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Abstract

As the scale of space exploration gets larger, planning of planetary surface exploration
becomes more complex and campaign-level optimization becomes necessary. This is
a challenging profit maximization problem whose decisions encompass selection of
bases, technological options, routes, and excursion methods under constraints on a
route, a mission, and a whole campaign.

The Generalized Location Routing Problem with Profits (GLRPP) is developed in
this thesis as a framework to solve this campaign optimization problem. A mathemat-
ical formulation for the GLRPP is developed and two solution methods to solve the
GLRPP - a single phase method and a three-phase method - are presented. Numeri-
cal experiments for these two solution methods are carried out and their performance
in terms of efficiency and effectiveness are analyzed.

Two case studies are carried out. The first case study is a global Mars surface
exploration campaign optimization. Problem instances for 100 potential bases and
1000 potential exploration sites are successfully solved using a three-phase solution
method. A methodology to express the incremental value of a technology using
exploration profits is demonstrated to evaluate an orbiting depot and in-situ resource
utilization (ISRU). The second case study is a college football recruiting problem.
A GLRPP instance is created out of the NCAA football division I-A schools and
airports from which the schools can be reached. The problem is successfully solved
using the three-phase solution method within a very small optimality gap.
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surveys).

Route

A route is a directed cycle defined over the graph. The route contains exactly one

base and starts and ends at the base. Each route selects a routing tactic which de-

termines characteristics of the route.

Resource

A resource is something that is used to carry out a campaign. Consumption of the

resource is expressed as the sum of three resource consumption elements: on-route,

on-arc, and on-site resource consumption.

Single-Route Constraint

A single-route constraint is a constraint imposed on a route such that the total amount

of resource consumed over the route cannot exceed a certain limit value.

Routing Tactic

A routing tactic is the set of characteristics for a route type which is composed of

single-route constraints and a maximum number of routes.

Feasibility of a Route

A route is feasible if the route satisfies single-route constraints defined by the routing

tactic selected by the route.

Mission

A mission is the collection of feasible routes which have a base in common. We as-

sume that a single site should not be visited more than once by the routes for the

mission. Each mission selects a mission strategy which determines characteristics of

the mission. All routing tactics selected by the routes should be available in the mis-

sion strategy selected by the mission.

Collective Constraint

A collective constraint is a constraint imposed on a mission such that the total amount

of resource consumed over all routes for the mission cannot exceed a certain limit

value.

Maximum Route Number Constraint

A maximum route number constraint is a constraint imposed on a mission such that
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the total number of routes which select a certain routing tactic cannot exceed a cer-

tain limit value.

Mission Strategy

A mission strategy is the set of characteristics for the mission which is composed of

collective constrains, available routing tactics, and mission cost.

Feasibility of a Mission

A mission is feasible if routes for the mission satisfy collective constraints defined by a

mission strategy selected by the mission and the maximum route number constraints

defined by routing tactics for the mission strategy.

Campaign

A campaign is a collection of missions which have a common objective and are carried

out under the same budget source. We assume that a single site should not be visited

more than once by the routes for all the missions in the campaign.

Budget Constraint

A budget constraint is a constraint imposed on a campaign that cost sum of missions

for the campaign should be less than a certain limit value (budget).

Reachability

A site is reachable from a base if there exists an available routing tactic such that a

route using the tactic which represents a round trip between the base and the site is

feasible.

Cluster

A cluster is a subset of nodes which has the following properties: (1) For every site

in the cluster there exist at least one base from which the site is reachable; (2) For

every site in the cluster there exists no base outside the cluster from which the site is

reachable; (3) For every base in the cluster there exist at least one site in the cluster

that is reachable from the base; and (4) For every base in the cluster there exists no

site outside the cluster that is reachable from the base.
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Chapter 1

Introduction: Global Planetary

Surface Exploration

The Global Exploration Strategy initiated by NASA in April 2006 is a strategy for

exploring the solar system that encompasses the interests of many stakeholders in-

cluding space agencies, academia, and commercial investors.1 Intended to address

two issues - why we are returning to the moon, and what we are planning to do when

we get there - the strategy emphasizes a worldwide, or global coordination through

which nations can collaborate both on individual projects and on the collective effort

[22].

Initial elements of the strategy were announced in December 2006 [2], and a report

with the title "The Global Exploration Strategy: The Framework for Coordination"

was published in May 2007. An answer to the question "why global?" can be found

in the following quote from the report [3].

One of the most fundamental human characteristics is a relentless curios-

ity that drives us to investigate the unknown. Throughout our history, we

have looked beyond our apparent boundaries to the mysteries that lie be-

yond. Compelled to explore, to understand and to use the world in which

'It has been discussed among experts from NASA and thirteen other space agencies (Australian,
Canadian, Chinese, European, French, German, British, Indian, Italian, Japanese, Russian, South
Korean and Ukrainian space agencies), non-governmental organizations, and commercial interests.
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we find ourselves, we have spread across continents and oceans. We have

probed the farthest reaches of the planet-the frozen poles, the deep oceans,

the high atmosphere. With increasing intent and determination, we are re-

solved to explore our nearest companions-the Moon, Mars and some nearby

asteroids. Our goal is not a few quick visits, but rather a sustained and ul-

timately self-sufficient human presence beyond Earth supported by robotic

pathfinders. Sustainable space exploration is a challenge that no one na-

tion can do on its own. This is why fourteen space agencies have developed

The Global Exploration Strategy: The Framework for Coordination, which

presents a vision for robotic and human space exploration, focusing on

destinations within the solar system where we may one day live and work.

It elaborates an action plan to share the strategies and efforts of individual

nations so that all can achieve their exploration goals more effectively and

safely.

Considering that future space exploration with a strong emphasis on sustainability

will include large-scale and broad-scope activities, a global exploration strategy - an

exploration by international operators - is the only feasible and reasonable way to

successfully achieve the ambitious exploration goals.

On the other hand, global exploration also means exploration for planetary-wide

objects. Here, "global" refers to the entire surface of a planetary body. Various

stakeholder groups are interested in a planetary body and each group wants to obtain

information from distinct regions of the body. To satisfy these diversified groups, we

need to explore multiple locations distributed over the surface of the whole planet.

In other words, global planetary surface exploration is highly desirable.

A number of space missions have explored surfaces of planetary bodies. Some of

these past efforts were successfully completed as planned. Some missions - the Spirit

and Opportunity Mars rover missions for example - even survived much longer than

their original design lives. Table 1.1 summarizes space missions for surface exploration

and Figure 1-1 shows a superimposed view of the traverses for the missions [1].
The amount of on-surface activities for the missions was limited for several reasons.
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Table 1.1: Historical Planetary Surface Explorations

Mission Rover Destination Type Length Year
[km] Landed

U.S. Lunar
Apollo 11 N/A Moon Human 0.3 1969
Apollo 12 N/A Moon Human 2.0 1969
Apollo 14 N/A Moon Human 3.3 1971
Apollo 15 Lunar Rover Moon Human 27.9 1971
Apollo 16 Lunar Rover Moon Human 27.0 1972
Apollo 17 Lunar Rover Moon Human 35.0 1972

Soviet Lunar
Luna 17 Lunokhod 1 Moon Robotic 10.5 1970
Luna 21 Lunokhod 2 Moon Robotic 37.0 1973

U.S. Mars
Pathfinder Sojourner Mars Robotic 0.1 1997
MER-A Spirit Mars Robotic 6.9 2005
MER-B Opportunity Mars Robotic 11.4 2005

First, a much higher priority was given to successful in-space transportation, which

was far more challenging for early missions than

surface mobility systems for early missions were

of the human lunar missions, surface stay times

it is now. Second, capabilities of the

limited. Last, especially for the case

were relatively short.
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The situation will be different for future planetary surface exploration missions.

Accumulated experiences from past missions will make in-space transportation more

reliable and easier to carry out; benefits from exploration will be considered more im-

portant than they used to be. In addition, improved capabilities of planetary surface

mobility systems will be available 2 and surface stay times for future human missions

will be much longer than those for previous missions. These factors make it very

important to carefully design surface activities of the missions. Stakeholder groups

will identify globally-distributed locations which they are interested in. The amount

of resources that can be used for the missions will be limited, which prohibits visit-

ing all the identified locations. Therefore, we need to design the surface exploration

missions such that total benefits from the missions can be maximized.

The problem of optimizing a global planetary surface exploration campaign (a

series of missions sharing an objective) is dealt with in this thesis. The problem is

formulated as a routing problem class referred to as the Generalized Location Routing

Problem with Profits (GLRPP).

This thesis develops a mathematical formulation and solution method for the

GLRPP. Figure 1-2 shows a thesis roadmap. In Chapter 2, the GLRPP is devel-

oped using a global planetary surface exploration campaign optimization problem

and mathematically formulated as an Integer Program (IP). Two solution methods

to solve the GLRPP are presented in Chapter 3 (single-phase method) and Chapter 4

(three-phase method). Chapter 5 is dedicated to a case study for a global Mars sur-

face exploration campaign optimization as a space application of a GLRPP. Chapter

6 deals with a case study for the College Football Recruiting Problem as a terrestrial

application of the GLRPP. Chapter 7 summarizes this thesis and proposes future

work as follow-up research.

2 One recent study of a planetary surface vehicle reports the excursion capability of the vehicle

of 500 km [42].
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Figure 1-2: Thesis Roadmap
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Chapter 2

Problem Description and

Mathematical Formulation

This chapter describes an optimization problem for a planetary surface exploration

campaign and develops the Generalized Location Routing Problem with Profits (GLRPP)

framework. Concepts used throughout this chapter are introduced in Section 2.1.

Section 2.2 describes an optimization problem for a planetary surface exploration

campaign. The problem belongs to the class of routing problems which have been

previously studied in Operations Research (OR). Literature review for the routing

problems is provided in Section 2.3. Then, unique features of the GLRPP that have

not been addressed in existing routing problems are introduced in Section 2.4. An

abstraction and a mathematical formulation for the GLRPP are presented in Section

2.5 and Section 2.6, respectively. Finally a sample problem is provided that will be

used to explain solution methods in Chapter 3 and 4.
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2.1 Concepts used for Problem Description

2.1.1 Agent, Site and Profit

An agent visits locations and collects profits. A site is a location at which the agent

can obtain profit 1 . The profit for each site is expressed as a scalar number. The

amount of time to collect the profit is also assigned to each site. Candidate sites

and profits / required time associated with the sites are determined from outside of

the problem.2 The agent can be either a human or robotic agent carrying out the

exploration and obtaining profits. It is assumed that stakeholder groups for the ex-

ploration determine these candidate sites (potential exploration sites) and estimated

profit values associated with the sites.3 Figure 2-1 shows candidate exploration sites

on Mars compiled from mission studies and individual contributions from scientists

in fields like Geochemistry, Geology, Seismology, Meteorology, and Exobiology.4

Figure 2-1: Mars Candidate Exploration Sites [40]

1Usually profit means { (revenue) - (cost)} in an economic sense (expressed as a dollar value). In

this situation because there is no explicit revenue generated for exploring a site we don't generate

financial profit but rather scientific value. Nevertheless the terminology profit is used throughout

the thesis because it is a generally used terminology in operations research. Benefit or reward would

be alternative terms.
2The term candidate is used because in the GLRPP all the sites need not to be visited.
3A discussion on whether this assumption is reasonable or not is dealt with in Chapter 5 and

Chapter 7
4Originally these locations are referred to as potential Landing Sites. But they are selected because

of scientific significance and can be regarded as potential exploration sites using the terminology in

this thesis.
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2.1.2 Base, Route, Routing Tactic, and Single-Route Con-

straint

A base is a location at which an agent starts and ends a route. A route is a sequence

of locations (sites or bases) that represents movement of an agent over time. Only one

base is included in a route, and the base is both a starting and an end location of the

route. An agent collects profits by visiting sites belonging to the route. It is assumed

that a site cannot be visited twice. Candidate base locations are externally deter-

mined. A routing tactic characterizes a route by specifying single-route constraints

and the maximum number of routes. A single-route constraint is expressed by a con-

straining resource type, consumption coefficients (per route, on-arc, and on-site), and

a consumption limit. A route is feasible if the route satisfies single-route constraints

defined by the routing tactic selected by the route. The maximum number of routes

limits the number of routes that can use a specific routing tactic in a mission.

For planetary surface exploration the potential bases are potential landing lo-

cations identified by mission planners. A spacecraft lands at one of the potential

landing locations and establishes a base there. Potential landing locations should be

determined so that spacecraft can land safely and bases can be easily established and

maintained at the landing locations. Figure 2-2 shows examples of routing tactics for

surface exploration. Walking, rover, and depot-assisted rover are tactics presented in

this example. A single-route constraint for the walking tactic is that the exploring

agent should return to the base within 8 hours of the route's start. A constrain-

ing resource type in this tactic is time. An agent is assumed to walk with a speed

of 2 [km/hr], and an on-arc resource consumption coefficient (time spent per unit

distance during transportation between locations) is 0.5 [hr/km]. Time spent at a

site is directly counted towards the resource consumption and the on-site resource

consumption coefficient is 1 [hr/hr]. Similarly, a single-route constraint for the rover

tactic is that the exploring agent should return to the base before the fuel consump-

tion exceeds the rover capacity (600 [kg]). It is assumed that the per-distance fuel

consumption is 1 [kg/km] (= an on-are resource consumption coefficient) and that
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the rover is traveling with an average speed of 3 [km/hr], which leads to the on-site

resource consumption coefficient of 3 [kg/hr]. The depot-assisted rover has a larger

fuel consumption limit than the standard rover, but the number of routes using this

tactic cannot exceed 4.5 Figure 2-3 shows how resource consumption is calculated

for a feasibility check of a route with respect to a single-route constraint. The upper

figure shows an infeasible route using the walking tactic. Time consumed on the route

is 10 [hr], which is larger than the consumption limit and violates the single-route

constraint (= 8 [hr]). The lower figure shows a feasible route using the rover tactic.

Fuel consumption on the route is 460 [kg], which does not exceed the consumption

limit and satisfies the single-route constraint.

Routing Tactic 1 Walking

Single-Route Constraint
Resources : Time [hr]
Limit: 8[hr]
Consumption Coefficients

Start / End : 0 [hr]
On-Arc: 0.5 [hr/km]
On-Site: 1 [hr/hr]

Max. # Routes: inf

Routing Tactic 2 Standard Rover

Single-Route Constraint
Resources: Fuel [kg]
Limit: 600 [kg]
Consumption Coefficients

Start / End : 0 [kg]
On-Arc: 1 [kg/km]
On-Site : 3 [kg/hr]

Max. # Routes: inf

Routing Tactic 3 Depot-Assisted Rover

Single-Route Constraint
Resources: Fuel [kg]
Limit: 1200 [kg]
Consumption Coefficients

Start / End : 0 [kg]
On-Arc : 1 [kg/km]
On-Site : 3 [kg/hr]

Max. # Routes: 4

Figure 2-2: Examples of Routing Tactics

5 Details on the orbiting depot are provided in Chapter 5.
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Resource Type for Single-Route Constraint: Time
1 hr

6 km Resource (Time) consumed for the route:
0 [hr] + 0.5 [hr/km] * (5+6+3) [km] + 1 [hr/hr] * (1+2) [hr]

2hr =10[hr]
5 km > 8 [hr] (Resource consumption limit)

3 km

+ a single route constraint for time violated

:base * : site

(a) single-route constraint for Walking tactic (Infeasible Route)

Resource Type for Single-Route Constraint: Fuel
20 hr

120 k Resource (Fuel) consumed for the route:
0 [kg] + I [kg/km] * (100+120+60) [km] + 3 [kg/hr] * (20+40) [hr]

40 hr = 460 [kg]
100 km < 600 [kg] (Resource consumption limit)

60 km

4 a single route constraint for fuel is satisfied

(b) single-route constraint for Rover tactic (Feasible Route)

Figure 2-3: Resource Consumption and Feasibility Check for a Route

2.1.3 Mission and Mission Strategy

A mission is a collection of feasible routes sharing a base. We assume that there exist

multiple technologies, each of which represents a mission strategy. A mission strategy

characterizes the mission by specifying collective constraints, available routing tactics

for the mission, and mission cost. Similar to a single-route constraint, a collective

constraint is expressed by a constraining resource type, consumption coefficients, and

a consumption limit. Routes belonging to the mission should use available routing

tactics specified by the mission strategy. Mission cost is used to calculate the total

cost of a campaign, on which a budget constraint is imposed.

A mission for a planetary surface exploration is a set of routes associated with

a common base. Figure 2-4 shows examples of mission strategies which use routing

tactics presented in Figure 2-2. Figure 2-5 shows how resource consumption con-

straints for a mission are calculated. The rover strategy presented in Figure 2-4 is

considered. Resource (time) consumption for all routes included in each mission is
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Mission Strategy 1

(No Rover)
Collective Constraint

Resources: Time [hr]
Limit : 600 [hr]

Routing Tactics
Walking

Cost

Mission Strategy 2
(Rover)
Collective Constraint

Resources: Time [hr]
Limit : 600 [hr]

Routing Tactics
Walking
Standard Rover

Cost
10 [B$]

Mission Strategy 3
(Rover + Orb. Depot)
Collective Constraint

Resources: Time [hr]
Limit : 600 [hr]

Routing Tactics'~ 5~zriWalking
Standard Rover

Depot-assisted 
Rover

12 [B$J

Figure 2-4: Mission Strategy Example

aggregated and compared with a limit value as a feasibility check. For the mission in

Figure 2-5-(a), the sum of time consumed over all routes is less than the consumption

limit and the mission is therefore feasible. We assume that the routes are executed

sequentially. The total time for the mission in Figure 2-5-(b) is, however, larger than

the consumption limit and the mission is infeasible.

2.1.4 Campaign and Budget Constraint

A campaign is composed of missions sharing an objective and budget. A subset of

potential bases are selected for missions included in the campaign. A budget con-

straint is imposed on a campaign such that the total cost for missions comprising the

campaign cannot exceed the budget. Figure 2-6 illustrates an example of a planetary

surface exploration campaign. Three out of five potential landing locations are used

32



185 hr,' / 0

, 10 km 15 km \

I -i70 hr 50 hrI

8 15 km 20km /

153 hr --
15k --

150 hr 15w 12 km
12 km 122hr

120 hr
t

Resource Type for Collective Constraint
: Time [hr]

Consumption Limit Value: 600 [hr]
Resource (Time) consumed for a mission

(185+122+153) [hr]
= 463 [hr] < 600 [hr]
+ Collective Constraint Satisfied

+ This mission is Feasible

: base@: site

(a) Feasible Mission

185 hr, 60 Resource Type for Collective Constraint
10km 1s k'" \ : Time [hr]

70 hr 5014- Consumption Limit Value: 600 [hr]
153 hr Resource (Time) consumed for a mission

15 km ffr7 .: (185+122+153+153)[hr]
----- 1Sn = 616 [hr] > 600 [hr]

153hr- 15k % 6km 4 + Collective Constraint Violated
150 hr 15km. 12 km 

-''. 12 4h This mission is Infeasible

%t r 0122 hr
120 hr

(b) Infeasible Mission: Violates Collective Constraint

Figure 2-5: Resource Consumption for a Mission and Collective Constraint

as bases. Mission strategies presented in Figure 2-4 are used for missions comprising

the campaign. Total cost for this campaign is (5+10+12) = 27 [B$].

