

rkt[1][3] = (Q*pxdot[0]) + (P*ampu);

pxdot [0] = pxdot[l] = 0.0;
for(k=0; k<4; k++)
{
pxdot[0] += (rkt([0][k]l*rk([k]);
pxdot[1] += (rkt([1](k]*rk([k]);

if (bearing == 0)
pxdot[l] -= g;

/* save values for plotting */
tylil = px([0];
tuli] = cu;

/* update variables */
px[0] += (pxdot[0] * xT);
px[1] += (pxdot[1l] * rT);

if(px[0] > maxx)
px[0] = maxx;

else if(px[0] < -maxx)
px[0] = -maxx;
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}

free(tt):;

(*y) = ty;

(*u) = tu;

(*t) = upt;
(*n) = uptsize;
return(0);

int DigReference(double bfreq, double efreq, double dfreq, double bT,
double eT, double AT, double initx, double initu, double maxt,
double **gettle, int *n)

int i, j, k, fsize, tsize, setsize, ee, bb;
double *time, upt, *freq, output, *set;

(*settle) = NULL;
(*n) = 0;

tsize ((int) (((eT - bT) / AT) + 0.5)) + 1;
fsize ((int) ((efreq - bfreq) / dfreq)) + 1;
setsize = fsize * tsize;

if((time = (double *) calloc(tsize, sizeof(double))) == NULL)
{

fprintf (stderr, "Out of memory error - DigReference.\n");
return(l);

if((freq = (double *) calloc(fsize, sizeof(double))) == NULL)
{

fprintf (stderr, "Out of memory error - DigReference.\n");
free(time);
return(1);

}

if((set = (double *) calloc(setsize, sizeof(double))) == NULL)
{
fprintf (stderr, "Out of memory error - DigReference.\n");
free(time) ;
free(freq);
return(l);
}

for(time[0]=bT,i=1; i<tsize; i++)
time[i] = time[i-1] + 4T;

for(freq[0l=bfreq,i=1; i<fsize; i++)
freq[i] = freqli-1] + dfreq;

for(i=0; i<tsize; i++)
for(j=0; j<fsize; j++)
ee (int) (maxt*timel[i]);
bb 1;

k = ee > 1;
while(k != 0)
{

inu

upt = k / time[i];

/*
* This equation is the solution of the inverse Laplace transform
* of a second order system having a damping ratio of 1.0 and
* determining the closest sampling time to that point
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*/
output = 1.0 - ((1.0 + (freqljl*upt)) * exp(-freqljl * upt));
if (output < 0.95)

bb = k;
else

ee = k;
k = bb + ((ee - bb) > 1);
if(k == ee || k == bb)

{

set[(i*fsize)+j] = k / time[i];
k =0;
}

}

free(time);
free(freq);

(*settle) = set;
(*n) = setsize;

return(0);

H.1.2 mat2text.c

This program examines the binary character matrix produced by limits.c and creates a text
file listing the values of sampling rate, damping ratio, natural frequency, and feedback gain that
produced stable systems. This program made it possible to create and delete the considerably
larger text file from the smaller binary file at any time.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define MEMERR(x) \

fprintf (stderr, *Out of memory error - %s (%d)\n", x, __LINE_ );
#define FUNCERR(x,y) \

fprintf (stderr, "Error encountered in %s - %s (%d)\n", x, y, __LINE__);

#define STATUS_OK 0
#define STATUS_NOK 1

void main(int argc, char **argv)

{
int i,3;
int begrow, begcol, rows, cols, mag;
int matrows, matcols;
char *infile, *outfile, *buffer;
FILE *ifp, *ofp;
float freq, time, damp, bhat;

begrow = begcol = rows = cols = mag = 0;
if (argc < 3)
{
fprintf (stderr, "syntax error ...\n\n");

fprintf (stderr, "Syntax: mat2text infile outfile [-r n] [-c m]");
fprintf(stderr, " [-nr 1] [-nc k]l\n");
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fprintf (stderr, where:
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,

exit(l);

}

for(i=1; i<argc; i++)
{

if(i == 1)
infile = argvl[i];

else if(i == 2)
outfile = argv[il;

else if(argv[i] [0] == '-")
{

if(argv[i]l [1] == 'x')
begrow = atoi(argv[i+l]);

else if(argv[il[1l] == 'c')
begcol = atoi(argv[i+l]);

else if(argv[i][1l] == 'n')
{

if(argv[i][2] == 'r')
rows = atoi(argv[i+l]);
else if(argv[i][2] == 'c')
cols = atoilargv[i+l]);

}

if((ifp = fopen(infile,
{

*r*)) == NULL)

fprintf (stderr,
exit(1);
}

if((ofp = fopen(outfile,
{

*w")) == NULL)

fprintf (stderr,
exit(1l);
}

if(!fread((void *) &matrows, sizeof(int),
{
fprintf (stderr,
fclose(ifp);
fclose(ofp);
exit(1);
}

if(!fread((void *) &matcols, sizeof(int),
{
fprintf (stderr,
fclose(ifp);
fclose(ofp);
exit(1l);
}

if(lrows)
rows = matrows;

if(!cols)
cols = matcols;

if (!mag)
mag = 1;

if (begrow+rows > matrows)
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infile
outfile
-r n
-c m
-nr 1
-nc k

->
->
->
->
->
->

"Unable to open input file \"%$s\"\n\n",

*Error encountered reading from \"%s\"\n\n",

*Error encountered reading from \*$s\"\n\n",

matrix pathname\n");
text file pathname\n");
start at nth row\n");
start at mth column\n");
convert 1 rows\n");
convert k columns\n*);

infile);

*Unable to open output file \"%s\"\n\n"*, outfile);

ifp))

infile);

ifp))

infile);



fprintf (stderr,
"Requested rows (%d) is greater than matrix rows (%d)\n\n",
begrow+rows, matrows);
fclose(ifp);
fclose(ofp) ;
exit(l);
}

if (begcol+cols > matcols)
{
fprintf (stderr,
*Requested columns (%d) is greater than matrix columns (%d)\n\n",
begcol+cols, matcols);
fclose(ifp);
fclose(ofp);
exit(1);
}

if (begrow)
fseek(ifp, begrow*matcols, SEEK_CUR);

if((buffer = (char *) calloc(matcols, sizeof(char))) == NULL)
{

MEMERR ("mat2text") ;
fclose(ifp);

fclose(ofp);
exit(1l);
}
for (i=0; i<rows; i++)
if (fread((void *) buffer, sizeof(char), matcols, ifp) != matcols)
fprintf(stderr, "Data read error ...\n");

fclose(ifp);
fclose(ofp);
exit(1l);
}
for (j=begcol; j<begcol+cols; j++)
if (buffer[j] == 1)

{
if(3%19 < 10)
damp = ((j%19) + 1) * 0.1;

damp = (j%19) =~ 9.0;
time = 1000.0 + (((int) j/19) * 1000.0);
freq = 10.0 + (((begrow + 1)%100) * 10.0);
bhat = 10.0 + (((int) ((begrow + i) / 100)) * 10.0);
fprintf (ofp, "%7.1f %5.2€F $6.1f $6.1f\n", time, damp,
bhat, freq);

}

fclose(ifp);
fclose(ofp);
exit(0);

H.1.3 mat2tiff.c

This program examines the binary character matrix produced by limits.c and creates a
TIFF file using the four dimensional mapping technique described in a previous chapter. This
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allowed this researcher to visualize the effect that changes in controller variables had on closed
loop system stability. This program made it possible to create and delete this TIFF file from
the binary file at any time.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>

#define MEMERR(x) \

fprintf(stderr, *Out of memory error - %s (%d)\n", x, _ LINE_ );
#define FUNCERR(x,y) \

fprintf (stdexrr, "Error encountered in %s - %s (%d)\n", x, y, _ LINE_ );

#define STATUS_OK O
#define STATUS_NOK 1

#define FIELDNUM 18
#define STRIPSIZE 8*1024

#ifdef TIFF_COMP

#define HASH_SIZE 101

enum { LZW_Initialize, LZW_Compress, L2ZW_Cleanup };
#endif

typedef union i_tiffoff
{
unsigned int uint;
unsigned short ushort[2];
} iTiffoOff;

¥#define ITiffOoffInt(p) ((p) .uint)
#define ITiffoffshort(p) ((p) .ushort)
#define ITiffOffShortHigh(p) (((p).ushort)[0])
#define ITiffoffShortLow(p) (((p) .ushort) [11])

typedef struct i_tiffdir
{
unsigned short Tag;
unsigned short Type;

int Length;
iTiffOff Offset;
} iTiffDirStruct, *iTiffDir;
#define ITiffDirTag(p) ((p)->Tag)
#define ITiffDirType(p) ((p) ->Type)
#define ITiffDirLength (p) ((p) ->Length)
#define ITiffDirOffset (p) (ITiffOffInt ((p)->0ffset))

#define ITiffDirOffsetShort(p) (ITiffOffShortHigh((p)->Offset))

/* TIFF Tag Types */
#define BYTE
#define ASCII
#define SHORT
#define LONG
#define RATIONAL 5

W

/* TIFF Tags */

#define NEW_SUBFILE_TYPE 254
#define IMAGE_WIDTH 256
#define IMAGE_LENGTH 257
#define BITS_PER_SAMPLE 258
#define COMPRESSION 259
#define PHOTOMETRIC_INTERPRETATION 262
#define DOCUMENT_NAME 269

234



#define STRIP_OFFSETS 273

#define SAMPLES_PER_PIXEL 277
#define ROWS_PER_STRIP 278
#define STRIP_BYTE_COUNTS 279
#define X _RESOLUTION 282
#define Y RESOLUTION 283
#define PLANAR_CONFIGURATION 284
#define RESOLUTION_UNIT 296
#define SOFTWARE 305
#define DATE_TIME 306
#define COLOR_MAP 320

