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Abstract

Following Micali and Valiant [MV07.a], a mechanism is resilient if it achieves its objective

without any problem of (1) equilibrium selection and (2) player collusion. To advance resilient

mechanism design,

• We put forward a new meaningful benchmark for the combined social welfare-revenue per-

formance of any mechanism in truly combinatorial auctions.

• We put forward a new notion of implementation, much more general than the ones used so

far, which we believe to be of independent interest.

• We put forward a new resilient mechanism that, by leveraging the knowledge that the

players have about each other, guarantees at least one half of our benchmark under a very

general collusion model.



1 Introduction

1.1 Background on Combinatorial Auctions and Mechanism Design

Truly Combinatorial Auction Contexts. The context of a truly combinatorial auction is so

described. There are n players (denoted 1 through n) and a set G of m (indivisible) goods for sale.

Each player i has a valuation for the goods —a mapping from subsets of G to non-negative reals—

denoted by TVi. The profile (i.e., a vector indexed by the players) TV is called the true valuation

profile of the auction. An outcome specifies how the goods are sold, that is, it consists of: (1) an

allocation A, that is, a partition of G into n+ 1 subsets, A = (A0, A1, . . . , An), and (2) a price profile

P , that is, a profile of real numbers. We refer to A0 as the set of unallocated goods, and for each

player i, we refer to Ai as the set of goods allocated to i and to Pi as the price of i. Relative to an

outcome (A,P ), the utility of an individual player i is taken to be TVi(Ai)− Pi.

Combinatorial contexts may be hard to work with, and one may want to restrict the players’

valuations or assume that multiple copies of each good are available.1 We say that an auction is truly

combinatorial if the valuations can be arbitrary, that is for any players i and j and any subsets S and

T of G such that (i, S) 6= (j, T ), the value of TVi(S) gives no information about the value of TVj(T ).

Traditional Mechanism Design. A mechanism specifies the strategies available to the players,

and an outcome function mapping a profile of strategies to a final outcome. In a normal-form auction

mechanism M , a player’s (pure) strategy consists of a valuation (also referred to as a bid): essentially,

all players simultaneously submit their bids, and then the outcome function maps the bid profile to

an outcome. Together with an auction context, an auction mechanism defines a game, namely the

auction itself. As for any game, the players try to maximize their utilities, and an equilibrium consists

of a profile of strategies (σ1, . . . , σn) such that, for any player i, as long as i believes that the other

players stick to their equilibrium strategies —that is, that they play the strategy sub-profile σ−i—

then i is better off (or no worse) sticking to σi than switching to any other strategy σ′i available to

him.

Auction mechanisms are designed so that, at equilibrium, the final outcome enjoys a desired

1Typical restricted models for combinatorial auctions include: sub-modularity, namely TVi(S∪T ) ≤ TVi(S)+TVi(T )
for any subsets S and T of the goods; additive-valuation, namely TVi(S) = TVi(g1) + . . . + TVi(gk) whenever S =
{g1, . . . , gk}; free-disposal, namely TVi(S) ≤ TVi(T ) whenever S ⊂ T ; single-mindedness, namely for each i there is a
subset of goods S and a value v such that TVi(T ) = v if T ⊇ S, and 0 otherwise; and unlimited-supply, informally,
there is an unbounded number of copies of each good available, and each player values only sets of distinct goods.
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property that depends on the players’ true valuations. A typical desideratum is maximizing social

welfare, that is returning an outcome (A,P ) maximizing the function sw((A,P ), TV ) defined as∑
i TVi(Ai). Another typical desideratum is maximizing revenue, that is maximizing the function

rev((A,P )) defined as
∑

i Pi.

Resilient Mechanism Design. Mechanism design is not robust, as it suffers from two problems:

equilibrium selection and collusion. Let us explain. Traditionally, mechanism design guarantees a

given property “at equilibrium.” But what if the resulting game has multiple equilibria? Even if the

mechanism were such that the desired property held at each of the possible equilibria, the property

may not be guaranteed at all. Indeed, even in the presence of just two reasonable equilibria, some

of the players may choose their strategies believing that a first equilibrium will be played out, while

others choose theirs believing that a second one will be played out. The resulting “mix-and-match”

strategy profile may not be an equilibrium at all, and thus the property may not hold. Even when one

could guarantee the property in question by a dominant strategy equilibrium, things may go wrong.

In fact, although in this case one could reasonably predict the equilibrium that will be played out by

rational and independent players, any equilibrium is defined solely in terms of single-player deviations.

Now, although no single player may have incentives to deviate from his equilibrium strategy, two or

more players may have plenty of reasons for colluding and jointly deviating from their equilibrium

strategies. Indeed, as shown by [AM06], the famous VCG mechanism, although dominant-strategy

truthful (DST for short) in truly combinatorial auctions, is extremely vulnerable to collusion.2

Following [MV07.a], we call resilient those mechanisms that guarantee their properties without

any equilibrium-selection and no matter how collusive players may behave. The performance of a

resilient auction mechanism is typically defined relative to a benchmark B, that is a function mapping

(sub)profiles of true valuations to real numbers: a mechanism’s performance simply consists of the

“fraction of B it can guarantee.”3 Indeed, relative to B, a mechanism M is preferable to another

mechanism M ′ if, at equilibrium, it guarantees (either in revenue or in social welfare) a higher fraction

2Consider the following auction of 2 goods {a, b} and three players {1, 2, 3}. Player 1 values $2 billion for a and b
together, player 2 values $1 for a, player 3 values $1 for b, and nothing else. If they bid truthfully, then player 1 gets
{a, b} and pays $2, achieving the social welfare $2 billion and the revenue $2. But if player 2 and 3 collude and each
bids $2 billion, then 2 gets a, 3 gets b, and both pay nothing, resulting the social welfare $2 and the revenue 0.

3In a Bayesian setting, where it is assumed that the players’ true-valuation profile is drawn from a known distribution,
it is natural to define the performance of an auction mechanism relative to this distribution —e.g., as its expected
revenue, or social welfare. But when, like in our case no such distribution exists or is known, the only object of
interest is the true-valuation profile TV . And, although unknown to the designer, it is “indirectly” relative to it that
performance must be defined.
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of B(TV ) than M ′. In auctions under a sufficiently powerful collusion model, it is hard to count

on collusive players to generate revenue, social welfare or any other desideratum. Accordingly, the

mechanism’s performance is measured as fraction of B(TVI), where I represents the set of independent

players. That is, one takes the point of view that one must consider himself lucky if all collusive players

spontaneously leave the room, leaving one to conduct the auction with just the independent players

alone. We thus benchmark our performance relative only to the true-valuation subprofile of the

independent players alone.

The Harmonic Revenue Bound. For truly combinatorial auctions, [MV07.a] provides a very

tight upperbound on the revenue obtainable in dominant strategies. Namely, letting Hj denote the

j-th Harmonic number (that is, Hj =
∑j

i=1
1
i
), and letting MSW−? denote the benchmark consisting

of the maximum social welfare after removing the “star” player (that is the one valuing some subset

of the goods more than anyone values any subset)4,they prove the following:

([MV07.a], Theorem 3) For any n,m > 1, and any DST mechanism M , there exists a valuation

profile BID for a truly combinatorial auction with n players and m goods such that the (expected)

revenue generated by M on input BID is at most

MSW−?(BID)

Hmin{n,m} − 1
,

(We note that the above revenue upperbound does not affect restricted combinatorial auctions,

for which many revenue mechanisms have been considered [FPS00, JV01, MS01, GH05, BBM07,

GHK+05, LS05, FGH+02, GHK+06, BBH+05]. We note too that [MV07.a] also prove that their

upperbound is essentially tight, since they can achieve it, in truly combinatorial auctions, by means

of an extremely resilient mechanism —indeed one that not only withstands collusive players, but also

irrational ones.)

The Harmonic revenue bound is very relevant to understand the power available to resilient mech-

anisms. Indeed, although the best way to ban equilibrium-selection problems consists of designing a

DST mechanism, if one wants to guarantee more revenue than a logarithmic fraction of MSW−?, then

the Harmonic revenue bound implies that one has only two alternatives available: either

4For any valuation (sub)profile V , letting msw(V ) = maxA sw(A, V ), and letting the “star” player, ?, be a player
for whom there exists a subset of goods S ⊆ G such that V?(S) ≥ Vj(T ) for any player j and any T ⊆ G, then
MSW−?(V ) = msw(V−?).
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A1. Assume that more knowledge is available (e.g., that the seller has some Bayesian information

about the players’ valuations), or

A2. Adopt a solution concept weaker than dominant strategies.

