NETWORKS OF GAUSSIAN CHANNELS WITH APPLICATIONS TO FEEDBACK SYSTEMS

PETER ELIAS

TECHNICAL REPORT 460

JANUARY 15, 1968
The Research Laboratory of Electronics is an interdepartmental laboratory in which faculty members and graduate students from numerous academic departments conduct research.

The research reported in this document was made possible in part by support extended the Massachusetts Institute of Technology, Research Laboratory of Electronics, by the JOINT SERVICES ELECTRONICS PROGRAMS (U.S. Army, U.S. Navy, and U.S. Air Force) under Contract No. DA 28-043-AMC-02536(E); additional support was received from the National Aeronautics and Space Administration (Grant NsG-334).

Reproduction in whole or in part is permitted for any purpose of the United States Government.

Qualified requesters may obtain copies of this report from DDC.
Abstract

This paper discusses networks (directed graphs) having one input node, one output node, and an arbitrary number of intermediate nodes, whose branches are noisy communications channels, in which the input to each channel appears at its output corrupted by additive Gaussian noise. Each branch is labeled by a non-negative real parameter which specified how noisy it is. A branch originating at a node has as input a linear combination of the outputs of the branches terminating at that node.

The channel capacity of such a network is defined. Its value is bounded in terms of branch parameter values and procedures for computing values for general networks are described. Explicit solutions are given for the class D_0 which includes series-parallel and simple bridge networks and all other networks having r paths, b branches, and v nodes with $r = b - v + 2$, and for the class D_1 of networks which is inductively defined to include D_0 and all networks obtained by replacing a branch of a network in D_1 by a network in D_1.

The general results are applied to the particular networks which arise from the decomposition of a simple feedback system into successive forward and reverse (feedback) channels. When the feedback channels are noiseless, the capacities of the forward channels are shown to add. Some explicit expressions and some bounds are given for the case of noisy feedback channels.
Abstract—This paper discusses networks (directed graphs) having one input node, one output node, and an arbitrary number of intermediate nodes, whose branches are noisy communications channels, in which the input to each channel appears at its output corrupted by additive Gaussian noise. Each channel is labeled by a non-negative real parameter which specified how noisy it is. A branch originating at a node has as input a linear combination of the outputs of the branches terminating at that node.

The channel capacity of such a network is defined. Its value is bounded in terms of branch parameter values and procedures for computing values for general networks are described. Explicit solutions are given for the class D_0 which includes series-parallel and simple bridge networks and all other networks having r paths, b branches, and v nodes with $r = b - v + 2$, and for the class D_1 of networks which is inductively defined to include D_0 and all networks obtained by replacing a branch of a network in D_1 by a network in D_0.

The general results are applied to the particular networks which arise from the decomposition of a simple feedback system into successive forward and reverse (feedback) channels. When the feedback channels are noiseless, the capacities of the forward channels are shown to add. Some explicit expressions and some bounds are given for the case of noisy feedback channels.

Introduction

The min-cut max-flow theorem11–13 gives the capacity of a network made up of branches of given capacity. It applies to networks of noisy communications channels if the assumption is made that arbitrarily large delays and arbitrarily complex encoding and decoding operations may take place at each interior node.

This paper presents the theory of networks of another kind of channel—a channel with additive Gaussian noise, for which the only operation which takes place at a node is linear combination of the arriving signal and noise voltages, with no significant delay and no decoding or recoding.

The Problem

Consider the Class D of two-terminal networks like that shown in Fig. 1, in which there are no cycles, each of the b branches B_i is directed, and each branch lies on one of the r paths R_i which go from the input terminal on the left to the output terminal on the right. A signal voltage e_i of mean-square value P_i (the signal power) is applied to the input terminal, node V_1, at the left. At each interior node, the output (signal plus noise) of each branch B_i, arriving at the node is given a (positive or negative) weight, the branch transmission t_i, and the resulting linear combination of signal and noise voltages is supplied as input to all the branches leaving that node.

Each branch B_i adds to its input voltage e_i, a Gaussian noise voltage n_i whose mean-square value (the noise power) is a constant N_i (the noise-to-signal power ratio), also called the parameter of the branch) times the mean-square value P_i (the input power) of its input voltage. The noise voltage in each branch is statistically independent of the noise voltages in other branches and of the signal voltage:

\[
\overline{e_i^2} = P_i, \quad 0 \leq i \leq b; \quad \overline{n_i^2} = N_iP_i, \quad 1 \leq i \leq b
\]

Since the branch input voltage and its noise are uncorrelated, the mean-square value of the branch output voltage (the output power) is just

\[
\overline{(e_i + n_i)^2} = \overline{e_i^2} + \overline{n_i^2} = P_i + N_iP_i = P_i(1 + N_i).
\]

The power output of each branch generator depends on the power level at its input, and thus on the power level of the signal and of all other noise generators which affect its input power, as well as on the values of the branch transmissions. However, once the power levels of the signal and of all noises and the values of the branch transmissions are fixed, the network is linear. The final output at the right-hand output terminal V_r is a linear combination of the b branch noise generator voltages and the signal voltage e_0. We constrain the values of the branch transmissions t_i by requiring that the coefficient of e_0 in this sum be unity.

The network is equivalent to a single branch (noisy channel) of the same kind as the component branches,
since the linear combination of the b branch noise voltages which appears in the output is a Gaussian noise voltage, and the overall action of the two-terminal network is to receive an input signal and to produce at its output the input signal plus an independent Gaussian noise. The ratio of output noise power to signal power, N_{b+1}, is a function of the branch transmissions as well as the parameters N_i of the network branches. The optimum noise-to-signal power of the network, N_{opt}, is defined as the minimum value of N_{b+1} which can be obtained by varying the branch transmissions.

The problem is to find N_{opt} as a function of the given N_i.

Series and Parallel Networks

To express the results most simply in important special cases it is convenient to associate with each branch, not only the parameter N_i, but the signal-to-noise ratio,

$$S_i = 1/N_i,$$

and the capacity per use of the channel,

$$C_i = \frac{1}{2} \log (1 + S_i).$$

Equivalent quantities are defined for the network: S_{opt} is the maximum signal-to-noise ratio attainable by varying the branch transmissions, and C_{opt} is the largest channel capacity so attainable.

We can then state three results.

Series Networks

A network in D in which all b branches are in series has N_{opt} given by

$$1 + N_{opt} = \prod_{i=1}^{b} (1 + N_i).$$

Parallel Networks

A network in D in which all b branches are in parallel has S_{opt} given by

$$S_{opt} = \sum_{i=1}^{b} S_i.$$

Duality

Given two channels of capacities C_1 and C_2. Let the optimum capacity of the network consisting of the two channels in series be C_s. Let the optimum capacity of the two channels connected in parallel be C_p. Then

$$C_1 + C_2 = C_s + C_p.$$

The result on series networks expressed by (5) does not seem to have been published. The result for parallel branches expressed by (6) is known as optimum diversity combining, or the ratio squared, and was discovered independently of the general theory. Both follow directly from the general results following. The duality relationship of (7) follows directly from (4), (5), and (6), and also seems not to have been published. We have

$$C_s = \frac{1}{2} \log \left(1 + \frac{1}{N_i}\right)$$

$$= \frac{1}{2} \log \left(1 + \frac{1}{(1 + N_1)(1 + N_2) - 1}\right)$$

$$= \frac{1}{2} \log \left(\frac{(1 + N_1)(1 + N_2)}{N_1 + N_2 + N_1N_2}\right)$$

$$= \frac{1}{2} \log \left(\frac{(1 + S_1)(1 + S_2)}{1 + S_1 + S_2}\right)$$

$$= \frac{1}{2} \log (1 + S_1)(1 + S_2) - \frac{1}{2} \log (1 + S_1 + S_2)$$

$$= C_1 + C_2 - C_p.$$
arrive at a given time over different paths. This can be accomplished for any network in \(F \), or indeed in \(D \), if an initial set of delay values \(d_i \) are given for the branches \(B_i \), by increasing some of them in the following fashion. Assign a delay value to each node \(V_j \) equal to the maximum delay obtained by adding the delay values of the branches along each path from \(V_i \) to \(V_j \). Then assign to \(B_i \) the new delay value \(d_i' \), which is the difference between the delay values of its terminal and initial nodes, \(d_i' \geq d_i \).

