
The Generalized Document Summarizer

by

Jack I-Chieh Fu

Submitted to the
Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degrees of

Bachelor of Science in Computer Science and Engineering

and

Master of Engineering in
Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1997

® Jack I. Fu, 1997. All rights reserved. The author hereby grants to M.I.T.

permission to reproduce and distribute publicly paper and electronic copies of this thesis

and to grant others the right to do so.
(Iy

OCT 2 91997

Author..... /
Departnent of 4lectrical

Certified by. .. ,.,.....

Engineering and Computer Science
May 23, 1997

David R. Karger
A etant Professor

esial1ppisor

Accepted by.............. ..
Arthur C. Smith

Chairman, Department Committee on Graduate Theses

_ f

The Generalized Document Summarizer

by

Jack I-Chieh Fu

Submitted to the Department of Electrical Engineering and Computer Science
on May 23, 1997, in partial fulfillment of the

requirements for the degrees of
Bachelor of Science in Computer Science and Engineering

and
Master of Engineering in Electrical Engineering and Computer Science

Abstract
This thesis describes the design, implementation, and evaluation of a summarizer
for plaintext, HTML, and other documents. Using algorithms and heuristics based
on word frequency and other document statistics, summary sentences and keywords
can be extracted from any ASCII source document. The summarizer is designed
to handle a variety of documents (such as business letters, resumes, etc.), and the
user is given extensive control over the relative weights of the features and other
parameters. A series of tests and evaluations were done to determine the usefulness
of the generated summaries in such areas as relevance evaluation of documents and
information searches on the web.

Thesis Supervisor: David R. Karger
Title: Assistant Professor

Acknowledgments

startup = proc()
% req: thesis gets done.
X mod: none.
% eff: thank the appropriate people and give credit where credit is due.
% Must be done before May 23, 1997.

t: thanks := thanks$create("It's done! Jack's M.Eng Thesis!\n")

% call the thanking procedures in order
thanks$thank.god(t)
thanks$thank.profs(t)
thanks$thank.xsoft(t)
thanks$thank.family(t)
thanks$thank.friends(t)
thanks$thank.misc(t)

% show output
thanks$flush (t)

end startup

thanks = cluster is create, thank_god, thankprofs, thank-xsoft, thankfamily,
thank_friends, thankmisc, flush

% overview
X thanks is a mutable datatype used to express gratitude.

% A(r): r -> A

% A typical thanks is {tl, t2, t3, ..., tn} where ti is a thank.
% A(r) = { r[i] I low(r) <= i <= high(r) }

% I(r): r -> bool

% I(r) = true

thank = string
rep = array[thank]

create = proc(s: string) returns (cvt)
r: rep := rep$new()
rep$addh(r, s)
return (r)

end create

thankgod = proc(t: cvt)
rep$addh(t, "First and foremost, I thank my Lord and God for being " I

"able to finish this thesis and my five years at M.I.T. " 11
"May they have been to His glory.\n")

end thankgod

thankprofs = proc(t: cvt)
rep$addh(t, "I thank Professor David Karger, my thesis advisor, " II

"for his patience, insights, feedback, and " II
"relentless pursuit of quality writing.\n")

rep$addh(t, "I thank Professor Peter Elias, my academic advisor, " II
"for taking me through my years in Course VI.\n")

rep$addh(t, "I also thank Professor Fernando Corbato and Professor " I1
"Markus Zahn for their involvement in making my 6A " II
"co-op assignments enjoyable and worthwhile.\n")

end thank-profs

thankxsoft = proc(t: cvt)
rep$addh(t, "I thank Andy Gelman, my boss at XSoft, for the " II

"opportunity to work on such a great project and for " II
"his input, advices, and suggestions.\n")

rep$addh(t, "I also thank Mike Wilkens, Beth Bryson, Matthew " II
"Christian, and my other colleagues who have made my " II
"thesis work possible.\n")

end thank-xsoft

thankfamily = proc(t: cvt)
rep$addh(t, "I thank mom and dad for their mental, emotional, " I

"financial, and otherwise psychological support " I I
"and encouragement.\n")

rep$addh(t, "I thank my sister for being there when I needed " II
"stress relief. It was very necessary for this thesis.\n")

end thankfamily

thankfriends = proc(t: cvt)
rep$addh(t, "I thank my friends who have taken the time and energy " II

"to give me encouragement and assistance, including, but " l
"not limited to, Fred Chen, David Chen, Jim Derksen, " II
"Tony Eng, Wendy Fan, Edwin Foo, Ellen Hwang, " II
"Michael Kim, Faydeana Lau, Jasen Li, Janet Liu, " II
"Dave Sun, Chris Tserng, and Karen Zee.\n")

end thank_friends

thankmisc = proc(t: cvt)
rep$addh(t, "I thank Anne Hunter -- not possible to have done this " II

"thesis without her help!\n")
rep$addh(t, "Also thanks to Lydia Wereminski of the 6A office who " I

"coordinated all the details of the 6A co-op program.\n")
end thank-misc

flush = proc(t: cvt)
for s: thank in rep$elements(t) do

stream$putl(stream$primary_output(), s)
end

end flush

end thanks

Contents

1 Introduction

1.1 The Problem of Information

1.2 Possible Solutions

1.3 The Summarization Solution

1.4 The Generalized Document Summarizer

1.5 Organization of This Thesis

2 Background

2.1 Linguistics and Computer Science .

2.2 Natural Language Processing

2.3 W ord Statistics Analysis

3 Summarization Heuristics

3.1 In Search of Quality Summaries

3.2 Heuristics Development Guidelines

3.3 The GDS Approach to Heuristics

3.3.1 Fractional vs. Probabilistic Weights

3.3.2 Boolean vs. Discrete Features

3.3.3 Independent vs. Cutoff Scoring

3.4 Incorporating Document and Formatting Information

3.5 Plaintext Summarization Heuristics

3.5.1 The Sentence Length Heuristic

3.5.2 The Direct Theme Heuristic

11

12

13

14

16

17

19

19

20

21

22

........ . 22

. 24

. 25

. 26

. 27

. 27

. 28

. 30

. 30

. 30

3.5.3 The Sentence Position Heuristic. 31

3.5.4 The Keywords Heuristic . 31

3.5.5 The Uppercase Feature31

3.6 The Challenges of HTML Summarization 32

3.6.1 The HTML Boldface Heuristic 33

3.6.2 The HTML Emphasis Heuristic 33

3.6.3 The HTML Hypertext Links Heuristic 34

3.6.4 The HTML Lists Heuristic 34

3.6.5 The HTML Headings Heuristic 35

3.7 Other Heuristics 35

3.8 User-Specified Summarization Focus 38

4 Overview 39

4.1 History 39

4.2 Development of the GDS 41

4.3 The LinguistX Software Suite 41

4.4 Usage and Applications 43

4.5 The GDS Summarization Process. 43

5 Tokenizing the Document 46

5.1 Development and Design Emphasis 46

5.2 The Tokenization Process 47

5.3 Keeping Track of Tokens 49

5.4 The Tokenizer -+ Parser Vocabulary 51

5.5 The Parser -+ Summarizer Vocabulary 53

6 Generating the Summary 57

6.1 Collecting Document Information 57

6.1.1 W ord Indexing 58

6.1.2 Sentence Collection58

6.1.3 Paragraph Creation 59

6.1.4 Maintaining Global Environmental Information

6.2 Sentence Scoring

6.2.1 Direct Theme Keyword Selection

6.2.2 Title Sentence Detection .

6.2.3 Scoring Body Sentences .

6.3 Summary Extraction

7 Evaluation

7.1 GDS vs. Human-Generated Summaries

7.2 GDS vs. Simple Summaries

7.3 Extracting Details from Documents

7.4 Picking Relevant Documents .

8 Conclusion

8.1 Strengths of the GDS .

8.2 Summarization Pitfalls .

8.3 Future W ork .

A The GDS API

A.1 Procedure Calls

A.1.1 xltmakesummarizer() ..

A.1.2 xltsummarize()

A.1.3 xlt_extract_sents().....

A.1.4 xlt_extract_keyphrases() .

A.1.5 xltfreesummarizer() ...

A.2 User-Defined Callback Functions.

A.3 Data Structures

A.4 Error Codes

B Supported HTML Tags

59

60

60

60

61

61

63

64

66

67

69

71

71

72

72

74

.. 75

.. 75

.................... 77

. 78

. 79

.... 80

. 80

... 8 1

.. 82

List of Figures

1-1 The Generalized Document Summarizer

4-1 The Three Phases of Summarization in the GDS 44

5-1 The Tokenizer and the Parser in the Tokenization Phase

5-2 Five Sample Tokens 49

7-1 Document Size vs. Matching Percentage with Five-Sentence Summaries 66

A-i A Simple Sample Driver to Summarize Documents

List of Tables

4.1 Summarizers from Xerox at a Glance 40

5.1 Attributes in the Tokenizer Vocabulary 51

5.2 The Summarizer Vocabulary 54

7.1 Percentage of GDS Summaries Matching Human-Generated Summaries 65

7.2 Preference of GDS Summaries over Alternative Summaries 67

7.3 Extracting Document Details Using a Variety of Methods 68

7.4 Average Ranking of Relevant Documents 70

A.1 Possible Input Values for summarizeOptions 79

A.2 The GDS API Error Codes 82

B.1 Supported HTML Tags 84

Chapter 1

Introduction

Throughout history, one direct consequence of technological advances has always been

a dramatic decrease in the perceived distance between two objects. New transporta-

tion methods have effectively shrunken the world so that remote corners of the earth

are no longer remote. As the distances between objects grow smaller, one's exposure

to the world grows broader. For instance, journeys that used to take an entire lifetime

to complete can now be done within a matter of hours or days. As a consequence,

one can enjoy a broad range of experiences and knowledge impossible before now.

Unfortunately, the expansion of the horizon comes with a price: complexity. One has

to manage more things and think on global terms. One learns foreign languages and

discusses international issues.

In the same way, technological advances in communication and telecommunication

devices have revolutionized the very fabric of living. Cellular phones, video confer-

encing, and the Internet are but a few examples of how new technology is redefining

the scope and the amount of information accessible to the average person. At the

same time, there is more pressure to process the information at a quicker rate, so that

others can make use of the information in a timely manner. These changes have all

contributed to the dissemination of information-vital to educated decision-making

and the further development of knowledge and technology-as well as the increasing

complexity of information processing, information storage, and information retrieval.

1.1 The Problem of Information

In a very real sense, the consequence and the goal of technology is information. With

each new discovery, one learns more about the world. With every trip to Africa or

Australia, one finds more interesting tidbits about the local color and culture. And

now that the Internet and the world-wide-web (WWW) have attained world-wide-

ness, there is a deluge of information available to anybody who cares to look for it.

For example:

* A keyword search at the popular Alta Vista WWW search site' on "The Pres-

ident of The United States of America" turned up more than 3,000,000 web-

pages. Although many of these pages contain useful and educational material

on the President, there are undoubtably many others that are irrelevant for

information-gathering purposes.

* A quick survey among friends here at M.I.T. reveals that receiving close to 50

email messages2 a day is not unreasonable, even though most of these messages

(around 70-80%) are not particularly useful.

* The USENET newsgroup, rec.arts.anime.misc, has over 4000 posts con-

stantly. Many of these postings are advertisements that are neither related to

anime nor interesting. Kill files can be useful in this case, but they are not

very intelligent.

The problem of information is really the problem of over-information. There is so

much information out there-how does one spend the least amount of time finding

the relevant information that is useful? In other words, how can one filter out the

noise in the input to arrive at a high signal-to-noise ratio? The motivation is not one

of laziness. Rather, efficiency and the limited nature of one's resources (e.g., time)

demand an answer. If a person spends 15% of each workday filtering out unwanted

lhttp://www.altavista.digital.com.
2If 50 sounds like a reasonable number, just imagine having 50 pieces of U.S. mail waiting for

you each day in your mailbox.

or useless information, in a year he would have spent almost 8 work weeks (almost

two months) doing nothing else! Time is not the only problem: having to manually

filter out the noise from the signal is a difficult job that requires tremendous patience

and meticulous attention to details. Otherwise, a substantial portion of the relevant

information might be accidentally deleted as a result of careless noise filtering.

Because of the increasing power and affordability of computer hardware and the

user-friendliness3 of software in recent years, there is a commercial and societal trend

to "go digital." This involves making information available in a format easily stored,

transmitted, and displayed by computers. Reasons for this trend include: (1) large

amounts of data can be stored digitally and retrieved quickly using inexpensive storage

devices such as hard disk drives, (2) digital storage is often more durable than other

means of storing data (e.g., paper, microfilm) due to the ease with which digital

data can be replicated, and (3) digital information can be made easily accessible to

computer users via WWW, ftp, or gopher, among other methods of data transfer. The

digital trend exacerbates the deluge of information by making even more information

available in even easier to access formats.

1.2 Possible Solutions

Technical solutions to this problem cannot be esoteric and complicated (at least not

in its design or usability), because a large segment of the non-technical population

will be using these solutions. Instead, there is a real need for a solution that is both

technically feasible and socially acceptable. In other words, the solutions must be a

reasonable solution that the majority of the population can learn to use and grow to

like.

There are three general approaches to solving the problem of having too much

information. They are:

1. Remove the information sources. The over-information problem can be

3 Entire theses can and have been written on this subject. Suffice to say that this label is used in
a relative, not absolute, sense.

avoided altogether by removing one's sources of information. Although this may

seem somewhat extreme, it is actually practiced by some. However, another set

of problems arises out of this lack of information. How does one keep in touch

with the society? Is it possible to be isolated in such a manner if the society

wishes to continue advancing technologically?