As we shall see, in this paper we take both alternative, but (1′) without violating the principle of

mechanism design in its purest form —namely that all knowledge resides with the players themselves—

and (2′) without suffering from any equilibrium-selection problems.

1.2 Our Contributions

A New Goal: Social Welfare Plus Revenue (and Resiliently Too!)

An allocation A is economically efficient if its social welfare is at least as high as that of any other

allocation: that is, A = arg maxA sw(A, TV ). Economic efficiency is a very old goal of mechanism

design, and indeed achieved in dominant strategies and in truly combinatorial auctions by the VCG

mechanism (but not in a collusive setting!). The traditional story for motivating economic efficiency

is that of a benevolent government, whose sole desire is that of allocating a set of national resources

to its citizens (or domestic firms) so that they end up in the hands of those who value them the

most. Indeed, no matter who gets the goods, society as a whole is ultimately better off when this

is the case. Since (at least benevolent) governments are supposed to be non-profit organizations,

revenue is not a desideratum here. Of course, economically efficient auctions also impose prices to

the players, but these prices are almost an “after thought,” or a “necessary evil:” they are just means

to guarantee that efficiency will be reached. But what is wrong with revenue even in this setting?

After all, a benevolent government could transform it into roads, hospitals and other infrastructure

from which everyone benefits. From this point of view, a benevolent government might be interested

in maximizing social welfare together with revenue. Thus:

• We wish to design mechanisms that aim at maximizing the sum of social welfare and revenue.

Note that the VCG mechanism is no longer optimal for this “higher” goal: the VCG guarantees it

only “within a fraction of 2.” (Indeed, while it is 100% efficient, it has no revenue guarantees at all,

and revenue can in principle match social welfare.) Moreover, such a factor of 2 is guaranteed only

assuming that all players are rational and independent. In fact, a trivial modification of the example of

[AM06] shows that VCG’s social welfare and revenue can both be essentially 0, despite the presence of

a large maximum social welfare and fierce competition for the goods. And this fact can be interpreted
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as VCG achieving an infinitely small factor of the new goal in the collusive setting. Accordingly, since

the government may be benevolent but its citizens may not, we refine our goal above as

• Designing resilient mechanisms aiming at maximizing the sum of social welfare and revenue.

Notice that, although in a rational setting “revenue should lowerbound social welfare,” a mechanism

aiming at maximizing revenue may not maximize revenue plus social welfare. This is so because, in

order to guarantee revenue in the presence of sufficiently powerful collusive players, the mechanism

may have to give up some efficiency. Consequently, the social welfare of a revenue-oriented mechanism

may exactly equal the revenue generated, so that the total social-welfare-plus-revenue is just twice a

modest revenue. However, by directly aiming at maximizing their sum, a resilient mechanism may

actually perform much better.

Our Knowledge-Leveraging Approach

The maximization of social welfare plus revenue is certainly easy if the mechanism designer is showered

with plenty of information about the players.

If the designer had precise knowledge of TV , the true valuation profile of the players, then he could

return the mechanism that (without even asking for or looking at bids) (1) sets the allocation A to be

arg maxA sw(A, TV ), and (2) offer each player i such that Ai 6= ∅ a take-it-or-leave-it price Pi where

Pi is infinitesimally less than TVi(Ai). Receiving such an offer, each player is better off accepting

it, as it gives him a positive utility anyway. Thus, a perfectly informed auctioneer can essentially

guarantee that the sum of social welfare and revenue equals twice the maximum social welfare, which

is clearly optimal in any mechansim in which no player can be asked to “pay more than he bids.”

However, perfectly informed designers are a rarity if they exist at all.

A less informed auctioneer may have some Bayesian information about the players, that is he may

precisely know the distribution from which the players’ true valuations are drawn. Assuming that this

is the case, the auctioneer may still be capable of producing a mechanism that generates significant

social welfare and revenue. However, to obtain the right Bayesian information the designer may have

to work very hard, trying to extract it from the players before the auction begins. This procedure

may prove very expensive, and sometimes just impossible. In particular, for auctions of a single good,

[CM88] has fully captured the information structure needed for the designer to generate the maximum

possible revenue. But, as concluded by the authors themselves, the assumption that the designer can

acquire the knowledge required to produce the optimal mechanism is unusually strong, making it
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difficult to implement their result.

By contrast, we assume that

• The designer has no knowledge whatsoever about the players, but

• The players have some knowledge about each other.

That is in our setting at least some player not only knows his own valuation, but also has some

information about the other players’ valuations. Note that this setting is quite compatible with

mechanism design in its purest form, in that we do assume that all knowledge resides with the

players themselves. Our assumption about the players is quite realistic: people routinely have some

information about their competitors. As for the designer, although everyone is bound to have some

knowledge, more often than not this knowledge may not be sufficient for the goal at hand. Whatever

the case may be, however, it is certain that

If we can construct mechanisms that (1) are resilient against a broad collusion model and (2)

guarantee reasonable social welfare plus revenue without assuming any special knowledge of the

designer, then such mechanisms can be employed with confidence in most realistic settings.

Construct such mechanisms precisely is what we plan to do.

Our Collusion Model

To be on the safe side, we envisage a very adversarial collusion model. In particular, we let the players

collude in total secrecy, and with perfect coordination (for instance via secret binding contracts, if

they so want). Further, we put no restrictions on the number of collusive players, nor on the number of

collusive sets in which they may partition themselves. We also let each collusive set try to maximize its

own collective utility function (rather than —say— the sum of the individual utilities of its members).

We do, however, impose a minimal restriction on such collective utility functions in order to “prevent

collusive players from becoming irrational” —which would be a totally different ball game. (Indeed,

the difference between a group of crazy players bidding in a crazy manner and a group of rational

players bidding so as to maximize a crazy collective utility function is quite vague.)

Our Solution Concept

As already announced, our collusion-resilient mechanism is not dominant-strategy truthful. Yet, it

does not suffer from equilibrium-selection problems. The reason for this is very simple: we rely on an

equilibrium-less solution concept. In essence, our mechanism guarantees that, as long as each player
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selects a strategy surviving iterated elimination of weakly dominated strategies, our goal is achieved.

Thus, we do not rely on the players’ beliefs, only on their rationality. Nor do we rely on the players’

joint selection of a profile of strategy forming an equilibrium: any profile of “not-dumb” strategies

will do. Thus, while we loose predictability about the profile of strategies ultimately played out, we

do not loose meaningfulness: after all such predictability is a means to an end, not the end itself!

We note that in our setting the process of iterated elimination of weakly dominated strategies

is more lax (that is, lets more strategies survive) than in the classical setting, where all players are

rational and independent. Indeed, since we are also dealing with players who secretly collude and

optimize secret collusive utility functions, it is hard for a player to “dismiss more than just a handful

of strategies at each iteration.”

Our Result

As usual in resilient mechanism design, we are “off the hook” if all players are collusive, but are

responsible for significant social welfare and revenue as long as even a single rational and independent

player exists. We provide a probabilistic mechanism that, in surviving strategies, guarantees that the

sum of social welfare and revenue is within a factor of 2 of the following benchmark: the revenue that

the “most informed independent player could guarantee if he were in charge of selling the goods.” In

essence, although the designer is clueless while the players are quite informed about each other, our

mechanism lets a totally ignorant designer to perform as well as the most informed player.

The difficulty for our mechanism comes from the fact that we do not control the knowledge that

the players may have. That is, we do not assume that the players only have the knowledge useful

to our mechanism. But we let them have arbitrary knowledge, and thus —whether independent or

collusive— they will use their knowledge for their selfish purposes, which may be quite antagonistic

to our goals and the desired mode of operation of our mechanism.

Let us now proceed a bit more formally.

2 Our Knowledge Benchmark

As mentioned, we envisage a setting where the players, but not the designer, have “useful knowledge.”

In a combinatorial auction in which a government wishes to generate revenue from —say— selling 8

licenses to 8 wireless companies, useful knowledge naturally is the revenue that each of the wireless
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companies could generate if it were to sell the licenses to its peers in a personalized sale: that is, by

offering a separate subset of the licenses to each of the other companies in a take-it-or-leave-it price.

We then take the position that

Any of the 8 wireless players could do a better job in selling the 8 licenses to its other 7 peers

than the government could in selling the licenses himself to all 8 players.