We will henceforth assume that this process has been carried out for all networks in \(F \) or \(D \), and that all have the uniform delay property. It is then not necessary to keep track of the delay values of networks or branches. We now state results for feedback networks.

Noiseless Feedback: For a network in \(F \), if all feedback branches are noiseless, and the \(k \) forward branches have capacities \(C_{2j-1} \), \(1 \leq j \leq k \), then the optimum capacity of the network is given by

\[
C_{\text{opt}} = \sum_{i=1}^{k} C_{2i-1}
\]

and the optimum signal-to-noise ratio \(S_{\text{opt}} \) by

\[
1 + S_{\text{opt}} = \prod_{i=1}^{k} (1 + S_{2i-1}).
\]

In particular, if

\[
S = \sum_{i=1}^{k} S_{2i-1}
\]

is fixed, but an arbitrarily large \(k \) is available, we have

\[
1 + S_{\text{opt}} = \lim_{k \to \infty} \prod_{i=1}^{k} \left(1 + \frac{S}{k} \right) = e^S,
\]

\[
S_{\text{opt}} = e^S - 1.
\]

Noisy Feedback, \(k = 2 \): For a network in \(F \) with two noisy forward channels \(B_1 \) and \(B_2 \), and one noisy feedback channel \(B_3 \), the optimum signal-to-noise ratio is

\[
S_{\text{opt}} = S_1 + S_2 + \frac{S_1 S_2 S_3}{(1 + S_1)(1 + S_2) + S_3}.
\]

Unfortunately, a general formula like (11) for a network in \(F \) with \(k > 2 \) is not available, although the computation of \(S_{\text{opt}} \) for any particular case is a straightforward numerical analysis problem. However, we do have some inequalities which hold for all nets in \(F \) and which provide some insight.

Noiseless Feedback, General Case: For a network in \(F \) with \(k \) noisy forward branches \(B_{2j-1} \), \(1 \leq j \leq k \), and \(k - 1 \) noisy feedback branches \(B_{3j} \), \(1 \leq j \leq k - 1 \), the optimum signal-to-noise ratio \(S_{\text{opt}} \) is bounded by

\[
S_{\text{opt}} \geq \sum_{i=1}^{k} S_{2i-1}
\]

\[
1 + S_{\text{opt}} \leq \prod_{i=1}^{k} (1 + S_{2i-1})
\]

\[
S_{\text{opt}} \leq \sum_{i=1}^{2k-1} S_i.
\]

If signal-to-noise ratio costs \(c_f \) per unit for forward channels and \(c_s \) per unit for feedback channels, so that the total cost for a network in \(F \) is

\[
c = c_f \sum_{i=1}^{k} S_{2i-1} + c_s \sum_{i=1}^{k-1} S_{2i},
\]

then for sufficiently large \(S_{\text{opt}} \), the cost per unit of \(S_{\text{opt}} \) may be made arbitrarily close to \(c_s \):

\[
\frac{c}{S_{\text{opt}}} \leq c_s (1 + \delta).
\]

The results for noiseless feedback and for noisy feedback with \(k = 2 \) were published by the author some time ago. Schalkwijk and Kailath have recently investigated the noiseless case from the point of view of error probability for the transmission of discrete messages. Turin has also dealt with a closely related question. The noiseless feedback results of (8) and (9) are remarkable, since they permit the transmission of a continuous signal of fixed bandwidth over a noisy channel at a rate equal to channel capacity, no matter how large the bandwidth of the forward channel. No coding or decoding is needed, provided that a noiseless feedback channel is available. Furthermore, they do so without introducing any of the discontinuities which must occur when a continuous signal is mapped onto a space of higher dimensionality—discontinuities which were pointed out by Shannon and Kotelnikov and have recently been discussed by Wozencraft and Jacobs. Equation (10) implies that a signal-to-noise ratio of 10 in bandwidth \(W \) is equivalent to a signal-to-noise ratio of \(e^{10} - 1 \), or about 22 000 if the available forward channel is wideband and has white noise, and a noiseless feedback channel is available (see the literature for further discussion).

The inequality (12) follows from the parallel network result of (6). The result of setting all feedback channel transmissions at zero and using the forward channels in parallel gives the right side of (12). The optimum choice of branch transmissions must do at least as well. The second inequality, (13), says that noise in the feedback
channels does not help; the right side is just the noiseless feedback result of (9). It is a consequence of a more general result which will be given, and which shows that increasing \(N_i \) in any branch cannot decrease \(N_{opt} \). The third result, (14), says that, given a choice, it is better to use signal-to-noise ratio in the forward rather than the feedback channels. The total \(S_{opt} \) attainable by feedback is less than would be attained by taking all of the feedback channels, turning them around, and using them in parallel with the forward channels, which gives the right side of (14) by (6). This will also be derived later. The final result, (15), shows why feedback is interesting even if it does not do as well as the same amount of signal-to-noise ratio in the forward direction, by (14). Signal-to-noise ratio in the feedback direction may be cheaper, as when a satellite is communicating to Earth, and if it is, it is possible by means of feedback to buy forward signal-to-noise ratio at the same cost, if one wants enough of it. Equation (15) is a direct consequence of (11). It is necessary only to choose \(S_i \) equal to \(S_o \); and \(S_o \) so large that it is possible to have \(S_i < S_o \) and \(S_o' > S_2 \) at the same time. For \(k \geq 2 \) the result will be of the same character, but better, i.e., a smaller \(\delta \) will do. Or a smaller amount of \(S_{opt} \) can be bought at the same unit cost—but the absence of a formula makes the demonstration harder.

