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Abstract

We are concerned with the detection of a set of M messages that are transmitted
over a channel disturbed by chaotic thermal noise when quantum effects in the com-
munication systems are taken into account. Our attention was restricted to the special
case in which the density operators specifying the states of the received field are com-
mutative. From quantum-mechanical description of the noise and signal fields, the
structure and performance of the quantum-mechanical optimum receiver are found.

Two special communication systems have been studied: (i) a system in which sig-
nals have known classical amplitudes but unknown absolute phases, and the signal field
is in coherent states; (ii) a system in which the classical amplitudes of the signal field
are Gaussian random processes, and the received field in the absence of noise is in
completely incoherent states. Bounds on the probability of error in these systems are
derived. For both systems, the minimum attainable error probability is expressed in
the form exp[-TCE(R)], where E(R) is the system reliability function which is a function
of the information rate R of the system, is the time allotted for the transmission of
a message, and C is the capacity of the system. For these two types of systems, the
expressions for C and E(R) are derived.
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I. INTRODUCTION

The concept of quantization of electromagnetic radiations in communication channels

and the notion of quantum noise were introduced, in 1952, by Gabor. 1 According to

Shannon' s derivation, the capacity of a continuous Gaussian channel with bandwidth W,

average signal power S, and additive thermal noise power N, is W In (1 + NS). Gabor

noted that such an expression for the channel capacity is unsatisfactory, since it

approaches infinity as the noise power N approaches zero. Shannon's result is an intu-

itively expected one, however, as long as we assume that the received signal can be

measured with increasing accuracy when the noise power decreases and the electromag-

netic waves can be described classically. In actual communication systems, quantum

effects become noticeable at low noise energy levels, and often become more important

than the additive thermal noise. In this case, classical physics no longer adequately

describes the electromagnetic fields of signal and noise.

In the domain of quantum mechanics, even an ideal observation introduces unavoid-

able perturbations to the system. Moreover, quantum theory limits the precision with

which the fields can be measured. The uncertainty in the observed values of the dynam-

ical variables of the signal field (for example, its amplitude and phase) can be considered

an additional source of noise in the system which is sometimes called the "quantum

noise." The energy associated with the quantum noise at frequency f has been shown to

be of the order of hf, where h is the Planck's constant. At temperature T°K, it becomes

larger than the average thermal noise energy when the ratio kT/hf (0O. 7XT) becomes of

order unity, where k is Boltzmann's constant, and X is the wavelength of the trans-

mitted electromagnetic wave in centimeters. For example, at 273°K and in the visible

light frequency range, the quantum-noise energy is approximately 106 times larger than

the average thermal-noise energy. Hence, in this frequency range, one can no longer

ignore quantum noise in the derivation of channel capacity.

Interest in quantum effects in communication systems has been stimulated more

recently by the development of communication systems using laser beams. The fre-

quencies of the transmitted signals in these systems are in the optical frequency range.

We shall briefly review related work done in this area.

1. 1 RELATED WORK

Most of the previous work is concerned with the derivation of the capacities of chan-

nels that are quantum-mechanical models of communication systems. Emphasis was

placed on the dependence of the channel capacity on the receiver at the output of the chan-

nel. Therefore, in these models, specific receivers are included as parts of the

channels.

Stern,2, 3 Gordon, and others 5 - 7 investigated the effects of Planck's quantization of

radiation energy on the maximum entropy of an electromagnetic wave and the information

capacity of a communication channel. In their studies, a continuous channel is replaced

1
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by an equivalent discrete one usually called a "photon channel." In a photon channel, the

transmitter transmits an exact number of photons in each unit of time. The receiver

measures the number of photons arriving at the output of the channel. For photon chan-

nels with various probability distributions of the additive noise and propagation losses,

expressions for the channel capacities have been derived. As one would expect, the

channel capacities remain finite as the thermal noise approaches zero in the model. But

the concept of a photon channel is nonphysical. It has been noted 8 that there is no known

physical system that is able to generate a precise number of photons. Furthermore, it

is not possible to treat the photons as classical particles and use their number as desired

symbols of an information source.

Gordon 4 also investigated the effect of quantization on the information capacities of

communication systems using receiver systems other than photon counters. Quantum-

mechanical limitations on the accuracy of measurements on the signal field were taken

into account by modeling the receivers as noisy ones. For receiving systems, such as

linear amplifiers, and heterodyne and homodyne converters, quantum noise in the

receiver is found to be additive and Gaussian with energy proportional to hf. There-

fore, the energy of the effective noise in the system (thermal noise and quantum

noise) is nonzero at absolute zero temperature. Capacities of channels that include

specific types of receivers and in which the thermal noise is white and Gaussian have

been found to be finite at zero additive noise level. She has also considered the

fluctuations caused by repeated measurements that are found to be dependent on each

other. In She's study, the capacity of a channel including a receiver that measures

the complex electric field was found to be qualitatively the same as that obtained by

the others.

The statistical signal detection problem that includes quantum-mechanical con-
10-12

siderations was formulated by Helstrom. The problem of deciding whether a

signal has been transmitted becomes that of selecting one of the two possible density

operators that gives a better description of the state of the field inside of the

receiving cavity after it is exposed to a field in which a transmitted signal may or

may not be present. It is found that the optimum receiver measures a dynamical

variable that is represented by a projection operator whose null space is the sub-

space spanned by the eigenvectors corresponding to the positive eigenvalues of the

operator - dp 2 . Here, and 2 are the density operators specifying the states

of the field when the signal field is present and when the signal field is not pres-

ent, respectively; and d is a constant depending on the cost function to be minimized.

For equiprobable messages, d is equal to one when the cost function is the proba-

bility of error. Unfortunately, the optimum receiver cannot be found readily when

the signal is coherent, the type usually generated by a laser. In the weak-signal

case, when a threshold detector is used to approximate the optimum detector, Helstrom

has shown that the effective signal-to-noise ratio does not become infinite when the

thermal-noise energy approaches zero as in the classical case.
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1. 2 OBJECTIVES

We shall be concerned with the detection of a set of M messages that are transmitted

through a channel disturbed by chaotic thermal noise. Quantum-mechanical limitations

on the precision of measurements made by the receiver are taken into account. From

quantum-mechanical descriptions of the noise field and the signal field, the dynamical

variables of the fields to be measured by the optimum receiver and the decision proce-

dure used by the receiver are determined. Bounds on the minimum attainable error

probability in the form exp[-TCE(R)] are derived, where E(R) is the system reliability

function that is a function of the information rate R of the system, T is the time allotted

for the transmission of a message, and C is the capacity of the system. We shall be

primarily concerned with the derivation of the system reliability functions of two commu-

nication systems: (i) a system in which the signal field is in known coherent states, but

absolute phases of the signals are unknown; and (ii) a system in which the signal field

is in completely incoherent states.

In Section II, a quantum-mechanical model of a communication system is described.

Constraints imposed on the communication systems are discussed in detail.

In Section III, the structures of quantum-mechanical optimum receivers for a set

of M signals that are represented by commutative density operators are specified. The

minimum error probability attainable by the optimum receivers is expressed in terms of

eigenvalues of the density operators. These results will be used in subsequent sections

when specific communication systems are studied.

The reliability function for orthogonal signals in coherent states with random phases

is derived in Section IV. (In the classical limit, this is the case of orthogonal signals

with random phases but known amplitudes.) An expression for the channel capacity C

is also derived. General behaviors of the system reliability functions are shown. The

optimal performance for a system in which signals are in completely incoherent states

is determined in Section V. As we shall see, this is a quantum-mechanical model of a

fading channel in which classical amplitudes of signals are sample functions of Gaussian

random processes.

In Section VI, possible extensions of our study and related research problems will

also be discussed.

3
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II. QUANTUM-MECHANICAL COMMUNICATION SYSTEM

We shall describe a model of a communication system that takes into account the

quantum nature of electromagnetic radiation, as well as the quantum-mechanical limita-

tion on the precision of measurements. The general characteristics of this model are

presented in section 2. 2. As in classical communication systems, a received signal

is represented by an attenuated electromagnetic wave that propagates in the midst of

randomly fluctuating background radiation of thermal origin. Quantum-mechanical

descriptions of the received electromagnetic field will be briefly summarized. The

detailed nature of the electromagnetic field generated by specific signal sources are dis-

cussed in Sections IV and V.

2. 1 Quantum Description of the Electromagnetic Field

Let Ec(r, t) denote a real classical wave function characterizing a time-limited elec-

tric field at the point r and time t. (Our discussions are confined to time-limited sig-

nal fields unless otherwise specified.) The average instantaneous electromagnetic power

associated with such a field is zero outside of a time interval of length T. Without loss

of generality, let us suppose that this time interval is (0, T).

According to the sampling theorem, such an electric field can be specified by a dis-

crete spectrum in the frequency domain. In particular, the function Ec(r, t) can be

expanded in terms of the normal vector mode functions, Uk(r), of an appropriately chosen

spatial volume of finite size L3 . The mode functions Uk(r) form a complete set. More-

over, they satisfy the orthonormality condition

3 k(r) . Un(r) d = 6 kn; for all k and n

and the transversality condition

V' Uk(r) = 0; for all k.

A particular set of mode functions suitable for our purpose is the plane traveling-

wave mode functions. That is,

_i?'r = -3 /2
Uk(r) = L- 3 / 2 ek exp(-ik' r),

where ek is a unit polarization vector perpendicular to the propagation vector k. The

possible values of k are given by

k - (kxe+k e+kzez),

where k , k , and k are integers from -o to 0o. Expanding the function E (r, t) in
X y z C

terms of these Uk(r), we obtain

4



o00

E(r,t) = i

k=O

"/\2 e{Ck exp[i(k- r - wkt)] - C exp[-i(k r-kt 0 t

(1)

In this equation, the coefficients Ck and Ck are dimensionless constants.

ties k are equal to

Trn 

T

The quanti-

for n = 0, 1,2 . . .

Since it is necessary that the condition

k = kl =

be satisfied for all k, we can choose L to be

L = CT, (2)

where c is the velocity of the light.

Throughout this study, we shall be concerned with just one of the polarization com-

ponents of the electric field, which can be adequately described by a scalar electric field

E (r, t). Without loss of generality, we assume that the field propagates in the z direc-

tion. Thus, the expression for E(r, t) simplifies to

EC(r,t) = i '/ -C k exp ik( -t)

k=0O

- ck exp-ik(C t)}

For the purpose of quantizing the field, let us rewrite Eq. 3 as

00

E(r, t) = i

k=O
/ {ak exPi(k(C - t)] - a ex-ick( - t)~2L kc

When the field is quantized, the coefficients

isfying the commutation relation 4 :

(4)

a k and ak are regarded as operators sat-k a n a a e

[ak an] a [, a] = 0; for all k and n

ak, an = kn

where [x, y] = xy - yx. Hence E(r, t) in Eq. 4 is a Hermitian operator. The Hamiltonian

of the field is

oo0

H = (aOak + 

k=O

5

(3)
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+ th
The normally ordered product akak is just the number operator Nk of the k t h mode,

whose eigenvalues are all non-negative integers. That is,

Nknk) =nknk); nk = O, 1, 2 ...

for all k. Operators ak and a k are usually called the annihilation and creation operators

of the k mode, respectively. When operators ak and ak are applied to the state Ink),

we have

aklnk) = k Ink-1), ak)O (5)

(+)aknk = nk-+I Ink+ 1).Let us define an operator E()(r, t) as

0o

E t.p /t)](6)E(+)(r,t) = i La ep lk kexpik (ct (6)
k=O

The electric field operator E(r, t) can be expressed in terms of E(+)(r, t):

E(r, t) = E(+)(r, t) + E( )(r, t), (7)

where E(- )(r, t) is the Hermitian adjoint of the operator E(+)(r, t). A state of the field

is said to be a coherent state when the state vector I{ak} ) is a right eigenvector of the

operator E(+)(r, t). That is,

E(+)(r t) I{ak}) = E(r, t) I{ak}) (8)

We write the eigenvalue

oo ·, · · p~i-, (9)

E(r,t) =i Z k exp iWk(c -t). (9)
k=O

Equations 8 and 9 imply that the k th normal mode of the field is in the coherent state

lak) which satisfies the relation

aklak) = ak lak

The coherent-state vector I{ak}) of the entire field is just the direct product

00

H Ia k) = I ao, al...ak ...).
k=O

From Eq. 5, one can easily show that the coherent-state vector ak) of the k normal

mode can also be expressed as

FrmE. ,oe a asl ho ht-h-ohrn-saevetr ofnra

6



lak) = exp akaka k ) (10)

The set of coherent-state vectors I{ak}) has been shown 5 ' 13 to form a complete set.

That is,

0o d2

i fak}) ({ak}j H k = 1,
k=0 

where 1 is the identity operator. Therefore, any state vector of the field and any lin-

ear operator can be expanded in terms of the coherent-state vectors I{ak}). Such an

expansion, together with other properties of coherent states, have been discussed exten-
8, 15, 13

sively by Glauber.

In all cases that we shall consider, the field is not in a pure state. Rather, it is in

a statistical mixture of states specified by a density operator p whose eigenvalues are

non-negative. The density operator p is defined in such a way that the trace tr(p)

equals one, and the trace tr(pX) equals the expected outcome when the observable corre-

sponding to the operator X is measured. In all cases that will be considered, the den-

sity operator of the field can be expanded in terms of the coherent-state vector in the

form

p = jp(ak ) ak})({ak}lI I d 2 ak, (11)
k=0

where d ak stands for (d Re [ak])(d Im [k]). (Re [ ] and Im [ ] denote the real and

imaginary parts of the complex quantity in brackets.) Such a representation of the den-

sity operator is called the P-representation. The function p({ak}) in Eq. 11 is called

the weight function.

It is easy to show (see Appendix A) that the expansion of E(+)(r, t) in Eq. 6 is not

unique. In particular, one may expand E(+)(r, t) as

E(+)(r.t) i b.V j(rt ) expi(z , (12)
2L c -

j=0

where the set of new normal mode functions Vj(r, t) are given by Eq. A. 2 in general. The

operators bj are related to the ak by the equation

oo

Vaj Vijkk (13)
k=O

V jk's are elements of unitary matrix V.

As shown in Appendix A, the operators bj satisfy the same commutative relations
21

7
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that are satisfied by the operators ak . Hence they can be considered as annihilation

operators associated with the set of new normal modes in terms of which E (r, t) is

expanded. Let {pk) } denote the set of right eigenvectors of the operators in the set

{bj}. Clearly,

i = Vjk'k.
k

The density operator of the field can also be expanded in terms of coherent states I{Pk})
instead of I{ak}). From Eq. A. 6, we have

p = J P'({l 1 l kk}l) k}> < d k' (14a)k

The new weight function p' ({Pk) is obtained by substituting the relation

a k = PjVkj (14b)
j

in the weight function p({ak}).

The electric field at the receiver is usually generated by two independent sources.

Let us assume that the first source alone brings the field to a state described by the

density operator

1 SI pl({ak}) I{ak}) {l I d2a k ,k

and the second source acting alone generates a field in a state described by the density

operator

P2 p2({ak})I{ak}) ({ak}I H dak.
k

Then the resultant field generated by these two independent sources is a state specified

by the density operator

P = p({ak}) I{ak} ) ({ak}1 k d ak,
l' ~ ~K~' '~K~ k

where the weight function p( {ak }) is 8 ' 16

p({ak }) = jP1 P2({akPk) I d k.
k

2.2 QUANTUM-MECHANICAL COMMUNICATION SYSTEM

We are concerned with a communication system shown in Fig. 1. The input to the

system is a sequence of M-ary symbols denoted m, m 2 , ... mM. For simplicity, it

8
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TRANSMITTED RECEIVED ESTIMATE OF

INPUT FIELD FIELD TRANSMITTED

Fig. 1. Quantum-mechanical model of a communication system.

is assumed that the M symbols occur with equal probability, and successive symbols

in the sequence are statistically independent. If one input symbol occurs at every T

seconds, the information rate of the input sequence is

R = n (nats/sec).
T

The output of the system is also an M-ary sequence whose information rate is

R nats/sec. The output sequence is to reproduce the input sequence within some speci-

fied degree of fidelity. For our purpose, this fidelity is measured by an error probabil-

ity P(E) which will be defined later.

