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ABSTRACT 

 
The rates of water and solute transport tend to be lower in fibrous materials than in 

bulk solution.  This phenomenon of “hindered transport” is caused by steric, 
hydrodynamic, and electrostatic interactions between the solvent, the solute, and the 
fibers.  In this research the effect of these interactions were studied using charged, fibrous 
agarose-glycosaminoglycan (GAG) membranes.  The work was motivated by current 
research into the role of the glomerular capillary wall (GCW) in ultrafiltering blood 
plasma, which is the first step in the processing of blood by the kidney.  The GCW is 
composed of three layers in series: an endothelium, a basement membrane, and an 
epithelium.  Increasing evidence from experimental results and theoretical models of the 
GCW indicate that the endothelial layer and its associated glycocalyx may significantly 
limit the transport of macromolecules across the glomerular barrier.  The glycocalyx is 
primarily composed of proteoglycans, a fibrous mixtures of proteins and anionic GAG.  
GAG fibers are present in many other biological materials, such as basement membranes 
and cartilage, making the current studies in agarose-GAG relevant to a variety of 
biological systems. 

Agarose-GAG membranes were synthesized by using 1-cyano-4-
(dimethylamino)pyridinium tetrafluoroborate (CDAP) to create reactive sites in thin 
agarose hydrogels.  Chondroitin sulfate GAG was then covalently bound to the reactive 
sites via their terminal amine group.  By manipulating the temperature and duration of 
key reaction steps, the synthesis was optimized to provide high bound GAG yields and a 
spatially uniform distribution of GAG throughout the membrane.  Models of the coupling 
reaction were developed to guide the synthesis conditions, resulting in 70-115 μm-thick 
membranes composed of 2-4 v% agarose and 0-0.4 v% GAG. 

The Darcy (or hydraulic) permeabilities of the membranes with variable GAG content 
were measured with buffer solutions over a range of ionic strengths.  In 3 v% agarose 
gels, the addition of even a small amount of GAG (0.4 v%) resulted in a two-fold 
reduction in the Darcy permeability.  Electrokinetic coupling, caused by the flow of ions 
past the charged GAG fibers, resulted in an additional two-fold reduction in the open-
circuit hydraulic permeability when the solution ionic strength was decreased from 1 M 
to 0.011 M.  A microstructural model was used to understand these phenomena, 
accounting for the charge of the GAG fibers, heterogeneities in the agarose gels, and the 
mixture of agarose and GAG fibers.  Several “mixing rules” from the literature were 
compared to predict the permeability of a mixture of fibers from structural models for a 
single fiber type.  A fiber volume-weighted averaging of each fiber resistivity was found 
to be reasonably reliable, with a root-mean-squared error of 24% for 64 cases of fiber 
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mixtures with differing radii, orientation, and/or charge.  The microstructural model, 
using this mixing rule, accurately predicted the Darcy permeability when charge effects 
were suppressed at high ionic strengths; however, this model underestimated the 
reduction in permeability at lower ionic strengths when the effects of the GAG charge 
were significant.  A macroscopic approach to electrokinetic effects using Donnan 
equilibria better captured the decrease in Darcy permeability with decreasing ionic 
strength. 

Studies of equilibrium partitioning and sieving were performed with BSA (an anionic 
globular protein) and Ficoll (an uncharged spherical polysaccharide).  The effects of 
charge were studied by varying the ionic strength in experiments with BSA; the effects of 
solute size were examined by using Ficolls with radii ranging from 2.7 to 5.9 nm.  Solute 
permeability studies were performed in 4 v% agarose gels with 0 or 0.2 v% GAG. 

Partition coefficients (Φ) for BSA were measured for ionic strengths of 0.5 to 
0.011 M.  For BSA in agarose gels with no GAG, Φ = 0.65 ± 0.02 (standard error) and 
did not vary with ionic strength.  In gels with 0.2 v% GAG, Φ = 0.54 ± 0.02 at ionic 
strengths ≥ 0.2 M, but decreased by nearly two-fold at 0.011 M.  For the same Stokes-
Einstein radius (3.5-3.6 nm), the partition coefficients of BSA at neutral conditions and of 
Ficoll were similar in blank agarose gels, but differed by 15% in agarose-GAG gels.  The 
partition coefficients for Ficolls decreased with increasing solute radius.  A 
microstructural model for partitioning in fibrous materials was evaluated against the 
experimental observations.  The experimental data were most consistent models that had 
a nearly homogeneous fiber density.  The model was in good agreement for partition 
coefficients of Ficolls with various radii.  The decrease in BSA partition coefficient at 
low ionic strengths was well captured by both microstructural and Donnan models of 
charge effects. 

The sieving coefficient (Θ), or ratio of downstream to upstream solute concentrations, 
was measured at moderately high Péclet number where Θ = ΦKc, where Kc is the 
convective hindrance factor.  It has been hypothesized by others that Kc is independent of 
charge, such than any charge effects in Θ are caused by Φ.  Sieving coefficients were 
measured under similar conditions as partition coefficients.  Like partitioning, ionic 
strength had little effect on the sieving of BSA through blank agarose, but Θ was 
decreased by over half from 0.1 M to 0.011 M in gels with 0.2 v% GAG.  In these 
agarose-GAG gels, there was not a statistically significant effect of ionic strength on Kc. 

Models used for agarose-GAG membranes were applied to a simple model of the 
glomerular endothelial glycocalyx.  The composition and structure of the glycocalyx are 
not well characterized, but some of its properties can be inferred from the properties of 
the entire capillary wall and the other capillary layers.  Models of the hydraulic 
permeability of the endothelium suggest that the glycocalyx may be up to several 
hundred nanometers thick, but the GAG density is probably less than 4 v%.  To 
determine if sieving through such a layer would contribute to glomerular selectivity, 
improved models for hindered transport coefficients are needed for fibrous systems 
where the fiber spacing is on the same scale as the solute size. 
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Chapter 1. BACKGROUND  

  

 

The primary function of the kidney is to maintain the composition and volume of the 

extracellular fluid.  This is performed in two stages: ultrafiltration of blood plasma 

fillowed by selective tubular reabsorption and secretion.  The first ultrafiltration step is 

performed in the glomerulus, where the capillary wall is composed of three distinct layers 

in series: the fenestrated endothelium, glomerular basement membrane (GBM), and 

epithelium (Figure 1.1).  Due to the low permeability of cellular membranes, most 

ultrafiltration occurs extracellularly.  When properly functioning, a human kidney has the 

capacity to filter approximately 180 L/day, or the entire blood plasma volume once every 

20 minutes.  Various forms of kidney disease are associated with changes to the structure 

of the glomerular capillary wall, which in turn lead to changes in the ultrafiltration 

properties.  The desire to further understand the various types of nephrotic syndromes by 

correlating the physiological changes in the capillary wall with the changes in measurable 

properties, such as hydraulic permeability and macromolecular sieving, has provided the 

motivation over the past 30 years to study the functional properties of the glomerular 

barrier. 
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1.1. Glomerular Models 

The glomerular barrier is notable for its ability to allow high water fluxes while being 

very retentive to plasma proteins.  These properties can be characterized by the hydraulic 

permeability, k, and the molecular sieving coefficient, Θ. The hydraulic permeability is 

defined as the mean fluid velocity divided by the pressure drop across the filter.  The 

sieving coefficient is the ratio of the downstream to upstream solute concentrations, and 

is affected both by the filtration rate and the structural properties of the filter.   

Early studies in glomerular filtration attempted to model the glomerulus with an 

equivalent pore model for the sieving coefficient, using cylindrical pores in parallel 

(Maddox et al. 1992).  This model had the advantage of being simple to apply to 

characterize molecular sieving coefficients in various nephrotic conditions, as it separates 

hemodynamic effects from membrane property effects.  However, the effective pore size 

and density have no correlation with the true glomerular structure.  More recent studies 

have instead employed a structure-based model of the glomerulus, where transport 

properties such as k and Θ can be calculated from an idealized repeating glomerular unit 

cell, similar to that represented in Figure 1.1.   

 

       

Epithelial 
Podocytes

Glomerular 
Basement 
Membrane

Endothelium

Endothelial 
Glycocalyx

Bowman’s 
Space

Capillary 
Lumen

Slit 
Diaphragm

Fenestrae

 
(a)     (b)   

Figure 1.1  Structure of the glomerular capillary wall, (a) based on physiological observations and (b) 
in an idealized schematic. 
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One of the earlier structure-based models was developed by Drumond and Deen 

(Drumond and Deen 1994) to model the hydraulic permeability, k, of the glomerulus and 

its individual layers.  The approach used computational fluid dynamics to look at velocity 

and pressure fields within the unit cell, where the total resistance of the capillary wall is 

the sum of each layer in series. 

 1 1 1 1

endo GBM epik k k k
= + +  (1.1) 

 

The hydraulic permeability of the GBM was linked to the two bounding layers, since 

much of the surface of the membrane is blocked by impermeable cells.  Knowing the 

geometry of the layers and the Darcy permeability of isolated GBM, it was shown that 

that the GBM contributes ~70% of the total hydraulic resistance (Deen et al. 2001).  The 

contributions of the two cellular layers are currently unknown, due to lack of knowledge 

of the exact structure of the epithelial slit diaphragms and the endothelial fenestrae and 

glycocalyx. 

The hydraulic structure-based model was extended to macromolecular filtration 

(Edwards et al. 1999).  The sieving coefficient, Θ, of a single layer is the ratio of the 

concentrations on the downstream side to the upstream side.  For layers in series, the 

overall sieving coefficient is simply the product of the individual sieving coefficients. 

 Bowman
endo GBM epi

lumen

c
c

Θ Θ Θ Θ= =  (1.2) 

The sieving properties of GBM were determined from studies of diffusion and 

convection of neutral Ficoll tracers of various sizes in isolated GBM (Edwards et al. 

1997a, Edwards et al. 1997b).  However, due to the position of the GBM upstream from 

the restrictive epithelial slits, the effective ΘGBM for albumin is approximately unity.  The 

overall sieving coefficient for albumin is 6x10-4, indicating that one or both of the cellular 

layers must play a significant role in solute sieving in the glomerular barrier.  Since the 

disruption of either cellular layer may result in proteinuria, it is presumed than both Θendo 

and Θepi must be less than ~0.1 (Deen 2004, Deen et al. 2001).  However, the exact 

contributions of the two layers to charge and size selectivity across the capillary wall are 

unknown. 
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1.2. Evidence of Endothelial Role in Glomerular Function 

Studies of the intact glomerular wall support that molecular sieving across this barrier 

is size-selective, and increasing evidence also indicates that it is charge-selective (Blouch 

et al. 1997, Haraldsson and Sörensson 2004, Ohlson et al. 2000, Sörensson et al. 2001).  

The individual role of the three barrier layers in this selectivity is still under investigation.  

In addition to evidence from the previously discussed models that the epithelial and 

endothelial cell layers interact with the GBM to affect the hydraulic permeability and 

macromolecular sieving of the glomerulus, numerous other data have been reported that 

give insight to the roles of the glomerular layers.  Bolton et al. characterized GBM 

isolated from rat glomeruli, demonstrating that it showed size but not change selectivity 

at physiological ionic strengths (Bolton et al. 1998).  However, the results from the 

models of layers in series show that the actual sieving coefficient in the GBM is 

approximately unity for albumin, suggest that the role of the GBM in filtration is 

primarily hydraulic resistance and structural support to the surrounding cell layers. 

As suggested by Haraldsson & Sörensson, the above studies of GBM combined with 

the observation that intact glomeruli show solute selectivity indicate that one or both of 

the cellular layers play a key role in the size and/or charge selectivity of the glomerulus 

(Haraldsson and Sörensson 2004).  Recent discoveries have shown that Finnish-type 

congenital nephrosis is characterized by the improper synthesis of nephrin in the slit 

diaphragms (Tryggvason 1999), which emphasizes the role that the epithelium plays in 

proper glomerular filtration.  However, it is important to remember that the sieving 

coefficient across the glomerulus is the product of the sieving across each layer; so while 

damage to the slit diaphragm may be enough to cause proteinuria, proteinuria may also 

occur without such damage if ΘGBM or Θendo were increased. 

Since the glycocalyx that surrounds the endothelial cell surface is a matrix of highly 

negatively charged molecules, it seems feasible that the endothelium may play some role 

in charge and/or size selectivity of proteins.  One study that supports this hypothesis was 

performed by Ryan and Karnovsky, where they visualized the distribution of endogenous 

albumin in Munich-Wistar rat glomeruli (Ryan and Karnovsky 1976).  During normal 

hemodynamic conditions, negatively charged albumin was found to be largely confined 

to the glomerular capillary lumen and endothelial fenestra, with only small amounts 
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detected in the early regions of the GBM.  Further evidence of the importance of the 

endothelial layer in proper glomerular function is the occurrence of proteinuria during 

pre-eclamptic toxemia (PET) in pregnancy (Lafayette et al. 1998, Maynard et al. 2003).  

In these patients, a reduction in the density and size of the endothelial fenestrae and 

accumulation of sub-endothelial fibrinoid deposits was observed.  No significant changes 

were observed in the thickness of the GBM, the frequency of epithelial slits, or the 

plasma flow rate.  However, the subjects affected by preeclampsia showed a significantly 

decreased glomerular filtration rate and loss of albumin, showing that disruption of the 

endothelial layer alone is enough to significantly increase Θalbumin.  A study by Sörensson 

et al. focused on the effect of puromycin aminonucleoside (PAN), a nephrosis-inducing 

agent (Sörensson et al. 2003).  When cultures of glomerular endothelial cells in culture 

were exposed to PAN, the effect was a decrease in the production of glycosaminoglycans 

(GAGs), which are primary component of the endothelial glycocalyx. 

Further evidence of the importance of the endothelium and its glycocalyx in the 

molecular sieving of proteins can be found in extrarenal (eg- muscle) capillary 

endothelia.  While capillaries in skeletal muscle do not contain an epithelium and the 

endothelium is not fenestrated, a similar glycocalyx is present between the capillary 

lumen and the endothelial cell surface.  Vink and Duling studied the selectivity of this 

surface layer in hamster cremaster muscle capillaries, using variously sized and charged 

tracer molecules (Vink and Duling 2000).  Using fluorescent and brightfield microscopy, 

they found the penetration time of the glycocalyx was an order of magnitude shorter for 

neutral molecules of 0.4-40 kDa than for anionic tracers of the same size.  Size and 

structural selectivity was also observed, with smaller dextrans (0.4-40 kDa) showing 

decreased penetration with increasing size, dextrans > 70 kDa being fully excluded from 

the surface layer, and two plasma proteins (67 kDa albumin and 370 kDa fibrinogen) 

slowly penetrating the surface layer.  Another study from the same lab investigated how 

glycosaminoglycans in the glycocalyx contribute to its size selectivity (Henry and Duling 

1999).  Using an enzyme to remove hyaluronan from the glycocalyx, the penetration of 

70 and 145 kDa dextran tracers increased, while larger tracers remained excluded.  A 

similar study treated arterioles with an enzyme to remove heparin, resulting in an 
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increased permeability to albumin and lactalbumin across the arteriole wall (Huxley and 

Williams 2000). 

From the body of research summarized above, there is ample evidence that the 

fenestrated glomerular endothelium and its surrounding glycocalyx have an important 

effect on the size- and charge-selective properties of the glomerular barrier.  Several of 

these studies indicate that the glycosaminoglycan content of the endothelial cell coat 

contribute to these properties.  The following section will focus on the structure and 

composition of the glycocalyx. 

1.3. The Endothelium and Its Glycocalyx 

Endothelial cells are present throughout the body’s vasculature.  In general, they 

provide a barrier between blood and tissue, regulate vascular tone, mediate fluid and 

solute exchange, and participate in coagulation and inflammatory responses (Lindahl and 

Höök 1978, Pries et al. 2000, Savage 1994). Most of the current knowledge of the 

properties of endothelial cells comes from studies of cultures of umbilical cord veins 

(Savage 1994).  However, care must be taken when comparing properties of endothelial 

cells from different locations.  In many locations, such as muscle, skin, and connective 

tissue, intercellular clefts between adjacent endothelial cells form the principle pathway 

for water and small hydrophilic solutes from the blood to the surrounding tissue (Squire 

et al. 2001).  However, other organs such as the small intestine, stomach, and kidney 

contain fenestrated endothelia, which contain small perforations across the entire cell 

body to allow for increased rates of transport (Rostgaard and Qvortrup 2002).  For 

example, the glomerular capillaries can filter several hundred times the water and solutes 

as regular circulatory capillaries (Guyton and Hall 2000).  Endothelial cells in different 

locations also differ in terms of size, shape, intercellular contacts and surface antigens 

(Zetter 1988).  Recently, it was shown that the gene expression between glomerular and 

aortic endothelial cells is somewhat different (Sengolge et al. 1999). 

The transport of water and solutes across glomerular endothelial cells is primarily 

governed by two features: the fenestra and the glycocalyx.  Glomerular fenestrae are 

circular with a 60-80 nm diameter, extend across the width of the cell, and occupy 20-

30% of the luminal surface area (Avasthi and Koshy 1988, Drumond and Deen 1994, Lea 
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et al. 1989, Rostgaard and Qvortrup 2002).  In three dimensions, they take on an 

approximately hour-glass shape.  The glycocalyx is the layer of membrane-bound 

macromolecules extending from the luminal surface of the endothelial cell.  Some 

references distinguish between this and the endothelial surface layer, which contains both 

the glycocalyx and additional unbound macromolecules that intertwine to form a thicker 

layer of macromolecules on the cell surface (Pries et al. 2000); however, this thesis will 

follow the convention of much of the published research, and use the two terms 

interchangeably.  Cationized ferritin staining of the glomerulus shows an anionic matrix 

that lines the entire endothelial lumen surface and fills the fenestra (Avasthi and Koshy 

1988).  It has been proposed that this cell coat extends from the inner part of the fenestra, 

under the endothelial cells, and partially into the glomerular basement membrane (Latta 

and Johnston 1976).  There is significant debate on the thickness of the cell coat 

(Weinbaum et al. 2007).  Studies have shown that it is a highly deformable surface layer, 

and measurements of it are subject to the method of visualization used.  In various early 

studies that stained macro- and micro-vessels, the cell coat thickness ranged from 20 to 

100 nm (Weinbaum et al. 2007).  Studies using hematocrits and reduction in flow 

velocities compared with open tube flow predict a cell coat of 500-1000 nm (Pries et al. 

2000).  Measurements in glomerular capillary walls which were rapidly frozen and cross-

sectioned showed a 100-200 nm surface layer (Squire et al. 2001).  Recent studies that 

visualized the flow of blood cells, blood plasma, and 70 kDa dextran tracers within 

capillaries indicated a 400-500 nm surface layer (Vink and Duling 2000).  The increasing 

estimates of the endothelial glycocalyx thickness in recent literature contribute to the 

motivation to reevaluate the role of this layer in glomerular transport.   

Limited information is available on the structure of the glycocalyx (Weinbaum et al. 

2007).  An analysis of the glycocalyx’s effect on microvascular hematocrit suggests that 

the endothelial cell layer has a hydraulic resistivity of at least 1011 N s/m4 (Pries et al. 

2000).  Electron microscopy of the glycocalyx showed 10-12 nm fibers with a 

characteristic spacing of 20 nm (Squire et al. 2001).  Other studies have indicated the 

presence of filamentous sieve plugs 300-400 nm long by 5-10 nm thick in the capillary 

fenestra of the small intestine, stomach, and peritubular kidneys.  However, no sieve 

plugs were observed in the glomerular capillaries, though a fine 300 nm cell surface coat 



CHAPTER 1. Background 
 
 

 
  

  32  

was seen to cover the fenestrae and inter-fenestral regions, which was thicker than that 

observed in other fenestrated endothelia (Rostgaard and Qvortrup 2002).  This 

observation is further supported by the fact that the protein PV-1 that forms the 

diaphragms in the fenestra of other capillary beds is not present in glomerular endothelia 

(Sörensson et al. 2003). 

The glycocalyx of an endothelial cell contains four type of molecules:  proteins, 

glycoproteins, glycolipids, and proteoglycans (Pries et al. 2000, Sörensson et al. 2003).  

A glycolipid is a lipid molecule to which a short carbohydrate chain is attached.  Due to 

their hydrophobic nature, they will generally be associated with the cell plasma 

membrane.  Proteins may also be bound to the cell surface, such as those functioning as 

receptors.  In addition, there have been numerous studies on the effects of free plasma 

proteins, particularly orosomucoid, on the properties of the glycocalyx (Curry et al. 1989, 

Haraldsson et al. 1992, Huxley and Curry 1991, Schneeberger and Hamelin 1984, Turner 

et al. 1983).  It has been shown that the presence of certain plasma proteins is necessary 

for maintaining proper permeability of the capillary wall.  Their role is likely structural, 

since it has also been shown that the glycocalyx thickness decreased by two-fold when 

perfused with protein-free and albumin solutions compared to complete plasma 

(Adamson and Clough 1992).   

The remaining two components of the glycocalyx, glycoproteins and proteoglycans, 

are similar, being composed of a core protein with carbohydrate side chains.  

Glycoproteins have short oligosaccharide side chains (2-15 sugar residues) that are often 

branched and correspond to 1-50 wt% of the molecule.  Proteoglycans have much longer 

glycosaminoglycan (GAG) side chains (~200 sugar residues) that are linear, may have a 

large number of negatively-charged sulfate groups, and often comprise >50 wt% of the 

molecule (Kuberan et al. 1999, Pries et al. 2000).  When glomeruli are treated with 

enzymes that digest proteoglycans, large tracer molecules are able to penetrate further 

into the capillary wall.  Similar effects are seen when penetration studies are performed at 

high ionic molarity or with cation tracers (Kanwar and Venkatachalam 1992).  These 

studies all suggest that these large, negative proteoglycans play a significant role in the 

transport of molecules across the endothelial glycocalyx.  For this reason, the following 



CHAPTER 1. Background 
 
 

 
  

  33  

section will look at the chemical and structural properties of proteoglycans and their 

GAG side chains in greater detail. 

1.4. Proteoglycans and Glycosaminoglycans 

1.4.1. Proteoglycans 

As noted in the prior section, proteoglycans (PG) are a class of molecule with several 

glycosaminoglycan chains attached to a single core protein.  They can be found in the 

extracellular matrix, on the cell surface, or even intracelluarly in nearly all cells 

throughout the body (Kjellén and Lindahl 1991).  Much diversity exists between types of 

proteoglycans, the predominant variations being core protein length, number of GAG 

chains, type of GAG chains, and length of GAG chains.  The core protein can range from 

20 kDa to several hundred kDa (Wight et al. 1991).  In most proteoglycans, the core 

proteins contains 200~600 amino acid groups, corresponding to an extended length of 70-

210 nm (Pries et al. 2000).  The functional role of the core protein is as a scaffold for the 

immobilization and spacing of the GAG chains (Kjellén and Lindahl 1991).  From 1 to 

100 GAG chains may be attached to the core protein, in addition to some smaller 

oligosaccharides (Kjellén and Lindahl 1991).  While GAG chains are generally found 

attached to protein cores, they occasionally also exist as free polysaccharide chains 

(Lindahl and Höök 1978).  The three types of GAGs that are of interest here are heparan 

sulfate (HS), chondroitin sulfate (CS), and dermatan sulfate (DS); the properties and 

distinctions of these molecules will be discussed later.  Generally, a single type of GAG 

is found on a proteoglycan (eg – HS-PG); however, it is possible to have hybrid 

proteoglycans with various GAG types on a single core protein (Kjellén and Lindahl 

1991).  For example, the proteoglycan perlecan, which is found in most basement 

membranes, has a 390 kDa protein core, a total weight of 700 kDa, and up to 4 HS 

chains, which sometimes contain CS or DS substitutes and sometimes contain no GAG 

chains (Rossi et al. 2003).  The widely-studied syndecan, which is often found on cell 

surfaces, contains 3-4 HS chains and 1-2 CS chains on a 32 kDa protein; in contrast, 

aggrecan can contain over 100 CS chains and 100 oligosaccharides on a 210 kDa protein 

(Wight et al. 1991). 
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1.4.2. Glycosaminoglycans 

Glycosaminoglycans, also referred to mucopolysaccharides in the older literature, are 

linear polymers with repeating disaccharide units.  Each disaccharide unit contains one 

hexosamine and one hexuronic acid (Kanwar and Venkatachalam, Kjellén and Lindahl 

1991, Wight et al. 1991).  GAGs, specifically heparin, have the highest negative charge 

density of any known biological macromolecule, with a heparin average net charge of -5 

per kDa (Capila and Linhardt 2002).  The negative charge arises from acidic sulfate 

and/or carboxyl groups on the disaccharide units.  Recent research has attempted to use 

chemical and enzymatic methods to synthesize GAG molecules, though current methods 

can only produce small oligosaccharides (Karst and Linhardt 2003, Tamura 2001).  

Instead, nearly all commercially available GAGs are extracted and purified from various 

animal tissues using organic solvents and/or proteases.  Once the PG is extracted, it is 

further treated enzymatically or with alkali extraction to remove it from the core protein.  

Finally, the GAG molecules are further purified and separated by precipitation or other 

fractionation method (Volpi 1996). 

GAG molecules are separated into six primary types: heparin (H), heparan sulfate 

(HS), chondroitin sulfate (CS), dermatan sulfate (DS), keratan sulfate (KS), and 

hyaluronate (or hyaluronic acid, HA).  The names are derived from the tissues in which 

they were originally extracted; later research has shown that each type of GAG is found 

in numerous tissues throughout the body (Jaques 1977).  The differences between the 

molecules arise in the combination of hexosamine and hexuronic acids in the 

disaccharide repeat units (Figure 1.2; Table 1.1).  The hexosamine can be either D-

galactosamine (GalN) or D-glucosamine (GlcN).  The hexuronic acid can be either D-

glucuronic acid (GlcA) or L-iduronic acid (IdoA).  The differences between CS and DS 

and between H and HS are subtle and somewhat arbitrary.  Chondroitin sulfate generally 

contains negligible IdoA while dermatan sulfate contains a significant fraction of IdoA.  

Heparan sulfate has a majority of GlcA while heparin has a majority of IdoA.  For these 

reason, these pairs of molecules are often referred to as a single category.  
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Figure 1.2 Chemical structure of hexosamines and hexuronic acids found in 

glycosaminoglycan disaccharide repeat units.  Potential sites of sulfation are indicated by *. 
(Kjellén and Lindahl 1991, Lindahl and Höök 1978, Wight et al. 1991)  

 

 Chondroitin 
Sulfate 

Dermatan 
sulfate 

Heparan 
sulfate Heparin Keratan 

sulfate 
Hyaluronic 

Acid 
Hexosamine GalN GalN GlcN GlcN GlcN GlcN 
Hexuronic 
Acid GlcA GlcA/IdoA GlcA/IdoA GlcA/IdoA [galactose] GlcA 

Table 1.1 Composition of disaccharide repeat units in each category of glycosaminoglycan: 
D-galactosamine (GalN); D-glucosamine (GlcN);  D-glucuronic acid (GlcA); L-iduronic acid 
(IdoA)  (Kjellén and Lindahl 1991, Lindahl and Höök 1978) 

 

Further variation in GAG molecules exists due to the sulfation of the disaccharide 

units.  The extent of sulfation can vary between types of GAGs, between the tissues in 

which the GAG was produced, and even between different regions of the same molecule.  

Sulfation can occur in any of three locations on GlcN and GalN, and on one location on 

GlcA and IdoA (Figure 1.2) (Kjellén and Lindahl 1991).  Heparin has an average of 2.7 

sulfate groups per disaccharide; heparan sulfate and chondroitin sulfate an average of ~1 

per disaccharide (Capila and Linhardt 2002, Lindahl and Höök 1978, Wight et al. 1991).  

However, this can be deceiving since the charge may be distributed into high-charge and 

low-charge segments in a single GAG molecule.  The location of sulfation adds 

additional variation between GAGs.  For example, the fraction of chondroitin sulfate 

known as CS-A contains primarily chondroitin 4’-sulfate, while the fraction known as 

CS-C contains a larger fraction of chondroitin 6’-sulfate (Volpi et al. 1999).  The 
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composition of these chains has been shown to be stable once synthesized inside the cell, 

though extended storage in acidic conditions can slightly reduce the extent of sulfation, 

leaving hydroxyl and amine groups on H/HS and hydroxyl groups only on CS/DS.  Only 

~2-4% of glucosamino residues in heparin contained a free amino group (Jandik et al. 

1996, Volpi et al. 1999). 

The GAG chains are connected to the proteoglycan core protein by a unique 

O-glycosidic linkage, with the exception of hyaluronate which isn’t synthesized on a core 

protein.  This structure connects the first disaccharide repeat unit to a serine residue in the 

core protein.  It is composed of a galactosyl-galactosyl-xylosyl-serine segment (Anderson 

et al. 1964, Wight et al. 1991).  This linkage can be cleaved to remove the GAG chain 

from the core protein by enzyme digestion (xylosidase) or by alkali exposure (Anderson 

et al. 1964, Kon et al. 1991).  The structure of a GAG chain, including the linkage region, 

is shown in Figure 1.3. 
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Figure 1.3 Glycosaminoglycan structure, including linkage to protein, for chondroitin sulfate. 

(Wight et al. 1991) 
 

Glycosaminoglycan chain size can vary over a wide range.  HS is usually <50 kDa, 

though it can exceed 100 kDa; CS is usually <100 kDa, though it can exceed 300 kDa.  In 

general, a single disaccharide unit (MW ~ 474 Da) corresponds to approximately 1 nm of 

chain length, so that the average extended chain length of a 50 kDa GAG is 

approximately 105 nm (Wight et al. 1991).  There is evidence that GAGs exist as helical 

structures in solution, though it is not known if this structure exists under biological 

conditions (Capila and Linhardt 2002, Lindahl and Höök 1978).  It has been observed 

that certain GAG chains containing GlcA- and IdoA-containing disaccharide units in 

alternating sequence can self-associate into aggregates, though most GAGs retain a linear 

structure (Kjellén and Lindahl 1991).   
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1.4.3. Renal Glycosaminoglycans 

Kjellén and Lindahl have categorized a number of proteoglycans into five basic 

functional categories of macromolecules with similar structure (core protein length, 

number and type of GAG substitutions) (Kjellén and Lindahl 1991).  This shows that cell 

types that perform similar roles (eg – regulating blood coagulation or assembling 

basement membranes) also contain similar proteoglycans.  While such similarities 

between types of GAGs exist between tissues of similar functional types, it is still 

preferred to have the most direction information available about the composition of the 

glomerular endothelial glycocalyx.  Only a limited number of studies on the proteoglycan 

and glycosaminoglycan composition of the endothelial glycocalyx have focused 

specifically on the glomerular endothelium.  However, a number of earlier studies were 

performed under the hypothesis that GAG in the glomerular basement membrane played 

a major role in glomerular transport properties, especially charge selectivity (Kanwar et 

al. 1980, Reeves et al. 1980).  The presence of GAG chains surrounding the endothelium 

was neglected, so that GAG characterization of the entire glomerular capillary wall was 

claimed to represent the GAG character of the GBM alone.  These experiments still 

provide useful information about the types, sizes, and role of GAGs in the overall 

glomerular barrier, since many of the GAGs present in the GBM were likely synthesized 

by the endothelium, and are included below. 

A number of different proteoglycans have been identified in the glomerulus.  A 

majority of them (~95%) are HS, with ~5% CS.  The average weight of these PGs is 

130-150 kDa, with ~25 kDa GAG chains and an 18 kDa core protein (Kanwar et al. 

1984a, Kanwar et al. 1984b).  GAGs extracted from the glomerulus by other groups also 

contained HS-PGs, though with a larger reported core protein of 140-400 kDa, which is 

similar to perlecan and agrin PGs.  The CS-PGs decorin and biglycan were also 

extracted from the glomerulus.  However, staining of the glomerular capillary wall only 

showed biglycan and perlecan around the endothelium (Edge and Spiro 1987, Groffen et 

al. 1998, Klein et al. 1988, Schaefer et al. 2000).  Biglycan is a 150-240 kDa molecule 

with a ~45 kDa core protein and 30-40 kDa GAG chains (Wight et al. 1991).  Two 

studies of the PG/GAG content specifically of glomerular endothelial cells in culture 

have been reported.  Kasinath found that both HS-PGs and CS/DS-PGs were produced by 
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the endothelial cells (Kasinath 1993).  Molecular sieving chromatography showed that 

the PGs were distributed into two sizes, both of which contained 40~45% HS-PGs and 

the remainder CS/DS-PGs.  PGs of similar size and composition were found both 

attached to the endothelial cell wall and in the surrounding media.  More recently, 

Sörensson et al. reported that GAG produced by the endothelial cells was 31% HS, 24% 

CS, and 23% DS (the remainder classified as residuals) (Sörensson et al. 2003).  These 

GAG molecules had a mean Stokes-Einstein radius of 50-90 Å.   

While much variation and speculation exists in the specific composition of the 

glomerular endothelial glycocalyx, the above studies show that it can assumed that the 

glycocalyx is approximately composed of proteoglycans that have a high weight fraction 

of GAG molecules (~80 wt%) with significant anionic charge (~ 1 per disaccharide) 

distributed over several (3-6) moderately long (80 nm) GAG chains attached to a core 

protein.  This approximate character of the glycocalyx will be used for selecting 

appropriate GAG molecules in the follow section on the research plan. 

Due to the complex nature of the glomerular endothelium and its glycocalyx, it would 

be desirable to study the transport properties across this barrier with an isolated culture of 

glomerular endothelial cells.  This would require the cells to remain differentiated, 

express fenestrae, and form a confluent monolayer on an appropriate support.  This is 

challenging since cells taken out of their context tend to lose their shape and function 

(Daamen et al. 2003).  In particular, culturing of glomerular endothelial cells has been 

limited (Ballermann 1989, Green et al. 1992, Kasinath 1993).  It is still infeasible to form 

a fenestrated, confluent monolayer of glomerular endothelial cells through which 

transport properties can be measured.  For this reason, this research proposes to study the 

transport properties through a synthetic analog to the glomerular endothelial glycocalyx. 

1.5. Thesis Overview 

The ultimate goal of this research was to gain insight into the role of the glomerular 

endothelial glycocalyx in the sieving of blood plasma proteins.  In particular, this work 

investigates the role of charge interactions between GAG fibers and albumin, a blood 

serum protein.  The following chapters describe how an appropriate synthetic analog was 

created and characterized, how transport properties such as hydraulic permeability and 
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sieving depended on microstructural properties and solution ionic strength, and how this 

system could be understood with microstructural models.  The work concludes with 

extensions back to the properties of the physiological glycocalyx; because the structure of 

the glycocalyx is poorly understood, the physiological conclusions are quite tentative. 

The development of an agarose-GAG membrane using cyanogen activation is the 

topic of Chapter 2, which includes both an experimental investigation into reactions 

parameters which could increase GAG binding and a model of the competition between 

GAG diffusion and binding.  Portions of that work were published in Carbohydrate 

Research (Mattern and Deen 2007).  The hydraulic permeability of agarose-GAG 

membranes over a range of buffer ionic strengths were investigated in Chapter 3.  Of 

particular interest was a decreased Darcy permeability through charged fibers at low ionic 

strengths versus high ionic strengths; this electrokinetic effect was investigated with 

microstructural and Donnan models.  An in-depth evaluation of fiber “mixing rules” for 

the hydraulic permeability of neutral and charged fiber mixtures was published in the 

AIChE Journal (Mattern and Deen 2008).  Experimental Darcy permeability through the 

agarose-GAG membranes and a model of the permeability were published in the 

Biophysical Journal (Mattern et al. 2008).  

The permeability of macromolecular solutes in agarose-GAG gels was studied to 

understand the role of fiber and solute charges in sieving.  In Chapter 5, the sieving 

coefficients of bovine serum albumin (BSA) and monodisperse Ficolls were studied in 

the agarose-GAG gels over a range of ionic strengths.  In Chapter 4, the equilibrium 

partition coefficients of the macromolecular solutes were also measured in the same gels 

to compare the charge effects in partition coefficients versus sieving.  Electrostatic and 

excluded volume models were used to understand the charge interactions which affected 

equilibrium partitioning.  This work concludes in Chapter 6 by applying this research to 

give insight into the potential roles of the glycocalyx in glomerular filtration. 
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Chapter 2. AGAROSE-GAG MEMBRANE SYNTHESIS 

  

 

In the following sections, the development and refinement of an agarose-GAG 

membrane synthesis procedure are presented.  The selection of an agarose-GAG system 

is first presented, followed by a review of agarose functionalization procedures in the 

literature.  An agarose activation procedure using 1-cyano-4-(dimethylamino)-pyridinium 

tetrafluoroborate (CDAP) is modified from the published procedure for Sepharose® 

chromatography beads to a procedure for flat agarose membranes.  Assay methods for 

determining viable GAG suppliers for attachment and for measuring the bound GAG 

content of agarose-GAG gels are summarized.  Finally, data is presented on refining the 

agarose-GAG synthesis to increase the binding yield, including a model for the 

competing processes governing GAG attachment in membranes. 

2.1. Introduction 

As discussed in the background, the glycocalyx is a loose matrix that is composed 

primarily of negatively charged glycosaminoglycan chains bound to core proteins.  Since 

GAG chains contribute the majority of mass and charge to the proteoglycans, the primary 

objective of this research is to study the transport of fluids and macromolecules through a 

matrix of GAG.  Prior work has considered binding GAG to the walls of nanochannels 



CHAPTER 2. Agarose-GAG Membrane Synthesis 
 
 

 
  

  42  

(track-etched polycarbonate (TEPC) membranes; diameter ~100nm), which would evoke 

the structure of the endothelial fenestrae.  However, difficulties in determining whether 

the GAG formed a coating on the channel walls or a film over the membrane surface, 

combined with sieving data that did not agree with theory, suggested that TEPC 

membranes were not a suitable substrate for studying transport properties through a GAG 

matrix. 

Instead, this research aims to use a substrate matrix with homogeneously bound 

GAG.  Existing fiber-matrix theories may be used to explain the properties of such a 

homogeneous fiber system.  The following section evaluates the various materials that 

could be used as the matrix substrate.  After selecting agarose as an appropriate substrate, 

a variety of methods for binding GAG to the agarose fiber matrix are reviewed. 

2.1.1. Substrates 

Several methods for studying a synthetic assembly of GAGs are available in the 

literature.  Some studies in drug delivery have used cross-linked GAGs; while this 

method assures that a scaffold membrane does not interfere with the properties of the 

GAGs, it is unclear how crosslinking GAG chains would affect their properties and if the 

crosslinked GAG membrane would have sufficient mechanical strength for transport 

studies (Rubinstein et al. 1992, Salamone 1996, Sintov et al. 1995).  Numerous research 

groups have incorporated GAGs into collagen-I matrices; however, collagen membranes 

may compress or swell under different pressures and concentrations, making it difficult to 

study transport phenomena (Daamen et al. 2003, Pieper et al. 2000, Pieper et al. 1999).  

Similarly, GAGs have been attached to a variety of polymer membranes to create 

biomedical materials with thromboresistant properties (polymethyl-methacrylate, 

polyvinylidene-fluoride, and styrene-butadiene, to name a few) (Goosen and Sefton 1979, 

Karlsson et al. 2000, LaBarre et al. 1974, LaBarre and Jozefowicz 1977, Rea et al. 1971).  

Prior work in our research group had attached GAG to track-etched polycarbonate 

membranes; however, non-uniformities in the pores and inability to distinguish between 

pore- and surface-effects made the substrate unsuitable (Zugates - unpublished results).  

Numerous methods have been published on the use of GAG attached to the surface of 

Sepharose® (agarose) beads for affinity chromatography and protein separation 
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(Danishefsky and Tzeng 1974, Danishefsky et al. 1976, Funahashi et al. 1982, Iverius 

1971, LaFrance and Dapron 1997, Sasaki et al. 1987, Sepulcre and Moczar 1973).  

Agarose as a substrate has numerous advantages: its transport properties have been 

extensively studied in our laboratory; it has relatively constant properties over the 

pressures and concentrations of interest; it is composed of neutral, rigid fibers; and it can 

be reproducibly cast into membranes with sufficient strength.  For these reasons, an 

agarose-GAG hydrogel membrane was chosen to study the transport properties of a GAG 

matrix. 

2.1.2. Binding Method for Agarose-GAG 

A variety of methods have been published for attaching GAGs to agarose, as 

reviewed by Funahashi et al. and Cuatrecasa (Cuatrecasas 1970, Funahashi et al. 1982).  

It is desired to attach the GAG molecules to the agarose substrate at a single point, 

mimicking the end-only attachment found in cell coat proteoglycans.  However, most of 

the attachment methods in the literature use the hydroxyl or carboxyl groups on the GAG 

chains to react with binding sites synthesized on agarose, which may result in multiple 

points of attachment.  Two categories of covalent GAG attachment remain, which instead 

use unique functional groups found at the ends of the GAG chain.  The first method uses 

amino-agarose, which reacts with the terminal formyl (carboxyl) group on the reducing 

end of the GAG chain (LaFrance and Dapron 1997, Sasaki et al. 1987).  The second 

method uses agarose that has been “activated” by cyanogen bromide or similar agents to 

turn hydroxyl groups into highly reactive cyanate esters, which then react with the 

primary amine found on the core protein residues at the end of the GAG chain (Axén et 

al. 1967, Iverius 1971, Kato and Anfinsen 1969, Kohn and Wilchek 1984).  In variations 

of this second method, some procedures bind the amino group on peptides to a N-

hydroxysuccinimide, carboxyl or epoxy group on functionalized agarose; however, these 

methods have varying levels of binding specificity in the presence of competing carboxyl 

groups on the GAG chains.  Of these two end-only attachment methods, the amine-

cyanate ester method has been used more extensively and has been studied more 

thoroughly in the literature; for this reason, a cyanylating-activation procedure to attach 

GAG chains via their terminal protein residues was chosen. 
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Since the discovery of the cyanogen halide method for coupling proteins to 

polysaccharides by Axén, Porath, and Ernback in 1967 (Axén et al. 1967, Porath et al. 

1967), a number of improvements and variations on the activation method have been 

made.  An excellent review of the topic has been assembled by Kohn and Wilchek (Kohn 

and Wilchek 1984); it is briefly summarized here.  The conventional activation procedure 

uses cyanogen bromide (CNBr) in a strongly basic reaction medium to convert the 

hydroxyl groups on agarose (or any polysaccharide) into a highly-reactive cyanate ester (-

OCN).  Much of the CNBr is rapidly hydrolyzed into an inert cyanate ion, such that large 

amounts of the highly toxic CNBr are required to form even moderate levels of active 

sites.  In addition, a majority of the active sites rapidly degrade to an inert carbamate or 

react with another active site to form cross-linking.  The safety of the procedure is also a 

concern, since CNBr sublimes rapidly at room temperature, is a powerful lachrymator 

and is highly toxic in even small amounts (Parikh et al. 1974).  The conventional method 

was greatly improved by the addition of triethylamine as a “cyano-transfer agent”, 

whereby the CNBr forms a complex with the triethylamine which decreases the pH at 

which the reaction is performed and avoids the formation of inert side products.  The 

result is a method that uses less CNBr to achieve a higher activation yield.  While this 

method is still frequently used, several other cyanylating agents were discovered in the 

early 1980’s that pose a less severe health risk and increase the activation yield relative to 

CNBr.  The three of note are N-cyanotriethylammonium tetrafluoroborate (CTEA), p-

nitrophenylcyanate (pNPC), and 1-cyano-4-(dimethylamino)-pyridinium 

tetrafluoroborate (CDAP).  While the three reagents are similar in structure (R-C≡N) and 

reaction sequence, CDAP has the advantage of being used at temperatures slightly above 

0°C and resulting in significantly higher activation yields (CDAP: 60-80%, CTEA: 10-

20%, pNPC: 10%, CNBr: 1-20%). 

The chemistry of the CDAP reaction sequence is presented in Figure 2.1.  The 

repeating units on agarose contain multiple hydroxyl groups which may be activated by 

CDAP.  When CDAP and triethylamine (a cyano-transfer agent) are added, the hydroxyl 

groups are converted to a pyridinium-isourea derivative.  In slightly acidic conditions, the 

equilibrium of the isourea derivative is shifted towards the cyanate ester.  In the presence 

of primary amines (either the terminal peptide of GAG or a small quench molecule like 
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ethanolamine), the amine and cyanate ester will form a covalent isourea bond. There are 

several competing reactions for the active cyanate esters.  In aqueous conditions, the 

cyanate ester can degrade into an inert carbamate group.  The cyanate ester can also bind 

with other activated groups, forming a cyclic imidocarbonate bond between neighboring 

active groups or a linear imidiocarbonate bond that crosslinks two agarose fibers. 
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Figure 2.1  Reaction pathway for the activation of agarose by CDAP and the binding of GAG. 
 

2.2. Development of Agarose-GAG Synthesis 

This section includes information on the synthesis of agarose-GAG membranes based 

the published CDAP activation methods for Separose® chromatography beads.  The 

procedure was first modified for flat membranes, then scaled-up to produce batches of 20 

membranes.  Assay methods for measuring the bound GAG content of the agarose-GAG 

membranes are reviewed.  A brief investigation into the types of GAG which can be used 

in the synthesis is presented.  Finally, the results of this “baseline” synthesis are 

presented.  The following section will aim to improve on the bound GAG content of this 

baseline. 
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2.2.1. Method – Agarose-GAG Synthesis 

As mentioned previously, the published literature for functionalizing agarose with 

cyanate esters is based on the use of Sepharose® (agarose) or other polysaccharide resin 

chromatography beads.  For the measurement of transport properties, agarose is instead 

formed into thin agarose hydrogels based on methods previously developed by our 

research group (Johnson et al. 1995, Johnston and Deen 1999).  A procedure is desired 

that can create a batch of gels which have uniform properties within the batch and which 

will not damage gels during the synthesis. 

The agarose activation procedure for CDAP is taken from the method by Kohn and 

Wilchek for polysaccharide resin beads and modified to be appropriate for gel 

membranes (Kohn and Wilchek 1984).  Numerous protocols are available for attaching 

proteins to cyanate-activated agarose; the procedure here is based on the method used by 

Iverius (Iverius 1971).  Modifications to the procedures included: (1) replacing washes in 

a sintered glass funnel with multiple equilibrations in an excess volume of the wash 

solution, (2) keeping each membrane supported and separated in a plastic histology 

embedding cassette (Figure 2.2), (3) replacing magnetic stir bars with orbital stirring and 

(4) increasing reagent volumes to assure complete coverage of the gels. 

The modified procedure developed to synthesize a batch of twenty agarose-GAG 

membranes is as follows: 

 
Agarose Gel Casting: Suspend agarose (Type IV; Sigma, St. Louis, MO) in KCl-phosphate buffer 

and heat at 90ºC until it is completely dissolved, forming a 4.1 w/w% (=4 v/v%)  solution (or other 

concentration, as needed). Pour the hot agarose solution onto a 2.5 cm diameter woven polyester 

support (SpectrameshTM 43 µm opening; #148-248; Spectrum Laboratories, Rancho Dominguez, 

CA) that was placed on a heated glass plate. Place a second hot glass plate on top and compress 

the excess agarose away from the mesh.  Allow the gel to cool to room temperature and immersed 

in buffer.  Store membranes in buffer and refrigerate until use.   

 

Agarose Activation: Place each agarose membrane in a plastic histology cassette (Histo-prep 

Tissue Capsules #15-182-219; Fisher, Hampton, NH).  Soak 20 membranes for 15 minutes with 

gentle agitation in each of the following: 1 L DI water, 1 L 30% acetone (two times) and 1 L 60% 

acetone (two times).  In a beaker surrounded by an ice bath (or ice block), add the washed gels to 

200 mL ice-cold 60% acetone.  While orbital mixing at 150-200 rpm, add 20 mL of 100 mg/mL 
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CDAP (#1458C; Research Organics, Cleveland, OH) in dry acetonitrile; wait 1 minute.  Dropwise, 

add 16 mL of 0.2 M triethylamine (TEA) solution over 1-2 minutes; wait 5 minutes while 

continuing to mix.  Rapidly transfer the membranes to 1500 mL of ice-cold 0.05 N HCl (500 mL 

in each of three jars); wait 30 minutes while continuing to mix.  Membranes may be left in the 

HCl solution up to several hours, if needed.  Soak the membranes in 2 L of ice-cold water for 

15 minutes (three times). 

 

GAG Attachment:  Cover the activated agarose membranes (in their cassettes) with 1 g/L GAG in 

0.1M NaHCO3. (Generally, 200 mL can cover five membranes.)  Stir with orbital mixing at 4°C 

for at least 16 hours.  To remove the remaining active groups, add 7.5 mL ethanolamine per 

100 mL attachment solution and stir for 4 hours at 4°C.  Soak the membranes for 15 minutes each 

with gentle agitation in the following: 2 L DI water (three times), 2 L 0.5 M NaCl (two times) and 

2 L DI water (six times).  Remove each gel from its cassette, store in ~10 mL 0.1 M KCl-

phosphate buffer and refrigerate until use. 

 

All chemicals are reagent grade or higher.  The attachment process can use any GAG 

supply with a primary amine, which will be discussed further in a later section.  To 

produce blank gels as a control for the agarose-GAG gels, the above is followed except 

for using a 0.1M NaHCO3 attachment solution without GAG. 

 

 
Figure 2.2  Polypropylene histology cassette used to support agarose membranes during the activation and 
attachment processes.  (Histo-prep Tissue Capsules, #15-182-219; Fisher, Hampton, NH) 

 

2.2.2. Method - GAG Assay 

Once the agarose gels have been functionalized with GAG, it is necessary to assay 

them to determine the GAG content relative to the gel volume and agarose fiber content.  
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A broad range of assays in the literature can be used to measure GAG concentration.  

Most of the methods were developed for GAG in solution, though the procedures may be 

modified to account for the presence of agarose fibers.  In the next section, the GAG 

assays available in the literature are summarized.  After selecting the most appropriate 

assay method for the agarose-GAG membranes, the following section presents some 

modifications to the assay method to apply it to the agarose-GAG membranes and 

improve its accuracy. 

 

Selection of Assay Method 

The applicable GAG assays in the literature can be divided into five categories: (1) 

dye assays, (2) end group - primary amine assays, (3) end group - reducing sugar assays, 

(4) saccharide repeat unit assays, and (5) assays requiring specialized equipment.  The 

available assays are listed in Table 2.1, along with a summary of their range of detection, 

specialized equipment requirements and procedure difficulty. 