General Results

To state and prove the theorem from which the above results follow we need some further definitions. For each pair of paths \(R_i, R_j \) from \(V_i \) to \(V_j \), in a network in \(D \), we define \(G_{ij} \) as a product which contains one factor \((1 + N_i)\) for each branch \(B_i \), which lies in both paths; if \(R_i \) and \(R_j \) share no branches, \(G_{ij} = 1 \). Formally, if we treat the symbol \(R_i \) as denoting the set of branches which are contained in the \(i \)th path, then \(R_i \cap R_j \) is the set of branches which the two paths have in common, and

\[
G_{ij} = \prod_{i \in R_i, j \in R_j} (1 + N_i)
\]

\[
= 1 \quad \text{for} \quad R_i \cap R_j \text{ empty.} \tag{16}
\]

We also define the *path transmission* \(T_i \) of path \(R_i \) as the product of the branch transmissions \(t_i \) for those branches which lie on \(R_i \):

\[
T_i = \prod_{i \in R_i} t_i. \tag{17}
\]

The *network transmission* \(T_{o,k+1} \) is the sum of all path transmissions. By the assumption made in the discussion following (2), the branch transmissions \(t_i \) are constrained so that the network transmission, which is the coefficient of the signal voltage \(e_o \) in the output, is unity.

\[
T_{o,k+1} = \sum_{i=1}^{r} T_i = 1. \tag{18}
\]

Theorem

For any network in \(D \), we have

\[
1 + N_{opt} = \min_{t_i} \left\{ \sum_{i=1}^{r} \sum_{j=1}^{s} G_{ij} T_i T_j \right\} \geq 1 / \left\{ \sum_{i=1}^{r} \sum_{j=1}^{s} G_{ij}^{-1} \right\}
\]

and

\[
S_{opt} = 1 / \min_{t_i} \left\{ \sum_{i=1}^{r} \sum_{j=1}^{s} (G_{ij} - 1) T_i T_j \right\}
\]

\[
\leq \sum_{i=1}^{r} \sum_{j=1}^{s} [G_{ij} - 1]^{-1}, \tag{20}
\]

where the \(T_i \) are given in terms of the \(t_i \) by (17) and are subject to the constraint (18), and \(G_{ij}^{-1} \) and \([G_{ij} - 1]^{-1}\) are elements of the inverses of the matrices \([G_{ij}]\) and \([G_{ij} - 1]\). The inverses of \([G_{ij}]\) and \([G_{ij} - 1]\) always exist unless there is at least one noiseless path from input to output, so that some \(G_{ii} = 1 \). In this case \(N_{opt} = 0 \) and \(S_{opt} = \infty \). These values are attained by setting \(T_i = 1 \) and all other \(T_j = 0, j \neq i \).

Equality holds on the right in (19) and (20) for networks in the set \(D_o \) which includes any network in \(D \) with \(r \) paths, \(b \) branches, and \(v \) nodes for which

\[
r = b - v + 2, \tag{21}
\]

and for networks in the set \(D_i \) which includes the networks in \(D_o \) and, inductively, any network which is constructed from a network in \(D_i \) by replacing any branch by another network in \(D_i \).

Note that \(D_0 \) contains simple series networks, for which \(r = 1 \) and \(b = v - 1 \), and simple parallel networks, for which \(r = b \) and \(b = 2 \). \(D_i \) therefore contains all series-parallel networks, but it contains others as well—for example, the (topologically equivalent) networks of Figs. 1 and 2, for which \(b = 5, v = 4, \) and \(r = 3 \), but not the network of Fig. 3, for which \(b = 11, v = 6, \) and \(r = 8 \), or any network in \(F \) with \(k > 2 \).

Proof: For the proof we need one more definition. \(T_{ij} \), the transmission from branch \(i \) to branch \(j \), is just the network transmission as defined in (18) for the subnetwork consisting of branch \(i \) and all other branches which lie on some directed path which goes through branch \(i \) to the initial node of branch \(j \). (Thus, \(B_i \) is included in the subnetwork, but \(B_j \) is not; and \(t_i \) is a common factor of all of the terms in the sum \(T_{ij} \).) If there are no paths through \(B_i \) and \(B_j \), or if \(B_i \) precedes \(B_j \) on such a path, then \(T_{ij} = 0 \). \(T_{o,i} \) is the transmission of a subnetwork with input node \(V_i \) and output node the initial node of \(B_i \); and \(T_{i,i+1} \) is the transmission of the subnetwork of paths through branch \(i \) to the output node \(V_r \).

We now derive an expression for \(P_{o,i} \), the output power of the network. By the statistical independence of the noise voltage generators from one another and from the signal source, the output power at the right-hand node is the sum of the powers transmitted to that node by these
b + 1 separate sources. The source in branch i contributes an amount of power equal to its generated power $P_i N_i$ times the square of the transmission from B_i to the output. Thus,

$$P_{b+1} = \sum_{i=0}^{b} P_i N_i T_{i,b+1}^2 = P_0(1 + N_{b+1}), \quad (22)$$

where the right-most equality follows from the fact that by the constraint of (18), (2) holds for $i = b + 1$, and where the signal power contributed to the output is represented in the sum by the term for $i = 0$, with $N_0 = 1$ and $T_{0,b+1} = 1$.

Similarly the input power to any branch B_i may be expressed as the sum of the contributions of the generators which lie to its left:

$$P_i = \sum_{k=0}^{i-1} P_k N_k T_k^2. \quad (23)$$

Here we have assumed that the branches are numbered in an order such that if B_i precedes B_j on some directed path, $i < j$.

By successive substitution of (23) into (22) and in the resulting expressions, the subscripts on the P's appearing on the right can all be reduced to zero. The result is a sum of terms, all of which have P_0 as a factor. There is one term for each of the 2^i subsets W_m of the b branches which has the property that all of the branches in W_m are included in a path from input to output, i.e., that there is an integer f with $R_f \supseteq W_m$. If W_m is such a subset, say $W_m = (B_i, B_j, B_k)$ with $i < j < k$, then the corresponding term is

$$P_{b+1} T_{i,j}^2 N_i N_j N_k T_{k,b+1}^2 = P_0(T_0 T_i T_j T_k T_{k,b+1}^2) N_i N_j N_k, \quad (24)$$

The product of the transmission terms which appears on the right is just the sum of the transmissions of all paths from input to output which include all three of the branches B_i, B_j, B_k. If there are no such paths, then one or more of the T_{ij} in (24) will vanish. Thus the output power is expressed in terms of the path transmissions T_i and the branch parameters N_i. Dividing through by P_0 gives an expression for $1 + N_{b+1}$,

$$1 + N_{b+1} = \sum_{k=0}^{2^b-1} \left\{ \sum_{i,j:k \in W_k} T_{i,j} \right\}^2 \prod_{j=1}^{k} N_j, \quad (25)$$

where W_0 is the null set, for which the product is taken to be 1. The sum is also 1 for $k = 0$, since it is just the square of the network transmission of (18). Thus excluding the term for $k = 0$ gives an expression for N_{b+1} as a sum of products of positive terms, which is monotone nondecreasing in each N_j. We thus have proved Lemma 1.

Lemma 1

For any given set of path transmissions T_i, the network noise-to-signal ratio N_{b+1} is a monotone nondecreasing function of each branch noise-to-signal ratio N_i.

This lemma provides the proof of (13), which was referred to previously.

We have also proved that N_{b+1} can vanish for a non-vanishing set of path transmissions only if there is some path R_i along which every branch is noiseless, so that setting $T_i = 1$ and $T_j = 0, j \neq i$ gives a right-hand side in (25) in which only the term for W_0 remains. The matrix $||G_{ij} - I||$ will be singular if, and only if, there is such a noiseless path since it will then map the transmission vector T with $T_i = 1$ and $T_j = 0, j \neq i$ into the null vector. The matrix $||G_{ij}||$ can be singular only under the same circumstances, but may not be even when noiseless paths exist.

