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ABSTRACT

This thesis addresses two emerging areas in the study of iron-sulfur cluster biochemistry:
bioassembly of iron-sulfur clusters, and their involvement in initiation of radical
chemistry. The structure of a cysteine desulfurase involved in cluster bioassembly in the
cyanobacterium Synechocystis PCC sp. 6803 was solved by X-ray crystallography and
analyzed in terms of its mechanistic implications. We found that the active site cysteine
responsible for the direct removal of sulfur from substrate cysteine is located on a short,
well-ordered loop, consistent with structures solved of homologous proteins. The length
of this loop is thought to restrain the active site cysteine, interfering with its ability to
affect catalysis. Our results are consistent with the theory that this cysteine desulfurase
requires an accessory protein for fully activity in vivo.

Two structures of pyruvate formate-lyase activating enzyme from Escherichia coli, an S-
adenosylmethionine radical enzyme, were also solved by X-ray crystallography,
providing the first structure of an activase from this family of enzymes. These structures
revealed the enzyme's active site and the residues involved in binding and orienting
substrate for hydrogen atom abstraction. Comparison of the structures of the substrate-
free and substrate-bound forms of the enzyme identified a conformational change
associated with substrate binding. Detailed analyses of the structure of pyruvate formate-
lyase activating enzyme were carried out to provide insight into catalysis. These
structures were also analyzed in comparison with other S-adenosylmethionine radical
enzyme structures to more clearly understand the structural basis for reactivity in this
superfamily.

Thesis Supervisor: Catherine L. Drennan
Title: Associate Professor of Chemistry
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Overview of this Thesis

Since the discovery of iron-sulfur clusters in the 1960s these cofactors have proven to be

very common, versatile and important biological tools. With wide-ranging capabilities

and many different forms, study of these uniquely useful cofactors has been, and

continues to be, an exciting branch of biochemistry that attracts scientists from across

multiple disciplines. In this thesis, we address two emerging areas in the study of iron-

sulfur cluster biochemistry: bioassembly of the clusters themselves, and their newly-

discovered ability to initiate radical chemistry. In Chapter I, we introduce these two

topics and attempt to put them into a broader context. First, we briefly summarize our

current state of knowledge on the iron-sulfur cluster synthetic process, focusing on the

specific pathway relevant to the work presented herein. Second, we switch gears slightly

to discuss the S-adenosylmethionine (AdoMet) radical enzyme superfamily and its use of

an iron-sulfur cluster to initiate radical chemistry.

Chapter II presents the structure of SufS from the cyanobacterium Synechocystis

PCC sp. 6803, cysteine desulfurase involved in cluster bioassembly in that organism.

The structure is then discussed in terms of its mechanistic implications. Our cysteine

desulfurase structure is similar to available structures of other SufS cysteine desulfurases,

the key finding being that the active site cysteine, C372, resides on a constrained loop in

the active site. It is thought that the activity of the SufS desulfurases is impaired by the

inflexibility of this loop, which leads to reliance on accessory factors to enhance activity.

Serendipitously, a detergent molecule added to our crystallization conditions was

observed bound at an interesting location in the SufS structure, suggesting a potential site

for interaction with an accessory factor.



Chapters III and IV focus on catalysis by the AdoMet radical enzymes. In

Chapter III we present two structures of pyruvate formate-lyase activating enzyme

(PflAE), describe their implications on catalysis and discuss a theoretical docking model

between PflAE and its substrate enzyme. We have solved structures of the substrate-free

and substrate-bound forms of PflAE, and as a result have identified a conformational

change associated with substrate binding. This conformational change is likely

conserved in all of the AdoMet radical activating enzymes. These structures also provide

a first view of the active site of this enzyme, and identify the specific residues involved in

substrate binding and orientation. Finally, based on the orientation of the substrate in our

structure, we generated a docking model between our PflAE structure and a fragment of

the previously solved model of pyruvate formate-lyase (Pfl). This docking model may

reflect the mode of interaction between PflAE and its full substrate, and provides a

starting place for further experimentation focused on clarification of the activation

reaction and any conformational changes that the reaction involves.