2.2 Optimization of a Global Planetary Surface

Exploration Campaign

Consider a surface exploration campaign for a planetary body such as Mars. Geo-

graphical information on candidate landing locations and exploration sites is given.

Distance between any of two positions (potential landing locations or exploration

sites) can be generated out of this information - with or without terrain information.

A profit value assigned for each exploration site and the amount of time required

to obtain the profit at the site is also assumed to be determined from outside the
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Mission using
Str. 3 Low Altitude Orbit

I Mission using
Str. 2

SMission using
Str. 1

#/ Routing Tactic 1: Walking FPoten. Base used for M. Str. I (No Rover)

& 0 Poten. Base used for M. Str. 2 (Rover)

--- Routing Tactic 2: Standard Rover 0Poten. Base used for M. Str. 3 (Rover + 0. Depot)

QD F1unused Potential Base
-- A Routing Tactic 3: Depot-assisted Rover 0 Exploration Site

Figure 2-6: Planetary Surface Exploration Campaign Example

problem.

The amount of budget allowed for the campaign is given. Also the mission strate-

gies that can be used for the campaign are pre-determined. Each mission strategy

characterizes a mission by specifying a mission cost, collective constraints, and avail-

able routing tactics. A routing tactic characterizes a route by specifying single-route

constraints and the maximum number of routes.

The overall objective is to maximize the sum of profits obtained from all visited

exploration sites. Decisions for this problems are: (1) landing locations (bases) used
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Table 2.1: Parameters, Decisions, Constraints, and an Objective for the Problem

Objective Maximization of the profit sum obtained from explored sites

Decisions 1. Selection of landing locations (bases)
2. A mission strategy for each base used in 1
3. Routes for each of the base used in 1
4. Routing tactics for the routes in 3

Constraints 1. Feasibility of routes (single route constraints)
2. Feasibility of missions (collective constraints)
3. Feasibility of campaign (budget constraint)
4. Each site cannot be explored more than once

Parameters 1. Geographical information on destination body
2. Potential landing locations
3. Potential exploration sites and associated profit
4. Set of possible mission strategies
5. Set of possible routing tactics for each mission strategy
6. Budget

for exploration missions, (2) mission strategies chosen by the missions, (3) routes

corresponding to each base, and (4) routing tactics for selected routes.

The following constraints are imposed: (1) Every route should satisfy single-route

constraints (single route feasibility); (2) Routes which belong to a mission should

satisfy collective constraints and maximum route constraints specified by the strategy

selected by the mission and routing tactics chosen by the routes, respectively (mission

feasibility); and (3) The cost total of missions comprising a campaign should not

exceed the campaign budget (campaign feasibility).

2.3 Literature Review for Routing Problems

Route selection is a part of the decisions that should be made to optimize the global

planetary surface exploration campaign. This problem can be placed in the routing

problem family. Routing problems have attracted researchers in diverse fields for a

long time. Many studies on the routing problems for various applications have been

published to date. In this section we review publications on routing problems which
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are related to our optimization problem.

The classical routing problem is the Traveling Salesman Problem (TSP), which

has been studied extensively in supply chain management [24, 34, 9, 50]. Dantzig et

al. described the TSP in their seminal paper as follows: Find the shortest route (tour)

for a salesman starting from a given city, visiting each of a specified group of cities,

and then returning to the original point of departure. There are two main restrictions

in this problem: (1) Only a single route and base (depot) for the route are allowed;

and (2) All the cities (sites) in the given group must be visited. In extensions of the

TSP, these two restrictions have been generalized and/or modified so that the problem

can handle a broader scope of situations. Figure 2-7 presents a lineage tree of the

routing problem family, in which generalization of the two restrictions is expressed.

Already Addressed Problems
r ----- ---------------------------------------

- Profits associated with sites
-Allow visiting subset of sites

nProb.T wt rf

50s, Danzig et al. '80s, Golden et at
- Allow multiple routes

Ill 1 IFVehicle NorathVgPrbb. VRP M hProfts

'50s, Danzig et at. '90s_ Butt et at
- Allow multiple depots

'80s, Laporte et al.
- Allow depot selection V

LocationRotn Prob.

'80s, Laporte et al.Fnl oselecion~Final Goal
- Allow strategy selection

New Problems
Addressed in
This Thesis

Figure 2-7: Lineage Tree of Routing Problem Family

Vertical evolution in the lineage tree represents generalization of the first restric-

tion. The most straightforward extension of the TSP related with the first restriction
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(single route and base) is to allow multiple routes for visiting sites. The TSP becomes

the Vehicle Routing Problem (VRP) by this extension. The VRP determines feasible

routes which all start and end at a given depot to minimize total travel distance. Each

site must be visited exactly once and some side constraints such as capacity of a ve-

hicle (CVRP), travel distance of a route (DVRP), and time windows for visiting each

site (VRPTW) are imposed if necessary [25, 21, 19, 20, 48, 45, 13, 14, 15, 28, 6, 35].

The next extension is to allow multiple depots as starting and end points of

routes. The VRP becomes the Multi-Depot Vehicle Routing Problem (MDVRP) by

this extension. Given multiple depots and sites, the MDVRP decides sets of routes

to minimize total travel distance of all routes. The routes start and end at a depot

included in the given depot set. Like the VRP, each site must be visited exactly once

and side constraints are typically imposed on the MDVRP [37, 27, 23, 66, 56, 38].

The latest extension related to the first restriction is to allow selection of a subset

of depots out of candidate depots. This problem is known as the Location Routing

Problem (LRP). The LRP determines selection of depots and sets of feasible routes

associated with the selected depots to minimize the sum of cost related with depot

selection and/or total travel distance. Each site must be visited exactly once and

some side constraints are typically imposed. The LRP is a very complex problem and

relatively few studies related to this problem have been published so far [49, 46, 59,

64, 10].

Horizontal evolution in the lineage tree represents another extension by relaxing

the restriction that each site must be visited exactly once. There are situations where

all sites cannot be visited because of routing constraints. The objective of routing

problems in this situation is qualitatively different from conventional routing problems

in which a constraint that every site must be visited is imposed.

Assume that it is possible to quantify the profit obtained by visiting each site.

There are three different problem classes that are defined by extension from the TSP

[33]. The first problem class finds a route which maximizes the { (collected profit)

- (travel costs)}. The Profitable Tour Problem (PTP) defined by Dell'Amico et al.

belongs to this problem class [26]. The second problem class finds a route which
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maximizes collected profit such that travel costs does not exceed a certain value.

The Orienteering Problem (OP), the Selective Traveling Salesman Problem (STSP),

and the Maximum Collection Problem (MCP) belong to the second problem class

[63, 47, 43]. The last problem class finds a route which minimizes travel costs such

that collected profit is not smaller than a certain value. The Prize-Collecting Travel-

ing Salesman Problem (PCTSP) is included in this problem class [7]. Similarly, the

Team Orienteering Problem (TOP), the Multiple Tour Maximum Collection Problem

(MTMCP), and the Multivehicle Routing Problem with Profits (MVRPP) are exten-

sions from the VRP [18, 61, 16, 17, 41]. For consistency we refer to problems which

are generated by extension from the TSP as the Traveling Salesman Problem with

Profits (TSPP) and those by extension of the VRP as the Vehicle Routing Problem

with Profits (VRPP).

Figure 2-8 shows problems obtained from these vertical/horizontal extensions in

the lineage tree of the routing problem family.
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Traveling Salesman Problem
- Objective:

Minimize route distance
- Constraint:

Visit all sites
Only one route allowed

- Decisions:
A route

Location Routing Problem
- Objective:

Minimize route distance sum
- Constraint:

Visit all sites
Side constraints

- Decisions:
Base (or depot) to use
Sets of routes

Vehicle Routing Problem
- Objective:

Minimize route distance sum
- Constraint:

Visit all sites
Multiple routes allowed
Side constraints (distance, capa., etc.)

- Decisions:
Set of routes

Vehicle Routing Problem with Profits
- Objective:

Maximize profit sum
- Constraint:

Side constraints
- Decisions

Sites to visit
Set of routes

Figure 2-8: Selected Problems in Routing Problem Family
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2.4 Unique Features of the Global Planetary Sur-

face Exploration Campaign Optimization Prob-

lem

The global planetary surface exploration campaign optimization problem introduced

in this chapter has some characteristics that have not been addressed in other routing

problems published to date. This section provides a discussion of the new features

that make this problem unique and challenging.

We first identify an existing routing problem class that is most similar to the

campaign optimization problem. Selection of landing locations out of a candidate

set is part our problem hence it can be classified as the Location Routing Problem

(LRP). Two unique features of our problem are presented by comparison with the

conventional LRP. The first is consideration of profit and the second is generalization

of base selection from whether to use or not to use each base to how to use each base.

First, the objective of our problem is maximization of profit sum obtained from

the visited sites. The conventional LRP minimizes the total travel cost and does not

consider the profit. As pointed out in the literature review section, consideration of

the profits requires determination of which sites are actually visited, which makes the

problem more complex. So far no study on the LRP with Profits has been reported

and our problem addresses this issue first in this thesis.

Second, our problem determines how to use each potential base while the classical

LRP determines whether each base is used or not. Suppose we have three different

exploration mission strategies presented in Figure 2-4. In this case, a decision related

to a potential base is one out of the following four cases: (1) Use the potential base

for a mission with a mission strategy 1; (2) Use the potential base for a mission with

a mission strategy 2; (3) Use the potential base for a mission with a mission strategy

3; and (4) Do not use the potential base. In the conventional LRP, the decision is one

out of two cases: (1) Use the potential base; and (2) Do not use the potential base.

The former decision is a "multiple choice," which is a generalization of the latter,
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"binary choice." Therefore, a term "Generalized" is added at the beginning of our

problem's title.

In summary, our problem can be regarded as the LRP with two unique features

- consideration of the profit and generalization of the base selection. The problem is

thus referred to as the Generalized Location Routing Problem with Profits (GLRPP).

The GLRPP is placed in the lower right corner of the lineage tree presented in Figure

2-7.

2.5 Abstract Description of the GLRPP

As the first step in the mathematical formulation of the GLRPP, an abstract descrip-

tion of the problem is provided in this section. Consider a complete graph g = (A, A),

where K = (B U E) is an index set for nodes and A = {(i, j) i, j c K} is an index

pair set for arcs. B ={1,...,nB} is an index set for potential bases (nB: number

of potential bases) and E ={nB + 1, - - - , nB + nE} is an index set for exploration

sites (nE: number of the exploration sites). Typically nE is larger than nB. For each

potential site i E E, two real values vi and ti are assigned. vi represents the profit

that can be obtained by visiting site i, and ti is the time required to collect the profit.

Cost (distance) associated with each arc is expressed as a matrix C = [cil 2 ] where

ci122 represents the length of an arc from i1 to i 2 (i1 , Z2 E K).

A route related to a potential base b E B is a sequence of nodes representing the

transportation between nodes. Potential base b starts the route, is followed by sites

belonging to E, and ends the route. A mission associated with base b is a set of

routes related to b. A campaign is a set of all missions which are defined over graph

g and are collectively pursuing an objective - profit sum maximization.

Resource consumption occurs in order to carry out a campaign; hence the resource

consumption is required to carry out a mission and all associated routes. The resource

consumption is expressed using three consumption classes: per-route, on-arc, and

on-site consumption classes. A per-route class is a routing tactic specific constant

representing the resource consumed when the route starts and/or ends. An on-arc
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class represents the resource consumed during transportation between nodes, and is

proportional to the total distance of the route. An on-site class represents the resource

consumed during activities to obtain profits, and is proportional to the sum of time

spent on sites included in the route.

Given a base and a set of sites, only a minimum distance path that can be obtained

from solving the TSP is considered as a viable route for the problem; we do not

consider deliberately inefficient routes. Thus the total number of routes related to a

base, regardless of the feasibility of routes, equals the total number of subsets of the

site set E (2nE). We define J = {O,. . . , 2E - 1} as an index set of subsets of the site

set E.6

Routing tactic k E T', where T' is a set of routing tactics available for mission

strategy s, characterizes a route by specifying single-route constraints and a maximum

number of routes. Single-route constraints are expressed using constraining resource

types, resource consumption coefficient vectors ( cjk cs,') and a resource con-

sumption limit vector for the constraining resources (1, *). The maximum number of

routes ns,k limits the number of routes using the tactic k E T' included in a mission.

J's'k C J is an index set of feasible routes related to the base b with respect to a

routing tactic k of a mission strategy s and is defined as the following:

J'' = {J E JI co' + TSP -ci d'+ ( tr) cs'k <1 sr'} (2.1)
per-route on-arc

on-site

where Rj is the exploration site subset with an index j and TSPb is travel distance

of the TSP solution for the nodes ({b} U Rj).

Mission strategy s E S, where S is a set of available strategies for the cam-

paign, characterizes a mission by specifying a set of available routing tactics (T' =

{1, ... , ts}), collective constraints, and a mission cost (Cs). Collective constraints are

expressed using constraining resource types, resource consumption coefficient vectors

(d , ds, d,), and a resource consumption limit vector for the constraining resources

6Combined with a base index b E B, index J E J can represent a route.
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(1c8).

We assume all missions in a single campaign are funded under the same budget

source. There is a budget constraint on the cost sum for all missions in a campaign;

The cost sum cannot exceed a pre-determined budget M. Figure 2-9 shows the

hierarchical structure of decisions and parameters for the GLRPP.

* An Exploration Campaign

Figure 2-9: Decision and Parameter Hierarchy for the GLRPP

The objective of the campaign is to maximize the sum of profits that can be

obtained during the campaign while not exceeding the campaign budget. Decision

variables for this problem are selection of bases that are used, mission strategies for

the used bases, selection of routes to visit sites from each of the selected bases, and

routing tactics for the selected routes. The solution of the problem should satisfy

single-route constraints, maximum route number constraints, collective constraints,

and the campaign budget constraint. A constraint that a single site cannot be visited

multiple times should also be satisfied.

The GLRPP is mathematically formulated as an integer programming (IP) prob-

lem in the next section.
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2.6 Mathematical Formulation of the GLRPP

The origin of the mathematical formulation introduced in this section is the set-

covering formulation for routing problems, which was first suggested by Balinski and

Quandt [8] and has been successfully used to solve the Vehicle Routing Problem (VRP)

and its variants [4, 28, 29, 55].

For the GLRPP, a set-packing formulation, which is a modified version of the

original set-covering formulation, is used [17]. First a scalar version of the GLRPP

formulation is presented as follows:

(GLRPPs) Generalized Location Routing Problem with Profits (Scalar Version) 7

b kyb,s b 
i II'bEB sES kETs 3'E ' '~

subject to

I :E I: (A
bEB sES kETs jbsk

1 E Jb,s,k

S b,s,k sk b,s

jE b,s,k

bs <

scS

X bs,k E (o, 1}E il

yb's E {0,}

(VbcB, VsES, VtcTs),

(VbEB, VsES).

X,'') < 1 ,, 

(V b c B, V

(VbEB, VsES, VkETS),

(V b E B),

X b,s,k and yb,si.~ad are binary decision variables for this problem. X bs'' takes value

'To discriminate from the generic problem name, a mathematical formulation is printed using
a Sans-Serif font. So the GLRPP refers to the Generalized Location Routing Problem with Profits
generically, but GLRPPs represents a specific formulation for the problem.
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1 if a route determined by base b and site subset Rj using routing tactic k and

mission strategy s is included in the solution and takes value 0 otherwise. y bs takes

value 1 if mission strategy s is selected by base b and takes value 0 otherwise. rj

is the sum of profits for all sites belonging to site subset Rj and equals EZiR, vi.

Constraint (2.3) requires that each site be visited no more than once. Collective

constraint (2.4) imposes that the resource sum for routes in a mission be bounded.

h"' is a vector representing consumption of constraining resource types for collective

constraints specified by mission strategy s on the route determined by base b and site

subset Rj and is defined as follows:

hs = d8 + TSP - d+ (Zti) -d . (2.10)
iR -per-route on-arc

on-site

Constraint (2.5) requires that total number of routes using a routing tactic (routing

tactic k of mission strategy s) in a mission be at most a certain value (ns'k). Constraint

(2.6) imposes that no more than one strategy be selected by a base. If no strategy

is selected for a base b (y bs = 0, Vs E S), then base b is not used. Constraint (2.7)

imposes that the sum of costs for all missions in a campaign not exceed budget M.

Next a matrix version formulation of the GLRPP is presented.

(GLRPP) Generalized Location Routing Problem with Profits (Matrix Version)

min (-r'x) (2.11)
x,y

subject to

Ax < 1n1, (2.12)

Hx - Ly < 0,2, (2.13)

Eix - Ny < 0,3, (2.14)

E 2 y 1n 4 , (2.15)
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c'yM, 
(21

0 < x < 1, O < y < 1, x and y are integers. (2.17)

x and y are decision variable vectors for GLRPP, which are composed of decision

variables in the equations (2.8) and (2.9). Matrices r, A, H, L, E1 , N, E2 , and c are

created out of coefficients in constraints (2.3)-(2.9). ni, n2 , n 3 , and n 4 represent the

numbers of rows for constraints (2.12), (2.13), (2.14), and (2.15). ni (= nE) equals

the number of exploration sites. n 2 (= nB ES 1"|) represents the total number of

collective constraints for all potential bases using all possible mission strategies. n3

(= n - EseB ITSI) is the total number of routing tactics for all potential bases using

all possible mission strategies. n4 (= nB. ns) is the total number of mission strategies

for all bases.

Two different solution methods to solve the GLRPP are proposed in the next two

chapters. Chapter 3 introduces a single phase method and applies a column generation

procedure to the GLRPP formulation to obtain a solution for the GLRPP. Chapter 4

introduces a three-phase method. Each phase breaks the problem down into subprob-

lems (Divide phase), solves each subproblem (Conquer phase), and synthesizes the

results (Synthesize phase) to obtain a solution for the GLRPP.