We next show the equivalence of the right side of (25) to the quadratic form:

$$\sum_{i=1}^{b+1} \sum_{j=i}^{b+1} G_{ij} T_i T_j, \quad (26)$$

where the T_i are still subject to the constraint (18). Substituting into (26) the definition (16) of G_{ij} gives

$$\sum_{i=1}^{b+1} \sum_{j=i}^{b+1} T_i T_j \prod_{m:a_i \in R_f \cap R_j} (1 + N_m). \quad (27)$$

Expanding the product gives

$$\sum_{i=1}^{b+1} \sum_{j=i}^{b+1} T_i T_j \prod_{k:m:b_i \cap W_k} N_m. \quad (28)$$

Inverting the order of summation to sum over all W_k,

$$\sum_{k=0}^{2^b-1} \sum_{i,j:k \in W_k} T_i T_j \prod_{m:a_i \cap W_k} N_m. \quad (29)$$

We then recognize that the parentheses enclose a term which is just the square of the sum of T_i over the i for which W_k is included in R_i;

$$\sum_{k=0}^{2^b-1} \left\{ \sum_{i:k \in W_k} T_i \right\}^2 \prod_{m:a_i \cap W_k} N_m, \quad (30)$$

which is just the right side of (25).

We have thus proved that for T_i constrained by (18),

$$1 + N_{b+1} = \sum_{i=1}^{b+1} \sum_{j=i}^{b+1} G_{ij} T_i T_j. \quad (31)$$

Squaring (18) gives

$$1 = 1^2 = \left\{ \sum_{i=1}^{b} T_i \right\}^2 = \sum_{i=1}^{b} \sum_{j=1}^{b} T_i T_j, \quad (32)$$

and subtracting (32) from (31) gives

$$N_{b+1} = \sum_{i=1}^{b} \sum_{j=i}^{b} (G_{ij} - 1) T_i T_j, \quad (33)$$

or

$$S_{b+1} = 1 - \sum_{i=1}^{b} \sum_{j=i}^{b} (G_{ij} - 1) T_i T_j. \quad (34)$$

Now N_{opt}, by definition, is the minimum value of N_{b+1} as the branch transmissions are varied, and S_{opt}...
is its reciprocal. We have therefore proved the first part of the theorem: namely, the equalities on the left in (19) and (20).

To obtain the inequalities on the right in (19) and (20), we minimize (31) and (33) by varying the path transmissions T_i independently, subject only to the constraint imposed by (18). The additional constraints imposed by the topology of the network and by (17), which expresses the T_i, in terms of the real independent variables t_k, are ignored. The results are lower bounds to the minima which (31) and (33) can actually attain in the network.

Using a Lagrange multiplier $2M$, we set the derivative of

$$
\sum_{i=1}^{r} \sum_{j=1}^{i} G_{ij} T_j T_i - 2M \sum_{i=1}^{r} T_i
$$

with respect to T_i, equal to zero. This gives

$$
\sum_{j=1}^{i} G_{ij} T_j = M, \quad 1 \leq j \leq r.
$$

Using the minimizing T_i, which satisfy (36), we multiply by T_i and sum, using the constraint of (18) and attaining a lower bound to $1 + N_{opt}$:

$$
\sum_{i=1}^{r} \sum_{j=1}^{i} G_{ij} T_j T_i = M \sum_{i=1}^{r} T_i = M \leq 1 + N_{opt}.
$$

Solving (36) for the minimizing T_i gives

$$
T_i = M \sum_{i=1}^{r} G_{ij} T_j.
$$

Summing on j and using (18),

$$
1 = \sum_{i=1}^{r} T_i = M \sum_{i=1}^{r} \sum_{j=1}^{i} G_{ij} T_j,
$$

or from (37),

$$
1 + N_{opt} \geq M = 1 \left\{ \sum_{i=1}^{r} \sum_{j=1}^{i} G_{ij} T_j \right\}.
$$

This completes the proof of (19) in the theorem. The derivation of (20) is strictly parallel and will be omitted. It remains only to prove the assertions made for networks in D_0 and in D_λ. To prove that equality holds on the right in (19) and (20) for networks in D_0, it is necessary to show that for such networks it is possible to vary path transmissions independently by varying branch transmissions. In fact we prove a stronger result.

Lemma 2

A network in D which has $r = b - v + 2$ has a cutset of r branches each of which is included in just one path. Removal of this cutset divides the network into two parts: a tree connected to V_1 (which may reduce to V_1 alone), and a tree connected to V_* (which may reduce to V_* alone).

Given Lemma 2, we can set the r transmissions of the branches in the cutset as the r desired path transmissions and set the transmissions of all other branches equal to unity.

To prove Lemma 2, assign weights to nodes and branches from the left, assigning weight 1 to node V_1 and then assigning to each branch the weight of its initial node and to each node the sum of the weights of its incoming branches. With this assignment the weight of a node or a branch is clearly the number of routes from the input node V_1 to that node or branch.

Choose from each of the r paths the right-most branch of weight 1. This set of branches, c in number, is a cutset, since it interrupts each path. We have $c \leq r$: $c = r$ if, and only if, no branch is selected more than once.

Deleting the cutset of c branches divides the network into two parts, M_1 connected to V_1 and M_2 connected to V_*, M_1, which contains b_1 branches and v_1 nodes, is a tree, since it is connected and since all of its nodes are of weight 1, so that there is only one path from V_1 to each node. Thus $b_1 = v_1 - 1$, as for any tree.

M_2 is connected to V_* and thus includes at least one tree. Let one of the trees included in M_2 have b_2 branches and v_2 nodes, with $b_2 = v_2 - 1$. Then there are two possible situations. i) M_2 is a tree. In that case $R = b - v + 2$. Or ii) M_2 is larger than a tree, and includes b_2 branches beyond the b_2 branches in a tree which it includes. In that case $r > b - v + 2$. We will prove the labelled statements.

i) If M_2 is a tree, then $b = c + b_1 + b_2 = c + (v_1 - 1) + (v_2 - 1) = c + v - 2$, or $c = b - v + 2$. Since each branch in the cutset connects two trees, it completes just one path, so the number of paths $r = c$, and $r = b - v + 2$.

Q.E.D.;

ii) If M_2 contains b_2 branches beyond those contained in a tree, then $b = c + b_1 + b_2 + b_2 = c + (v_1 - 1) + (v_2 - 1) + b_2 = c + v - 2 + b_2$, or

$$
c = b - v + 2 - b_2.
$$

(41)

Now each branch among the b_2 has weight ≥ 2 by construction, so it lies on at least two paths. Without these b_2 branches, V_* has weight at least c, since the c branches in the cutset have weight 1 each and are connected to V_*. Adding each of the b_2 additional branches adds a weight ≥ 2 to V_*, since each of them is connected to V_* through the tree included in M_2. Thus the total weight r of V_* is $r \geq c + 2b_2$. Combining this with (41) gives

$$
r \geq c + 2b_2 = b - v + 2 + b_2 > b - v + 2.
$$

(42)

Q.E.D.;

For a network M which is in D but not in D_0, $r > b - v + 2$; and it is impossible to independently vary the path transmissions. For $b - v + 2$ is the cyclomatic number of the graph M' obtained from M by adding a branch B_{k+1} directed from V_1 to V_2, and is thus the maximum number of linearly independent cycles in a graph-theoretic sense. Thus the set of r cycles in M', each of which consists of a path R_i from V_1 to V_2, followed by the branch B_{k+1} from V_1 to V_2, are linearly dependent in the graph-theoretic sense. Therefore, so is the set of the paths themselves in M.

IEEE TRANSACTIONS ON INFORMATION THEORY, JULY 1967
The linear dependence of the R_p implies, by taking logarithms in (17), one or more linear relations between the logarithms of the path transmissions $\log T_i$, leading to constraints of the form

$$\log T_i + \log T_j = \log T_n + \log T_k, \quad \text{or} \quad T_i T_j = T_n T_k. \quad (43)$$

and no selection of values for the branch transmissions t_k can provide independent control of all path transmissions.

