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We consider general combinatorial optimization problems that can be formulated as minimizing the weight

of a feasible solutionwT
x over an arbitrary feasible set. For these problems we describe a broad class

of corresponding stochastic problems where the weight vector W has independent random components,

unknown at the time of solution. A natural and important objective which incorporates risk in this stochastic

setting, is to look for a feasible solution whose stochasticweight has a small tail or a small linear combination

of mean and standard deviation. Our models can be equivalently reformulated as deterministic nonconvex

programs for which no efficient algorithms are known. In thispaper, we make progress on these hard

problems.

Our results are several efficient general-purpose approximation schemes. They use as a black-box (exact

or approximate) the solution to the underlying deterministic combinatorial problem and thus immediately

apply to arbitrary combinatorial problems. For example, from an availableδ-approximation algorithm to

the deterministic problem, we construct aδ(1 + ǫ)-approximation algorithm that invokes the deterministic

algorithm only a logarithmic number of times in the input andpolynomial in 1
ǫ , for any desired accuracy

level ǫ > 0. The algorithms are based on a geometric analysis of the curvature and approximability of the

nonlinear level sets of the objective functions.

Key words:approximation algorithms, combinatorial optimization, stochastic optimization, risk, nonconvex

optimization

1. Introduction

Imagine driving to the airport through uncertain traffic. While we may not know specific travel times along

different roads, we may have information on their distributions (for example their means and variances). We

want to find a route that gets us to the airport on time. The route minimizing expected travel time may well

cause us to be late. In contrast, arriving on time requires accounting for traffic variability and risk.

In this paper we consider general combinatorial optimization problems that can be formulated as min-

imizing the weightwT
x of a feasible solution over a fixed feasible set. For these problems we describe

a broad class of corresponding stochastic problems where the weight vectorW has independent random

components, unknown at the time of solution. A natural and important objective which incorporates risk in

this stochastic setting, is to look for a feasible solution whose stochastic weight has a small tail (as in the
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example above, where we seek to minimize the probability that the random route length exceeds a given

threshold) or a small linear combination of mean and standard deviation. Our models can be equivalently

reformulated as deterministic nonconvex programs for which no efficient algorithms are known. In this

paper, we make progress on these hard problems, and in particular our main contributions are as follows.

Our Results

1. Suppose we have an exact algorithm for the underlying deterministic combinatorial problem. Then,

for all stochastic variants we consider, we obtain efficient(1+ǫ)-approximation schemes, which make

a logarithmic number of oracle calls to the deterministic algorithm (Theorem 4, Theorem 15).

2. Suppose we have aδ-approximate algorithm for the deterministic problem. Then, for the stochastic

problem of minimizing the tail of the solution weight’s distribution, we provide a

√

1−
[

δ−(1−ǫ2/4)
(2+ǫ)ǫ/4

]

-

approximation scheme, which as above makes a logarithmic number of oracle calls to the deterministic

algorithm (Theorem 10). This result assumes normally distributed weights.

3. Suppose we have aδ-approximate algorithm for the deterministic problem. Then, for the stochastic

(nonconvex) problem of minimizing a linear combination of mean and standard deviation of the solu-

tion weight, we give anδ(1 + ǫ)-approximation scheme which makes a logarithmic number of oracle

calls to the deterministic algorithm (Theorem 21). This result holds for arbitrary weight distributions,

and only assumes knowledge of the mean and variance of the distributions.

To the best of our knowledge, this is the first treatment of stochastic combinatorial optimization that

incorporates risk, together with providing general-purpose approximation techniques applicable to arbitrary

combinatorial problems. In fact, since our algorithms are independent of the feasible set structure, they

immediately apply to anydiscreteproblems, and not just{0, 1}. Similarly, they continue to work in a

continuous setting where the feasible set is compact and convex.

Our approximation schemes are based on a series of geometriclemmas analyzing the form of the ob-

jective function level sets, and on a novel construction of an approximatenon-linear separation oraclefrom

a linear oracle (the algorithm to the deterministic problem), in which the main technical lemma is that a

logarithmic number of applications of the linear oracle suffice to get an arbitrarily good approximation.

Given the general-purpose nature of our algorithms and their near-optimal running time, our results

constitute significant progress in both stochastic and nonconvex optimization. In particular, we believe that

our approach and techniques would extend to give approximation algorithms for a wider class of nonconvex

(and related stochastic) optimization problems, for whichno efficient solutions are currently available.

Perhaps more importantly from a practical standpoint, as a by-product of our stochastic models we can

approximate thedistribution of the weight of the optimal solution: Applying our solutionto the stochastic
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tail distribution objective for different threshold (tail) values will yield an approximate histogram of the

optimal distribution. Consequently our models and algorithms provide a powerful tool for approximating

arbitrary objectives and statistics from the distribution.

We defer to the next section a discussion of related work and contrast our results to potential other

approaches. Our approximation algorithms are presented inthe following four sections. Our algorithms for

the tail (threshold) objective require some additional assumptions, and because of the form of that objective

the analysis is more challenging and subtle. We present these in Sections 3 and 4 for the cases when we

have an exact and an approximate oracle for solving the underlying deterministic problem respectively. Our

algorithms for the mean-standard deviation objective are more general and somewhat easier to analyze: they

are presented in Sections 5 and 6.

2. The Stochastic Framework

In this section, we formally define the classes of stochasticproblems we consider. We then discuss related

work and contrast our approach with other potential solution approaches.

Consider an arbitrary deterministic combinatorial problem which minimizes the weight of a feasible

solutionw
T
x over a fixed feasible setF :

minimizew
T
x subject tox ∈ F . (1)

Notation We adopt the common standard of bold font for vectors and regular font for scalars, and denote

the transpose of a vector, sayx, by x
T . Define polytope(F) ∈ R

n to be the convex hull of the feasible

setF . Let W = (W1, ...,Wn) be a vector of independent stochastic weights, andµ = (µ1, ..., µn) and

τ = (τ1, ..., τn) be the vectors of their means and variances respectively.

We consider the following broad classes of stochastic problems, summarized in the table below together

with their equivalent reformulation as deterministic nonconvex problems.

Model Name Stochastic Problem Nonconvex Problem

Threshold
maximize Pr(WT

x ≤ t)

subject to x ∈ F

maximize
t− µ

T
x√

τTx

subject to x ∈ polytope(F)

(2)

Value-at-risk
minimize t
subject to Pr(WT

x ≤ t) ≥ p
x ∈ F minimize µ

T
x + c

√
τ Tx

subject to x ∈ polytope(F)
Risk

minimize µ
T
x + c

√
τTx

subject to x ∈ F

(3)
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We will give approximation algorithms for the two nonconvexproblems above, using as an oracle the avail-

able solutions to the underlying problem (1). Aδ-approximation algorithm for a minimization problem

(with δ ≥ 1) is one which returns a solution with value at mostδ times the optimum. We use the term

oracle-logarithmic time approximation scheme(abbrev. oracle-LTAS) for a(1 + ǫ)δ-approximation algo-

rithm which makes a number of oracle queries that is logarithmic in the problem size and polynomial in1ǫ

(whereδ is the multiplicative approximation factor of the oracle).We now briefly explain why solving the

nonconvex problems will solve the corresponding stochastic problems.

