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We consider general combinatorial optimization problehad tan be formulated as minimizing the weight
of a feasible solutiorw”x over an arbitrary feasible set. For these problems we deseribroad class
of corresponding stochastic problems where the weightovéd has independent random components,
unknown at the time of solution. A natural and important obije which incorporates risk in this stochastic
setting, is to look for a feasible solution whose stochastight has a small tail or a small linear combination
of mean and standard deviation. Our models can be equilakefiormulated as deterministic nonconvex
programs for which no efficient algorithms are known. In thaper, we make progress on these hard
problems.

Our results are several efficient general-purpose appatidmschemes. They use as a black-box (exact
or approximate) the solution to the underlying determinisbmbinatorial problem and thus immediately
apply to arbitrary combinatorial problems. For examplepfran availabley-approximation algorithm to
the deterministic problem, we construct@ + ¢)-approximation algorithm that invokes the deterministic
algorithm only a logarithmic number of times in the input gaynomial in % for any desired accuracy
level e > 0. The algorithms are based on a geometric analysis of thewuerand approximability of the

nonlinear level sets of the objective functions.

Key words:approximation algorithms, combinatorial optimizatiotgchastic optimization, risk, nonconvex

optimization

1. Introduction

Imagine driving to the airport through uncertain traffic. Mgtwe may not know specific travel times along
different roads, we may have information on their distiidusg (for example their means and variances). We
want to find a route that gets us to the airport on time. Theerauihimizing expected travel time may well
cause us to be late. In contrast, arriving on time requireswatting for traffic variability and risk.

In this paper we consider general combinatorial optimiaproblems that can be formulated as min-
imizing the weightw”'x of a feasible solution over a fixed feasible set. For thesblpnas we describe
a broad class of corresponding stochastic problems wherevélight vectorW has independent random
components, unknown at the time of solution. A natural angoirtant objective which incorporates risk in

this stochastic setting, is to look for a feasible solutidmoge stochastic weight has a small tail (as in the



example above, where we seek to minimize the probability tthea random route length exceeds a given
threshold) or a small linear combination of mean and stahdawiation. Our models can be equivalently
reformulated as deterministic nonconvex programs for o efficient algorithms are known. In this
paper, we make progress on these hard problems, and inybartazir main contributions are as follows.

Our Results

1. Suppose we have an exact algorithm for the underlyingm@testic combinatorial problem. Then,
for all stochastic variants we consider, we obtain effici@nte)-approximation schemes, which make

a logarithmic number of oracle calls to the deterministgoathm (Theorem 4, Theorem 15).

2. Suppose we havedapproximate algorithm for the deterministic problem. fihtr the stochastic

problem of minimizing the tail of the solution weight's digtution, we provide a\/l — [%} -
approximation scheme, which as above makes a logarithmibatof oracle calls to the deterministic

algorithm (Theorem 10). This result assumes normally ibisted weights.

3. Suppose we havedapproximate algorithm for the deterministic problem. mhir the stochastic
(nonconvex) problem of minimizing a linear combination aéan and standard deviation of the solu-
tion weight, we give an(1 + ¢)-approximation scheme which makes a logarithmic numberaxle
calls to the deterministic algorithm (Theorem 21). Thisutekolds for arbitrary weight distributions,

and only assumes knowledge of the mean and variance of thibudlins.

To the best of our knowledge, this is the first treatment oflsastic combinatorial optimization that
incorporates risk, together with providing general-pggapproximation techniques applicable to arbitrary
combinatorial problems. In fact, since our algorithms amdependent of the feasible set structure, they
immediately apply to anyliscreteproblems, and not jusf0,1}. Similarly, they continue to work in a
continuous setting where the feasible set is compact angegon

Our approximation schemes are based on a series of georestincas analyzing the form of the ob-
jective function level sets, and on a novel constructionnofjpproximatanon-linear separation oracléom
a linear oracle (the algorithm to the deterministic problem), in which thaimtechnical lemma is that a
logarithmic number of applications of the linear oraclefisefto get an arbitrarily good approximation.

Given the general-purpose nature of our algorithms and tiear-optimal running time, our results
constitute significant progress in both stochastic and eiorex optimization. In particular, we believe that
our approach and techniques would extend to give approikimatgorithms for a wider class of nonconvex
(and related stochastic) optimization problems, for whiotefficient solutions are currently available.

Perhaps more importantly from a practical standpoint, agjrbduct of our stochastic models we can

approximate thalistribution of the weight of the optimal solution: Applying our solutiom the stochastic
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tail distribution objective for different threshold (tavalues will yield an approximate histogram of the
optimal distribution. Consequently our models and algponis provide a powerful tool for approximating
arbitrary objectives and statistics from the distribution

We defer to the next section a discussion of related work amdrast our results to potential other
approaches. Our approximation algorithms are presenttdet ifollowing four sections. Our algorithms for
the tail (threshold) objective require some additionaliagstions, and because of the form of that objective
the analysis is more challenging and subtle. We preseng tineSections 3 and 4 for the cases when we
have an exact and an approximate oracle for solving the lymigideterministic problem respectively. Our
algorithms for the mean-standard deviation objective aveergeneral and somewhat easier to analyze: they

are presented in Sections 5 and 6.

2. The Stochastic Framework

In this section, we formally define the classes of stochagstblems we consider. We then discuss related
work and contrast our approach with other potential sotugipproaches.
Consider an arbitrary deterministic combinatorial prablehich minimizes the weight of a feasible

solutionw®x over a fixed feasible sef:
minimizew?’ x subject tox € F. (1)

Notation We adopt the common standard of bold font for vectors andliaedont for scalars, and denote
the transpose of a vector, say by x”. Define polytopéF) € R" to be the convex hull of the feasible
setF. LetW = (W7,...,W,) be a vector of independent stochastic weights, ang (u, ..., u,,) and
T = (7,...,7,) be the vectors of their means and variances respectively.

We consider the following broad classes of stochastic prab] summarized in the table below together

with their equivalent reformulation as deterministic nomeex problems.

Model Name| Stochastic Problem Nonconvex Problem
. maximize i

Threshold maximize Pr(W'x <t) . Tx 2)

subjectto xe F subjectto x € polytopg F)

minimize ¢
Value-at-risk| subjectto Pr(WTx <t)>p

xeF minimize p'x 4+ cV7rTx 3)
o minimize  pTx + cvaTx subjectto x € polytopg F)
isk .
subjectto x e F




We will give approximation algorithms for the two nonconyanoblems above, using as an oracle the avail-
able solutions to the underlying problem (1). dAapproximation algorithm for a minimization problem
(with 6 > 1) is one which returns a solution with value at mégimes the optimum. We use the term
oracle-logarithmic time approximation schertabbrev. oracle-LTAS) for &1 + ¢)d-approximation algo-
rithm which makes a number of oracle queries that is logaiithin the problem size and polynomial %n
(whereé is the multiplicative approximation factor of the oracl®ye now briefly explain why solving the
nonconvex problems will solve the corresponding stocbgstblems.