/* Tiff Color Representations */
#define RGB_COLOR 2
#define PALETTE_COLOR 3

/* Compression type defines */
#define NO_COMPRESS 1
#define HUFFMAN_COMPRESS 2
#define LZW_COMPRESS 5
#define PACKBITS_COMPRESS 32773

#ifdef TIFF_COMP

/* hash table member */

typedef struct i_tiffhash

{
struct i_tiffhash *Next;
unsigned char *Values;
unsigned int Size;
unsigned int Index;

} iTiffHashStruct, *iTiffHash;

#define ITiffHashNext (p) ((p)->Next)
#define ITiffHashChars(p) ((p)->Values)
#define ITiffHashSize(p) ((p)->Size)
#define ITiffHashIndex(p) ((p) ->Index)

/* compressed data buffer union */
typedef union i_lzwvalue
{
unsigned int Integer:;
unsigned char Byte[4];
} iLZWValueUnion, *iLZWvalue;

#define ILZWValuelnt(p) ((p) .Integer)
#define ILZWValueByte (p) ((p) .Byte)

/* LZW table constants */
#define LZWClear 256
#define LZWEOI 257

#endif

static int WriteTIFFMatrix(FILE *ifp, FILE *ofp, int begrow, int begcol,
int rows, int cols, int rowlen, int compress,
int color_type, int mag);

#ifdef TIFF_COMP

static void TiffCompressLZW(void *old, int size, int bytes, void *new,
int *newsize, int flag):;

#endif

void main(int argc, char **argv)

int i,3;

int begrow, begcol, rows, cols, mag;
int matrows, matcols;

char *infile, *outfile;

FILE *ifp, *ofp;
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begrow = begcol = rows = cols = mag = 0;

if (argc < 3)
{
fprintf (stderr, "syntax error ...\n\n");
fprintf (stderr, "Syntax: mat2tiff infile outfile [-r n] [-c ml*);

fprintf(stderr, " [-nr 1] [-nc k] [-m jl\n");
fprintf (stderr, " where: infile -> matrix pathname\n");
fprintf (stderr, * outfile -> TIFF pathname\n");
fprintf (stderr, * -r n -> start at nth row\n");
fprintf(stderr, " -cm -> start at mth column\n");
fprintf (stderr, * -nr 1 -> convert 1 rows\n");
fprintf(stderr, " -nc k -> convert k columns\n");
fprintf(stderr, " -m j -> magnify j times\n\n");
exit(1l);

}

for(i=1; i<argc; i++)

{

if(i == 1)

infile = argvl[i};
else if(i == 2)
outfile = argv[i];
else if(argv([i][0] == '-"')
{
if(argv([i][1] == 'r')
begrow = atoi(argv[i+l]);
else if(argv[i] [1] == '¢')
begcol = atoi(argv[i+l]);
else if(argv[i][1l] == 'm')
mag = atoi(argv[i+l]):
else if(argvii]l [1] == 'n')

if (argviil [2] == 'r"')
rows = atoi(argv[i+l]);

else if(argv[i][2] == '¢')
cols = atoi(argv[i+l]);

}
if((ifp = fopen(infile, "r")) == NULL)
{

fprintf (stderr, “Unable to open input file \"$s\"\n\n", infile);

exit(1);
}
if ((ofp = fopen(outfile, "w")) == NULL)
{
fprintf (stderr, "Unable to open output file \"$s\*\n\n", outfile);
exit(1);

if(!fread((void *) &matrows, sizeof(int), 1, ifp))
{
fprintf(stderr, "Error encountered reading from \"%s\"\n\n", infile);
fclose(ifp);
fclose(ofp);
exit(1);
}

if(!fread((void *) &matcols, sizeof(int), 1, ifp))
{
fprintf(stderr, "Error encountered reading from \"$%s\"\n\n", infile);
fclose(ifp);
fclose(ofp);
exit(1);
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if(lrows)
rows = matrows;

if(!cols)
cols = matcols;

if (!mag)
mag = 1;

if (begrow+rows > matrows)
{
fprintf (stderr,
"Requested rows (%d) is greater than matrix rows (%d)\n\n",
begrow+rows, matrows);
fclose(ifp);
fclose(ofp);
exit(1l);
}

if (begcol+cols > matcols)
{
fprintf (stderr,
"Requested columns (%d) is greater than matrix columns (%d)\n\n",
begcol+cols, matcols);
fclose(ifp);
fclose(ofp);
exit(1l);
}

if (begrow)
fseek (ifp, begrow*matcols, SEEK_CUR);

if (WriteTIFFMatrix(ifp, ofp, begrow, begcol, rows, cols, matcols,
LZW_COMPRESS, PALETTE COLOR, mag) != STATUS OK)
{

FUNCERR ( "WriteTIFFMatrix", "mat2tiff");
fclose(ifp);
fclose(ofp):;
exit(1);
}

fclose(ifp);
fclose(ofp);
exit(0);

}

/***************************** MODULE INFORMATION Kk e ke koK k gk Kok ok ok ke ke ok ok ok deok ke ok ok ok ok ok ok

* NAME OF MODULE : WriteTIFFNetgraph
* DESCRIPTION
****************************************************************************/
static int WriteTIFFMatrix(FILE *ifp, FILE *ofp, int begrow, int begcol,
int rows, int cols, int rowlen, int compress,
int color_type, int mag)

int i, j, k, m, index, size;

int shift, bytes, pindsize;

int *pixind;

short temp;

long diroff, offset, max;

iTiffDir *expdir;

const char *whoami = "mat2tiff v1.0";

char *date;

void *strip, **rgb;
#ifdef TIFF_COMP

void *cstrip;

int 1, cstrsize;

unsigned int *coffsets, *csizes;
#endif
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unsigned short red, green, blue;
struct tm *tstruc;

time_t tmstr;

char *image;

unsigned long pix;

/* write TIFF file header */

#if defined(__0S2__) || defined(MIPSEL)
fprintf (ofp, “"II");

#else
fprintf(ofp, "MM");

#endif

bytes = sizeof (unsigned char);

if(color_type != PALETTE_COLOR)
bytes *= 3;

size = FIELDNUM;
if(color_type != PALETTE_COLOR)
size--;

if((expdir = (iTiffDir *) calloc(size, sizeof (iTiffDir)))
== NULL)
{
MEMERR ("WriteTIFFMatrix") ;
return (STATUS_NOK) ;
}

for(i=0; i<size; i++)
if((expdir[i] = (iTiffDir) calloc(l, sizeof (iTiffDirStruct))) == NULL)
{

MEMERR ("WriteTIFFMatrix") ;
for(; i>=0; i--)

if(expdir([i])

free((char *) expdir(i]);

if (expdir)

free((char *) expdir);
return (STATUS_NOK) ;

}

ITiffDirTag(expdir([0]) = 42;

fwrite((void *) &ITiffDirTag(expdir[0]), sizeof (char),
sizeof (ITiffDirTag(expdir[0])), ofp);

ITiffDirOffset (expdir(0]) = 12;

fwrite((void *) &ITiffDirOffset(expdir{0)), sizeof(char),
sizeof (ITiffDirOffset (expdir([0])), ofp);

ITiffDirOffset (expdir[0]) = 0;

fwrite((void *) &ITiffDirOffset (expdir[0]), sizeof (char),
sizeof (ITiffDirOffset (expdir(0])), ofp);

/* write TIFF Image file directory entry */
ITiffDirTag(expdir([0]) = size;
if(fwrite((void *) &ITiffDirTag(expdir[0]), sizeof (char),
sizeof (ITiffDirTag(expdir[0])), ofp) !=
sizeof (ITiffDirTag(expdir([0])))
goto werrorl;

/* get file offset so we can write TIFF directory later */
diroff = ftell(ofp);

/* write dummy TIFF directory */
for(i=0; i<size; i++)
if (fwrite((void *) expdir[il, sizeof(char), sizeof(*expdir[il), ofp) !I=
sizeof (*expdir[i]))
goto werrorl;
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if (fwrite((void *) &ITiffDirOffset(expdir[0]), sizeof(char),
sizeof (ITiffDirOffset (expdir[0])), ofp) !=
sizeof (ITiffDirOffset (expdir[0])))
goto werrorl;

/* 0 write NewSubfileType field */

index = 0;

ITiffDirTag(expdir([index]) = NEW_SUBFILE_TYPE;
ITiffDirType(expdir[index]) = LONG;
ITiffDirLength(expdir[index]) = 1;
ITiffDirOffset (expdir[index]) = 0; /* default */

/* 1 write ImagewWidth field */

index++;

ITiffDirTag (expdir[index]) = IMAGE_WIDTH;
ITiffDirType (expdir[index]) = LONG;
ITiffDirLength(expdir[index]) 1;
ITiffDirOffset (expdir[index]) mag * cols;

/* 2 write ImagelLength field */

index++;

ITiffDirTag(expdir[index]) = IMAGE_LENGTH;
ITiffDirType(expdir[index]) = LONG;
ITiffDirLength (expdir[index]) 1;
ITiffDirOffset (expdir[index]) mag * rows;

/* 3 write BitsPerSample field */

index++;

ITiffDirTag (expdir[index]) = BITS_PER_SAMPLE;
ITiffDirType(expdir[index]) = SHORT;

temp = 8;

if (color_type == PALETTE_COLOR)

ITiffDirLength(expdir[index]) = 1;
ITiffDirOffsetShort (expdir[index]) = temp;
}

else

ITiffDirLength(expdir[index])
ITiffDirOffset (expdir[index])