Accordingly, a reasonable benchmark for the government might be the minimum revenue that one of

the 8 wireless players could guarantee. A better benchmark, could be the revenue that a randomly

selected company among the 8 ones can guarantee. A better yet benchmark is the maximum revenue

that one of 8 wireless companies could guarantee.

Our Main result is that the sum of social welfare and revenue can achieve this benchmark within

a factor of 2, in a very adversarial collusion model.5 In so doing, however, we do not want to restrict

the players to have just the knowledge relevant to our benchmark, thus facilitating our mechanisms.

We view each player i of a combinatorial auction as having not only precise internal knowledge

of his own TVi, but also some external knowledge about TV−i. This view does not imply any loss of

generality, since a player’s external knowledge could be “empty.”

The external knowledge we need for our benchmark essentially consists of the “best way known

to a player of selling the goods to the other players.” But if we base our benchmark on this natural

knowledge, we should also refrain from assuming that this is the only type of knowledge the players

have. Such an assumption might very well be very convenient for designing mechanisms achieving

our benchmark, but risks of being quite unrealistic and diminish the meaningfulness of our results.

Indeed, the players may have all kind of knowledge in addition to ways of selling the goods, and

whatever mechanism we choose, in the resulting game they will rationally choose their actions based

on all the knowledge available to them. Therefore, to enhance the meaningfulness of our results, we

should aim at achieving our benchmark, no matter what other additional knowledge the players may

have.

Let us now see, first intuitively and then more formally, how our benchmark can be derived from

any kind of external knowledge.

5As for revenue alone, our benchmark is the second highest revenue known to the 8 wireless players. In a second
result, we show that this benchmark too can be achieved within a factor of 2, in the same adversarial model.
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2.1 An Intuitive Discussion

General vs. Relevant External Knowledge. We distinguish two types of external knowledge for

each player i: (1) his general external knowledge, denoted by GKi, which the player uses to rationally

choose his actions, and (2) his relevant external knowledge, denoted by RKi, derived from GKi and

used to define our benchmark. We insist that GKi be genuine, and that RKi be (deduced from and

thus) consistent with GKi. Accordingly, RKi is somewhat redundant, but we find it convenient to

our analysis specifying it explicitly. Given our auction setting, the relevant knowledge RKi consists

of the “best guaranteed way known to i of selling the goods to the other players.” Let us stress again,

however, that in our model no mechanism designer has any idea about any player’s general or relevant

external knowledge!

Examples. For a first example, GKi may consist of a subset of V−i, the set of all possible valuation

sub-profiles for the players in −i, such that TV−i ∈ GKi. Here GKi represents the set of possible

candidates, in i’s opinion, for the other players’ true valuations. Such GKi is genuine in the sense that

one of its candidates is the “right one.”6 In this example, RKi is deduced from GKi in two conceptual

steps. First, one computes all outcomes (A,P ) feasible for GKi, that is the outcomes such that, for

all players j ∈ −i and all valuations subprofiles V ∈ GKi, Pj ≤ Vj(Aj). Then, the relevant external

knowledge RKi consistent with GKi is the outcome with maximum revenue among the outcomes

feasible for GKi. (Thus, if GKi = V−i then RKi is the null outcome.)

As for another example, GKi may consist of a probabilistic distribution over V−i that assigns

positive probability to the actual TV−i. In this case, RKi is the outcome with the maximum revenue

among all those outcomes consistent with support of GKi.

As for a third example, GKi may consist of a “partial” probability distribution over V−i. For

instance, starting with a distribution D assigning positive probability to the actual subprofile TV−i,

GKi may be derived from D as follows: when the probability pV of each subprofile V ∈ V−i is

positive, then pV is replaced with a subinterval IV of [0, 1] that includes pV . (IV = [0, 1] is interpreted

as i knowing “nothing” about profile V .) In this case, the outcomes consistent with GKi are those

consistent with the set of subprofiles V whose subinterval does not coincide with [0, 0]. And among

such outcomes, RKi is the one whose revenue is maximum.

6Notice that GKi = V−i expresses the fact that i knows “nothing” about TV−i. Also notice that a proper choice
of GKi can precisely express pieces of i’s external knowledge such as “player h’s valuation for subset S is larger than
player j’s valuation for subset T .”
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Deriving Our Benchmark. Having (informally) presented the general and relevant knowledge of

each player i, GKi and RKi, as intrinsic to i, we have in fact presented two intrinsic profiles for

any combinatorial auction: the general-knowledge profile, GK, and the relevant-knowledge profile

RK. Without loss of generality, alongside with the true-valuation profile TV , GK and RK can

be considered integral components of the original context of any combinatorial auction. It is thus

natural to consider a function mapping each RK to non-negative number, and thus a knowledge-based

benchmark. The function chosen in this paper is the one that, given the subprofile RKS of any subset

of players S, returns the maximum revenue of the outcomes in RKS.

Following [MV07.a], our corresponding benchmark is then defined to be this function evaluated

at the subprofile RKI , the relevant external knowledge of the independent players. Restricting our

benchmark to the independent players expresses that we do not count on collusive players to set our

goals. Indeed, we would actually consider ourselves fortunate if all collusive players “spontaneously

leave the room,” letting us conduct our auction with the independent players alone!

2.2 A More Formal Presentation

Let us now define a bit more formally general and relevant knowledge, and then our benchmark.

Definition 1. (Feasible External Outcomes.) We say that an outcome (A,P ) is a feasible exter-

nal outcome for a player i, relative to a valuation profile V , if (1) Ai = ∅ and Pi = 0 and (2) ∀j 6= i,

Pj is 0 if Aj = ∅, and a positive number < Vj(Aj) otherwise.

Notice that a feasible external outcome (A,P ) for i, relative to the true-valuation profile TV ,

corresponds to a simple and guaranteed way of selling the goods to the players in −i. Namely, offer

the subset of goods Aj to player j for price Pj: if j accepts the offer, he will receive the goods in Aj

and pay Pj; else j pays nothing and receives no goods. Such a way of selling the goods is guaranteed

to succeed if the players are rational. Indeed, since each non-empty subset of goods is offered at an

“attractive” price, each player offered some goods should rationally accept the offer.

Definition 2. (Original Context) The original context of a combinatorial auction is a triple of

profiles, (TV,GK,RK), where for each player i:

• TVi is i’s true valuation;

• GKi is the information known to i about TV−i;
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• RKi is the outcome with maximum revenue among all feasible external outcomes for i, relative

to all valuation profiles V consistent with GKi.

We refer to GKi as i’s general external knowledge, and to RKi as i’s relevant external knowledge.

Notice that our relevant external knowledge is non-Bayesian. Indeed, although the general external

knowledge of a player i may naturally arise in a Bayesian setting, RKi always is a way for i to sell

the goods to the other players that succeeds with probability 1 when the players are rational.

Definition 3. We let MEW, the maximum external welfare, to be the function so defined: for any

relevant-external-knowledge subprofile RKS,

MEW(RKS) = max
i∈S

rev(RKi).

Letting I denote the set of all independent players, we define our benchmark to be MEW(RKI).

Note that our benchmark is very demanding. To a designer totally ignorant about the players,

it imposes the goal of achieving the same efficiency and/or revenue achievable by the best informed

independent player (if he were in charge of selling of goods to the others). Therefore, the question is not

whether our benchmark is meaningful, but whether there exists a mechanism capable of guaranteeing

a meaningful fraction of our benchmark.7 As we shall see, we construct mechanisms guaranteeing a

fraction 1/2 of MEW(RKI).

3 Our Collusion Model

Without collusion, each player i is assumed to be individually rational, that is acting independently

so as to maximize his individual utility function ui, mapping each possible outcome (A,P ) to the real

value TVi(Ai)− Pi.

With collusion, we allow for the possibility that, starting with an original context (TV,GK,RK),

a subset C of two or more players secretly form —for whatever reason— a collusive set. Such C is

assumed to be collectively rational: that is, its members are assumed to coordinate their actions so

as to maximize —based on their own “collective” knowledge, kC— their own utility function, uC .

7In light of our benchmark, a mechanism should ideally “force” all collusive players to bid the null valuation, and all
independent players to bid truthfully their relevant external knowledge, so as to guarantee a fraction 1 of MEW(RKI).
More realistically, a mechanism should succeed (somehow) to “filter out” the bids of the collusive players, and guarantee
a reasonable fraction of our benchmark.