2. Sort the information. Sorting arranges documents in some useful order.

This provides valuable organization and structure that can be save time. For

example, emails may be sorted by senders or dates so that the reader can read

the most important emails first or delete emails from a certain sender altogether.

As another example, newsgroup articles might be sorted into subject threads so

that a reader can delete uninteresting groups of articles immediately. However,

sorting does not reduce the amount of information that the human reader must

process ultimately. This is both an advantage (i.e., the reader has full access to

all documents) and a disadvantage (i.e., the reader has to prune the documents

manually).

3. Filter the information. Alternatively, the information can be filtered, which

involves blocking or removing certain parts of the source from the human reader.

KILL files for newsreaders are an example of filtering: unwanted articles with

certain keywords are automatically deleted without human intervention. The

main advantage of filtering is that it reduces the amount of information that a

user has to read or manage. At the same time, the user loses control over the

filtering process, and certain information may be lost involuntarily. Thus, he

might not have absolute confidence in the filtering process.

1.3 The Summarization Solution

It is clear that there are various trade-offs for each of the three approaches. Filtering

is arguably the most attractive approach, combining some possible intelligence with

substantial information reduction. Unfortunately, filtering can be extremely expen-

sive. One can imagine a scenario where the filter has to "understand" a document

before applying a filter to reduce the size of the document-such language-dependent

information processing can take a long time. The goal, then, is to find a filtering

method that works well and is fast.

Upon closer inspection, the filtering approach divides naturally into selection and

summarization filtering. In both methods, source documents are examined and con-

textual information is generated for each source document. However, selection filter-

ing eliminates information on the document-level by filtering out all documents that

do not meet the specified criteria. A subset of the original documents is then returned

to the human reader. In contrast, summarization filtering eliminates information on

the sentence-level. This means that instead of removing entire documents, only part

of each document is filtered out.

Selection corresponds more closely to the general or classic idea of filtering: that

the filtered output will be a smaller subset of the input documents. The main dis-

advantage is that the human reader will have no control over document elimination,

which may be good (it saves him time) or bad (important documents get filtered

out without notification). In contrast, summarization filters on a finer-grain level by

providing a summary for each document. A summary, by conventional definition,

is the document's most relevant ideas and/or sentences after all the other sentences

have been eliminated or removed from view. Such an approach eliminates the danger

of throwing away large chunks of text.

This author feels that summarization has the following advantages over selection

filtering:

1. Control. A summarizer will not eliminate entire documents, so the human

reader ultimately retains the control for discarding irrelevant documents. This

conservative filtering policy guarantees that such decisions are made by other

beings with more intelligence than an automatic summarizer.

2. Hierarchy Flattening. A good summary has the effect of flattening the hi-

erarchy of each document into a few sentences that are indicative of the entire

Figure 1-1: The Generalized Document Summarizer

document. Another way to think of this advantage is to realize that a summary

is the result of not only summarizing the words in a document, but also the

structure of the document. (Indeed, sometimes the structure of a document can

give better insights into the main idea than the sentences can.)

In short, document summarization is a good way to process large amounts of in-

formation. Summarization combines intelligent filtering and control with good speed

that is attainable by exploiting particular features or structures of the source.

1.4 The Generalized Document Summarizer

The Generalized Document Summarizer (GDS) described in this thesis is an attempt

to instantiate a document summarization solution. Based on a plaintext summa-

rizer [5], the GDS implements HTML capability as well as internal structures to

support new file formats in the future.

Figure 1-1 is a high-level view of the GDS' function: to generate a condensed,

short, and useful version of the original document. This is done by extracting sen-

tences from the original document. The GDS calls such a collection of sentences a

summary, even though, strictly speaking, a document summary need not be restricted

I

The Generalized
Source Documents Document Summarizer Document Summaries

I

I

to only extracted sentences.

By allowing the user to customize certain aspects of the summarization process,

the GDS can tolerate a number of input document formats. For example, it can

be made to summarize HTML documents, business letters, etc. Furthermore, the

GDS gives user fine-tune control over the application and the relative weights of

various heuristics during the actual summarization process. In this sense, the GDS

is both a "generalized document" summarizer, as well as a generalized "summarizer

of documents."

The GDS is more than a proof-of-concept. It is also being used to evaluate the

effectiveness of the summarization heuristics and the usefulness of the generated sum-

maries.

1.5 Organization of This Thesis

* Chapter 1, "Introduction," includes a discussion of the problem addressed by

this thesis, some possible solutions, and the organization of this paper.

* Chapter 2, "Background," reviews the history and background of summariza-

tion technologies and related research in the field.

* Chapter 3, "Summarization Heuristics," discusses the heuristics used by the

GDS and presents guidelines for developing other heuristics.

* Chapter 4, "Overview," provides a big picture of the GDS: how it works and

how to use it.

* Chapter 5, "Tokenizing the Document," takes a closer look at the document

tokenization process and the associated token vocabulary.

* Chapter 6, "Generating the Summary," discusses the details of scoring sen-

tences and the extraction of summary information from source documents.

* Chapter 7, "Evaluation," details the performance of the GDS using a number

of criteria.

* Chapter 8, "Conclusion," contains suggestions for future work in the summa-

rization field.

Chapter 2

Background

Summarization, as a technique for handling large amounts of information, has been

around for a long time. This chapter discusses some of the relevant research efforts

that have preceded the work on the GDS, as well as the advantages and disadvantages

of various summarization approaches.

2.1 Linguistics and Computer Science

Research in the summarization field falls into either the linguistic camp or the com-

puter science camp. Linguistic research usually focuses on determining specific se-

mantics of words and phrases and answering the the general question of what makes

a summary a good summary? [10, 6] Typically, heuristics are developed as the conse-

quence of linguistic research efforts. These heuristics can then be incorporated into

summarizer programs like the GDS. For example, research Oreveals that headings are

useful in recalling unfamiliar text or topics [6]. This conclusion might motivate adding

a summarization heuristic that favors heading sentences in a document's summary.

On the other hand, automatic text summarizers like the GDS present a set of

problems and challenges that are very different from the linguistic aspect of sum-

marization. Using the computer to summarize documents requires answering the

question: What is the best way (e.g., most efficient, most comprehensive, using the

least amount of memory and resources) to represent the document?

Previous attempts to answer this question can be classified into two broad classes:

natural language processing and word statistics analysis. While the two are at oppo-

site ends of a spectrum and can both be incorporated in varying degrees, it is useful

to discuss the advantages and disadvantages of these approaches as two extremes.

2.2 Natural Language Processing

Natural language processing involves trying to gain some "understanding" of the

sentences in the source document. It is focused on the study of the language semantics,

not just the syntax, of the source document. This usually requires sophisticated,

"artificially intelligent" algorithms and elaborate data structures to hold sentence

meanings and other information. The summary can then be generated directly from

this understanding.

The main advantage of this approach, if the summarizer is capable of some lan-

guage understanding, is that summary sentences do not have to be limited to the

original sentences that appear in the document. They may be composites of words

or sentence fragments from the source documents, or they may be original sentences

created by the summarizer. Such summaries have the potential of being very read-

able, because the summarizer has full control over what kind of sentences to generate

for the summary.

The main problem with natural language processing is that this is still very much

an area of active research where no one knows a good method to approach it. Achiev-

ing some "understanding" of the document is difficult, and creating sentences is even

harder. Furthermore, natural language processing is usually computationally expen-

sive and therefore not very practical, except in limited domains where the content is

predictable and a simplified set of semantics is adequate [7, 4]. Furthermore, natural

language processing systems must necessarily be tailored to each language. Support-

ing multiple languages requires a tremendous amount of effort.

2.3 Word Statistics Analysis

In contrast, the word statistics approach does not attempt to gain an understanding

of the natural language. Instead, the focus is on syntax, and summary sentences are

selected from the set of existing sentences in the source document. Summary sentence

selection is usually based on various clues such as word occurrences in the document.

For example, while parsing an article on wombats, the summarizer might notice that

wombat is a frequently encountered word. Consequently, sentences containing wombat

might be included in the article's summary-and all of this would be done without

the summarizer having any knowledge of what a wombat is.

There are a few advantages to word statistic analysis. First, the process is com-

putationally inexpensive relative to the natural language processing approach. With

the use of some language-dependent input parameters, a word-analysis summarizer

can summarize documents in many languages without further modifications. Lastly,

by extracting the summary sentences from the original document, the entire problem

of generating meaningful summary sentences is avoided.

The main disadvantage of word statistics analysis is that summary sentences must

originate from the source document. Consequently, the summary cannot be improved

by combining sentences or creating new sentences.

Past efforts using the word statistics approach include Salton et al [11], Kupiec et

al [5], and Paice et al [9].

Chapter 3

Summarization Heuristics

heuristic, adj., serving to guide, discover, or reveal; valuable for
empirical research but unproved.

Since the goal of the GDS is to summarize documents by extracting sentences,

rules need to be established to differentiate between sentences. Heuristics in the GDS

are guidelines used by the summarizer to determine which sentences would make

good summary sentences. Obviously, the choice of heuristics has a direct impact

on the quality of the document summaries. This chapter presents some guidelines

for developing good heuristics for summarization and describes some of the issues

involved in implementing heuristics in the GDS. In addition, all heuristics used by

the GDS are explained in detail.

3.1 In Search of Quality Summaries

Plainly stated, the purpose of the GDS is to generate summaries. Inherent in that

statement is the assumption that these summaries would be "good" summaries. This

is perhaps the most essential trait for a summarizer. Unfortunately, no definitive

method exists for measuring the quality of a document summary. Some might suggest

this demonstrates a lack of understanding of the nature of information and/or other

linguistic issues. More likely, this lack of quantification is due to human diversity.

Different people will absorb information in different ways; while one person studies

the table of contents, another may find the index more approachable.

Nevertheless, the notion of a "quality" summary exists. This author proposes the

following characteristics as essential:

1. High Relevance Assessment Potential. One reason people read summaries

is because they cannot or do not wish to spend the resources necessary to read

an entire document. Therefore, a good summary must provide good clues as

to how relevant the original document is. The reader should be able to use the

summary to assess how interesting the actual document will be.

2. Detection of Masquerading Sentences. People not only read summaries to

find documents that they are interested in reading, they also read summaries to

find documents that they are not interested in reading. A good summary should

reveal whether a document is "masquerading" as being useful. The difference

between this characteristic and the first characteristic is that the first requires

a summary to be sufficient for the purpose of relevance assessment, while this

requires a summary to be complete as well. In other words, a good summary

should guarantee that the source document is not about anything outside of the

summary.

3. Low Noise Level. A good summary should have as little noise as possible.

Noise, in the context of a document summary, includes sentences with too much

detail and sentences that do not make sense by themselves. The former is

bad because the reader of a summary may not be interested in the details.

The latter is undesirable because if a sentence is taken out of context and not

understandable by itself, then the reader has very little use for it.

As mentioned earlier, the GDS does not generate summary sentences from scratch.

Instead, it selects summary sentences by applying a number of heuristics to each

sentence. Operating on the sentence-level simplifies the summarization process, since

each sentence can be examined independently. The drawback is that the GDS may

be too low-level (i. e., not global enough) to provide summaries in which the sentences

support one another and blend together. This is an inherent problem with sentence-

level summarization. However, by presenting the summary sentences as a collection

of sentences instead of as a summary paragraph, this coherence issue is avoided.

The heuristics used by the GDS were designed to minimize noise while presenting

a relevant and indicative summary. Although guaranteeing a thorough summary

(characteristic No. 2) is difficult, finding relevant sentences is achieved with heuristics

that favor emphasis in the document and strategically-placed sentences.

3.2 Heuristics Development Guidelines

The GDS relies on its heuristics to pick out good summary sentences. Each heuris-

tic describes the relationship between a sentence feature and the likelihood of that

sentence being a good summary sentence. A sentence feature can be the number of

words in a sentence, the types of punctuation in a sentence, and any other discernible

sentence trait.

The typical heuristic is first developed as an intuitive hypothesis, and then tested

in empirical experiments to determine its effectiveness. Tests are done using a set of

test documents (the corpus) along with corresponding summaries, where the corpus

is examined to see if the relation described by the heuristic is indeed observed in the

corpus summaries.

A good summarization heuristic should aim at differentiating certain sentences

from the rest of the document. In particular, each heuristic should find sentences

that have one or more of the following traits:

1. Relevance to the Document. Sentences that convey the main ideas of a

document are good candidates for the summary. Sentences that indicate the

relative importance of a document within a set of documents are also useful.

2. Relative Uniqueness. Some sentences are good summary sentences not be-

cause they express a document's main idea or topic, but because they can

provide other information that may be useful to the reader. For instance, even

though equations are usually too detailed, they may be good candidates for the

summary of a mathematics paper. Hypertext links in HTML documents may

provide another kind of summary information independently of the main ideas.

These traits were considered when the heuristics for the GDS were developed.

They can be used as the starting point for developing additional summarization

heuristics.

3.3 The GDS Approach to Heuristics

As mentioned in Section 3.2, heuristics are used to specify relationships between

sentence features and the likelihood of a sentence being included in the final docu-

ment summary. This section explains how evaluation of the heuristics translates into

sentence scores.

To understand sentence scoring, think of each sentence as having a feature bit-

vector. Each entry of this feature-vector corresponds to the existence of a sentence

feature (as dictated by some heuristic). Intuitively, one can give each sentence a score

based on how many features it has. Sentences with lots of features would score higher

and be included in the document summary.

Of course, some features may be more important than others, so the existence

of certain features may merit more points. Given a sentence and its feature-vector

entries x1, 2 , ... , Xk, this can be done by computing the score for each sentence as a

weighted sum:

k

i=1

where a, a2, ..., ak are weights corresponding to the k features. Even in this sim-

ple model, however, many variations exist which can change the score substantially.