An input symbol m is represented by a transmitted electromagnetic field whose
~~~J ~t

state is specified by a density operator p. (By state, we mean either a pure state or

a mixture of pure states. For our purpose, there is no need to make such a distinction.)

Therefore, in any particular time interval of length T, the transmitted electromagnetic
t t t

field is in one of the M states given by the density operators p, p2, ... pM corre-
sponding to the input symbol ml, m 2 , ... mM, respectively. The electromagnetic field

at the output of the channel (the received field) in the corresponding time interval of

length T is in one of the M states specified by density operators p1 , p 2, *- PM'

Because of inverse-square loss, disturbance of additive background noise in the chan-

nel, and so forth, the density operators p i , p2 ' ... M usually are not the same as

t t t
those specifying the transmitted states p1 , 2 .. PM

For simplicity, the channel is assumed to be memoryless. It will also be assumed

that there is no intersymbol interference. Since the input symbols are statistically

independent, the states of the electromagnetic field at the receiver in any two time inter-

vals are also statistically independent. Moreover, we shall only be concerned with sys-

tems that do not employ coding. In such a system, an error probability suitable as a

measurement of the system performance is the baud error probability P(E), which is

defined to be

P(E) = Pr(m*m), (15)

where m is the estimation in the output sequence of a particular symbol m in the input

sequence. Our objective is to design the receiving system so that the probability of

error P(E) is minimized. It has been shown that the receiving system designed to min-

imize P(E) makes independent estimations on successive symbols. Hereafter, there-

fore, one only need be concerned with the problem of making an optimum estimation of

9
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a single transmitted input symbol. In the rest of this section, we shall discuss the char-

acteristics of additive noise field and some of the constraints imposed on the transmitted

signal field which apply to both types of signals considered in Sections IV and V.

2. 2. 1 Transmitted Signal Field

We assume that the transmitted signal field is linearly polarized, that is, no polar-

ization modulation is utilized in the system. In many practical systems, depolarization

effect on the field during transmission is negligible and additive thermal noise field has

statistically independent polarization components. Therefore, one can describe the rel-

evant component of the field at the receiver by a scalar electric field operator.

It will also be assumed that the transmitted electromagnetic field is not modulated

spatially. In the absence of additive noise, the field over the receiving aperture is taken

to be a plane wave whose angle of arrival is known. Hence, the electric field at the

receiver in the absence of noise field can be described by the electric field operator in

Eq. 4. Both of these constraints (no polarization modulation and no spatial modulations

in the signal field) impose no real restriction and can be generalized. We shall not con-

sider these generalizations here.

We shall also restrict ourselves to the case in which the electric fields generated by

the signal source corresponding to different input symbols are narrow-band and orthog-

onal. (The field generated by the signal source is strictly time-limited. It is approx-

imately bandlimited in the sense that its energy outside of a finite bandwidth is
16 17essentially zero. ) By orthogonal signal fields, we mean the following: Let

SjVj(r,t) denote the classical complex amplitude of the electric field at the receiver

and time t in the absence of additive background noise, when input symbol mj is

transmitted. That is,

Tr p E(r,t) = SV (r,t) + SjVj(r, t); j = 1,2,...M. (16)

(The parameter S. may either be a known constant or a random variable.) We say that
J

two signal fields corresponding to the input symbols mj and mj, are orthogonal if

S3 .t)V (r ,t) d3 rdt = 6 (17)
where the it over a signaing interval. If we write

where the integration over time is carried out over a signaling interval. If we write

Vj(r, t) as

00

Vj(rt = Vjk exp-i (zk )]

k=O

by Parseval's theorem, Eq. 17 is equivalent to the condition

10



VjkV k = jj,. (18)
k=O

A particular set of orthogonal signals that are studied in Sections IV and V is that for

frequency position modulation. This set of signal waveforms satisfies also the condition

VjkVlk = IVjk 12 %i' (19)

approximately.

It is easy to see that the orthogonality condition is equivalent to the requirement that

the normal modes of the electric field excited by the signal source corresponding to dif-

ferent input symbols will be different. (The E(+)(r, t) operator and mode functions are

given by Eqs. A. 7 and A. 8, respectively, for example.) We shall explore the implica-

tions of the orthogonality condition further in Sections IV and V when expressions of den-

sity operators for specific signals satisfying this constraint are derived.

Just as in a classical communication system, the orthogonality constraint on signal

fields is a stringent one when the available bandwidth is limited. When the bandwidth

for transmission is unlimited, however, orthogonal waveforms yield the best possible

performance in classical systems. In our study, this constraint is imposed so that the

analysis in Section V will be tractable. For the type of signals studied in Section IV, it

has been possible to specify the optimum receiver and to evaluate the optimum perfor-

mance only when the signal fields corresponding to different input symbols are orthog-

onal. Fortunately, this condition is often satisfied in practical systems.

2. 2.2 Noise Field

Four types of noise are present in a quantum-mechanical communication channel,

the source quantization noise, partition noise, quantum noise, and additive thermal

noise. When the received electromagnetic field is described quantum mechanically, one

need not be concerned with the source quantization noise. Partition noise is associated

with the inverse-square law attenuation present in practical communication systems.

The effect of such loss on information capacity of a communication channel has been

studied by Hagfors 5 and Gordon. "Quantum noise" is sometimes introduced to account

for the limitations of the receiving system attributable to quantum-mechanical consid-

erations (see Gordon, 4 She 9 ). These types of noises will also emerge naturally from

our formulation of the problem; thus, there is no need to consider them separately.

By additive thermal noise, we mean the chaotic background radiation of a thermal

nature which is also present at the receiver. The classical amplitude of the electric

field associated with the thermal noise is known to be a zero-mean stationary Gaussian

random process. The source of this additive thermal noise field can be considered as

a large collection of independent stationary sources. At thermal equilibrium, the noise

field is in a state specified by a density operator, p(n), which in the P-representation

11

-~_l~Il^l--- -- K -



is given by

p(n) = I exp ak ) ak d ak. (20)

k r(nk) (nk)

Such a density operator specifies a completely incoherent state. That this is so follows

from the same kind of argument that leads to a Gaussian distribution for the sum of a

large number of independent random variables. (nk) in Eq. 20 is the average number

of photons in the k t h normal mode in the noise field (per unit volume). At background

temperature T, it is given by

(n k)= (21)

exp - 1

Similarly to the white-noise assumption, we shall assume that the density operator

p(n) of the noise field in the P-representation has a weight function of the form

Pn({ak}) ( 1 exp a k(

independent of the choices of normal mode functions. That is, the noise modes are

uncorrelated:

Tr[p (n)a+kak (nk)6kk'

(Classically, this restriction can be interpreted as follows: When a sample function

of the random process of the noise electric field, n(r, t), is expanded in terms of any

arbitrary orthonormal set {Vk(r, t)}

n(r,t) = nkVk(r,t),

k

the expansion coefficients nk are statistically independent Gaussian random variables.

This condition is satisfied by the additive white Gaussian noise.) To achieve analytical

tractability in later sections, we shall further assume that the number of photons in all

relevant modes are equal. That is,

Tr[P (n)akak = nk) (n).

It can be shown (see Appendix B) that the outcomes of measurements of any

12



dynamical variables associated with different modes of the field are statistically inde-

pendent. Thus, when the signal fields are linearly polarized plane waves as described

in section 2. 2. 1, the relevant component of the total received field (signal field and noise

field) can also be described by the scalar electric field operator given by Eq. 4. When

the transmitted symbol is mj, the received electric field is in a state specified by the

density operator

t 2
t= 5 ptj ( akl}) I ak}) ({ak}I II d a ki i~k

in the absence of noise field. In the presence of the thermal noise field, the density

operator for all relevant modes of the total field at the receiver is given by

= p({ak}) Il{ak}) ({ak} d ak

Pj(ak)= Pj(k}) exp n (22)
k <(n) k r(n)

13
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III. GENERAL SPECIFICATION OF THE OPTIMUM RECEIVER

In the communication system shown in Fig. 1, the M equiprobable input symbols

m1 , m 2 ... , mM are represented by the states of the transmitted electromagnetic wave.

The state of the electromagnetic field at the receiver is specified by the density operator

p when the input symbol is m (j = 1, 2, . . ., M). Now, the structure and performance of

the optimum receiving system will be found for a system in which the set of density oper-

ators are commutative. That is,

PjPk = PkPj; for all j, k = 1, 2, ... M (23)

By optimum receiver, we mean a receiving system that estimates the transmitted

symbol in such a way that the error probability defined in Eq. 15 is minimal. At this

point, other characteristics of the density operators pj are purposely not specified, since

discussions throughout this section apply to any communication system wherein density

operators are commutative.

In classical communication theory, for M equiprobable input messages, the receiver

that minimizes the probability of error is a maximum-likelihood receiver. Such a

receiver measures the magnitudes of all variables X 1 , X2 , ... XK of the received elec-

tromagnetic field that are relevant to the determination of the transmitted input symbol.

The receiver estimates that the input symbol is mj when the M inequalities

P(xl x 2 ' ... xK/mj) P(x 1 , x2 , .. K/mi); = ..

are satisfied, where P(x1 , x 2* .. xK/mj) is the conditional probability distribution of the

outcomes of the measurement of the variables X1 , X 2, ... XK, given that the transmit-

ted input symbol is m..

The derivation of such a classical optimum receiver is based on the assumption that

all field variables can be measured simultaneously with arbitrary accuracy. In fact,

only a subset of all dynamical variables of the field can be measured simultaneously with

arbitrary precision. In general, the minimum attainable probability of error of a

receiver using the maximum-likelihood decision procedure depends on the choice of

variables observed simultaneously by the receiver. Therefore, before designing an

optimum decision procedure for the receiver, one should first choose the subset of vari-

ables measured simultaneously by the receiver.

3. 1 QUANTUM-MECHANICAL MODEL OF THE RECEIVING SYSTEM

As described in Section II, within the time interval of length T when the signal field

is expected to arrive, the electromagnetic field at the receiver is in a state specified

by one of the density operators p, P2 ... P' For convenience, we now idealize the

receiving system as a cavity (or cavities). Since most optical frequency receivers

14
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admit radiation through an aperture into a system that occupies a finite region of space,

a cavity is a natural idealization of these practical systems. The physical implementa-

tion of specific receivers is discussed in Sections IV and V, wherein it is shown that no

generality is lost in such an idealization. (The idealization is also useful because it per-

mits us to speak of receiver measurements on the field which do not affect the behaviors

of the signal source and the noise source.)

We assume that the normal-mode functions of the cavity are such that the signal field

can be expanded in terms of them. The cavity, initially empty, is exposed to the signal

source through an aperture for the time interval within which the signal is expected to

arrive. At the end of this time interval, the aperture is closed. The electromagnetic

field inside of the cavity is then in a state specified by one of the density operators P1 ,

P2' * * * PM' We assume that the time interval T is long in comparison with the period

of any Fourier component of the signal field. Moreover, opening and closing of the aper-

ture do not disturb the electromagnetic field outside of the cavity. After the aperture is

closed, measurements are made on the field inside of the cavity.

Let X 1 , X ... XK denote the dynamical variables measured simultaneously by the

receiver. These variables are represented by their corresponding linear operators

which will be denoted X 1 , X2, ... XK. For simplicity, let us assume that these oper-

ators are Hermitian and are commutative. Therefore their eigenvalues are real. More-

over, their eigenstates form a complete orthogonal set.

We shall assume that the measurement of any observable X. is instantaneous. The
1

possible outcomes of such a measurement are the eigenvalues x x ... xi2 ... of

the operator X.. If the observed value of the dynamical variable X. is xik, the field is
1 1 ik'

in an eigenstate of Xi associated with the eigenvalue xik immediately after the measure-

ment.

Since the operators X 1 , X2, .... XK are commutative, there exists a complete set

of eigenstates that are simultaneously eigenstates of these operators. In this case, it

is meaningful to speak of the outcome of a simultaneous observation of these dynamical

variables as an ordered K-tuple(xlI, x2 i, ... xKiK), and of the probability of a

particular outcome being observed. To simplify following discussions, let us suppose

that X1 , X2 , . . ., XK forms a complete set of commutative operators. Therefore, there

is a unique simultaneous eigenstate of X1 , X 2 , ... Xk associated with each K-tuple of

eigenvalues(xli , x2KiK). (It will be shown eventually that this condition is

not necessary.) In the following discussion let us denote the set of -K operators X1 ,

X2, ... XK by X and the K-tuple (xli1 x 2Zi,. ... xKiK) by xk whose associated eigen-

state is Ixk).

The conditional probability distribution of the outcome xk, given that the received

field is in the state specified by the density operator pj before the measurement, is

P(xk/Pj ) = (Xk Ip j Ik). (24)
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It is clear that the probability distribution of the outcome of any subsequent measurement

depends only on the outcome of the first measurement, and not on the initial state of the

system. Therefore, according to the theorem of irrelevance, 2 0 the subsequent mea-

surements can be discarded in our consideration. Thus far, for simplicity, we have

assumed that operators X 1, X 2 , ... XK have discrete spectra. It is easy to see that

this assumption imposes no restrictions, since all of our discussions can be generalized

by replacing sums with integrals and probability distributions with their corresponding

probability density functions.

Unfortunately, the class of receivers that measure a set of dynamical variables cor-

responding to commutative Hermitian operators as described above does not include such

devices as laser amplifiers. Since the field at the output of a laser amplifier is classi-

cal, it has precisely measurable amplitude and phase. Hence, conceptually, one may

consider that the amplifier performs a simultaneous measurement of the conjugate vari-

ables, the amplitude and the phase of the input field. (It has been shownl8 that an addi-

tive Gaussian noise injected by the amplifier accounts for the inevitable error in the

measurement imposed by the uncertainty principle.) One can generalize the class of

receivers considered here to include those devices that make noisy simultaneous mea-

surements of field variables corresponding to noncommutative Hermitian operators. In

general, such measurements of noncommutative operators can be characterized by a

complete set of states {ixk)}. 19 The states 1xk) are no longer required to be orthogonal

as in the case when the measured variables are representable by commutative Hermitian

operators. When the field is in a state specified by the density operator p., the proba-

bility that the outcome of a measurement associated with the complete set {Ixk)} is Xk

is again given by Eq. 24. It will become obvious in Section 3. 2 that when the set of den-

sity operators pj} is commutative, the optimum performance can be achieved by using

a receiver that measures a set of dynamical variables corresponding to commutative

Hermitian operators. Hence such a generalization of the receiver model as described