12



As usual, a collusive set C has no incentives to diminish the utilites of other players, and any two

outcomes in which each of its members receives the same set of goods and pays the same prices are

the same from C’s point of view.

Definition 4. Given an original context (TV,GK,RK), a collusive set consists of

• A subset C of two or more players;

• A binary string kC, encoding information about the subprofile TV−C; and

• A function uC mapping any outcome to a real number such that, for any two outcomes (A,P )

and (A′, P ′), uC(A,P ) = uC(A′, P ′) whenever Ai = A′i and Pi = P ′i for any player i ∈ C.

We refer to uC as C’s collective utility function, and to kC as C’s collective external knowledge.

The above definition of a collusive set C is purposely a minimalist one (so as to make our results

more widely applicable), but does provide C with all it needs to maximize its own collective utility.

To specify a collusive model lots of questions need to be answered; in particular: how many collusive

sets there may be? How are collusive sets formed? How does a collusive set coordinate the actions of

its members? How does a collusive set settles on its collective knowledge? How does it settle on its

utility function?

Perhaps working under specific answers to the above questions would enable one to obtain stronger

results, but in this paper we genuinely aim at maximizing the meaningfulness and applicability of our

results by achieving our benchmark in a very general collusive model. In particular,

• Our results do not depend on how many collusive sets there may be, but we insist that collusive

sets be disjoint. Else, speaking of collective rationality would become quite more problematic.

• Our results do not depend on how or why collusive sets are formed. Perhaps each collusive set

C was brought into existence by the Devil, who corrupted C’s members and forced them to

cooperate in maximizing uC . Perhaps C was the product of an initial negotiation. Whatever the

case, even if it came about in some “irrational” way, C must be collectively rational once formed.

• Our results do not depend on how the members of a collusive set C coordinate their actions.

Maybe it is in their interest to follow a common plan, or they have entered a secret binding

agreement specifying how to act and how to make side-payments to one another. (In any case,

as we shall see, our results —perhaps counterintuitively— hold whether or not collusive sets can

guarantee that their members stick to their coordinated strategies.)
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• Our results do not depend on how the collective external knowledge of C arises. Indeed, there

is no guarantee that kC is related in a specific way to the individual external knowledge of C’s

members. For instance, if C came into existence from a negotiating process, a player i might

have been welcomed in C only because he —taking some chances!— successfully boasted a general

external knowledge GKi more accurate than that he really had.

• Also, differently from an individual utility functions ui, we do not constraint a collective utility

function uC to be of any specific form. It might be reasonable to expect that uC is related to

TVC , that is to the individual utilities of its members, but such relationship may not be explicitly

known to C’s members. For instance, assume that C was formed via a negotiating process. Then,

not knowing what the results of this negotiation might be, C’s players might have been reluctant

to reveal their true valuations for the good for sale to each other. However, they might have

been able to agree on assigning a “formal” collective value to each possible outcome, and then

maximizing the resulting utility function. This said, it is of course possible that uC may be the sum

of the individual utilities of C’s members, that is, uC(A,P ) =
∑

i∈C TVi(Ai)−Pi. As for another

possibility, the players may agree to maximize the last uC , but then make side payment to each

other so as to make the result more fair to all. (Needless to say, such an agreement may induce

the players to lie about their true valuations, so that, rather than maximizing
∑

i∈C TVi(Ai)−Pi,

they end up maximizing another function only loosely related to it!) As for a totally different

example, uC maycoincide with the individual utility function of a specific member of C (who

might have convinced the others to so cooperate with him in return of a fixed payment).

However, without going as far as demanding that a collective utility function uC be of a specific form,

some general constraints on uC are necessary to prevent modeling C’s members as irrational.8 The

restriction on collective utility functions envisaged in our model is “individually monotonicity.” By

this we mean that, fixing the allocations and the prices of all players in C except for some player i,

C’s collective utility cannot but increase with i’s individual utility. Let us now be more precise.

Definition 5. (Individually Monotone Utilities) We say that the collective utility function uC

of a collusive set C is individually monotone if for all players i ∈ C, and for all pairs of outcomes

(A,P ) and (A′, P ′) such that (Aj, Pj) = (A′j, P
′
j) whenever j ∈ C \ {i}, we have:

uC(A,P ) ≥ uC(A′, P ′) if and only if TVi(Ai)− Pi ≥ TVi(A
′
i)− P ′i .

8Indeed, irrational players may be modeled —see [MV07.a]— as taking arbitrary actions, and for any tuple of actions
actually taken by the members of C, one might be able to find an ad hoc collective utility function uC so as to rationalize
their actions as maximizing that uC .
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A simple example of an individually monotone uC consists of the sum of the individual utilities

of C’s members.9 (For a more eccentric example, let uC be the sum of: the individual utility of C’s

first member, half of the utility of C’s second member, a third of the individual utility of C’s third

member, and so on.)

Individual monotonicity is the only restriction envisaged in our results. In particular, therefore,

our results are independent of the collusive sets’ collective knowledge. This perhaps surprising inde-

pendence is due, as we shall see, both to individual monotonicity and our choice of mechanisms.

Let us now present our collusive contexts more precisely. For uniformity of presentation, we specify

the collusive players via a partition C of the players: namely, a set in C ∈ C is collusive if it has

cardinality greater than 1, and a player i is independent if his collusive set has cardinality 1 —that

is, if {i} ∈ C. (This way each player i, collusive or not, belongs to a single set of C, denoted by Ci.)

Definition 6. (Individually Monotone Collusive Contexts) In a combinatorial auction, a col-

lusive context C is a tuple (TV C , GKC , RKC ,CC , IC ,KC ,UC ) where

• (TV C , GKC , RKC ) is the original context of the auction.

• CC is a partition of the players.

• IC is the set of all players i such that {i} ∈ CC . (Set IC is explicitly specified for convenience

only.)

• KC is a vector of strings indexed by the subsets in CC : for each C ∈ CC , KC
C is the collective

external knowledge of C, where KC
{i} = GKC

i whenever i ∈ IC .

• UC is a vector of functions indexed by the subsets in CC : for each subset of players C ∈ CC , UC
C

is the collusive utility function of C, where UC
{i}((A,P ), TV C ) = TV C

i (Ai)− Pi whenever i ∈ IC .

We say that a collusive context C is individually monotone if UC
C is individually monotone for any

C ∈ CC .

We refer to a player in IC as independent, to a player not in IC as collusive, to a subset in CC

with cardinality > 1 as a collusive set, and to UC as the utility vector of CC . We use the term agent

to denote either an independent player or a collusive set. For any player i, we denote by Ci the set in

CC to which i belongs.

9Notice that a collusive set with such collective utility function should not be construed to be an example of “shilling,”
because in our setting the goods —as for a spectrum auction— are not necessarily transferable.
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Definition 7. (Collusive Auctions.) A collusive auction is a pair (C ,M), where C is a collusive

auction context, and M an auction mechanism. Such an auction is individually monotone if so is C .

4 Our Solution Concept

4.1 Intuition

Resilient mechanisms in particular demand solution concepts immune to any equilibrium-selection

problem. The best such concept, in a sense, is dominant-strategy solvability, since in this case there is

“a single equilibrium to be predicted” and no one has to rely on the rationality of the others. However,

in light of the upper-bounds of [MV07.a] and [MV07.b] (holding for all dominant-strategy truthful

mechanisms), to guarantee better performance we must explore other solution concepts. Short of

this, another “safe” way to predict which equilibrium will be played is when the game is dominance

solvable, that is, when after the iterative procedure in which at each round all dominated strategies

are removed, only a single strategy profile survives. Our mechanisms do not yield such games, but

guarantee an essentially equivalent property.

Implementation in Surviving Strategies. Assume that, after iteratively removing dominated

strategies, plenty of surviving strategies remain for each agent. Then, one cannot predict with certainty

which profile of strategies will be actually played. But, to us, in mechanism design predictability of

the actually played strategies is a useful mean to an end, not the goal itself. To guarantee that a

mechanism satisfies a desired property P it suffices to prove that

P holds for any possible profile of surviving strategies.

This is indeed the notion of implementation delivered by our mechanisms. We call it implementation

in surviving strategy. (Note that, even in a non-collusive setting, our notion is more general than that

of implementation in undominated strategies, as proposed by [BLP06].)