Stochastic threshold objective When the weights come from independent normal distribstianfea-

sible solutionx will have a normally distributed weightv?x ~ N (u”x, 77x). Therefore

WTx — uTx _t- uTx} _ @(t — uTx>
vrTx VrTx 7

where®(-) is the cumulative distribution function of the standardmat random variableV (0, 1). Since

Pr [WTX < t} = Pr [
Tx

®(-) is monotone increasing, maximizing the stochastic thiielsbiojective above is equivalent to maximiz-
ing the argument, namely it is equivalent to the nonconveeastiold problem (2). Furthermore, it can be
easily shown that an approximation for the nonconvex pral{2) yields the same approximation factor for
the stochastic probler.

Stochastic risk and value-at-risk objectives When the weights come from arbitrary independent dis-
tributions, the mean and variance of a feasible solutiomill be equal to the sum of means’ x and sum
of variancesr” x of the components af, hence the equivalent concave formulation (3). The vattrisk
objective also reduces to problem (3). For arbitrary distions this follows from Chebyshev’s bound, see
Section 7.1 in the Appendix for details.

Properties of the nonconvex objectives Objectives (2) and (3) are instances of quasi-convex maami
tion and concave minimization respectively; consequethidy attain their optima at extreme points of the

feasible set (Bertsekas et al., 2003; Nikolova et al., 2006)

2.1. Reated Work

The stochastic threshold objective was previously comsitlan the special case of shortest paths (Nikolova
et al., 2006). The authors showed that this objective haprbygerty that its optimum is an extreme point
of the feasible set, and gave an exact algorithm based onerating extreme points. The property that the
optimum is an extreme point holds here as well, however shighiere the similarity of our work to this prior

work ends: For general combinatorial problems it is likddgittthe number of relevant extreme points is too

1We expect that under reasonable conditiang, ,if a feasible solutiorx has sufficiently many nonzero components, arbitrary
weight distributions will lead to feasible solutions hayiapproximately normal weight by the Central Limit TheoreRius our
algorithms are likely to provide a good approximation inttheneral case as well.
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high (or unknown) and enumerating them will yield very ing#nt algorithms. The focus and results of
this paper are instead on approximation algorithms, inqdar ones which are guaranteed to be efficient
for arbitrary combinatorial optimization problems.

Our nonconvex objectives fall in the class of constant-rqnéisi-concave minimization problems con-
sidered by Kelner and Nikolova (2007) (in our case the objestare of rank 2), who give approximation
algorithms based on smoothed analysis for some of theséepnebTheir approximation algorithms do not
apply to our setting, since they require the objective teehalyounded gradienand apositive lower bound
for the optimum (so as to turn additive into multiplicativepaoximation), as is not the case here.

Perhaps closest in spirit to our oracle-approximation wathis the work on robust optimization by
Bertsimas and Sim (2003). Although very different in terrhsnadels and algorithmic solutions, they also
show how to solve the robust combinatorial problems via alsmianber of oracle calls of the underlying
deterministic problems.

A wealth of different models for stochastic combinatorigtimization have appeared in the literature,
perhaps most commonly on two-stage and multi-stage sttichagdimization, see survey by Swamy and
Shmoys (2006). Almost all such work considers linear objeciunctions {.e., minimizing the expected
solution weight) and as such does not consider risk. Sonteeafibdels incorporate additional budget con-
straints (Srinivasan, 2007) or threshold (chance) coingsrdor specific problems such as knapsack, load
balancing and others (Dean et al., 2004; Goel and Indyk, ;1RE@9nberg et al., 2000). A comprehensive
survey on stochastic optimization with risk with a diffetréocus (different solution concept and continuous
settings) is provided by Rockafellar (2007). Similarlygtvork on chance constraints.g., Nemirovski
and Shapiro (2006)) applies for linear and not discretenptition problems. Additional related work
includes research on multi-criteria optimizatiang., (Papadimitriou and Yannakakis, 2000; Ackermann
et al., 2005; Safer et al., 2004; Warburton, 1987) and coatbiial optimization with a ratio of linear ob-
jectives (Megiddo, 1979; Radzik, 1992). In one multi-aidesetting, Safer et al. (2004) consider nonlinear
objectivesf (x). However they assume that the statementf{ls) < M?” can be evaluated in polynomial
time (that is a key technical challenge in our paper), anil thections f (x) have a much simpler separable

form.

2.2. Our resultsvsother potential approaches

Specific combinatorial problems under our framework canobees with alternative approaches. For exam-
ple, consider the NP-hard constrained optimization proldlenin 7 x subject tor’x < B, x € F}. Sup-
pose we can get an approximate solutidio the latter, which satisfigs’ x’ < p’x* andr’x’ < B(1+¢),

wherex™ is the optimal solution to the constrained problem with leidg. Then we can derive a fully



polynomial-time approximation scheme (FPTAS) to the nowea problems (2), (3) by considering a ge-
ometric progression of budgef$ in the constraint above, and picking the solution with thst lmdbjective
value (2) or (3). This approach can be used whenever we hawbibve type of FPTAS to the constrained
problem, as is the case for shortest paths (Goel et al., 2¢0dyever, since we do not have a black-box
solution to the constrained problem in general, this apgrabes not seem to extend to arbitrary combina-
torial problems.

Another approach similar to the constrained problem aboweldvbe to use the approximate Pareto
boundary> The latter consists of a polynomial set of feasible soljsuch that for any point on the
Pareto boundary, there is a poittin the set that satisfieg” x’ < (1 + e)u’x andr’x’ < (1 + ¢)77x.
When availablge.g.,for shortest paths, etc.), such a bicriteria approximatdhtranslate into an FPTAS
for the nonconvex risk objective (3). However it wilbtyield an approximation algorithm to the nonconvex
threshold objective (2), because a multiplicative apprmtion ofu”'x does not translate into a multiplica-
tive approximation oft — u’'x).

Radzik gives a black-box solution for combinatorial optiation with rational objectives that are a
ratio of two linear functions, by converting the rationaljediive into a linear constraint. A key property
of the rational function that allows for an efficient algbrit is that it ismonotonealong the boundary of
the feasible set; this is not the case for any of our objedtimetions and is one of the biggest challenges
in working with nonconvex optimization problems: greedy;dl search, interior point and other standard
techniques do not work.