It may still be possible to achieve equality in (19) and (20) for a network in D which is not in D_0, however, if the optimizing values of the path transmissions happen to satisfy the additional constraints of the form (43) imposed by the network topology. This happens in particular for the networks which are in D_1 but not in D_0.

Lemma 3

Given a network M in D, and a network M' in D_0. Let M'' be constructed by replacing branch B_i in M by the network M'. Then the value of the parameter N_{opt} of M'' will be the same as the value of the parameter N_{opt} of M if the latter is evaluated using the parameter value N_{opt} of M' for B_i. The path transmissions obtained in computing N'_{opt} will lead to the same set of transmissions for the subnetwork M' as are obtained directly in the computation of N'_{opt}.

The network M'' is equivalent to the network M with some value of the parameter N_i for branch B_i by the argument following (2), i.e., the subnetwork M' is equivalent to some noisy branch B_i, and the only question is what its parameter value is. The optimum set of path transmissions for M'' must lead to the same transmissions inside M' as does the direct optimization of M'. Any other choice would give a larger value to the parameter of M'' by Lemma 1.

Lemma 3 completes the proof of the theorem. Lemma 2 covers networks in D_0 and Lemma 3 justifies the extension of the results to networks in D_1. More practically, it permits the solution of network problems of large order by local reductions—the combining of series or parallel branches, etc.—which greatly reduces the computation. Unfortunately the other tool used for the local reduction of resistive networks—the star-mesh transformation—cannot be used for Gaussian channels, since it leads to transformed branches which have correlated generators. This takes us outside of our present model. Networks with correlated noise present problems which are discussed briefly in a later section.

Proof of Earlier Results

The result of (5) follows from the theorem by noting that for a series network $r = 1$, and $||G_i|| = ||G_n||$. Thus,

$$G_{ii} = \prod_{k=1}^{i} (1 + N_k) = 1/G_{ii}^\prime. \quad (44)$$

Equation (6) follows by noting that for a parallel network, $r = b$ and $||G_{ii} - 1||$ is diagonal with elements $G_{ii} = N_i$, so that

$$[G_{ii} - 1]^{-1} = S_i, \quad \sum_{i=1}^{b} \sum_{j=1}^{b} [G_{ii} - 1]^{-1} = \sum_{i=1}^{b} S_i. \quad (45)$$

Equation (11) follows from the evaluation of (20) for the network of Fig. 1. Equation (9) follows by letting S_i approach infinity in (11), for $k = 2$. For larger k, the first three branches are combined into an equivalent forward branch of capacity $C_1 + C_2$ and it is combined with the next noisy forward branch and the next noiseless feedback branch in the same way, etc.

Equations (12) and (13) have already been justified. Equation (14) follows by throwing away all but the linear terms, i.e., terms having a single N_i as a factor, in (33). By (25) this reduces the right side and provides a lower bound to N_{opt} or an upper bound to S_{opt}. The resulting equations are those for a set of resistors—the noisy branches—with resistance $= N_i$, all in parallel—both the forward and the feedback branches—with the noiseless branches acting as short circuits at the two ends and the conductances $S_i = 1/N_i$ adding.

Reduction of Another Problem to the Above

A more general problem concerning networks of Gaussian channels can be reduced to the previous results. Consider the class of two-terminal networks as in D (mentioned previously), but in which each node may supply a different linear combination of the voltages on its incoming branches to each outgoing branch. This model still leaves the operation at the node simple and linear, and provides an increased number of independently controllable path transmissions. Thus it enlarges the class of networks for which explicit solution is possible and for which equality holds in (19) and (20).

As an example, the network shown in Fig. 4 consisting of five vertices connected by four branches forming a directed path from V_1 to V_2 to V_3 to V_4 to V_5, with three additional branches from V_1 to V_5, V_3 to V_6, and V_2 to V_4 has $b = 7$, $v = 5$, and $r = 5$, and is thus not in D_0; it has no two-terminal subnetworks, and is thus not in D_1.

The reduction to the former case replaces each node V_i which has $I_i > 1$ incoming branches and $O_i > 1$ outgoing branches by I_i nodes at each of which one of the incoming branches arrives and O_i nodes from each of which one of the outgoing branches leaves, together with $I_i O_i$ noiseless branches connecting each of the I_i arrival nodes to each of the O_i departure nodes. The added noiseless branches permit the formation of the desired different linear combinations of input branch voltages for each output branch. In the case of the five-node network already described, replacing V_5 by 4 nodes and 4 branches, as shown in Fig. 5, adds 3 nodes, 4 branches and no paths. Thus $b - v + 2 = 7 + 4 - (5 + 3) + 2 = 5 = r$, and the resulting net is in D_0.

Each accepts inputs of power to a branch. No analog to be advantageous to use less than the maximum possible input power. This is always valid as a model of a physical channel so long as the channel is always used and that they are free to allocate their limited resources between the different forward and feedback channels in the way which maximizes the resulting S_{opt} of F. This freedom may even extend to deciding how large k should be, if the available forward and feedback channels have infinite bandwidth.

In the case of noiseless feedback $k = \infty$ is best and gives the result of (10). When the feedback is noisy, evaluating what S_{opt} is the best division of limited power gives and how S_{opt} depends on k involves a great deal of numerical solutions of linear equations subject to constraints of the form of (43). Even evaluating the upper bound to S_{opt} of (20) is not easy. Lower bounds to S_{opt} which are more meaningful than that of (12) can be computed, however, by making use of iteration of networks for which $k = 2$, as shown in Fig. 7.

For the first level network, we assume that the two forward branches have equal signal-to-noise ratio, since this maximizes S_{opt} in (11), for fixed S_{odd}. Denoting their common signal-to-noise ratio as S_1, the feedback branch as S_2, and the resulting S_{opt} as S_3, we have from (11)

$$S_3 = 2S_1 + \frac{S_1 S_2}{(1 + S_1)^2 + S_2}. \quad (48)$$

We now consider the second-level network to consist of two forward branches of ratio S_1 and a feedback branch of ratio S_2. The resulting S_{opt} is denoted by S_3, and we have for the kth level

$$S_{2k+1} = 2S_{2k} + \frac{S_{2k-1} S_{2k}}{(1 + S_{2k-1})^2 + S_{2k}},$$
$$S_{\text{odd}} = 2^k S_1,$$
$$S_{\text{even}} = S_2 + 2S_{4(k-1)} + \cdots + 2^{k-1} S_4.$$
which gives us not the best strategy, we may pick a division of bound to $S_{2k},$ can be given as an equation. Although it is of curves rather than an equation. A much weaker lower mum curves.