2.7 Sample Problem

A sample GLRPP instance will be used to clarify the problem and to explain the

two different solution methods. Figure 2-10 and Table 2.2 present the information

on potential bases and sites. Note that the size of the exploration sites shown is

proportional to the potential profit to be obtained when the site is visited. Table 2.3

shows the campaign budget, mission characteristics, and route characteristics of the

problem.
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* Bb: Potential Base
8: Exploration Site

B1

s9 P3 S12

0 200 400 600 800 1000 1200
X [kin]

Figure 2-10: Sample GLRPP Instance
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Table 2.2: Sample GLRPP Instance

Base No. X Y Site No. X Y Profit (vi) Time (ti)
[km] [km] [km] [km] [hr]

1 163 717 7 58 770 2 15
2 95 443 8 265 793 3 25
3 375 577 9 13 570 1 22
4 728 843 10 158 557 2 30
5 900 607 11 275 647 3 17
6 768 130 12 460 597 1 25

13 408 460 2 30
14 3 350 3 22
15 165 327 1 28
16 708 953 2 26
17 830 903 3 17
18 663 760 1 25
19 990 627 2 13
20 790 687 3 20
21 770 577 1 14
22 875 547 2 26
23 885 53 2 23
24 775 267 3 13
25 720 190 1 11
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Table 2.3: Strategies, Tactics and Budget for the Sample Problem

Strategy I Strategy II

Collective Constraint

Constraining Resource Exploration time Exploration time

Coefficients d' = 0 [hr] d = 0 [hr]

d' = 1/12 [hr/km] d =1/12 [hr/km]
di= 1 [hr/hr] d =1 [hr/hr]

Consumption Limit 1 = 300 [hr] 1 2 300 [hr]

Routing Tactics

Tactic 1 Extended Standard

Single-Route Constraint
Resource Fuel Fuel

Coefficients c" [kg] c =0 [kg]

cd' = 1 [kg/kn] cd = 1 [kg/kn]
c" = 3 [kg/hr] c = 3 [kg/hr]

Limit 1 " = 600 [kg] 1 = 300 [kg]
Max. Number of Routes ni'= 1 [-] n2,1  3 [-]

Tactic 2 Standard

Single-Route Constraint
Resource Fuel

Coefficients c2 0 [kg]

c d,2= 1 [kg/kin]

2= 3 [kg/hr]
Limit 1,2 = 300 [kg]
Max. Number of Routes ni' 1 [-

Cost C'= 5 [-] C 2 =3 [-]

Campaign Budget 18 [-]
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2.8 Chapter Summary

This chapter introduces the Generalized Location Routing Problem with Profits

(GLRPP) by abstraction of an optimization problem for a global planetary surface

exploration campaign. A literature review for routing problems related with the

GLRPP is provided and unique features of the GLRPP are identified. The GLRPP

is formulated as an IP problem and a sample problem is provided that will be used

for the explanation of the solution methods in next two chapters.
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Chapter 3

Single-Phase Method

3.1 Single-Phase Solution Method: Introduction

The single-phase method maintains the structure of the GLRPP formulation presented

in Equations (2.11)-(2.17) throughout the solution procedure. First, a linear program

relaxation (LP-relaxation) of the GLRPP is implemented. Then, an optimal solution

for the relaxed problem is obtained using column generation. Finally, a near-optimal

feasible solution to the GLRPP is obtained by solving an integer program (IP) prob-

lem created by columns identified during the column generation procedure for the

relaxed problem. The LP relaxation solution provides an upper bound of the true op-

timum. So we obtain a near-optimal feasible solution to the GLRPP with the upper

bound of an optimum.

The following sections in this chapter present details of the single-phase method

such as formulating an LP-relaxation and its dual problem, solving the relaxed LP

using column generation, and obtaining a near-optimal solution and an optimality

gap. In the last section of this chapter the sample problem from Section 2.7 is solved

using the single-phase method.
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3.2 Formulating LP Relaxation of the GLRPP and

Its Dual Problem

First an LP relaxation of the GLRPP is presented as follows:

(GLRPPLR) LP Relaxation of the GLRPP

min (-r'x)
xly

Ax < 1ni 7

E 1x - Ny <O0 2 ,

Hx - Ly < 0l3,

E 2y - 144,

c'y < M,

xO , y>O.

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

Binary constraints imposed on the decision variables x and y in the GLRPP are

now relaxed as nonnegative real constraints. Note that an upper bound for each

decision variable is automatically set to be 1 by constraints (3.2) and (3.5), which is

consistent with the original binary constraints.

To apply column generation to the GLRPPLR, dual variables associated with con-

straints of the GLRPPLR are required. A dual problem of the GLRPPLR is formulated

as follows:

(GLRPPLRD) Dual Problem of the GLRPPLR

max (pIn 1 + p41n 4 + p5 -M)
P1,P2,P3,P4,P5

(3.8)
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subject to

p'A + p'Ei + p'H < -r', (3.9)

-p'N - p'L + p'E 2 + p5 C' < 0', (3.10)

Pi O, P2<_, P31 P, P4 < 0, P5 <0. (3.11)

Pi, P2, P3, P4, and p5 are dual variables associated with constraints (3.2), (3.3),

(3.4), (3.5), and (3.6), respectively. Equations (3.9) and (3.10) are related to x and y,

respectively. Next, we discuss the column generation method to solve the GLRPPLR.

3.3 Solving the GLRPPLR Using Column Genera-

tion

Although binary constraints imposed on the decision variables for the GLRPP are

relaxed in the GLRPPLR, it is still prohibitively difficult to solve because of the large

problem size. The column generation method is used to solve the large size problem

without enumerating all columns [11]. The method has been widely used to get

optimal or near-optimal solutions for various types of routing problems for about 20

years [58, 62].

Usually only a small portion of routes out of all possible routes are used in the final

solution. Restated in a physical sense, only a small portion of routes out of all possible

routes are used in final exploration design. Thus, we can obtain an optimal solution

for the GLRPPLR without solving the full-size problem as follows: (1) Efficiently select

columns so that the columns include routes for the optimal solution; (2) Create an

LP using selected columns; and (3) Solve the created problem to optimality.

For every iteration of the column generation procedure, we create an LP us-

ing columns that have been identified so far (the GLRPPLRc: a sub-problem of the

GLRPPLR), and get optimal primary variables and optimal dual variables for the

GLRPPLRc. (From now on, the columns that have been identified so far are referred

to as the current set of columns.) Using these optimal variables, we can identify new
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columns that should be added to create a new GLRPPLRc. After the new GLRP-

PLRc is created, we go back and repeat the procedure for the next iteration. We

stop iterating when we cannot identify any column to be added to the current set of

columns.

Details of column generation are explained in the rest of this section. First, the

formulation for the sub-problem of the GLRPPLR created using the current set of

columns is presented.

(GLRPPLRc) Sub-Problem of the GLRPPLR Using the Current Set of Columns

min (-r'xc) (3.12)
XcY

subject to

Acxc < 1ni, (3.13)

EIcxc - Ny < On2, (3.14)

Hcxc - Ly On3, (3.15)

E 2y < L4 (3.16)

c'y < M, (3.17)

xc > 0, y >_ 0. (3.18)

Columns related to x are obtained through column generation. All columns related

to y are included in the current set of columns from the beginning.

Let pic, p~c, pic, p*c, and p*c be optimal dual variables of the GLRPPLRc. These

variables satisfy the dual feasibility conditions for the GLRPPLRc and the following

relations hold:

P'Ac + p*c'Eic + p* jHe -rc', (3.19)

*c'N - p*'L + p* 'E2 + p/E c' 0', (3.20)
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pi <_ 0, p2C - , p* <- 0, p*i 0, p 5 0. (3.21)

If x* and y* are also optimal for the GLRPPLR, pc, pc, p*,, p*,, and p*, should

satisfy (3.9), (3.10), and (3.11) as well. Because equations (3.20) and (3.21) are

identical to (3.10) and (3.11), respectively, the only condition that should be checked

for optimality of the GLRPPLRc is (3.9).

Inversely, if we can find a column that is not contained in the current sub-problem

and optimal dual variables of the current GLRPPLRc do not satisfy (3.9) related to

the column, then we can conclude that the column should be added to the next

GLRPPLRc.

This procedure of identifying columns for which the dual feasibility condition

related to the current optimal variables is not satisfied and adding those columns to

the current problem to create a new GLRPPLRc is referred to as column generation.

Efficient column generation is very important to increase the calculation speed of the

overall optimization; it should be carefully designed with consideration of the problem

characteristics.

A column generation procedure to solve the GLRPPLR is now introduced. Table

3.1 summarizes the column generation procedure introduced in this section. Let x 'sk

be a decision variable indicating whether a route for exploration subset j E Jb,s,k

corresponding to base b E B using mission strategy s C S and routing tactic k C TS

is included in the solution. Also let A3 (= A 's'k), E ,k , and H 's (= H 's'k) be

column vectors of A, E1 , and H which are associated with decision variable x b's.

An element of r which is associated with x b,s,k is rj (i). The ith element of

A3 is equal to 1 if site i belongs to site subset Rj and 0 otherwise. An element of

Eb,k corresponding to base b, mission strategy s, and routing tactics k is equal to 1,

and all other column elements are Os. H 's is a collective resource consumption vector

related to a route. Its elements related to base b and strategy s are hb, 's as defined

in Equation (2.10) and all other column elements are Os. Structures of the column

vectors associated with decision variable x bs'k are presented in Figure 3-1.3
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Table 3.1: Column Generation Procedure for Solving the GLRPPLR

STEP 1: Calculate qj's for all nodes i E E using profits and dual solution.

STEP 2: Sort qi's in a descending order. (q,, > ... > q, > 0 > ... > q,"E

STEP 3: Base b, mission strategy s, and routing tactic k are selected

STEP 4: Z = {1}, P = {1,...,p}.

STEP 5: Rz {aIi C Z}. Let j be an index such that Rj = Rz.

STEP 6: If J J ' '', go to STEP 8.

STEP 7: If Zie. qi +p b's'k + (ps)'h 's > 0, a column corresponding to b,
s, k, and j is generated.

STEP 8: If Jf'' in STEP 6,Z<-Z.
Otherwise, Z +- Z.
Z: P's subset. Lexicographically the next of Z.
Z: P's subset. Lexicographically the next of Z where IZI ; IZI.

STEP 9: If no more Z's can be identified in STEP 7 or the number of
generated columns exceeds the maximum number of iterations, go
to STEP 3 and try with a different base, mission strategy, and
routing tactics combination.
Once the column generation has been carried out for all combina-
tions of bases, mission strategies, and routing tactics, stop column
generation.
Otherwise, go to STEP 5.
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0

0
A = ( A,) 1 if site i is included in the

subset Rj, 0 otherwise

0

0

0

Element for base b,o strategy s, and tactic k is

Eb''= 1 1, 0 otherwise

0

0

0

Elements for base b and
0 strategy s, tactic k are hb-

H b'k = hb (= Hb's) 0 otherwise

0

0

Figure 3-1: Structures of the columns associated with x bsk
j

For every base, strategy, and tactic, we want to identify routes that are feasible

(satisfying route constraints) and violate the dual feasibility condition expressed as

Equation (3.9); these routes should be added as columns to make a new GLRPPLRc.

That is, for each b, s, and k, we want to find out subsets of exploration sites, or j's,

which satisfy the following condition:

p*'A + p*c'Eb'sk + P *'H ', > -r. (3.22)

Recall that the ith element of Aj equals 1 if site i belongs to Rj, which is a subset

of exploration sites with an index j, and 0 otherwise. So the following relation holds:

P* Aj = Pu, (3.23)
icRj
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where pli is the ith element of pi*. Similarly, we can express P2c and pic'H '

using Eb,k and H bs as follows:

Pi' i'"- b'' 2

P ~ -1bJ~ sP2k (3.24)

'H (P 3' ' (3.25)

bsr
where P2' '' is an element of p*c which is related to base b, strategy s, and tactic k,

and p ' is a vector comprising elements of p* that are related to base b and strategy

S.

Using the relation that rj = ZCRj vi and Equations (3.24) and (3.25), we can

rewrite Equation (3.22) as follows:

qj +psk + (pbs)' h s > 0, (3.26)
iERj

where a new variable qj is defined as qi = (p-i + vi).

We know that p*, and p*c are non-positive from constraint (3.11). h 'b is the

resource consumption vector and should be non-negative. This leads to the conclusion

that if the condition expressed as (3.26) holds, the summation ZiCRj qj should be

positive.

For each iteration, qj 's are sorted by a descending order and only i's with positive

qj's are used to create candidate routes. Each positive qj is assigned a number identical

to its rank, which is used for lexicographical indexing. For given b, s, and k, we

start creating candidate routes using the site with the greatest qj value. Suppose

that we have a feasible candidate route at one point of the iteration. Then we add

a site to the current feasible candidate site set to create a new route. A site set

which is lexicographically the next of the current set is selected to represent the new

route [57]. We first check the feasibility of the new route in terms of single-route

constraints. If the new route is feasible, it also becomes a candidate route, and we

check if it satisfies equation (3.26). If so, we add the new candidate route into the

problem as a new column, otherwise we do not. In any case the new candidate route
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becomes a new current candidate route for the column generation iteration. If the

new route is infeasible, then we try a site set that is lexicographically the next of the

current site set whose size is no greater than the current site set. When we cannot

find any new candidate site set which is lexicographically larger than the current one,

we stop column generation for the specific base, mission strategy, and routing tactic

combination and move on to a column generation procedure for the next combination.

This procedure will be done exhaustively for all possible combinations of b, s, and k.

Note that this column generation procedure requires an initial set of columns at

the beginning of the procedure. For every combination of base, mission strategy, and

routing tactic, all feasible round trips between the base and sites are used for the

initial columns.

When the column generation procedure is completed we have final constraint and

objective matrices (Af, Elf, Hf, and rf, where (.)f represents the matrix created

by columns at the final iteration of column generation). Also, we have the optimal

solution for the GLRPPLR (x* p and y* p) and the optimal profit sum for the GLRPPLR

(J*P r'x P 1 ). The GLRPPLR is a relaxed problem of the GLRPP and JL provides

an upper bound of the optimal profit sum for the GLRPP.

3.4 Obtaining a Near-Optimal Solution for the GLRPP

and an Optimality Gap

A solution of the GLRPPLR is likely to be fractional and not feasible for the GLRPP;

we still have to find an integer solution. There are a number of ways to use the current

set of columns to generate an optimal or a near-optimal integer solution. We use a

cutting plane method to obtain a near-optimal integer solution. The cutting plane

method does not generate any additional columns after the column generation for LP

relaxation is completed. An IP is created using the current set of columns (GLRPPf),

'Although our problem is conceptually a maximization problem, the formulation of the GLRPP
is expressed as a minimization problem for the convenience of handling. So an (optimal profit sum)
equals the (-optimal objective function).
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and an optimal solution of the GLRPPf is obtained (x*P, yp, and j7p). The optimal

solution and profit sum for the GLRPPf is the near-optimal solution and profit sum

for the GLRPP, respectively. Note that the optimal solution for the GLRPPf is not

guaranteed to be optimal for GLRPP, which is the original IP formulation. There may

be columns in the optimal solution of GLRPP that are not included in the GLRPPf.

But an upper bound of the profit sum is provided by JIp, and we can obtain an

optimality gap which represents a worst-case bound on its relative error [62].

Let J*, JIp, and J*p be optimal profit sums for the GLRPP, the GLRPPLR, and

GLRPPf, respectively. The GLRPPLR is the relaxation of the GLRPP, therefore we

can claim that JIp is no smaller than J*. Also the columns comprising the GLRPPf

belong to the column set for the GLRPP and we can claim that J* is no smaller than

Jr*p. Thus, the following relation holds:

J*P I T <_ JP (3.27)

In addition, an optimality gap using the single-phase method can be calculated by

the following equation:

Gs= - 100[%]. (3.28)

Figure 3-2 shows a flow chart for the single-phase solution method.
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Formulate the GLRPP
(Equations (2.11) - (2.17))

Formulate the GLRPPLR
(LP Relaxation, Equations (3.1) ~ (3.7))

Initialize the GLRPPLRc

(Using Simple Round Trips)

Start Column Generation Procedure
for Current Iteration

Select 0, S, K

Solve Current GLRPPLRc
Obtain x_c*, yc*, p-c*

Generate Columns
for Given b, s, k

Yes

All Columns Generated? No

Yes

All b, s, k Considered? No

Yes

o Col. Generate
* for any b, s 7 No

Yes

Formulate the GLRPPf and Calculate

xIP, yIP, J_IP, and G_opt

Figure 3-2: Flow Chart for the Single-Phase Solution Method

61



3.5 Sample Problem Using the Single-Phase Method

The sample problem described in Section 2.7 is solved using the single-phase solution

method introduced in this chapter. Table 3.2 shows the summary of the sample

problem solution obtained by the single-phase method. A total of 65 columns are

created during the procedure to solve the GLRPPLR. An optimal solution to the

GLRPPLR contained 23 nonzero decision variables. 15 nonzeros are route-related

decisions (x) and 8 nonzeros are base/strategy/tactics decisions (y). 10 out of 15

nonzero x elements and 7 out of 8 nonzero y elements are fractional values, meaning

that this optimal solution of GLRPPLR is not feasible for the original IP (GLRPP).

The optimal profit sum for the GLRPPLR is 25.7, which is an upper bound of the

optimal profit sum for the GLRPP. The GLRPPf is created using the set of generated

columns. In the solution of the GLRPPf, eight routes are selected related to four

bases. Three bases use the mission strategy 1 and one base uses the mission strategy

2. The total cost of the whole campaign is 18, which equals the budget constraint

amount. The optimal profit sum for the GLRPPf is 25.0 [-] and the optimality gap

for the sample problem is 3 [%]. Actual columns associated with the base 1 of the

solution (columns for y1", , and X,' 2 ) are presented in Figure 3-4. Figure 3-3

graphically shows the sample problem solution.
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N: Base used with strategyl

0: Base used with strategy2
[I: Unused Base
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Figure 3-3: Sample Problem Solution using a Single-Phase Method
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Table 3.2: Sample Problem Solution Summary - The Single-Phase Method

GLRPPLR GLRPPf

No. Gen. Col. 65 -

Nonzero Solutions
(Fractional Values)

yy' = 1.00 y' =1
(y2,1 =0.30) y4,2 1

(y32 = 0.33) y5,1 = 1

(y41 = 0.33) y6- 1

(y4, 2 = 0.67)
(y5 1 = 0.67)
(y5, 2 = 0.33)
(y6 = 0.50)

x,1,2 = 1.00 x ,1,2
3,2,1 = 1.00 x 4,2 1

332 5sl~ 12
(X 2 = 0.33) x 4 = 1

=04 .00244 =14,2,1 1.0 x4,2,1 1
1.00 X 204 84,2,1 10 5,1,2 1

=12 1.0 * 32 768
( 2,,= 0.67) x 1'1 = 1
(X = 0.67) x 5,1,= 8

( 5,, = 0.33) x6,21e =16

(X2244 = 0.50)
1,1,1

= 1.00

(38= 0.30)

(X102= 0.33)
(X245 6 = 0.33)
(X = 0.33)

(X ,16 = 0.50)

Profit Sum 25.7 25.0

Opt. Gap 3 [PCT]

Total Cost 18 18
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Figure 3-4: Columns associated with y11, X 1,1,
2 , and x""
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3.6 Single-Phase Method Summary

The Single-Phase Method to solve the GLRPP is developed in this chapter. An

original IP formulation of the GLRPP is relaxed to an LP (GLRPPLR). The relaxed

LP is solved using a column generation method. Using columns generated during

the procedure to solve the relaxed LP, a sub-IP of the original formulation (GLRPPf)

is created and solved to obtain a near-optimal solution. We can also get an upper

bound of the optimal profit sum from the solution of the GLRPPLR, and calculate an

optimality gap from the upper bound and the near-optimal solution.
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Chapter 4

Three-Phase Method

4.1 Three-Phase Solution Method: Introduction

The three-phase method is presented in this chapter as the second method to solve

the GLRPP. The scope of decisions that should be made in the GLRPP is broad. The

problem decides bases selected for missions, mission strategies for the selected bases,

routes for each selected base, and routing tactics for the routes. The decision variable

vector x of the GLRPP determines routes and routing tactics and the decision vector

y determines bases and mission strategies for the bases. In the single-phase method,

the two decision vectors are found simultaneously using one single IP problem. Here

we consider a different approach.