Stochastic threshold objective When the weights come from independent normal distributions, a fea-

sible solutionx will have a normally distributed weightWT
x ∼ N(µT

x, τ T
x). Therefore

Pr
[

W
T
x ≤ t

]

= Pr
[

W
T
x− µ

T
x√

τ Tx

≤ t− µ
T
x√

τTx

]

= Φ
(t− µ

T
x√

τ Tx

)

,

whereΦ(·) is the cumulative distribution function of the standard normal random variableN(0, 1). Since

Φ(·) is monotone increasing, maximizing the stochastic threshold objective above is equivalent to maximiz-

ing the argument, namely it is equivalent to the nonconvex threshold problem (2). Furthermore, it can be

easily shown that an approximation for the nonconvex problem (2) yields the same approximation factor for

the stochastic problem.1

Stochastic risk and value-at-risk objectives When the weights come from arbitrary independent dis-

tributions, the mean and variance of a feasible solutionx will be equal to the sum of meansµT
x and sum

of variancesτT
x of the components ofx, hence the equivalent concave formulation (3). The value-at-risk

objective also reduces to problem (3). For arbitrary distributions this follows from Chebyshev’s bound, see

Section 7.1 in the Appendix for details.

Properties of the nonconvex objectives Objectives (2) and (3) are instances of quasi-convex maximiza-

tion and concave minimization respectively; consequentlythey attain their optima at extreme points of the

feasible set (Bertsekas et al., 2003; Nikolova et al., 2006).

2.1. Related Work

The stochastic threshold objective was previously considered in the special case of shortest paths (Nikolova

et al., 2006). The authors showed that this objective has theproperty that its optimum is an extreme point

of the feasible set, and gave an exact algorithm based on enumerating extreme points. The property that the

optimum is an extreme point holds here as well, however this is where the similarity of our work to this prior

work ends: For general combinatorial problems it is likely that the number of relevant extreme points is too

1We expect that under reasonable conditions,e.g.,if a feasible solutionx has sufficiently many nonzero components, arbitrary
weight distributions will lead to feasible solutions having approximately normal weight by the Central Limit Theorem.Thus our
algorithms are likely to provide a good approximation in that general case as well.
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high (or unknown) and enumerating them will yield very inefficient algorithms. The focus and results of

this paper are instead on approximation algorithms, in particular ones which are guaranteed to be efficient

for arbitrary combinatorial optimization problems.

Our nonconvex objectives fall in the class of constant-rankquasi-concave minimization problems con-

sidered by Kelner and Nikolova (2007) (in our case the objectives are of rank 2), who give approximation

algorithms based on smoothed analysis for some of these problems. Their approximation algorithms do not

apply to our setting, since they require the objective to have abounded gradientand apositive lower bound

for the optimum (so as to turn additive into multiplicative approximation), as is not the case here.

Perhaps closest in spirit to our oracle-approximation methods is the work on robust optimization by

Bertsimas and Sim (2003). Although very different in terms of models and algorithmic solutions, they also

show how to solve the robust combinatorial problems via a small number of oracle calls of the underlying

deterministic problems.

A wealth of different models for stochastic combinatorial optimization have appeared in the literature,

perhaps most commonly on two-stage and multi-stage stochastic optimization, see survey by Swamy and

Shmoys (2006). Almost all such work considers linear objective functions (i.e., minimizing the expected

solution weight) and as such does not consider risk. Some of the models incorporate additional budget con-

straints (Srinivasan, 2007) or threshold (chance) constraints for specific problems such as knapsack, load

balancing and others (Dean et al., 2004; Goel and Indyk, 1999; Kleinberg et al., 2000). A comprehensive

survey on stochastic optimization with risk with a different focus (different solution concept and continuous

settings) is provided by Rockafellar (2007). Similarly, the work on chance constraints (e.g.,Nemirovski

and Shapiro (2006)) applies for linear and not discrete optimization problems. Additional related work

includes research on multi-criteria optimization,e.g., (Papadimitriou and Yannakakis, 2000; Ackermann

et al., 2005; Safer et al., 2004; Warburton, 1987) and combinatorial optimization with a ratio of linear ob-

jectives (Megiddo, 1979; Radzik, 1992). In one multi-criteria setting, Safer et al. (2004) consider nonlinear

objectivesf(x). However they assume that the statement “Isf(x) ≤ M?” can be evaluated in polynomial

time (that is a key technical challenge in our paper), and their functionsf(x) have a much simpler separable

form.

2.2. Our results vs other potential approaches

Specific combinatorial problems under our framework can be solved with alternative approaches. For exam-

ple, consider the NP-hard constrained optimization problem {min µ
T
x subject toτ T

x ≤ B, x ∈ F}. Sup-

pose we can get an approximate solutionx
′ to the latter, which satisfiesµT

x
′ ≤ µ

T
x
∗ andτ

T
x
′ ≤ B(1+ǫ),

wherex
∗ is the optimal solution to the constrained problem with budget B. Then we can derive a fully
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polynomial-time approximation scheme (FPTAS) to the nonconvex problems (2), (3) by considering a ge-

ometric progression of budgetsB in the constraint above, and picking the solution with the best objective

value (2) or (3). This approach can be used whenever we have the above type of FPTAS to the constrained

problem, as is the case for shortest paths (Goel et al., 2001). However, since we do not have a black-box

solution to the constrained problem in general, this approach does not seem to extend to arbitrary combina-

torial problems.

Another approach similar to the constrained problem above would be to use the approximate Pareto

boundary.2 The latter consists of a polynomial set of feasible solutions, such that for any pointx on the

Pareto boundary, there is a pointx
′ in the set that satisfiesµT

x
′ ≤ (1 + ǫ)µT

x andτ
T
x
′ ≤ (1 + ǫ)τ T

x.

When available(e.g.,for shortest paths, etc.), such a bicriteria approximationwill translate into an FPTAS

for the nonconvex risk objective (3). However it willnotyield an approximation algorithm to the nonconvex

threshold objective (2), because a multiplicative approximation ofµT
x does not translate into a multiplica-

tive approximation of(t− µ
T
x).

Radzik gives a black-box solution for combinatorial optimization with rational objectives that are a

ratio of two linear functions, by converting the rational objective into a linear constraint. A key property

of the rational function that allows for an efficient algorithm is that it ismonotonealong the boundary of

the feasible set; this is not the case for any of our objectivefunctions and is one of the biggest challenges

in working with nonconvex optimization problems: greedy, local search, interior point and other standard

techniques do not work.

Our approach is conceptually very different from previous analyses of related problems. Common ap-

proximation techniques for hard instances of stochastic and multicriteria problems convert pseudopolyno-

mial algorithms to FPTAS by scaling and rounding (Warburton, 1987; Safer et al., 2004), or they discretize

the decision space and use a combination of dynamic programming and enumeration of possible feasible

solutions over this cruder space (Goel and Indyk, 1999). In most cases the techniques are intimately inter-

twined with the structure of the underlying combinatorial problem and cannot extend to arbitrary problems.

In contrast, the near-optimal efficiency of our algorithms is due to the fact that we carefully analyze the form

of the objective function and use a “top-down” approach where our knowledge of the objective function level

sets guides us to zoom down into the necessary portion of the feasible space.

2The Pareto boundary consists of all non-dominated feasiblepointsx, namely all points such that there is no other feasible point
x
′ with smaller meanµT

x
′ ≤ µ

T
x and varianceτ T

x
′ ≤ τ

T
x.
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3. An oracle-LTAS for the nonconvex threshold objective with exact oracle

In this section, we give an oracle-logarithmic time approximation scheme (LTAS) for the nonconvex problem

formulation (2) that uses access to an exact oracle for solving the underlying problem (1).

Our algorithms assume that the maximum of the objective is non-negative, in other words the feasible

solution with smallest mean satisfiesµ
T
x ≤ t. Note, it is not clear a priori that that such a multiplicative

approximation is even possible, since we still let the function have positive, zero or negative values on

different feasible solutions. The case in which the maximumis negative is structurally very different (the

objective on its negative range no longer attains optima at extreme points) and remains open. Even with this

assumption, approximating the objective function is especially challenging due to its unbounded gradient

and the form of its numerator.

We first note that if the optimal solution has variance0, we can find it exactly with a single oracle query:

Apply the linear oracle on the set of elements with zero variances to find the feasible solution with smallest

mean. If the mean is no greater thant, output the solution, otherwise conclude that the optimal solution has

positive variance and proceed with the approximation scheme below.