3;
ftell (ofp);

for(i=0; i<3; i++)
if (fwrite((void *) &temp, sizeof(char), sizeof(temp), ofp) !=
sizeof (temp))
goto werrorl;

shift = (int) temp; /* save for RGB correction */

/* 4 write Compression field - packbits recommended, easy to implement */
index++;
ITiffDirTag(expdir{index]) = COMPRESSION;
ITiffDirType (expdir[index]) = SHORT;
ITiffDirLength(expdir([index]) = 1;
#ifdef TIFF_COMP
switch(compress)
{
case LZW_COMPRESS:
case NO_COMPRESS:
ITiffDirOffsetShort (expdir[index]) = compress; /* LZW compression */
break;
default:
ITiffDirOffsetShort (expdir[index])
break;
}
#else
ITiffDirOffsetShort (expdir[index)) = NO_COMPRESS; /* No compression */
#endif

NO_COMPRESS; /* No compression */

/* 5 write PhotometricInterpretation field */
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index++;

ITiffDirTag(expdir[index]) = PHOTOMETRIC_INTERPRETATION;

ITiffDirType (expdir[index]) = SHORT;
ITiffDirLength(expdir[index]) = 1;
switch(color_type)

{

case RGB_COLOR:

case PALETTE_COLOR:

ITiffDirOffsetShort (expdir([index]) = color_type;

break;

default: /* pixel values are RGB */
ITiffDirOffsetShort (expdir[index])
break;

}

/* 6 write DocumentName field */

index++;

ITiffDirTag(expdir{index]) = DOCUMENT_NAME;
ITiffDirType(expdir[index]) = ASCII;

i = strlen("No Name")+1;
ITiffDirLength (expdir[index]) i;
ITiffDirOffset (expdir[index]) ftell(ofp);
fwrite((void *) *"No Name", sizeof(char), i,
if(i%2 > 0)

if (fwrite((void *) (((unsigned int) "No Name")+i-1),

1, ofp) != sizeof(char))
goto werrorl;

/* 8 write SamplesPerPixel field */
index = 8;

RGB_COLOR;

ofp);

ITiffDirTag(expdir[index]) = SAMPLES_PER_PIXEL;

ITiffDirType (expdir{index]) = SHORT;
ITiffDirLength(expdir{index]) = 1;

/* 3 = RGB, 1 = bilevel, grayscale, palette color */

if (color_type == RGB_COLOR)

ITiffDirOffsetShort(expdir[index]) = 3;
else
ITiffDirOffsetShort (expdir[index]) = 1;

/* 11 write XResolution field - Pixels per Centimeter

index = 11;

ITiffDirTag(expdir[index]) = X_RESOLUTION;
ITiffDirType(expdir[index]) = RATIONAL;
ITiffDirLength(expdir[index]) = 1;
ITiffDirOffset (expdir[index}) = ftell(ofp);
i = (int) (((1280.0/356.0) + 0.5) * 10);

if (fwrite((void *) &i, sizeof(char), sizeof(int), ofp)

goto werrorl;
i=1;

if(fwrite((void *) &i, sizeof(char), sizeof(int), ofp)

goto werrorl;

/* 12 write YResolution field - Pixels per Centimeter

index++;

ITiffDirTag(expdir[index]) = Y_RESOLUTION;
ITiffDirType(expdir[index]) = RATIONAL;
ITiffDirLength(expdir[index]) = 1;
ITiffDirOffset (expdir[index]) = ftell(ofp):;
i = (int) (((1024.0/284.0) + 0.5) * 10);

if(fwrite((void *) &i, sizeof(char), sizeof(int), ofp)

goto werrorl;
i=1;

if (fwrite((void *) &i, sizeof(char), sizeof(int), ofp)

goto werrorl;

/* 13 write PlanarConfiguration field */
index++;

ITiffDirTag(expdir[index]) = PLANAR_CONFIGURATION;

ITiffDirType(expdir{index]) = SHORT;
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ITiffDirLength(expdir[index]) = 1;
ITiffDirOffsetShort (expdir[index]}) = 1; /* samples stored contiguously */

/* 14 write ResolutionUnit field */

index++;

ITiffDirTag(expdir[index]) = RESOLUTION_UNIT;
ITiffDirType (expdir[index]) = SHORT;
ITiffDirLength(expdir{index]) = 1;

ITiffDirOffsetShort (expdir[index]) = 3; /* centimeter */

/* 15 write Software field */
index++;
ITiffDirTag(expdir[index]) = SOFTWARE;
ITiffDirType(expdirlindex]) = ASCII;

i = strlen(whoami)+1;
ITiffDirLength (expdir[index])
ITiffDirOffset (expdir [index])

1;
ftell(ofp);

if (fwrite((void *) whoami, sizeof(char), i, ofp) = i)
goto werrorl;
if(i%2 > 0)
if (fwrite((void *) (((unsigned int) whoami)+i-1), sizeof(char), 1, ofp) !=
1)

goto werrorl;

/* 16 write DateTime field */
index++;
ITiffDirTag(expdir([index]) = DATE_TIME;
ITiffDirType (expdir[index]) = ASCII;
if ((date = (char *) calloc(20, sizeof(char))) != NULL)
{
ITiffDirLength(expdir([index]) = 20;
tmstr = time(NULL);
tstruc = localtime(&tmstr);
sprintf (date, "%04d:%02d:%02d4 %02d4:%02d:%02d4", tstruc->tm year+1900,
tstruc->tm_mon, tstruc->tm_mday, tstruc->tm_hour, tstruc->tm_min,
tstruc->tm _sec);
ITiffDirOffset (expdir[index]) = ftell(ofp);
if(fwrite((void *) date, sizeof(char), 20, ofp) != 20)
goto werrorl;

}
else
{
ITiffDirLength(expdir[index]) = 0;
ITiffDirOffset (expdir[index]) = 0;

}
free(date);

/* 17 write ColorMap field */
if(color_type == PALETTE_COLOR)
{
index++;
ITiffDirTag(expdir[index]) = COLOR_MAP;
ITiffDirType(expdir[index]) = SHORT;
temp = 8;
ITiffDirLength(expdir[index]) = 3*(l<<temp);
ITiffDirOffset (expdir(index]) = ftell(ofp);
temp = 0;
for(i=0; i<ITiffDirLength(expdir{index]); i++)
if (fwrite((void *) &temp, sizeof(short), sizeof(char), ofp) !=
sizeof (char))
goto werrorl;

}
/* 9 write RowsPerStrip field */
/* recommended that this be set such that the size of each strip is */
/* about 8K bytes. */

index = 9;
if((i = (int) (STRIPSIZE/(ITiffDirOffset (expdir([1l])*bytes))) < 1)
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{
i=1;
size = ITiffDirOffset(expdir([l]) *bytes;
}
else
size = i*ITiffDirOffset (expdir([l]) *bytes;

ITiffDirTag(expdir{index]) = ROWS_PER_STRIP;
ITiffDirType (expdir[index]) = LONG;
ITiffDirLength(expdir[index]) 1;
ITiffDirOffset (expdir[index]) i;

/* 10 write StripByteCounts field */
index = 10;
ITiffDirTag(expdir[index]) = STRIP_BYTE_COUNTS;
ITiffDirType(expdir[index]) = LONG;
ITiffDirLength(expdir[index]) =
(int) (ITiffDirOffset(expdir([2])/ITiffDirOffset(expdir(9]1));
if(ITiffDirOffset (expdir[2])$ITiffDirOffset (expdir(9]) > 0)
ITiffDirLength(expdir[index]) ++;
if (ITiffDirLength(expdir[index]) > 1)
ITiffDirOffset (expdir[index]) = ftell (ofp);

offset = ITiffDirOffset (expdir[l]) *bytes;
offset *= ITiffDirOffset(expdir([2]);
while(offset > size)

if(fwrite((void *) (&size), sizeof(char), sizeof(int), ofp) !=
sizeof (int))
goto werrorl;
offset -= size;

}
if (offset)
{
if(ITiffDirLength(expdir([index]) > 1)

if(fwrite((void *) (&offset), sizeof(char), sizeof(int), ofp) !=
sizeof(int))
goto werrorl;
}
else
ITiffDirOffset (expdir[index]) = offset;
}

/* 7 write StripOffsets field */
index = 7;
if(gize%z > 0) /* make sure size is even so offsets are correct */
size++;
ITiffDirTag(expdir([index]) = STRIP_OFFSETS;
ITiffDirType (expdir[index]) = LONG;
ITiffpirLength(expdir[index]) = ITiffDirLength (expdir[10]);
ITiffDirOffset (expdir[index]) = offset = ftell(ofp);
if (ITiffDirLength(expdir[index]) > 1)
{
offset += (ITiffDirLength(expdir[index])*sizeof(int));
for(i=0; i<ITiffDirLength(expdir[index]); i++)
{
if(fwrite((void *) (&offset), sizeof(char), sizeof (unsigned int),
ofp) != sizeof(int))
goto werrorl;
offset += size;

}
}
image = NULL;
if ((image = (char *) calloc(mag*rowlen, sizeof(char))) == NULL)

MEMERR ( "WriteTIFFMatrix") ;
goto werrorl;
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}

/* allocate memory for netgraph drawing routine */
if((strip = (void *) calloc(size, sizeof(char))) == NULL)
{
MEMERR ( "WriteTIFFMatrix") ;
goto werror2;

}
pindsize = 2;
/* needed in order for werror3 to work properly */

pixind = NULL;
#ifdef TIFF_COMP

csizes = coffsets = NULL;
cstrip = NULL;
#endif
if((rgb = (void **) calloc(pindsize, sizeof(void *))) == NULL)
{