above is not necessary, as long as we confine our attention to commutative density oper-

ator s.

Let us assume momentarily that the receiver uses a randomized strategy to esti-

mate the transmitted input symbol as m. with probability Pjk when the outcome of the

measurement of X is xk. Clearly,

M

Pk = 1; for all k [that is, for all K-tuples (xli .XKi ).
j=1

It will be shown that the optimum receiver, which minimizes the error probability P(E),

uses the maximum-likelihood decision procedure. That is, Pjk is equal to one when

P(xk/mj) > p(xk/mi); for i, j = 1, 2, .... M

16



and is equal to zero otherwise.

The conditional probability that a correct estimation is made, given that the trans-

mitted input symbol is mj, is

P(C/m ) = Pjk (xklPi j l k)
k

It follows that the conditional probability of error, given that the transmitted input sym-

bol is mj, is

P(/mj) = 1 - Pjk (xkpj Ixk).
k

Hence, the error probability is

M

P(e) = 1 - P P k) (25)

j=1 k

In general, it is difficult to find the set of eigenvectors {Txk)} and the set of probabilities

{Pjk} that minimize the right-hand side of Eq. 25. In this report, we shall consider only

the special case when the pj are commutative. For this special case, we are able to

find both the structure and the performance of the optimum receiver.

3. 2 OPTIMUM RECEIVER FOR EQUIPROBABLE INPUT

SYMBOLS REPRESENTED BY COMMUTATIVE

DENSITY OPERATORS

Let us consider the special case in which the received field representing the trans-

mitted input symbol ml, or m 2 .... , or mM is in a state specified by the density oper-

ator pi, of P2 , ... , or PM, respectively, and

PiPj = PjPi for all i, j = 1, 2, .... M.

For such a set of density operators, there exists a complete orthogonal set of eigen-

states that are simultaneously eigenstates of all of the density operators in the set. Let

these eigenstates be represented by the kets Irk). Then, the density operator p can

be written

p = rklrk) (rkh j = 1,2, ... M, (26)

k

17
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where rjk is the eigenvalue of the density operator pj corresponding to the eigenstate

Irk). Again, without loss of generality, the eigenspectra of the density operators are

supposed to be discrete.

3. 2. 1 Performance of the Optimum Receiver

Substituting the expressions for the pj's in Eq. 26 in Eq. 25, we obtain

M

P(E) = 1 -
j= i k

(27)

Let \ljXM rji) denote the largest of the M eigenvalues ri r2i,... rMi for a given

value of i. Then, it is clear that

1
P(E) 1 - M

M

j=I i k

Because

(28a)Pjk = 1; for all k

and

(28)

I(xklri) = 1; for all i. (28b)

Eq. 28 can be simplified to

1
P(E) >- 1 -

M ii
I max

( l-j-<Mrji (29)

(Note that Eq. 28b is true as long as the set of states { Ixk)} is complete. It is not nec-

essary for the set to be orthogonal.) The right-hand side of Eq. 29 gives a lower bound

to the error probability in the reception of signals specified by the density operators

Pi, P2 .... PM'

3. 2. 2 Specifications of the Optimum Receiver

The lower bound to the error probability in (29) can be achieved by a receiver that

measures a dynamical variable represented by a linear operator X whose set of

18
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eigenstates coincides

eigenstates are Irk)).

to the eigenstate rk).

Xk * X i

with the set {rk)} (or a set of operators whose simultaneous

Let xk denote the eigenvalue of the operator X corresponding

For the moment, let us suppose that all xk are distinct; that is,

for all i k.

Since

(rk x i ) = (rklr i) = ki'

the right-hand side of (27) can be simplified to

M

M E E jk jk '

j=l k

By choosing the Pjk in such a way that for all k, Pjk is equal to one if

rjk a rik; for i, j = 1,2, .... M

and Pik is equal to zero for all other i j, the right-hand side of Eq. 30 becomes

kk

(30)

(31)

( max r
14 j- M rjkJ I

which is the minimum attainable error probability. (This rule becomes ambiguous

whenever Eq. 31 is satisfied for more than one value of j. The ambiguity can be

resolved, however (for example, by letting Pjk = 1 for the smallest value of j satisfying

(31) and setting all other Pik equal to zero). Clearly, the minimum value of P(e) is not

affected by the way this ambiguity is resolved.) Since

Fig. 2. Quantum-mechanical optimum receiver for signals
represented by commutative density operators.
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rjk = (rkP j Irk) = P(Xk/mj),

it is evident that the strategy described above is a maximum-likelihood decision rule.

The optimum receiver is shown schematically in Fig. 2.

From our discussion, it is evident that the operator X that represents the variable

measured by the optimum receiver is Hermitian. Moreover, it is not unique. In prac-

tical situations, one may choose a dynamical variable among a class of variables rep-

resentable by Hermitian operators which can be measured most conveniently.

First, one can show that it is not necessary for the set of eigenstates {IXk)}of the

operator X to be the set flr k )} in order that the receiver measuring the variable X will

achieve the minimum attainable error probability. To show this, let us denote by Rj a

subset of eigenstates of the density operators. An eigenstate Irk) is in Rj if the eigen-

value of p. associated with Irk), rjk' is larger than that of all other density operators.

That is, Irk) is in Rj if

rjk > rik for all i = 1, 2....(j-l)

rjk rik for all i = (j+l) ....... M.

M
Clearly, the sets Rj are disjoint and their union jU R is the entire set of eigenstates

{Irk)}. Let us also denote by R the subset of eigenstates of X which are not orthogonal
to some eigenstate ri) in Rj. That is, [Xk) is in R if

(xk ri) + 0 for some ri) in Rj, j = 1,2,...M.

We claim that the receiver measuring the variable X can achieve the minimum

attainable error probability if and only if the eigenstates of X satisfy the following con-

ditions: (i) The set of eigenstates of the operator X relates to the set {irk)}by a uni-

tary transformation. That is,

Z I (xkIri) 2 = Z (xklri)2 = 1
k i

and R is nonempty if Rj is nonempty. (ii) The subsets R, j = 1, 2, ... M are disjoint.
J J J

Let us rewrite the error probability as follows:

P(e) = 1 (Plkrli+P2kr2i+ '' P.kPi) (Xki) 
M (Plkrli+PZkr+ PMkPMi) I (xklr)[2

j= 1 {k/lxk ER} {i/|r IE Rj} 

(32)

According to the definition of Rj, the right-hand side of (32) is minimized by letting

Pjk 1 for ) R It follows that if conditions (i) and (ii) are satisfied, (32) becomes
Pjk = I for 3
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{i/ ri)E R j}

(33)

which is the minimum attainable value of P(e).

On the other hand, if condition (i) is not satisfied, the minimum value of P(e) cannot

be achieved. For example, suppose that the set R'1 is empty while the set R 1 is non-

empty. It is clear that the right-hand side of (32) is larger than or equal to

1 
M

{i/ ri) R 1}

max
lsj<M ji)'

which is larger than the value given by Eq. 33.

To show that the minimum attainable value of P(E) cannot be achieved when condition

(ii) is not satisfied, let us suppose that the sets R'1 and R 2 are not disjoint. Let C

denote the set intersection of R'1 and R2 , R'1 f R 2 . Equation 32 can be rewritten

P(E) ¢ 1 -i IE
{i/ ri ER 1}

{i/lri)ER2 } {

k/rli Xke RI-CL{k/lxk)e H'1-C}

k/ Ixk) E R -C }

1(klri) 2 +

I(xkIri) +

{k/ lXk)E C}

{k/ Ixk)E C}
P2k (Xk ri) 12]

{i/ ri) G Rj }

I
k/ Xk) eH

I (xkri)12 = I(xkJri) 12 = 1; for all ri) Rj, j = 1,2,. ....

k

and

Plk + P2k = 1; for Ixk)E C,

we cannot make both terms

21

Plk I(xkri)l1

M

+j
j=3

Since

M

P(E) = I - M
-· ·'~II= 



I(xklri 12 + I Plkl(Xkri)12
{k/ xk) E R'-C} {k/Ixk)E C}

I<(xk lri) I + PZk (xkri) I
k/Ixk) E Rh-C} k/lxk) E C}

equal to one unless the set C is empty.

Second, we note that the eigenspectrum of the operator X need not be simple. It is

obvious that the eigenvalues associated with the eigenstates of X in any subset R' need
J

not be distinct. On the other hand, it is necessary that the eigenvalue associated with

an eigenstate !Xk) in R' is not equal to that associated with an eigenstate Ixk, > in R!

whenever i j.

Sometimes, it is more convenient for the receiver to measure not just one dynam-

ical variable of the field but a set of simultaneously measurable variables represented

by commuting operators X 1 , X2, .... XK . The outcomes of such a measurement are

the K-tuples xk with corresponding eigenstates IXk). Clearly, the discussion above

applies directly to this case.

Thus far, the time at which the receiver makes the measurement on the received

field has not been specified. Here, we shall show that the optimum performance of the

system is independent of the time at which the observation is made. The choice of the

dynamical variable (or variables) measured by the optimum receiver does depend, how-

ever, on the time of the observation.

According to the causal law, in the Schr6dinger picture, the density operator of a

system at any time t > to is

pj(t) = U(t, t o ) pj(to ) U (t, to)

if the state of the field at to is specified by the density operator pj(to), and the system

is undisturbed in the time interval (t, to). The time evolution operator U(t, to), since

it is unitary, satisfies

U(to, to ) =1 U+(t,t o ) U(tto) = 1.

When the density operators are expanded in terms of their simultaneous eigenstates,

pj(t) = rji ri(t)) (ri(t) 

rjiU(t, to) ri(to)) (ri(to) U+(t, t ) .

i
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Thus, letting P(e, t) be the error probability when the measurement is made at time t,

we obtain

M

P(E,t)=l- 1-M C rji(xk(t) I U(t, to) Iri(to)) (ri(to) I U+(t,to) Ixk(t)) Pjk

j=l k i

M

-1 M Y l A (jM rj) (xk(t) I U(t.) Iri(t))I Pjk

j=l k i

max
-I (l<j<M rjk)
k

which turns out to be independent of t. In general, if the optimum receiver measures

the operator X(to) at time to , the dynamical variable that should be measured at time t

is

X(t) = U(t, to ) X(to ) U (t, t).

23



IV. ORTHOGONAL SIGNALS WITH KNOWN AMPLITUDE

AND RANDOM PHASE

A communication system that has been studied extensively in classical communica-

tion theory is one in which the receiver knows all characteristics of the received signal

field except its absolute phase. When the signal field is not modulated spatially, its

classical amplitude at the receiver can be described by the function

2 Re S(t) exp {i - t)+i}] (34)

where S(t) is one of a set of time functions Sj(t)) depending on the transmitted input

symbol, and d is a random variable with a uniform probability density function

0 x 2 r

p~(x) =
0, elsewhere.

The randomness of the parameter corresponds to the uncertainty in the phase of the

received signal. Such an uncertainty is caused by fluctuations such as slow oscillator

drift, small random variations in the propagation time between the transmitter and the

receiver, and so forth. When signal fields are in the optical-frequency range, one is

often ignorant of the exact signal phase.

We shall now find the structure of the optimum receiver and the performance of this

communication system in the quantum limit. To describe the received signal field

quantum-mechanically, let us expand the electric field operator as in Eq. 4:

E(r, t) = i L ak P - t - ak expik ( c -t])
k '

When the transmitted symbol is mj, the field present at the receiver in the absence of

the additive thermal-noise field is in a state specified by the density operator

t 02r d if i i if i . .. (35)
Pj = 2 r Ijl ij2 e ... jke, .. . .a jke, .... j 2 e ' e ( 35)

during a time interval of length T within which the signal is expected to arrive at the

receiver. In Eq. 35, jl' aj2 .. ajk.... are complex quantities known to the receiver,

while is a random variable evenly distributed over the interval (0, 2). That is, the

signal field at the receiver is in one of the coherent states ujl e i. , aj2i .. .jke

It should be pointed out that in classical communication theory, a signal with a known

amplitude but an unknown absolute phase is sometimes called an incoherent signal. In

the quantum mechanical limit, such signal fields are in coherent states. Later, in
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Section V, we shall show that when the classical signal waveforms are sample functions

from Gaussian random processes, the corresponding quantum signal fields are in com-

pletely incoherent states. Throughout this section, our discussion is confined to the type

of signal fields in states specified by density operators of the form p in Eq. 35, and we

shall use the quantum-mechanical meaning of "coherence."

It has been shown1 5 that an electromagnetic field in a coherent state is generated by

a classical current source. By a classical current source, we mean one whose reaction

with the process of radiation is either negligible or at least predictable in principle.

Such a model of the signal source is an excellent approximation of most macroscopic

sources, since the number of atoms in such sources is so large that variations in the

total current vector become statistically predictable.
t

When the amplitude of the electric field in the state specified by p in Eq. 35 is mea-

sured, the outcome at time t for a given is a sample function of a Gaussian random

process with the mean-value function

Tr [ptE(r,t)] = 2 Re{ / L iljk expik( -t)+i}' (36)

kk

Its associated covariance function approaches zero in the classical limit ( -0). Hence,

if the jk and k are so chosen that

S(t) = iajk expi(wk-w)(- t)]; j= 12 ...

k

the set of signals characterized by the density operators p (j = 1,2,... M) is just the set

of signals given by (34) in the classical limit.

As we have pointed out, we are concerned with the particular set of M orthogonal

signals corresponding to frequency position modulation. If Sj(w) is the Fourier spec-

trum of the time function Sj(t) in the classical signal field (Eq. 34), then the Sj(w) sat-

isfy the condition

j(t) j*l = Ij z 6jj, (3 7 a)

(Again, the Sj(t) are strictly time-limited signals; they cannot be strictly frequency-

limited. They are, however, approximately bandlimited, in the sense that the energy

associated with each of the S.(t) outside of a frequency range of the order of 1 Hz
J T

is essentially zero; hence, Eq. 37a can be satisfied approximately.) Similarly, in the

corresponding quantum-mechanical system, the set of complex quantities 0 jk in the
t

density operators pj satisfy the constraint in Eq. 19. That is,

ajkj'k = 1(jkI2 6jj, (37b)
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We shall now derive the structure of the optimum receiver and bounds on its perfor-

mance for a set of M unmodulated signals. (For each transmitted input symbol, the

signal source excites only a single mode of oscillation.) It will be shown that these
results also apply to the case of arbitrary narrow-band orthogonal coherent signals with

a common random phase.

4. 1 UNMODULATED ORTHOGONAL SIGNAL WITH RANDOM PHASE

Let us consider the communication system shown in Fig. 1. When the transmitted

input symbol is m., the signal component of the received field during the time interval

(0, T) when the signal is expected to arrive at the receiver is described by the density

operator

pjt = 21 d IO, .... a e, . . . O) (0, O.... C.e, ; j = 1, .... M. (38)

That is, when the transmitted input symbol is mj, only the jth mode of the field is
excited, while the other modes remain in their vacuum states. For simplicity, the

relevant modes of the field are denoted as the 1st, 2nd, ... Mth. When the background

thermal-noise field is also present, the received field is in a state specified by the

density operator pj.

_ _ _ _ __ _ __ _ _d 2a k

(n) (n) k (n) 1 k k(ak ( )

(The state of the additive thermal-noise field is specified by the density operator p(n)
in Eq. 20.)

It is evident that the states of modes of the received field other than the 1st, 2nd, ...

Mth ones are independent of the transmitted input symbol. Since the outcomes in mea-

suring dynamical variables of any two different modes are statistically independent, as
shown in Appendix B, we need only consider the first M modes. The density operator

pj specifying the states of the relevant modes is given by

lM lj/ZrM a 22 1 ajl 1yj M 2
' ()kl] (K ,f) ) lak)(ak d2ak;

k=l (n) (n k=I

j = 1,2,...M

(39)
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4. 1. 1 Structure of the Optimum Receiver

It is obvious from Eq. 39 that all pj are diagonalized in the number representation.

When the density operator pj is expanded in terms of the simultaneous eigenvectors of

the number operators N 1, N 2 , .. .NM of the individual modes, n,n 2 , . . .nM), we obtain

p. = ( 1 M (n) l+n2+ nM

nl=0 n =0 nM=0 1 +(n) 1+<n)ni 2 M (rL)nr ) (Ln>(l+>J 

for j = 1, 2,... M.

Therefore, according to the discussion in section 3. 2, the optimum receiver for the

reception of this set of M signals measures the number of photons in each of the M

modes simultaneously.

Given that m. is transmitted, the joint conditional probability distribution of the
J

observed numbers of photons n, n2 , ... nM in the modes 1,2,.... M, respectively, is

P(n n 2 ... nM/mj ) = (nln ( .... nMI Pj Inl' n
2 .... nM

+(n> 1 n> r (n)(1 +(n)) 

exp 2 )
1 +<n>/

j= 1,2,...M.

The receiver estimates that the transmitted input symbol is m. if the conditional proba-
J

bility P(n 1 , n 2 , ... nM/mj) is maximum over all j. (Again, when more than one j max-

imizes the quantity P(nl, . nM/mj), the decision rule becomes ambiguous. But the

performance of the receiver is independent of the manner in which the ambiguity is