Our approach is conceptually very different from previooalgses of related problems. Common ap-
proximation techniques for hard instances of stochasticraalticriteria problems convert pseudopolyno-
mial algorithms to FPTAS by scaling and rounding (Warburtt®87; Safer et al., 2004), or they discretize
the decision space and use a combination of dynamic progi@gnamd enumeration of possible feasible
solutions over this cruder space (Goel and Indyk, 1999). dstrnases the techniques are intimately inter-
twined with the structure of the underlying combinatoriebiplem and cannot extend to arbitrary problems.
In contrast, the near-optimal efficiency of our algorithdue to the fact that we carefully analyze the form
of the objective function and use a “top-down” approach wlwmr knowledge of the objective function level

sets guides us to zoom down into the necessary portion oétstile space.

2The Pareto boundary consists of all non-dominated feapiilesx, namely all points such that there is no other feasible point
x" with smaller meam”x’ < uTx and variance-Tx’ < 77x.



3. Anoracle-LTASfor the nonconvex threshold objective with exact oracle

In this section, we give an oracle-logarithmic time appnaiion scheme (LTAS) for the nonconvex problem
formulation (2) that uses access to an exact oracle forraplie underlying problem (1).

Our algorithms assume that the maximum of the objective ismemative, in other words the feasible
solution with smallest mean satisfigd x < ¢. Note, it is not clear a priori that that such a multiplicativ
approximation is even possible, since we still let the fiorcthave positive, zero or negative values on
different feasible solutions. The case in which the maxinmisimegative is structurally very different (the
objective on its negative range no longer attains optimatatme points) and remains open. Even with this
assumption, approximating the objective function is eigtlgcchallenging due to its unbounded gradient
and the form of its numerator.

We first note that if the optimal solution has variariceve can find it exactly with a single oracle query:
Apply the linear oracle on the set of elements with zero vexés to find the feasible solution with smallest
mean. If the mean is no greater thamutput the solution, otherwise conclude that the optirohit®n has
positive variance and proceed with the approximation sehieefow.

The main technical lemma that our algorithm is based on isxéaneion of the concept of separation
and optimization: instead of deciding whether a line (hpfmre) is separating for a polytope, in the sense
that the polytope lies entirely on one side of the line (hpfare), we construct an approximate oracle which
decides whether a non-linear curve (in our case, a paraisadgparating for the polytope.

From here on we will analyze the projections of the objediivection and the feasible set onto the plane
span(p, T) since the nonconvex problem (2) is equivalent in that sp@oasider the lower level sefs, =
{z | f(z) < A} of the objective functiory (m, s) = t_TT’ wherem, s € R. DenoteL) = {z | f(z) = A}.
We first prove that any level set boundary can be approximayessmall number of linear segments. The
main work here involves deriving a condition for a linearsegt with endpoints ol ), to have objective

function values within1 — ¢) of \.

Lemma 1. Consider the pointém, s1), (m2, s2) € Ly with s; > so > 0. The segment connecting these

two points is contained in the level set regib\L ;) whenevess > (1 — €)4sy, for everye € (0,1).

Proof. Any point on the segmerjtm, s1), (ms2, s2)] can be written as a convex combination of its end-
points, (am; + (1 — a)ma, as; + (1 — a)s2), wherea € [0, 1]. Consider the function(a) = f(am; +
(1 — a)ma,as1 + (1 — a)s2). We have,

t—am; — (1 —a)mg t—alm—ma)—ms
Vas) + (1 —a)ss Va(st — s2) + s2

h(«)




We want to find the point on the segment with smallest objeatalue, so we minimize with respectdo

(ma —ma)y/a(s1 — s2) + 82 — [t — a(my — ma) — ma] x 2(s1 — s2)/v/a(s1 — s2) + 52
a(s] — s2) + $9

h(a) =

2(mg — my)[a(s1 — s2) + s2] — [t — a(my — ma) — ma](s1 — s2)
2a(s1 — s2) + 89]3/2

a(mo —my)(s1 — s2) +2(mg — mq)se — (t —ma)(s1 — S2)
2[0[(81 — 82) + 82]3/2
Setting the derivative t0 is equivalent to setting the numerator above tthus we get

(t—mQ)(Sl —82) —2(m2 —m1)82 _ t—mg _ 282

R (mg —my)(s1 — s2)  ma—my  S]— S

Note that the denominator &f(«) is positive and its numerator is lineardan with a positive slope, therefore
the derivative is negative far < o, and positive otherwise, s@ni, is indeed a global minimum as
desired.

It remains to verify that(aumin) > (1 — €)A. Note thatt —m; = A\/s; for i = 1,2 since(m;, s;) € L)

and consequentlyyy — my = A(y/s1 — /52). We use this further down in the following expansion of
h(amin).

h(omn) = t+ Qmin(mg —my) —mg t+(—7,i;7ﬁl — —sffi,?)(mg—ml) —my
min - -
N e e N (e

m2—mi §1—82

t+t—m2—232—m2_m1 — Mo 2(t_m2>_252)‘(\/§_\/§)

$1—S82 — 51—82
Vi ma)im —2s s (W -

e RN
=2\
V2 (VsT 4 V/52) — 82 V /5152

\/S152 +82 — 59 —9) (8182)1/4

(s152)/4(V/51 + v/52) VLt

We need to show that when the ratig/ s, is sufficiently close td, h(amin) > (1 —€)A, or equivalently

2(s152) /4 12 | 1/2
ronzlTe o AawMz-96" +8")
e (1- )(3—1)1/2—2(5—1>1/4+(1— ) <0 (@)
€ 59 59 €) >

- _ : : , 1/4
The minimum of the last quadratic function above is attamaélj—;) = = and we can check that at

this minimum the quadratic function is indeed negative:

(1—6)(11 )2—2(116)+(1—e)=(1—6)_11

— € — €

<0,
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Figure 1:(a) Level sets of the objective function and the projected pggton thespan(u, 7)-plane. (b)
Applying the approximate linear oracle on the optimal slgpgs an approximate valueof the corre-
sponding linear objective valug. The resulting solution has nonlinear objective functiatue of at least
A, which is an equally good approximation for the optimal eal.

forall 0 < e < 1. The inequality (4) is satisfied ¢ = 1, therefore it holds for al($!) < [, ﬁ].

Hence, a sufficient condition far(amim) < (1 — e)Ais sy > (1 — €)*s1, and we are done. O

Lemma 1 now makes it easy to show our main lemma, namely tlydeael setl, can be approximated
within a multiplicative factor of 1 — €) via a small number of segments. Lst;,, ands,,,., be a lower and
upper bound respectively for the variance of the optimaltemh. For example, take,,;,, to be the smallest

positive component of the variance vector, apgd.. the variance of the feasible solution with smallest mean.