MEMERR ( "WriteTIFFMatrix");
goto werror3;
}

if ((pixind = (int *) calloc(pindsize, sizeof(int))) == NULL)

MEMERR ( "WriteTIFFMatrix") ;
goto werror3;

}

#ifdef TIFF_COMP
if(ITiffDirOffsetShort (expdir([4]) != NO_COMPRESS)

if((coffsets = (unsigned int *) calloc(ITiffDirLength(expdir[10]),
sizeof (unsigned int))) == NULL)
{

MEMERR ( "WriteTIFFMatrix") ;
goto werror3;

}

if((csizes = (unsigned int *) calloc(ITiffDirLength(expdir[10]),
sizeof (unsigned int))) == NULL)

MEMERR ( "WriteTIFFMatrix") ;
goto werror3;

}
if((cstrip = (void *) calloc(size, sizeof(char))) == NULL)
{

MEMERR ( *WriteTIFFMatrix");
goto werror3;

if(ITiffDirOffsetShort (expdir[4]) == LZW_COMPRESS)
TiffCompressLZW(NULL, 0, 0, NULL, &cstrsize, LZW_Initialize);
if (cstrsize != STATUS_OK)

{
FUNCERR("TiffCompressLZW", "WriteTIFFMatrix");
goto werror3;

}
1l1=0;
}
#endif

/* get Netgraph pixel/RGB values */
k = bytes;
if (color_type != PALETTE_COLOR)

k /= 3;

for(i=0; i<2; i++)
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if((rgb[i] = (void *) calloc(3, k)) == NULL)
{

MEMERR ( "WriteTIFFMatrix");
goto werror4;

pixind[i] = i+1;
if (i)
{
((unsigned char *) rgbli]) [0] = 255;
((unsigned char *) rgb{i])[l] = 255;
((unsigned char *) rgb([i])[2] = 255;
}
else
{
((unsigned char *) rgb[i])[0] = 0;
((unsigned char *) rgbl[il)[1l] = 0;
({unsigned char *) rgb[i])[2] = 0;
}

}

/* write pixel RGB data */
max = size/bytes;

offset = 0;

m = mag;

for(i=0; i<mag*rows; i++)

{
if(mag > 1)
{
if (m == mag)
for(j=0; j<rowlen; j++)
if(!fread((void *) (((unsigned int) image)+(j*mag)),
sizeof(char), 1, ifp))
goto werror4;
for(k=1; k<mag; k++)
image[ (j*mag) +k] = image[j*mag];
}
m= 0;
}
}
else
if (fread((void *) image, sizeof(char), rowlen, ifp) != rowlen)

goto werrord;

for(j=0; j<mag*cols; j++)

if (color_type == PALETTE_COLOR)
memcpy ( (void *) (((unsigned int) strip)+offset),
(void *) (((unsigned int) image)+begcol+j), bytes);
else
{
pix = (unsigned long) (((unsigned int) image)+begcol+j);
for(k=0; k<pindsize; k++)
if(pixind(k] == pix)
break;
if (k)
memcpy ( (void *) (((unsigned int) strip)+offset), rgblk],
bytes) ;

}
offset += (bytes);
if ((offset+(mag*cols*bytes)) > size)
{
#ifdef TIFF_COMP
if (ITiffDirOffsetShort (expdir[4]) != NO_COMPRESS)
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if(ITiffDirOffsetShort (expdir[4]) == LZW_COMPRESS)
TiffCompressLZW(strip, max, bytes, cstrip, &cstrsize,
LZW_Compress) ;
csizes[l] = (unsigned int) cstrsize;
coffsets[l++] = (unsigned int) ftell(ofp);

#if 0
printf("l = %4 Offset = %d Compressed size = %d\n",
1-1, coffsets[l-1], cstrsize);
#endif
if(cstrsize%$2 > 0)
cstrsize++;
if (fwrite(cstrip, sizeof(char), cstrsize, ofp) != cstrsize)
goto werror4d;
else
if (fwrite(strip, bytes, max, ofp) != max)
goto werror4;
#else
if (fwrite(strip, bytes, max, ofp) != max)
goto werror4;
#endif
offset = 0;
if (color_type != PALETTE_COLOR)
for(k=0;
k<ITiffDirOffset (expdir([1]) *ITiffDirOffset (expdir([9]);
k++)
memcpy ( (void *) (((unsigned int) strip)+(k*bytes)),
rgb[0], bytes);
}
m++;
#if O
printf("line = %d\n", i);
#endif
}
if(offset)
{

#ifdef TIFF_COMP
if (ITiffDirOffsetShort (expdir([4]) != NO_COMPRESS)

if (ITiffDirOffsetShort (expdir(4]) == LZW_COMPRESS)
TiffCompressLZW(strip, offset, bytes, c¢strip, &cstrsize,
LZW_Compress) ;
csizes([l] = (unsigned int) cstrsize;
coffsets[1l] = (unsigned int) ftell(ofp);

#if O
printf("l = %d Offset = %d Compressed size = %d\n"*,
1-1, coffsets[l-1], cstrsize);
#endif
if(cstrsize$2 > 0)
cstrsize++;
if(fwrite(cstrip, sizeof(char), cstrsize, ofp) != cstrsize)
goto werror4;
}
else
if (fwrite(strip, bytes, offset, ofp) != offset)
goto werror4;
#else
if (fwrite(strip, bytes, offset, ofp) != offset)
goto werror4;
#endif
}
if (image)

free((char *) image);
#ifdef TIFF_COMP
1f(ITiffDirOffsetShort (expdir([4]) != NO_COMPRESS)
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if (ITiffDirOffsetShort (expdir([4]) == LZW_COMPRESS)
TiffCompressLZW(NULL, 0, 0, NULL, &cstrsize, LZW_Cleanup);

}

if (ITiffDirLength(expdir(7]) > 1)

{
#if 0

printf ("Offsets offset = %d\n", ITiffDirOffset(expdir(7])):;

#endif

fseek(ofp, ITiffDirOffset(expdir[7]), SEEK_SET);
if (fwrite((void *) coffsets, sizeof(unsigned int),

ITiffDirLength(expdir([7]1), ofp) !=
ITiffDirLength{expdir([7]))

goto werrord;

}

else

ITiffDirOffset (expdir[7]) = coffsets[0];

if (ITiffDirLength(expdir[10]) > 1)

fseek (ofp, ITiffDirOffset(expdir([10]), SEEK_SET);
if (fwrite((void *) csizes, sizeof(unsigned int),

ITiffDirLength(expdir[101), ofp) !=
ITiffDirLength(expdir{10]))

goto werror4;

}
else

ITiffDirOffset (expdir([10]) = csizes[0];

#endif

for(i=0; i<pindsize; i++)

if (color_type == PALETTE_COLOR)

{

offset = ITiffDirOffset(expdir{17]) + (pixind[i]*sizeof(short));
red = (unsigned short) ((unsigned char *) rgbl[i])[0];
green = (unsigned short) ((unsigned char *) rgb{il])[1];
blue = (unsigned short) ((unsigned char *) rgb[i])[2];
red = red * ((1 << shift)+1);
green = green * ((1 << shift)+1);
blue = blue * ((1 << shift)+1);
fseek(ofp, offset, SEEK_SET);
if(fwrite((void *) &red, sizeof(char), sizeof(unsigned short), ofp)
!= sizeof (unsigned short))
goto werrord;
offset += ((l<<shift)*sizeof (short));
fseek (ofp, offset, SEEK_SET);
if(fwrite((void *) &green, sizeof(char), sizeof (unsigned short), ofp)
!= sizeof (unsigned short))
goto werror4;
offset += ((l<<shift)*sizeof(short));
fseek(ofp, offset, SEEK_SET);
if(fwrite((void *) &blue, sizeof(char), sizeof(unsigned short), ofp)
!= gsizeof (unsigned short))
goto werror4;

}
free((char *) rgblil]):;

}

free((char *) rgb);
#ifdef TIFF_COMP
free((char *) coffsets);
free((char *) csizes);
free((char *) cstrip);

#endif

free((char *) pixind);
free((char *) strip);
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fseek(ofp, diroff, SEEK_SET):;

size = FIELDNUM;
if (color_type != PALETTE_COLOR)
size--;

for(i=0; i<size; i++)
if (fwrite((void *) expdir([i], sizeof(char), sizeof(*expdir([il), ofp) !=
sizeof (*expdir([i]))
goto werror4;

for(i=0; i<size; i++)
free((char *) expdir[il]);
free((char *) expdir);

return (STATUS_OK) ;

werrord:
for(i=0; i<pindsize; i++)
if(rgb(i])
free((char *) rgbl[il);
if (rgb)
free((char *) rgb);
#ifdef TIFF_COMP
if(ITiffDirOffsetShort (expdir[4]) != NO_COMPRESS)
{

if(ITiffDirOffsetShort (expdir[4]) == LZW_COMPRESS)
TiffCompressLZW(NULL, 0, 0, NULL, &cstrsize, L2ZW_Cleanup);

}
#endif

werror3:
#ifdef TIFF_COMP
if (coffsets)
free((char *) coffsets);
if (csizes)
free((char *) csizes);
if(cstrip)
free((char *) cstrip);
#endif
if (pixind)
free((char *) pixind);
free((char *) strip):;

werror2:
if (image)
free((char *) image);

werrorl:
size = FIELDNUM;
if (color_type != PALETTE_COLOR)
size--;
for(i=0; i<size; i++)
free((char *) expdir[i]):;
free((char *) expdir);
fprintf(stderr, "Error encountered writing to file - WriteTIFFMatrix.\n");
return (STATUS_NOK) ;

