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Abstract

A local estimation procedure is proposed which is based on statistical tests that identify
zones of local homogeneity with respect to the seismic process. The resulting
estimator preserves significant discontinuities of the recurrence rate of earthquakes.
This is an improvement over present day procedures which require the extemal
specification of seismic sources inside which seismicity is assumed constant. In the
proposed procedure, seismic sources can optionally be used in the identification of
significant features but influence the estimates only if validated by the data.

With respect to the selection of model parameters, two selection procedures are
proposed. The first one is based on the method of moments and consists in matching
observed statistics to some target values. In the second procedure, which is known as
cross-validation, the catalog is divided into non-overlapping estimation and validation
samples and optimal parameters are selected on the basis of statistics measuring the
goodness-of-fit of the predictions. The first procedure is intuitive and easy to
implement, however, it lacks the predictive interpretation of the second procedure,
which can be used to simultaneously select several model parameters, and compare
competing models.

Finally, a combined estimator of seismic hazard which makes use of both seismic
source and historical estimators of seismic hazard is proposed. This estimator is a
simple alternative to the previous models of seismicity, is shown to be robust with
respect to the specification of source configurations, and is a significant improvement
over the seismic source and historical estimators.

Thesis Supervisor: Professor Daniele Veneziano
Title: Professor of Civil Engineering
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Chapter 1

Statement of the Problem

Seismicity in intraplate regions is generally assumed to be due to changes in the stress

conditions within previously weak portions of the earth's crust as opposed to new

faults created during earthquakes. As a consequence, one may expect the level of

seismicity to vary as a function of location given the necessity for the simultaneous

presence of existing faults and high stresses. However, the spatial variation of

seismicity is not well known given the uncertainty with respect to existing stress levels

and the location of potentially active faults and one must rely on infomation such as

past seismicity and geological and geotectonic characteristics.

It is generally assumed that the occurence of main events can be modelled through a

Poisson process which is homogeneous in space within so-called seismogenic

provinces and stationary in time. This is the procedure adopted by EPRI (1985), LLNL

(1985), YAEC (1983), and the USGS (Algermissen et al. 1982). In all these

procedures, seismogenic provinces are typically identified by experts based on an

analysis of the historical seismicity and the geological and tectonic setting of the

region. There is a lot of uncertainty on the exact configuration of these zones which

gives rise to many competing hypotheses.

It is also frequently assumed that main events in each province have exponentially

distributed size (macroseismic intensity I, or magnitude m), such that the annual rate of

main events with size in the interval (I-AI/2, I+AI/2) in a unit area of province i is

,(I) = exp{ai-b(I-I*)) (1.1)

The rate is nil above an upper-bound size II, which is independently determined for

each seismic source.
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Many estimation procedures have been proposed for the estimation of the parameters a

and b in Equation 1.1. The most popular ones are least squares on rates, least squares

on cumulative rates, maximum likelihood, and maximum penalized likelihood.

Maximum likelihood estimation of the exponential rate parameters a and b under the

previous assumptions has been studied by (Aki, 1965) and more recently by (Weichert,

1980). The method of Weichert allows for a different period of completeness for each

magnitude. The bias effect of magnitude discretization and the uncertainty on the

estimation of the slope parameters when using maximum likelihood have been studied

in detail by (Bender, 1983). The maximum penalized likelihood, in the version of

(Veneziano and VanDyck, 1987), is perhaps the best procedure from a statistical point

of view. In this procedure, which is reviewed in section 2.1, incompleteness of the

catalog is modelled through a probability of detection which is piecewise continuous in

space, time, and magnitude. An innovative feature of the procedure is that

imcompleteness and the seismicity parameters are simultaneously estimated. For the

estimation of the probability of detection, it is assumed that deviations from the

assumptions of stationarity and exponentiality in size distribution are due to

incompleteness (section 2.1). Estimates of the probability of detection are further

constrained such that monoticity is enforced in the space of increasing time and

magnitude. The implementation of the estimation procedure for the seismicity

parameters requires that space, and magnitude be discretized. The discretizations in

space and magnitude can be different from those used for the definition of the

probability of detection. The smoothness level of the esitmates of a(x) and b(x) is

specified by the user and controlled through additional terms in the likelihood function.

In this procedure, the parameters a and b are allowed to vary smoothly within each

seismogenic province, but are discontinuous across province boundaries. Optionally,

one may decide not to specify provinces and allow the seismicity parameters to vary

smoothly in space.
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Smoothness is controlled by penalizing deviations between the estimates at a location

and the average of the estimates at the immediately neighboring locations. This often

leads to undesirable results in regions which exhibit sharp contrasts in the rate of

activity, specially for large penalties.

In section 2.2, a statistical procedure is developed which objectively identifies zones of

homogeneous seismicity and preserves significant features through the definition of

interpolation neighborhoods. The advantage of such a procedure is that significant

discontinuities in the recurrence rate are preserved even under large penalties. In

section 2.3, the above procedure is modified to allow the inclusion of expert source

configurations in the identification of the homogeneous interpolation neighborhoods.

The resulting estimates are shown to be robust with respect to source configurations.

An important issue for the family of models considered in this thesis is the selection of

the degree of smoothness of the estimates. In Chapter 3, two methods are developped

for the objective and optimal selection of the model parameters: we either impose that

certain observed statistics equal some predetermined target value or maximize cross-

validated measures of goodness-of-fit. For the latter purpose, the catalog is divided

into non-overlapping estimation and validation samples and models are classified

according to how accurately they predict future events. Therefore, these are attractive

statistics for selecting seismicity models to be used in earthquake hazard studies.

The above procedures and models are applied to the Eastern United States using the

earthquake catalog compiled by EPRI (1985) and to the New England region using the

catalog compiled by (Chiburis, 1981). Goodness-of-fit procedures are also proposed

with respect to the assumptions of exponentiality in size distribution, and stationarity in

time and in space.

In Chapter 4, an alternative procedure to the local models of Chapters 2 and 3 is

proposed for the computation of the seismic hazard at a site. The new estimator
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combines two conventioanl estimators of seismic hazard: the seismic-sources and

historical estimators of seismic hazard, and is shown to be more accurate than either

estimator individually. The estimators are shown to be robust with respect to

externally-specified source configurations and to produce estimates similar to those

using the local models of seismicity.

Chapter 5 summarizes the proposed methods of analysis and states conclusions and

recommendations for future research within the family of models considered in the

thesis.
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Chapter 2

Local Models of Seismicity

2.1 Introduction

Events in an earthquake catalog can be thought of as points in a multidimensional

space (x,t,m); for earthquake i, xi is the geographical location, ti is the time of

occurence and mi is a size measure. The problem discussed in this chapter is how to

estimate the rate density function v(x,m) from the historical data. This function is

defined such that the rate v(x,m) is the expected count of earthquakes in the

infinitesimal neighborhood (dx,dm) around (x,m). Two basic assumptions are used

throughout the chapter: 1. The earthquake sequence is the realization of a Poisson

process, i.e. points in (x,m) space are independently located, 2. Nonstationarity of the

observed earthquake sequence is due to incomplete reporting, whereas the seismicity

generating process is stationary. Therefore, the yearly rate of events over a unit area

can be written as

X(x,t,mn) = v(x,m)nPD(x,t,n ) (2.1)

where PD(x,t,m) is the probability that an earthquake of size m, and at location x and

time t is reported. Each event is assumed to be independently reported (detection / no

detection of different earthquakes are independent events).

Deviations from the model asumptions can be accomodated through fitting the model

locally in time and magnitude. For example, the assumption of stationarity can be

relaxed by using only the most recent portion of the catalog for estimating the seismic

hazard in the next following years. Similarly, deviations from the assumption of
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exponentiality can be accomodated by assigning different weights to each magnitude

interval so that the model fits better over a given range in magnitude.

At present, most procedures for the estimation of recurrence rates employ additional

asumptions, 1. v(x,m) is considered uniform within given regions (seismogenic

provinces) Si, i.e.

v(x,m) = vi(m) for x Si (2.2)

2. the rate density inside province k, vk, varies exponentially with m, i.e.

In vk(m) = ak-bkm for mo<m<mik (2.3)

,where ak and bk are unknown parameters, mo is a lower bound of interest and mik is a

physical upper bound, which may vary from province to province, 3. inside prescribed

regions SI, which may be different from the previous region, the catalog is complete for

magnitude m within the last tl(m) years (so-called period of completeness) (Stepp,

1972), so that:

PD(x,t,m)=l.O (2.4)

if x e Si and To(m)-tl(m) < t < To(m), where To(m) is the time of the most recent

observation included in the catalog. The seismogenic provinces Si are not necessarily

the same as the completeness regions S1. Under the above assumptions, estimation of

the parameters ak and bk in each province is relatively straight-forward if only

earthquake data within the periods of completeness are used. The VanDyck (1986)

approach differs fundamentally from earlier ones in the sense that the probability of

detection PD(x,t,m) and the seismicity rate v(x,m) are simultaneously estimated from

the data. Doing so allows one to utilize a larger part of the historical data and provides

means to objectively quantify the completeness of the catalog.

However, it would be impossible to estimate all of these parameters accurately without

introducing some constraints in the estimation procedure, given the sparsity of data in

most locations. This is accomplished by introducing prior information on the spatial
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variation of the parameters through penalties and prior distributions and by

constraining the estimation of the probability of detection to be monotonically

increasing in the space defined by time and magnitude.

In section 2.1, the formulation and estimation procedure of the model proposed by

VanDyck (1985) is reviewed. In section 2.2, a modification of that procedure is

proposed which is based on identifying homogeneous interpolation neighborhoods for

each of the seismicity parameters through statistical tests of homogeneity. In section

2.3, the above procedure is extended to allow the inclusion of expert opinion in

determining the size and shape of the local interpolation neighborhoods. Finally, in

section 2.4, the procedures of section 2.2 are applied to two different regions and

earthquake catalogs, first to New England using the Chiburis (1981) catalog and

second to the eastern United States using the EPRI catalog. Estimates are also obtained

for the Eastern United States using several altemative expert zonations recently

proposed in the litterature, some exclusively based on geological and tectonic

information and some which follow more closely the contours of the historical

seismicity. In section 2.5, a kernel estimator of seismicity is reviewed which allows for

the relaxation of the assumptions of exponentiality in magnitude and stationarity in

time. Conclusions and recommendations for future research are given in section 2.6.

2.1.1 The VanDyck model

Seismicity is described through a non-homogeneous Poisson process, with parameters

a and b that vary as functions of the geographical location vector x. Stationarity is

assumed, at least during the time periods of the data and of the needed earthquake

predictions. VanDyck (1985) developed four versions of this model (indexed form A

to D). Depending on which of the four models is used, information on PD is derived

only from the non-stationarity and non-exponentiality of the observed recurrence rate
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(models C and D) or also from the distribution of the population and seismic

instruments in time and space (models A and B). Other differences between the

various versions are detailed in VanDyck (1985). Model D, which was the last version

developed is the one used in the thesis.

2.1.2 Derivation of the Likelihood

The most convenient way to solve the system of maximum likelihood equations is to

discretize space and the magnitude of the events. For a Poisson process with a

recurrence rate v(m), the probability of observing n(m) earthquakes over a period of

observation of T(m) years, in the discretized magnitude interval m (m-Am/2,m+A/2),

has Poisson distribution,

fm)(n(m)) a [v(m)T(m)] n(m) e-v(m)T(m) (2.5)

The likelihood of the counts n(m) over the range (mo, mi) depends on the unknown

recurrence rate v(m) as

1(v(m) I (n(m),T(m))) = 1 fN(m)(n(m )) (2.6)
M=mo

Using Eq. 1.1, the likelihood may be expressed as a function of the parameters a and b,
m 1  ml

l(a,b I n(m),T(m)) a fJ en(m)(a-bm) e- T(m)exp(a-bnm) (2.7)
m=mm=m

Taking logs,
lnl(a,b I (n(m),T(n))) =

r1  r I  m1
a I n(m)-b I mn(m)- > T(m)ea-bm+cst (2.8)

m=mn m=m m=m

The likelihood depends on the earthquakes only through the total counts N and the total

magnitude M,

N= I n(m)
m=m

M= 1n mn(mi) (2.9)
M=Mnt

Therefore N and M are sufficient statistics and the log-likelihood function simplifies to,
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Inl(a,b I (n(m),T(m))) = aN- bM- I T(mn)ea-bm+cst (2.10)
m=m

The maximum likelihood equations are found by taking partial derivatives of Equation

2.10 with respect to the unknown parameters a and b and setting them equal to zero.

N- I T(m)ea-bm=0
m=m o

mI

-M+ I mT(m)ea-bm=0 (2.11)
M=nl

Equation 2.11 implies that expected counts and total magnitude should equal observed

counts and total magnitude. These equations can be efficiently solved using Newton's

method. At the kth iteration, estimates of a and b are found from,

bk Lbk-1 -1 (2.12)

where Afk-1 Aft 1 are imbalances at the (k-1)th iteration, in Equations 2.11 and J is the

Jacobian of the same system of equations.

For incomplete catalogs, it is also necessary to estimate the probability of detection. A

non-parametric form of PD is preferred in model D and does not consider the mode of

detection or the distribution in space of population and instrument. The model of

probability of detection is defined over regions that are homogeneous with respect to

incompleteness, within the period of time of the analysis. Accordingly, only variation

of PD with t and m within each incompleteness region is considered.

PD = atm (2.13)

For the estimation of incompleteness, all variables are again discretized.

A likelihood equation can be derived in a similar fashion to the previous ones for the

probability of detection. In this case we obtain an additional equation which is added

to the system of equations 2.11 (VanDyck 1985), one for each incompleteness region,

n(t,m) *
ntm = 0 (2.14)

am
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where ntm is the expected number of events in the discretized interval (t,m). Estimates

of crn for given n(t,m) are such that the observed count is each (t,m) category is

matched. If the recurrence rates are unknown, PD can be determined only up to a

proportionality factor (in addition, one can vary the slope parameter b(x) and the

probabilities ,tm such that the likelihood remains the same). Various forms of

constraints allow one to estimate PD- For instance, 1. PD is typically assumed to be 1.0

above a given magnitude and for recent times, 2. all very large earthquakes are

assumed to have been reported over most of the time span of the catalog, and 3. PD is

expected to be smooth and increase monotonically as a function of time and

magnitude. In general, constraints are imposed for the highest size measures

throughout the entire time span of the catalog, because for strong events the counts are

very small and consequently the estimates are unreliable if one does not use additional

information. Goodness-of-fit with respect to the estimates of PD can be checked by

comparing the observed and predicted number of events for each cell defined by the

discretization of space, time, and magnitude for the estimation of the probability of

detection. Smoothness of PD is imposed through maximum penalized likelihood

estimation (MPLE). MPLE is also used to introduce smoothness in the spatial

variation of a(x) and b(x) in order to reduce the statistical uncertainty on individual

estimates.

More, in general, one can classify smooth estimation techniques in two broad classes;
1. Bayes-based methods

2. and Kernel-based methods.

In Bayes-based methods, smoothness is introduced through prior distributions on the

seismicity parameters which can be either provided externally or estimated from the

data (Berger, 1985). Penalties, in the inaximum penalized formulation, can be viewed

as priors on the functions a(x) and b(x). However, it is perhaps most appropriate to
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interpret the technique as a pragmatic way to reduce the number of degreees of

freedom of the model. The second general class of methods are the kernel-based

methods for which there is an abundant litterature in the context of density estimation

(Silverman, 1985) and contingency table analysis (Titterington, 1985), for an example

of kernel-based procedures in seismicity see (Shakal and Toksoz, 1977). Generally,

the procedure consists in using some of the observations in neighboring cells in the

estimation of the parameter at x. The various kernel estimates differ in the way

weights are assigned to observations in neighboring cells. The weights are defined

through a kernel function, k(x,y), which in its most general form is a function of the

relative location of the cells (directional kernel function). Kernel procedures are

further discussed in section 2.5 as an alternative procedure to maximum penalized

likelihood but are not explicitly implemented.

The basic form of the penalty term used in model D penalizes the local estimates a(x)

and b(x) from more global estimates a(x) and b(x) obtained by local averaging or

interpolation.

The penalty term which is added to the log-likelihood is of the following form:

Pa P

Qa,b = - (a(x)-d(x))2 - - (b(x)-b(x))2 (2.15)

or

Pa Pb
Qa,b = - [a(x)]T[I-H]T[I-H][a(x)] - 2 [b(x)]T[I-H]T[I-H][b(x)] (2.16)

where [a(x)] and [b(x)] are column vectors, superscript T indicates transposed matrices,

vector I is the identity matrix and H is an interpolation matrix such that,

[d(x)]=[Ha][a(x)] (2.17)

The degree of smoothness of the solution is controlled by Pa and Pb. Notice that in this

case, the same interpolation is used for a and b ([Ha]=[Hb]).

The likelihood equations one solves at each iteration, if one considers f(x) an explicit

function of a(x) is,
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n(x)-y T7*(x,m)ea(x)-b(x)m-Pa IW]x[a(x)]=O (2.18)

m n(x)- m T* (x,m )ea(x )- b(x )m- pb[Wlx[b(x)]=O

where [W]x is the xth row of the matrix

[W]=[I-H]T[I-H] (2.19)

A constraint on the interpolators is imposed. It is desirable that the total number of

expected and observed counts inside the region being analysed be the same, that is,

I n(x)- I T*'(x,m)ea(x)-b(x)m=0 (2.20)
x x m

Under these conditions, interpolation should satisfy the conditions

[1 ]T[W]a[a(x)]=0

[1]T[W]b[b(x)]=0 (2.21)

The interpolator chosen by VanDyck for model D is the average over a neighborhood

of fixed size and shape around cell x,

a(x)--1-- _ a(x) (2.22)

where N(x) is the set of locations that are neighbors of x and k(x) equals the number of

neighbors.

Solution of the equations for each x proceeds by iteration. One way to solve is to

compute the inverse of the Jacobian of the system of equations 2.18 and to use

Newton's method. However, this is not very practical because the number of cells is

large. Instead, the following iteration scheme is used:
1. initial values for a(x) and b(x) are arbitrarily set equal to zero or set equal

to values corresponding to a single estimate of a and b for the whole
region,

2. the equations 2.18 are solved successively for each location x, and the
equations for sites which are coupled through the matrix [W] to location
x are immediately updated for the change in a(x) and b(x).

3. after solving the equations for the entire region, the total imbalance on
the total counts and the total magnitude (Eq. 2.9) are computed and
constants Aa and Ab are added to estimates in each cell to restore the
balance.

4. return to step 2 until convergence.
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Note that the estimates of a(x) and b(x) are dependent of each other because the

maximum likelihood equations 2.18 are coupled and that penalties on one parameter

will affect the estimates of the other. As will be shown in section 2.3, this dependency

is typically not very large.

When the size of historical events is not known with certainty, the above procedure is

still applicable if the uncertain event is distributed over different magnitude intervals

according to its probability density function. Alternatively, deterministic equivalents

m* can be substituted for m, which are defined such that the estimated recurrence rate

for m* is the same as for m (VanDyck 1985, Chapter 2), the converted magnitude is

then,

mrn = mi - 0.5b(xi)a2  (2.23)

where a 2 is the uncertainty on the size of the event i and b(x i ) is the estimate of b at the

location of the ith event. One can then treat m*as if they were exact in the previous

expressions.

In some cases, independent information exists on the value of b(x). For example, this

information may reflect prior knowledge with respect to the distribuion of b for

worldwide or regional data. Inclusion of a prior distribution of b(x) is done by adding

the following terms to each maximum likelihood equation (Eq. 2.18(b)),

(b(x)-b) (2.24)

where b is the prior mean value and a2 is the prior variance. Note that o is the

variance of the slope b(x) averaged within a given neighborhood of x. If the area of the

neighborhood varies, then also o2b should change. If this were not the case, the prior

would become very strong compared to information from the data as the area

associated with each x decreases.
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2.2 Local neighborhoods

The model of the previous section can optionally be used with or without the external

specification of sources. The effect of the latter are not as severe on the estimates of

seismic hazard as in the case of traditional seismic-sources estimates because of the

smooth variation of the parameters inside each source. However, the final estimates

can be significantly affected by the sources configuration because of the discontinuity

of the estimates at the boundaries of the sources. Another undesirable feature of the

estimates is that the smoothness is enforced isotropically, without any regard to the

spatial pattern of variation of seismicity. With increasing penalties, there is a decrease

in the variance of the estimates but also an increase in the bias of the estimates if

sources are not properly specified. The bias is greatest in regions where there are sharp

spatial contrasts in the rate of activity.

In the present section, a procedure is, proposed which identifies local neighborhoods

which are local zones of homogeneity with respect to the seismicity parameters. When

these local zones of homogeneity are used to define the interpolation neighborhoods of

the previous section, significant discontinuities are preserved, even under large

penalties. In addition, because of the homogeneity of the neigborhoods, with

increasing penaltties, the variance of the estimates is decreased while bias remains

small.

Several methods for the objective identification of local zones of homogeneity have

been proposed in the context of seismic source identification and in other fields, such

as image processing. In the image processing litterature, local neighborhoods are

defined as regions which share the same features and are used to smooth the image

within homogeneous zones while preserving edges between distinct regions. In the

context of image processing, the purpose of smoothing is to eliminate the high
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freuqency component of the image, which in general corresponds to noise. In the case

of seismicity, one cannot similarly assume that the high frequency component is due to

noise, however, smoothing reduces the variance of the estimates. The simplest

techniques for the identification of local neighborhoods are tresholding procedures. A

group of connected cells is considered to be homogeneous if a feature, or combination

of features, does not deviate by more than a fixed quantitiy across all members. In the

case of seismicity, such a rule may be to identify the local neighborhoods through

tresholding of the observed recurrence rate in each cell.

This is equivalent to contouring procedures proposed by Caputo et al. (1974) and

Chiburis (1981) for the identification of seismogenic provinces.

Both are based on the rate X(mo) of events larger than a given magnitude mo and

consist of contouring on the plane estimates X0 of X0. The difference between the two

procedures is the way in which the estimates are obtained. Chiburis uses a moving-

average estimator with an exponentially decaying kernel function while Caputo and

Postpischl find the estimates by low-pass filtering the empirical earthquake counts.

Similar contouring procedures are based on other local indices of seismicity, such as

the tectonic flux, which is a quantity proportional to the strain release rate per unit area

and unit time (Catteneo et al., 1981); the total energy released per unit area and unit

time (Bath, 1956), and (St-Amand, 1956); the log-rate of earthquakes with magnitude

in a given range (Kaila and Hari Narain, 1971) and (Kaila et al., 1974).

Criteria based on more than one index of seismicity have also been proposed. For

example, (Consentino, 1978) suggests to identify homogeneous zones on the basis of

the spatial variation of the parameters a and b, the minimum magnitude for which the

exponential recurrence law applies, and the upper bound magnitude. Other authors

have emphasized that source identification and seismicity parameter estimation should

be based on both historic activity and geologic-tectonic parameters. For example, a
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functional relationship between a set of tectonic and seismicity indices and maximum

magnitude has been used by (Borissoff, 1977) to produce maps of maximum

magnitude for Northern Italy. Various zoning procedures that include historic

seismicity as well as geologic and tectonic parameters are described and applied to

various regions of the USSR in (Medvedev, 1976).

Another alternative, is to treat the feature vector of geologic or tectonic characteristics

at a location as a regressor in the estimation of the rate of activity. Smoothness and

discontinuities of the estimates become a direct function of the degree of smoothness of

the regressors and of their degree of association with the observed seismicity. For

example, (Anderson, 1979) in a study of California earthquakes relates the level of

seismicity to the strain rate through a regression procedure. Such a procedure,

however, is not at the moment applicable in the Eastern United States given the

difficulty in associating seismic activity with identifiable features. Barstow et al.

(1981) in an extensive study of the Central and Eastern United States analyses

geological and geotectonic factors and their association with the level of seismic

activity. For this purpose, he identifies 24 seismically active and 24 non-active sites.

Active sites are defined as locations which have experienced one or more events with

MMI intensity greater or equal to VII. For these 48 sites, 68 separate characteristics

are catalogued within a radius of 61 km of the individual sites. Several statistical

procedures were applied to the data set to identify the most discriminating

characteristics with respect to the level of activity. The statistical procedures which

were applied to the data set are, discriminant factor analysis, principal component

analysis, factor analysis, and clustering analysis. The most discriminating

characteristics were found to be Pre-Triassic rifts, the total number of faults, the

number of fault / intrusive intersections, the earthquake frequency, and the cumulative

stress release. Most of the results indicate that the detailed investigation of surface
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geologic features in the vicinity of a location is of limited usefulness in evaluating

future earthquake hazard. Although certain physical anomalies often occur in regions

of strong seismicity, earthquake activity is not always present where such anomalies

are found. This means that certain physical conditions are necessary to some degree

but are not sufficient for intense seismicity to occur. Barstow et al. (1981) conclude

that the historical record remains the primary source of information for modeling future

earthquake activity. Notice that instead of using discriminant factor analysis, one

could have used logistic regression, which is generally considered superior when

causal relationships are analysed (Liao 1986).

Another alternative is to use geologic or geotectonic information to form an empirical

prior estimate on the seismicity parameters for a given classification. The posterior

distribution of the parameters is then computed as a function for the seismicity

observed locally (Esteva, 1969). However, this procedure is not useful in a region

where geologic and tectonic characteristics are not informative with respect to levels of

activity.

The proposed procedure, which is edge-preserving, is to define the local neighborhoods

on the basis of a statistical test of homogeneity for each of the seismicity parameters.

Appropriate tests for the parameter a are those for the equality of the recurrence rate of

Poisson processes. A test for equality of the parameter b (exponential distribution) can

be found in Epstein and Tsao (1953). However, this test is based on a ranking of the

sample of earthquakes in increasing order of magnitude and is not applicable if the

sample is incomplete. In addtion, other difficulties arise because of ties in the ordering

of observations because most historical events are reported on a discrete scale. Other

tests for the equality of b can be formulated in terms of profile analysis, comparison of

distribution functions, non-parametric tests for the equality of medians, and categorical

data analysis (Gibbons, 1985) but require large amounts of data in each cell.