The main technical lemma that our algorithm is based on is an extension of the concept of separation

and optimization: instead of deciding whether a line (hyperplane) is separating for a polytope, in the sense

that the polytope lies entirely on one side of the line (hyperplane), we construct an approximate oracle which

decides whether a non-linear curve (in our case, a parabola)is separating for the polytope.

From here on we will analyze the projections of the objectivefunction and the feasible set onto the plane

span(µ, τ ) since the nonconvex problem (2) is equivalent in that space.Consider the lower level setsLλ =

{z | f(z) ≤ λ} of the objective functionf(m, s) = t−m√
s

, wherem, s ∈ R. DenoteLλ = {z | f(z) = λ}.
We first prove that any level set boundary can be approximatedby a small number of linear segments. The

main work here involves deriving a condition for a linear segment with endpoints onLλ, to have objective

function values within(1− ǫ) of λ.

Lemma 1. Consider the points(m1, s1), (m2, s2) ∈ Lλ with s1 > s2 > 0. The segment connecting these

two points is contained in the level set regionLλ\Lλ(1−ǫ) whenevers2 ≥ (1− ǫ)4s1, for everyǫ ∈ (0, 1).

Proof. Any point on the segment[(m1, s1), (m2, s2)] can be written as a convex combination of its end-

points,(αm1 + (1 − α)m2, αs1 + (1 − α)s2), whereα ∈ [0, 1]. Consider the functionh(α) = f(αm1 +

(1− α)m2, αs1 + (1− α)s2). We have,

h(α) =
t− αm1 − (1− α)m2

√

αs1 + (1− α)s2

=
t− α(m1 −m2)−m2

√

α(s1 − s2) + s2
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We want to find the point on the segment with smallest objective value, so we minimize with respect toα.

h′(α) =
(m2 −m1)

√

α(s1 − s2) + s2 − [t− α(m1 −m2)−m2] ∗ 1
2(s1 − s2)/

√

α(s1 − s2) + s2

α(s1 − s2) + s2

=
2(m2 −m1)[α(s1 − s2) + s2]− [t− α(m1 −m2)−m2](s1 − s2)

2[α(s1 − s2) + s2]3/2

=
α(m2 −m1)(s1 − s2) + 2(m2 −m1)s2 − (t−m2)(s1 − s2)

2[α(s1 − s2) + s2]3/2
.

Setting the derivative to0 is equivalent to setting the numerator above to0, thus we get

αmin =
(t−m2)(s1 − s2)− 2(m2 −m1)s2

(m2 −m1)(s1 − s2)
=

t−m2

m2 −m1
− 2s2

s1 − s2
.

Note that the denominator ofh′(α) is positive and its numerator is linear inα, with a positive slope, therefore

the derivative is negative forα < αmin and positive otherwise, soαmin is indeed a global minimum as

desired.

It remains to verify thath(αmin) ≥ (1− ǫ)λ. Note thatt−mi = λ
√

si for i = 1, 2 since(mi, si) ∈ Lλ

and consequently,m2 − m1 = λ(
√

s1 −
√

s2). We use this further down in the following expansion of

h(αmin).

h(αmin) =
t + αmin(m2 −m1)−m2

√

αmin(s1 − s2) + s2

=
t + ( t−m2

m2−m1
− 2s2

s1−s2
)(m2 −m1)−m2

√

( t−m2
m2−m1

− 2s2
s1−s2

)(s1 − s2) + s2

=
t + t−m2 − 2s2

m2−m1
s1−s2

−m2
√

(t−m2)
s1−s2

m2−m1
− 2s2 + s2

=
2(t−m2)− 2s2

λ(
√

s1−
√

s2)
s1−s2

√

λ
√

s2
s1−s2

λ(
√

s1−
√

s2) − s2

=
2λ
√

s2 − 2s2
λ√

s1+
√

s2
√√

s2(
√

s1 +
√

s2)− s2

= 2λ

√
s2 − s2√

s1+
√

s2
√√

s1s2

= 2λ

√
s1s2 + s2 − s2

(s1s2)1/4(
√

s1 +
√

s2)
= 2λ

(s1s2)
1/4

√
s1 +

√
s2

.

We need to show that when the ratios1/s2 is sufficiently close to1, h(αmin) ≥ (1− ǫ)λ, or equivalently

2(s1s2)
1/4

√
s1 +

√
s2
≥ 1− ǫ ⇔ 2(s1s2)

1/4 ≥ (1− ǫ)(s
1/2
1 + s

1/2
2 )

⇔ (1− ǫ)
(s1

s2

)1/2
− 2

(s1

s2

)1/4
+ (1− ǫ) ≤ 0 (4)

The minimum of the last quadratic function above is attainedat
(

s1
s2

)1/4
= 1

1−ǫ and we can check that at

this minimum the quadratic function is indeed negative:

(1− ǫ)
( 1

1− ǫ

)2
− 2

( 1

1− ǫ

)

+ (1− ǫ) = (1− ǫ)− 1

1− ǫ
< 0,
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Figure 1: (a) Level sets of the objective function and the projected polytope on thespan(µ, τ )-plane. (b)
Applying the approximate linear oracle on the optimal slopegives an approximate valueb of the corre-
sponding linear objective valueb∗. The resulting solution has nonlinear objective function value of at least
λ, which is an equally good approximation for the optimal value λ∗.

for all 0 < ǫ < 1. The inequality (4) is satisfied ats1
s2

= 1, therefore it holds for all
(

s1
s2

)

∈ [1, 1
(1−ǫ)4

].

Hence, a sufficient condition forh(αmin) ≤ (1− ǫ)λ is s2 ≥ (1− ǫ)4s1, and we are done.

Lemma 1 now makes it easy to show our main lemma, namely that any level setLλ can be approximated

within a multiplicative factor of(1− ǫ) via a small number of segments. Letsmin andsmax be a lower and

upper bound respectively for the variance of the optimal solution. For example, takesmin to be the smallest

positive component of the variance vector, andsmax the variance of the feasible solution with smallest mean.

Lemma 2. The level setLλ = {(m, s) ∈ R
2 | t−m√

s
= λ} can be approximated within a factor of(1− ǫ) by

⌈

1
4 log

(

smax
smin

)

/ log 1
1−ǫ

⌉

linear segments.

Proof. By definition ofsmin andsmax, the the variance of the optimal solution ranges fromsmin to smax. By

Lemma 1, the segments connecting the points onLλ with variancessmax, smax(1−ǫ)4, smax(1−ǫ)8, ..., smin

all lie in the level set regionLλ\Lλ(1−ǫ), that is they underestimate and approximate the level setLλ within

a factor of(1− ǫ). The number of these segments is⌈1
4 log

(

smax
smin

)

/ log 1
1−ǫ⌉.

The above lemma yields an approximate separation oracle forthe nonlinear level setLλ and polytope(F).

The oracle takes as input the levelλ and either returns a solutionx with objective valuef(x) ≥ (1 − ǫ)λ

from the feasible set, or guarantees thatf(x) < λ for all x ∈ polytope(F). Therefore, an exact oracle for

solving problem (1) allows us to obtain an approximate nonlinear separation oracle, by applying the former

to weight vectorsaµ + τ , for all possible slopes(−a) of the segments approximating the level set. We

formalize this in the next theorem.
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Theorem 3 (Approximate Nonlinear Separation Oracle). Suppose we have an exact (linear) oracle for

solving problem (1). Then, we can construct a nonlinear oracle which solves the following approximate

separation problem: given a levelλ andǫ ∈ (0, 1), the oracle returns

1. A solutionx ∈ F with f(x) ≥ (1− ǫ)λ, or

2. An answer thatf(x) < λ for all x ∈ polytope(F),

and the number of linear oracle calls it makes is1
4 log

(

smax
smin

)

/ log 1
1−ǫ , that isO(1

ǫ log smax
smin

).