While the fluorescamine assay for primary amines has both good sensitivity and a 

simple procedure, it cannot be used once the amine group has been used for covalent 

binding to agarose.  The Elson-Morgan reaction for glucosamine was used successfully 

by Funahashi et al for measuring the amount of GAG bound to Sepharose; however, it is 

a difficult procedure requiring acid digestion of both the agarose and the GAG 

(Funahashi et al. 1982).  Of the other methods, the dye-based methods appear to be most 

attractive in terms of concentration range and simplicity.  The methods are simple to 

perform and only require a spectrometer and basic labware.  Metachromatic dye assays 

use a cationic dye which associates with the negatively charged GAG chain, with the 

GAG-dye complex absorbing light at a different wavelength than the free dye.  It must be 

remembered that when the GAG is bound to an agarose substrate, the dye-GAG complex 

will not be in free solution and the measurement of its absorbance using most dye assays 

is not possible.  However, the o-toluidine blue method measures the concentration of free 

dye (versus complexed dye), once the dye-GAG complex has been precipitated.  This 

method can easily be extended to a bound-GAG system for a simple yet precise method 

for measuring bound GAG concentrations (Smith et al. 1980). 
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Table 2.1  Summary of GAG assay methods in the literature, with their sensitivity, relative difficulty 
and specialized equipment requirements. 
Assay Equipment for 

Measurements 
Sensitivity* Procedure 

Difficulty 
References 

Dye-Based Assays     

Dimethyl-methylene blue spectrometer 10~150 µg/mL simple (Whitley et al. 
1989) 

Acridine orange fluorometer 5~40 µg/mL simple (Diakun et al. 
1979) 

Alcian blue spectrometer 50~750 µg/mL simple (Gold 1979) 

o-Toluidine blue spectrometer 1~100 µg/mL simple (MacIntosh 1941, 
Smith et al. 1980) 

End Group – Primary Amine Assays    

Fluorescamine fluorometer 5~100 µg/mL simple 

(de Bernardo et 
al. 1974, Toome 

et al. 1974, 
Toome and 

Manhart 1975) 

o-Phthaldialdehyde fluorometer 5~50 mg/mL simple/moderate (Roth 1971) 

Fluoraldehyde fluorometer 1~10 mg/mL simple (Jandik et al. 
1996) 

End Group – Reducing Sugar Assays    

2,2’-Bicinchoninate spectrometer 1-25 mg/mL difficult 

(Jandik et al. 
1996, 

Waffenschmidt 
and Jaenicke 

1987) 

Fluorescent tagging fluorometer not reported moderate (Hase 1996) 

Repeat Unit Assays (requires acid/enzymatic digestion of samples)  

Carbazole Reaction  
(for hexuronic acid) spectrometer 10~100 µg/mL difficult 

(Bitter and Muir 
1962, Galambos 

1967) 

Elson-Morgan Reaction 
(for glucosamine) spectrometer 30~300 µg/mL difficult (Gardell 1953) 

UV Detection 
(for unsaturated uronic acid) 

UV spectrometer
HPLC column ~100 µg/mL difficult (Koshiishi et al. 

1998) 

Specialized Equipment Assays  

Glucosamine groups amino acid 
analyzer ~1 mg/mL moderate/difficult (Andersson et al. 

1975) 

Carboxyl group titration potentiometer 0.6-20 mg/mL moderate (Varshavskaya et 
al. 1979) 

Microscopy (dye staining or 
immunofluorescence) microscope not quantitative moderate/difficult 

(Daamen et al. 
2003, van 

Kuppevelt and 
Veerkamp 1994) 

* - based on 50 kDa GAG 
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The procedure developed by Smith et al. for assaying heparin immobilized on 

Sepharose beads using o-toluidine blue dye is as follows (Smith et al. 1980): 

 
o-Toluidine Blue Dye Assay: Prepare a 50 µg/mL solution of o-toluidine blue dye in 0.01 N HCl 

with 0.2% (2 mg/mL) NaCl.  To each test tube, add 2.5 mL of the dye solution.  In the reference 

test tubes, add 2.5 mL of GAG solution with 1-100 µg/mL GAG in 0.2% NaCl.  In the sample test 

tubes, add a sample membrane and 0.2% NaCl to a total volume of 5 mL (note: Smith et al. added 

0.025-0.15 mL Sepharose beads; one membrane is ~0.05 mL).  Agitate by a Vortex mixer for 

30 seconds.  Add 5 mL of hexane to each tube and shake vigorously for 30 seconds.  Centrifuge 

the tubes to separate the solvent layers, sample the aqueous layer, dilute the sample 1:10 with 

absolute ethanol and read the absorbance at 631 nm.  The absorbance of the samples is correlated 

to the absorbance of the reference solutions to determine the GAG content. 
 

This relatively simple procedure can be scaled in volume to assay a larger or smaller 

GAG content in the agarose-GAG membranes.  It is necessary to add the hexane to 

precipitate the dye-GAG complex in free solution, since the absorbance spectra of the 

free dye and the bound dye overlap.  While it isn’t necessary to precipitate the GAG 

bound to membranes, the solution references and membrane samples are treated 

identically for consistency.  Since the binding between the dye and the GAG molecules 

isn’t covalent, the assay method is non-destructive and the samples may be recovered by 

washing with a high ionic strength buffer solution.  While the reference concentrations 

used by Smith et al. produced a linear response between concentration and absorbance, 

the binding behavior is actually more complex.  As shown by MacIntosh, the GAG 

concentration-absorbance curve is actually sigmoidal (MacIntosh 1941).  The non-linear 

shape is caused by two factors: a decreased dye-binding efficiency at higher GAG 

concentrations and a non-linear absorbance curve for toluidine concentrations.  However, 

as long as the GAG concentrations remain moderate and in proper proportion to the dye 

solution, the concentration-absorbance curve can be well-approximated as linear.   

 

Assay Improvements 

While preliminary tests of the o-toluidine assay confirmed that it was able to measure 

bound GAG at the necessary concentrations, additional tests were performed to determine 

if the presence of the agarose or the mesh affected the assay, if a minimum time was 
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required for the dye to diffuse into the membranes, if the assay could be scaled down, if 

the error on the reference samples could be reduced and if the o-toluidine dye solution 

was stable over time. 

The two largest sources of error in the reference concentration curve were the dilution 

of the GAG solution to the desired reference concentrations (1-100 µg/mL) and the 

dilution of the aqueous layer in ethanol before the absorbance measurement.  To improve 

these error sources, a series of stock GAG solutions over the range of concentrations 

were prepared on a larger scale (~200 mL) and used as a reference for all assays.  This 

improved the accuracy of the assay from ±0.6% to ±0.3% relative error.  It was found 

that dilution of the aqueous sample in ethanol was not necessary for absorbance 

measurement, so the aqueous layer could be measured directly at 631 nm, reducing the 

relative error to 0.1%.  The assay was able to be scaled down to half-volumes, though 

there was some increase in error of the measurements.  Since the bound GAG content of 

the membranes was found to be within the range of the full-scale assay, there was no 

need to pursue further improvements of the small-scale assay. 

It was found that when the dye solution is stored in an opaque container for several 

weeks, there is no significant degradation in color.   However, spectrometer readings did 

vary slightly from week to week, so it is recommended to run a reference calibration 

curve with each batch of sample assays.  There was no significant effect on absorbance 

over the temperature range 16.5-29.0°C. 

Similar to the observations by MacIntosh, the absorbance had a sigmoidal response to 

the GAG concentration (Figure 2.3) (MacIntosh 1941).  Using the assay procedure above, 

the absorbance had a nearly linear response within the range 5-60 µg/mL (12.5-

150 µg/sample).  The reference samples used to create the calibration curve for the assay 

were chosen to fall across this range (0, 5, 10, 20, 30, 40, 50, 60 µg/mL). 
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Figure 2.3  Absorbance response for o-toluidine assay for GAG in solution.  Absorbance is measured at 
631 nm.  The linear fit over the range 5-60 µg/mL has R2=0.994. 

 

Since the membranes have a finite thickness (~70 µm) with GAG distributed 

throughout, they require at least several characteristic diffusion times (1~2 seconds) to 

allow the dye to diffuse throughout the thickness.  Further tests show that the dye does 

not reach binding equilibrium with the GAG for several minutes.  Therefore, it is 

necessary to allow the dye solution to equilibrate with the sample for at least 15 minutes 

prior to measuring the absorbance. 

It was found that the assay of a blank agarose membrane was slightly higher 

(apparent GAG content of 4-14 µg) than a 0 µg/mL reference solution.  Partitioning 

measurements also indicated that there was preferential partitioning of the dye into the 

membranes (Φdye=1.5~3).  Further studies showed that the assay of the polyester support 

mesh accounted for most (~90%) of the non-zero reading of the blank, while the 

additional volume of the hydrogel could cause an apparent GAG concentration of 1.6 µg.  

To account for these factors, the assay data must be properly interpreted. 
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Figure 2.4  Schematic interpretation of GAG assays to account for mesh and gel volume.  For each of the 
four types of samples, the volume (Vi) is known, the absorbance (Ai) is measured and the concentration of 
free dye (cf,i) is assumed proportional to the absorbance by Beer’s law. 

 

As shown in Figure 2.4, each sample assayed has a known volume (Vi, which is the 

sum of solution and gel volumes) and a measured absorbance ([A]i).  The absorbance is 

assumed to follow Beer’s law and be linearly related to the concentration of free dye (cf,i) 

by the product of the absorption coefficient (αdye) and the pathlength (l): 

 [ ] ( ) ,dye f ii
A l cα=  (2.1) 

It is also assumed that the mass of dye bound to GAG (mb,GAG) is proportional to the mass 

of GAG (mGAG) and independent of the concentration of the dye: 

 ,b GAG GAGm mγ=  (2.2) 

From conservation of mass of the dye during the assay: 

 ,0 1 ,1 , 2 ,2 , ,2 ,3 ,3s f f b mesh f b mesh GAG s f GAGV c V c m V c m m V c mγ γ= + = + + = +  (2.3) 

where mb,mesh is the mass of dye bound to the support mesh in the membrane.  Rewriting 

the conservation equation in terms of absorbance: 

 
( ) ( ) ( )

( )

1 1 1

0 1 1 , 2 2 , ,2

1

3 ,3

[ ] [ ] [ ]

[ ]

s dye dye b mesh dye b mesh GAG

s dye GAG

V l A V l A m V l A m m

V l A m

α α α γ

α γ

− − −

−

= + = + +

= +
 (2.4) 

From the reference samples (0) and (3), a calibration curve relating the mass of GAG 

to the free dye absorbance is generated: 
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 ( ) ( )1 1

,3 0 3[ ] [ ]GAG s dye s dyem V l A V l Aγα γα
− −

= −  (2.5) 

which provides values of ( ) 1

s dyeV lγα
−

and 0[ ]A .  From the membrane samples (2) and 

blank membrane samples (1), the mass of GAG bound in the membrane is expressed by: 

 ( ) ( )1 11 2
,2 1 2[ ] [ ]GAG s dye s dye

s s

V Vm V l A V l A
V V

γα γα
− −⎛ ⎞ ⎛ ⎞

= −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (2.6) 

Using Equation (2.6), the mass of GAG bound to any membrane is determined by the 

absorbance of the membrane, the absorbance of a blank membrane, the constants in the 

calibration curve and the volumes of the gels.  The dye binding to the mesh is accounted 

for in the absorbance of the blank and the additional volume of the membrane is 

accounted for in the volume ratios. 

2.2.3. Method – GAG Type Selection 

It should be noted that the GAG attachment method in Section 2.2.1 requires the 

presence of a protein residue on the reducing end of the GAG chain.  However, prior 

work in our lab by G. Zugates has indicated that GAG purification methods used by some 

suppliers (eg – Seikagaku) cleave off the end of the o-serine linkage, leaving no primary 

amines to attach to the active sites (Zugates - unpublished results).  From the background 

information on GAGs and those identified in the glomerular capillary, either heparin 

sulfate or chondroitin/dermatan sulfate would be representative of the charge and fiber 

length found in the endothelial glycocalyx.  A number of GAGs are commercially 

available in several fractions of the six GAG types (eg- CS-A, CS-C), each derived from 

a variety of tissue sources.  To confirm that a GAG supply can be used to generate 

agarose-GAG membranes, it is necessary to test that it contains a terminal primary amine.  

Additionally, the GAG must have sufficient charge to bind with the o-toluidine dye in the 

bound GAG assay. 

The following sections will outline the assay method used to determine if a GAG 

supply contains primary amines, then summarize the results of several commercially 

available GAGs. 
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Method - Primary Amine Assay 

As noted in Table 2.1, there is a category of GAG assays which rely on binding a tag 

molecule to the primary amine end group on the GAG molecule.  Of the three methods 

reported, the fluorescamine assay is most attractive because of its sensitivity and 

simplicity.  The following procedure has been adapted from several references (de 

Bernardo et al. 1974, Toome et al. 1974, Toome and Manhart 1975): 

 
Fluorescamine Assay: Prepare a 280 µg/mL solution of fluorescamine in acetone; store in a 

bottled protected from light.  Prepare a 0.5M carbonate buffer (pH~9.25), using sodium salts.  

Prepare aqueous GAG solutions with concentrations of 0-0.2 nmol/mL.  To a glass test tube, add 

3 mL of the GAG solution and 333 µL of the carbonate buffer; mix on a Vortex mixer.  Add 1 mL 

of fluorescamine solution; mix well.  Place a sample in a 4.5 mL cuvette and measure the 

absorbance at 400 nm (or fluorescence at λex=390 nm and λem=475 nm). 
 

If a GAG supply does not contain a primary amine group, the fluorescamine will not 

bind and absorb/fluoresce at the given wavelength.  If quantitative measurement of the 

concentration of primary amine groups is required, the samples can be compared to the 

assay of solutions with known concentrations of glycine or other amine-containing 

molecule. 

 

Results – Amine Assay and Dye Assay 

GAG supplies of several different GAG fractions from various suppliers were tested 

both for their primary amine content and their response to the o-toluidine dye assay.  

Suppliers included Calbiochem (La Jolla, CA)), Sigma (St. Louis, MO), MP Biomedicals 

(Solon, OH) and Seikagaku (Tokyo, Japan); the glycine reference standard was from 

Mallinkrodt (Phillipsburg, NJ).  The results are summarized in Table 2.2. 
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Table 2.2  Results of fluorescamine primary amine assay and o-toluidine dye assay on various GAG 
supplies.  (n/a indicates ‘not assayed’) 

GAG Type Supplier 
[Product #] MW [Da] Contains 

1° Amine? 
Binds 

o-Toluidine? 
Chondroitin 
Sulfate - A 

Calbiochem 
[#230687] 

50,000 Yes Yes 

 Sigma  
[#C9819] 

10-30,000 Yes n/a 

Chondroitin 
Sulfate – B* 

Calbiochem 
[#263301] 

30,000 No n/a 

 Sigma  
[#C3788] 

10-30,000 No n/a 

 MP Biomedicals 
[#194108] 

25,000 No n/a 

Chondroitin 
Sulfate – C 

Calbiochem 
[#2307] 

60,000 Yes No 

 Seikagaku 
[#400675] 

40-80,000 No** Yes 

Heparin Calbiochem 
[#375095] 

13-15,000 Yes Yes 

Glucosamine 
Sulfate 

Sigma 
[#G7889] 

281 Yes No 

Glycine Mallinkrodt 
[#7728] 

75 Yes n/a 

* - Chondroitin Sulfate-B is also known as Dermatan Sulfate 
** - From unpublished data by Zugates using the fluorescamine assay (Zugates - unpublished results) 
 

As can been seen in Table 2.2, only certain GAG supplies are appropriate for 

attachment by the CDAP method and assay by the o-toluidine dye method.  Of the 

chondroitin sulfates, only CS-A can be used successfully.  The other CS fractions lacked 

either the amine or the charge to be used in membrane synthesis.  Heparin could also be 

used as a lower molecular weight alternative.  Glucosamine sulfate, one of the monomer 

units in GAG, was too small of a molecule to bind the o-toluidine dye.  Based on these 

results, product availability, and similarity to glomerular GAG, CS-A obtained from 

Calbiochem was selected as the standard GAG.  It was used in all further experiments 

unless otherwise specified. 
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2.2.4. Results – “Baseline” Synthesis of Agarose-GAG Membranes 

Using the synthesis method described in Section 2.2.1, a batch of twenty gels was 

produced.  The batch used 4 v% agarose gels, of which five were blanks.  Using the 

o-toluidine assay from Section 2.2.2 on four of the agarose-GAG gels, this batch 

contained 45 ± 2 µg GAG per membrane.  Normalizing the GAG content by the gel 

thickness and mesh volume, the gel within the membranes containd 60 ± 5 µg GAG per 

mg agarose fibers. 

In the paper describing the CDAP activation procedure for Sepharose® 4B beads, 

Kohn and Wilchek reported that their agarose beads had a coupling capacity of 15 µmol 

ligand/g resin (based on coupling of ε-aminocaproic acid).  Assuming 100% efficiency in 

coupling GAG, their result is equivalent to 18.8 mg GAG per mg agarose.  However, it is 

likely that the coupling efficiency of GAG would be significantly less, given the much 

larger size of GAG (~50 kDa) compared to aminocaproic acid (131 Da).  Also, it is well 

known in the literature that the active sites degrade rapidly in aqueous solution, such that 

many may degrade prior to placement of the membranes in the GAG attachment solution. 

While a 4 v% agarose gel with 0.2 w% (~0.25 v%) GAG may not seem adequate to 

measure the effect of GAG on transport properties, it is also important to consider the 

relative lengths or surface areas of the two fiber types.  Results from slender-body theory 

for hydraulic flow around rods indicate that it is the fiber length per gel volume, not fiber 

volume per volume, that is dominant factor governing hydraulic resistance (Clague and 

Phillips 1997).  Assuming GAG fibers are approximately 1 nm per disaccharide unit 

(474 Da) (Wight et al. 1991), agarose has a density of 1.025 g/mL and agarose has a 

radius of 1.6 nm (Lazzara and Deen 2004), then the fibers are in a 2:3 length ratio of 

GAG to agarose. 

Since agarose and GAG fibers with equal lengths are predicted by slender-body 

theory to be sufficient to create a significant change to the properties of agarose gels, 

CDAP activation is a promising method for GAG membrane synthesis.  The next section 

will discuss modifications of the CDAP method to increase the relative GAG content of 

the membranes.  The effect that the bound GAG has on the transport properties of the 

agarose membranes will be discussed in Chapters 3-5. 
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2.3. Synthesis Refinement 

Given the potential of the CDAP activation method described in Section 2.2.1, it was 

desired to improve the synthesis method for binding GAG to agarose to maximize the 

effect of the GAG on the transport properties of the composite membrane.  While several 

researchers have mentioned reaction conditions that may improve or detract from ligand 

attachment to Sepharose® beads or dextran, no systematic study has been reported (Kohn 

and Wilchek 1981, Lees et al. 1996).  To increase the relative fraction of bound GAG, it 

is important to understand what factor(s) are limiting GAG binding in the current 

procedure.  The following sections will first discuss some of the potential limiting factors 

for GAG binding, then present some additional assays used to characterize the synthesis 

reactions.  The results of the synthesis studies are summarized, then developed into a 

conceptual model of the limiting factors in the reaction.  Finally, the refined conditions 

for the synthesis are presented, along with the GAG binding results of this improved 

procedure. 

2.3.1. Hypothesized Limiting Parameters 

Within the GAG activation and attachment procedures, there are a number of 

reactions steps which could be either kinetically or transport limited.  The kinetics could 

be limited by reagent concentrations, temperature, or reaction duration.  Transport 

limitations could include external mass transfer, sterically-hindered diffusion, or 

electrostatically-hindered diffusion.  Calculations have shown that none of the reaction 

steps are stoichiometrically limited, with reagents in 101-104x excess relative to the 

bound GAG content.  The reaction steps include the formation of the isourea derivative, 

the protonation to the active cyanate ester, the aqueous wash of the activated gels, and the 

GAG binding in the attachment solution. 

A summary of changes to reactions parameters that could potentially increase the 

relative bound GAG content is presented in Table 2.3.  While the small molecules used 

during the agarose activation should have little hindrance within the gel, increasing the 

concentrations of the reagents may increase the activation of the agarose hydroxyl 

groups.  Kohn and Wilchek had shown that increasing the mass of CDAP six-fold also 

increased their ligand binding capacity six-fold, with a similar increase reported by Less 
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et al. (though, unlike the proposed process, both their activation conditions may have had 

stoichiometric limitations) (Kohn and Wilchek 1984, Lees et al. 1996).  Lees et al. 

reported that a higher pH during activation increased the binding efficiency, though Kohn 

and Wilchek found that higher pH also increased the rate of cyanate ester degradation 

(Kohn and Wilchek 1981, Lees et al. 1996).  Using a different fraction of agarose may 

yield hydroxyl groups which are more reactive with CDAP or may form a hydrogel 

structure which has lower steric hindrance to GAG diffusion.  For dextran and agarose 

substrates, it has been reported that higher substrate concentrations increase the relative 

amount of bound ligand (Lees et al. 1996, Porath et al. 1967). 

 
Table 2.3  Potential synthesis parameters for increasing the relative bound GAG content in 

agarose-GAG membranes. 

  CDAP 
Activation 

Cyanate 
Protonation 

Aqueous 
Wash 

GAG 
Binding 

Reagent 
Concentration • ↑ [CDAP] • ↑ [H+] • ↓ air 

exposure 

• ↕ [GAG] 
• Buffer type 
• Buffer pH 
• Mesh type 

K
in

et
ic

 

Reaction 
Duration/Temp. • ↑ time • ↕ time 

• ↕ temp. 
• ↓ time 
• ↓ temp. 

• ↑ time 
• ↕ temp. 

External Mass 
Transfer    • ↑ mixing 

• No cassette 

Steric 
Hindrance 

• Agarose 
type   

• ↓ φGAG 
• ↓ gel thickness 
• ↓ GAG size 

T
ra

ns
po

rt
 

Electrostatic 
Repulsion    • ↑ ionic 

strength 

 

Increasing the duration of the activation and protonation reactions may increase the 

number of binding sites if the reactions have not reached equilibrium.  Spectroscopy 

results by Kohn and Wilchek have indicated that CDAP activation occurs within 90-120 

s, though work with CNBr by March et al. showed that ligand binding decreased when 
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the duration of activation was increased from 1 minute to 4 minutes (Kohn and Wilchek 

1984, March et al. 1974).  Since the protonation reaction and aqueous wash occur in 

aqueous solutions, decreasing those times or temperatures may help to reduce the 

degradation of the active sites to an inert carbamate group.  However, it has been claimed 

that the cyanate esters are fairly stable in dilute acid, such that they can be stored in 0.05-

0.1N HCl at 0°C for several hours without degradation (Kohn and Wilchek 1984).  It is 

unknown if exposure of the activated gels to air will accelerate the degradation reaction. 

The activation of the agarose may not be the limiting factor in binding more GAG to 

the agarose gels.  As the coupling capacities from Kohn and Wilchek indicate, the active 

sites may be in a large excess compared to the amount of GAG which binds.  In this case, 

improvements to the synthesis would need to focus on the GAG attachment step.  The 

type and pH of the buffer has an unknown role in the binding, though the buffer salt 

should not contain an amine groups which competes with the GAG for the activated 

binding sites.  Shafer et al. reported that increasing the pH during attachment from 5 to 

9.5 increased the yield of bound amines, since primary amines (pKa~9-10) must be 

deprononated to react with the cyanate ester (Shafer et al. 2000).  Increasing the GAG 

concentration in the attachment solution may increase the binding rate, as observed by 

Lees et al. for dextran-protein binding (Lees et al. 1996).  However, it is possible that too 

high of a GAG concentration would result in a dense GAG surface layer which would 

hinder further diffusion of GAG into the gel interior. 

Decreasing the temperature of attachment would slow the rate of active site 

degradation, but would also slow the diffusion of GAG into the gel.  While an attachment 

duration of 16 hours is significantly longer that the characteristic diffusion time of GAG 

into the gel (approximately 2 minutes, based on the hindered diffusion of similarly sized 

dextrans and proteins), it is possible that the attachment reaction is very slow at low 

temperatures.  Lees et al. reported that maximum bound ligand was achieved after 

3 hours, with 50% binding occurring in about 20 minutes (Lees et al. 1996).  The external 

transport of the GAG from the attachment solution to the gels may be slowed by 

inadequate mixing or the surrounding cassette.  The transport of GAG within the gel may 

be hindered, with steady-state diffusion reached faster with a lower agarose fiber fraction, 

a smaller GAG size or a thinner gel.  The transport of GAG may also be hindered by 
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electrostatic repulsion of the flux of GAG by the previously bound GAG at the gel 

surface; this effect would be diminished at higher ionic strength. 

A few other methods were mentioned in the literature which could increase the 

binding yield.  A number of attachment methods make use of a spacer molecule between 

the substrate and ligand, which helps to overcome steric limitations (Parikh et al. 1974).  

As an extensions of this idea, a branched spacer could be used to attach multiple ligands 

to one active site.  Similarly, an intact proteoglycan could be attached instead of a single 

GAG molecule, since the core proteins would contain numerous GAG molecules.  

However, it is important to note that this would only increase diffusional or steric 

limitations.  It may be possible to add the ligand during the activation or protonation 

steps, reducing the effect of active site degradation.  However, this approach raises 

concerns over precipitation of GAG in some solvents or activation of hydroxyl groups on 

GAG with potential cross-linking.  Finally, GAG could be bound to ungelled agarose in 

solution; however, it has been shown that the presence of sugars changes the structure of 

agarose during gelation (Key and Sellen 1982).  These methods were not explored, since 

the current method yielded adequate bound GAG content. 

2.3.2. Methods 

The effects of the previously described process parameters can be tested by 

modifying conditions under which the synthesis reactions are run and assaying the GAG 

content of the resulting agarose-GAG membranes.  However, two additional procedures 

are available to help gain insight into the intermediate steps of the synthesis process.  In 

the following section, an assay is described for measuring the concentration of activated 

cyanate esters.  Another method is presented for taking cross-sections of the 

agarose-GAG gels and staining the GAG to provide a visual indication of the distribution 

of GAG across the gel thickness. 

 

Active Site Assay 

The assay for active cyanate esters is based on the method used by Kohn and Wilchek 

(Kohn and Wilchek 1981).  The membrane samples are removed at any point in the 
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activation or attachment process, briefly washed in DI water to remove any excess 

reagents, then assayed by the following procedure: 

 
Active Site Assay: Prepare a solution of 9 mL cold distilled pyridine, 1 mL DI water and 100 mg 

N,N’ dimethylbarbituric acid (scale volumes as needed).  Add 3 mL of the dimethylbarbituric acid 

solution to 1 activated agarose gel in a 5-20 mL closed test tube.  Warm to 40°C in a heating block 

for 25 minutes with periodic, vigorous mixing.  The presence of active cyanate esters should cause 

the solution to become purple.  Remove a 1 mL sample from the test tube, and dilute in 19 mL of 

water.  Measure the absorbance at 588 nm and calculate the active site concentration with an 

absorbance coefficient of 137,000 L mol-1 cm-1 in Beer’s Law (Equation (2.1)). 

 

Knowing the initial volume of the gel, the assay can be converted from a 

concentration of active sites in solution to a concentration per mass of agarose fibers.  It 

was confirmed that an unreacted agarose membrane gave a zero reading for this assay. 

 

Cryosectioning 

A routine procedure in histology is the removal of thin slices of a tissue for staining 

of particular molecules.  While such sectioning traditionally involves paraffin mounting, 

another method known as cryosectioning cuts micron-thick sections from a frozen 

sample.  The sample is first placed in O.C.T. media (Tissue-Tek®; Sakura Finetek, 

Torrance, CA) overnight to exchange out the water and prevent freeze-fracture.  The 

sample is then frozen at -20°C.  The Histology Lab in MIT’s Division of Comparative 

Medicine performed the cryosectioning, cutting sections 5 µm thick.  Cryosections were 

successfully taken from gels of various thicknesses and from gels with and without the 

support mesh.  It was possible to take cryosections of samples frozen in 0.1 M KCl-

phosphate buffer, though upon thawing, the samples were highly fractured while 

maintaining their macroscopic shape. 

Once the membrane cross-sections were cut, they were mounted to a glass slide and 

stained.  Xylene-based and water-based mountants were tried by the Histology Lab, 

followed by published procedure for toluidine blue staining and fixation of mucins 

(Sheehan and Hrapchak 1980).  A related method was consulted, which used a slightly 

different toluidine blue staining and fixing procedure for electrophoresis of GAG through 
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agarose (Jaques 1977).  However, the resulting gels appeared to experience shrinkage 

during the processes, causing the gel ends curl and make the stain color appear darker.  

Instead, a “wet staining” procedure was developed for the agarose-GAG cross-sections, 

where the thawed PBS cross-sections were exposed to several drops of a 500 µg/mL 

solution of o-toluidine dye in 0.01 N HCl for 30 minutes.  The excess dye was pipetted 

away, then rapidly rinsed (~5 seconds) with DI water.  The excess water was blotted 

away from the slide surrounding the gel, so that the dye would not diffuse away from the 

stained GAG areas.  Using this method (which doesn’t require mounting, fixation or 

dehydration), the bound GAG in the gels was visualized without significant distortion of 

the gel.  The dye stained the bound GAG purple, but areas without bound GAG remained 

transparent. 

2.3.3. Results 

Using the previously described assays for bound GAG and activated binding sites, the 

potential limiting factors in the agarose-GAG membrane synthesis were investigated.  

The following section presents these results, beginning with the total bound GAG content 

of the membranes.  Then, the effects of several process parameters on the active site 

content are reported.  Finally, cryosections of several gels are shown. 

 

Binding Assay 

Given that the GAG binding capacity in the agarose-GAG membranes was 

significantly lower than the aminocaproic acid binding capacity reported by Kohn and 

Wilchek for their Sepharose® beads, the process parameters affecting GAG attachment to 

the activated membranes were first considered.  The parameters were varied from the 

“baseline” process described in Section 2.2.1 except that the baseline gel composition 

was now 3 v% agarose. 

Figure 2.5 shows the effects of various process parameters on the relative bound 

GAG content of membranes.  These are parameters which might affect the binding 

kinetics.  It is seen that there is relative consistency in the attachment process, since three 

sub-batches which were activated together and attached separately all yielded comparable 

GAG content.  Therefore, any differences between samples are likely due to the changes 
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in the process parameters and not sample-to-sample variation.  Both the temperature and 

pH of the attachment solution had no significant impact on the bound GAG content 

within the range considered (0-4°C and pH=8.4-9.0).  The type of salt used in the 

attachment solution did have a strong effect on the bound GAG content, though no salt 

was found to be more effective than the NaHCO3 in the baseline process.  The 

concentration of GAG in the attachment solution appeared to have some significant 

effect, though primarily at the lowest concentration of 0.2 g/L; there was minimal 

increase in bound GAG content above the baseline concentration of 1 g/L.  Finally, it was 

seen that most of the GAG binds with the active sites within the first 30 minutes, so that 

leaving the gels in the attachment solution overnight (>16 hours) is more than adequate 

for the attachment reaction to be completed. 
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Figure 2.5  Relative bound GAG content of agarose-GAG gels in response to changes in GAG binding 

process parameters thought to affect the binding kinetics.  Error bars represent one standard deviation of 
n=2-4. 

 

Parameters thought to affect the transport of GAG molecules during GAG attachment 

were also studied (Figure 2.6).  Changes in mixing speed and the use of a plastic cassette 

to support the gel had no significant effect on the bound GAG content, suggesting that 

external GAG transport is not limited.  While the use of smaller heparin (15 kDa) instead 

of chondroitin sulfate A (50 kDa) yielded gels with the same GAG content by mass, this 

actually shows a three-fold increase in the molar bound GAG content.  This confirms that 

there is significant steric hindrance to attachment of GAG molecules within the gel, as 
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first hypothesized by the higher molar binding yield of Kohn and Wilchek with a small 

(131 Da) ligand.  The slight increase in relative GAG content for gels with a lower 

agarose concentration also supports the importance of steric hindrance in GAG binding.  

However, in the range of gels considered (2-4 v%), the change in relative bound GAG 

content was minor. 
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Figure 2.6  Relative bound GAG content of agarose-GAG gels in response to changes in GAG binding 

process parameters thought to affect GAG transport.  Error bars represent one standard deviation of n=2-4.  
Two samples indicated by ‘*’ used a 2 minute activation after TEA instead of the baseline 5 minutes. 

 

Also in Figure 2.6, the effect of ionic strength on GAG binding (whether by 

increasing the buffer salt concentration or adding NaCl) had an unclear affect on the 

bound GAG content.  However, since a higher ionic strength resulted in membranes with 

GAG equal or less than the baseline, it is not likely that electrostatic repulsion of the 

GAG is limiting binding.  Finally, the thickness of the membranes greater than the 

baseline (70-80 µm) did have a significant impact on the relative GAG content.  Based on 

the previous data on the kinetic rate of binding, even the thickest (310-350 µm) 

membranes had excess time for diffusion and binding to occur.  This implies that some 

other process may be preventing the homogeneous binding of GAG throughout gels of all 

thicknesses, such as the formation of a dense GAG surface layer on the membrane or 

competition of another kinetic rate (e.g. – active site degradation) with the binding 

reaction.  The degradation profile of active sites will be presented in the next section. 
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While several influential process parameters in the studies of the attachment step 

were found to cause attachment decreases (salt type, GAG type, GAG concentration, gel 

thickness), none of these observations led to process changes which could increase the 

relative bound GAG content.  Given the limited ability to improve the GAG content 

during attachment, process parameters were investigated to increase the concentration of 

active sites generated.  As seen in Figure 2.7, there is some variation in the bound GAG 

content of membranes generated by the “baseline” process conditions.  In general, the 

baseline process conditions with 3 v% agarose yield gels with 60-70 µg GAG/g agarose.  

Upon investigation of the low outliers from this range, two of the low results occurred 

when the HCl and aqueous water washes were not allowed adequate time to fully cool 

from room temperature to 4°C.  (This effect is discussed further later in this section.)  

The agarose fraction used in the gels, the material of the support mesh, and the duration 

of the activation reaction had no significant effect on the bound GAG content.  Increasing 

and decreasing the CDAP concentration by a factor of two had a slight impact on the 

bound GAG content, though it was far from the linear relation between CDAP 

concentration and ligand binding capacity found by Kohn and Wilchek (Kohn and 

Wilchek 1984).  However, the activation process used here for membranes requires a 

greater volume of all reagents than used by Kohn and Wilchek (0.015 g CDAP/g gel 

versus 5.7 g CDAP/g gel), suggesting that their binding capacity increase was due to 

stoichiometric limitations of CDAP while this process has stoichiometric excess. 

Process parameters from the protonation of the active sites and the subsequent 

aqueous wash of reagents out of the membranes were also studied (Figure 2.8).  Instead 

of shifting the reaction equilibrium towards the cyanate ester, increasing the acid 

concentration during protonation instead resulting in membranes with lower bound GAG 

content.  Decreasing the duration of the protonation reaction to 10 minutes also caused 

membranes with lower bound GAG content.  Based on the previous observation that two 

of the low outliers of the baseline samples corresponded to syntheses with incompletely 

cooled water, the affects of wash temperature and duration were measured.  While use of 

partially cooled water (>4°C) had resulted in lowered bound GAG content (48-52 µg 

GAG/g agarose versus a mean baseline of 68 µg/g), using a well-stirred mixture of ice 

and water at 0°C resulted in a significantly elevated bound GAG content (105 µg/g).  
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Similarly, reducing the duration of the aqueous washes also increased the bound GAG 

content (108-110 µg/g).  However, the effects of lower wash temperature and shorter 

duration were not additive, with the increase from the combined change equal to the 

increase from a single parameter change.  Finally, it was confirmed that exposure of the 

activated membranes to air did not decrease their GAG binding capacity. 
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Figure 2.7  Relative bound GAG content of agarose-GAG gels in response to changes in CDAP 

activation process parameters.  Error bars represent one standard deviation of n=2-4.  Two baseline samples 
indicated by ‘*’ used aqueous wash water that was not fully cooled to 4°C. 
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Figure 2.8  Relative bound GAG content of agarose-GAG gels in response to changes in cyanate 

protonation and aqueous wash process parameters.  Error bars represent one standard deviation of n=2-4. 
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In summary, the results from the bound GAG assays show that the only process 

parameters with the potential to significantly increase the bound GAG content of the 

membranes are the temperature and duration of the aqueous wash preceding GAG 

attachment.  The results also indicate the importance of several process parameters in the 

baseline synthesis procedure which, if changed, could significantly decrease the 

membranes’ bound GAG content: protonation acid concentration, membrane thickness, 

attachment solution salt type and concentration, GAG concentration and duration of 

attachment.   

 

Active Site Assay 

Based on the apparent importance of active site concentration and rate of degradation 

to the final bound GAG content of the membranes, the dimethylbarbituric acid assay for 

active cyanate esters was used to study these properties.  Since the temperature and 

duration of the aqueous wash was found to strongly affect the final bound GAG content, 

the active sites were assayed to determine their response to these process parameters. 

First, the effect of process duration was considered by measuring the active site 

content of gels during protonation, aqueous wash and GAG attachment at 4°C.  As shown 

in Figure 2.9, the membranes contained over 2000 nmol sites/mg agarose shortly after 

activation, but contained only two-thirds as many at the beginning of attachment.    The 

degradation of active sites continues in the attachment solution.  In a separate experiment, 

105±20 nmol sites/mg agarose remained in the membranes after 45 hours in a bath of 

blank attachment solution (0.1 M NaHCO3).  The current data is unable to conclusively 

show if the rate of degradation during protonation is slower, though it is possible that the 

acidic conditions during protonation make the degradation into inert carbamate groups 

less favorable, as shown by Kohn and Wilchek for CNBr-activated gels (Kohn and 

Wilchek 1981). 
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Figure 2.9  Active cyanate ester site degradation during post-activation process steps at 4°C.  Error bars are 
one standard deviation for n=2. 

 

Comparing the active site content of the membranes to the bound GAG content of the 

resulting membranes shows that only a small number of the actives sites bind with GAG.  

Further comparisons of stoichiometry confirm that only one in ten hydroxyl groups in 

agarose become activated, despite the large excess of CDAP in the system (Table 2.4).  

The active site content is reasonably similar to that reported by Kohn and Wilchek, given 

the differences in the activation process and assuming that the coupling efficiency of 

aminocaproic acid will be less than 100% (Kohn and Wilchek 1984). 

 
Table 2.4  Potential binding sites, as determined by active sites, bound GAG, and reagent 

stoichiometry. 
Source Binding Sites  

[nmol/mg agarose] 
Published Ligand Binding (Kohn and 
Wilchek 1984) 
     (15 µmol/g gel) 

366 

Active Sites Prior to Attachment 1,500 
Average GAG Binding 
     (68 µg GAG/mg agarose) 1.4 

Stoichiometry – Agarose 
     (4 –OH groups per 306 Da repeat unit) 13,100 

Stoichiometry – CDAP 
     (0.1 g per 3 v% membrane) 724,000 
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Next, the effect of temperature on the degradation of active sites was considered.  

Since the use of 0°C water instead of 4°C water resulted in a 50% increase in the bound 

GAG content, the kinetics of degradation at these two temperatures were studied.  A 

batch of gels was activated, then split into two groups which were either processed in 4°C 

(refrigerated) solutions or 0°C (well-mixed ice) solutions.  As seen in Figure 2.10, the 

active sites degraded three times faster in the 4°C solutions than the 0°C solutions.  

Assuming a first-order rate of decay, the rates of decay in the blank attachment solution 

were 0.24 hr-1 (4°C) and 0.08 hr-1 (0°C).  These rates of decay should be applicable to 

agarose activated by any cyanogen method, not just CDAP, since all methods result in 

active cyanate esters which may degrade into an inert carbamate. 

Given the ~103-fold excess of active binding sites relative to bound GAG, it appears 

that the binding of GAG should be independent of any process changes affecting active 

site concentration.  However, the mutual increase of active sites and bound GAG at lower 

process temperatures suggests that the two properties are not independent.  To understand 

these conflicting observations, it must be considered that not all active sites may be 

available for reaction, such that the concentration of active sites is stoichiometrically 

limiting.  This idea will be discussed further in the context of other observations. 
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Figure 2.10  Active cyanate ester site degradation at 0°C and 4°C.  Error bars are one standard 

deviation for n=2; all samples were activated in the same batch and treated identically until attachment. 
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Cryosectioning 

Cryosectioning was performed on gels to visually confirm if the GAG attached 

throughout the gel thickness.  Based on the bound GAG content of gels of different 

thicknesses in Figure 2.6, the average GAG content decreased for membranes thicker 

than 70 µm.  This indicates the bound GAG was not uniform throughout the thickness.  

However, the bound GAG content of 50 µm and 70 µm-thick gels were statistically 

indistinguishable, which suggests that GAG heterogeneity may only be present in the 

larger gels.  Cryosections were used to study this problem in two ways.  First, the GAG in 

an average 70 µm-thick gel was stained to determine if the GAG was distributed evenly 

throughout the gel.  Second, a “semi-infinite” agarose membrane was bound with GAG 

to determine the penetration depth of GAG binding.  While toluidine staining may not be 

appropriate for quantitative histology due to it’s non-linear staining at very low GAG 

concentrations, it is appropriate for indicating where there is a large gradient in the bound 

GAG content of a gel. 

As shown in Figure 2.11, toluidine staining of GAG in a standard 70 µm membrane 

resulted in a uniform purple color throughout the gel.  This confirms that the GAG is not 

binding purely at the membrane surface and is evenly distributed throughout the 

thickness.  Figure 2.12 shows the staining of a “semi-infinite” 3 mm agarose-GAG gel 

generated under high-attachment conditions (0°C wash solutions; 10 minute protonation; 

three 2-minute aqueous washes).  The GAG is stained purple along the gel edges but the 

dye washed away from the gel interior.  This confirms that, similar to the toluidine assay 

in Section 2.2.2, there is no significant binding of the dye to agarose without GAG.  The 

apparent penetration depth of bound GAG is approximately 50-70 µm, based on 

estimates of the visible color in Figure 2.12 and other similar images. 

The penetration depth on the same order as an average membrane thickness supports 

several observations in the process parameter studies.  First, it confirms that GAG is 

hindered from binding to the core of the membranes for the thicker gels, resulting in a 

lower average bound GAG content as seen in Figure 2.6.  However, this hindrance does 

not affect average and thinner gels (<100~140 µm). 
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100 μm

 
Figure 2.11  Cross-section of an agarose-GAG membrane after toluidine staining of GAG (purple).  The 
holes and oblong objects (brown) are due to the polyester support mesh.  The membrane thickness, as 
determined prior to and after cryosectioning, is 70 µm.  The bound GAG content, as determined from other 
gels from the same batch, was 77±4 µg GAG/mg agarose. 

 

 

 

200 μm

 
Figure 2.12  Cross-section of agarose-GAG gel after toluidine staining of GAG.  The gel was 
approximately 3 mm thick without a supporting mesh.  The bound GAG along the edge of the gel is stained 
purple, while the toluidine dye washed away from the core of the gel (on the left).  The penetration depth of 
the bound GAG is approximately 70 µm. 
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2.3.4. Discussion 

Based on the results from the bound GAG assays, active site assays and cryosections 

of the agarose-GAG membranes, a number of process parameters were identified as 

being important to the GAG-binding process.  First, it was observed from the bound 

GAG assays that the two process parameters which could significantly increase the bound 

GAG content were the temperature and duration of the aqueous wash preceding 

attachment.  Since these parameters only affect the concentration of active sites, and not 

the binding of the GAG, they were studied further with the active site assay.  This assay 

confirmed that the degradation rate of 0.24 hr-1 at 4°C would reduce the active site 

content by 20% during the aqueous washes.  By shortening the duration of the washes to 

15 minutes, only 6% of the active sites would be degraded.  The data also showed that the 

degradation rate of 0.08 hr-1 at 0°C would also reduce the active site content by only 6% 

during the 45 minutes of washes.  However, the combination of reducing both the time 

and temperature should have minimal improvement over reducing time alone, with a 

predicted decrease of active sites prior to coupling of only 2%.  This prediction was 

confirmed experimentally, since the shortened time and lower temperature increased the 

bound GAG content from 68 ± 8 µg GAG/mg agarose to 110 ± 1 and 105 ± 6 µg 

GAG/mg agarose, respectively, but no further increase was measured for the combined 

effects 0°C and 15 minutes wash time (102 ± 2  µg GAG/mg agarose). (Figure 2.8). 

However, the active site assays also showed that there is a 1,000-fold excess of active 

sites formed relative to the moles of GAG that bind to the membranes.  This conflicts 

with the previous observation that process parameters which increase the active site 

content also increase the bound GAG content.  These observations can be resolved if only 

a small fraction of the active sites are available for binding.  Based on the homogeneous 

distribution of GAG in the membrane in Figure 2.11, the GAG can access the entire 

membrane volume and is not limited to the surface active sites.  However, agarose is 

known to form a complex gel structure where two molecules intertwine to form a double 

helix and multiple (101-104) helices group together to form each fiber (Attwood et al. 

1988, Djabourov et al. 1989, Ratajska-Gadomska and Gadomski 2004, Waki and Harvey 

1982).  During gelation, the fibers are further intertwined in junction zones that give 

mechanical stability to the gel network.  While 1 in 10 of the hydroxyl groups on agarose 
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are activated, it is likely that a large fraction of these active sites are sterically 

inaccessible to the large GAG molecules (50 kDa), thus explaining the 0.1% binding 

yield.  More active sites are sterically accessible to smaller molecules, in agreement with 

the higher molar binding yields found here for heparin (15 kDa; 0.4% binding yield) and 

observed by Kohn and Wilchek for aminocaproic acid (131 Da; 24% binding yield) 

(Kohn and Wilchek 1984). 

The second major observation in GAG binding is that both the bound GAG assays 

and the cryosections showed that GAG is hindered from binding to the core of thick 

membranes.  Possible limitations of binding in the core are the process time, binding 

kinetics or active site degradation kinetics relative to the diffusion time.  The 

characteristic diffusion time for transient diffusion of GAG (50 kDa) into a slab of 

thickness δ is 

 
2

2
1

D
GD

δτ
π

=  (2.7) 

which can be estimated from the hindered diffusion of 20-500 kDa proteins and sugars in 

agarose (Di~1-8x10-7 cm2/s) (Deen 1998, Key and Sellen 1982, Kosto and Deen 2004).  

Since the attachment process time (16-40 hours) greatly exceeds that for diffusion of 

GAG into the core of a 300 µm membrane (~5 minutes), the transport of GAG into the 

membrane core must instead be competing with the kinetics of the active sites. 

  The rate of active site degradation (0.24 hr-1) gives a characteristic time of 4 hours at 

4°C, indicating that this rate is not the limiting factor relative to the diffusion time.  It was 

shown in Figure 2.5 that the majority of GAG binding occurs within the first 30 minutes, 

which indicates that the rate of the binding reaction is comparable or somewhat slower 

than the rate of diffusion of the GAG.  When diffusion and first order reaction occur 

simultaneously, the characteristic time scale can be shown to be: 

 
1

2
2
G

D rxn
D kτ π
δ

−
⎛ ⎞= +⎜ ⎟
⎝ ⎠

 (2.8) 

where krxn is the first order reaction rate constant.  Assuming first order binding of GAG 

with a rate constant of 0.2 min-1, the characteristic time for unbound GAG to reach its 

steady-state profile is decreased to 2.5 minutes. 



CHAPTER 2. Agarose-GAG Membrane Synthesis 
 
 

 
  

  75  

However, the reaction is not actually first order, but instead second order with the 

active sites.  The active sites are degrading over time, as well as being stoichiometrically 

limited due to the previously discussed steric limitations.  The result is a complicated 

system where unbound GAG penetrates into the membrane as active sites become 

depleted at the edges.  The movement of the binding front towards the membrane core 

slows as the active sites decay, linking the bound GAG content to all three rates 

(diffusion, binding and degradation).  While it is still possible to model these competing 

effects, the solution can no longer be derived analytically and instead requires numerical 

methods.   

2.3.5. Modeling 

Model Development 

As just discussed, it is proposed that the rates of GAG diffusion, GAG-active site 

binding and active site degradation are all involved in determining the bound GAG 

content of a membrane.  The following section outlines the equations which govern the 

model, the finite difference solution method and a comparison of the model results to the 

experimental data. 

The model contains the concentrations of three species: unbound GAG, bound GAG 

and active sites.  Unbound GAG is subject to both diffusion and second-order reaction 

with active sites.  The corresponding transient conservation equation for the 

concentration of unbound GAG (cG) is: 

 1
G G

G G A A
c cD k c c
t x x

φ∂ ∂ ∂⎛ ⎞= −⎜ ⎟∂ ∂ ∂⎝ ⎠
 (2.9) 

where DG is the diffusivity of GAG in agarose, k1 is the second-order binding rate 

constant, cA is the concentration of active sites and φA is the fraction of active sites 

sterically accessible for binding.  The concentration of active sites on the agarose is 

decreased by both degradation and binding with GAG: 

 ( )
1 2

A A
G A A A A

c
k c c k c

t
φ

φ φ
∂

= − −
∂

 (2.10) 

where k2 is the rate of active site degradation.  It is assumed that sterically accessible and 
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inaccessible sites degrade at the same rate.  The bound GAG content of the gel (cb) is 

given by: 

 1
B

G A A
c k c c
t

φ∂
=

∂
 (2.11) 

The concentrations are subject to the initial conditions of no unbound or bound GAG 

at t=0 and a known initial active site concentration cA,init.  The unbound GAG 

concentrations are subject to a symmetry boundary condition at the centerline of the gel 

and a concentration equal to the bulk solution concentration of GAG (cG,0) at the gel edge 

times the partition coefficient (ΦG). 

The equations can be recast in dimensionless form, as summarized in Table 2.5.  The 

resulting equations contain three dimensionless groups: two Damköhler groups relating 

the rate of diffusion to the rates of binding (Da1) and degradation (Da2) and one group 

(γG) for the ratio of the maximum unbound GAG concentration to maximum active site 

concentration. 

The bound GAG will create additional steric and electrostatic hindrances for the free 

GAG, which may decrease the values of DG, ΦG, and/or k1 (or, alternately, k1φa).  While 

some models are available to give a relation between the gel fiber content and hindrance 

to partitioning (such as (Lazzara et al. 2000)) or diffusion (see examples in (Gutenwik et 

al. 2004)), these relations tend to be developed for a single-fiber or neutral system.  Since 

the exact functional relationship between each of these properties and the bound GAG 

content is complex for a charged multi-fiber gel, no correlations are available for relating 

the bound fiber properties to the kinetic and transport properties.  However, the effects 

can be approximated to first order by single-parameter linear or exponential functions to 

capture the general trends, as given in Table 2.5.  As suggested by a model for 

partitioning in neutral fibers, the decrease in ΦG takes an exponential form (Lazzara et al. 

2000).  Diffusivity through neutral polymer gels is also often modeled in an exponential 

form (though there is variation in the literature about whether the fiber concentration is to 

the ½ or 1st power) (Masaro and Zhu 1999).  For lack of a model to describe the effect of 

hindrances on the kinetic rate constant, the form was assumed to be approximately linear 

over the range of interest. 