The GDS implements a variation of this scoring model, choosing to deviate in three

dimensions: fractional vs. probabilistic weights, boolean vs. discrete features, and

independent vs. cutoff scoring.

3.3.1 Fractional vs. Probabilistic Weights

The first issue involves how the weights a, a 2, ..., ak are determined. A simple ap-

proach is to use fractional or integral weights. In such a case, each feature's relative

importance (and, consequently, its effect on a sentence's score) is dictated by the

equation:

ai
ri =

al + a2 ±-- • + ak

where ri is the importance of feature i out of 100%. One advantage of having fractional

weights is that the weights can be as arbitrary as desired. Since each ai is nothing

more than a number without a definite meaning, there is no problem with modifying

the weights to account for feature dependence or other factors. Also, any individual

feature can be turned off by simply assigning zero to its weight.

The second approach is to use probabilities. (This is also the GDS' approach.)

Note that this is merely a particular instance of weighting. Instead of having arbitrary

weights, one computes the probability that sentence s will be included in summary

S given the k features. Using Bayes' rule:

P(Fl, F2, ... Fk Is E S) -P(s E S)P (s E S I F 17F2, .- =-.. F k)P(Fl, F2, ... , Fk)

where F1, F2,...,Fk are the k features. Assuming conditional and full independence of

the features (i.e., the naive Bayes' classifier), the above equation becomes:

S = n 1 P(Fi Is E S) - P(s E S)
P(seSI Fl,F 2 , ... ,Fk) =i k P(ni=1 P(F)

Each of the above probabilities can be computed or distilled from the training corpus,

leading to a clean method of determining summary inclusion or exclusion.

The main obstacle to using the probabilistic model is that the probabilities must

be determined. In the case of the GDS, this was done by surveying a large number

of plaintext and HTML documents with human-generated summaries.

3.3.2 Boolean vs. Discrete Features

So far feature-vectors have been presented as bit-vectors. However, they can be

generalized to "discrete feature-vectors" capable of holding more than just a boolean

value. Such a feature-vector allows some n discrete values in each entry and can

differentiate between n degrees of "presence" for each feature. For example, instead

of recording whether a sentence has capital letters or not, the discrete feature-vector

can record the number of capitalized words in each sentence. In contrast, by flattening

a feature-vector into a true bit-vector, each entry is forced to register one of two values

(a boolean). Consequently, features are either present or absent in a sentence.

The GDS uses only boolean bit-vectors to score each sentence for two primary

reasons. First of all, detecting the presence or the absence of a feature may be easy,

but differentiating between many degrees of presence can be hard. Not all features

will map nicely into a set of discrete values. Secondly, it is not clear that the fine-

tune control afforded by the discrete feature-vector will substantially improve the

generated summaries. This is because most heuristics implemented in the GDS are

not capable of specifying the exact effects of a feature's presence on such a fine level.

Discrete feature-vectors are not completely unused, however. The next section will

show discrete feature-vectors used in cutoff scoring (where the more general feature-

vectors are collapsed into bit-vectors).

3.3.3 Independent vs. Cutoff Scoring

In independent scoring, the values in each sentence's feature-vector are solely deter-

mined by that sentence. If the sentence has features i, j, but not k, the entries for i

and j would be set to true, while the k entry would be false. Since the probabilities

are predetermined, the sentence's score can be calculated without further ado. One

immediate advantage is that the entire document does not need to be in memory or

even accessible to the summarizer all at once.

The other approach, cutoff scoring, determines the values of the sentence bit-

vectors on a more global scale. The existence of a particular feature in a sentence

does not automatically guarantee that the corresponding entry in the feature bit-

vector will be set to true. Rather, for each feature that employs cutoff scoring, all

sentences are ranked by how much of the feature is present in the sentence (reminiscent

of discrete features). This score is first recorded as one of a discrete number of values.

From those values, a user-specified n sentences will be marked true, while all others

below the cutoff point will be false.

The GDS uses cutoff scoring to flatten the feature-vectors into pure bit-vectors.

Many sentences have similar sets of features, and independent scoring would give

them composite scores with minuscule differences. The very presence of such tiny

differences is an indication that the summarizer cannot tell those sentences apart

reliably-is a sentence with a score of 0.02560 really "better" than a sentence with

a score of 0.02559? Given the rough resolution of the heuristics, it is not clear at all

what the answer is.

Cutoff scoring works because the sentence differentiation is done separately for

each feature and before the sentences are scored. It has to be done before the scoring

because once the sentences have been given a composite score, differentiation becomes

much more difficult.

3.4 Incorporating Document and Formatting In-

formation

By handling formatted documents, the GDS improves upon the plaintext-only XLT

Summarizer. However, document information (including the formatting) can be found

in plaintext documents as well. The heuristics in this chapter all use one or more of

the following four classes of document information:

1. Emphasis Information. Certain formats (or formatting tags) indicate em-

phasis within a document. Characteristics such as boldface, italics, underline,

superscript, and subscript are all used to indicate the importance of certain

words or sentences. Emphasis information is not restricted to actually format-

ting information: Uppercase words in a plaintext document also indicates some

kind of emphasis. This kind of information can indicate the author's preference

or focus so that summary sentences better reflect it.

2. Structure Information. Section headings, footnotes, and paragraph breaks

are a few examples of structure information. The summarizer can use this

information to (1) determine where paragraphs end, (2) handle special text

such as headers and footnotes differently from the rest of the test, and (3) find

the table of contents for a long document.

3. Relationship Information. Some formatting tags define the relationship be-

tween various documents. One obvious example is the hypertext link tag (<A>)

in HTML, which links the current documents with a few target documents that

might be of interest to the reader. This is different from structure information

in that the former indicates inter-document relationship, while the latter indi-

cates intra-document relationship (e.g., relationship between the various parts

of the same document).

4. Context-Based Information. The number of words in the document, the

number of sentences, the actual diction, etc. are all part of this information.

Plaintext heuristics (Section 3.5) usually make use of this information.

The GDS implements heuristics from all of the classes described above. The

heuristics were developed and implemented as general rules that can apply to a num-

ber of different formats (such as HTML and LATEX). However, they are described

below in the context of HTML where applicable because (1) HTML summarization is

expected to be the main use of the GDS, and (2) this provides a familiar environment

in which the readers can relate.

3.5 Plaintext Summarization Heuristics

The following heuristics were developed for plaintext summarization: (1) sentence

length, (2) direct theme, (3) sentence position, (4) keywords, and (5) uppercase words.

All, with the exception of the uppercase feature, are very useful in the summarization

of HTML and other document types as well. This can be attributed to the heuristics'

ability to capture formatting-independent information from documents.

The probabilities for these five features were derived from training the summa-

rizer on thousands of technical papers and journal papers. Therefore, the GDS is

exceptionally good at summarizing such papers. (In some sense, technical papers are

easier to summarize than most other documents, because they have very well defined

sections1 .)

3.5.1 The Sentence Length Heuristic

Particularly short or long sentences are generally not very good summary sentences,

although longer is better than shorter. Short sentences consisting of fewer than three

words, for example, probably do not convey enough information to be a summary

sentence. At the same time, sentences with lots of words usually have too many

details to be useful in a summary.

3.5.2 The Direct Theme Heuristic

Direct theme keywords (not to be confused with the keywords heuristic from Sec-

tion 3.5.4) are words or phrases that appear often in a document. They can be found

by compiling a list of words and counting each word's occurrence in the document.

The GDS keeps a list of common stop-words that should be excluded from word fre-

quency analysis. These include articles (i.e., the, a) and other words that have very

little meaning outside of being a language construct. If these words were included

in the analysis, then the results would be undesirably skewed heavily in favor of

1Technical papers (very conveniently) have a title, an abstract, a body, and a bibliography to
mark, respectively, the beginning, a summary, the body, and the end, of the document.

using them as direct theme keywords. The remaining words are recorded individu-

ally as words and collectively as two-word to five-word phrases. These phrases and

their relative frequency can provide good insights into a document's topics and main

ideas. For instance, if a single-page document of 200 words has 20 occurrences of

"PowerPC microprocessor," it is a good bet that the document is about PowerPC

microprocessors.

Therefore, sentences that contain a document's direct theme keywords are usually

excellent summary sentence candidates.

3.5.3 The Sentence Position Heuristic

Most documents are subdivided into sections and paragraphs. By exploiting the logi-

cal structure of well-written documents, the GDS places more emphasis on sentences

at the beginning or the end of paragraphs. The idea is that these sentences provide

the main ideas of the paragraphs while staying away from the details. The position

of the paragraph within a document can also affect how a sentence is scored with this

heuristic. Paragraphs at the beginning and the end of a document typically provide

better summary sentences.

3.5.4 The Keywords Heuristic

This heuristic values sentences that contain certain "hint" words and phrases. In

English documents, for example, the summarizer looks for phrases such as "this pa-

per" and "in conclusion," since they are usually followed by sentences that contain

a good amount of overview but not too much detail. In order to keep the GDS

language-independent, this list of word is kept separate from the summarizer in a

user-customizable file.

3.5.5 The Uppercase Feature

In plaintext documents where there are few formatting options, uppercase letters

are often used to indicate boldface or to attract attention. Although sentences with

boldface words are not necessarily good summary sentences, this feature can be very

useful in determining the title sentence for a source document. It should be pointed

out that even in HTML documents uppercase words are often used to emphasize or

bring attention to a sentence.

3.6 The Challenges of HTML Summarization

HTML summarization is of particular interest right now because of the unprecedented

expansion of the world-wide-web. At the time of the GDS' development, HTML 3.0

and above did not exist. Consequently, the GDS implemented a subset of the current

HTML tags. For a list of supported HTML tags, see appendix A.

Adopting HTML for the GDS added an important dimension to the summariza-

tion capabilities of the GDS. However, there were many challenges along the way,

and many of them still do not have very satisfactory solutions at this point. Some of

these challenges are:

1. Assigning Semantic Meanings to HTML Tags. Because of the sheer num-

ber and the variety of HTML tags, determining the semantic meanings for each

tag was not a trivial task. While some tags overlapped semantically (e.g.,

and), many tags differed just enough to make classification difficult.

In the GDS, HTML tags are roughly divided into a handful of categories for this

purpose of semantic classification. In theory, this may be a gross simplification.

But in practice, this proved to work well.

2. Incorrect HTML Tag Usage. In many of the webpages surveyed, HTML

tags were used incorrectly (both syntactically and semantically). The reasons

range from lack of HTML knowledge to wanting to achieve a very specific and

particular look. This problem is exacerbated by the number of non-standard

tags supported by popular web browsers like Netscape.

3. Webpages are Rarely Organized or Structured. At least, not in the same

logical and well-structured style as most technical papers. However, HTML doc-

uments do generally fall into a number of formats, and these could be "hard-

wired" into the GDS for better HTML summarization.

Like plaintext summarization, a set of orthogonal and independent heuristics are

employed in the scoring computation. Any heuristic can be turned on or off for

either debugging purpose or customization. The following sections discuss the HTML

heuristics implemented in the GDS.

3.6.1 The HTML Boldface Heuristic

This feature checks for the existence of formatting tags that denote boldface or strong

wording. Sentences with more boldface words are usually better summary candidates

than sentences with few or no boldface words. In order to filter out trivial instances2

of boldface words, only sentences with more than a threshold number of boldface

words are considered.

The HTML tags that fall under this category are , , and <BLINK>.

Although the last tag does not actually generate boldface text, the effect is similar

(i.e., an emphasis used to draw attention).

3.6.2 The HTML Emphasis Heuristic

The emphasis feature favors words "emphasized" by HTML tags such as or <I>.

The emphasis feature is very similar to the boldface feature. In fact, the GDS does

not make any semantic differentiation between these two currently. Note that the

<CITE> tag is considered an emphasis tag. Although this is not the original purpose

of this logical HTML tag, <CITE> is classified as such because it is often misused to

achieve the italics look.

2Such as the usage of a boldface drop-cap that begins a document. For example: "Once upon
a time..."

3.6.3 The HTML Hypertext Links Heuristic

Ultimately, the quality of a HTML summarizer is determined by its ability to provide

useful summaries for webpages. Since people use the web to gather information or to

find answers to particular questions, hypertext links are very important; if a webpage

does not contain the information one seeks, the next best thing would be to point to

a few pages that might provide the information.

The hypertext links heuristics is based on this idea and values sentences with

hypertext links. Ideally, the hypertext itself (i.e., the text between the <A> and

pairs) would provide some clue to the topic and subject of the target webpage. This

would be useful in giving the reader: (1) an idea of what pages can be accessed from

the current HTML document, and (2) some idea of what the target is about.

Unfortunately, many hypertext links do not provide this kind of summary informa-

tion. For example, the word here is often used as the hypertext to link to webpages.

("Click here to go to...") This is not a relevant hypertext. As a result, one must

be careful when examining sentences with hypertext links, lest one with very little

meaning is returned as part of the summary. The GDS achieves this by ignoring

hypertext links with three or fewer words.

3.6.4 The HTML Lists Heuristic

HTML lists are generally used for two purposes:

1. Providing Details. Examples include a list of features for a product, a list of

supported file formats for an application program, and a list of event highlights

from a company ski trip. These lists typically consist of only a few words or

phrases per line.

2. Organizing Big Ideas. Examples include a list of words and their definitions, a

list of job openings at a company, and a list of recommended restaurants in the

San Francisco bay area. Each item in these lists are usually long, packed with

explanation and information.

If a list is used to provide details, it is usually a good idea to leave it out of the

summarization process. Most items in such a list would be incomplete sentences,

rendering them useless as part of a summary (unless the entire list is included). On

the other hand, lists of the second type could be very useful. These lists usually have

long sections of one or more complete sentences that correspond well to paragraphs

(and therefore can be treated as paragraphs).