-28-

Criteria for defining local neighborhoods for both a and b simultaneously can be stated

in terms of tests of Poisson homogeneity over different ranges in magnitude. Consider

k geographical cells of areas AI , ...,Ak and partition the range of magnitude values into

r intervals. The rate of events generated by the ith cell in the jth magnitude interval is

denoted by Xij so that Xi= {T l,... irTis the rate vector for cell i. One is interested in

testing

Ho : X = Ai X (i=l,...,k) for some vector

against

H 1 : IXj Ai AX for at least one i

Two widely-used tests for hypotheses of this type are the Chi-square (X2 ) and

likelihood-ratio (LR) tests. In both cases one uses the following quantities:

nij : number of events in cell i for magnitude range j

nj : i nij = total number of events in magnitude range j

A : ~; Ai = total area of cells
A, : Ai/A = fraction of area in cell i

The Chi-square test consists of calculating the statistic

r k (n .- Ain .)2

X2 • (2.25)

The null hypothesis is accepted if X2 < Xk-1),a~ where X2,a is the (l-a)-fractile of the

Chi-square distribution with n degrees of freedom (see for example (Bhapkar,

1980) page 369). The likelihood-ratio test is based on
r k A'n

LR=- 2 11n In( i') for n/ 0
j- nI i I n

and consists of accepting Ho if LR < Xk-l),o• Both tests are approximate, but they are

accurate and give very similar results for large values of the products Ain.j.

A special case of interest is when r=l, i.e. when homogeneity of the cells is evaluated

in terms of the total rates Xi and the hypotheses Ho and Hl are
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Ho: Xi Ai
H1: Xi Ai

An even more special situation is when r=l and k=l. In this case there is an exact,

uniformly most powerful test based on the binomial distribution (Lehman,

1959) P.140: without loss of generality, the two regions are numbered such that nl/A 1

> n2/A 2 . Knowing the total number of events n=nl+n2 and the probability under Ho

that an event occurs in region 1, p, = A1/(AI+A2), one can use the binomial

distribution with parameters n and pl to calculate the probability P where

P = P[number of events in A, > nlln,pl]

The resulting region of acceptance is illustrated in Figure 2.1 for p=0.5. A point which

is clearly brought out by this figure is that it is impossible to detect differences in the

rates of cells with small numbers of counts. For a discussion of the power of the test

seee (Przyborowski, 1939).

For the application of the test of equality of recurrence rates one must determine the

area of each cell. The area is equal to the spatial area of the cell multiplied by the

observation time corrected for incompleteness. Because incompleteness varies as a

function of time and magnitude, a mean observation time for the total rate of the cell

must be defined.

The total equivalent time of observation is defined such that the total expected

incomplete rate in each cell is equal to the sum of the expected incomplete rate for each

magnitude interval. The resulting equivalent period of observation is,

_ T(x,m)e- b(x )m

Teq(x) = 0 (2.26)

X e-b(x)m
F=nls

For the application of the test, b(x) and PD(x,t,m) have to be specified a priori.
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Alternatively, one can determine the equivalent period of observation as a function of

the observed rates for each magnitude interval,
n?1

SN(x,m)m=m
Teq(X) = m 0 (2.27)

SN(x),nm)

m=mo T(x,m)

The spatial extent of the local neighborhood is defined through the number of rows of

cells (M) around cell x to which the test is applied. The test is first applied to each cell

within the region defined by M and connectivity among the cells which pass the test is

then enforced. The above procedure is repeated for each cell of the region and

reciprocity required among the local neighborhoods, i.e., cell y is in the local

neighborhood of x (Nx) only if cell x is in the local neighborood of cell y (N ).

The interpolation functions are defined as the average of the parameters within the

local neighborhoods. In the matrix notation of section 2.1, the only non-null terms in

row x of the matrix [H] are those corresponding to cells which have been included in

the local neighborhood Nx . This implies that many terms of the matrix [H] and [W]

are null. The elements of the matrix [H] are defined as

h k(x,y) if jE neighborhood of x
I k(x,z)

0 otherwise (2.28)

where k(x,y) can be any weighting function, in this case k(x,y)=1 was used.

Great computational savings are obtained by storing only the non-null terms of the

smoothing matrix [W]. The tems Wx,y are non-null only if there is overlap between the

neighborhoods of cells x and y.

These are defined as follows,
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,y = al*a 2  (2.29)
zeNf NzeEN

where

1
a1 - if x e N

a, = 1.0 ifx=z

1
a2 =- if Y NzNz

a1 = 1.0 ify_=z

The shape and size of the two dimensional averaging windows are a function of the

homogeneity of the cells surrounding each cell. As will be shown in section 2.3 this

estimator automatically identifies spatial discontinuites of the recurrence rate and in the

limit can generate, when supported by the historical data, earthquake recurrence

models of the seismic-source type. Local neighborhoods are used here only for the

estimation of a(x). Similar neighborhoods could be defined for b(x) using the

previously mentionned procedures, but such neighborhoods would be less useful, due

to the high statistical uncertainty on b given the small amount of data in single cells.

For the definition of local neighborhoods of b, two simpler options are explored in

Chapter 3: the first is to assign the same neighborhood as for a(x) assuming that the

same mechanisms which control the spatial variation of a(x) control the spatial

variation of b(x), the other is to keep the local neighborhoods fixed in shape and size to

the immediately neighboring cells.

2.3 Applications

The procedures developed in the previous section are now applied to two regions. First

to New England, using the Chiburis catalog and second, to the Eastern United States

using the catalog compiled in the context of EPRI (1985). In both applications,
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earthquakes which have been identified as aftershocks in the catalog are removed prior

to the analysis.

2.3.1 Chiburis catalog

Only earthquakes with 10>4 are used in the analysis. Category m=0 corresponds to

10=4, category 5 corresponds to the largest intensity found in the catalog, Io=8 (Figure

2.2). It is clear from Figure 2.2 that seismicity is highly non-homogeneous and that the

eastern Quebec, Boston and Long Island regions exhibit higher activity. If Io is

reported, but Ao=Io,max-Io,min is not zero, the prior distribution of Io is assumed to be

normal with mean value (Io,min+Io,max)/ 2 and al=0.5 truncated at +3yio and

discretized to a mass density function p'm for different categories m (including m<O)

(section 2.1.2). Earthquakes with Io not reported are assumed to be normally

distributed with mean value (Chiburis 1981),

E'[I] (M-1) (2.30)
0.6

where M is the reported instrumental size measure and E' refers to the prior expected

value of Io. The standard deviation (lo is assumed equal to 0.6 (VanDyck 1985,

Chapter 2). Based on a preliminary analysis of the data, the spatial variation of

completeness is represented by only two regions, which are the coastal region and the

remainder (Figure 2.3). The simplicity of the configuration follows from the

sparseness of the earthquake counts in much of the region. For instance, the locations

in the Atlantic were not treated as a separate region because the counts are so low that

the probability of detection would be impossible to determine. Adding this region to

areas over land does not introduce any changes in the estimates of these regions. From

a practical point of view, the present choice of only two regions corresponds to

assuming that recurrence rates are small in this part of the region. Inclusion of a

separate region to account for early settlements around Quebec and Montreal has been
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also considered. In this case, it was found that estimates of PD are very similar to those

in the surrounding region. The penalty coefficient P. which controls the smoothness

of the estimates of ocn with time and size in each incompleteness region is set equal to

20. This corresponds to a moderately smooth change of the estimates. For the

probability of detection it is assumed that all earthquakes have been reported since

1950, hence,

otm = 1.0 fort > 1950 (2.31)

It is further assumed that, for 10=7 and 8, the catalog is complete since 1860 and 1625

respectively.

Probabilities of detection for the two incompleteness regions are given in Table 2.1 for

penalties Pa=5 and Pb= 50 . As can be seen, the historical record for the coastal area of

New Englnd is much larger than for the remainder.

The test of Poisson homogeneity (section 2.4) was applied to the catalog discretized in

one and half degree cells at different significance levels. Figure 2.4 illustrates results

obtained for one-degree cells at a, significance level of 20% when the test of

homogeneity is not limited to immediately neighboring cells. In this figure, the cells

for which the neighborhoods are identified are indicated with an asterisk (*) and the

neighborhood of homogeneous cells by the symbol (1). Also shown in the figure, are

the total counts of events in each cell as well as a decomposition of the number of

counts as a function of intensity. The anisotropy of seismicity across the region is

clearly indicated. In particular, regions of homogeneous seismicity are identified along

the Atlantic coast (region A), in southeastern Quebec (region B), in the Apalachian

Mountains (region C) and over the continental shelf (region D).

Following, is a comparison of estimates obtained for two different signifiacance levels

of the test of homogeneity (cx= 0% and 15%) and for different penalties Pa. Figure 2.5

shows estimates of a(x) obtained for =-0% (fixed neighborhoods), M= (the test is
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applied only to immediately neighboring cells), and selected penalties Pa, for a spatial

discretization into half degree cells. Note that with an increase or decrease of the

significance level a, one can produce nested sequences of local neighborhoods. In

these and in later plots, a is the log-rate of events of MM intensity 4 per year per cell of

unit equatorial degree (111.1 2km2). For example, a value of a=-1.0 indicates that

earthquakes of intensity 1=4 occur in a half-degree cell at lat. 420N at a rate of

e-lcos(420)/4=0.06 events/year. For low penalties on a(x), the estimates are very

contrasted and their variance is large. With an increase in the penalty, there is a

decrease in the variance of the estimates and an increase in the bias as the solution is

pulled towards the average for the entire region. Objective procedures for the selection

of the optimal degree of smoothness are proposed in Chapter 3. Figure 2.6 shows the

estimates of b(x) as a function of Pb and a. For the lowest values of Pb, the spatial

trend of increasing b(x) from the southwest to the northeast as well as the local

maximum of b(x) in eastern Massachusetts is clear. Increasing Pb gradually removes

these features, first, the local maximum, then the local linear trend. Although there is a

slight change in the estimates of a(x), which counteracts the increase and decrease of

b(x), the global effect at high intensities is to increase the recurrence rates for areas in

the central part of the region and to decrease the rates in the northeast comer.

Various contour plots of a(x) are shown in Fig. 2.7 to illustrate the effect of the

significance level a, the number of rings of cells around x to which the local

neighbornood is confined (M), and the penalty Pa. The contrast in a(x) between more

and less active areas increases with the significance level a. For a=0.01, only few of

the neighborhoods have an irregular shape and the estimates a(x) are similar to those

for fixed neighborhoods (compare Fig. 2.5(b) to Fig. 2.7(a)). For a=15%, the function

a(x) displays plateaus of nearly constant activity, in some cases connected by gradual

ramps and is relatively insensitive to M and Pa. The estimates a(x) preserve a high
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level of contrast for a high penalty Pa, which is not the case when fixed neighborhoods

are used (compare with Fig. 2.5(d)). Features of the seismicity that are accentuated

with an increase of ox are the seismic activity along Lake Champlain and the Hudson

river (740W 430 N), the plateaus of high activity in eastern Quebec and along the

Atlantic coast, and the high peak of activity near Cape Ann and Newburyport.

As was mentionned in the section 2.2, it is not feasible in this application to use a test

of homogeneity on the mean magnitude, or of equality of the probability distribution

function in magnitude in each cell, to identify local homogeneous neighborhoods for

smoothing b(x). An alternative is to use the same neighborhoods which were identified

for the smoothing of a(x) Figure 2.6(c). These estimates are slightly less smooth than

those obtained for fixed neighborhoods. In particular, the procedure identifies an

isolated cell in southeastern Quebec where the estimate of b is very different from that

in neighboring cells. Contours of constant b(x) follow those of a(x) in some areas, for

example, in the southwestern corner of the region. Note that in regions with low levels

of activity, the estimates are dominated by the prior mean on b (mb=1.3) which

accounts for the lack of discontinuities in the estimates along the coast (for a(x), the

estimates are set to very small values in the absence of activity).

2.3.2 EPRI catalog

In this section, models of seismicity are estimated for the entire Eastern United States.

Models are fitted for different penalties and homogeneous interpolation neighborhoods.

The estimation procedure which accounts for expert zonations is then applied for four

zonations recently proposed for the Eastern United States. The spatial grid size for this

application is one degree cells. The probabilities of detection are fixed to values

obatined in the context of EPRI (1985). The following briefly describes, their

estimation. Eastern North America is partitioned into several incompleteness regions,
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only of time of occurence and magnitude (Figure 2.8). The incompleteness regions

have no relationship with seismicity and seismogenic sources. Three pieces of

information have been used in the definition of the incompleteness regions: 1. the

evolution in time and space of the population and of the seismic instrumentation, 2.

results of previous models of incompleteness and 3. the geographical extent of the

regional catalogs that have been used in compiling the EPRI catalog.

Magnitude is discretized into 0.6 unit intervals starting from 3.3 to 7.5. Reasons for

this discretization of magnitude are documented in EPRI (1985), and are related to the

completeness of the historical record and to the accuracy of conversion from Modified

Mercalli intensity to body-wave magnitude. Discretization in time is based on

demographic history and instrumentation and the availibility of different types of

documents (diaries, newspapers, technical publications,...). Maximum magnitude has

been set equal to 7.5 everywhere in Eastem North America for the estimation of

seismicity, however, it has little influence on the estimates of a(x) and b(x) (the last

magnitude interval contains the largest event recorded for this region). For all regions

and for magnitudes greater than 3.3, the catalog is assumed complete since 1975,

which is a time when the instrument network has been improved considerably. A time-

magnitude enveloppe which is indicated by a solid line in Table 2.11, identifies the

most complete portion of the catalog which is used in fitting the models in the

following applications. The earlier portion of the catalog is not used because the

uncertainty on the estimates of the probability of detection is very large. The

corresponding events are shown in Figure 2.9. In this application, the penalty on b(x)

is set to a very large value to generate almost constant estimates for the region (section

3.3.1).

The estimates of a(x) are shown for a=0% and cx=10% and different penalties Pa in
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Figures 2.10 and 2.11. One may notice that when ox=10% the contrast in the estimates

is preserved where the discontinuities are the most significant even with large

penalties. In particular, there appears to be two major regions. The first region is in

the northeastern United States and extends to the west to central New York state, and

to the south to northern New Jersey. Within this region, one can distinguish three

extended areas of higher activity centered around Newburyport, Charlevoix, and the

Ottawa River Valley. The second region is in the southeastern United States. Within

this region, there are areas of larger activity, this time not as extensive spatially as in

the previous zone, centered around Charleston, eastern and western Tennesse, and

eastern Virginia. It is interesting to compare contours of a(x) with source

configurations which have been proposed in the litterature for the same region. Fig.

2.12 shows a selection of source zonations from EPRI (1985) and, Fig. 2.13 shows

sources proposed by (Barosh, 1986). Some of these were determined from an analysis

of past seismicity and clearly follow the contours of a(x) in Fig. 2.11. However, many

sources based on geological information do not show any association with the patterns

of historical seismicity. In the following section, a procedure is developed which

allows the incorporation of expert opinion on the existence of homogeneous zones of

seismicity in the estimation of local neighborhoods.

2.4 Incorporating Expert Opinion in the Local Estimation of Seismicity

As mentionned in section 2.1, there are regions of the eastern and central U.S. where

seismic zoning is controversial and earthquake hazard is sensitive to source geometry.

The Charleston region is an example. To exemplify the importance of the problem,

Fig. 2.12 shows seismic source configurations proposed for the eastern U.S. by various

seismologists (EPRI, 1985). Differences are substantial, especially considering the fact

that seismologists were provided with the same information, including sets of possible

source configurations.
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The proposed procedure is a modification of the test from classical statistics used to

identify the local neighborhoods (section 2.3). The modification is with respect to the

significance level (co) of the test for accepting the hypothesis of homogeneity (Ho)

(which corresponds to the probability of rejecting Ho given that the hypothesis is true).

Assuming that Ho is true and given a large sample of pairs of observations (N1,N2 )

from the same Poisson process with parameter X, the number of times the test is

accepted to the number of times the test fails defines an odds ratio Ro which at the limit

tends to

1-a o (2.32)

(
o

where •o can be interpreted as a misclassification rate (MRo).

Cells are defined by superimposing the grid of cells used for estimating the seismicity

parameters (section 2.1) and the sources (e.g. Fig. 2.14(a)). The cells which are

smaller than a certain fraction of their original size are merged with the largest

neighboring cell in the same source (otherwise the test of homogeneity is not powerful

given the small number of observations). The test is applied to all distinct pairs of cells

for the region, and the number of times the test passes at a significance level a o is
A

counted. The observed ratio Ro of the number of times the null hypothesis is accepted

to the number of rejections is a measure of the homogeneity of the region and will be in

general smaller than Ro in Eq. 2.32 (another measure is the observed misclassification
A A A A A

rate (MRO which is related to Ro through, Ro=(1-MRo)/MRo)). For a well-specified
A

source configuration, the odds ratio for pairs of cells within the same source (Rin)
A

should be greater than Ro while the odds ratio for pairs of cells in neighboring sources
A A

(Rout) should be smaller than Ro. Assuming that the significance level cto is adequate
A

for identifying local neighborhoods over a region with an odds ratio Ro, the

significance level of the test is modified depending if two cells are within the same

source or not, to preserve the following ratios
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A

1-MRo

A lAiwR 1-ainRin in
^MR in
A All

MRin

Because some sources in a partition may be more informative than others, it is
A

preferable to define the odds ratio for each source (Rii) and for each pair of
A A

neighboring sources (Rij). The odds ratio Rii is then an indicator of the internal
A

homogeneity of source i while R.i is a measure of the significance of the boundaries
A A

between sources i and j. If Rii > Ro, then the cells within source i belong to a region

which is more homogeneous than the unpartitioned region and the adjusted test is more
A A

lenient than previoulsy (o~ii<~ ). If Rii < Ro, the region exhibits more contrasts of

seismicity than the original region as a whole and the test becomes more stringent

(aii>a,). The model for the odds ratio is as follows,
A

In(R(k,l) ij)= o+P iijK(k,l) (2.33)

where k is a cell in source i, and 1 is a cell in source j, and K(k,l), is an indicator

function:

K(k,l)=O, if i = j
K(k,1)=1, if i • j

A

R(.,.)ij can be interpreted as

P[cells from source i andj are homogeneous] (2.34)
1-P [cells from source i and j are homogeneous]

In consequence, if the odds ratio for a source is larger than the odds ratio in the absence

of any information on source zonations, that particular source identifies an

homogeneous group of cells informative and the significance level of the test for pairs

of cells within that source is lowered to allow greater internal smoothing. If the odds

ratio for pairs of cells in neighboring sources is smaller than the odds ratio in the

absence of any information on source zonations, the boundary between the two sources
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identifies a significant discontinuity in the rate of seismicity and the significance level

is lowered to decrease the likelihood that local neighborhoods are identified across the

boundary. If a boundary is found significant but seismicity is uniform locally, the

boundary is ignored by the procedure, so that boundaries are preserved only where they

are found to be locally significant. In consequence, the solutions do not necessarily

reproduce the seismic-sources estimates even if a source is found to be significantly

homogeneous according to the criterion. If an anomaly is found within an

hypothesized homogeneous source, the odds ratio for the zone decreases significantly

and the anomaly is extracted in the fitting of the model. It is interesting to note that if a

source configuration is found to be non-informative, the estimates are identical to those

which would be estimated in the absence of the zonation. In consequence, the

proceudre is robust with respect to the misspecification of the seismic source

configurations.

In a preprocessing step, one may eliminate non-significant boundaries between regions.

If two neighboring sources have similar patterns of observed seismicity, the previous

procedure will assign the same significance level for tests between cells inside or

between the two sources, in effect ignoring the boundary specified by the expert. The

removal of unnecessary boundaries before the final estimation reduces the number of

split cells and increases the sample size for the combined source. Similarity between

pairs of sources is measured through a test of association on a (2X3) contingency table

of the number of times the null hypothesis is accepted and rejected within and between

the sources (Table 2.III) at the significance level ax. The test statistic used is (Bishop,

1975)

2 32
X=2 1 (2.35)

i=j1 jl hij

where

A ni.n .
nt- (2.36)
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X is distributed as a 22 and the two sources are merged if the observed statistic is

smaller than X2,1-,o where cx is a given significance level.

# of # of total #
acceptances rejections of tests

both cells in source 1 nl n12 n1.
both cells in source 2 n2 1  n 22  n2.
one cell in each n3 1  n 32  n3.

n.1 n 2  n

Table 2-III: Contingency table for testing the association
between sources EPRI(1985)

In the followimg section, the above procedures are applied to a region covering the

Atlantic seabord and the Apalachian region. Several source configurations which have

been recently suggested in the litterature are used to demonstrate how they affect the

estimates of a(x).

2.5 Application

Four source configurations are being considered for the application of the previous

procedure. The first three were proposed by Thenhaus (1987) and are based on

information other than seismicity. For all of these sources, it is assumed that the

observed seismic activity is due to reactivation of faults formed during prior tectonic

regimes. Each of the source configurations is a regional representation of a type of

geologic structure or process that has been suggested in the litterature to be responsible

for seismicity somewhere in the region. The last configuration was proposed by

Woodward-Clyde and Associates within the context of the (EPRI, 1985) project and
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was obtained primarily by contouring homogeneous regions of historical seismicity

(Figure 2.14).

Seismic sources that are classified according to the structure and tectonic history of a

region are defined as structure-based sources. Thenhaus (1987) propose such a

zonation based on faults ranging in age from the late Precambrian through early

Mesozoic periods (source C, Figure 2.15). The region is divided into two major zones.

The first is a zone which follows the Apalachian mountain range and the second is a

region that follows the Atlantic coast. Several smaller sources are identified within the

second source. Some of these are very small and have a negligible effect on seismic

hazard given that in most cases they have been the site of relatively little activity (note

that Charleston in not one of these cell).

The remaining two source configurations are based on a classification which relates the

structural geologic history of faulting to contemporary faulting and historically

observed seismicity. This type of zonation is known as process-based seismic source

zones and represents the geographic extent of inferred ongoing geologic processes

(crustal uplift and subsidence in this case). Unlike the structure-based zones, specific

types of primary crustal structures are unimportant to the definition of the zones. The

two zonations are based on two different sources of information on vertical movement.

The first (source D, Figure 2.16) is based on geodetic measurements and partitions the

regions into areas of (1) rapid uplift, (2) no movement to slow uplift, (3) no movement

to slow subsidence and, (4) rapid subsidence. The partition attempts to represent

positive and negative movements as a regionally varying continuum throughout the

East. The characterization of areas as to positive versus negative movement, or, rapid

movement versus no movement has no a-priori implications with regard to seismic

potential. The second source (source E, Figure 2.17) integrates information about the

regional basement structure, Cenozoic structural framework, and other select geologic

information with the observed vertical crustal movements.
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In the following, four cases are considered. First, the model is fitted with fixed

neighborhoods (oc=0%), second, the model is fitted with local neighborhoods at a

significance level of 10%, third, the model is fitted with local neighborhoods at a

significance level of 10% when sources are introduced, and finally, estimates are

obtained for the case when the significance level is modified according to the sources

to which belong the cells. These different cases are considered to separate effects from

the local neighborhoods, the modified grid of cells from the introduction of the sources,

and the effect of the modified significance levels. The effect of the procedure is

evaluated for two penalties on a(x) corresponding to low and intermediate smoothing

(Pa=5, 50).

The earthquake catalog used in this sutdy is the catalog from (EPRI, 1985). For the

purpose of this section, the penalty on b(x) is fixed to a very high value which results

in an almost constant b value (Pb= 10 0 0 ) (Figure 2.18(d)), and the local neighborhood

for interpolation is limited to only immediately neighboring cells. The grid size for the

discretization in space is one square degree cells. Magnitude is discretized from 3.3 to

7.5 in 0.6 intervals. The time-magnitude envelopes used for estimating the model and

the probabilities of detection correspond to portions of the catalog for which PD > 0.5

(Table 2.II). Split cells smaller than 0.2 square degrees at the boundaries between

sources are eliminated by merging them to the largest neighboring cells within the

same source.

Figures 2.19, 2.20, 2.21, and 2.22, parts a and b, show estimates obtained with isotropic

smoothing (i.e. =O-0%) and anisotropic smoothing (o~-10%) in the absence of any

external information about source configuration. The influence of the penalty for fixed

neighborhoods (o=0%) is such that for large penalties (Pa= 50 ) the high seismic activity

around Charleston and Boston is dissipated throughout the neighboring cells. The

increase in the significance level leads to more contrasts in the seismicity estimates,

which are preserved with increases in the penalty on a(x).
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Part c of the same figures shows the effect of introducing a source configuration and

therefore splitting some of the cells. Estimates of a(x) and b(x) are obtained with a test

of Poisson homogeneity at a significance level of 10%. Note that because the

interpolation neighborhoods include only the immediaely neighboring cells, and the

size of some of the cells is reduced by the introduction of the source boundaries, the

estimates of a(x) can be locally different from part b of the same figures even if the

significance level has not been modified.

Tables 2.IV through 2.VII summarise ihe results for fitting the model of equation 2.33

to the four source configurations considered. For the estimation of R(i,j)kl, only pairs

of cells with non-zero total observations were used for the testing. For example,

considering the one provided by Woodward-Clyde (Figure 2.14(c)), the odds ratio for
A

the whole region without any information about sources (Ro) is equal to 2.47. For
A

source 18, the internal odds ratio (R18,18) is equal to 12.50 (the total number of tests is

equal to 270 while the total number of failed tests is equal to 20. The coefficients Po
and pi are defined in Eq. 2.33. In this case, the modified significance level for cells

within source 18 is oa18,18=0.021, and for pairs of cells, one from source 18 and one

from source 12, a 18,12=0.134, indicating that source 18 is internally homogeneous and

that its level of activity differs from source 12. The last column corresponds to the test

statistic for the degree of association between sources.

A

For source configuration C, the odds ratios for cells within the same source (Rin=2.90)
A

and for cells in different sources (Rout=2.46) are both smaller than the odds ratio for

the whole region without any partition (Ro=4.24), indicating that the partition is not

informative as a whole with respect to the spatial distribution of seismicity (Figure
A A A

2.15). The odds ratios for individual sources (Rii, e .g. R11=3.18, R22=2.57) are also
A

lower than Ro except for the smaller sources where no test is performed internally

(sources 4,6,7,and 8). The pattern of seismicity inside the individual sources is more
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variable than when the whole region is considered as a single source. As a

consequence, the significance level of tests between cells is increased but the effect on

the estimates of a(x) is negligible (compare Figures 2.19(c) and (d)). The main effects

of including this source configuration are the identification of the seismicity around

Charleston as an anomaly , and to locally modify the estimates in the middle of the

region.

For source configuration D, three pairs of sources are found not to be significantly

different and are merged (1 and 3, 4 and 6, 9 and 10). The final partition results in

sources that are in general slightly less homogeneous internally than the whole region
A A

as a whole (Rin=2.51 < Ro=2.88). The boundaries between sources appear to be well
A A

defined however (Rout=2.21 < Ro=2.88). The main effect of this source configuration

is again to extract the seismic anomaly centered on Charleston.