resolved.) According to (40), the maximization of P(n, n 2 ,. .nM/m) amounts to the

maximization of the quantity

nJ r

f = n >(+n>
r=O

! exp I+ J (41)

A block diagram of the optimum receiver is shown in Fig. 3. As discussed in
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Fig. 3. Optimum receiver for unmodulated signals with random phases.

Appendix C, the photomultiplier tube and counter combinations indeed measure the

dynamical variables Nk, k = 1, 2, ... M.

For the sake of simplicity, we shall assume that the complex quantities .j are all

equal; that is,

a.j = ; j = 1,2, ... M. (42)

Let us note that when input symbol m. is transmitted, the average number of
th J

photons in the j mode of the received field in the absence of additive noise

is given by

Tr pjaaj = <0 , e .... a aaj 0,0 ,...e i , .0) 2

: Ij1 2

On the other hand, the average number of photons in the k t h mode of the received signal

field is

Tr [pa ak ] = 0

for all k * j. Hence, Eq. 42 implies that the average numbers of photons in the signal

field used to transmit all input symbols are equal. Furthermore, if

(Kk =o; for all k = 1,2, ... M, (43)

Eq. 42 also implies that the average energy in the signal field is independent of the

transmitted input symbol because when input symbol m. is transmitted, the average
J

energy in the received signal field is
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M

Ej = Tr Pakaki wk

k=l 

= cj)2 hj. (44)

For signals satisfying the additional constraint in Eq. 42, the inequality

P(nl,n 2 ... nM/m j ) > P(nln 2 ... n/mi); ,

is satisfied if and only if

n. > ni i,j= 1,2 .... M.

Hence, the receiver estimates that the transmitted symbol is m. when the number of
th J

photons in the j mode, n, is observed to be larger than all other n i . Such a receiver
can be implemented as shown in Fig. 4.

RECEIVED
FIELD

INPUT
PUPIL

PRISM

NARROW-BAND ol COUNTER
FILTER 

NARROW-BAND COUNTER
FILTER

NARROW-BAND COUNTER
FILTER n

SELECT
LARGEST

Fig. 4. Optimum receiver for equal-strength unmodulated signals
with random phases.

4.1. 2 Performance of the Optimum Receiver

The conditional probability of error, given that m1 is transmitted, satisfies the

following inequalities

P(E/m 1 ) < Pr (nl <n 2 , or nl<n 3 ,..., or n < nM/ml) (45a)

P(E/ml) Pr (nl<n2 , or nl<n3 ... or n nl<nM/ml). (45b)

The error probability P(E) is

P(e) = P(E/ml). (46)
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Since

0o nl

Pr (nl<n 2, or n1<n3 ' or nl<nM/ml) = 1 - Z .

nl=0 n2=0

and

o00 nl -1

Pr (nl< n2 , or n1 < n3 , or nlnM/ml) = 

nl=0 n2=0

nl

E I P(nl n2 , ... nM/ml)

nM =0

nl-1

. I P(nl, n 2 ... nM/ml),
nM=O 

by substituting Eqs. D. 3 and D. 4 (see Appendix D) in Eqs.

error probability P(E) as

45 and 46, we can bound the

M-1

P(e) 
i= 

M-1

P(E) -< 
i= 1

( -1) )- 1 i+1 i exp i
- i i

(l+(n)) F 1_____ _<n) -<n_ ]_
(l( )ii+ exp 1- n i+l ) i+l.+ I i( l+expn i+ l- i+ IJ

(I+ n) - n (+(){_ n

Unfortunately, these bounds cannot be expressed in closed forms.

high noise energy levels, (n) >> 1 (the classical limit), both the upper

lower bound of P(E) in (47) can be approximated by

M-1

P(E) (-1)i+ l

i= 1

M-1

i= 1

M-1 1 e F-if j2
( i exp L(l+i)< nj

(M- i exp r...
L(1+i)rJ(

In this equation, Er = l o 2Ih is the average received signal energy, and Tlo = (n)ihw is

the average thermal noise energy in each mode of the noise field. This expression is

identical to that of the minimum attainable error probability for a set of M classical

orthogonal signals whose absolute phase is unknown.2 0

In the following derivation we shall express the bounds to the error probability P(E)

in terms of three parameters: the information rate R, the channel capacity C, and the

time constraint length T. As defined in Section II, T is the time allotted to the trans-

mission of a single-input symbol. When the number of equiprobable input symbols is M,

the information rate of the system is

30

(47a)

(47b)

In the

bound

limit of

and the
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R - In M nats/sec. (49)
T

We shall find that the channel capacity C is given by the expression

1 +<n>
C = p n , (50a)

(n)

where

112
p T (50b)

is the average number of photons in the signal field at the receiver per unit time. We

note that C can also be expressed as

p 21 z + 10
C = ln Z 0 (51)

71 2, h
where P = is the average received signal power in the system, and z = 2ih

is usually called the zero-point fluctuation noise of the field. As before, o10 = (n) hw.

Our objective is to find bounds to P(E) of the following form:

P(e) K1 exp[-TCE(R)] (52a)

P(E) K2 exp[-TCE(R)], (52b)

where K 1 and K 2 are not exponential functions of T. The exponential factor E(R) in these

expressions is the system reliability function. We shall be primarily concerned with

the exponential term in the bounds of P(e), rather than with the coefficients K1 and K2.

This is justified by the fact that neither coefficient K 1 nor K 2 depends exponentially on

T. That is,

in P(E)
lim TC = lim [-E(R)] (53)

C T-oo00 C T-00

An upper bound to P(E) that can be obtained easily is the union bound. It is not an

exponentially tight bound at high rates. Let PZ(i, j) denote the probability of error when

there are only two transmitted input symbols, m i and mj. With M = 2, Eq. 47b gives

an upper bound of P 2 (i, j):

P2 (i, j) 1 2( + +) exp) for all i j.
Th 2 e, 2<n) + 1 + 2n)

Therefore, for M equiprobable input symbols, the conditional probability of error,
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given that m 1 is transmitted, is

P(e/ml) = Pr (the estimate m is set to be m 2 or m 3 ... or mM/ml)

M

< P 2 (1, k)

k= 2

+ 1 ))
1 + 2(n)j

exp t- 1
1 + 2(n -

Substituting M = exp(RT) in the expression above, we obtain

P(E) = P(e/ml)

< - I exp $ -
2 (1+ 1 + 2(n) 1 + 2(n) 

= 1 ( + z) exp T - R} (54)

Upper Bound to P(E)

To find an upper bound to the error probability P(e) that is exponentially tighter than

the union bound at high rates, let us denote the probability

P(n 1 , n 2.... nM/mi)
k='

k= nk =0
kij

by Pi(nj) (for i,j = 1,2, . . . M).

pj(n.) = ( 1J J 1 + (n)

( (n)

1 + (n)

n.

p.(n.) =_ 1 ) (n >
J 1 1+(n) 1 +(n)/

According to Eq. 40,

n.

n. j F r ! ni 1exp 
r=, r ( n)(l+(n)) -+<(n)

j= ,2,... M

i j
i,j= 1,2,....M

The upper bound in Eq. 45 can be rewritten
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P(E) = P(E/m l )

o00

< 2 pl(nl) Pr (nl<n 2 , or nl<n3 ... or nl <nM/m 1 )

n l=

nl=O

for any value of 6 in the interval 0 6 1. Since

Pr (<n2', or n <n 3 ... or nl-<nM/ml ) (M-l) Pr (nl-<n2/ml)

the expression in the right-hand member of the previous equation can be further upper-

bounded:

00oo 

P(E) < E P1 (n 1) M 6 pl(n2 ) (56)

nl=0 2=nl

Substituting Eqs. 55 and D. 5 (see Appendix D) in Eq. 56, and expressing the upper bound

in the form of Eq. 52b, we obtain

(1+ n)) (1+(n)) (- (n)- L A

P(E) -< exp-TC 6 0 < 6 < 1,
(l+<n>)l+6 _n1+6 C (n)l+nC 1+ -(n) 1 + 6 C

(57)

where p and C are defined as in Eqs. 50a and 50b, respectively.

Since (57) is valid for any value of & within the interval (0, 1), the best asymptotic

bound is obtained when the exponent is maximized over the value of 6 in the range 0 

6 < 1. The coefficient

(l+(n))6
K2 1+6 1+6 (58)

(I+(n>)) -(n>)

is a monotonically decreasing function of 6. Therefore, it is not minimized by the

choice of 6 that maximizes the exponent.

It is clear, however, that

lim in K= 0.
C T- 0 0

Hence, (53) is satisfied for all values of 6.
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Let us denote the exponent in (57) by

R
e l (R, 6)= e(6) - 6 

where

eo(6) =
p (1+(n)) -n) 6

(1 + ( n)) (n) + 5 '

Clearly, the best lower bound, EL(R), of the reliability function E(R) is given by

EL(R) = max [e(6)-6-

Since

de
-

d6 

1 (+n)>

1 +(nn

1 (n)2

+( +n>)
(59)[ (1 +)- 2

(> n)

L'Ki1+(n)) j
and the second derivative of el(R,6) is negative for all (n) not equal to zero, the equation

ael(R, 6)

86

de o R
d5 .

gives the value of 6 that maximizes the exponent factor el(R, 6) for rates R within the

range

de
C < R 0

d6 6=0

Let us denote by RC the rate
c

de

d6 6=1
C. From (59), it is evident that

(n)>(+(n))
R = C

c (1+2(n))2

and

de

d6 6=0
= 1.

Hence the value of 6 that maximizes el(R, 6) is given by
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de
o

d6 6=1
C.

(60)
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((n>) 6

R I +(n)) ( +(n))

L (1 + (n> )]

Solving this equation for 6 and

for R R C.

1 +<n>
recalling that C = p n , we obtain

(n)

1 + 2(n)-- 1 + 4 <n>(+ (n))

1 - 1 + 4 C n) (1 + < n))
1 +<n>

(n) in
(n)

R 1
-C ~ in

1 + (n)l+<n>
In

(n>
I

1+
1 + (n)(1+(l+n)) + / + 4 n)(l+n))

Z(l+(n)) 2 R
C

for R < R C. (61a)
c

For rates less than R c , the value of

is 1. Therefore, within the range 0 < R

exponent in the union bound. That is,

6 that maximizes the exponent function el(R, 6)

< Rc, the function EL(R) is identical to the

1

1 + <n)
(1+Z<n)) in

(n)

R
-R; OR R cE C'R

We shall discuss the general behavior of EL(R) in section 4. 3 after showing that it is

equal to the reliability function for Rc < R < C.

Lower Bound to P(E)

We are primarily interested in finding a lower bound for P(E) which has the same

exponential behavior as the upper bound that has been derived for the range of R,

R < R C. (The details of the derivation are discussed in Appendix E.)It is clear that the lower bound in Eq. b can be rewrittenc
It is clear that the lower bound in Eq. 45b can be rewritten

(62)

0o

P(E) >- Pl(nl) (I- [Pr(nl1>n/ml)](-)},
nl=O

The right-hand side of this inequality can be further lower-bounded (see Appendix E):
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P(E) > 4 Pr (n2 >d/ml) Pr (nl-<d/ml),

provided that the parameter d is chosen so that

M Pr (n 2 >d/ml) _< 1. (63b)

When input symbol m1 is transmitted, the conditional probability distributions of ran-

dom variables n1 and n 2 are given by Eqs. 55a and 55b, respectively. Hence

Pr (n 2 >d/m1 ) =( +())

where [d] denotes the integral part of the parameter d. Clearly, the condition in (63b)

is satisfied if the parameter d is chosen to be

RT
d = . (64)

1 +(n)
In

(n)

From Eqs. E. 11, E. 13, and E. 15 (see Appendix E), we obtain the following lower

bound to the error probability P(E):

P(E) K 1 exp[-TC e'(R, 61)]. (65a)

(Note that similarly to the coefficient in the upper bound of P(E), the coefficient K 1 is

also a function of 61 which is not maximized for the value of 61 that minimizes e' (R, 61).
in K 

It is sufficient for us to know that lim TC 0.) The exponential function in Eq. 65a

is TC- -0

1 1 + (n) 12 112
e' (R, 6 1) = -d I n 6 dn +

(n) 1 (n)(+(n)) 1 + (n)

+ l din I1-n1 - 61 + 6 1d n d In 61 d - 6d (65b)

where 61 is within the range 0 61 < 1. Since the inequality in (65a) is satisfied for all

values of 61 in the interval (0, 1), the best asymptotic lower bound of P(E) is obtained by

minimizing e' (R, 61) over 61, for 0 -< 61 < 1. Thus, one obtains an upper bound, Eu(R),

of the reliability function E(R):

EU(R) min e' (R, 61 ).

0 61 

It will be shown (see Appendix E), that the value of 61 that minimizes the function
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e' (R, 6 1 ) in (65b) is

R C l1
2 n>(+(n))

(n + 4( zR
(n>(+<n)) - 4<n2 (l+n>)2 )

o
At 1 = 1'

Eu(R) = e' R 1 )

1

1 +(n)
(n) in

(n)

1 + 2(n)C-- + 4 R n +(n))

1 11 - /I + 4 C-( n) (I +<n)

R 1 n 1 + 2 R (n)(+(n)) + 4(n)(l+n))
in R

1+ (n2 C(1+(n))2
in 

(n)
I

(67)

It is obvious that the function Eu(R) is identically equal to EL(R), the lower bound of the

system reliability function given in Eq. 61a, for the range of R, Rc < R < C.

It will now be shown that the bounds that we have just derived apply to all systems

in which signals are narrow-band and orthogonal.

4.2 NARROW-BAND ORTHOGONAL SIGNALS WITH

RANDOM PHASE

We are concerned with the case in which the received electromagnetic field excited

by the signal source is narrow-band. As in section 4. 1, the exact phase of the received

field is unknown to the receiver. When the electric field operator E(r, t) at the receiver

is expanded in terms of its Fourier components as in Eq. 4, and when the transmitted

input symbol is mj, the state of the signal component of the received field is described

by the density operator

t 2ke r (rjke j= 1,2,...M.

The set of complex numbers jk satisfies the constraint of Eq. 19,

a* a., f 2 6jj1 
jkhj k = IT jkZ sjj ,

when the M signals are orthogonal, as in a frequency position modulation system.
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For example, the general form of the frequency spectrum of the signal field is
shown in Fig. 5.

0 k k+J K +A k +2Ao o 0 0

I I
o k k + A K +2Ao o o

US I If II- I
o k ° Ko+A ko+(M-1)A k+MA

I I 
2r

Fig. 5. Frequency spectra of M-ary
orthogonal narrow-band signals.

wr

2ir

Or

2,r

In the presence of additive thermal-noise field which is in a state specified by the
density operator p(n) in Eq. 20, the received field is in the state given by

21 db
Pj = 5 d II exp 

0 T x

d2 a

lak) ( ak I k
rr(n)

In Appendix F, these density operators are shown to be commutative.

We shall show that the minimum attainable error probability in the reception of sig-
nals specified by the density operators in (69) is identical to that of the signal set dis-
cussed in section 4. 1, if

1f12 = E Ijk[2; for all j = 1,2,.. .M.
k

(70)

Intuitively, this conclusion is to be expected. As discussed in section 2. 1 and Appen-
dix A, the received electric field operator can also be expanded in terms of the orthog-
onal mode functions

V (r, t) = 1 7 .jk exp-i(-k)( = M
I jkk c

(71)
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with the w chosen so that
J

S d3 r Vj,(r,t) Vj (r,t) dt = 6.jj,; for all j and j'.
- jJ,

Thus

E(r,t) = i E {bV(rt) exp[i( zc -t)]-b+V (r,t) exp[-i( -t)

J

The operators b. are given by Eq. 13. It is obvious that when a signal field is in the
J t

state specified by the density operator p in (68), only the mode with the normal mode
function Vj(r,t) is in an excited state, while all other modes remain in their ground

state. This is exactly the same condition satisfied by the signal set in section 4. 1.

To establish the claim made in the last paragraph rigorously, let Aj denote the set

of indices k that are such that

ajk °fO' j = 1,2,...M.

Then, the density operators in (69) can be written

2r d 5 L
Pj S 2 r , exp 

L kOA.
3

I ak- jk e i
ak 

(n) k E A.
3

(n)

2

d2a
II ak)(ak dk
k wf(rn)

j = 1, 2,.. M. (72)

To find a representation in which the density operators P1 , 2, ... PM are diagonalized,

let us consider a unitary transformation V which relates a set of new annihilation oper-

ators {bk)} with the set of annihilation operators {ak}:

bj = Vjkak
k

Let us, in particular, choose the elements of V so that , for all j = 1, 2, .. . M,

V = -1 *
Vk(j),m j jk

Vk(j), = O;k(j),im

+ -1
Vm,k(j) = jk for all m E A.

for all m E Aj

where k(j) is an index in the set Aj, and j is given by the

aj=j I bUjml2}

normalization condition

39

(73)

__I_� XIl __ll-CI_ ----- · I- - I �C-------- - YIIP-~ )·.



The rows and columns of the matrix V defined in (73) obviously satisfy the condition

Z V V+ = YV+V = 6 m (74)mk kn = mk kn mn.
k n

The other rows of the matrix V can be chosen arbitrarily, provided that the condition

in (74) is satisfied. For example, for the specific set of signals shown in Fig. 5, 'rjk

is nonzero only for k = k + (j-)A, k + (j-1)A + 1, .. ., k + jA - 1. The unitary matrix

V is in the form given by Eq. A-8b, with the submatrices U. chosen so that

in j, (ko+(j-1)A+n) j =, 2, ... M.

According to Eqs. 14, the density operator pj in Eq. 72, expanded in terms of the

right eigenvectors {Pj}) of the operators b., is given by
3 3~~~~~~~~

2rr d C

Pj = §Or 2 k- ] _ I \,k ( d2Pk
k-k (j) n> k T <[3k [ --(n-

j = 1, 2 ..... M (75)

From this expression, it is clear that modes other than k(l), k(2), . . . k(M) do not con-

tain relevant information and can be exempt from further consideration. For simplicity,

let us rename the modes k(l), k(2), ... k(M) as the Ist, 2nd, .. . Mth modes, respec-

tively. Obviously, the density operator pj specifying the states of the relevant modes

is identical to that given in Eq. 39. Therefore, the optimum performance in the recep-

tion of this set of signals is identical to that of the set discussed in section 4. 1 (the

unmodulated signals), if it is also assumed that

j = ; j = 1,2......M.

The structure of the optimum receiver for the reception of narrow-band orthogonal

signals differs from that for unmodulated signals, however. Clearly, the density oper-

ator pj in Eq. 69 is diagonalized when it is expanded in terms of the eigenvectors of the

operators bbj; j = 1, 2, . .. . M. Hence, according to section 3. 2, the optimum receiver

measures the dynamical variables of the field corresponding to the linear operators

b b.. That is,
J

bb 1 )a a
ib ib , 112 jm jnaman

10 Im n

It can be seen from (75) that the joint probability distribution of the outcomes n1 , n2 , ...
+ + +

nM is also given by Eq. 40 when b lbl bb . . .b b are measured simultaneously and

the transmitted input symbol is known to be m.. Therefore, the optimum receiver sets
J
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the estimation of the transmitted input symbol m to m. when
J

nj>_nk j,k= 1,2,...M.

Hereafter, it is only necessary to study the implementation of that part of the receiver
+ + +

which makes the measurements of the variables b1bl, b+b 2 , . . bMbM. (In other words,

how do we implement the mathematical operation of applying the unitary transformation