Unfortunately, differentiating between these two types is very difficult. Classi-

fication based on the length of a list's items is unreliable at best, and there is no

guarantee that any list will provide a good summary compared to non-list sentences.

In general, sentences found within lists are not considered good summary sentences.

However, some webpages consist of nothing but lists. The GDS performs poorly with

these pages.

3.6.5 The HTML Headings Heuristic

Like the HTML lists heuristic mentioned above, the presence of the heading HTML

tags within a sentence will decrease its probability of being a summary sentence. The

rationale behind this scoring is that although headings (i.e., <Hi>, <H2>, etc.) are

used to label different sections of a webpage, they often contain little or no actual

information. Many headings will be nothing more than just "Introduction," "Con-

clusion," or "Welcome to Our Page!" Heading tags are sometimes used to increase

the font size for a phrase or a sentence, but this is relatively infrequent.

3.7 Other Heuristics

Documents with formatting information can provide extra insights into which sen-

tences are good summary sentences as well as hints on how to avoid certain bad

sentences. With HTML, the following heuristics proved to be useful:

1. Start-of-Text and End-of-Text Detection. The start-of-text is the place in

a document where the body of the actual text begins. In a technical article, for

example, the start-of-text would come after the title page, the abstract, and any

preamble. Similarly, the end-of-text marks where the body text ends. This is

usually right after the concluding paragraphs but before the appendices and the

index. Finding the beginning and the ending of the text body is useful because:

(1) the title sentence (and the abstract, if one exists) is usually before the start-

of-text, and (2) very few sentences after the end-of-text are good candidates for

the summary, because typically only the index and appendices (or, in HTML

documents, copyright and webmaster credits) come after the end-of-text. With

plaintext documents, detecting the start-of-text involved keeping track of how

many consecutive "normal" sentences with "normal punctuation" have been

encountered in the document. In a similar fashion, the end-of-text is detected

by looking for an appendix or an index. HTML provides the GDS with extra

information (e.g., the <HEAD> and <BODY> tags) for better detection of both

start-of-text and end-of-text.

2. Title Detection. For the title sentence, the plaintext summarizer looked for a

sentence before the start-of-text that: (1) is at least of a certain predetermined

length, and (2) contains uppercase words or other emphasis. This title detection

heuristic is improved in HTML summarization because <TITLE>, <Hi>, and

other fontsize tags provide good indication of where the title sentence may be.

Note that the text inside of the <TITLE> tag may not be a good title sentence.

Since this is the text that appears as the browser's window title, it is often quite

unrelated to contents of the current webpage. Typically, the first emphasized3

sentence after the <TITLE> is the best title sentence in the majority of webpages

surveyed.

3. Paragraph Detection. In plaintext documents, there are two ways to de-

note the end of a paragraph: (1) use a single carriage-return (CR) between

paragraphs but none between the lines in each paragraph, or (2) use two CRs

between paragraphs and one CR between the lines in each paragraph. If unspec-

3by heading, boldface, or fontsize tags.

ified, the GDS automatically detects between the two possibilities by examining

the average number of words between CRs and the frequency of CRs in the doc-

ument. In HTML documents, all CRs are ignored and only paragraph-marking

tags like <P> and
 are used to denote paragraph boundaries. This, of course,

leads to better paragraph detection because the GDS now knows exactly where

the paragraph breaks are.

4. Avoiding Navigation Menubars. "Navigation menubars" are lines of hy-

pertext links at the beginning or the end of a webpage that helps one navigate

through a collection of webpages. One typical navigation menubar looks like:

Home I Prevy Next I Help I What's New

Navigation menubars present two problems: (1) the GDS reads this line as one

single sentence, since it lacks a sentence-ending punctuation. However, this

is not a sentence and would be a poor summary sentence; and (2) the links

heuristic would favor this sentence because of the large number of hypertext

links.

A heuristic was developed to specifically avoid navigation menubars. For each

sentence, the GDS examines (1) the ratio of actual alphanumeric words to the

number of non-sentence-ending punctuation marks, (2) the number of hypertext

links present, and (3) the number of words in the actual hypertext links. If these

numbers are above a certain threshold, the sentence is eliminated from summary

consideration.

This heuristic is an example of the kind of problem unique to a particular doc-

ument format. Unfortunately, the GDS does not have a large number of such

heuristics to handle the many possible document formats, but the scoring mech-

anism allows for such extensions where and when they are deemed necessary or

useful.

3.8 User-Specified Summarization Focus

The GDS also provides a method for users to specify special words that are of interest

to them. When the GDS encounters these words, they are given special consideration.

The user can ask that sentences (or paragraphs, if so desired) containing those special

words be given higher or lower scores. This is useful when the user is looking for a

specific type of information from the source documents. For example, someone who

is summarizing business letters may wish to find out all references by looking for

words such as Mr. and refer. This ability to spot-emphasize certain words gives users

tremendous control over the generated document summaries.

Chapter 4

Overview

The Generalized Document Summarizer is a complex program. Therefore, this chap-

ter provides an overview before the later chapters delve into more detailed discussions.

Since the GDS has its root in previous research and development work at Xerox, there

is a historic and development overview to differentiate the present work from past in-

fluences. This will be followed by an overview of the usage and possible applications

for the GDS. Lastly, the summarization process will be mapped out to provide a

framework for later discussion.

4.1 History

Research in summarization technology and techniques first began at Xerox's Palo

Alto Research Center (PARC) in the 1970's. It was part of a larger research ef-

fort in state-of-the-art linguistics tools and natural language processing. The PARC

summarizer was written in Lisp and implemented all of the plaintext algorithms dis-

cussed in Chapter 3. After over a decade of research, the summarizer (along with

the other tools developed by the PARC linguists) was handed over to Xerox's XSoft'

division for commercialization. At this point, most of the code base was rewritten in

C and C++. XSoft marketed the suite of linguistic tools under the name Xerox Lin-

guistic Technology (XLT), and the summarizer was christened the XLT Summarizer.

'XSoft went independent in November of 1996 and is now called InXight, Inc.

Table 4.1: Summarizers from Xerox at a Glance
Name Plaintext Input HTML Input Other Formats

XLT Summarizer 1.5 yes no no
XLT Summarizer 2.0 yes yes no
The GDS yes yes yes

Later versions of the XLT Summarizer were incorporated into other Xerox products,

including Visual Recall, a unique tool that provides document searching searching,

summarization, and visualization capabilities.

While at Xerox XSoft in 1996, this author was involved with developing version

2.0 of the XLT Summarizer. On top of the plaintext summarization capability, HTML

document parsing and summarization were added. Version 2.0 began shipping in late

1996, when the entire suite of tools was renamed LinguistX.

The GDS is based directly on the code base of LinguistX Summarizer 2.0. How-

ever, new customization capability for fine tuning the summarizer has been added.

The tokenizer and summarizer now can read document formats other than plaintext

and HTML-hence the generalized designation2

Table 4.1 lists the different summarizers from Xerox and compares their features.

Note that version 2.0 of the XLT Summarizer is also known as the LinguistX Sum-

marizer 2.0. For the purpose of this thesis, the term XLT Summarizer will refer to

version 1.5, which can only handle plaintext source documents. Because the GDS and

the XLT Summarizer 2.0 share much code in common, the latter will not be discussed

separately.

2It should be noted that even though the GDS can summarize other types of documents, HTML
remains an integral and essential part. Part of the design goal was to make sure that the GDS would
perform well with HTML documents; this is important given the popularity of the WWW and the
proliferation of HTML documents.

4.2 Development of the GDS

Most of the development work for the GDS was done over a seven-month period3

at Xerox XSoft in Palo Alto, California. While the GDS was based on the XLT

Summarizer, substantial additions and modifications have been made to arrive at the

current GDS:

* New tokenizers were developed in order to parse documents with HTML or other

formatting information. This involved defining a new tokenizer vocabulary (see

Chapter 5) as well as rewriting tokenizers for faster performance.

* A number of heuristics were developed to summarize the new document types.

Although some are general and can handle most source documents, many of the

new heuristics aim at HTML document summarization in particular.

* A summarizer capable of keeping track of HTML and other formatting infor-

mation was designed and implemented. This is the heart of the GDS and in-

corporated both heuristics developed under the XLT Summarizer and the new

formatting-specific heuristics.

* Provisions were made to make the GDS extensible and highly user-configurable,

allowing users to fine-tune the summaries generated by the GDS.

4.3 The LinguistX Software Suite

As mentioned earlier, the LinguistX summarizer is shipped as part of a larger lin-

guistics tool package. This is not only because the tools are related in functionality,

but also because the summarizer can take advantage of the other tools to generate

optimal summaries. The GDS allows users to design "plug-in" tools to aid the sum-

marization process. In the absence of other tools, the LinguistX tools are used as the

default. See Section 4.5 for more details.

3 From May, 1996 to December, 1996-as the fourth and final 6A Co-op assignment.

Below are descriptions of the other tools in the LinguistX software suite and how

they can be used with the GDS:

* Tokenizer: tokenizers for several European languages and a few Asian lan-

guages are available for use with the summarizer to parse source documents.

However, the summarizer has only been tested with English, French, and Ger-

man plaintext and HTML documents. Although the GDS uses the LinguistX

tokenizers as the default, other custom-made tokenizers can be used instead by

providing a pointer to the proper procedures. However, any tokenizer used by

the summarizer must have the same set of attribute vocabulary as the default

LinguistX tokenizers. See Section 5.4 for the complete list of token attributes

that must be supported.

* Stemmer: stemmers also exist for quite a few languages. These provide the

root or stem form of any given word. For example, swim is returned when

the word swimming is passed to the English stemmer. The stemmer can also

work in reverse, providing various forms and conjugations from the root word.

Stemmers can be used by the GDS to group related words together during word

frequency analysis for more optimal summaries.

* Tagger: taggers are used to assign parts-of-speech information to words in

each sentence. The GDS does not take advantage of this information currently;

however, parts-of-speech information could give insights into the semantics of a

document.

* Noun-Phrase Detector: noun-phrase detectors have been developed to ex-

tract common and proper noun phrases (e.g., names, addresses, geographic

locations). Again, this is not currently used by the GDS, but extensions could

be made to use this information for better keyphrase generation (see Chapter

6).

* Language Identifier: LinguistX also has a language identifier that can deter-

mine the language of any given source document, assuming that the document is

in one of the supported languages (i.e., English, French, German, Spanish, Por-

tuguese, Dutch, Italian, and Japanese). The GDS can use this to automatically

detect the language of source documents.

4.4 Usage and Applications

The GDS interface consists of a handful of application programming interface (API)

procedure calls. This was done because the target users of the GDS are original

equipment manufacturers (OEMs), not end-users. The OEMs could then fine-tune

the GDS for the particular types of source documents to be summarized and ship it

with a user-friendly and customized interface suitable for their particular applications.

See appendix A for the API specification.

Although the API may be used in other programming languages, it is provided as

a C header file for compatibility. The GDS was implemented in C++, because the

object-oriented design allows one to quickly build variations of the stock summarizer

(using class inheritance) for experimentation, evaluation, or production.

Besides the obvious application of summarizing documents, the GDS can be in-

corporated into web search engines for better, more relevant summaries. In addition,

the API interface lends itself well to embedding summarization capability into appli-

cations. For example, email readers can call the GDS to display summaries for each

email message, or a word processor can use GDS-generated summaries to search for

documents matching certain user-specified criteria, (such as having the words "white

house" in the summary).

4.5 The GDS Summarization Process

This section gives an overview of how summarization actually works in the GDS. Only

the main ideas are presented here-the low-level details of the process can be found

elsewhere in this thesis. (Chapters 5 and 6 discuss tokenization and summarization

in great details.)

document

internal representation

indeming and
Tokenization infoiation extraction

token stream

other
information

summary

keyphrases

Figure 4-1: The Three Phases of Summarization in the GDS

As Figure 4-1 indicates, the summarization process can be divided into three dis-

tinct phases. In the tokenization phase, source documents are parsed and converted

to a stream of tokens. In the indexing and collection phase, the tokens are examined.

Information collected during this phase is placed in complex, internal data struc-

tures for later use. Finally, the extraction phase is where the summary sentences are

generated, possibly along with other information about the source documents.

The tokenization phase is delegated to a tokenizer, which is a procedure that, given

a buffer of text (in plaintext, HTML, or another recognized format), returns an array

of tokens (the token stream) that correspond to the words and punctuation marks in

the source buffer. The GDS is designed so that there is little interdependence between

the tokenization phase and the other two phases. The rationale is that special-purpose

tokenizers or tokenizers for other languages may be substituted for the default English

tokenizer to accommodate document types not natively supported by the GDS.

In the indexing and collection phase, an (optional) stemmer is used to gather word

frequency and other statistics. If the stemmer is absent, this phase will continue

uninterrupted; however, the quality of the summary may suffer. This is because,

intuitively, stemming should improve the "accuracy" of the word counts. Without

stemming, for instance, come and came would be considered two different words.

Such schizophrenic classification would result in word counts of suboptimal accuracy

and could adversely impact the quality of generated summaries.

After the collection phase, the extraction phase assigns each sentence a score based

on the existence of pre-determined "features" in each sentence. Features are sentence

characteristics that could provide hints as to whether a sentence would be a good

summary sentence. Sentences with high scores are presumed to be indicative of a

document's main ideas and returned as part of the summary. Presently, a dozen

or so heuristics involving these features are implemented in the GDS. Then the the

GDS extracts a number of sentences from each source document as the summary. In

addition, the GDS tries to find one title sentence for the document separately from

extracting the actual summary. Other information, such as a list of keyphrases, may

also be available from the internal data structures at this point.