We can now give an oracle-LTAS for the nonconvex problem (2),by applying the above nonlinear

oracle on a geometric progression of possible valuesλ of the objective functionf . We first need to bound

the maximum valuefopt of the objective functionf . A lower boundfl is provided by the solutionxmean

with smallest mean or the solutionxvar with smallest positive variance, whichever has a higher objective

value: fl = max{f(xmean), f(xvar)} wheref(x) = t−µ
T
x√

τT
x

. On the other hand,µT
x ≥ µ

T
xmean and

τ
T
x ≥ τ

T
xvar for all x ∈ polytope(F), so an upper bound for the objectivef is given byfu = t−µ

T
xmean√

τT
xvar

(recall thatt− µ
T
xmean > 0 by assumption).

Theorem 4. Suppose we have an exact oracle for problem (1) and suppose the smallest mean feasible

solution satisfiesµT
x ≤ t. Then for anyǫ ∈ (0, 1), there is an algorithm for solving the nonconvex threshold

problem (2), which returns a feasible solutionx ∈ F with value at least(1 − ǫ) times the optimum, and

makesO
(

log
(

smax
smin

)

log
( fu

fl

)

1
ǫ2

)

oracle calls.

Proof. Now, apply the approximate separation oracle from Theorem 3with ǫ′ = 1 −
√

1− ǫ successively

on the levelsfu, (1− ǫ′)fu, (1 − ǫ′)2fu, ... until we reach a levelλ = (1− ǫ′)ifu ≥ fl for which the oracle

returns a feasible solutionx′ with

f(x′) ≥ (1− ǫ′)λ = (
√

1− ǫ)i+1fu.

From running the oracle on the previous levelfu(1−ǫ′)i−1, we know thatf(x) ≤ f(xopt) < (
√

1− ǫ)i−1fu

for all x ∈ polytope(F), wherexopt denotes the optimal solution. Therefore,

(
√

1− ǫ)i+1fu ≤ f(x′) ≤ f(xopt) < (
√

1− ǫ)i−1fu, and hence

(1− ǫ)f(xopt) < f(x′) ≤ f(xopt).

So the solutionx′ gives a(1−ǫ)-approximation to the optimumxopt. In the process, we run the approximate

nonlinear separation oracle at mostlog
( fu

fl

)

/ log 1
1−ǫ′ times, and each run makes14 log

(

smax
smin

)

/ log 1
1−ǫ′

queries to the linear oracle, so the algorithm makes at most1
4 log

(

smax
smin

)

log
(fu

fl

)

/
(

1
2 log 1

1−ǫ

)2
queries to

the oracle for the linear problem (1). Finally, sincelog 1
1−ǫ ≥ ǫ for ǫ ∈ [0, 1), we get the desired bound for

the total number of queries.
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4. The nonconvex threshold objective with approximate linear oracle

In this section, we show that aδ-approximate oracle to problem (1) yields an efficient approximation algo-

rithm to the nonconvex problem (2). As in Section 3, we first check whether the optimal solution has zero

variance and if not, proceed with the algorithm and analysisbelow.

We first prove several geometric lemmas that enable us to derive the approximation guarantees later.

Lemma 5 (Geometric lemma). Consider two objective function valuesλ∗ > λ and points(m∗, s∗) ∈ Lλ∗ ,

(m, s) ∈ Lλ in the positive orthant such that the tangents to the points at the corresponding level sets are

parallel. Then, they-interceptsb∗, b of the two tangent lines satisfy

b− b∗ = s∗
[

1−
( λ

λ∗

)2]

.

Proof. Suppose the slope of the tangents is(−a), wherea > 0. Then they-intercepts of the two tangent

lines satisfy

b = s + am, b∗ = s∗ + am∗.

In addition, since the points(m, s) and(m∗, s∗) lie on the level setsLλ, Lλ∗ , they satisfy

t−m = λ
√

s, t−m∗ = λ∗
√

s∗.

Since the first line is tangent at(m, s) to the parabolay = ( t−x
λ )2, the slope equals the first derivative at

this point,−2(t−x)
λ2 |x=m = −2(t−m)

λ2 = −2λ
√

s
λ2 = −2

√
s

λ , so the absolute value of the slope isa = 2
√

s
λ .

Similarly the absolute value of the slope also satisfiesa = 2
√

s∗

λ∗ , therefore

√
s∗ =

λ∗

λ

√
s.

Note that forλ∗ > λ, this means thats∗ > s. From here, we can represent the differencem−m∗ as

m−m∗ = (t−m∗)− (t−m) = λ∗
√

s∗ − λ
√

s =
(λ∗)2

λ

√
s− λ

√
s =

[(λ∗

λ

)2
− 1

]

λ
√

s.

Substituting the slopea = 2
√

s
λ in the tangent line equations, we get

b− b∗ = s +
2
√

s

λ
m− s∗ − 2

√
s

λ
m∗

= s−
(λ∗

λ

)2
s +

2
√

s

λ
(m−m∗)

= s−
(λ∗

λ

)2
s +

2
√

s

λ
λ
√

s
[(λ∗

λ

)2
− 1

]

= s−
(λ∗

λ

)2
s + 2s

[(λ∗

λ

)2
− 1

]

= s
[(λ∗

λ

)2
− 1

]

= s∗
[

1−
( λ

λ∗

)2]

,

as desired.
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The next lemma builds intuition as well as helps in the analysis of the algorithm. It shows that we

can approximate the optimal solution well if we know the optimal weight vector to use with the available

approximate oracle for problem (1).

Lemma 6. Suppose we have aδ-approximate linear oracle for optimizing over the feasible polytope(F)

and suppose that the optimal solution satisfiesµ
T
x
∗ ≤ (1− ǫ)t. If we can guess the slope of the tangent to

the corresponding level set at the optimal pointx
∗, then we can find a

√

1− δ 2−ǫ
ǫ -approximate solution to

the nonconvex problem (2).

In particular settingǫ =
√

δ gives a(1−
√

δ)-approximate solution.

Proof. Denote the projection of the optimal pointx
∗ on the plane by(m∗, s∗) = (µT

x
∗, τ T

x
∗). We apply

the linear oracle with respect to the slope(−a) of the tangent to the level setLλ∗ at (m∗, s∗). The value

of the linear objective at the optimum isb∗ = s∗ + am∗, which is they-intercept of the tangent line. The

linear oracle returns aδ-approximate solution, that is a solution on a parallel linewith y-interceptb ≤ δb∗.

Suppose the original (nonlinear) objective value at the returned solution is lower-bounded byλ, that is it lies

on a line tangent toLλ (See Figure 1(b)). From Lemma 5, we haveb− b∗ = s∗
[

1−
(

λ
λ∗

)2
]

, therefore

( λ

λ∗

)2
= 1− b− b∗

s∗
= 1−

(

b− b∗

b∗

)

b∗

s∗
≥ 1− δ

b∗

s∗
. (5)

Recall thatb∗ = s∗ + m∗ 2
√

s∗

λ∗ andm∗ ≤ (1− ǫ)t, then

b∗

s∗
= 1 +

2m∗

λ∗
√

s∗

= 1 +
2m∗

t−m∗ ≤ 1 +
2m∗

ǫ
1−ǫm

∗

= 1 +
2(1 − ǫ)

ǫ
=

2− ǫ

ǫ
.

Together with Eq. (5), this gives a
√

1− δ 2−ǫ
ǫ -approximation factor to the optimal.

On the other hand, settingǫ =
√

δ gives the approximation factor
√

1− δ 2−
√

δ√
δ

= 1−
√

δ.

Next, we prove a geometric lemma that will be needed to analyze the approximation factor we get when

applying the linear oracle on an approximately optimal slope.