Lemma2. The level seL) = {(m,s) € R? | % = A} can be approximated within a factor Of — ¢) by

H log (m>/log ﬁw linear segments.

Smin

Proof. By definition ofs,,.;, ands,,..., the the variance of the optimal solution ranges frQm, t0 simax. BY
Lemma 1, the segments connecting the pointé pwith variancess ax, Smax (1—€)%, smax(1—€)%, ..., Smin

all lie in the level set regiod,\ L, _), that is they underestimate and approximate the level setithin

a factor of(1 — €). The number of these segments {slog (Z}ﬁ)/]og L. n

The above lemma yields an approximate separation oradedaronlinear level set, and polytopéF).
The oracle takes as input the levelnd either returns a soluticawith objective valuef (x) > (1 — €)A
from the feasible set, or guarantees tfiat) < A for all x € polytopg F). Therefore, an exact oracle for
solving problem (1) allows us to obtain an approximate me@r separation oracle, by applying the former
to weight vectorsupe + 7, for all possible slope$—a) of the segments approximating the level set. We

formalize this in the next theorem.



Theorem 3 (Approximate Nonlinear Separation Oracle). Suppose we have an exact (linear) oracle for
solving problem (1). Then, we can construct a nonlinear leraehich solves the following approximate

separation problem: given a levglande € (0, 1), the oracle returns

1. A solutionx € F with f(x) > (1 —¢€)A, or

2. An answer thaf (x) < A for all x € polytopdF),

and the number of linear oracle calls it makesjitg (i‘jﬁ)/log L, that isO(L log &max).

min

We can now give an oracle-LTAS for the nonconvex problem I®).applying the above nonlinear
oracle on a geometric progression of possible valuegthe objective functiory. We first need to bound
the maximum valugf,,; of the objective functiory. A lower boundf; is provided by the solutios,, .
with smallest mean or the solution,,, with smallest positive variance, whichever has a higheeahije

value: f; = max{f(Xmean), f (Xvar)} Where f(x) = t—B X On the other hande”x > p” Xmean and

VrTx
7x > 77x,,, for all x € polytopgF), so an upper bound for the objectiyés given byf, = t“iﬁ

(recall thatt — pu” Xnean > 0 by assumption).

Theorem 4. Suppose we have an exact oracle for problem (1) and suppessntiallest mean feasible
solution satisfieg” x < t. Then for any € (0, 1), there is an algorithm for solving the nonconvex threshold
problem (2), which returns a feasible solutiane F with value at leas{1 — ¢) times the optimum, and

makes()(log (max) log (£2) E%) oracle calls.

Proof. Now, apply the approximate separation oracle from Theoremitt8c’ = 1 — /1 — € successively
on the levelsf,, (1 — €) fu, (1 — €)?f,, ... until we reach a levek = (1 — €)' f,, > f; for which the oracle

returns a feasible solutiag’ with
FE) = (11— = (VT oL,

From running the oracle on the previous leyig{1 —¢')'~!, we know thatf (x) < f(xopt) < (V1 — €)1 f,

for all x € polytopgF), wherex,,; denotes the optimal solution. Therefore,

(V1= f, < F(x) < f(%opt) < (V1 =€) f,,  and hence

(1 - E)f(xopt) < f(xl) < f(xopt)'

So the solutiorx’ gives a(1 —€)-approximation to the optimum,,. In the process, we run the approximate

nonlinear separation oracle at masg (J}—’l‘)/log L times, and each run makésog (£22x) /log -1

queries to the linear oracle, so the algorithm makes at fbgt (2222 log (4£) /(5 log L)% queries to

the oracle for the linear problem (1). Finally, sifieg -2 > € for € € [0, 1), we get the desired bound for

the total number of queries. O
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4. Thenonconvex threshold objective with approximate linear oracle

In this section, we show that@approximate oracle to problem (1) yields an efficient agpnation algo-
rithm to the nonconvex problem (2). As in Section 3, we firstathwhether the optimal solution has zero
variance and if not, proceed with the algorithm and analysiew.

We first prove several geometric lemmas that enable us teedére approximation guarantees later.

Lemma 5 (Geometric lemma)Consider two objective function valua$ > X\ and points(m*, s*) € Ly,
(m,s) € Ly in the positive orthant such that the tangents to the poihth@corresponding level sets are

parallel. Then, thes-interceptsh*, b of the two tangent lines satisfy

b-b =51 (AH
Proof. Suppose the slope of the tangentg-is:), wherea > 0. Then they-intercepts of the two tangent

lines satisfy

b=s+am, b* = s* + am”™.
In addition, since the point8n, s) and(m*, s*) lie on the level setd , L+, they satisfy
t—m=\/s, t—m* = \Vs*.

Since the first line is tangent &tn, s) to the parabolay = (15%)?, the slope equals the first derivative at

this point, - 2452 |, _,, = 20 M — 205 _ _2Vs g0 the absolute value of the slopedis= 2Y°.

Similarly the absolute value of the slope also satisiies Q‘A/*_, therefore

V=21

Note that for\* > A, this means that* > s. From here, we can represent the difference- m* as

m—m" = (t—m*)—(t—m):)\*\/s_*—)\\/g:( )\/_ M5 = [(—*) —1})\\/5.

Substituting the slope = 27‘/5 in the tangent line equations, we get

2 2
b \/—m o \/—

)\>2s—|——m m*)

o
SRNCORE CY GO
(a1

R (O B 0|

as desired. O

= S —

11



The next lemma builds intuition as well as helps in the anslg$ the algorithm. It shows that we
can approximate the optimal solution well if we know the oyl weight vector to use with the available

approximate oracle for problem (1).

Lemma 6. Suppose we have @approximate linear oracle for optimizing over the feasilgolytopé.F)
and suppose that the optimal solution satisfi€s<* < (1 — €)t. If we can guess the slope of the tangent to
the corresponding level set at the optimal patrit then we can find Q/l — 5%-approximate solution to
the nonconvex problem (2).

In particular settinge = v/§ gives a(1 — v/)-approximate solution.