This three-phase process is repeated for each source document, with the perfor-

mance roughly linear in the size of the source document.

The next two chapters will provide more details on tokenization, information

collection, and the extraction of summary sentences.

Chapter 5

Tokenizing the Document

As pointed out in Section 4.5, the first of the three summarization phases is the

tokenization phase. While the tokenizer can be seen as an entity separate from the

rest of the GDS, a good tokenizer is essential to optimal summaries. This chapter

describes the work done on the tokenizer, the tokenizer's role in summarization, and

the token vocabulary used by both the tokenizer and the summarizer.

5.1 Development and Design Emphasis

As part of implementing the GDS, the tokenizer used by the XLT summarizer was

completely rewritten. The rewrite was executed with two goals in mind: faster to-

kenization and a smaller token vocabulary. A smaller token vocabulary is desirable

because it can reduce the overall complexity of the summarizer and ease the devel-

opment of additional tokenizers.

The GDS relies on its tokenizer in many ways. If the tokenizer does not parse the

source document correctly, it would be impossible for the GDS to generate qual-

ity summaries. In a way, the tokenizer acts as a translator for the rest of the

summarizer-it translates source documents from a natural (human) language into a

form that can be understood by the GDS.

The tokenizer is language-dependent, for it needs language details for tokenization.

However, in an effort to keep the rest of the summarizer general and useful across dif-

Figure 5-1: The Tokenizer and the Parser in the Tokenization Phase

ferent human languages and input file formats, all language-dependent operations are

done in the tokenization phase using two modules: a callback-function tokenizer and

a customizable parser. The GDS achieves its language independence (e.g., English,

French) through the tokenizer and its format independence (e.g., HTML, LATEX)

through the parser.

As indicated in appendix A, the tokenizer is declared as a callback function in the

GDS. The main reason for this architecture is to allow different tokenizers for foreign

languages and/or special-purpose document tokenization. The parser, on the other

hand, is customized through a file that the GDS reads during initialization.

5.2 The Tokenization Process

The tokenizer is responsible for breaking the input characters into individual chunks

called tokens. Tokens are grammatical units specific to each language. (Typically,

they are words and punctuation marks1.) As the tokenizer breaks the input docu-

'In the GDS, tokens are the smallest unit used in the summarization process. Furthermore,
each token is assumed to contribute equally to the contents/meaning of the document-with the

ment into tokens, it associates zero or more attributes with each token. The latter

summarization phases use these attributes to determine how each token can be used.

The LinguistX tokenizer is more than just a simple tokenizer, however-it also

performs limited lexical analysis on the source text. In contraction expansion, for

example, don't is broken into two separate tokens corresponding to do and not. Lexical

information is also used to resolve ambiguities in the source text. Whenever the

tokenizer encounters a string of characters that it does not know how to parse, the text

is passed to a finite-state transducer (FST). The FST, containing grammatical rules

for tokenization, then determines the correct interpretation of the text in question.

Since these rules are language-dependent, a FST (and a tokenizer) must be created

for each language that the GDS supports. The FSTs, their creation, and their usage

are issues beyond the scope of this thesis. For the GDS tokenizer, the transducers

were created independently by a group of linguists of the code development.

The stream of tokens is then passed to the parser, which is implemented as part of

the GDS and not a callback function. The parser is responsible for further processing

of the tokens. Formatting tags that are specific to a particular file or document format

must be parsed into general tokens that the summarizer can use. In this manner, the

summarizer is completely language and format independent. These tokens are defined

in Section 5.5.

In the absence of a user-specified tokenizer, the GDS uses the LinguistX English

tokenizer as the default. Although the LinguistX tool suite provides tokenizers for

quite a few languages, the GDS has only been tested and evaluated for English,

German, and French2 .

exception of common words like "the" that contribute nothing. In languages like German, however,
extra content can be added to a word by the usage of compound words. In such a manner, a token's
contribution to the document content can arbitrarily inflate as new words are tacked on to the
compound word.

2Although I have taken three years of German, I confess to knowing nothing whatsoever about
the French language. The German and French versions of the GDS were actually tested by cool,
foreign-language-speaking people at InXight, Inc.

offset
length

rewrite
attributes

rewrite buffer

w1 I I\

D
r-

source buffer (the document)

I Iwon't try...
A

offset 8
length 3

rewrite -I
attributes

Figure 5-2: Five Sample Tokens

5.3 Keeping Track of Tokens

Since many tokens are processed during both the tokenization and the summarization

phases, tokens are designed to be small and easily copied, allocated, and deallocated.

The GDS defines a token structure as:

typedef struct
{

int offset;
int length;
int rewrite;
short attributes;

* offset is the offset (in bytes) to the actual text of the token in the
source buffer.

I

I I

* length is the length (in bytes) of the token's actual text. This always
describes the original text, not the rewritten text (if one exists).

* rewrite is the offset (in bytes) to the rewritten text of the token
in the rewrite buffer. A value of -1 indicates the the token was not
rewritten.

* attributes is a bit-vector of token attributes, initialized to 0 upon
creation.

The usage of the tokenizer is simple: a buffer of source text is passed to the

tokenizer along with an empty token buffer and an empty rewrite buffer. Upon com-

pletion, the token buffer will contain the tokens corresponding to the source buffer.

The source document may be split up into smaller chunks to tokenize, since the

tokenizer does not need to see very much to know how to parse each sentence.

If any word in the source buffer was rewritten, its corresponding token will have

an offset that points into the rewrite buffer so the rewritten text can be retrieved3 .

If either the token buffer or the rewrite buffer becomes full before the source buffer

is exhausted, the tokenizer returns the buffers and indicates where it stopped so that

tokenization can resume later with another call to the tokenizer with fresh buffers.

In most cases, the tokenizer can determine a token's attributes by an examination

of the characters seen while traversing the source buffer. For example, if a word

contains nothing but alphabetical characters, it is classified as an alphanumeric token.

(In plain English: this is a regular word.) In the event that the FST was invoked in

parsing the word, the FST will determine the attributes of the token.

The complete set of attributes used by the tokenizer to interface with the parser

is the tokenizer's token vocabulary. Because of the plug-in tokenizer architecture, a

standardized tokenizer vocabulary is necessary to guarantee that the rest of the sum-

marizer will know how to interpret the tokens generated by the (possibly "foreign")

tokenizer. The tokenizer's vocabulary is the interface between the summarizer and

3 When the tokenizer encounters a word or a phrase that needs to be split up into more than one
token and the resulting tokens will be ambiguous, it rewrites the word so the original meaning is
not lost. The word didn't, for example, is split up into two tokens of did and n't. It is perfectly clear
that n't is the contracted form of not. However, the word won't cannot be split up into wo and n't
without problem, because wo could be either the exclamation "wo!" or it could be will if desired.
The latter, of course, is the correct interpretation of won't.

Table 5.1: Attributes in the Tokenizer Vocabulary
Attribute Examples

Alphanumeric "this", "interlocutor"
Punctuation commas, periods
Pre-Punctuation single and double quotes
Post-Punctuation single and double quotes, question marks
Sentence Punctuation periods, exclamation marks
Tag <HTML>, <APPLET>
Whitespace carriage-returns

the tokenizer. Since the GDS can be used with a number of different tokenizers, the

standard tokenizer vocabulary is "published" in a C header file. Every tokenizer to

be used with the GDS must return tokens using this published set of attributes.

5.4 The Tokenizer -+ Parser Vocabulary

The tokenizer vocabulary currently consists of eight different attributes. Table 5.1

lists the different attributes and gives examples for each. Note that the examples

that are not exhaustive. Any token can have more than one attributes. Most of the

attributes are independent of one another-hence the implementation of the token

attributes field as a bit-vector. If the tokenizer fails to observe any attribute in the

current token, it leaves the attributes field alone. Tokens with no attributes will later

be examined by the parser in an attempt to give them some attributes.

The tokenizer vocabulary is designed to be largely independent of any formatting

in the source documents. Formatting tokens such as end-of-paragraph (EOP) marks

or HTML tags can be accommodated by this vocabulary without any modification.

Below, each of the tokenizer attributes is explained in greater detail.

* Alphanumeric: The majority of the tokens returned by the tokenizer will have

the alphanumeric attribute. Intuitively, a token is alphanumeric if it contains

only letters and numbers. However, in the GDS, a token is alphanumeric if it

should be considered a "regular word." The LinguistX tokenizer will only give

this attribute to tokens that contain either letters or numbers (but not both).

Tokens that are a mixture of letters and numbers will not be recognized by the

tokenizer as alphanumeric. This is done so that the parser can examine these

tokens in detail to guarantee that tokens like "3.14," "A&W," and "$1,560,000"

are all given this attribute ultimately.

* Punctuation: The token for any punctuation will have the punctuation at-

tribute. Although punctuation marks are usually single characters, multiple-

character punctuation marks such as the ellipse and the em-dash are included

in this set. Basically, all punctuation defined in the ISO 8859-1 character set

will have this attribute. Punctuation tokens usually also have at least one of

the other punctuation attributes (pre-punctuation, post-punctuation, and/or

sentence-punctuation).

* Pre-Punctuation: Pre-punctuation tokens are punctuation marks that can

precede words without any whitespace in between. Examples include the single

and double quotes (the opening quotes), as well as the left parentheses. Of all

of the punctuation tokens, only pre-punctuation tokens can start a sentence.

* Post-Punctuation: Post-punctuation tokens are punctuation marks that can

follow alphanumeric tokens without any whitespace in between. These include

commas, periods, apostrophes, single and double quotes, and the right paren-

theses.

* Sentence-Punctuation: Sentence-Punctuation tokens are punctuation marks

that can signal the termination of a sentence, such as periods, question marks,

and even ellipses. Note that sentence punctuation tokens must also be post-

punctuation.

* Tag: Tokens with the tag attribute are tokens used to convey formatting infor-

mation. Typically, these tokens do not belong in the actual document context

and are just auxiliary information.

* Whitespace: The whitespace attribute is given to tokens that indicate the

end of a line (newline, carriage return, etc.), the end of a paragraph (EOP), or

the end of a document (EOF). These are usually control characters that have

special meanings in ISO 8859-1. Note that although the space character is used

to find the start and the end of each word, it is not part of any token. Therefore,

a string of spaces does not constitute a token.

In previous versions leading up to the GDS, HTML tag recognition was hard-

wired into the tokenizer. In those versions, two extra attributes were supported: the

html_tag and the html_junk tags. The html_tag attribute is used to indicate HTML

tags that the summarizer should examine and use. The html_junk attribute is used

to mark chunks of HTML code that are intrinsically useless to the summarizer. For

example, text between <APPLET> and </APPLET> tags are used to specify Java ap-

plets and thus contain no useful information. The tag used to specify images

is likewise unparseable by either the tokenizer or the summarizer.

Although hardwired HTML recognition has since been removed and replaced with

the more general "tag" attribute, some special provisions remain in the tokenizer to

handle special HTML tags (such as the <!-- -- > comment tag) that do not follow

the general HTML tag construction syntax.

5.5 The Parser -+ Summarizer Vocabulary

Although the parser must understand the tokenizer's vocabulary, it is not limited to

just the attributes defined by the tokenizer. In general, the parser will recognize a

broader set of token attributes. As mentioned before, these attributes must be general

so that the summarizer can understand a variety of formatting and other information

without knowing anything about the details of tokenization or parsing.

After the tokenizer has tokenized a buffer of text, the resulting tokens are returned

to the parser. The parser does two things for each token:

1. Examine and modify the token's attributes as necessary. In particular, format-

ting tags such as HTML tags must be generalized.

Table 5.2: The Summarizer Vocabulary
Attribute Examples

Alphanumeric "this", "interlocutor"
Number $45, 3.14
Punctuation commas, periods
Pre-Punctuation single and double quotes
Post-Punctuation single and double quotes, question marks
Sentence Punctuation periods, exclamation marks
Junktag <APPLET>,
Boldface-Tag
Italics-Tag
List-Tag/Demote-Importance
Heading-Tag <Hi>
Link-Tag/Special <A>
Userl-Tag (could be anything)
User2-Tag (could be anything)
Whitespace <P>, <HR>
Ignore (could be anything)

2. Record various information about each token for use during the sentence ex-

traction phase..

The second step is addressed in Chapter 6, while this section discusses the summa-

rizer's expanded token attribute set and the modification of token attributes.

Table 5.2 lists the complete summarizer vocabulary. This is, of course, a superset

of the tokenizer vocabulary listed in Table 5.1. Note that the parser is responsible for

interpreting tag tokens into the attribute set of the summarizer. The alphanumeric,

punctuation, pre-punctuation, post-punctuation, sentence-punctuation, and whites-

pace attributes all retain their meaning as explained in Section 5.4. The meanings of

the remaining attributes are:

* Number: Ideally, this attribute should be used to label all alphanumeric to-

kens that are numbers, including "25.01," "60," and "$1," so that they can be

processed as numbers. In practice, it would be very expensive to examine every

alphanumeric token just to find out if it is also a number-especially consider-

ing the relatively rare occurrence of numbers in documents. Consequently, only

tokens with no attributes are examined to see if they are numbers. This means

that all decimal numbers, numbers with commas, and any other number with a

punctuation mark in it will be marked as numbers, while the plain "60" remains

alphanumeric only. Since numbers are also alphanumeric, this is a trivial issue.

* Junktag: The parser recognizes useless formatting tags and gives them this

attribute. For example, , <APPLET>, and </APPLET> tags will all become

junk tags in the summarizer vocabulary. In general, junktag tokens "behave"

in two ways: (1) the tag itself is useless, or (2) the tags along with the text

in between are useless. is of the former type, while <APPLET> and its

corresponding </APPLET> tags are of the latter type. The parser is given a list

of formatting tags that should be junked, along with detailed information on

which type of junktag each is. This attribute is mutually exclusive with the

-Tag attributes.