V to the set of annihilation operators {ak} ?)

Let us digress for a moment to consider the corresponding classical system in which

the complex amplitude of the signal field when m. is transmitted is
J

S(t) = jk exp[i(0-wk)t]{exp[-icit+i]}).

k

The complex amplitude of the received electric field in the presence of the additive noise

field can be written

Ec(rt) Ek exp[-i(i- k)(Z -t)] exp[ij(ZC -t) +ifl.
k

When the phases j are random variables evenly distributed over the interval (0, 2w),

one way to implement the classical optimum receiver is that shown in Fig. 6. That is,

the classical optimum receiver measures the quantities

f. S 1 ec(r,t) dr S (t) dt ; j = 1,2 .. M,

which according to Parseval' s theorem are equal to

2

f. Z kEk ; = 1, 2, . M. (76)

k

The estimation is set to m. if

fj fk for all k = 1, 2,.... M.

An equivalent implementation of the classical optimum receiver is shown in Fig. 7.

When quantum effects in the system are taken into account, a semiclassical analysis

shows 2 1 that the effective noise level increases from /2 (the classical value) to

2(no+ 2 ) while the f remain as Rayleigh random variables. Hence the system

reliability function is the same as that for the classical system, except that the channel

capacity C is decreased to the value . Clearly, the system shown in Fig. 7 is
'no + qz

not a quantum-mechanical optimum receiver.
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It can be seen that the optimum quantum-mechanical receiver measuring the vari-

ables b+b bb 2.... bMbM reduces to these classical optimum receivers in the clas-

sical limit, however. This is because, classically, jk can be interpreted as the

complex amplitudes of the Fourier components of the transmitted signal field for input

symbol m.. The operators a k can be interpreted as that of the total received field.

Therefore, the variables bb (where b. is defined to be Z ojkak) are the quantities f.
J J J jk J

in Eq. 76 in the classical limit.

PHOTOMULTIPLIER
TUBE

RECEIVED
FIELD

INPUT
PUPIL

PRISM

NARROW-BAND MODE f
TRANSFORMATION COUNTER -FILTER FILTER T

b T VIk ak
k

-E a lk k
k

FILTER FILTER 

TRANSFORMATION COUNTERFILTER:~~b :F a FILTER TRANSFORMATION COUNTER
FILTER

SELECT
LARGEST

bM = Mk ak

Fig. 8. Quantum-mechanical optimum receiver for orthogonal signals
in coherent states with random phases.

An idealized quantum optimum receiver is shown in Fig. 8. The input aperture of

each of the mode transformation filters is opened within the time interval (0, T) when the

transmitted signals are expected to arrive at the receiver. It can be shown (Appendix G)

that by adjusting the coupling coefficients between the field at the output of the narrow-

band filter and the field inside of the mode transformation filter, the annihilation opera-

tor b. associated with the only normal mode of the jth filter is related to the operators
J

ak by

b. C *
bj = jkak

k

after a transient period that is short compared with T.

4.3 SUMMARY AND DISCUSSION

In sections 4. 1 and 4. 2, we have obtained asymptotic bounds of the minimum

attainable error probability P(E) in the reception of M input symbols represented by
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electromagnetic waves in coherent states. The absolute phase of the signal field is

assumed to be a random variable distributed uniformly over the interval (0, 2r). The

lower bound and the upper bound of P(e) can be written in the form given by Eqs. 52a and

52b, respectively. The system reliability function E(R) in the exponent is given by

Eq. 61a when the information rate R is within the range R c - R < C.

= 0.5

-n> = 0.1

Fig. 9. System reliability function (for
orthogonal signals in coherent
states).

0

0.185 0.25

R/C

A quick computation shows that the reliability function is positive for all values of

R < C when (n) O. Its general behavior for several different values of (n) is shown

in Fig. 9. In contrast to the corresponding classical channel (the additive white Gaussian

channel), the system reliability function E(R) depends not only on R/C, but also on the
1 +(n)

average noise level (n). We note that the channel capacity C = p In is approx-
p p (n)

imately equal to C =- = for large (n), where C is the capacity of the classical
c (n) I>0 c

white Gaussian channel.2 0 For other values of (n), we have

C < p <
l (n) ' (n)
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Fig. 10. Channel capacity as a function of noise levels.

Figure 10 shows the value of C per unit average signal photon as a function of (n), the

average number of noise photons. Also, for large (n), E(R) approaches as a limit the

classical reliability function of the white Gaussian channel with infinite bandwidth. That

is, for large (n),

1 R R 

c c

E(R) - Ec(R) = (77)

2 1 R

In Fig. 11, the exponent factor CE(R) is plotted as a function of R for several values
p

of p and (n); the corresponding values of - E (R) are also shown. The exponential
p (n c

factor - Ec(R) is obtained when quantum effects are completely ignored. When the
(n>

"quantum noise" in the system is also taken into account as in section 4. 2, the perfor-

mance of the classical optimum receiver is inferior to that of the quantum-mechanical

optimum receiver, as expected (see Fig. 11).

When (n) = 0, the capacity C becomes infinite. One is tempted to conclude from

this fact that an arbitrarily small probability of error can be achieved at any informa-

tion rate R by increasing the values of the parameters T and M while keeping the aver-

age signal power fixed, whenever (n) = 0. Such a conclusion is not valid, since for very

small (n)
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E(R) I R C in (+ Z(n))}; (n) << 1. (78)

As n) approaches zero, this expression also approaches zero as a limit.

As a matter of fact, when the average number of noise photons (n) is equal to zero,

the exponent in the error probability becomes p. That is,

P(E) = exp(-Tp).

(The coefficients K1 and K 2 are equal to one when M is large because, with no noise

present, an error occurs only when no photon is detected which happens with probability

exp(- I a 12). The probability that an error occurs, given that no photon is detected, is

(M-1)/M.) The fact that P(E) is independent of the number of input symbols, M, when

(n) equals zero implies that an arbitrarily small probability of error can still be

achieved at an arbitrarily large information rate for the transmission of a fixed number

of photons per second in the signal field, p. Since the signals are orthogonal, however,

the total bandwidth for all input symbols can no longer be regarded as narrow. That is,

Eq. 43 is no longer valid. The fact that the average numbers of photons per second in

the signal fields representing the input symbols are all equal implies that the average

power in the signal fields grows with the number of input symbols M, because of

increasing energy per photon. Hence, the small error probability is achieved only by

an accompanied increment in the power of the transmitted signals.

In practice, one usually holds the average signal power (or peak power) fixed. There-

fore it is more meaningful to derive the system reliability functions under the assumption

that the energies in the signal fields representing different input symbols are equal.

That is,

I>jZhoj= E.= E j= 1 2, . . . M.

Unfortunately, we are not able to obtain any analytic result in this case. It is quite

clear that the values of ni and nj satisfying the condition

f.>~f.
fj 1 fi

for f. in Eq. 41 can only be determined numerically.
J

In the absence of noise, one can determine the error probability for equal-energy

signals in an alternative way. When m. is transmitted, the mode whose natural fre-

quency is j is excited to a coherent state I aj ei'), while other modes remain in ground

states. Then

P(E/mj) = exp (-lj 2)

exp ( h
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and

M

P(e) = exp E (79)
j=l 

When the signals are orthogonal in frequency, one can express the frequency w. in terms
J

of some fixed frequency wo:

= (+ij T -

where T is the length of the signaling time interval. Substituting this expression in

Eq. 79, we obtain

P(E) = I exp[ 2 

j=10l TW0

For large value of T and o0 (optical frequency), the right-hand side of the last equation

can be approximated by

M

P ex(-o)exp(2) 

2rE

arbitrary valu e e of i onfinite channel capacity.In most practical cases, ressi. We can further simplify the last expression to
arbitrary value of R, as in the case of infinite channel capacity.
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V. ORTHOGONAL SIGNALS IN COMPLETELY INCOHERENT STATES

We have considered the reception of signals, each of which is generated by a clas-

sical source of known amplitude but whose absolute phase is unknown to the receiver.

The received field is in a coherent state when there is no thermal-noise field present

at the receiver. We shall now find the structure and performance of the optimum

receiver when the received field, in the absence of an additive thermal-noise field, is

also in completely incoherent states. (Note that we are still using "coherence" in its

quantum-mechanical sense.)

Let us again expand the electric-field operator in terms of its Fourier components

and plane-wave mode functions as in Eq. 4. When the transmitted input symbol is mj,

in the time interval (0, T) during which the signal is expected to arrive at the receiver,

the signal field is in a state specified by the density operator

(t) Je 1 j, · S exp[~~ j m LJ mn 
p?) = 1 y... exp - a*t) n' a
I det K0) m n mL J mn

J 

d2a
II am)(am m
m

j = 1,2,... M. (80a)

In this expression, Kt) is the mode correlation matrix whose elements are

j
Kj t) = Tr [p t)a+aj (80b)

In the presence of a thermal radiation field that is in the state specified by the density

operator p(n) in Eq. 20, the received field is in a state specified by the density operator

1j 

detKj '

Since the signal source

matrix K. is
J

Kj = K t) + K(n )

That is,

[Kj]mn it) mn

25 exp a [K]- a II am >(aml 
m jmn a mm m m Mrr

m n

and the noise source are independent, the mode correlation

+ (n)6mn'

When the mode correlation matrix Kj is diagonalized, the element [Kj]kk is equal to

the average number of photons in the kt h mode of the received field going through

the receiving aperture in the time interval (0, T) at thermal equilibrium.
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As in Section IV, we shall only consider the case in which density operators are pair-

wise commutative. The necessary and sufficient condition for the density operator in

(81) to be commutative is that the mode correlation matrices K1, K2, ... K M are com-

mutative. The last condition is satisfied whenever the signal fields are orthogonal (that

is, they satisfy the condition in Eq. 19). The commutativity of the mode correlation

matrices K1, K2, ... KM implies the existence of a unitary transformation matrix V that

is such that the matrices

R = V+KjV; j = 1,2, ... M

are diagonalized. When the elements of K. are given by (82), the kkth element of the
J

matrix Rj can be written

[Rj]kk = (n) + Sjk (83a)

where

j = [+KtVj ](83b)
jk V kk ( 83 .

Since Eq. 81 can be rewritten

d2a
_ 1 S exp_ -a Kair i ak)(akl d

PJ IdetRl k

where a is the column matrix whose elements are ak, we have

d2

Pj= l & exp_-a +V VK VVat II pk)(kl 
I det RjI - I

In this expression, I [k) = z Vkn Ian is the right eigenstate of the operator bk = ; Vkna n
n n

Writing the right-hand side of the last equation in terms of the Pk' we obtain

pj=Sexp- IdPk)(Pkl (84)
k ((n)+ Sjk)

The density operator pj in (84) specifies the state of the received field, when the

electric-field operator is expanded in terms of the bk and their adjoints. The asso-

ciated normal mode functions (for narrow-band signals) are

Vk(r,t) =1 Vkn exp[-i(c0k-wn)(c-t)].
n

50

i I



NOISE FIELD
SIGNAL p(n)
FIELD IN RECEIVED

Q+_, . FIELD IN
STATE STATE
Pl(t) P1

SIGNAL p(n)
FIELD IN ,

+ P 2
STATE

P2 (t)

SIGNAL p(n)
FIELD IN

_,,,, ,,_~ PM
STATE
PM(t)

jV Vk d
3 r

dt = 8k nf In km - Ik8mn

Fig. 12. A diversity system.
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In the following discussion we shall consider only frequency orthogonal signals. For

the sake of clarity, we denote by IPjk) and Vjk(r,t) the eigenstate IP(j l)A+k+k ) and

mode functions V(j l)A+k+k (r,t), respectively, for j = 1,2,... M and k = 1,2, ... J,
0

where A J. (A, J, and k are positive integers.) In this case, the set of normal mode

functions are chosen to be that given by Eq. A.8 and the electric-field operator is

expanded as in Eq. A. 7. The density operator, pj, specifying the states of all relevant

modes of the received field when mj is transmitted can be written

d2j2

Pj'k 1 J M Pjk Ij exp ri I Pjk)( Pjk I

j'=1 k=l (n) k=l j'=1 ( n)

That is, the signal field is in the state specified by

J [IPjk[12 J 2Pjk
(t) expL- i I k 3 k)(Pk 

k1k=l jk

jI = j'1 k l (Pjk) lpPk)(Pjkl d 2 jk . (86)

For simplicity, it is assumed that only J modes of the field are excited by the sig-

nal source at a time. (The J modes excited by the signal source when m. is trans-
st ndj th

mitted are denoted as the (j-l) + k + 1 , (j-1)A + k + 2n d ... , (j-1)A + k + J

modes in Eqs. 85 and 86.) Eventually, it will become evident that there is no loss of

generality in making this assumption. The block diagram of the transmitter and the

channel is shown in Fig. 12.

Before proceeding to find the optimum receiver and to investigate its perfor-

mance for such a set of signals, we digress for a moment to discuss the corre-

sponding classical channel.

5. 1 CORRESPONDING CLASSICAL COMMUNICATION SYSTEM

The type of signals characterized by the density operators in Eq. 85 can be gen-

erated by all natural light sources that can be considered to be made up of a very

large number of independently radiating atoms. Such random and chaotic excitation
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is characteristic of most incoherent macroscopic sources, for example, gas discharges,

incandescent radiators, and so forth.

The density operators p in Eq. 86 also describe the state of the received field in

a Rayleigh fading channel, in the absence of an additive noise field. In such a channel,

there is a large number of isolated point scatterers located at random points along the

propagation path. The scatterers are moving at a speed so slow that their movement in

the time interval of length T, and hence the Doppler shift, may be neglected.

When the transmitted input symbol is mj, the transmitted electric field has a clas-

sical waveform in a frequency position modulation system

E(t)(r~t) F"Z - t)ll
ct)(,t) = Re sjvj (r,t) exp-ic -t) = 1, 2,. . M, (87)

where

2 T [ko+(-l)].

The vj(r, t), the complex envelopes of the E( (r, t), constitute a set of orthonormal wave-

forms. The waveform of the received electric field in the absence of additive noise is

Ecj(r,t) = Re x(r,t)sjvj(r,t) exp[-ij(z -)-i(r,t)j], (88)

where x(r, t) and (r,t) are sample functions of random processes that are such that at

any time t and point r, x(r, t) and (r, t) are Rayleigh-distributed and uniformly

distributed random variables, respectively. For simplicity, we suppose that the

duration of the signal T i very short compared with the rate of variation of

x(r,t) and (r,t); that is, these processes are relatively constant over the signaling

time interval. Similarly, we suppose that they can be considered as constants in space

over the beam width, too. Although these assumptions are not always realistic, they

lead to illustrative results which can be generalized easily to account for time and spatial

variations in x(r,t) and (r,t). In this case, the received electric field is again a plane

wave over the receiving aperture. Equation 88 simplifies to

c(r,t) = Re [xsjvj(r,t) exp[-io( -t)-i]j, (89)

where the probability density functions of x and are

u U i.
Px(U) B exp 2B u O (90a)

0 < u 2r
p (u) 2 Tr (90b)

0 elsewhere
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In the quantum-mechanical limit, the state of the received field with electric field ampli-

tude given by (89) is specified by the density operator pt) in Eq. 86, with J = 1.

In classical communication theory, it has been shown that when additive white

Gaussian noise is also present, the minimum attainable error probability in transmitting

one of the M equally likely orthogonal signals over a Rayleigh-fading channel decreases

only inversely with the transmitted energy. The reason for this inferior performance

is that it is highly probable that the actual received energy on any given transmission

will be small, even when the average received energy is high. That is, the probability

of a "deep fade" is appreciable.

One way to reduce the error probability is to circumvent the high probability of a

deep fade on a single transmission by means of diversity transmission. In a diversity

system, several transmissions are made for each input symbol. These transmissions

are spaced either in time, space, or frequency in such a way that the fading experienced

by each transmission is statistically independent. This is possible, since in all prac-

tical scattering channels the scatterers move randomly with respect to one another as

time goes on.

Without loss of generality, we shall confine our discussion to frequency diversity

systems. Let J denote the number of diversity transmissions. In the absence of addi-

tive noise, the transmitted waveform and the received waveform are given respectively