 



CHAPTER 2. Agarose-GAG Membrane Synthesis 
 
 

 
  

  77  

Table 2.5  Dimensionless equations governing the GAG diffusion, binding and active site degradation in 
agarose-GAG gels. 
Dimensionless Variables & Groups 

Independent Variables: 

( )2

xX
δ

=      
( )2

(0)

2

GtDτ
δ

=  

Dependent Variables: 

 
,0

( , )( , )
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θ τ
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A A init
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φθ τ
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θ τ
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Equations 

Unbound GAG: 
2

12( ) ( )G D B G G
D B k B G A

B

f f Da f
X X X

θ θ θ θθ θ θ θ
τ θ

∂ ∂ ∂ ∂ ∂
= + −

∂ ∂ ∂ ∂ ∂
 

Active Sites: 

1 2( )A
G k B G A ADa f Daθ γ θ θ θ θ

τ
∂

= − −
∂

 

Bound GAG: 

1 ( )B
G k B G ADa fθ γ θ θ θ

τ
∂

=
∂

 

 
Initial & Boundary Conditions 

Initial Conditions: 
( 0, ) 0G Xθ τ = =      ( 0, ) 1A Xθ τ = =      ( 0, ) 0B Xθ τ = =  

Boundary Conditions: 

( , 1) ( ( ,1))G BX fΦθ τ Θ τ= =      ( , 0) 0G X
X
θ τ∂

= =
∂

 

Bound GAG-Dependent Parameters 
Diffusivity: 

( )( ) exp[ ]
(0)

G B
D B D B

G

Df m
D

ΘΘ Θ= = −  

Partition Coefficient: 
( )( ) exp[ ]
(0)

B
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Df m
D
Φ

Φ Φ
Φ
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Binding Rate Constant: 
( )( ) 1
(0)

k B
k B k B

k

Df m
D
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The equations were solved by the method of finite differences.  The first- and second-

order spatial derivatives were linearized using the central difference approximation, and 

the boundary conditions were incorporated into the equations for the boundary points.  

The resulting series of non-linear initial value problems was solved using a stiff ODE 

solver (‘ode23s’) in MATLAB®. 

The values of the dimensionless groups and the parameters used to redimensionalize 

the variables were collected from several sources.  The concentration of GAG in bulk 

solution (cG,0) is known for each experiment and the gel thickness (δ) is measured directly 

with a micrometer.  The initial concentration of active sites (cA,init) and the rate of active 

site degradation (k2) are known from the dimethylbarbituric acid assay described in 

Section 2.3.2.  The diffusivity of GAG within the agarose gel (DG(0)) can be 

approximated by the hindered diffusivity of other macromolecules in agarose (dextran, 

Ficolls, and proteins) and adjusted for temperature by the Stokes-Einstein relation.  

However, most of these macromolecules are spherical or globular, and the conformation 

of GAG molecules is unknown.  The hydrodynamic radii of heparin and dermatan sulfate 

fractions in solution are almost twice as large as the radii of spherical Ficolls or proteins 

of similar molecular weight, suggesting that the diffusivity may be lower (Bertini et al. 

2005, Johnson et al. 1996, Lebrun and Junter 1993).  The fraction of active sites sterically 

available for binding (φA) can be estimated by the molar concentration of bound GAG at 

long times in thin gels relative to the initial active site concentration; note this will 

somewhat underestimate φA, since it neglects degradation.  Finally, the rate of GAG 

binding (k1(0)) can be approximated by the amount of GAG bound at moderately short 

times, when the concentration of active sites is approximately constant at cA,init and the 

bound GAG content is low.  This assumption will underestimate the rate constant, since 

the concentration of active sites will actually be decreasing from both binding and 

degradation.  The estimated values and ranges of these parameters are summarized in 

Table 2.6; additional detail is available in the appendix in Table A.6. 
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Table 2.6  Parameter estimates for baseline values in the diffusion-reaction model of GAG binding. 
Parameter Value 

cG,0 2x10-8 mol/mL 
cA,init 4x10-5

 mol/mL 
δ 7x10-3 cm 

DG(0) 10-7 – 10-8 cm2/s 
ΦG 1 
φA 1.2x10-3 

k1(0) 4x104 mL/mol/s 
k2 5x10-5 s-1 

Group Value 
Da1 0.2-2 
Da2 0.006-0.06 

γG 0.4 

( )2

2
(0)D

GD

δ
τ =  2-20 minutes 

 

Generalized Scaling Analysis 

Some insight into the physical processes can be gained without solving the three 

coupled model equations.  The bound GAG content can be increased by either increasing 

the number of available active sites (φAcA,init) or the binding yield of the active sites 

(defined as the moles of bound GAG per mole of available active sites, or ΘB).  The 

experimental results in Section 2.3.3 showed how cA,init could be increased by changing 

the temperature or duration of the aqueous wash prior to attachment.  The binding yield, 

ΘB, is increased when the consumption of active sites by GAG binding occurs more 

rapidly than consumption by degradation.  As seen in the active site conservation 

equation in Table 2.5, this occurs when: 

 1 ,01

2 2

1G GG k cDa
Da k

Φγ
=  (2.12) 

Using the parameters in Table A.6 with DG(0) = 10-8 cm2/s, Da1γG/Da2 is equal to 16.  

Since this value satisfies Equation (2.12), no further improvement in the bound GAG 

content can be expected from the binding yield; instead, further improvement can only be 

expected from increases in φAcA,init.  However, when the GAG concentration in the 

coupling solution was decreased to 0.2 g/L (0.4 x 10-8 mol/mL), then the ratio 

Da1γG/Da2 is equal to 3.  Since the value no longer satisfies Equation (2.12), we expect 
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there to be a decrease in the binding yield and in the bound GAG content.  Increasing the 

concentration to 5 g/L satisfies Equation (2.12) equally well as 1 g/L, so we do not expect 

any increase in the binding yield or bound GAG content.  Both of these predictions are 

supported by the experimental results for increased and decreased GAG concentration in 

the coupling solution (Figure 2.5). 

A similar scaling analysis can be done for the spatial homogeneity of the bound GAG 

concentration.  Since diffusion of unbound GAG is the only physical process which 

affects spatial uniformity, the unbound and bound GAG concentrations will be nearly 

uniform when diffusion occurs more rapidly than degradation of active sites.  The 

diffusional time scale was used to scale τ in all three equations, so the degradation of 

active sites can be neglected from the system of equations when: 

 
2

2
2 1

4 (0)G

kDa
D

δ
=  (2.13) 

 Spatial uniformity also requires that the process time be larger than the diffusional time 

scale, such that coupling is allowed to occur for a time τcoupling that satisfies: 

 
2

4 (0)coupling
GD

δτ >>  (2.14) 

For the baseline parameters in Table A.6 with a GAG diffusivity of 10-8 cm/s2, Da2 is 

equal to 0.06 and the diffusional time scale is 20 minutes.  Therefore, it was expected that 

the experimental data would show a uniform bound GAG content in the cross section of a 

70 µm membrane (Figure 2.11) and that the bound GAG contents at times less than 

30 minutes were lower than the final bound GAG contents (Figure 2.5).  It can be 

expected that the penetration depth into a semi-infinite membrane would occur at a depth 

δ/2 which causes Da2 to be equal to one.  Using the same parameters, this predicts a 

penetration depth of 140 µm, which is comparable to the experimental observation of 

50-70 µm. 

 

Model Results with Constant Parameters 

The reaction-diffusion model for GAG binding was applied to several cases for which 

there was corresponding experimental data.  These include the effects of gel thickness, 

GAG solution concentration and attachment time on the bound GAG content of the gels, 
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as well as the penetration depth of bound GAG in gels with “semi-infinite” thickness.  

The model was first applied with constant parameters (i.e. – all mi=0) and for a range of 

GAG diffusivities equal or less than the baseline value of 10-7 cm2/s.  The model provides 

insight into the homogeneity of GAG binding within the agarose-GAG gels and supports 

the apparent homogeneity in the gel cryosections in Figure 2.11.  The model can also be 

used to determine which process parameters should be modified to synthesize 

agarose-GAG gels with a “tunable” GAG content. 

Experiments were performed with GAG concentrations of 0.2-5 g/L GAG in the 

attachment solution.  As seen in Figure 2.13, the model is in good agreement with the 

experimental data for GAG diffusivities of 10-7-10-8 cm2/s.  The bound GAG content 

decreases at low GAG concentrations.  However, at concentrations above ~1 g/L GAG, 

the bound GAG content becomes relatively insensitive to the bulk solution GAG 

concentration.  This supports that further increases in the concentration of the attachment 

solution are not a viable method of increasing the bound GAG content. 
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Figure 2.13  Predicted and experimental bound GAG content of agarose-GAG gels for variable GAG 

concentration in the attachment solution.  Error bars represent one standard deviation. 
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The transient behavior of GAG binding is shown in Figure 2.14.  In agreement with 

experimental observations, a majority of the GAG attachment occurs within the 

30 minutes when the GAG diffusivity is 10-7-10-8 cm2/s.  While the model deviates 

somewhat from the experimental data at the longer times, this is attributed to the 

variability between experimental batches.  The two experiments used to study the 

transient attachment behavior likely contained high- and low-active site contents, as the 

final bound GAG content of both are outside the average 68 ± 8 µg/mg range observed 

for baseline attachment conditions.  The higher GAG content batch had a shortened 

aqueous wash prior to attachment, so that the active site content is expected to be 

approximately 20% higher than baseline.  This hypothesis will be tested later in the 

section, by looking at the model’s predictions of transient binding behavior and find 

bound GAG content for varying ca,init.  However, the transient model predictions are still 

in good qualitative agreement with the data, and confirm that a minimum attachment time 

of two hours is needed reach high bound GAG contents. 
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Figure 2.14  Predicted and experimental bound GAG content of agarose-GAG gels for variable 

attachment times.  Error bars represent one standard deviation. 
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The prediction of bound GAG content for gels of variable thickness (δ) was only 

captured by the model for a GAG diffusivity of 10-9 cm2/s (Figure 2.15).  Even at this 

very low diffusivity, the bound GAG content is under-predicted for thin (70 µm) gels.  

For the diffusivities that agree with the transient binding data in Figure 2.14, the model 

overestimates the ability of GAG binding to occur in the central region of gels hundreds 

of microns thick. 
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Figure 2.15  Predicted and experimental bound GAG content of agarose-GAG gels for variable gel 

thickness (δ).  Error bars represent one standard deviation. 
 

  In addition, as seen in the cryosections in Figure 2.12, the penetration depth of GAG 

binding in gels of “semi-infinite” thickness is approximately 70 µm.  Assuming that the 

depth at which the bound GAG content is half of the surface content is approximately the 

penetration depth, the model predicts that expected penetration depth for a diffusivity of 

10-8-10-9 cm2/s (Figure 2.16).  A “semi-infinite” depth in the model is defined as one for 

which the final bound concentration at the centerline is approximately zero (at least two 

orders of magnitude smaller than the concentration at the outer surface). 
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Figure 2.16  Predicted bound GAG profile as a function of depth for agarose-GAG gels of 

“semi-infinite” gel thicknesses.  The depth refers to the distance from the outer surface of the gel, and the 
“semi-infinite” thickness was such that the final bound GAG content at the centerline was at least two 
orders of magnitude smaller than the bound GAG content at the outer surface. 

 

While the model is able to correctly predict the qualitative response to the four 

experimental parameters, it is unable to do so with a single value of the GAG diffusivity.  

The bound GAG contents at short times and for low solution GAG concentrations are 

best predicted when the diffusivity is 10-7-10-8 cm2/s.  These diffusivities are at or slightly 

below that assumed in Table 2.6 for spherical macromolecules of similar weight.  

However, the final bound GAG content for gels of larger thicknesses or the penetration 

depth into a semi-infinite gel is best predicted by a lower diffusivity (~10-9 cm2/s).  These 

observations suggest that the diffusivity may be a function of bound GAG content.  The 

diffusivity would be larger when there is little bound GAG (at short times or low GAG 

concentrations) and would be hindered by steric and electrostatic interactions when more 

GAG has bound (at long times). 

As previously discussed, there is some uncertainty of the diffusivity of GAG in 

agarose because of its large hydrodynamic radius relative to other molecules of a similar 
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molecular weight.  Based on the results so far, it is assumed that the diffusivity of GAG 

in 3v% agarose is on the lower end of the estimated range, or approximately 10-8 cm2/s.  

This makes Da1 = 2 for 70 µm-thick gels and Da1 >> 1 for thicker gels.  This large value 

of the Damköhler indicates that there should be transport limitations to GAG binding in 

thicker gels, as experimentally observed. 

The further reduction of the diffusivity by an order of magnitude due to GAG binding 

is also reasonable.  The addition of any type of fiber will create steric hindrances to the 

free diffusion of a molecule.  It has been shown that the addition of less than 1 v% of 

dextran fibers to 4v% agarose reduced the diffusivity of macromolecules to half of that in 

agarose alone (Kosto and Deen 2004).  The electrostatic interactions of negatively 

charged GAG molecules could further hindered the diffusion.  A similar effect of charge 

was observed in the reduction of myoglobin diffusivity through agarose and carrageenan 

gels of different charge and at different ionic strengths (Hirota et al. 2000).   

 

Model Results with Parameters as a Function of Bound GAG 

As described previously, simplified relations between the bound GAG content and the 

transport and kinetic properties can be included in the model.  Based on the previous 

observations with constant properties, it appears the functional dependence of the 

diffusivity on bound GAG is significant.  The model is therefore applied to the case when 

mD ≠ 0.  Based on prior results, the initial diffusivity is taken to be 10-8 cm2/s.  Initially, it 

is assumed that the binding rate constant and GAG partitioning were constants 

(mk = mΦ = 0); this assumption is supported in the following section since the variable 

diffusivity was able to improve agreement with experimental results without introducing 

the other variable parameters.  The diffusivity parameter mD was adjusted to provide 

reasonable agreement with the data.  Since the relative root mean squared (RMS) error 

between the model and the data provided conflicting fits for different values of mD (Table 

2.7), the final value was selected on a visual basis.  At the selected value of mD = 3, the 

ratio of the diffusivity with maximum bound GAG (ΘB = 1) to the diffusivity with no 

bound GAG would be 0.05. 
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Table 2.7  Relative root mean squared (RMS) error between model and experimental data for different 
values of mD. 
Variable             mD    
Parameter 0 3 4 5 6 7 8 
   δ 2.7 1.5 1.0 0.8 0.6 0.3 1.7 
   cG,0 0.2 0.2 0.3 0.3 0.4 0.5 2.2 
   t (Expt. A) 1.1 1.1 1.1 1.1 1.1 1.1 - - 
   t (Expt. B) 1.0 1.0 1.0 0.9 1.0 0.9 - - 

 

Using the binding model with a bound-GAG-dependent diffusivity, the bound GAG 

content for binding with different GAG solution concentrations is relatively unchanged 

from the model prediction with a constant diffusivity (Figure 2.17).  Similarly, the 

transient binding behavior is unaffected at short times and only slight slowed at moderate 

times (Figure 2.18).  To evaluate the previous hypothesis that the higher bound GAG 

content of the second set of experimental data was due to a higher initial active site 

concentration, the model was run with several increased values of ca,init.  As seen in 

Figure 2.18, the model does provide good agreement with the data at long times for a 

50% increase cA,init, which is similar to the 20% increase predicted from the shortened 

aqueous wash time.  However, there is no ready explanation for the deviation of the data 

from the model predictions and the first data set at intermediate times (30-60 minutes). 

The model prediction for the bound GAG content of gels of different thicknesses 

showed significant improvement by including the bound GAG-dependent diffusivity 

(Figure 2.19).  While the bound GAG content remains higher for thin gels (< 70 µm), the 

reduced diffusivity caused significantly less binding in thicker gels.  Decreased GAG 

binding in thick gels is also observed in the plot of bound GAG as a function of position 

in a semi-infinite gel (Figure 2.20), where the penetration depth decreased from 120 µm 

with constant diffusivity to 46 µm for reduced diffusivity.  The model predicts that a 

70 µm-thick gel would have an 18% bound GAG content decrease between the gel 

surface and centerline.  This is a relatively small decrease, and is understandably not 

observable in the gel cryosections. 
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Figure 2.17  Predicted and experimental bound GAG content of agarose-GAG gels for variable GAG 
concentration in the attachment solution.  Error bars represent one standard deviation. 
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Figure 2.18  Predicted and experimental bound GAG content of agarose-GAG gels for variable attachment 
times and two different initial active site concentrations (1x and 2x the baseline value).  Error bars 
represent one standard deviation. 
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Figure 2.19  Predicted and experimental bound GAG content of agarose-GAG gels for variable gel 
thickness (δ).  Error bars represent one standard deviation. 

0

20

40

60

80

100

10 100 1000

m
D
=0

m
D
=3

m
D
=4

m
D
=5

 Gel Depth, x  [μm]

Experimental
Penetration Depth

 
Figure 2.20  Predicted bound GAG profile as a function of depth for agarose-GAG gels of “semi-infinite” 
gel thicknesses.  The depth refers to the distance from the outer surface of the gel, and the “semi-infinite” 
thickness was such that the final bound GAG content at the centerline was at least two orders of magnitude 
smaller than the bound GAG content at the outer surface. 
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The agreement between the experimental data and the model confirms that the 

dominant physical processes are included in our conceptual model of GAG attachment to 

activated agarose.  While the functional relation between bound GAG content and 

diffusivity was approximated by a single-parameter exponential function with an 

experimentally fit parameter, it appears this is adequate to capture the effects seen from 

different diffusivities at short and long times.  Other than the diffusivity parameter, all 

other model parameters were determined from independent experiments.  Given this, the 

model is in good quantitative agreement with all the sets of experimental data. 

2.4. Conclusions 

The previous sections described the choice of agarose as a substrate for attaching 

GAG and the choice of the CDAP method for generating active sites for attachment.  A 

number of experiments determined that the temperature and duration of the aqueous wash 

were the primary process variables which could be used to increase the bound GAG 

content of the agarose-GAG gels.  Further experiments showed that these two process 

parameters have a significant impact on the fraction of active sites which degrade prior to 

GAG attachment. 

A conceptual model of the GAG attachment step was developed to give insight into 

the homogeneity of the bound GAG and effect of process parameters on the attachment.  

While some aspects of the process were approximated, such as the effect of bound GAG 

on diffusional hindrance, the model was able to explain many of the experimental 

observations.  Cryosections confirmed the model prediction that the bound GAG content 

is relatively uniform across the thickness of a 70 µm membrane. 

Based on experimental and model results, the process parameters best suited to 

creating a “tunable” bound GAG content in agarose-GAG gels are the acid and aqueous 

wash temperatures and durations.  Since these parameters affect the initial concentration 

of active sites during attachment, any changes in these parameters will more uniformly 

affect the gel (as compared to low GAG concentrations or short binding times, which 

could lead to a heterogeneous core region).  As seen in Table 2.5, the relation between 

initial active sites to final bound content is not purely proportional.  However, 

experiments have shown that the use of 0°C wash conditions results in a bound GAG 
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content approximately 50% greater than the “baseline” reaction conditions.  Use of the 

active site degradation kinetics from Section 2.3.3 and the attachment model in this 

section provide a predictive tool for synthesizing agarose-GAG gels with a target bound 

GAG content. 

The following is a summary of the agarose-GAG membrane synthesis which includes 

modification to increase the final bound GAG content: 

 
Agarose Activation: Place each 3v% agarose membrane in a plastic histology cassette (Histo-prep 

Tissue Capsules #15-182-219; Fisher, Hampton, NH).  Soak 20 membranes for 15 minutes with 

gentle agitation in each of the following: 1 L DI water, 1 L 30% acetone (two times) and 1 L 60% 

acetone (two times).  In a beaker surrounded by an ice bath (or ice block), add the washed gels to 

200 mL ice-cold 60% acetone.  While orbital mixing at 150-200 rpm, add 20 mL of 100 mg/mL 

CDAP (#1458C; Research Organics, Cleveland, OH) in dry acetonitrile; wait 1 minute.  Dropwise, 

add 16 mL of 0.2 M triethylamine (TEA) solution over 1-2 minutes; wait 5 minutes while 

continuing to mix.  Rapidly transfer the membranes to 1500 mL of 0.05 N HCl and ice (500 mL in 

each of three jars); wait 10 minutes while continuing to mix.  Soak the membranes for 3-5 minutes 

in 2 L of well-mixed cold water and ice (three times). 

 

GAG Attachment:  Cover the activated agarose membranes (in their cassettes) with 1 g/L GAG 

solution (Chondroitin sulfate A, #230687; Calbiochem,La Jolla, CA) in 0.1M NaHCO3 and a 

small volume of ice. (Generally, 200 mL can cover five membranes.)  Stir with orbital mixing at 

0°C for at least 2-4 hours (stir in a refrigerated area to minimize ice melting).  To remove the 

remaining active groups, add 7.5 mL ethanolamine per 100 mL attachment solution and stir for 

4 hours at 4°C.  Soak the membranes with gentle agitation in the following for 15 minutes each: 

2 L DI water (three times), 2 L 0.5 M NaCl (two times) and 2 L DI water (six times).  Remove 

each gel from its cassette, store in ~10 mL 0.1 M KCl-phosphate buffer and refrigerate until use. 

 

The procedure above resulted in gels with a bound GAG content of 

102±2 µg GAG/mg agarose.  Gels activated in the same batch, but otherwise following 

the baseline synthesis procedure outlined in Section 2.2.1, had a bound GAG content of 

70±5 µg GAG/mg agarose.  The 4v% gels initially synthesized (Section 2.2.4) had a 

bound GAG content of 60±5 µg GAG/mg agarose.  Therefore, modifications to the 

agarose-GAG attachment procedure resulted in a 70% increase in the bound GAG 

content compared to these initial membranes.  As described in Section 2.2.4, the GAG 
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and agarose fiber now have a 1:1 length ratio.  This indicates that the GAG component of 

the composite membrane should have a significant contribution to the permeability 

properties of membrane.  The following chapters will evaluate the GAG contribution for 

the hydraulic permeability, partitioning, and sieving of agarose-GAG membranes. 
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Chapter 3. HYDRAULIC PERMEABILITY 

 

 

3.1. Introduction 

In the work presented here, the hydraulic permeabilities of agarose-GAG gels are 

determined by both experimental and modeling methods.  First, the applicable models for 

permeability in the literature are reviewed, then developed into a unified model for the 

permeability of a heterogeneous, charged composite gel.  The model predictions are then 

compared to the experimentally measured hydraulic permeability of gels with variable 

GAG content for a range of ionic strengths. 

3.1.1. Darcy Permeability 

General 

For a porous material, Darcy’s law is used to describe the macroscopic relation 

between the fluid velocity (<v>) and pressure gradient ( p∇ ): 

 v pκ
μ

−
= ∇  (3.1) 

where μ is the fluid viscosity and κ is the Darcy permeability.  Equivalently, the 
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permeability may be given as the hydraulic permeability (k), which is the Darcy 

permeability divided by the viscosity. 

 

Fiber Permeability 

The hydraulic permeability of fibrous materials, including hydrogels, has been 

studied by many people.  Early models were for simple systems with flow parallel or 

perpendicular to an ordered array of fibers; these include the models developed by 

Happel, Kuwabara, Hasimoto, Drummond and Tahir, and Sangani and Acrivos 

(Drummond and Tahir 1984, Happel 1959, Hasimoto 1959, Kuwabara 1959, Sangani and 

Acrivos 1982).  The Drummond and Tahir solution for flow parallel to a square array of 

fibers is: 

 ( )( )2 4
2

1 ln 1.476 2 0.5
4f

O
r
κ φ φ φ φ

φ
= − − + − +  (3.2) 

where rf is the fiber radius and φ is the fiber volume fraction.  The Sangani and Acrivos 

solution for flow perpendicular to a square array of fibers is:  

 ( )( )2 3 4
2

1 ln 1.476 2 1.774 4.076
8f

O
r
κ φ φ φ φ φ

φ
= − − + − + +  (3.3) 

Numerous other researchers have developed hydraulic permeability models for 

fibrous systems with more complex properties than the periodic arrays described above.  

These include fibers with 3-dimensional or random orientations, fibers with multiple 

radii, and charged fibers.  These will each be discussed in more detail in the following 

sections. 

3.1.2. Charged Fiber Models 

Background 

The hydraulic permeability of a charged fiber system is dependent on both 

hydrodynamic and electrical forces.  The electrokinetic coupling occurs because of the 

net charge in solution near a charged surface, which results in an electric field that is a 

body force within the Navier-Stokes equation.  This effect is denoted by the 

electrokinetic coupling coefficients (kij) for the system, which relate the area-averaged 
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velocity ( v ) and area-averaged current density ( j ) to macroscopic applied gradients 

in pressure and voltage (V):   

 11 12

21 22

v
j

k k p
k k V

−⎡ ⎤ ∇⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥− ∇⎣ ⎦⎣ ⎦⎣ ⎦

 (3.4) 

By Osager reciprocity, k12 will be equal to k21 (Onsager 1945). 

The closed-circuit permeability, k11, occurs when there is no macroscopic gradient in 

voltage.  However, the open-circuit permeability (koc) is more relevant to most 

experimental systems where there is a non-zero streaming potential but no macroscopic 

current.  The open circuit permeability is defined as:  

 12 21
11

22
oc

k kk k
k

= −  (3.5) 

All future references to the hydraulic permeability for a charged system will be for the 

open-circuit permeability, unless otherwise noted. 

Electrokinetic coupling is often studied with macroscopic continuum models which 

involve average properties, with assumptions such as Donnan equilibrium (see reference 

in (Eisenberg and Grodzinsky 1988)).  However, two microcontinuum models have been 

developed for charged fibers.  Such models include molecular-level structural properties 

and allow for a spatial distribution of the charge double layer.  Both models assume that 

the fibers are oriented in an ordered cubic array with flow occurring parallel or 

perpendicular to the fiber axis; to date, no model for the permeability of a charged 

random fiber matrix has been developed.  A solution for the coupling coefficients is 

derived from a unit cell around a single fiber.  The variable parameters in both models are 

the fiber surface charge, fiber radius, fiber volume fraction and solution bulk ion 

concentration. 

 

Donnan Model 

In the Donnan model for macroscopic charge behavior, the charge of the system is 

treated as being continuous though the volume, rather than contained only on the fiber 

surface.  The permeability through neutral fibers is determined by any method 

(microcontinuum, experimental, etc.) and the fiber charge is treated as uniformly 

distributed through the membrane.  No net flux of ions across the membrane, 
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electroneutrality, and concentration equilibrium at the membrane-solution interface are 

used to determine the ion concentration and electrical potential fields within the 

membrane (see, for example, (Deen et al. 1980, Lakshminarayanaiah 1969, Ohshima 

1994)).  Given that the concentrations of salt ions are equal on both sides of the 

membrane, then the concentration of each ion within the membrane will be constant.  The 

expression for the streaming potential across the membrane is then: 

 
( ) ( )

( )
'

'2
b x x m

m

c v D D v c D D c D

D D c c

δ δ
ψ + − + + − +

+ − +

⎡ ⎤− − − −⎣ ⎦Δ =
−

 (3.6) 

where cb is the ionic strength of the bulk solution, cm is the fixed charge concentration in 

the membrane, δ is the membrane thickness, v is the magnitude of the fluid velocity 

normal to the membrane surface, and c+’ is the positive ion concentration inside the 

membrane given by: 

 
2

' 2

2 4
m m

b
c cc c+ = + +  (3.7) 

The expression for volumetric fluid flux can be rewritten in a form similar to Darcy’s 

law: 

 x n m
P Pv k RTc kψ

δ δ
Δ Δ⎡ ⎤= − + Δ = −⎢ ⎥⎣ ⎦

 (3.8) 

where the neutral permeability through the membrane (kn) is related to the charged 

permeability through the membrane (k) by: 
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 (3.9) 

 

Helmholtz Double Layer Model 

Eisenberg and Grodzinksy derived analytical results for the coupling coefficients by 

making several simplifying assumptions (Eisenberg and Grodzinsky 1988).  The results 

were derived for the limit of a small Debye length relative to both the fiber radius and the 

fluid region between fibers.  Electromechanical coupling is then limited to the boundary 

layer around the fiber, and fluid flow in the bulk region can be solved independent of 

electrical forces.  The boundary layer occurs at one Debye length away from the surface 
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with no electrical potential and an impenetrable slip plane at that boundary.  The Debye 

length (λD) is calculated from:  

 2 2D
i i

i

RT
F z c

ελ =
∑

 (3.10) 

where ε is the dielectric permittivity of the solvent, R is the ideal gas constant, T is the 

absolute temperature, F is Faraday’s constant,  zi is the valence charge of species i and ci 

is the molar concentration of species i.  The unit cell is approximated as a cylinder 

surrounding a single fiber. 

The coupling coefficients for flow perpendicular to the fiber axes are given by: 
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where σs is the fiber surface charge density, μ is the fluid viscosity, b is the unit cell 

radius, a is the radius of the boundary layer and σo is the fluid conductivity.  The radii and 

conductivity are defined by: 
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where cb is the bulk solution ionic strength and μ± are the positive and negative ion 

mobilities.  The constants G2 and ξ are defined as: 
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The coupling coefficients for flow parallel to the fiber axes are given by: 
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 (3.19) 

Diffuse Double Layer Model 

The assumptions made by Eisenberg and Grodzinksy limit the applicability of their 

model to systems where the double layers surrounding the fibers are non-interacting.  

Chammas, Federspiel and Eisenberg developed a more rigorous model that includes 

diffuse double layers which may be overlapping (Chammas et al. 1994).  The problem is 

cast as a perturbation of the static electric field caused by the imposed flow.  The 

electrical and hydrodynamic equations are coupled throughout the unit cell: 

 2 2vp μ ε ψ ψ∇ = ∇ + ∇ ∇  (3.20) 

 0 v= ∇ ⋅  (3.21) 

 0 v ni
i i i i i i

i

zD c c c
z

μ ψ
⎛ ⎞

= ∇ ⋅ − ∇ − ∇ + = ∇ ⋅⎜ ⎟
⎝ ⎠

 (3.22) 

 ( )2 Fz c cψ
ε − +∇ = −  (3.23) 

Here, v is the velocity vector, ψ is the electrical potential, ci is the concentration of 

species i, ni is the flux of species i,Di is the diffusivity of species i, F is Faraday’s 

constant, and ε is the dielectric permittivity of the solvent.  These equations were solved 

with a finite difference method in a transformed curvilinear grid.  The details of the 

coupled electrokinetic equations and the perturbation solution will be presented later in 

section 3.2.1. 
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3.1.3. Orientation and Population Averaging 

Most of the available models for hydraulic permeability discussed so far have 

considered an ordered array of a single type of fiber, which can be solved using the 

symmetry of the system.  However, such solutions become difficult or impossible when 

the system contains two different populations of fibers.  The fiber populations could have 

different orientations (parallel and perpendicular to the flow), different radii, or different 

surface charges. 

 

Random Fiber Arrays 

Simulations of ordered 3-dimensional fiber arrangements were done by Hidgon and 

Ford and Koponen et al. (Higdon and Ford 1996, Koponen et al. 1998).  This approach 

has only recently become feasible, since it is not simplified by symmetry and instead 

involves numerical simulations which require significant computing power.  An 

analogous approach could be used for systems with random fiber orientations instead of 

an ordered array.  By finding the permeability of a fiber oriented at some angle relative to 

the direction of applied pressure, the result can be spatially averaged over all orientations 

to find the random fiber permeability.  This method was used by Clague and Phillips and 

Clague et al. (Clague et al. 2000, Clague and Phillips 1997).  Clague et al. empirically fit 

their results for random fiber permeabilities with the equation:   

 ( )
2

2
1 1 0.71407exp 0.51854
2fr

κ π φ
φ

⎡ ⎤
= − −⎡ ⎤⎢ ⎥ ⎣ ⎦

⎣ ⎦
 (3.24) 

Prior to these computational results, several approximations were used to estimate the 

permeability of random fibers.  Spielman and Goren used swarm theory for a single rod 

in a porous medium (Spielman and Goren 1968).  Jackson and James assumed that 

random fibers could be approximated by a cubic lattice of fibers, which could be found 

by averaging flow past a population that was oriented one-third parallel to the flow and 

two-thirds perpendicular to the flow (Figure 3.1) (Jackson and James 1982, 1986).  Their 

averaging of these populations was: 
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k k kφ φ⊥
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⎜ ⎟ ⎜ ⎟
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 (3.25) 

where kavg is the average hydraulic permeability through the fibers, k  is the permeability 

parallel to a periodic fiber array, k⊥  is the permeability perpendicular to a periodic fiber 

array and φtotal is the fiber volume fraction of all fibers in the system.  Eisenberg and 

Grodzinksy and Chammas et al. also approximated flow through a random matrix of 

charged fibers by averaging flow past a one-third parallel and two-thirds perpendicular 

fiber system (Chammas et al. 1994, Eisenberg and Grodzinsky 1988).  However, their 

averaging took the linear form:  

 ( ) ( )1 2
3 3avg total totalk k kφ φ⊥= +  . (3.26) 

 

 
Figure 3.1  Diagram of periodic two-dimensional fiber arrays combined into a cubic lattice arrangement.  
The cubic lattice has been used by several authors as an approximation for modeling the hydraulic 
permeability of a random three-dimensional array. 

 

Jackson and James proposed the cubic lattice structure based on the drag force acting 

on a rod oriented obliquely to low Reynolds number flow  (Jackson and James 1982, 

1986).  The drag force is inversely related to the hydraulic permeability of an array of the 

fiber.  The force vector can be separated into three perpendicular components, which 

Jackson and James claim are equivalent to the forces on three rod segments in the same 

three directions.  Extending this to a large system of random fibers or a randomly-coiled 
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chain, the rod segments can be arranged into a cubic lattice with one-third of the 

segments oriented parallel to each of the directions. 

A more rigorous derivation of the one-third parallel / two-thirds perpendicular 

arrangement of fibers is found by extension to orientation averaging of fibers in heat 

conduction and electrophoresis.  This derivation was done by De Keizer et al. and Stigter 

for electrophoresis of fibers oriented as an angle θ relative to an imposed electric field, as 

well as by Deen (Problem 4-14) for heat conduction through a fibrous composite with an 

imposed temperature gradient (De Keizer et al. 1975, Deen 1998, Stigter 1978).   When 

the result is averaged over all spatial orientations, the result is equal to the linear sum of 

one-third of the parallel result plus two-thirds of the perpendicular result.  Stigler has 

shown that this result is true for any vector field that is linearly related to an applied field. 

 

Bimodal Fiber Arrays 

For systems with bimodal fiber radii, Ethier derived an analytical solution for fibers 

with highly dissimilar fiber radii, such that the fine fibers formed a homogeneous region 

between the larger fibers (Ethier 1991).  Maroudas et al. used a highly simplified view of 

a system of collagen and GAG as two fiber regions in parallel, which results in a variant 

of Equation (3.26) (Maroudas et al. 1987):  

 1 1 2 2

1 2
avg

A k A kk
A A

+
=

+
 (3.27) 

where A1 and A2 are the areas of fiber regions 1 and 2. 

For systems with fiber radii of similar magnitude, solutions to the permeability have 

been found by numerical simulations by Edwards et al. for ordered systems and by 

Clague and Phillips for random systems (Clague and Phillips 1997, Edwards et al. 1990).  

Clague and Phillips proposed an analytical mixing rule for bimodal fibers, which was in 

good agreement with their simulations:  

 
( ) ( )

1 2

1 2

1 1 1

avg total total total totalk k k
φ φ

φ φ φ φ
= +  (3.28) 

where φ1 and φ2 are the volume fractions of fiber types 1 and 2, respectively.  Levick 

cites a similar semi-empirical mixing rule developed by Ethier for a GAG-protein system 
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(Ethier 1983, Levick 1987).  The inverse permeability of the two fibers is weighted by 

their relative fiber lengths instead of their relative fiber volumes: 
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No models have been developed for the permeabilities of fiber systems with different 

fiber charges or with more than two fiber radii. 

3.1.4. Non-Homogeneous Fiber Models 

Background 

There is significant evidence that the fibers in agarose gels can not be considered 

homogeneously distributed.  Disagreement of hydraulic permeability measurements of 

agarose with homogeneous random fiber models by several researchers has indicated that 

a more complex fiber structure is likely present (Clague and Phillips 1997, Johnson and 

Deen 1996b, White and Deen 2002).  Studies of macromolecule sieving through agarose 

also concluded that the results could only be explained if the agarose gels contained high- 

and low- fiber density regions (Kosto and Deen 2005).  Electron microscopy, dynamic 

light scattering and turbidity measurements of agarose have also shown an uneven 

distribution of fiber spacing (Aymard et al. 2001, Bulone et al. 2004, Waki and Harvey 

1982).  It has been hypothesized that the agarose fibers tend to aggregate in cross-linked 

regions during gelation, leaving the surrounding regions fiber-depleted (Djabourov et al. 

1989, Manno et al. 1999).  This can be seen in microscopy images of agarose gels, such 

as Figure 3.2. 

An agarose gel contains up to three characteristic length scales: molecular, 

intermolecular, and supramolecular.  Molecular lengths apply to the length and radius of 

an individual agarose molecule or multi-molecule fiber.  Intermolecular lengths describe 

lengths between fibers or cross-linked junctions; this is often described as the gel’s inter-

fiber spacing, pore diameter or correlation length.  Supramolecular length scales have 

been reported by some researchers for fiber density variations over many fiber lengths.  

The exact length scales of a gel are difficult to specify, since they have been reported to 

be a function of the total fiber content, rate of cooling, solution ionic strength, and 

agarose type (Aymard et al. 2001, Bettelheim et al. 1966, Foord and Atkins 1989, Griess 
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et al. 1993a, Maaloum et al. 1998, Waki and Harvey 1982).  However, once the gel has 

formed, changes in solution ionic strength, solution sugar content and gamma irradiation 

were not reported to have a significant effect on the fiber spacing (Griess et al. 1993a, 

Key and Sellen 1982, Maaloum et al. 1998). 

 

  
Figure 3.2  Transmission electron micrograph of a 2% agarose gel; image is approximately 7 x 7 μm [from 
Aymard et al. (Aymard et al. 2001)] 

 

A wide range of molecular and intermolecular length scales have been reported in the 

literature for agarose, likely due to variations in agarose type, agarose concentration, 

cooling rate, solution composition and method of analysis.  The mean fiber radius of 1-

4 w/v% agarose has been reported in the range of 0.7-4.4 nm, where a fiber may contain 

6-100+ agarose helices (Arnott et al. 1974, Attwood et al. 1988, Chui et al. 1995, 

Djabourov et al. 1989, Ratajska-Gadomska and Gadomski 2004, Waki and Harvey 1982, 

Whytock and Finch 1991).  Wytock and Finch found that the mean fiber diameter 

increases with increasing agarose concentration in the range 0.3-2 w/v% (Whytock and 

Finch 1991).  Djabourov et al. showed that the fiber diameters in 2.4 w/w% gels contain 

at least two distributions, with 87% of fibers with a 1.5 nm mean radius and 13% with a 

4.1 nm mean radius (Djabourov et al. 1989).  The reported values for inter-fiber spacing 

are similarly diverse, with pore diameters of  37-300 nm for 1-4 w/v% agarose (Attwood 
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et al. 1988, Griess et al. 1993b, Maaloum et al. 1998, Ratajska-Gadomska and Gadomski 

2004, Xiong et al. 2005).  Maaloum et al. found that the mean pore diameter was 

proportional to φa
-0.6, which is in between the predictions from theories for random 

arrangements of straight and flexible chains (Maaloum et al. 1998). 

The presence of supramolecular length scales in agarose gels has been noted by 

several researchers.  In a phase diagram for agarose, there is spinodal gel formation for 

concentrations above ~1.5 w/v%; below this concentration, there is a direct transition 

from sol to gel (Manno et al. 1999).  Other theories of agarose gelation include 

competing forces between cross-linking nucleation and aggregation, which are both 

affected by the fiber concentration and the cooling rate and temperature.  These theories 

are all supported by a number of experimental observations of large-scale heterogeneity 

at agarose concentrations >1 w/v% and at relatively high (35~45°C) gelation 

temperatures.  Griess et al. proposed that fiber heterogeneity in two zones would explain 

the difference in the distribution of fiber spacing in electron micrographs of 2.5% gels 

versus the spacing predicted by a homogeneous random fiber distribution (Griess et al. 

1993b).  Pines and Prins observed closely packed spherical regions of ~4.9 µm radius in 

1% gels with their microscope (though Djabourov et al. and Waki & Harvey both noted 

they were not able to repeat these observations) (Djabourov et al. 1989, Pines and Prins 

1973, Waki and Harvey 1982).  Aymard et al. observed fiber-rich and -poor regions in 

electron micrographs of 2% gels cured > 35°C, which was supported by their turbidity 

measurements which estimated the size of these regions at 300~6,000 nm (Aymard et al. 

2001).  Attwood et al. also observed fiber-poor regions in Sepharose® 4 beads (4% 

agarose) on the order of ~300 nm diameter (Attwood et al. 1988).  Manno et al. studied 2 

w% agarose gels with a variety of techniques (optical rotation, dispersion, small- and 

large-angle light scattering), and found that demixed droplets occurred on lengths of 3.7-

12.5 µm depending on the quench temperature (40-46.5°C).  However, at lower quench 

temperatures (<31.5°C), the demixing appeared to be hindered by more rapid cross-

linking, such that supramolecular features were not observed (Manno et al. 1999). 

Instead of attempting to characterize and model the full distribution of fiber densities 

and fiber radii for the gels synthesized in our lab, a simpler model of agarose 
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heterogeneity is preferred.  In the following section, several models for fiber systems 

with two regions of different hydraulic permeability are considered for modeling agarose. 

 

Models 

The simplest models of two regions with different hydraulic permeabilities are layers 

in series and layers in parallel (Figure 3.3).  Even if the composite contains many thin 

layers, it is mathematically equivalent to two layers with a volume fraction equal to the 

sum of the thin layers.  The effective hydraulic permeability of the composite, keff, 

relative to the permeability of region 1, k1, is given by: 

 2
2 2

1 1

Parallel : 1effk k
k k

ε ε= − +  (3.30) 

 
1

1
2 2

1 2

Series : 1effk k
k k

ε ε
−

⎡ ⎤
= − +⎢ ⎥

⎣ ⎦
 (3.31) 

where ε2 and k2 are the volume fraction and hydraulic permeability of region 2, 

respectively.  The parallel model can be interpreted as a material with pores which extend 

through the entire thickness; the series model would be a striated material.  Sieving 

studies in agarose used a parallel layer model to help explain the results (Kosto and Deen 

2005). 

Extensions of these models have been published which combine the regions in a 

“checker board” arrangement of unit cells of alternating regions.  Yu and Soong did a 

simple averaging of this system using the sum of resistances in series and parallel to 

predict the overall permeability (Yu and Soong 1975).  The results from such models are 

bounded by the limits of a system that has just a parallel or just a series arrangement.  

Schweers and Löffler did a more rigorous numerical simulation of the same system, 

allowing there to be flow both parallel and perpendicular to the applied pressure due to 

pressure variations between adjacent regions (Schweers and Löffler 1994).  However, 

both of these “checker board” models are limited by needing accurate dimensions and 

properties of each of the cells.   
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Figure 3.3  Schematics of five idealized models of heterogeneity in fiber density 
 

A more tractable model that allows for interspersed fiber regions is spherical regions 

within a surrounding matrix.  This isotropic system has been studied in numerous other 

contexts, such as electrical and thermal conductivity, with the governing equations 

having the same form as Darcy’s law for hydraulic permeability.  The resulting 

permeability (conductivity) of the composite was first described by the Maxwell solution 

(also known as the Lorentz-Lorenz solution or Clausius-Mossotti solution, depending on 

the field of research): 

 2
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 (3.32) 

 2 1

2 1

( ) 1
( ) 2

−
≡

+
k k
k k

β  (3.33) 

where region 2 refers to the spherical regions and region 1 to the surrounding matrix 

(Fricke 1924).  The solution is derived for the dilute case when the sphere diameter is 

small relative to the sphere spacing.  The solution was extended by Fricke for spheroids 

and by Meredith and Tobias for higher sphere volume fractions (Fricke 1924, Meredith 

and Tobias 1961).  A more rigorous derivation of higher sphere volume fractions was 

done by Jeffrey (Jeffrey 1973), of which the first six terms in the power series solution 

are given by: 
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β β ββε ε β
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Bonnecaze and Brady showed by numerical simulations that the Jeffrey model has 

reasonable accuracy up to a volume fraction of ε2=0.2~0.5 and for systems larger than 
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Board” 
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“Voids” 
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several sphere diameters (Bonnecaze and Brady 1991).  Note that if the system dimension 

is several times larger than the sphere diameter, then the effective permeability is 

independent of the sphere diameter and only a function of ε2. 

3.2. Model Development 

The following sections describe the evaluation and application of the various 

hydraulic permeability models to agarose-GAG gel membranes. 

3.2.1. Charged Fiber Models 

Diffuse Double Layer Model 

The diffuse double layer model developed by Chammas et al. was replicated in 

COMSOL Multiphysics® (v. 3.2), with several changes (Chammas et al. 1994).  

Multiphysics® automatically generates a finite element mesh, so there was no need to 

transform to a curvilinear coordinate system.  Additionally, the model was solved using a 

velocity vector and pressure formulation of the equations, instead of stream function and 

vorticity.  The square array of fibers was modeled with a half-fiber unit cell, with a 

dimensionless fiber radius, Rf, and unit cell width, B (Figure 3.4).  The fiber radius is 

non-dimensionalized by the Debye length (Rf=rf/λD) and the dimensionless unit cell width 

is related to the fiber volume fraction by: 

 
4fB R π
φ

=  (3.35) 

 
 

y 
x 

Rf 

B

2B 

(a) (b)  
Figure 3.4  (a) Square array of charged fibers with unit cell boundaries. (b) Single unit cell for a fiber with 
radius Rf and unit cell width B. 
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The system contains five dimensionless field variables: pressure (P), fluid velocity 

(u), positive and negative ion concentration (C±) and electrical potential (Ψ). The 

unperturbed system of equations includes the Navier-Stokes equation, the continuity 

equation, species conservation equations for positive and negative ions, and Poisson’s 

equation: 

 
2 2uEP β Ψ Ψ∇ = ∇ + ∇ ∇  (3.36) 

 0 u= ∇ ⋅  (3.37) 
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C CΨ − +∇ = −  (3.40) 

where the dimensionless variables are related to the dimensional variables by: 
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Here, λD is the Debye length, cb is the external bulk concentration, πb is the bulk osmotic 

pressure, us is the superficial fluid velocity, Vth is the thermal voltage, z (=z+=-z-) is the 

absolute value of the ion charge for a binary electrolyte and N± are the dimensionless ion 

fluxes.  The two dimensionless groups are: 
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 (3.42) 

which is the relative strength of the flow-induced electric field (Es) compared to the 

characteristic electric field across the double layer (EDL) and:  
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which is the relative strength of the effective electrophoretic mobility to the positive ion 

mobility.  Here, μ is the fluid viscosity, μ+ is the positive ion mobility and Pe is the Peclet 

number based on the superficial velocity: 

 Pe s Du
D
λ

+

=  (3.44) 

The diffusivity of the ions are related to their mobility by Einstein’s relation:  

 RTD
zF

μ± ±=  (3.45) 

For a typical superficial velocity (us) of 10-7 m/s in an aqueous 0.1 M monovalent salt 

solution, the dimensionless groups are ( )710E Oβ −≈  and ( )1Oα ≈ , which suggests a 

perturbation solution using the parameter βE.  The five field variables are expressed as a 

power series in the perturbation parameter βE, in the form: 

 ( ) ( ) ( )0 1 12
EEΨ Ψ β Ψ β Ψ= + + +…  (3.46) 

The zero-th (O(1)) and first order (O(βE)) systems of equations are discussed below. 

 

Order-0 Model 

The zero-th order solution corresponds to the case of 0Eβ = , when u=0 everywhere 

and there is no flow-induced electric field.  As shown by Chammas et al., the equations 

of motion are decoupled from the electric field and concentration equations.  As a result, 

the ion concentrations are described by a Boltzman distribution: 

 ( ) ( )( )0 0expc Ψ± = ∓  (3.47) 

and the potential is given by the Poisson-Boltzman equation: 

 ( ) ( )0 02 sinhΨ Ψ∇ =  (3.48) 

As will be seen in the following sections, it is not necessary to solve for the unperturbed 

pressure (p(0)). 

The boundary conditions for the system assume that the fields are confined to the x-y 

plane and are independent of z.  The boundary conditions are summarized in Table 3.1.  

There is symmetry at the y=0 and y=B surfaces.  In the absence of an external perturbing 
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field, there is also symmetry at the x=±B surfaces.  The fiber surface boundary condition 

at r=Rf is given by Gauss’ Law for a charged surface with surface charge density σs.   

 
Table 3.1  Boundary conditions for the dimensionless electrokinetic equations for a periodic unit cell 
around a charged fiber with applied pressure and electric fields 

 y=0,B x=±B r=Rf 

0th-Order ( )0 0n Ψ⋅∇ =  ( )0 0n Ψ⋅∇ =  ( )0 s D

th

n
V

σ λΨ
ε

⋅∇ = −

1st-Order: 
Perpendicular 

( )

( )

( )

( )

1

1

0

0

0

0

0

1

u

N

n P

n

n

n Ψ
±

⋅ ∇ =

⋅ =

⋅ ∇ =

⋅ ∇ =

 

( ) ( )
( ) ( )

( )

( )

( ) ( )
( ) ( )

1

1

1

1

1

let , 0
2then ,

0

0

let , 0
2then ,

0u

D

E b

D

E th

P x B y
B dpP x B y

dx

t

C

x B y
Bz dVx B y

V dx

λ
β π

Ψ
λΨ

β

±

⎡ = + =
⎢
⎢ = − =⎢⎣

⋅ =

=

⎡ = + =
⎢
⎢ = − =⎢⎣

( )

( )

( )1

0

0

0

0

1

u

Nn

n Ψ
±

=

⋅∇ =

⋅∇ =

 

 
 

1st-Order: 
Parallel 

( ) 01
zn u⋅∇ =  ( ) 01

zn u⋅∇ =  ( ) 01
zu =  

 

1st-Order Model – Perpendicular Flow 

This section considers the 1st-order (O(βE)) system of equations for macroscopic 

gradients in pressure (dp/dx) and voltage (dV/dx) applied perpendicular to the fiber axes.  

A perpendicular field will induce transverse flow with ux and uy components; all field 

variables are assumed to functions of x and y only.  The 1st-order perturbation of 

equations (3.36)-(3.40) yields the following set of equations: 

 ( ) ( ) ( ) ( ) ( ) ( )1 1 0 0 12 2 20uP Ψ Ψ Ψ Ψ∇ = ∇ + ∇ ∇ + ∇ ∇  (3.49) 

 ( )0 0u= ∇ ⋅  (3.50) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )( )( ) ( )1 0 1 1 0 0 10 0u NC C C CΨ Ψ α+ + − + += ∇ ⋅ − ∇ + ∇ + ∇ − = ∇ ⋅  (3.51) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 0 1 1 0 0 10 0u NDC C C C
D

Ψ Ψ α +
− − − − −

−

⎛ ⎞⎛ ⎞
= ∇ ⋅ − ∇ − ∇ − ∇ − = ∇ ⋅⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 (3.52) 

 ( ) ( ) ( )( )1 1 12 1
2

C CΨ − +∇ = −  (3.53) 
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The boundary conditions for this system are summarized in Table 3.1.  There is 

symmetry at the y=0 and y=B surfaces.  The fiber surface boundary conditions at r=Rf 

include no-slip, no ion flux, and Gauss’ Law for an unperturbed charged surface.  The 

boundary conditions at the x=±B surfaces relate the gradients across the period unit cell to 

the macroscopic gradients across the fiber matrix.  The pressure and electric field 

gradients across the unit cell must be equal to the macroscopic gradients.  Since the 

0th-order solution describes the unperturbed system, the macroscopic gradients must be 

related to the 1st-order solutions.  Both of these properties are defined relative to a 

reference value, which for convenience can be defined to be zero at one of the 

boundaries.  In the absence of macroscopic concentration gradients, the concentrations 

must be equal at the x=±B boundaries; periodic nature of the system requires that the 

concentrations are unperturbed.  By the symmetry of the system, there can be no 

tangential flow at these boundaries.   