For source configuration E, the partition results in sources which are not on average as
A A A

homogeneous as the original region (Ro=3.71, Rin=3.30, Rout=2.73). Individual

sources which are merged are 3-4, 5-6 and 10-12, and sources which are found to be

individually more homogeneous than the original region are 1,3,5, and 6. Again, in the

case of the source which contains Charleston, the odds ratio is very small and the

modified level of significance is efficient in extracting the anomaly.

For the source configuration suggested by Woodward-Clyde, the odds ratios indicate
A A A

that the zones of activity are well delimited (Ro=2.47, Rin=6.28, Rout=1.22). Sources

which are being merged are (2-4-5), (8-22), (13-14), (16-17), and (18-20). Not

surprisingly, most boundaries between remaining sources are found to be significant
A A

(Rij < Ro) and are enforced in the estimation of a(x). For example, sources (3-4-5-6)

and (16-17) result in more homogenepus estimates of a(x) (compare Figures 2.22(c)

and (d)).

In conclusion, few of the specified sources are validated by the actual distribution of
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earthquakes. Of the three configurations proposed by (Thenhaus et al., 1987),

configuration E appears to be the most infonnative with respect to the rate density of

events. However, the procedure has jthe advantage of being robust with respect to

possibly bad source configurations. Notice that although sources C and D did not have

much influence on the estimates of a(x), these configurations might be informative for

other aspects of the seismicity, such as the maximum magnitude, and characteristic

events, which are not considered here.

2.6 Kernel Estimation of Seismicity Parameters

In this section, an alternative model is presented for estimating seismicity in the EUS.

Smoothness is again a function of local neighborhoods but is imposed through a kernel

function instead of maximum penalized likelihood. A kernel function is essentially a

weighting function which is a function of the distance between the location at which

the estimate is required and the locations of the observations. In its most general form,

the kernel function can be defined in the space of (x,t,m) and generate a completely

non-parametric formulation of seismicity. Such a model may be valuable in

identifying migrations of seismicity and other deviations from the usual model

assumptions.

As was pointed out in section 2.1, N(x) and M(x) are sufficient statistics for the

estimation of the seismicity parameters a(x) and b(x). In consequence, to implement a

kernel estimation procedure, one can define kernel function for N(x) and M(x). If one

wishes to specify two independent kernel functions for a(x) and b(x) one needs to first

isolate a and b in the likelihood equation.

Eliminating a(x) from equation 2.11, one obtains;

ST(,mn)me - b(x )m

-M(x)+N(x) " = 0 (2.37)
.T(x,m)e - b(x )m

mi
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which can be solved for b(x).

From the above equation, it is clear that spatial smoothness of b(x) is related to

smoothness of M(x), N(x) and T(x,m). In consequence, smooth estimates of b(x) can

be found by replacing M(x), N(x) and T(x,m) in the previous equations with smoothed

values as follows,

Mb(x )=y Kb(x-y)M(x)

Nb(x>)= 3 Kb(lx-y)N(:x)

Tb(x,mn)=I Kb(--y)T(x,m) (2.38)

A similar procedure cannot be applied to the determination of a(x) because b(x) is

initially unknown. However, one may proceed by imposing smoothness on the

cumulative counts, ,.T(x,m)ea(x )- b(x )m. In this case, a different kernel function Ka

can be used to allow different smoothness of a(x) and b(x). The estimate of the a-

parameter is then found from,

Na(x)-j Ta(x,m)ea(x)-b(x)m=o. (2.39)
m

Equations 2.38 and 2.39 are solved numerically for a(x) and b(x).

2.7 Conclusions

The main conclusions of this chapter are that:

1. A convenient procedure for preserving the anisotropic nature of the earthquake

generating process in regions of intraplate seismicity is to define local homogeneous

interpolation neighborhoods for each of the parameters to be fitted. For the parameter

a(x), a test for the equality of the recurrence rate in neighboring cells is recommended.
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The resulting model preserves significant discontinuities of the recurrence rate of

earthquakes, and does not require the external specification of sources. The most

significant discontinuities are preserved even for large penalties which proves to be an

improvement over previous procedures. The procedure at the limit reproduces the

seismic-source estimates of seismicity if warranted by the data.

2. The previous procedure can be easily extended to include information provided by

experts with respect to possible zones of homogeneous seismicity. The proposed

partitions are enforced only if they are validated with respect to the historical

seismicity and insures that the procedure is robust with respect to bad source

configurations.
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Incompleteness region : 1

Time period
Int. 1 2 3 4 5

4 0. 0.095 0.428 0.744 1.
5 0. 0.095 0.428 0.947 1.
6 0. 0.31 0.743 0.947 1.
7 0.598 0.907 1. 1. 1.
8 1. 1. 1. 1. 1.

Incompleteness region : 2

Time period
Int. 1 2 3 4 5

4 0.12 0.317 0.721 0.93 1.
5 0.12 0.317 0.91 1. 1.
6 0.301 0.745 0.93 1. 1.
7 0.921 0.973 1. 1. 1.
8 1. 1. 1. 1. 1.

Time period

1 : 1627-1780
2 : 1780-1860
3 : 1860-1910
4 : 1910-1950
5 : 1950-1980

Table 2-1: Probabilities of detection and periods of
observation for the Chiburis catalog



REGION I

I 1 2 1 3 4 56 6
-- --- I -- - ----- .. . ..- ---- ----
0.001 0.001 0.03 0.39 0.71 1.00

I 0.001 0.00 0.85 +1,00 1.00
I 0.001 0.00 0.27 -0.86 1.00 1.00
I 0.001 0.00 0.281 0 .g 1.00 1.00
1 0.00 0.00 0.701 1.00 1.00 1.00
I 0.001 0.02 1.00 1.00 1.00 1.00

REGION 4

I 1 1 2 1 3 1 4 1 6 6
...---- I----- -------------- -----

I 0.001 0.05 0.321+0.75 <0.75 <1.00
0.00 0.851>1.00 1.00 1,00
I0.00o . >1.00 +1.00 -1.00 1.00

I 0.00 0.721+1.00 1-1.00 1.00 1.00
I 0.57 0.931 1.001 1.00 1.00 1.00
I 0.90 1.001 1.001 1.00 1.00 1.00

REGION 7

1I 2 1 3 1 4 6 6
--.I------------ I------ I -----

I 0.001 0.00 0.311-0.63 0.95 1.00
I 0.00 +0.551 0,92 +1.00 1.00
1 0.14 0.47 0.931 0.98 1.00 1.001 0.88 0.961 0.99 1,00 1.00 1.00
I 0.99 1.001 1.001 1.00 1.00 1.00

1.00 1.001 1.001 1.00 1.00 1.00

REGION 10

I 1 1 2 1 3 4 -6-
I------I----- ----- ----- ----- ----- I
I 0.001 0.04 0.20 0.39 0.85 1.00
I 0.011 0.11 0.35 +1.00 >1,00 1.00

<o0.67 1.00 1.00 1.00
0.811 0.951 1.00 1.00 1.00

-0.831 1.001+1.001 1.00 1.00 1.001
1.001 1.001 1.001 1.001 1,00 1.00

REGION 13

I 2 1 31 4 1 . 5 6-- I----- --.......... .......... - II
S0.001 0.00 0.241 0.711 0.881 1.001

1 0.001 0.00 0.241 0.77 0.951 1.001
1 0.001 0.00 0.301 0.921 0.991 1.001
1 0.001 0.03 0.691 0.991 1.001 1.001
I 0.111 0.54 0.981 1.001 1.001 1.001
1 0.511 0.90 1.001 1.001 1.001 1.001

REGION 2

I 2 _ 3 4 S I 6
0.00 0.00 0.101 0.51 0.63 -1.00
0.00 0.00 0.16 0.90 +1.00 1.001
0.00 0.00 0.24 0.98 1.00 1.001
0.00 0.00 0.24 0.98 1.00 1.00
0.00 0.00 0.70 1.00 1.001 1.000.00 0.01 1.00 1.00 1.001 1.001

REGION 6

-------------------------------------
0.06 0.16 0.36 0.74 0.89 -1.00

0.36 0.71 >1.001+1.00 <1.00
0.33! 0.69 +0.971<1.001 1.00 1.00
0.88 o,098 1.00o 1.00 1.00, 1.00
1.00 1.00 1.001 1.001 1.00 1,001
1.00 1.00 1.00 1.001 1.001 1.001

REGION 8

1 2 31 4 _ __
0.00 0.00 0.00 0.04 0.49 1.00
0.00 0.00 0.00 0.04 -0.81 1.00
0.00 0.00 LOOl.ooL .1 0.98 1.00
0.00 0.17 0'.17 I7.B1. +1.00 1.001
0.00 0.17 0.76 0.98! 1.00 1.001
0.00 0.17 0.88 1.00! 1.00 1.001

REGION 11

1-----1-----1-----1-----~-----1---------I 1 2 3 4 6 1 8 1
........ .. --- - -_ .... . ----

0.00 0.00 0.00 0.00 0.78 1.00
0.001 0.00 0.00 0 1.00 1.001
0.001 0.00 0.00 +1.ool 1.001

I 0.001 0.00 0.00 0.71 1.00 1.001
0.001 0.00 0.03 0.94 1.00 1.001
0.001 0.00 0.11 1.00 1.00 1.001

time category

REGION 3

I 1 2 3 4 I 6 6I
. . . . --.. . . .- --I -----I -----I.. .

I 0.001 0,02 0.181 0.491 0.761 1.001
0.00 0.52 +1.001>1.001<1.001

I 0.00 0.72 1.001 1.001 1.001
0.00 -0.231' 0.96 1.001-1.001 1.001
0.00 0.441 0.98 1.001 1.001 1.0011 0.00 0.591 1.00! 1.001 1.001 1.001

REGION 6

1 1 2 1 3 1 4 5 1 6 1----- -----l------ ------ I----T- I
0.05 0.291 0.861 0.991+1.001<1.001

0.651 1.00 +1.001+1.001 1.001
0.41 0.941 1.00 1.001 1.001 1.001
0.811 0.961 1.001 1.001 1.001 1.001
0.961 0.991 1.001 1.001 1.001 1.001
0.99 1.001 1.001 1.001 1.001 1.001
------------------------------------

REGION 9
-------------------------------------

1 1 1 2 3 1 4 6 1 68
....i . .i I --- - I----- I----I . 1.

1 0.001 0.021 0.081 0.26 0.561 1.001
0.00 0.021 0.12 0.771>1.001 1.0010.00 0.0 T 0.961 1.001 1.001

I 0.001 0.02 0.651 0.981 1.001 1.001
I 0.001 0.03 0.911 1.001 1.001 1.001I 0.00! 0.10 _1.00! 1.00 1.00! 1.00o

REGION 12

.----------J----------I-----.------
0.01L.3 0.301 0.751 1.001 1.001

S - 0.881 1.00o 1.00o 1 .00
3 0.821 0.991+1.001 1.00o 1.00o

0.761 0.941 0.991 1.001 1.001 1.001
0.951 0.99 1.001 1.001 1.001 1.001
0.981 1.00 1.001 1.001 1.001 1 001

corresponding period
.......................

1625-1779 (155 years)
1780-1859 ( 80 years)
1860-1909 ( 50 years)
1910-1949 1 40 years)
1950-1974 ( 25 years)
1975-1983 1 8 vyears)

Table 2-11: Probabilities of detection and periods of
completeness for the EPRI catalog
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magnitude interval

3.3 3.9 4.5 5.1 5.7 6.3 6.9
3.9 4.5 5.1 5.7 6.3 6.9 7.5

zone
1 42.414 67.917 81.437 86.307 108.993 123.988 123.988
2 50.004 77.357 84.997 84.997 109.093 123.988 123.988
3 56.659 100.193 128.683 140.833 157.923 171.028 171.028
4 73.884 116.293 158.548 181.828 198.468 203.980 203.980
5 91.104 137.873 229.123 336.333 358.964 358.964 358.964
6 139.647 176.148 262.808 326.728 352.378 357.120 357.120
7 69.404 98.017 157.607 200.103 203.668 203.980 203.980
8 21.124 29.174 33.074 66.197 72.997 73.993 73.993
9 33.269 64.677 78.227 99.977 119.693 123.988 123.988

10 56.159 91.493 123.473 218.368 332.785 358.964 358.964
11 27.899 33.997 53.637 62.557 71.517 73.993 73.993
12 79.307 152.647 239.778 316.558 350.508 356.500 356.500
13 71.709 75.909 85.374 108.157 123.043 123.988 123.988

Equivalent periods of observation (years)
Teq(x,m)
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I CELL

ALPIA IT I '•; IOUT IIAIL IFO Tl IF:IN
0.100 9073 4690 2710 1462 1248

R'- OUT R-IN O0 81 AI..PHA - I N AI..PHA I-UT A.PHA2 IN ALPHA2-OUT
2.208 2.512 0.792 0,129 0.115 0.130 0.113 0.127

RE(IONS * ITE.• ITFAIL. XI'TST--OUT IFAIL-OUT R R2 80 81 AI..PIHAI-IN AL.rHAI--OUT ALPHA2-IN AL.PHA2-OJT U
IGT, IFT 12246 3157
RO 2.378999

4059
4059
40599
4059
40359
4059
40c) 59

1140
1140
1140
1140
1140
1140
1140

4566
475
1230
285
256
322
1998

1422
160
350
69
55
46

742

2.211
S1.969
2.514
3.130
3.655
6. 000
1 ,.693

2,561
2.561
2.5 61
2.561
2,561
2.561
2.561

0) 793
0.677
0) .922
1.141
1 , 296
I 1.792
0.526

o. 147
0.263
o0018

-0.201
-0. 356
•-0,052
0.414

0.112

0.,112
0.112
0.112

0.1120,112

C. 130

0.146
0,115
0,092
0.079
0.0404
0.170

0.111
0,111
0.111
0.111
0,111

0.111
C) * 11

0.126
0.140

0.113
0.093
0.000

0.051
0.159

2 10 5 475 160 1.969 1.000 0.677 -0.677 (01288 0,146 0,242 0,140
1 10 5 475 160 1.969 1,000 0.677 -0.677 0,218 0.146 0.242 0.140

3 75 17 1230 350 2.514 3,412 0.922 0.305 0.014 0.115 0.006 0,113
1 75 17 1230 350 2.514 3,412 0.922 0.305 )0.0134 0 115 0.06 0.113

1.400 999. 000 0,336 999.000 0,000 0.208 0.000 0, 16
000 0000 0000 0.000 0000 0.000 0,000 01000 0,)00 0.000

1.400 999,000 0,336 999000 0,0(00 0.206 0.000 0.186

5 3 0 285 69 3.130 999.000 1,141 999.000 0.000 0.2.08 0.000 0,093
1 3 0 285 69 3130 999.000 J1,141 999.000 0.000 0.092 0. 000 0,093

1,400 999,000 0,336 999,000 0,000 0.28 0),000 0.186
0.000 0.000 0.000 0.000 0.000 0.000 01000 0.000
1,400 999.000 0,336 99'9.000 0,000 0,206 0.000 0.1806

7 3 0 256 55 3.655 999.000 1.296 999.000 0.000 0.2180 04.000 0.080
1 3 0 256 55 3.655 999.000 1.296 999.000 0.000 0,079 0.000 0.080

8 5 0 322 46 6.000 999.000 1,792 999,000 0,0(00 0.280 0,0(0 0.051
1 5 0 322 46 6,000 999.000 1.792 999,000 0.000 0,043 0.000 0.051

9 6 2 100 30 2.333 2.000 0, 847 -0.154 0.144 0.123 0,138 0.121
10 6 2 100 30 2.333 2,000 0.847 --0.154 0,144 0,123 0.138 0.121

2122
1990

12
12

100

222
222
22
222
222

702
742

5
5

30

1.714
1.693
1.400
1.400
2.333

1,643
1 .643
1.643
1.643
1.643

0,539
0,C526
0.336
0,.336
0,0847

-(0.042
-0.030
0.160
0.160

-0(1.351

0.175
0,175
0.175
0,175
0.175

0.16 1
0,170
0.206
0,206

0,123

0.163
0.163
0.163
0.163
0.163,

0.157
0.159
0. 106
0.186
0,121

S,.720
1,.173
3.,149
6.392

30, 653
55.563

8.728

1.173

1.173
999,000

3. 149

3.149
999.000

6.392

30.653

1.864

55.563
999.000
999.000

1.064

Table 2-V: Odds ratios for source configuration D (unmerged sources)



I CELL.

ALPHA I TI)M. IOUT I:FAIL IFOUTI' IFIN
0,100 9276 3946 2915 1282 1633

R-OUT R IN 80 I AI..PHA I N AALPHA I -..OUT AL..PHA2 .I N AL..P'HA.2-0UT
2.078 2.264 0.731 0,06 0.11.6 0.126 0.114 0,123

REGIONS ITXT.',18l I FATL.. IrrT:S --oU(I IIAIL..-OU( T R R2 R0 P1 A tI.PHIIA1 -IN AL.:hIIA1 -OUT AL.F'HA2--IN AL.PHA2-OIJT U
IOT, IFT 11325 3126
RO 2.622041

5041
5041
5041
5041
5041
5041

1526
1526
1526
1526
1526
1526

3918
535
321
205
356

2421

1270
100

82
62
58
800

2 , 0135
].046
2.915
3,597
5,138
1.751

2.303
2.303
2,303
2.303
2.303
2.303

0.735
0.613
1,.070
1.200
1,637
0.560

0.100
0.222

-0,235
"-0,446
-0 .0102
0.274

0.114
0 * 114
0,114
0.1A14
0.114
0,114

0.126
0,142
0,090
0.073
0.051
0. 150

0,112

0.112

0.112
0.112
0. 1 I'l

0,123
0.136

0.091
0.075
0.054
0.143

2 10 5 ,535 188 1.046 1.000 0.613 -0.613 0,262 0,142 0.226 0.136
1 10 5 535 188 1.046 1.000 0.613 -0.613 0.262 0.142 0,226 0.136

3 3 0 :321 02 2.915 999,000 1.07( 999.0(00 0,c00 o.262 0,000 0,091
1 3 0 321 02 2.915 999.000 1.070 999,000 0.000 0.090 0.000 0.091

4 0 0 28 12 1 .333 999,000 0(2100 999.000 0.O000 0.262 0.000 0.179
7 0 0 28 12 1.333 999.000 0.20S 999,000 0.000 0,197 0.000 0.179

5 ,3 0 295 62 3.597 999,000 1.2 0 999,000 0,000 0.2,2 0,000 0.075
1 , 3 0 285 62 3.597 999, 000 1 .230 999.000 0.000 0.073 0.000 0.075

7.119
4.497

.10, 629
999.000
30.715

7.119

4.497

999,000

10,629

6 0 0 356 58
1 0 0 356 58

102
1.02
102

2449 892
2421 800

28 12

5.138 999.000 1,637 999,000 000 0000 0262 0,000 0.054
5.,13a 999,000 1.637 999,000 0.000 0.0151 0.000 0.054

1,746 1,676 0.557 --0.040 0.156 0,150 0,148 0.143
1.751 1.676 0.560 -0,044 0.156 0.150 0.148 0.143
1,333 1.676 0,288 0,229 0,156 0,197 0.148 0.179

Source configuration D (similar sources merged)

273
273
273

999.000

30,715
999.000
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1155 347
1155 347
1155 347

1155 347
1155 347
1155 347
1155 347

3542 929
1003 386
52 23

2,813 2.329 1.034 -0.109 0.161 0,133 0.151 0.129
3,671 2.329 1.300 -0.455 0.161 0.102 0.151 0.102
1.261 2.329 0.232 0.613 0.161 0.296 0,151 0.2410

3.687
1.556
2.611
1.579

614
50oi
260
312

635
134
501

345
85

260

2.329
2.329
2.329
2.329

1.305
0.442
0.960
0.456

-0.460
0.403

-0.115
0.389

0.161
0.161
0.161
0.161

0.101
0,240
0,143
0.237

0,151
0.1.51
0.151
0.151

0.101
0.211
0.137
0.208

1.646 2.750 0.498 0.513 0.136 0.227 0.131 0.202
2.045 2,750 0,716 0,296 0.136 0,183 0,131 0.169
1.556 2.750 0.442 0.569 0.136 0,240 0.131 0.211

2.557 1.500 0,939 -0.533 0,249 0.146 0.217 0,140
2.400 1.500 0,875 -0.470 0.249 0.156 0.217 0.148
2.611 1.500 0.960 -0.554 0.249 0.143 0.217 0.137

13 15 9 312 121 1.579 0,667 0.456 -0.862 0.561 0.237 0.384 0.208
10 15 9 312 121 1.579 0.667 0,456 -0.862 0.561 0.237 0.384 0,208

50.945
999.000

20,297
13.949
1.075

13.965

7.206
13,849

0.932
1.075

13.965



'CELL

ALFPIA 1I I' T111f13 TOUT fAIJL IFOUT 1FIN
0.100 10614 7976 2753 ;139 614

R-(OUT R-IN 80 81 AIP.IIA 1- IN AI.PHAl --0UT AI.PHA2- I N AL PHA2- 0U i
2.729 3,296 1.004 0.189 0.113 0.136 0.111 0.131

RE ON . IT T I1 7 F IT ST OT IFA II.-IUT R R2 80 81 AI.PHA1 IN AL.'HA -( OII AIF 'HA -II AI..PHA2-i0UIT
IGT, IFT ?2570 4790
RO 3.713570

. . . . . . .. .. . .. . . .. .. . . . .. . . . .. . .. . . .. . . . . ... . ... . .. .... .... . . . ... . . .. . ... .. ..... ..... .. . .. . . .. .... ... .... .... ... .... ... .. . . ... . . .. ... . .. . . . .. . . . . . .. ... .... . . .. ... . .. . . . . ... ....

2.159 999.000 0.770 999.000 0.000 0.371 0.000 0.160
3.276 999.000 1.187 999.000 0.000 0.113 0.000 0.112
1.062 999.000 0.622 999.000 0.000 0.199 0.000 0,181

2.701
3.276
3.185
2.183

2,.328
3.185
1.385
3.413

2.506
1 .862
2,183
1 385
4.518
2.816
2.011

3.899
3.413
4.518
3.182
2.690
3.967

2.150
2.150
2.150
2.150

15,563
15.563
15.563
15,563

3.274
3.274
3.274
3,274
3.274
3.274
3.274

5,333
5,333
5.333
5,333
5* 333
5,333

0.993
1.187
1.158
0,781

0.845
1,158
0.326
1.228

0.919
0.622
0.781
0.326
1.508
1.035
0,699

1.361
1.228
1.508
1.157
0.989
1.378

-0.228
-0.421
--0.393
-0.015

1.900
1.587
2.419
1.517

0.267
0.564
0.405
0.860

--0.322
0.151
0.487

0.313
0.446
0.166
0.517
0.685
0.296

0.17:3
0.173
0.173
0,173

0.0240,024
0.024

0.024

0 11 3
0.113
0.11.3
0.113
0.113
0.113
0.113

0.070
0.070
0.070
0.070
0.070
0.070

0.1380
0.113
0.117
0.170

0.160
0.117
0.260
0.109

0.148
0.199
0.170
0.268
0.082
0,132
0 185

0.095
0.109
0.082
0.117
0.138
0.094

0.161 0.133
0.161 0.112
0.161 0.115
0.161 0.159

0,026
0.026
0.026
0.026

0.112
0.112
0.112
0.112
0.112
0.112
0.112

0.072
0.072

0.072
0.072
0.072
0.072

0.151
0.115
0.230
0.108

0.141
0.1.81
0.159
0.230
0.084
0.128
0.170

0.096
0.108
0.084
0.115
0.1.33
0.094

0
0
0

20
20
20
20

16
16
16
16

73
73
73
73
73
73
73

90
90
90
90
90
90

0
0
0

7 3 2 107 29 2.690 0.500 0.989 -1.683 0.743 0.138 0.452 0.133
5 3 2 107 29 2,690 0.500 0.989 -1.683 0.743 0.138 0.452 0.133

2.816
1.583
2,816
3.967
1,391
1.519

2.398
2.398
2.398
2.398
2.398
2.398

1.035
0.459
1,035
1.370
0,330
0.418

-0,161
0.,416

-0,161
--0.503
0.544
0.457

0.155
0.155
0,155
0 * 1550.155
0,.155
0,155

0.132
0.235
0.132
0.094
0.267
0.244

9 45 12 800 295 1,712 2.750 0.538 0.474 0.135 0.217
4 45 12 268 89 2.011 2.750 0.699 0.313 0.135 0.185
8 45 12 532 206 1.583 2.750 0.459 0.553 0.135 0.235

10 15 9 330 131 1.519 0.667 0.418 -0,824 0.557 0.244
8 15 9 330 131 1,519 0,667 0.418 --0.824 0,557 0,244

0.147
0,147
0.147
0.147
0,1.47
0.147

0,130
01130
0.130

0.382
0.382

0.128
0.207
0.128
0.094
0,229
0.214

0.194
0.170
0.207

0.214
0.214

33
33
33

63
63
63
63

265
265
265
265

312
312
312
312
312
312
312

570
570
570
570
570
570

Source configuration E ' (similar sources merged)

1694 509
272 65
632 265
790 179

12.811
23.683

12.811
41.763

5.441

41.763
123.191
39,759

23.683
5,441

123.191
7.845
6.219
6.941

39.759
7.845

999.000
12,803
57.319

999.000
999.000

12.803

15,690
6.219

57.319
999.000

18.460

6.941
15.690

18.460

1.971 999.000 0.678 999.000 0.000 0.371 0.000 0.173
3.182 999.000 1.157 999.000 0.000 0.117 0.000 0.115
1.391 999.000 0.330 999.000 0.000 0.267 0.000 0.229

3748
312
296
632
916

1324
268

3831
790
916

46
107

1972

101
46
55

1069
109
93

265
166
347

89

782
179
166

11
29

397

34
11
23

1332
1332
1332
1332
1332
1332

4213
532

1324
1972

55
330

1104
206
347
397
23
131



:;ELL 291

ALPHA ITI MES IOUT IF-AIL IFO J T IFIN
0.100 21993 16809 8281 7569 712

R-OUT R--IN 80 81 ALPHA 1 -IN ALPHA1-OUT ALPHA,2- IN ALPHtA2-OUT
1.221 6.281 0.199 1.638 0.039 0.202 0.042 0.183

RECIONS : ITEST IFA IL. ITEST-OrUT IFAIL-DUT R R2 80 81 ALFPHA1-IN ALPHAI -U(T Ai.LPH2-IN ALPHA2-OUT
IGT, IFT 42195 12173
RO 2.466278

1 3 0 51 28 0.821 999.000 .-0.197 999,000 0.000 0.247 0.000 0.250
2 3 0 51 28 0.021 999.000 -0.197 999.000 0.000 0.300 0.000 0.250

1.941
1.941
1.941
1.941
1.941

0.734
0.780

-'0.197
0.418
1.153

-.0.071
-0.117
0.860
0.246

-0.489

0.127
0.127
0.127

0,127
0.127

0.118
0.113
0.300
0.162
0.078

0.124
0.124
0,124
0.124
0.124

0.116
0.112
0.250
0,153
0.080

2.647 999.000 0.974 999.000 0.000 0.247 0.000 0.094
2.775 999.000 1.021 999.000 0.000 0.089 0.000 0.090
1.000 999.000 0.000 999.000 0.000 0.247 0.000 0.215

2.000
2.000
2.000
2.000
2.000

999,000
999.000
999,000
999.000
999,000

-0.313
-0,422
0,000
0.410
0.000

0.567
0.000
1,153
0.000
0.551

1.006
1.115
0.693
0.275
0.693

999.000
999.000
999.000
999,000
999.000

0.123
0.123
0.123
0,123
0.123

0,0000
0.000
0,0000
0.000
0.000

0,337
0.376
0,247
0.162
0.247

0,247
0,247

0.078
0.247
0.142

0.121 0.273
0.121 0.295
0.121 0.215
0.121 0.1.53
0.121 0.215

0.000
0.000
0.000
0.000
0.000

0,.135
0.215
0.080
0.215
0.1.36

0.112 999,000 -2,109 999.000 0.000 0.247 0;000 0.710
0.000 999,000 0.000 999.000 0.000 0.247 0.000 0.215
0.114 999.000 -2.173 999.000 0.000 2.167 0.000 0.707

100
100
100
100
100

9
9
9

6
6
6
06
6

1
1
1

1

1

-2.617
-2.716

-0.511

1.000
1.000
1.000
1,000

3,379
3.728
0.247
0.411

1,.000
1.000
1,000
1.000

0.790
0.806
0.000
0.314

5.918 999,000 1,778 999,000 0.000 0,247 0,000 0.044
7.838 999.000 2.059 999.000 0.000 0.031 0.000 0.034
0.000 999.000 0.000 999.000 0.000 0.247 0.000 0.215

0.799 2,000 -0.224 0.917 0.123 0,309 0.121 0.255
0.803 2.000 -0.219 0.912 0.123 0.307 0.121 0.254
0.600 2.000 -0,511 1.204 0.123 0.411 0.121 0.314

2.034
2.034
2.034
2.034
2.034

0.260
0.249
0.057
0.000
0,752

0.451
0.461
0.653
0.710

-0.042

0.121
0,121

0.121
0.121
0,121

0,190
0.192
0,233
0.247
0,116

0.119
0.119
0.119
0.119
0.119

0.175
0.176
0.206
0.215
0.114

8.197

320.046
8.197
0,593
1,392

83.907
6.890

013.001
6.890
0.593
1.111

1.111
1.392

999.000
93.112

999.000
999.000

18.000
2.109.