Consider the case when decision vector y for the GLRPP is already determined. In

this case, bases and associated mission strategies are selected by y, and the GLRPP

becomes a new problem. The new problem decides routes and routing tactics corre-

sponding to each selected base to maximize profit sum subject to the constraints on

resource consumption for routes and missions. We refer to this problem as the Multi-

Depot Vehicle Routing Problem with Profits (MDVRPP). The MDVRPP is easier to

solve than the GLRPP because y is already given and the only decision vector is x.

Constraints (2.15) and (2.16) of the GLRPP formulation are related with only y.

Suppose we enumerate all y's satisfying the two constraints and solve the MDVRPP

for each of them. We can find the optimal solution of the GLRPP by selecting the
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case which has the maximum MDVRPP solution out of the enumeration. Let us refer

to this approach as the Full Factorial Strategy Method.

To use this Full Factorial Strategy Method for solving the GLRPP, we have to

solve the MDVRPP for every y which satisfies constraints (2.15) and (2.16). The

number of y's which satisfy the constraint (2.6) equals (1 + nrs)nB because there are

(1 + ns) choices for each base (either use the base using one of ns mission strategies

or do not use the base) and we have nB bases. Some of these y's may not satisfy the

constraint (2.7) and (1 + ns)nB is an upper bound for the number of feasible y's.

Consider a GRLPP instance presented in Figure 4-1-(a). The instance has two

mission strategies and three potential bases, and the maximum number of feasible y's

equals (1 + 2)' = 27. Figure 4-2 shows the GLRPP solution for the instance using

the Full Factorial Strategy Method. A table enumerating all combinations of strategy

selection for bases is created. Each row of the table is associated with a specific

decision vector y. Total cost for every row is calculated for the feasibility check of the

campaign budget constraint. For every feasible row, the MDVRPP is solved and the

profit sum for the solution is obtained. After the table is fully populated, we select

the row which has the maximum profit sum value. Decision vectors x and y for the

row are taken as the solution of the GLRPP instance.

One big hurdle inherent in this method is the large number of combinations for

y when we have many potential bases - the number grows exponentially with the

number of potential bases. When there are 2 mission strategies and the number of

potential bases equals 10, the maximum number of the MDVRPP we have to solve

is (1 + 2)10 = 59, 049. For 100 potential bases, the number increases to (1 + 2)100 _

5.2- 1047 . Even though the MDVRPP is less complex than the GLRPP, the benefit

of reducing the problem complexity is lost in this situation. An observation presents

a hint to resolve this difficulty: all bases do not have to be handled together to solve

the MDVRPP. The node set for the GLRPP is divided into two groups in Figure

4-1-(b). This group is referred to as a cluster. (A formal definition of a cluster is

provided in the next section.) Each cluster is also a node set composed of bases and

sites. Assume that no route can have nodes from multiple clusters.
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0

Mission Strategy 1: cost 5
Mission Strategy 2: cost 3

Campaign Budget: 12

(a) GLRPP instance composed of 3 bases

Cluster 1 Cluster 2

/ N / \

(b) Grouped Instance

Figure 4-1: GLRPP Instance and Two Clusters for the Instance

Consider a feasible y and the associated MDVRPP. At the same time, we can

also consider the MDVRPP for each cluster because a cluster is also a node set and

decisions on y also fix mission strategies for bases in each cluster. Let optimal profit

sums of the MDVRPPs for the original node set, cluster 1, and cluster 2 be V, V1,

and V2, respectively. Then a relation among these three values that V = V + V2

holds because no route can have nodes from multiple clusters; hence, it is impossible

that the solutions of MDVRPPs for cluster 1 and cluster 2 have any site in common.

Using this property, we can create any row of the table in Figure 4-2 using the two

tables presented in Figure 4-3. For example, suppose we want to know the maximum

profit sum for the MDVRPP when mission strategy 1 is used for base 1 and mission

strategy 2 is used for base 2 and base 3. We refer to Table I (for cluster 1) of Figure

4-3 to find out the optimal profit sum for the MDVRPP when base 1 is used with

strategy I and base 2 is used with strategy 2 (Case 7) and obtain the profit sum
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Base 1 Base 2 Base 3 Cost Feasibility Prof. Sum
Case 00 not used not used not used 0 Yes 0
Case 01 str. 1 not used not used 5 Yes 8
Case 02 str. 2 not used not used 3 Yes 5

Case 13 str. 1 str. 1 str. 1 15 INo N/A

Case 25 str. 1 str. 2 str. 2 11 Yes 15
Case 26 str. 2 1str. 2 1str. 2 9 Yes 12

Problem to solve:
Find a row with maximum profit sum.

Result:
Case 25

Totla # of the MDVRPP to solve:
3A3=27

Figure 4-2: Solving the Instance Using the Full Factorial Strategy Method

of 12. Similarly we refer to Table 2 (for cluster 2) to find out the profit sum for

the MDVRPP when base 3 is used with strategy 2 (Case 2) and obtain the value

of 3. Then the profit sum we want to know is calculated by summation of the two

values: 12 + 3 = 15, which is consistent with the information for the Case 25 of

Figure 4-2. Now we can obtain the solution of the GLRPP for the instance. We solve

an optimization problem to select one row from each table to maximize total profit

sum subject to the constraint that cost sum for the selected rows do not exceed the

campaign budget. Actual routes can be also taken from the routes related to the two

rows from Table 1 and Table 2.

Let us compare the amount of effort made for the two methods presented in

Figure 4-2 and Figure 4-3. In the Full Factorial Method, we solve the MDVRPP 27

times. The number is reduced to 12 (=9+3) times in the modified method.' We

can reduce the number of the MDVRPP calculation typically more than 50 percent

by dividing the whole node set to multiple clusters, solving the MDVRPPs for each

cluster, and synthesizing the results from all clusters to obtain the final GLRPP

solution. Reduction in calculation effort is more dramatic when a large node set is

divided into many clusters. Consider the situation when there are 100 bases in the

instance. We would have to solve the MDVRPP 5.2. 104 times if we apply the Full

'The modified method requires additional efforts related to making clusters and finding the
solution of the GLRPP out of multiple result tables but time consumed on these efforts are negligible.
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Table 1
Base 1 Base 2 Cost Feasibilit Prof. Sum

Case 00 not used not used 0 Yes 0
Case 01 str. 1 not used 5 Yes 8
Case 02 str. 2 not used 3 Yes 5

Case 7 str. 1 str. 2 8 Yes 12
Case 8 str.2 str. 2 6 Yes 9

Table 2
Base 3 Cost Feasibility Prof. Sum

Case 00 not used 0 Yes 0
Case 01 str. 1 5 Yes 4
Case 02 str. 2 3 Yes 3

Problem to solve:
Find a row from each table which maximizes total prof. sum
subject to the condition that cost sum is no more than budget.

Result:
Case 7 for Table 1 and Case 2 for Table 2

Totla # of the MDVRPP to solve:
3A2+3A 1=12

Figure 4-3: Solving the Instance Using the Modified Method

Factorial Strategy Method. But if it is possible to divide this instance into 20 clusters

such that each cluster has 5 bases and the Modified Method is applied, the number

of the MDVRPP we have to solve is reduced to 20 - (1 + 2)5 = 4, 860. This number

is extremely small compared with the case of the Full Factorial Strategy Method.

In this chapter, the Modifed Method is refined and proposed as the second solution

method to solve the GLRPP. We refer to this method as the Three-Phase Method;

The whole procedure of the method is composed of three phases, which are referred

to as the Divide Phase, the Conquer Phase, and the Synthesize Phase, respectively.

In the Divide Phase, the whole node set is divided into multiple groups, each of which

is referred to as a Cluster. For each cluster we consider base / mission strategy com-

binations, and each combination is referred to as a Cluster Strategy. In the Conquer

Phase, we solve the Multi-Depot Vehicle Routing Problem with Profits (MDVRPP)

for every cluster strategy. The MDVRPP can be solved using a method very sim-

ilar to the Single-Phase Method to solve the GRLPP. Finally the Synthesize Phase

collects the MDVRPP results (near-optimal solution, near-optimal profit sum, and

upper-bound profit sum) for all cluster strategies and solves an IP that selects one

cluster strategy for each cluster, maximizing the total profit sum for the campaign
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subject to the budget constraint. Figure 4-4 shows procedures and information flows

for the three-phase method.

Solution of
the GLRPP

Near-optimal and
upper-bound solutions
of all MDVRPPs for all

Clustering and cluster strategies
Phase 1: sub-graphs Phase 11: clusters Phase III:
Divide Conquer Synthesize

nstanCe Graph (Geometry) Tactis on Strats, Costs) Budget Constraint

Figure 4-4: Three-Phase Method for Solving the GLRPP

The next three sections provide explanations on the Divide Phase, Conquer Phase,

and Synthesize Phase, respectively. Then, a solution for the sample problem described

in Section 2.7 is presented. Finally a comparison of numerical experiment results

between the single-phase method and the three-phase method is provided in the last

section.

4.2 Phase I - Divide

The objective of the Divide Phase is to partition the node set .N into clusters so that

any route composed of nodes belonging to different clusters cannot be feasible. We

start the Divide Phase with identification of sites that can be visited from each base.

First the term Reachable is defined.

Definition 1 (Reachable). For base b E B and site i E E, i is reachable from b

if there exists mission strategy s E S and a routing tactic k c T' such that a round

trip between b and i is feasible for the routing tactic k. It can be also described using
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the following mathematical expression:

c8 E S, 3k c Ts, s.t. c 'k + (cbi + cib) - cS' k + ti - C, k sk

In this definition, cgo', (cbi + cib) -Cik, and tj -csk are per-route class, on-arc class,

and on-site class resource consumptions, respectively. Also 1 ,,k is the consumption

limit vector of the constraining resources. Note that a base from which no site is

reachable or a site which is not reachable from any base is not relevant to the prob-

lem and can be deleted from the problem instance. Throughout the discussion in

this chapter, it is assumed that every considered base has at least one site which is

reachable from the base and every potential site is reachable from at least one base.

The definition of a Proximity Set follows.

Definition 2 (Proximity Set). For base b E B, proximity set Pb is defined as a union

of {b} and the set of sites reachable from b.

The Divide Phase generates a partition of the whole node set .A. This partition

is referred to as clustering and a member of the partition is referred to as a cluster.

The set of clusters should have the following properties.

1. Each cluster has at least one base and site.

2. For each site in a cluster, there exists at least one base in the same cluster such

that the site is reachable from that base.

3. For each base in a cluster, there exists at least one site in the same cluster which

is reachable from the base.

4. A cluster cannot be further partitioned into subsets which satisfy the properties

described in 1-3.

Clustering and cluster are mathematically defined as follows.

Definition 3 (Clustering / Cluster). F {C1 , ... , C, ... , Cn0 } is a clustering of N

and C (1 = 1,... ,nc) is a cluster of jf if all of the following conditions are satisfied.
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1. F is a partition of Jf.

2. For all b G B and I E {1,...,Inc}, if b E C1, then Pb C C1

3. For all b1 E B and 1 E {1,...,nc}, if bi E C and Ci n B| 2, then there

exists b2 E B such that b2 E C1 and Pb, n Pb2 $ 0-

4. For all bl, b2 E B and 11, 12 E {1,. .. ,nc}, if bi E C11 , b2 E C1 2 , and 11 $ 12,

then Pb1 l Pb2 = 0.

Finally, cluster base set and cluster site set are defined.

Definition 4 (Cluster Base Set / Cluster Site Set). Corresponding with a cluster C

defined in Definition 3, cluster base set B is defined as follows:

B, = C n B.

Also cluster site set El is defined as follows:

E, C= n E.

Note that generation of a clustering and corresponding clusters out of a node set

g is analogous to identification of a set of disjoint connected subgraphs out of a given

graph [12]. Each base in B can be seen as an analogy for the node in the graph and

a non-emptiness of an intersection between two proximity sets related to two bases is

an analogy for the existence of an (undirected) arc between two nodes.

Now we describe the Divide Phase using the concepts introduced in this section.

Phase 1: Divide

1. Given a GLRPP instance, construct proximity sets P 1 ,..., P, .

2. Using the proximity sets, construct a clustering F {C 1 , . . . , C,,} and corre-

sponding base sets (B 1 , . . . , Bnc) and site sets (E 1 , . . . ,En).
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Table 4.1: Pseudocode - Clustering

FOR i = 1:nB,
Ci = P_i;

END
i = 1;

nC = n_B;
WHILE (1) ,

WHILE (1),
isMerged = 0;

j = i+1;
WHILE ( j <= nC ),

IF ( intersection(C-i, C_j) NULL ),

C_i = union( CJi, Cj );
k = j;
WHILE ( k <= nC-1 ),

C_k = C-(k+1);

END
n_C = nC -1;

isMerged = 1;

BREAK

END

j = j + 1;
END
IF (isMerged == 0),

BREAK

END

END
i i+1;

IF ( i == nC ),
BREAK

END

END

Proximity set identification is straightforward and no additional explanation on

this procedure is provided here. Cluster identification using the proximity sets needs

some systematic effort. Table 4.1 shows the pseudo-code for an algorithm to identify

clusters out of proximity sets.

4.3 Phase II - Conquer

In the Conquer Phase, we identify all possible mission strategy combinations for every

cluster. Then, the MDVRPP is solved for each mission strategy combination. Both a

near-optimal solution and the upper bound of the maximum profit are recorded to be
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used in the next phase. A combination of mission strategies for bases in one cluster

is referred to as a Cluster Strategy. The Cluster Strategy is defined as follows:

Definition 5 (Cluster Strategy). Let C be a cluster and B = {b, 1 ,..., b,,, } be

a cluster base set. Suppose that each base bi,, has a specific strategy sl,,. (m =

1, . . , nB1 ) A cluster strategy s, = 181,1, . .. , si,]/ is defined as a strategy vector whose

size is nB, and represents a combination of mission strategies selected by all bases in

B1.

For every base in a cluster, we have (1 + ns) choices for the use of the base: (1)

using the base with strategy s E S and (2) not using the base. Note that s' = 0

if base i of the cluster is not used. Then the total number of cluster strategies for

cluster 1 is calculated as follows:

ni = (1 + ns)nB,. (4.1)

Index g (0 < g < ni - 1) represents a cluster strategy s, and is expressed as the

following equation:
nB,

9 = : (1 + nB)""l - Sl,,. (4.2)
m=1

Now we discuss a method to solve the Multi-Depot Vehicle Routing Problem with

Profits (MDVRPP), which is a sub-problem that should be solved for each cluster /
cluster strategy. The MDVRPP can be seen as a special case of the GLRPP in which

decision vector y is given. Therefore, the whole procedure of the single-phase method

introduced in Chapter 3 is applicable with only minor modifications: (1) Mission

strategy selection for bases (y) is not a decision for the MDVRPP and the budget

constraint is irrelevant; and (2) Column generation of the MDVRPP is composed of

two loops - base b and routing tactic k. 2

Chapter 3 is referred to for a detailed explanation of the solution procedure for the

MDVRPP. Figure 4-5 shows the flowchart for the procedure to solve the MDVRPP.

2column generation of the GLRPP has three loops - base b, mission strategy s, and routing tactic
k
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Formulate the MDVRPP

Formulate the MDVRPPLR
as an LP Relaxation

Initialize the MDVRPPLRc
(Using Simple Round Trips)

Start Column Generation Procedure
for Current Iteration

Select b, k

Solve Current MDVRPPLRc
Obtain xc*, p-c*

Generate Columns
for Given b, k

Yes

All Columns Generated? No

Yes

All b, k Considered? No

Yes

o Col. Generate
A* for any b 9 No

Yes

Formulate the MDVRPPf and Calculate
xIP, V_IP, and V_LP

Figure 4-5: Flow Chart for the MDVRPP Solution Procedure

For cluster strategy g of cluster 1, we record the near-optimal feasible solution

(x*,)l',, near-optimal feasible profit sum (V*P )I'9, and upper bound of optimal profit

sum (V* )',- of the MDVRPP. This information is used in the Synthesize Phase.

4.4 Phase III - Synthesize

The Synthesize Phase solves the problem of assigning one cluster strategy to each

cluster to maximize the total profit sum for the whole campaign while ensuring that

the selected set of strategies satisfies the budget constraint. A cluster strategy repre-

sents a combination of mission strategies used by bases included in the cluster. For
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each cluster strategy g of cluster 1, we can get the near-optimal and upper-bound

profit sums of the MDVRPP ((V7*p)',g and (VLp)"9) from the Conquer Phase and cal-

culate the cost by summing up the costs associated with selected mission strategies

for bases in cluster 1. This problem is a relatively simple IP 3 . We first formulate a

generic cluster strategy selection problem.

(CSSP) Cluster Strategy Selection Problem

nc ni

max (W '1- Zg (4.3 )
1=1 g=1

subject to

z = 1 (Vl E {1,. . ., nc}), (4.4)
g=1

nc ni

C '" - Z1'9) < M, (4.5)
1=1 9=1

z {0, 1} (Vl E {1,..., nc}, Vg E {1, ... i}). (4.6)

Equation (4.3) indicates that we want to maximize the sum of profits that can

be obtained over the whole campaign. Index 1 represents a cluster and index g

represents a cluster strategy (defined in Equation (4.2)). c1'' is the cost sum of

missions determined by the cluster strategy indexed as g and expressed as follows:

nB,

c1'g = E C1,M, (4.7)
m==1

where g represents cluster strategy s= [=s,1,..., sM,'

We define three different objective coefficients (W*)1'9, (w*p)''g, and (w*p)''g as the

following equations:

(w*)'9 = (V*)'g, (4.8)

Th rolemisanA e P m w Si ' C(4.9)

'T his problem is an Assignment Problem with a Side Constraint
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(w*,gI'Y - (V1*) ', (1

where (V*)I19, (V* )L1,, and (Vp ')j represent a true optimal profit sum, an upper

bound of the optimal profit sum, and a near-optimal profit sum of the MDVRPP for

cluster 1 and cluster strategy g, respectively. Consider the following three problems.