}

#ifdef TIFF_COMP
JRhkkkkhkkkhhhkkkk Rk Kk kkk*k**% MODULE INFORMATION ****kddkkhkdkhdkhhddkhhodkhdhnss

* NAME OF MODULE : TiffCompressLZW

* DESCRIPTION
Rkk kA ke ko ke kR kR kAR AR AR R AR AR AR AR AR AR ANk R kA kAR Ak hkhhkhhhhhhhhk k)

static void TiffCompressLZW(void *old, int size, int bytes, void *new,
int *newsize, int flag)
{

static iTiffHash *hashtab = NULL;
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static int hashsize = 0;

int i, j, chars, bsize, shift, bits;
unsigned int hashval;

iTiffHash val, nextval;

unsigned char *ptr, *nptr;
iLZwvalueUnion lzwun;

if(flag == LZW_Initialize)
{
if (hashtab)
{

fprintf (stderr,
TiffCompressLZW\n") ;

(*newsize) = STATUS_NOK;
return;

*Tiff hash table is not NULL during initialization -

}
if ((hashtab = (iTiffHash *) calloc (HASH_SIZE, sizeof(iTiffHash)))
== NULL)

{
MEMERR ( "TiffCompressLZW") ;

(*newsize) = STATUS_NOK;
return;

hashsize = 0;

(*newsize) = STATUS_OK;
return;

}
else if(flag == LZW_Cleanup)

if (!hashtab)
{
fprintf (stderr, "Tiff hash table is NULL during cleanup -
TiffCompressLZW\n") ;

(*newsize) = STATUS_OK;
return;

}
for(i=0; i<HASH_SIZE; i++)
{
if((val = hashtabli]))
{
do {
nextval = ITiffHashNext(val);
free((char *) val);
val = nextval;
} while(val);

}
free((char *) hashtab);
hashtab = NULL;
hashsize = 0;

}
else
{
if(!old)
{
fprintf (stderr, "Input buffer passed is NULL - TiffCompressLZW\n");
(*newsize) = STATUS_NOK;
return;
if(!size)
{
fprintf(stderr, "Input buffer size passed is 0 - TiffCompressLZW\n");
(*newsize) = STATUS_NOK;
return;
}
if (!new)
{
fprintf(stderr, "Output buffer passed is NULL - TiffCompressLZW\n");

(*newsize) = STATUS_NOK;
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#if 0

return;

bsize = bytes*size;
ptr = (unsigned char *) old;

for(i=0; i<bsize; i++)
if(i%16 == 0)
printf(*\n"*);
printf(*%02x “, ptr{il);

}
printf(*\n");

#endif

#if 0

memset (new, 0, bsize);
bits = 9;
shift = 23;

nptr = (unsigned char *) new;
ILZWValueInt (lzwun) = LZWClear;

printf ("%$54 *, ILZWValueInt(lzwun));

#endif

#if 0

ILZWValueInt (lzwun) <<= shift;

printf ("%02x%02x%02x%02x 0x%$08x\n", ILZWValueByte(lzwun) [0],
ILZWValueByte(lzwun) (1], ILZWValueByte(lzwun) [2],
ILZWValueByte(lzwun) [3], nptr):;

#endif

#if 0
#endif
#if O

#endif

*nptr |= ILZWValueByte(lzwun) [0];
*(++nptr) |= ILZWValueByte(lzwun) [1];
*(nptr+l) |= ILZWValueByte(lzwun) [2];
shift--;

ptr = (unsigned char *) old;
ILZWValueInt (lzwun) = (unsigned int) (*ptr);
chars = 2;

for(i=1; i<bsize; i++)

for (hashval=0, j=0; j<chars; j++)
hashval = (ptr[j] + (31 * (hashval + j)));
hashval = hashval % HASH_SIZE;
if ((val = hashtab[hashval]))
{
do {
if (chars == ITiffHashSize(val))
if (!memcmp (ptx, (void *) ITiffHashChars(val), chars))
break;
val = ITiffHashNext(val):;
} while(val);

if(val)
ILZWValueInt (lzwun) = ITiffHashIndex(val);
chars++;
}
}
if(lval)
{
printf (*%5d v, ILZWValueInt(lzwun));

ILZWValueInt (lzwun) <<= shift;

printf ("$02x%02x%02x%02x 0x%08x\n", ILZWValueByte(lzwun) [0],
ILZWValueByte(lzwun) [1], ILZWvValueByte(lzwun) [2],
ILZWValueByte(lzwun) {3], nptr);

*nptr |= ILZWValueByte(lzwun) [0];
* (++nptr) [= ILZWValueByte(lzwun) [(1]:;
* (nptr+l) |= ILZWValueByte(lzwun) [2];

shift -= (bits - 8);
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if((j = (sizeof(int)<<3) - bits - shift) >= 8)
{

shifﬁ = (sizeof(int)<<3) - bits - (j - 8);
nptr++;
}
if((val = (iTiffHash) calloc(l, sizeof(iTiffHashStruct)))
== NULL)
MEMERR ("TiffCompressLZW") ;
(*newsize) = STATUS_NOK;
return;
hashsize++;
if ((hashsize+LZWEOI+1l) == (l<<bits))
{
bits++;
shift--;

}
if(bits > 12)

fprintf(stderr, "hash table overflow");
ITiffHashNext(val) = hashtablhashval];
ITiffHashIndex(val) LZWEOI + hashsize;
ITiffHashChars(val) ptr;
ITiffHashSize(val) = chars;
hashtab[hashval] = val;
ptr = &(ptr{chars-1]):;
ILZWValueInt (lzwun) = (unsigned int) *ptr;
chars = 2;

}

ILZWValueInt (lzwun) <<= sghift;

*nptr |= ILZWValueByte(lzwun) [0];

*(++nptr) |= ILZWValueByte(lzwun) [1];

*(nptr+l) |= ILZWValueByte(lzwun) [2];

shift -= (bits - 8);

if((j = (sizeof(int)<<3) - bits - shift) >= 8)
{

shift = (sizeof(int)<<3) - bits - (j - 8);
nptr++;
}
ILZWValueInt (lzwun) = LZWEOI;
ILZWValueInt (lzwun) <<= shift;
*nptr |= ILZWValueByte(lzwun) [0];

*(++nptr) |= ILZWValueByte(lzwun) [1];
* (nptr+l) |= ILZWValueByte(lzwun) [2];
(*newsize) = (int) (((unsigned int) nptr) - ((unsigned int) new) + 1);

if(shift < 16)
(*newsize) ++;

for(i=0; i<HASH_SIZE; i++)

#if O
printf ("Hash index = %3d v, 1i);
#endif
if((val = hashtabl[i]))
{
do {
nextval = ITiffHashNext(val);
#if 0
printf("value = ");
for(j=0; j<ITiffHashSize(val); j++)
printf ("%02x", ITiffHashChars(val)[j]);
printf (" (%$3d) *, ITiffHashIndex(val));
#endif

free((char *) wval);
val = nextval;
} while(val);
}

250



hashtab[i] = NULL;
#if 0
printf("\n");

}
hashsize = 0;

}

#endif

}
#endif

H.1.4 crosses.c

This program recurses through a range of values for the controller parameters sampling
rate, damping ratio, natural frequency, and feedback gain, determines whether the system is
stable, determines the theoretical closed loop frequency response, determines the system
bandwidth and maximum closed loop gain, and increments a counter pertaining to which
frequency decade the bandwidth and maximum gain lie in. The totals are accumulated for each
sampling rate and then written to a text file.

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>

#include <values.h>

#ifdef NMALLOC
#include "nmalloc.h"
#endif

#define RADIX 2.0
#define NR_END 1
#define MAXM 8

#define SIGN(a,b) ((b) >= 0.0 ? fabs(a) : -fabs(a))
#define MYERR le-8

void DigStabFunc(double Al, double A2, double P, double Q, double newt,
double a22, double a2l1, double *J1, double *J2, double *J3,
double *J4, double *J5, double *M1, double *M2, double *M3,
double *M4, double *N1, double *N2, double *N3, double *N4);
int DigBode(double *num, double *den, int numsize, int densize, double ts,
double begfreq, double endfreq, double **mag, double **freq,
int *magsize);

int zrhgr(double al[]l, int m, double rtr[], double rxti[l);

void balanc(double **a, int n);

int hqr(double **a, int n, double wr[], double will);

double **matrix(long nrl, long nrh, long ncl, long nch);

void free_matrix(double **m, long nrl, long nrh, long ncl, long nch);

void main(int argc, char **argv)

{
int i, j, k, 1, m, ind, begin;
int ebara, axis, total[4], good[4], magsize;
int defout, sizet, sizeb, sized, sizef;
double maxb, minb, maxd, mind, maxf, minf;
char buffer[200], *limfile, *outfile;
FILE *ifp, *ofp:;
double P, Q, Al, A2;
double bhat, freq, damp, newt;
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double a2l, a22;
double subtot[9], rroots[9], iroots[9]:
double J1, J2, J3, J4, J5, M1, M2, M3, M4, N1, N2, N3, N4;
double *t, num{8], den(8];
double *mag, *frq, max;
#ifdef DETAILS
int details[36], n;

double test([4])[9] = { {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9},
{1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 },
{10.0, 20.0, 30.0, 40.0, 50.0,
60.0, 70.0, 80.0, 90.0 },

{100.0, 200.0, 300.0, 400.0, 500.0,
600.0, 700.0, 800.0, 900.0 } };
char *buf;
FILE *ofp2;
#endif

ebara = defout = 0;
begin = axis = 0;
limfile = outfile = NULL;

if(arge < 2 || arge > 7)
{
fprintf(stderr, "Syntax error\n");
fprintf(stderr, "Syntax: crosses limits_file [outfile] [-a n] [-b m]\n");

fprintf (stderr, where: 1limits_file - filename of range data\n");
fprintf (stderr, * outfile - output filename\n");
fprintf (stderr, * -a n -> bearing axis [0-4]\n");

fprintf (stderr, * -b m -> begin time [0-49]\n");

exit(1l);