by

E t) (r,t) = Re t) exp-ij t) cj jkvjk( 
=1

E cj(r,t) = Re XjksJkvJk(r, t) exp-i 3 (z -)z

where

Oj = 2 [ko+(-1)A]

when mj is transmitted. The xjk and the jk are statistically independent Rayleigh-

distributed and uniformly distributed random variables, respectively. The complex

envelopes vjk(r,t) are given in general by Eq. A. 8a. The waveforms Ecj(r, t) are out-

puts of a system shown in Fig. 13. It can be seen that in the quantum-mechanical limit,

the relevant modes of the received field are in the state given by the density operator in

(86) when no noise is present and mj is transmitted. The coherent states I Pjk) are right

eigenstates of the operators bjk. The matrix elements Vjk are given by Eq. A. 8b.

Although in the present discussion our attention was confined to the classical

diversity system, it is evident that the density operators in (86) specify the states
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of the received field in the more general fading dispersive channel. This is due to

the fact that a fading dispersive channel can be represented canonically as a clas-

sical diversity system 2 2 as shown in Fig. 13.

-'u
1 1

I llV (r't) ,
•7~I2 - 12

X12 e

- V1 2 (rt) L

-i lJ
; IJ~~~~~11

IQ Vlj(r,t) ( rt)

-i21 
X21e

WHITE NOISE
n(r,t)

=+ eC l(r,t)

E(t) (rt)
cl -'

HITE NOISE
r,t)

ec2 (r,t)

XMl e

HITE NOISE
,t)

ECM(rt)

Vjk(rt) = Vjk(rt) exp [-i. ( -t)]j - J J 

Fig. 13. A classical diversity system.

5.2 OPTIMUM RECEIVER AND ITS PERFORMANCE

Let us again consider the simple case in which the mode correlation matrices

Kj in Eq. 81 are diagonalized. When the number of diversities in the system is J,

the density operator pj which specifies the states of the relevant modes of the

received field is simply
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1= 1
d 2ajk

jk <jk [(( n) + sjk)

I jk 2 J
exp I

k 1 n + jk k=1

t exp-
M

j'=1
iPli

while the

functions

aj ,kI

(n)

J M jk 
II 1 j'IO(ajlk j = 1,2, .... M

k=l j'*j -Tn)
j'=l

(91)

electric-field operator is expanded in terms of the plane-wave normal mode

and its Fourier components

E(r,t) = ex jk jk( t) a+ exp- -t)]+ irrelevant

j=l k=1

(For the sake of clarity, we denote by wjk' ajk' and Iajk) the frequency (j-l)A+k+k 

the operator a(j l)A+k+k0 , and the coherent state a(j_l)A+k +k)' respectively, for some

integer ko and A J.) When m. is transmitted, the general form of the frequency spec-

trum of the signal field is as shown in Fig. 14.

ZLU

C-
Z E
a,,, .

o "11 "12 "1J 21 "22 "2J "ji1 2 "jJ ( + 1)1I2 I ~~~

Fig. 14. Frequency spectrum of the signal field.

Eventually, we shall modify the receiver structure so that it will be optimum for the

reception of any arbitrary narrow-band orthogonal signals. It will become evident that

for narrow-band signals, the optimum performance in transmitting M equally likely

input symbols in a J-fold diversity system using orthogonal waveforms does not depend

on the specific choice of the orthogonal set of waveforms.

5. 2. 1 Structure of the Optimum Receiver

It is obvious that the density operator pj given by Eq. 91 is diagonalized in the
M J

number representation. Let I II njk) denote the simultaneous eigenstate of the
j=1 k=l
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operators al lal 1, al 2al2 . a+a corresponding to eigenvalues n 1 nl 2 Inoperators a 1 1a1 a1 2a 1 2 ... aMaM j c I, 12'. In
terms of these eigenstates, the density operator pj can be expanded as

(M-) iJ M (n) M 1 / (n) +sk

j(Ml ~~~)Jr n nif k- Ijj (I +(n) l +sjk+(n) +(n)+sjk i Ik j )kl}

Therefore the optimum receiver measures simultaneously the dynamical variables
+- + +

a 1 a1 1 a 12a 1 2 *aMJaMJ (see Section III).

When the variables a kak are measured simultaneously, the probability that the dis-

tribution of the outcome will be the MJ-tuple n = (n 1n n1 .. nMJ), given that

the density operator of the received field is pj, is

J MM-)J

1P(n/mj) = Ik=1J':1 1+j,j

n/ (n) 0 ilk

l +n))

1

1 +(n)+ Sjk

2a)

To simplify our notation, let

1

1 + (n) + jk

qo = +(n
1 +(n)

Then

P(n/mj) = q 1)J 
k=l qjk( -qjk )njk

M

j=1
it *i

nj iki

Since the inequality

P(n/mj) P(n/mi)

is satisfied if and only if

>= I i k

ik 1 qo 
k= l-

the value of j which maximizes P(n/mj) also maximizes the quantity
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fj ik + in jk (93)

Hence, the optimum receiver needs only to evaluate the quantities fj. The transmitted
input symbol is estimated as m. if

J

f. f; i j, i,j = 1, 2....M. (94)

Again, such a decision rule will yield ambiguous results whenever (94) is satisfied for
more than one value of j. The error probability of the system will not be affected,
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Fig. 15. Optimum receiver for frequency orthogonal signals in
completely incoherent state.
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however, by the way in which such ambiguities are resolved. The portion of the opti-

mum receiver which makes observations on the field and computes the quantities fj is

shown in Fig. 15.

It is difficult to evaluate the performance of such a system. In the following dis-

cussion, we shall consider only the case in which the numbers of signal photons sjk are

equal. That is,

Sjk = s j = 1,2...M; k = 1, 2. (95)

For the narrow-band signals considered here, (95) also implies that the energies in all

of the J modes (J diversity paths) of the signal field are equal as in equal-strength

diversity systems. It has been shown 2 3 classically that the system performance is opti-

mized when the energies in the diversity paths are equal. We shall not now try to prove

the optimality of the equal-strength diversity system. Rather, the assumption in Eq. 95

is made for simplicity. For this special case, the structure of the optimum receiver

simplifies to that shown in Fig. 16.
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Fig. 16. Optimum receiver for equal-strength orthogonal signals
in completely incoherent states.

One can easily modify the structure of the optimum receiver for the reception of

arbitrary narrow-band signals specified by the density operators in Eqs. 85 and 86.
M J

In this case, the density operators are diagonalized in the II bkbk representation,
j=1 k=l J

where b = Vjl k (j-1)+n+k a j n ' The quantities Vkn are elements of
jk n (j-1)+k 0 k, (j-1)0+n+k 0 jn

the matrix V that diagonalizes the mode correlation matrices K1,K, and K.

The normal modes excited by the signal source have mode functions given by Eq. A. 8a

when the signals are frequency-orthogonal. For this set of signals, the optimum receiver

is shown in Fig. 17.
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Fig. 17. Optimum receiver for equal-strength orthogonal signals
in completely incoherent states.

5. 2. 2 Performance of the Optimum Receiver

We have described the forms of the optimum receiver in a quantum-mechanical

Gaussian-Gaussian channel, wherein the received signal field is also in completely

incoherent states. Now we shall evaluate the performance of this system. Again, it is

appropriate to describe the performance of the system by the probability of any incorrect

M-ary decision, P(E), since we shall only be concerned with systems that do not utilize

any coding. Furthermore, the channel is assumed to be memoryless and there is no

intersymbol interference.

Just as in Section IV, the bounds to the error probability P(E) will be expressed as

K1 exp[-TCE(R)] P(E) _< K2 exp[-TCE(R)],

where T is the time allotted to the transmission of a single input symbol. The quantity

+(n)
C = p ln

(n)

is the capacity of the system in which the noise field is in a completely incoherent state,

but the signal field is in a coherent state with an unknown phase factor (Eq. 50a). In
Sthe expression of C, p = S, where S is the total number of photons transmitted

through J diversity paths. Hence S = Js. Our attention will be focused upon the reli-

ability function E(R) which again can be used to characterize the system.
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The system reliability function can be expressed in terms of a set of parametric

equations, as well as in terms of the solution of a maximization problem. We shall first

find a lower bound EL(R) of the reliability function. Then an upper bound EU(R) of the

reliability function will be found which turns out to be identically equal to EL(R).

Upper Bound to P(E)

J
Let Pc(n) denote the probability distribution of the random variable fj = njk when

the transmitted input symbol is mj. Let pi(n) denote the probability distribution of the
j 3

random variable fi = n ik, when the transmitted input symbol is m and the value of i
k= 1

is not equal to j. The moment-generating functions corresponding to the probability dis-

tributions Pc(n) and Pi(n) are denoted by gc(t) and gi(t), respectively. That is,

oo

gc(t) = Pc(n) exp(tn) (96a)
n=O

00

gi(t) = Pi(n) exp(tn). (96b)
n=O

Since the njk are statistically independent, for all k = 1,2,. . J and j = 1, 2,... M, and

nkP(njk/mj = qs(l-qs ) 

n.
P(nik/mj, ij) = q(1-q o ) k ,

where

q =

1 +(n)+ s

it follows that

gqs (97a)gc(t) =
- (1-q) e

qo
gi(t) I= - (97b)

The corresponding semi-invariant moment-generating functions denoted by c(t) and

Yi(t), respectively, are
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qs

YC(t) = In g (t) = J n t (98a)
1 -(-qs) e

q
yi(t) = in gi(t) = J n t (98b)

1 - (1-qo) e

With these preliminaries taken care of, we now proceed to derive an exponentially tight

bound on the error probability, P(E). Since much of the derivation of this upper bound

is similar to that presented in Section IV, we shall now only outline the derivation.

The conditional probability of error, P(e/ml), given that the input symbol transmitted

is m1 , is

o00

P(E/ml) < E Pc(n) Pr (n-<f 2 , or nf 3... , or nfM/ml).

n=O

For some parameter in the range (0, 1), we have

00oo

P(E/ml) = Pc(n) {Pr (n<f 2 , or n<f 3 ... or o fr nM/ml)}

n=O

< M 8 E PC( n ) Pi( m )

n=O m=n

M6 Pc(n) L exp(tm-tm) pi(m)

n=O m=n

If the parameter t is non-negative, we have

1P(E/m MI Pc(n) exp(-t6n I pi(m) exp(tm).

By substituting the expressions

M = exp(RT)

o

Z Pc(n) exp(-tSn) = exp[yc(-6t)]
n=O

0o

E pi(n) exp(tm) = exp[¥i(t)]
m=O
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in the last equation, it becomes

P(E/m 1 ) •< exp[-{-6RT-yc(-6t)-6yi(t)}]; for 0 _ 6 1, and t 0.

It is clear that P(E/ml) is independent of the transmitted input symbol.

P(E) = exp{-[-6R-y c(-6t)-6yi(t)]};

Therefore,

for 0 6 1, t 0.

Equation 99 is satisfied for all values of t > 0 and 0 6 1.

fied for the values of t and 6 which maximize the function

(99)

In particular, it is satis-

E (6, t, R) C - [Yc(-6t)+6Yi(t)].

A lower bound of the reliability function is, therefore, given by

EL(R) = ax tmax Eo(6,t,R).L 0-6-<lt>_ 0

(100)

(101)

Substituting the expressions for i(t) and Yc(t) in Eqs. 98a and 98b in Eq. 100,

we obtain

Eo(6,t,R) = -6 c+ 7C 6J ln [1 - ( 1-qo) et+ Jln 1-(1-qs)e 6t - TC1 6Jlnq +Jlnqs } .

(102)

The right-hand side of Eq. 102 is maximized with respect to t when the value of t is

given by

1
/1 -q 1+6

t = ln I - . (103)
0j

(Since qs is

Substituting

always smaller than q0 , the right-hand side of (103) is always positive.)

(103) in (100) and (101), we obtain

E1 (6) -6 = max Eo(6, t, R)

66 1

- 0(-q) ( -q )

1+6 1+6
-lnqo qs -

The function E 1(6) can also be expressed in terms of (n) and s.
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(1+6)J
E1 (6) = iC In

(1+6)J
-= in

TC

1 + n 1 +6n>+ s/l+-lI. (n1 +( In (n) 1+(n)+s +61

L _ i 1+(n) (n)+s J

- iln {1 + s--n} (104b)

The lower bound EL(R) of the reliability function E(R) is obtained by maximizing

E 1 (6) - C over all values of 6 that is such that 0 6 1. The partial derivative E 1 (6)

with respect to is

aE 1 (6) j
a8 TC

(n) 1+6 ( n)+s 1+6
_In _) 1 +(n)n 1 +(n)+ j j 

I- I ~~~~~~~~~~I

( n) \1+6

1 +( n))
(n)+s \+6

1 +(n)+s

6
(n) 1+6

7(n) 1+<n>+s\
ln

1+(n) (n)+s /
1
1

(n)+s 1+6

\ +(n)+ s/

Let us denote by Rc the quantity

aE 1()
R = Cc a68

6=1

(n) (n) +s I n

(n) ( (n)+s \\I 1/l+(n) I+(n)+s

'/ +(n> )l+(n>+s)/J 1- /n

V 1+(

1 +(n)

(n)+s

n>) +(n>+s

�'1

(n)+s+ 1

(n>+s

I
(105)

and by Cg the quantity
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El(a) 6
g- a6 6=6:0

= J(<n)+s ) in

a E
Since 6 1 > 0, setting6

1 + S -(1+ (n + s) In
\ <n)

(106)
1+(n/ 1 it

8E 1 (6) R
a6 C

(107)

will yield the value of 6 that maximizes the function E1 (6) - 6 R with respect to 6 for

rates Rc < R Cg. Hence, the best lower bound EL(R) of the reliability function is

given by

J(1+6) t (n) 1+(n)+s 1+6

EL(R) = - lnn1 + (n)+ s)L - n 

l(n ) +s (n+--in
TC l+(n) / ff (108a)

and

R =J In l+(n)) ( l+((n) + 6

K1 +(n)+ s/

6
(<n) \/+6

\1 +(n)/

6( (n) \+6 (n)+s 

1 +(n) n+ S

1
1+6

1

l+(n)+s \+61 
\1 +(n)+ S/

/ (n)
ln 

\1 +(n)

6
(/ n) \1+6

+(n)

for rates R in

maximizes the

the range (Rc,

function E 1(6)

Cg). For rates R in the range (0, Rc), the value of 6 that

- 6 is 6 = 1. Thus, we haveCf

1-

2J
EL(R) = InL TC

(n) (n)+s R

+(n) 1+ <n)+s R

1 1 C

1+<n) 1+(n)+s
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The general behavior of the function EL(R) will be discussed in section 5. 3. Now,

we show that the upper bound of P(E) derived above is an exponentially tight one. To

this end, let us express EL(R) parametrically.

From Eqs. 100 and 103, it is clear that the function E1 (6) can be expressed in terms

of Yc ) and Yi( )

E1(6) = C {(1+6 In + Yi 1 In 6CTC ¥ 6 1 - ( 1 6 C- 

Let us define a parameter

6 1 -qo
= 66n l (110)

Since 0 < 6 1, the value of lies in the range

1 I -q A
2 1 -q

The exponent function EL(R), where

EL(R) 6ma {E 1(6) -6 C}

is also given parametrically by two equations, one of which is obtained from Eq. 108b.

RI 1- )2 -_ qS

for Rc R C. Since

l 1 1 -qs 1 -q s
1 + 1 - q 

we have

Yi + in 1q ) = Yc(J) + J In °

(1 + ) Yc)1 - qo 0

1+6 1 qnd)
1 i 1+6 1 q0 c

66



The right-hand side of (111) simplifies to

R {(C = iC + InIf _C
qo

¥C()-J nq
C~~9

1
Thus for In

2

by

1 - qo
1 -- < < O, that is, R - R -< Cg, the exponent function EL(R) is given
1-q scg

R c R C.c g' (1 12b)

For 0 < R < R c , EL(R) is obtained by setting

2J
EL(R) = - InL TC

A1 to1 1 -I q
2 1 -qs

1 - /(1-q )(1-qo) R

. C'

It will be shown that the exponent function of a lower bound of P(E) is equal to EL(R)

in (112).

Lower Bound to P(E)

As shown in Appendix E, a lower bound of the probability of error is

P(E) Pr (fj-<d/mj) Pr (fi>d/mj),

provided the parameter d is so chosen that the inequality

M Pr (fi>d/mj) 1

(113)

(114)

is satisfied.

in (114) as

Using the Chernov bound for Pr (fi>d/mj), we can rewrite the condition

M exp[-ty(t)+yi(t)] < 1; t > 0.

It has been shown 2 3 that

Pr (fi >d/mj) > B1 exp[-tyI(t)+Yi(t)];

Pr (fj<d/mj) B 2 exp[-yc(,)+i()];
j j 2 

t O

d <0,

where the parameter d is related to t and by the equation
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and

(115)

(11 6a)

(1 16b)
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d = y(t) = c(1).

For our purpose, it is sufficient to know that the coefficients B1 and B 2 in these equa-

tions are not exponential functions of T. It is clear from (117) that the relation between

the parameters t and is

(1-q ) et (l-qs ) e

1 - (1-q ) e t 1 - (1-qs) e

Or, equivalently,

1 - s

t = ln - + q . (118)1 -qo

Since t > 0, the parameter A lies in the range (ln -q ).

Substituting Eqs. 11 6a and 11 6b in Eq. 113, we obtain

B1 B
P() ¢- 2M exp[-6¥c(A)+Yc()+i(t) -ty(t)]; < 0 , t 0.

If this lower bound is written

P(E) K1 exp[-rCEu(R)],

the exponent EU(R) is given by

EU(R) = min E 2 (, R),
u ~1-q 0

s

where

E( 1 R= {2 lq )Y+1-q ) -
E 2 (, R) =C 6Q+ln 1 qo (4)-c(-yiq +ln1 C

Since

1 - qS qYi +ln = Jln + (-q),
¥i~ +In 1 - qo q 

the expression of E 2 (4J, R) can be further simplified to
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r/1 -qsq R
E 2 (, R)A+n q) (.d) -Y c( ) -Jin - . (120)

2 TC i 1 - qs (

Substituting (118) in (119) and expressing yi(t) in terms of c(,), we obtain the following

inequality

+R + {+n S ( -qo yc ( ,) - J n (121)

To determine the value of that minimizes the right-hand side of (120), let us note

that

8, I= qo

1 1- q
and y(A) ~ 0. That is, the function E2 (, R) decreases with for In 1 - but

1 -q
increases with A for n 1 - , 0. Let us also note that the value of the right-

1 - qo
1

hand side of (121), when is equal to - In 1 q equal to

1 JAI(1-qo)(1-qs) 1 1 qs -J ln°
-T IIn -In

2 1 - q (1- -)(1-q ) 1 - (l-q s)(1 -q ) q

But this quantity is equal to R c as defined in Eq. 105. Therefore, it follows that

for R within the range 0 R < R c , the function E2Z(A, R) is minimized by letting

1 - q
2 1- qs

Then

EU(R=2j {In [1 -/(-qs)(-q o -l C o

Note that Eu(R) is identically equal to EL(R) as given by Eq. 109, when the former is

expressed in terms of (n) and s. For R c < R, we note that the right-hand side of

(121) is an increasing function of A. At = 0, it becomes

____~n -1 Jln i,
T _ 1- q qo 

which is equal to the quantity Cg defined in Eq. 106. Therefore, for Cg R RcI the
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exponent is also given by the parametric equations (112).

To summarize, we have found the reliability function E(R) of the system given by

(i) For 0 R R c (Eq. 109):

E(R) = n - 1+(n)+ ) In +/(1 n))(l+ (n) + s)Is C-
1+(n) l+(n)+s

(ii) For Rc _< R < Cg, the reliability function E(R) satisfies the parametric equa-

tions (Eqs. 112a and 112b):

RC = CJ ~(n)+l (n)+s C- CT + n) +(n)+s

J
E(R) = C

L((n)+s) eI

1 + ((n)+s)(l-eA)

((n)+s) eA

1 + ((n)+s)(1-e)