Proof. Denote the projection of the optimal poixt on the plane bym*, s*) = (u”x*, 77x*). We apply
the linear oracle with respect to the slopea) of the tangent to the level séty- at (m*, s*). The value
of the linear objective at the optimum 8 = s* 4+ am™, which is they-intercept of the tangent line. The
linear oracle returns &approximate solution, that is a solution on a parallel livith y-interceptb < §b*.
Suppose the original (nonlinear) objective value at thernetd solution is lower-bounded By that is it lies
on aline tangent td., (See Figure 1(b)). From Lemma 5, we have b* = s* [1 — (%)2} , therefore

(A>2:1—b_*b*:1—<b;*b*>f>1—55 (5)

A* S s* s*

Recall that* = s* + m* 2= andm* < (1 — €)t, then

b* 14 2m*
s* A*y/s*
* 2 *
= 14+ <1+ Em*
- 1—e
_ 1+2(1—6):2—€
€ €

Together with Eq. (5), this givesgf 1-— 5%-approximation factor to the optimal.
. . . . 27\/3 . .
On the other hand, setting= v/§ gives the approximation factqr'1 — 5—\/3 =1-0. O

Next, we prove a geometric lemma that will be needed to apdlye approximation factor we get when

applying the linear oracle on an approximately optimal slop

Lemma 7. Consider the level sdi, and points(m*, s*) and(m, s) on it, at which the tangents tb, have
slopes—a and—a(1 + &) respectively. Let thg-intercepts of the tangent line &tn, s) and the line parallel

to it through(m™*, s*) beb; andb respectively. Theé& < ﬁ
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Proof. The equation of the level sét, isy = (“Tx)2 so the slope at a poiriin, s) € L, is given by the

derivative atx = m, that is—@ = —%. So, the slope of the tangent to the level gtat point

(m*,s*)is —a = —@. Similarly the slope of the tangent @, s) is —a(1 4+ §) = —2{5. Therefore,
Vs = (1 +&)V/s*, or equivalently(t —m) = (1 +&)(t —m*).

Sinceb, b; are intercepts with thg-axis, of the lines with slopesa(1l + &) = —2\<§ containing the

points(m*, s*), (m, s) respectively, we have

2y/s t2 —m?
b1 = s+ N\ m = )\2
2v/s* t—m*
b = s*+(1+¢) \is—m*:T;n(t—Fm*—Fme*).
Therefore
b E=m)Etm +26m*) 1 t4+mt+28mt 1 t+ (14 2)m*
by (t —m)(t +m) S 14+¢ t+m I+ EQ =+ (1 Em*

1 1 1
< =
- 1+£<1€> 1-¢

where we usen =t — (1 + £)(t — m*) from above and the last inequality follows by Lemma 8. O

g+(1+28)r
Lemmas. Foranyq,r > 0, a—g 1 rrer

IN

1
¢
Proof. This follows from the fact thad®% < 1 for ¢ € [0, 1). O

We now show that we get a good approximation even when we us@ioximately optimal weight

vector with our oracle.

Lemma 9. Suppose that we use an approximately optimal weight vedtbrav-approximate linear ora-
cle (1) for solving the nonconvex threshold problem (2).drtipular, suppose the weight vector (slope) that

we use is within(1 + &) of the slope of the tangent at the optimal solution. Thenwliigyive a solution to

the nonconvex threshold problem (2) with value at Ie\%St— [% — 1} % times the optimal, provided

the optimal solution satisfigg’ x* < (1 — €)t.

Proof. Suppose the optimal solution {g2*, s*) and it lies on the optimal level set*. Let the slope of
the tangent to the level set boundary at the optimal soldi®fi-a). We apply our-approximation linear
oracle with respect to slope that(is+ &) times the optimum slopé-a). Suppose the resulting black box
solution lies on the line withy-interceptb,, and the true optimum lies on the line withinterceptd’. We
know b’ € [b1,b], whereb; andb are they-intercepts of the lines with slope(1 + &)a that are tangent to
Ly~ and pass throughm*, s*) respectively. Then we ha/g < % <.

Furthermore, by Lemma 7 we hag@{-:- < ﬁ

13



On the other hand, from Lemma®, — b; = s[1 — (i—%)], where)\, is the smallest possible objective
function value along the line with slopea(1 + &) andy-interceptbs, in other words the smallest possible
objective function value that the solution returned by thpraximate linear oracle may haven, s) is the
tangent point of the line with slope(1 + £)a, tangent tal .

Therefore, applying the above inequalities, we get

)\2 2 bg—bl b2—b1 b1 b2 b bl 1) 2—¢€
=) =1- =]l-= " =1-(==--1)=>1- -1
<)\*> s by s b by s = 1—¢&2 e’

where”;1 < % follows as in the proof of Lemma 6. The result follows. O

Consequently, we can approximate the optimal solution Ipyyamy the approximate linear oracle on a

small number of appropriately chosen linear functions dokipg the best resulting solution.

Theorem 10. Suppose we have @&approximation linear oracle for problem (1). Then, the nonvex

threshold problem (2) has ?/1 — [%} -approximation algorithm that calls the linear oracle a

logarithmic in the input and polynomial ieh number of times, assuming the optimal solution to (2) sefisfi

plx* < (1—e)t.

Proof. The algorithm applies the linear approximation oracle wétpect to a small number of linear func-
tions, and chooses the best resulting solution. In padicslppose the optimal slope (tangent to the corre-
sponding level set at the optimal solution point) lies inititerval [L, U] (for lower and upper bound). We

find approximate solutions with respect to the sloped (1 + &), L(1 + )2, ..., L(1 + £)* > U, namely

we apply the approximate linear oraéog((ﬁg)) times, where = ﬁ With this, we are certain that the

optimal slope will lie in some intervelLL(1 + ¢)%, L(1 + £)i*!] and by Lemma 9 the solution returned by

s
-2

non-linear objective function value. Since we are free tooses, setting it to§ = ¢/2 gives the desired

the linear oracle with respect to slopél + &)+ will give a \/1 — [ — 1} % approximation to our
number of queries.

We conclude the proof by noting that we can tdkéo be the slope tangent to the corresponding level
set at(myr, s;,) wheresy, is the minimum positive component of the variance vector mnd= ¢(1 — ¢).
Similarly let U be the slope tangent &b/, sy) wheremy = 0 and sy is the sum of components of the

variance vector. O

Note that wherd = 1, namely we can solve the underlying linear problem exactlyalynomial time,
the above algorithm gives an approximation factonv@/2 or equivalentlyl — ¢’ wheree = Q[ﬁ —
1]. While this algorithm is still an oracle-logarithmic tim@g@roximation scheme, it gives a bi-criteria

approximation: It requires that there is a small gap betwbemmean of the optimal solution ando it is

14



A L(1+s))\

0 i i i I

0 0.5 1 15 2 25 3

Figure 2: (left) Level sets and approximate nonlinear separation oraclgh®rprojected non-convex
(stochastic) objectivef (x) = p’'x + ¢V 71x on the span(u, T)-plane. (right) Approximating the ob-
jective value); of the optimal solutior(m*, s*).

weaker than our previous algorithm, which had no such requent. This is expected, since of course this
algorithm is cruder, taking a single geometric progressiblinear functions rather than tailoring the linear
oracle applications to the objective function value thas isearching for, as in the case of the nonlinear

separation oracle that the previous algorithm from Se@imbased on.