Chapter IV focuses on the five AdoMet radical structures currently available:

PflAE, coproporphyrinogen III oxidase, biotin synthase, MoaA, and lysine 2,3-

aminomutase. By comparing and contrasting each in terms of overall fold and active site,

we hope to provide insight into the conserved aspects of catalysis by the AdoMet radical

superfamily and the main differences between the individual enzymes that enable such

diverse overall reactions. This chapter was written for publication as a review article.

The appendices in Chapter V describe additional experiments carried out related

to the iron-sulfur cluster biosynthetic enzyme studied in Chapter II (Appendix 1) and

provide details about the PflAE structure determination (Appendix 2). In Appendix 1,

attempts to crystallize the SufS/SufE complex are described. Proteins from multiple



organisms (Escherichia coli and Synechocystis) were used to attempt to obtain a closely

associated complex of SufS/SufE. Subsequently, several cyanobacterial scaffold proteins

were cloned, expressed and purified with the goal of structurally characterizing a scaffold

protein and / or the complex between a scaffold protein and cysteine desulfurase.

Appendix 2 describes in detail the crystallographic challenges encountered over

the course of the structure determination of PflAE. All datasets, attempts at phasing, and

problems during refinement are described, along with the steps taken to overcome each

obstacle. This appendix also contains complete data processing statistics for most of the

datasets collected, the individual heavy atom sites with statistics for each phasing method

tried, and an explanation of the rationale used to properly build the peptide substrate of

PflAE.
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Chapter I: Introduction

I.A. Overview

Iron-sulfur (FeS) clusters are widespread and essential protein cofactors observed

in all three kingdoms of life' " . Multiple independent processes, which include

respiration, gene regulation, nitrogen fixation and many other metabolic functions' ,

require one or more forms of these inorganic cofactors. Their widespread occurrence and

involvement with fundamental metabolic processes suggest that they are ancient

cofactors3. FeS clusters are able to perform a wide range of functions such as electron

transfer, structural stabilization, substrate recognition, catalysis and radical generation'.

The clusters themselves can assume a variety of structures, some relatively simple, such

as the ubiquitous 2Fe-2S and 4Fe-4S clusters, and some quite complicated 68, as observed

in enzymes like nitrogenase 9-11, hydrogenase 12,13 and carbon monoxide dehydrogenase /

acetyl-coA synthase 14-16 (Figure 1.1).

The structures, chemical properties and biochemistry of protein-bound FeS

clusters have been fields of very active study since discovery of the clusters in the 1960sl.

Two new topics in FeS cluster biochemistry that have come under focus in recent years

include the bioassembly the clusters themselves 4' 17-23, as well as their role in radical

generation by the AdoMet radical enzymes 24-40. Because both of these topics have been

reviewed extensively in recent years4, 17 , this chapter will not serve as a comprehensive

review, but will instead present sufficient background to explain how the work in this

thesis fits in with our current understanding of the two fields.



I.B. FeS cluster bioassembly

With the discovery of proteins involved in the biosynthesis of the nitrogenase cluster by

Dean and coworkers in 199341, FeS cluster bioassembly has become a subject of great

interest to scientists across many disciplines. Perhaps because of this broad appeal, the

field has witnessed an explosion in the amount of ongoing multidisciplinary research

aimed at further elucidating the assembly process 20. Since it has been the subject of

many extensive and articulate reviews4,1723, here we present a brief summary of our

current understanding of FeS cluster synthesis in biology in general, with special focus on

the Suf biosynthetic pathway.

I.B. 1. Overview of FeS cluster bioassembly

Though they are, at least in some cases, readily reconstituted in vitro into

apoproteins using aqueous iron(II) and sulfide, FeS cluster biosynthesis in vivo is a

tightly controlled process. Presumably this tight control is due to the toxicity of the high

levels of iron and sulfide ions required for spontaneous assembly, and perhaps also

because conversion of sulfide into its persulfidic forms allows much greater control and

ease in transfer by proteins42. Overall, the mechanism of cluster bioassembly appears to

be conserved from prokaryotes to higher eukaryotes43,44, an observation that suggests

common ancestry, consistent with the theory that these cofactors are quite ancient. After

several years of active research, many participating proteins in several different gene

clusters have been identified and characterized.