for, e.g., S and S_{2k+1} will take more of it. Choosing all combinations of values end points fixed, and fixing S is optimum in the sense that by keeping the quadratic in the positive square root of each side of (51) gives a we may fix S_1 in $S_{2k},$ and solving it enables us to start with a desired S_{odd} and to generate $S_{2k+1},$ for any $k.$ Alternatively, with more for higher-numbered branches, receives an equal amount. Seven is divided unequally, and S and S_{2k+1} is divided unequally, however, with more for higher-numbered branches, in the optimum case. The optimum allocation can be determined by solving (49) for S_{2k}:

$$S_{2k} = \frac{S_{2k+1} - 2S_{2k-1}}{1 + S_{2k+1} - S_{2k-1}}. \quad (50)$$

Now differentiating $S_{2k} + 2S_{2k-2}$ with respect to S_{2k-1} for fixed S_{2k+1} and S_{2k-2} and setting the result equal to zero gives

$$\frac{S_{2k-2}(1 + S_{2k-3})^2}{[(1 + S_{2k-3})^2 - (1 + S_{2k-4})]^{\frac{1}{2}}} = (1 + S_{2k-1})(1 + S_{2k-3})^2 - (1 + S_{2k+1})(2 - 3S_{2k-3}) + (1 + S_{2k+1})^2. \quad (51)$$

For given S_{2k-1} and $S_{2k-2},$ this equation is quadratic in S_{2k-3}, and solving it enables us to start with a desired S_{1} and S_{2} and to generate S_{2k+1} for any $k.$ Alternatively, we may fix S_{2k+1} and S_{2k-1} and solve for $S_{2k-3}.$ Taking the positive square root of each side of (51) gives a quadratic in $S_{2k-3},$ and we can proceed from given values of S_{2k+1} and S_{2k-1} down to $S_1.$ In either case the resulting set of values is optimum in the sense that by keeping the end points fixed, and fixing $k,$ any other division of S_{odd} will take more of it. Choosing all combinations of values for, e.g., S_1 and $S_3 > 2S_1$ generates the full set of optimum curves.

The result, unfortunately, must be displayed as a set of curves rather than an equation. A much weaker lower bound to S_{opt} can be given as an equation. Although it is not the best strategy, we may pick a division of S_{even} which gives us a fixed c such that

$$1 + S_j = c(1 + S_{j-1})^2, \quad \text{odd } j. \quad (52)$$

Then from (50),

$$S_{2k} = \frac{S_{2k+1} - 2S_{2k-1}}{1 - c} \quad (53)$$

and from (49) and (52),

$$S_{even} = \frac{S_{2k+1} - 2S_{1}}{1 - c} \leq \frac{S_{opt} - S_{odd}}{1 - c}, \quad (54)$$

since $S_{2k+1} \leq S_{opt}.$ We also have from repeated application of (52)

$$c(1 + S_{opt}) \geq c(1 + S_{2k+1}) = c^2(1 + 2S_{odd})^2. \quad (55)$$

Together, (54) and (55) provide a useful analytic lower bound to $S_{opt}.$

REFERENCES

Reprinted from *IEEE Transactions on Information Theory* Vol. IT-13, Number 3, July 1967

Pp. 493-501

Copyright 1967, and reprinted by permission of the copyright owner

PRINTED IN THE U.S.A.
JOINT SERVICES ELECTRONICS PROGRAM
REPORTS DISTRIBUTION LIST

Department of Defense

Dr. Edward M. Reilley
Asst Director (Research)
Ofc of Defense Res & Eng
Department of Defense
Washington, D.C. 20301

Office of Deputy Director
(Research and Information Room 3D1037)
Department of Defense
The Pentagon
Washington, D.C. 20301

Director
Advanced Research Projects Agency
Department of Defense
Washington, D.C. 20301

Director for Materials Sciences
Advanced Research Projects Agency
Department of Defense
Washington, D.C. 20301

Headquarters
Defense Communications Agency (333)
The Pentagon
Washington, D.C. 20305

Defense Documentation Center
Attn: TISIA
Cameron Station, Bldg. 5
Alexandria, Virginia 22314

Director
National Security Agency
Attn: Librarian C-332
Fort George G. Meade, Maryland 20755

Weapons Systems Evaluation Group
Attn: Col. Daniel W. McElwee
Department of Defense
Washington, D.C. 20305

National Security Agency
Attn: R4-James Tippet
Office of Research
Fort George G. Meade, Maryland 20755

Central Intelligence Agency
Attn: OCR/DD Publications
Washington, D.C. 20505

Department of the Air Force

Colonel Kee
AFRSTE
Hqs. USAF
Room ID-429, The Pentagon
Washington, D.C. 20330

AMD (AMRXI)
Brooks AFB, Texas 78235

AUL3T-9663
Maxwell AFB, Alabama 36112

AFFTC (FTBPP-2)
Technical Library
Edwards AFB, Calif. 93523

SAMSO (SMSDI-STINFO)
AF Unit Post Office
Los Angeles
California 90045

Major Charles Waespy
Technical Division
Deputy for Technology
Space Systems Division, AFSC
Los Angeles, California 90045

SSD(SSTRT/Lt. Starbuck)
AFUPO
Los Angeles, California 90045

Det #6, OAR (LOOAR)
Air Force Unit Post Office
Los Angeles, California 90045

ARL (ARIY)
Wright-Patterson AFB, Ohio 45433

Dr. H. V. Noble
Air Force Avionics Laboratory
Wright-Patterson AFB, Ohio 45433

Mr. Peter Murray
Air Force Avionics Laboratory
Wright-Patterson AFB, Ohio 45433
AFAL (AVTE/R. D. Larson)
Wright-Patterson AFB, Ohio 45433

Commanding General
Attn: STEWS-WS-VT
White Sands Missile Range
New Mexico 88002

RADC (EMLAL-1)
Griffiss AFB, New York 13442
Attn: Documents Library

Academy Library (DFSLLB)
U.S. Air Force Academy
Colorado Springs, Colorado 80912

Lt. Col. Bernard S. Morgan
Frank J. Seiler Research Laboratory
U.S. Air Force Academy
Colorado Springs, Colorado 80912

APGC (PGBPS-12)
Eglin AFB, Florida 32542

AFETR Technical Library
(ETV, MU-135)
Patrick AFB, Florida 32925

AFETR (ETLLG-1)
STINFO Officer (for Library)
Patrick AFB, Florida 32925

Dr. L. M. Hollingsworth
AFCRL (CRN)
L. G. Hanscom Field
Bedford, Massachusetts 01731

AFCRL (CRMXLR)
AFCRL Research Library, Stop 29
L. G. Hanscom Field
Bedford, Massachusetts 01731

Colonel Robert E. Fontana
Department of Electrical Engineering
Air Force Institute of Technology
Wright-Patterson AFB, Ohio 45433

Colonel A. D. Blue
RTD (RTTL)
Bolling Air Force Base, D.C. 20332

Dr. I. R. Mirman
AFSC (SCT)
Andrews Air Force Base, Maryland 20331

Colonel J. D. Warthman
AFSC (SCTR)
Andrews Air Force Base, Maryland 20331

Lt. Col. J. L. Reeves
AFSC (SCBB)
Andrews Air Force Base, Maryland 20331

ESD (ESTI)
L. G. Hanscom Field
Bedford, Massachusetts 01731

AEDC (ARO, INC)
Attn: Library/Documents
Arnold AFS, Tennessee 37389

European Office of Aerospace Research
Shell Building
47 Rue Cantersteen
Brussels, Belgium

Lt. Col. Robert B. Kalisch
Chief, Electronics Division
Directorate of Engineering Sciences
Air Force Office of Scientific Research
Arlington, Virginia 22209

Department of the Army
U.S. Army Research Office
Attn: Physical Sciences Division
3045 Columbia Pike
Arlington, Virginia 22204

Research Plans Office
U.S. Army Research Office
3045 Columbia Pike
Arlington, Virginia 22204

Commanding General
U.S. Army Materiel Command
Attn: AMCRD-RS-DE-E
Washington, D.C. 20315