 

1st-Order Model – Parallel Flow 

This section considers the 1st-order system of equations for macroscopic gradients in 

pressure (dp/dz) and voltage (dV/dz) applied parallel to the fiber axes.  For applied 

gradients parallel to the fiber axes, the only non-zero velocity component is uz(x,y).  

Similarly, the only non-zero components of the perturbed ion fluxes and electric potential 

are ( ) ( )1
, ,z x y±N  and ( ) ( )1 zΨ , which decouple the electrokinetic equations.  The local 

gradients in pressure and electrical potential are only dependent on the macroscopically 

applied gradient.  The result is the simplified equation for uz(x,y): 

 ( ) ( ) ( )( )0 02 1
2

0D D
z

E b E th

dp z dVu C C
dz V dz

λ λ
β π β− +

⎛ ⎞ ⎛ ⎞= ∇ + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (3.54) 

The ion fluxes for parallel flow are evaluated from: 

 ( ) ( ) ( ) ( )1 0 0
,

0D
z z

E th

z dVN C C u
V dz
λ α

β+ + +

⎛ ⎞⎛ ⎞= − −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 (3.55) 

 ( ) ( ) ( ) ( )1 0 0
,

0D
z z

E th

z dV DN C C u
V dz D
λ α

β
+

− − −
−

⎛ ⎞⎛ ⎞= − − −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 (3.56) 
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The boundary conditions for the z-velocity are symmetry at the unit cell boundaries 

and no-slip at the fiber surface. 

 

Coupling Coefficients 

The coupling coefficients from Equation (3.4) are evaluated from the area-averaged 

velocity and current density in the cases of no applied pressure gradient or no applied 

voltage gradient: 

 

/ 0/ 0
11 12

/ 0/ 0
21 22

vv

jj

dp dxdV dx

dp dxdV dx

k k
dp dV
dx dx

k k
dp dV
dx dx

==

==

−−
≡ ≡

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

−−
≡ ≡

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (3.57) 

For perpendicular flow, the macroscopic velocity and current density are evaluated by: 

 ( )0

0

v
B

s
x x B

u u dy
B =±

= ∫  (3.58) 

 ( ) ( )1 1

0

j e N N
B

E b b
x

D D x B

zF D c D c dy
B
β

λ λ
+ −

+ −

=±

⎛ ⎞
= ⋅ +⎜ ⎟

⎝ ⎠
∫  (3.59) 

For parallel flow, the macroscopic properties are evaluated by: 

 ( )
( )0

2
02

v
B B

s
z

B

u u dxdy
B −

= ∫ ∫  (3.60) 

 ( ) ( )1 1
, ,2

02
j

B B
b E

z z
D B

zFc D DN N dxdy
B D

β
λ

+ −
+ −

+−

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∫ ∫  (3.61) 

The exact value of the macroscopic gradients dp/dx and dV/dx used in the model are 

unimportant, since the coupling coefficients are constants that indicate a response 

proportional to any unit gradient.  

 

Numerical Methods 

The finite element grid in COMSOL Multiphysics® was generated with a maximum 

element size scaling factor of 0.55, creating maximum element lengths approximately 4% 

of 2B.  The grid density was increased at the cylinder surface to a maximum element size 
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of 0.005-0.03 in response to the larger field gradients near the surface.  This resulted in 

approximately 3000-15000 elements within the unit cell, which is comparable to the 8080 

unit grid used by Chammas et al. (Chammas et al. 1994).  Increasing the grid size 

confirmed numerical convergence of the coupling coefficients to within 0.1%.  The 

model was solved with the nonlinear UMFPACK solver using default solver parameters 

from the Navier-Stokes model with a relative error tolerance of 1x10-5. 

The values of the physical constants used in the model are summarized in Table 3.2, 

assuming an aqueous sodium chloride solution.  The variable parameters in the model 

include fiber volume fraction, fiber radius, fiber surface charge density and bulk solution 

ionic strength. 

 
Table 3.2  Physical constants used in the diffuse double layer and Helmholtz double layer hydraulic 

permeability models, assuming an aqueous sodium chloride solution at room temperature. 
Constant Value 
ε = 7.08 x 10-10 F/m 
Vth=RT/F = 2.5 x 10-2 V 
F = 9.648 x 104 C/mol 
R = 8.314 J/mol-K 
μ = 1 x 10-3 Pa-s 
z+=-z-=z = 1 
D+ = 1.3 x 10-9 m2/s 
D 

- = 2.0 x 10-9 m2/s 
 

Model Results 

Results were validated against the coupling coefficients provided in P. Chammas’ 

thesis for an extracellular matrix system (Chammas 1989).  Consistent with her approach, 

the parallel and perpendicular results are averaged into a single random fiber value using 

a weighted linear average.  As shown in Figure 3.5, there is good agreement between 

values of kij from the prior and current models.  The values of k12 and k21, which should 

be equal by Onsager reciprocity, agree more closely in the current model.  This is perhaps 

due improvements in computational methods in the last twenty years which provide a 

more accurate convergence to the true solution.  The discrepancy between the values for 

k22 is exactly accounted for if Chammas’ results did not include the conductive flux of 

ions due to an applied voltage gradient in the current density for the parallel k22.   
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Figure 3.5  Coupling coefficients for a system of GAG fibers with rf = 0.9 nm, σs = -120 mC/m2, 
cb = 0.15 M NaCl and φ = 0.09/(1-% strain).  Curves are results from (Chammas 1989); symbols are data 
generated from the model.  Coupling coefficients are scaled in the following units:  k11 [x10-15 m4/N-s] 
( ,—), k21  [x-10-8 m2/V-s] ( ,—), k12 [x-10-8 m2/V-s] ( ,- - -), k22 [N/V2-s] ( ,—), k22 without the 
conductive flux for flow parallel to fibers [N/V2-s] ( ,—) 

 

The open circuit permeability (koc) from the diffuse double layer model was 

compared against the Helmholtz double layer and neutral fiber models in Figure 3.6.  The 

open circuit hydraulic permeability was evaluated from the four coupling coefficients for 

flow parallel and perpendicular to the fiber axes, as given by Equation (3.5).  The figure 

compares the three model predictions for fiber volume fractions comparable to the bound 

GAG fiber densities.  The neutral fiber model used the results by Sangani and Acrivos 

and Drummond and Tahir for periodic arrays of neutral fibers; see equations (3.2) and 

(3.3).  The parallel and perpendicular fiber permeabilities from each of the three models 

were then averaged into a random fiber system using weighted linear averaging.  As seen 

in Figure 3.6, the Helmholtz double layer model did not asymptotically approach the 

predictions of the neutral fiber model at high ionic strengths due to assumptions in the 

model about an impenetrable slip plane at the double layer.  The Helmholtz model also 
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deviated from the diffuse double layer model at low ionic strengths, where the half-

distance between the fibers was only twice the Debye length.  This deviation indicates 

that the interactions between the double layers become important at large Debye lengths, 

so the diffuse double layer model must be used for modeling the GAG-agarose gels.  The 

diffuse double layer model did asymptotically approach the neutral fiber model at high 

ionic strengths, as was expected for a system with highly screened charges. 
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Figure 3.6  Three models for open-circuit hydraulic permeability for 0.37v% system of GAG with 
rf=0.5 nm and σs=-120 mC/m2.  The neutral fiber model (—) is from Equations (3.2) and (3.3); the 
Helmholtz model (- —) is based on work by Eisenberg and Grodzinksy (Eisenberg and Grodzinsky 1988); 
the diffuse model (- - -) is based on the work by Chammas et al. (Chammas et al. 1994).  Parallel and 
perpendicular results are combined using weighted linear averaging from Equation (3.26). 

 

As shown in Figure 3.7, the charge effects in the closed-circuit hydraulic permeability 

(k11) only account for a portion of the charge effects in the open-circuit permeability (koc) 

found by the diffuse double layer model in Figure 3.6.  The k12, k21 and k22 coefficients 

were responsible for the remainder of the charge effect.  The neutral hydraulic 

permeability (k11,neutral) has no charge effects and remains constants at all ionic strengths. 
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Figure 3.7  Comparison of the open-circuit (koc, - - -), closed-circuit (k11, - —) and neutral (—) hydraulic 
permeability for 0.37v% system of GAG with rf=0.5 nm and σs=-120 mC/m2 with the diffuse double layer 
model and weighted linear averaging.  Models were identical to those used in Figure 3.6. 

 

The values of the individual coupling coefficients used in the previous two figures are 

shown in Figure 3.8.  As seen in Figure 3.8(a), the closed-circuit permeability (k11) for 

flow parallel to the fibers is independent of ionic strength.  The closed-circuit 

permeability for perpendicular flow in Figure 3.8(b) does decrease slightly 

(approximately 7%) at lower ionic strengths.  However, the coefficients k21, k12, and k22 

have a strong ionic strength dependence for both fiber orientations.  From electrokinetic 

coupling of the coefficients as given by Equation (3.5), the open-circuit permeability (not 

shown) decreased by 30% for parallel flow and 20% for perpendicular flow at 0.01 M 

ionic strength.  Using Equation (3.26) to find the permeability of randomly oriented 

fibers, the resulting open-circuit permeability (previously shown in Figure 3.6 and Figure 

3.7) decreased by 28% at 0.01 M relative to high ionic strengths. 
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Figure 3.8  Coupling coefficients for a system of 0.37v% GAG with rf=0.5 nm and σs=-120 mC/m2 based 
on the diffuse double layer model.  (a) Flow parallel to the fiber axes; (b) flow perpendicular to fiber axes.  
Coupling coefficients are scaled in the following units:  k11 [x10-14 m4/N-s](- - -), k21 and k12 [x-10-8 m2/V-s] 
(—), k22 [N/V2-s] (- —).  
 

Structural versus Donnan Models 

The diffuse double layer model and Helmholtz double layer model described in 

Sections 3.1.2 and 3.2.1  calculate the permeability based on the charge contained on the 

fiber surface.  However, the charge can instead be treated as a uniform concentration 

throughout the membrane, as done in the Donnan equilibrium model.  Such an 

assumption is most applicable when the spacing between the charged fibers is of the same 

magnitude as the radius of the fibers.  Assuming a unit cell model, the center-to-center 

distance between two GAG fibers is 15 times the fiber diameter for a 0.37v% gel. 

While the GAG fiber spacing in the system cannot fully justify the use of the Donnan 

model, the comparison in Figure 3.9 between the double layer models and the Donnan 

model shows that Donnan model does capture the charge effects in the system.  The 

figures show the open-circuit permeability for a periodic array of 0.37v% GAG using  the 

diffuse double layer model and the Donnan model (using Equations (3.2) and (3.3) for the 

neutral permeability).  The Donnan model agrees with the diffuse double layer model to 

within 18% for perpendicular flow and 31% for parallel flow.  While not as precise as the 

structural models, the Donnan model does provide a reasonable estimate of decreased 

permeability due to charge with much less computational effort than the diffuse double 
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layer model and without the breakdown of model assumptions at low ionic strengths 

found in the Helmholtz double layer model. 
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Figure 3.9  Diffuse double layer and Donnan equilibrium models for open-circuit Darcy permeability of a 
square array of charged fibers.  The two sets of curves represent flow parallel and perpendicular to the axis 
of a system GAG with φ=0.00375,  rf=0.5 nm and σs=-120 mC/m2.  The Donnan model used Equations 
(3.2) and (3.3) for the neutral fiber permeability. 

 

3.2.2. Orientation and Population Averaging 

Averaging Methods 

As reviewed in section 3.1.3, the current literature provides several methods for 

averaging the hydraulic permeability of different fiber populations, which can yield very 

different results if the fiber populations are dissimilar.  All approaches assume that the 

fibers are sufficiently dilute that they do not interact, which is virtually impossible to 

achieved (Mackplow et al. 1994).  Even if the limit of infinite dilution were reached, 

there is no exact solution to the Stokes equation for flow around an isolate cylinder, 

leading to the so-called “Stokes paradox” (Deen 1998). 

The four averaging methods presented in the literature include the inverse averaging 

used by Jackson and James (Equation (3.25)), the weighted inverse averaging proposed 
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by Clague and Phillips (Equation (3.28)), the length-weighted inverse averaging 

developed by Ethier (Equation (3.29)) and weighted linear averaging used by Chammas 

et al. (Equation (3.26)) (Chammas et al. 1994, Clague and Phillips 1997, Ethier 1983, 

Jackson and James 1982).  This section will consider the derivations of these averaging 

methods, while the following sections will compare their ability to predict permeabilities 

in various multi-fiber systems. 

The averaging methods in Equations (3.25) and (3.28) can both be derived from a 

force balance on the fibers.  The pressure drop across the fibers is equal to the force per 

area acting on the system, which allows Darcy’s Law to be rewritten as: 

 1 21
v v

total

avg total total total total

F F F
V Vκ μ φ μ φ

+
= =  (3.62) 

where Ftotal is the total force acting on the fibers, <v> is the macroscopic imposed 

velocity, Vtotal is the total unit volume of the system and F1 and F2 are the force acting on 

fibers of populations 1 and 2, respectively.  Letting each population i of fibers contain ni 

number of fibers of length lf,i and radius rf,i with a volume fraction φi, we can define a 

dimensionless force per fiber length: 

 
, v

i
i

i f i

Ff
n l μ

=  (3.63) 

where the fiber length is related to the fiber volume fraction by: 

 
2

, ,i f i f i
i

total

n l r
V

π
φ =   . (3.64) 

This allows Darcy’s Law to be written as: 

 1 1 2 2
2 2
,1 ,2

1

avg total f total f

f f
r r

φ φ
κ φ π φ π

⎛ ⎞
= +⎜ ⎟⎜ ⎟

⎝ ⎠
  . (3.65) 

For a single fiber system, the dimensionless force per length is equal to: 

 
( ) ( )2
1 1total

f

f
r

φ
π φ κ φ κ φ

= =  (3.66) 

where ( )κ φ  is a function derived for the specific fiber orientation.  The question arises if 

the equivalent expression for one fiber population in a multi-fiber system is:   
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( )2

,

i total

f i i ii

f
r

φ
π φ κ φ

=  (3.67) 

or 

 
( )2

,

1i

f i i total

f
rπ κ φ

=  (3.68) 

There is no rigorous proof that one expression is more valid than the other.  If 

Equation (3.68) is substituted into Equation (3.65), then Equation (3.28) results.  This is 

equivalent to a macroscopic arrangement of single fiber-type layers in series, with both 

layers at a fiber density φtotal and with the layer thickness in proportion to φi.  Alternately, 

if Equation (3.67) is substituted into Equation (3.65), then a generalized expression for 

Equation  (3.25) results: 

 
1 1 2 2

1 1 1
( ) ( )avgk k kφ φ

= +   . (3.69) 

These results can easily be extended to systems with more than 2 populations of fibers.  It 

should be noted that in the limit of both fiber properties becoming identical, 

Equation (3.28) will correctly reduce to the single fiber expression; however, 

Equation (3.69) will not. 

Ethier’s derivation of Equation (3.29) begins with the assumption that the pressure 

drops are additive instead of the forces being additive.  The length over which each 

pressure drop occurs is proportional to the number of fibers of type i.  The resulting 

system is equivalent to two single-fiber systems in series, which allows Ethier to find the 

resulting length-weighted inverse averaging.  If both fibers have the same radius, then 

equations (3.29) and (3.28) are identical.  

The averaging method in Equation (3.26) is developed by extension to orientation 

averaging of fibers in heat conduction and electrophoresis.  As discussed in Section 3.1.3, 

when heat conduction or electrophoresis of a randomly-oriented rod is averaged over all 

spatial orientations, the result is one-third of the parallel result plus two-thirds of the 

perpendicular result.  Stigler has shown that this result is true for any vector field that is 

linearly related to an applied field.  The equivalent generalized averaging formula is: 
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 ( ) ( )1 2
avg total total

total total

k k kφ φφ φ
φ φ

= +   . (3.70) 

It should be remembered that an exact derivation of Equation (3.70) from flow around a 

randomly oriented fiber is not possible, and Equation (3.70) is only formulated by 

analogy to electrophoresis or heat conduction.  Equation (3.70) is equivalent to a system 

with layers of a single fiber-type arranged parallel to the flow, each layer with a fiber 

density φtotal and a cross-sectional area proportional to φi. 

 

Critique of Averaging Methods – Orientation and Radius 

The four averaging methods presented are: inverse averaging (3.69), weighted inverse 

averaging (3.28), length-weighted inverse averaging (3.29) and weighted linear averaging 

(3.70).  Each averaging method has been applied to specific situations in the literature, 

without evaluation if one method is more appropriate than another.  Since all of these 

averaging methods assume a dilute fiber system, they will be an approximation to the true 

system behavior.  The following section will evaluate the applicability of the averaging 

methods for systems with random fibers (multiple orientations), multiple fiber radii, and 

multiple fiber surface charges. 

For fibers in random orientations, they can be idealized as a population of fibers with 

one-third of the fibers oriented along each of the x, y, and z axes.  The basis of this 

assumption was reviewed in Section 3.1.3.  Assuming a fiber population with one-third 

parallel and two-thirds perpendicular to the applied flow, Figure 3.10 compares the three 

averaging methods against the numerical simulation results of Clague and Phillips and 

Clague et al. (Clague et al. 2000, Clague and Phillips 1997).  The curves show the 

predicted permeability based on each averaging methods, while the symbols are 

permeabilities reported from the simulations.  Equations (3.2) and (3.3) were used for 

modeling the 2-dimensional periodic fiber arrays.  All models agree well with the 

simulation data and deviate by at most 40%. 
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Figure 3.10  Dimensionless Darcy permeability of randomly oriented fibers.  Lines for three averaging 
methods for periodic arrays of one-third parallel and two-thirds perpendicularly-oriented fibers are 
compared to the Clague and Phillips ( )(Clague and Phillips 1997) and Clague et al. ( )(Clague et al. 
2000) numerical simulations for a random system. 

 

In addition to orientation averaging, averaging between fibers of different radii is also 

important for the hydraulic permeability of the agarose-GAG membranes.  Clague and 

Phillips performed simulations of the hydraulic permeability of bimodal fibers in ordered 

and random orientations (Clague and Phillips 1997).  They first considered a periodic 2-

dimenionsal array of small and large fibers with flow perpendicular to their axes.  The 

fibers were present in equal numbers, and the radius of the large fiber to the small fiber 

was 2:1.  The results of their simulation are compared to the four averaging methods in 

Figure 3.11.  The permeabilities of the monomodal fibers used in the averaging methods 

were found from Equation (3.3) for a periodic square array with perpendicular flow.  The 

difference between the averaging methods is less than 70%, though the simulation 

appears to agree most closely with the inverse and weighted-inverse models. 
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Figure 3.11  Dimensionless Darcy permeability of flow perpendicular to a periodic, bimodal fiber array.  
The radius of the larger fiber (rf,2) is twice the radius of the smaller fiber; fibers are present in a 1:1 number 
ratio.  Lines for four averaging methods are compared to the Clague and Phillips ( )(Clague and Phillips 
1997) numerical simulations. 

 

The averaging methods are also compared for a random fiber system similar to that 

reported for agarose.  The matrix is composed of 87% of fine fibers with a 1.5 nm radius 

and 13% of coarse fibers with a 4.5 nm radius.  The simulation results from Clague and 

Phillips in Figure 3.13 are compared to the four averaging methods with Equation (3.24) 

for random monomodal fibers.  For this system, there is nearly a five-fold difference 

between averaging methods.  The simulation results fall in the middle of the range.  As in 

the ordered fiber system in Figure 3.11, the bimodal random fiber simulations are most 

closely matched by the inverse and weighted-inverse averaging methods. 
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Figure 3.12  Dimensionless Darcy permeability of flow a random, bimodal fiber array.  The radius of the 
coarse fiber (rf,2) is 4.5 nm and the fine fiber is 1.5 nm; the fibers are 13% coarse and 87% fine, by number.  
Lines for four averaging methods are compared to the Clague and Phillips ( )(Clague and Phillips 1997) 
numerical simulations. 

 

A second bimodal, random fiber system similar to a collagen/proteoglycan gel was 

also simulated by Clague and Phillips.  The collagen (rf,2 = 20 nm) had a fixed 

composition of φ2 = 0.05, while the proteoglycan (rf,1 = 3 nm) constituted the balance of 

the total fiber volume fraction.  As shown in Figure 3.13, the averaging methods again 

span over an order of magnitude, with the simulation results falling in the middle.  

Similar to the prior to bimodal fiber examples in Figure 3.11 and Figure 3.12, the inverse 

and weighted-inverse averaging methods provide the best estimate of the simulation 

results. 

 

(Note that correspondence with the authors of (Clague and Phillips 1997) confirmed 

several typographic errors in their paper.  In their Figure 9, the ordinate is normalized 

by the larger fiber radius.  In Figure 10, the ordinate was incorrectly labeled as k/rf
2; it 

should be k (nm2).  In Figure 11, the ordinate is mislabeled by a factor of ten; it should 

range from 0.1 to 10.0.) 
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Figure 3.13  Dimensionless Darcy permeability of flow through a random, bimodal fiber array.  The radius 
of the coarse fiber (rf,2) is 20 nm and the fine fiber is 3 nm; the coarse fiber volume fraction is constant at 
φ2 = 0.05.  Lines for four averaging methods are compared to the Clague and Phillips ( )(Clague and 
Phillips 1997) numerical simulations. 

 

Critique of Averaging Methods – Charge 

Based on the simulations by Clague and Phillips for random and bimodal fiber arrays, 

a neutral multi-fiber system can be well-represented by either an inverse or 

weighted-inverse average of the individual fiber populations.  However, there is no 

published data on permeability in charged multi-fiber systems.  To confirm that the 

inverse and weighted-inverse averaging methods are still appropriate for charged fiber 

systems, the diffuse double layer model presented in Section 3.2.1 was adapted to model 

a 2-fiber system with different surface charge densities and/or different fiber radii. 

Since the model depends on having a unit cell that is both symmetric and repeating, 

the geometry of the 2-fiber array is limited.  However, a square lattice can be easily 

generated that has a one-to-one ratio between two fiber types, shown in Figure 3.14.  The 

boundary conditions at both fiber surfaces are the same as those for the single fiber in 
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Table 3.1, though the charge can be different between the Rf,1 and Rf,2 surfaces.  The unit 

cell width B is found by using φ1 and Rf,1. 

The combined 2-fiber model is compared to the averages of single-fiber models using 

the diffuse double layer simulation in Section 3.2.1 for charged ordered fibers and the 

Equations (3.2) and (3.3) for square arrays of neutral fibers.   

 

 
Figure 3.14  (a) Square array of two fiber populations with unit cell boundaries. (b) Single unit cell for 

fibers with radii Rf,1 and Rf,2 and unit cell width B. 
 

The first case considers two fiber populations with the same radius and different 

charge.  Fiber population 1 has a surface charge of -120 mC/m2 and fiber population 2 is 

uncharged, while both fibers have rf,1=rf,2=0.9 nm and φ1=φ2.  The open-circuit hydraulic 

permeability of the square array was simulated for flow parallel and perpendicular to the 

fiber axis.  Figure 3.15 (with φ1=0.09) and Figure 3.16 (with φ1=0.02) compare the open-

circuit permeability from the simulations (symbols) with the permeability predicted by 

the three averaging methods (lines).  The results are shown in each Figure for flow both 

perpendicular and parallel to the fiber axes.  For both fiber volume fractions, the 

weighted-linear and weighted-inverse averaging methods provide good agreement for 

both parallel and perpendicular flow.  Unlike the prior results for neutral fibers, the 

inverse averaging method no longer appears to provide a good fit to the charged fiber 

simulations. 

y 
x 
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B

2B 
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Figure 3.15  Open-circuit hydraulic permeability for a square array of fibers with radii rf = 0.9 nm and 

φtotal = 0.18 (φ1 = 0.09) with an equal number of neutral fibers (σs=0 mC/m2) and charged fibers 
(σs = -120 mC/m2).  Lines for three averaging methods are compared to the numerical simulations ( ) of 
the system. 
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Figure 3.16  Open-circuit hydraulic permeability for a square array of fibers with radii rf = 0.9 nm and 

φtotal = 0.04 (φ1 = 0.02) with an equal number of neutral fibers (σs = 0 mC/m2) and charged fibers (σs = -
-120 mC/m2).  Lines for three averaging methods are compared to the numerical simulations ( ) of the 
system. 
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As suggested by the differences between the simulation results in Figure 3.15 and 

Figure 3.16, the decrease in the permeability due to charge effects is a function of both 

ionic strength and fiber volume fraction.  The decrease in open circuit permeability 

relative to neutral permeability is shown in Figure 3.17 for periodic fiber arrays with 

either all-charged or half-charged/half-neutral fibers (“1 Fiber” and “2 Fiber”, 

respectively).  In general for a given ionic strength, charge will cause a larger decrease in 

permeability in systems with denser fibers.  A minimum values of κoc/κneutral occurred for 

0.01 M.  The minimum is a result of competition between the increased in neutral 

permeability at higher φ and the corresponding increase in fixed charge density.  A 

similar results is found with the Donnan model, as discussed in more depth in my 

published work (Mattern and Deen 2008).   While the two-fiber system contains half the 

total charge in the single-fiber system (with other properties held constant), the decrease 

in the permeability of the two-fiber system is not simply half that of the single-fiber 

system. 

 
Figure 3.17  Open circuit Darcy permeability relative to neutral permeability for axial flow through 

arrays of charged and neutral fibers.  Closed symbols are the permeability through an array of charged 
fibers with r = 0.9 nm and σs = -120 mC/m2.  Open symbols are the permeability through a two fiber array 
with r1 = r2 = 0.9 nm, σs,1 = -120 mC/m2 and σs,2 = 0.  The open circuit permeability used the diffuse double 
layer model, and the neutral permeability was calculated with Equation (3.2). 
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The second case considered for a charged multi-fiber array involved charged fibers in 

a square array with fine charged fibers and coarse neutral fibers.  The fine fibers 

(population 1) have a radius rf,1=0.5 nm, a volume fraction φ1=0.004, and a surface 

charge density σs,1=-120 mC/m2.  The coarse fibers (population 2) have a radius 

rf,2=1.6 nm, a volume fraction φ2=0.041, and no surface charge.  As will be discussed in 

later sections, this idealized model is comparable to the agarose-GAG membranes used 

for experiments.  The open-circuit permeability of this two-radii array is shown in Figure 

3.18, along with the permeabilities from the four mixing rules.  Similar to the charged 

single-radii system in Figure 3.15, the permeability from the bimodal simulation is 

bracketed by the four averaging methods.  However, the different averaging methods now 

span a much larger range (±75% of the two-radii simulation for perpendicular flow) than 

the previous results for equal fiber radii (±35% of the simulation).  Similar to the neutral 

bimodal fiber arrays in Figure 3.11 and Figure 3.13, the inverse and weighted-inverse 

averaging methods most closely predict the permeability of the charged bimodal fiber 

array. 
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Figure 3.18  Open-circuit hydraulic permeability for a square array of fibers similar to an 

agarose-GAG membrane.  Fiber population 1 (“GAG”) has rf,1=0.5 nm, φ1=0.004 and σs,1=-120 mC/m2.  
Fiber population 2 (“agarose”) has rf,2=1.6 nm, φ2=0.041 and σs2=0 mC/m2.  Lines for four averaging 
methods are compared to the numerical simulations ( ) of the system. 
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There is no data in the literature for the hydraulic permeability of a random array of 

charged fibers.  Therefore, any speculations about orientation averaging of charged fibers 

must be based on the previous data for periodic charged fibers or random neutral fibers. 

 

Critique of Averaging Methods – Conclusions 

The comparisons of the four averaging methods for single fiber populations to the 

corresponding results for multi-fiber systems show that no single averaging method can 

fully predict the hydraulic permeability of the composite system.  All averaging methods 

involve assumptions of how the interactions between the fiber populations can be 

approximated by single-fiber models.  For example, the weighted-inverse averaging 

method is algebraically equivalent to a 2-region gel with each fiber type separated into a 

region with a fiber density φtotal, with the regions arranged in series.  The weighted linear 

average is the same, expect the regions would be arranged in parallel.  The inverse 

averaging method assumes that fiber interactions only occur between similar fiber types, 

rather than interactions with the nearest fiber neighbor based on φtotal. 

To determine the most appropriate averaging method to use for evaluating the 

hydraulic permeability of multi-fiber systems, the accuracy of the method for systems 

with fibers of different orientations, radii and/or charge must all be considered.  The root 

mean square (RMS) error of each averaging method, as a percentage of the simulation, 

provides a normalized way of comparing the averaging methods across the different 

multi-fiber systems.  The RMS error of the averaged permeability relative to the 

composite simulation permeability is summarized in Table 3.3 for the various fiber arrays 

presented previously in this section.  Here, the relative RMS error is defined by: 
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where xi is the abscissa variable, n is the number of points, κaveraged is the permeability 

based on averaging single fiber permeabilities and κsimulation is the permeability based on 

the simulation of the composite. 

 



CHAPTER 3. Hydraulic Permeability 
 
 

 
  

  131  

Table 3.3  Root mean squared relative error of averaging models compared to simulation results for 
fiber systems with multiple orientations, radii, and/or surface charges. 

 Weighted 
Linear 

Weighted 
Inverse 

Length-
Weighted 
Inverse 

Inverse 

Orientation  
    (Figure 3.10) 

    

    vs. Clague & Phillips 25% 32% - * 14% 

    vs. Clague et al. 19% 25% - * 10% 

Radius     
    Figure 3.11 76% 38% 33% 138% 

    Figure 3.12 87% 32% 62% 19% 

    Figure 3.13 485% 36% 80% 13% 

Charge 
    (Figure 3.15) 

    

        Parallel 3% 2% - * 88% 

        Perpendicular 6% 6% - * 83% 

    (Figure 3.16)     

        Parallel 4% 4% - * 36% 

        Perpendicular 2% 2% - * 36% 

Charge+Radius 
    (Figure 3.18) 

    

        Parallel 61% 19% 76% 31% 

        Perpendicular 55% 16% 74% 29% 

All Neutral Simulations 
   (n=30) 

186% 33% 48% 69% 

All Charged Simulations 
   (n=34) 

24% 8% 32% 49% 

All Simulations 
   (n=64) 

128% 24% 40% 59% 

* - Model identical to weighted inverse method under the given conditions. 
 

For most conditions, the RMS error between the weighted-inverse and inverse models 

and the simulation results is less than 35%.  However, there was significant deviation 

with inverse averaging for the periodic bimodal array (Figure 3.11) and the charged fibers 

in Figure 3.15.  Weighted inverse averaging provides a more consistent prediction of the 

multi-fiber permeability for a variety of fiber types, including charged fibers.  This can be 

seen in Figure 3.19, which graphically shows the deviations of the averaging rules from 
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simulation results.  The weighted linear and length-weighted inverse have several 

instances of significantly over- or under-estimating the permeability, respectively.  The 

inverse averaging method over-estimated the permeability of some of the neutral fibers 

and nearly all of the charged fiber cases.  The weighted-inverse averaging tends to fall 

closest to the simulation results for a wide range of neutral and charged fibers. 

 

 

 
Figure 3.19  Darcy permeability of complex fiber systems as predicted by single-fiber mixing rules 

and multi-fiber simulations.  The solid line is the unity line and the dashed lines are ± 50%.  Open symbols 
are data for neutral fiber systems from the literature (Clague et al. 2000, Clague and Phillips 1997) and 
solid symbols are charged fiber systems using the diffuse double layer model. 
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Based on these results, the weighted-inverse averaging method will be used for 

predicting the permeability of a composite of multiple fibers with differing radii and/or 

charge and for predicting the permeability of a random fiber array based on parallel and 

perpendicular flow models. 

 

Charge Averaging – Diffuse Double Layer versus Donnan Models 

The comparisons of averaging methods for charged fibers discussed above use the 

structurally-based diffuse double layer model.  However, as seen in Figure 3.15 and 

Figure 3.18, the choice of averaging method can change how the permeability decreases 

with decreasing ionic strength.  An alternate approach for modeling charge effects in 

multi-fiber systems is to use the Donnan model  In this approach, both fiber types are 

treated as neutral.  Then a fiber averaging method is used to account for the combined 

steric effects and the Donnan model can be used to account for charge effects. 

This Donnan approach was applied to the two-fiber system used in Figure 3.15, 

where both fibers have the same radius but only one is charged.  In the neutral case, the 

system is composed of only a single fiber type with rf=0.9 nm.  The neutral permeability 

was calculated with Equations (3.2) or (3.3) for a neutral square array; no fiber averaging 

method was necessary.  The surface charge of -120 mC/m2 on half the fibers was 

converted into an equivalent homogeneous volumetric charge of cm=-250 meq/L for the 

Donnan model.  A comparison of the permeabilities predicted by the diffuse double layer 

model and the Donnan model are shown in Figure 3.20.  Results are shown for two total 

fiber volume fractions: (a) φtotal=0.18 and (b) φtotal=0.04.  The Donnan model agrees well 

with the diffuse double layer results for flow perpendicular to the fiber axes at both fiber 

volume fractions.  For flow parallel to the fiber axes, the Donnan model provides good 

agreement at high volume fractions, though it slightly over predicts the charge effect at 

low volume fractions.  A similar over prediction was observed in the single-fiber array in 

Figure 3.9 at lower fiber volume fractions, when the spacing between the charged fibers 

was much larger than the fiber radius.   
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Figure 3.20  Diffuse double layer and Donnan models for the open-circuit Darcy permeability through a 
square array of fibers with radii rf=0.9 nm and an equal number of neutral fibers (σs=0 mC/m2) and charged 
fibers  (σs=-120 mC/m2).  The graphs show results for flow parallel and perpendicular to the fiber axes for a 
total fiber volume fraction of (a) φtotal=0.18 and (b) φtotal=0.04. 

 

The Donnan model was also applied to the charged bimodal system in Figure 3.18, 

where the charged fibers have a different radius (rf,1=0.5 nm, σs,1=-120 mC/m2) than the 

neutral fibers (rf,2=1.6 nm).  The fibers volume fractions were φ1=0.004 and φ2=0.041.  

The Donnan model used weighted-inverse averaging of Equations (3.2) or (3.3) to model 

the neutral permeability.  The Donnan model for the charged bimodal system is shown in 

Figure 3.21, as well as two approaches for the diffuse double layer model.  The “2 Fiber” 

model included both charged and neutral fibers in one simulation, as diagrammed in 

Figure 3.14; these results were considered the most accurate since it includes interactions 

between the two fiber types.  The “1 Fiber” model used the diffuse double layer model 

for a single charged fiber (as shown in Figure 3.4), then used weighted-inverse averaging 

add the permeability of the neutral fibers (given by Equation (3.2) or (3.3)). 

As seen in Figure 3.21, the Donnan model and the double layer models all approach 

the same neutral limit at high ionic strengths.  Even though the charged fiber spacing 

does not formally allow the charge to be considered homogeneous, the Donnan model 

appears to capture the effect of charge fairly accurately at lower ionic strength.  However, 

there was relatively poor agreement between the 1-Fiber and 2-Fiber diffuse double layer 

models at intermediate ionic strengths.  This suggests that the fiber mixing rule in the 1-
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Fiber model may distort the effect of charge on permeability in a multi-fiber system.  

Both the Donnan model and the fiber mixing rule in the 1-Fiber model employ 

simplifying assumptions to estimate the hydraulic permeability.  The errors associated 

with these assumptions may make one model more appropriate than the other for a given 

fiber system.  For the agarose-GAG-like fiber system in Figure 3.21, both models provide 

useful insight into the role of charge. 
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Figure 3.21  Diffuse double layer and Donnan models for the open-circuit Darcy permeability through a 
square array of fibers similar to an agarose-GAG membrane.  The graphs show results for flow parallel and 
perpendicular to the fiber axes where fiber population 1 (“GAG”) has rf,1=0.5 nm, φ1=0.004 and σs,1=-
120 mC/m2 and fiber population 2 (“agarose”) has rf,2=1.6 nm, φ2=0.041 and σs2=0 mC/m2.  The diffuse 
double layer “2 Fiber” model uses the model in Figure 3.14, the “1 Fiber” model uses the model in Figure 
3.4 plus weighted-inverse averaging of Equation (3.2) or (3.3), and the Donnan model uses weighted-
inverse averaging of Equation (3.2) or (3.3). 

 

3.2.3. Non-Homogeneous Fiber Models 

Model Selection 

Using a homogeneous fiber model, such as the empirically-fit model by Clague et al. 

for randomly oriented fibers (Equation (3.24)), the hydraulic permeability of a gel can be 

predicted from the volume fraction of fibers and the fiber radius (Clague et al. 2000).  
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However, as discussed in Section 3.1.4, observations of agarose structure and 

discrepancies between homogeneous models and experimental data suggest that a 

heterogeneous model for agarose may be needed.  Hydraulic permeability and 

macromolecule sieving can be explained if the gel has multiple regions with higher and 

lower fiber densities.  Microscopy and other techniques show uneven distributions of 

fiber spacing, which is consistent with the theories of fiber aggregation during gelation. 

Five two-region models for agarose heterogeneity were proposed in Section 3.1.4: 

series, parallel, checker-board, spherical clumps and spherical voids (Figure 3.3).  For a 

given heterogeneous region model and homogeneous fiber model, the permeability 

through the entire system is fully specified by the total fiber volume fraction φtotal and the 

two parameters φ2/φtotal and ε2.  The volume fraction of fibers in region 1 can be found by 

volume conservation for the entire system: 

 ( )2 21

2

1
1

total

total

φ φ εφ
φ ε

−
=

−
. (3.72) 

Figure 3.22 compares the effective hydraulic permeability of the heterogeneous 

system (keff) to the hydraulic permeability of a homogeneous fiber system (khomog) with 

the same total fiber volume fraction.  The abscissa is the ratio of the fiber density in 

region 1 relative to region 2; at φ1/φ2=1, the system is homogeneous and keff/khomog=1.  

Based on previously published experimental data for 1.9v% and 3.8v% agarose gels, the 

effective permeability was 3-4 times higher than that predicted by homogeneous fiber 

models (Johnson and Deen 1996b).  As shown in Figure 3.22, the permeability of two 

layers in series does not exceed the permeability of a homogeneous system with the same 

total fiber volume fraction (i.e. keff/khomog≤1 for series).  Both the parallel and spherical 

models can yield a permeability higher than the equivalent homogeneous permeability, 

which is in agreement with the experimental observations of agarose.  However, the 

spherical model has a permeability only slightly higher than the homogeneous system 

when matrix fiber density is higher than the spherical density (φ1/φ2>1), which suggests 

that a model of lower density “voids” within agarose cannot explain the observed 

permeability.  Both spherical “clumps” of fibers and parallel “pores” through the agarose 

could explain the 3-to-4-fold higher permeability.  The predictions of these two models 

are very similar, differing by less than 11% for the conditions in Figure 3.22.  The images 
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of agarose structure, the description of gelation kinetics and the likelihood of an isotropic 

medium suggest a random clump structure is more physically plausible than parallel 

pores. 
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Figure 3.22  Effective hydraulic permeability of a two region composite compared to the permeability for a 
homogeneous system with the same total fiber volume fraction.  Here, φtotal=0.03 and ε2=0.1.  The parallel 
model is described by Equation (3.30) (- - -); the series model is described by Equation (3.31) (- · -).  The 
spherical model (—) is Equation (3.34), with region 2 referring to the spheres.  The homogeneous fiber 
permeability is given by Equation (3.24). 

 

As described previously, several models are available for the effective permeability of 

a material with spherical heterogeneities.  The Maxwell solution (Equation (3.32)) has the 

simplest form.  The expression by Jeffrey has more accuracy at higher volume fractions, 

though full power series solution contains more terms than those shown in Equation 

(3.34).  Results of numerical simulations are also available from Bonnecaze and Brady 

for a limited number of conditions.  For clumps with κs/κm = 0 and 0.01, the results from 

Maxwell, Jeffrey (both truncated and full expressions), and Bonnecaze and Brady 

differed by 2.2% or less over the full range of ε2 = 0-0.5.  These conditions are 
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representative of those implied by the experimental agarose results; using the methods 

that are described in the following sections, 3v% agarose yields values of κs/κm = 10-2-

10-4 with ε2 = 0.05-0.5.  Accordingly, the Maxwell expression was used for all 

calculations involving spherical voids. 

 

Model Application 

The heterogeneous models require that φtotal, φ2/φtotal, and ε2 be specified.  Knowing 

the total fiber volume fraction, this leaves two adjustable parameters which are fit to the 

agarose hydraulic permeability.  Since agarose structure likely varies with different fiber 

volume fractions, values of φ2/φtotal, and ε2 are assumed to different for different values of 

φtotal.  For a given φtotal, the value of blank agarose hydraulic permeability for a can be 

used to fit one of the two parameters.  The degrees of freedom require that the other 

parameter be independently specified.  This is illustrated in Figure 3.23 for 3 v% agarose 

gels, where the curve shows all parameter combinations of φ2/φtotal and ε2 that result in a 

permeability of κ = 453 nm2. 

The values that the parameters φ2/φtotal, and ε2 can take are bounded.  The sphere 

volume fraction ε2 can have a minimum value of 0 and a maximum value of ~0.5 where 

the model breaks down and the system approaches the sphere cubic packing density of 

0.52.  The volume fraction φ2 is bounded by a minimum value of 0 and a maximum value 

of 0.78 when the fibers are cubic packed.  Further, φ2 is also limited through volume 

conservation by the bounds of φ1, which also has a minimum of 0 and a maximum of 

0.78.  These bounds on parameter space are illustrated in Figure 3.23, where the dashed 

line shows all parameter combinations which predict a permeability of 453 nm2 for 3 v% 

agarose, while the solid line indicates parameter combinations which fall within physical 

bounds. 
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Figure 3.23  Range of parameters for the spherical heterogeneity model for 3v% agarose with κ = 453 nm2.  
The homogeneous fiber permeability is given by Equation (3.24) with rf = 1.6 nm.  The dotted line (- - -) 
represents all combinations of parameters which predict a 453 nm2 permeability; the solid line (—) is the 
range of parameters which fall within physical bounds. 

 
For systems with both GAG and agarose, it is assumed that GAG binds in proportion 

to the number of active binding sites, and the number of these sites are proportional to the 

volume of fibers.  Therefore, the heterogeneity of GAG is given by the same φ2/φtotal and 

ε2 as the agarose substrate to which it binds.  Fitting these two parameters to the 

permeability of agarose without bound GAG and knowing the total GAG volume fraction 

from the GAG assay, the permeability of the composite is modeled with no additional 

fitted parameters.  In Figure 3.24, the composite permeability (κeff) of 3v% agarose with 

neutral GAG fibers was calculated over a range of ε2.  In this example, the permeabilities 

of both fibers are given by Equation (3.24) and are combined with weighted inverse 

averaging from Equation (3.28).  As illustrated in the figure, the composite permeability 

is a very weak function of ε2, changing by less than 0.5% over the bounded range of ε2.  

Therefore, the model is effectively only fit to the parameter φ1/φtotal.  It will be shown in 
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the following section that the composite permeability is also a very weak function of the 

choice of ε2 for charged fiber models. 
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Figure 3.24  Effective hydraulic permeability of a heterogeneous, neutral agarose-GAG composite as a 
function of ε2 and φGAG.  The φ2/φtotal parameter for the spherical heterogeneity model was fit to a 3v% 
agarose gel with κ = 453 nm2 (—).  The neutral homogeneous fiber permeabilities are given by Equation 
(3.24) with rf,agarose = 1.6 nm and rf,GAG=0.5 nm.  The effective permeabilities changes less than 0.5% over 
the range of ε2 for both gels with low GAG (φGAG =0.001; - - -) and high GAG (φGAG =0.01; - · -) contents. 

 

3.2.4. Composite Agarose-GAG Hydraulic Permeability Model 

The agarose-GAG composite gel has a mixture of charged GAG and neutral agarose 

fibers in a matrix with heterogeneous fiber density.  As summarized in Figure 3.25, the 

model for charged and neutral fibers and fiber heterogeneity can be combined to predict 

the hydraulic permeability of an agarose-GAG membrane.  As discussed in Section 3.2.1, 

the hydraulic permeability for the charged fibers should be modeled with a diffuse double 

layer model.  The model results for flow parallel and perpendicular to the charged fibers 

are averaged into a random GAG fiber open-circuit permeability using weighted inverse 

averaging from Equation (3.28).  The permeability of the agarose fibers is modeled by the 
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Clague et al. Equation (3.24) for randomly oriented neutral fibers.  The permeability of 

the composite is found by averaging the agarose and GAG permeabilities using weighted 

inverse averaging.  The heterogeneous structure of the agarose is approximated by 

spherical, dense fiber clumps within a lower density matrix using the results from 

Maxwell in Equation (3.32).  Since GAG binds to active sites on agarose fibers, it is 

assumed that the GAG fibers will be present in a constant proportion to agarose fibers 

(φGAG,i/φagarose,i is a constant). 

 

 
 

Figure 3.25  Composite model for the hydraulic permeability of an agarose-GAG membrane.  The 
composite model includes a periodic charged fiber model for GAG, a random neutral fiber model for 
agarose, an averaging method to combine the permeabilities of multiple fiber types and a heterogeneous 
permeability model to account for variations in the agarose fiber density.  The model also includes 
experimental data on the bound GAG content of the agarose-GAG membranes and the hydraulic 
permeability of agarose membranes without GAG. 
 

The parameters in the model include physical properties, experimental variables, 

experimental results and fit model parameters.  As discussed in previous sections, this 

composite model contains known physical properties for the ions in solution and the 

charge and dimensions of agarose and GAG fibers.  As discussed in Chapter 1, the 

physical properties of GAG fibers (radius, length, charge) have values cited within a 

narrow range.  Most references cite the GAG radius as 0.5-1.0 nm, the length as 1 nm per 

disaccharide (105-132 nm for 50 kDa chondroitin sulfates with 0-1 sulfate 

substitutions/disaccharide) and the surface charge as -65 – -195 mC/m2 (Chammas et al. 
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1994, Dea et al. 1973, Eisenberg and Grodzinsky 1988, Ogston and Wells 1972, Wight et 

al. 1991).  Unless otherwise noted, the properties of GAG and agarose fibers used in the 

models are the values in Table 3.4. 

 
Table 3.4  Fiber properties for GAG (CS-A) and agarose 

 GAG (CS-A) Agarose 

Fiber radius 0.5 nm 1.6 nm 

Fiber charge -100 mC/m2 0 mC/m2 

Fiber length 105 nm/50kDa - - 

Fiber density 1.00 g/mL 
(based on values above) 

1.025 g/mL 

 

The total volume fraction of the agarose fibers and the solution concentration are 

controlled experimental variables.  The total volume fraction of GAG fibers is 

experimentally determined by the GAG assay, the GAG fiber radius and the GAG fiber 

length.  The hydraulic permeability of an agarose gel without bound GAG is also 

experimentally determined. 

For a given GAG assay and agarose hydraulic permeability, the only adjustable 

parameter in the model is the sphere volume fraction, ε2.  Once ε2 is selected, then the 

ratio φ2/φtotal is fit to the blank agarose hydraulic permeability.  All other parameters are 

known, and the composite gel model predicts the hydraulic permeability for an agarose 

gel with any GAG content. 

Figure 3.26 compares the predicted hydraulic permeability of an agarose-GAG 

membrane to the permeability of a blank agarose gel.  The model considers a membrane 

with 3 v% agarose and 129 mg GAG/g agarose (φGAG = 0.0039).  Three values of ε2 

across the physically bounded range were used to predict the agarose-GAG hydraulic 

permeability.  As shown in the figure, the composite gel model predicts a significant 

decrease in hydraulic permeability for the modest amounts of GAG which can be bound 

to agarose.  The model predicts a slight decrease in the permeability at ionic strengths 

below 0.1 M.  It is also seen that varying ε2 within its bounded range has a minor effect 

on the predicted permeability of the composite system.  This insensitivity to ε2 
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strengthens the predictions of the model, since they are primarily a function of only the 

physical properties and the one fit parameter for agarose. 
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Figure 3.26  Darcy permeability (κ) of a composite agarose-GAG fiber system and the sensitivity to 

model parameters.  Composite gel is 3v% agarose with rf,a = 1.6 nm and 129 mg/g GAG (φGAG = 0.0039) 
with rf,GAG = 0.5 nm and σs,GAG = -100 mC/m2.  The thin solid line (—) shows the permeability of agarose 
without GAG.  The other lines show the predicted permeability of the agarose-GAG membranes.  The thick 
solid line (—) is the middle of the range for ε2; the two dashed lines show the predictions for the upper 
(- - -) and lower (- · -) limits of ε2. 

 

The sensitivity of the model to the physical properties of GAG is shown in Figure 

3.27.  For the extreme case of a five-fold increase in GAG charge, there is minimal 

change in the permeability of agarose-GAG at low ionic strengths.  Changes in the GAG 

fiber radius affect both the hydraulic permeability and GAG volume fraction (the GAG 

surface charge density could also be affected, depending if the GAG charge per monomer 

or per surface area is assumed to be a known constant).  Since φ∝ rf
2 and κ~ -(rf

2/φ)lnφ, 

the hydraulic permeability has only a moderate dependence on the GAG fiber radius.  At 

the high end of cited GAG fiber radii, the permeability is increased by approximately 

50% relative to rf=0.5 nm. 
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Figure 3.27  Darcy permeability (κ) of a composite agarose-GAG fiber system and the sensitivity to GAG 
properties.  Composite gel is 3v% agarose with rf,a = 1.6 nm and 129 mg/g GAG with radius and surface 
charge specified in the legend.  The thin solid line (—) shows the permeability of agarose without GAG.  
The other lines show the predicted permeability of the agarose-GAG membranes for various combinations 
of GAG radius and charge.  All models use ε2=0.1. 

 

Model Variations 

Several variations of the composite model were considered, with the model 

previously described by Figure 3.25 considered the “baseline” model.  Since the GAG 

binds to active sites on agarose, it was assumed in the baseline model that the spatial 

distribution of GAG fibers would be in proportion to the distribution of agarose fibers.  

However, it is possible that GAG fibers would preferentially bind in the low-density 

regions of agarose, due to decreased steric hindrance from agarose and to avoid 

electrostatic interactions with other bound GAG in high density areas.  In the extreme of 

this model, the GAG is only present in the low-density agarose matrix and is absent in the 

high-density clumps.  This preferential GAG binding model is shown in Figure 3.28.  

Unlike the baseline model, the mixing rule to find the permeability of an agarose-GAG 

mixture is not used in the clumps (Region 1), which are assumed to be only agarose in the 

preferential binding model.  There is a higher volume fraction of GAG in the matrix 
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(Region 2) in the preferential model than the baseline model.  The membrane 

heterogeneity was treated the same as in the baseline model. 
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Figure 3.28  Preferential GAG binding model: Alternate composite model for the hydraulic permeability of 
an agarose-GAG membrane.  This alternate model considers that the GAG may not bind in proportion to 
agarose but instead binding more highly in the low-density agarose matrix.  This model considers the 
extreme case where all the GAG binds in only the low-density matrix (‘Region 1’). 