}
for(i=1; i<argc; i++)

if (argv[i] [0] == '-')

if(argv[i] [1] == 'a')
axis = atoi(argv(++il);
else if(argv[i][1l] == 'b"')

begin = atoi(argv[++i]);

}
else if(limfile == NULL)
limfile = argvl(il;
else if(outfile == NULL)
outfile = argviil];
}

if((ifp = fopen(limfile, "r")) == NULL)
{
fprintf(stderr, “Unable to open limits file \"%s\" (r)\n", limfile);
exit(1l);
}
if (outfile == NULL)
{
ofp = stdout;
defout = 1;
}
else if((ofp = fopen(outfile, "w")) == NULL)
{
fprintf (stderr, "Unable to open output file \"%s\" (w)\n", outfile);

fclose(ifp):
exit(l);

#ifdef DETAILS
if (!defout)
{

if((buf = (char *) calloc(strlen(outfile)+10, sizeof(char))) == NULL)
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fprintf(stderr, *Out of Memory Error (%d) - crosses\n", __LINE_ );
fclose(ifp);
if(!defout)
fclose(ofp);
exit(1l);
}
strcpy(buf, outfile);
strcat (buf, *.details");
if((ofp2 = fopen(buf, "w"))} == NULL)
{
fprintf (stderr, "Unable to open output file \"%s\" (w)\n", buf);
fclose(ifp);
if (!defout)
fclose(ofp);
exit(1l);

}
free(buf);
}
#endif

sizet = 0;

maxb = maxd = maxf = 0.0;
minb = mind = minf = 1000.0;
t = NULL;

while(fgets(buffer, 200, ifp))
{

if (sscanf (buffer, "%1f %1f %1f %1f %$1f $1f %1f\n", &subtot{0],
&subtot[1l], &subtot[2], &subtot[3], &subtot[4], &subtot[5],
&subtot[6])
1= 7)
{
fprintf (stderr, "Error encountered reading limit file (sscanf)\n");
fclose(ifp);
if (1defout)
{
fclose(ofp);
#ifdef DETAILS
fclose(ofp2);
#endif

}
exit(1l);
}
sizet++;
if((t = (double *) realloc(t, sizet*7*sizeof(double))) == NULL)
{

fprintf(stderr, "Out of Memory Error (%d) - crosses\n", __LINE_ ):;
fclose(ifp);
if (!defout)

fclose(ofp);
#ifdef DETAILS

fclose(ofp2);
#endif

}
exit(1l);

}
for(i=0; i<7; i++)
t[((sizet-1)*7)+i] = subtot[i];
if (mind > subtot[1])
mind = subtot[1l];
if(maxd < subtot[2])
maxd = subtot[2];
if (minb > subtot[3])
minb = subtot[3];
if (maxb < subtot[4])
maxb = subtot(4];
if (minf > subtot([5])
minf = subtot(5];
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if (maxf < subtot[6])
maxf = subtot[6];
} .

for(i=0; i<7; i++)
subtot[i] = 0.0;

fclose(ifp);
((int) (maxb - minb) / 10.0) + 0.5)) + 1;

((
((int) (((maxd - mind) / 0.1) + 0.5)) + 1;
((int) (((maxf - minf) / 10.0) + 0.5)) + 1;

sizeb
sized
sizef

if (ebara)
{
switch(axis)

{

default:

case 0:
= 11.081;
= 27701.879;
= 1666.622;

= 10.278;
= 41113.653;
= 14222.428;
= 4370.000;
eak;

2:
10.278;
41113.653;
= 14575.775;
= 4030.000;
eak;

3:
20.263;
81050.754;
= 4027.457;
= 2450.000;
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}
else
{
switch(axis)
{
default:
case 0:
7.990;
22739.568;
= 13324.943;
= 13310.0;
eak;
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Q = 8882.644;
Al = 13043.913;
A2 = 13080.0;
break;

case 3:
P = 16.926;
Q = 35530.574;
Al = 11112.759;
A2 = 11140.0;
break;

case 4:
P = 15.113;
Q = 33201.348;
Al = 12273.613;
A2 = 12290.0;
break;

}

}
subtot[8] = 1.0;
for(i=begin; i<sizet; i++)

{
#ifdef DETAILS

memset ( (char *) &details([0],

#endif
total[0] = total[l] =
good[0] = good[l] =
newt = t[(i*7)];

for(j=0; Jj<sizeb; j++)

bhat =

continue;

for(k=0; k<sizef; k++)

{
freqg =

continue;

total[2] =
good[2] = good[3] = 0;

/* time loop */

0, 36*sizeof(int));

totall3] = 0;

/* bhat loop */

minb + (10.0 * j);
if (bhat < t[(i*7)+3]

|| bhat > t[(i*7)+4]1)

/* freq loop */

minf + (k * 10.0);
if(freq < t[{(i*7)+5]

|| freq > tl(i*7)+6])

a2l = freq * freq;

for(1=0;
{
damp =

if(damp < t[(i*7)+1]

l<sized; 1l++)

continue;

a2 =

subtot[7]
subtot[6]
subtot[5]
subtot[4]
subtot[3]
subtot[2]
subtot[1]

if (zrhgr (subtot, 8, rroots,

{

fprintf (stderr,
fprintf (stderr,

/* damp loop */

mind + (1 * 0.1);

|| damp > t[(i*7)+2])

2.0 * damp * freq;
DigStabFunc (Al, A2,

newt, a22, a2l, &J1, &J2,
&M4, &N1, &N2,

&J3,
&N3,

P, Q,
&J4, &J5, &M1, &M2, &M3,
&N4) ;
((J1*M2) /bhat) +(N2-1.0) ;
(((J1*M3)+(J2*M2)) /bhat) + (N3-N2) ;
(((J1*M4)+(J2*M3) +(J3*M2) ) /bhat) + (N4-N3) ;
(((J2*M4)+ (I3*M3)+(J4*M2) ) /bhat) -N4;
((J3*M4)+(J4*M3)+(J5*M2) ) /bhat;
((J4*M4)+(J5*M3) ) /bhat;

(J5*M4) /bhat;

iroots))

"Eigenvalue calculation problem ");
"(i=%d j=%d k=%4 1= %d)\n",
k, 1);:

i, 3,

for(m=1; m<=8; m++)

{

iroots{m]
rroots[m]

}
}

for(m=1; m<=8;

0.0;
2.0;

m++)

if ((rroots[m] *rroots[m]) + (iroots[m] *iroots[m]) > 1.0)
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#ifdef DEBUG

printf('t = %7.1f, b = %6.1f, d = %3.1f, £ = %6.1f\n", newt, bhat, damp,

}

break;

if(m == 9)
{
num[0] = 1.0;
num([l] = J1*M2;
num[2] = (J1*M3)+(J2*M2);
num[3] = (J1*M4)+(J2*M3)+(J3*M2);
num[4] = (J2*M4)+(JI3*M3)+ (JTJ4*M2) ;
num[5] = (J3*M4)+(J4*M3)+(I5*M2);
num[6] = (J4*M4)+ (IJ5*M3);
num{7] = (J5*M4);
den{0] = bhat;
den{[1l] = (bhat*(N2-1.0))+(J1*M2);
den([2] = (bhat*(N3-N2))+(J2*M2)+(J1*M3);
den[3] = (bhat*(N4-N3))+(J3*M2)+(J2*M3)+(J1*M4);
den{4) = (bhat*(-N4))+(J4*M2)+(J3*M3)+(J2*M4);
den[5] = (J5*M2)+(J4*M3)+(J3*M4);
den([6] = (J5*M3)+(J4*M4);
den([7] = (J5*M4);

if(DigBode (num, den, 8, 8, newt, 0.1, 1000.0, &mag,
&frq, &magsize))
{

fprintf (stderr, "Bode calculation problem ");
fprintf(stderr, “(i = %d j = %4 k =%d 1 = %d) \n",
i, 3, k, 1);
}

else
{
for (max=0.0, ind=m=0; m<magsize; m++)
if (magim] > max)

max = mag{m];
ind = m;
}
for (m=ind; m<magsize; m++)
if(mag[m] < -3.0)
{

ind = m-1;

break;
}
if (frqglind] < 1.0)
m = 0;
else if(frg[ind] < 10.0)
m=1;
else if(frql(ind] < 100.0)
m= 2;
else if(frq[ind] < 1000.0)
m = 3;
else
m = 4;
if(m < 4)
{

if (max < 10.0)
good[m] ++;
total[m] ++;
for(n=0; n<9; n++)
if(test[m] [n)] > frqlind])
break;
details[(m*9)+(n-1)]++;
}
free(mag) ;
free(frq);
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freq);
#endif

}
fprintf(ofp, "%7.1f %4 (%d) %4 (%d) %d (%d4) %d (%d4)\n", newt, good[0],
total(0], good[l], total[l], good[2], total[2], good[31],
totall[3]);
fflush(ofp);
if(!defout)

{
#ifdef DETAILS
for(j=0; j<36; j++)
{

if(13)
fprintf(ofp2, "%7.1f", newt);
fprintf(ofp2, " %d", details[j]);

}
fprintf(ofp2, "\n");
fflush(ofp2);
#endif
printf("%$3d of %34 (%4, %d, %d, %d)\n", i+l, sizet, totall0],
totall[l], total[2], totall3l]);