Commanding General
U.S. Army Strategic Communications Command
Washington, D.C. 20315

Commanding Officer
U.S. Army Materials Research Agency
Watertown Arsenal
Watertown, Massachusetts 02172

Commanding Officer
U.S. Army Ballistics Research Laboratory
Attn: V. W. Richards
Aberdeen Proving Ground
Aberdeen, Maryland 21005
<table>
<thead>
<tr>
<th>Commandant</th>
<th>Commanding Officer</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Army Air Defense School</td>
<td>U.S. Army Research Office (Durham)</td>
</tr>
<tr>
<td>Attn: Missile Sciences Division C&S Dept.</td>
<td>Attn: CRD-AA-IP (Richard O. Ulsh)</td>
</tr>
<tr>
<td>P.O. Box 9390</td>
<td>Box CM, Duke Station</td>
</tr>
<tr>
<td>Fort Bliss, Texas 79916</td>
<td>Durham, North Carolina 27706</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commanding General</th>
<th>Librarian</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Army Missile Command</td>
<td>U.S. Army Military Academy</td>
</tr>
<tr>
<td>Attn: Technical Library</td>
<td>West Point, New York 10996</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commanding General</th>
<th>Commanding Officer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frankford Arsenal</td>
<td>U.S. Army Engineer R&D Laboratory</td>
</tr>
<tr>
<td>Attn: L600-64-4 (Dr. Sidney Ross)</td>
<td>Attn: STINFO Branch</td>
</tr>
<tr>
<td>Philadelphia, Pennsylvania 19137</td>
<td>Fort Belvoir, Virginia 22060</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commanding Officer</th>
<th>Librarian</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Army Munitions Command</td>
<td>U. S. Army Military Academy</td>
</tr>
<tr>
<td>Attn: Technical Information Branch</td>
<td>West Point, New York 10996</td>
</tr>
<tr>
<td>Picatinny Arsenal</td>
<td></td>
</tr>
<tr>
<td>Dover, New Jersey 07801</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commanding Officer</th>
<th>Commanding Officer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harry Diamond Laboratories</td>
<td>U.S. Army Electronics R&D Activity</td>
</tr>
<tr>
<td>Attn: Dr. Berthold Altman (AMXDO-TI)</td>
<td>White Sands Missile Range,</td>
</tr>
<tr>
<td>Connecticut Avenue and Van Ness St. N. W.</td>
<td>New Mexico 88002</td>
</tr>
<tr>
<td>Washington, D. C. 20438</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commanding Officer</th>
<th>Commanding Officer</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Army Security Agency</td>
<td>U.S. Army Electronics Command</td>
</tr>
<tr>
<td>Arlington Hall</td>
<td>Fort Monmouth, New Jersey 07703</td>
</tr>
<tr>
<td>Arlington, Virginia 22212</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commanding Officer</th>
<th>Director</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Army Limited War Laboratory</td>
<td>Institute for Exploratory Research</td>
</tr>
<tr>
<td>Attn: Technical Director</td>
<td>U.S. Army Electronics Command</td>
</tr>
<tr>
<td>Aberdeen Proving Ground</td>
<td>Fort Monmouth, New Jersey 07703</td>
</tr>
<tr>
<td>Aberdeen, Maryland 21005</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commanding Officer</th>
<th>Commanding General</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Engineering Laboratories</td>
<td>U.S. Army Electronics Command</td>
</tr>
<tr>
<td>Aberdeen Proving Ground, Maryland 21005</td>
<td>Fort Monmouth, New Jersey 07703</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Director</th>
<th>Commanding General</th>
</tr>
</thead>
<tbody>
<tr>
<td>U. S. Army Engineer</td>
<td>U.S. Army Electronics Command</td>
</tr>
<tr>
<td>Geodesy, Intelligence and Mapping</td>
<td>Fort Monmouth, New Jersey 07703</td>
</tr>
<tr>
<td>Research and Development Agency</td>
<td></td>
</tr>
<tr>
<td>Fort Belvoir, Virginia 22060</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dr. H. Robl, Deputy Chief Scientist</th>
<th>Commanding General</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Army Research Office (Durham)</td>
<td>U.S. Army Command and General</td>
</tr>
<tr>
<td>Box CM, Duke Station</td>
<td>Staff College</td>
</tr>
<tr>
<td>Durham, North Carolina 27706</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Librarian</th>
<th>Commanding Officer</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Walter Reed Institute of Research</td>
<td>U.S. Army Research Office (Durham)</td>
</tr>
<tr>
<td>Walter Reed Medical Center</td>
<td>Attn: CRD-AA-IP (Richard O. Ulsh)</td>
</tr>
<tr>
<td>Washington, D. C. 20012</td>
<td>Box CM, Duke Station</td>
</tr>
<tr>
<td></td>
<td>Durham, North Carolina 27706</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Librarian</th>
<th>Commanding Officer</th>
</tr>
</thead>
<tbody>
<tr>
<td>U. S. Army Military Academy</td>
<td>U.S. Army Research Office (Durham)</td>
</tr>
<tr>
<td>West Point, New York 10996</td>
<td>Attn: CRD-AA-IP (Richard O. Ulsh)</td>
</tr>
<tr>
<td></td>
<td>Box CM, Duke Station</td>
</tr>
<tr>
<td></td>
<td>Durham, North Carolina 27706</td>
</tr>
</tbody>
</table>
JOINT SERVICES REPORTS DISTRIBUTION LIST (continued)

Department of the Navy

Chief of Naval Research
Department of the Navy
Washington, D.C. 20360
Attn: Code 427

Naval Electronics Systems Command
ELEX 03
Falls Church, Virginia 22046

Naval Ship Systems Command
SHIP 031
Washington, D.C. 20360

Naval Ship Systems Command
SHIP 035
Washington, D.C. 20360

Naval Ordnance Systems Command
ORD 32
Washington, D.C. 20360

Naval Air Systems Command
AIR 03
Washington, D.C. 20360

Commanding Officer
Office of Naval Research Branch Office
Box 39, Navy No 100 F. P. O.
New York, New York 09510

Commanding Officer
Office of Naval Research Branch Office
219 South Dearborn Street
Chicago, Illinois 60604

Commanding Officer
Office of Naval Research Branch Office
1030 East Green Street
Pasadena, California 91101

Commanding Officer
Office of Naval Research Branch Office
207 West 24th Street
New York, New York 10011

Commanding Officer
Office of Naval Research Branch Office
495 Summer Street
Boston, Massachusetts 02210

Director, Naval Research Laboratory
Technical Information Officer
Washington, D.C. 20360
Attn: Code 2000

Commander
Naval Air Development and Material Center
Johnsville, Pennsylvania 18974

Librarian
U.S. Naval Electronics Laboratory
San Diego, California 92152

Commanding Officer and Director
U.S. Naval Underwater Sound Laboratory
Fort Trumbull
New London, Connecticut 06840

Librarian
U.S. Navy Post Graduate School
Monterey, California 93940

Commander
U.S. Naval Air Missile Test Center
Point Mugu, California 93041

Director
U.S. Naval Observatory
Washington, D.C. 20390

Chief of Naval Operations
OP-07
Washington, D.C. 20350

Director, U.S. Naval Security Group
Attn: G43
3801 Nebraska Avenue
Washington, D.C. 20390