* Boldface-Tag, Italics-Tag, List-Tag, Heading-Tag, Link-Tag: These

general and generic tags convey formatting information from the parser to the

summarizer. They correspond to boldface, italics, lists (such as in HTML

or itemize in LATEX), headings, and links (such as hypertext links). Note that

the parser is free to map a token to any of these tags-it is completely up the

user to specify how formatting information should be interpreted. For example,

a user may choose to ignore all ordered lists while parsing HTML documents

(i.e.,) but map all unordered lists (i.e.,) to List-Tag.

* Userl-Tag, User2-Tag: These two generic tags are provided so that the user

can define other categories of tags. These custom tags are coupled with proba-

bilities as well, so they can be incorporated into the summarization process.

* Ignore tokens. This is a generic attribute that tells the summarizer to ignore

this tag (i.e., exclude it from further processing). This attribute is typically used

to label tokens in between junktag tokens4 . For instance, all tokens between a

4Note that the Ignore attribute overrides all other attributes that a token might have. Tokens

pair of <SCRIPT> and </SCRIPT> tags should be ignored.

in between junktags are (appropriately) meaningless. Since the tokenizer actually took the time to
assign attributes to these meaningless tokens during tokenization, tokenizing certain documents (e.g.,
ones with lots of junktags) can be inefficient. However, the tokenizer cannot avoid this inefficiency,
because tokenization is done locally without any information about the document as a whole or
what the formatting tags mean.

Chapter 6

Generating the Summary

After tokenization, the summarization proceeds into the information collection and

summary extraction phases as outlined in Chapter 4. Because they are closely related

and share many data structures, this chapter will discuss the design and implemen-

tation of both phases in the GDS.

After the source document has been converted into a stream of tokens (in the

summarizer's token vocabulary), the GDS makes a single pass through the token

stream, collects word frequency and other statistics, and ultimately scores and ranks

the sentences. From there, a summary of n sentences and other information can be

easily retrieved.

6.1 Collecting Document Information

The first step is to collect information on the source document. Since the GDS does

not process the document text directly, it gathers the necessary information from the

tokens and their attributes. The GDS records information on four levels: by word,

by sentence, by paragraph, and by the global document environment.

6.1.1 Word Indexing

For each alphanumeric or number token that it encounters, the GDS checks to see if

the token's text is found in a user-supplied list of common stop-words. This is done

so that the document's word statistics will not be skewed by the presence of common

words (e.g., the, this) that do not have distinct meanings. If the word is a common

word, it is dropped from further processing. Otherwise, it is entered into a word table

with three pieces of information: (1) an unique word ID for the word, (2) the number

of times the word has appeared in the document so far, and (3) the sentence ID of

each sentence that contains the word.

The GDS API allows the user to provide a stemmer so that word statistics can

be gathered using morphological stems instead of the actual words. This should

provide a more accurate picture of word frequency and usage within a document. For

example, occurrences of the words swimming, swam, and swimmer will all be counted

under the word swim. One immediate advantage of using the stemmer is that similar

words and phrases are less likely to compete with each other when the GDS is picking

the frequently-used words.

6.1.2 Sentence Collection

On a higher level of organization, the GDS keeps phrase and sentence information.

Phrases consist of two to five words, ending with either a punctuation or a word that

can end a phrase'. These phrases are important, because the GDS uses them as

indicators of the document's main themes.

Tokens are also collected into sentences whenever the GDS encounters a token that

indicates the end of a sentence. This could come in the form of a sentence-punctuation

token, a whitespace token, or just the abrupt end of the source document. After a

sentence has ended, the next token will usually cause the creation of a new sentence

data structure, complete with a new sentence ID, a new position ID (corresponding

1 A list is shipped with the GDS outlining the phrase stop-words. Basically, it contains words that
should not be part of word phrases.

to a sentence's position within a paragraph), a set of initial scores for the sentence, as

well as fields to record the beginning and ending offsets for the sentence so the user

can quickly retrieve the sentence text later.

6.1.3 Paragraph Creation

Finally, sentences are grouped into paragraphs, which are delimited by whitespace or

EOP tokens. Each paragraph data structure records: (1) the number of sentences in

the paragraph, (2) the sentence IDs of the first and last sentences in the paragraph,

and (3) the position of the paragraph in relation to the rest of the document.

6.1.4 Maintaining Global Environmental Information

As the summarizer is reading the token stream, it needs to maintain state information

so the formatting context of the document is not lost. The GDS uses a set of stacks

to match the beginning and the ending tags. A stack is a natural data structure to

use for handling matching tags that can be nested. However, since some formatting

tags do not have strict matching requirement (e.g., <P> does not have to be closed

by a corresponding </P>), a strict push/pop protocol is not always observed. It is

also possible for a tag to pop frames from stacks belong to other tags. For example,

encountering a </HTML> will cause all HTML tag stacks to become empty immediately,

for the HTML document has ended.

Note that using a single stack to keep track of all tags will not work. This is

because the formatting information for any word is the aggregate of the formatting

tags that are active at that point, not just the most recent formatting tag. Further-

more, it is not possible to handle out-of-order tag nesting (e.g., <A>blah)

correctly with only one stack 2.

2 Although the formal HTML language specification does not allow out-of-order tag nesting, most
of the web browsers do. As a consequence, it would be unwise to have implemented only the strict
specification. Instead, the GDS opted for a more tolerant approach to HTML documents.

6.2 Sentence Scoring

At the end of the collection phase, the token stream has been read and all the word,

sentence, and paragraph structures have been set up. The GDS then enters the third

and final phase in which the sentences are scored using a combination of the heuristics

described in Chapter 3. The summarizer must achieve three things here: (1) it must

find some number of direct theme keywords, (2) it must find a title sentence for the

document, and (3) it must score the rest of the sentences in preparation for generating

the document summary. This section describes how these tasks are completed.

6.2.1 Direct Theme Keyword Selection

Selecting the direct theme keywords (see Section 3.5.2) is a simple procedure. For

each word in the word table, a score is computed with consideration to the length of

the word as well as the frequency of the word in the document. Intuitively, longer

words that appear more frequently in the document will have higher scores and are

better direct theme keywords. These direct theme keywords are returned by the

xlt extractkeyphrases () API call. Currently, formatting information is not used

to select the keywords.

6.2.2 Title Sentence Detection

Not all sentences are created equal-some sentences are more relevant than others.

The most important sentence in the source document for the GDS to find is the title

sentence. The title sentence may or may not be the title given or designated to the

document, although it is almost always found near the beginning of a document. The

title sentence is detected by giving a title sentence score to each of the candidate

sentences. Scores are given based on: (1) the presence of uppercase words, (2) the

presence of direct theme keywords, (3) the length of the sentence, (4) the presence

of other sentences immediately before or after this sentence, (5) the location of the

sentence in the document, and (6) other formatting information.

For plaintext documents, title sentence detection is limited to sentences that ap-

pear before the start-of-text. In HTML documents, however, title sentences are often

within the <BODY> section of the document. The GDS has a customizable parameter

to "dip" into the body section of HTML documents to look for title sentences if no

suitable candidate exists in the header section.

6.2.3 Scoring Body Sentences

Unlike the title sentence, other sentences in the body of the source document are

scored using a standard set of heuristics and probabilities discussed in Chapter 3. If

the source document is plaintext only, only the five plaintext heuristics are applied.

For HTML and other formatted documents, the other heuristics are figured into the

sentence score.

The summarizer computes two scores for each sentence. The main score is com-

puted as the product of probabilities based on the model described in Section 3.3.1.

This score reflects the result of all of the applied heuristics. The second, auxiliary

score is a "no-paragraph" score that does not apply the sentence-location heuristic of

Section 3.5.3. (It is called the "no-paragraph" score because it ignores the position

of sentences within each paragraph.)

6.3 Summary Extraction

After all sentences have been scored, generating the document summary is simply a

matter of finding the sentences with the highest scores. For summaries with fewer

than five sentences, the GDS uses only the main score to rank the sentences. For

summaries longer than five sentences, the GDS returns the five sentences with the

highest main scores, and then finds the other summary sentences by looking at only

the auxiliary "no-paragraph" score.

The rationale behind this approach is that if the user wants a short summary,

the GDS wants to return sentences that provide the main ideas in a document, thus

sentence position within each paragraph plays an important factor. For longer sum-

maries, however, the user is probably looking for more details. In such summaries,

sentences in the middle of a paragraph might be good, because they typically provide

more details than the first and the last sentences in each paragraph.

Before returning the summary sentences, the GDS sorts them in the order they

appear in the document, since each sentence is tagged with its main score, the user

can view the summary in order of the scores or in document order.

Other aspects of the document can also be queried at this point. The document's

title sentence, direct theme keyphrases, and word statistics can all be returned to the

user if such information is considered interesting.

Chapter 7

Evaluation

A summarizer is only as useful as the document summaries that it generates. Unlike

other types of software, however, there is no straight-forward, quantitative method

for measuring the quality of a document summary. This is mainly because there

is no optimal model for human learning-everyone seems to absorb and approach

information in a different manner. This chapter describes four studies that provide a

practical evaluation of the GDS in light of the aforementioned difficulties. In general,

the GDS appeared to have improved upon its predecessor while expanding the number

of document formats that can be recognized.

In order to evaluate the GDS, the four surveys focused on two desirable qual-

ities: (1) high relevance assessibility, and (2) comparatively high-quality summary

sentences. As mentioned in Section 3.1, high relevance assessibility means that a sum-

mary is highly indicative of the content of the actual document. In the most idealistic

scenario, the summary would contain everything one needs to know about the source

document, and reading the original document would be unnecessary. "High-quality

summary sentences" is a subjective measure determined by the human subjects in

these surveys.

By using relative comparisons between the GDS' summaries and summaries gen-

erated via alternative methods, one can rely on relative measure of quality instead

of trying to establish some absolute measure. Furthermore, concentrating on the

GDS' performance in these two dimensions provides focused insights into possible

improvements and modifications in the future.

7.1 GDS vs. Human-Generated Summaries

In the first study, document summaries generated by the GDS were compared with

summaries generated by human readers. The survey corpus consisted of 60 HTML

documents collected using the world-wide web. The search enginel used was asked

to return random documents in order to make sure that the corpus was not limited

to a narrow range of topics.

An additional 100 HTML documents were collected at random to provide some

observations into HTML trends:

* Only a handful of the webpages were over 2 pages in length. Most were between

1 and 2 pages (excluding graphics).

* Most webpages had 10 or more graphic images. Over 50% had a "title" or title

banner that was graphics-only (and thus not readable by the GDS).

* Physical HTML tags (e.g., , <I>) were used 2 times to 1 over logical HTML

tags (e.g., , <CITE>).

A in-depth survey could give insights into how to create other heuristics for summa-

rizing web documents. (Such a survey was done at the beginning of the GDS project

to determine useful heuristics for summarizing HTML documents.)

The corpus was distributed to a number of undergraduate and graduate students.

Each document was printed using the Netscape browser so that the human readers

did not have to read HTML tags. Also, images were removed from the documents

so the subjects did not have more information than the GDS while summarizing the

documents.

The subjects were then instructed to select for each webpage: (1) a title sentence

for the entire document, and (2) ten sentences good for a summary of the document.

'The Webcrawler search engine was used in collecting the corpus for this survey. See
http://www.webcrawler.com.

Table 7.1: Percentage of GDS Summaries Matching Human-Generated Summaries
Title Sentences Ten-Sentence Summaries Five-Sentence Summaries

77.6% 61.0% 48.7%

For short or ill-formed web pages, the summary could be shorter and the title sentence

did not have to be present.

The same 60 HTML documents were processed by the GDS. The summarizer was

instructed to produce a title sentence and ten summary sentences for each document.

The results are summarized in Table 7.1. With all heuristics turned on and at the

default settings, the GDS' title sentences matched 77.6% of the those selected by the

subjects (38 out of 49). In the actual summaries, the numbers were not as high. Of

the summary sentences returned by the GDS, 61.0% of them were in the human-

generated summaries (180 out of 295).

These numbers improved upon the results obtained using the XLT Summarizer [5]

on plaintext technical papers. However, note that asking the GDS to generate ten

summary sentences per document gave it an advantage, since the average length

of the human-generated summaries was less than ten sentences. When using five-

sentence summaries from the GDS, the percentage dropped to 48.7% (112 out of

230). Nevertheless, the GDS performed well when the generated summaries were

about ten sentences long. This indicates that a better summary can be generated by

asking the GDS for more sentences. Of course, this needs to be balanced with one's

willingness to read through all of the summary sentences.

Another interesting point can be observed by plotting the sizes of the source

documents vs. the "accuracy" (percentage) of the GDS' summaries. As shown in

Figure 7-1, there is no noticeable correlation between document size and the accuracy

of the GDS. (the percentages correspond to the five-sentence summaries, not the ten-

sentence summaries.) Intuitively, it seems that the GDS should do better on small

documents because it generated summaries of a fixed size. Assuming that the human-

generated summaries are the ideal summaries, this figure shows that other factors

100

Figure 7-1: Document Size vs. Matching Percentage with Five-Sentence Summaries

could significantly impact how good the GDS summaries are. In particular, unusable

HTML elements such as images, forms, or strangely-formatted HTML source can all

cause the summarizer to stumble. In such cases, generating larger summaries can

absorb the mistakes.

7.2 GDS vs. Simple Summaries

In the second study, subjects were asked to compare the relative quality of pairs of

document summaries. This was purely a subjective preference.