 

A second variation on the composite model makes use of the charged two-fiber model 

described in Section 3.2.2.  The two-fiber model simulates the permeability through a 

periodic array of charged and uncharged fiber, so that, unlike the baseline model, a 

mixing rule is not needed to find the permeability of an agarose-GAG mixture.  This two-

fiber model is illustrated in Figure 3.29.  Using the two-fiber model to calculate the 

permeability of ordered arrays agarose-GAG, the weighted-inverse mixing rule was used 

to find the permeability of randomly oriented fibers.  The membrane heterogeneity was 

treated the same as in the baseline model. 
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Figure 3.29  Two-fiber model: Alternate composite model for the hydraulic permeability of an agarose-
GAG membrane.  This alternate model uses the model for flow past a 1:1 ordered array of two types of 
charged fibers, as shown in Figure 3.14.  The model is limited to certain ratios of GAG fibers to agarose 
fibers; for a 1:1 ratio this is equivalent to 0.3 v% GAG and 3 v% agarose. 

 

The third variation assumes that the open-circuit permeability is calculated across the 

entire membrane, not in each region.  In the baseline model in Figure 3.25, all 

permeabilities used in the fiber mixing rules and heterogeneity models were open-circuit 

permeabilities.  The implicit assumption in that approach is that there is no net current 

across each spherical region.  This assumption may be over restrictive, since it is only 

necessary to have no net current across entire membrane.  As shown in Figure 3.30, a 

model was developed which calculates the coupling coefficients for a heterogeneous 

material before applying Equation (3.5) to calculated the open-circuit permeability.  This 

approach enforces no net current across the entire membrane, but not necessarily within 

each heterogeneous region (clumps and surround matrix).  The electrokinetic coupling 

coefficients (kij) for GAG were calculated.  Then the Maxwell equation for heterogeneity 

was applied to each coupling coefficient, giving values of kij for a system with spherical 

clumps.  These values of kij for the heterogeneous material were then combined into an 

open circuit permeability.  Finally the weighted-inverse mixing rule was used to combine 

the GAG open circuit permeability with the heterogeneous agarose permeability. 
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Figure 3.30  Clumped coupling coefficients model: Alternate composite model for the hydraulic 
permeability of an agarose-GAG membrane.  This alternate model considers that the condition of no 
current in the open-circuit permeability is valid only over the composite membrane, not necessarily over 
each heterogeneous region. 
 

The permeability predicted by these three model variations are compared to the 

baseline model.  In Figure 3.31, the baseline model is compared to the preferential GAG 

binding and heterogeneous coupling coefficient models for 3 v% agarose with 0.39 v% 

GAG.  It is clear from the figure that preferential GAG binding in only the low-fiber 

density region results in a Darcy permeability that is an order of magnitude lower than 

when GAG binds in proportion to agarose.  However, the choice of combining the 

electrokinetic coupling coefficients before or after accounting for the fiber heterogeneity 

has virtually no affect on the predicted permeability. 

In Figure 3.32, the baseline model is compared to the two-fiber model for 3 v% 

agarose with 0.29 v% GAG (a different GAG volume fraction was necessary since the 

two-fiber model requires a one-to-one ratio of the number of fibers).  The use of the 

two-fiber model from Figure 3.14 to predict the agarose-GAG permeability differs by 

25-35% from the reference model, even at neutral conditions.  This deviation is 

unsurprising, as similar deviations due to the fiber mixing rule were also present in the 

homogeneous two-fiber model in Figure 3.18. 
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Figure 3.31  Darcy permeability (κ) of variations to the composite agarose-GAG model: preferential GAG 
binding, heterogeneous coupling coefficient, and baseline reference models.  The composite gel is 3v% 
agarose (rf,a = 1.6 nm and ε2=0.1) and 129 mg/g GAG (φGAG = 0.0039, rf,GAG = 0.5 nm, and 
σs,GAG = -100 mC/m2).  The heterogeneous coupling coefficient model is nearly identical to the reference 
composite model. 

 

The differences between these model variations indicate that baseline model should 

be relatively reliable, even with the assumptions about internal electrokinetic coupling 

and the use of fiber mixing rules.  The large difference in permeability between the 

baseline and preferential GAG binding models provide an explanation if the experimental 

hydraulic permeability is lower than the model predictions. 
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Figure 3.32  Darcy permeability (κ) of variations to the composite agarose-GAG model: two-fiber and 
baseline reference models.  The composite gel is 3v% agarose (rf,a = 1.6 nm and ε2=0.1) and φGAG = 0.0029 
(rf,GAG = 0.5 nm and σs,GAG = -100 mC/m2).   

 

 

Model Application to Agarose-Dextran 

The composite model in Figure 3.25 can also be applied, with slight modification, to 

the agarose-dextran gels previously characterized in our lab (Kosto and Deen 2005, 

White and Deen 2002).  Since dextran is a randomly-oriented neutral fiber, it can be 

modeled with equation (3.24) instead of the charged fiber models with orientation-

averaging.  Using a dextran radius of rf,dex = 0.33 nm, the composite model was applied to 

4 v% and 8 v% agarose gels with variable dextran contents (Figure 3.33) (Kosto et al. 

2004).  Since the 500 kDa dextran equilibrates within the gel and is then irradiated to 

create cross-linkages with the agarose fibers, it is unclear if the dextran is spatially 

distributed in proportion to the agarose (Figure 3.33a) or if it is spatially homogeneous 

(Figure 3.33b).  Note that the volume fractions of dextran reported in White and Deen 

have been reinterpreted with the improved values of dextran immobilization efficiency 

reported by Kosto and Deen.  However, the reinterpreted data uses the dextran partition 



CHAPTER 3. Hydraulic Permeability 
 
 

 
  

  150  

coefficients reported by White, which deviate from the values reported by Kosto, leading 

to additional uncertainty in the experimental abscissa values  (Kosto and Deen 2005, 

White and Deen 2002). 

As can be seen in the figure, the composite model captures the decrease in hydraulic 

permeability with increasing dextran volume fraction.  The heterogeneous model also 

more accurately captures the magnitude of the hydraulic permeability, which is an order 

of magnitude larger than predicted by homogeneous fiber permeability models.  The 

assumption of proportional or homogeneous dextran has relatively little impact on the 

predictions at higher agarose content, though the homogeneous model appears to have a 

better fit for 4 v% agarose.  Again, it should be noted that there is some uncertainty in the 

abscissa value, and that the size of dextran and method of binding is very different than 

that used for synthesizing agarose-GAG gels. 
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Figure 3.33  Darcy permeability (κ) of a composite agarose-dextran fiber system for (a) heterogeneous 

dextran and (b) homogeneous dextran (500 kDa).  The gels are 4 v% agarose ( ,  ) and 8 v% agarose 
( , ); open symbols are data from Kosto and Deen (Kosto and Deen 2005), closed symbols are data from 
White and Deen with corrected values of φdex based on the binding efficiency from Kosto (White and Deen 
2002).    The composite model predictions are indicated by the corresponding lines for each content; solid 
lines are fit to the agarose data from White and Deen  (—) and dashed lines are fit to the agarose data of 
Kosto and Deen (- - -).  The model parameters are rf,a = 1.6 nm, rf,dex = 0.33 nm and ε2=0.1. 

 

 

 

(a)       (b) 
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Composite Model Using Donnan Equilibrium 

The composite model for agarose-GAG described previously can be adapted to use 

the Donnan equilibrium model instead of structural models to account for the charge of 

GAG fibers.  One approach is to assume the charge is distributed in proportion to the 

GAG and apply the Donnan model to each region of fiber density.  Since the “clumps” 

are impermeable relative to the surrounding matrix (k2/k1~0.001), this is equivalent to 

applying the charge density in the matrix to the entire membrane.  Alternately, one could 

assume that the macroscopic average charge density, based on the total GAG charge per 

total membrane volume, should be used in the Donnan model.  Both of these results are 

shown in Figure 3.34.  Equation (3.24) was used for both agarose and GAG fibers, with 

weighted inverse averaging and the spherical clump model used to create the neutral 

composite permeability.  The assumption of -1.3 meq/L (matrix charge density) versus 

-16.6 meq/L (macroscopic charge density) is seen to have a strong effect on the 

permeability at low ionic strengths.  The use of the Donnan model instead of the diffuse 

double layer may improve the model predictions if the effect of charge on permeability 

occurs on a length scale much larger than the fiber spacing (i.e. – if the charge in the 

dense “clumps” affects the electrical potential field or ion flux in the surrounding matrix). 

 

The following section will describe the approach for experimentally measuring the 

hydraulic permeability of agarose-GAG gels, then compare the experimental results to 

the predictions of the composite model. 
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Figure 3.34  Darcy permeability (κ) of the composite agarose-GAG model using Donnan equilibrium.  The 
composite gel is 3v% agarose (rf,a = 1.6 nm and ε2=0.1) and φGAG = 0.0039 (rf,GAG = 0.5 nm).  The charge 
density in the matrix uses a fixed charge density of -16.6 meq/L and the macroscopic charge density uses 
-1.3 meq/L. 

 

3.3. Experimental 

The method for experimental determination of the hydraulic permeability of a gel 

membrane is described in the following sections, along with new information about the 

support mesh correction factor.  Results on the pressure dependence of permeability 

measurements, osmotic swelling of the gels and wash-out of the bound GAG are 

presented.  Finally, hydraulic permeability measurements for several GAG contents and 

solution ionic strengths are compared to the predictions of the previously developed 

composite model. 

3.3.1. Method 

The Darcy permeability of each mesh-reinforced gel was measured as described 

previously (Johnson and Deen 1996b, Johnston and Deen 1999, White and Deen 2002).  

The gel membrane was placed in a 10 mL ultrafiltration cell (Model 8010, Millipore, 
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Bedford, MA).  The cell reservoir was filled with a KCl-phosphate buffer solution at pH 

7.4.  The buffer was 0.01 M sodium phosphate with a balance of potassium chloride to 

create solutions with an ionic strength of 0.1 M to 1 M.  For solutions with an ionic 

strength below 0.1 M, the buffer was 0.005 M sodium phosphate with the balance as 

potassium chloride.  All buffers contained approximately 0.001 w/v% (0.00015 M) 

sodium azide to inhibit microbial growth.  All gels used type VI agarose (Product 

#A3893, Sigma, St. Louis, MO) and chondroitin sulfate A from bovine trachea (Product 

# 230687, Calbiochem, La Jolla, CA). 

The ultrafiltration cell was pressurized with nitrogen to achieve a transmembrane 

pressure drop of approximately 10 kPa.  The pressure drop was monitored using a 

pressure transducer (Model CP379, Validyne Engineering, Northridge, CA), and 

corrections were made to account for hydrostatic pressure.  Samples of the filtrate were 

collected over timed intervals and weighed to determine the steady-state volumetric flow 

rate (Q).  The cross-sectional exposed area of the membrane (Am) was determined to be 

366 mm2 by measuring the fritted diameter of the ultrafiltration cell membrane support.  

This was further confirmed by measuring the area of a stained gel after filtration of a 

toluidine dye solution.  The thickness of the gel (δ) was determined by confining the 

membrane between two microscope slides of known thickness and measuring the 

combined thickness with a micrometer (Model 293-766-30, Mitutoyo, Aurora, IL).  Gel 

thicknesses were generally in the range of 70-75 μm.  The Darcy permeability was then 

calculated by: 

 
m m

Q
P A

δκ μ
β

=
Δ

 (3.73) 

where ΔP is the pressure drop across the membrane and βm is a correction factor that 

accounts for the increased flow resistance due to the polyester mesh support within the 

gel.  The βm mesh correction factor will be discussed further in the following section. 

3.3.2. Applied Pressure Corrections 

As noted in the Methods (Section 3.3.1), the pressure drop measured by the pressure 

transducer was adjusted to determine the transmembrane pressure drop.  Within the 

ultrafiltration cell, the applied pressure is increased by the hydrostatic head of the 



CHAPTER 3. Hydraulic Permeability 
 
 

 
  

  154  

solution above the membrane.  The pressure then drops to atmospheric pressure across 

the membrane and the outlet tube (Figure 3.35). 

 

 
 

Figure 3.35  Schematic of pressure changes in the ultra-filtration apparatus.  The hydrostatic head increase, 
the transmembrane pressure drop, and the outlet tube pressure drop sum to the applied pressure measured 
by the upstream pressure transducer. 

 

The contributions of each pressure change for the hydraulic permeability 

measurements of a blank agarose membrane at 10 kPa are summarized in Table 3.5.  A 

typical hydrostatic head in the ultra-filtration cell is 25 mm.  This results in a 2.5% 

increase to the applied pressure, which is why it is important to adjust for the effect in 

determining the transmembrane pressure.  Since the liquid height decreases by 

approximately 10 mm during a permeability measurement, the hydrostatic pressure is 

based on the average of the initial and final solution heights during the steady state 

measurements.  The transmembrane pressure drop is found by inverting Equation (3.73).  

A blank agarose gel has an average permeability of 453 nm2 and is typically 70 µm thick.  

With a 10 kPa applied pressure, a typical flow rate is approximately 0.5 mL/minute.  The 

resulting transmembrane pressure drop account for nearly all of the upstream applied 

pressure.  Poiseuille’s solution for pipe flow is used to estimate the pressure drop across 

the outlet tube: 

Δpmembrane 

Δphydrostatic 
Δptube 
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 4
8 tube

tube
tube

Qzp
R

μ
π

Δ =  (3.74) 

where ztube and Rtube are the length and inner radius of the outlet tube.  The tube is nearly 

horizontal, so there is no need to adjust for hydrostatic pressure changes across the tube.  

In the current ultra-filtration cells, the tubes are 10 cm long with a 1.2 mm inner radius.  

The resulting pressure drop across the tube is negligible (0.01%) and does not need to be 

accounted for when determining the transmembrane pressure drop.  The maximum 

pressure drop across the droplet due to surface tension (assuming a hemispherical 

droplet) is: 

 2
droplet

tube

p
R

γ
Δ =  (3.75) 

where the surface tension, γ, between air and water at room temperature is 

72.75 dynes/cm.  However, this is the maximum pressure when the drop is nearly fully 

formed, and actual pressure from surface tension periodically fluctuates from zero (no 

droplet) to this maximum (fully formed droplet). 

 
Table 3.5  Characteristic pressure changes across the ultra-filtration apparatus for the hydraulic 
permeability measurement of a blank agarose membrane. 

Δpapplied Δphydrostatic Δptransmembrane Δptube Δpdroplet 
10 kPa 0.25 kPa 10.24 kPa 0.001 kPa 0.12 kPa 

 

3.3.3. Mesh Correction Factor, βm 

Using a correlation developed by Johnson and Deen, the mesh correction factor (βm) 

can be calculated if the dimensions of the fiber mesh are known (Johnson and Deen 

1996b).  These dimensions include the fiber radius (Rm), the center-to-center fiber 

spacing (W), the total gel thickness (δ) and the gel thickness upstream of the mesh (δ1).  

The mesh correction factor is a function of three dimensionless parameters: the ratio of 

open area to total area (αm), the ratio of membrane thickness to fiber radius (λm), and the 

fraction of gel upstream of the fiber (γm): 
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 (3.76) 

 
Johnson found that the effect of γm on the correction factor is negligible and that the 

correction factor is primarily a function of αm and λm.  So although the real meshes consist 

of three-dimensional woven fibers, the mesh correction factor was calculated with the 

fibers aligned in a single plane in the center of the gel.   

    

           

 
Figure 3.36  Model geometry and dimensions used for calculating the mesh correction factor 
 

 

Prior researchers have calculated βm from the mesh dimensions given by the mesh 

manufacturer and a plot of Johnson’s model results.  However, inspection under a 

microscope showed that the true mesh dimensions were significantly different from those 

claimed by the company.  The following sections will report the true dimensions of the 

meshes, then determine the beta correction factor for the corrected geometry using a 

finite element model.   
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Microscopy and Mesh Dimensions 

To determine the true dimensions of the fiber meshes, two meshes were randomly 

selected from each of four lots of Spectra/Mesh® 43 µm Polyester Filters (Part No. 148-

248, Spectrum Laboratories, Rancho Dominguez, CA).  Each mesh was digitally 

photographed under a compound optical microscope at 10x magnification with a 0.001” 

scale bar slide underneath (Figure 3.37).  The dimensions of the mesh were determined 

by comparing pixel length of a mesh dimension to the pixel length of the scale bar.  To 

confirm there was no image compression, an equal number of measurements were taken 

perpendicular to each other.  

   

 
Figure 3.37  Sample microscope image of a mesh with measured dimensions.  The fiber diameters 

corresponds to 2Rm and the mesh openings correspond to W-2Rm.  Scale bars in the background are spaced 
at 0.001” (25 µm).   

 

Spectrum Laboratories reported the mesh properties as 43 μm mesh openings, 29% 

open area, 70 μm thickness and 25 mm mesh diameter.  Assuming the thickness of the 

mesh consists of two woven fibers, the fiber diameter equals half of the mesh thickness, 

or 35 μm.  This diameter is consistent with the claim of 29% open area.  Microscope 

images of the meshes agree with the manufacturer’s claim of a mesh opening of 43 μm; 

however the fiber diameter of 45 µm is significantly larger than the 35 µm supported by 

2Rm 

W-2Rm 

0.005” 

W-2Rm 
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the mesh thickness or % open area (Table 3.6).  Without three-dimensional imaging, it is 

difficult to reconcile the 70 µm mesh thickness with a 45 µm fiber diameter.  It is 

possible that the mesh fibers are compressed during weaving, giving them an elliptical 

profile. 

 
Table 3.6  Mesh dimensions compared to manufacturer’s claimed dimensions.  Standard deviation 

based on n=8-12 measurements from two meshes within each lot. 
 Measured     Manufacturer’s

 Lot # 
3213522 

Lot # 
3214715

Lot # 
3215683

Lot # 
3218305

Average Claimed 

Fiber Diameter 
     (2Rm) 

45.7 μm 
± 2.6 μm 

43.3 μm 
± 2.5 μm 

44.1 μm 
± 2.1 μm 

46.8 μm 
± 2.1 μm 

45 μm 35 μm 

Mesh Opening 
     (W-2Rm) 

42.0 μm 
± 1.9 μm 

44.5 μm 
± 1.7 μm 

43.6 μm 
± 1.7 μm 

41.7 μm 
± 2.1 μm 

43 μm 43 μm 

% Open Area 23% 26% 25% 22% 24% 29% 
 

Finite Element Modeling 

The mesh correction factor using the revised dimensions in Table 3.6 was determined 

by a three-dimensional finite-element simulation in COMSOL Multiphysics®.  For a 

series of solid mesh fibers with a homogeneous gel filling the interstices, the flow 

through the gel is described by Darcy’s law.  Combining Darcy’s law (Equation (3.1)) 

with the continuity equation, the governing equation for flow around the fibers is:  

 2 0p∇ =  (3.77) 

The system was modeled by the unit cell indicated in Figure 3.36.  The boundary 

conditions include symmetry on the four unit cell sides and no-penetration on the fiber 

surface: 

 0n p⋅∇ =  (3.78) 

as well as a unit applied pressure at the top surface and no pressure on the bottom surface 

(Δp = -1).  The mesh correction factor is evaluated as the average local pressure gradient 

over the bottom mesh surface relative to the applied pressure gradient: 

 m

dp dxdy
dz

p dxdy
β

δ

=
Δ
∫ ∫

∫ ∫
 (3.79) 
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The geometry of the mesh was the same as used by Johnson and Deen, with a grid of 

cylindrical fibers aligned on a single place and centered at half the gel thickness.  For 

comparison, two other geometries were considered to more accurately reflect the woven 

nature of the mesh (Figure 3.38).  These include cylindrical fibers which are arranged on 

two planes and fibers which are angled.  While all arrangements preserve the fiber 

dimensions and fractional open area, the fibers occupy a larger volume in the second two 

models. 

 

                  

 
Figure 3.38  Three models of fiber alignment for a woven mesh: (a) single-plane mesh, (b) double-plane 
mesh and (c) angled mesh. 

 

 

First, simulations of the single-plane mesh were run to validate the current model 

against Johnson and Deen’s and Johnston’s results (Johnson and Deen 1996b, Johnston 

1999).  For a mesh with λm = 3.75 and γm = 0.5, the models were in agreement within 

0.5% over the range of αm = 0.1-0.7.  The models were in equally good agreement for 

αm = 0.4 and λm = 2.5-7.5. 

After validation of the model, βm was calculated for the revised mesh dimensions, 

comparing the effect of fiber orientation on the results.  As illustrated in Table 3.7, the 

mesh correction factor decreases with increasing gel thickness.  The correction factors 

from the double-planed mesh are 20-25% higher than the ones from the single-plane 

mesh model.  However, the woven mesh model has a correction factor 3% lower than the 

single-plane mesh model.  These differences may be influenced by the larger excluded 

volume of the double-plane and angled meshes relative to the single-plane mesh (21% 

(b) (c) (a) 
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and 35% larger, respectively).  However, due to the similarity of the single-plane and 

angled mesh results, excluded volume is not the primary factor that caused the correction 

factors to differ. 

   
Table 3.7  Mesh correction factor (βm) for three models of fiber alignment and three gel thicknesses.  Mesh 
used revised dimensions of W = 88 µm and Rm = 22.5 µm (αm = 0.24, γm = 0.5 and λm = 3-6).  

 Single-Plane Double-Plane Angled 

δ = 70 µm 0.363 - * - * 

δ = 90 µm 0.416 0.521 0.403 

δ = 130 µm 0.505 0.580 0.488 

 * - βm could not be calculated due to the apparent diameter of fibers exceeding the gel thickness 

 

Based on the measurements of the meshes, the corrections factors for the support 

meshes are based on fibers with a 45 µm diameter and 43 µm opening.  This results in an 

excluded volume of 17.7 µL per mesh based on the double-plane fiber arrangment.  

Using the single-plane mesh geometry which was used by previous researchers, the mesh 

correction factor is taken as βm = 0.3627 for a 70 µm-thick gel; the correction factors for 

other gel thicknesses are included in Table 3.8.  The results from the single-plane mesh 

model are in good agreement with the angled fibers, without being limited by the 

apparent discrepancy between fiber diameter and mesh thickness.  The correction factor 

for the single-plane mesh with W = 88 µm, Rm = 22.5 µm, and γm = 0.5 is fit by the 

polynomial: 

 6 27 10 0.0038 0.1298, where [ ]m nmβ δ δ δ−= − × + + . (3.80) 
 

 
Table 3.8  Mesh correction factor (βm) for multiple gel thicknesses.  Mesh used revised dimensions of 
W = 88 µm and Rm = 22.5 µm (αm = 0.24, γm = 0.5 and λm = 3-6) and the single-plane fiber geometry. 

δ [µm] 65 70 75 80 85 90 95 100 

βm [-] 0.349 0.363 0.376 0.390 0.403 0.416 0.428 0.441 

δ [µm] 105 110 115 120 125 130 140 150 

βm [-] 0.452 0.464 0.475 0.485 0.495 0.505 0.523 0.541 
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3.3.4. Results 

The following sections evaluate the suitability of agarose-GAG gels for hydraulic 

permeability measurements.  This includes the pressure-dependence of the permeability 

measurements, potential wash-out of GAG after extended filtration, selection of a 

GAG-free control gel for comparison to agarose-GAG gels and potential osmotic 

swelling or hysteresis at different solution ionic strengths.  The section concludes by 

comparing the hydraulic permeability of the agarose-GAG gels to the composite model 

developed in Section 3.2.4 for several GAG contents and over a range of ionic strengths. 

 

Pressure Dependence 

Several previous studies in our laboratory have investigated the dependence of 

agarose hydraulic permeability on pressure.  Johnson and Deen reported a decrease in κ 

of approximately of  2%/kPa  for 1.9-7.2 v% agarose gels with 3-20 kPa applied pressure, 

where the decrease is defined as the slope divided by the 0 kPa intercept (Johnson and 

Deen 1996b).  Johnston repeated similar experiments on 4-8 v% agarose gels and found 

less of a dependence of κ on the applied pressure (0.5-1.4%/kPa) (Johnston 1999).  

However, White and Deen reported no clear pressure dependence of agarose-dextran gels 

over the range 6.7-20 kPa (White and Deen 2002).  This result was confirmed by Kosto 

and Deen over a wider range of conditions (4-8 v% agarose, 0-1 v% dextran, 

1-31 kPa) (Kosto and Deen 2005). 

Due to the discrepancies in these reports, the pressure dependence of the hydraulic 

permeability of agarose and agarose-GAG gels was measured. First, the Darcy 

permeability of 4 v% agarose gels was measured over the range 1.5-20 kPa (Figure 3.39).  

Measurements were performed with 0.1 M buffer and pressures were tested in a random 

order.  Similar to the results of Johnston, there was an average decrease in permeability 

of 1.3%/kPa.  However, most of this pressure decrease occurred at very low applied 

pressures, such that the average decrease above 5 kPa was negligible (<0.6%/kPa). 

The Darcy permeability of agarose-GAG gels was also measured at 1.5-20 kPa in a 

random order, shown in Figure 3.40.  The composite gels showed a similar pressure 

dependence as the agarose gels, with an average pressure dependence of 1.0-1.2%/kPa 

but little change at higher pressures.   
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Figure 3.39  Transmembrane pressure-dependence of the Darcy permeability of 4 v% agarose gels.  Error 
bars are the standard deviation for n=9 gels (except n=7 at 1.5 kPa and n=6 at 20 kPa). 
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Figure 3.40  Transmembrane pressure-dependence of the Darcy permeability of agarose-GAG gels.  Gels 
are 3 v% agarose and 129 mg GAG/g agarose (0.37 v% GAG).  Measurements were performed with 
phosphate buffered saline solutions of 0.011 M ( ), 0.1 M ( ) and 1 M ( ) ionic strength.  Error bars are 
the standard deviation for n=4 gels. 
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The agarose gels showed a pressure dependence similar to prior results, and the 

covalent binding of the GAG does not appear to modify this dependence.  The change in 

hydraulic permeability with pressure is relatively small, with a majority of the change 

occurring at pressures below 5 kPa.  This suggests that the fibers within the gel are not 

being compressed into a higher fiber density at elevated pressures.  To achieve a 

moderate flow rate and work at pressures with constant properties, future hydraulic 

permeabilities are measured at approximately 10 kPa, unless otherwise noted. 

 

GAG Wash-Out 

The GAG assay on most agarose-GAG gel membranes is performed shortly after 

GAG attachment.  To confirm that the assay is measuring the amount of covalently 

bound GAG and not residual un-bonded GAG, the GAG content and Darcy permeability 

of agarose-GAG gels was measured over 11 hours of filtration of 0.1 M buffer.  The 

properties reported in Table 3.9 represent measurements from a single pair of gel 

membranes (with the exception of the initial GAG content assay, which was measured for 

three other gels from the same batch).  As can be seen, the GAG content is virtually 

unchanged during extended filtration.  The change in Darcy permeability is also minimal 

relative to the error in the measurements.  It can be concluded that the wash procedure at 

the end of the membrane synthesis is adequate for removing unbound GAG molecules, 

and that there is no further wash-out of GAG during permeability measurements. 

 
Table 3.9  Darcy permeability and GAG content of agarose-GAG gels during extended filtration (n=2, 

except n=3 for 0 hr GAG content ) 
Filtration Time 

[hr] 
κ 

[nm2] 
GAG Content 

[mg GAG/g agarose] 
0 253 ± 49 72.6 ± 6.3 

1 249 ± 47  

4.5 235 ± 40  

8 238 ± 42  

11 240 ± 44 70.0 ± 8.3 
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Blank Agarose Gels 

To study the effects of the charged GAG molecules on the membrane properties, gels 

were produced with variable GAG content.  As a control, the properties of these gels are 

compared to agarose gels with no bound GAG.  However, the question arises if the 

appropriate blank gel is unreacted agarose, agarose which has been exposed to the 

activation reagents or agarose which as been activated and bonded with small, neutral 

molecules instead of GAG.  It has been reported that activated cyanate esters can form 

imidocarbonate cross-links between fibers (Kohn and Wilchek 1984).  It is generally 

known that a change in solvents can affect the physical cross-linking between the agarose 

chains.  For these reasons, the permeability of the three potential blanks was compared to 

determine which is most appropriate as the blank control sample. 

The Darcy permeability of 3 v% agarose gels was measured for four batches prior to 

the activation reaction.  After activation, three of the batches were placed in 0.1 M 

NaHCO3 solutions with no GAG.  The fourth batch was placed in 0.1M NaHCO3 and 

10-4 M ethanolamine (the molar equivalent to 5 g/L GAG).  The samples were otherwise 

treated identically to gels placed in GAG attachment solutions.  Following the attachment 

procedure, the permeability of the gels was measured. 

The Darcy permeability of the blank gels before and after reaction are shown in 

Figure 3.41.  The hydraulic permeability of the agarose gels increased by an average of 

25% after exposure to the activation reactions.  This confirms that either imidocarbonate 

cross-linking or solvent exposure does change the properties of agarose gels during 

activation.  However, there is no significant difference between gels exposed to 

ethanolamine during the attachment step.  This suggests that the binding of GAG, 

ethanolamine or other molecule should not significantly change the gel properties after 

activation.  Therefore, the activated blank gels exposed to only NaHCO3 solutions appear 

to be an appropriate control for GAG-agarose gels. 
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Figure 3.41  Darcy permeability of blank 3 v% agarose gels before and after exposure to activation 
reagents.  Blank gels (Batches A , B  and C ) refer to activated agarose exposed to carbonate 
solution; EtOH gels ( ) were exposed to ethanolamine instead of GAG during attachment. 

 

Ionic Strength Hysteresis and Osmotic Swelling 

While the gel structure is primarily determined by the physical cross-linking of the 

neutral agarose fibers, it is possible that electrostatic interactions between the charged 

GAG fibers may change the gel properties.  These interactions are screened at high ionic 

strengths and strongest at low ionic strengths.  To study the potential effects of the fiber 

charge interactions, the agarose-GAG membranes were tested for osmotic swelling and 

hysteresis of permeability measurements. 

To investigate osmotic swelling, two groups of 3 v% agarose gels with high GAG 

content (129 mg GAG/g agarose) were equilibrated overnight in approximately 20-25 mL 

of buffer.  Each group was placed in different ionic strengths in a random order.  The gel 

thicknesses were measured as previously described, with two glass slides and a 

micrometer.  As seen in Table 3.10, there was no change in the thickness of 

agarose-GAG gels with ionic strengths in the range of interest. 
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Table 3.10  Agarose-GAG gel thickness over a range of ionic strengths.  Gels are 3 v% agarose and 
129 mg GAG/g agarose.  Standard deviations are based on n=5 (Group 1) and n=4 (Group 2). 

 
  Ionic Strength  
 0.011 M 0.1 M 1.0 M 

Group 1    
     Trial A 72.6 ± 1.7 72.0 ± 1.2 73.2 ± 2.9 

     Trial B 71.2 ± 1.3 72.4 ± 1.3 71.2 ± 1.1 

Group 2    
     Trial A 71.5 ± 4.8 73.0 ± 1.2 72.8 ± 1.3 

     Trial B 72.0 ± 0.8 71.0 ± 1.4 71.8 ± 1.0 

 

To determine if the hydraulic permeability of the gels is dependent on the previous 

ionic strength exposure, the permeabilities of two high-GAG gels were measured for a 

random sequence of ionic strengths.  The gels were equilibrated in two 10 mL baths of 

buffer for 5 minutes each between ionic strengths, in addition to approximately 2 minutes 

(approximately 2 mL) of buffer filtered before the steady-state permeability 

measurements.  As seen from the hysteresis paths in Figure 3.42, there is no apparent 

hysteresis between permeability measurements based on the previous ionic strength.  The 

variation between permeability measurements is comparable for all ionic strengths. 
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Figure 3.42  Hysteresis of Darcy permeability with ionic strength.  Gels are 3 v% agarose and 

129 mg GAG/g agarose. 
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It is concluded that the effect of solution ionic strength on the charged GAG-agarose 

gels does not result changes in the gel structure that affect the Darcy permeability through 

either changes in gel thickness or measurement hysteresis. 

 

Experimental Permeability for GAG Content and Ionic Strength 

After completing the experiments in the previous sections to verify suitable 

conditions for measuring the Darcy permeability of agarose-GAG gels, the permeability 

was measured for a range of ionic strengths and GAG contents.  Six 3 v% agarose gels 

with no GAG, medium GAG and high GAG were tested.  To eliminate the possibility 

that differences in the permeability are caused by variations in the agarose instead of the 

bound GAG, the agarose gels were pre-selected to have comparable distributions of 

permeabilities (Table 3.11).  As seen in Figure 3.41, the permeability of a gel after 

reaction is proportional to its pre-reaction permeability.  The permeabilities at different 

ionic strengths were performed in a random order for each gel. 

 
Table 3.11  Darcy permeability of unreacted 3 v% agarose gels.  Three subsets of the agarose gels 

were activated to created gels with high GAG (Group 1), medium GAG (Group 2) and blanks (Group 3). 
 All Gels Group 1 Group 2 Group 3 

Mean κ  [nm2] 
± std. dev. 

376 
± 53 

382 
± 39 

382 
± 59 

376 
± 41 

# gels 51 6 6 6 

 

To generate gels with differing GAG contents, the GAG attachment process was 

modified.  For the high GAG gels, the activated gels were placed in a 0.05N acid bath 

with ice, then washed in three ice baths for 5 minutes each before being placed in the 4°C 

1 g/L GAG attachment solution.  For the medium GAG gels, the activated gels were 

placed in a refrigerated (0-4°C) acid bath, washed in three refrigerated water bathes for 

15 minutes each, then placed in an ambient (~15°C) water bath for 20 minutes prior to 

being placed in the 4°C 1 g/L GAG attachment solution.  The blank gels were treated the 

same as the medium GAG gels, except they were placed directly in a refrigerated 

0.1M NaHCO3 solution after the three washes.  The result was agarose gels with 
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0 mg GAG/g agarose for no GAG, 54 ± 0.3 mg GAG/g agarose for medium GAG and 

129 ± 14 mg GAG/g agarose for high GAG. 

The Darcy permeability of these gels is reported in Figure 3.43 for solution ionic 

strengths of 0.011  1.0 M.  The presence of GAG fibers, even at the low concentrations of 

54 mg GAG/g agarose and 129 mg GAG/g agarose, decreased the permeability of the 

gels by over 29% and 41%, respectively.  Assuming a GAG radius of 0.5 nm, a GAG 

fiber length of 1 nm per dissacharride and a dissacharride weight of 474 Da for 

chondroitin sulfate with one sulfate substitution, the GAG has a volume fraction of 

φGAG=0.0017 for medium GAG (54 mg GAG/g agarose) and φGAG=0.0039 for high GAG 

(129 mg GAG/g agarose).  Assuming an agarose fiber radius of 1.6 nm, the ratio of GAG 

fiber length to agarose fiber length is 0.57:1 and 1.35:1 for medium and high GAG, 

respectively.  As noted by Clague and Phillips, slender body theory predicts that 

hydraulic permeability is primarily a function of the fiber length per unit volume (Clague 

and Phillips 1997).  It is therefore not surprising that a low volume fraction of GAG 

fibers produced a significant decrease in the permeability, since they have a comparable 

fiber length to agarose. 

Figure 3.43 also shows that the permeability of the blanks gels was independent of 

the ionic strength of the buffer solution passed through them, confirming that agarose has 

negligible net charge.  This agrees with the product information supplied by Sigma for 

agarose (Product # A3893, Sigma, St. Louis, MO), which reports a sulfate content of 

<0.20%.  However, both the medium GAG and high GAG gels had a decrease in 

permeability of 32% and 49%, respectively, over the range of 1.0 M to 0.01 M buffer 

solution.  This is due to the electrokinetic coupling in the open-circuit permeability of the 

highly-charged GAG fibers. 

The curves in Figure 3.43 are the predictions of the composite model for hydraulic 

permeability which was presented in Section 3.2.4 (Figure 3.25).  Both the decrease in 

permeability due to GAG fibers and the decrease in permeability at low ionic strength are 

well-captured by the model.  The model assumes a GAG fiber charge density (σs,GAG) of 

-100 mC/m2 and agarose heterogeneity parameter of ε2=0.1.  The decrease in 

permeability predicted by the addition of GAG fibers is in excellent agreement with the 

data.  However, the relative decrease in permeability due to diminished charge screening 
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at low ionic strengths is underestimated by the model.  This is possibly due to the 

assumptions in the fiber mixing models, which are coarse approximations to the 

interactions between multiple fiber types.  Such approximations may underestimate the 

electrokinetic coupling which occurs between the two fiber types, and would be more 

pronounced at low ionic screening.  As noted in Table 3.3, the weighted inverse 

averaging method often underpredicts the hydraulic permeability of charged systems with 

a root mean squared error of 20-30%. 
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Figure 3.43  Darcy permeability (κ) of agarose-GAG gels over a range of ionic strengths of phosphate 
buffered saline solution.  All gels are 3v% agarose and 0 mg GAG/g agarose ( ), 54 mg GAG/g agarose  
( ) or 129 mg GAG/g agarose ( ).  The composite model predictions are indicated by the lines for the 
corresponding GAG content: φGAG=0 (- · -), φGAG=0.0017 (- - -) and φGAG=0.0039 (—).  The model 
parameters are rf,a = 1.6 nm, rf,GAG = 0.5 nm, σs,GAG = -100 mC/m2, lf,GAG=105.5 nm/molecule, MW-
GAG=50 kDa and ε2=0.1.  Error bars are one standard deviation for n=6. 

 

Alternately, a more likely problem is the way in which charge is treated in the agarose 

“clumps”.  In the modular clump approach, a zero current conditions as necessarily 

imposed separately within each region (matrix and spheres).  In an actual heterogeneous 

material, zero overall current is all that is required under open-circuit conditions.  Thus, 

flow in the two regions may be coupled electrically in ways that could be captured only 
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by a more complex model, where the charge of GAG in the fiber “clumps” influences the 

electrical potential in the surrounding fiber matrix.  In a simplified version of such a 

model, the effect of charged inclusions within a neutral gel were shown to have long-

range effect on the electrokinetic coupling, even when Debye lengths were 1-2 orders of 

magnitude smaller than the charged inclusions (Hill 2006). 

If charge effects occur on a scale larger than a “clump”, then the Donnan equilibrium 

model may provide a more appropriate way to approximate the charge behavior.  The 

Donnan model predictions of hydraulic permeability for the high GAG gels are shown in 

Figure 3.44.  The two curves in the figure show the Donnan model using a neutral fiber 

permeability calculated from the neutral composite model (Equation (3.24) with inverse 

weighted averaging and spherical heterogeneities), as well as from the experimental 

permeability at high ionic strength.  While the diffuse double layer composite model 

underpredicted the permeability decrease at low ionic strengths, the Donnan model with 

a macroscopic charge density overpredicts the decrease. 
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Figure 3.44  Darcy permeability (κ) of agarose-GAG gels over a range of ionic strengths of phosphate 
buffered saline solution.  Experimental data is from gels with 3v% agarose and 129 mg GAG/g agarose 
( ).  The Donnan composite model predictions are indicated by the lines using the experimental neutral 
fiber permeability (- - -) and the model neutral permeability (—).  The model parameters are rf,a = 1.6 nm, 
rf,GAG = 0.5 nm, σs,GAG = -100 mC/m2, φGAG=0.0039, and ε2=0.1.  The Donnan model uses the macroscopic 
fixed charge density of cm=-16.6 meq/L.  Error bars are one standard deviation for n=6. 
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The choice of fixed charge density in the Donnan model is bounded by the 

macroscopic charge density (-16.6 meq/L) and the matrix charge density (varies with ε2; -

1.3 meq/L for ε2=0.1) (Figure 3.45).  If the GAG binding is not proportional to the 

agarose density (e.g. – there is preferential binding in regions of lower steric or 

electrostatic hindrance) or if the charge effects occur on length scales larger than the fiber 

spacing (i.e. – the electrical potential in the matrix is affected by the highly-charged 

clumps), then the effective fixed charge density in the Donnan model will fall between 

these two bounds.  As seen in Figure 3.45, the charge density that minimizes the relative 

root mean squared error is -8.7 meq/L, which is equivalent to a matrix GAG density of 

φ1,GAG=0.0021.  However, using this φ1,GAG in the Donnan composite model predicts a 

decrease of ~90% in the neutral permeability due to the addition of 129 mg 

GAG/g agarose to 3 v% agarose, which is much larger than the 40% reduction observed 

experimentally.  Therefore it appears that the charge effects occur over a large length 

scale, which is not captured by the heterogeneous clump model.   
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Figure 3.45  Darcy permeability (κ) of agarose-GAG gels over a range of ionic strengths of phosphate 
buffered saline solution.  Experimental data is from gels with 3v% agarose and 129 mg GAG/g agarose 
( ).  The Donnan composite model predictions using the experimental neutral fiber permeability are 
indicated by the lines using a fixed charge density based on the macroscopic GAG content (—), the GAG 
content in the Region 1 matrix (with ε2=0.1) (····) and  the best-fit to the experimental data (- - -).  Error 
bars are one standard deviation for n=6. 
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The Donnan composite model was also applied to Darcy permeability data collected 

from 4 v% agarose gel with 0 and 53 mg GAG/g agarose (φGAG  = 0, 0.0022) (Figure 

3.46).  The synthesis of these gels will be discussed further in later chapters.  The Donnan 

composite model used the neutral fiber permeability predicted by fiber models and a 

fixed charge density based on the macroscopic GAG content.  This is the same model 

used to generate the solid curve in Figure 3.44.  Fortuitously, the model more closely 

matches the experimental data for the 4 v% agarose gels in Figure 3.46 than the 3 v% 

gels in Figure 3.44.  The results were insensitive to the choice of the heterogeneity 

parameter, with the 0.2 v% GAG curve changing by less than 0.1% for ε2 = 0.1-0.5.   
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Figure 3.46  Darcy permeability (κ) of agarose-GAG gels with 4v% agarose over a range of ionic strengths 
of phosphate buffered saline solution.  The Donnan composite model predictions are indicated by the lines 
using the model neutral permeability and the macroscopic fixed charge density (cm = -9.0 meq/L).  The 
model parameters are rf,a = 1.6 nm, rf,GAG = 0.5 nm, σs,GAG = -100 mC/m2, φGAG=0.0022, and ε2=0.1.  
Experimental data is from gels with 0 mg GAG/g agarose ( )  or 53 mg GAG/g agarose (0.2 v% GAG) 
( ).  Error bars are one standard deviation for n=6. 
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Further research is required to determine the correct way to model the open-circuit 

hydraulic permeability through a membrane with heterogeneous charge distribution.  

However, until such a rigorous approach is developed, the Donnan equilibrium model 

and the neutral composite fiber model provide a rationalization of the effect of GAG 

fibers and solution ionic strength on the hydraulic permeability of agarose-GAG 

membranes. 

3.4. Conclusions 

The Darcy permeability of 3 v% agarose membranes was observed to decrease by 

almost half with the addition of 129 mg GAG/g agarose (0.4 v% GAG).  The Darcy 

permeability was further reduced by half when the ionic strength of the solution was 

reduced from 1 M to 0.01 M.  A number of additional characterizations of the membranes 

confirmed that these effects were not due to transient changes in permeability, order of 

ionic strengths, gel swelling, selection of blank gel type, pressure effects, or variation 

between gel prior to GAG attachment.  The value of the correction factor, βm, was 

improved with revised dimensions of the membrane support mesh and three-dimensional 

modeling of the woven fiber arrangement of the mesh. 

No single model was available in the literature to predict the hydraulic permeability 

of the agarose-GAG membranes.  A model was developed that captured the presence of 

two types of randomly-oriented fibers with different radii, the charge affect of the GAG 

fibers, and the heterogeneous density of the agarose fibers.  A number of charged fiber 

models and fiber mixing rules were evaluated.  Since the heterogeneity of the agarose 

fibers appears to result in heterogeneity of GAG charge, it was difficult to implement the 

no-net-current restriction of open-circuit permeability to the heterogeneous regions.  The 

Donnan model was able to rationalize the effect of solution ionic strength on the 

macroscopic permeability, while structural permeability models and fiber mixing rules 

predicted the decrease in permeability from the addition of GAG fibers. 
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Chapter 4. MACROMOLECULE PARTITIONING 

 

 

4.1. Introduction 

One of the properties which characterizes the permeation of a solute i through a 

hydrogel is the equilibrium partition coefficient, Φi.  It relates the concentration of the 

solute within the gel ( '
ic ) to the concentration in the surrounding bulk solution (ci) at 

equilibrium: 

 
'
i

i
i

c
c

Φ =  (4.1) 

where '
ic  is based on the total gel volume, including solids. 

Due to its relevance to gel chromatography, a number of studies have investigated 

how macromolecules partition into agarose gels.  Solutes have included Ficoll (a 

crosslinked surcrose), dextran, and proteins (ribonuclease, chymotrypsinogen A, 

ovalbumin, bovine serum albumin, aldolase, and thyroglobulin) (Laurent 1967, Lazzara 

and Deen 2004, Moussaoui et al. 1992, White and Deen 2000).  Several studies have 

considered charge interactions in partitioning, such as protein-protein interactions (Buck 

et al. 2001), protein-agarose (SepharoseTM) interactions (Crone 1974), protein- modified 
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agarose (SuperoseTM) interactions (Edwards and Dubin 1993), and protein-sulfated 

agarose interactions (Johnson et al. 1995).  Less studied is partitioning into composite 

gels with two or more types of fibers.  One study looked at the partitioning of mono-

disperse Ficolls into agarose-dextran gels (Kosto et al. 2004), which is of particular 

relevance to the current work because of the structural similarity between dextran and 

GAGs. 

The following sections present partition coefficients for BSA and monodisperse 

Ficolls into agarose-GAG gels.  Partition coefficients were measured over a range of 

ionic strengths to study the electrostatic interactions between solutes and fibers.  The 

partitioning of Ficolls with several hydrodynamic radii was also studied.  Relevant 

partitioning theories are summarized, combined into a composite model for agarose-GAG 

membranes, and compared to the experimental data. 

4.2. Theory 

The partitioning of macromolecules into gels typically models cross-linked polymers 

as randomly oriented rigid rods, similar to models for Darcy permeability.  Early 

theoretical work was done by Ogston, who derived an expression for the partitioning of a 

dilute solution of spheres into an array of randomly oriented rods: 

 
2

,exp 1 s i
i

f

r
r

Φ φ
⎡ ⎤⎛ ⎞
⎢ ⎥= − +⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (4.2) 

where φ is the volume fraction of fibers, rs,i is the radius of the solute i, and rf is the radius 

of the rod.  The fiber model for equilibrium partitioning was extended to concentrated 

solutions of spheres (Fanti and Glandt 1990), solutions of spheroids (Lazzara et al. 2000), 

mixtures of multiple types of fibers (Lazzara et al. 2000), and charged solutes or fibers 

(Johnson and Deen 1996a). 

Similar to the model for hydraulic permeability in Chapter 3, the agarose-GAG 

membranes can be viewed as a mixture of two fiber types with two regions of different 

fiber densities to account for the heterogeneity in agarose fiber distributions.  The 

following sections will discuss the relevant theories for a composite model for agarose-

GAG membranes. 
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4.2.1. Multi-Fiber Models 

An excluded-volume model was developed for partitioning in neutral systems with 

interactions between any number of spheroidal solutes and rigid rods (Lazzara et al. 

2000).  The model is applicable for both dilute and concentrated solutions.   The partition 

coefficient is calculated by summing the volumes excluded to a solute due to its finite 

size, the size of other solutes, and the presence of fixed fibers.  For a membrane with two 

fibers (types 1 and 2) and a spherical solute (i), the partition coefficient is given by 

 ( )
2 2

1 2
,1 ,2

exp 1 1 8 1s s
i i i

f f

r r
r r

Φ φ φ χ Φ
⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥= − + − + + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 (4.3) 

where χi is the volume fraction of solute i (for dilute solutions, this last term is negligible 

relative to the fiber excluded volume terms).   

It can be seen that the dilute form of Equation (4.3) (χi = 0) is simply the product of 

the partition coefficients for each fiber type.  This form is because the interactions of the 

solute with a fiber type j are assumed to be independent of the solute interactions with all 

other fiber types.  We hypothesized that this multiplicative form can be extended to 

mixtures of agarose and GAG fibers, where the exclusion effects of the GAG are 

independent of the exclusion effects of agarose:  

 , ,i i a i GAGΦ Φ Φ≈  . (4.4) 

In this form, only the partition coefficient in GAG (Φi,GAG) includes charge interactions 

between GAG and solute i; the partition coefficient in agarose (Φi,a) uses neutral fiber 

models. 

4.2.2. Charge Models 

Similar to the models for Darcy permeability, the charged fibers can either be 

accounted for by a microstructural model or a macroscopic Donnan equilibrium model. 

 

Donnan Equilibrium 

In the macroscopic model, the negative charge is assumed to be uniformly distributed 

throughout the membrane volume with a concentration cm (cm > 0, assuming negative 
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fixed charge).  The charge induces a jump in potential at the membrane surface, know as 

the Donnan potential (ψD): 

 
'

lnD mem bulk
b

RT c
F c

ψ ψ ψ +⎛ ⎞−
= − = ⎜ ⎟

⎝ ⎠
  . (4.5) 

Using a reference state of zero potential in the bulk solution, the Donnan potential with a 

symmetric, monovalent salt is evaluated as  

 
2

2ln 1
2 4

m m
D

b b

RT c c
F c c

ψ
⎛ ⎞− −

= + +⎜ ⎟⎜ ⎟
⎝ ⎠

 . (4.6) 

The Donnan potential will have the same sign as the fixed charge, with ψD < 0 for a 

negatively charged membrane. 

To find how a finite-sized solute partitions into the membrane, it is assumed that the 

steric and electrostatic effect are independent and can be superimposed (Bhattacharjee et 

al. 1999).  Solving the linearized Poisson-Boltzmann equation for a charged sphere in a 

uniform potential field (ψ∞), the potential at the sphere surface is  

 
( )1 /

s s

s D

r
r
σψ ψ

ε λ∞= +
+

 (4.7) 

where σs is the surface charge density of the solute and λD is the Debye length.  Using the 

approach in Johnson and Deen for evaluating the partition coefficient (Johnson and Deen 

1996a), the Boltzmann factor is independent of position and the expression becomes 

 ,0 exp
2

i
i i D

z F
RT

Φ Φ ψ⎛ ⎞= −⎜ ⎟
⎝ ⎠

 (4.8) 

where Φi,0 is the partition coefficient for the neutral system and zi is the valance charge of 

the solute. 

 

Microstructural 

Johnson and Deen developed a structural model for the partitioning of dilute solutes 

into a charged fiber membrane (Johnson and Deen 1996a).  The model uses the linearized 

Poisson-Boltzmann equation, which has minimal errors for potentials of <2-4 RT/F.  In 

the current system, the GAG surface charge at 0.01 M gives an electrostatic potential of 

5.5 RT/F, which makes applicability of the model borderline at the lowest ionic strength 

but reasonable for the majority of conditions (a minimum of 1.3 RT/F at 1 M). 
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In the microstructural model, the partition coefficient is evaluated by a steric function 

(g) weighted by a Boltzman factor, which is integrated over space:  

 ( )
0

exp ( ) ( ) di E h g h hΦ
∞

= −∫  (4.9) 

where h is the distance from the sphere surface to the fiber surface.  The steric and 

electrostatic functions are evaluated by 

 
2

2 2

2 ( ) ( )
( ) exps f s f

f f

h r r h r r
g h

r r
φ φ⎡ ⎤+ + − + +

= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (4.10) 

 
2

2 2
1 2 3( ) s

s f s f
RT rE h A A A
F kT

ε σ σ σ σ⎛ ⎞ ⎡ ⎤= + +⎜ ⎟ ⎣ ⎦⎝ ⎠
  . (4.11) 

The dimensionless surface charge densities for the solute ( sσ ) and fiber ( fσ ) are related 

to the dimensional surface charge density (σi) by  

 s
i i

r F
RT

σ σ
ε

=  (4.12) 

The parameters A1, A2, and A3 were found through numerical simulations and fit to the 

form 

 [ ]expi ib c
i i iA a dβ τ η−= −  (4.13) 

where β = rf/rs, τ = rs/λD, and η = h/λD.  The coefficients ai, bi, ci, and di are given in Table 

4.1. 