(CSSPOpt) CSSP with Optimal MDVRPP Solution

nc ni

max E E ((W*)l'g - z1'_q
1=1 g=1

subject to Equations (4.4), (4.5), and (4.6).

(4.11)

(CSSPLP) CSSP with Upper Bound LP MDVRPP Solution

subject to Equations (4.4),

nc ni

max E E ((w*p)'9 - z',)

(4.5),=1 g= (

(4.5), and (4.6).

(CSSPIP) CSSP with Lower Bound IP MDVRPP Solution

subject to Equations (4.4),

fc fl

max E ( ((w*p)'"9 - z1,)
1=1 g=1

(4.5), and (4.6).

Let K*, Kp, and K*p be optimal solutions for CSSPOpt, CSSPLP, and CSSPIP,

respectively. Note that K* is the actual optimum for the GLRPP (K* = J*). We

show that KZp and K*p provide an upper bound and a lower bound of J*, respectively.

Theorem 1 (Lower and Upper Bounds of the GLRPP Solution Using The Three-

-Phase Method). KI p is a lower bound of J*, and KLp is an upper bound of J*. That
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is, the following relations are satisfied:

K* < J* < K*p.

nc ni

1. K*P = E I
1=1 g=1

nc nj

< E3> ((w* )' - (z*)1'9) - K* = J*.
I=1 g=1

The first inequality holds because (w*p)l', < (w*)l'9, and the second inequality holds

because (z*)l', is an optimal solution of CSSPOpt.

nc n nc n

2. K*p = - ((w*p) g - (z*p)'') > ((w*y)'' - (z*)''g)
1=1 g=1 1=1 g=1

nc ni

> 1 w* 'g - (z* 1,9) = K* = J*.

1=1 g=1

The first inequality holds because (z4p)l'g is an optimal solution of CSSPLP, and the

second inequality holds because (w*p)l'9 > (w*)'9. ED

Finally, an optimality gap for the overall GLRPP using the three-phase method

is expressed as follows:

(4.15)

4.5 Sample Problem Using the Three-Phase Method

In this section, the sample problem presented in Section 2.7 is solved using the three-

phase method.
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4.5.1 Divide

First we create proximity sets for the sample problem. Figure 4-6 graphically exhibits

the proximity sets generated for the sample problem. Then a clustering procedure

using the algorithm explained in the Table 4.1 is carried out. Iterations for making

clusters out of the proximity sets are presented in Table 4.2.

Figure 4-7 shows a clustering result for the sample problem and Table 4.3 presents

the final clusters and cluster-derived sets. After three iterations no change in the

(temporary) clusters happens and the procedure terminates.

102
14 P 2

I 5

I P3

U : a base

-. N~ P4

k102

NP 5

E42

@21

S a site

a proximity set corresponding to a base

Figure 4-6: Proximity Sets for the Sample Problem

4.5.2 Conquer

In the Conquer Phase, the solution of the MDVRPP for every cluster / cluster strategy

is obtained. As Table 4.3 presents, three clusters for the sample problem have been

created as a result of the Divide Phase. Cluster 1 has three bases and the total

number of strategies for the cluster equals (1 + ns)1B1 = (1 + 2)3 = 27. Similarly,

cluster 2 has 9 cluster strategies and Cluster 3 has 3. Figure 4-8 shows all the cluster

strategies for all clusters. The objective of the Conquer Phase is to fill in two columns
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Table 4.2: Clustering Iteration for Figure 4-6

Initial C1*- P
C 2 -P 2

CG <- P3
C 4 -P 4

C5 *-P 5
C6 -P 6

Iteration I C1 +- C1 U C2 = Pi U P2

C2 C = P3

C3G- C4 = P4

C4 +- 05 = P5
C5 06 P6

Iteration 2 C1 - C1  C2= P1 U P2 U P3

C2 G C- P4

03 - C4 = P5
C4 C5 = P6

Iteration 3 C1 = P U P2 U P3 (unchanged)
C2 -C 2 UC=P 4 UP 5

0 +-- C4 = P6

Final C1 =PI U P2 U P3
{1, 2, 3,7,8, 9, 10, 11, 12, 13, 14, 15}

C2 = P4 U P5
= {4, 5,16, 17, 18, 19, 20, 21, 22}

C3 P6 = {6, 23, 24, 25}

labeled as V*p and V7*, which represent the lower bound and the upper bound of the

maximum profit sum, respectively, for the MDVRPP defined by each cluster strategy

corresponding to each row.

The MDVRPPs corresponding to all the rows in Figure 4-8 are solved using the

procedure introduced in Section 4.3. The solutions are summarized in Figure 4-9. For

this sample problem the V7* column is exactly the same as Vt* column, which means

that the solutions for all MDVRPPs are true optima. This observation indicates

that the final solution of the GLRPP, which is the result of the Synthesize Phase, is

guaranteed to be a true optimum.
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a proximity set corresponding to a base

a cluster

Figure 4-7: Clustering Result for Sample Problem

Table 4.3: Clustering-derived Sets in Figure 4-7

Proximity Sets P = {7, 8, 10, 11}
P2 = {11, 12, 13}
P3 = {9, 10,14, 15}
P4 = {16, 17, 18, 20}
P5 = {19, 20, 21, 22}
P6 = {23, 24, 25}

Clusters C1 = P1 U P 2 U P3

C2 = P4 U P
C3 = P6

Cluster Base Sets B1 = {1,2,3}
B 2 = {4,5}
B 3 = {6}

Cluster Site Sets E1 = {7, 8,9,10,11, 12, 13, 14, 15}
E2= {16, 17,18,19, 20, 21, 22}
E3 = {23, 24, 25}
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Figure 4-8: Clusters and Cluster Strategies for the Sample Problem (Divide Phase)

Cluster Cluster Mission Strategy VIP* VLP* Cost
Strat. BasE 1.ase 2 Base 3 Base 4 Base 5 Base 6

0 0 0 0 0 0.00 0

1 1 0 0 8 8.00 5
2 2 0 0 2 2.00 3

3 0 1 0 4 4.00 5

4 0 2 0 0 0.00 3

5 0 0 1 6 6.00 5

6 0 0 2 4 4.00 3
7 1 1 0 12 12.00 10

8 1 2 0 8 8.00 8

9 2 1 0 6 6.00 8

10 2 2 0 2 2.00 6

11 0 1 1 10 10.00 10

#1 12 0 1 2 8 8.00 8
Bases: 13 0 2 1 6 6.00 8
1,2,3 14 0 2 2 4 4.00 6

15 1 0 1 11 11.00 10

16 1 0 2 9 9.00 8
17 2 0 1 8 8.00 8

18 2 0 2 6 6.00 6

19 1 1 1 15 15.00 15

20 1 1 2 13 13.00 13

21 1 2 1 11 11.00 13

22 2 1 1 12 12.00 13

23 1 2 2 9 9.00 11

24 2 1 2 10 10.00 11

25 2 2 1 8 8.00 11

26 2 2 2 6 6.00 9

0 0 0 0 0.00 0

1 1 0 7 7.00 5

2 2 0 6 6.00 3

#2 3 0 1 7 7.00 5
Bases: 4 0 2 4 4.00 3

4,5 5 1 1 13 13.00 10

6 1 2 11 11.00 8

7 2 1 13 13.00 8

8 2 2 10 10.00 6

0 0 0 0.00 0

Base: 6 I 1 4 4.00 5

2 2 1 1.00 3

Figure 4-9: Result Summary of the Conquer Phase for the Sample Problem
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cluster Cluster Mission Strategy Cost
Strat. Sase lBase 2 Base 3 Base 4 ase 5 Base 6

0 0 0 0 0

1 1 0 0 5

2 2 0 0 3

3 0 1 0 5

4 0 2 0 3

5 0 0 1 5

6 0 0 2 3

7 1 1 0 10

8 1 2 0 8

9 2 1 0 8

10 2 2 0 6

11 0 1 1 10

#1 12 0 1 2 8
Bases: 13 0 2 1 8
1,2,3 14 0 2 2 6

15 1 0 1 10
16 1 0 2 8
17 2 0 1 6

1B 2 0 2 Should be 6
1 12 filled in

19 1 1 1 during 15

20 1 1 2 Conquer Phase 13

21 1 2 1 13

22 2 1 1 13

23 1 2 2 11
24 2 1 2 11

25 2 2 1 11

26 2 2 2 9
0 0 0 0

1 1 0 5

2 2 0 3

#2 3 0 1 5
Bases: 4 0 2 3

4,5 5 1 1 10
6 1 28

7 2 1
8 2 2 6

0 0 0
#3 1 5

Base; 6 2 1 5
1 2 2H 3



4.5.3 Synthesize

In the Synthesize Phase, two IP problems (CSSPIP and CSSPLP) are created using

the two columns (V*,, and VLP) in Figure 4-9 and solved. The two columns from

this sample problem are identical, and the lower bound of the optimal profit sum

(K*p) equals the upper bound of the optimal profit sum (KZp). And the profit sum

is also identical to the true optimum of profit sum (J*) of the overall GLRPP - the

optimality gap for this sample problem is 0 [%]. Figure 4-10 presents the resultant

solution for the sample problem using the three-phase method. The profit sum of the

sample problem using three-phase method is the same as that using the single-phase

method (25 [-]). However actual routes to obtain the profits are different, which we

can notice by comparing Figure 3-3 and Figure 4-104.

0: Base used with strategyl
N: Base used with strategy2
El: Unused Base

Exploration Site

S9

14 1

- M5 -

-.. .............

[ S12

ID13
-. . . . -.

- strategyl, tactic1
strategyl, tactic2
strategy2, tactic1

Os16

A.1

1 22 ............

'S21

At-

s 23
- .....

-200 0 200 400 600 800 1000 1200
X [km]

Figure 4-10: Sample Problem Solution Using a Three-Phase Method

Comparison of the two solution methods using numerical experiments is further

addressed in the following section.

4We can know that there exist multiple optimal solutions in this sample problem.
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4.6 Numerical Experiments

Numerical experiments for solving GLRPP instances using two solution methods

introduced in this thesis are carried out. Two metrics representing the performance of

the solution methods are obtained and compared. The first metric is the computation

time (Tai) representing the efficiency of a solution method and the second metric is

the optimality gap (Gpt )5 representing the effectiveness of a solution method.

First, a brief discussion on generating GLRPP instances used in the numerical

experiments is provided. Then, analysis results for the two performance metrics

are presented. Estimators of the metrics for the solution methods are designed and

parameters for the estimators are identified. Finally, discussion on the performance

comparison of the two solution methods is presented, which can help selection of an

appropriate solution method for a GLRPP instance.

4.6.1 GLRPP Instance Generation and Basic Statistics for

Numerical Experiments

A GLRPP instance can be defined using information on potential base and site lo-

cations, mission strategies (including collective constraints and routing tactics), and

campaign budget. Potential bases and sites are randomly generated inside a circular

region with a uniform spatial distribution. The number of bases (nB) and sites (nE)

are also randomly selected with a uniform distribution. Mission strategies and cor-

responding routing tactics / collective constraints for the sample problem in Table

2.3 are modified and used for the numerical experiments. We introduce a parameter

referred to as the budget tightness (fB), which is defined as the ratio of the campaign

budget (M) to the maximum possible budget (nB -maxsES Cs). Hence the campaign

5For fair comparison of the optimality gaps from the two solution methods, the same basis should
be used for optimality gap calculation. Thus, a proxy of true optimal profit sum (J*r) is introduced as

J* =max(J*P, K*). Using the value, an optimality gap for the single-phase method is calculated

as G50pt = " - 100 [%] and an optimality gap for the three-phase method is calculated as

pr
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Table 4.4: Characteristics of Instances

Potential Bases and Sites
Radius of an Expl. Region (R)
Number of Potential Bases (nrB)
Number of Potential Sites (nE)

Aerial Distribution of Locations

Mission Strategies (S)

Routing Tactics (Ts)

Budget Constraint
Budget (M)
Budget Tightness Parameter (fN)

Size of Experiments
No. of Instances (M)

3000 [km]
~ U(80, 180)[-
~ U(1000, 2000) [-3
Uniform over all region

Same as Table 2.3 except
11 = 12 = 150 [hr].

Same as Table 2.3 except

lr1 = 400 [kg],
11 2 = 12,1 = 300 [kg].

nB -maxSEs C5 [-
2u/25 (u ~ U(0, 5))

100 [-]

budget for each problem instance is expressed as follows:

M = fB -nB - max C'.
sES

(4.16)

Table 4.4 summarizes the characteristics of the random GLRPP instances gener-

ated for the numerical experiments. 6 Note that actual ranges of nB and nE for the

GLRPP instances are usually smaller than the ranges presented in Table 4.4 because

some sites are not reachable from any potential base and some potential bases have

no site in their proximity sets, in which case the bases/sites are deleted from the

problem instance.

All experiments are carried out on a PC Pentium-IV 3.8 GHz with 4GB of RAM

under Windows XP. Both solution methods are implemented in C and compiled with

the Microsoft Visual C++ 6.0 compiler. The CPLEX 10.0 callable library is used to

solve the LPs and IPs that are encountered during the solution procedure.

Basic statistics for the numerical experiments are summarized in Table 4.5. The

6 U(a, b) represents a uniform distribution between a and b.

87

for Numerical Experiments



Table 4.5: Basic Statistics for the Numerical Experiment Results

Computation Time (Tcai [sec])

mean std min max
Single-Phase 84 24 3 2417
Three-Phase 411 1562 4 15192

Optimality Gap (Got [%])
mean std

Single-Phase 10.8 9.30
Three-Phase 0.40 0.53

min max
0.36 50.00
0.00 3.57

mean values of the two performance metrics indicate that the single-phase method

is generally better in terms of the computation time and the three-phase method is

generally better in terms of the optimality gap.

4.6.2 Estimating Performance Metrics

Estimators for the computation time and the optimality gap using the two solution

methods are proposed and parameters for the estimators are identified using the

least-squares method [60]. Estimators for the computation time are first introduced.

Computation Time

For estimation of the single-phase method computation time, two parameters repre-

senting the size of the instance (nB, nE) and a parameter representing the geometric

complexity of the instance (nc,max) are used. nB is the number of potential bases and

nE is the number of potential sites. To define nc,ma, we first define the geometric

complexity of base b (nc,b) as follows:

nc,b =+ (4.17)
iEPb, i#b

where Pb is a proximity set for base b, l, is the consumption limit of the constraining

resource for the single-route constraint, and hi is the resource consumption of the
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route represented by the round trip between b and i (co + (cbi + Cib) - C + ti CT).7

As resource consumption for the route between b and i gets smaller, the problem

complexity related to the base increases because it is possible to visit more sites with

limited resource (hi in the denominator). Also when more sites are reachable from

the base, the complexity increases (ir/hi values summed up for all i's in Pb). Then we

define the geometric complexity parameter for a GLRPP instance (nc,max) as follows:

nc,max = max nc,b. (4.18)
bEB

An estimator for the computation time of instance m (TM), using the number of

potential bases (nm), the number of sites (np), and the complexity parameter (n' max)

is proposed as follows:

TM= K3 . (as)- (13) - (ys)f , (4.19)

where tm' is the estimator of T.' and K, a, /3, -, are estimator parameters to be

identified. We take the log of both sides of equation (4.19) and express log1 o Ts as

follows:

log10 TS log1 0  + CSm (4.20)

= log1 o Ks + (log1 o as)n' + (log1 o f3)ni' + (logo -ys)nc +, E',

where s is the estimation residual which is the difference between log1 o TS, and

log10 oT. The Error Square Sum (ESS) is defined as follows:

M
ESS = Z(s) 2 . (4.21)

M=1

Parameters Ks, a, 3s, and -, are identified so that the ESS is minimized. Identified

parameters and R 2 value of the estimator for the single-phase method computation

7Generally there are multiple constraining resource types for the single-route constraints. In this
case we take the most constraining resource type to calculate the geometric complexity index.
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Table 4.6: Estimation of the Computation Time using the Single-Phase Method

Formula 7 s = Ks _ (aZ)B . (/ 3 )nE .(.)fcmax

Parameters Ks 0.7418
as 1.0072

1.0029
1.0144

Goodness of Fit R 2 0.7529

time are presented in Table 4.6.8

Actual vs. Fitted Calc. Time: the Single-Phase Method

3.5 H

3

0)

)

2.5F

0.5 1 1.5 2 2.5 3
Estimated logl 0 (Tcal) [log 0 (sec)]

3.5 4 4.5 5

Figure 4-11: Single-Phase Method Computation Time - Actual vs. Fitted

The total time required to solve a GLRPP instance using the three-phase method

is determined by the total number of the MDVRPPs that should be solved for the

instance and the time required to solve each MDVRPP. The total number of the

MDVRPPs that should be solved for the instance is E,_1(1 +ns)" where niBi is the

number of bases in cluster 1. nB,l for every cluster contributes to the total number, but
8R 2 value represents the fraction of the variation that can be explained by the fitting to the total

variance of true values.
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the number is dominated by the maximum value of nB,l out of all clusters. Therefore,

the maximum number of bases in a cluster (nB,max) is used as a parameter for the

estimator. The time required to solve a single MDVRPP is dependent on the size of

each cluster and geometric complexity. We take the maximum value for nE, Out Of

all clusters and use it as the second parameter (nE,max). Mathematical expressions

for nB,max and nE,max are presented as follows:

nBmax =maBx rB, nE,max = max nE- (4.22)
1<1<nC 1<<C

Also we use nc,max as the third parameter for the three-phase method computation

time estimator representing the geometric complexity of the instance.

An estimator of the computation time for solving instance m using the three-phase

method (Tm) is presented as follows:

T= Kt - (at)rx. (!t)"max (y)f xm . (4.23)

nm is the maximum number of bases in a cluster and nm is the maximum

number of sites in a cluster for instance m. nm is the geometric complexity of

instance m. And Kt, at, 13t, and -yt are parameters for the estimator. The parameters

are identified using the least-squares method. The R 2 value representing the goodness

of the fit is 0.83. Figure 4-12 shows a plot for (actual three-phase method computation

time) vs. (estimated three-phase method calculation time) using Equation (4.23).

Table 4.7 summarizes the identified parameters for the estimator of the three-phase

method computation time.

Now, we find a relation among the GLRPP instance characteristics which makes

ts and Tt identical. The relation is expressed as a boundary in the instance charac-

teristics space. For problem instances whose characteristics are located on one side

of the boundary, the single-phase method is advantageous, and for the instances with

characteristics on the other side, the three-phase method is advantageous. We refer

to this boundary as the Performance Advantage Boundary.

Three different attributes of a problem instance affect computation time of the
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Actual vs. Fitted Calc. Time: the Three-Phase Method
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Figure 4-12: Three-Phase Method Computation Time - Actual vs. Fitted

instance: (1) overall problem size (nB and nE), (2) clustering complexity (nBmax and

nE,max), and (3) geometric complexity (nc,max). We first express the boundary in

the plane whose axes represent nc,max and nB,max (expressed as a function of cluster

complexity and geometric complexity), then we show how the performance boundary

shifts as the overall problem size changes.