Lemma 7. Consider the level setLλ and points(m∗, s∗) and(m, s) on it, at which the tangents toLλ have

slopes−a and−a(1+ ξ) respectively. Let they-intercepts of the tangent line at(m, s) and the line parallel

to it through(m∗, s∗) beb1 andb respectively. Thenbb1 ≤
1

1−ξ2 .

12



Proof. The equation of the level setLλ is y = ( t−x
λ )2 so the slope at a point(m, s) ∈ Lλ is given by the

derivative atx = m, that is−2(t−m)
λ2 = −2

√
s

λ . So, the slope of the tangent to the level setLλ at point

(m∗, s∗) is −a = −2
√

s∗

λ . Similarly the slope of the tangent at(m, s) is −a(1 + ξ) = −2
√

s
λ . Therefore,

√
s = (1 + ξ)

√
s∗, or equivalently(t−m) = (1 + ξ)(t−m∗).

Sinceb, b1 are intercepts with they-axis, of the lines with slopes−a(1 + ξ) = −2
√

s
λ containing the

points(m∗, s∗), (m, s) respectively, we have

b1 = s +
2
√

s

λ
m =

t2 −m2

λ2

b = s∗ + (1 + ξ)
2
√

s∗

λ
m∗ =

t−m∗

λ2
(t + m∗ + 2ξm∗).

Therefore

b

b1
=

(t−m∗)(t + m∗ + 2ξm∗)

(t−m)(t + m)
=

1

1 + ξ

t + m∗ + 2ξm∗

t + m
=

1

1 + ξ

t + (1 + 2ξ)m∗

(1− ξ)t + (1 + ξ)m∗

≤ 1

1 + ξ

(

1

1− ξ

)

=
1

1− ξ2
,

where we usem = t− (1 + ξ)(t−m∗) from above and the last inequality follows by Lemma 8.

Lemma 8. For anyq, r > 0, q+(1+2ξ)r
(1−ξ)q+(1+ξ)r ≤

1
1−ξ .

Proof. This follows from the fact that1+2ξ
1+ξ ≤ 1

1−ξ for ξ ∈ [0, 1).

We now show that we get a good approximation even when we use anapproximately optimal weight

vector with our oracle.

Lemma 9. Suppose that we use an approximately optimal weight vector with a δ-approximate linear ora-

cle (1) for solving the nonconvex threshold problem (2). In particular, suppose the weight vector (slope) that

we use is within(1 + ξ) of the slope of the tangent at the optimal solution. Then thiswill give a solution to

the nonconvex threshold problem (2) with value at least

√

1−
[

δ
1−ξ2 − 1

]

2−ǫ
ǫ times the optimal, provided

the optimal solution satisfiesµT
x
∗ ≤ (1− ǫ)t.

Proof. Suppose the optimal solution is(m∗, s∗) and it lies on the optimal level setλ∗. Let the slope of

the tangent to the level set boundary at the optimal solutionbe(−a). We apply ourδ-approximation linear

oracle with respect to slope that is(1 + ξ) times the optimum slope(−a). Suppose the resulting black box

solution lies on the line withy-interceptb2, and the true optimum lies on the line withy-interceptb′. We

know b′ ∈ [b1, b], whereb1 andb are they-intercepts of the lines with slope−(1 + ξ)a that are tangent to

Lλ∗ and pass through(m∗, s∗) respectively. Then we haveb2b ≤ b2
b′ ≤ δ.

Furthermore, by Lemma 7 we havebb1 ≤
1

1−ξ2 .
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On the other hand, from Lemma 5,b2 − b1 = s[1 − (λ2
λ∗ )], whereλ2 is the smallest possible objective

function value along the line with slope−a(1 + ξ) andy-interceptb2, in other words the smallest possible

objective function value that the solution returned by the approximate linear oracle may have;(m, s) is the

tangent point of the line with slope−(1 + ξ)a, tangent toLλ∗ .

Therefore, applying the above inequalities, we get

(

λ2

λ∗

)2

= 1− b2 − b1

s
= 1− b2 − b1

b1

b1

s
= 1−

(

b2

b

b

b1
− 1

)

b1

s
≥ 1−

(

δ

1− ξ2
− 1

)

2− ǫ

ǫ
,

whereb1
s ≤ 2−ǫ

ǫ follows as in the proof of Lemma 6. The result follows.

Consequently, we can approximate the optimal solution by applying the approximate linear oracle on a

small number of appropriately chosen linear functions and picking the best resulting solution.

Theorem 10. Suppose we have aδ-approximation linear oracle for problem (1). Then, the nonconvex

threshold problem (2) has a

√

1−
[

δ−(1−ǫ2/4)
(2+ǫ)ǫ/4

]

-approximation algorithm that calls the linear oracle a

logarithmic in the input and polynomial in1ǫ number of times, assuming the optimal solution to (2) satisfies

µ
T
x
∗ ≤ (1− ǫ)t.

Proof. The algorithm applies the linear approximation oracle withrespect to a small number of linear func-

tions, and chooses the best resulting solution. In particular, suppose the optimal slope (tangent to the corre-

sponding level set at the optimal solution point) lies in theinterval [L,U ] (for lower and upper bound). We

find approximate solutions with respect to the slopesL,L(1 + ξ), L(1 + ξ)2, ..., L(1 + ξ)k ≥ U , namely

we apply the approximate linear oraclelog(U/L)
log(1+ξ) times, whereξ = ǫ3

2(1+ǫ3)
. With this, we are certain that the

optimal slope will lie in some interval[L(1 + ξ)i, L(1 + ξ)i+1] and by Lemma 9 the solution returned by

the linear oracle with respect to slopeL(1 + ξ)i+1 will give a

√

1−
[

δ
1−ξ2 − 1

]

2−ǫ
ǫ - approximation to our

non-linear objective function value. Since we are free to chooseξ, setting it toξ = ǫ/2 gives the desired

number of queries.

We conclude the proof by noting that we can takeL to be the slope tangent to the corresponding level

set at(mL, sL) wheresL is the minimum positive component of the variance vector andmL = t(1 − ǫ).

Similarly let U be the slope tangent at(mU , sU ) wheremU = 0 andsU is the sum of components of the

variance vector.

Note that whenδ = 1, namely we can solve the underlying linear problem exactly in polynomial time,

the above algorithm gives an approximation factor of
√

1
1+ǫ/2 or equivalently1− ǫ′ whereǫ = 2[ 1

(1−ǫ′)2
−

1]. While this algorithm is still an oracle-logarithmic time approximation scheme, it gives a bi-criteria

approximation: It requires that there is a small gap betweenthe mean of the optimal solution andt so it is
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Figure 2: (left) Level sets and approximate nonlinear separation oracle forthe projected non-convex
(stochastic) objectivef(x) = µ

T
x + c

√
τ Tx on thespan(µ, τ )-plane. (right) Approximating the ob-

jective valueλ1 of the optimal solution(m∗, s∗).

weaker than our previous algorithm, which had no such requirement. This is expected, since of course this

algorithm is cruder, taking a single geometric progressionof linear functions rather than tailoring the linear

oracle applications to the objective function value that itis searching for, as in the case of the nonlinear

separation oracle that the previous algorithm from Section3 is based on.

5. An oracle-LTAS for the nonconvex risk objective with an exact oracle

In this section we present an oracle-logarithmic time approximation scheme for the nonconvex problem (3),

using an exact oracle for solving the underlying problem (1).

The projected level sets of the objective functionf(x) = µ
T
x + c

√
τ Tx onto thespan(µ, τ ) plane

are again parabolas, though differently arranged and the analysis in the previous sections does not apply.

Following the same techniques however, we can derive similar approximation algorithms, which construct

an approximate nonlinear separation oracle from the linearone and apply it appropriately a small number of

times.