+ In [+((n)+s)(l-e)]},

where Rc and Cg are given by (105) and (106), respectively. Alternatively, the relia-

bility function is also the solution to the following maximization problem

E(R) = 06 E1 (6)6 C6

J(1+6) (n 1+(n) +s +6
E (6) = C n +((n) ) 

T ~ n() n(n)+s

- ~ffT 1 +n)
(122b)

5. 3 DISCUSSION

It can be shown from Eq. 122 that the reliability function of the system, in which

orthogonal signal fields in completely incoherent states are transmitted in the midst of

an additive thermal-noise field, approaches the reliability function of a Rayleigh fading

channel in the limit of large (n) (the classical limit). Since, for large (n),

1 + (n) - (n)

6

( (n) \1+6 6 1

6)1) 1 + 6 (n)
s+(n) +6 s 16

l+(n)+s/ 1 s + (n)
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the right-hand side of (122) becomes

E(R) 0 6ax1_O 6 _
TC In ( 1+6 (n-)) c nc)) CT c I + 6(n) TCC (n>

Substituting s = S and CC = S in the equation above, we obtain
i s c /n\

E(R) = 0max0O<6-<1
(+(1+ 6) 6 
Lin -(n

1+6 <n>J J

<n>

Equation 123 is just the reliability function for a classical fading channel when the num-

ber of equal strength diversity paths is J.22

As in the case of signals that are in coherent states as discussed in Section IV, the

reliability function depends not only on the signal-to-noise ratio , but also on the
(n>

noise level (n) and the number of diversity paths J. The optimum reliability function,

E°(R), is obtained by maximizing the function E(R) in (122) with respect to J, or alterna-

tively, with respect to s. That is,

E (R) = s>0 06R <1 El s- C 

where

E 1 (6, s) 1 + n In
1 +<n>

s in
(n)

l+((n)+s) 
l+(n)

1 +(n)

1+(n)+s +6K

s+(n) 

- -in + s .
l+(n) L1+(n)>

s In
(n)

Let s denote the value of s that maximizes the function E1(6, s). Then

Eo(R)= max E s)R
ER 06< 1 (6, s)-6 C

if the value of s ° does not exceed S. When s ° is larger than S, we have

E(R) = max E (6,S)6
Our task is to determine the values of and s as functions of R/C and 

Our task is to determine the values of E and s as functions of R/C and (n).

71,

+ S)
J(n)

6R 
(S 

(n)

(123)

(124)

(125a)

(125b)

__yl�_ __ __�1_1 I _ _I_ II-·PIL-�L�·I�III·---�.�- -.



For a fixed value of 6, E 1(6, s) is maximized with respect to s at s = s, where s °
1~~~~~~~~~~~~~~~~~~~~~~~~~

is given by

aE 1 (6, s)

as =Ss=s
= 0. (126)

Since

- 1 E (6,
S 1

6
s) -

1 + (n)
s In

(n)

1-( (n>
1+(n)1+6

1 + (n)
s n

(n)

1

1 + (n) + s

(1 6 _ 1 

1+ 1 +(n) +s

6
1 +(n+ s\l+6

s+(n)

1 + ((n)+s)

6 

F / (n) 1+(n)+ s1+6
1 +<n s+n\1+(n) s+(n 

Eq. 126 becomes

1- (12_n)1 - +n
\1 + (n)

<+(n l>+ s°l+6

s+(n)

+sO) (_<n l+(n)+s 1+6

1 +(n) s +(n) / 

(127)

1 + (n)l+<n>
in 

(n>

Equation 127 gives the value of s° as a function of 6. To find E°(R), we compute the

partial derivative of the quantity E 1 (6,s ° ) - Cwith respect to 6.

aE 1 (6, s 0 ) R

a8 C'

Substituting (124) in the preceding expression, we have

aE 1 ((n

86 C l +n>)L 1 (n))

(n)

11
0 _( (n)+s \1+6

1 +-(n)+ s.) J]

0 (n)+ s \'+I

1 +<n)+ sO

_L 6l+n>/

(1+6) 1- (

(128)
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E 1 (6,s ) =

1 + ((n)

6
( (n) \1+6

1 (n
+

In -
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\l+<~

R
C'
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Therefore, the optimum reliability function E°(R) is given by the following equation:

For R R where
C'

R ° 1
c

s In

(n)

+(n)

+

E (R) =

(n) +so
ln 1+<n))1-

/ (n)

1 +(n)

(n)+ sO
+(n+ ln

1 +(n>+ s

n>
1- >

1 +(n)

(n)
1 - /

1 +(n)

+ ((n) + s )1
(1

(n)

1 + (n)

+(n)

(n)

(n)+ sO

1 +(n)+ sO

1 +(n)+ s0

s +(n)

1 + s 0 +(n)

1+ s+(n)

s°+(n)

1 +(n)+ s

s +(n)

(129)

R
C'

(130)

1 + (n)

(n)

The value of

range R that

sO in Eqs. 129 and 130 is obtained by setting = 1 in (127). For the

is such that R ° < R C where
c g'

CO

C

1

o0 l+(n)
s In

( n>

+ s ,, (131)
1 +(n)/J

E°(R) = E(6 0,s ° ) - 6.

The values of 650 and s ° are given by

73
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50

<n> .16{ L 1)
in ~~~1 +n> --n~

60

1+n>~1l1+(n
1

+60 (n)+ s° 1+6

1+(n)+ s 0

1 + (n) s0 + (n)
In

(n) 1 + s + (n)

( n) I1+6
1- l 6

1 + (n)/

60

(n) 1+(n)+s \n+6

1+(n) (n)+s /
E1(6 ,s ) =

( (n)

1 +n)
+t ((n)+ s )

1+(n)+s '\1+6

(n)+ s 

with 0 -- 650 1 and s > 1.

Equations 129-132 have been solved numerically. The results are shown in Fig. 18,

where the optimum average number of signal photons per diversity path, s, is plotted

as a function of R/C for (n) = 0. 1, (n) = 1.0, and (n) = 10. Also shown in Fig. 18 is
0

the value of s in the classical limit (13). The values of s for rates R less than R ©

(n> c
are independent of R/C, but they are functions of the noise level (n). It is

interesting to note, however, that if the effective noise in the system is taken to be

(n) + ), the optimum ratio, so, is roughly 3 for R _ R independent of the

<n>+2
value of (n).

For rates greater than Rc, the value of s increases rapidly with R/C. That is,

for a fixed value of S, the optimum number of equal-strength diversity paths decreases

at higher information rate. From Fig. 18, it is clear that, for increasing R/C, so

increases without bound. Hence, when the average number of transmitted photons is

fixed at S, a point where the value of s is equal to S will eventually be reached.

That is, the optimum value of J is equal to one. The rate at which S = s is called
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Fig. 18. Optimum number of signal pho- Fig. 19. Optimum system reliability
tons per diversity path vs R/C. function.

the threshold rate for the given value of S.

Let us assume, for the present, that, for any given value of R/C, S is extremely

large so that S/s ° is larger than 1. In this limiting case, the optimum value of E0 (R)

as a function of R/C is given by Eqs. 130 and 132. The general behavior of E°(R) at

rates above the threshold is given by Fig. 19 for different thermal-noise levels. The

reliability function for the optimum classical fading channel is also shown for compar-

ison.

When the value of S is finite and fixed, the threshold effects should be considered.

At rates such that S s, the optimum value of J is equal to S/s ° . At rates such that

s > S, the optimum value of J is equal to 1. Hence, for rates less than threshold

rate the optimum reliability function E°(R) is identical to that derived under the sup-

position that S is extremely large. For rates greater than the threshold, the optimum

value of E as a function of s is given by Eq. 125b.
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VI. CONCLUSION

6. 1 SUMMARY OF RESEARCH

The problem of communicating a set of M input symbols through a channel disturbed

by additive thermal noise has been studied. The quantum-mechanical model for such

communication systems has been described, and the characteristics of the thermal-

noise field have also been discussed. Our attention was restricted to the special case

in which the density operators specifying the states of the electromagnetic field at the

receiver are commutative.

A quantum-mechanical receiving system was modeled as a system that measures

a set of dynamical variables. It was found that when the density operators are com-

mutative, the optimum receiver will measure those dynamical variables that are rep-

resented by Hermitian operators whose eigenstates are the simultaneous eigenstates

of the density operators. On the basis of the outcome of the measurement, the estima-

tion of the transmitted input symbol is made with the aid of the maximum-likelihood

decision rule, as for the classical optimum receiver. The optimum performance of the

system was derived and was expressed in terms of the eigenvalues of the density opera-

tors. The results were used to study two specific communication systems.

The signal field representing a given input symbol is in a coherent state and has an

absolute phase unknown to the receiver. In this case, the classical waveform of the

electric field has a known amplitude but a random phase. It was found that when the sig-

nal fields representing different input symbols are orthogonal (the corresponding classi-

cal electric fields have orthogonal waveforms), the density operators specifying the

states of the received field for all input symbols are commutative. The optimum

receiver for this set of signals transmitted in the midst of additive thermal noise mea-

sures simultaneously the number of photons in each of the relevant normal modes of the

received field. (The normal-mode functions are chosen to be the classical waveforms

representing the input symbols.) When the average rates of photons in the signal fields

representing all input symbols are equal (p photons/sec) and the average number of

thermal-noise photons in each mode is (n), the channel capacity was found to be
1 +(n)

p in . Furthermore, the system reliability function was found. Its general
(n>

behavior was shown in Fig. 9.

The structure of the optimum receiver for a signal field that is also in completely

incoherent states and its performance have been studied. In the classical limit, the

electric field waveforms are sample functions of Gaussian random processes. Hence,

this system models quantum mechanically a Rayleigh fading channel. For equal-strength

diversity systems, the system reliability function and the channel capacity were found

in terms of the number of diversity paths J, the average number of signal photons per

diversity path and the average number of thermal-noise photons. Moreover, the opti-

mum signal strength per diversity path, expressed in terms of the average number of
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photons in the signal field transmitted through each diversity path, was found numer-
R

ically as a function of C, and was shown in Fig. 18.

6.2 FUTURE RESEARCH PROBLEMS

It appears that the area of quantum-mechanical communication theory is wide open.

The problems studied in this research can be generalized in several ways. For example,

instead of completely incoherent or completely coherent signal fields, one can also con-

sider the case in which signals are partially coherent. As another example, one can

study the effect of utilizing coding for the type of signals studied in Section V.

Moreover, there are two major areas that warrant further research effort. One is

to study communication systems utilizing a broader class of signals. In particular, it

would be most interesting to investigate the structure of the optimum receiver when the

density operators of the received fields for different input symbols are noncommutative.

In many communication systems of practical interest, the states of the received fields

are specified by noncommutative density operators, for example, when signal fields are

in known coherent states (corresponding to the case of known signals in the classical

limit), or when signal fields are in coherent states with random phase but are not

orthogonal, or when the average thermal photons in each mode of the received field are

not equal, and so forth. Unfortunately, the problem of specifying the structure of the

optimum receiver when the density operators of the received field are noncommutative

appears to be extremely difficult. (For binary signals, Helstrom 1, 12 has studied the

structure of the optimum receiver; however, the generalization of his results to M-ary

signals is by no means straightforward.)

The other area of great interest is the problem of modeling quantum-mechanical

receivers. In the present work, we assumed that a receiver estimates the transmitted

input symbols on the basis of the outcomes of measurements of some dynamical vari-

ables of the received field. It is not clear that all receivers can be so modeled mathe-

matically. There are various ways in which one can model quantum-mechanical

communication systems. For example, one can describe a receiver by its interacting

Hamiltonian with the received field. Such modeling problems are indeed important and

challenging.
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APPENDIX A

Expansions of the Electric Field Operator

We shall show that the expansion of the operator E(+)(r, t) in Eq. 6 is not unique. To

show this, we introduce unitary matrix V with elements Vjk.

00

I V + .V.

j=0

Since V+V = VV+ = 1,

V. V. =6Jm n mn

The right-hand side of Eq. 6 can be rewritten

E(+)(r,t) = i

oo

k=0

V jk ajm jk k
/-m

2L
exp[im( C

Let

00

Vj(r, t) = 
k=0

V*

jk

(- -t)](C
o00

j = Vjkak
k=0

b+ = V+ +
j kj k'

k=O

The expansion of E(+)(r,t) simplifies to

exp·[iw ( E ( + ) (r,t) = i 2L bjVj(r, t)

j=0

The operators b. satisfy all commutative relations
J

satisfied by the operators ak, since

bkb+ - b+bk jk Vkmam a+V+nj

VkmV nj(ama+-aam)

for all k and j.
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(A. 1)

-t)3.

(A. 2)

(A. 3)

(A. 4)

- t). (A. 5)

a+V+
n nj Vkmam

= 6 kj

- ---

M=O j=O

exp i(w!-k)



Similarly,

bkb - bbk = b+b+ b+b+ j for all k and j.

Hence, the operators bk can be considered as the annihilation operators of a set of new

normal modes in terms of which E (+)(_r, t) is expanded.

Let { Pk) } denote the set of right eigenstates of the operators in the set {bk}.

bk [{Pk }) = k I{k })'

These states are also coherent states. Therefore, the density operators may be

expanded in terms of coherent states IPk)' instead of the set {Iak}. Since

lak) = exp (aakaak) 0)

= ex[ (bkk-k) k )~k

= ' k)

n I P>
k

and

d2 ak = II d2k
k k

the density operator in Eq. 1 1 can be rewritten

P= P'(I {k }) {k })< {(k }l I d pk ' (A. 6a)
k

The new weight function p'( {k }) is obtained by substituting the relation

ak = E jVkj (A. 6b)

J

in the weight function p( {ak }).

A set of mode functions {Vj(r,t)}, which will be especially useful, is the one for
which the Vj(r, t) are narrow-band functions of time. That is, the matrix elements Vjk
are so chosen that for any given value of j, both Vjk and Vjk, are nonzero only if k is
approximately equal to k,. Moreover, to expand the relevant component of the received

electric field in frequency position modulation systems in Sections IV and V, the func-

tions Vj(r,t) are chosen as follows.
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We denote by Vjk(r, t) and bjk the function V(j l)A+k+ko(r, t) and the annihilation oper-

ator b(jl)A+k+k for k = 1, 2,... A, where A and k ° are positive integers. The ortho-

normality condition becomes

3 Vjn(_rt) · Vkm(r,t) dtdr = jk nm

In terms of this set of

M

E ( +) (r,t) = i

j=1

normal mode functions, the operator E(+)(r,t) can be written

hA. A-1
j2L Vj(r, t) exp i(c -t)] bjk + other terms, (A. 7)

k=0

2w
j = T (ko+(j-))

The mode functions Vjk(r,t) are approximately bandlimited functions. The func-

tions Vjk(r, t) are approximately bandlimited lowpass signals, in the sense that their

energy outside of the frequency bandwidth -(Hz) is essentially zero. 16 The quan-
T

tities A and k are chosen so that
o

ko + A(j-1) ko + jA.

If the Fourier expansion of the function Vjk(r, t) is

A-1

Vjk(rt) = () exp[-i 2 n ct) 
n= kn0
n=0

j = 1,2,...M

k = 1,2,... A

it is clear that we must have

A-1 ,

U( j )iU() = 6Z Ukn km nm
k=0

for all m, n = 1,...A

j = 1,2,...M

Let Uj denote the matrix whose elements are U )
kn'

A i0 I 0
------- r- -r--- -T- --

__ _ _ _; _ _L__J

r.. .. 0

I-- -- - -I- - - - -I
I 0 I I .I UM I

-- -- L _ I _
I . I

0 1 0 I .. U M

The unitary matrix V is given by

(A. 8b)
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The general form of the frequency spectrum of the function Vjk(r,t) exp[-iwjt] is

shown in Fig. A-1.

II
o

a: a

,z
01. -I

.. A r
I_

ko+(j-I) 27r

ko+ 2A

Fig. A-1. Frequency spectrum of the function Vjk(r,t) exp[-iwjt].
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APPENDIX B

Statistical Independence of Observed Values of Dynamical Variables

Associated with Different Modes

We shall prove that when dynamical variables associated with different modes of the

field are measured simultaneously, the outcomes are statistically independent random

variables if the field is in a state specified by a density operator p of the form

P = II Pk' (B. 1)k

In this expression, Pk is the density operator describing the state of the k h mode of the

field alone. Let the weight function in the P-representation of Pk be denoted pk(ak).

The density operator p in P-representation is just

P= S II Pk(ak) lak) (akl d 2 ak (B.2)

Examples of density operators satisfying Eq. B. 1 are given by Eqs. 38 and 85.

Let Xk denote a dynamical variable of the k t h mode of the field. (For example, Xk

is the amplitude of the k t mode or any other function of the annihilation and creation

operators ak and a of the k t h mode.) Clearly,
ok a ak

X kX = XkX k for all k and k'. (B. 3)

When X k is measured independently of other variables associated with other modes of

the field, the possible outcome is a random variable denoted xk. Let Mx(iv) denote the

characteristic function associated with the joint probability distribution (or density

function) of the random variables xl, x2 , ... xk .... From Section III, it is given by

MX(iv) = M x x (ivl iv . ... ivk ... )

= Tr[p exp [k ivkXk]]

When the density operator p can be written as a product, as in Eq. B. 1, the character-

istic function Mx(iv) can be expressed as

Mx(iv)- TrII Pk exp(ivkXk

n S pk(ak) (akl exp(ivkXk) I ak) d2 ak.
k
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Since the characteristic function of the variable xk is

Mxk(ivk) S P=(ak ) (ak exp(ivkXk) ak ) d2 ak,

the characteristic function Mx(iv) factors into a product

M (iv) = II Mx(ivk).