The first enzyme in this process to be isolated was NifS from Azotobacter

vinelandii, a cysteine desulfurase involved in the bioassembly of the nitrogenase complex

iron sulfur cofactor 41. Other open reading frames within the gene cluster (designated nif



for nitrogen fixation) were also found to be involved in the biosynthesis of the

nitrogenase cofactor. Subsequent experiments identified two additional gene clusters

(Figure 1.2), designated isc (iron sulfur cluster assembly) and suf (for sulfur mobilization

/ utilization) that have some homology to the nifoperon and are involved in FeS cluster

assembly. Proteins encoded by the isc operon are responsible for the majority of FeS

cluster biosynthesis in some organisms, mainly bacteria and in the mitochondria of

eukaryotes. The Suf proteins, which have been identified in bacteria and in plant

chloroplasts, can serve multiple functions, depending on the organism under study. In

Escherichia coli and Erwinia chrysanthemi, the Suf proteins seem to be used to repair

oxidatively damaged clusters45. In these organisms, they can also act as a backup system

for cluster bioassembly under conditions of oxidative stress and/or iron limitation46.

However, in cyanobacteria such as Synechocystis and in the chloroplasts of Arabadopsis

thaliana, Suf serves as the main source of FeS clusters46-49. Over the course of evolution,

the Isc and Suf systems seem to have been incorporated from primitive organisms into

eukaryotic genomes via endosymbiosis, giving rise to the related systems we have

observed in various eukaryotic organelles, specifically chloroplasts and mitochondria2 1,46 .

Obviously, the question of the evolution of the multiple systems used for FeS cluster

bioassembly will be slowly clarified as more is learned about the individual pathways. In

addition, as we collectively learn more about the different biosynthetic pathways, we

hope to clarify the differences that exist between them that allow the observed functional

specialization.

I.B.2. The basic components of an FeS bioassembly system



Several basic components of FeS cluster biosynthesis have been identified and

characterized (Figure 1.3), including sulfur donor, chaperone and scaffold proteins, and

electron transfer proteins. Cysteine desulfurases (Nif/Isc/SufS) provide sulfur for

incorporation into clusters. The desulfurases, along with an unknown iron donor, are

thought to build a cluster into a scaffold protein (Nif/IscU, and possibly Isc/SufA), after

which the cluster is transferred to target proteins. In addition, a ferrodoxin-like protein

encoded in all three gene clusters may be used to provide electrons at any of several

steps, including transfer of iron from the iron delivery protein(s), the actual cluster

formation reaction or cluster release from the scaffold and transfer to the target protein46.

Proteins homologous to the molecular chaperone proteins DnaK and DnaJ (denoted HscB

and HscA in Figure 1.2) are also involved in bioassembly by the Isc machinery, possibly

through transfer of the cluster, stabilization of the scaffold protein or the scaffold

protein/desulfurase complex, or another less obvious activity4'50. Though the sufoperon

does not encode these molecular chaperones, such proteins could be encoded elsewhere

in the genome. Finally, several sufoperons encode an ABC-type ATPase, which may

provide energy for FeS cluster biosynthetic machinery. The nomenclature used above

applies to bacterial systems and will be used throughout this chapter for clarity, but does

not apply to all organisms. Because the work in this thesis focuses on the cysteine

desulfurase of the Suf system, the following section will discuss these proteins more

specifically, using the proteins from E. coli as a model system.

I.B.3. The Suf machinery



Each of the three sets of FeS cluster biosynthetic proteins seem to follow the general

scheme outlined in Figure 1.2. In the Suf pathway, sulfur is provided by a cysteine

desulfurase (SufS), though the observed low activity of SufS in comparison to IscS (the

Isc cysteine desulfurase) in vitro48,51,52 suggests the involvement of an additional

activating protein48. SuE, a homodimeric protein with limited structural similarity to the

Isc scaffold protein (IscU) 19, is proposed to fulfill this role, forming a complex with SufS

and stimulating its cysteine desulfurase activity up to 40-fold 53 ,54. A conserved cysteine

of SuME is essential for this function, though the precise mechanism is unclear51 '53 55.