Implementation in Σ1/Σ2
I Strategies. Experience seems to indicate that, in practice, there are

different levels of rationality; that is, that many players are capable of completing the first few

iterations of elimination of dominated strategies, but fail to go “all the way.” Accordingly, one should

prefer mechanisms that guarantee their desired property for any vector of strategies surviving just

the first few iterations. This is exactly the case for our mechanisms.
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Specifically, we envisage the following two-round elimination process. First, each agent (i.e.,

an independent player or a collusive set) removes all his weakly dominated strategies. Then, each

independent player eliminates all strategies which become weakly dominated after the first round of

elimination is completed. Accordingly, our solution concept envisages each collusive player to choose

his final strategy based only on his own rationality, and each independent player based on his own

rationality as well as a modicum of rationality for the other players. Since the set of strategies surviving

the first iteration is often referred to as Σ1, and the set of those surviving the first two iterations is

commonly referred to as Σ2, we call this refinement of our solution concept implementation in Σ1/Σ2
I

Strategies. For simplicity, we formalize just this latter refinement of our solution concept, and only

for our auction setting.

The Difficulties with Collusion. We believe implementation in surviving and/or Σ1/Σ2
I strategies

to be of independent interest, and we expect it to play a larger role in perfect-information and non-

collusive settings. In such settings the notion is significantly easier, because it is easy to determine

which strategies are dominated. In our case, instead, whether a strategy is dominated depends on such

additional factors as the collusive sets actually present and their utility functions, factors about which

no information is publicly available. This complicates our notion and the analysis of our mechanism.

4.2 Formalization

Our mechanisms are of a very simple form. At each decision node all players act simultaneously, and

their actions become public as soon as they are chosen. Also, our mechanism are probabilistic, and

their coin tosses too become of public domain as soon as they are made. Since in this paper we are

considering collusion to be illegal (and thus secret), our mechanisms specify only the strategies of

individual players. Note that, denoting the set of all deterministic strategies of a player i by Σ0
i , the

set of all strategy profiles by Σ0, the set of all deterministic collective strategies of a collusive set C

by Σ0
C , the set of all deterministic strategy vectors of a collusive context C by Σ0

C , and the Cartesian

product by
∏

, we have

Σ0 =
∏

i Σ
0
i , Σ0

C =
∏

i∈C Σ0
i , and Σ0

C = Σ0.10

To formalize implemention in Σ1/Σ2
I strategies, we start by adapting the standard definition of

dominated and undominated strategies to collusive auctions.

10Indeed, for all C we have Σ0
C =

∏
C∈CC Σ0

C =
∏

C∈CC

∏
i∈C Σ0

i = Σ0.
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Definition 8. (Dominated and Undominated Strategies.) In a collusive auction (C ,M), we

say that a deterministic strategy σA of an agent A is dominated over a set of strategy vectors Σ′ if

σA ∈ Σ′A and there exists σ′A ∈ Σ′A such that

1. ∀τ−A ∈ Σ′−A, E[uA(M(σA t τ−A))] ≤ E[uA(M(σ′A t τ−A))].

2. ∃τ−A ∈ Σ′−A such that E[uA(M(σA t τ−A))] < E[uA(M(σ′A t τ−A))].

Else, we say that σA is undominated over Σ′.

Remark. A has no conceptual difficulty in determining whether σA is dominated over Σ′. This is

so despite the facts that dominated strategies are defined for collusive auctions (C ,M), and that no

agent A is assumed to have knowledge of the overall collusive context C . It suffices for A to know its

own (collective or individual) utility function and the strategies of all other agents specified by Σ′.11

Definition 9. (Compatibility.) We say that a collusive context C is compatible

• with an independent player i if (1) i ∈ IC , (2) TVi = TV C
i , (3) GKi = GKC

i , and (4) RKi =

RKC
i

• with a collusive set C if (a) C ∈ CC and (b) UC
C is C’s collective utility function.

Definition 10. (Σ1 Strategies.) Fix a mechanism M . Then, if A is an agent in a collusive auction

(C ,M), then Σ1
A,C denotes the set of deterministic strategies of A undominated over Σ0

C .

Remarks.

• Σ1
A,C is the same for any C compatible with A. In fact, as noted, Σ0

C = Σ0 for all C . Accordingly,

we shall more simply write Σ1
A instead of Σ1

A,C .

• A can compute Σ1
A. In fact, A can determine whether any of its strategies σA is dominated over

any given set of strategy vectors Σ′, and the set Σ0 is publicly known because it solely depends

on the publicly known mechanism M . (In a sense, to compute Σ1
A, it suffices for A to assume

that all other players are independent.)

• For any collusive context C , the set of strategy vectors surviving the first round of elimination of

dominated strategies coincides with
∏

C∈CC Σ1
C.

11Note that something about the actual collusive sets can be deduced from Σ′, but not enough to precisely know
the collective utility functions of the other agents. But note too that this knowledge is inessential for A to determine
whether σA is dominated over Σ′.

18



•
∏

C∈CC Σ1
C is crucially dependent on C , although each Σ1

C only depends on C but not on the

actual collusive context compatible with C.

Definition 11. (Σ2
I Strategies for individually monotone context.) Fix a mechanism M . If

i is an independent player in an individually monotone collusive auction (C ,M), then we denote by

Σ2
i,C the set of all strategies σi ∈ Σ1

i undominated over
∏

C∈CC Σ1
C. We define Σ2

i the union of Σ2
i,C

for all C compatible with i.

Remarks.

• Without demanding individual monotonicity, we would have Σ2
i = Σ1

i .

• Σ2
i depends solely on i. Thus, i can determine Σ2

i whether or not he believes that the context

is collusive (indeed, i may have been involved in some preliminary negotiation about colluding),

and no matter what he believes about such a possible collusive context.

Definition 12. (Σ1/Σ2
I Plays.) Fix a mechanism M . We say that a strategy vector σ is a Σ1/Σ2

I

play of an individually monotone collusive auction (C ,M) if

σ ∈
∏
i∈IC

Σ2
i ×

∏
C∈CC ,|C|>1

Σ1
C .

Remark. Although each Σ2
i depends only on i and each Σ1

C only on C (and not on the actual

collusive context), the Σ1/Σ
2
I plays of (C ,M) crucially depend on C .

Definition 13. (Implementation in Σ1/Σ2
I Strategies) Let P be a property over auction outcomes,

and M an auction mechanism. We say that M implements P in Σ1/Σ2
I strategies if, for all individually

monotone collusive contexts C , and all Σ1/Σ2
I plays σ of the auction (C ,M), P holds for M(σ).

Note that, although σ is a vector of deterministic strategies, M may be probabilistic. In this case,

M(σ) is a distribution over outcomes, and P a property of outcome distributions.

5 Our Result

Our result essentially states that there exists an auction mechanism that, in Σ1/Σ2
I strategies, im-

plements the following property: the sum of the expected social welfare and the expected revenue is

at least half of our knowledge benchmark —that is, MEW(RKI)
2

. Let us now formalize and prove this

statement. Since our proof is constructive, we start by presenting our mechanism.
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5.1 Our Mechanism

Our mechanism is probabilistic and of extensive-form. It consists of three stages: two player stages

followed by a final mechanism stage, where the mechanism produces the final outcome (A,P ).

In the first stage, each player i publicly (and simultaneously with the others) announces (1) a

canonical outcome Ωi for the players in −i; and (2) a subset of goods Si. (Allegedly, Ωi is actually

feasible, and indeed represents the “best way known to i to sell the goods to the other players.”

Allegedly too, Si is i’s favorite subset of goods, that is the one i values the most.)

After the first stage, everyone can compute (a) the revenue Ri of Ωi for each player i, (b) the

highest and second highest of such revenues, respectively denoted by R? and R′, and (c) the player

whose announced outcome has the highest revenue —the lexicographically first player in case of “ties”.

Such player is called the “star player” and is denoted by “?”. (Thus, ? ∈ N .)

In the second stage, each player i, envisioned to receive a non-empty set of goods (for a positive

price) in Ω?, publicly (and simultaneously with the other such players) answers yes or no to the

following implicit question: “are you willing to pay your envisioned price for your envisioned goods?”

(The players not receiving any goods according to Ω? announce the empty string.)

After the second stage, for each asked player i who answers no, the star player is punished with a

fine equal to the price he envisioned for i.

In the third and final stage, the mechanism flips a fair coin. If Heads, S? is given to the star player

at no additional charge (and thus player ? pays nothing altogether if no player says no in the second

stage). If Tails, (1) the goods are sold according to Ω? to the players who answered yes in the second

stage, (2) all the revenue generated by this sale is given to the star player, and (3) the star player

additionally pays R′ to the seller/auctioneer. (Thus, the star player pays only R′ if he has not been

fined.) A more precise description of our mechanism is given below. In it, for convenience, we also

include three “variable-update stages” and mark them by the symbol “•”. In such stages the contents

of some public variables are updated based on the strings announced so far.