}
if ({defout)
{

fclose(ofp);
#ifdef DETAILS

fclose(ofp2);
#endif

}
exit (0);
}

void DigStabFunc(double Al, double A2, double P, double Q, double T,
double a22, double a2l, double *J1, double *J2, double *J3,
double *J4, double *J5, double *M1l, double *M2, double *M3,
double *M4, double *N1, double *N2, double *N3, double *N4)

double K1, K2, K3, K4, L1, L2, L3, L4, T1, T2, sq;

Tl = 1/T;
T2 = T1*T1;
sq = sqrt(Q);

#ifdef BACKWARD
/* central difference acceleration and backward difference velocity */

*J1 = (3.0/(4.0*%(T2)))+((3.0*%a22)/(2.0*T1))+(a2l);
*J2 = (-4.0/(4.0%(T2)))-((4.0%*a22)/(2.0*T1));
*J3 = (-2.0/(4.0*%(T2)))+(a22/(2.0*T1));
*J4 = 1.0/(72);
*J5 = -1.0/(4.0*(T2));
#else

/* central difference acceleration and velocity */

*J1 = (1.0/(4.0*(T2)))+(a22/(2.0*T1))+(a2l);
*J2 = 0.0;
*J3 = (-2.0/(4.0*(T2)))-(a22/(2.0*T1));
*J4 = 0.0;
*J5 = 1.0/(4.0*(T2));
#endif
K1l = (-Al*P)/(A2*Q);
K2 = (-Al*P)/(A2*((A2*A2)-Q));
K3 = (Al*P)/(2.0*Q*(A2-s8q)):;
K4 = (Al1*P)/(2.0*Q*(A2+sq));
L1l = exp(-A2*Tl);
L2 = exp(-sg*Tl);
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L3 exp (sq*T1) ;

L4 1;
*M1 = 0;
*M2 = (-Kl*(L1+L2+L3))—(K2*(L2+L3+L4))—(K3*(L1+L3+L4))—(K4*(L1+L2+L4));

*M3 (K1* ((L1*L2) +(L3* (L1+L2))) ) +(K2* ((L2*L4) + (L3* (L2+L4) ) ) ) +
(K3* ((L1*L4) +(L3* (L1+L4))))+(K4* ((L1*L4) + (L2* (L1+L4))));
*M4 = (-K1*L1*L2*L3) - (K2*L2*L3*L4) - (K3*L1*L3*L4) - (KA*L1*L2*L4) ;

*N1 = 1.0;

*N2 = -L1-L2-L3;

*N3 = (L1*L2)+(L1*L3)+(L2*L3);
*N4 = -(L1*L2*L3);

}
int zrhqr(double a[], int m, double rtr[], double rtifl)
{

int j, k;
double **hess, xr, xi;

hess = matrix(1l,MAXM, 1,MAXM);
if(m > MAXM || alm] == 0.0)
{

fprintf(stderr, "bad args in zrhqr\n");
free_matrix(hess,1l,MAXM, 1,MAXM) ;
return(1l);

}
for (k=1;k<=m; k++)
{
hess{1][k] = -a[m-k]/a[m];
for (j=2;j<=m; j++)
hess([j][k] = 0.0;
if(k !'= m)
hess[k+1][k] = 1.0;
}

balanc(hess, m);
if (hqgr(hess,m,rtr,rti))

free_matrix(hess, 1,MAXM, 1,MAXM) ;
return(l);

for(j=2; j<=m; j++)

Xr = rtr[jl;
xi = rti[j};
for(k=j-1; k>=1; k--)
{
if(rtr(k] <= xr)
break;
rtrlk+l] = rtr([k);
rtilk+1] = rtilk];
}
rtr[k+l] = xr;
rtilk+1] = xi;

}
free_matrix(hess,1,MAXM, 1, MAXM) ;
return(0);

void balanc(double **a, int n)
{

int last,j,i;

double s,r,q, f,c, sqrdx;

sqrdx = RADIX*RADIX;

last = 0;
while(last == 0)
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{
last = 1;
for(i=1; i<=n; i++)
{
r =c¢=0.0;
for(j=1; j<=n; j++)
if(j 1= 1)

{
c += fabs(al[j][il);
r += fabs(al[il{j]);
}
if(c && r)

r/RADIX;

1.0;

s = C+r;

while(c<g)
{

HhQ

Lnn

f *= RADIX;
¢ *= sqrdx;

}
g = r*RADIX;
while(c > g)
{
£ /= RADIX;
¢ /= sqrdx;

}
if((c+r)/£f < 0.95*g)
{
last = 0;
g=1.0/f;
for(j=1; j<=n; Jj++)
alil[j] *= g:
for(j=1; j<=n; j++)
aljlli] *= £;

int hqgr(double **a, int n, double wr[], double wil[])

{
int nn, m, 1, k, j, its, i, mmin;
double z, v, X, W, v, u, t, s, r, d, p, anorm;

anorm = fabs(al[l]([1l]);
for(i=2; i<=n; i++)
for(j=(i-1); j<=n; j++)
anorm += fabs(alil[jl):

nn=n;
£=0.0;
while(nn >= 1)
{
its = 0;
do {
for(l=nn; 1>=2; 1--)
{
s = fabs(al[l-1][1-1])+fabs(a[l]l[1]);
if(s == 0.0)
s=anorm;
if ( (double) (fabs(a[l] [1-1]) + s) == s)
break;

x = a[nn] [nn];
if(1 == nn)
{
wr[nn] = x+t;
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a[nn-1] [nn-1];
alnn] {[nn-1)*a[nn-11[nn]);

== (nn-1))
p = 0.5%(y-x);
q = p*p+w;
z = sqrt(fabs(q));
x += t;
if(q >= 0.0)
{
z = p+SIGN(z,p);
wrnn-1} = wr[nn] = x+z;
if(z)
wrnn] = x-w/z;
wi[mn-1] = wi[nn] = 0.0;
}
else
{
wr[nn-1] = wrnn] = x+p;
wi[nn-1] = -(wilnn] = z);
}
nn -= 2;

if(its == 30)
{

fprintf(stderr, "Too many iterations in hqr\n");
return(l);

}
if(its == 10 || its == 20)
{

t += x;
for(i=1; i<=nn; i++)
ali][i] -= x;

s = fabs(a[nn] [nn-1])+fabs(a[nn-1] [nn-2]);
y =x = 0.75%s;
w = -0.4375*s*g;

}

++its;
for (m=(nn-2); m>=1l; m--)

alm] [m];
X-2Z;
Y-2;
(r*s-w) /a[m+l] [m]+a[m] [m+1];
alm+l) [m+l]-2z-r-s;
alm+2] [m+1];
fabs (p) +fabs (q)+fabs(r) ;
S;
s;
s;
== 1)
eak;
u fabs(alm] [m-1]) * (fabs (q)+fabs(r)) ;
v = fabs(p)*(fabs(alm-1] [m-1])+fabs(z)+fabs(alm+l] [m+1]));
if ((double) (u+v) == v)
break;
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for(i=m+2; i<=nn; i++)
a[i]l[i-2] = 0.0;

if(i 1= (m+2))
al[il[i-3] = 0.0;
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for (k=m; k<=nn-1; k++)
{
if(k != m)
{

alk] [k-1];
alk+1l] [k-1];
0.0;
k !'= (nn-1))

= alk+2][k-1];
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}
}
if((s = SIGN(sqgrt(p*p+q*g+r*r),p))
{

if(k == m)
{
if(l !'= m)
aflk] [k-1] = -alk][k-1];

else
alk] [k-1] = -s*x;
+= 8;
p/s;
a/s;
r/s;
/= pi
/= p;
or(j=k; j<=nn; j++)

{

p
X
Y
Z
q
r
£

p = alkl[jl+g*alk+1]1(3];
if(k != (nn-1))
{
p += r*alk+2]1([j];
alk+2]1[3] -= p*z;

}
alk+1] [j] -= p*y;
) alk]l[j] -= p*x;
mmin = nn<k+3 ? nn : k+3;
for(i=1; i<=mmin; i++)
{
p = x*ali] [k]+y*ali] [k+1];
if(k != (nn-1))
{
p += z*a[i] [k+2];
a[i]l[k+2] -= p*x;

alil [k+1] -= p*q:
alil (k] -= p;

}

}
} while(l < nn-1);
}
return(0) ;
}

double **matrix(long nrl, long nrh, long ncl, long nch)
{

long i, nrow = nrh-nrl+l, ncol = nch-ncl+l;

double **m;

/* allocate pointers to rows */
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( (nrow+NR_END) * sizeof (double *))))

if((m = (double **) malloc((size_t)
== NULL)
fprintf (stderr, *allocation failure 1 in matrix()\n*);
exit(1l);
}
m += NR_END;
m -= nrl;

/* allocate rows and set pointers to them */
if((minrl] =
== NULL)
{
fprintf (stderr,
exit(1);
}
minrl] +=
minrl]

NR_END;

-= ncl;

for (i=nrl+l; i<=nrh;
m[i)=m[i-1]+ncol;

i++)

return(m) ;

void free_matrix(double **m,

{

long nrl, long nrh,

free((char *) (m[nrl]+ncl-NR_END));
free((char *) (m+nrl-NR_END));
}

int DigBode(double *num, double *den, int numsize,
double begfreq, double endfreq, double
int *magsize)

int i, j, sampsize, dec;
double *mg, *fgq, inc, t;
double frq, ansr, ansi;

t = 1.0/ts;
dec = (int) (loglO(endfreq) - loglO(begfreq));
sampsize = dec * 81;

sampsize += 2;
if((mg = (double *)
{

fprintf (stderr,
return(l);

if((fq = (double *)
{

fprintf (stderr,
free(mg);
return(l);