 
Table 4.1  Constants in the free energy correlation for the microstructural partitioning model 

i ai bi ci di 

1 2.3523 0.7599 1.2472 1.0956 

2 0.3570 0.5052 0.9512 3.7684 

3 0.4473 0.9310 1.1512 2.4987 

 

In model results in the following sections, the integration in Equation (4.9) was done 

numerically, with a step size small enough that the solution converged (generally ~1500 

steps was more than adequate) and infinity was approximated by the greater of 10 Debye 

lengths or 10 times rf
2/φ (such that exponential terms in both g(h) and Ai had negligible 

contribution to the integral). 
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4.2.3. Heterogeneity 

Unlike the Darcy permeability or other analogous transport properties (Bonnecaze 

and Brady 1991), the equilibrium partition coefficient in a heterogeneous material with 

multiple regions does not depend on the shape or distribution of those regions.  Instead, 

the effective partition coefficient of the entire material (Φi,eff) is simply found by adding 

the partition coefficient in each region j (Φi,j) weighted by the volume fraction of that 

region: 

 , ,i eff j i j
j

Φ ε Φ= ∑   . (4.14) 

The measured partition coefficients discussed in the following sections, denoted as Φ for 

simplicity, are equivalent to Φi,eff. 

4.3. Experimental Materials & Methods 

4.3.1. Membrane Modifications 

The hydraulic permeability experiments in Chapter 3 focused on 3 v% agarose gels of 

approximately 70 μm thickness.  However, for several reasons which are explained here 

and in the following chapter on solute sieving, it was beneficial to change the membranes 

to 4 v% agarose and 95 μm thickness.  The 3 v% gels provided minimal steric hindrance 

to the solutes of interest, like bovine serum albumin.  The thinness of the membranes 

corresponded to small gel volumes, which resulted in higher errors in partitioning 

measurements and lower solute concentrations that were difficult to measure with 

conventional assays. 

The agarose-GAG gels were prepared in the same way as described in Chapter 2.  

However, the glass plates had ~100 μm spacers (made from overhead transparency film) 

glued in the corners.  The result was gels with a mean thickness of 95 μm (80-115 μm).  

GAG was attached following the conditions for “high GAG” gels in Chapter 3, which 

resulted in gels with 53 ± 11 mg GAG/g agarose (φGAG = 0.0022). 

4.3.2. Test Solutes 

As stated previously, the objectives of this research were to determine the roles of 

solute size and charge on equilibrium partitioning into fibrous agarose-GAG membranes.  
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Following previous studies in our lab on solute size effects, narrow fractions Ficolls of 

several molecular weights were used (Johnson et al. 1996, Kosto et al. 2004).  Several 

options were considered for exploring the role of charge in proteins:  comparison of 

native proteins to charge-neutralized proteins, comparison of globular proteins to 

equivalently sized neutral Ficolls, and comparison of proteins at high and low ionic 

shielding. 

 

Ficolls 

Ficolls are neutral polymers of sucrose and epichlorohydrin that are highly branched 

and cross-linked, forming a nearly spherical structure.  Four narrow fractions of Ficoll 

were previously obtained (special order from Pharmacia LKB, Piscataway, NJ) and 

labeled with 5-(4,6-dichlorotriazinyl)aminofluorescein (DTAF) (Barskii et al. 1968, De 

Belder and Granath 1973).  The Ficolls contain ~1 fluorescein per molecule, which is 

insufficient to give the Ficoll a significant charge (Johnson et al. 1996). 

There are slight discrepancies between previous researchers on the value of the Stoke-

Einstin radius (rs) for each Ficoll fraction.  The radii have been determined from a 

correlation of Ficoll molecular weight and hydraulic radius generated by quasielastic 

light scattering (Oliver et al. 1992), as well as by two sets of free-solution diffusivities 

measured by fluorescence-recovery after photobleaching (FRAP) (Johnson et al. 1996, 

Kosto and Deen 2004).  The Ficoll properties are summarized in Table 4.2.  In the 

following work, we use the Stokes-Einstein radii reported by Kosto and Deen (Kosto and 

Deen 2004). 

 
Table 4.2  Properties of Ficolls.  Molecular weight and polydispersity (Mw/Mn) were reported by 

Pharmacia; Stokes-Einstein radii are from referenced sources. 
    rs [nm]  

Sample Mw 
[Da] 

Mw/Mn (Kosto and 
Deen 2004) 

(Johnson et 
al. 1996) 

(Oliver et al. 
1992) 

Ficoll 21K 21,290 1.22 2.7 3.03 2.97 

Ficoll 37K 37,360 1.18 3.5 3.80 3.77 

Ficoll 61K 60,710 1.15 4.5 4.82 4.64 

Ficoll 105K 105,210 1.13 5.9 6.23 5.87 

 



CHAPTER 4. Macromolecule Partitioning 
 
 

 
  

  182  

Proteins 

Many types of globular proteins are available for study.  Bovine serum albumin 

(BSA; 69 kDa) is the most biologically relevant for renal filtration due to its high 

concentrations in blood.  It is well characterized due to its prevalence in other biological 

studies, with a Stokes-Einstein radius of ~3.6 nm and native charge of -21 at 

physiological conditions (Johnson et al. 1995, 1996, Vilker et al. 1981). 

Several smaller, related proteins are also readily available, such as ovalbumin (45 

kDa, rs = 2.7~3.1 nm), lactalbumin (14 kDa; ~2.3 nm), and parvalbumin (12 kDa).  Other 

globular proteins (some of which are di/tri/tetra-meric) include chymotrypsinogen A 

(25 kDa; 2.2 nm), horseradish peroxidase (HRP; 40 kDa, 3.0 nm), hexokinase (54 kDa, 

3.6 nm), lactic dehydrogenase (140 kDa, ~4.3 nm), aldolase (158 kDa, 4.8 nm), catalase 

(250 kDa, 5.2 nm), immunoglobulin G (IgG; 150 kDa, 5.2~5.6 nm), physobiliproteins 

(104 & 240 kDa), and thyroglobulin (670 kDa, 8.5 nm).  However, many of the proteins 

considered did not have a well-characterized hydraulic radius or net charge, or the charge 

varied between different clonal forms.  It was preferred to work with an anionic protein, 

to avoid complex binding interactions between a cationic protein and the anionic GAG.  

Previous work by Dr. Kim Kosto in the Deen Lab found significant differences between 

the hydraulic radius of IgG from size-exclusion chromatography versus FRAP 

diffusivity, which raised concern over the experimental suitability of IgG.  Other proteins 

were not readily available in the quantities needed for the experiments described in the 

following sections.  Further, it was found that the agarose-GAG gels were not selective to 

proteins significantly smaller than BSA, such as ovalbumin.  Due to the these limitations, 

it was decided to only use BSA (Sigma #A2153; St. Louis, MO) in the following sieving 

studies. 

It is possible to neutralize the native charge on BSA if the buffer solution pH is at the 

protein’s isoelectric point; however, this would complicate the experiments by also 

affecting the charge of the GAG fibers.  It is also possible to neutralize BSA with a 

graded modification of the carboxyl groups to yield a zero net charge protein (Hoare and 

Koshland 1967).  However, personal communications with J. (Sörensson) Nystrom and 

B. Haraldsson noted that such charge-modified BSA needed to be used shortly after 

synthesis, since it tended to lose a significant fraction of the charge modification after 
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several weeks.  Another charge-modifying procedure exists for adding negative charge by 

succinylation of native (neutral) HRP (Sörensson et al. 1998), which they noted was 

charge-stable for at least a year.  However, the smaller size of HRP made it of less 

interest in the current study.  Due to the limitations of charge-modified proteins, they 

were not included in the following studies. 

As noted previously, the charge behavior of proteins can be compared to the behavior 

of similarly-sized neutral Ficolls.  While a number of studies have found similar transport 

properties for proteins and Ficolls in agarose under neutral conditions (Johnson et al. 

1996, Johnston and Deen 2002, Kosto and Deen 2004), differences have been observed in 

track-etched membranes and in vivo renal studies  (Venturoli and Rippe 2005).  It was 

hypothesized that Ficolls may have an open, slightly deformable structure that makes 

them deviate from results for hard spheres.  This theory was supported by permeability 

studies with Ficoll and well-defined pores, where Ficolls deviated from hard-sphere 

model predictions when the solute radius approached or exceeded the pore radius (Fissell 

et al. 2007). 

 

“Dilute” Solutions 

It was desired to perform all experiments in the dilute limit, where solute-solute 

interactions could be neglected in the solution. Using Equation (4.3) in the limit of no 

fibers, the partition coefficient for a BSA molecule in a 1 g/L solution relative to an 

infinitely dilute solution is 0.991, or a 0.9% difference from solute-solute interactions.  

However, the interaction between BSA molecules at low ionic strengths was of most 

concern, where charge interactions are strongest.  The strengths of any solute-solute 

interactions at low ionic strengths were estimated by virial expressions for BSA 

diffusivity and osmotic pressure as a function of concentration. 

The osmotic pressure for BSA at pH 7.4 was reported at ionic strengths of 0.01, 0.05, 

and 0.15 M over a range of BSA concentrations (DiLeo 1982).  The results were curve-fit 

to a virial form, where at 0.01 M the expression was 

 3 2 5 30.7662 5.93 10 1.89 10BSA BSA BSAc c cΠ − −= + × + ×  (4.15) 

where the osmotic pressure (Π) is in units of mmHg and the BSA concentration is in g/L.  
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A virial expansion was also reported for the diffusivity of BSA for ionic strengths of 

0.0005-0.1 M (Anderson et al. 1978).  The expression at 0.01 M was  

 0 1 0.0170 BSAD D c⎡ ⎤= +⎣ ⎦  (4.16) 

with the BSA concentration in g/L.  From these expression, the solute-solute interactions 

in a 1 g/L solution were 0.8% of the osmotic pressure dilute value and 2% of the 

diffusivity dilute value.  These second-order effect were small enough to consider all 

solutions ≤ 1 g/L as dilute over the range 0.01-0.5 M. 

4.3.3. Method 

The partition coefficient was measured similarly to the method described previously 

(Kosto et al. 2004), with slight modifications to the rinse procedure prior to equilibration 

in buffer.  If the membrane was being changed to a solution of a different ionic strength 

from the previous measurement, it was first equilibrated in several milliliters of buffer of 

the new ionic strengths for at least 2 minutes to rinse out excess salt.  Each membrane 

then was placed into a vial with approximately 10 mL of macromolecule solution of 

known concentration in the buffer of interest (1 g/L for proteins or 0.5 g/L for Ficolls).  

The large solution volume (relative to the gel volumes of ~0.03 mL) ensured that the 

solute concentration in the solution remained nearly constant.  The phosphate buffers 

(0.011-0.5 M, pH 7.4) were identical to those used for measuring the hydraulic 

permeability, whose compositions are summarized in Appendix B.  The membrane was 

allowed to equilibrate for 1 hour.  Using a BSA diffusivity in 3.9 v% agarose of 3x10-7 

cm2/s (Johnson et al. 1996), the equilibration time was many times longer than the 75 

second characteristic diffusion time for a 95 μm membrane. 

After the membrane equilibrated, it was removed from the solute solution, the excess 

solution was rinsed off, and the membrane was placed in a vial with a small volume of 

solute-free buffer (generally 1 mL for proteins or 2 mL for Ficolls).  The membrane was 

again allowed to equilibrate for 1 hour.  Unlike previous partitioning methods, it was 

found that due to the small volume of the gel relative to its surface area, agarose-GAG 

gels were particularly sensitive to the method used to remove excess solute solution prior 

to the second equilibration.  To fully wash the excess solute solution off the gel surface 

without allowing significant solute to diffuse out from the gel, each membrane was 
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placed between two coarse stainless steel meshes separated by ~6 mm spacers, such that 

the membrane could freely move in the volume between the meshes.  The mesh-

membrane assembly was then dipped in 400 mL of buffer.  The membrane was quickly 

removed from the mesh, shaken, and blotted lightly on its edge to remove excess buffer. 

 

~6 mm 

 
 

Figure 4.1  Diagram of mesh “basket” used for rinsing membrane between partitioning equilibrations. 
 

The concentrations of the solute in the initial solution (ci,1) and the buffer after 

equilibration (ci,2) were measured using the assays outlined in Section 4.3.4.  Using a 

mass balance on the solute, the partition coefficient was calculated from 

 2 2 2
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Φ = ≈
⎛ ⎞
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⎝ ⎠

 (4.17) 

where V2 is the volume of buffer and Vg is the total volume of hydrogel in the membrane.  

The volume of the gel (22-39 μL) was determined from the membrane thickness as 

measured by micrometers, the mesh radius (12.5 mm), and the volume of the mesh fibers 

(17.7 μL, based on the average mesh dimensions reported in Chapter 3). 

4.3.4. Solute Assays 

Several solute assays were utilized depending on the type and concentration of the 

solute. 

 

Fluorescence 

For fluorescein-labeled Ficoll, either of two spectrofluorometric detectors with an 

excitation at 488 nm and emission at 515 nm was used to measured the relative 

concentrations.  The detector in the Deen Lab (Shimadzu RF-551 PC; Columbia, MD) 

could generally detect fluorescent-Ficoll concentrations of 10-5-10-4 g/L; the detector in 

the Hatton Lab (Photon Technology International, Inc.; Birmingham, NJ) could detect 
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10-5-10-3 g/L.  Since only the relative concentrations (c1/c2) were needed and the 

fluorescence was directly proportional to the concentration, no standard curves were 

used.  The corresponding ionic strength buffer was used to measure the blank readings on 

the fluorometer and to dilute samples into the detectable concentration range. 

 

UV Absorbance 

Solutions of BSA were measured in a spectrophotometer (Shimadzu BioSpec 1601; 

Columbia, MD) for concentrations of 0.1-2 g/L in either a UV-transparent or quartz 

cuvette with buffer in the reference cell.  Proteins follow Beer’s Law, with a linear 

correlation between their concentration (cBSA, in g/L) and their absorbance at 280 nm: 

 280nmAbs 0.667 BSAc=  (4.18) 

assuming a 1 cm path length through the sample (Fasman 1989).   

 

Bradford Assay 

Unlike prior work in our lab, a new method was needed for measuring the dilute 

concentrations of proteins that result from the equilibration of thin gels in the buffer.  We 

chose not to add a fluorescent tag to the protein, since it disrupted the UV absorbance and 

could change the native charge.  Methods in which a fluorescent reagent binds to the 

protein (fluorescamine, fluoraldehyde, o-phthalaldehyde, or Sigma FlurorProfile®) were 

considered, but generally had less sensitivity than dye-complex assays (Bradford, Lowry, 

and bicinchronic acid).  Of the dye-complex assays, the Bradford (aka Coomassie Blue) 

assay was selected because of its robustness at higher salt concentrations. 

The procedure was followed for the Coomassie Protein Assay Kit (Pierce #23200; 

Rockford, IL) using the Micro Microplate Protocol, which has a working range of 3-

30 mg/L.  Briefly, standard BSA solutions were prepared over the range 0-35 mg/L. In a 

96-well plate, 150 μL of a standard or unknown sample was placed in each well.  Then 

150 μL of the Coomassie Reagent was added to each well and lightly shaken.  After 

incubating the plate for 10-45 minutes at room temperature, the absorbance at 595 nm 

was measured with a plate reader (Ying lab’s Versamax Plate Reader, Molecular 

Devices, Sunnyvale, CA; or Stephanopoulos lab’s Fusion Plate Reader, Packard 

BioScience/PerkinElmer, Waltham, MA).  The standards curve is not linear, so the 
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concentration of each sample was linearly interpolated between the nearest standard 

points.  Standard curves were indistinguishable for buffer ionic strengths < 0.1 M; 

individual standard curves were generated for each ionic strength higher than 0.1 M. 

4.4. Results & Discussion 

4.4.1. Experimental 

Method Verification 

As noted earlier, modifications to earlier partitioning methods (Kosto et al. 2004) 

were required to yield accurate results for the thin agarose-GAG gels.  Attempted 

methods included rinsing the excess solution off with a squirt bottle (the previous 

method), dipping the membrane into a beaker of buffer (using either forceps or a mesh 

platform), blotting the solution off with a KimWipe, or compressing away excess solution 

between two glass slides.  The result of each method was compared against previous 

results for the partitioning of BSA into 4 v% agarose in 0.1 M PBS, as well as for 

similarly-sized Ficoll into 4 v% agarose; these results are shown in Table 4.3.  While the 

previous rinsing method resulted in ΦBSA = 0.42 ± 0.05 (standard error for n = 6), the 

mesh platform dipping method yielded ΦBSA = 0.63 ± 0.01 (n = 19; average thickness = 

88 μm).  The precision of this method and its consistency with previous agarose results 

confirmed that it was appropriately washing away excess surface solution without 

removing solute from the gel interior. 

 
Table 4.3  Partition coefficients for BSA and Ficoll into 4 v% agarose 

 Φ0 Ref. 

Published Results   
BSA (3.6 nm)  
in 4v% agarose ~0.58 (Buck et al. 2001) 

 ~0.67 (Lazzara and Deen 2004) 
Ficoll (3.5 nm)  
in 4 v% agarose ~0.63 (Kosto et al. 2004) 

Current Results   
BSA - Prior 
rinsing method 
 

0.42 ± 0.05  

BSA - Mesh 
rinsing method 0.63 ± 0.01  
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Additional experiments measured the partition coefficient of the polyester support 

mesh in the absence of agarose, which resulted in no detectable protein in the equilibrated 

buffer.  This finding, and the similarity between the current results and previous mesh-

free results in Table 4.3, verified that the presence of the polyester mesh within each 

membrane did not affect the partitioning results.  Protein solutions of known 

concentrations were placed in glass vials, with volumes and concentrations similar to 

those present during partitioning experiments.  Assay of these solutions over time showed 

no change in concentrations, indicating that there was negligible adsorption of the BSA to 

the walls of the glass vials during the experiment. 

Similar to the hydraulic permeability data for 3 v% agarose in the previous chapter, 

the 4 v% agarose gels were characterized by their hydraulic permeability prior to GAG 

attachment to reduce random biases between the blank and GAG-containing groups due 

to sample-to-sample variability.  The unreacted agarose gels were divided into two 

groups that were functionalized to produce blanks (unreacted averages: κ = 166 ± 21 nm2, 

δ = 96 ± 10 μm, φGAG = 0) and GAG-containing gels (κ = 165 ± 25 nm2, δ = 96 ± 10 μm, 

φGAG ~ 0.0022). 

To verify that the solution concentrations were in the dilute regime, the partition 

coefficients were measured with initial solution concentrations of 0.5 g/L and 1.0 g/L 

BSA in 0.011 M PBS.  Partitioning theory predicts that solute-solute interactions in the 

bulk solution would result in a partition coefficient higher than the dilute limit.  The 

experimental partition coefficients (Table 4.4) had no statistical difference between the 

two BSA concentrations based on a Student’s t-test (α = 0.05).  This confirms the 

prediction from osmotic pressure and diffusivity virial expression that 1 g/L BSA 

solutions at 0.011 M can be treated as dilute. 
 
 
Table 4.4  Partition coefficients for BSA in 4 v% agarose gels with GAG contents and variable solute 

concentrations in 0.011 M PBS. 
 c1 = 0.5 g/L c1 =  1.0 g/L 

φGAG = 0 0.66 ± 0.08 0.62 ± 0.05 

φGAG = 0.002 0.33 ± 0.07 0.32 ± 0.04 
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Experimental Results 

Equilibrium partition coefficients were measured in 4 v% agarose gels without GAG 

and with 0.2 v% GAG.  The findings are discussed in the following section, as well as 

tabulated in Appendix C. 

The partition coefficients for Ficolls of four different Stokes radii were measured in 

0.1 M PBS, shown in Figure 4.2 as a function of the solute radii.  As expected, the 

partition coefficients decreased when additional GAG fibers were present and decreased 

for larger solute radii.  These trends were consistent with previous partition coefficients 

measured for the same Ficoll fractions in 4 v% agarose-dextran gels (Kosto et al. 2004).  

The results for blank agarose (without a second fiber) are ~15% lower in the previous 

study, likely because of slight changes in the agarose structure due to the treatment of 

blank gels.  In the previous study, the blank gels were treated with electron beam 

irradiation which could lead to further fiber cross-linking. 
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Figure 4.2  Partition coefficients (Φ) of Ficoll of various Stokes-Einstein radii in 4 v% agarose 

membranes.  Data from the current study are indicated with solid symbols for gels with 0 v% and 0.2 v% 
GAG.  Previous partitioning results for gels with variable dextran content are indicated with open symbols.  
All experiments were conducted in 0.1 M PBS.  Error bars are one standard error with n = 10-11 samples in 
the current study and n = 4 in the previous dextran study. 
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The equilibrium partition coefficients were then measured for 37 kDa Ficoll (rs = 

3.5 nm) for PBS ionic strengths of 0.011 M to 0.1 M (Figure 4.3).  While there was no 

statistical difference between the partition coefficients for the blank membranes, the 

partition coefficients for GAG-containing membranes were statistically lower at 0.01 and 

0.02 M.  Since the Ficoll molecules had previously been shown to have negligible charge 

from the fluorescein tag, there should not be charge interactions between the Ficoll solute 

and the GAG fibers. 
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Figure 4.3  Partition coefficients (Φ) of 3.5 nm Ficoll over a range of solution ionic strengths in 4 v% 

agarose membranes with 0 v% and 0.2 v% GAG.  Error bars are one standard error with n = 10-11 samples. 
 

It is possible that the 27% decrease was due to changes in the GAG structure, with 

interchain repulsion at low ionic strengths resulting in a more rod-like conformation.  

However, we are unable to evaluate such a hypothesis without developing a technique to 

freeze and visualize individual GAG molecules at a given ionic strength.  Using 

partitioning theories for hard spheres, rods, and coils (Lazzara et al. 2000, White and 
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Deen 2000), the partition coefficients were compared for a hard sphere partitioning into 

GAG fibers versus GAG coils; the derivations of sphere-coil interactions in partitioning 

are detailed in Appendix D.  Assuming a GAG radius of gyration of rg = 7.5 nm (Bertini 

et al. 2005) and a GAG fiber volume fraction of φGAG = 0.002, the partition coefficient for 

a 3.5 nm Ficoll was 3% lower if the GAG were a rod versus a coil.  While this result is 

consistent with the hypothesis that the GAG fibers may be coiled at high ionic strengths 

and elongated at low ionic strengths, the difference is much less than was experimentally 

observed.  In addition, hydraulic permeability models that assumed GAG was a fiber 

provided good agreement with the data at all ionic strengths.  It remains unclear what 

caused the decrease in Ficoll partitioning in agarose-GAG membranes at 0.011 M. 

The equilibrium partition coefficients were then measured in the same membranes for 

BSA in 0.011 M to 0.5 M ionic strength buffer solutions (Figure 4.4).  The partition 

coefficient in the 0.2 v% GAG gels was constant at 0.54 at high ionic strengths, but 

decreased by 45% at 0.011 M, suggesting significant charge interactions between the 

anionic BSA and GAG.  In contrast with the current findings, it was previously observed 

that there may be some charge interactions between proteins and agarose at very low 

ionic strengths (Crone 1974, Edwards and Dubin 1993), though those studies were 

performed with Sepharose and Superose chromatography beads composed of cross-

linked agarose.  Based on the agarose charge density in the Superose studies 

(-0.011 C/m2) (Johnson and Deen 1996a), the agarose could contribute nearly as much 

charge as the 0.2 v% GAG (-5x105 C/m2 versus -9x105 C/m2).  However, from the 

manufacturer’s literature, Superose appears to be agarose which has been functionalized 

to increase hydrophobic interactions; these groups may impart additional charge to 

agarose.  In contrast, the slope of the partition coefficients in blank membranes versus 

ionic strength was statistically indistinguishable from 0, supporting that the agarose in the 

current study can be treated as neutral and that charge interactions do not play a role 

between neutral agarose fibers and charged solutes.   
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Figure 4.4  Partition coefficients (Φ) of bovine serum albumin (BSA) over a range of solution ionic 

strengths in 4 v% agarose membranes with 0 v% and 0.2 v% GAG.  Error bars are one standard error with 
n = 10-11 samples. 

 

The 37 kDa Ficolls have a similar hydrodynamic radius to BSA (rs = 3.5 nm and 

3.6 nm, respectively).  At neutral conditions (highest ionic strength) the partition 

coefficients in the blanks gels were ΦBSA = 0.67 ± 0.02  and ΦFicoll = 0.70 ± 0.01 (standard 

error with n = 10); in the 0.2 v% GAG gels,  ΦBSA = 0.54 ± 0.01  and ΦFicoll = 0.63 ± 0.01 

(n = 11).  While the values are similar between BSA and Ficoll, there is a statistical 

difference between the partition coefficients (in the t-test, p = 0.0012 for blanks and 

p = 0.0001 for GAG).  This difference is larger than the ~2% difference predicted by 

partitioning models based on the small difference in solute size.  There are numerous 

potential causes for the difference: there is some uncertainty in the radius of the Ficoll, as 

shown in Table 4.2; BSA is actually a prolate spheroid instead of a sphere, which would 

reduce the partition coefficient by up to 10% in 4 v% agarose (Lazzara et al. 2000); there 

could be a systematic error in experiments with Ficolls or BSA; Ficolls may be more 

deformable than proteins; or there may be weak long-range intermolecular forces acting 

on BSA. 
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4.4.2. Modeling 

The previously described models were used to predict the partition coefficients for 

agarose-GAG gels.  Identical to the hydraulic permeability model described in Chapter 3, 

the heterogeneity of the gels was captured by arbitrarily selecting a value of ε2 and fitting 

φ2/φ to the hydraulic permeability of the blank gels.  It was assumed that agarose and 

GAG were in equal proportions in both the dense and sparse regions, so that φ2/φ could 

be used for both fibers to determine the volume fraction in each region.  The partition 

coefficient for a mixture of the two fibers was found for each region from Equation (4.4), 

and the effective partition coefficient from both regions was calculated from Equation 

(4.14).  The properties of agarose and GAG are the same as those used for hydraulic 

permeability models, summarized in Table 4.5.  BSA was modeled as a spherical solute 

with rs = 3.6 nm and a net charge of -21 (corresponding to σs,BSA = -0.021 C/m2).  In the 

Donnan model, the volumetric charge density (cm) is calculated from the GAG fiber 

volume fraction by 

 ,

,

2 s GAG
m GAG

f GAG

c
r F
σ

φ=  . (4.19) 

 

 

 
Table 4.5  Parameter values used in the Donnan and microstructural partitioning models, assuming an 

aqueous pH 7.4 0.1 M solution at room temperature. 
Property Value Property Value 

Constants  BSA  
RT 2480 J/mol rs 3.6 nm 

F 96500 C/mol σs,BSA -0.021 C/m2 

Agarose  Ficoll  
rf,a 1.6 nm rs 2.7, 3.5, 4.5, or 5.9 nm 

σs,a 0 C/m2 σs,BSA 0 C/m2 

GAG  
rf,GAG 0.5 nm 

σs,GAG -0.10 C/m2 

 



CHAPTER 4. Macromolecule Partitioning 
 
 

 
  

  194  

Unlike hydraulic permeability (Figure 3.24), the clump volume fraction (ε2) affected 

the predicted partition coefficient for the blank and GAG-containing gels.  Figure 4.5 

shows the predicted neutral partition coefficient for agarose and agarose-GAG gels over a 

range of ε2.  For each ε2, the corresponding value of φ2/φ was fit to the hydraulic 

permeability model and the experimental blank permeability of 262 nm2.  The partition 

coefficient for a homogeneous system is reached in the limit of ε2 → 1.  The Figure 

shows that the neutral partition coefficient for the 4 v% agarose gels with 0.2 v% GAG 

could be up to 58% higher than the homogeneous value, depending on the choice of ε2.  

Comparison with Figure 4.4 shows that the experimental data are more consistent with 

the model at higher values of ε2, where the clumps are only slightly more dense than the 

surrounding matrix.  For that reason, the following partitioning models all use ε2 = 0.5, 

instead of ε2 = 0.1 previously assumed for hydraulic permeability models.  For the 4 v% 

agarose blank permeability of κ = 262 nm2, ε2 = 0.5 corresponded to φ2/φ = 1.95. 
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Figure 4.5  Predicted neutral partition coefficient (Φ0) for BSA into agarose-GAG membranes for a 

range of clump volume fractions, ε2.  The model used the value of φ2/φ that fit the blank hydraulic 
permeability of 262 nm2, as described in the previous chapter. 
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The model was first applied to the partitioning of narrow-fraction Ficolls of different 

Stokes radii (Figure 4.6).  Only neutral solute-fiber models were used.  The model was 

able to capture the relative decrease in the partition coefficient with increasing solute 

size, as well as the decrease due to the addition of 0.2 v% of GAG fibers.  These 

observations are consistent with previous applications of the homogeneous form of the 

model to agarose-dextran gels (Kosto et al. 2004). 
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Figure 4.6  Partition coefficients (Φ) of Ficoll of various Stokes-Einstein radii in 4 v% agarose 

membranes.  Data are from Figure 4.2, measured in 0.1 M PBS with error bars equal to 1 standard error 
(n = 10-11).  The model curves used neutral fiber models with heterogeneity parameters ε2 = 0.5 and φ2/φ = 
1.95.  The values of model parameters are given in Table 4.5.  

 

The model was applied to BSA partitioning data to see how well it captured the 

decrease in partitioning due to solute-GAG charge interactions.  The charge effects were 

modeled by either the structural model (Equations (4.9)-(4.13)) or the Donnan model 

(Equation (4.6) and (4.8)).  The charge effects depended on the GAG volume fraction 

within each heterogeneous region, with Donnan model using cm,1 = 0.46 mM and 
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cm,2 = 18 mM.  As seen from the curves in Figure 4.7, there is relatively little difference 

in the partition coefficient predicted from the structural and Donnan models.  The neutral 

partition coefficient is identical for both models, and the decrease at low ionic strengths is 

similar (27% decrease at 0.01 M for the structural model and 41% for the Donnan 

model). The stronger charge effect in the Donnan model is likely a result of assuming 

continuous charge in a system where the distance between fiber surfaces is much larger 

than the fiber diameter (assuming a square array, the distance is 30 rf).  This result is 

similar to the comparison of structural and Donnan models for Darcy permeability 

(Figure 3.9), where the charge effect of the Donnan model was similar but slightly 

stronger than the corresponding structural model for 0.37 v% GAG.  However, unlike the 

Darcy permeability model, the charge effect in the partitioning model is not reduced by 

the presence of agarose fibers. 
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Figure 4.7  Partition coefficients (Φ) of bovine serum albumin (BSA) over a range of solution ionic 

strengths in 4 v% agarose membranes with 0 v% and 0.2 v% GAG contents.  Data are from Figure 4.4.  
The GAG contribution to the partition coefficient was calculated with either the Johnson structural model 
(solid; Equations (4.9)-(4.13)) or the Donnan equilibrium model (dashed curve; Equation (4.6) and (4.8)).  
The agarose contribution used the neutral model in Equation (4.3).  The models used heterogeneity 
parameters ε2 = 0.5 and φ2/φ = 1.95; the values of other model parameters are given in Table 4.5. 
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The fit between the structural model and the data in Figure 4.7 could be improved if 

the neutral partition coefficients were decreased by 10~15% and the ionic strength effect 

were slightly stronger.  Several factors could improve this fit.  A slightly smaller agarose 

fiber radius would decrease the partition coefficient; however, the current estimate of rf,a 

~ 1.6 nm is already at the lower end of reported values (Lazzara and Deen 2004).  The 

charge of BSA is affected by the chloride ion concentration, with a charge of -29 at 1 M 

KCl, -21 at 0.15 M, and -14 at 0.01 M (all at pH 7.4) (Vilker 1976, Vilker et al. 1981).  

However, accounting for this change in BSA charge increased the partition coefficient 

predicted by the model by less than 3%. 

In the hydraulic permeability results in Chapter 3, the reduction in permeability at low 

ionic strengths was best captured by the Donnan model with a charge density between 

that predicted by the heterogeneous GAG density and that from a macroscopically 

homogeneous charge density (Figure 3.45).  It was hypothesized that gradients in the 

electrical potential due to the highly charged clumps extended well into the matrix.  To 

evaluated if the macroscopic charge density applied to both hydraulic permeability and 

partitioning, Figure 4.8 compares Donnan model predictions using the macroscopic 

charge density and the local charge density.  Macroscopically, the membrane contains 

0.2 v% GAG, which corresponds to 9.0 mM fixed charge.  This charged was used in 

Equations (4.6)-(4.8) with the neutral, heterogeneous permeability from Equations (4.3) 

and (4.14).  In the heterogeneous model with ε2 = 0.5 and φ2/φ = 1.95, the matrix 

contained 0.011 v% GAG (cm,1 = 0.46 mM) and the clumps contained 0.43 v% GAG 

(cm,2 = 18 mM).  The Donnan model (Equations (4.8)) was applied to the neutral partition 

coefficient in each region before using Equation (4.14) to account for the heterogeneity.  

Unlike the hydraulic permeability in Chapter 3, the charge effects in partitioning in 

Figure 4.8 are much more consistent with using the local charge density.  Using a 

homogeneous charge density based on the macroscopic GAG concentration predicted a 

much greater decrease in the partition coefficient at low ionic strength than was observed 

experimentally. 
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Figure 4.8  Partition coefficient of BSA in agarose-GAG gels with Donnan model predictions using 

different fixed charge densities, cm.  The dashed curve (“Heterogeneous”) assumes a fixed charge density 
based on the local GAG fiber density (cm,1 = 0.46 mM, cm,2 = 18 mM).  The dotted curve (“Homogeneous”) 
assumes a uniform fixed charge density based on the membrane’s total GAG fiber content (cm = 9.0 mM).  
Both curves use the heterogeneous model for neutral fibers with ε2 = 0.5 and φ2/φ = 1.95; the values of 
other model parameters are given in Table 4.5.  The experimental data is identical to Figure 4.4 

 
The heterogeneities in the agarose were assumed to be characterized by spherical 

clumps surrounded by a lower-density matrix.  Realistically, there are not simply two 

distinct regions with high and low fiber densities; there is a distribution of fiber densities 

throughout the gel volume.  The structural model (Equations (4.9)-(4.13)) was compared 

for the 2-region model of heterogeneity (ε2 = 0.5 and φ2/φ = 1.95) versus a homogeneous 

material (φ2/φ = 1), shown in Figure 4.9.  The partitioning predicted by the homogeneous 

model was lower than predicted by the heterogeneous model, and had a larger decrease at 

low ionic strengths.  This is because in the heterogeneous system, more solute was 

excluded from the denser clumps than was able to enter the less-dense matrix.  

Comparing the experimental values of the partition coefficients to the two models 

suggests that the experimental membranes are most similar to the homogeneous fiber 

density.  While the hydraulic permeability model is dominated by the properties of a 
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continuous phase with lower fiber density, the partition coefficient model is a function of 

both regions.  It may not be possible to accurately capture both these effects in a simple 

two-region model. 

0

0.2

0.4

0.6

0.8

1

0.01 0.1 1

φ
GAG

=0

φ
GAG

=0.002

Heterogeneous
Homogeneous
..
.

Φ
  [

-]

c
b 

[M]  
Figure 4.9  Partition coefficients (Φ) of bovine serum albumin (BSA) over a range of solution ionic 

strengths in 4 v% agarose membranes with 0 v% and 0.2 v% GAG contents.  The structural model was 
used with either heterogeneous regions (ε2 = 0.5 and φ2/φ = 1.95; solid curve) or a single homogeneous 
region (φ2/φ = 1; dotted curve); the values of other model parameters are given in Table 4.5.  Data are from 
Figure 4.4. 

 

It was also assumed that the GAG was distributed in proportional to the agarose (that 

bound concentration was in proportion to the concentration of binding sites).  Since GAG 

diffuses into the agarose after the gel heterogeneities formed, it is possible that the GAG 

partitioned and bound in higher concentrations in regions with lower agarose density.  As 

seen in Figure 2.13, the product of the GAG partition coefficient and GAG concentration 

in bulk solution (ΦG×cG,0) would have to be reduced several-fold to have a measurable 

reduction on the bound GAG content.  The partition coefficient of CS in blank 4 v% 

agarose gels was measured to be ΦG = 0.57 ± 0.04.  Using the model for GAG 

partitioning into heterogeneous agarose with ε2 = 0.5 and φ2/φ = 1.95 predicts a five-fold 
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difference in GAG concentrations between the 2 regions when ΦG = 0.57 (assuming that 

GAG acts as a solid sphere (rs = 5.9 nm), which is a very crude approximation).  From 

Figure 2.13, this corresponds to a 50% lower bound GAG content (μg GAG/mg agarose) 

in the denser regions.   

Using the structural partitioning model with (φGAG/φa)1/(φGAG/φa)2 = 3/2 (50% less 

GAG in clumps) is shown in Figure 4.10, in comparison with previously assumed 

proportional GAG distribution where (φGAG/φa)1/(φGAG/φa)2 = 1.  The disproportionate 

GAG model predicts at most a 4% decrease in the partition coefficient relative to the 

proportional GAG distribution.  For comparison, the model is also compared to the case 

where the GAG is uniformly distributed in both regions at 0.2 v% ((φGAG/φa)1/(φGAG/φa)2 

~ 38).  This distribution of GAG decreases the neutral partition coefficient, but also 

increases the charge effect at low ionic strengths. 
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Figure 4.10  Partition coefficients (Φ) of bovine serum albumin (BSA) over a range of solution ionic 

strengths in 4 v% agarose membranes with 0 v% and 0.2 v% GAG contents.  Data are from Figure 4.4.  
The structural model was used with either GAG in proportion to the agarose fiber density (solid curve), 
GAG based on partitioning estimates and the binding model (dashed curve), or GAG uniformly distributed 
everywhere at 0.2 v% (dotted curve).  For all models, agarose heterogeneities used ε2 = 0.5 and φ2/φ = 1.95; 
the values of other model parameters are given in Table 4.5. 
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4.5. Conclusions 

Partition coefficients were measured in 4 v% agarose with 0 or 0.2 v% GAG.  The 

partition coefficients were measured for several narrow Ficoll fractions as a function of 

solute size and for BSA as a function of ionic strength.  The decrease in partition 

coefficient with larger Ficolls was consistent with previous observations in agarose-

dextran.  The charge interactions between anionic BSA and anionic GAG were shielded 

at high ionic strengths (≥ 0.2 M), but caused a 45% decrease in partitioning at 0.011 M.  

There were no charge effects in the partitioning of BSA in blank agarose, indicated by a 

partition coefficient that was invariant with ionic strength.  The partition coefficients of 

BSA at neutral conditions and of Ficoll were similar in blank agarose gels, but 15% 

different in agarose-GAG gels. 

Several variations of a model for partitioning were evaluated.  The model used 

existing excluded volume theories for neutral partitioning, Donnan or microstructural 

models for charged partitioning, and a 2-region model for heterogeneity.  Using the 

model for agarose heterogeneity previously developed for Darcy permeability, it was 

found that experimental partition coefficients were most consistent with a nearly 

homogeneous distribution of fibers (φ2/φ ~1-2).  The excluded volume model provided 

good agreement for Ficoll partitioning in gels with one or two fiber types with a range of 

solute radii.  The model assumption that the steric excluded volume of agarose was 

independent from the steric and electrostatic exclusions of GAG provided reasonable 

agreement with the experimental data.  Unlike previously observations for hydraulic 

permeability, the Donnan and microstructural models both gave partitioning results that 

were in good agreement with the experimental data.  The charge interactions between the 

solute and fibers were well modeled by a heterogeneous charge density in both models, 

though the structural model also provided good agreement with a homogeneous 

distribution of gibers.  Unlike Darcy permeability (Figure 3.46), the Donnan model over-

predicted charge effects if it used the macroscopic charge density. 

In summary, experimental partition coefficients in charged and neutral fibrous 

systems were well modeled by existing microstructural models with a two-region model 

to account for heterogeneities in fiber density. 
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Chapter 5. MACROMOLECULE SIEVING 

 

 

5.1. Introduction 

Of particular interest in understanding the role of GAGs and the endothelial 

glycocalyx is the way in which they hinder the passage of solutes.  This chapter studies 

the convective transport of macromolecules through agarose-GAG membranes.  The 

effects of solute size and charge, as well as membrane composition were investigated in 

the membrane sieving coefficients (Θ). 

5.1.1. Overview of Hindered Transport 

When a solute passes through a medium with a pore radius or interfiber spacing 

comparable to the solute dimension, the rates of diffusion and convection tend to be 

lower than in bulk solution.  This phenomena of “hindered transport” is the result of 

steric, hydrodynamic, and electrostatic interactions between the solute and the medium 

(Deen 1987).  The flux of the solute (n) through an isotropic medium can be expressed as 

 ' 'd cK D c K c∞= − ∇ +n v  (5.1) 

where c’ is the solute concentration within the medium, D∞ is the free-solution 

diffusivity, and v is the superficial fluid velocity.  (For simplicity, the solute subscript i is 
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left off in this chapter.)  The interactions between the solute and the medium are captured 

by the diffusive (Kd) and convective (Kc) hindrance coefficients.  The diffusive hindrance 

coefficient is the ratio of the apparent diffusivity within the medium (D) to that in free 

solution.  The convective hindrance coefficient is the ratio of the solute velocity (in the 

absence of diffusion) to the fluid velocity. 

For unidirectional transport across a membrane, Equation (5.1) can be integrated 

across the membrane thickness (δ), subject to the partition coefficient at the surfaces to 

relate c’ to the external solution concentrations.  The concentration profile can be 

expressed as a sieving coefficient (Θ), which is the ratio of the downstream filtrate 

concentration (cF) to the upstream retentate concentration (cR): 

 
( ) Pe1 1

F c

R c

c K
c K e

ΦΘ
Φ −= =

− −
 (5.2) 

where the Péclet number in the membrane is 

 ( )
( )

v
Pe c

d

K
K D

Φ δ
Φ ∞

=   . (5.3) 

Alternatively, the hindrance coefficients are sometimes expressed as H = ΦKd and 

W = ΦKc (Deen 1987).  The diffusive hindrance coefficient can also be expressed as the 

“solute permeability”, which equals HD∞/δ.  In the limit of high Péclet number, the 

sieving coefficient can be related to the filtration reflection coefficient (σf): 

 ( )lim 1c fPe
KΘ Φ σ

→∞
= = −   . (5.4) 

Equation (5.4) shows that it is possible to determine Kc without knowledge of Kd if 

sieving is performed at high Pe and Φ can be measured independently. 

5.1.2. Experimental Literature 

While numerous studies have looked at the equilibrium partitioning or hindered 

diffusion of macromolecules in fibrous membranes, a limited number have looked at 

hindered convection in a quantitative manner.  Several studies have investigated the role 

of fiber volume fraction and solute size in neutral fibrous systems.  The hindered 

diffusion and reflection coefficient of two proteins (ribonuclease A and BSA) were 

measured in poly(vinylidine fluoride) membranes with polyacrylamide-filled pores 

(Kapur et al. 1997).  Our lab has previously studied the hindered diffusion, partitioning, 
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and sieving of several globular proteins and Ficoll fractions in 4-8 v% agarose (Johnston 

and Deen 2002, 1999).  The sieving of four Ficoll fractions was studied in agarose-

dextran gels of varying composition (Kosto and Deen 2005), which appears to be the 

only data for a well-characterized fiber mixture. 

Some work has been done to investigate the role of charge in filtration, though results 

are mostly available for porous (not fibrous) membranes.  It was shown that the sieving 

coefficient of BSA through polyethersulfone membranes was reduced by nearly two 

orders of magnitude when the ionic strength was decreased from 0.15 M to 0.0015 M 

(Pujar and Zydney 1994).  The transmission of cytochrome c through charge-modified 

cellulose membranes was also decreased at lower ionic strengths or with greater 

membrane charge (Mehta and Zydney 2006).  Numerous additional studies in porous 

membranes reported similar results, with protein transmission being affected by the 

solution pH and membrane charge (Balakrishnan and Agarwal 1996, Burns and Zydney 

1999, Millesime et al. 1994, Miyama et al. 1988, Nakao et al. 1988, van Reis et al. 1999).  

However, no systematic study of charge effects in sieving through fibrous membranes 

was found in the literature.  Sieving was studied in isolated renal capillary GBM, a 

fibrous mixture of collagen and GAG, though the composition of those membranes was 

not fully characterized (Bolton et al. 1998). 

5.1.3. Theory 

While hindered transport theory is fairly well developed for cylindrical pores (Deen 

1987), such theories provide little insight for structure-function relationships in fibrous 

membranes.  The corresponding theories for fibrous systems are much less developed.  

Several theories have been developed for the interactions of solutes and rigid fibers 

during diffusion (Johnson et al. 1996, Phillips 2000).  Of these, only the effective 

medium model, which correlates the Darcy permeability to the diffusive hindrance, is 

readily applied to systems with two or more types of fibers (Kosto and Deen 2004).  Only 

one theory has been developed for Kc in a fibrous system, which is limited to neutral, 

spherical solutes passing through a parallel array of fibers (Phillips et al. 1990, Phillips et 

al. 1989).  Phillips et al. performed simulations for the convection of a spherical solute 

perpendicular to a periodic square array of fibers.  The results were expressed as  
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 2ˆ ˆ1cK Βφ Γφ= + +  (5.5) 

where φ̂  is the volume fraction of the fibers and the parameters Β and Γ are functions of 

λ = rs/rf .  Fit to data over the range 0 ≤ λ ≤ 5, the parameters are evaluated from 

 
2 31 1 15.1712 0.9727 1.1355 0.2511Β

λ λ λ
⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (5.6) 

 2 39.97883 8.9787 31.6717 2.9586Γ λ λ λ= − + − −   . (5.7) 

The fibers in the simulation were represented by a bead-and-string arrangement, with 

a bead radius of rf  and a distance between the beads of 0.05rf.  As noted by Phillips et al., 

the Darcy permeability of the bead-and-string fibers correlates reasonably with both 

fibers of the same volume fraction or total length when λ = 1 (Phillips et al. 1989).  Since 

fiber length was shown in Chapter 3 to be the primary determinant of hydraulic 

permeability in slender body theory, the  volume fraction of bead-and-string fibers was 

equated with the volume fraction for a cylindrical fiber such that both fibers had the same 

total length and the same radius rf : 

 ( )
( )

2 0.05ˆ 0.65
4 / 3

s

s

r
r

φ φ φ
+

= =   . (5.8) 

Charged Membranes 

When the solute is charged, there is an additional term in Equation (5.1) that accounts 

for electrophoretic motion in response to a potential gradient ( ψ∇ ) within the 

membrane:  

 ' ' 'd c
FK D c zc K c

RT
ψ∞

⎛ ⎞= − ∇ + ∇ +⎜ ⎟
⎝ ⎠

n v   . (5.9) 

where z is the charge of the solute.  As was discussed in Chapter 3, the flow of an ionic 

solution through a charged membrane causes a streaming potential and a decrease in the 

hydraulic permeability relative to a neutral system.  For no net current across the 

membrane, the induced streaming potential is proportional to the bulk fluid velocity,  

 11 22
21

12

k kk
k

ψ
⎛ ⎞

= − ∇⎜ ⎟
⎝ ⎠

v  (5.10) 

where the electrokinetic coupling coefficients, kij, are the same as those defined in 
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Equation (3.4).  Since the streaming potential and velocity are proportional, it is possible 

to group them into a single convective term in the flux expression in Equation (5.9) 

 ( )' 1 'd cK D c K cω∞= − ∇ + +n v  (5.11) 

where ω is the electrophoretic contribution from Equation (5.9) (Pujar and Zydney 1997): 

 11 22
21

12

d
i

c

K F k kD z k
K RT k

ω ∞

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
  . (5.12) 

Using calculations of kij from Chapter 3, the coupling coefficients for the agarose-GAG-

like membrane in Figure 3.18 are summarized in Table 5.1.  Using those values, a BSA 

diffusivity of 6x10-11 m2/s (Johnson et al. 1995), and assuming Kd/Kc ~ 1 in Equation 

(5.12), the electrophoretic contribution is negligible in the current experiments with 

ω ~ 10-2-10-4.  

 
Table 5.1  Electrokinetic coupling coefficients (kij) in a square fiber array similar to agarose-GAG 

membranes.  Values are from the simulations in Figure 3.18, where fiber population 1 (“GAG”) has 
rf,1=0.5 nm, φ1=0.004 and σs,1=-120 mC/m2; fiber population 2 (“agarose”) has rf,2=1.6 nm, φ2=0.041 and 
σs2=0 mC/m2. 

cb 
[M] 

k11 
[x10-14 m4/N-s] 

k12=k21 
[x10-8 m2/V-s] 

k22 
[N/V2-s] 

Axial flow 

1 M 1.50 -0.90 12.10 

0.1 M 1.50 -1.72 1.28 

0.01 M 1.50 -2.23 0.21 

Transverse flow 

1 M 0.75 -0.48 11.55 

0.1 M 0.74 -0.71 1.16 

0.01 M 0.73 -0.83 0.13 

 

When the solute and membrane fibers are both charged, there is also an electrostatic 

interaction between them that affects the solute concentration distribution (Deen 1987), in 

much the same way the Boltzman factor was included in charged partitioning theory in 

the previous chapter.  While this effect has been investigated for cylindrical pores, no 

structural model is currently available for sieving in charged fibrous systems. 
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While a complete microstructural model is not available for charged fibers, several 

researchers have made use of models which separate the charge effects in the sieving 

coefficient.  These models assume that the charge effects in sieving are predominantly 

contained within the partition coefficient, allowing the convective hindrance coefficient 

to be determined from neutral models (Kc,0) (Deen et al. 1980, Sörensson et al. 2001): 

 ,0( ) ( )b b cc c KΘ Φ≈   . (5.13) 

While this form has not been rigorously derived, it is similar to assumptions made in pore 

theory.  In pores, it has long been assumed that the local hindrance factors (denoted K and 

G in (Deen 1987)) are not a function of charge; averaging K and G across the pore cross 

section gives values of Kc and Kd which have a extremely weak dependence on charge.  It 

should be noted that this assumption in pore theory has also not yet been fully tested.   

 

 

Heterogeneity 

The only model in the literature for the flux of solutes through a heterogeneous 

membrane was a simple parallel region model used for agarose-dextran gels (Kosto and 

Deen 2005).  In this model, two regions of different fiber density are arranged in parallel, 

each with a fractional cross-sectional area εj (j = 1 or 2).  It was shown that the 

appropriate weighting factor for sieving at a high Péclet number is 

 

2

,
1

2

1

j j j c j
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j j
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ε κ

=

=

= =
∑

∑
 (5.14) 

where the subscript j refers the properties of a region with fiber density φj. 