For simplicity we assume that the ratio of nB,max to nB equals the ratio of nE,max

to nE. Then nE,max can be expressed as follows:

nE,max nE - nB,max- (4.24)

Equation (4.23) can be re-written using this relation as follows:

logio Tt = log1 o Kt + (logo at + (nE/nB) log1 o t ) nBmax + 10 91o 71 ' nc,max. (4.25)

The boundary can be obtained by letting logo tt logio t'. Given nB and nE, we
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Table 4.7: Estimation of the Computation Time using the Three-Phase Method

Formula Tt = Kt . (at)nBmax . (pt)nE,max . (y)lc,max

Parameters Kt 0.0268
at 2.8441
13t 1.0312
'Yt 1.0091

Goodness of Fit R 2 0.8262

can derive the expression for the boundary in the nc,max-nB,max plane as follows:

C- nc,max + C2 -n,max + C3 = 0 (4.26)

where,

C1 =-(logi 10-Y - logi 1 yt),

C2 = logo at + (nE/nB) ' log 10 13t,

C3 = log1 o Kt - log1 o K, - log10 as - nB - log 10 s - nE.

Figure 4-13 shows the performance boundary (for calculation time) for the case of

nB= 50 and nE = 500. Problem instances whose characteristics are located in the

lower right part of the boundary can be solved more quickly using the single-phase

method, and instances with characteristics in the upper left part of the boundary

can be solve more quickly using the three-phase method. The single-phase method

is more advantageous for problem instances with higher clustering complexity and

lower geometric complexity. The clustering complexity increases the number of the

MDVRPPs that the three-phase method should solve, and the effect of the geometric

complexity on the computation time for the single-phase method is larger than that

for the three-phase method.

Equation (4.26) indicates that the performance boundary is also dependent on

the problem size (nB and nE). Figure 4-14 shows how the boundary moves as the

problem gets less and more complex. As the problem gets bigger (large nB and nE)
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Figure 4-13: Performance Boundary

the three-phase method becomes more and more advantageous and the boundary

shifts to the right.

Optimality Gap

An estimator for the optimality gap using the single-phase method is proposed con-

sidering an observation that the optimality gap for the single-phase method (G',t)

gets larger when the budget tightness factor (fB) gets smaller. Also, it is observed

that the change in G' is larger for small fB. Hence, estimator G' is proposed as

follows:

1
opt,m = Ko + K8 - fB,m + K5 fB, (4.27)OP 1 2fB,m

where fB,m is the budget tightness for instance m and KO, K, and K' are estimator

parameters. The parameters are identified using the least-squares method. The R 2

value for the fit is 0.76. Identified parameters are presented in Table 4.8. The same

estimator is used to estimate the optimality gap using the three-phase method, but
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Advantage boundary shift with respect to problem size increase
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Figure 4-14: Performance Boundary Shift with Problem Size Change

Table 4.8: Estimator for the Optimality Gap Using the Single-Phase Method

Formula 05 = Kos + K - fB+ K2

Parameters Ko 6.23
K -7.88
K1( 0.88

Goodness of Fit R 2 0.76

the R2 value for this fit was only 0.09. Other estimators do not give meaningful fitting

results, either.

Figure 4-15 shows the optimality gap for the single-phase method (GI t) and the

three-phase method (Gt t) plotted together. We can see the gaps for the three-phase

method are smaller than those for the single-phase method most of the time. This

indicates that the effectiveness of the solutions obtained from the three-phase method

is generally better. As fB decreases, or as the budget constraint gets tighter, G' gets

larger, that is the single-phase method provides the less effective solution. When fB

approaches 0, the gap increases very rapidly, which is why a 1/fB term is required for
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the estimator. When the fB value is close to 1, the

are close to those for the three-phase method. For

there are many more sites than the budget allows

those cases the three-phase method should be used

gaps for the single phase method

most space exploration problems

to visit and fB is very small. In

to avoid large optimality gaps.
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Figure 4-15: Optimality Gap, Single-Phase Method and Three Phase Method

4.6.3 Summary of Numerical Experiments

Numerical experiments for solving GLRPP instances using the single-phase method

and the three-phase method have been discussed in this section. Two performance

metrics are analyzed for both methods. The calculation time (Tai) indicates the

efficiency of each method and the optimality gap (Gpt) indicates the effectiveness of

each method. Analysis results for the two methods are used to identify the advantage

boundary which separates the instance characteristics space into two regions based

on the performance of the solution methods.

For the generated instances, the single-phase method is superior in terms of the
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Table 4.9: Performance of the two solution methods

Single-Phase Method Three-Phase Method

Calculation Advantageous for Advantageous for
Time (Tcai) instances with: instances with:

1. Smaller problem size 1. Larger problem size
2. Higher clustering complexity 2. Lower clustering complexity
3. Lower geometric complexity 3. Higher geometric complexity

Optimality Large for a tight budget Advantageous in general
Gap (Gpt) constraint

calculation time and the three-phase method is superior in terms of the optimality

gap, in general.

We proposed estimators for the computation time and optimality gap using two

solution methods. The estimator for the single-phase method computation time uses

problem size (nB, nE) and geometric complexity (nc,max). The three-phase method

computation time is estimated using clustering complexity (nB,ma, nE,max) and ge-

ometric complexity (nc,ma) as inputs. We found an expression for the advantage

boundary and visually illustrated the boundary. The three-phase method has an

advantage over the single-phase method when problem size is large, clustering com-

plexity is low, and geometric complexity is high.

For the optimality gap, performance of the three-phase method is generally better

than that of the single-phase method. The gap for the single-phase method gets larger

as the budget constraint gets tighter (small fB). A numerically significant estimator

for the three-phase method optimality gap could not be found, since it is generally

very small (i 1%).

Note that the estimator parameters presented in this section are only valid for the

instances whose characteristics lie within range of the GLRPP instances generated

for the experiments. However, the performance patterns for the two methods will

be valid for GLRPP instances with characteristics in different ranges. Table 4.9

summarizes the performance of the solution methods regarding the two metrics that

are considered in this thesis.
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4.7 Three-Phase Method Summary

The three-phase solution method for solving the GLRPP is presented in this chapter.

Each phase of the method (1) divides the problem into multiple sub-problems referred

to as the Multi-Depot Vehicle Routing Problem with Profits (MDVRPP), (2) solves

each subproblem using a procedure similar to the single-phase method presented in

Chapter 3, and (3) synthesizes the results of the second phase to obtain a near-optimal

solution and an upper bound / optimality gap for the whole GLRPP. The performance

analysis for the two solution methods in terms of two metrics - the computation time

and the optimality gap - is also carried out.
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Chapter 5

Space Application: Global Mars

Surface Exploration

5.1 Introduction

In this chapter, global Mars surface exploration is formulated as the Generalized

Location Routing Problem with Profits (GLRPP), and the problem is solved using

the three-phase method. Recent results for the Mars surface exploration vehicle study

are used to make the case up to date and realistic [42].

An orbiting depot technology and an in-situ resource utilization (ISRU) technol-

ogy are introduced as mission strategies. We demonstrate a methodology to evaluate

a technology by comparing the solutions of the GLRPP with and without the tech-

nology.

5.2 Global Mars Surface Exploration Campaign

Optimization

Consider an optimization problem for the global Mars surface exploration campaign.

We assume that potential landing locations and exploration sites on Mars surface are

pre-determined and given to the problem (B: potential bases, E: sites). We also
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assume the profit that can be obtained by exploring each site and the amount of time

required to obtain the profit are assigned to each site as real numbers (vi: profit, ti:

time).1

There are multiple exploration technology options (S: strategies). Characteristics

for each technology are constraints imposed on resource consumption for the overall

mission using the technology (collective constraints), methods to carry out explo-

ration on Mars surface (routing tactics), and the cost associated with the technology.

Each routing tactic to carry out exploration on Mars surface (k E T', s E S) is char-

acterized by constraints imposed on resource consumption for the route using the

tactic (single-route constraints) and the number of routes that can use the method

The objective of this Mars exploration problem is to find missions, bases and

technology choices for the missions, routes included in each mission, and routing

tactics for the routes to maximize the sum of profits obtained by exploring sites

subject to constraints on a single route, a mission, and the whole campaign.

5.3 Selection of Potential Bases and Exploration

Sites

We first assume that candidate bases and exploration sites have been externally deter-

mined. For previous surface exploration missions with very limited mobility, practi-

cally a landing location is not different from an exploration site. Any selected landing

location should be safe for descent and ascent and be scientifically interesting. The

location selection procedure for the Mars Exploration Rover (MER) mission, in con-

sideration of both landing system topology requirements and scientific interests, is

well summarized in papers written by Golombek et al. in 2003 and by Anderson et

al. in 2003 [39, 5]. The surface exploration system that is used for this case study has

a range of 500 [km]. This advanced capability enables agents to carry out exploration

1We refer to Chapter 2 for the detailed explanation on concepts such as campaign, mission, route,
strategy, tactic, budget constraint, collective constraint, and single-route constraint.
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far from the landing location, which makes it possible to select landing locations and

exploration sites separately.

We also assume that the profit value assigned to each site is externally determined

(e.g. by a committee of scientists and mission planners). Multiple stakeholder groups

are interested in Mars surface exploration. For a specific exploration site, different

stake-holder groups can show different degrees of interest. For the GLRPP, a profit

value for a site should be determined as a scalar number. It would be best if an

"agreement" on the profit value for the site could be obtained through discussion. In

a more realistic situation, it is very difficult to reach the agreement on the valuation

of visiting the site and group decision procedures such as the Delphi Method should

be used to determine the value [51].

5.4 Mission Strategies and Routing Tactics

Two mission strategies are considered for this case (S = {1, 2}). One is the standard

strategy (s = 1), and the other is the orbiting depot strategy (s = 2).

We first describe the standard strategy. There is one collective resource constraint

for total exploration time. To calculate the maximum exploration time for the mission

(1'), we assume that agents are staying on Mars' surface for 600 [days]. 150 [days]

of set-up time and 100 [days] of wrap-up time are assumed. Using an additional

assumption that a quarter of the working time is dedicated to exploration (fexp =

0.25), the consumption limit for the mission is 2100 [hr] (=l1). Table 5.1 exhibits the

procedure to calculate the l value for the standard strategy.

Now we calculate the resource consumption coefficients for the collective con-

straint. First we assume that no amount of time is required for starting/terminating

a route (dl = 0). The on-arc resource consumption coefficient (dl), and on-site re-

source consumption coefficient (dl) are determined by operational characteristics of

the surface exploration vehicle. An unpressurized Vehicle (UPV)/Camper concept

by Hong is used for this case study [42, 31]. Figure 5-1 and 5-2 show the conceptual

diagram of the camper and the UPV-camper assembly, respectively.
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Table 5.1: The Resource Consumption Limit for the Campaign in Terms of Time

Stay Time (Ttay) 600 [day]
Set-up Time (Tsetup) 150 [day]
Wrap-up Time (Twrapup) 100 [day]

Work Time (Twork) 350 [day]
Exploration Fraction (fexp) 0.25 [-]

Exploration Time (Texp) 87.5 [day]
Exp. Time Limit (li) 2100 [hr]

Table 5.2: Collective Constraint Characteristics (Standard Exploration Strategy)

Resource Type Exploration Time [hr]

Coefficients d' 0.0 [hr]

d 3/Vv = 0.2 [hr/km]
d'- 3.0 [hr/hr]

Constraint Ie 2100 [hr]

Figure 5-4 summarizes the reference scenario for planetary surface exploration

[42]. Based on this scenario, we assume that for every one-hour activity time there

is corresponding two-hour inactivity time, and the actual time consumption is the

triple of the activity time.

Assuming that the agents are driving with a speed of VV using the surface explo-

ration vehicle, the activity time spent per unit distance equals 1/Vv. Considering the

inactivity time, d' is set to be 3/Vv, and considering a vehicle speed of 15 [km/hr]

the coefficient is 0.2 [hr/km]. Using the same logic, d, is set to be 3 [hr/hr]. Ta-

ble 5.2 summarizes the characteristics of the collective constraint associated with the

standard exploration strategy.

For the standard strategy, there is only one routing tactic - the standard tactic. No

restriction for the number of routes using the standard tactic is imposed and n 11 is set

to oc. There is one single-route constraint for the standard tactic - fuel consumption.

We first calculate the consumption limit. The power source for this case study is a

NaBH4 /H 20 2 fuel cell [52, 53]. The energy density of this fuel cell is summarized in
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Table 5.3: Energy Density for NaBH4 /H 20 2 Fuel Cell

Ideal Energy Density (pI) 2580 [WH/kg]
Overall Efficiency (%p) 0.2653 [-]
Effective Energy Density (PE = rop 1 ) 684.5 [WH/kg]

Table 5.3 and the activity-based power requirement for Mars surface exploration is

presented in Table 5.4. We assume that 85 [%] of the power requirement is provided

by the fuel cell and the remaining 15 [%] is provided by the solar panel. Table 5.5

exhibits the total amount of fuel required to complete the exploration scenario. Using

the result, we conclude that fuel capacity of the surface exploration vehicle is 677 [kg]

(=m'), which is l,1 (single-route fuel consumption limit).

Then the consumption coefficients are calculated. The activity-based fuel con-

sumption rates are presented in Table 5.6. We assume that there is no starting/terminating

fuel consumption and c '1 is set to be 0 [kg]. For every active hour, the vehicle stays

inactive for two hours. c j', which is the fuel consumption per unit distance, is ex-

103

NNW _



Vertical radiator
with shades

4

High-gain antenna

Co

Suspension, motor& Ladder, Door
harmonic drive handrails

Crew compartment I
chassis interface

quipment

isumables

Chassis

Camper I UPV
interface

7 Fender3 -00

Figure 5-2: Surface Exploration Vehicle - Camper

Figure 5-3: Surface Exploration Vehicle - UPV/Camper Assembly

pressed as (rnD/Vv + 2rn1/Vv). Also c' 1 , which is the fuel consumption per unit

active time on site, can be expressed as ((rhs + 2rhE)/3 + 2rhI). Table 5.7 summarizes

the single-route constraint characteristics.

Finally cost associated with the strategy is calculated. It is very difficult to obtain

the cost of a mission as a monetary value. Based on the assumption that it costs more

to deliver a larger amount of mass to the planetary surface, the "Mass Delivered on

Planetary Surface [MT]" is used as a proxy metric for the cost.

Zubrin's Mars Direct mission plan is modified and used to calculate the mass

delivered to the surface of Mars [68]. The Mars Direct mission plan is composed
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Day 1 I, 8(hr] D, 8[hr] I, 8[hr)

Day 2 I, 8[hr] D, 8[hr] I, 8[hr]

Day 3 I, 8[hr) E, 6[hr] S, 2[hr] I, 8[hrl

Day 4 I, 8[hr] E, 6[hrL S, 2[hr] I, 8[hr
Day 5 I, 8[hr] E, 6[hr S, 2[hr I, 8[hr]

Day 6 I, 8[hr] D, 8[hr] I, 8[hr

Day 7 I, 8[hr] D, 8[hr) I, 8[hr

I Inactivity

D Driving

E Exploration

S Science

Figure 5-4: Reference Scenario for a 7-day Excursion

Table 5.4: Power Requirement for Mars Surface Exploration Using Camper/UPV

Activity Camper UPV Total

[W] [W] [W]

Driving 10718 1108 11826
Science 1993 0 1993
Inactivity 1418 0 1418
Exploration 547 1108 1655

of two flights. The first flight delivers the Earth Return Vehicle (ERV) and the

propellant production facility used to generate propellant for returning to the Earth.

The second flight delivers the habitat, the crew, and the rovers. We do not change

the contents of the first flight. The mass of rovers included in the second flight is

replaced by the mass of the camper-UPV surface mobility system proposed by Hong

[42]. Zubrin assumed that the rovers can use the propellant generated for the ERV

(CH 4 /0 2 ), which is not applicable for this case study. Thus 0.5 [MT] of a fuel cell

regeneration system, which is the same amount of mass as the propellant production

plant in Zubrin's original mission plan, is added to the second flight. The calculated

total mass delivered to Mars surface is 54 [MT], which C1. Table 5.8 summarizes

the mass allocation for each flight for this case study and the total mass delivered to

Mars' surface.

Now the orbiting depot strategy is introduced. An orbiting depot is a cluster of

supply units circling in low Mars orbit. Each supply unit in the depot is capable of

landing at a predetermined location on Mars' surface. Exploring agents can reach the
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Table 5.5: Reference Exploration Route and Corresponding Fuel Budget

Activity Time FC Power Energy Fuel Mass
[hr] [W] [Wh] [kg]

Driving 32 9461 302743 442
Science 8 1594 9566 14
Inactivity 112 1134 127048 186
Exploration 16 1324 23830 35

Total 168 463188 677

Table 5.6: Fuel Mass Rate for Mars Surface Exploration Using Camper/UPV

Activity Tot. Power Fuel Cell Power Fuel Mass Rate
[W] [W] [kg/hr]

Driving 11826 10052 14.69 (ThD)
Science 1993 1694 2.47 (rhs)
Inactivity 1418 1205 1.76 (rhi)
Exploration 1655 1407 2.06 (ThE)

landed supply unit and increase the exploration range using the additional fuel and

consumables included in the supply unit.

The collective constraint for the orbiting depot strategy is the same as that of the

standard strategy. So, coefficients d , d2, and d2 are identical to d', d', and d', and

resource consumption limit 12 equals lV.

The orbiting depot strategy has two routing tactics. The first routing tactic is

the standard routing used for the standard strategy. The second routing tactic is the

depot-assisted tactic. Both tactics have one single-route constraint imposed on the

total amount of fuel consumption for each route.

We assume that the surface exploration vehicle used for the standard strategy is

also used for the orbiting depot strategy. Thus resource consumption coefficients for

the two tactics of the orbiting depot strategy are identical to those for the standard

strategy (c 2,1 =c, 2 =c, - , c2,1 =c 2 2=c , c 'l =c, 2 =cl"). The consumption limit for

the single-route constraint and the maximum number of routes for tactic 1 of the

orbiting depot strategy are also identical to those for the standard strategy (lr rgt
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Table 5.7: Single Route Constraint Characteristics (Standard Tactic)

Constraining Resource Fuel

Coefficients cf 1
C1,1

Cd
C1,1

Limit

Consumption

0.0
ThD/VV + 2I/Vv = 1.14

(rus + 3E)/4 + 2rhi = 5.68

677

Table 5.8: Mass Delivered on Mars Surface (Standard Strategy)

Flight 1

Contents ERV,
ISRU Facility

Mass Delivered 28 [MT]

Flight 2

Habitat, Crew,
Surf. Exp. Vehicle

26 [MT]

and n2 , 1=n1 ).

We present the details of the Mars orbiting depot in the next section and identify

the cost associated with the orbiting depot strategy and the characteristics of the

depot-assisted routing tactic.