Mechanism M

• Set Ai = ∅ and Pi = 0 for each player i.

1. Each player i simultaneously and publicly announces (1) a canonical outcome for −i, Ωi =

(αi, πi), and (2) a subset Si of the goods.
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• Set: Ri = rev(Ωi) for each player i, ? = arg maxiRi, and R′ = maxi 6=?Ri.

(We shall refer to player ? as the “star player”, and to R′ as the “second highest revenue”.)

2. Each player i such that α?i 6= ∅ simultaneously and publicly announces YES or NO.

• For each player i who announces NO, P? = P? + π?i .

3. Publicly flip a fair coin.

– If Heads, reset A? = S?.

– If Tails: (1) reset P? = P? + R′; and (2) for each player i who announced YES in Stage 2,

reset: Ai = α?i , Pi = π?i , and P? = P? − Pi.

Comment. The outcome (A,P ) may not be canonical, as the price of the star player may be non-zero

even though he may receive nothing.

5.2 Analysis of Our Mechanism

In what follows, all (individual, collective and vectors of) strategies are relative to mechanism M.

Lemma 1. ∀ independent players i and ∀σi ∈ Σ1
i : if i 6= ? and α?i 6= ∅ after Stage 1, then in Stage 2

1. i answers YES whenever TVi(α
?
i ) > π?i , and

2. i answers NO whenever TVi(α
?
i ) < π?i .

Proof. We restrict ourselves to just prove, by contradiction, the first implication (the proof of the

second one is totally symmetric). Define the following properties of an execution of M:

P : i 6= ?, α?i 6= ∅, and TVi(α
?
i ) > π?i .

P : i = ?, or α?i = ∅, or TVi(α
?
i ) ≤ π?i .

Assume that there exist an independent player i and a strategy profile σ ∈ Σ0 such that (1)

σi ∈ Σ1
i ; (2) σ’s execution satisfies P ; and (3) i answers NO. Then, consider the following alternative

strategy for player i:
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Strategy σ′i

Stage 1. Run σi (with stage input “1” and private inputs TVi and GKi) and announce Ωi

and Si as σi does.

Stage 2. If P , run σi and answer whatever σi does.12

If P , answer YES.

The first implication of Lemma 1 specifies that i 6= ? and TVi(α?
i ) > π?

i . However, a strategy must be
specified in all cases, and thus σ′i must be specified also when P.

We derive a contradiction by proving that σi is dominated by σ′i over Σ0, which implies that σi 6∈ Σ1
i .

Notice that E[ui(M(σi t τ−i))] = E[ui(M(σ′i t τ−i))] for all subprofiles τ−i ∈ Σ0
−i such that the

execution of σi t τ−i either satisfies (1) P , or (2) P and i answers YES. (This is so because for such

τ−i the executions of σi t τ−i and σ′i t τ−i coincide, and so do their outcomes before M’s coin toss.)

Therefore to prove that σi is dominated by σ′i over Σ0, it suffices to consider the strategy subprofiles

τ−i ∈ Σ0
−i such that the execution of σitτ−i satisfies P and i answers NO. (Notice that, by assumption,

τ−i = σ−i is one such subprofile.)

For all such τ−i, observe that, since σ′i coincides with σi in Stage 1, the outcome profile Ω is the

same in the executions of σi t τ−i and σ′i t τ−i. Accordingly, the star player too is the same in both

executions. Since (by hypothesis) the execution of σitτ−i satisfies P , so does the executions of σ′itτ−i.

We now distinguish two cases, each occurring with probability 1/2.

(1) M’s coin toss comes up Heads.

In this case, because only the star player receives goods, we have

ui(M(σi t τ−i)) = ui(M(σ′i t τ−i)) = 0.

(2) M’s coin toss comes up Tails.

In this case, because by hypothesis, (1) TVi(α
?
i ) > π?i , (2) player i answers NO in the execution

of σi t τ−i and (3) i answers YES in the execution of σ′i t τ−i, we have

ui(M(σi t τ−i)) = 0 and ui(M(σ′i t τ−i)) = T V i(α?i )− π?i > 0.
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Combining the above two cases yields

E[ui(M(σi t τ−i))] < E[ui(M(σ′i t τ−i))].

Therefore σi is dominated by σ′i over Σ0.

Lemma 2. ∀ individually monotone collusive sets C and ∀σC ∈ Σ1
C: if ? 6∈ C after Stage 1, then for

all players i in C

1. i answers YES whenever α?i 6= ∅ and TVi(α
?
i ) > π?i , and

2. i answers NO whenever α?i 6= ∅ and TVi(α
?
i ) < π?i .

Proof. We again restrict ourselves to just prove the first implication, and proceed by contradiction.

Assume that there exist an individually monotone collusive set C, a player i ∈ C, and a strategy

vector σ such that σC ∈ Σ1
C , σ−C ∈ Σ0

−C , and in σ’s execution i answers NO and the following

property holds:

Pi,C : ? 6∈ C, α?i 6= ∅, and TVi(α
?
i ) > π?i .

We denote by Pi,C the negation of this property. That is,

Pi,C : ? ∈ C, or α?i = ∅, or TVi(α
?
i ) ≤ π?i .

Consider the following alternative collective strategy for C.

Strategy σ′C

Stage 1. Run σC and announce Ωj and Sj as σC does for all j ∈ C.

Stage 2. If Pi,C , continue running σC and answer whatever σC does for all j ∈ C.

If Pi,C , continue running σC , answer YES for i and whatever σC does for all j ∈ C \ {i}.

We derive a contradiction by proving that σC is dominated by σ′C over Σ0, which implies σC 6∈ Σ1
C .

Similar to Claim 1, to prove that σC is dominated by σ′C over Σ0, it suffices to consider all strategy

sub-vectors τ−C ∈ Σ0
−C such that the execution of σC t τ−C satisfies Pi,C and i answers NO. (Note

that by hypothesis, τ−C = σ−C is one such strategy sub-vector.) For each such τ−C , for all j ∈ C \{i},

we have (Ma(σC t τ−C)j,Mp(σC t τ−C)j) = (Ma(σ
′
C t τ−C)j,Mp(σ

′
C t τ−C)j) whenever the final coin

toss ofM is the same. Thus, due to C’s individual monotonicity, to show that E[uC(M(σCtτ−C))] <

E[uC(M(σ′C t τ−C))] it suffices to prove that ui(M(σC t τ−C)) = ui(M(σ′C t τ−C)) when the coin

toss of M comes up Heads, and that ui(M(σC t τ−C)) < ui(M(σ′C t τ−C)) when the coin toss of M

comes up Tails. This proof is analogous to the corresponding one of Claim 1, and is ignored.
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Lemma 3. ∀ independent player i and ∀σi ∈ Σ2
i , σi is such that

1. (i does not “under-bid”:) i announces Ωi such that rev(Ωi) ≥ rev(RKi).

If i 6= ? and α?i 6= ∅, then

2. i answers YES whenever TVi(α
?
i ) > π?i ; and

3. i answers NO whenever TVi(α
?
i ) < π?i .

Proof. Properties 2 and 3 follow directly from Lemma 1 and the fact that Σ2
i ⊆ Σ1

i .

We prove properties 1 by contradiction. Assume that ∃ independent player i and ∃σi ∈ Σ2
i such

that in Stage 1 of σi, i announces Ωi such that rev(Ωi) < rev(RKi). Now consider the following

alternative strategy for player i.

Strategy σ̂i

Stage 1. Announce an outcome Ω̂i = (α̂i, π̂i) and a subset of goods Ŝi computed as follows:

• Run σi so as to compute its outcome Ωi.

• Compute ε = rev(RKi)− rev(Ωi)

• Set (α̂i, π̂i) = RKi;

• ∀j ∈ −i such that α̂ij 6= ∅, set π̂ij = π̂ij(1− ε
2·rev(RKi)

).

• Set Ŝi = arg maxS⊆G TVi(S).

Stage 2. Announce YES, NO, or the empty string as follows:

• If ? = i or α?i = ∅, announce the empty string.

Else, announce YES if TVi(α
?
i ) ≥ π?i , and announce NO if TVi(α

?
i ) < π?i .