}

inc = begfreq / 10.0;
£fql0] = begfreq;

for(i=0; i<dec; i++)
for(j=0; j<81; j++)
fql(i*81)+j+1] =
inc *= 10.0;

)

fqlsampsize-1] =

fq((i*81)+j] + inc;
endfreq;
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calloc (sampsize, sizeof (double)))

(double *) malloc((size_t) ( (nrow*ncol+NR_END) *sizeof (double))))

*allocation failure 2 in matrix()\n"):

long ncl, long nch)

int densize, double ts,
**mag, double **freq,

NULL)

*Out of memory error - DigBode.\n");

NULL)

*Out of memory error - DigBode.\n");



for(i=0; i<sampsize; i++)
{
frq = 2.0 * M_PI * fq[i];
ansr = ansi = 0.0;
mg[i] = 20.0 * loglO(num[0]);
for(j=1; j<numsize; j++)
{

if (num[j] != 0.0)
{

inc = frq * t * (numsize - 1 - j);
ansr += (num[j] * cos(inc));
ansi += (num[j] * sin(inc));

}
mg[i] += (20.0 * loglO(sqrt(pow(ansr,2.0) + pow(ansi,2.0))));
ansr = ansi = 0.0;
for(j=0; j<densize; j++)

{
if(den{j] != 0.0)
{
inc = frq * t * (densize - 1 - j);

ansr += (den[j] * cos(inc));
ansi += (den(j] * sin(inc));

}
}
mg[i] -= (20.0 * loglO(sqgrt(pow(ansr,2.0) + pow(ansi,2.0))));
}
if (mag)
(*mag) = mg;
if(freq)

(*freq) = fq;
if (magsize)
(*magsize) = sampsize;

return(0);

H.1.5 getsubset.c

This program reads each line of the file produced by mat2text.c and prints all lines that
match a specific value in a specific column. The column and value are command line parameters
to the program. This program was used to create a text file of the stable systems that conformed
to a particular sampling rate from the set of all systems which were stable over many sampling
rates.

#include <stdio.h>
#include <stdlib.h>

#define BUFSIZE 1024

void main(int argc, char **argv)
{
int i, col, line, once, once_size;
char *infile, *outfile, *buffer;
char name{80];
FILE *ifp, *ofp;
FILE **ofps;
float *values;
float finpl[4), value;

263



if(argc < 2)

{

}

fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
exit(1l);

infile = argv[1l];
outfile = NULL;
once = col = 0;
value = 0.0;

if(argc > 2)

"Syntax: getsubset infile [outfile] [-c n] ");

*[-v value]\n");

i where: infile - input pathname\n");

" outfile - output pathname *);

" (default = stdout)\n");

" -c n - column interested in ");
' (default = 0)\n");

" -v value - keep records value *);
*(default = 0.0)\n");

N -once - create file for each ");

"unique value in column\n\n"):;

{
for(i=2; i<argc; i++)
{
if (! (stremp (argv(il, "-c")))
col = atoi(argv(i+l]);
else if(!(stremp(argv([i]l,"-v")))
value = (float) atof(argvi{i+l]);
else if (! (strcmp(argv[i],"-once")))
once = 1;
else if(!loutfile)
outfile = argv([i];
}
}
if(col > 3)
{
fprintf(stderr, "only four columns expected\n\n");
exit(1l);
}
if((ifp = fopen(infile, "r")) == NULL)
{

}

if(lonce && outfile)
if((ofp =

else if(once &&
outfile =

if ((buffer =

{

}

fprintf (stderr,
exit(1l);

{
fclose(ifp);

fprintf (stderr,

exit(1);
}

fprintf (stderr,

__LINE__

fclose(ifp);

if(outfile)
fclose(ofp);

exit(l);

if (once)

fopen(outfile,

(char *) calloc(BUFSIZE,

"unable to open input file \"%$s\"\n\n", infile);

"w")) == NULL)

*unable to open output file \"$s\"\n\n", outfile);

loutfile)
“getsub";

sizeof(char))) == NULL)

"Out of memory error - getsubset (%d)\n\n",
s
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{
ofps = NULL;
values = NULL;
once_size = 0;
}

line = 0;
while (fgets (buffer, BUFSIZE, ifp))
{

line++;
sscanf (buffer, "%$f $f %f %£f", &finp[0], &finp[l], &finp[2], &finp{3]1);

if (once)
for(i=0; i<once_size; i++)
if(finp[col] == values[i])
break;
if (i == once_size)

if ((ofps = (FILE **) realloc(ofps, (once_size+l)*sizeof(FILE *)))

== NULL)
{
fprintf(stderr, "Out of memory error - getsubset (%4)\n\n",
__LINE_ );
fclose(ifp);

for(i=0; i<once_size; i++)
fclose(ofpsl[i]);
exit (1) ;
}
if((values =
(float *) realloc(values, (once_size+l)*sizeof(float)))
== NULL)
{
fprintf (stderr, "Out of memory error - getsubset (%d)\n\n",
__LINE_ );
fclose(ifp);
for(i=0; i<once_size; i++)
fclose(ofps([il);

exit(1l);
}

values[once_size] = finp[col];
sprintf (name, "%s.%d", outfile, (int) finpl[coll);
if((ofps[once_size] = fopen(name, "w*)) == NULL)

fclose(ifp);

fprintf (stderr, "unable to open output file \"%s\"'\n\n",

outfile);

for(i=0; i<once_size; i++)
fclose(ofps{i]);
exit(1);

fprintf (ofpslonce_size], "%s", buffer);
once_size++;
}
else
fprintf (ofps[i]l, "%$s", buffer);

else if(finp[col] == value)
{
if(outfile)
fprintf (ofp, "%s*, buffer);
else
printf("%$s", buffer);

}
if(1ine%100000 == 0)
fprintf (stderr, "Processed %d records ...\n", line);

}

free(buffer);
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fclose(ifp);

if(!once && outfile)
fclose(ofp);

if (once)

for(i=0; i<once_size; i++)
fclose(ofps[il]);

free(values) ;

free(ofps) ;

exit(0);

H.1.6 uniqcount.c

This program reads the text file produced by getsubset.c and a text file containing a list
of the unique values and the number of times they occur for a given column. The column is
specified as a command line parameter. This was used to quickly produce the histogram data
for display in Matlab. This could have been handled directly by Matlab but it would have been
very slow and memory intensive.

#include <stdio.h>

#define BUFSIZE 1024
#define ALLOC_INC 100

float *fsort;
int sortme(void *eleml, void *elem2);

void main(int argc, char **argv)
{
int i, col, *num, got, unigq;
int line, *sortind;
char *infile, *outfile, *buffer;
FILE *ifp, *ofp;
float finpl4];
float *fout;

if(arge < 2)
{
fprintf(stderr, "Syntax: unigcount infile [outfile] {[-¢ n]\n");

fprintf (stderr, * where: infile - input pathname\n");
fprintf(stderr, * outfile - output pathname ");
fprintf(stderr, "(default = stdout)\n");

fprintf (stderr, * -cn - column interested in *);
fprintf (stderr, *(default = 0)\n\n");

exit(l);

}
infile = argv(l];
outfile = NULL;
col = 0;
if(argc > 2)

{

for(i=2; i<argc; i++)

if (! (strcmp(argvii], "-c")))
col = atoi(argv([i+l]);
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else if(toutfile)
outfile = argv[i];

}
if(col > 3)
{

fprintf (stderr, *only four columns expected\n\n”);
exit(1l);
}

if((ifp = fopen(infile, "r")) == NULL)
{

fprintf (stderr, "unable to open input file \"%s\"\n\n", infile);
exit(1l);
}

if (outfile)
if((ofp = fopen(outfile, *w")) == NULL)
{

fclose(ifp);

fprintf (stderr, "unable to open output file \"$s\"\n\n", outfile);
exit(l);

if ((buffer = (char *) calloc(BUFSIZE, sizeof(char))) == NULL)

{
fprintf (stderr, "Out of memory error - unigcount (%d)\n\n",
__LINE_);
fclose(ifp):;
if(outfile)
fclose(ofp);
exit(1l):;
}

if ((fout = (float *) calloc(ALLOC_INC, sizeof(float))) == NULL)
{
fprintf (stderr, "Out of memory error - uniqgcount (%d)\n\n",
__LINE_);
free(buffer);
fclose(ifp);
if(outfile)
fclose(ofp):
exit(1l);
}

if((num = (int *) calloc (ALLOC_INC, sizeof(int))) == NULL)

fprintf (stderr, "Out of memory error - uniqgcount (%d)\n\n",
_LINE_ );
free(buffer):;
free(fout);
fclose(ifp):
if (outfile)
fclose(ofp);
exit(1l);
}

got = ALLOC_INC;
if (! (fgets (buffer, BUFSIZE, ifp)))
{

fprintf (stderr, "Couldn't read first line of input file\n\n");
free(buffer);
free(fout) ;
free(num) ;
fclose(ifp);
if (outfile)
fclose(ofp);
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exit(l);
}

sscanf (buffer, "%f %f $f %f", &finp([0], &finp[l), &finp[2], &finp[3]);

fout[0] = finp(col];
num[0] = 1;
line = uniq = 1;

while(fgets(buffer, BUFSIZE, ifp))
{

line++;
sscanf (buffer, "%f %f %f %f", &finp[0], &finp(1l], &finp[2], &finp[3]);

for(i=0; i<uniq; i++)
if(fout[i) == finp(coll])
{
num(i]++;
break;
}

if(i == uniq)
{
if(uniqg == got)
{
if((fout =
(float *) realloc(fout, (got+ALLOC_INC)*sizeof (float)))
== NULL)
{
fprintf