5.5 Design of the Mars Orbiting Depot

5.5.1 Concept of the Orbiting Depot

An orbiting depot is a cluster of supply units deployed to a Martian orbit. Each pre-

packaged supply unit contains supply items (propellant and food) that can extend

the Mars surface exploration range.

A conceptual diagram of the orbiting depot is presented in Figure 5-5. Without

the support of the orbiting depot, only the standard routing tactic is available. A

vehicle starts exploration from a base and returns to the base before it runs out of

fuel or consumables (food, water, and oxygen). In this case the amount of fuel and

consumables that can be used during a single route is determined by the capacity of

the surface exploration vehicle. Now suppose we have an orbiting depot in Martian
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Figure 5-5: Conceptual Diagram for the Orbiting Depot and Its Functionality

orbit and it is possible to command the depot to drop a supply unit filled with fuel and

consumables. If the supply unit lands in such a location that the surface exploration

vehicle can get the unit before it runs out of fuel or consumables, the vehicle can then

travel from the supply unit's landing location for almost the same distance as it has

already gone through. In effect, the additional supply from the orbiting depot almost

doubles the capability of the surface exploration vehicle. This section deals with the

design of the Mars orbiting depot. Discussions on orbit selection, the single supply

unit design, and the orbiting depot assembly design are presented in the following

subsections.
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5.5.2 Orbit Selection

As the first step of the orbiting depot design, we select relevant elements of the orbit in

which the depot is deployed. We assume that the orbit is circular and the eccentricity

(e) of the orbit is 0. We also assume that the inclination of the orbit is 90 degree so

that the supply unit can access the full latitude range.

Then we determine the radius of the orbit. If the orbit altitude is too low, large

deceleration by the atmospheric drag increases the amount of propellant required to

maintain the orbit. It is known that the atmospheric density on the surface of Mars is

less than 1/100 of the sea-level atmospheric density of the Earth, which is equivalent

to the density at about 30 [km] altitude above the Earth. Keating et al. predicted,

based on Mars Global Surveyor experimental data, that Mars atmospheric density at

the altitude of 160 [km] ranges between 1.0 - 10-' 0 [kg/km 3] ~ 0.45 - 10-' 0 [kg/km 3]

[32]. This level of atmospheric density is small enough for orbit maintenance, and if

the radius is larger than this value the atmospheric drag is not problematic. Thus we

require that the altitude of the orbit should be larger than 160 [km].

We consider one more thing for selection of the orbit radius. For each orbit, the

ground track of the depot sweeps the full latitude and longitude, but the ground track

may not exactly pass over the point in which we are interested. To access a specific

target point on the surface, the orbiting depot waits until its ground track is closest

to the target point and releases the supply at the right time with proper initial cross

track velocity. The release time controls the along-track landing position and the

initial cross-track velocity controls the cross-track landing position.

The worst case cross-track position error takes place at the equator. It is known

that the shift in the crossover longitude value of the ground track at the equator can

be expressed as follows [65]:

AO = Torb/Tsol -360 [deg], (5.1)

where Torb is the orbital period, T,01 is one Mars day, and A0 is the longitude shift
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Table 5.9: Orbit Period and Worst Case Cross Track Distance

k Torb Rorb horb A0 Dcrs,eq

[-] [sec] [km] [km] [deg] [km]

3 14796 6198 2788 60 893
4 11097 5116 1706 45 670
5 8878 4409 999 36 536
6 7398 3904 494 30 446
7 6341 3523 113 26 383

for consecutive ground tracks. The worst case error is expressed as follows:

Dcrs,eq =0.5 - RMars - AO - (,7r/180), (5.2)

Actually we have two chances per day - once ascending from south to north, once

descending from north to south. If the descending ground track crosses exactly at the

center of the two consecutive ascending ground track, we can reduce the cross track

distance as follows:

Dcrs,eq =0.25. RMars - A# (7r/180). (5.3)

We can achieve this goal by selecting an orbit that has a period of the following form:

(5.4)

Table 5.9 shows the family of orbits whose periods satisfy Equation (5.4). We choose

the orbit with k value of 6 so that its orbital altitude is higher than 160 [km]. In

this case the radius of the orbit is 3904 [km] and the altitude of the orbit is 494 [km].

Other orbit elements such as the longitude of node (Q) or the argument of pericenter

(w) are irrelevant to the operation of the orbiting depot and are not discussed in this

thesis.
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Table 5.10: Human Item Consumption Rates for the Reference Exploration Scenario

Item

Food
Water
Oxygen
EVA Water

Density

500
998

998

Unit

[kg/n 3 ]
[kg/rn3 ]

[kg/m 3 ]

Rate

2
5

0.63
5

Unit

[kg/day/person]
[kg/day/person]
[kg/day/person]

[kg/EVA day/person]

Table 5.11: Human Item Mass Calculation for the Reference Exploration Scenario

Item Rate Unit Person Time Mass
[day] [kg]

Food 2 [kg/day/person] 2 7 28
Water 5 [kg/day/person] 2 7 70
Oxygen 0.63 [kg/day/person] 2 7 9
EVA Water 5 [kg/EVA day/person] 2 1 10

Total 117

5.5.3 Individual Supply Unit Design

An individual supply unit is designed so that the unit can double the exploration

range. Table 5.10 and 5.11 present the amount of food, water, and oxygen required

for the reference scenario shown in Figure 5-4. Mass and volume of the supply unit

core are presented in Table 5.12.

The unit should be designed so that the contents can be protected from the decel-

eration and heating during entry. We select the entry vehicle of the Mars Exploration

Rover (MER) mission as the reference [44]. It is reported that the descent velocity

of the MER entry vehicle is 440 [m/sec] at the altitude of 9.1 [km], where a super-

sonic parachute is deployed. Our objective is to design a "lander" which satisfies the

parachute deployment condition. Governing equations for the entry vehicle are given

as follows:

v = -(p/Jr13 ) - r - (aD/IvI)v, (5.5)

(5.6)i = v
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Table 5.12: Core Contents for the Single

Mass
[kg]

Density
[kg/m 3 ]

Volume

[m3]

Food 28 500 0.01
Water 80 998 0.14
Oxygen 9
Fuel 677 1313 0.52

Food Container
Water Container
Oxygen Container
Fuel Container

Total

3
8
2

135

942

0.01
0.15
0.05
0.65

0.87

where

aD = (1/2) 2 ,D) (5.7)
M/(S- CD)'

p = f (h) = f (Irl - rM). (5.8)

We can find three parameters that affect the descent trajectory in these equations:

initial velocity, initial radius, and the m/(S - CD) value. The m/(S - CD) value, often

expressed as 0, is referred to as the "ballistic coefficient." 13 can be interpreted as the

relative magnitude of the inertial force compared to the drag. An entry body with

low / is easily decelerated by the atmospheric drag and has smaller terminal velocity

[67, 54].

The ballistic coefficient for the MER entry vehicle (I3MER) is calculated in Table

5.13. The MER entry vehicle entered Martian atmosphere directly from the inter-

planetary trajectory and the initial condition of the entry vehicle is more severe than

that of our individual supply unit. If we can design the supply unit assembly so that

the / value of the assembly is smaller than that of the MER entry vehicle, we can

ensure that the parachute deployment condition is met.

We start the design with an assumption that the mass of the whole supply unit

assembly is 2,500 [kg]. The lander mass of the MER entry vehicle was 190 [%] of its

core content (rover). Considering that the entry condition of our supply unit is less
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Table 5.13: Ballistic Coefficient Calculation for the MER Entry Vehicle

Mass Calculation (m)
Rover 185
Lander 348
Backshell / Parachute 209
Heat Shield 78
Propellant 50

Total 870 [kg]

Reference Area (S) 4.15 [Im 2]

Drag Coefficient (CD, Assumed) 1.0 [-
Ballistic Coefficient (OMER) 209 [kg/r 2]

severe and the core contents are not high-tech instruments like those for the MER,

we reduce the ratio from 190 [%] to 85 [%]. The mass allocation results are presented

in Table 5.14.

Using the assumption of the total mass of the supply unit and the mass allocation

results, we can calculate the propellant mass as 230 [kg]. This amount of propellant

should be able to provide sufficient AV required to carry out cross-track maneuvers.

Assuming that the Ip, value of the engine for the unit is 350 [sec], the available

AV is (go - Ip - In 0) = 330 [m/sec]. Considering 100 [m/sec] of AV is requiredtm f

for de-orbiting and additional 230 [m/sec] of AV can be used for deceleration and

targeting of the entry body, the amount of fuel is reasonable. This completes the

mass allocation for the supply unit assembly as shown in Table 5.14.

We assume that the drag coefficient of the entry body is 1 [-]. To achieve the target

ballistic coefficient value, the surface area of the entry body should be 12 [iM 2]. For

the circular cross section of the body, we can conclude that the maximum diameter of

the entry surface is 3.9 [m]. We set the outer volume of the assembly as three times

the core volume and design the body as a tapered shape whose minimum diameter

equals a quarter of the maximum diameter. Figure 5-6 shows the shape of the supply

unit.
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Figure 5-6: Shape of the Supply Unit
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Table 5.14: Design of an Entry Body for a Single Supply Unit

Characteristics Design Value Note

Mass Allocation
Core Contents 942 [kg]
Outer Structure 1041 [kg] Lander + Heat Shield + Backshell
Parachute 287 [kg]
Propellant 230 [kg] Available AV = 330 [m/sec]
Total Mass 2500 [kg]

Dimension
Max Diameter 3.9 [m]
Min Diameter 1.0 [m]
Height 0.5 [m]

Ballistic Coeff. 209 [kg/M 2]

5.5.4 Characteristics of the Orbiting Depot Strategy

We assume that four individual supply units support one mission using the orbiting

depot strategy (n2 ,2 = 4). The amount of fuel and consumables contained in an

individual supply unit equals the capacity of the surface exploration vehicle. We

consider 10 [%] margin that agents may need to travel more due to the landing

position error of the individual supply unit, and set the resource limit for the single-

route constraint as 1.9 times the surface vehicle fuel capacity (l22 = 1.9 -677 = 1286

[kg]). Finally the cost of the orbiting depot strategy is expressed as C2 = (Cl + 4.2.5)

[MT] = 64 [MT]. Strategies and tactics used in the Mars exploration case study are

summarized in Table 5.15.
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Table 5.15: Strategies and Corresponding Tactics for the Mars Exploration Case

Standard Orbiting Depot
Strategy Strategy

Collective Constraint
Resource Exploration time Exploration time
Coefficients d' = 0 [hr] d = 0 [hr]

d' = 0.2 [hr/km] d = 0.2 [hr/km]
d= 3 [hr/hr] d = 3 [hr/hr]

Limit 1 2100 [hr] 1= 2100 [hr]

Routing Tactics

Tactic I Standard Standard
Single-Route Constraint

Resource Fuel Fuel
Coefficients c41 = 0 [kg] c2 1 = 0 [kg]

c' = 1.14 [kg/km] cd = 1.14 [kg/km]
c" = 5.68 [kg/hr] c1 = 5.68 [kg/hr]

Limit 11,1 = 677 [kg] l,1 = 677 [kg ]
Max. Number of Routes n' 1 = oc [--] 2 ,1

Tactic II Depot-Assisted
Single-Route Constraint

Resource Fuel [kg]
Coefficients c ,2 =0 [kg]

c 2 = 1.14 [kg/km]
c ,2= 5.68 [kg/hr]

Limit 12,2 = 1286 [kg]
Max. Number of Routes n2,2 4

Cost C1 = 54 [MT] C2 = 64 [MT]
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Table 5.16: GLRPP Instance Generation for Mars Surface Exploration Case Study

Potential Bases and Sites
Region on Mars Surface
Number of Potential Bases (nrB)

Number of Potential Sites (nE)

Aerial Distribution of Locations

Mission Strategies (S)

Routing Tactics (TS)

Budget Constraint
Budget (M)

Size of Experiments
No. of Instances (N)

Global
100 [-]
1000 I-]
Uniform over all regions

Presented in Table 5.15

Presented in Table 5.15

700 [MT]

10 [-]

5.6 Numerical Examples

5.6.1 Problem Instances

Ten GLRPP instances for the Mars surface exploration are created. For each instance

100 potential bases and 1000 sites2 are randomly generated on the surface of Mars.

The total campaign budget is set as 700 [MT] delivered to the surface. Table 5.16

summarizes the parameters used in the instance generation. The three-phase solution

method is used to obtain the solutions.

Figure 5-7 shows the result of the "Divide" phase for one of the created instances.

We can see four big clusters (out of the total 38 clusters).

5.6.2 Results

Table 5.17 summarizes the results of the numerical experiments (average of 10 in-

stances). Each campaign in the ten problem instances is composed of eleven missions

- ten out of them use the orbiting depot strategy and only one mission uses the

standard strategy.

Figure 5-8 shows the solution for the instance presented in Figure 5-7. Ellipses

2154 actual Mars candidate exploration sites shown in Figure 2-1 [40] are included in these sites.
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Figure 5-9: Routes for the Mission Using Base 78 (Standard Strategy)
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Figure 5-10: Routes for the Mission Using Base 99 (Orbiting Depot Strategy)

121

0

0



sum per cost for the two strategies. The mission cost associated with the orbiting

depot strategy is 64 [MT], which is 19 [%] higher than the cost associated with the

standard strategy (54 [MT]). But the profit sum per mission for the orbiting depot

strategy is 27.6 [-/-], which is about 144 [%] higher than the profit sum per mission

for the standard strategy (11.3 [-7-]). This discrepancy leads to the large gap in the

profit sum per cost, which is 0.43 [-/MT] for the orbiting depot strategy and 0.21

[-/MT] for the standard strategy. The optimizer chooses the orbiting depot strategy

primarily, and if there is some budget left for the standard strategy but not for the

orbiting depot strategy, it chooses the standard strategy.

So far we have analyzed the solutions for the Mars surface exploration instances.

Under assumptions made for the case study, the orbiting depot strategy shows a larger

profit per cost than the standard strategy, and is selected with higher frequency.

This result is based on an assumption that the required technology (orbiting depot

technology in this case) already exists because the cost imposed by the selection of

the orbiting depot strategy is the variable cost. A methodology to assess the value of

the technology itself is proposed in the next subsection.

5.6.3 Value of a Technology

We propose a finite difference technique to calculate the value of a technology using

the GLRPP framework. In the problem instance presented in the previous subsection,

it has been implicitly assumed that we already have the orbiting depot technology -

to manufacture the supply units and orbiting depot assembly, to send them to the

Martian orbit, and to operate the depot for supporting the Mars surface exploration

mission.

Suppose that we do not have the orbiting depot technology. In this case, only

the standard strategy is available for the missions. The amount of profit from the

global Mars surface exploration campaign in this case can be obtained by solving

the GLRPP using only the standard strategy. Table 5.18 summarizes the result of

the GLRPP solutions using only the standard strategy for the instances generated in

Subsection 5.6.1. The average profit sum for this case is 131.7 [-], which is 155.8 [-] less
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Table 5.18: Result Summary: Mars Surface Exploration Without Orbiting Depot
Technology

Profits No. of Prof. per Prof. per
Missions Mission Cost

[-] -] - [-/MT]

Standard Strategy 131.7 12 11.0 0.20

With Orbiting Depot 287.5
Value of Orbiting Depot 155.8

than the profit sum for the result presented in Table 5.17 (287.5 [-]). This difference

(155.8 [-]) is the marginal profit that can be obtained by having the orbiting depot

technology. It can be interpreted as the value of the orbiting depot technology

expressed as exploration profits.

Similarly the value of the In-Situ Resource Utilization(ISRU) technology is also

calculated. The standard strategy and the orbit-depot strategy assume that the

propellant used for the Earth Return Vehicle (ERV) and the surface exploration

vehicle is produced on Mars surface using the ISRU technology. Without the ISRU

technology, we have to bring more propellant from the Earth.

The amount of propellant used for ERV in the case study is 82 [MT] [68]. The

fuel capacity 677 [kg] is based on a 7-day exploration scenario. Total time allowed

for the surface exploration is 2100 [hr] and the maximum amount of fuel for the

surface transportation is 0.677 - 210 = 8 [MT]. Assuming that the ISRU plant mass

is relatively small, the increase in mass that has to be delivered from the Earth is 90

[MT].

This situation can be interpreted as an increase in cost. So the mission cost of

the standard strategy becomes (54 + 90) = 144 [MT] and that for the orbiting depot

strategy becomes (64 + 90) = 154 [MT]. Table 5.19 summarizes the GLRPP solution

results. Average profit sum is 132 [-3. This value is less than the average profit sum

with the ISRU technology by 155.5 [-] So the value of the ISRU technology is 155.5

[-3.

The value of the ISRU technology when it is used without the orbiting depot
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Table 5.19: Result Summary - Mars Surface Exploration Without ISRU Technology,
With Orbiting Depot Technology

Profits No. of Prof. per Prof. per
Missions Mission Cost

[-] -] - [--/MT]

Standard Strategy 0 0 N/A N/A
O.Depot Strategy 132.0 4 33.0 0.21

Overall Campaign 132.0 4 33.0 0.21

Table 5.20: Result Summary - Mars Surface Exploration Without ISRU Technology,
without Orbiting Depot Technology

Profits No. of Prof. per Prof. per
Missions Mission Cost

[-) -] -- [-/MT]

Standard Strategy 65.2 4 16.3 0.11

technology is also calculated. Table 5.20 summarizes the GLRPP solution results

without ISRU technology and without the orbiting depot technology. The average

profit sum in this case is 65.2 [-] and the difference from the results for (with ISRU

/ without orbiting depot) is (131.7 - 65.2) = 66.5 [-]. So the value of the ISRU

technology without the orbiting depot technology is 66.5 [-j. Figure 5-11 shows the

summary for the value of the orbiting depot technology and the ISRU technology

expressed as the additional profit generated by the exploration campaign.

5.7 Mars Surface Exploration Summary

A global Mars surface exploration campaign optimization problem is formulated as

the Generalized Location Routing Problem with Profits (GLRPP) and is solved using

the three-phase solution method. Two mission strategies - the standard strategy and

the orbiting depot strategy - are considered.

Problem instances with 100 potential bases and 1000 exploration sites are gener-

ated and solved. A methodology to assess the value of a technology through finite
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With an ISRU Technology
With an Orbiting Depot Technology

Avg. Profit Sum = 287.5 [-]

Value of an ISRU
Under Existence c
:155.5

Value of an Orbiting Depot Technology
Under Existence of an ISRU Technology
: 155.8

rechnology
f an 0. Depot Technology

W/O an ISRU Technology
With an Orbiting Depot Technology

Avg. Profit Sum = 132.0 [-]

Value of an Orbiting Depot Technology
Under No ISRU Technology
: 66.8

With an ISRU Technology
W/O an Orbiting Depot Technology

Avg. Profit Sum = 131.7 1-}

Value of an ISRU Tachnology
Under No 0. Depot Technology

66.5

W/O an ISRU Technology
With an Orbiting Depot Technology

Avg. Profit Sum = 65.2 [-]

Figure 5-11: Value of Technology - Orbiting Depot and ISRU

differencing is proposed. Solutions with different technology options - with and with-

out the orbiting depot technology and the ISRU technology - are obtained and the

value of the orbiting depot technology and the ISRU technology are calculated by

comparing the results.
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Chapter 6

Terrestrial Application: College

Football Recruiting

6.1 Introduction

Athlete recruiting was first studied by Butt and Cavalier in 1994 as an application

of the Vehicle Routing Problem with Profits (VRPP), in which only one base was

used for recruiting.1 They proposed a heuristic procedure called MAXIMP which

sequentially builds routes using a weighting scheme based on profits and travel time.