The hydraulic permeability weighting factor in Equation (5.14) has the effect that the 

flux of solute through regions of high hydraulic permeability (high water flux) contribute 

more to the overall sieving coefficient.  In the region with a lower fiber density, the 

partition coefficient, convective hindrance factor, and the hydraulic permeability will all 

be increased.  Since this region will be more heavily weighted in the overall sieving 

coefficient, the effect is a higher sieving coefficient than would be predicted from a 

homogeneous material.  While the homogeneous model for Kc predicts values that have a 
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maximum only slightly above one, the hydraulic weighting factor in Equation (5.14) can 

result in a heterogeneous Kc that can exceed two (Kosto and Deen 2005). 

It was considered whether the model for spherical heterogeneous regions used for 

hydraulic permeability could be applied to the convective flux of a solute.  However, 

because the convective flux is the product of two spatially variant properties (v and ci), it 

was not possible to simply extend the Maxwell solution to sieving or convective 

hindrance coefficients.  An additional complication is the possibility for the overall Péclet 

number for the membrane to be large while the local Péclet number within the spherical 

clumps is small, which would require the heterogeneity model to include both convection 

and diffusion. 

5.1.4. Concentration Polarization 

The sieving coefficient is the ratio of the solute concentrations immediately 

downstream and upstream of the membrane.  However, in an experimental ultrafiltration 

system where the retained solution is not perfectly mixed, the well-known phenomena of 

concentration polarization occurs.  This is the tendency of retained solutes to accumulate 

at the upstream surface of the membrane.  The increased concentration at the upstream 

surface increases the flux of solutes through the membrane and causes the apparent 

sieving coefficient (Θ’)  based on the bulk retentate concentration (cR) to be greater than 

the true membrane sieving coefficient (Θ): 

 ' F F

R M

c c
c c

Θ Θ= ≥ =  (5.15) 

where cM is the concentration at the upstream membrane surface (cM ≥ cR). 

Concentration polarization in the ultrafiltration cell used in this work was previously 

analyzed (Johnston et al. 2001).  They used laminar boundary-layer theory with rigid 

body rotation above a stationary surface (Bödewadt flow) to model the flow in the 

ultrafiltration cell.  The results were then compared with an uniform stagnant film model 

and a hybrid model, as well as against experimental data for BSA solutions.  Using their 

local stagnant film model (hybrid model), the corrections to the apparent sieving 

coefficients in the following work were evaluated from 
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−
=
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where the dimensionless position variable Y is related to the radial coordinate, r, and the 

radius of the membrane, R, by  

 1 rY
R

= −  (5.17) 

and the function B is defined as 

 1/3
( ) ( )( ) exp

( ) 0.6381 0.410
M F

R F

c Y c YB Y
c c Y Y Y

α
−

⎡ ⎤−
≡ = ⎢ ⎥− −⎣ ⎦

  . (5.18) 

The dimensionless filtrate velocity, α, is defined as  

 
2/3

2/3v v
/ /
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ρμω ρ μω ρ ∞

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
 (5.19) 

with the fluid viscosity, μ; fluid density, ρ; the average filtrate velocity through the 

membrane, v; the angular velocity of the bulk fluid, ω; and the Schmidt number, Sc.  In 

the 10 mL ultrafiltration cell used in the current study, it was found that the fluid angular 

velocity was related to the stir bar speed (ωsb) by ω = 0.36 ωsb. 

   The results of this hybrid model differed from the full boundary layer theory by a 

maximum of 15% for 0 ≤ α ≤ 1; the models were most similar at smaller values of α.  

The model requires that Re >> 1, Sc >> 1, and α/Sc2/3<<1; the conditions were all readily 

satisfied for the sieving conditions in the present work (Re~102, Sc~104, α/Sc2/3~10-3).  

The model also required that the osmotic pressure be much less than the applied pressure, 

such that the filtration velocity does not vary with radial position.  Using the expression 

for BSA osmotic pressure given in Equation (2.15), the maximum osmotic pressure for 

1 g/L BSA (0.10 kPa at 0.011 M) was an order of magnitude less than the lowest applied 

pressure for the blank gels (1.1 kPa).  For the majority of sieving conditions, the 

difference between osmotic and applied pressures was much greater. 

For results in the following sections, Equation (5.16) was numerically integrated to 

find a value of Θ that satisfied the equality for the experimental values of Θ’ and α. 
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5.2. Experimental Materials & Methods 

5.2.1. Flow Rate Compromise 

As was noted in Chapter 4, the membrane properties were changed from 3 v% 

agarose (used for most of the Darcy permeability measurements in Chapter 3) to 4 v% 

agarose for the partitioning and sieving measurements in Chapters 4 and 5.  One 

motivation for this change was to create membranes that were more selective to BSA 

(lower Θ and Φ).  The other motivation for this change was the desire to measure sieving 

coefficients at a high Péclet number such that Equation (5.4) could be used, but at a low 

enough flow rate such that the concentration polarization correction was valid.  The 

polarization model is most accurate for small values of α; the model was previously 

validated using experiments in the range 0.1 ≤ α ≤ 0.5 (Johnston et al. 2001).  Since both 

the Péclet number and α are linearly related to the fluid velocity through the membrane, 

it was necessary to perform sieving experiments in a narrow pressure range that satisfied 

both conditions.  Since Kd and Kc were not known a priori, all calculations were 

performed with the minimum Péclet number, Pemin = δv/D∞.  The ratio Kc/Kd was greater 

than one in prior experiments with agarose and agarose-dextran (Kosto and Deen 2004, 

2005), so Pemin should provide an upper bound for the deviation from ΦKc.  Pore theory 

(Deen 1987) and fiber theory (Phillips et al. 1990) also predict that the ratio Kc/Kd is 

greater than unity. 

The effect of Pemin on the true and apparent sieving coefficients is illustrated in Figure 

5.1.  The figure assumes BSA passing through a 95 μm membrane with ΦKc = 0.75.  As 

expected from Equation (5.2), the true sieving coefficient decreases from one to a 

constant value of ΦKc as the Péclet number increases.  At low flow rates (small Pemin), Θ 

and Θ’ are similar; higher flow rates increase concentration polarization and cause a 

larger difference between Θ and Θ’.  Figure 5.1 illustrates the difficulty in selecting a 

flow rate that minimizes both the deviation of Θ from ΦKc, as well as the difference 

between Θ and Θ’. 
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Figure 5.1  Membrane (Θ) and apparent (Θ’) sieving coefficients over a range of flow rates.  The 

calculations assume BSA (D∞ = 6x10-11 m2/s)  passing through a δ = 95 μm membrane with ΦKc = 0.75.  
The minimum Péclet number was defined as Pemin = δv/D∞. 

 

To stay near the bounds in which the polarization model had previously been 

validated, it was desired to perform experiments such that α ≤ 0.6.  When sieving 

experiments were performed at α = 0.6, the correction to the apparent sieving coefficient 

was at most ~25% (when Θ ~0.5 for BSA at low ionic strengths).  A majority of 

experiments had sieving coefficients of Θ ≥ 0.8, such that the correction from Equation 

(5.16) with α = 0.6 was less than 10%. 

For a 70 μm membrane, a flow rate which gave α = 0.6 corresponded to Pemin = 1.2.  

It was difficult to neglect diffusive transport at this small minimum Péclet number.  

However, by increasing the membrane thickness to 95 μm, then α = 0.6 corresponded to 

Pemin = 1.7.  Using Pemin = 1.7 in Equation (5.2) and assuming ΦKc = 0.75, the sieving 

coefficient deviated by less than 5% from the high Péclet limit. 
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5.2.2. Sieving 

The sieving measurements were performed in two steps.  First, the hydraulic 

permeability was measured for the gel in the absence of a test solute.  This both provided 

a check that the membrane was intact and washed any residual solute from the 

membrane.  Following that, a solution of the test solute was filtered across the membrane 

to find the sieving coefficient.  The solutes and buffer solutions used were identical to 

those used for partitioning in Chapter 4 (BSA and four Ficoll fractions in pH 7.4 PBS). 

 

Hydraulic Permeability 

The hydraulic permeability was measured in the same fashion described in Chapter 3.  

Briefly, the membrane was first equilibrated for several minutes in 5-10 mL of buffer of 

the ionic strength of interest if it was different than the previous experiment.  This was 

done to wash out any excess salt that may increase the ionic strength.  The membrane 

was then placed in a 10 mL ultrafiltration cell (Amicon 8010; Millipore, Bedford, MA) 

and covered with ~10 mL of buffer.  The ultrafiltration cell was then pressurized (1-

5 kPa) with nitrogen to achieve the same flow rate that would be used in sieving.  After 

the flow equilibrated, samples of filtrate collected over timed intervals were used to 

determine the flow rate.  The flow rate, the applied pressure drop, the membrane 

thickness, the membrane area, and a mesh correction factor were used to calculate the 

Darcy permeability. 

 

Sieving Coefficient 

Following the Darcy permeability measurement, the apparent sieving coefficient was 

measured.  The ultrafiltration cell was emptied and refilled with approximately 10 mL of 

the macromolecule solution.  The stir bar was inserted and the solution mixed for several 

minutes before a sample of the retentate solution was removed from the reservoir.  The 

ultrafiltration cell was then repressurized with nitrogen and the stirring speed was set to 

220 ± 5 rpm, as measured by an optical tachometer.  The filtrate was collected while the 

system equilibrated, such that at least 1-2 mL (1.5~3 times the retention volume of the 

cell) was collected.  The solute concentration in this sample is denoted as ceq.  The 

collection vessel was then switched and a filtrate sample was collected over a timed 
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interval.  The solute concentration in this sample is denoted as cF.  At the end of filtrate 

collection, a second sample was taken of the retentate in the reservoir.  The initial and 

final retentate concentrations are denoted as cRi and cRf, respectively.  Each of these 

concentrations was measured by the assays described in the Chapter 4.   

The apparent sieving coefficient was calculated from the average bulk retentate and 

filtrate concentrations: 

 ( )'
0.5

F

Ri Rf

c
c c

Θ =
+

  . (5.20) 

The maximum difference between the retentate concentrations was 14%, with an average 

of 4%.  The mass conservation of the solute was evaluated from  

 ( )% recovery Rf Rf F F eq eq

Ri Rf f eq

c V c V c V
c V V V

+ +
=

+ +
 (5.21) 

where Vf and Veq are the total volume collected of the sample filtrate and the equilibration 

filtrate, respectively, and VRf is the final volume of the retentate as determined from the 

height of fluid in the reservoir at the end of sieving.  Because of the intrinsic variability in 

the solute assays, it was possible for the apparent sieving coefficient to slightly exceed 

1.00.  If the mass balance closed within ± 10%  and Θ’ < 1.10, then the corresponding 

true sieving coefficient was assumed to be 1.00.; if Θ’ > 1.10, then the data point was 

thrown away.  Any experiment where the solute was not conserved to within ± 10%  was 

immediately rejected.  If the Darcy permeability varied by more than 15% between the 

initial measurement and the measurement during sieving, the data point was thrown 

away.  The Darcy permeability generally agreed much better than this, differing on 

average by only 4%. 

5.3. Results and Discussion 

Method Verification 

One of the main questions to be answered about the sieving method was whether the 

macromolecule solutes adsorbed to the agarose-GAG membranes (or other parts of the 

experimental apparatus).  This was first confirmed on a large scale by checking the 

overall mass balance as given in Equation (5.21).  For BSA, the recovery was 99.6% ± 

0.2% standard error (SE) (n = 107); for Ficolls, recovery was 100.0% ± 0.7% (n = 85).   
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To verify that the membranes were not being fouled by solute adsorption or other 

contaminants, the Darcy permeability measured with solute-free buffer prior to sieving 

was compared to the permeability measured during sieving (shown in Figure 5.2).  As 

seen in Chapter 3, even 0.2 v% of GAG can reduce the hydraulic permeability of 4 v% 

agarose gels by nearly half; the Darcy permeability should therefore be a very sensitive 

measure for even a small amount of solute binding.  The ratio of the Darcy permeability 

with the solute to without was 98.8% ± 0.4% (SE) for BSA and 98.1% ± 0.8% for Ficolls.  

Statistically, the permeability before and during sieving was indistinguishable (p = 0.85 

and 0.73 for BSA and Ficolls, respectively, with a Students t-test with alpha=0.05).  This 

supports that solute binding to the membranes was negligible. 

To verify that experiments were performed at a high enough Péclet number that the 

limit in Equation (5.4) could be assumed, BSA sieving experiments were performed over 

a range of applied pressures for 4 v% agarose gels with 0.19 v% GAG.  The protein 

solution was 1 g/L BSA in 0.011 M PBS; the mean thickness of the membranes was 100 

μm.  The apparent sieving coefficients are show in Figure 5.3, as well as the actual 

sieving coefficients calculated from the concentration polarization model.  The apparent 

sieving coefficient remained nearly constant, with a slight increase at the highest Péclet 

number.  The corrected sieving coefficient monotonically decreased with increasing 

Péclet number. 
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Figure 5.2  Darcy permeability of the 4 v% agarose membranes as measured before and during 
sieving, shown for both BSA and Ficolls.  Permeability before sieving was measured in solute-free buffer.  
Data include both blank and 0.2 v% GAG membranes. 
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Figure 5.3  Corrected and apparent sieving coefficients (Θ and Θ’, respectively) measured for several 

applied pressures.  Also shown is the corresponding minimum Péclet number, Pemin = vδ/D, based on the 
mean flow rate through the gels and the mean thickness of 100 μm.  All measurements are for BSA in 
0.011 M PBS being sieved through 4 v% agarose gels with 0.19v% GAG.  Error bars are one standard error 
for n = 3. 

 

The experimental data in Figure 5.3 can be compared to the theoretical behavior in 

Figure 5.1.  Sieving at lower applied pressures was infeasible with the current apparatus, 

so the increase in apparent sieving coefficients at Pe << 1 was not captured in Figure 5.3.  

However, there was a slight increase in the apparent sieving at the highest flow rate, 

consistent with theoretical predictions.  Unfortunately, the actual membrane sieving 

coefficients did not plateau at a constant value as predicted in Figure 5.3.  Given that the 

minimum Péclet numbers spanned 0.6-4, the actual sieving coefficients should have been 

nearly equal at the two highest flow rates.  However, the value of the concentration 

polarization parameter, α, spanned the range of 0.20-1.37, which extends far beyond the 

validated range of the model α = 0-0.5.  This suggests that the lack of a plateau in the 
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actual sieving coefficient in Figure 5.3 might be due to shortcomings in using the 

concentration polarization model outside of its range.  Since it was not possible to 

experimentally determine the flow rate at which the high Péclet limit in Equation (5.4) 

applies, the minimum Péclet number was used to provide a worst-case estimate of the 

deviation of the sieving coefficient from the high Péclet number limit. 

 

Experimental Results - Sieving 

Sieving coefficients were measured in 4 v% agarose gels without GAG and with 

0.2 v% GAG.  The true sieving coefficients (Θ), corrected for concentration polarization, 

are shown in Figure 5.4 for Ficolls of four different Stokes-Einstein radii (rs).  The 

smallest Ficoll fraction freely filtered through the membranes, with a sieving coefficient 

of approximately unity.  The sieving coefficients for larger Ficoll fractions decreased 

with increasing solute radius.  The sieving coefficients were also lower for membranes 

containing 0.2 v% GAG versus those without GAG.  These observations are consistent 

with similar sieving coefficients previously measured for the same Ficoll fractions in 

4 v% agarose-dextran gels, as shown in Figure 5.5 (Kosto and Deen 2005).  It is expected 

that dextran and GAG should act similarly under neutral conditions, since both are high 

molecular weight polysaccharide fibers with rs ~ 0.5 nm.  The smaller Ficoll fractions 

freely filtered through the agarose-dextran gels, with decreasing sieving coefficients for 

larger Ficoll fractions.  The sieving coefficient was decreased by up to 10% by the 

addition of only 0.08 v% dextran.  The sieving coefficients of Ficolls through the blank 

agarose gels differed by as much as 10% between the two studies.  However, as was 

noted in the previous chapter on partitioning, the blank gels were treated differently 

between the GAG and dextran studies, so it is not surprising that there were slight 

variations between sieving coefficients in the blank gels. 

The sieving coefficients for 37 kDa Ficoll (rs = 3.5 nm) were measured for solution 

ionic strengths of 0.011, 0.05, and 0.1 M, as shown in Figure 5.6.  Similar to the partition 

coefficients measured under the same conditions (Figure 4.2), the sieving coefficients 

were nearly constant at high ionic strengths, but decreased at lower ionic strengths.  

Unlike the partition coefficients, the decrease in sieving coefficients occurred for both 

GAG-containing and GAG-free membranes. 
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Figure 5.4  True sieving coefficient (Θ) of Ficolls, as a function of Stokes-Einstein radius (rs), in 4 v% 
agarose gels with 0 or 0.2 v% of GAG.  All experiments were performed in 0.1 M PBS.  Error bars are one 
standard error with n = 5-6. 
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Figure 5.5  True sieving coefficient (Θ) of Ficolls, as a function of Stokes-Einstein radius (rs), from a 
previous study with 4 v% agarose and various dextran contents (Kosto and Deen 2005).  All experiments 
were performed in 0.1 M PBS.  Error bars are one standard error with n = 3. 
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Figure 5.6  True sieving coefficient (Θ) of 3.5 nm Ficoll, over a range of solution ionic strengths (cb), 
in 4 v% agarose gels with 0 or 0.2 v% of GAG.  Error bars are one standard error with n = 5-6. 

 

It is difficult to explain the decrease in Ficoll sieving in the uncharged blank agarose 

membranes, where there are no charge interactions which would be affected by ionic 

strength.  One possible cause is the difference in applied pressures between the samples, 

with a mean of 1.1 kPa for 0.05 and 0.1 M  versus a mean of 1.6 kPa for 0.01 M.  The 

change in pressure was needed to maintain a constant flow rate in response to a decrease 

in Darcy permeability (blank gels had a mean permeability of κ = 279 ± 44 nm2 at 0.1 M 

versus 187 ± 88 at 0.011 M); as seen in Table 5.2, Pemin (and therefore flow rate) was 

nearly constant for the three ionic strengths.  The higher Darcy permeability at lower 

pressure is consistent with observations in 3 v% agarose, where the permeability was 

elevated at pressures <5 kPa (Figure 3.40).  This change in hydraulic permeability could 

suggest a change in agarose structure, which would also affect the sieving.  However, this 

hypothesis would not explain the changes observed in partitioning, in which there is no 

applied pressure.  Additionally, a decrease in sieving through blank agarose was not 

observed with BSA (as will be shown shortly), indicating that the decrease observed with 

Ficoll may be anomalous. 
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Table 5.2  Sieving coefficients, sieving conditions, and partition coefficients for 37 kDa Ficoll (rs = 

3.5 nm) in 4 v% agarose membranes over a range of ionic strengths.  Results are presented as mean ± one 
standard error, with n = 5-6 except Φ where n = 9-11. 
 Θ’ Θ Pemin κ Φ 

Blank  
 (0v% GAG) 

     

     0.011 M 0.88 ± 0.03 0.77 ± 0.04 2.0 ± 0.2  187 ± 36 0.67 ± 0.01 

     0.05 M 1.01 ± 0.01 0.98 ± 0.02 2.0 ± 0.1 256 ± 14 0.69 ± 0.01 

     0.1 M 1.00 ± 0.01 0.96 ± 0.03 2.2 ± 0.2 279 ± 19 0.70 ± 0.01 

0.2 v% GAG      

     0.011 M 0.85 ± 0.03 0.74 ± 0.03 1.6 ± 0.1 113 ± 18 0.46 ± 0.02 

     0.05 M 0.96 ± 0.02 0.92 ± 0.02 1.8 ± 0.1 161 ± 14 0.64 ± 0.01 

     0.1 M 0.96 ± 0.02 0.94 ± 0.02 1.5 ± 0.1 159 ± 16 0.63 ± 0.01 

 

Sieving coefficients for BSA were measured in the same membranes for solution 

ionic strengths of 0.011, 0.02, 0.05, and 0.1 M, as shown in Figure 5.7.  As expected, the 

sieving of BSA through the neutral agarose membranes without GAG was constant with 

ionic strength.  The sieving coefficient for BSA through membranes with 0.2 v% GAG 

decreased by over 50% from 0.1 M to 0.011 M.  Statistically, there was no difference 

between the sieving coefficient of BSA (rs = 3.6 nm) and 3.5 nm Ficoll in the blank gels 

at the highest ionic strength (Students t-test p=0.12 for alpha=0.05).  There was a 

statistical difference between BSA and Ficoll in the 0.2 v% GAG gels at 0.1 M 

(p=0.002); however, this difference is likely to have been because the BSA sieving at 

0.1 M was not equivalent to neutral conditions.  As shown in Figure 5.7, there was still a 

significant increase in the sieving coefficient between 0.05 and 0.1 M, indicating that 

charge effects were not fully screened at 0.1 M. 
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Figure 5.7  True sieving coefficient (Θ) of bovine serum albumin (BSA), over a range of solution 
ionic strengths (cb), in 4 v% agarose gels with 0 or 0.2 v% of GAG.  Error bars are one standard error with 
n = 6. 

 

The sieving coefficients for BSA were also measured in 3 v% agarose gels, shown in 

Figure 5.8 for a range of ionic strengths.  These gels were the same as those used for 

Darcy permeability in Chapter 3, with a mean thickness of 73 ± 1 μm and GAG contents 

of 0 or 0.4 v%.  The charge effects in these gels are comparable to those shown in Figure 

5.7 with 4 v% agarose.  However, the results for the 3 v% agarose gels should be treated 

cautiously.  As previously discussed, it was difficult to maintain both a high Péclet 

number and low concentration polarization correction.  Sieving coefficients for 3 v% gels 

were performed at similar Péclet numbers to the 4 v% gels (Pemin = 1.3-2.1).  This caused 

the concentration polarization factor, α, to be higher for the 3 v% membranes, with 

average values of α = 0.96 for blank gels and α = 0.71 for 0.4 v% GAG gels.  The 

correction for concentration polarization was minimal for the blank gels (<8%), where Θ 

was large; however, corrections for the 0.4 v% GAG gels were as much as 26% and were 

subject to errors since α was outside the validated range. 
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Figure 5.8  True sieving coefficient (Θ) of bovine serum albumin (BSA), over a range of solution 
ionic strengths (cb), in 3 v% agarose gels with 0 or 0.4 v% of GAG.  Error bars are one standard error with 
n = 6. 

 

Convective Hindrance Factor 

Remember from Equation (5.4) that the sieving coefficient at high Péclet number is 

equal to the product of Φ and Kc.  It had been proposed that the charge effects observed 

in the sieving coefficient are primarily contained within the partition coefficient, Φ, and 

that Kc can be determined solely from neutral hydrodynamic models.  To investigate this 

hypothesis, the independently measured values of Φ and Θ for BSA in 4 v% 

agarose+0.2 v% GAG membranes are plotted against each other in Figure 5.9.  A linear 

function was fit to the mean values for BSA, assuming the form Θ = KcΦ.  The best-fit 

slope of this line was Kc = 1.57 with a correlation coefficient R = 0.89.  Previous 

researchers have discussed how heterogeneities in the agarose fiber density can result in 

values of Kc significantly greater than unity due to the solvent flux weighting factor for Θ 

given in Equation (5.14)(Kosto and Deen 2005); a summary of their discussion was 

presented in Section 5.1.3. 
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Figure 5.9  True sieving coefficients (Θ) of bovine serum albumin (BSA) and Ficolls as a function of 

the corresponding partition coefficients (Φ).  BSA values were measured over a range of solution ionic 
strengths (cb = 0.011-0.1 M) and Ficoll values were measured at cb = 0.1 M.  All measurements were 
performed in 4 v% agarose gels with 0.2 v% of GAG.  Error bars are one standard error with n = 6 for Θ 
and n = 10-11 for Φ.   The line is the least-squares linear equation to the BSA data with a forced intercept 
of 0. 

 

The values of Φ and Θ for the four Ficoll fraction in 0.1 M PBS are also plotted 

against each other in Figure 5.9.  Measurements were made in the same 4 v% 

agarose+0.2 v% GAG membranes used for the BSA measurements.  Based on the model 

(Equation (5.5)), the value of Kc varies for different Ficoll rs.  This means that a single 

line will not fit through the Ficoll points in Figure 5.9, since the slope (Kc) will be smaller 

for larger solutes.  However, the 3.5 nm Ficoll does fall near the best-fit line for the 

similarly-sized BSA (3.6 nm), as expected from the Kc model. 

To further investigate the role of charge in Kc, the ratio Θ/Φ (~Kc) is plotted in Figure 

5.10 as a function of ionic strength.  The data shown are for BSA in 4 v% agarose with 0 

and 0.2 v% GAG.  A line was fit through each type of membrane, weighting each point 

by the inverse variance (to account for difference uncertainties at each ionic strength).  
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The slope of Θ/Φ versus log(cb) was 0.104 ± 0.170 (SD) for blank gels and 0.276 ± 0.376 

for 0.2 v% GAG.  Since the slopes of these lines were not statistically different from 

zero, this data does not disprove the hypothesis than Kc is independent of charge 

interactions.  However, additional tests of charged membranes with smaller errors in Θ 

and Φ are needed to more accurately predict if Kc is truly independent of the solution 

ionic strength.  The weighted mean values of Θ/Φ were 1.44 ± 0.01 for the blank gels and 

1.56 ± 0.02 for the 0.2 v% GAG gels.  This mean value of Kc~Θ/Φ in 0.2 v% gels agrees 

well with the estimate of Kc from Figure 5.9 (Kc = 1.57).  The methods for calculating 

weighted means and weighted-least-squares fits are summarized in Appendix E. 
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Figure 5.10  Ratio of true sieving coefficient (Θ) to partition coefficient (Φ) for bovine serum albumin 

(BSA) as a function of solution ionic strengths (cb) in 4 v% agarose gels with 0 or 0.2 v% of GAG.  Lines 
are a weighted least-squares fit to the data (weighting by inverse variance).  Error bars are one standard 
deviation.  The points are offset by ±5% in cb for clarity. 
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The ratio Θ/Φ (~Kc) is plotted for Ficolls in Figure 5.11 as a function of solute radius.  

The apparent Kc tends to decrease with larger values of rs, where the larger solutes 

experience more steric hindrance from the membrane fibers; however, this decrease was 

statistically significant only for the 0.2 v% GAG gels over the range of solute radii 

investigated.  This trend differs from the results found in agarose-dextran gels, where 

there was an apparent maximum in Kc for the 4.6 nm Ficolls (Kosto and Deen 2005).  

Theoretical values of Kc were generated from Equations (5.5)-(5.8), as a function of 

dimensionless solute radius, λ = rs/rf.  The values of Kc are shown in Figure 5.12 for 

several fiber volume fractions.  As shown in the figure, the model for Kc does predict a 

maximum value.  However, for the fiber size and volume fractions in the current agarose 

gels (rf = 1.6 nm, φ = 0.04), the maximum generally occurs at smaller solute radii (λ ~ 

1.2, or rs ~ 1.9 nm) than the reported maximum in agarose-dextran.  The experimental 

data in agarose-GAG gels are qualitatively consistent with the model’s decrease in Kc for 

solute radii larger than 2 nm. 
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Figure 5.11 Ratio of corrected sieving coefficient (Θ) to partition coefficient (Φ) for Ficolls as a 
function of Stokes-Einstein radius (rs) in 4 v% agarose gels with 0 or 0.2 v% of GAG.  Error bars are one 
standard deviation.  The points are offset by ±0.1 nm in rs for clarity. 
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Figure 5.12  Theoretical predictions for the convective hindrance coefficient, Kc, as a function of 

λ = rs/rf.  Curves were generated from Equations (5.5)-(5.8).  All curves assumed a homogeneous φ unless 
noted otherwise.  The heterogeneous curve is based on Equation (5.14) with Equations (3.3) and (4.2) used 
to model κ and Φ.  The heterogeneity was characterized by ε2 = 0.5 and φ2/φ = 1.95, similar to values used 
in partitioning models. 

 

Figure 5.12 also includes predictions of Kc for a heterogeneous gel using Equation 

(5.14).  The theoretical values of the hydraulic permeability were found with Equation 

3.3 for flow perpendicular to a square array of fibers, similar to that assumed in the Kc 

model; Equation 4.2 was used to predict the partition coefficient.  The value of the fiber 

radius used in the hydraulic permeability model was unimportant, since it cancels 

between the numerator and denominator in Equation (5.14).  Heterogeneity parameters 

were the same as used in partitioning models in Chapter 4: ε2 = 0.5 and φ2/φ = 1.95.  The 

experiments performed with Ficoll in agarose (rf = 1.6 nm, φ = 0.04) in Figure 5.11 

correspond to values of λ = 1.7-3.7.  The heterogeneous model predicts values of Kc in 

the range of 1.3-1.7 for solutes of this size, which is in excellent agreement with the 

experimental data.  The trend with size dependence appears to differ between 

experiments (Kc decreases with λ)  and model (Kc increases with λ).  However, the trend 

in the experimental data was only statistically significant for the GAG-containing 
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membranes.  Additionally, there are many idealizations in the model (ordered fibers, 

parallel heterogeneous regions) that makes its predictions inexact.  

5.4. Conclusions 

The experimental results for the sieving coefficients in agarose-GAG gels provided 

new information about the role of charge in sieving through fibrous membranes.  Ionic 

strength had little effect on the sieving of anionic BSA through neutral agarose.  

However, the sieving coefficient of BSA through agarose-GAG membranes decreased by 

over 50% from 0.1 M to 0.011 M.  The decrease in sieving at lower ionic strength was 

highly correlated with the decrease in the corresponding partition coefficient.  At the flow 

rates used in the experiments, the sieving coefficient could be well approximated as KcΦ.  

The BSA sieving data are consistent with the hypothesis that charge interactions in 

sieving are primarily described by the partition coefficient, and that the convective 

hindrance coefficient, Kc, is relatively insensitive to charge interactions between the 

solute and fibers. 

The sieving results with Ficoll confirmed several previously reported observations, 

such that sieving decreases for larger solutes and with the addition of small volume 

fractions of fine fibers.  The apparent value of Kc was nearly 50% higher than that 

predicted by a fibrous model, but this discrepancy may be accounted for if the membrane 

has a heterogeneous regions with different fiber densities.  Current models for sieving 

and convective hindrance are limited to ordered arrays of fibers and membranes with a 

single type of fiber, so predictive models for sieving through agarose-GAG membranes 

were not possible at this time. 
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Chapter 6. CONCLUDING REMARKS 

 

 

6.1. Implications for Glomerular Filtration 

As discussed in Chapter 1, this thesis research was inspired by hindered transport 

across the glomerular capillary wall.  In particular, it was hoped to provide some insight 

into the role that the GAG-rich endothelial glycocalyx plays in glomerular ultrafiltration 

of blood plasma.  Unfortunately, information about the structure of the glomerular 

endothelial glycocalyx is limited.  As discussed in Chapter 1, the glycocalyx is primarily 

composed of proteins, proteoglycans, and glycoproteins.  The estimated thickness of the 

glycocalyx has increased as fixation techniques have improved.  Estimates of the 

thickness range from 100 to 1000 nm, with a thickness of approximately 300 nm being 

most consistent with recent observations (Rostgaard and Qvortrup 2002, Squire et al. 

2001, Vink and Duling 2000, Weinbaum et al. 2007).  The density of fibers within the 

glycocalyx is even less known.  The only current estimates come from observations of a 

periodic structure in the glycocalyx of a mesenteric capillary, where 10-12 nm diameter 

structures (believed to be core proteins with assemblages of glycoproteins or proteins) 

were located at 20 nm spacings (Squire et al. 2001). 
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Since knowledge about the structure of the glycocalyx is currently incomplete, a 

simplified model was developed to evaluate if endothelium could have a low hydraulic 

resistance while providing some selectivity in sieving BSA.  The composition of the 

glycocalyx was assumed to be only GAG, neglecting proteins and glycoproteins.  The 

fiber volume fraction (φ) and thickness of the glycocalyx (δg) were treated as variables.  

The potential thickness was bounded by 100 and 1000 nm; the fiber volume fraction was 

bounded by 0 and 0.28 (assuming  the 12 nm periodic structures were solid).  It was 

assumed that the GAG fibers were randomly oriented with a uniform fiber density 

throughout the glycocalyx and within the fenestra.  The GAG properties were assumed to 

be the same as used for chondroitin sulfate in Chapters 2-5: a fiber radius, rf = 0.5 nm, 

and a surface charge density, σs = -0.1 C/m2. 

A structure for the glomerular endothelium has been proposed based on microscopy 

observations (Drumond and Deen 1994, Lea et al. 1989).  A schematic representation of a 

unit cell based on a single fenestra is shown in Figure 6.1.  The fenestra has a circular 

opening with an hourglass-shaped cross-section, with a radius at the narrowest point (Rf) 

equal to half the endothelial cell thickness.  The fenestra radius was assumed to be 

Rf = 30 nm; the unit cell half-width, b, was 60 nm based on a fenestra fractional area 

εf = πRf
2/4b2 = 0.2 (Drumond and Deen 1994). 
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Figure 6.1  Schematic representation of a unit cell based on a single fenestra, (a) as viewed from the 

side and (b) as viewed from the bottom, with the boundaries of the single unit cell shown by the dashed 
line. 
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While the structure of the endothelial glycocalyx is not fully known, some limits can 

be placed on its properties.  As discussed in Chapter 1, the endothelium is the first of 

three layers in series through which blood plasma passes during ultrafiltration.  The 

hydraulic resistances of each of these layers (1/ki) are summed in series to give the 

hydraulic resistance of the entire glomerular capillary wall (1/k): 

 1 1 1 1

endo GBM epik k k k
= + +  (6.1) 

where the subscripts refer to the endothelim (endo), basement membrane (GBM), and 

epithelim (epi).  Based on micropuncture experiments in rats, the permeability of the 

glomerular capillary wall is k = 3-5x10-9 m/s-Pa.  Experiments on isolated basement 

membranes combined with models for the membrane surfaces blocked by endothelial and 

epithelial cells predicted a basement membrane hydraulic permeability of kGBM = 4-

8x10-9 m/s-Pa.  A model of the resistance from the epithelium predicted a hydraulic 

permeability of kepi = 8.6x10-9 m/s-Pa (Deen 1987, Deen and Lazzara 2004), though the 

permeability could be much higher than this.  From these numbers, we expect that the 

endothelium (and its glycocalyx) contributes 0-63% of the total hydraulic resistance 

across the glomerular capillary wall, or kendo ≥ 4.8x10-9 m/s-Pa.  Using the 

microstructural models for hydraulic permeability in Chapter 3, the lower limit on kendo 

should provide some limits on the thickness and fiber density of the glycocalyx. 

Sieving through the capillary wall (Θ) can be represented as the product of the sieving 

coefficients of each layer, 

 endo GBM epiΘ Θ Θ Θ=  (6.2) 

though it should be noted that each layer’s sieving coefficient is dependent on the 

properties of the other layers.  The following discussions will refer to the sieving of 

albumin, an abundant plasma protein which is the focus of many renal studies.  The 

sieving coefficient of albumin across the capillary wall has been estimated as Θ = 4-

6x10-4 in rats (Deen 2004).  (In contrast, the sieving coefficient for neutral 3.6 nm Ficoll 

was reported to be Θ = 0.03 (Ohlson et al. 2000).)  Studies and models of the basement 

membrane indicate that, while it provides some selectivity in isolation, the in situ sieving 

coefficient of albumin is Θ ~ 1 (Deen 2004).  It has been observed that disruption of 

either the epithelial or endothelial layer can result in proteinurea, which implies that Θepi 
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and Θendo are likely both ≤ 0.1 (Deen 2004).  From these observations, we estimate that 

10-3 ≤ Θendo ≤ 10-1.  Using the microstructural models developed in Chapters 4 and 5 for 

partitioning and sieving, we would like to predict which endothelial properties could 

result in a sieving coefficient in this range and if charge interactions between GAG and 

BSA play a role in the sieving selectivity. 

6.1.1. Hydraulic Resistance 

Model Development 

For assumed values of φ and δg, the Darcy permeability was calculated with the 

neutral hydraulic permeability given in Section 3.1.3 (Clague et al. 2000): 

 ( )
2

2
1 1 0.71407exp 0.51854
2fr

κ π φ
φ

⎡ ⎤
= − −⎡ ⎤⎢ ⎥ ⎣ ⎦
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and electrokinetic reduction given by the Donnan model in Section 3.1.2: 
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The diffuse double layer microstructural model for hydraulic permeability in charged 

fibers could also have been used, but would have required a large computational effort 

for the range of parameters being considered in the current analysis.  As was shown in 

Figure 3.9, there was relatively little difference between the two models at a low volume 

fraction (φ = 0.00375); the difference was expected to be even smaller at larger volume 

fractions when the assumptions in the Donnan model are more closely met.  Blood 

plasma is approximately 0.15 M NaCl; the properties of an aqueous sodium chloride 

solution were given in Table 3.2. 

The flow through the glycocalyx is affected by the presence of impermeable 

endothelial cells.  The fiber-filled fenestra in Figure 6.1 is very similar to the gel-filled 

polyester support mesh modeled in Section 3.3.3.  A correction factor, βf, was inserted 

into Darcy’s law to account for the decreased hydraulic permeability due to the presence 

of the endothelial cells:  
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 f
v endoq k P P

κβ
Δ Δ

μδ
= =  (6.6) 

where the volumetric flux (qv) is related to the pressure drop (ΔP) across the endothelial 

thickness δ = 2Rf + δg.  The correction factor, βf, could have been found by an analytical 

solution for a pore with a constant radius (Keller and Stein 1967), or solved for the 

hourglass geometry by finite element software using Equations (3.77)-(3.79).  The results 

for the latter approach, solved with Comsol MultiphysicsTM, are shown in Figure 6.2 for a 

range of glycocalyx thicknesses, δg, assuming the geometry in Figure 6.1 with Rf = 30 nm 

and b = 60 nm.  The data were least-squares fit to the expression 

 0.3462 0.4033 log( )f g bβ δ= +  (6.7) 

with R2 = 0.998.  The simulation results and Equation (6.7) differed by at most 1.5% over 

the range shown in Figure 6.2. 
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Figure 6.2  Correction factor, βf, for reduced flow through the endothelium due to the presence of the 

fenestra, as a function of the glycocalyx thickness δg.  Solid symbols are results of a finite element 
simulation using the hour-glass geometry in Figure 6.1 with Rf = 30 nm and b = 60 nm.  The solid line is 
the least-squares fit to the data given by Equation (6.7). 
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Model Results 

The endothelial model was used with the ranges of glycocalyx thickness and fiber 

density described above: 0 ≤ φ ≤ 0.28 and 100 nm ≤ δg ≤ 1000 nm.  First, the hydraulic 

resistance of the endothelium was analyzed to determined if the ranges of glycocalyx 

thickness or fiber density could be narrowed.  The hydraulic permeability of the 

endothelium is shown in Figure 6.3 for several thicknesses over a range of fiber densities.  

The hydraulic permeability goes below the minimum estimated value of 4.8x10-9 m/s-Pa 

for several of the conditions.  For the range of glycocalyx thicknesses considered, fiber 

volume fractions φ ≥ 0.04 gave hydraulic resistances that were too high.  For an 

extremely thick glycocalyx (δg = 1000 nm), a low fiber density (φ < 0.013) was needed to 

not exceed the estimated permeability.  From the results in Figure 6.3, the viable range of 

fiber densities in the glycocalyx can be narrowed to φ ≤ 0.04. 
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Figure 6.3  Hydraulic permeability of the endothelium (kendo) for several combinations of glycocalyx 

thickness (δg) and fiber volume fraction (φ).  The thick line represents the lower limit of hydraulic 
permeability, based on physiological observations and models of the other capillary layers.  The model 
assume the endothelial geometry shown in Figure 6.1; model parameters are given in the text. 
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6.1.2. Sieving 

Model Development 

For an assumed value of φ, the partition coefficient of a charged solute was calculated 

from the microstructural model given by Equations (4.9)-(4.13).  The partition coefficient 

for an equivalent neutral solute was calculated from Equation (4.3).  The convective 

hindrance factor, Kc, was assumed to be independent of charge, as was supported by the 

results in Chapter 5.  It was evaluated by equations given in Section 5.1.3 (Phillips et al. 

1990): 

 ( ) ( )21 0.65 0.65cK Β φ Γ φ= + +  (6.8) 

 
2 31 1 15.1712 0.9727 1.1355 0.2511Β

λ λ λ
⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (6.9) 

 2 39.97883 8.9787 31.6717 2.9586Γ λ λ λ= − + − −  (6.10) 

where λ = rs/rf .  Care must be taken, since the model was only developed for λ = 0-5 and 

for φ that resulted in Kc ≥ 0.8.   

Given that sieving through the glycocalyx may not occur at a high Péclet number 

(Deen 2006), an estimate of the diffusive hindrance factor, Kd, was needed to estimate the 

Péclet number.  Assuming that a neutral model can be used for estimating Kd, one such 

model was (Kosto and Deen 2004, Phillips 2000) 

 2.18 1.09exp 0.84 (1 ) exp b
dK aλ φ φ⎡ ⎤ ⎡ ⎤= − + −⎣ ⎦ ⎣ ⎦  (6.11) 

where λ = rs/rf  and the parameters a and b are given by 

 ( ) ( )23.727 2.460 1 0.822 1a λ λ= − +  (6.12) 

 ( ) ( )20.358 0.366 1 0.0939 1b λ λ= + −   . (6.13) 

An average volume flux of 4 μm/s was reported for the basement membrane (Deen 

1987).  Since the layers of the capillary wall are in series, the volume flux is constant 

between the three layers and the area-averaged velocity through the glycocalyx will also 

be v = 4 μm/s (based on the cross-sectional area of the unit cell).  The Péclet number was 

calculated with a correction factor (βf) that accounts for the reduced flow from the 

endothelial cells blocking part of the down-stream surface: 
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 Pe c

d f

K v
K D

δ
β∞

=  . (6.14) 

with a total endothelial thickness δ = δg + 2Rf.  This approach of including a correction 

factor in Pe had been verified for sieving in the basement membrane, where the surfaces 

were also partially blocked by cells (Deen 1987, Edwards et al. 1999).  A justification for 

using this approach for the entire endothelial layer, and not just the glycocalyx, is 

presented in Appendix VI. 

The sieving coefficient through a single layer was given by Section 5.1.1:  

 
( ) Pe1 1

F c

R c

c K
c K e

ΦΘ
Φ −= =

− −
  . (6.15) 

The sieving coefficients for layers in series are dependent on the sieving of the 

downstream layers.  For a layer i in a series (i = 1 being farthest upstream and i = n being 

farthest downstream), the sieving coefficient of layer i is (Deen 2006, Haraldsson et al. 

2008) 

 ( )
,

1 2 ,1 i i

i c i
i Pe Pe

i i n i c i

K
e K e

Φ
Θ

Θ Θ Θ Φ− −
+ +

=
− +…

  . (6.16) 

While the sieving coefficient of the epithelium is unknown, Equation (6.16) can be 

rearranged and combined with Equation (6.2) to give 

 
( )

,

1 1 endo

endo

Pe

endo c endo
endo Pe

e
K

e

Θ
Φ

Θ

−

−

− −
=  (6.17) 

where Θ is the sieving coefficient through the entire capillary wall. 

 

Model Results 

The product of the partition coefficient and convective hindrance factor (ΦKc) was 

calculated for albumin and an equivalent neutral sphere.  The model for Kc in Equations 

(5.5)-(5.7) was only developed for rs/rf ≤ 5 and fiber volume fractions that resulted in 

Kc ≥ 0.8.  The ratio of albumin radius to GAG radius (3.6 nm/ 0.5 nm ~ 7) slightly 

exceeded the range of the model.  Fiber densities φ > 0.012 also exceeded the range of Kc 

for which computational results were available.  The results for ΦKc are shown in Figure 

6.4 for a range of fiber volume fractions.  The decrease in ΦKc is due almost exclusively 
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to the partition coefficient; for the range of volume fractions in Figure 6.4 (φ ≤ 0.012), Kc 

had a minimum value of 0.88.  The partition coefficients for anionic albumin were up to a 

third less than those of an equivalent neutral sphere.  Therefore, any resistance towards 

albumin in the glycocalyx would have a significant contribution from charge interactions. 
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Figure 6.4  Product of the convective hindrance factor (Kc) and partition coefficient (Φ) in the 

glycocalyx for different fiber densities.  Results are shown for albumin (charged; solid line) and a neutral 
molecule of the same size (dashed line).  Model parameters for the solute (albumin) and glycocalyx fibers 
(GAG) are given in the text. 

 

Sieving coefficients for an isolated endothelium were calculated from Equation (5.2) 

for a range of Péclet numbers.  These sieving coefficients are shown in Figure 6.5 for 

BSA and an equivalent neutral sphere in matrices of 0.2 and 2 v% GAG, with the 

corresponding ΦKc given in Figure 6.4.  As expected, the sieving coefficient approaches 

unity at very small Pe, then decreases to a constant value of ΦKc at high Pe (Pe ≥ 1).  The 

sieving coefficient and ΦKc are smaller for higher fiber densities and when there is 

charge repulsion between the solute and fibers. 
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Figure 6.5  Sieving coefficient (Θ) for a single-layer membrane.  Curves are shown for fiber densities 

of φ = 0.02 and 0.002, using Equation (5.2).  The values of ΦKc were calculated from the equations given 
in the text for BSA at 0.15 M and a neutral sphere of the same radius (rs = 3.6 nm).  Model parameters for 
the solute and fibers (GAG) are given in the text. 

 

The endothelium was then considered as the first layer in a series, where the 

combined downstream layers have a sieving coefficient Θn.  Using Equation (6.16), the 

sieving coefficient was calculated for BSA in 2 v% GAG (Φ1Kc,1 = 0.074).  Sieving 

coefficients are shown in Figure 6.6 for several downstream sieving coefficients.  In the 

case that there is no downstream resistance to sieving (Θn = 1), the endothelium behaves 

as if it were in isolation, identically to Figure 6.5.  As the downstream sieving coefficient 

decreases, there is internal concentration polarization that increases Θ for the upstream 

layer.  When the downstream sieving coefficient is equal to ΦKc of the endothelium, the 

selective sieving in the endothelium is balanced to the downstream concentration 

polarization, such that Θ1 = 1.  When the downstream sieving coefficients is less than 

ΦKc of the endothelium, concentration polarization dominates and the sieving coefficient 

across the endothelium is greater than one.  Similar to sieving across a single-layer 
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membrane, the sieving coefficient of the endothelium has the limits Θ1 → 1 at low Péclet 

number and Θ1 → Φ1Kc,1/Θn at high Péclet number. 
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Figure 6.6  Sieving coefficient of layer 1 (Θ1) for a two-layer membrane with variable downstream 

sieving coefficient (Θn).  Curves were calculated  from Equation (6.16).  The curves are based on BSA in 
φ = 0.02 GAG  at 0.15 M, which gave Φ1Kc,1 = 0.074. 

 

The remaining question is whether the endothelium provides any significant 

resistance to BSA.  As seen in the previous figures, in order for the endothelium to be a 

selective barrier (Θ < 1), it must have a moderate or high Péclet number and ΦKc less 

than the downstream sieving coefficients.  Figure 6.7 shows the value of ΦKc needed for 

a given Péclet number in order to achieve the specified values of endothelial and capillary 

wall sieving coefficients.  Sieving coefficients were considered across the range of 

expected values discussed earlier: Θ = 10-3-10-4 and Θendo ≤ 0.1.  As seen in Figure 6.7, 

the value of ΦKc increases with increasing Péclet number until Pe > 1.  The value of ΦKc 

is relatively insensitive to the sieving coefficient of the endothelium, but is strongly 

dependent on the overall sieving coefficient.  Only when Θendo becomes large (>0.5) does 
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ΦKc begin to increase with increasing Θendo; however, this is outside the expected range 

based on physiological observations. 
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Figure 6.7  Product of the partition coefficient and convective hindrance factor (ΦKc) in the 

endothelium that is required to achieve the given sieving coefficients for the endothelium (Θendo) and 
capillary wall (Θ) as a function of Péclet number.  Calculations are from Equation (6.17).  The curves for 
Θendo = 0.01 and 0.001 for Θ = 10-4 are nearly identical. 

 

For the combinations of glycocalyx thickness and fiber density that exceeded the 

hydraulic permeability lower limit in Figure 6.4, the Péclet numbers were 0.03-0.22.  

These fiber densities corresponded to ΦKc = 0.89-0.003 for BSA.  These values of Pe and 

ΦKc fall well above the curves in Figure 6.7, implying that the endothelium does not 

contribute to the overall sieving coefficient.  However, a significant limitation in these 

estimates is the calculation of the hindrance coefficients Kc and Kd.  Both the Péclet 

number and the sieving coefficient are functions of these hindrace coefficients.  However, 

fiber models for hindrance coefficients are currently limited to low fiber volume fractions 

where Kc ≥ 0.8-0.9 (φ ≤ 0.012 for BSA in agarose).  Many of the possible fiber densities 

from Figure 6.3 fall beyond this range (up to φ = 0.04).  For a periodic square array of 
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GAG fibers, these fibers would have center-to-center spacing as small at 4.4 nm, which 

would be very restrictive to BSA with a 3.6 nm radius.  In pore theory, it is under these 

tightly fitting conditions that the ratio Kc/Kd is highest, exceeding 10 under some 

conditions (Deen 1987).  High values of Kc/Kd result in a high Péclet number.  Higher 

fiber densities also result in a small value of ΦKc.  For this reason, it is very possible that 

the fiber densities predicted by the hydraulic permeability model in Figure 6.3 could 

result in a selective endothelium.  However, without fiber models that are able to predict 

hindrance factors for tightly-fitting solutes, we are unable to determined the role of the 

endothelium in the sieving across the glomerular capillary wall. 

6.2. Summary and Future Work 

6.2.1. Research Summary 

This research investigated hindered transport in biologically-relevant fibrous 

membranes, focusing on the role of fiber and solute charges.  Experiments were 

performed in agarose-GAG hydrogels.  Agarose is a nearly neutral fiber that provided 

structural integrity to the hydrogel membranes.  Chondroitin sulfate, a 50 kDa anionic 

GAG representative of GAGs and proteoglycans in a variety of biological materials, was 

covalently bound to agarose.  A systematic investigation of the CDAP reaction used to 

attach GAG increased the bound GAG content within the membranes, as well as verified 

that the bound GAG was spatially uniform. 

Darcy (hydraulic) permeability measurements through the agarose-GAG membranes 

investigated the effects of solution ionic strength and membrane GAG content.  

Electrokinetic coupling within charged membranes induced a streaming potential which 

reduced the open-circuit hydraulic permeability of the membranes.  This reduction was 

greatest at low ionic strength and in gels with high GAG contents, where charge effects 

were greatest.  No reduction in Darcy permeability was observed in gels that only 

contained neutral agarose. 