Tha ak k

That is, the random variables xk are statistically independent.

83

." ·I����.- ---------- YIICI�I*� -- - ··�--11�·1�-·�_�-��--�. � -.�..----�.�--l·9�·g_ CI D



APPENDIX C

Photon Counting Statistics

The optimum receivers found in both Sections IV and V measure the number of oper-

ators Nk of the received field simultaneously. We shall now show that the measure-

ments of these dynamical variables can be achieved by using photon counters.

Let us consider the case in which the field is in a state specified by the density

operator

(C. 1)p = S p({ak}) I ak) (ak d2 ak.
k

According to Section III, when the number operators N 1, N2 . .. , Nk. .. are measured,

the probability that the outcomes are n1 , n 2 , ... .nk ... is

P(nl, nZ, .. nk .. .)= p({ak}) I (nklak) I2 d2 ak
k

2nk

= p({ak}) [II n ! exp(-Iak 2 ) d 2a
k k'

(C.2)

The moment-generating function associated with this probability distribution is defined

to be

nk
Qi (_) = ni (1-kk)

k

From Eq. C. 2, we have

Qi(_) p({ak}) I
k

= S ({ak}) IIk

If one measures the

probability distribution

P(n) =

{nk}/Y nk=n
k

o0

nk= 0

nk la kl 
nk! ex(

k | a" |k

exp(-xklak12 ) d2ak. (C. 3)

operator Z Nk, the outcomes are integers 0, 1, 2,..., with
k

p({ ak}) II (nk lak d 2 ak.
k
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The corresponding moment-generating function Qi(X) is given by

(C. 4)Q () = p({ak}) II exp(-Xlak ) d2 k.
k

We shall show that the statistics of the total photon counts recorded in an interval of

length t by a photomultiplier tube and counter combination shown in Fig. C-1 can be char-

acterized by the same moment-generating functions. It has been shown that when the

E(r,t) COUNTER --
t

PHOTOMULTIPLIER
TUBE

Fig. C-1. Photomultiplier tube and
counter combination.

field at the photomultiplier tube is in the state p, the moment-generating function asso-

ciated with the total number of photon counts recorded in any time interval of length T

is given by

P Xt)= ({ak}) d akexpXs +t dt o r (r) (,t',a) E(r,t',a) d3-.
Vol of PMTC

(C. 5)

In this expression, E(r, t, a) is

E(r, t, a) = i f / kL exp[-ikt] akUk(r),

k

(C. 6)

where s is a constant characterizing the sensitivity of the photomultiplier tube which

is assumed to be independent of the frequency over the bandwidth of the field present.

The function o(r) specifies the number of photosensitive elements per unit volume of the

photocathode.

Let us assume that the sensitive region of the photocathode is a very thin layer of

elements lying in the plane perpendicular to the z axis. The function u(r), therefore,

is approximately a delta function of the z coordinate. This assumption is often satis-

fied in practice. Since the electromagnetic field that is present consists of plane waves

travelling in the positive z direction, the spatial integration in Eq. C. 5 becomes trivial.

Substituting Eq. C. 6 in Eq. C. 5, we obtain

Q(Xt)= p({ak}) (II d2a) exp HX' 
k k'

kwk, t+to * i(wk-wk')t'
4L2 Jt akak, e
4L t

0

(C. 7)
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Without loss of generality, let us assume that the signal field arrives at the photon

counter at t = 0. If the duration of the counting interval is chosen to be T, the time inte-

gral in Eq. C. 7 becomes

I:= S exp[i(wk, -k)t] dt 6kk'

and

Qp(, T)5 p({ak}) exp[-kXTlaklZ] II d 2 ak. (C.8)

It is clear that except for the parameter , which can often be made approximately

equal to one in practice, the generating function Qp(k, T) is equal to Qi(X) in Eq. C. 4.

That is, by choosing the duration of the counting interval to be T, the measurement of

the operator Nk can be accomplished by using a photomultiplier tube and counter
k

combination.

When, instead of the operator ; Nk, one measures N1, N2, ... Nk ... simultaneously
k

by using the system shown in Fig. 9, only one single mode of the field reaches the

photomultiplier tube. The moment-generating function associated with the photon count

nk is

QP(Xk,' ) = Pk(ak) d2 ak exp(-kk lak 2 ).

Since the nk are statistically independent, and

p({ak}) = n Pk(ak)'
k

the moment-generating function associated with the joint probability distribution of

nl, n2 .. . nk , . . is

Q(X, ) = p({ak}) Il d2 ak exp(-kk lak 12)
k

which can be made equal to Qi(X) in Eq. C. 3 approximately.

Again, it should be evident that the results above remain valid independently of the

choice of the normal mode functions used in the expansion of the function E(r, t, a) (see

Section II). In general, one can write E(r, t, a) as

E(r, t, a) = i I / -k Vk(r, t) k exp(-iw kt).
k
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The counting interval has length T, since the functions Vk(r, t) are such that

Vk(r, t) Vk,(r, t) exp[-i(cwk-wk )t] dt = 6kk,.
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APPENDIX D

Evaluation of the Sum n ..... nM P(nl, n 2 ..' nM/mj)~~~~nM/m j)

We shall evaluate the sum

n -1

nl=O n2=O

nl-1

nM=0

P(n, n2 .... nM/ml)·

The probability P(n 1, n2 , ... nM/ml) is given by Eq. 40:

(n n> nl+n2 +. . nM

( + (n)

1 2 rI a 1

rI Ln (+(n))

1+ n) n,=O

(M-1)

i=O

(n nl (M-1)

L-1+(n)Jj

nl

r= ( ) nl+<n/

L(n 2 r
+(n

(n) (+(n)

nl=
1

n1

r=O

1 [Ial (n) ()n 

!(n> (1+(n)

2 M-1 ~~ ~~~~00 

= 1 n e x1 r=0 i [(_l)i(<I
1+(n) 1+n) 0 . (n)>L1(n))~~~~~~~~~= 0

1+ (

r

nl=r
1

(<n)) n
1+ n3

88

oo

nl=O

nl-1

, . .

n2=O

nl-1

nM=O

11 exp
l+(n)

exp('n>

= exp
+<n)

n1
n1

=0O



The last sum on the right-hand side of this equation is of the form

(n) qn = (r r)qr + (r+ 1)qr+ +

nl=r

where q < 1. It is easy to see that this sum is the coefficient of the x term in the power

series expansion of the function

[(l+x)q]r + [(l+x)q]r+l
( 1 +x) rqr

. (...... -) - xq

(1-q) - xq

where x is a formal variable of arbitrarily small value that is such that the series in

the left-hand side of Eq. D. 1 converges. The power series expansion of the right-hand

side of Eq. D. 1 is

qj x: q +x 1 -- q + x I -- + . . .

The coefficient of the xr term in this expansion is equal to

nO

r
(n) r q

r 1- q B
r

q

(1 -q)r+

Therefore, one obtains

(D. 2)

1 - f+r12(S = exp 1l+ n) l+-n)J

00

M-) (_l)i 0

r=O

M-1

i=O (n) (l+(n))j L K n: Yi+

l+<n

( M-) ( )i _ (_ + (n))i_ r-I o 2[((n) +l)i- n)i]l

(+<>)i+1 <ni+1 expl+( -i (3i1 3(l +(n )) 1-(n) + (1+(n)) 1- (n) J

Similarly,
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(D. 1)

M-l

i=O

(D. 3)

(i )qj ... ,

1 Y -_ ...... r: I -

--



1 I I 

r ! (n (+<n>

I +<> 12
1+(<n )

(n>i

( + ( n)) ()i+l exp {
2[(1+ n))in)i]

(1 + n))i+ 1 - ( n)i+ 1

It follows that one can evaluate the sum

6
oo

S3 = 
nl=O

Pl (nl )

where Pl(nl) and pl(n2 ) are given by Eqs. 55a and 55b, respectively.

(1+ n 1+ (n))

(1+6) nl

r=O

(nl)
r

2 1 r
1I I1 

r> !(l+n>)
exp .i+n>)

Substituting Eq. D. 2 in this equation, one obtains

(l+(n))1+6 _(n>+l exp (I+(n2[(1+ -(n)6 (1+(n>) 1+6 - (n)21+6 

90

oo0

n =0nl=

n1

n =On =

n1

nM=O

M-1

i= i=O
(D. 4)

oo

S 3 = 
nl=0

S 3 =3 (D. 5)

)M (n>\ nI\n+n2+ '''nM

I

M-1) (-I)i( i

nI
n 

r=O



APPENDIX E

Lower Bound of the Error Probability for Orthogonal

Signals in Coherent States

We present derivations of an asymptotic lower bound to P(E) given by Eq. 62. Let

us rewrite Eq. 62 as follows:

o00

P(E) > p Pl(nl) {l-exp[(M-l) ln(l -Pr(nl<n 2/ml))]}. (E. 1)

nl=0

Since a logarithmic function satisfies the inequality

In x < x - 1,

we can further lower-bound the right-hand side of Eq. E. 1:

0o

P() p l(nl){l - exp[-(M-1) Pr(nl<nZ/m l)]}

[d]

pl(nl) {1 - exp[-(M-1) Pr (nl<n2 /m l)]}. (E. 2)
nl=0

The second inequality is justified because the expression in the braces { } is always
positive. The parameter d is an arbitrary positive number, and [x] denotes the integer

part of the quantity x. Since for all nl d

exp[-(M-1) Pr (n 1 <n 2 /ml)] exp[-(M-1) Pr (d<n2/ml)],

it follows from Eq. E. 2 that

P(E) Pr (n l1 < d/m l) {1 - exp[-(M-1) Pr (d<n2/ml)]}.

Replacing the exponential function ex by its upper bound 1 - x + ,and noting that
1 1 2< 1, we obtain

P(E) -4 Pr (nl<d/ml) Pr (n 2 >d/ml) (E. 3)

if d is chosen so that

M Pr (n 2 >d/ml) < 1. (E. 4)
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From Eqs. 55a and 55b, we obtain

Pr (n 2 > d/m 1 ) = Pl(n 2)

n2 =[d]+ 1

- (n) \[d]

1 +(n),

and

Pr (nl<d/m 1) =

[d]

nl=O

nl

r=O
\nrj

1 1

r! 1+(n)

( (n) )nl 2- 1

+(n)- (n)(l+(n)) 1( n)

The condition in Eq. E. 4 is simply

[d]+ 1 RT
1 + (n)

lnin
(n)

Therefore, one can choose the parameter d to be

RTd=
1 +(n)

In
(n)

For this choice of the value d, it is evident that the lower bound of P(E) given

Eq. E. 3 becomes

[d]

P(E) K 

nl=0

nl

r=0

(nl
r r1 n( nl [ exp

r. \ +(n>) (n>)i(+(n)) \+(n)

[d] r [d]

w e t e n) ( + n) e on 1 + e n> 1 + 
r=0 nl=r

where the coefficient K is not an exponential function of T.

The sum in the previous expression is certainly larger than any one

in it. In particular,
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(E. 5)

(E. 6)

by

(E. 7)

term



1 r [6d] [d]
P(E) > K [816d]! (n) (1 +(n)) n

n, =r

> m [1 F 112 ( )1 d] + ( n) [d]

n n (n) n1 _ la_ i(n)I 12
exp

1 ~ \1+(n)
1d]

exp
+ n)

for 0 - 61 -< 1. Using the Stirling's approximation

n -n
n! n e ,

we simplify the expression in Eq. E. 8 to

P(E) > K' exp { in 1 + (n) + [d ln[d] - [d] - 2[61d] n [6 1 d]

+ 2[61d] - ([d]-[6ld]) n ([d]-[61d]) + [d] - [61d]

+ [6 l d ] n I la n1
(n) (+(n))

r12 1
1 + n)J

Again, the constant K' is such that

lim I1 n K' = 0.
T-

0 0
T

For large rates, we can approximate the integers [d] and [6 1d] by

tively. Thus, Eq. E. 9 becomes

d and 61d, respec-1

P(E) > K' exp dln d + 61d n 

L (n) (1 +(n))

1 +(n)
- d ln

(n)

-261d ln 61d - (1-6 1)d ln (1-6 1 )d + 1 d}

1 + (n>
= K' exp d ln

(n)
+ 6 d In

1 (n) >(l+(n))

-dln (1-6) + 61 d n 6 61 d n d d+ 61 d}.
Let us write the exponent function in Eq. E.1 10 as

Let us write the exponent function in Eq. E. 10 as
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(E. 8)

(E. 9)

1 +(n)

lr 12

1 + (n)

(E. 10)



K' exp[-TCe (6 1 , R)].

Clearly, the function e'(6 1 , R) is given by

e'(61 , R) =C
1 + (n)

dn -
L (n)

- 61d ln1 (n)(1+(n>)

1 -6

- 61d ln--- + d ln
1

(1-61) + 61d ln 61d - 61 d}.

The best upper bound of the reliability function is obtained by minimizing e'(61 , R) over

all values of 61 in the interval (0, 1). Let

Eu(R) = min e'(6 1 , R). (E. 13)
0-<61< 1

In the following discussion, we intend to show that for Rc < R C the exponent function

EU(R) is equal to the lower bound to the reliability function, EL(R), derived in Sec-

tion IV.

To find the value of 61 that minimizes the function e'(6 1 , R), we differentiate e'(6 1, R)

with respect to 61

d
d In

TC
ae,

1 (n)>(l+(n))

1 - 61

26d I

a2e,

I 

d 6 +
1 1 -6 0,1 1

the value of 61 that minimizes e(6 1, R), 61 is given by

ael '
That i 0.
1 6 =61O

That is,

2 6 1ol 212
o 1

61 + -
d(n) (1 +(n)) d(n) (1 +n))

Solving this equation for 61, we obtain

= 0.
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Since



r12
2d(n) (1+(n)) +'

1 12

1(n)(1+(n>)
+

4d2 n2 2(1 +n))'4d (n) (1 +(n)

By substituting the expressions for d in Eq. E. 6 and by recalling that

C =-r
1 + n)

ln
(n)

the expression for 61 is simplified to1

1

2 (n) (1 +(n))

1

+
R
C (

n)(1+(n))
+

1

4R\ 2

4QC ( n)2 (1+(n)) 2

Therefore, we have the following equation

EU(R) = min el(61 , R)
u 0<6< 1

1

1 J
1 +(n)

(n) ln (n)
(n)

1 + 2(n)-C

1 - /1

1 + 4 (n) ( +(n))

+4 C(n) (1 +n))+4- n

R 1
l 1 ln

C 1 +(n)
ln -

(n)

1 + 2 (n)(l+<n) + '>1 + 4 n) (1 +n))
R 22 R (l+(n))2C

But this expression is identically equal to the function EL(R) given by Eqs. 61.

O < 61 1 ,

1

R-(n ( 1 +(n))C -n (1 +(n>)

1
+

1

4(H-) (n)2(1+(n))2

is satisfied for all values of R, and E(R) given by Eq. E. 16 is a valid bound for all

values of R > 0.
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APPENDIX F

Commutativity of the Density Operators

The conditions under which the set of density operators given by Eq. 69 commute

will now be investigated.

Let R n(fa k, p) denote the matrix coefficient of the operator PmPn in the

coherent-state representation. That is,

Rmn({ ak},{k})= ({ak}pmPnl{Pk}) expk (1 lakl2+ 1 2)]: Ik[

S2r d n

2 rr

+

2w d2m r
d·m

i~ 2
e m

S exp{ 
k

d2 rkd2 6 k

j (ak rk)<rk l6k)<6klpk) 2 2
k Tr ( nk)(nk)

By substituting the relation

(akrk) = exp(a krk 2 lakf 2-Irk)

in this equation, one obtains

2

Rmn({ak }{Pk}) 

2Tr d m
2r

S21 dn §
2 T 

exp F 
Lk

rk_ mk ei m

(nk) k
k

(akrk-I rk I 12)( kk t 
d 2 r

k Tr( nk)
exp 

k

rI exp(rk6k+6*k k-
k

2 
6w(

1 6 1) -n 
k)

Pk1nk e n+ 

l+ (n k

(nk) '

1 + (nk) J

( nk Pnkkmk nk2mk

1 + (nk) (l+(nk))

where
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exp

k

ZS2· dn
= F Z-f

2 rr d 

rr



F = exp
k l+(n k ) 1 + (nk)

Hence

(< nk) ap '

(1+((nk)) J

R mn({a}, {k})

2 2

Fr E () () (p)(
r p s k

* k

1 + (nk)

r-p

< nk) Pkamk

(1+(nk)) J

The binomial coefficient (n) is equal to zero when x is not an integer or when x is

larger than n. Since

PmPn = PmPn (PnPm)

the matrix elements of pnPm are

Rn({k ' k}) {mn({ {k})}

Hence, one obtains

r-p

Rnm({ak}' {3k))

k

3 ( ) (s12 Q)
s

. (F. 2)

Since R mn({ak I'Pk is not ident

Pn and Pm do not commute in general.

ically equal to R

But when
nm ({a) ' {Pk})

, the operators

* *

a nkamk \ mknk
2 2 / - -- 2 - 0;

k (l+(nk)) k (+(nk

we have
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S Pkk2 
/
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Rmn({a } { pk})
r pF )2
rp

ak mk

1 + (nk 

r

(nk) Pk mk

(l+(nk)) /

( nk aknk

(1 +(nk)) /

Rnm(( k'} {Pk}) = FI I
r p

(-i \2 ( 1)

k

1r

('
* 

(nk) Pkank

(I+(n 2) (l+(nk))/

* P
(nk) akk

Lnk+(> kmk
(1 +<nk) 2 '

One can see that these two functions are equal when (nk) = n for all k.
Eq. F. 3 is simply

k Znkak- mk mknk= O;
k k

In such a case,

m n.

Obviously, this condition is satisfied when

~mk'nk = I mkl 6 mn
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APPENDIX G

Physical Implementation of the Unitary Transformation

To implement the optimum receivers for the reception narrow-band orthogonal sig-

nals studied in Sections IV and V, one needs a device at the output of which only one

normal mode (with annihilation operator b = Y Vkak) is excited when the input is a
k

narrow-band field. That is, a device that performs physically the unitary transformation

MODE
INPUT TRANSFORMATION OUTPUT

FILTER Fig. G-l. Idealized system.

INPUT APERTURE

V described in section 4. 2. We shall prove that the idealized system shown in

Fig. G-1 makes such a transformation.

When the electric field operator E(_r, t) is expanded as

E(r, t) =i h~ Ia + ex-_t = i X ak exp[ik(C t)] - a k exp[-i(k- t)I

the electric field at the input of the filter is in the state specified by the density operator

i = p [I exp 1alak 2 d2 ak

k (n> Tr (n>

At the output of the device, only one normal mode with annihilation operator

b = I Vkak
k

is excited. Moreover, it is in a state specified by the density operator

, r-- JPI P-Vf d2 P
Po = exp- )j P) 

where

IV2 = Z IVkI2.
k

As mentioned in section 4.2, this device is simply a matched filter in the classical limit.
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Let us idealize the mode transformation filter as a cavity that has only one dominant

normal mode at frequency o. The electric field inside of the cavity is

E(r, t) = i bV(r, t) exp(-it).

Before the aperture is opened, the field inside of the filter is not allowed to interact

with the field present at the input. Hence, the total Hamiltonian of the system is

Ho= £ hakaak + icob+b.

k

Clearly, akb] = ak,b+ = [ak, b] = 0 for all k. At t > 0, the input aperture is opened

and the fields are allowed to interact, and then the Hamiltonian is given approximately

by

(G. 1)H = ZE kakak + iwbb + (vkakb++vkbak)

k k

Note: The term I = h(vkakbk+vkakbk), which is also Hermitian and of the same order
k

in the strength of coupling, is not included in Eq. G. 1. The effect of this term is small

for the following reason. The terms in the right-hand side of Eq. G. 1 are approxi-

mately DC, whereas the term I is rapidly varying. Since the interaction will be in

effect for many cycles of co, the term I will average to zero compared with those in

Eq. G-l.

The magnitude of the coupling coefficients vk are assumed to be small compared with

the wk and co.

From the Hamiltonian and the commutation relations, we obtain the Heisenberg equa-

tions for the time variations in the operators ak and b

dak 1
dt - i [ak, H] = -iokak - ivkb

dbt i [b, H] = -iob - i v a..

j

(G. 2)

(G. 3)

Taking the one-sided Laplace transforms of the ak(t) and b(t), we obtain from Eqs. G. 2

and G. 3

(s+io) b(s) = b(O) - i vjaj(s)

j

(s+iwk) k(S) = ak(s) - ivkb(s).

(G. 4)

(G. 5)
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Combining Eqs. G. 4 and G. 5, we have

b(O) - i s + iwk

b(s) k (G. 6)

+ I I vk!12s + io + s + i

k

It has been shown 6 that at time t

b(t) = b(0) (t) + I vk(t) ak(O), (G.7)

k

where

(t) = exp t - it (G. 8)

22 ~2
V{ exp- w exi(wk-w t 2 t]}

vk(t) r (G. 9)

The parameter r is given by

r = 2 IVkl 2 P(wk)
Wk O

where p(w) is the density of modes at frequency , and

W' = O + AO

^ @= IvkI 2P('k) dk

4
is a very small frequency shift. It is clear that at t - 4 we have

b(t) = Vkak(O) exp[-ikt], (G. 10)

k

where

vk
Vk

r
4r is

101

��__111 _1_1111_1___1________ - --�·-·-·�--·-·--�1�1-__--�-- ---1_-111 1



b = X Vkak

k

(G. 11)

in the Schr6dinger picture. When it is possible to make the time constant r small com-

pared with T, we can achieve the desired unitary transformation by adjusting the

coupling coefficient vk's.
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