An exact method for the same class of problem was proposed by Butt and Ryan

in 1999 [17]. They used a column generation procedure to solve an LP relaxation

problem of the original IP formulation for the VRPP. A near-optimal solution with

a relatively small optimality gap was found by the method described in the paper.

This chapter deals with recruiting of college football athletes by agents repre-

senting a National Football League (NFL) team. The agents carry out recruiting by

visiting schools to gather information. It is assumed that the value of information that

can be gathered from each school is pre-determined. The objective of the problem is

to maximize the total sum of information gathered from all visited schools.

This problem can be viewed as a terrestrial application of the Generalized Location

'This problem is referred to as the Multiple Tour Maximum Collection Problem (MTMCP) in
their original publication [16].
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Routing Problem with Profits (GLRPP). In the following sections, we formulate this

problem as the GLRPP, create a GLRPP instance using the data from 2006-season

NCAA football league result, and solve the problem using the three-phase method

introduced in Chapter 4.

6.2 Problem Description

We assume that multiple recruiting agents are traveling together as a group. Once

the group of recruiting agents arrive at an airport, each agent separately visits schools

by car located in the area around the airport. After the agents complete visits to

the schools within the area, they reunite at the airport and fly to the next airport.

To simplify the problem it is assumed that flights between airports in the problem

instance are available when they are required.

Each school is assigned a real scalar value representing the potential of the athletes

of the school's football team. The objective of the problem is to maximize the sum

of the potential values for visited schools. The whole recruiting campaign should be

finished within a pre-determined period.

Using the terminology of the GLRPP, the whole activity of visiting schools in

this recruiting application is the "campaign" and the collection of visiting routes

associated with an airport is the "mission." The airports and schools are potential

bases (B) and sites (E), respectively. There is a "single-route constraint" that each

agent who leaves an airport should return to it within the time duration specified by

the routing tactics for the problem. There is no collective constraint. Finally, the

sum of man-days for all missions should be less than a pre-determined limit value,

which is a "budget constraint" for the campaign in the GLRPP terminology.
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6.3 School and Airport Selection and Campaign

Characteristics

Schools included in the National Collegiate Athletic Association (NCAA) football

division I-A and airports that are close to the schools are selected as sites and candi-

date bases, respectively. Some schools share airports and the number of the airports

is smaller than the number of the schools. We assume that the aggregated potential

of the school's football team has high correlation with the final 2006 NCAA football

league ranking and assigned profit value of 1 [-] ~ 5 [-] based on the ranking [30].

A total of 118 schools and 55 airports are selected for the case study. Table

6.1 exhibits the schools selected for the case study and profit values assigned to the

schools. Table 6.2 is the list of the airports used for the case study.

There is only one mission strategy in this case study: two-day recruiting. The

type of "cost" in this recruiting problem is "man-days spent on recruiting" and the

cost of the mission is 4 [man-days] (2 agents travel for 2 days). The campaign budget

is 80 [man-days]. There is no collective constraint for the strategy. There is only

one routing tactic in the mission strategy: driving. We assume that two agents are

traveling together and once they arrive at an airport each of them carries out recruit-

ing separately for two business days and returns to the airport. The constraining

resource for the single route constraint is time. Considering traffic jams in urban

areas, we assume the traveling speed is 30 [km/hr]. The resource consumption limit

is 16 [hr] = 960 [min]. The characteristics of the whole campaign for this case study

are summarized in Table 6.3.

Finally, we assign stay-time at school i (ti). Usually the recruiting agents spend

more time at a school with higher potential. So we assign the stay time for each

school using the following equation:

ti = tf + tv - vi, (6.1)

where ti is the stay time at school i (minutes), tj is the fixed stay time (= 120 [min]),

129



vi is the profit value for school i, and t, is the variable stay time (= 24 [min/-]).
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Table 6.1: Schools Selected for Recruiting

Profit Schools

5 Ohio State, Florida, Michigan, LSU, Louisville, Wisconsin
(6 schools)

4 Oklahoma, USC, Boise State, Auburn, Notre Dame, Arkansas
(6 schools)

3 West Virginia, Virginia Tech, Wake Forest, Rutgers, Tennessee,
Texas (6 schools)

2 Brigham Young, California, Texas A&M, Nebraska, Boston College,
Oregon State, TCU (7 schools)

I New Mexico, New Mexico State, Baylor, Southern Methodist,
North Texas, Georgia, Connecticut, Vanderbilt, Middle Tennessee,
Idaho, Tulane, Army, Buffalo, Clemson, South Carolina, Kent State,
Akron, Ohio, Miami (OH), Illinois, Northern Illinois, Marshall,
Cincinnati, Colorado, Air Force, Colorado State, Wyoming,
Iowa State, Michigan State, Central Michigan, Western Michigan,
Eastern Michigan, UTEP, Oregon State, Oregon, Fresno State,
Hawaii, UAB, Auburn, Houston, Rice, Ball State, Purdue, Indiana,
UNLV, UCLA, Texas Tech, Kentucky, Arkansas State, Kansas State,
Kansas, Missouri, UCF, Mississippi, Mississippi State, Memphis,
Miami (FL), Florida Atlantic, Florida International, Minnesota,
Louisiana-Lafayette, Louisiana-Monroe, Louisiana Tech,
Southern Miss, Oklahoma State, Northwestern, Penn State,
Temple, Arizona State, Arizona, Pittsburgh, Washington State,
North Carolina State, North Carolina, Duke, East Carolina,
Virginia, Nevada, South Florida, San Diego State, Washington,
Stanford, San Jose State, Utah, Utah State, Syracuse, Alabama,
Troy, Florida State, Bowling Green, Toledo, Tulsa (93 schools)
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Table 6.2: Airports Potentially Used for Recruiting

HIK, MIA, RSW, MCO, IAH, MSY, AUS, TLH, BTR, ELP,
SAN, AFW, TCL, PHX, ATL, LBB, LAX, CAE, HSV, ABQ,
MEM, OKC, RDU, GSO, LAS, BNA, TUL, XNA, FAT, SFO,
CRW, ADW, CVG, MCI, RNO, IND, CMH, LAF, PIT, EWR,
SLC, LNK, DSM, ORD, BDL, DTW, BOS, DEN, SYR, MSN,
BOI, EUG, MSP, PUW, SEA

Table 6.3: Campaign Characteristics of the Recruiting Case Study

Mission Strategy Two-Agent Two-Day Recruiting

Collective Constraint N/A

Routing Tactic Driving
Single-route constaint

Constraining resource time [min]
Consumption coefficients cO = 0 [min]

cd = 2 [min/km]
C = I [min/min]

Consumption limit 960 [min]
Maximum route number 2 [-]

Cost C = 4 [man-day]

Campaign Budget 80 [man-day]
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6.4 Numerical Result

We use the three-phase method for the case study. The Divide Phase generates

clusters for the problem instance. Reachability of a school from an airport is deter-

mined by checking the feasibility of the round-trip route between the airport and the

school (with respect to the constraint on time consumption). The largest cluster has

11 bases (airports) and 33 sites (schools), which contains more than a quarter of the

total schools. Figure 6-1 shows three big clusters from the results of the Divide Phase.

4 airports,
8 schools
Total
recruiting
profits: 12

(D* /

M 11 airports,
* / *33 schools

* * * *Total
l Crecruiting

Shes p e profits: 59

3 airports,
8 schools
Total
recruiting
profits: 12

Figure 6-1: College Football Recruiting - Clustering Result

The solution of the GLRPP instance for the case study is presented in Figure 6-2.

All schools with profit value. of 5 [-] (2006 NCAA ranking 1-6) are included in the

solution. Up to three schools are included in one route. The LP-relaxation profit sum

(KLp) for the problem instance is 116.50 [-], which is an upper bound of the optimal

profit sum. The near-optimal feasible profit sum (Kip) is 116 [-] and the optimality

gap for the solution is 0.43 [%]. The total profit available from all the candidate

schools is 179 [-], and we obtain about 68 [%] of the total profit from the GLRPP
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solution.

Figure 6-3 shows schools visited by the solution, routes to visit the schools, airports

used as bases for the routes, profits obtained from the routes, and cumulative man-

days. Note that in the GLRPP framework we do not consider the optimization of

the mission sequence, and the order to carry out the missions can be arbitrary. The

"mission" for this application is the set of recruiting activities based on a specific

airport, and the order may be also important. To optimize the mission order, we can

use the result of the Traveling Salesman Problem (TSP) for the graph composed of

airports included in the solution. This task is not within the scope of this thesis.

06

#6.Wisco sin #3 ichiga

#5.Louisville

#4.L019 #2. lorida

Figure 6-2: College Football Recruiting - the GLRPP Solution

6.5 College Football Recruiting Summary

A problem to optimize the recruiting of college football athletes is dealt with in this

chapter as a terrestrial application of the GLRPP. We generated a GLRPP instance

using the schools in the NCAA football division I-A and airports which can reach

the schools. We used the three-phase solution method and successfully obtained a
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solution with a very low optimality gap (0.43 [%]).
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Cumulative Airport School 1 School 2 School 3 Profits
Man-Dasy

MCO Florida 5

4 MCO South Florida UCF 2

AUS Texas 3

8 AUS Texas A&M 2

AFW Baylor 1

12 AFW North Texas Southern Methodist TCU 4

MSY LA-Lafayette 1

16 MSY LSU Tulane 6

LAX San Diego State 1

20 LAX USC UCLA 5

ATL Auburn 4

24 ATL Georgia Tech Georgia 2

TUL Oklahoma 4

28 TUL Arkansas 4

RDU North Carolina Wake Forest 4

32 RDU NC State Duke 2

CRW Virginia Tech 3

36 CRW Marshall Ohio 2

CVG Ohio State 5

40 CVG Kentucky Cincinnati 2

IND Louisville 5

44 IND Ball State Miami (OH) 2

LAP Notre Dame 4

48 LAF Indiana Purdue 2

PIT Akron Kent State 2

52 PIT Pittsburgh West Virginia 4

DTW Michigan Michigan State 6

56 DTW Bowling Green Toledo Eastern Michigan 3

MSN Northern Illinois 1

60 MSN Wisconsin 5

SFO Stanford 1

64 SFO San Jose State California 3

EWR Temple 1

68 EWR Army Rutgers 4

SLC Utah State 1

72 SLC Utah Brigham Young 3

DEN Air Force 1

76 DEN Colorado Colorado State 2

80 BOI Boise State 4

Profit Total 116

Figure 6-3: Used Airports and Visited Schools
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Chapter 7

Conclusions

7.1 Thesis Summary

Given locations and profits for potential bases and sites, a problem to maximize the

sum of profit obtained over a campaign by making decisions on selection of bases to

use, selection of strategies for the missions using the bases, selection of routes to visit

sites, and selection of routing tactics the routes use, with constraints imposed on each

route, each mission, and the overall campaign is formulated and solved in this thesis.

The problem, referred to as the Generalized Location Routing Problem with Profits

(GLRPP), is originally based on an optimal design problem for a global planetary

surface exploration campaign. Chapter 1 explains global planetary surface exploration

as the background of this thesis. Chapter 2 describes the GRLPP and provides the

Integer Program (IP) formulation.

Two solution methods for solving the problem are proposed in Chapters 3 and 4.

The single-phase method presented in Chapter 3 directly uses the original formulation

presented in Chapter 2 to create a linear program relaxation (LP relaxation) to obtain

a near-optimal solution of the GLRPP and an upper bound / optimality gap of the

solution. The three-phase method presented in Chapter 4 divides the problem into

multiple sub-problems referred to as the Multi-Depot Vehicle Routing Problem with

Profits (MDVRPP), solves each subproblem using a procedure similar to the single-

phase method presented in Chapter 3, and synthesizes the MDVRPP solutions to
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obtain a near-optimal solution and an upper bound / optimality gap for the whole

GLRPP. A performance analysis for the two solution methods is also provided.

A global Mars surface exploration campaign optimization problem is presented

in Chapter 5 as a space application of the GLRPP. A realistic design of a planetary

surface exploration vehicle is used and an orbiting depot is considered as a technology

option. Problem instances with 100 potential bases and 1000 exploration sites are

generated and successfully solved using the three-phase method. A methodology to

calculate the value of a technology is proposed and used for valuation of an orbiting

depot technology and an In-Situ Resource Utilization technology used in the case

study.

In Chapter 6 a college football recruiting problem is introduced as a terrestrial

application of the GLRPP. A problem instance is created out of the NCAA football

division I-A schools and airports from which agents can reach the schools. The

problem is successfully solved using the three-phase solution method within a very

small optimality gap.

7.2 Contributions

As has been pointed out previously, this research was originally inspired by the prob-

lem to optimize a "Global Planetary Surface Exploration Campaign," and the devel-

opment of a framework for the campaign optimization is the first contribution of this

thesis.

A case study for Mars surface exploration campaign optimization using the frame-

work is provided. Using realistic information for the space and surface elements of the

exploration campaign, problems for many potential landing locations and exploration

sites have been successfully solved.

An "orbiting depot" concept has been proposed as one of the mission strategies

for Mars surface exploration for the case study. A preliminary design of the orbiting

depot has been presented. Under the problem settings for this thesis, the orbiting

depot technology improves the profit-obtaining capability of a mission significantly
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with relatively small cost increase and is found to be a very attractive option.

This thesis also contributes to the development of a problem class referred to as the

Generalized Location Routing Problem with Profits (GLRPP). The GLRPP can be

seen as an extension of the "Location Routing Problem" in two different directions. A

mathematical formulation and two solution methods for the GLRPP were developed

and performance analysis for the solution methods was also carried out.

A systematic expression of resource consumption using three resource consumption

classes - the per-route, the on-arc, and the on-site consumption classes - is another

contribution of this thesis. We use this method to express the consumption of many

resource types in the context of the routing problem.

7.3 Suggested Future Work

7.3.1 Improved Solution Procedure

The performance analysis result for the two solution methods proposed in the thesis

indicates that each solution method has a weakness for solving a problem instance

with certain characteristics. The single phase method has been found to be less

attractive in terms of providing an upper bound when the budget constraint is tight.

The three-phase method is expensive for instances whose number of bases in one

cluster is large.

There may be some room for improvement for both solution methods. The single

phase method in this thesis is using a simple LP relaxation of the original GLRPP to

get an upper bound. For the future work, the Lagrangian relaxation technique could

be used to provide a better upper bound by putting the constraints (2.16) and (2.17)

into the objective [361.

A methodology to accelerate the conquer phase of the three-phase method is

suggested. A column represents a route associated with a base, a mission strategy for

the base, and a routing tactic. A "good" column - or a "good" route - for one cluster

strategy may be a "good" column for another cluster strategy with high probability.
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We propose a future study for a smart way to reuse generated columns in previously

solved MDVRPPs so that we can accelerate the column generation procedure of the

Conquer Phase, which takes a lot of calculation time.

7.3.2 Balanced Optimization Scheme - Consideration of Profit

Vectors

One major limitation of the GLRPP framework is the way it deals with "profits."

Under the current framework, profit value to visit a site is set as a scalar value.

There are multiple stakeholder groups interested in visiting sites and obtaining profits.

And valuations of a site from different stakeholder groups will likely be different.

Assignment of a single profit value to each site implies that the values associated

with a site from different stakeholder groups are somehow aggregated into one single

number. Once they are merged into a number, the optimization procedure for this

thesis cannot determine the original evaluation of a site from each group. A profit

value 1 obtained from site A is identical to the profit value 1 obtained from site B in

terms of the objective function. How the interests of different groups are aggregated

to yield the profit value 1 is irrelevant in the current framework. In this case, even

when the overall profit sum obtained by visiting sites is maximized, if we track back

to the original evaluation of sites by different groups, there may be some groups which

could not obtain much value in terms of their own interests and are not happy about

the optimization result.

To prevent this situation, an optimization scheme referred to as a "balanced op-

timization" is proposed as future work. In the balanced optimization, evaluation of

a site i by m different groups is expressed as a vector vi as follows:

V = [vi,. . . ,v ]'. (7.1)

When we visit sites, we can consider m different types of profit sums, each type

represents a profit sum from the perspective of a specific stakeholder group. Assume

that each type of profit is normalized and one type of profit for all sites add up to
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1. Then the sum of type p profits for visited sites can be interpreted as the "degree

of satisfaction of group /t obtained by the visits." We propose to optimize the degree

of satisfaction of the "least" happy group. So we make decisions to maximize the

minimum profit sum out of all types of profit sums. A mathematical formulation for

the proposed optimization scheme is expressed as follows.

(GLRPVP) Generalized Location Routing Problem with Vector Profits

min(-s) (7.2)
X,y,s

subject to

-91x + I's < O', (7.3)

Ax < 1,1 , (7.4)

E1x - Ny < 0n2, (7.5)

Hx - Ly : O 0,, (7.6)

E 2y 1l4, (7.7)

c'y < M, (7.8)

0 < x, y < 1, x and y are integers. (7.9)

This GLRPVP formulation is very similar to the GLRPP formulation presented as

equations (2.11)~(2.17). A new constraint expressed as equation (7.3) is added and

the objective function is changed to maximization of s, which is also a new variable

appearing in equation (7.3). 9V is defined as a matrix whose pth row is r' where the

Jth element of r is the profit sum related with a route expressed as the jth column

of the constraint matrices. N is expressed as follows:

9 =.(7.10)

r'4

141



The ,Ith element of vector 9x is the total profit sum for the campaign expressed by

route selection x based on the values assigned by a stakeholder group P. If the profit

values are normalized, the profit sum can be interpreted as the degree of satisfaction

for group p. s is lower than each element in vector 91; By maximizing s in the

objective function (7.3), we maximize the degree of satisfaction of the least satisfied

group.

7.3.3 Potential Applications of the GLRPP

The GLRPP is a general framework that can handle the most complex routing prob-

lems. It supports simultaneous decisions on selection of bases, associated exploration

strategies, and routes. Global recruiting of an international company, drilling of

exploration wells in the oil/gas industry, and military operations over multiple lo-

cations are all potential applications of the GLRPP. In the case of the exploration

well drilling, for example, seaports where drilling ships depart and return are poten-

tial bases (B), candidate drilling locations are sites (E), and estimated amount of

oil/gas for each site (i) is the profit value (vi). Studies for these applications using

the GLRPP framework presented in this thesis are also suggested as future work.
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