To do this, we first need to decide which linear segments to approximate a level set with and how

many they are. In particular we want to fit as few segments as possible with endpoints on the level set

Lλ, entirely contained in the nonlinear band betweenLλ andL(1+ǫ)λ (over the rangem = µ
T
x ∈ [0, λ],

s = τ
T
x ∈ [0, λ2]). Geometrically, the optimal choice of segments starts from one endpoint of the level set

Lλ and repeatedly draws tangents to the level setL(1+ǫ)λ, as shown in Figure 2.

We first show that the tangent-segments toL(1+ǫ)λ starting at the endpoints ofLλ are sufficiently long.
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Lemma 11. Consider points(m1, s1) and(m2, s2) on Lλ with 0 ≤ m1 < m2 ≤ λ such that the segment

with these endpoints is tangent toL(1+ǫ)λ at pointα(m1, s1) + (1− α)(m2, s2). Thenα = c2

4
s1−s2

(m2−m1)2
−

s2
s1−s2

and the objective value at the tangent point is
[

c2

4
s1−s2

m2−m1
+ s2

m2−m1
s1−s2

+ m2

]

.

Proof. Let f̄ : R
2 → R, f̄(m, s) = m + c

√
s be the projection of the objectivef(x) = µ

T
x + c

√
τ Tx.

The objective values along the segment with endpoints(m1, s1), (m2, s2) are given by

h(α) = αf̄(m1, s1) + (1− α)f̄(m2, s2) = α(m1 −m2) + m2 + c
√

α(s1 − s2) + s2,

for α ∈ [0, 1]. The point along the segment with maximum objective value (that is, the tangent point

to the minimum level set bounding the segment) is found by setting the derivativeh′(α) = m1 − m2 +

c s1−s2

2
√

α(s1−s2)+s2
, to zero:

m2 −m1 = c
s1 − s2

2
√

α(s1 − s2) + s2

⇔
√

α(s1 − s2) + s2 = c
s1 − s2

2(m2 −m1)

⇔ α(s1 − s2) + s2 = c2 (s1 − s2)
2

4(m2 −m1)2

⇔ α(s1 − s2) = c2 (s1 − s2)
2

4(m2 −m1)2
− s2

⇔ α = c2 s1 − s2

4(m2 −m1)2
− s2

s1 − s2
.

This is a maximum, since the derivativeh′(α) is decreasing inα. The objective value at the maximum is

h(αmax) = αmax(m1 −m2) + m2 + c
√

αmax(s1 − s2) + s2

=

[

c2 s1 − s2

4(m2 −m1)2
− s2

s1 − s2

]

(m1 −m2) + m2 + c2 s1 − s2

2(m2 −m1)

= −c2

4

s1 − s2

m2 −m1
− s2

m1 −m2

s1 − s2
+ m2 +

c2

2

s1 − s2

m2 −m1

=
c2

4

s1 − s2

m2 −m1
+ s2

m2 −m1

s1 − s2
+ m2.

Further, sinces1 = (λ−m1
c )2 ands2 = (λ−m2

c )2, their difference satisfiess1−s2 = 1
c2

(m2−m1)(2λ−m1−
m2), so s1−s2

m2−m1
= 2λ−m1−m2

c2
and the above expression for the maximum function value on the segment
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becomes

h(αmax) =
c2

4

2λ−m1 −m2

c2
+

c2s2

2λ−m1 −m2
+ m2 =

2λ−m1 −m2

4
+

(λ−m2)
2

2λ−m1 −m2
+ m2.

Now we can show that the tangent segments at the ends of the level setLλ are long.

Lemma 12. Consider the endpoint(m2, s2) = (λ, 0) of Lλ. Then either the single segment connecting the

two endpoints ofLλ is entirely below the level setL(1+ǫ)λ, or the other endpoint of the segment tangent to

L(1+ǫ)λ is (m1, s1) = (λ(1 − 4ǫ), (4ǫλ
c )2).

Proof. Since0 ≤ m1 < λ, we can writem1 = βλ for someβ ∈ [0, 1). Consequently,s1 = (λ−m1
c )2 =

λ2(1−β)2

c2
and s1−s2

m2−m1
= λ2(1−β)2

c2λ(1−β)
= λ(1−β)

c2
. By Lemma 11, the objective value at the tangent point is

c2

4

λ(1− β)

c2
+ λ = λ

(

1− β

4
+ 1

)

= (1 + ǫ)λ.

The last equality follows by our assumption that the tangentpoint lies on theL(1+ǫ)λ level set. Hence,

β = 1− 4ǫ, som1 = (1− 4ǫ)λ ands1 = (λ−m1
c )2 = (4ǫλ

c )2.

Next, we characterize the segments with endpoints onLλ that are tangent to the level setLλ(1+ǫ).

Lemma 13. Consider two points(m1, s1), (m2,m2) on Lλ with 0 ≤ m1 < m2 ≤ λ and such that the

segment connecting the two points is tangent toL(1+ǫ)λ. Then the ratios1
s2
≥ (1 + 2ǫ)2.

Proof. Let point(m, s) on the segment with endpoints(m1, s1), (m2,m2) be the tangent point to the level

setL(1+ǫ)λ. Then the slopes1−s2
m1−m2

of the segment is equal to the derivative of the functiony = ( (1+ǫ)λ−x
c )2

at x = m, which is−2 (1+ǫ)λ−m
c2

= −2
√

s
c . Since s1−s2

m1−m2
= s1−s2

(λ−m2)−(λ−m1) = s1−s2
c(
√

s2−
√

s1)
= −

√
s2+

√
s1

c ,

equating the two expressions for the slope we get2
√

s =
√

s2 +
√

s1.

On the other hand, since(m, s) ∈ L(1+ǫ)λ, we have

m = (1 + ǫ)λ− c
√

s = (1 + ǫ)λ− c
√

s2 + c
√

s1

2
= (1 + ǫ)λ− λ−m2 + λ−m1

2
= ǫλ +

m1 + m2

2

andm = α(m1 −m2) + m2 for someα ∈ (0, 1). Thereforeα = 1
2 − ǫλ

m2−m1
= 1

2 − ǫλ
c(
√

s1−
√

s2)
.

Next,

s = α(s1 − s2) + s2 =

[

1

2
− ǫλ

c(
√

s1 −
√

s2)

]

(s1 − s2) + s2 =
s1 − s2

2
− ǫλ

c
(
√

s1 +
√

s2) + s2

=
s1 + s2

2
− ǫλ

c
(
√

s1 +
√

s2)
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therefore using2
√

s =
√

s2 +
√

s1 from above, we get two equivalent expressions for4s:

2(s1 + s2)−
4ǫλ

c
(
√

s1 +
√

s2) = s1 + s2 + 2
√

s1s2

⇔ s1 + s2 −
4ǫλ

c
(
√

s1 +
√

s2)− 2
√

s1s2 = 0

⇔ s1

s2
+ 1− 4ǫλ

c
√

s2
(

√

s1

s2
+ 1)− 2

√

s1

s2
= 0

Denote for simplicityz =
√

s1
s2

andw = 2ǫλ
c
√

s2
, then we have to solve the following quadratic equation for

z in terms ofw:

z2 + 1− 2w(z + 1)− 2z = 0

⇔ z2 − 2z(w + 1) + 1− 2w = 0.

The discriminant of this quadratic expression isD = (w + 1)2 − 1 + 2w = w2 + 4w and its roots are

z1,2 = 1 + w ±
√

w2 + 4w. Sinces1
s2

> 1, we choose the bigger rootz2 = 1 + w +
√

w2 + 4w. Therefore

sincew = 2ǫλ
c
√

s2
≥ 0 we have

√

s1

s2
= 1 + w +

√

w2 + 4w ≥ 1 + w = 1 +
2ǫλ

c
√

s2
≥ 1 +

2ǫλ

cλ
c

= 1 + 2ǫ,

where the last inequality follows from the fact that
√

s2 <
√

s1 ≤ λ
c . This concludes the proof.