5. Anoracle-LTASfor the nonconvex risk objective with an exact oracle

In this section we present an oracle-logarithmic time agipnation scheme for the nonconvex problem (3),
using an exact oracle for solving the underlying problem (1)

The projected level sets of the objective functipfx) = p’x + cv7Tx onto thespan(u, T) plane
are again parabolas, though differently arranged and thlysia in the previous sections does not apply.
Following the same techniques however, we can derive simgaroximation algorithms, which construct
an approximate nonlinear separation oracle from the linearand apply it appropriately a small number of
times.

To do this, we first need to decide which linear segments tooxppate a level set with and how
many they are. In particular we want to fit as few segments asilple with endpoints on the level set
Ly, entirely contained in the nonlinear band betwdgnand L, ), (over the rangen = pfx € [0, )],

s = 7'x € [0, A2]). Geometrically, the optimal choice of segments startsifome endpoint of the level set
L and repeatedly draws tangents to the levelset.),, as shown in Figure 2.

We first show that the tangent-segmentd.tp, )\ starting at the endpoints df, are sufficiently long.

15



Lemma 11. Consider pointgmy,s1) and(mg, s2) on Ly with 0 < m; < mg < X such that the segment

with these endpoints is tangentfg, , ., at pointa(my, s1) + (1 — a)(maz, s2). Thena = ﬁ(ﬂ% —

ma—myq)

51—82 m2—mi §1—82

%2 and the objective value at the tangent poin{fﬁ SL=82 g, 22T 4 g |

Proof. Let f : R? — R, f(m,s) = m + cy/s be the projection of the objectivé(x) = pu’x + cvV7Tx.

The objective values along the segment with endpdinis, s1 ), (me, s2) are given by

h(a) = af(ml,sl) +(1- a)f(mg,SQ) = a(m; —mg) + ma + c\/a(sl — S9) + so,

for « € [0,1]. The point along the segment with maximum objective valbat(is, the tangent point
to the minimum level set bounding the segment) is found binsethe derivativeh'(a) = m; — mg +

c—=1-5%2___ {0 zero:

24/ a(s1—s2)+s2
51 — 52
2\/a(51 — S9) + S9

s1— 8
& Vals;—s)+sa=c L

mo —mq1 = ¢

2(m2 — ml)

y (s1—s2)?

Rt —_ —
a(sy —s2)+sa=c Tmy —m )2

o (51— s2)?

& — 89) = —
a(s) — s2) c4(m2—m1)2 S

S1 — 82 52
s a=c 5 — .
4(m2 — ml) S1 — 89

This is a maximum, since the derivati%g «) is decreasing iav. The objective value at the maximum is

h(amax) = amax(ml - mZ) +mo + c\/amax(sl - 32) + s2
51— 82 52 1— 82
= | — mi1 — Mo +m2+02
4 2 2
(TTLQ — ml) S1 — S92 (TTLQ — ml)
2 2
c” S1 — 82 mi — My c” S1 — 82
= — 52 +ma+
4TTL2—77’L1 S1 — S92 2m2—m1
62 S1 — 8§89 mo — My
= — + S9 + mo
4 mo — My S1 — 89

Further, since; = (2=1)? ands, = (2=22)?, their difference satisfies —sy = % (mo—mq)(2A—my —

mg), SO =2 — ”‘"(j;‘m? and the above expression for the maximum function value erséigment

mo—mi
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becomes

22X —my —ms 259 2\ —my — ma (A —mg)?
+mo =

h(amax) = + ma.

4 2 2\ —mq — ma 4 2\ —mq — ma

O

Now we can show that the tangent segments at the ends of #leskgv., are long.

Lemma12. Consider the endpoir(tns, s2) = (A,0) of Ly. Then either the single segment connecting the

two endpoints of., is entirely below the level sét, ), or the other endpoint of the segment tangent to

Lo i8 (mr, 1) = (A1 — 4e), (12)2).

Proof. Since0 < m; < A, we can writem; = A for somes € [0,1). Consequentlys; = (**%)2 =

AQ(lc;mQ and-si=s2 — ?;ﬁl’_ﬁ; = 25 By Lemma 11, the objective value at the tangent point is

EN1-8) . [1-8 B
e +)\_)\<—4 +1)_(1+6)A.

The last equality follows by our assumption that the tangmint lies on thel, ., level set. Hence,

B =1-—4e,s0m; = (1 —4e)\ands; = (—)‘7le)2 = (44)2, O

C

Next, we characterize the segments with endpointé pthat are tangent to the level s&f ;).

Lemma 13. Consider two pointgmy, s1), (mg,ma) on Ly with 0 < m; < my < A and such that the

segment connecting the two points is tangent ta.),. Then the ratioj—; > (14 2¢)2.

Proof. Let point(m, s) on the segment with endpoints:, s1), (s, m2) be the tangent point to the level

setL(j4e)x- Thenthe slopen% of the segment is equal to the derivative of the funcgjoa (W)2

M — _2_\/5 S|nce S1—82 S1—82 — S1—82 — _\/5+\/§
c2 c mi—mo (A—m2)—(A—m1) c(y/s2—/51) c !

equating the two expressions for the slope we2ges = |/s2 + /51.

atx = m, which is—2

On the other hand, sinden, s) € L(14.)x, we have

A — A —
m:(l—l—e))\—c\/gz(1—1—6))\—6\/8_2;76\/5:(1—1—6))\— ma + ml:g)\+w

andm = a(my — ms) + mo for somea € (0,1). Thereforen = § —

Next,

_ o €A 81— 852 €A
S = Oé(S]_ 52) -+ SS9 = 5 m (31 32) + SS9 = B - (\/§+ \/5) + S92

(V51 + V/52)

S14+ 82 €A
2 c

17



therefore usin@/s = /s2 + /51 from above, we get two equivalent expressionsifar

251 +52) ~ (VB + V/E) = 51+ 92 4 25153

< 81+ 82— —(\/a-i- \/5) —2./5159 =0

e g 4EA ) -2,/ =0
S9 52

enote for simplicityz = , /%L andw = , then we have to solve the following quadratic equation for
Denote f licit andw = 24, th have to solve the foll drat tion f

z in terms ofw:
241l —2w(z+1)—22=0
& 22-22(w+1)+1-2w=0.

The discriminant of this quadratic expressionis= (w + 1) — 1 + 2w = w? + 4w and its roots are

212 =14+ w+x vVw? + 4w. Sinceg—; > 1, we choose the bigger roet = 1 + w + vw? + 4w. Therefore

H _ 2eX
sincew = oo > 0 we have
2e\ 2e\
e fwr ViRt dw >l tw=14 = 214y —1+2e,
52 Cy/52
where the last inequality follows from the fact thgks < |/s1 < % This concludes the proof. O

The last lemma shows that each segment is sufficiently lortgaaverall the number of tangent seg-
ments approximating the level s}, is small, in particular it is polynomial ir-ir (and does not depend on
the input size of the problem!). This gives us the desired@pmate nonlinear separation oracle for the

level sets of the objective function.