0.737'
18.000

585.387
2.109

755.438
5.503

999,000
11.402

3.523 999.000 1.259 999.000 0.000 0.247 0.000 0.072

Table 2-VII: Odds ratios for Woodward-Clyde's source configuration (unmerged sources)

2.084
2,181
0,021
1,.519
3.167

0.000
0.000
0.000
0.000

1582 513
1438 452

51 28
68 27
25 6

139
129
10

372
331
10
27

4

76
4
6
2

64

125
2

123

274
257
12

5

0,731
0.656
1.000
1,519
1.000

1.763
1.000
3.167
0.000
1.734

0.073
0.066
0.000
0.600

339
327
12

457
449

8

1860
1621

70
66

103

294

1.296
1.283
1.059
1,000
2.121
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ALP'330A 11 TIES 10UT IFrAL IFOUT3 IFIN
0.100 22609 16828 8594 7592 1002

R-OUI U1 R- ALHIN10 I:tI A1.PH A1 -I AL.PA1-OUT APHA2 ALL.PHA2.-I ALPHA2-0UT
1.217 4.769 0.196 1. 366 0.049 0.193 0.052 0.177

REGION'; : ITEr:T I FAL1 I'EST-UT -( FAIL-OUT R 3I2 DO s1 Al .PHAl-II N ALP.'HA1 -OUIT AL.FPHA2-IN ALPIIFA2-OUJ LU

IGT, IFT 41041 12238
RO 2.35571

1 3 0 72 34 1.110 999.000 0.111 999.000 0.000 0.235 0.000 0.190
2 3 0 72 34 1.118 999.000 (.111 999.000 0.000 0.211 0.000 0.190(

2546 993
72 34

100 18
24 16

2350 925

1.564
1 1183
4.556
0.5 00
1.541

2.348
2.348
2,348
2.348
2.348

0.447
0.111
1.516

-0.693
0.432

0.406
0,742

-0.663
1.547
0,421

0.100
0.100
0.100
0.100
0.100

0.150
0.211
0.052
0.471
0.153

0.100
0.100
0.100
0.100
0.100

0.143
0.190(
0,054
0.343
0.145

2.809 999.000 1.033 999.000 0.000 0.235 0.000 0.085
4.556 999.000 1.516 999.000 0.000 0,052 0.000 0.054
2.583 999.000 0.949 999.000 0.000 0.091 0.000 0.092

0.171 999.000 -1.764 999.000 0.000 0.235 0.000 0.604
0.500 999,000 -0,693 999.000 0,000 0.471 0,000 0.343
0,129 999.000 -2.040 999.000 0.000 1.824 0.000 0.670

0.939

8.939
8.343

999.000
535.886

8.343
59.354

999.000
999.000

5 1 1 280 257 0.089 0.000 -2.414 *tt*$** 1.000 2.630 1,000 0.745
15 1 1 280 257 0.089 0.000 -2,414 *tat* x 1.000 2,630 1.000 0.745

6 6 2 459 255 0.800 2,000 -0,223 0.916 0.118 0.294 0.116 0,246

15 6 2 459 255 0.800 2.000 -'0.223 0.916 0.118 0.294 0.116 0.246

2341
66
70

148
1657
400

300
66

234

285
55
70

160

2057
55

148
1338
196

0
320

910
33
34
40

729
74

67
33
34

117
24
34
59

473
24
40

241
139

0
29

1.573
1.000
1.059
2.700
1.273
4.405

2.034
2.034
2.034
2.034
2.034
2.034

0.453
0.000
0,057
0.993
0,241
1.483

0,258
0,710
0,653
-0.283
0,469
-0.773

0.116
0.116

0.116
0.116
0.116
0.116

0.150
0,235
0.222
0.087
0.185
0.053

0.114
0.114
0.114
0.114
0,114
0.114

0.143
0.207
0.198
0.088
0.170
0.056

3.478 999.000 1.246 999.000 0.000 0.235 0.000 0.070
1.000 999.000 0.000 999.000 0.000 0.235 0.000 0.207
5,882 999,000 1,772 999.000 0.000 0,040 0.000 0.043

1.436
1.292
1,059
1.712

3.349
1.292
2.700
4.552
0,410
0.000

10.034

0.667
0.667
0.667
0,667

999.000
999.000
999.000
999.000
999,000

0.000
999.000

0.362
0.256
0.057

0.538

1.209
0.256
0.993
1.516
-0.091

0.000
2.306

-0.767
-0.661
-0.463
-0.943

999,0000
999.000
999.000
999.000
999.000

0.000
999,000

0.353
0.353
0.353
0.353

0.000
0o000
0,000
0.000
0.000
0.000
0.000

0.164
0,182
0.222
0.137

0.235
0.182
0.087
0.052
0.574
0.000
0.023

0.282
0.282
0.282
0.282

0.000
0.000
0.000
0,000
0.000
0.000
0.000

11 168 99 2696 1744 0.546 0.697 -0.605 0.244 0.338 0,431 0.273
14 168 99 339 167 1.030 0.697 0.030 -0.391 0.338 0.229 0.27Z

0.154
0.168
0.198
0.133

0.072

0.168
0.088
0.054
0.389
0.000
0,025

00.324
0.202

&I
462.749 \

999.000
5.503

21.787
602.954
28.790

999.000
999.000

34,526
5.503

62.207

34,526
21.787

18,217
92.374
92.374
6.162

9.516

Source configuration - Woodward Clyde Co. (similar sources merged)

231
231
231
231
231

9
9
9

0
0
0
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Figure 2-1: Regions of rejection (*) / acceptance (.:) for the binomial
test of equality of the recurrence rate
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MAIN EVENTS(1625-1981)

Figure 2-2: Main events for the Chiburis catalog (1625-1981)
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Figure 2-3: Incompleteness regions for the Chiburis catalog
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(a) Pa= 1
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(b) Pa =7
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(c) P a= 2 0
a (d) Pa=100

Figure 2-5: Estimates of a(x) for the Chiburis catalog as a function of the
penalty on a(x)
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(a) Pb= 100 (fixed, M=1) (b) Pb=1000 (fixed, M=1)

43

42

77 7( 7Pb 74 7 72 -71 7( Z3

(c) Pb= 100 , alpha=20% (M=1)

Figure 2-6: Estimates of b(x) as a function of Pb and of c.
for the Chiburis catalog
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S I I I I I i

42

3L
-77

-77 -76 -75 -74 -73 -72 -71 -70 -89

) a( M= 
1 

P =7 
a l pha=1%

-76 -75 -74 -73 -72 -71 -70 -69

(b) M=l1 P =7. alnha=15I

-77 -76 -75 -74 -73 -72 -71 -70 -89 -77 -78 -75 -74 -73 -72 -71 -70 -69

(c) M=I, Pa.=50 , alpha=15% (d) M=2, Pa=7 , alpha=15%

Figure 2-7: Estimates of a(x) as a function of M, (, and Pa
for the Chiburis catalog.
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Figure 2-8: Incompleteness regions for the EPRI catalog
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Chapter 3

Selection of Seismicity Models

3.1 Introduction

In implementing the models of Chapter 2, the analyst must specify the following

parameters:
* the discretization in (x,t,m) for the probability of detection,

* the discretization in space for a(x) and b(x),

* the penalty on a and b (PaPb),

* the time-magnitude envelope for the estimation data set

* and the significance level (ox) and spatial extent (M) for the local

neighborhoods of the models of section 2.3

Some of these parameters can be selected from considerations exterior to the model.

For example, the discretization of the probability of detection is mainly a function of

the evolution of the reporting capability as a function of space and time. The choice of

other parameters, such as the penalties (Pa,Pb), the size of the spatial cells, the time-

magnitude envelope and the parameters for the identification of local neighborhoods

are a function of the characteristics of the point process in the mutidimensional space

of (x,t,m).

Two types of optimality criteria are compared for alternative estimators of a(x) and

b(x). Either certain observed statistics are set equal to their mean or median values

under the model, or cross-validated measures of goodness-of-fit such as the likelihood

or negative squared error are maximized. Bayesian procedures are discarted because

they are either computationally too demanding (if they require calculation of the

posterior distributions of a(x) and b(x) for all x) or inferior to cross-validation

alternatives (if one wants only the a-posteriori most likely values of a(x) and b(x)).
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One should distinguish between the maximum-penalized-likelihood method, described

in the previous chapter, by which a(x) and b(x) are estimated under a given set of

conditions (spatial discretization, interpolators a(x) and b(x), penalty coefficients Pa

and Pb, etc.) and the procedure to optimally select such conditions. The cross-validated

likelihood and squared error are defined so that they measure how accurately the model

predicts future events. Therefore, these are attractive statistics for selecting seismicity

models to be used in earthquake hazard studies.

The optimality criteria can be applied to the entire catalog or to any partition of the

catalog in time and magnitude. For example, the model may be fitted to the entire

catalog and the selection of the optimal penalties can be based on a comparison of the

predictions and observations for the entire catalog or with respect to only the most

recent events with large size measure. This may be important if the assumptions of

stationarity or exponentiality of the size distribtuion are violated for the period

covering the whole catalog but are acceptable locally within short periods of time

typical of seismic hazard predictions.

The estimation procedures are applied to the Northeastern United States using the

earthquake catalog compiled by (Chiburis, 1981) and to the EUS using the catalog

compiled for EPRI (1985). Goodness-of-fit of the optimal models is assessed with

respect to the distribution of the earthquakes in space, time and magnitude.

3.2 Target-Statistics Method

Let Q=[0 1,02,...,0o] be the vector of parameters on which the seismicity estimates a(x)
A

and b(x) depend (q includes the cell size, the penalty coefficients Pa and Pb, etc.). A

way to select 0 is to choose a set of statistics S , ...,Sn that measure in different ways

the degree to which the model fits the data and then solve for 0 the equations

Si*()=si(O), i=l,...n (3.1)
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where the si(O) are the empirically observed statistics and Sj(O) are target values for the

case when a(x)=(a(x)le) and b(x)=(6(x)10). For example, one might choose Stto be the

mean or the median of [Si I A(x)l0,6(x)l0], as proposed respectively by (Titterington,

1985) and (Good and Gaskins, 1980). Skilling (1979) uses the 95% fractile of the

same distribution. The idea behind the method is that the statistics si(O) should be

neither excessively good (an indication of overfitting) nor excessively bad (an

indication of underfitting).

In our case, goodness-of-fit statistics such as the Chi-square (x2), the Kolmogorov-

Smimov statistic, and the likelihood are possible choices. Following is a quick

description of each statistic as well as their implementation in the context of seismicity.

3.2.1 Kolmogorov-Smirnov statistic

For testing Ho: Fx=FXo against the two-sided alternative HI: FxWFXo, the

Kolmogorov-Smimov statistic is
A

D = sup IlFx(x)-Fx(x)l (3.2)
al x 0

where Fx (x) and ^F(x) are respectively the hypothetical true and empirical cumulative
o

distribution functions. Under Ho , this statistic has a distribution that does not depend

on the true CDF, FX ; hence D is a distribution-free statistic. The critical value Do can

be modified for the case when the true distribution is unknown and parameters are

estimated from the data. The modification depends on the form of Fx and is usually

approximated through Monte Carlo simulation. In this application, the true distribution

is assumed to be known and equal to the estimated distribution.

To apply the test to a two dimensional process, one needs to build an equivalent one-

dimensional representation of the process. The procedure used in this application is to

build an histogram of the number of events in each cell by joining successive rows of

cells as suggested by Skilling (1979) (Figure 3.1). The ordering of the cells may
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influence the outcome of the test in some cases. The variance of the empirical CDF is

largest for P[x<X] near 0.5 and decreases to zero as P[x<X] -- 0 or P[x<X]--> 1.0.

This means that we can expect fairly large differences between the theoretical and

empirical CDF near the center of the distribution, and much smaller differences in the

tails of the distribution. Whether or not an observed difference between the number of

observations or expected events in a group of cells is significant will thus depend upon

whether it occurs near the center of the distribution or in the tails of the equivalent

one-dimensional distribution. However, the test involves only maximum separation of

the curves, without regard to where it occurs. A test based on this statistic may well

fail to detect substantial departures from the model if they occur in the tails of the

distributions, while exaggerating the importance of departures in the middle of the

distribution (i.e. the ordering of the cells may turn out to be important).

To implement the test, the estimated model is assumed to be the true model, and the

cumulative distribution function is defined as

iA
SN(xi)

F Xo) = N, (3.3)

SN(xi )
where N(xi) is the expected number of events in the ith ordered cell and Ncell is the

total number of cells. The empirically observed cumulative distribution is similarly

defined with N(x.), the number of observations in the jt cell replacing N(x j) in the

previous expression.

3.2.2 The Chi-square test

Another convenient way to evaluate the goodness-of-fit of a probability density

function is to compare the probabilities associated with k non-overlapping intervals

covering the range of variation of the random variables with the observed frequencies.

Then, the goodness-of-fit problem takes the form,
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Ho: PI=Plo, P2=P2o,  , Pk-Pko (3.4)

H1: P i,=Pio for at least one i.

The most common statistic for testing this hypothesis is Pearson's Chi square (x2) test.

The test requires that the n observations be grouped into k non-overlapping cells and

that pio, i=l,...,k be specified. The estimated model is again assumed to be the true

one, pio = L=•x,_; pi is similarly defined with the number of observations in cell xi

(N(xi)) replacing the number of expected events in the previous expression. The

observations in each cell have a multinomial distribution with parameters n,pl,...,pk,

and the CDF of the random variable

C (N(xi)-npio)2

i=1 nlPio

converges to the CDF of the X2 distribution with (k-l) degrees of freedom.

Small values of C lead us to conclude 'that the distribution with probability masses pio

is the true distribution, for example, if C < X(k-1),a

significance. For this application, it is conveninet to use the same grid as the one used

for the estimation of the parameters a(x) and b(x). If the number of spatial cells is

large, k is reduced by aggregating neighboring cells, so that npi is not less than 5 in

each resulting cell (Larsen, 1981) (the X2 test is exact only asymptotically, for

npi -ý ).

3.2.3 Log-likelihood

Another statistic which can be used is the log-likelihood. The log-likelihood 1(x) for

cell x may be written in different ways, depending on whether and how earthquakes are

classified according to size and time of occurence. For example, if the events are

classified only according to geographical location x, then

L = ,L(x) = jN(x).ln[X(x)T(x)] - X(x)T(x)) + constant (3.6)
x x
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where X(x) is the rate of events defined in equation 2.1, N(x) is the number of

observations and L is the log-likelihood. The expected value and variance associated

with the total log-likelihood can be derived assuming that the estimated model is the

true one and that each L(x) is Poisson distributed with parameter X(x).

The expression for the variance is approximate because the log-likelihoods for each
A A

cell are not independent due to the smoothing of a(x) and b(x). Figure 3.2 illustrates

how the (log-)likelihood, its expected value and variance vary as a function of the

expected and observed number of events in a single cell. The (log-)likelihood is

maximum when the number of observations is equal to the expected number of events

and the range for which the (log-)likelihood remains larger than its expected value

corresponds to models which, by our definition, overfit the data. However, these are

within the range of acceptable models if we consider the uncertainty on the

(log-)likelihood and accept all models within one standard deviation of the expected

(log-)likelihood.

3.2.4 Flagging of significant overpredictions and underpredictions

Another procedure to judge the goodness-of-fit of the model, is to compare the number

of expected and observed events in various partitions of the catalog under an

assumption of Poisson occurences. Flags are assigned to significant overpredictions
A A

(">" for P[N_<N] < 2%, "+" for P[N<N] < 10%) and significant underpredictions ("<"
A A

for P[N>N] < 2%, "-" for P[N>N] < 10%). The first significance level corresponds to

mild deviations from the model assumptions, while the second significance level

corresponds to more severe deviations. In- this application, the tests are routinely

performed on the total number of events at each location for given partitions of the

catalog in time and size measure. Tests are also performed with respect to the

distribution of the total number of events in each size interval, as well as each
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discretization interval for the probability of detection. The tests can be used to select

optimal penalties, by comparing the number of flags to the number of expected flags

[20% of the number of tests performed for (+,-), and 4% of the number of tests

performed for (<,>)]. The sequential or spatial distribution of the flags is informative

with respect to the goodness-of-fit of the model. If flags of a given sign are clustered

in space, it indicates that the model fails to capture the trend of spatial variation of

seismicity and systematically underpredicts or overpredicts the number of events

depending on their location.

3.2.5 Distance measures

Other goodness-of-fit statistics for point processes are the distribution of nearest

neighbor distances and the distribution of the shortest distance from a random point to

an event from the process (Diggle, 1983). The distribution of these statistics is usually

obtained through Monte Carlo simulations. Using the estimated model, several new

catalogs are simulated, and the distribution of some specified statistic determined. The

estimated model is rejected if the observed statistic is outside a specified range of the

ordered simulated values. A possible selection rule for Pa based on this procedure is to

select the smoothest model which is not rejected at a specified significance level.

3.2.6 Statistics for the selection of the grid size

Statistics other than the previous ones have been developed in the context of spatial

point processes for the selection of the grid size for analysis. The litterature on point

processes refers to this issue as a problem of scales of patterns (Diggle, 1983), (Ripley,

1981), (Pielou, 1969). The most common of these procedures is that proposed by

(Greig-Smith, 1952): The data is partitioned accordinng to a grid of contiguous cells

(or quadrats). The sample variance-to-mean ratio (i), or index of dispersion of the
m

events is calculated for this basic grid and for coarser grids obtained by successive



combinations of adjacent cells into 2x2, 4x4, etc... blocks. The index of dispersion is

then plotted against block size and peaks (t > 1) or throughs (- < 1) in the graph are

interpreted as evidence of scales of patterns (aggregation or repulsion respectively at

the proper scale). Note that - = 1 is the value obtained under complete spatial

randomness (Poisson process).

However, these procedures are not applicable in the context of the present application

because they assume that the characteristics of clustering or regularity are unifrom for

the whole region. The selection of the proper discretization is , however, an important

issue and will be addressed in section 3.3.

3.2.7 Combining several statistics

Each of the previous statistics can be used separately to select a particular parameter of

the model. Alternatively, one may combine several of them for the selection of a

single parameter. Several equivalent procedures are available for this purpose

(Gibbons, 1985), (Bradley, 1968), and (Krishnaiah, 1984). The one which has been

used in this application is the following, proposed by Good and Gaskins (1980), which

assumes that the target is the median value of the statistics.

If several statistics, Sl,S 2,...,S n are used for the selection of a parameter, the

corresponding tail-area probabilities (Pi) can be combined through an harmonic-mean

(Good, 1958)( = [1+ ... + 1]). However, our problem is special in that left and
P n P P

right tails of the distribution of the statistics correspond to conflicting phenomena,

roughness and smoothness. The procedure which is proposed is symmetrical with

respect to the two tail areas. Given m tail-area probabilities less than 0.5, PI,P2,...*Pm,

and n that are at least 0.5, Q1,Q2,.'",Qn, the harmonic means hp of the P's and kq of the

(1-Q)'s are computed, converted to odds ratios, and then weighted through a geometric

mean,
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h m (1-kq) n
O=[ ](m+n) [ ](m+n) (3.7)

(1-hp) kq

and finally converted to a resultant probability

0
R=2 [ - 0.5 ] (3.8)

(1+0)

where 0 < R_< 1.0. Good and Gaskin suggest that the minimum value of R be used for

the selection of the optimal parameter.

3.2.8 Applications

The target-statistics method is illustrated here for the selection of the parameter Pa

which controls the smoothness of the estimator a(x). The analogous parameter for b(x)

is fixed to 1000, a value which produces high smoothing. The catalog used is the one

compiled by Chiburis (1981) with space discretized to one degree cells. Modified

Mercalli Intensity (Io) is used as a measure of earthquake size. The discretizations in

time and intensity are selected as a function of the accuracy and history of reporting.

Intensity is already reported in a discrete scale, and for it, unit intervals are a natural

choice. The discretization in time and space for the probability of detection is

determined from an analysis of reported events and the mode of reporting (VanDyck,

1986) and was described in the previous chapter. In this and in following applications,

a prior mean of 1.3 is assigned to b, which is the value obtained under complete

smoothing of the b parameter. A prior variance of 10 is specified on the basis of work

by VanDyck (1985, Chapter 4). This is a mild prior, which however stabilizes the

estimate of b(x) in areas of sparse data. The interpolators a(x) and b(x) are the

averages of a and b over the eight cells that are closest to x.

Figure 3.3a shows the variation with Pa of the Chi-square and the Kolmogorov-

Smimov statistics computed for one degree cells and all of the observations used for

estimation. The dashed line corresponds to the diagnostic quantity proposed by (Good
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and Gaskins, 1980)(Equation 3.8). If one selects medians as the target values S*, one

finds optimal penalties between 20 and 35 and rather smooth associated estimates of

a(x) when comparing the expected and observed number of events. The grid of

aggregated cells used to compute the Chi-square statistic is shown in Figure 3.4a. Note

that when we are comparing the observations and predictions for the whole catalog (the

estimation and validation data sets are the same), the exceedence probabilities

associated with each statistic are monotonically increasing. Notice that the target-

statistics procedure is originally intended to be used with the full data set.

The optimal choice is less clear when the criterion is applied to different subsets of the

catalog. In this case, the statistics are computed for only part of the data set which was

used for the estimation of the model. The aggregated cells that are used to compute the

Chi-square statistic are shown in Figures 3.4b,c,d for each subset. Notice that due to

the smaller number of events, the total number of observations decreases and so does

the power of the tests. For events with intensity greater than 4.5, the X2 and

Kolmogorov-Smimov statistics vary differently with Pa. The tail probabilities

associated with the X2 statistic increases monotonically with the-penalty and its median

corresponds to Pa= 5 (Figure 3.3b). The tail probabilities associated with the

Komogorov-Smimov statistic are not as well behaved because the test is based on

sparse observations within one degree cells. In addition, many of the most active cells

are located at the periphery of the region and end up in the tails of the one-dimensional

histogram (obtained by joining successive rows of cells) where the test lacks power.

The criterion proposed by Good and Gaskins is controlled by the variation of the X2

statistic and identifies an optimal penalty Pa=3. Such a result is consistent with the

observation that events of larger intensity are more likely in regions of high activity.

The data sets corresponding to the most recent events (since 1915) with I > 3.5 or I >

4.5, contain fewer events than the previous case. For the recent events with I > 3.5, the
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X2 test favors no smoothing while the K-S test fails to identify an optimal penalty

(Figure 3.3b). For the recent events of larger intensity both tests fail to identify an

optimal penalty (Figure 3.3d). A comparison of the data sets for the periods 1627-1915

and 1915-1981 shows that the lack-of-fit is a consequence of a change in the pattern of

seismicity between the two periods (Figure 3.5b). The partition of the region

corresponds to homogeneous seismogenic provinces proposed by (WGC, 1980) and is

displayed only to facilitate the description of the data and results (Figure 3.5a). In this

case, the Adirondack Uplift, Piedmont Atlantic Gravity, and Merrimack Synclinorium

show an increase in activity while there is a sharp decrease of activity in the

Massachusetts Thrust Fault Complex. This raises the issue of possible lack-of-fit of

the model which will be addressed more in detail in later sections. In consequence, this

procedure should be used only with respect to the full data set for the selection of

optimal penalties.