Commanding Officer
Naval Ordnance Laboratory
White Oak, Maryland 21502

Commanding Officer
Naval Ordnance Laboratory
Corona, California 91720

Commanding Officer
Naval Ordnance Test Station
China Lake, California 93555

Commanding Officer
Naval Avionics Facility
Indianapolis, Indiana 46241

Commanding Officer
Naval Training Device Center
Orlando, Florida 32811

U.S. Naval Weapons Laboratory
Dahlgren, Virginia 22448

U.S. Naval Applied Science Laboratory
Flushing and Washington Avenues
Brooklyn, New York 11251
Attn: Robert Schwartz, Code 926

Dr. W. A. Eberspacher
Head, Ocean Engineering Branch
Code 5352, Box 31
Naval Missile Center
Point Mugu, California 93041
JOINT SERVICES REPORTS DISTRIBUTION LIST (continued)

Weapons Systems Test Division
Naval Air Test Center
Patuxent River, Maryland 20670
Attn: Library

Head, Technical Division
U.S. Naval Counter Intelligence Support Center
Fairmont Building
4420 North Fairfax Drive
Arlington, Virginia 22203

Other Government Agencies

Mr. Charles F. Yost
Special Assistant to the Director of Research
National Aeronautics and Space Administration
Washington, D.C. 20546

Dr. H. Harrison, Code RRE
Chief, Electrophysics Branch
National Aeronautics and Space Administration
Washington, D.C. 20546

Goddard Space Flight Center
National Aeronautics and Space Administration
Attn: Library C3/TDL
Green Belt, Maryland 20771

NASA Lewis Research Center
Attn: Library
21000 Brookpark Road
Cleveland, Ohio 44135

National Science Foundation
Attn: Dr. John R. Lehmann
Division of Engineering
1800 G Street, N.W.
Washington, D.C. 20550

U.S. Atomic Energy Commission
Division of Technical Information Extension
P.O. Box 62
Oak Ridge, Tennessee 37831

Los Alamos Scientific Laboratory
Attn: Reports Library
P.O. Box 1663
Los Alamos, New Mexico 87544

NASA Scientific & Technical Information Facility
Attn: Acquisitions Branch (S/AK/DL)
P.O. Box 33,
College Park, Maryland 20740

NASA, Langley Research Center
Langley Station
Hampton, Virginia 23365
Attn: Mr. R. V. Hess, Mail Stop 160

Non-Government Agencies

Director
Research Laboratory of Electronics
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Polytechnic Institute of Brooklyn
55 Johnson Street
Brooklyn, New York 11201
Attn: Mr. Jerome Fox
Research Coordinator

Director
Columbia Radiation Laboratory
Columbia University
538 West 120th Street
New York, New York 10027

Director
Coordinated Science Laboratory
University of Illinois
Urbana, Illinois 61803

Director
Stanford Electronics Laboratories
Stanford University
Stanford, California 94305

Director
Electronics Research Laboratory
University of California
Berkeley, California 94720

Director
Electronic Sciences Laboratory
University of Southern California
Los Angeles, California 90007

Professor A. A. Dougal, Director
Laboratories for Electronics and Related Sciences Research
University of Texas
Austin, Texas 78712
JOINT SERVICES REPORTS DISTRIBUTION LIST (continued)

Gordon McKay Library A175
Technical Reports Collection
Harvard College
Cambridge, Massachusetts 02138

Aerospace Corporation
P.O. Box 95085
Los Angeles, California 90045
Attn: Library Acquisitions Group

Professor Nicholas George
California Institute of Technology
Pasadena, California 91109

Aeronautics Library
Graduate Aeronautical Laboratories
California Institute of Technology
1201 E. California Blvd.
Pasadena, California 91109

Director, USAF Project RAND
Via: Air Force Liaison Office
The RAND Corporation
1700 Main Street
Santa Monica, California 90406
Attn: Library

The Johns Hopkins University
Applied Physics Laboratory
8621 Georgia Avenue
Silver Spring, Maryland 20910
Attn: Boris W. Kuvschonoff
Document Librarian

Hunt Library
Carnegie Institute of Technology
Schenley Park
Pittsburgh, Pennsylvania 15213

Dr. Leo Young
Stanford Research Institute
Menlo Park, California 94025

Mr. Henry L. Bachmann
Assistant Chief Engineer
Wheeler Laboratories
122 Cuttermill Road
Great Neck, New York 11021

School of Engineering Sciences
Arizona State University
Tempe, Arizona 85281

Engineering and Mathematical
Sciences Library
University of California
405 Hilgard Avenue
Los Angeles, California 90024

California Institute of Technology
Pasadena, California 91109
Attn: Documents Library

University of California
Santa Barbara, California 93106
Attn: Library

Carnegie Institute of Technology
Electrical Engineering Department
Pittsburgh, Pennsylvania 15213

University of Michigan
Electrical Engineering Department
Ann Arbor, Michigan 48104

New York University
College of Engineering
New York, New York 10019

Syracuse University
Dept. of Electrical Engineering
Syracuse, New York 13210

Yale University
Engineering Department
New Haven, Connecticut 06520

Airborne Instruments Laboratory
Deerpark, New York 11729

Bendix Pacific Division
11600 Sherman Way
North Hollywood, California 91605

General Electric Company
Research Laboratories
Schenectady, New York 12301

Lockheed Aircraft Corporation
P.O. Box 504
Sunnyvale, California 94088

Raytheon Company
Bedford, Massachusetts 01730
Attn: Librarian

Dr. G. J. Murphy
The Technological Institute
Northwestern University
Evanston, Illinois 60201

Dr. John C. Hancock, Director
Electronic Systems Research Laboratory
Purdue University
Lafayette, Indiana 47907
Joint Services Reports Distribution List (continued)

Director
Microwave Laboratory
Stanford University
Stanford, California 94305

Emil Schafer, Head
Electronics Properties Info Center
Hughes Aircraft Company
Culver City, California 90230

Department of Electrical Engineering
Texas Technological College
Lubbock, Texas 79409
Abstract—This paper discusses networks (directed graphs) having one input node, one output node, and an arbitrary number of intermediate nodes, whose branches are noisy communications channels, in which the input to each channel appears at its output corrupted by additive Gaussian noise. Each branch is labeled by a non-negative real parameter which specifies how noisy it is. A branch originating at a node has as input a linear combination of the outputs of the branches terminating at that node.

The channel capacity of such a network is defined. Its value is bounded in terms of branch parameter values and procedures for computing values for general networks are described. Explicit solutions are given for the class D_0 which includes series-parallel and simple bridge networks and all other networks having r paths, b branches, and v nodes with $r = b + v - 2$, and for the class D_1 of networks which is inductively defined to include D_0 and all networks obtained by replacing a branch of a network in D_1 by a network in D_1.

The general results are applied to the particular networks which arise from the decomposition of a simple feedback system into successive forward and reverse (feedback) channels. When the feedback channels are noiseless, the capacities of the forward channels are shown to add. Some explicit expressions and some bounds are given for the case of noisy feedback channels.
<table>
<thead>
<tr>
<th>KEY WORDS</th>
<th>LINK A</th>
<th></th>
<th>LINK B</th>
<th></th>
<th>LINK C</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ROLE</td>
<td>WT</td>
<td>ROLE</td>
<td>WT</td>
<td>ROLE</td>
<td>WT</td>
</tr>
<tr>
<td>Communications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communication Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feedback Communication</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gaussian Channels</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gaussian Noise</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Information Theory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Networks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noisy Feedback</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>