Theorem 14. A nonlinear(1 + ¢)-approximate separation oracle to any level set of the namer objective

1
f(x) in problem (3) can be found witfi + ;i)gg((ﬂ

1+26)) gueries to the available linear oracle for solving

problem (1).
The nonlinear oracle takes as inpuis e and returns either a feasible solution € F with f(x) <

(14 €)X or an answer thaif (x) > A for all x in the polytopér).

Proof. Apply the available linear oracle to the slopes of the sedmeith endpoints on the specified level
set, sayl,, and which are tangent to the level €gt , .),. By Lemma 13 and Lemma 12, thecoordinates
of endpoints of these segments are givernspby= (%)2, s9 < ﬁ s3 < ﬁf S < (HQ:)%
sk41 = 0, wheres;, = (22)?, sok = 1 + log(q4z)/2log(1 + 2¢), which is precisely the number of

segments we use and the result follows. O
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Finally, based on the approximate non-linear separatiaclerfrom Theorem 14, we can now easily
solve the nonconvex problem (3) running the oracle on a ga@ogression from the objective function
range. We again need to bound the optimal value of the obgefitnction. For a lower bound, we can use
Ji = Smin, the smallest positive variance component, and for an uppand takef,, = nm,q2 +cv/MSmaz,

wherem,,.. ands,,.,. are the largest components of the mean and variance veegsgsatively.

Theorem 15. There is a oracle-logarithmic time approximation schemetf@ nonconvex problem (3),
which uses an exact oracle for solving the underlying pnobld). This algorithm returns &1 + ¢)-

log(—5 . . L
g(1°€2))) oracle queries, namely logarithmic in

approximate solution and makés + %log(%))(l + (i 120

the size of input and polynomial

Proof. The proof is analogous to that of Theorem 4, applying theineat oracle with approximation factor
T+ € for the objective function value, fiv/T+ ¢, fivI+ ¢ » ... fu = fiv/T+ €, namely applying it at
most1 + 21og(%)/ log(l +¢€) < %log(%) times. In addition, we run the linear oracle once with weight
vector equal to the vector of means, over the subset of coemterwith zero variances and return that

solution if it is better than the above. O

6. Anoracle-LTASfor thenonconvex risk objectivewith approximatelinear
oracle

Suppose we have &approximate linear oracle for solving problem (1). We wilbvide an algorithm for
the nonconvex problem (3) with approximation factdi + ¢), which invokes the linear oracle a small
number of times that is logarithmic in the input-size and/pomial in %

We employ the same technique of designing the algorithm aadiyzing it as in Section 4 for the
threshold objective function, however again due to theediifit objective the previous analysis does not
carry through directly.

First, we show that if we can guess the optimal linear objectgiven by the slope of the tangent to
the corresponding level set at the optimal solution, theplyampg the approximate linear oracle returns an
approximate solution with the same multiplicative appnaaiion factord. The above statement reduces to

showing the following geometric fact.

Lemma 16. Consider level$ < \; < A and two parallel lines tangent to the corresponding levés se
Ly, and L), at points(m1, s1) and (ms, so) respectively. Further, suppose the correspondjrgtercepts

i by _ Aotmo A2
of these lines aré; andbs. ThenH =S 2 52
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(A—=)?

Proof. The function defining a level sdt) has the formy = =+, and thus the slope of the tangent to
the level set at a poir(in, s) € L, is given by the first derivative at the poim,Q(AC;x) loem = —W =

—2—‘0/5. Therefore the equation of the tangent ling is- —Q—‘C/Ea: + b, where

2 2 A — 2 A+
b=s+ 20 = a(vE+ 20 = R AT 2 AT
C C C C c
Since the two tangents from the lemma are parallel, thejresi@are equal:—@ = —@, therefore

s1 = s9 and equivalently A\ — mq) = (Ay — ma).

Therefore thegj-intercepts of the two tangents satisfy

by _ VH(E) _ datma M

by \/g(kl""ml) N Al +my T )\2.

The last inequality follows from the fact that > A\; andA\; — m; = Ay — m4 (and equality is achieved

whenmy = A1 andmsg = \9). O

Corollary 17. Suppose the optimal solution to the nonconvex problem (3)iss;) with objective value
A1. If we can guess the slopea of the tangent to the level sét,, at the optimal solution, then applying
the approximate linear oracle for solving problem (1) wittspect to that slope will give &approximate

solution to problem (3).

Proof. The approximate linear oracle will return a solution’, s’) with valueby, = s’ + am’ < §by, where
b1 = s1 + amy. The objective function value dfn’, s’) is at most\,, which is the value at the level set

b

tangent to the lingg = —ax + b2. By Lemma 16,§—f < # < 0, therefore the approximation solution has

1 =

objective function value at mosttimes the optimal value, QED. O

If we cannot guess the slope at the optimal solution, we whale to approximate it. The next lemma
proves that if we apply the approximate linear oracle toskbgt is within(1+, / 1+,) of the optimal slope,

we would still get a good approximate solution with approaiimon factord(1 + e).

Lemma 18. Consider the level set, and points(m*, s*) and (m, s) on it, at which the tangents tb)

have slopes-a and —a(1 + , /15) respectively. Let theg-intercepts of the tangent line &tn, s) and the

line parallel to it through(m*, s*) beb; andb respectively. The% <l+e

Proof. Let{ = , /5. As established in the proof of Lemma 16, the slope of theeanhtp the level set
Ly at point(m*, s*) is —a = —@. Similarly the slope of the tangent ét:, s) is —a(1 + &) = —27‘/5.
Therefore,/s = (1 + £)v/s*, or equivalently(A — m) = (1 + &)(A —m*).
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Sinceb, by are intercepts with thg-axis, of the lines with slopesa(l + &) = —# containing the

points(m*, s*), (m, s) respectively, we have

9 )\2_ 2
b1 = s+ \/ETTL: 2m
C (&
2/ . A—m"

—m = (A + m* + 26m*).

b = s"+(1+9) =2

Therefore

—m* * 1 26m* 1 * L 2em* 1 1 1
b A =m*) (A +m" +26m*) A+m*+2Em - ( ) e

- 1-¢) 1-¢&

by A —m)(A+m) T14+E Am “14¢
where the last inequality follows by Lemma 19. O

Lemma 19. Following the notation of Lemma 18%%57” < 1—i£

Proof. Recall from the proof of Lemma 18 théx —m) = (1+¢&)(A—m™*), thereforem = A — (1+&) (A —
m*) = —=EX+ (1 + &)m*. Hence,

Am*+2em* A+ (1+20)m* A+ (1420 _ 1
A+ m A=A A+HOmT (1-9A (149 T 1-¢
since T < Lz for¢ € [0, 1). O

A corollary from Lemma 16 and Lemma 18 is that applying thedinoracle with respect to slope that
is within (1 + 1%6) times of the optimal slope yields an approximate solutiotihwbjective value within

(14 €)d times of the optimal.