A simple test which illustrates the lack-of-fit is the flagging of significant deviations

between model predictions and observations for different partitions of the catalog. For

observations within on degree cells, Figure 3.6 shows how the total number of flags

varies as a function of Pa and Figure 3.7 shows how these are distributed spatially for a

selection of penalties and partitions of the catalog. For identifying the optimal penalty,

the criterion is formulated such that the number of flagged cells ("+" or "-")

corresponds to 20% of the number of cells (Ntest) for which the test is powerful. For

the events with I > 3.5 and t > 1627, Ntest is approximately 40 and the the optimal

penalty is Pa=7 (Figure 3.7a). For other partitions of the catalog, the test is not as

powerful because of the smaller number of evnets (for I > 4.5 and t > 1627, Ntest=2 5 ;

for I > 3.5 and t> 1915, Ntest= 3 5 ; and for I > 4.5 and t > 1915, Ntest=1 6 ). For the

events of larger intensity, the flags indicate that the number of events are

underpredicted in the Piedmont Atlantic Gravity province indicating that the estimates
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of b(x) are locally too large (Figure 3.7b,d). Finally, the procedure fails to identify an

optimal penalty for I > 3.5 or I > 4.5 and t > 1915, because the number of flags is too

large whatever the penalty due to lack-of-fit of the model. Again this procedure is

intended to be used with the full data set for the selection of the optimal penalty and

tests on subsets of the catalog are only useful for analysing the goodness-of-fit of the

selected models.

The log-likelihood based on the total number of observations in each cell, L=lnl with I

in Eq. 3.6, is plotted in Figure 3.8 as a function of Pa* Also shown in that figure are the

expected value and the one-standard-deviation bounds on L, under the assumption that

the estimated model is the true one. For I > 3.5 and t > 1627, the log-likelihood is

equal to its expected value for a penalty Pa=2 0 and the one standard deviation bounds

on L correspond to a range of Pa between about 12 and 30. Figure 3.9 shows L-E[L]

decomposed in space for diffemet penalties Pa and for L computed using the entire

catalog. For very small penalties, L is greater than E[L] across all of the region

because there is a perfect match betwewn the predictions and observations. At the

optimal penalty, L is smaller than E[L] only in zones of high activity. For higher

penalties, L is dominated by contributions from the most active cells (near Boston and

south eastern Quebec). These results show that the likelihood remains close to its

expected value in regions of low activity. For I > 3.5 and t > 1915, the optimal penalty

is small (0 < Pa < 3), which is consistent with the previous results. For the other two

cases (I > 4.5 for t > 1627 or t > 1915) the procedure fails to identify a particular model

given the uncertainty on the log-likelihood.

3.2.9 Conclusion

The Chi-square and Kolmogorov-Smimov tests require some subjectivity respectively

to aggregate cells and to construct a one-dimensional distribution function. These
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statistics perform adequately given a sufficient number of observations, and the

combined statistic proposed by Good and Gaskins is then useful in identifying

penalties for which the observed statistics are close to their median value. However,

the procedure fails to identify a model when applied to smaller subsets of the catalog

and provides little insight on the possible sources of lack-of-fit when present. The

flagging procedure has the advantage of visually displaying where lack-of-fit occurs

and is a useful tool for the subjective evaluation of the goodness-of-fit, however, the

procedure is not powerful when there are few observations in each cell.

The target-statistics method has the advantage of being intuitive and easy to

implement. However, the method lacks predictive interpretation and cannot be used to

rank alternative estimators. On the latter scores, cross-validation procedures, which are

described next, should be preferred.

3.3 Cross-validation

Cross-validation aims at maximizing the predictive ability of a model: Suppose that,

besides the original earthquake catalog (estimation data set E), additional observations

(validation data set V) are available from the earthquake generation process. Also let S

be a statistic that compares the validation data with predictions when the model is fitted

to the estimation data. It would be nitural then to rank alternative estimators of a(x)

and b(x) based on the values of S.

Using different statistics S will usually lead to the selection of different optimal

penalties. For the purpose of seismic hazard analysis, where one is interested in the

probabiliy of occurence of events, the maximization of a likelihood-based criterion

appears to be a natural choice. The cross-validated log-likelihood is given by

= lZ a (3.9)
I Ix
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where (A(x),6(x)) t are estimators from observations prior to the tth time interval. The

method of cross-validated likelihood is a natural development of the idea of using the

likelihood to judge the adequacy of fit of a statistical model.

Another popular statistic is the squared error,
A

SEc, = (N(x,I, t)-N(, t))21(a( ))t] (3.10)

Figure 3.10 shows how the log-likelihood and squared error vary as a function of the

number of observations (N) and recurrence rate (k). The sqaured error is symmetrical

with respect to N and X and only depends on the absolute deviations IN-XI, while the

log-likelihood penalizes the same deviations, but in a way that depends on X (higher

penalty for lower expected counts). The only combination for which the log-likelihood

is more sensitive than the squared error is when there is a large number of observations

and a small recurrence rate which does not occur in the models fitted in the following

sections.

In practice, validation data sets are not available and the method is applied by

partitioning the actual sample in various ways into an estimation subset Ei and

validation subset Vi. The cross-validated estimator is the one which optimizes the total

score, say I Sior Is i (Silverman, 1985, Titterington, 1985, Hand, 1982). The

estimation data set Ei associated with the validation data set Vi can be defined from

any subset of the data remaining after removing Vi . Two basic methods of defining the

validation data sets are extrapolation gr interpolation. In extrapolation, only the data

preceeding a validation interval is used for the associated estimation data set while in

interpolation all of the remaining data is used. The extent of the estimation data set

preceeding a validation interval can be defined so that it includes increasing larger

portions of the recent seismicity. In the presence of non-stationarities, this may be

useful in determining the extent of the memory of the process.
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It is recommended that the associated estimation subsets Ei contain only data prior to

Vi . The reason why data following Vi should not be included in Ei is that, if the

assumption of stationarity and Poisson independence do not hold exactly, the use for

estimation of events on both sides of the validation subset artificially increases the

prediction ability of the fitted model.

3.3.1 Applications - Chiburis catalog

The estimation and validation subsets should be defined so as to replicate as closely as

possible the features of the actual data and of the events to be predicted. In the analysis

of Northeastern U.S. seismicity, the Chiburis catalog was divided into ten intervals

with nearly equal numbers of recorded main events and the last five intervals were

used as validation subsets (Vi, i = 6,...,10) (Table 3.I). For the more recent time

intervals, this corresponds to validation periods of approximately 15 years. Other

partitions were also investigated, with 2,3,5,20 intervals. The optimal penalties

obtained for the last 10 of 20 intervals were the same as for the last 5 of 10 intervals.

The optimal penalties obtained from the longer validation intervals (catalog partitioned

into 2,3 or 5 intervals) resulted in larger optimal penalties partly because of the

decrease in the sample size of the estimation data sets Ei and partly because of

migration of seismicity (see below). Note that for the purpose of computing the cross-

validated scores, the probability of detection has been fixed to estimates previously

obtained by using the entire catalog.

The first step in the specification of the model is the selection of the grid size for the

estimation of the seismicity parameters, which directly affects the degree of

smoothness attainable by the estimates4 The effect of the grid-size was investigated for

the subregion identified in Figure 3.11a for (1.0)2, (0.5)2 and (0.25)2 square degree

cells. All scores are computed with respect to quarter degree cells. For example, the
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seismicity parameters which are estimated for a one square degree cell are assigned to

each of its 16 quarter degree subcells for the computation of the scores. It has been

found that, for the region under study, there is a significant gain in prediction accuracy

when going from one-degree to half-degree cells, but that no additional gain results

from using quarter-degree cells (Figure 3.1 lb). This may be a consequence of the fact

that many events in the catalog are located with an accuracy not higher than one

quarter degree.

Starting with a fixed neighborhood, a given value of Pa (Pa = 7 , which turns out to be

the optimum value), and a discretization into half-degree cells, optimization was first

performed with respect to Pb (Figure 3.12). The large optimal penalty (Pb= 10 0 0 ) is a

consequence of the inaccurate estimation of b using data from only very few cells.

Figure 3.12 indicates that it is best to use a high penalty Pb and introduce bias into 6(x),

in order to reduce the large estimation variance. With Pb fixed to 1000, the optimal

penalty for a(x) has been determined and found to be low (Pa=7), meaning that this

parameter is best estimated locally; see Figure 3.13.

A higher optimal penalty, around 15, is found when using a cross-validated squared-

error criterion; see Figure 3.13b. In this case, one penalizes quadratically the

deviations of the actual counts N(x,I,t). Notice that the log-likelihood penalizes the

same deviations, but in a way that depends on X(x,I,t) (higher penalty for lower

expected counts). The reason for the increased optimal penalty for the squared error is

that this quantity is more sensitive than the log-likelihood to large deviations of the

actual counts from the expected counts. These deviations are reduced by using higher

smoothing. The only combinations to which the log-likelihood is very sensitive (nearly

zero expected counts and large actual counts) do not occur in the data.

The scores of Equation 3.9 can be decomposed in space, time, and earthquake size to

investigate the features of the process in more detail. Figure 3.14 shows the
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decomposition of the cross-validated log-likelihood for different intensity intervals.

From these we can observe that the main contribution to the total scores is from the

smaller intensity interval which contains the largest number of events. The optimal

penalty is the same for the first two intensity intervals (Pa= 7 ) indicating that events in

these two intervals have similar spatial distributions. For the third interval (5.5 < I <

6.5), there is a local maximum at the optimal penalty of the first two intervals and an

overall maximum at larger penalties. The presence of the two maxima is indicative of

two trends in the data set. The first one indicates that part of the observations has a

distribution similar to the first two intervals. The other indicates that some of the

observations occur in unexpected areas, which in this case is the cluster of events in the

south west comer of the region. Similar remarks can be made with respect to the last

two intervals. However, in the latter cases, the scores are based on very few events and

their uncertainty is large.

The clustering of events in the validation data sets raises the issue of lack-of-fit which

was also raised in the previous section with respect to the spatial distribution of events

for the first five (1627-1815) and the last five (1915-1981) time intervals of the catalog.

Figure 3.15a shows the distribution of the events for the last five time intervals . The

optimal penalties for the individual time intervals vary between 3 and 10 which is a

range that can be expected given the variability due to the small sample sizes (Figure

3.15b). In that case, the cross-validated likelihood is obtained for each interval by

summing only with respect to location and intensity in Eq. 3.9. For the last time

interval, there are two maxima, the first is within the range of the optimal penalties for

the other time intrevals while the second is due to an unexpected increase of activity in

southeastern Quebec.

Lack-of-fit of the model in space, time and magnitude can be investigated using

various procedures. A simple one is to flag significant residuals by comparing the
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number of observations to the number of predicted observations for the different
A

partitions of the catalog. For the purpose of comparing N(x,t) and N(x,t), counts in

each time interval are aggregated over regions (provinces) of homogeneous seismicity

proposed by the Weston Geophysical'Company (Figure 3.5). Confidence intervals at

the 2, 5, and 10% significance levels are indicated and the validation subsets are

numbered from 1 to 5 (Figure 3.16). Significant underpredictions of seismicity are

identified in the Valley and Ridge, Piedmont Atlantic Coastal Gravity, Adirondack

Uplift, and Merrimack Synclinorium provinces. Note that for a Poisson process,

underpredictions of a given magnitude are more significant than overpredictions of

similar magnitude (Fig. 3.10).

All previous results are for interpolation neighborhoods of fixed geometry and size

(section 2.2). An undesirable feature of the estimates is that the boundaries between

highly active and less active areas, which should appear as sharp discontinuities of

A(x), are blurred. A simple corrective procedure could be to vary the penalty (Pa) as a

function of location (Pa(x)) or as a function of the total number of observations in each

cell Pa(N(x)). Less smoothing should be required where there are many observations

and more smoothing where observations are sparse. However, Figure 3.17 shows that

there is no clear pattern in the optimal penalties as a function of location or as a

function of the total munber of observations in a cell. Note that the optimal smoothing

in these figures is for each individual cell and that it does not take into consideration

how these penalties affect the estimates at the neighboring locations.

A better procedure to allow differential smoothing across the region is to use local-

neighborhoods as described in section 2.3. In order to compare fixed-neighborhood

with local-neighborhood estimators on the basis of Lcv in Equation 3.9, one should

cross-validate the local neighborhoods. One can do so in two different ways: For each

validation interval t, one can estimate the local neighborhoods 1. using only the data set
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Et, or 2. using all the data with Vt removed. If Pa is kept to 7, the cross-validated

likelihoods for the two options are respectively -774 and -745. The value Lc for the

case with fixed neighborhoods is -760,, as shown in Figure 3.13. These results indicate

that accurate estimation of the local neighborhoods requires large amounts of data,

hence the option 1 may not be representative of the accuracy achievable at the present

time. Option 2 gives a more realistic evaluation and shows improvement over the

analysis with fixed neighborhoods.

As one would expect, a decomposition of the cross-validated likelihood in space

indicates that, in regions of pronounced seismicity gradients, the likelihood increases

with increasing the significance level a for the identification of the local

neighborhoods. The opposite is true in areas where the long-term seismicity appears

homogeneous, although the earthquake pattern has changed, sometimes significantly,

over shorter intervals of time. One way to further improve the local-neighborhood

solution is to allow a to vary as a function of location. Analyses of this type were

made, limiting the choice of a(x) to just two values: the value 0, which corresponds to

a neighborhood of fixed geometry, and the value 0.15, which produces neighborhoods

of homogeneous cells. The cross-validated likelihood of each cell was calculated for

both a=0 and a=0.15 and the value of a(x) was fixed to 0 or to 0.15 if the local

likelihood in one solution was larger than the same likelihood in the other solution by

more than a given factor (10% in this case); see unshaded and heavily shaded cells in

Figure 3.18a. For other cells, two cases have been considered, one favoring the fixed

neighborhoods (a-=0), the other favoring the local neighborhoods (a=-0.15).

The estimates a(x) that result from the two analyses are displayed in Figure 3.18b.

Except in the Southeastern comer (New Jersey, Eastern Pennsylvania, and

Northeastern Maryland), the contour lines of a are almost the same in the two cases.

The reason is that, for most of the cells that are indifferent to setting a equal to 0 or
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0.15, the local and fixed neighborhoods coincide or are very similar. Because keeping

a fixed is a special case of letting a vary with x, one cannot compare the estimators of

Figure 3.18 with those of Figure 2.7(b) in terms of their cross-validated likelihood. It

is however clear that the estimates a(x) are not much different in the two cases and

hence that, for the region under study, there is little incentive to use the more

complicated estimator with variable x..

Another modification of the estimators of Figure 2.7 that is considered consists of

finding a(x) and 6(x) from only the more recent part of the catalog. Doing so should

produce better predictions if the earthquake process has memory or is nonstationary, so

that seismicity in the near future should resemble more the recent past than the average

seismicity during long periods of time. This idea was implemented by including in the

estimation subsets Ei only the two time intervals that precede Vi. The estimate of

a(x)=lnk(4) from the last two periods (1957-1981) is shown in Figure 3.19b and is

quite different from estimates that use the entire ctalog, e.g. the estimate of Figure 2.7,

which is reproduced as Figure 3.19a.

The optimum penalty Pa when using only the more recent data is around 10, and this is

the value used in Figure 3.19a. The penalty Pb and the prior on b(x) are the same as for

Figure 3.19b. Because of the reduced amount of data, the estimates of a(x) and b(x)

based only on recent seismicity are snmoother ( b is almost flat over the entire region,

with values between 1.23 and 1.29). Other differences between the estimates of a(x) in

Figures 3.19a and 3.19b are that, in the former, earthquake activity is higher in New

Jersey and lower in Eastern Massachusetts and Southern New Hampshire.

The cross-validated likelihood is nearly the same for the two analyses. This is

probably the net effect, in the case when only recent data are used, of an increase in

prediction accuracy due to the higher similarity of seismicity and a decrease in

prediction accuracy from the smaller estimation samples. In order to evaluate how the
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differences in (x) and 6(x) affect the recurrence of large events, Figure 3.19c and

3.19d show contour plots of lnX(8)= a-46. It is interesting, but probably fortuitous, that

the differences in a and b in the two analyses have compensating effects, so that the

estimates of Ink(8) are more similar than the estimates of lnk(4). The main differences

for earthquakes of MM intensity 8 are that, when only the recent data are used, the

estimated rate is smoother over the entire region and is higher (by a factor of about 2)

in the New Jersey area. Because A(x) is sensitive to the portion of the catalog used for

the estimation and the compensation of a and 6 for high intensities is of suspect

generality, it is concluded that one should consider seismicity estimators that are local

in time, especially when their cross-validated likelihood is high.

3.3.2 EPRI catalog

In this section, the cross-validation procedure is applied to a much larger region which

allows a better analysis of the spatial distribution of seismicity and phenomenas such as

burst and migrations of activity. This gives rise to some difficulties, mainly in the

definition of validation samples because of the large differences in the incompleteness

as a function of location.

The region which is analyzed covers latitudes 250 N to 520 N and longitudes 600 W to

900 W. Nova Scotia is purposely left out because of its short historical record and the

difficulty in defining a validation interval for it. Events that are used for estimation or

validation have magnitude greater than 3.3 and are within the time-magnitude

envelopes of Table 2.II which limits the data set to the most complete portions of the

historical record for each incompleteness region (see Figure 2.8).

In this and the following applications, the interpolators a(x) and b(x) used in Eq. 2.15

are the averages of a and b over the eight cells that are closest to x unless otherwise

specified, and the probability of detection is set to the estimates in EPRI (1985) (Table

2.II).
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The discretization of space is into one degree cells. The variation of the scores as a

function of Pb is investigated for 4 levels of smoothing (Pb= 10 ,100,1000,10000) where

the largest of these penalties results in nearly uniform estimates of b(x), and the range

of variation of Pa is from 1 to 100. Only one validation data set is defined because of

the short history of reporting across most of the region (Table 2.II). Three different

partitions of the catalog into an estimation and a validation set are considered : In the

first two partitions, the prediction set includes all the events in the last 15 or 30 years of

the catalog (Figure 3.20a,b). These periods correspond to fairly complete portions of

the catalog and to typical prediction horizons in seismic hazard analysis. The number

of events in the resulting partitions are shown in Figure 3.21 (see also Table 3.III).

Note that these events correspond to equivalent periods of observation T(x,m) which

vary both in space and in magnitude because of incompleteness (Table 2.II(b)).

Another possibility is to partition the catalog according to the equivalent period of

observation for each location and magnitude interval. The estimation data sets is then

defined such that it covers the first cx% of the total equivalent period of observation

T(x,m) and the validation data set, the rest. The advantage of such a partition is that

the proportion of events of different magnitude and at different locations between the

validation and estimation subsets is preserved. In particular, this choice eliminates

instances where the estimation subset may be smaller than the validation subset

(locations with short histories of reporting, e.g. incompleteness regions 8,9,11 in Table

2.II(b)). This partition produces unequal periods of observation as a function of space

and magnitude which must be kept in mind when later interpreting the cross-validation

results.

Figure 3.20c shows the partition obtained when the percentage a is set to 67% of the

equivalent period of observation T(x,m) (in the following, this will be referred to as the

(2/3,1/3) partition of the catalog). The unmarked regions correspond to incomplete
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portions of the catalog which were not used in the analysis. The events corresponding

to this partition are shown in Figure 3.21c.

3.3.2.1 The Catalog

The seismicity of the area has been the subject of several investigations, some of which

do not support the assumptions of stationarity in time and space and exponentiality in

size distribution. The following is a summary of the comments from previous studies.

(Mitronovas, 1981) suggests that the activity in the northeastern U.S. during the past

300 years shows secular variations lasting up to 100 years. In particular, he reports

periods of greater activity between 1720-1790, 1830-1880 and 1910 through the

present in the state of New York, with the local activity alternating between subregions

within the state. (Armbruster and Seeber, 1987) note that the pattern of seismicity

derived from recent short term instrumental data ressembles in general the pattern of

seismicity derived from long-term samples of historic data, but acknowledge that some

changes in the temporal pattern of seismicity can result after large events such as the

1886 Charleston S.C. earthquake. (Ebel, 1987) observes that the mean rate of

earthquake occurences in the northeast U.S. as a whole has been approximately stable

with time, however, his observations are based only on the similarity of the a-values

for the whole region during the periods 1938-1986 and 1975-1986. Variations in the

rate of occurence of small and large magnitude events in the eastern U.S. have also

been noted by other authors (Chiburis, 1981) (Shakal and Toksoz, 1977) (Veneziano

and VanDyck, 1987).

The Chinese; earthquake catalog (3000 years of observations) provides support for

similar non-stationarities in intraplate regions : (McGuire, 1979) observes temporal

periodicities in the order of hundreds of years in which rates of activity changed by as

much as a factor of 10. However, despite these non-stationarities, predictions using a

Poisson model were adequate when based on observations immediately preceeding the

interval.
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The presence of possible non-stationarities in the EPRI catalog can be illustrated by

comparing the spatial density of events between the (2/3) and (1/3) partitions of the

catalog (Figure 3.21c). Under the assumption that seismicity is stationarity and that the

probability of detection is correct, the density of events should be similar spatially and

in a proportion of 2 to 1 between the two subsets. However, this is not the case in the

Ottawa River Valley, Eastern Tennessee and Lower St-Lawrence Valley areas where

the proportion of events in the recent past is larger than expected. Conversely, in the

recent past there are fewer events than expected in the Boston and Western Tennessee

areas. The types of non-stationarity and their effect on the selection of optimal

penalties are examined in more detail in the following section.

3.3.2.2 Discussion of the results

The issues addressed in this Chapter are divided into 3 main groups. These are : the

selection of the optimal models, the influence of the statistic used in the cross-

validation, and the goodness-of-fit of the predictions.

* Selection of Optimal Models

The cross-validated scores are computed for three different magnitude discretizations

of the validation data set. The optimal penalties are calculated for each discretization

and separately for each magnitude range. The first discretization is into 7 intervals of

width 0.6 from 3.3 to 7.5. This is also the discretization used for the estimation of the

parameters a and b. The second discretization is into three intervals (m = 3.3-3.9,

3.9-4.5, 4.5-7.5), to increase the sample size for the larger events. The third case is to

use only one interval (the total number of events in each cell) and disregard the

distribution in magnitude of the events. The discretizations of magnitude into 7, 3 and

1 intervals result in similar optimal penalties for all three validation subsets (Figure

3.22).
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The optimal penalties are respectively small and large for Pa and Pb. The small penalty

on a(x) indicates that most predicted events are located in historically active areas. As

in the previous application, the optimal penalty on b(x) is large and corresponds to

almost constant values. These results confirm the uniformity of b-value obtained by

(Chinnery, 1979) in his study of frequency-MMI intensity data from the southeastern

U.S., central Mississipi Valley and Southern New England. However, the effect of the

penalty Pb is small compared to the effect due to Pa, specially when considering the

uncertainty on the cross-validated likelihood statistics (see below). Notice that the

effect of Pb is almost nil when the cross-validated statistics are computed for the total

number of observations (the recurrence rate is dominated by a(x).

The optimal penalty on a(x) for predicting the events during the last 15 years of the

catalog (Figure 3.22a) are slightly smaller than the optimal penalties for predicting

events during the last 30 years (Figure 3.22b) or the last 1/3 portion of the catalog

(Figure 3.22c) because of the larger estimation sample size for the 15 years partition.

In all cases, the optimal penalty Pa is slightly larger for SEC, than for LC for reasons

explained in the previous section. The scores for the low magnitude events (3.3 < m <

3.9) dominate the total scores and are, not surprisingly, small for a(x) and large for b(x)

(Figure 3.23). For the events of intermediate magnitude (3.9 < m < 4.5), either a small

penalty on b(x) and a moderate penalty on a(x) or a large penalty on b(x) with a small

penalty on a(x) are optimal (Figure 3.24). The two cases result in similar recurrence

rates for this magnitude interval, because estimates of b(x) are negatively correlated

with the level of activity (section 2.2). The number of large magnitude events (4.5 < m

< 7.5) in the validation subsets is very small and consists mainly of events with

magnitudes 4.5 to 5.1 (Table 3.III). For the last 15 years of data and the (2/3,1/3)

partition, the optimal penalties are similar as those identified for the previous 2

magnitude intervals (Fig. 3.25). The penalty Pb, however, has more influence on the
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cross-validated statistics. For these two cases, the optimal penalties are very large for

Pb. For the last 30 years of observations (Table 3.111), the optimal penalties are

respectively large for Pa and small for Pb due to a cluster of events in western

Tennessee. Notice that there are fewer events than expected in the Boston and

Charlevoix areas while there are more events than expected in the Lower St-Lawrence

Valley. The latter underprediction results from the short period of reporting in the

St-Lawrence Valley where most of the reported events occured during the last 30 years

of the catalog (Figure 3.21b). The validation subset for the (2/3,1/3) partition of the

catalog corrects for this imbalance by increasing the period of observation for the

validation subset in regions with long historical records (such as the Boston and

Charlevoix regions) and decreasing it where the historical record is short (such as the

Lower St-Lawrence Valley). In addition, the (2/3,1/3) partition increases the sample

size for the larger magnitudes.

In conclusion, the optimal penalties appear to be insensitive to the discretization in

magnitude, because of the dominance by the low magnitude events. They are

respectively low for Pa and high for Pb. These penalties appear to be optimal for all

ranges of magnitude. The issues of non-stationarity and non-exponentiality and their

effect on the estimation of an optimal model are further addressed in the following

section.

All previous results are for interpolation neighborhoods of fixed geometry and size.

Various plots of a(x) are presented in Figure 3.29 to show the effect of changing the

significance level o which defines the degree of homogeneity of the local

neighborhoods. and the penalty Pa* For ~=-10%, the function a(x) displays plateaus of

nearly constant activity, in some cases separated by sharp discontinuities, in other cases

connected by gradual ramps. The local neighborhoods have no influence where the

seismicity is unifornn or where the data is too sparse to identify contrasts of seismicity.
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The estimates are less sensitive with respect to Pa and preserve a high level of contrast

for a large penalty Pa. Significant boundaries of activity are identified along the

Atlantic coast, around Charleston, Western Tennessee, Boston and Charlevoix.

Estimates are obtained with c-10% for predicting the events during the last 30 years

and the last 1/3 partition of the catalog. In this application, the local neighborhoods do

not perform as well as anticipated because the patterns of events in the estimation and

validation data sets are significantly different. For example, the introduction of the

local neighborhoods in regions which have been historically more active than

presently, such as the Charlevoix and Massachusetts regions, typically increases the

magnitude of the predictions. Similarly, predictions in areas which have been

quiescent in the past and more active recently improve with increased smoothing.