The subjects were each given 28 pairs of summaries on various subjects. Each

pair was constructed in the following manner. Using another world-wide web search

engine2 , a single-word query was submitted, and the first two non-identical webpages

returned by the search engine were used. For each document, the first of the two

summaries was obtained directly from the search engine's description of the page. In

2 This second survey made use of the Infoseek search engine at http://www. infoseek. com

80

C

60

40

20

0

0 5000 10000 15000 20000 25000 30000 35000

Source Document Size (bytes)

Table 7.2: Preference of GDS Summaries over Alternative Summaries
Number Percentage of total

Preferred GDS Summary 117 69.6%
Preferred Alternative Summary 51 30.4%

Total 168 100%

this case, Infoseek used the first 100 or so characters as the summary. The second

summary was a two-sentence summary generated by the GDS.

The subjects were instructed to select one out of each pair that they "prefer as

the summary of a webpage with the given title sentence." Of the six subjects and

the 168 summary pairs, the GDS' summary was preferred 117 times. In other words,

the subjects preferred the GDS summaries 2.3 to 1 over the other summaries. (See

Table 7.2.)

The result of this survey was not overwhelming positive. Although the GDS

summaries were preferred most of the time, the subjects liked the alternative roughly

one out of three times. One reason for this performance, as mentioned in the previous

study, is that the GDS is not optimal when generating very short summaries. This

is a weakness that should be addressed in a future version.

7.3 Extracting Details from Documents

In the third survey, subjects were asked to answer eight simple questions using the

information in a set of given documents.

The corpus used in this experiment was a small set of long-ish documents (1 to

2 pages). For each webpage, one to two questions were formulated based on the

contents of the full document. Each subject then gets the document in one of three

forms:

* Full-length: the entire document.

* First-Paragraph: only the title sentence and the first paragraph. (In docu-

ments where the first paragraph was very short, the second paragraph was also

Table 7.3: Extracting Document Details Using a Variety of Methods
Question Full Document Time First Paragraph Time Summary Time

1 30s 30s 30s
2 4 min 1 min 30 s
3 30 s n/a 30 s
4 30 s n/a 30 s
5 2 min n/a 45 s
6 1 min n/a 45 s
7 2 min 30 sec 30 s
8 2 min 1.5 min n/a

included.)

* Summary: a ten-sentence summary generated by the GDS along with a list of

keyphrases.

Each subject answered the questions and recorded the amount of time spent re-

searching the answer (i.e., by reading the given documents). For this survey, the

full-length and summary formats were expected to be more comprehensive and useful

than the first-paragraph format, while the first-paragraph and summary formats were

expected to provide the answers in less time.

The average time taken by the subjects to answer each question is listed in Ta-

ble 7.3. The subjects were instructed to round the time to multiples of 30 seconds.

The entries with "n/a" indicates that the question was not answered (or not answer-

able) using that particular format. As expected, all answers were found using the full

document, although it is also the slowest methods in most cases. The first-paragraph

format was fairly fast in most cases, although it could not provide the answers to half

of the questions. However, the summary approach also had trouble extracting details

for some of the questions.

7.4 Picking Relevant Documents

In the last survey, the GDS summaries were tested to see if they would be good

indicators of relevance in topical searches. This was done by presenting the subjects

with a number of web query results. In one group, the subjects were given query

results generated directly by Alta Vista3 , while another group was given query results

with the GDS summaries. The subjects were then asked to rank the order in which

they would traverse the query results if they had to answer some general question on

the particular topic.

Designing this particular survey was difficult for a couple of reasons:

1. How to determine which documents were relevant? There is obviously

more than one way to determine relevance, all of which are subjective. In this

survey, the ten webpages from each query result were classified as "highly rele-

vant," "somewhat relevant," or "not relevant" based on their actual contents.

2. How to score each subject's ranking for the documents? Assessment of

the subjects' ranking was done by considering the ranking given to the "highly

relevant" webpages. By averaging each document's ranking over all test sub-

jects, one can get a sense of each group's consensus as to how important that

webpage is. A lower average ranking would indicate a document considered

more relevant by the subjects.

Figure 7.4 displays the results of this survey. For each of the seven query results,

the average ranking of relevant documents for both types of summaries are shown.

(Lower is better, with 1 being the lowest number possible.)

While the figure shows that the GDS summaries help readers assess relevance a

little better than the other approach, this survey is is somewhat inconclusive. There

is too little difference between the rankings and the composite scoring to seriously

differentiate between the two approaches. At the very least, the summarizer did not

fare worse than the web search engine.

3http://www.altavista.digital.com

Table 7.4: Average Ranking of Relevant Documents
Query Web-Engine Style GDS Summary Style Improvement

1 3.3 2.7 -0.6
2 4.6 4.0 -0.6
3 5.0 2.7 -2.3
4 1.0 1.0 0
5 3.3 3.0 -0.3
6 2.3 2.0 -0.3
7 4.3 3.7 -0.6

Chapter 8

Conclusion

The GDS has demonstrated that the word-statistics approach to document summa-

rization continues to produce effective summaries when expanded to include format-

ting information. There is still much room for improvement, however. This chapter

discusses some of the strengths and weaknesses of the GDS and concludes with some

suggestions for future research in summarization techniques.

8.1 Strengths of the GDS

Because of its root in plaintext summarization, the GDS excels in summarizing text.

The formatting information provided by HTML can be useful in summarization, but

the GDS still performs better on documents with more text than HTML tags.

Having said that, one should point out that the GDS actually keeps track of more

information than it is using. The internal data structure and organization is capable

of holding (and does hold) minute details about the document (HTML or otherwise).

Some of this remain unused because currently there are no appropriate heuristics to

utilize them.

One key strength of the GDS is title sentence detection. In both plaintext and

HTML documents, the GDS is able to pick out relevant title sentences consistently.

For the actual document summary, its performance increases dramatically as the sum-

mary size increases. In particular, manageably-sized ten-sentence summaries seem to

be the best compromise between reading a short summary and having a comprehen-

sive, relevant summary.

In addition, the user is given the flexibility and control to bias the GDS-generated

summaries. By allowing arbitrary word and sentence emphasis, the Generalized Doc-

ument Summarizer can be fine-tuned into a specialized, limited-domain summarizer

that excels at summarizing a particular type of document.

8.2 Summarization Pitfalls

The main weakness of the GDS lies in its inability to handle non-textual elements

found on many webpages. Elements such as graphics can be very useful, especially

when words are contained in these images. HTML tables can also cause problems.

The GDS actually reads the words within each cell of a table, but the information

contained therein often cannot be treated as regular sentences. For example, a feature-

comparison table on the Nikon F5 and Canon EOS iN cameras probably has very

little to offer in terms of textual, extractable information. Other times, however, the

HTML table tag is used to construct a two-column look. In these cases, the text

within the table cells are very relevant.

The GDS also has problems processing words or sentences that are not in the

normal document layout. For example, tables of contents, indices, and itemized

lists can all be problematic. While human readers can adjust to radically different

document layouts without much effort, such layout recognition and processing must

be built directly into the summarizer for it to work. As another example, headers or

footers that repeat on every page of a document can skew the word statistics analysis;

Worse-it can break up sentences that cross page boundaries.

8.3 Future Work

As discussed above, the GDS and summarization technology as a whole have much

work ahead. With the growing societal and scientific usage of computers and digital

media-and the ensuing explosion of information-summarization must move away

from traditional text-only processing to incorporate and make use of multimedia

information.

Already research is being done in the area of graphic image and audio informa-

tion summarization [1]. This will become more important as HTML documents move

into the HTML 3.2 standard, with its sophisticated multimedia capabilities and dis-

play control. While plaintext cannot be replaced entirely, making use of multimedia

elements should improve the quality of the summary.

Future summarizers might also want to include the ability to handle multiple

layouts. Optical character recognition (OCR) technology is fairly advanced today,

and the summarization process can benefit from a similar ability to handle complex

layouts.

The HTML markup language itself presents many opportunity for improvements

in summarization technology. Summaries can be extended to summarize hypertext-

linked documents. Another possibility is to allow the user to extract arbitrary el-

ements from HTML documents. For example, one might want to see all hypertext

links, all tables, or all <META> tags in a document. While this information is not

strictly a summary, it can provide a different dimension of insight.

Appendix A

The GDS API

The Generalized Document Summarizer is available from InXight, Inc. on Solaris,

Win32, MacOS, and BeOS. Wherever possible, it is shipped as a dynamically-linked

library (DLL). On platforms that do not support DLLs, a static library is provided.

The application programming interface (API) [12] contains five C-style procedure

calls as described below. A C header file is included with the GDS to declare these

function prototypes, the data structures, and the GDS constants.

A.1 Procedure Calls

In order to perform document summarization, the user needs to first create one or

more summarizers (of type xltsummarizer). A valid summarizer object can be asked

to summarize a document by providing it with a callback function that knows how to

read from the source document. (xltsummarize() is the function to call to do the

actual summarization.) After summarization is complete, use xlt_extractsents ()

to extract a summary and xltextractkeyphrases () to extract a list of keyphrases.

Figure A-1 shows fragments of a program that calls the GDS API calls to sum-

marize a file. In this example, the file is opened using fopen(). However, C++ I/O

(e.g., iostream) is also supported.

A.1.1 xlt_make.summarizer()

xlt_summarizer
xltmakesummarizer (

xltstemmingfunctiontype stemming function,
void* stemmerobject,
const char* languagefile,
const char* index_dropfile,
const char* debug_file,
int* error);

Creates a summarizer object from the given language configuration file. A method

for stemming is also specified if stemming is desired. If object creation fails, NULL is

returned, and error is stored with a negative error code (see Section A.4). Parameters

/* create a summarizer object */
xlt_summarizer sumHdl;
int status;
sumHdl = xlt_make_summarizer(stem_func,

stemHdl,
wordFile,
dropFile,
debug,
&status);

/* make sure creation was successful */
if (status != XLT NOERROR)

/* die */

/* open file and summarize it*/
FILE *fp = fopen("source.html'',
status = xlt_summarize(sumHdl,

tokHdl,
read_func,
(void*)fp,
sumOpts,
0);

(callback) stemming function */
the stemmer object */
name of summarizer wordfile */
name of dropword file */
debug string */
object creation status */

"'r);
/* the summarizer object */
/* the tokenizer object */
/* (callback) source reading function */
/* the file pointer for read_func */
/* summarizer option bit-vector */
/* not guessing the document size */

/* make sure creation was successful */
if (status != XLT_NO_ERROR)

/* die */

/* open file and summarize it*/
FILE *fp = fopen("source.html'',
status = xlt_summarize(sumHdl,

tokHdl,
read_func,
(void*)fp,
sumOpts,
0);

/* the summarizer object */
/* the tokenizer object */
/* (callback) source reading function */
/* the file pointer for readfunc */
/* summarizer option bit-vector */
/* not guessing the document size */

/* make sure summarization was successful */
if (status != XLT_NOERROR)
{

/* die */

/* allocate structure for holding summary and keyphrases */
xlt_extract* sents = (xltextract*) malloc(numSents * sizeof(xlt_extract));
xlt_extract* phrase_buffer = (xlt_extract*) malloc(numPhrases * sizeof(xlt_extract));
char* buffer = (char*) malloc(numPhrases * MAXLEN * sizeof(char));

/* get the summary */
int gotSents = xlt_extract_sents(sumHdl,

sents,
numSents);

/* the summarizer object */
/* struct to hold summary */
/* # of sentences desired */

if (gotSents > 0)

/* show summary sentences */

/* get the keyphrases */
int gotkeys = xlt_extract keyphrases(summHdl,

/* if we got some key phrases, display them. Otherwise, complain.
if (gotkeys > 0)

/* show keyphrases */

/* delete summarizer object */
xltfreesummarizer(sumHdl);

Figure A-i: A Simple Sample Driver to Summarize Documents

to xlt _make _summarizer() are as follows:

* stemming_function is a stemming function. See Section A.2 for details.

* stemmer_object is specific to the stemming function (the first parameter).

There is no restriction on what this object can be. The summarizer merely

passes it to the stemming function when stemming a word.

* language_file is a null-terminated string containing the path and filename

of the supplied language configuration file for the language desired. These

configuration files are provided, and end with the . sum extension. For example,

the English language configuration file is english. sum1.

* index_dropfile is a null-terminated string specifying a file of additional stop-

words. A stop-word list already exists in the language configuration file, but for

some applications additional words may be desired. This parameter is normally

set to NULL.

* debugfile is a null-terminated string specifying a file in which to store a log

of summarizer actions, useful for debugging. This parameter is usually set to

NULL.

A.1.2 xltsummarize()

int
xlt_summarize (

xltsummarizer sumHdl,
xlttokenizer tokHdl,
xltreadfunctiontype fSource,
void* pSourceContext,
int summarizeOptions,
long docSize);

'This file contains GDS-specific information such as the list of stop-words. It can be modified to
alter the behavior of the summarizer.

Reads in a document and summarizes it, allowing sentence extracts and key

phrases to be retrieved using xltextract_sents () and xltextract _keyphrases ().

The summarizer reads in the document chunk by chunk, by calling fSource on

pSourceContext. The same summarizer and tokenizer objects may be used more

than once to summarize multiple documents. The function returns XLTNOERROR if

successful, and a negative error code if unsuccessful.

Its parameters are:

* sumHdl is a valid summarizer object created by xlt makesummarizer ().

* tokHdl is a valid tokenizer object that can tokenize the given source document

and produce the tokenizer vocabulary described in Section 5.4.

* fSource is a callback function that reads the actual source document. See

Section A.2 for more details.

* pSourceContext is passed on to the document-reading function (i.e., fSource).

* summarize0ptions can be zero or more of the constants enumerated in Ta-

ble A.1 AND'ed together.