The last lemma shows that each segment is sufficiently long sothat overall the number of tangent seg-

ments approximating the level setLλ is small, in particular it is polynomial in1ǫ (and does not depend on

the input size of the problem!). This gives us the desired approximate nonlinear separation oracle for the

level sets of the objective function.

Theorem 14. A nonlinear(1+ ǫ)-approximate separation oracle to any level set of the nonconvex objective

f(x) in problem (3) can be found with(1 +
log( 1

16ǫ2
)

2 log(1+2ǫ)) queries to the available linear oracle for solving

problem (1).

The nonlinear oracle takes as inputsλ, ǫ and returns either a feasible solutionx ∈ F with f(x) ≤
(1 + ǫ)λ or an answer thatf(x) > λ for all x in the polytope(F).

Proof. Apply the available linear oracle to the slopes of the segments with endpoints on the specified level

set, sayLλ, and which are tangent to the level setL(1+ǫ)λ. By Lemma 13 and Lemma 12, they-coordinates

of endpoints of these segments are given bys1 = (λ
c )2, s2 ≤ s1

(1+2ǫ)2 , s3 ≤ s1
(1+2ǫ)4 ,... , sk ≤ s1

(1+2ǫ)2(k−1) ,

sk+1 = 0, wheresk = (4ǫλ
c )2, so k = 1 + log( 1

16ǫ2
)/2 log(1 + 2ǫ), which is precisely the number of

segments we use and the result follows.
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Finally, based on the approximate non-linear separation oracle from Theorem 14, we can now easily

solve the nonconvex problem (3) running the oracle on a geometric progression from the objective function

range. We again need to bound the optimal value of the objective function. For a lower bound, we can use

fl = smin, the smallest positive variance component, and for an upperbound takefu = nmmax+c
√

nsmax,

wheremmax andsmax are the largest components of the mean and variance vectors respectively.

Theorem 15. There is a oracle-logarithmic time approximation scheme for the nonconvex problem (3),

which uses an exact oracle for solving the underlying problem (1). This algorithm returns a(1 + ǫ)-

approximate solution and makes(1 + 2
ǫ log(fu

fl
))(1 +

log( 1
16ǫ2

)

2 log(1+2ǫ)) oracle queries, namely logarithmic in

the size of input and polynomial in1ǫ .

Proof. The proof is analogous to that of Theorem 4, applying the nonlinear oracle with approximation factor
√

1 + ǫ for the objective function valuesfl, fl

√
1 + ǫ, fl

√
1 + ǫ

2
, ..., fu = fl

√
1 + ǫ

j
, namely applying it at

most1 + 2 log(fu

fl
)/ log(1 + ǫ) ≤ 2

ǫ log(fu

fl
) times. In addition, we run the linear oracle once with weight

vector equal to the vector of means, over the subset of components with zero variances and return that

solution if it is better than the above.

6. An oracle-LTAS for the nonconvex risk objective with approximate linear
oracle

Suppose we have aδ-approximate linear oracle for solving problem (1). We willprovide an algorithm for

the nonconvex problem (3) with approximation factorδ(1 + ǫ), which invokes the linear oracle a small

number of times that is logarithmic in the input-size and polynomial in 1
ǫ .

We employ the same technique of designing the algorithm and analyzing it as in Section 4 for the

threshold objective function, however again due to the different objective the previous analysis does not

carry through directly.

First, we show that if we can guess the optimal linear objective, given by the slope of the tangent to

the corresponding level set at the optimal solution, then applying the approximate linear oracle returns an

approximate solution with the same multiplicative approximation factorδ. The above statement reduces to

showing the following geometric fact.

Lemma 16. Consider levels0 ≤ λ1 < λ2 and two parallel lines tangent to the corresponding level sets

Lλ1 andLλ2 at points(m1, s1) and(m2, s2) respectively. Further, suppose the correspondingy-intercepts

of these lines areb1 andb2. Thenb2
b1

= λ2+m2
λ1+m1

≥ λ2
λ1

.
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Proof. The function defining a level setLλ has the formy = (λ−x)2

c2
, and thus the slope of the tangent to

the level set at a point(m, s) ∈ Lλ is given by the first derivative at the point,−2(λ−x)
c2

|x=m = −2(λ−m)
c2

=

−2
√

s
c . Therefore the equation of the tangent line isy = −2

√
s

c x + b, where

b = s +
2
√

s

c
m =

√
s(
√

s +
2m

c
) =

√
s(

λ−m

c
+

2m

c
) =

√
s(

λ + m

c
)

Since the two tangents from the lemma are parallel, their slopes are equal:−2
√

s1

c = −2
√

s2

c , therefore

s1 = s2 and equivalently(λ1 −m1) = (λ2 −m2).

Therefore they-intercepts of the two tangents satisfy

b2

b1
=

√
s2(

λ2+m2
c )

√
s1(

λ1+m1
c )

=
λ2 + m2

λ1 + m1
≥ λ1

λ2
.

The last inequality follows from the fact thatλ2 > λ1 andλ1 −m1 = λ2 − m2 (and equality is achieved

whenm1 = λ1 andm2 = λ2).

Corollary 17. Suppose the optimal solution to the nonconvex problem (3) is(m1, s1) with objective value

λ1. If we can guess the slope−a of the tangent to the level setLλ1 at the optimal solution, then applying

the approximate linear oracle for solving problem (1) with respect to that slope will give aδ-approximate

solution to problem (3).

Proof. The approximate linear oracle will return a solution(m′, s′) with valueb2 = s′ + am′ ≤ δb1, where

b1 = s1 + am1. The objective function value of(m′, s′) is at mostλ2, which is the value at the level set

tangent to the liney = −ax + b2. By Lemma 16,λ2
λ1
≤ b2

b1
≤ δ, therefore the approximation solution has

objective function value at mostδ times the optimal value, QED.

If we cannot guess the slope at the optimal solution, we wouldhave to approximate it. The next lemma

proves that if we apply the approximate linear oracle to slope that is within(1+
√

ǫ
1+ǫ) of the optimal slope,

we would still get a good approximate solution with approximation factorδ(1 + ǫ).

Lemma 18. Consider the level setLλ and points(m∗, s∗) and (m, s) on it, at which the tangents toLλ

have slopes−a and−a(1 +
√

ǫ
1+ǫ) respectively. Let they-intercepts of the tangent line at(m, s) and the

line parallel to it through(m∗, s∗) beb1 andb respectively. Thenbb1 ≤ 1 + ǫ.

Proof. Let ξ =
√

ǫ
1+ǫ . As established in the proof of Lemma 16, the slope of the tangent to the level set

Lλ at point(m∗, s∗) is −a = −2
√

s∗

c . Similarly the slope of the tangent at(m, s) is −a(1 + ξ) = −2
√

s
c .

Therefore,
√

s = (1 + ξ)
√

s∗, or equivalently(λ−m) = (1 + ξ)(λ−m∗).
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Sinceb, b1 are intercepts with they-axis, of the lines with slopes−a(1 + ξ) = −2
√

s
c containing the

points(m∗, s∗), (m, s) respectively, we have

b1 = s +
2
√

s

c
m =

λ2 −m2

c2

b = s∗ + (1 + ξ)
2
√

s∗

c
m∗ =

λ−m∗

c2
(λ + m∗ + 2ξm∗).

Therefore

b

b1
=

(λ−m∗)(λ + m∗ + 2ξm∗)

(λ−m)(λ + m)
=

1

1 + ξ

λ + m∗ + 2ξm∗

λ + m
≤ 1

1 + ξ

(

1

1− ξ

)

=
1

1− ξ2
= 1 + ǫ,

where the last inequality follows by Lemma 19.

Lemma 19. Following the notation of Lemma 18,λ+m∗+2ξm∗

λ+m ≤ 1
1−ξ .