* L versus SE

Lcv and SEcv identify similar optimal penalties, SEcv tending to select penalties

slightly larger than Lcv (Figure 3.22). As in the application to the Chiburis catalog, the

reason for the increased optimal penalty for the squared error is that this quantity is

more sensitive than Lcv to large deviations of the actual counts. These large deviations

are reduced by using higher smoothing. The only combinations to which Lv is very

sensitive (nearly zero expected counts and large actual counts) do not occur in the data.

The decomposition of the squared error in space shows that large contributions

correspond to significant overpredictions or underpredictions (<,> in terms of flags),

which is limited in general to a few cells, while contributions to the log-likelihood tend

to be more uniform over the region (note that overpredictions are not as heavily

weighted as underpredictions for the log-likelihood). Examining the sequence of

Figure 3.26, shows that the variation of the statistics as a function of Pa is dominated

by the most active cells of the validation subset and that many deviations between

observations and predictions remain large also at the optimal penalty. This brings up

the issue of goodnees-of-fit which is addressed next.
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* Goodness-of-fit

For goodness-of-fit, two basic procedures are used. The first is based on the flagging

of significant residuals and the other is based on the probability distribution function of

the cross-validated likelihood. These can be used, when applied to given

discretizations in space and magnitude, to test the assumptions of a stationary Poisson

process and exponentiality in size distribution. The spatial goodness-of-fit of the

model in magnitude is checked through tests that compare the observed and expected

mean magnitude of events in each cell. Under the null hypothesis, the events in a cell

of the complete catalog are exponentially distributed in magnitude with parameter b(x).

For the incomplete catalog the events are similarly distributed with a correction to

account for the probability of detection. For the generic event recorded at location x,

the magnitude has probability mass function

PD((x,m)e-b(x)
m

p(m) = m = ml,...mn  (3.11)

I P D(X,m)e-b(x)
m

where

N, PD(x,m,t)*T(x,m)tPD(x,m) = N
ST(xmn)t

where T(x,m)t is the lenght of the tth period of observation for magnitude m at location

x and Nt is the number of observation periods.

For two or more events, the distribution of the average (incomplete) magnitude can be

obtained through successive convolutions of the previous probability mass function

and is therefore tedious to calculate. However, a test based on a normal approximation

using the mean and variance for N(x) iLdependent observations from the distribution in

Equation 3.11 can be used. In this application, the power of the test is weak because of

the small number of observations iii each cell. Eliminating empty cells of the

validation subset leaves numerous cells with single events in historically active areas

which reject the hypothesis of a constamt b(x). (Figure 3.27b).
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Next, the goodness-of-fit with respect to the number of events predicted in various

partitions of the catalog is checked using the flagging of significant residuals (section

3.2.4). We first examine predictions of the total number of events regardless of

magnitude and location, and proceed with partitions of the data set in magnitude and in

space. The first test concerns global non-stationarities with respect to the whole

region, the second is a test of non-exponentiality for all the events in each magnitude

interval and the last test is a test of the spatial distribution of events. It is found that the

total number of events is overpredicted in all the validation subsets, indicating that the

rate of activity over the EUS has decreased significantly in recent times (Table 3.11I).

The most significant deviations are for the last 15 years of data and for the validation

period covered by the (2/3,1/3) split. The total number of events for the last 30 years is

not as significantly overpredicted implying that the number of events in the first period

of 15 years is underpredicted by an amount similar to the overpredictions of the second

period of 15 years. With respect to the magnitude distribution irrespective of location,

the largest deviations from the assumption of exponentiality are detected for events

with size 3.9 < m < 4.5 (Table 3.111). The fit of the model with respect to a(x) is also

checked spatially by performing the test with respect to the predictions of the number

of events in each spatial cell. The number of flags as well as their spatial distribution

can be used to judge the goodness-of-fit of the predictions. Relative to the historical

record, there is a decrease in the rate of events in the Boston and Western Tennessee

areas and an increase in the rate of events in the Lower St-Lawrence Valley, Ottawa

River Valley, and Eastern Tennessee areas in recent times.

A comparison of the spatial distribution of the flags (Figure 3.27a) with SEcv(x)

(Figure 3.26) shows that the maximum scores correspond almost exclusively with flags

at the 2% significance level (< or >) which are extremes of overprediction or

underprediction. On the other hand, the maximum scores of Lcv(x) (low likelihoods,
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poor predictions) correspond to flags at either the 2% or 10% level with more emphasis

on underpredictions (+ or >) than on overpredictions (- or <).

The tests on the spatial distribution are also performed after correcting the total counts

for imbalances between predicted and observed counts. The correction is implemented

by adding a positive or negative constant Aa to each estimate (x) such that the total

number of observed and predicted events are equal for the whole region. The constant

is calculated under the assumption that the imbalance is the result of a unifrom change

in the level of activity across the region. The correction is meant to reduce

nonstationarity flagging due to lack-of-fit of the model, i.e. it allows one to better

separate between anomalies in the time-average activity and anomalies in the spatial

distribution of seismicity. With the correction, the number of flags due to

overpedictions were reduced but the main features of the pattern of flags remained the

same.

The nature and severity of the lack-of-fit of the predictions can also be investigated

through the probability distribution function of the cross-validated log-likelihood (Lcv).

The expectation and standard deviation of Lcv are computed through parametric

simulations (the number of simulations is 20 in this application) of the number of

observations in each spatial cell and magnitude interval of the estimation and

validation subsets. An approximate and computationally less tedious expression for

estimating the expected value is obtained by taking expectation with respect to the

number of observations in each cell of the validation data set and assuming that the

estimated model is the true one.

E[Lv]=

P[N(x,m) I 'x,m)E]lnP[N(x,m)v I ,'(x,m)E ]  (3.12)
x m N(x,m)=-O

A

where P[N(x,m)v I X'(x,m)E] is the probability of observing N(x,m)v events in a cell
A

for a Poisson process with recurrence rate X'(x,m)E, E and V refer respectively to the
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estimnation and validation sets. A similar expression is obtained for the variance of Lcv

in each cell (x,m). The variance on the total score is then simply the summation of the

variances for each individual cell assuming independence. The approximation is

accurate when the penalty Pa is large but overestimates E[Lcv] for small penalties

because the expectation does not take into account the finite sample size of the catalog

and expectation is not taken with respect to the number of events in the estimation data

set.

The procedure finds the model to be acceptable if the average of Lcv over many cells is

close to E[Lc] (within 1.5 standard deviations for example). It is assumed that there is

undersmoothing when Lcv is greater than E[Lc] (the fit is too good to be true). Local

lack-of-fit caused by regional overpredictions or undepredictions, can be assessed

through a spatial decomposition of Lc and E[Lcv] which can also be decomposed in

magnitude to judge the goodness-of-fit of events over different magnitude ranges.

Values of Lcv(m) and E[Lcv(m)] tend to decrease in absolute value with an increase in

magnitude because of the decrease in the number of observations and recurence rate,

oY[Lcv(m)] also decreass but at a slower rate. In consequence, the coefficient of

variation on Lcv increases with magnitude, smaller data sets and degree of

discretization in space, time and magnitude.

Goodness-of-fit tests through simulation are performed only for the (2/3,1/3) partition

of the catalog and Pb= 10 0 0 0 . Figure 3.28 shows L,,9 E[L,] and the one standard

deviation envelopes obtained both through simulation and through the previous

approximate expression. When Lc is not discretized in magnitude, the lack-of-fit with

respect to the spatial distribution of the total counts is emphasized. When the

magnitude is discretized, the fit with respect to the distribution in magnitude is

stressed, and the fit with respect to the total counts in not as important. In this

application, the model is not rejected when the scores are computed on the basis of the
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total number of events despite large shifts in the spatial distribution of events between

the estimation and validation subsets (Figure 3.28b). When magnitude is discretized,

the lack-of-fit is slightly more severe, however, Lc is within acceptable limits at the

optimal penalties (Figure 3.28a,c). For the low magnitude events, lack-of-fit is largest

near the optimal penalty (Figure 3.28d). For the intermediate magnitude events, the

models are accepted for the full range of penalties Pa. Results for large magnitude

events indicate that the statistics for any penalty are within their expected range (Figure

3.28f).

A decomposition of the results in space indicates that the most serious lack-of-fit

occurs for cells with underpredictions. A close examination of the results shows that

many of the deviations are the result of local shifts of seismicity in time (e.g.

Charleston, the Ottawa River Valley and Eastern Tennessee), which have a minor

effect on the seismic risk when seismicity is integrated over the whole region. More

serious deviations which cannot be explained through a local accounting of events

occur in Western Tennessee, the lower St-Lawrence Valley, and the Ottawa River

Valley areas. Note the large local residuals may be partly a consequence of large

changes in the probability of detection as a function of location.

3.4 Conclusion

In this section, it was shown that cross-validation is a good procedure for the

simultaneous selection of model parameters such as, the penalties on a(x) and b(x), the

grid size, the local neighborhood characteristics and the time-magnitude region for

estimation. The method is appealing for seismic hazard applications because it

emphasizss the predictive ability of the model.

For the Northeastern U.S., we find that half-degree cells give an appropriate

geographical discretization. The optimal degree of smoothing for b(x) is high
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reflecting the low accuracy with which this parameter is estimated from small samples.

By contrast, the optimal estimator of a(x) is highly variable and closely follows the

pattern of historical seismicity. With respect to the latter, it is recommended to use the

local neighborhood estimator in the abscence of strong physical evidence on the

location of major discontinuities. No advantage was found from allowing the

parameter o that controls the homogeneity of the local neighborhoods to vary on the

geographical plane. However, it is recommended that alternative estimators be

considered, which use different portions of the historical record. Doing so is especially

important in regions where nonstationarities of the earthquake process have been

observed or are suspected to exist.

Methods to investigate the goodness-of-fit of seismicity models have been developed.

It is found that the spatial distribution of the total number of predicted events may

significantly differ from the historical distributions of seismicity for short time

intervals, but has almost no influence on the selection of the optimal smoothing

parameters.
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interval from to

1627 1915
1915 1981

1627
1883
1939

1627
1847
1897
1930
1957

1627
1790
1847
1876
1897
1915
1930
1944
1957
1969

1627
1720
1790
1819
1847
1866
1876
1887
1897
1908
1915
1923
1930
1937
1944
1951
1957
1963
1969
1975

1883
1939
1981

1847
1897
1930
1957
1981

1790
1847
1876
1897
1915
1930
1944
1957
1969
1981

1720
1790
1819
1847
1866
1876
1887
1897
1908
1915
1923
1930
1937
1944
1951
1957
1963
1969
1975
1981

Table 3-I: Decomposition of the Chiburis catalog into intervals containing
approximately identical numbers of events.
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1915-1930 1930-1944 1944-1957 1957-1969 1969-1981

I obs exp obs exp obs exp obs exp obs exp

3.5-4.5 32 28.2 28 28.5 35 29.2 21 31.1 25 31.1
4.5-5.5 12 8. 10 8.5 15 8.2 20 8.2 11 8.2
5.5-6.5 3 2.0 1 2.2 2 2.0 3 2.1 6 2.1
6.5-7.5 0 0.6 2 0.5 1 0.5 0 0.4 0 0.4
7.5-8.5 0 0.1 0 0.1 1 0.1 0 0.1 0 0.1

47 39.3 41 39.7 54 39.9 44 41.8 42 41.8

I obs exp

3.5-4.5 141 148.1
4.5-5.5 68 41.6
5.5-6.5 12 10.4
6.5-7.5 3 2.4
7.5-8.5 1 0

Table 3-II: Number of observed and expected events as a function of the validation
interval and intensity for the Chiburis catalog.



15 years interval

Estimation data set

mag obs

630
356
115
25
10
4
1

1141

-121-

Validation data set

exp

667.98 -
299.64 +
115.18
41.04 -
12.79
3.46
0.90

mag

1141

obs

129
28
7
2
0
0
0

166

exp

179.6 -
50.88 -
13.2 -
3.43
0.89
0.23
0.06

248.29 -

30 years interval

Estimation data set
mag obs

475
269
102
23
10
4
1

884

exp

Validation data

495.92
239.18 +
97.79
35.89 -
11.33
3.09
0.80

884

(2/3,1/3) split

Estimation data
mag obs

529
256
92
16
7
2
1

Validation dataset
exp mag

550.93
228.26 +
83.23
28.71 -
8.85
2.40
0.63

obs

230
128
30
12
3
2
0

set
exp

264.40 -
109.60 +
40.50
14.03
4.34
1.18
0.31

903 903 404 434.36 -

Table 3-111: Expected and observed number of events in the estimation and
validation subsets for the 3 partitions of the catalog.

mag obs

284
115
20
4
0
0
0

423

set
exp

310.1 -
94.21 +
24.53
6.38
1.66
0.43
0.11

437.42
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Figure 3- 1: Construction of a one-dimensional histogram
from a spatial point process.
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Figure 3-2: (Log)-likelihood and expected (Log)-likelihood, as a function of the
recurrence rate and the number of observations for a Poisson process.
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-77 -76 -75 -74 -73 -72 -71 -'M -6

(a) 1> 3.5, since 1627

-77 -76 -75 -74 -73 -72 -71 -76 -09

(c) I >4.5, since 1627

-77 -76 -75 -74 -73 -72 -71 -70 -e9

(b) I > 3.5, since 1915

-77 -78 -75 -74 -73 -72 -71 -70 -69

(d) I >4.5, since 1915

Figure 3-4: Aggregated cells for the computation of the Chi-square statistic
for different subsets of the Chiburis catalog.
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(a) -77 -76 -75 -74 -73 -72 -71 -70 -69

Figure 3-5: (a) Seismogenic provinces proposed by Weston Geophysical Co. and
(b) partition of the Chiburis catalog into two subsets.



-127-

-77 -76 -75 -74 -73 -72 -71

(1627 - 1915)

-76 -75 -74 -73 -72

(1915 - 1981)

-71 -70 -69

I9

-70 -69

(b)
39

-77



-128-

10 10 102 10 10

1 : I >3.5, t_> 1627

2 : I >3.5, t1>1915

3 : 1>4.5, t> 1627

4 : I >4.5, t> 1915

( :) number of flags at the 10% significance level
( . ) : number of flags at the 2% significance level

Figure 3-6: Number of flags for significant residuals as a
function of the penalty Pa
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Observed ciumulative count (mb*>3.5; since 1627)

I 76.01 75.01 74.01 73.01 72.01 71.01 70.01 69.01
----- I ----- I ----- I ---------- I ---- I ----- I ----- I -----
45.01 7.01 9.01 21.01 27.01 3.01 2.01 1.01 6.01
44.01 0.0! 7.01 18.01 15.01 3.01 7.01 8.01 9.01
43.01 0.01 2.01 3.01 8.01 5.01 30.01 18.01 7.01
42.01 1.01 0.01 3.01 7.01 8.01 20.01 41.01 0.01
41.01 1.01 4.01 4.01 17.01 22.01 17.01 6.01 1.01
40.01 4.01 9.01 11.01 16.01 0.01 1.01 0.01 0.01
39.01 0.01 9.01 3.01 1.01 0.01 0.01 1.01 0.01

----- .----- I---- -I ----- I - -I - -I I ----- I ----- I

Expected cumulative count (mb*>3.5; since 1627)

1 76.01 75.01 74.01 73.01 72.01 71.01 70.01 69.0(
----- I ----- I ----- -----I --------- I ----- I -- I-- I
45.01 6.41 8.91 21.01 26.01 3.71 2.31 2.01 5.81
44.01 1.11 6.51 17.61 14.51 3.81 6.31 7.71 8.51
43.01 0.61 1.71 3.1l 7.81 5.61 29.51 17.91 7.11
42.01 0.91 0.71 3.11 6.91 8.51 20.31 39.61 1.51
41.01 1.41 3.51 4.21 16.61 21.41 16.21 5.41 1.11
40.01 3.31 8.11 10.81 14.71 1.01 1.01 0.41 0.41
39.01 1.71 8.11 3.91 1.31 0.61 0.31 0.41 0.21

----- I ---------- I ----------- I I I ----- I

Significance test (mb*>3.5; since 1627)

I 76.01 75.01 74.01 73.01 72.01 71.01 70.01 69.01
----- I ----- I ----- I----------- ---------

45.01 1
44.01 O I I I 1
43.01 I I I O I I I
42.01
41.0 1 I I I I ! I
40 .0 1 1 ! I I ! ! !
39.01 -39.0!1 -. . I . . I I I II

-- I-----------1---I-I-!----I- !-----

Observed cumulative count (mb*>3.5; since 1627)

I 76.01 75.0! 74.0! 73.01 72.01 71.0( 70.01 69.01
-------1-----1-----I- I-I- I----1----1--I-

45.01 7.01 9.01 21.01 27.01 3.01 2.01 1.01 6.01
44.01 0.01 7.01 18.01 15.01 3.01 7.01 8.01 9.01
43.01 0.01 2.01 3.01 8.01 5.01 30.01 18.01 7.01
42.01 1.01 0.01 3.01 7.01 8.0( 20.01 41.01 0.01
41.01 1.01 4.01 4.01 17.01 22.01 17.01 6.01 1.01
40.01 4.01 9.01 11.01 16.01 0.01 1.01 0.01 0.01
39.01 0.01 9.01 3.01 1.0! 0.01 0.01 1.01 0.01

----- I ----- I .---- I -----..----- I --- I .... .... I -- I ----- I

Expected cumulative count (mb*>3.5; since 1627)

1 76.01 75.0( 74.01 73.0! 72.0( 71.0! 70.01 69.0(
----- I ----- I----- I ---- I ---- I ---- I----- I ----------
45.01 5.91 9.01 19.71 22.51 5.81 3.61 3.71 5.71
44.01 2.71 6.21 15.71 13.61 6.01 5.91 6.91 7.41
43.01 1.61 2.51 4.61 7.81 7.11 27.51 18.41 7.71
42.01 1.51 1.61 3.61 6.91 9.11 20.81 33.81 3.71
41.01 1.81 2.81 4.31 15.41 19.1! 14.31 5.91 2.01
40.01 2.61 6.71 9.71 12.11 2.3! 1.61 0.91 0.81
39.01 3.91 6.91 5.71 2.31 1.5! 0.91 0.71 0.61

----- I- ---- 1-----!- - --- 1-----1- !-!- !-- -

Significance test (mb*>3.5: since 1627)

1 76.01 75.01 74.01 73.01 72.0! 71.01 70.01 69.01
----- I ----- I----I ---------- ---- ---- I----- I -----

45.01 1 1 -1 - f1
44.01 - I I I I - I I
43.01 - I I I I I I
42.01 1 - I I I I + I < I
41.01 I I I I I
40.01 1
39.01 < I I I I I I

----- I ----- I ----- I ----- I -------- ----- I ---- f ----- I

Observed cumulative count (mb*>3.5; since 1627)

76.01 75.01 74.01 73.01 72.01 71.01 70.01 69.01
----- I-------- - - -1-----1-----1-----1--- -

45.01 7.01 9.01 21.01 27.0! 3.01 2.01 1.01 6.01
44.01 0.01 7.01 18.01 15.01 3.01 7.01 8.01 9.01
43.01 0.01 2.01 3.0! 8.0! 5.0( 30.01 18.01 7.01
42.0! 1.01 0.01 3.01 7.01 8.01 20.01 41.01 0.01
41.01 1.01 4.01 4.01 17.01 22.01 17.01 6.01 1.01
40.01 4.01 9.01 11.01 16.01 0.0! 1.01 0.01 0.01
39.01 0.01 9.01 3.01 1.01 0.01 0.01 1.01 0.01
----------- 1-----1-----1-----i-----1----------- I

Expected cumulative count (mb*>3.5; since 1627)

I 76.01 75.01 74.01 73.0! 72.0! 71.01 70.01 69.0!

45.01 6.71 8.81 14.01 15.21 8.81 6.41 5.81 6.21
44.01 5.11 7.11 11.71 12.11 8.8! 7.21 6.91 6.81
43.0! 3.61 4.4( 5.31 8.31 8.41 24.31 19.61 7.21
42.01 2.81 3.1( 4.51 S.41 7.61 19.61 22.3! 5.21
41.01 2.51 2.81 3.81 13.31 15.2! 13.21 9.41 3.41
40.0! 2.41 6.61 8.51 10.11 3.2! 2.71 2.1! 2.01
39.01 5.71 6.61 7.11 2.91 2.6( 2.11 1.8! 1.81

Significance test (mb*>3.5: since 1627)

I 76.01 75.0! 74.01 73.01 72.0; 71.01 70.01 69.01
----- 1-----1-----1-----i----!---- ---- 1-

45.01 1 I + I > < - I <
44.01 < I I + I I < I I 1 I
43.01 < - - I I I
42.01 1 < I I I I I > I <
41.01 I ! ! I + I I I -
40.01 I ! I + I < I - - I
39.01 < -I -I - I I -

----- 1-----1-----1-----1-----1-----1---- -------

(a) Pa=50

Figure 3-7: Number of flags for significant residuals in the spatial cells
as a function of the penalty Pa.
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Observed cumulative count (mb*>3.5; since 1915)

76.01 75.01 74.01 73.01 72.01 71.01 70.01 69.01
----- . . . . . .. .I. .I----- 1----- 1----- ---.. .. I.. .

45.01 4.0! 5.01 15.01 11.01 1.01 2.01 1.01 5.01
44.0! 0.01 4.01 16.01 14.01 0.01 4.01 5.01 2.01
43.0! 0.01 1.01 3.01 5.01 1.01 16.01 7.01 3.01
42.01 1.01 0.01 2.01 5.01 4.01 8.01 8.01 0.01
41.01 1.01 4.01 4.01 7.01 9.01 8.01 5.01 1.0!
40.01 4.01 7.01 8.01 9.01 0.01 1.01 0.01 0.01
39.01 0.01 5.01 3.01 0.01 0.01 0.01 1.01 0.01

I-----. I.-----I-----II-. I-----1------.....-I

Expected cumulative count (mb*>3.5; since 1915)

I 76.01 75.01 74.01 73.01 72.01 71.01 70.01 69.01
I-----1-----1--.1---I-----I--------- - -I

45.01 4.21 5.91 13.91 17.21 2.51 1.5! 1.41 3.81
44.01 0.71 4.31 11.71 9.61 2.51 4.2! 5.1! 5.71
43.01 0.41 1.11 2.31 5.21 3.71 12.7! 7.71 4.71
42.01 0.61 0.41 2.01 4.61 5.61 8.71 17.0( 1.0!
41.01 0.91 2.31 2.81 7.11 9.11 6.91 2.3! 0.81
40.01 2.21 3.41 4.61 6.21 0.61 0.7! 0.31 0.21
39.01 0.71 3.41 1.71 0.91 0.41 0.2! 0.3! 0.21

----- I ----- I ----- I --- I---- I ----- --------------- I

Significance test (mb*>3.5; since 1915)

I 76.01 75.01 74.01 73.0! 72.0( 71.0) 70.01 69.01
----- 1-----1-----1-----I-----1-----1----- 1-----I
45.01
44.01 I I + I + I I
43.01
42.0! I I I I I I I
41.01 I I I I I + I
40.01 1 + 1 + I I I
39.01 I I I I I I I

I ..----- I.----.1----- .---.--- I ----- I ------

Pa= 7

Observed cumulative count (mb*>3.5; since 1915)

76.01 75.01 74.01 73.01 72.01 71.01 70.01 69.01
-- ----- --- I-----.-- I ----- I ---- I - I
45.01 4.01 5.01 15.01 11.01 1.01 2.01 1.01 5.0(
44.01 0.01 4.01 16.01 14.01 0.01 4.01 5.01 2.01
43.01 0.01 1.01 3.01 5.01 1.01 16.01 7.01 3.01
42.01 1.01 0.01 2.01 5.01 4.01 8.01 8.01 0.01
41.01 1.01 4.01 4.01 7.01 9.01 8.01 5.01 1.01
40.01 4.01 7.01 8.01 9.01 0.01 1.01 0.01 0.01
39.01 0.01 5.01 3.01 0.01 0.01 0.01 1.01 0.01

----- 1- - ---1-----1-----I- I-I- I--I--- --- I

Expected cumulative count (mb*>3.5; since 1915)

I 76.01 75.01 74.01 73.01 72.01 71.01 70.01 69.01
--I I -----1-----1-----1-----1-----1I I I I - - - I

45.01 4.01 6.11 13.31 15.21 3.91 2.41 2.51 3.91
44.01 1.81 4.21 10.61 9.21 4.11 4.01 4.71 5.01
43.01 1.11 1.71 3.11 5.31 4.81 10.91 7.31 5.21
42.01 1.01 1.11 2.41 4.61 6.21 8.21 13.41 2.51
41.01 1.21 1.91 2.91 6.11 7.61 5.71 2.41 1.41
40.01 1.81 2.61 3.81 4.81 1.61 1.11 0.61 0.51
39.01 1.51 2.71 2.21 1.61 1.01 0.61 0.51 0.41

----- I ----- I----- I -------- I---- I ----- I -----I

Significance test (mb*>3.5; since 1915)

1 76.01 75.0( 74.01 73.01 72.01 71.01 70.01 69.01
----- I ----- I ----- I ----- I ---------- I ----- I ----- I ----- I
45.01 I I I - I I I I
44.01 - I I + I + I < I I
43.01 I I I - I + I I
42.01 1 - I
41.01 + I I I I I + I
40.01 + > I + I + I I
39.01 - + I I I I I

I----- --- ----- I ----- I ----- I-----I ------- -- ----- I

Observed cumulative count (mb*>3.5; since 1915)

I 76.01 75.01 74.01 73.01 72.01 71.01 70.01 69.01
----- I-------- --- 1-----I- I-I- I---I--- -- I
45.01 4.01 5.01 15.01 11.0I 1.01 2.01 1.01 5.01
44.01 0.01 4.01 16.01 14.01 0.01 4.01 5.01 2.01
43.01 0.01 1.01 3.01 5.01 1.0( 16.01 7.01 3.01
42.01 1.01 0.01 2.01 5.01 4.01 8.01 8.01 0.01
41.01 1.01 4.01 4.0! 7.01 9.0! 8.01 5.01 1.01
40.01 4.01 7.0! 8.0! 9.0! 0.01 1.01 0.01 0.01
39.01 0.01 5.01 3.01 0.01 0.01 0.01 1.01 0.01

----- 1---- -1-----1-----I- I----- I -I

Expected cumulative count (mb*>3.5; since 1915)

I 76.01 75.01 74.01 73.01 72.01 71.01 70.01 69.01

----- I ----- I .---- I ----- I .--- - I ----- I ----- I ----- I ----- I
45.01 4.71 6.11 9.71 10.51 6.11 4.41 4.0( 4.31
44.01 3.51 4.91 8.11 8.41 6.11 5.11 4.81 4.81
43.01 2.51 3.01 4.41 5.81 5.81 8.41 6.81 5.01
42.01 1.91 2.11 3.11 4.41 5.31 6.81 7.71 3.61
41.01 1.71 1.91 2.61 4.61 5.21 4.61 3.31 2.41
40.01 1.61 2.31 2.91 3.41 2.21 1.81 1.51 1.41
39.01 1.91 2.21 2.41 2.01 1.81 1.51 1.31 1.21