* docSize is a hint of how large the source document is. If this parameter is set

to 0, the GDS will not make any assumption about the size of the document.

Since this number is only a hint, it does not have to be accurate.

A.1.3 xlt _extract _sents()

int
xlt_extract-sents (

xlt_summarizer sumHdl,
xltextract* sents,
int wantSentences);

After summarization, this call retrieves sentence extracts from the given summa-

rizer object. Character offsets into the original document are stored in xlt_extract

Table A.1: Possible Input Values for summarizeOptions

Option Description

XLTSUMMARIZEHTML Summarize an HTML document. If
this option is not specified, the summa-
rizer assumes that the source document
is plaintext, not HTML.

XLT_SUMMARIZEPARBREAKON_EOL Interpret a single newline character as
a paragraph break. If this option is
not specified, the summarizer auto-
detects whether paragraph breaks (i.e.,
EOP markers) are one or two newline
characters.

XLTSUMMARIZEPARBREAKON_2EOL Interpret two consecutive newline char-
acters as a paragraph break. The de-
fault is to auto-detect EOP marker
length.

records in sents. The function returns the nonnegative number of extracts stored

(may be 0).

* The parameter wantSentences specifies the maximum number of summary

sentences that may be stored in sents.

Sentences are stored in the order in which they appear in the document, with the

exception of the title sentence (determined by the summarizer). The title sentence is

always the first entry in sents. If an error occurs, a negative error code is returned.

A.1.4 xlt extract._keyphrases()

int
xlt-extractkeyphrases (

xltsummarizer
char*
int
xlt_extract*
int

sumHdl,
buffer,
bufferSize,
phraseOffsets,
wantPhrases);

After summarization, this call retrieves key phrase data from the given summarizer

object. Keyphrase text is stored in buffer, and the array of extracts phrase0ffsets

is stored with offsets to the phrases. The function returns the number of phrases

stored (may be 0). Note that a successful xlt_summarize() call must have been

done on the summarizer object before this function can be used successfully.

* The parameter sumHdl is the summarizer object from which to retrieve the

keyphrase data.

* The parameter bufferSize specifies the number of characters that buffer can

hold.

* The parameter phrase0ffsets is an array of xltextract records, each of

which specifies the offset (into buffer) and length of a phrase. The phrases are

not assigned scores but are sorted according to relevance. The most relevant

phrase is written first.

* The parameter wantPhrases specifies the maximum number of phrases that

can be stored in phrase0ffsets.

A negative error code is returned if the operation failed.

A.1.5 xlt_free_summarizer()

void
xlt_freesummarizer (

xlt_summarizer sumHdl);

Deallocates resources associated with the given valid summarizer object.

A.2 User-Defined Callback Functions

The GDS API defines two callback function types. This allows the user to have

ultimate control over the stemming and the document-access functionality. The first

type is xlt_stemming_functiontype, used by the summarizer to call a user-specified

stemmer. (See the xlt makesummarizer() call.) This is defined as:

int
function (

const char*
char*
int
void*

word,
buffer,
buffer_size,
stemmer);

Where word is the null-terminated string to be stemmed, buffer holds the result

of the stemming, and stemmer is the object that the summarizer was given to pass

to the callback function. The function returns 0 on success.

The second callback function is for tokenizing the source document. The GDS

defines the xlt-read_functiontype as:

int
function (

void*
char*
int

source,
buffer,
buffersize);

Where source is the document (usually an iostream or some other file descrip-

tor/handle), buffer holds the next chunk of text from reading the document, and

buffersize is the number of characters that can be read at once. This callback

function is responsible for reading from the source document and writing into the

provided buffer. The function returns the actual number of characters written into

the buffer.

A.3 Data Structures

xltextract is the only public data structure of interest to the users of the GDS. It

is defined as:

Table A.2: The GDS API Error Codes

typedef struct
{

long start;
int len;
int score;

} xltextract;

xlt_extractsents () and xlt_extractkeyphrases () both use this data struc-

ture to return information. In the former case, the offset and length describe a

summary sentence. In the latter case, the offset and length describe a keyphrase.

start is the byte offset into the source document, len is the number of bytes, and

score is the score of the summary sentence (normalized so the best sentence has a

score of 100).

A.4 Error Codes

Table A.2 enumerates the most common error codes defined by the GDS API.

Error Description and Comment

XLT_NOERROR Success.
XLT_SUMMARIZERINIT_ERROR The GDS was unable to read the .sum file

correctly. This file has been corrupted.
XLTINSUFFICIENT_MEMORY The GDS has run out of memory and
XLT_OUT_OFMEMORY cannot proceed.
XLT_OTHERERROR Miscellaneous fatal errors-please report
XLT_SOURCEERROR these.
XLTMISCERROR

·

Appendix B

Supported HTML Tags

Table B.1: Supported HTML Tags
Tag Support Ending [Comments

A standard required Used in the HTML hypertext link heuristic.

Note: Browsers often allow <A NAME> tags without
matching . Often the only thing between a pair
of <A> and tags is an image, which is not very
useful.

ADDRESS standard required Considered a junktag. Although this infor-
mation (the text in between) could be useful,
it can disrupt the flow of text.

APPLET Netscape required Considered a junktag. The text in between
defines a Java applet, which the GDS does
not understand.

AREA Netscape none Considered a junktag and has no possible fu-
ture use.

B standard required Used in the HTML bold heuristic. Used much
more frequently than its cousin .

BASE standard none Considered a junktag since it contains no
text.

BASEFONT Netscape optional The GDS keeps track of font size information.
At this point, however, no heuristic exists to
take advantage of it.

BGSOUND Explorer none Considered a junktag since it contains no
text.

BIG Netscape required Similar to <BASEFONT> and is used to keep
track of the font size information.

BLINK Netscape required Used in the HTML bold heuristic. Very rarely
encountered.

The GDS supports tags from the HTML 2.1 standard. Specifically, the exhaustive list

of tags is taken from the excellent HTML: The Definitive Guide [8]. The table below

describes how the GDS treats each HTML tag in the absence of user customization.

Tag Support Ending Comments

BLOCKQUOTE standard required The tag itself is ignored, but the text in be-
tween the <BLOCKQUOTE> and </BLOCKQUOTE>
pair is read as if it were regular text.

BODY standard optional This tag is used to determine the start-of-text
for HTML documents. Typically, the title
sentence must also come before this tag in a
document.

BR standard none Treated as an end-of-paragraph marker (i.e.,
the EOP marker).

CAPTION standard none The tag itself is ignored, but the text in be-
tween is read as if it were regular text.

CENTER standard required This tag is treated as a heading tag, similar
to <H1>. It is therefore used in the HTML
heading heuristic.

CITE standard required Treated in the same way as <I>.
CODE standard required Considered a junktag because the GDS has no

provision to handle programming languages.
COMMENT Explorer required Considered a junktag because the comment

in between does not fit in the flow of the doc-
ument text.

DD standard optional The tag itself is ignored and the text is read
as regular text.

DFN Explorer required Treated in the same way as <DD>.
DIR standard required Considered a junktag because the text in be-

tween is not summarizable as regular text.
DIV Netscape optional Treated as an end-of-paragraph marker
DL standard required The tag is used in the HTML list heuristic.
DT standard required The tag is used in the HTML list heuristic.

In the future, these terms might want to be
considered for keywords/keyphrases.

EM standard required Used in the HTML emphasis heuristic
FONT extension required Used to keep track of font size information.
FORM standard required Considered a junktag. Everything in between

<FORM> and </FORM> is ignored.
FRAME Netscape optional This tag defines a frame but provides a

pointer to the document instead of the actual
document. Therefore, the GDS cannot make
use of this tag.

Tag Support Ending Comments
FRAMESET Netscape required This tag defines a set of frames for a web page.

See <FRAME> above.
H1 standard required Used in the HTML heading heuristic.
H2
H3
H4
H5
H6
HEAD standard optional Used to figure out the start-of-text.
HR standard none Treated as an EOP marker.
HTML standard optional The tag is ignored when encountered. It con-

veys no useful information.
I standard required Used in the HTML emphasis heuristic. Pre-

ferred by most over the tag.
IMG standard none This tag is ignored when encountered. It con-

tains no textual information.
ISINDEX standard none This tag is ignored when encountered. It con-

tains no useful text.
KBD standard required Considered a junktag. Furthermore, all text

in between <KBD> and </KBD> are ignored,
since they are most likely just computer
inputs.

LI standard optional This tag is ignored when it is encountered.
LINK standard none Ignore this tag because it is used to define

relationships between web documents.
LISTING deprecated required Used to keep track of the other formatting

tags (e.g.,).
MAP extension required Considered a junktag since it contains no

text.
MARQUEE Explorer required Considered a junktag since the text included

here is most likely irrelevant to the rest of the
document.

MENU standard required Used in the HTML list heuristic.
META standard none Considered a junktag since the tag does not

include useful textual information.
NEXTID standard none Considered a junktag since the tag does not

include useful textual information.
NOBR standard required The tag is ignored while the text in between

is processed.

Tag Support Ending Comments

NOFRAMES Netscape optional This part of the <FRAME> definition pro-
vides the alternative document to browsers
that do not support frames. The GDS will
read the text in between <NOFRAMES> and
</NOFRAMES> as if it were part of the HTML
document.

OL standard optional Used in the HTML list heuristic.
OPTION standard optional This tag and any enclosed text is ignored be-

cause it does not contain any useful textual
information.

P standard optional This tag is treated as an EOP mark.
PARAM Netscape none Considered a junktag because it supplies pa-

rameters to Java applets and not useful for
summarization.

PLAINTEXT standard none Used to keep track of the other formatting
tags (e.g.,).

PRE standard required Used to keep track of the other formatting
tags (e.g.,). See <PLAINTEXT>.

S Explorer required This tag and the enclosed text are ignored
because it marks text for "strike-through."

SAMP standard required Not implemented. The tokenizer has not been
written to handle this tag.

SELECT standard required Ignored because it contains no text.
SMALL Netscape required Used to keep track of font size information.
STRIKE standard required This tag and enclosed text are both ignored.

See <S>.
STRONG standard required Used in the HTML bold heuristic.
SUB standard required This tag and the enclosed text are ignored be-

cause subscript text is usually insubstantial.
SUP standard required This tag and the enclosed text are ignored.

See <SUB>.
TABLE standard required All table-related tags are ignored, but the text

is processed as regular text.
TD standard optional Ignored. See <TABLE>.
TEXTAREA standard required Ignored. See <FORM>.
TH standard optional Ignored. See <TABLE>.
TITLE standard required Used to detect the document's title sentence.

Note that the sentence or text in between the
<TITLE> pair may not be the best title sen-
tence. The GDS actually looks at other sen-
tences too.

Tag Support Ending Comments

TR standard optional Ignored. See <TABLE>.
TT standard required Ignore the tag and treat the text as normal.
U standard required Used in the HTML emphasis heuristic.
UL standard required Used in the HTML list heuristic.
VAR standard required Ignore the tag and treat the text as normal

(even though it is supposed to be variable
names).

WBR standard none Ignore the tag since it provides no information
for the GDS.

XMP deprecated required Used to keep track of the other formatting
tags (e.g.,).

-- - - standard none This comment tag is ignored.

Bibliography

[1] Francine Chen, Marti Hearst, Julian Kupiec, Jan Pedersen, and Lynn

Wilcox. Mixed Media Access. Via the world-wide web at http://www.

csdl.tamu.edu/DL94/position/marti.html.

[2] Robert Cole, Ed. A Survey of the State of the Art in Human Language

Technology. Via the world-wide web at http://www.cse.ogi.edu/CSLU/

HLTsurvey/HLTsurvey. html.

[3] Jack I. Fu. Internal Summarizer 2.0 Overview. Internal Xerox XSoft Document,

October 1996.

[4] P. S. Jacobs and L. F. Rau. Scisor: Extracting Information from On-Line News.

Communications of the ACM, 33(11):88-97, 1990.

[5] Julian Kupiec, Jan Pedersen, and Francine Chen. A Trainable Document Sum-

marizer. In Proceedings of the 18th Annual International ACM/SIGIR Confer-

ence, pages 68-73, Pittsburgh, Pennsylvania, June 1995. ACM Press.

[6] Robert F. Lorch, Jr. and Elizabeth Pugzles Lorch. Effects of Headings on Text

Recall and Summarization. Contemporary Educational Psychology, 21:261-278,

1996.

[7] Kathleen McKeown and Dragomir R. Radev. Generating Summaries of Multiple

News Articles. In Proceedings of the 18th Annual International ACM/SIGIR

Conference, pages 74-82, Pittsburgh, Pennsylvania, June 1995. ACM Press.

[8] Chuck Musciano and Bill Kennedy. HTML: The Definitive Guide. O'Reilly &

Associates, Inc., Sebastopol, California, 1996.

[9] Chris D. Paice and Paul A. Jones. The Identification of Important Concepts in

Highly Structured Technical Papers. In Proceedings of the 16th Annual Inter-

national A CM/SIGIR Conference, pages 69-78, Pittsburgh, Pennsylvania, June

1993. ACM Press.

[10] Ellen Riloff. Little Words Can Make a Big Difference for Text Classification.

In Proceedings of the 18th Annual International ACM/SIGIR Conference, pages

130-136, Pittsburgh, Pennsylvania, June 1995. ACM Press.

[11] Gerard Salton, James Allan, Chris Buckley, and Amit Singhal. Automatic Analy-

sis, Theme Generation, and Summarization of Machine-Readable Texts. Science,

264:1421-1426, June 1994.

[12] LinguistX Technology Reference, Version 2.0. Internal Xerox XSoft Document,

October 1996.

n'"-~~ * , 4