Proof. Recall from the proof of Lemma 18 that(λ−m) = (1+ξ)(λ−m∗), thereforem = λ− (1+ξ)(λ−
m∗) = −ξλ + (1 + ξ)m∗. Hence,

λ + m∗ + 2ξm∗

λ + m
=

λ + (1 + 2ξ)m∗

(1− ξ)λ + (1 + ξ)m∗ =
λ

m∗ + (1 + 2ξ)

(1− ξ) λ
m∗ + (1 + ξ)

≤ 1

1− ξ
,

since1+2ξ
1+ξ ≤ 1

1−ξ for ξ ∈ [0, 1).

A corollary from Lemma 16 and Lemma 18 is that applying the linear oracle with respect to slope that

is within (1 +
√

ǫ
1+ǫ) times of the optimal slope yields an approximate solution with objective value within

(1 + ǫ)δ times of the optimal.

Lemma 20. Suppose the optimal solution to the nonconvex problem (3) is(m∗, s∗) with objective value

λ and the slope of the tangent to the level setLλ at it is −a. Then running theδ-approximate oracle for

solving problem (1) with respect to slope that is in[−a,−a(1 +
√

ǫ
1+ǫ)] returns a solution to (3) with

objective function value no greater than(1 + ǫ)δλ.

Proof. Suppose the optimal solution with respect to the linear objective specified by slope−a(1 +
√

ǫ
1+ǫ)

has valueb′ ∈ [b1, b], whereb1, b are they-intercepts of the lines with that slope, tangent toLλ and passing

through(m∗, s∗) respectively (See Figure 2-right). Then applying theδ-approximate linear oracle to the

same linear objective returns solution with valueb2 ≥ δb′. Henceb2
b ≤ b2

b′ ≤ δ.

On the other hand, the approximate solution returned by the linear oracle has value of our original

objective function equal to at mostλ2, whereLλ2 is the level set tangent to the line on which the approximate

solution lies. By Lemma 16,λ2
λ ≤ b2

b1
= b2

b
b
b1
≤ δ(1 + ǫ), where the last inequality follows by Lemma 18

and the above bound onb2b .
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Finally, we are ready to state our theorem for solving the nonconvex problem (3). The theorem says

that there is an algorithm for this problem with essentiallythe same approximation factor as the underlying

problem (1), which makes only logarithmically many calls tothe latter.

Theorem 21. Suppose we have aδ-approximate oracle for solving problem (1). The nonconvexproblem (3)

can be approximated to a multiplicative factor ofδ(1 + ǫ) by calling the above oracle logarithmically many

times in the input size and polynomially many times in1
ǫ .

Proof. We use the same type of algorithm as in Theorem 10: apply the available approximate linear oracle

on a geometric progression of weight vectors (slopes), determined by the lemmas above. In particular, apply

it to slopesU, (1 + ξ)U, ..., (1 + ξ)iU = L, whereξ =
√

ǫ
1+ǫ , L is a lower bound for the optimal slope

andU is an upper bound for it. For each approximate feasible solution obtained, compute its objective

function value and return the solution with minimum objective function value. By Lemma 20, the value of

the returned solution would be withinδ(1 + ǫ) of the optimal.

Note that it is possible for the optimal slope to be0: this would happen when the optimal solution

satisfiesm∗ = λ ands∗ = 0. We have to handle this case differently: run the linear oracle just over the

subset of components with zero variance-values, to find the approximate solution with smallestm. Return

this solution if its value is better than the best solution among the above.

It remains to bound the valuesL andU . We established earlier that the optimal slope is given by2
√

s∗

c ,

wheres∗ is the variance of the optimal solution. Among the solutionswith nonzero variance, the variance

of a feasible solution is at leastsmin, the smallest possible nonzero variance of a single element, and at most

(λmax)2 ≤ (nmmax + c
√

nsmax)2, wheremmax is the largest possible mean of a single element andsmax

is the largest possible variance of a single element (assuming that a feasible solution uses each element in

the ground set at most once). Thus, setU = −2
√

smin

c andL = −2(nmmax+c
√

nsmax)
c

7. Conclusion

We have presented efficient approximation schemes for a broad class of stochastic problems that incor-

porate risk. Our algorithms are independent of the fixed feasible set and use solutions for the underlying

deterministic problems as oracles for solving the stochastic counterparts. As such they apply to very general

combinatorial and discrete, as well as continuous settings.

From a practical point of view, it is of interest to consider correlations between the components of the

stochastic weight vector. We remark that in graph problems,our results can immediately extend to some

realistic partial correlation models. We leave a study of correlations for future work.
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Our models in this paper assume that the stochastic weight vector is unknown at the time of the solution.

An interesting direction would be to extend this work to an online setting where one gains information on

the weights with time, and is prompted to find an adaptive solution or optimal policy.

Appendix

7.1. Stochastic value-at-risk objective

In this section we show how the value-at-risk objective reduces to the problem of minimizing a linear com-

bination of mean and standard deviation. We first establish the equivalence under normal distributions, and

then show a reduction for arbitrary distributions using Chebyshev’s bound.

Lemma 22. The stochastic value-at-risk problem

minimize t

subject to Pr(WT
x ≤ t) ≥ p

x ∈ F

for a given probabilityp is equivalent to the nonconvex problem

minimize µ
T
x + c

√
τ Tx

subject to x ∈ F

with c = Φ−1(p), when the element weights come from independent normal distributions.

Proof. As beforeΦ(·) denotes the cumulative distribution function of the standard normal random variable

N(0, 1), andΦ−1(·) denotes its inverse. For normally distributed weightsW we have

Pr(WT
x ≤ t) ≥ p

⇔ Pr

(

W
T
x− µ

T
x√

τ Tx

≤ t− µ
T
x√

τTx

)

≥ p

⇔ Φ(
t− µ

T
x√

τ Tx

) ≥ p

⇔ t− µ
T
x√

τ Tx

≥ Φ−1(p)

⇔ t ≥ µ
T
x + Φ−1(p)

√
τ Tx.

Note, the stochastic value-at-risk problem is minimizing over botht andx. Therefore the smallest threshold

t is equal to the minimum ofµT
x+c

√
τ Tx over the feasible setx ∈ F , where the constantc = Φ−1(p).
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For arbitrary distributions, we can apply Chebyshev’s bound Pr(WT
x ≥ µ

T
x + c

√
τTx) ≤ 1

c2
, or

equivalentlyPr(WT
x < µ

T
x + c

√
τTx) > 1 − 1

c2
. Takingc = 1√

1−p
gives the inequalityPr(WT

x <

µ
T
x + c

√
τTx) > p. This shows the following lemma:

Lemma 23. The stochastic value-at-risk problem with arbitrary distributions reduces to:

minimize µ
T
x +

1√
1− p

√
τ Tx

subject to x ∈ F

In particular, the optimal value of the above concave minimization problem will provide an upper bound of

the minimum thresholdt in the value-at-risk problem with given probabilityp.

We remark that in the absence of more information on the distributions, other than their means and

standard deviations, this is the best one can do to solve the value-at-risk problem.

For an illustration of the difference between the above lemmas, consider again the following shortest

path problem.

Example 24. Suppose we need to reach the airport by a certain time. We wantto find the minimum time (and

route) that we need to allocate for our trip so as to arrive on time with probability at leastp = .95. (That

is, how close can we cut it to the deadline and not be late?) If we know that the travel times on the edges

are normally distributed, the minimum time equalsminx∈F µ
T
x + 1.645

√
τTx, sinceΦ−1(.95) = 1.645.

On the other hand, if we had no information about the distributions, we should instead allocate the upper

boundminx∈F µ
T
x + 4.5

√
τ Tx, since 1√

1−0.95
≈ 4.5 (which still guarantees that we would arrive with

probability at least95%).
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