--------- I ----- I I ------- I----- I I ----- I ---- I

Significance test (mb*>3.5: since 1915)

1 76.01 75.01 74.01 73.01 72.01 71.01 70.01 69.01
----- 1-----1-----1-----1------ I--- ---- I
45.0 I I I < I -
44.01 < > I + I < I 1 -
43.01 - I - I I > <
42.01 1 - I I 1 I <
41.0 + I I I + I + I I
40.01 + I > I > I - I - -
39.0 - + I -I -I I I

S. ... I ... I .. ... I... .I..--------- ---.--....-- - I-

(b)
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Observed cumulative count (mb*>4.5; since 1627)

I 76.01 75.01 74.01 73.01 72.01 71.01 70.01 69.01
--------------- I --------- I---- I ----- I ----- I - I

45.01 3.01 2.01 9.01 9.01 2.01 0.01 1.01 3.01
44.01 0.01 3.01 5.01 7.01 0.01 2.01 3.01 2.01
43.01 0.01 1.01 1.01 2.01 1.01 8.01 1.01 2.01
42.01 0.01 0.01 2.01 2.01 0.01 4.01 12.01 0.01
41.01 0.0 1.01 1.01 8.01 4.01 3.01 2.01 1.01
40.01 3.01 4.0l 8.01 7.01 0.01 0.01 0.01 0.01
39.01 0.01 6.01 3.01 1.0) 0.01 0.01 1.01 0.01

----------- 1-----1-----1-----1-----1----- 1-----1

Expected cumulative count (mb*>4.5; since 1627)

I 76.01 75.01 74.01 73.01 72.01 71.01 70.01 69.01
-------- 1-----1 -- I-----1-----1-----1-----1-----

45.01 2.21 3.11 7.31 9.01 1.31 0.81 0.71 1.91
44.01 0.41 2.31 6.21 5.01 1.31 2.11 2.51 2.8)
43.01 0.21 0.61 1.21 2.71 1.91 9.01 5.41 2.3)

42.01 0.31 0.21 1.11 2.41 2.91 6.21 12.01 0.51
41.0) 0.51 1.31 1.61 5.51 6.81 5.01 1.71 0.4)

40.01 1.31 2.91 3.81 5.01 0.3) 0.31 0.11 0.11
39.01 0.61 2.91 1.41 0.51 0.21 0.11 0.11 0.11

----- I ----- I----- I ---------- I --- I - I I - I

Significance test (mb*>4.5; since 1627)

I 76.01 75.01 74.01 73.01 72.01 71.01 70.01 69.01
----- I-----I------- ----1-----1----- 1I--1
45.01
44.01
43.01 I i I I I I <
42.01
41.01 1 1
40.01 + + 1
39.01 + I + I

-- .I--- I----- I----- .----- ..--..-- -- I- -

Observed cumulative count (mb*>4.5; since 1627)

1 76.01 75.01 74.01 73.01 72.01 71.01 70.01 69.01
----- I ----- I --------- I-------- I ----- I -- - I

45.01 3.0) 2.01 9.0) 9.01 2.01 0.01 1.01 3.01
44.01 0.0) 3.01 5.01 7.01 0.01 2.01 3.01 2.01
43.01 0.01 1.01 1.01 2.01 1.01 8.01 1.01 2.01
42.01 0.0) 0.01 2.01 2.01 0.01 4.01 12.01 0.01
41.01 0.01 1.01 1.01 8.01 4.01 3.01 2.01 1.01
40.01 3.01 4.01 8.01 7.01 0.01 0.01 0.01 0.01
39.01 0.0) 6.01 3.01 1.01 0.01 0.01 1.01 0.01

--- -------- 1-----1----- 1----- 1----- 1----- 1-----I

Expected cumulative count (mb*>4.5; since 1627)

I 76.01 75.01 74.01 73.01 72.01 71.01 70.0) 69.01
----- I ----- I ---- I -1---------- I --- I ---------------

45.01 2.11 3.21 7.01 7.91 2.01 1.2) 1.21 1.91
44.01 1.01 2.21 5.61 4.71 2.01 2.01 2.3) 2.4)
43.01 0.61 0.91 1.51 2.71 2.41 8.21 5.4) 2.5)
42.01 0.61 0.61 1.3) 2.41 3.11 6.2) 10.01 1.2)
41.01 0.71 1.11 1.6) 5.01 5.91 4.31 1.81 0.7)
40.01 1.01 2.41 3.31 4.01 0.81 0.51 0.31 0.3)
39.01 1.41 2.41 2.01 0.91 0.51 0.3) 0.2) 0.2)

Significance test (mb*>4.5: since 1627)

1 76.0) 75.01 74.0) 73.01 72.01 71.01 70.01 69.01
----- I ----- 1 ---- 1- ------ I ------------- I ----- I-----I
45.01 Iol I 1
44.01 I I
43.01 1 I I I I I I
42.01 1 1 I I < 1 1
41.0) I+ I I +
40.01 + I I I + I I I
39.01 I

I----- .-----. .1---------------- I--- - I

Observed cumulative count (mb*>4.5; since 1627)

I 76.01 75.01 74.01 73.01 72.01 71.01 70.01 69.0)
---------------------------- I ----- I ----- I-----

45.01 3.01 2.01 9.01 9.01 2.0( 0.01 1.01 3.01
44.0) 0.01 3.01 5.01 7.01 0.01 2.01 3.01 2.01
43.01 0.01 1.01 1.01 2.01 1.01 8.01 1.01 2.01
42.0) 0.01 0.01 2.01 2.01 0.0) 4.01 12.01 0.01
41.01 0.01 1.01 1.01 8.01 4.01 3.01 2.01 1.01
40.01 3.01 4.01 8.0( 7.01 0.01 0.01 0.01 0.01
39.01 0.01 6.01 3.01 1.0) 0.0) 0.01 1.01 0.01

Expected cumulative count (mb*>4.5; since 1627)

1 76.01 75.01 74.0) 73.01 72.0) 71.01 70.01 69.01
----------------- I---- I -I I I - 1- - -
45.01 2.41 3.11 5.0( 5.41 3.01 2.11 1.91 2.01
44.0 1.81 2.51 4.21 4.21 3.01 2.41 2.31 2.21
43.0( 1.31 1.61 2.21 2.91 2.8( 7.21 5.71 2.31
42.01 1.01 1.11 1.61 2.31 2.61 5.81 6.61 1.71
41.01 0.91 1.11 1.41 4.31 4.7( 4.01 2.81 1.11
40.01 0.91 2.3( 2.91 3.3) 1.21 0.91 0.71 0.71
39.0( 2.01 2.3) 2.41 1.11 0.9) 0.71 0.61 0.61

-------- 1-----1 -- i----- 1-----f-----1 ----- 1-----I

Significance test (mb*>4.5; since 1627)

I 76.0) 75.0) 74.01 73.01 72.01 71.01 70.01 69.0'
----- 1--I---1-----1------------ -- I-- --- I
45.0) + I + - I
44.0 1 1 1 I < I I I
43.01 I I I I I < I
42.01 I I I I + 1
41.0 I I I +
40.01 + I I > + I +I
39.0) - I I I I

-. I-.- I- ----.--.-------------.-

(c)
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Observed cumulative count (mb*>4.5; since 1915)

I 76.01 75.01 74.01 73.01 72.01 71.01 70.0! 69.01
----- I --------- 1------ I ------- I ---------------

45.01 2.01 1.01 6.01 2.01 1.01 0.0! 1.01 2.01
44.01 0.01 1.01 4.01 6.01 0.01 2.01 2.01 1.01
43.0! 0.01 0.01 1.01 2.01 1.01 6.0! 1.0! 2.01
42.0( 0.01 0.01 1.01 2.01 0.01 3.01 3.01 0.01
41.0! 0.01 1.0! 1.01 5.01 2.01 2.01 1.01 1.01
40.01 3.01 2.01 6.01 3.0( 0.01 0.0! 0.01 0.01
39.01 0.01 3.01 3.01 0.01 0.01 0.01 1.01 0.01

----- I ----- 1------------- I ---- I ---- I ----- ----- I

Expected cumulative count (mb*>4.5; since 1915)

I 76.01 75.01 74.01 73.0! 72.01 71.01 70.01 69.0!
----- I ----- I ----- I----- ----- --- ----- ----- ----- 1

45.01 1.71 2.41 5.5! 6.8! 1.01 0.61 0.51 1.41
44.01 0.31 1.71 4.6! 3.8! 1.01 1.61 1.91 2.11
43.0! 0.21 0.51 0.9! 2.0( 1.4! 4.31 2.61 1.81
42.0! 0.31 0.21 0.81 1.81 2.21 3.01 5.81 0.41
41.0! 0.41 1.0! 1.2! 2.6( 3.3) 2.41 0.81 0.31
40.01 0.91 1.31 1.8( 2.41 0.31 0.31 0.11 0.11
39.01 0.31 1.41 0.61 0.41 0.11 0.11 0.11 0.11

----- 1-----1.. .. -. ... . .----- 1----- 1----- 1----- 1 ---. . I

Significance test (mb*>4.5; since 1915)

I 76.01 75.01 74.01 73.0( 72.01 71.01 70.01 69.01
----- I -------------------- I --- ----- I-- I

45.01 1 1 <
44.01 1 1 1
43.0! 1 1 I 1
42.01 I I I
41.01 1 I + I
40.01 + I I > I I
39.01 + I +I I I

----------------------- !-----.---- I-------I-. 1

Pa=7
Observed cumulative count (mb*>4.5; since 1915)

I 76.01 75.01 74.01 73.01 72.01 71.01 70.01 69.01
-- 1-------- 1-----1-----1-----1-----1----- 1---- 1
45.01 2.01 1.01 6.01 2.01 1.01 0.01 1.01 2.01
44.01 0.01 1.01 4.01 6.01 0.01 2.01 2.01 1.01
43.01 0.01 0.01 1.01 2.01 1.0I 6.01 1.01 2.01
42.01 0.01 0.01 1.01 2.01 0.0! 3.01 3.01 0.01
41.01 0.01 1.01 1.01 5.01 2.01 2.01 1.01 1.01
40.01 3.01 2.01 6.01 3.01 0.01 0.01 0.01 0.01
39.01 0.01 3.01 3.01 0.01 0.01 0.01 1.01 0.01

-------- ---- I-- --- ---- I ---- I --- I ---- I ----- I

Expected cumulative count (mb*>4.5; since 1915)

1 76.01 75.01 74.01 73.01 72.01 71.01 70.01 69.01
----- I ----- I ----- I ----- I ----- I ----- ----- ----- I ----- 1
45.01 1.61 2.41 5.31 6.01 1.51 0.91 0.91 1.41
44.01 0.71 1.71 4.21 3.61 1.61 1.51 1.81 1.91
43.01 0.41 0.71 1.21 2.11 1.81 3.71 2.41 1.91
42.01 0.41 0.41 1.01 1.81 2.41 2.8.1 4.51 0.91
41.01 0.51 0.81 1.21 2.21 2.71 1.91 0.81 0.51
40.01 0.81 1.01 1.51 1.81 0.61 0.41 0.21 0.21
39.01 0.61 1.11 0.91 0.71 0.41 0.21 0.21 0.21

----- I ----- I ----- I ---- I -------- I ----- I ---- I ----- I

Significance test (mb*>4.5; since 1915)

1 76.01 75.01 74.01 73.01 72.01 71.01 70.01 69.01
I----- 1-----I1.----- ---- I- I - -.-.--- I -

45.01 1 I I I I
44.01 1 + I -
43.01 II
42.01 I - I
41.01 1 I I + I I
40.01 + I I > I I I
39.01 + I + I I

----- 1-----1-----1--------- -- I .--1I

Observed cumulative count (mb*>4.5; since 1915)

76.01 75.01 74.01 73.01 72.01 71.01 70.01 69.01

----- .-----. I ----- I .---- ---- I I ----- I ----- I ----- 1
45.0! 2.01 1.01 6.01 2.01 1.01 0.01 1.01 2.01
44.0! 0.01 1.01 4.01 6.01 0.01 2.01 2.01 1.01
43.0! 0.01 0.01 1.01 2.0! 1.01 6.01 1.01 2.01
42.01 0.01 0.01 1.01 2.01 0.01 3.01 3.01 0.01
41.01 0.01 1.01 1.01 5.01 2.01 2.0! 1.0l 1.01
40.0! 3.01 2.01 5.01 3.01 0.01 0.01 0.01 0.01
39.01 0.01 3.01 3.01 0.01 0.01 0.01 1.01 0.01

--- I------ I -------- I ---- I ----- I ----- I ----- I----- I

Expected cumulative count (mb*>4.5; since 1915)

I 76.01 75.01 74.01 73.01 72.01 71.0( 70.0! 69.01
. .I-----1-----II-----1-----1---.-1- I- --- I
45.01 1.81 2.41 3.91 4.21 2.31 1.71 1.51 1.61
44.01 1.4! 1.91 3.21 3.31 2.31 1.91 1.81 1.71

43.01 1.01 1.21 1.71 2.3! 2.21 2.8! 2.21 1.81
42.01 0.81 0.91 1.31 1.7! 2.01 2.31 2.61 1.41
41.01 0.71 0.81 1.11 1.71 1.81 1.5! 1.11 0.91
40.01 0.71 0.91 1.1! 1.3! 0.91 0.71 0.61 0.51
39.01 0.71 0.91 0.9! 0.81 0.71 0.61 0.51 0.51

- ------ 1----- 1-----1- - ---1-----1-----1- -

Significance test (mb*>4.5; since 1915)

1 76.01 75.0! 74.01 73.0! 72.0! 71.01 70.01 69.01
----- I ---. I --- I- ---- I-- --- -
45.01 I I - I
44.01 - I I I + - I
43.01 I- + !
42.01 f I I I - I - I
41.0 1 > I I I
40.01 + I I > + I I I
39.01 I + I + I

.I.-----1-----.-----1-.---I--I-------- ..---- I-

(d)
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Figure 3-10: Log-likelihood and squared error as a function of the recurrence rate
and the number of observations.
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Figure 3-11: (a) Subregion for the selection of the optimal grid size and (b)
selection of the optimal grid-size using the Log-likelihood.
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Figure 3-12: (a) Optimal penalty Pb and (b) associated estimate of
b(x). The penalty Pa is fixed to 7.
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and cross-validated squared error criterion.
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Figure 3-14: Cross-validated log-likelihood as a function of the penalty

P for different intensity intervals
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Figure 3-15: (a) Spatial distribution of the events for the 5 timhne intervals used
for cross-validation, and (b) associated cross-validated

log-likelihood as a function of Pa*
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Figure 3-16: Comparison of the number of expected and observed events in each
validation sample and for the seismogenic regions of Figure 5a.
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Figure 3-17: Optimal penalties Pa as a function of location and the total
number of observations in each cell.
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Figure 3-18: Two solutions with a that varies from cell to cell (a) shows
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Chapter 4

Combination of seismic source and historical estimates of earthquake

hazard

4.1 Introduction

In the previous chapters, models of seismicity and estimation procedures were

proposed. These procedures require a fair amount of computation but produce models

which have optimal predictive characteristics. In this chapter, an alternative procedure

is proposed which makes use of simpler historical and seismic source estimates of

seismicity to produce estimates of seismic hazard which are equivalent to those from

more sophisticated models of seismicity. The combined estiamtor is shown to be more

precise than either the historical and seismic source estimators of hazard.

4.2 Characteristics of seismic-source and historical estimates of hazard

As was mentioned in section 2.1, a frequently used method for earthquake hazard

estimation (Cornell , 1968) partitions the geographical region around the site of interest

into provinces (sources) and assumes that, within each source, earthquakes occur

according to a stationary and homogeneous Poisson process. Another frequent

assumption, which is however not essential to the method, is that earthquake

magnitude m has truncated exponential distribution, hence that earthquakes inside

source i have a recurrence law of the type

vi(m) = lOai--bi-1a-b'i, m< Mi  (4.1)
0, m> Mi

where vi(m) is the expected number of events per unit time and unit area with

magnitude larger than m and Mi , aj, and bi are source-specific parameters.
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For the calculation of earthquake hazard, one needs also know the attenuation law, i.e.

the probability distribution of earthquake intensity at the site Y, as a function of the

magnitude m and the location xo of the earthquake. This attenuation law is written as

Y = g(mnx_,E) (4.2)

where e is a random variable.

From the recurrence model in Equation 4.1 and the attenuation law in Equation 4.2 one

can calculate the exceedance rate function (seismic hazard function) at the site, (X(y) =

rate of events with intensity higher than y)

Xss(Y) = fdxlvi(m)P[Y>yIx,m ] dm (4.3)

The above method of seismic hazard analysis is called the seismic-source (SS) method

and XSS(y) denotes the associated estimator of X(y).

As an alternative to the SS method, one may use historic (H) procedures. These

procedures estimate X(y) directly from a catalog of historic events, for example, as

1 1
H(Y) histoic P[Y > I mi] (4.4)T historic events, i PD(Mj) j @

where T is the time period covered by the catalog and PD(m,xo) is the probability that a

generic event in T with characteristics (m,xo) is recorded in the catalog. Hence, the

product Te PD(m,xo) is the equivalent period of complete recording at location xo, for

events with magnitude m.

The relative accuracy of the estimators XSS(y) and XH(y) depends on the value of y.

One should notice in particular that XH(y) is a nonparametric estimator and is unbiased,

irrespective of the spatial variation of earthquake activity and of the probability

distribution of magnitude. The variance of XH(y) is small at low intensities, but it

becomes large at high intensities, especially for values of y such that X(y)<lff. The

estimator XSS(y) has a smaller variance. However, if the geometry of the earthquake
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sources or the type of magnitude distribution are incorrectly specified, Xss(y) is biased.

The net result is that, in typical applications, the mean squared error MSE (variance

plus squared bias) of XH is smaller than that of XSS for small y, whereas the reverse is

true for large y.

Figure 4.1 shows the historical estimates of Equation 4.8 for a site at location (74 0W,

450N). Two cases are illustrated, one with a median attenuation (or equivalently with

aE=O in Eq. 4.2) (Figure 4.1a) and the other with a random attenuation function

(aE=0.6) (Figure 4.1b). Also showm are decompositions of hazard as a function of

distance from the site and as a function of epicentral intensities. .With respect to

location, most of the hazard is contributed by seismicity within 200 km of the site.

Remote events only contribute to the hazard for low site intensities. The hazard at

higher site intensities is contributed mostly by closely located large events indicating

the importance of a properly specified model with respect to the large magnitude

events (both in terms of rate and of maximum epicentral intensity). Seismic hazard

results are shown for the complete (full line) and the incomplete (dashed line) hazard

functions in Figure 4.1d. Incompleteness is shown to be large (about 30%) for small

site intensities and decreases momotonically with larger intensities.

The hazard functions are also decomposed for. the seismic-source estimator (Figure

4.1c) for the source configuration of Figure 4.4. The decomposition with respect to

epicentral intensities shows that the individual hazard functions have a similar shape

but are shifted vertically and horizontally with respect to each other. Similarity of the

shapes indicates that seismicity is identically distributed in space as a function of

epicentral intensity, The amount of vertical shift of the hazard function decomposed for

each epicentral intensity results from the assumption of exponentiality and the local

estimates of b(x). The latter parameter in combination with the maximum epicentral

intensity also control the slope of the total hazard function at larger site intensities. In
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the case of the historical estimates, equal vertical spacing of the decomposed hazard for

low site intensities (all events contribute to the hazard) indicates that the exponential

model holds globally except maybe for events with Io=4.5-5.5 (Figure 4.1b). For

larger site intensities, there is evidence that the exponential model may not hold in the

vicinity of the site or equivalently, that there is a change in the spatial distribution of

epicentral events as a function of intensity because of the change in the spacing of the

curves. Finally, the influence of the source configuration on the estimates of X(y) can

be very large, Figure 4.1e illustrates extreme source configurations for which seismic

hazard may vary by as much as a factor of 4 depending on the location.

It is proposed to use XSS(y) and XH(y) in combination to form estimators XSS-H(Y) = C*

gSS(y) that are more accurate than either Xss or XH over the (high) intensities of

interest for earthquake risk assessment. The basic idea is to choose the constant C such

that, at some low intensity, the combined estimate coincides with the historical

estimate. Different definitions of C produce different combined estimators. The

estimators XSS-H(y) are suggested as practical alternatives to more sophisticated local

estimators XL(y) that result from allowing the parameters a and b in Equation 4.1 to

vary in space within each earthquake source (see Chapter 2 and 3). In order to evaluate

the combined estimators, XSS and LSS-H with XL are compared at many sites in the

northeastern U.S.

4.3 Combined estimators

The estimators XSS(y) and XH(y) give the rate at which any specified intensity y is

exceeded at the site. Both estimators make corrections for catalog incompleteness and

account for attenuation uncertainty. For one of the combined estimators introduced

below, the calibration factor C is defined in terms of the functions XSS and XH , but

other combined estimators studied here require calculation of the hazard for the
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incomplete earthquake sequence and for the case when the random attenuation law

g(m,x ,E) is replaced with the median law g(m,xo). the function g is such that

earthquakes with characteristics (m,xo) produce site intensities above and below y

=g(m,xo) with equal probability. The hazard estimators for the case of incomplete

catalog and median attenuation are denoted by hX(y), •'s(y) , and X•(y), depending on

the method of estimation. The first two such estimators are given by

av(mx•°)
X.(y) or Xss(Y) = -Jx f PD(m"n o) K(y,mx )d• dx, (4.5)

where v(m,xo) is the function in Equation 4.5 at the geographical point x and

K(y,m,xo) is an indicator function with value 1 if g(m,x.o) > y and value 0 otherwise.

The function v(m,xo) is estimated locally for XL (Chapter 2) and is found under the

assumption of homogeneous seismic sources for XS-

Consistently with Equation 4.8, the estimator Xh might take the form

~1(y) _ n(y) (4.6)
T

where n(y) is the number of historic events with median attenuated intensity

yi=g(mi,xoi) in excess of y. Another possibility is to use

h 3 H. i Iin (4.7)
T n+1

This last estimator is defined only at the median historic intensities yi, which are

ordered such that yl>y2>...> Yn.

The estimators XSS, XH, XS, X, and XA are used to form three combined estimators of

y(y):

-H(Y) = SS(Y) (4.8)

XR-H(Y) = - 'SS(Y) (4.9)
ss (Y*)
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- *)AB--H-Y) = X ss(Y) (4.10)
In all cases, y* is a calibration intensity, which is chosen as described next.

4.4 Choice of the calibration intensity and evaluation of the combined estimators

The calibration should not be done at low recurrence rates. First, there is a lot of

uncertainty on the amount of incompleteness in that range, and the hazard is

contributed mostly by small or distant events which are only remotely related to the

events that contribute to the hazard in the range of interest for seismic design. In

addition, the incomplete historical and seismic source hazard functions both converge

asymptotically to N/T for very low events, where N is the total number of events in the

catalog and T is the total period of observation for the catalog. Similarly, the

calibration should not be done with respect to the smaller historical rates because of the

large uncertainty due to the small sample size. Figure 4.2 shows the variation of the

calibration C as a function of the site intensity for a site located at (72 0W,450 N) and

the estimator of Equation 4.10. The cMlibration measures the vertical seperation of the

historical and seismic source hazard functions as a function of y. Also shown are one

standard deviation envelopes obtained using a Gamma distribution with parameter

N(y) where N(y) is the number of historical events with site intensities smaller than y.

Note that the calibration is equivalent to a local adjustment of a(x) through the addition

or substraction of a constant term Aa at each location surrounding the site, and does not

affect the shape of the seismic source estimate of the hazard function.

It is convenient not to specify y* externally and rather set y* equal to one of the order

statistics yi. [This is a necessity for the estimator -•H, which is defined only at the

points yi.] The criterion used to select the calibration intensity yi is to minimize the

mean squared error of the log exceedance rate, which for the kth combined estimator

(k= 1,2,3) is
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MSE(k)(y;i) = E( [Logk•(y;y* = yi) - LogL(y)]2 ) (4.11)

In practice, it is impossible to calculate the mean squared error in Equation 4.11,

because only one earthquake catalog is available for a given region. One might resort

to Monte Carlo simulation and for example assume that the earthquake process is

Poisson with the recurrence law used in the calculation of XL. A drawback of the

simulation method is that the geometry of the sources usually reflects the spatial

distribution of historical seismicity. Therefore, one should redefine the sources for

each simulation.

It was found preferable to replace the expectation in Equation 4.11 with the average of

the squared log error over a grid of sites. Regional variations of seismicity are further

accounted for by setting y to the intensity that is exceeded at each site with a given

frequency; i.e. we fix ,L(y)= X and minimize with respect to i the quantity

ASE(k)(X;i) =
spatial average of [Log D-H (y;y*) = yi)-Log(X)]2  (4.12)

where y is an intensity that varies from site to site and satisfies LL(y)=X. Figure 4.3

illustrates the calculation of ASE(1). Similar procedures apply to ASE(2) and ASE(3).

Numerical results are obtained using the (Chiburis, 1981) catalog for the northeastern

U.S. in the region (39-460 N, 69-770 W). A plot of main events for the period

1627-1981 is shown in Figure 4.6. Because for most of the large earthquakes the only

available size measure is MM epicentral intensity Io, in all calculations Io is used in

place of m and magnitude is converted when needed using the formula proposed by

Chiburis, Io=(m-1)/0.6. The maximum possible intensity, which is the equivalent for 10

of Mi in Equation 4.1, is taken everywhere to be IX-X.

The seismicity model for XL(y) and XL(y) has spatially varying a nad b coefficients,
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shown in Figure 4.5. These coefficients have been obtained through the local

neighborhood method described in Chapter 2, and refer to a recurrence relationship of

the type

v(x,n) = 10a(x)-b(x)(!o-3.5) o10a(x )-b( x )(9.5-3.5). (4.13)

The unit area in the definition of a is that of a square equatorial degree (i.e. (111.11

km)2).

For Xss(y), two alternative source configurations are considered : In one case the

region is partitioned into 11 sources, which closely reflect the spatial variation of

historical seismicity. The sources are shown in Figure 4.6, which is an adaptation from

Figure 1 of (WGC, 1980). In the other case a simple homogeneous source is used for

the entire region. The latter assumption is unrealistic, but is useful to generate an upper

bound to ASE(K) over all reasonnable choices of the seismic sources and to compare

the robustness of the estimators -SS and X~K!H with respect to source geometry.