Stimulation of SufS by SufE may be another mechanism of regulation of cluster

bioassembly by the Suf machinery and may also be related to the ability of this system to

operate under oxidative conditions.

The next step of the cluster biosynthetic process is the assembly of the cluster on

a scaffold protein. Extensive experimentation has led to the hypothesis that SufA is the

scaffold protein of this pathway, though some have proposed (on the basis of experiments

done on E. coli IscA) that it is actually the iron donor for the system56-58. For several

reasons discussed in section I.B.4, the initial hypothesis (that SufA is a scaffold protein)

seems more likely.

The sufoperon lacks the two Isc chaperone proteins HscA and HscB (though

homologues could be encoded elsewhere in the genome). The function of HscA and

HscB are currently unclear, but they are known to interact with IscU59-61 and likely

participate in the transfer of the cluster to apoproteins. Instead, the sufoperon encodes

three proteins of unknown function, SufB, C and D, which form a complex, SufBCD55,62

SufC has homology to ABC-type ATPases4 7,62,63, but SufB and Surf) do not contain any

transmembrane motifs and have been found in the cytoplasm55'62, ruling out the



possibility that they form an ABC transporter. Very little is known about the functions of

SufBCD, though some have proposed that it provides energy for the Suf system and / or

aids in similar transfer steps as the Isc chaperone proteins46.

The Suf system also seems to differ from Isc in terms ofregulation. The isc

operon is regulated by an FeS cluster-containing transcription factor, IscR, that represses

expression of the Isc proteins when in its cluster-bound state6 . In E. coli, where the suf

operon operates in response to iron limitation and oxidative conditions, Suf is under the

control of Fur (which senses iron limitation) and OxyR (which activates the oxidative

stress response)4'65'66. Regulation of Suf also varies between different organisms. In

cyanobacteria, a specific regulatory protein called SufR was identified that acts as a

transcriptional repressor of the operon6769, similar to IscR in E. coli. The differences

between specific organisms in their mechanism of regulation of the sufoperon may

reflect the different roles this operon can play, as the main cluster biosynthetic machinery

in some organisms (i.e. cyanobacteria) and as the "backup" machinery used during

oxidative or iron-limited conditions (as in E. coli).

I.B.4. Questions arising from our current understanding of FeS cluster biosynthesis

FeS cluster biosynthesis is an amazingly complicated process, and extensive research has

defined some of its basic characteristics. Perhaps because of the importance of this

particular type of cofactor, organisms typically encode redundant biosynthetic systems

and even multiple copies of the individual components. Accordingly, complete definition

of any specific system tends to be problematic. The functional relationships between the

multiple pathways - Isc, Suf and Nif- form another unknown that research in the field is

slowly beginning to clarify. Indeed, the specificity of the nifoperon gene products for



the nitrogenase cluster suggests the existence of additional operons encoding proteins for

the assembly of other specific complex clusters, such as the A-cluster of CODH or the H-

cluster of hydrogenase, though no specific operons for these purposes have been

identified to date.

The chemical details of cluster formation are also incompletely characterized at

this point. First, controversy surrounds the identity of the protein responsible for

providing iron to the scaffold protein46,56-58,70 . The general consensus is that frataxin (or

the frataxin homolog cyaY in E. coli) fills this role70, though some have suggested IscA

and/or SufA as a possible candidate in E. coli 6-58 . However, both aerobic and anaerobic

purification of SufA yields protein in the iron-free form, which can then be reconsitituted

to contain FeS clusters53. These clusters reconstituted into SufA can be readily

transferred to other apoproteins 53' 71 , suggesting a more likely role for this protein as a

scaffold for assembly. Further, not all IscA proteins even bind iron tightly72,73, although

this finding is still controversial 74. The subsequent steps of the formation reaction are

also only vaguely understood. Because FeS clusters can form spontaneously, in vitro

experiments aimed at elucidating the mechanism of assembly on the scaffold protein are

particularly difficult. A reasonable mechanism has been proposed for both the order of

addition to the scaffold protein and the reduction steps involved, in which two persulfidic

sulfurs are transferred from the desulfurases to cysteine residues of the scaffold protein,

followed by chelation of two ferrous ions by the persulfides. Electrons provided by the

ferrous ions and by a redox active thiol nearby could then enable cluster formation4 6.