The permeability of several macromolecules (anionic BSA and neutral Ficoll) were 

measured in the agarose-GAG membranes.  Specifically, equilibrium partition 

coefficients and convective sieving coefficients were measured as a function of ionic 

strength and Ficoll Stokes-Einstein radius.  At high ionic strengths, there was a slight 
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decrease in permeability by the addition of small fractions of GAG (0.2 v% GAG, versus 

4 v% agarose).  Both the partition coefficient and sieving coefficient in agarose-GAG 

membranes decreased by nearly half for BSA in 0.011 M versus 0.1 M buffer.  However, 

sieving and partitioning in systems that did not have charge interactions (agarose / BSA, 

agarose-GAG / Ficoll, agarose / Ficoll) generally did not vary with ionic strength.  There 

was a strong correlation between the decreases in the partition coefficient and the sieving 

coefficient for BSA in agarose-GAG gels, supporting the hypothesis that charge 

interactions can be neglected in the convective hindrance coefficient (ratio of the sieving 

coefficient to partition coefficient at high Péclet number). 

Microstructural models for fibrous materials correlated the physical properties of the 

solutes and membranes to the measured properties (hydraulic permeability, partition 

coefficient, and sieving coefficient).  The literature provided several microstructural 

models for hydraulic permeability, which were adapted to the agarose-GAG membranes 

used in this research.  The main complication encountered was the lack of a rigorous 

model for the permeability of a mixture of fibers.  Several “mixing rules” were evaluated 

to compare the hydraulic permeabilities predicted by monodisperse fiber models to 

simulations of polydisperse systems.  A simulation of flow past ordered arrays of two 

types of charged fibers was developed to provide data for evaluating the mixing rules in 

charged systems.  Weighting the hydraulic resistivities by the fiber volume fractions was 

found to provide the most reliable estimates for multi-fiber systems with different fiber 

diameters and charges.   

Microstructural models provided good agreement with hydraulic permeability 

measurements at high ionic strengths (neutral conditions).  However, a macroscopic 

model of electrokinetic coupling provided much better agreement with the experimental 

Darcy permeability than the microstructural model, suggesting that improvements are 

needed in the way charge was treated in my agarose-GAG model.  Microstructural 

models were in good agreement with partition coefficients in both neutral systems and 

charged systems over a range of ionic strengths.  A microstructural model for convective 

sieving in a mixture of fibers is currently not available. 
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6.2.2. Future Work 

While it has been common to perform transport studies in porous membranes, fibrous 

membranes tend to be more relevant to biological systems.  A limited number of 

experiments have been performed in well-characterized, charged fibrous materials.  

Additional studies in such materials (with mono- or polydisperse fibers) would provide 

useful information to validate existing microstructural models.  The agarose-GAG 

hydrogels used in this study had heterogeneities in fiber density due to the gelation 

mechanism of agarose.  Identification of a structurally stable fibrous material with a 

homogeneous fiber density would be beneficial, as it would simplify comparisons 

between experimental results and the models.  One potential material that might meet this 

criteria is polyacrylamide gel (Kapur et al. 1997); additional chemistry may be available 

to functionalize the polyacrylamide fibers with charged groups.   

The microstructural model for hydraulic permeability in agarose-GAG gels under-

predicted the reduction in permeability from electrokinetic coupling.  It was speculated 

that this was due to the handling of charge in a heterogeneous material with two regions 

of different charge density (eg - imposing no-current conditions in each sub-region and 

assuming that electrical potentials were non-interacting between regions).  Further 

investigations into this problem may be beneficial. 

Macromolecule permeability was studied in this thesis research with BSA (an anionic 

globular protein) and with Ficolls (neutral, spherical sugars).  Additional permeability 

studies with other solutes would provide useful information on the effects of solute size 

and charge.  Permeability studies in denser fibrous systems would allow for the use of 

other well-characterized anionic globular proteins (eg – lactalbumin, ovalbumin) and 

neutral and anionic forms of horseradish peroxidase (HRP).  HRP is a particularly 

appealing solute, since the ability to add negatively charged groups allows the solute 

surface charge density to be varied independently of solute radius. 

The current microstructural models for partitioning seem adequate for systems that 

have charged solute interactions with a single type of charged fiber.  The model would 

have to be extended for a mixture of multiple types of charged fibers.  Microstructural 

models for convective hindrance are currently very limited.  Simulations of sieving in 

arrays of charged fibers will help show more rigorously if and when charge interactions 
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can be neglected in the convective hindrance factor.  Models for the convective hindrance 

factor that allow for multiple types of fibers would also be useful for understanding 

sieving in a variety of biological materials.  Convective hindrance models for fibers 

would benefit from being extended to high fiber volume fractions where there is 

significant hindrance between the fibers and the solute; such a model would be beneficial 

for both periodic and random fiber arrays. 
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Appendix A.   AGAROSE-GAG MEMBRANE SYNTHESIS DATA  
 

The following tables report the values of experimental data used in the figures in 

Chapter 1. 

 
Table A.1  Active cyanate ester site degradation during protonation, aqueous wash and attachment process 
steps, shown in Figure 2.9. 
Sample Description Sites/Gel Gel Width Sites/Fiber 

 (nmol/gel) (μm) (nmol/mg) 

5 min HCl 1,414 75 2,406 

 1,362 76 2,260 

30 min HCl 1,270 73 2,278 

 1,246 77 2,017 

30 min HCl + 5 min H2O 1,267 73 2,272 

 1,205 69 2,423 

30 min HCl + 25 min H2O 1,002 70 1,957 

 1,166 72 2,149 

30 min HCl + 45 min H2O 817 70 1,595 

 747 71 1,417 

30 min HCl + 45 min H2O 473 72 872 

+ 1 hr blank attachment 389 73 698 
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Table A.2  Agarose-GAG gel synthesis conditions and bound GAG content for variable CDAP activation 
conditions, as shown in Figure 2.7. 
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Table A.3  Agarose-GAG gel synthesis conditions and bound GAG content for variable cyanate 
protonation and aqueous wash conditions, as shown in Figure 2.8. 
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Table A.4  Agarose-GAG gel synthesis conditions and bound GAG content for variable GAG attachment 
conditions affecting binding kinetics, as shown in Figure 2.5. 
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Table A.5  Agarose-GAG gel synthesis conditions and bound GAG content for variable GAG attachments 
conditions affecting GAG transport, as shown in Figure 2.6. 
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Table A.6  Parameter estimates for diffusion-reaction model of GAG binding from Table 2.6, with 
additional comments about the source of parameter values. 
Parameter Value / Range Comments 

cG,0 
2x10-8 mol/mL 

(0.4-10x10-8 
mol/mL) 

Determined directly for experiments, using the reported 
molecular weight of 50 kDa for CS-A.  Concentrations used were 
0.2-5 g/L. 

cA,init 
4x10-5

 mol/mL 
(3.2-4.6x10-5 

mol/mL) 

Assays of active sites at the beginning of GAG attachment from 4 
characteristic batches: 1040+120, 1390+140, 1510+130, 
1420+120 µmol active sites/g agarose.  3v% agarose gels are 
30.75 mg agarose per mL gel. 

δ 7x10-3 cm 
(5x10-3-10-1 m) 

Measured directly in experiments.  Average mesh thickness is 
70-75 µm.  Thickness can be adjusted with a thinner mesh or 
using spacers during gel casting. 

DG(0) 10-7 cm2/s 
(10-7–10-9 cm2/s) 

Based on hindered diffusivity experiments in 4% agarose with 
globular proteins [14-68 kDa; D=3.2-6.4x10-7 cm2/s; D/D∞=0.53-
0.63], spherical Ficolls [21-105 kDa; D=4.4-1.2x10-7 cm2/s; 
D/D∞=0.35-0.62](Johnson et al. 1996) [21-105 kDa; D=4.5-
1.9x10-7 cm2/s; D/D∞=0.41-0.56](Kosto and Deen 2004) and 
dextrans 500-3800 kDa; D=0.4-0.8x10-7 cm2/s; D/D∞=0.1-
0.8](Key and Sellen 1982).  Also 2% agarose with proteins [14-
68 kDa; D~3-5x10-7 cm2/s; D/D∞~0.5] and dextran [4.4-
2000 kDa; D~0.5-6x10-7 cm2/s; D/D∞~0.5] (Pluen et al. 1999).  
Using the Stokes-Einstein relation for the temperature 
dependence of diffusivity, D∞,0°C=0.465D∞,25°C. 

ΦG 
1 

(0.86-1.08) 

Partitioning experiments for GAG and 3 v% unactivated agarose 
with CS-A concentrations of 0.2-5 g/L in 0.1 NaHCO3.  Note that 
later improvements to the partitioning method, described in 
Chapter 4, resulted in a lower value in 4 v% agarose. 

φA 1.2x10-3 
Molar ratio of assay of bound GAG at end of attachment to 
actives sites at the beginning of GAG attachment from 4 
characteristic batches: 0.9, 1.0, 1.3, 1.4x10-3 

k1(0) 4x104 mL/mol/s 
(104-105 mL/mol/s) 

Based on amount of bound GAG as short times, assuming 
constant initial concentration of active sites and unbound GAG 
concentrations of approximately cA,0.  From three sets of 
experiments with attachment times 30-60 minutes, k1 = 1.1-
2.4x104 mL/mol/s.  From one experiment with attachment times 
of 6-10 minutes, k1=3.4-4.4x104 mL/mol/s. 

k2 
5x10-5 s-1 

(2-7x10-5 s-1) 
Based on rates of active site degradation in buffer at 0-4°C.  Most 
attachment studies were performed at 4°C. 

Group Value  

Da1 0.2 Damköhler number for binding 
Da2 0.006 Damköhler number for active site degradation 

γG 0.4 Concentration ratio of maximum free GAG to maximum active 
sites 

( )2

2
(0)D

GD

δ
τ =  2 minutes Characteristic diffusion time 
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Appendix B. HYDRAULIC PERMEABILITY DATA 
 

The following tables summarize the experimental data reported in Chapter 3 for 

hydraulic permeability. 

 
Table B.1  Darcy permeability (κ) and composition of agarose-dextran gels used in Figure 3.33.  Data from 
(1) has been reinterpreted with the dextran immobilization efficiency reported in reference (2).  Gels were 
prepared with a dextran equilibration solution of concentration co,dex and dextran partition coefficient in 
agarose of Φdex.  Errors reported are one standard deviation. 

φa φdex co,dex 
[mg/mL] 

Φdex κ 
[nm2] 

0.04(1) 0 0 0 255.1(±5.4) 

 2.4(±0.1)x10-5 10 0.23 241.3(±44.1) 

 2.3(±0.2)x10-4 30 0.3 157.5(±12.1) 

 7.6(±0.4)x10-4 50 0.37 77.6(±13.8) 

0.04(2) 0 0 0 264.1(±9.5) 

 8.0(±0.0)x10-4 50 0.39 110.2(±4.2) 

 7.6(±0.9)x10-3 150 0.43 19.5(±1.4) 

0.08(1) 0 0 0 41.1(±1.0) 

 4.4(±0.2)x10-6 10 0.027 46.7(±0.0) 

 1.6(±0.1)x10-4 30 0.125 22.9(±0.4) 

 4.7(±0.3)x10-4 50 0.14 19.0(±2.4) 

0.08(2) 0 0 0 34.1(±1.9) 

 8.0(±4.0)x10-4 50 0.24 16.1(±0.5) 

 1.1(±0.1)x10-2 150 0.38 2.9(±0.1) 
(1) Data from White and Deen  (White and Deen 2002), adjusted for immobilization efficiency from Kosto 

and Deen (Kosto and Deen 2005) 
(2) Data from Kosto and Deen (Kosto and Deen 2005) 
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Table B.2  Composition of phosphate buffered saline (PBS) solutions with pH=7.4 at 25°C.  Buffer recipes 
were calculated by http://researchlink.labvelocity.com/tools/bufferCalculator.jhtml.  Note that values of 
moles and grams in the table may not convert exactly due to rounding. 
Ionic Strength (M) 1 0.5 0.2 0.1 0.05 0.02 0.011
log([I]) (- -) 0.0 -0.3 -0.7 -1.0 -1.3 -1.7 -2.0 

Buffer Strength (M) 0.01 0.01 0.01 0.01 0.005 0.005 0.005

Ionic Strength 

    due to Buffer 
(M) 0.026 0.026 0.026 0.025 0.012 0.012 0.011

Acid Component         

 (mol) 0.0017 0.0017 0.0019 0.0022 0.0012 0.0014 0.0015 

NaH2PO4-H2O (g) 0.235 0.235 0.262 0.304 0.166 0.193 0.207

Base Component         

 (mol) 0.0082 0.0082 0.0080 0.0077 0.0037 0.0035 0.0034 

Na2HPO4-7H2O (g) 2.198 2.198 2.145 2.064 0.992 0.938 0.912

Salt         
 (mol) 0.974 0.474 0.174 0.075 0.038 0.008 0 

KCl (g) 72.59 35.30 12.97 5.553 2.799 0.590 0 

Volume H2O (mL) 1000 1000 1000 1000 1000 1000 1000 
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Table B.3  Transmembrane pressure-dependence of the Darcy permeability of agarose-GAG gels, as 
shown in Figure 3.39 and Figure 3.40.  High GAG gels are 3 v% agarose and 129 mg GAG/g agarose 
(0.37 v% GAG); agarose gels are 4 v% agarose and no GAG. 
Agarose (No GAG); 0.1 M PBS 
 1.5 kPa 5 kPa 10 kPa 15 kPa 20 kPa 

Mean [nm2] 191 162 158 151 159 

Std. Dev. [nm2] 33 26 23 23 14 

# Samples 6 7 7 7 4 

Minimum [nm2] 132 122 117 109 141 

Maximum [nm2] 222 187 181 177 173 

High GAG; 0.011 M PBS 
 1.5 kPa 5 kPa 10 kPa 15 kPa 20 kPa 

Mean [nm2] 164 142 136 -* 131 

Std. Dev. [nm2] 15 19 29 -* 15 

# Samples 4 4 4 -* 4 

Minimum [nm2] 147 124 114 -* 117 

Maximum [nm2] 182 165 176 -* 149 

High GAG; 0.1 M PBS 
 1.5 kPa 5 kPa 10 kPa 15 kPa 20 kPa 

Mean [nm2] 279 250 226 -* 223 

Std. Dev. [nm2] 27 23 32 -* 21 

# Samples 4 4 4 -* 4 

Minimum [nm2] 251 231 199 -* 205 

Maximum [nm2] 311 280 263 -* 249 

High GAG; 1 M PBS 
 1.5 kPa 5 kPa 10 kPa 15 kPa 20 kPa 

Mean [nm2] 357 309 285 -* 269 

Std. Dev. [nm2] 33 21 17 -* 29 

# Samples 4 4 4 -* 4 

Minimum [nm2] 325 291 271 -* 244 

Maximum [nm2] 400 338 310 -* 304 
*- Permeability not measured. 
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Table B.4  Darcy permeability (κ) of 3v% agarose-GAG gels over a range of ionic strengths of phosphate 
buffered saline solution, as shown in Figure 3.43. 
Blank (0 mg GAG / g agarose) 
 2 M 1 M 0.2 M 0.1 M 0.05 M 0.02 M 0.011 M 

Mean [nm2] 481 466 452 442 450 455 453 

Std. Dev. [nm2] 26 28 23 22 37 30 24 

# Samples 6 6 6 6 6 6 6 

Minimum [nm2] 440 428 412 400 390 412 426 

Maximum [nm2] 508 495 472 459 490 490 481 

Medium GAG (54.4+0.3 mg GAG / g agarose) 
 2 M 1 M 0.2 M 0.1 M 0.05 M 0.02 M 0.011 M 

Mean [nm2] -* 330 300 292 283 256 226 

Std. Dev. [nm2] -* 49 44 43 42 48 34 

# Samples  6 6 6 6 6 6 

Minimum [nm2]  257 236 228 220 199 173 

Maximum [nm2]  386 349 338 326 297 260 

High GAG (128.6+13.6 mg GAG / g agarose) 
 2 M 1 M 0.2 M 0.1 M 0.05 M 0.02 M 0.011 M 

Mean [nm2] 285 272 239 217 196 160 138 

Std. Dev. [nm2] 29 30 28 25 21 16 15 

# Samples 6 6 6 6 6 6 6 

Minimum [nm2] 252 237 207 191 168 138 115 

Maximum [nm2] 322 311 278 251 222 180 145 
*- Permeability not measured. 
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Appendix C. MACROMOLECULE PARTITIONING AND SIEVING DATA 
 

The following tables summarize the experimental data reported in Chapters 4 and 5. 

 
Table C.1  Transport properties (Θ, Φ, κ) for Ficoll in 4v% agarose – 0.2 v% GAG gels, as a function 

of Ficoll Stoke’s radius.  The standard error of a sample is the standard deviation divided by n . 
Θ 2.7 nm 3.5 nm 4.5 nm 5.9 nm Θ' 2.7 nm 3.5 nm 4.5 nm 5.9 nm
Mean 0.99 0.94 0.82 0.66 Mean 1.01 0.96 0.91 0.81
St. Dev. 0.02 0.06 0.17 0.05 St. Dev. 0.04 0.04 0.12 0.04
n 6 6 5 6 n 6 6 5 6
Min 0.94 0.85 0.66 0.62 Min 0.97 0.91 0.80 0.77
Max 1.00 1.00 1.00 0.75 Max 1.07 1.00 1.08 0.88

κ 2.7 nm 3.5 nm 4.5 nm 5.9 nm Pemin 2.7 nm 3.5 nm 4.5 nm 5.9 nm
Mean (nm2) 164 159 170 168 Mean 1.7 1.5 1.7 1.7
St. Dev. 27 16 26 17 St. Dev. 0.2 0.1 0.2 0.2
n 6 6 5 6 n 6 6 5 6
Min 132 133 141 143 Min 1.5 1.3 1.5 1.4
Max 215 174 212 196 Max 2.2 1.7 2.1 2.0

Φ 2.7 nm 3.5 nm 4.5 nm 5.9 nm Θ/Φ~K c 2.7 nm 3.5 nm 4.5 nm 5.9 nm
Mean 0.64 0.61 0.58 0.51 Mean 1.53 1.53 1.41 1.30
St. Dev. 0.03 0.06 0.03 0.04 St. Dev. 0.09 0.18 0.30 0.14
n 11 11 11 10
Min 0.58 0.45 0.54 0.43
Max 0.70 0.67 0.63 0.55  

 

 

 
Table C.2  Transport properties (Θ, Φ, κ) for Ficoll in blank 4v% agarose, as a function of Ficoll 

Stoke’s radius. 
Θ 2.7 nm 3.5 nm 4.5 nm 5.9 nm Θ' 2.7 nm 3.5 nm 4.5 nm 5.9 nm
Mean 1.00 0.96 0.98 0.83 Mean 1.06 1.00 1.00 0.91
St. Dev. 0.00 0.06 0.05 0.12 St. Dev. 0.02 0.04 0.05 0.08
n 4 5 5 5 n 4 5 5 5
Min 1.00 0.86 0.90 0.66 Min 1.03 0.95 0.92 0.80
Max 1.00 1.00 1.00 0.96 Max 1.07 1.04 1.05 0.98

κ 2.7 nm 3.5 nm 4.5 nm 5.9 nm Pemin 2.7 nm 3.5 nm 4.5 nm 5.9 nm
Mean (nm2) 232 279 265 274 Mean 1.5 2.2 1.7 1.8
St. Dev. 28 44 39 57 St. Dev. 0.2 0.5 0.3 0.4
n 4 5 5 5 n 4 5 5 5
Min 212 222 223 215 Min 1.2 1.5 1.4 1.4
Max 274 332 306 351 Max 1.8 2.9 2.0 2.4

Φ 2.7 nm 3.5 nm 4.5 nm 5.9 nm Θ/Φ~K c 2.7 nm 3.5 nm 4.5 nm 5.9 nm
Mean 0.74 0.70 0.69 0.62 Mean 1.35 1.37 1.43 1.34
St. Dev. 0.03 0.03 0.03 0.03 St. Dev. 0.06 0.11 0.09 0.21
n 10 10 10 10
Min 0.66 0.65 0.65 0.56
Max 0.78 0.75 0.74 0.69  
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Table C.3  Transport properties (Θ, Φ, κ) for 3.5 nm Ficoll in 4v% agarose – 0.2 v% GAG gels, as a 

function of ionic strength. 
Θ 0.01 M 0.05 M 0.1 M Θ' 0.01 M 0.05 M 0.1 M
Mean 0.74 0.92 0.94 Mean 0.85 0.96 0.96
St. Dev. 0.07 0.06 0.06 St. Dev. 0.06 0.03 0.04
n 5 6 6 n 5 6 6
Min 0.64 0.81 0.85 Min 0.75 0.91 0.91
Max 0.81 0.96 1.00 Max 0.89 0.98 1.00

κ 0.01 M 0.05 M 0.1 M Pemin 0.01 M 0.05 M 0.1 M
Mean (nm2) 113 161 159 Mean 1.6 1.8 1.5
St. Dev. 18 14 16 St. Dev. 0.2 0.2 0.1
n 5 6 6 n 5 6 6
Min 83 141 133 Min 1.2 1.7 1.3
Max 128 184 174 Max 1.8 2.1 1.7

Φ 0.01 M 0.02 M 0.05 M 0.1 M Θ/Φ~K c 0.01 M 0.05 M 0.1 M
Mean 0.46 0.54 0.64 0.63 Mean 1.62 1.44 1.50
St. Dev. 0.06 0.03 0.03 0.03 St. Dev. 0.27 0.11 0.13
n 11 11 10 10
Min 0.38 0.47 0.61 0.57
Max 0.60 0.59 0.69 0.67  

 

 

 

 
Table C.4  Transport properties (Θ, Φ, κ) for 3.5 nm Ficoll in blank 4v% agarose gels, as a function of 

ionic strength. 
Θ 0.01 M 0.05 M 0.1 M Θ' 0.01 M 0.05 M 0.1 M
Mean 0.77 0.98 0.96 Mean 0.88 1.01 1.00
St. Dev. 0.10 0.05 0.06 St. Dev. 0.07 0.04 0.04
n 6 5 5 n 6 5 5
Min 0.68 0.89 0.86 Min 0.81 0.95 0.95
Max 0.89 1.00 1.00 Max 0.95 1.05 1.04

κ 0.01 M 0.05 M 0.1 M Pemin 0.01 M 0.05 M 0.1 M
Mean (nm2) 187 256 279 Mean 2.0 2.0 2.2
St. Dev. 88 32 44 St. Dev. 0.4 0.3 0.5
n 6 5 5 n 6 5 5
Min 102 219 222 Min 1.5 1.6 1.5
Max 306 306 332 Max 2.6 2.3 2.9

Φ 0.01 M 0.02 M 0.05 M 0.1 M Θ/Φ~K c 0.01 M 0.05 M 0.1 M
Mean 0.67 0.70 0.69 0.70 Mean 1.14 1.49 1.43
St. Dev. 0.04 0.04 0.05 0.03 St. Dev. 0.16 0.17 0.15
n 9 10 10 10
Min 0.59 0.63 0.63 0.65
Max 0.71 0.76 0.75 0.75  
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Table C.5  Transport properties (Θ, Φ, κ) for BSA in 4v% agarose – 0.2 v% GAG gels, as a function 

of ionic strength. 
Θ 0.01 M 0.02 M 0.05 M 0.1 M 1.0 M Θ' 0.01 M 0.02 M 0.05 M 0.1 M 1.0 M
Mean 0.39 0.52 0.72 0.80 0.88 Mean 0.56 0.68 0.84 0.89 0.94
St. Dev. 0.13 0.08 0.07 0.04 0.02 St. Dev. 0.16 0.09 0.06 0.03 0.02
n 6 6 6 6 6 n 6 6 6 6 6
Min 0.22 0.42 0.63 0.75 0.84 Min 0.31 0.53 0.73 0.83 0.90
Max 0.60 0.64 0.83 0.87 0.91 Max 0.78 0.80 0.91 0.93 0.95

κ 0.01 M 0.02 M 0.05 M 0.1 M 1.0 M Pemin 0.01 M 0.02 M 0.05 M 0.1 M 1.0 M
Mean (nm2) 103 118 145 152 177 Mean 1.5 1.5 1.5 1.5 1.8
St. Dev. 27 25 29 29 33 St. Dev. 0.4 0.3 0.3 0.3 0.4
n 6 6 6 6 6 n 6 6 6 6 6
Min 59 73 94 102 124 Min 0.8 0.9 0.9 1.0 1.2
Max 135 137 168 178 215 Max 1.9 1.8 1.7 1.8 2.2

Φ 0.01 M 0.02 M 0.05 M 0.1 M 0.2 M 0.5 M Θ/Φ~K c 0.01 M 0.02 M 0.05 M 0.1 M 1.0 M
Mean 0.30 0.37 0.40 0.50 0.54 0.54 Mean 1.32 1.38 1.83 1.60 1.23
St. Dev. 0.04 0.06 0.08 0.04 0.04 0.03 St. Dev. 0.47 0.31 0.40 0.16 0.12
n 10 11 11 11 11 11
Min 0.24 0.26 0.28 0.44 0.46 0.47
Max 0.38 0.47 0.55 0.57 0.59 0.59  

 

 

 

 
Table C.6  Transport properties (Θ, Φ, κ) for BSA in blank 4v% agarose gels, as a function of ionic 

strength. 
Θ 0.01 M 0.02 M 0.05 M 0.1 M 1.0 M Θ' 0.01 M 0.02 M 0.05 M 0.1 M 1.0 M
Mean 0.93 0.92 0.91 0.91 0.93 Mean 0.96 0.97 0.96 0.96 0.97
St. Dev. 0.03 0.01 0.01 0.00 0.01 St. Dev. 0.01 0.01 0.00 0.01 0.01
n 6 6 6 6 6 n 6 6 6 6 6
Min 0.91 0.90 0.90 0.91 0.92 Min 0.94 0.95 0.96 0.95 0.97
Max 0.98 0.94 0.92 0.92 0.94 Max 0.97 0.97 0.96 0.97 0.98

κ 0.01 M 0.02 M 0.05 M 0.1 M 1.0 M Pemin 0.01 M 0.02 M 0.05 M 0.1 M 1.0 M
Mean (nm2) 246 251 251 265 281 Mean 2.0 2.0 2.0 2.1 2.2
St. Dev. 38 40 41 42 50 St. Dev. 0.3 0.4 0.4 0.4 0.4
n 6 6 6 6 6 n 6 6 6 6 6
Min 191 196 196 211 209 Min 1.6 1.6 1.6 1.6 1.6
Max 292 301 298 324 340 Max 2.5 2.5 2.4 2.5 2.7

Φ 0.01 M 0.02 M 0.05 M 0.1 M 0.2 M 0.5 M Θ/Φ~K c 0.01 M 0.02 M 0.05 M 0.1 M 1.0 M
Mean 0.66 0.65 0.60 0.61 0.63 0.67 Mean 1.41 1.42 1.51 1.50 1.23
St. Dev. 0.05 0.04 0.08 0.06 0.04 0.05 St. Dev. 0.10 0.08 0.19 0.15 0.08
n 9 10 9 9 10 10
Min 0.61 0.59 0.53 0.52 0.55 0.62
Max 0.72 0.71 0.74 0.71 0.68 0.76  
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Table C.7  Transport properties (Θ, κ) for BSA in 3v% agarose – 0.4 v% GAG gels, as a function of 

ionic strength. 
Θ 0.01 M 0.02 M 0.05 M 0.1 M Θ' 0.01 M 0.02 M 0.05 M 0.1 M
Mean 0.50 0.65 0.80 0.86 Mean 0.67 0.82 0.90 0.93
St. Dev. 0.05 0.07 0.03 0.03 St. Dev. 0.07 0.07 0.02 0.02
n 6 6 6 6 n 6 6 6 6
Min 0.42 0.51 0.76 0.81 Min 0.58 0.69 0.86 0.90
Max 0.56 0.71 0.84 0.91 Max 0.76 0.89 0.93 0.96

κ 0.01 M 0.02 M 0.05 M 0.1 M Pemin 0.01 M 0.02 M 0.05 M 0.1 M
Mean (nm2) 207 256 326 363 Mean 1.3 1.7 1.5 1.5
St. Dev. 38 56 60 66 St. Dev. 0.2 0.3 0.2 0.3
n 6 6 6 6 n 6 6 6 6
Min 169 204 253 286 Min 1.1 1.3 1.2 1.3
Max 261 346 397 444 Max 1.6 2.1 1.8 1.8  

 

 

 

 
Table C.8  Transport properties (Θ, κ) for BSA in blank 3v% agarose gels, as a function of ionic 

strength. 
Θ 0.01 M 0.02 M 0.05 M 0.1 M Θ' 0.01 M 0.02 M 0.05 M 0.1 M
Mean 0.88 0.88 0.88 0.95 Mean 0.96 0.95 0.96 0.98
St. Dev. 0.01 0.03 0.02 0.01 St. Dev. 0.01 0.01 0.01 0.00
n 6 6 6 6 n 6 6 6 6
Min 0.86 0.85 0.86 0.94 Min 0.95 0.94 0.95 0.98
Max 0.90 0.93 0.91 0.97 Max 0.96 0.96 0.96 0.99

κ 0.01 M 0.02 M 0.05 M 0.1 M Pemin 0.01 M 0.02 M 0.05 M 0.1 M
Mean (nm2) 667 683 683 708 Mean 2.0 2.0 2.0 2.1
St. Dev. 64 84 69 79 St. Dev. 0.2 0.2 0.1 0.2
n 6 6 6 6 n 6 6 6 6
Min 587 566 588 608 Min 1.8 1.8 1.8 1.8
Max 757 804 781 803 Max 2.2 2.2 2.2 2.3  
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Appendix D. EXCLUDED VOLUMES FOR SPHERE-COIL INTERACTIONS 
 

In section 4.4.1, the partition coefficient for a hard sphere into a matrix of GAG was 

considered for the cases where GAG is a rod or a coil.  The derivation for the excluded 

volume and partition coefficient for a sphere in a an array of coils is based on the 

continuum method used for the interactions between a freely-jointed chain and a rod 

(White and Deen 2000).  Unlike the coil-rod system, an analytical solution is available 

for the excluded volume of a coil-sphere interaction.  A summary of the derivation, 

performed by W. M. Deen, is provided here. 

 

Let the sphere have a radius rs and the coil a radius of gyration rg; the ratio of them is 

λ = rg/rs.  Define a dimensionless contour length along the chain τ (τ = 0 and 1 at the 

chain ends) and a dimensionless radial coordinate η = r/rs.  The probability of finding a 

point τ at position η, given that no preceding part of the chain overlapped with the fiber, 

is P(η,τ).  The probability density with spherical symmetry is given by  

 
2

2
2

P Pλ η
τ η η η

⎛ ⎞∂ ∂ ∂
= ⎜ ⎟∂ ∂ ∂⎝ ⎠

 (D.1) 

 ( ,0) 1 ; (1, ) 0 ; ( , ) 1P P Pη τ τ= = ∞ =   . (D.2) 

 

Redefine the probability by 

 ( , ) 1 ( , ) / (1 )P x xη τ Ψ τ= − −  (D.3) 

with the new position variable x = η–1.  Then Equation (D.1) and the boundary 

conditions in Equation (D.2) are transformed to 

 
2

2
2x

Ψ Ψλ
τ

∂ ∂
=

∂ ∂
 (D.4) 

 ( ,0) 0 ; (0, ) 1 ; ( , ) 0Ψ η Ψ τ Ψ τ= = ∞ =   . (D.5) 

This equation is identical to the archetypal example of diffusion into a semi-infinite slab 

(Section 3.5 in (Deen 1998)).  Using a similarity transformation s = x/g(τ), Equations 

(D.4)-(D.5) have the solution 
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 ( )2( ) 1 ( ) 1 / 4s erf s erf xΨ λ τ= − = −  (D.6) 

where erf is the error function.  In terms of the original probability density function 

 
( )2( 1) / 4

( , ) 1
erfc

P
η λ τ

η τ
η

−
= −   . (D.7) 

where erfc is the complimentary error function.  The probability of fitting the entire chain 

at a position η (for η ≥ 1) is 

 ( )( 1) / 2
( ,1) 1

erfc
P

η λ
η

η
−

= −  (D.8) 

while the probability is zero for η ≤ 1.   

 

The excluded volume between the sphere and the coil is the volume integral of the 

probability of the entire chain not fitting, or 1-P(η,1): 

 ( )3 2

0
1 ( ,1) 4 1 ( ,1)sc s

V

V P dV r P dη π η η η
∞

= − = −∫ ∫   . (D.9) 

Separating the integral into two regions 

 
( ) ( )

1 2
3 0 1

3 3 ( 1) / 2
4 / 3

sc

s

V d erfc d
r

η η η η λ η
π

∞
= + −∫ ∫   . (D.10) 

Now evaluating the first integral and transforming the spatial variable in the second 

integral to t = (η-1)/2λ, Equation (D.10) becomes 

 
( ) ( ) ( )3 0

1 6 1 2
4 / 3

sc

s

V t erfc t dt
r

λ λ
π

∞
= + +∫   . (D.11) 

The complimentary error function has the following properties: 

 

2

0

exp( )( ) ( )

(0) 1 ; ( ) 0

( ) 1 /

xerfc x dx x erfc x

erfc erfc

erfc x dx

π

π
∞

− −
= +

= ∞ =

=

∫

∫

. (D.12) 

Equation (D.11) then becomes  

 
( ) ( )2

3 0

61 12
4 / 3

sc

s

V t erfc t dt
r

λ λ
π π

∞
= + + ∫  . (D.13) 

The remaining integral in Equation (D.13) can be evaluated using integration by parts: 
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( ) ( )
2

2 2
3 0

2

6 121 0 exp
4 / 3

6 121
4

21 3

sc

s

V t t dt
r

λ λ
π π π

λ λ π
π π

λ λ
π

∞
= + + + −

⎛ ⎞
= + + ⎜ ⎟

⎝ ⎠
⎛ ⎞= + +⎜ ⎟
⎝ ⎠

∫

 (D.14) 

 

The partition coefficient for a solute i can be calculated from the excluded volume by 

 exp expi ij j ij
j j

N VΦ γ
⎡ ⎤ ⎡ ⎤

= − = −⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

∑ ∑  (D.15) 

where ijγ is the interaction parameter between solute i and an object j, jN is the number 

concentration of object j, and Vij is the excluded volume between objects i and j (Lazzara 

et al. 2000).  The partition coefficient for a spherical solute i with radius rs in an array of 

rigid rods with radius rf was 

 
2

exp 1 s
i f

f

r
r

Φ φ
⎡ ⎤⎛ ⎞
⎢ ⎥= − +⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

  . (D.16) 

The number concentration can calculated from the rod volume fraction: 

 2
j f f fN r Lφ π=  (D.17) 

where Lf is the length of a fiber.  Knowing the rigid fiber volume fraction, the equivalent 

partition coefficient for flexible fibers (coils) is found by combining Equations (D.14), 

(D.15), and (D.17):  

 
3

2
4 1 2exp

3
g gs

i f
f f s s

r rr
r L r r

Φ φ
π

⎡ ⎤⎛ ⎞⎛ ⎞
= − + +⎢ ⎥⎜ ⎟⎜ ⎟

⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦
  . (D.18) 

As referenced in the text, GAG properties were assumed to be Lf = 105 nm, rf = 0.5 nm, 

and rg = 7.5 nm. 
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Appendix E. VARIANCE-WEIGHTED STATISTICS 
 

In section 5.3, it was necessary to analyze values of the convective hindrance factor, 

Kc, which were only known as a statistical mean and variance, not as individual 

measurements of multiple samples.  Since a limited number of samples were used to 

calculate Kc, the variance at each condition could differ.  In order to account for these 

different variance and place a stronger weight on values of Kc that were known more 

accurately, variance-weighting was used in the statistical analysis.  Thanks to Professor 

Daniele Veneziano (MIT, Department of Civil Engineering) for a helpful discussion on 

this topic. 

 

 

Error Propagation 

 

Assume that two properties, x and y, are measured independently at a condition i, 

each having nx and ny unique measurements.  The means (mx, my) and variances (σx
2, σy

2) 

of these measurements at each condition i are calculated by standard methods.  The 

following equations give the mean and variance of the quotient of these properties. 

 i
i

i

xlet K
y

≡  (E.1) 

 i

i

i

x
K

y

m
m

m
=  (E.2) 

 
2 2 2

2 2 2
i i i

i i i

K x y

K x ym m m
σ σ σ

= +  (E.3) 

Note: The standard deviation is the square root of the variance.  For properties with 

unique measurements, the standard error (or standard deviation of the mean) is the 

standard deviation divided by the square root of the number of measurements, n. 
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Weighted Mean 

 

To find the average value of K over all conditions i, it may be desired to more heavily 

weight those values which are known more accurately.  Knowing the mean value and 

variance of K at each condition i (mKi and σKi
2, respectively), the average value and 

variance can be calculated by 

 2 2
1i

i i

K
K

i iK K

m
m

σ σ
⎛ ⎞ ⎛ ⎞

= ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∑ ∑  (E.4) 

 2
2

11
i

K
i K

σ
σ

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
∑  (E.5) 

 

 

Weighted Least-Squares Regression 

 

The values of Ki can also be fit to a curve by weighted least-squares regression, which 

again places more weight on those points known more accurately.  Assume that K is 

measured as a function of c, which are related by the linear form 

 1 2K cβ β= +   . (E.6) 

Assuming that mean values and variance of K are known for i different values of c; c is 

assumed to be know exactly.  Four matrixes are defined:  

 1

2

parameter matrix :
β
β

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
β  (E.7) 

 
,1

,

dependant variable :
K

K i

m

m

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

Y  (E.8) 

 
11

independent variable :
1 i

c

c

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

X  (E.9) 
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2
1

2

1 0 0

weighting factor : 0 0
10 0

K

Ki

σ

σ

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

W   . (E.10) 

The least-squares fit of the slope and intercept of the line are calculated from 

 ( ) 1T T−
=β X WX X WY  . (E.11) 

The variance of the least-squares parameters are  

 ( )
2

1 12
2

2

0
0

T β
β

β

σ
σ

− ⎛ ⎞
= = ⎜ ⎟⎜ ⎟

⎝ ⎠
σ X WX   . (E.12) 

 

Note that the method above can be adapted to multiple independent variables by 

adding additional an additional parameter in Matrix (E.7) and a third column in Matrix 

(E.9).  The method can also be used for least-squares regression of non-linear functions.  

For example an exponential could be fit by replacing c with ln(c) in Matrix (E.9); a 

quadratic expression could include a third column with ci
2 in Matrix (E.9). 

 
 Below is an example of MATLAB code to fit the parameters in a linear system. 
 

beta=(X'*W*X)\(X'*W*Y);  % matrix of least-squares linear parameters 
sigma2b=inv(X'*W*X);     % variance matrix for beta parameters 

  

intercept=[beta(1), sqrt(sigma2b(1,1))]  % mean, std dev of intercept 
slope=[beta(2), sqrt(sigma2b(2,2))]      % mean, std dev of slope 
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Appendix F. ENDOTHELIAL MODELS: 1 VERSUS 2 LAYERS 
 

As noted in section 6.1, the endothelium can be modeled in two ways: as a single 

layer containing both glycocalyx and fenestrae or as two separate layers in series.  The 

following section discusses the implications of the two approaches for hydraulic 

permeability and sieving. 

 

Hydraulic Permeability 

Flow through a gel is given by Darcy’s Law, 

 v Pκβ Δ
μδ

=  (F.1) 

where β is the correction factor for any hindrances to the flow due to impermeable 

obstructions.  Calculation of β was described in detail in Chapters 3 and 6.  For layers in 

series, the volumetric flux (v) is constant through all layers and the pressure drop across 

each layer sum to the total pressure drop.  If the fiber matrix and liquid are the same in 

both layers (κ and μ are constant), then the correction factor for two layers (β) is related 

to the correction factor of each layer (β1, β2) by  

 1 2 1 2

1 2

δ δ δ δ
β β β

+
+ =   . (F.2) 

where the thickness of both layers is the sum of the individual thicknesses, δ = δ1 + δ2.  

The assumption in this approach is that the pressure is uniform at the interface between 

layers 1 and 2. 

To check the validity of this assumption, Comsol MultiphysicsTM was used to model a 

single endothelial layer (shown in Figure F.1(a)), as well as model the glycocalyx (layer 

1) and fenestra (layer 2) individually.  The model of layer 1 assumed that shaded region 

on the bottom surface in Figure F.1 was impermeable.  The models used the endothelial 

dimensions given in Chapter 6: Rf = 30 nm, b = 60 nm, δ2 = 60 nm, and δ1 = 100-

1000 nm.  The resulting values are β are summarized in Table 1 for the single-layer 

model and the two-layer model using Equation (F.2).  The correction factors for the one-

layer and two-layer models deviated by less than 6%, confirming that the two modeling 

approaches are equally valid. 
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Figure F.1  Diagram of a unit cell of the endothelium.  The fenestra can be modeled by (a) a 

physiologically-based hourglass shape or (b) a simplified straight-walled cylinder.  If the endothelium is 
considered as two layers in series, the glycocalyx (layer 1) is upstream of the fenestra (layer 2).  The fluid-
filled space in both layers are assumed to have the same Darcy permeability. 

 
 
Table F.1  Correction factors (β) for endothelial resistance to flow.  Results for models of the 

endothelium with one and two layers, for hourglass and cylindrical fenestra, and for a range of glycocalyx 
thicknesses. 

 Hourglass Cylindrical 

δ1/b Single Layer Two Layers Two Layers 

1.5 0.419 0.443 0.404 

2.5 0.501 0.527 0.487 

5 0.634 0.657 0.621 

20 0.857 0.871 0.848 

 

For comparison, the fenestra was also modeled as a straight-walled cylindrical pore, 

as shown in Figure F.1(b).  For the several values of Req considered, the correction factor 

β2 deviated from the pore area fraction ε = πReq
2/4b2 by less than 0.001%.   It was found 

that a radius of Req = 33.6 nm gave a correction factor identical to that of the hourglass-

shaped fenestra in Layer 2.  As shown in Table F.1, using β1 for cylindrical pores yielded 

values of β that were within 4 v% of the single-region hourglass simulations, confirming 

that all three approaches to modeling the fenestra are comparable. 
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Sieving 

In models of sieving through the glomerular basement membrane, it was shown that 

the sieving coefficient was correctly modeled if the Péclet number included the hydraulic 

correction factor (Deen et al. 2001, Edwards et al. 1999): 

 vPe c

d

K
K D

δ
β∞

=   . (F.3) 

This result is directly applicable to sieving through the glycocalyx, since both are a 

uniform slab of material with at least one surface partially blocked with circular 

openings.  The Péclet number for the glycocalyx uses values of β1 calculated previously 

for hydraulic permeability. 

As shown for hydraulic permeability, the fenestra are equally well modeled by an 

hourglass shape or a cylindrical pore.  For a cylindrical pore, the velocity through the 

glycocalyx (v) is increased to v/ε (≈ v/β) in the pore, such that the Péclet number in the 

pore is also given by Equation (F.3).  It is easily assumed that the Péclet number for an 

hourglass fenestra would also be accurately described by Equation (F.3), using β2 and the 

volume flux, v, based on the entire unit cell cross-sectional area. 

As described in Chapter 6, the sieving coefficient of a layer is a function of both the 

properties of that layer (Φi, Kc,i, and Pei) as well as the sieving coefficient of the 

downstream layers (Θn).  The sieving coefficient for the endothelium is the product of the 

glycocalyx and fenestra layers.  Using Equation (6.16) for the sieving coefficient of 

Layer 1, the sieving coefficient of the endothelium is 

 ( )1 11 2
21

c
endo Pe Pe

n c

K
e K e

ΦΘ Θ Θ
Θ Φ Θ− −

= =
− +

 (F.4) 

Assuming that the fiber properties are the same between the layers (ΦKc is constant) and 

using Equation (6.16) to substitute for Θ2, the endothelial sieving coefficient becomes 

 ( )( ) ( )1 2 1 21
c

endo Pe Pe Pe Pe
n c

K
e K e

ΦΘ
Θ Φ− + − +

=
− +

  . (F.5) 

Again assuming the same fiber properties between the layers, the sum of the Péclet 

numbers is 
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 1 2
1 2

1 2

c

d

K vPe Pe
K D

δ δ
β β∞

⎛ ⎞
+ = +⎜ ⎟

⎝ ⎠
  . (F.6) 

Noticing the similarity of terms in Equations (F.6) and (F.2), the sum of the Péclet 

numbers is equal to a single endothelial Péclet number based on the single-layer 

correction factor and overall thickness: 

 1 2
1 2

c
endo

d

K vPe Pe Pe
K D

δ δ
β∞

⎛ ⎞+
+ = =⎜ ⎟

⎝ ⎠
  . (F.7) 

Substituting this result into Equation (F.5) gives the expression expected for treating the 

endothelium as a single layer: 

 ( )1 endo endo

c
endo Pe Pe

n c

K
e K e

ΦΘ
Θ Φ− −

=
− +

  . (F.8) 

This result justifies that an accurate sieving coefficient through the endothelium can be 

obtained by using the hydraulic correction factor for a single layer, as was assumed in the 

analysis in Section 6.1. 
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INDEX OF SYMBOLS 

 

a Radius of boundary layer in Helmholtz model [m] 
Ai Area of fiber region i [m2] 
[A]i Absorbance of a sample i [-] 
Am Cross-sectional exposed area of a gel membrane [m2] 
b Dimensional unit cell radius [m] 
B Dimensionless unit cell width [-] 
c’

i Concentration of species i inside the membrane (Donnan model) [mol/m3] 
cb Bulk concentration [mol/m3] 
ci Concentration of species i  [mol/m3] 
ci,init Initial (t=0) concentration of species i [mol/m3] 
ci,0 Bulk solution concentration of species i [mol/m3] 
cm Fixed negative charge concentration in the membrane (>0) [mol/m3] 
cM Concentration at the upstream surface of a membrane [mol/m3] 
Ci Dimensionless concentration of species i [-] 
Da Damköhler number [-] 
Di Diffusivity of species i [m2/s] 
D∞ Diffusivity in free solution [m2/s] 
ei Unit vector in the i-direction [-] 
EDL Double layer characteristic electric field [V/m] 
Es Flow-induced characteristic electric field [V/m] 
fi(ΘB) Bound GAG hindrance function for i=DG, k1, or ΦG [-] 

if  Dimensionless force per unit length [-] 

F Faraday’s constant [= 9.648 x 104 C/mol] 
Fi Force acting on fibers of type i [Pa-m2] 
G1,G2 Dimensionless parameters in Helmholtz model [-] 
j Current density [C/m2-s] 
<j> Macroscopic, or area-averaged, current density [C/m2-s] 
k Hydraulic permeability [m2/Pa-s] 
kavg Average permeability of multiple fiber types or orientations [m2/Pa-s] 
k1 GAG-active site binding rate constant [L/mol/s] 
k2 Active site degradation rate constant [s-1] 
keff Effective permeability of multiple fiber regions [m2/Pa-s] 
ki Hydraulic permeability of fiber type i or region i [m2/Pa-s] 
kij Electrokinetic coupling coefficients 
koc Open circuit hydraulic permeability [m2/Pa-s] 
krxn General first-order reaction constant [s-1] 
Kc Convective hindrance coefficient [-] 
Kd Diffusive hindrance coefficient [-] 
l Optical pathlength of a sample in spectrometry [m] 
lf,i Length of a fiber of type i [m] 
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L Length over which a pressure drop occurs [m] 
mi Mass of species i [g] 
mi Bound GAG hindrance parameter for i=DG, k1, or ΦG [-] 
n Number of data points [-] 
ni Number of fibers of type i [-] 
ni Flux of species i [moles/m2-s] 
Ni Dimensionless flux of species i [-] 
p Pressure [Pa] 
P Dimensionless pressure [-] 
Pe Peclet number = usλD/D+ = Kcvδ/KdD∞ [-] 
Pemin Minimum Peclet number in a membrane = vδ/D∞ [-] 
Q Volumetric flow rate of filtration [m3/s] 
rf Fiber radius [m] 
rf,i Fiber radius of fiber type i [m] 
rs Solute hydraulic radius [m] 
rs,i Hydraulic radius of solute type i [m] 
R Ideal gas constant [= 8.314 J/mol-K] 
Rf Dimensionless fiber radius [-] 
Rm Mesh fiber radius [m] 
Rtube Inner radius of the ultra-filtration cell outlet tube [m] 
Re Reynolds number = vδρ/μ 
Sc Schmidt number = μ/ρD∞ 
t Time variable [s] 
T Absolute temperature [K] 
u Dimensionless fluid velocity vector [-] 
us Superficial fluid velocity [m/s] 
v Dimensional fluid velocity vector [m/s] 
<v> Macroscopic, or area-averaged, velocity [m/s] 
vj j-component of velocity (j = x, y, z, etc.) [m/s] 
V Voltage [V] 
Vth Thermal voltage [V] 
Vi Volume of a sample i [m3] 
Vtotal Total unit volume [m3] 
W Center-to-center mesh fiber spacing [m] 
x Independent position variable [m] 
X Dimensionless independent position variable [-] 
xi Generic abscissa variable 
zi Valance charge of species i  [-] 
ztube Length of ultrafiltration cell outlet tube [m] 
α Dimensionless ratio of electrophoretic to positive ion mobility [-] 
α Dimensionless filtrate velocity through a membrane [-] 
αdye Absorption coefficient of dye in free solution [mol-1 cm2] 
αm Dimensionless ratio of mesh open area to total area [-] 
β Maxwell parameter for relative permeabilities [-] 
βm Correction factor for support mesh flow resistance [-] 
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βE Dimensionless ratio of induced to double layer electric fields [-] 
δ Thickness of a gel membrane [m] 
δ1 Thickness of a gel membrane upstream from the mesh [m] 
ε Dielectric permittivity [F/m] 
εj Volume fraction of region j [-] 
φ Fiber volume fraction [-] 
φ̂  Bead-and-string fiber volume fraction [-] 

φA Fraction of sterically available active sites [-] 
φi Volume fraction of fiber type i [-] 
Φi Partition coefficient of species i [-] 
γ Binding proportion between GAG and dye [-] 
γG Ratio of maximum concentration of unbound GAG to active sites [-] 
γm Dimensionless fraction of gel upstream of mesh [-] 
κ Darcy permeability [m2] 
λ Ratio of solute radius to fiber radius [-] 
λD Debye length [m] 
λm Dimensionless ratio of mesh thickness to mesh fiber radius [-] 
μ Fluid viscosity [Pa-s] 
μi Mobility of species i [m2/V-s] 
πb Bulk osmotic pressure [Pa] 
ρ Fluid density [kg/m3] 
Θ Membrane sieving coefficient [-] 
Θ’ Apparent sieving coefficient, without concentration polarization correction [-] 
Θi Dimensionless concentration of species i [-] 
σo Fluid conductivity [C/m-V-s] 
σs Surface charge density [C/m2] 

iσ  Dimensionless surface charge density of object i [-] 
τ Dimensionless independent time variable [-] 
τD Characteristic diffusion (or diffusion+reaction) time [s] 
ω Angular velocity of the bulk fluid [s-1] 
ωst Angular velocity of the stir bar [s-1] 
ψ Electrical potential [V/m] 
ψD Donnan potential [V/m] 
Ψ Dimensionless electrical potential [-] 
ξ Dimensionless ratio of electrokinetic properties [-] 
∇ Dimensionless gradient operator [-] 
∇  Dimensional gradient operator [m-1] 
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