In all calculations, y is taken to be the peak ground acceleration (cm/sec2 ) and the

attenuation law is that proposed by (Heidari, 1987) for peak horizontal acceleration on

rock in the eastern and central U.S., i.e.

y = exp(2.00 + 1.14mLg - 1.031nR - 0.003R+E) (4.14)

where R is hypocentral distance in kilometers for a focal depth of 10 kilometers and e

is a normal random variable with zero mean, standard deviation 0.6, and symmetrical

truncation at + 1.8. The Lg magnitude is obtained from 10 using mL = 1+0.610 and

median attenuated values are generated by setting E=0.

The squared error is averaged over the 19 sites shown as stars on the grid of Figure 4.4

and calculations are repeated for X=10 -2, 10-3, and 104 events/year. Other sites of the

grid are excluded from averaging, because the historical seismicity at those sites does

not conform to the assumptions of the model. Lack of fit of the model has been

detected by applying the Kolmogorov-Smirnov test at a significance level of 10% to
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the median historic intensities yi, regarded as a random sample from the Poisson

process with exceedance rate %s(y) in Equation 4.5 (11 source solution). The tests

were performed with respect to the upper-tail of the seismic hazard functions to

minimize the effect of uncertainty on incompleteness. Table 4.I shows the empirical

rate at which normalization is performed, the maximum separation between the two

functions, the site acceleration at which it occurs, and the associated exceedance

probability. Note that the test is mainly a test of goodness-of-fit with respect to b(x).

Figure 4.7 shows the upper-tails of the historical and seismic source (incomplete)

estimates of seismic hazard. Significant differences occur at sites (76 0 W,450 N);

72 0W,450 N; 76 0W,430 N; 73 0W,430 N; 760 W,420 N; 75 0W,420 N; 740W,42oN;

730 W,410 N) which are typically at the boundary between active and less active

regions. When the historical estimates are larger than the seismic source estimates (i.e.

the historical probability of exceedance for a given site intensity is smaller than what is

predicted), the b parameter is locally overestimated by the seismic source model. Note

that the larger (and more uncertain) events do not influence the outcome of the test

because they are located in the upper tail of the distribution.

Results are presented in Figure 4.8a for the 11-sources configuration and in Figure 4.8b

for the single-source case. For each combination of seismic source geometry and

exceedance rate, the average squared grrors in Equation 4.12 are plotted against i (and

against kHi in Equation 4.7, where for the present catalog T=354 years and n=423) and

are compared with the average squared error of the seismic source estimator,

ASEss(W) = Spatial average of[Log 8SS(y)-LogX] 2  (4.15)

In analogy with Equation 4.12, the intensity y in Equation 4.15 varies from site to site

to satisfy XL(y)=X. Notice that ASESS in Equation 4.15 does not depend on the

calibration intensity yi and therefore plots in Figure 4.8 as a horizontal line.

Figure 4.8 indicates that the combined estimators X~2 -H and XY•-H have similar
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average squared errors with respect to XL and are better than XSS if the calibration is

chosen appropriately. The optimum value of i, i* decreases slightly (the calibration

intensity increases slightly) as the rate - at which hazard is estimated decreases. Also,

i * is slightly smaller (the calibration intensity is slightly higher) for a poorer choice of

the earthquake sources. These variations as well as the variation of i* with the type of

combined estimator, are however small and one may in all cases use a value of i around

15, which corresponds for the present catalog to a historical exceedance rate X i of

about one event in 25 years. Over different seismicity conditions, the optimum value

of i is expected to remain stable and the optimum calibration rate is expected to vary as

15/T, where T is the period covered by the catalog.

The estimator ý1_H is slightly less accurate than either X~2 H or X~ H , but is still

superior to )SS,' especially for low prediction rates and poor source configurations.

The best value of i for Wd-H is somewhat smaller than for the other combined

estimators, but the choice i*= 15 is still nearly optimal.

Table 4.II gives estimates of the error factors

EF(k) = 10(A SE t )°0.5  (4.16)

which expresses the degree of dissimilarity between XV-H and XL and the analogous

error factor for Xss. Different values are given for accurate and poor source

configurations, by which is meant source geometries that respectively do and do not

reflect the spatial distribution of historic seismicity. The values for poor configurations

are intermediate between those of Figures 4.8a and 4.8b, in consideration of the very

crude assumption of complete homogeneity in Figure 4.8b. An important conclusion

from Table 4.11 and Figure 4.8 is that the combined estimators Xk1 -H are more robust

than Xss with respect to the specification of the earthquake sources. Therefore,

combined estimators reduce the consequences of errors in the source configuration and

are particularly recommended when the interpretation of historical seismicity is

controversial or when homogeneous earthquake sources do not exist.
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The previous analysis is based on the comparison of various hazard estimators with the

local estimator XL. In the following section, a semi-theoretical analysis is made of the

error of X -H(Y) with respect to the true hazard X(y). This analysis indicates that the

optimum calibration rate yi is probably closer to Y(20) than to Y(15) and that the error

factors of the combined estimator X213H with respect to the true hazards are about 10%

higher than the values reported in Table 4.II.

4.5 Mean squared error of the combined estimators with respect to the true rate

In the previous section, different hazard estimators X(y) were compared on the basis of

the difference between Log X(y) and the logarithm of the local hazard estimator XL(Y).

the justification for this criterion is that XL(y) is an accurate estimator of the true hazard

function X(y). In reality, XL is itself random and is positively correlated with all the

other estimators X(y), because all estimators use the same earthquake data.

Here, some results are derived for the mean squared error of x3-_H, when the error is

defined as the difference between Log •••H(y) and the logarithm of the true hazard,

X(y). Hence the interest is in

MSEV X;i) = E( [LogkH (y;y*=yi)-Log{]2 ) (4.17)

where y is such that X(y)=, and the subscript T denotes true. Analogous quantities for

1~_ H and ••-H in Equation 4.4 are tedious to calculate, but they should be close to

MSE()

First, the logarithmic difference in Equation 4.17 is written as the sum of two terms,

Aa(,yi ) = Logh•,(y i) - LogX'(-i) - (4.18)

and

Ab(Y,Y i) = [LogSS(y)-logX] - [LogSS(Yi)-LogX'(yi)] (4.19)

so that Equation 4.17 becomes
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MSE( ,;i) = El [Aa(Yi)+Ab(Yi)] 2  =

(ma+mb)2 + y +2+ P•ab (4.20)

where ma and ( 2 are the mean and variance of Aa('i), mb and cy are the mean value

and variance of Ab(Y,Yi) and p is the correlation coefficient betweem Aa(Yi) and

Ab(Y,yi). The term Aa((,i) is the error of the historic estimator hXj in Equation 4.7 at the

calibration intensity yi and the term Ab(Y,yi) is the error of prediction of the seismic

source estimator if X.S is calibrated to the exact incomplete rate X'. The first two

moments of these errors, which are needed for the calculation of MSE"), are obtained

in a semi-empirical way, as follows:

The mean value ma and the variance a 2a can be calculated theoretically : The error

Aa(-i) is random because X'(y-i) is random. This incomplete rate can be written as

"'( @)='o,[ 1-F'(Yi)] (4.21)

where Xo is the total rate of events for the incomplete catalog and F' is the cumulative

distribution function of site intensity for the generic event of the same catalog. The

total rate X' may be considered known with value N/f, where N is the total number of

events in the catalog and T is the period of recording. Therefore, the term [1-F'(yi)] is

the only important source of randomness for Aa(yi). The distribution of [1-F'(-yi)] is

known to be Beta, with parameters (i,N-i+l); see (Johnson, 1970), p3 8 . This result can

be used to calculate ma and (2 for given N,T, and i.

Theoretical calculation of the other terms in Equation 4.20 is much more complicated.

For them, numerical estimation was used under the assumption that Ab should not vary

much if one replaces the true rates X(y)=X and X'(yi) in Equation 4.19 with the

corresponding local estimates LL(y) and XL(y•). (yi). With this replacement, mb 2

and p were obtained as sample values from the 19 sites used earlier to rank various

estimators; see Figure 4.4. The quantities

E[A(y)] = m2 + 02 (4.22)
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E[Ab(y,yi)] = n12 + b

MSE41X;i) = E([Aa(3i) + Ab(Y,yi) 2 1

are plotted in Figure 4.9. For comparison, the last quantity in Equation 4.22 for the

case when p=0 and the averaged squared error ASE-.3H in Equation 4.12 are also

shown.

As one would expect considering the correlation between x,3_ H and XL, the mean

squared error in Equation 4.17 is larger than the average squared error ASE -H. The

difference between the two quantities increases with decreasing calibration rate (with

increasing i). As a consequence, the value of i that minimizes MSEln Equation 4.17

increases, from about 15 to about 30 for the 11-source case. For the case of a single

source, the optimum value of i remains around 15-20. The increase in the optimal

calibration rate for the 11-source case is probably exaggerated by the fact that the

replacement of X(y) and %'(y) with %L(y) and X•(y) reduces the value of E[Ab(yyi)]

and hence increases the optimum value of i. In consideration of this fact, a calibration

value of i around 20 is recommended.

The correlation p is small in the case of 11 sources, but is non-negligible and negative

in the 1 source case, adding to the robustness of the estimator.

The negative correlation is caused by the difference in the slope parameter b among

various seismicity models. The parameter b has a direct influence on the slope of the

hazard curves at the site. Because of the various degrees of spatial smoothing of b, one

typically observes that the slope of the local hazard estimator XL is intermediate

between the slope of XSS for a single source arid the slope of the historical hazard XH.

Figure 4.10 illustrates typical situations and the resulting negative correlation between

Aa and Ab.
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4.6 Conclusions

Historic estimates of earthquake hazard, XH(y), have the desirable properties of being

unbiased, of requiring little external information, and of being accurate at low

intensities. However, for the high intensities of interest in earthquake risk mitigation,

estimators XSS(y) based on homogeneous earthquake sources and on parametric

magnitude distributions are in most cases preferable. A problem with the latter

estimators is that they are biased if the earthquake sources or the distribution or

earthquake size are chosen incorrectly.

The bias of XSS(Y) can be reduced by scaling this estimator so that it coincides with

XH(y) at a specified site intensity y* (a few variants of this idea are considered in this

chapter). It is found that the resulting combined estimators perform best if y* is an

intensity that has been exceeded at the site about 20 times, according to the historical

catalog. The optimum calibration intensity depends somewhat on the exceedence rate

of interest (it is higher if one wants to estimate lower exceedance rates) and on the

accuracy of the earthquake sources (it is smaller for source configurations that closely

reflect the pattern of historical seismicity), these variations are however not large.

Optimally calibrated combined estimators are superior to uncalibrated seismic-source

estimators, in the sense of being closer to the exceedance rates obtained from detailed

local models of seismicity. Another important property of the combined estimators is

that they are robust with respect to misspecification of the earthquake sources.

Therefore, these estimators are useful when the source boundaries cannot be estimated

accurately and even more useful, when the very existence of homogeneous earthquake

sources is in doubt.



N RMAX

35
35
35
33
35
33
35
34
29
33
34
35
35
35
34
35
34
35
33
35
34
32
35
35
34
35
35
35
34

0.2456528
8.9803219E-02
0.2445006
0.2335482
0.1667674
0.1470493
0.1923276
0.1479676
0.1525304
9.2692405E-02
0.1140721
0.1950848
0.1793252
0.1463561
9.3122661E-02
0.1561385
0.1643441
0.1342877
0.2135632
0.2511505
0.2550245
0.2322709
0.1386299
0.1681753
0.1075666
0.1007877
0.2117304
8.3403766E-02
0.1827569

5.5508688E-03
1.8975601E-02
4.4321716E-03
2.5469183E-03
4.8329304E-03
8.2659582E-03
4.2078495E-03
1.1686089E-02
9.3309293E-03
9.0133706E-03
1.6809855E-02
3.7926908E-03
6.3754572E-03
5.2699270E-03
7.9846457E-03
5.3619575E-03
6.1584823E-03
5.8467882E-03
4.4321716E-03
4.6684528E-03
5.2699270E-03
5.6478051E-03
1.2524039E-02
6.9519286E-03
8.4103113E-03
5.0032036E-03
1.0904205E-02
8.5571846E-03
1.3422073E-02

Table 4-I: Results from the Kolmogorov-Smimov tests on the upper-tails
of the historical and seismic-source hazard functions for the

29 sites of Figure 4.4.

SITE

181-

ACC PDIF

2.9237509E-02
0.9281116
3.0416887E-02
5.4692954E-02
0.2844647
0.4734901
0.1500284
0.4463950
0.5099026
0.9274294
0.7677401
0.1392164
0.2101933
0.4413616
0.9200233
0.3606302
0.3176947
0.5529675
9.8627299E-02
2.4148036E-02
2.4057195E-02
6.3303739E-02
0.5115321
0.2753009
0.8248645
0.8657724
8.6649381E-02
0.9438092
0.2063685
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Prediction rate, X(eventsfvear)

Accurate
source
configuration

Poor
source

configuration

Es t imator

41)

ASS

WS-H

12)SB' S (3)

ASS

Table 4-II: Estimated error factors with respect to the
local estimator XL.
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Figure 4-1: Seismic hazard estimates for a site located at 74 0W 450 N.
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Figure 4-2: Calibration factor and associated uncertainty for a site at location
72 0W 450N and the combined estimator of Equation 4.14.
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Figure 4-3: Illustration of the combined estimator Ni3_H
and its error with respect to XL.
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Figure 4-4: Earthquakes with MM intensity greater than 3.5 from 1627 to 1981
(Chiburis 1981). The starred points on the grid are used to estimate

and rank different hazard estimators.
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Figure 4-5: Contour plots of the seismicity parameters a and b in Equation 4. 5
used for the local estimator %L.
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Figure 4-6: Estimates of seismicity parameters for the two source configurations
used in the calculation of mean squared errors.
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11 Sources

Source a b

1 -.562 .552
2 -1.645 .651
3 -.930 .565
4 -2.139 .869
5 -1.100 .452
6 -1.155 .447
7 -1.161 .730
8 -.713 .643
9 -.705 .790

10 -.574 .543
11 -1.203 .782

1 Source

a-1.037 .585

-1.037 .585
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Figure 4-7: Comparison of the upper tails of the historical and seismic-source
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760W

7, I11r ir7rr
0.9

0.8

0.7

0.0.420 N 0.5

0.2

0. I

0.0.0.

o.
o.

I.

o.

0.

0.8.9.

0.

8:

9..

9.

ACCELERATI-04

LU

I I I I I l f t I I - " 1f I I I i f t I

i 1' i r - ·i · - - l ·] '. . . .i, . .. . .... .

. i i i A i··

"'

_1:.. .

-

L1 L'
_ _'L':_"L- •

_

' IlIil I



0· 0

760W

450N

440N

430N

750W

10' 10 10I 10.2 10" 1(o0
ACCELERATI ON ACCELERATICN

740W

10Q2

ACCELERATICON

÷



710 W

0 02 10' 10
ACCELERATICN

0 0

730W 720W

420N

410 N

10o 10C R
ACCELERATICN ACCELERAUTN'__



720W

ACCELERATION
ACCELERATION

730W

0

710W

450N

440N

430N

1

I
O

ACL.LRA T OCN



-195-
(a) 11 sources (b) I source

T~ 3
I

X=10

1 
I

t1 I lt t I I I t .I

10 -10
10"' 10

i . . .10 20 I 2 '5 10 203

Figure 4-8: Comparisons of ASE (Equations 4.12 and 4.15) for two source
configurations and three exceedance rates.
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Chapter 5

Conclusions and Recommendations

The problems addressed in the thesis can be classified into three groups, 1. the

identification and preservation of significant discontinuities in the estimation of models

for intra-plate seismicity, 2. the selection of model parameters, 3. and the estimation of

seismic hazard.

The main contribution with respect to the estimation of seismicity models is in the

development of procedures which objectively identify and preserve significant changes

in the spatial variation of the rate of activity. This is an improvement over present day

procedures which require the external specification of seismic sources inside which

seismicity is assumed constant. In the proposed procedure, seismic sources can

optionally be used in the identification of significant features but influence the

estimates only if validated by the data.

With respect to the selection of model parameters, one of the present day approach is to

select penalties such that the number of observed and expected significant residuals are

equal for different partitions of the catalog (i.e. the flagging procedure, section 3.2.4).

The implementation of this procedure is easy, its application not computer-intensive,

and the visual display of the results is informative with respect to possible causes of

lack-of-fit. However, the test lacks power when there are few observations in each

cell. Two new selection procedures are proposed : either certain observed statistics are

set equal to their mean or median values under the model, or cross-validated measures

such as the likelihood are maximized. The first is an extension of the flagging

procedure with new statistics (section 3.2). However, this method lacks the predictive

interpretation of the second procedure (cross-validation), which can be used to

simultaneously select several model parameters and compare competing models.
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A final contribution is with respect to the estimation of seismic hazard. The problem

with present estimators, (i.e. the seismic-source and historical estimators) is that they

are potentially inaccurate: the seismic-source estimates can be biased if the seismic

source configuration is not properly specified and the historical estimates may have a

large variance for small recurrence rates given the small sample size. Using a more

sophisticated model of seismicity as the one proposed above is a solution but requires

substantial work. The combined estimator proposed in section 4.2 is a much simpler

alternative, is a significant improvement over the seismic source and historical

estimators, and is shown to be robust with respect to badly specified seismic source

configurations.

The conceptual results of the research for the estimation of seismicity models and

seismic hazard are reviewed next, followed by a discussion of applications to New

England and the Eastern United States and recommendations for future work.

* Formulation and estimation of the model

The models considered in this thesis represent seismicity through a Poisson process,

non-homogeneous in space and (locally) stationary in time. It is assumed that the size

distribution of events is exponential and location dependent. Estimation procedures are

considered, which weigh the observations differently as a function of location, and

size.

Spatial variation is allowed and estimates of the parameters a and b in Eq. 1.1 are

obtained by spatial smoothing of the estimates (section 2.2). The level of smoothness

is controlled through a penalty parameter and smoothness is measured as the difference

between the estimate at a given location and the average of estimates at neighboring

locations (the so-called local neighborhood). For estimating a(x), procedures which are

recommended are those that smooth the estimates within local neighborhoods having

similar levels of activity. The local neighborhoods for a given cell are identified
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through a test of equality of the recurrence rate (assuming a Poisson process) with each

of the neighboring cells. For smoothing estimates of b(x), it was found preferable to

keep a fixed neighborhood (the eight neighboring cells) given the typically small

number of observations in each cell (section 3.3). An alternative which has been

explored is to use for b(x) the same neighborhoods as the ones identified for a(x). The

assumption for such a procedure is that one may expect that given a larger sample, one

would identify similar homogeneous neighborhoods for a(x) and b(x). However, this

estimator is found not to be as accurate as when fixed neighborhoods are used.

In the application to the Chiburis catalog, the procedure was modified to allow the

significance level for the test of equality of the recurrence rates to vary as a function of

space. However, the effect of such a modification on the estimates was found to be

minimal (section 3.3.1). Information on seismic source configuration is included in the

estimation of local neighborhoods through a modification of the significance level for

the test (section 2.4). The internal homogeneity of a source is measured by the odds

ratio that two cells within the same source are homogeneous, and is estimated as the

ratio of the number of times the null hypothesis is accepted to the number of rejections

(at the given significance level). If this odds ratio is larger than the odds ratio obtained
A

when the cells are not classified according to source (Ro), the source identifies a zone

of homogeneous seismicity, and the significance level of the test for pairs of cells

within that source is lowered to allow greater internal smoothing. If the odds ratio for

pairs of cells in neighboring sources is smaller than Ro, the boundary between the two

sources identifies a significant discontinuity in the rate of seismicity and the

significance level for similar tests is increased to lower the likelihood that local

neighborhoods are identified across the boundary. If an anomaly (e.g. a very active

cell) is found within an hypothesized homogeneous source, the odds ratio for the zone

decreases significantly and the anomaly is extracted in the fitting of the model. It is
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interesting to note that, if a source configuration is non-informative, the estimates are

identical to those which would be found in the absence of the zonation. In

consequence, the procedure is robust with respect to misspecification of the seismic

sources. Neighboring sources found to have similar seismic characteristics are merged

in a preprocessing step. In all the present applications, the effect of the inclusion of

expert opinion on the estimates was found influential only when a boundary is locally

associated with a large gradient in the observed rate of activity (section 2.5).

Finally, analyses show that a grid of half degree cells offers a good level of

discretization and that there is no gain in the accuracy of predictions for smaller

discretizations.

* Selection of model parameters

The main parameters of the previous models which need to be selected are the

penalties on the estimates of a(x) and b(x) (Pa' Pb). Their selection is performed

through two different approaches: target-statistics and cross-validation.

The target-statistics procedure is suggested for obtaining quick estimates of the optimal
A

penalty for a(x). The target-statistics procedure compares the total number of observed

and estimated events in each cell through various goodness-of-fit statistics. The

recommended targets are the expected value or the median of the test statistics. The

procedure is computationally less demanding than cross-validation and tends to

identify optimal penalties slightly larger than those from cross-validation (section

3.2.8).

In cross-validation, the catalog is divided in time into non-overlapping estimation and

validation samples, and optimal models are selected on the basis of statistics measuring

the accuracy of the predictions. Extrapolation is recommended in the definition of the

cross-validation samples, which means that the estimation sample associated with a

given prediction sample contains only prior seismicity.
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For most applications, cross-validation is not recommended for determining the

parameters controlling the selection of the local neighborhoods (the extent of the local

neighborhoods [M] and the level of significance of the test [oc]) (section 3.3.1), because

the outcome of the tests is greatly affected by the removal of the validation sample

given the small number of observations usually available in each cell and migration of

seismicity. It is recommended, based on the results for New England and the Eastern

United States, to limit the size of local neighborhoods to immediately neighboring cells

and to fix the level of significance of the test to either 10% or 15%. Similarly, the

parameters controlling the variation of the probability of detection are not cross-

validated and are kept fixed to estimates obtained using the whole catalog. This is

justified by the fact that cross-validating the probability of detection has little effect on

the selection of the optimal penalties Pa and Pb and is computationally much more

demanding.

* Goodness-of-fit

Goodness-of-fit of the predictions can'be assessed through an analysis of the residuals

(for example, the flagging procedure of section 3.2.4). Alternatively, one may compute

the distribution of the cross-validated log-likelihood through simulation to which is

compared the observed statistic (section 3.3.2). The cross-validated likelihood and its

expeted value can be spatially displayed to identify systematic lack-of-fit over

extended regions.

For the size distribution of the events, the flagging procedure (section 3.2.4) can be

used on the total number of observations in different size intervals for checking the

assumption of exponentiality for the full catalog or for shorter periods of observation.

The lack-of-fit of the exponential model within each spatial cell can also be analysed,

but requires large numbers of observations (section 3.3.2). One may also resort to

simulation to determine the distribution of the cross-validated likelihood for different

magnitude intervals (section 3.3.2).
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Finally, it is recommended to fit models which use different amounts of the most recent

seismicity and to compare the estimates on the basis of the cross-validated statistics.

Seismicity in the near future can resemble more the recent past than the average

seismicity during long periods of time.

* Seismicity of the Eastern United States

In this application, the optimal penalties on a(x) were small indicating that the

locations which are most likely to be active in the future are those which have been

active in the past. This localized pattern of predicted seismicityis true for both small

and large magnitude events for the regions analysed and the time periods considered.

For this data set and the partition considered, the likelihood that previously completely

inactive areas become active in the future is small. However, the relative level of

activity of previously active areas can fluctuate significantly from time to time.

Positive and negative residuals are not randomly distributed spatially, but are

predominant over extended regions, suggesting that regions are more or less active than

others as a function of time. In contrast, the optimal penalty Pb is found to be large,

resulting in almost constant estimates. Notice that the influence of Pb on the cross-

validated statistics is much smaller than Pa because it affects mainly the estimates of

the recurrence rate for the large magnitude events.

For the application to the Eastern United States, regions of significantly higher

seismicity were identified around Newburyport, the Ottawa River Valley, the

Charlevoix area, the Charleston area, Eastern and Western Tennessee, and Eastern

Virginia (Figure 2.11). Local fluctuations of the recurrence rate are detected in the

Charleston area, and Western Tennessee. Regional non-stationarities over larger areas

are detected in the Ottawa River Valley, southern New Hampshire, the Charlevoix

area, and along a ridge across Eastern Tennessee and Virginia (Figure 3.28a).

* Alternative estimator of seismic hazard
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The seismicity estimates obtained using the above procedures can be combined with an

attenuation function to determine the seismic hazard at different sites. An alterantive

estimator of seismic hazard is proposed (Chapter 4) which combines estimates from

much simpler models of seismicity (seismic source and historical models) and

produces results similar to those using the previous estimates. Stationarity is assumed

both for the historical and seismic-source estimators of seismic hazard. It is

recommended to use a reasonable source configuration with respect to the observed

seismicity and to calibrate the seismic source hazard estimates with respect to the 20 th

largest historical event (section 4.2). The combined estimator has been shown to be

robust with respect to badly specified source configurations. The seismic hazard

estimates obtained with this procedure are close to the estimates obtained using the

local model of seismicity.

* Recommendations for future work

The previous models incorporate many assumptions with respect to the size

distribution of the events and the stationarity of the process in time. With respect to the

probability of detection, there are additional assumptions with respect to its variation as

a function of time and magnitude (constant within each incompleteness regions,

monotonically increasing with time and magnitude).

Refinements could be made with respect to the magnitude distribution of the events,

specially with respect to the larger events. Here, the simple exponential model may be

unconservative in some instances, specially with respect to so-called characteristic

events. In addition, the assumption in this application that the maximum magnitude is

known with certainty and is equal at all locations is unrealistic. These are important

issues given the infleunce of large size events on seismic hazard for small recurrence

rates (e.g. 10-4 event/year). Extensions of the model should eliminate the need for

spatial discretization, which introduces some bias in the estimates.
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In future work, the non-parametric formulation of the model in space should be

extended to time and magnitude. In particular, this will allow a better understanding of

the phenomenon of migrating seismicity which was detected. This modification can be

implemented though a kernel estimation procedure (section 2.6). Kernel estimation is

computationally less demanding than maximum penalized likelihood and does not

require discretization in space, time, or magnitude. A wide variety of kernel estimators

is available, some of which can preserve discontinuities in the variation of the

seismicity parameters (e.g. anisotropic and adaptive kernel functions).
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