Lemma 20. Suppose the optimal solution to the nonconvex problem (8)iss*) with objective value
A and the slope of the tangent to the level sgtat it is —a. Then running the-approximate oracle for
solving problem (1) with respect to slope that is[ifa, —a(1 + /15)] returns a solution to (3) with
objective function value no greater thah+ ¢)d\.

Proof. Suppose the optimal solution with respect to the linearatbje specified by slope-a(1 + 1&6)
has valug’ € [b1,b], whereby, b are they-intercepts of the lines with that slope, tangeni.tpand passing
through (m*, s*) respectively (See Figure 2-right). Then applying thapproximate linear oracle to the
same linear objective returns solution with valge> §b'. Hence%2 < ll’)—% < 4.

On the other hand, the approximate solution returned byitteaid oracle has value of our original
objective function equal to at most, whereL , is the level set tangent to the line on which the approximate
solution lies. By Lemma 1632 < 2 = %L < (1 + ¢), where the last inequality follows by Lemma 18
and the above bound dj. O
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Finally, we are ready to state our theorem for solving thecnamex problem (3). The theorem says
that there is an algorithm for this problem with essentittly same approximation factor as the underlying

problem (1), which makes only logarithmically many callghe latter.

Theorem 21. Suppose we havedjaapproximate oracle for solving problem (1). The noncormablem (3)
can be approximated to a multiplicative factordfl + ¢) by calling the above oracle logarithmically many

times in the input size and polynomially many time%.in

Proof. We use the same type of algorithm as in Theorem 10: apply thiahle approximate linear oracle
on a geometric progression of weight vectors (slopes)rohated by the lemmas above. In particular, apply
it to slopesU, (1 + &)U, ..., (1 + &)U = L, where¢ = Tt L is a lower bound for the optimal slope
and U is an upper bound for it. For each approximate feasible isolutbtained, compute its objective
function value and return the solution with minimum objeetfunction value. By Lemma 20, the value of
the returned solution would be withif{1 + €) of the optimal.

Note that it is possible for the optimal slope to e this would happen when the optimal solution
satisfiesm™ = X\ ands* = 0. We have to handle this case differently: run the linear lerpgst over the
subset of components with zero variance-values, to findppeoaimate solution with smallest. Return
this solution if its value is better than the best solutioroamthe above.

It remains to bound the valudsandU. We established earlier that the optimal slope is giveﬁ@,
wheres* is the variance of the optimal solution. Among the solutiariigh nonzero variance, the variance
of a feasible solution is at least,;,,, the smallest possible nonzero variance of a single elerapdtat most
(Amaz)? < (MMypaz + c\/m)Q, wherem, ... IS the largest possible mean of a single elementsangd
is the largest possible variance of a single element (asguthat a feasible solution uses each element in
the ground set at most once). Thus,Bet —@ andL = — 2mmasteySmas) O

C

7. Conclusion

We have presented efficient approximation schemes for allrl@ss of stochastic problems that incor-
porate risk. Our algorithms are independent of the fixedildmset and use solutions for the underlying
deterministic problems as oracles for solving the stoahasunterparts. As such they apply to very general
combinatorial and discrete, as well as continuous settings

From a practical point of view, it is of interest to considerrelations between the components of the
stochastic weight vector. We remark that in graph problesos,results can immediately extend to some

realistic partial correlation models. We leave a study ofaations for future work.
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Our models in this paper assume that the stochastic weigtdnis unknown at the time of the solution.
An interesting direction would be to extend this work to atir@setting where one gains information on

the weights with time, and is prompted to find an adaptivet&gniwor optimal policy.

Appendix
7.1. Stochastic value-at-risk objective
In this section we show how the value-at-risk objective meduto the problem of minimizing a linear com-

bination of mean and standard deviation. We first estabfisfetjuivalence under normal distributions, and

then show a reduction for arbitrary distributions using Brshev’'s bound.
Lemma 22. The stochastic value-at-risk problem

minimize ¢

subjectto  Pr(Wlx <t)>p

x e F
for a given probabilityp is equivalent to the nonconvex problem

minimize  plx+cvVrTx

subjectto xe F

with ¢ = ®~!(p), when the element weights come from independent normebdigins.

Proof. As before®(-) denotes the cumulative distribution function of the staddermal random variable

N(0,1), and®~!(-) denotes its inverse. For normally distributed weighfswe have

Pr(Wlx <t)>p
Wix —pTx  t-— uTx>
& Pr < >p
( vrTx vVrTx
i T
vVrTx
& >t P
L2200

s t>pulx+ 0 (p)Vrlx.

< O

Note, the stochastic value-at-risk problem is minimizingrdootht andx. Therefore the smallest threshold

tis equal to the minimum g’ x+cv'77'x over the feasible set € F, where the constant= ®~1(p). O
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For arbitrary distributions, we can apply Chebyshev's fibin(W'x > p’x + ¢v/77x) < %, or

equivalentlyPr(W”x < p’x + ¢v/77x) > 1 — &. Takingc = \/11_7 gives the inequalitPr(W'x <

u'x + cvV7Tx) > p. This shows the following lemma:

Lemma 23. The stochastic value-at-risk problem with arbitrary distrtions reduces to:

minimize  p'x + TTx

L—p
subjectto xe F
In particular, the optimal value of the above concave miaation problem will provide an upper bound of

the minimum thresholdin the value-at-risk problem with given probability

We remark that in the absence of more information on theibligions, other than their means and
standard deviations, this is the best one can do to solvedllne-at-risk problem.
For an illustration of the difference between the above las\ntonsider again the following shortest

path problem.

Example24. Suppose we need to reach the airport by a certain time. Wetardind the minimum time (and

route) that we need to allocate for our trip so as to arrive ond with probability at leasp = .95. (That

is, how close can we cut it to the deadline and not be late?)elkmow that the travel times on the edges

are normally distributed, the minimum time equalin,e» p?x + 1.645v77x, since®1(.95) = 1.645.

On the other hand, if we had no information about the distidns, we should instead allocate the upper
1

boundminycr pu’ x 4+ 4.5V 7Tx, sincem ~ 4.5 (which still guarantees that we would arrive with

probability at least95%).
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