We derive a contradiction in two steps, that is by proving two separate claims: namely, (1) σ̂i ∈ Σ1
i ,

and (2) σi is dominated by σ̂i over Σ1
C for all individually monotone collusive contexts C compatible

with i. The second fact of course contradicts the assumption that σi ∈ Σ2
i .

Claim 1: σ̂i ∈ Σ1
i .

Proof: Proceeding by contradiction, let σ′i be a strategy such that σ′i 6= σ̂i and σ′i dominates σ̂i over

Σ0. Assume that σ′i announces

widehatOmegai
′ 6= Ω̂i or S ′i 6= Ŝi, and let σ−i be the subprofile of strategies in which every player

j ∈ −i announces Ωj such that rev(Ωj) = 0 and Sj = ∅ in Stage 1, and announces YES if Ω? = Ω̂i

and S? = Ŝi, and NO otherwise. Notice that σ−i clearly belongs to Σ0
−i. (Indeed Σ0 consists of what

all that the players can do, independent of any rationality consideration.) Notice too however, that
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i’s expected utility is greater than TVi(Ŝi) =
maxS⊆G TVi(S)

2
under the profile σ̂itσ−i, while less than or

equal to it under the profile σ′i t σ−i. Therefore such a σ′i can not dominate σ̂i over Σ0. Accordingly,

if σ′i dominates σ̂i, it must be that σ′i announces the same outcome and the same subset of goods as

σ̂i does, and thus coincides with σ̂i in Stage 1. Let us now consider Stage 2. There, Lemma 1 implies

that the only possible difference between σ̂i and a dominating σ′i consists of what the two strategies

announce when i 6= ?, α?i 6= ∅ and TVi(α
?
i ) = π?i : namely, σ̂i answers YES (by definition) and σ′i

answers NO (because it must be different from σ̂i). But this syntactic difference does not translate

into any utility difference: indeed, accepting a subset of goods and paying what your true valuation

for it or receiving no goods at all and paying nothing is equivalent. Therefore no σ′i 6= σ̂i can dominate

σ̂i over Σ0. In sum, σ̂i ∈ Σ1
i as we wanted to show. �

Claim 2: ∀ individually monotone collusive contexts C compatible with i, σ̂i dominates σi over Σ1
C .

Proof: To prove our claim we need to compare E[ui(M(σi t τ−i))] and E[ui(M(σ̂i t τ−i))] for all

strategy subprofiles τ−i ∈ Σ1
C\{i}, where C denotes the player partition of C . Arbitrarily fixing such a

τ−i, denoting by Ωj = (αj, πj) and Ω̂j = (α̂j, π̂j) the outcomes respectively announced by a player j

in the executions of σi t τ−i and σ̂i t τ−i, and denoting by R′ and R̂′ respectively the second highest

revenue in the two executions, the following four simple observations hold.

O1: ∀j ∈ −i, Ωj = Ω̂j.

O2: If i 6= ? in both executions, then the star player is the same in both executions.

O3: If i = ? in both executions, then R′ = R̂′.

O4: If i = ?, then each player j offered some goods in the outcome announced by player i answers

YES if his true valuation for these goods is greater than his price in such outcome, and NO if it

is less.

(O1 holds because outcomes are announced in Stage 1 where all players act simultaneously without

receiving any information at all from the mechanism M; O2 and O3 are immediate implications of

O1; and O4 follows from Lemmas 1 and 2, and the fact that i does not belong to any collusive set.)

To establish that σ̂i dominates σi over Σ1
C , we analyze the following four exhaustive cases, again

after arbitrarily fixing τ−i ∈ Σ1
C\{i}.

Case 1: i 6= ? in the execution of σi t τ−i and i 6= ? in the execution of σ̂i t τ−i.

In this case, by observations O1 and O2, α
?
i = α̂?i and π?i = π̂?i . There are four sub-cases.

(a) α?i = ∅. In this sub-case we have E[ui(M(σi t τ−i))] = E[ui(M(σ̂i t τ−i))] = 0.
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(b) α?i 6= ∅ and TVi(α
?
i ) = π?i . In this sub-case, no matter whether player i answers YES or NO

in σi, we have E[ui(M(σi t τ−i))] = E[ui(M(σ̂i t τ−i))] = 0.

(c) α?i 6= ∅ and TVi(α
?
i ) < π?i . In this sub-case, by Lemma 1, i answers NO in both executions,

and we have E[ui(M(σi t τ−i))] = E[ui(M(σ̂i t τ−i))] = 0.

(d) α?i 6= ∅ and TVi(α
?
i ) > π?i . In this sub-case, by Lemma 1, i answers YES in both executions.

Thus when M’s coin toss comes up Heads, ui(M(σi t τ−i)) = ui(M(σ̂i t τ−i)) = 0; and

when M’s coin toss comes up Tails, ui(M(σi t τ−i)) = TVi(α
?
i ) − π?i = TVi(α̂

?
i ) − π̂?i =

ui(M(σ̂i t τ−i)).

In sum, no matter which sub-case applies, Case 1 implies E[ui(M(σitτ−i))] = E[ui(M(σ̂itτ−i))].

Case 2: i 6= ? in the execution of σi t τ−i and i = ? in the execution of σ̂i t τ−i.

In this case, let us first prove that E[ui(M(σitτ−i))] ≤ TVi(Ŝi)
2

. To this end, we consider the same

four sub-cases as above. Namely,

(a) α?i = ∅. In this sub-case, E[ui(M(σi t τ−i))] = 0. Therefore, since TVi(Ŝi) ≥ 0 by definition,

we have E[ui(M(σi t τ−i))] ≤ TVi(Ŝi)
2

as desired.

(b) α?i 6= ∅ and TVi(α
?
i ) = π?i . In this sub-case, no matter whether player i answers YES or NO,

we also have E[ui(M(σi t τ−i))] = 0, and thus E[ui(M(σi t τ−i))] ≤ TVi(Ŝi)
2

.

(c) α?i 6= ∅ and TVi(α
?
i ) < π?i . In this sub-case, player i answers NO, and thus E[ui(M(σi t

τ−i))] = 0 ≤ TVi(Ŝi)
2

.

(d) α?i 6= ∅ and TVi(α
?
i ) > π?i . In this sub-case, player i answers YES, and thus can have positive

utility only when the mechanism’s coin toss comes up Tails, causing player i to be assigned

the subset of goods α?i for price π?i . Accordingly E[ui(M(σi t τ−i))] =
TVi(α

?
i )−π?

i

2
≤ TVi(α

?
i )

2
≤

TVi(Ŝi)
2

. In fact, π?i is always non-negative, and TVi(Ŝi) = maxS⊆G TVi(S).

In sum, no matter which sub-case applies, we have E[ui(M(σi t τ−i))] ≤ TVi(Ŝi)
2

.

Let us now prove that TVi(Ŝi)
2
≤ E[ui(M(σ̂i t τ−i))]. In this case, i’s expected utility in the

execution of σ̂it τ−i is the weighted sum of his utility whenM’s coin toss is Heads and his utility

whenM’s coin toss is Tails.13 Therefore, denoting by “
∑

j:Ŷ ES
” (respectively,“

∑
j:N̂O”) the sum

taken over every player j who answers YES (respectively, NO) in Stage 2 of the execution of

13Both individual utilities are expected, if the strategies of the other players are probabilistic.
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σ̂i t τ−i, we have

E[ui(M(σ̂i t τ−i))] =
TVi(Ŝi)−

∑
j:N̂O π̂

i
j

2
+

∑
j:Ŷ ES

π̂ij −
∑

j:N̂O π̂
i
j − R̂′

2
.

By construction, ∀j ∈ −i such that α̂ij 6= ∅, π̂ij < TVj(α̂
i
j). Thus by observation O4 every

such player j answers YES in Stage 2: in our notation
∑

j:Ŷ ES
π̂ij =

∑
j π̂

i
j and

∑
j:N̂O π̂

i
j = 0.

Accordingly, we have

E[ui(M(σ̂i t τ−i))] =
TVi(Ŝi)

2
+

∑
j π̂

i
j − R̂′

2
=
TVi(Ŝi) + rev(Ω̂i)− R̂′

2
.

Since rev(Ω̂i) ≥ R̂′, we have TVi(Ŝi)
2
≤ E[ui(M(σ̂i t τ−i))] as desired.

Therefore Case 2 implies E[ui(M(σi t τ−i))] ≤ E[ui(M(σ̂i t τ−i))].

Case 3: i = ? in the execution of σi t τ−i and i = ? in the execution of σ̂i t τ−i.

In this case, similar to Case 2, i’s expected utility in the execution of σit τ−i is the weighted sum

of his utility whenM’s coin toss is Heads and his utility whenM’s coin toss is Tails. Therefore,

denoting by “
∑

j:Y ES” (respectively,“
∑

j:NO”) the sum taken over every player j who answers

YES (respectively, NO) in Stage 2 of the execution of σi t τ−i, we have

E[ui(M(σi t τ−i))] =
TVi(Si)−

∑
j:NO π

i
j

2
+

∑
j:Y ES π

i
j −

∑
j:NO π

i
j −R′

2
.

Since
∑

j:NO π
i
j ≥ 0 and

∑
j:Y ES π

i
j ≥ 0, we have that

E[ui(M(σi t τ−i))] ≤
TVi(Si)

2
+

∑
j π

i
j −R′

2
=
TVi(Si) + rev(Ωi)−R′

2
.

Let us now analyze i’s expected utility in the execution of σ̂i t τ−i. Same as in Case 2, and by

observation O3, we have that

E[ui(M(σ̂i t τ−i))] =
TVi(Ŝi) + rev(Ω̂i)− R̂′

2
=
TVi(Ŝi) + rev(Ω̂i)−R′

2
.

According to our construction of σ̂i, we have that: (1) rev(Ω̂i) = rev(RKi)−ε/2 > rev(RKi)−

27



ε = rev(Ωi); and (2) TVi(Ŝi) = maxS⊆G TVi(S). Therefore

E[ui(M(σ̂i t τ−i))] >
TVi(Si) + rev(Ωi)−R′

2
.

In sum, Case 3 implies E[ui(M(σi t τ−i))] < E[ui(M(σ̂i t τ−i))].

Case 4: i = ? in the execution of σi t τ−i and i 6= ? in the execution of σ̂i t τ−i.

Fortunately, this case can never happen. Since rev(Ω̂i) > rev(Ωi) (by construction) and ∀j ∈

−i Ωj = Ω̂j (by observation O1), we have that if i = ? in the execution of σi t τ−i, it must be

true that i = ? also in the execution of σ̂i t τ−i.

Having finished to analyze all possible cases, we conclude that σi is dominated by σ̂i over Σ1
C . �

Since both Claims 1 and 2 hold, so does Lemma 3.

Comment. Note that, while ruling out the under-bidding (relative to RKi) of independent players,

our analysis says nothing about the possibility of “over-bidding.” In fact, assume that player i’s general

knowledge GKi includes some Bayesian information about about the true valuation of another player

j that enables i to compute the probability that TVj(S) > v for some subset S of goods and a

particular value v. Then, depending on such probability and v, rather then announcing the outcome

Ωi = RKi, i may expect be better off announcing Ωi such that αij = S and rev(Ωi) > rev(RKi)

(taking into account the probability that j may reject this offer.) Therefore over-bidding may not be

a dominated strategy for player i over Σ1
C . But as shown in the following proof, if a player over-bids,

our result still holds, and thus we do not care whether over-bidding is dominated or not.

We are finally ready to formally state and prove our main theorem .

Theorem 1. ∀ individually monotone collusive contexts C and ∀ Σ1/Σ2
I plays σ of (C ,M),

E[rev(M(σ))] + E[sw(M(σ), TV )] ≥ MEW(RKI)

2
.

Proof. Denote by ∗ the independent player “realizing” our benchmark: that is,

∗ = arg max
i∈I

rev(RKi).

Notice that the players ∗ and ? need not to coincide, and notice that the following two inequalities

hold in any Σ1/Σ2
I play of (C ,M):

28



(a) rev(Ω∗) ≥ rev(RK∗).

(b) R? ≥MEW(RKI).

Indeed, inequality (a) holds because that ∗ is independent and by Lemma 3 it does not under-bid;

and inequality (b) holds by inequality (a) and the fact thatR? ≥ rev(Ω∗) by the very definition of

the star player.

To prove our theorem, we distinguish two cases.

Case 1: ? = ∗.

In this case, as player ∗ is independent, so is player ?, and thus ? 6∈ C for all collusive sets C in

the player partition of C . Therefore Lemma 2 and 3 guarantees that every i 6= ? answers YES

only if TVi(α
?
i ) ≥ π?i . Accordingly, the following inequality holds forM’s expected social welfare:

E[sw(M(σ), TV )] =
TV?(S?)

2
+

∑
i:Y ES TVi(α

?
i )

2
≥

∑
i:Y ES TVi(α

?
i )

2
≥

∑
i:Y ES π

?
i

2
.

At the same time,

E[rev(M(σ))] =

∑
i:NO π

?
i

2
+
R′ +

∑
i:NO π

?
i

2
≥

∑
i:NO π

?
i

2
.

Thus

E[sw(M(σ), TV )] + E[rev(M(σ))] ≥
∑

i:Y ES π
?
i +

∑
i:NO π

?
i

2
=

∑
i π

?
i

2
=
R?

2
≥ MEW(RKI)

2
.

Case 2: ? 6= ∗.

In this case, ∗ ∈ −?. Thus, in virtue of inequality (a) and the fact that R′ ≥ rev(Ω∗), M’s

expected revenue is

E[rev(M(σ))] =

∑
i:NO π

?
i

2
+
R′ +

∑
i:NO π

?
i

2
≥ R′

2
≥ MEW(RKI)

2
.

Of course

E[sw(M(σ), TV )] =
TV?(S?)

2
+

∑
i:Y ES TVi(α

?
i )

2
≥ 0.

Thus summing term by term we have

E[sw(M(σ), TV )] + E[rev(M(σ))] ≥ MEW(RKI)

2
.
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Q.E.D.

6 Discussions and Extensions

• Why extensive-form is preferable to normal-form? Because in the corresponding normal-form

mechanism the players will lose a lot of privacy and efficiency. Moreover, in the normal-form

mechanism, the collusive sets may be revealed. If the collusive players do not want to be punished,

they may want to deviate and choose a collective strategy which has been eliminated in the

extensive-form mechanism.

• Another point, related to the privacy mentioned above is that our mechanism is “tax-free”. Con-

sider a second-price (single-item) auction in which the winner bids $10M and wins the item for

$1M, because this was the second-highest bid. Then, “uncle Sam” may want to collect taxes on

$9M, reasoning that the winner himself, being rational in a dominant-strategy truthful mecha-

nism, freely admitted that he is receiving a $10M value. Notice too that in an English ascending

auction this cannot happen. Indeed, the players who drop out reveal their true valuations, but

are not “taxable” because they have no utility. As for the winner of this alternative auction, he

could also declare that his value for the object was (assuming the same valuations above) exactly

$1M (plus $1 if he really feels to look more “legitimate”). In this case, therefore, there is nothing

to “tax”.

In a combinatorial auction, in principle “taxation” could be a problem, as something about the

true valuations and thus about the individual utilities could transpire for all the complex bidding

of the players. Notice, however that this is NOT the case for our mechanism. In essence if the

coin ends up Heads then the star player receives for free his favorite subset S, but he never said

anything HIMSELF about his own valuation for S. If the coin ends up Tails, then every player

who answers YES receives goods that he may always claim to value for exactly what he was

offered to pay and indeed paid.

The hypothetical point brings home the value of privacy in mechanism design. Indeed, if auctions

were “taxable” then DST mechanisms may not be truthful after all. That is, ignoring privacy

altogether may distort incentives so as to cause the mechanisms to fail to achieve their desired

properties.

For a full treatment of privacy and mechanism design, the reader is addressed to [ILM08].
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• In M, player i publicly announce Ωi and Si in Stage 1. An alternative way is to ask the players

to announce the revenue of Ωi in Stage 1, and only ask the star player to announce his Ω? and

S?. This alternative preserves players privacy even better than M does, but in this way, the

star player may announce Ω? according to the revenues announced by the other players, and an

independent player i may have incentive to under-bid, that is, to announce a revenue less than

rev(RKi).

• In our current benchmark, the relevant knowledge of a player is the revenue that he knows he

can guarantee if he were in charge to sell the goods to the other players. With additional work,

our mechanism can be extended to work with a more demanding benchmark: in essence the

maximum social welfare known to the rational and independent players. (In other words, the

relevant knowledge of a player “includes the possibility of giving himself some of the goods.”)

• We are currently investigating similar solutions to other mechanism-design problems, including

provision of a public good.
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