However, further experimentation is necessary to more completely characterize the

mechanism.



Another area of active research is the structural characterization of a scaffold

protein7 5 81, which has proven difficult. Excitingly, the first successful crystallization of

a scaffold protein containing an FeS cluster was recently reported81. Finally, more work

is needed to clarify how the transfer of an FeS cluster to its target protein occurs and what

functions the other proteins involved in this process have. The role of HscA and HscB in

the FeS cluster assembly process is being pursued by the Vickery laboratory50, who have

shown that HscA interacts with a specific sequence of IscU596' and have solved

structures of both chaperones, including HscA bound to the IscU recognition peptide 82 83.

Although extensive work has been carried out in this field, FeS cluster biosynthesis has

proven to be astonishingly complex. More than a few questions remain to be answered

concerning the different FeS cluster biosynthetic pathways. The work presented in

Chapter II concerns the cysteine desulfurase of the Suf system, and may have

implications for the ability of Suf to operate under stress conditions. We have solved the

structure of SufS from Synechocystis PCC sp. 6803, which is the only essential

desulfurase from that organism. As in other structures of this enzyme from different

organisms, the active site cysteine resides on a short, presumably constrained loop.

Restriction of the mobility of the active site cysteine may be the main cause of the

catalytic inefficiency observed for the SufS enzymes.

I.C. Radical generation by the AdoMet radical enzymes

A newly identified biochemical capability of FeS clusters is their ability to mediate

radical formation. The subject of Chapter III of this thesis, pyruvate formate-lyase

activating enzyme (PflAE), is a well known member of the relatively new class of



enzymes termed the AdoMet radical superfamily84 . In this section, we will introduce the

superfamily and discuss the shared characteristics of its members, describe the structure

of the central domain of the AdoMet radical enzymes, and then briefly focus on PflAE, or

more specifically, on the protein substrate ofPflAE, pyruvate formate-lyase (Pfl), to put

this work into a greater context.

I. C. 1. Characteristics of the AdoMet radical enzymes

Members of this superfamily share a common mechanism to affect the initiation of

radical chemistry through generation of the highly reactive 5'-deoxyadenosyl radical (5'-

dA*)26,30 ,3 3,39 . Towards this end, AdoMet radical enzymes bind a 4Fe-4S cluster via three

cysteine residues within a conserved motif, and AdoMet ligates the unique iron of the

cluster through its carboxylate oxygen and amino nitrogen atoms (Figure I.4)8590.

Binding of AdoMet directly to the cluster in this way brings its sulfonium sulfur atom

into close proximity with the cluster. One electron reduction of AdoMet by, in most

cases, flavodoxin91-94 is believed to proceed via inner sphere electron transfer through the

4Fe-4S cluster to the AdoMet sulfonium, resulting in cleavage of AdoMet to yield 5'-dA*

and methionine3 9'8 9'95

At this point during catalysis, the mechanisms of the individual AdoMet radical

enzymes diverge to accomplish a wide variety of reactions on a similarly wide variety of

substrates (Figure 1.5). Counted among the best characterized of these enzymes are 2,3-

lysine aminomutase (LAM), involved in lysine metabolism 25' 9698, the activases of Pfl and

class III ribonucleotide reductase (aRNR), which generate a stable glycyl radical on their

protein substrates24'99-102, biotin synthase (BioB) and lipoate synthase (LipA), two sulfur

insertases28,35,103-105, and spore photoproduct lyase (SPL), an enzyme capable of repairing



DNA thymidine dimers 0°6 . Of the characterized AdoMet radical enzymes, LAM and SPL

are known to regenerate AdoMet after each turnover3 9' 10 7'108, using it as a cofactor rather

than cleaving it irreversibly, as observed in the other characterized enzymes3 '.

I. C. 2. AdoMet radical structure

Since these enzymes were known to generate 5'-dA. through a common

mechanism 26,30,33 9, they were also expected to adopt similar folds. Information about

the core protein fold required for AdoMet radical activity (generation of 5'-dA. from a

[4Fe-4S]'+ cluster and AdoMet) is currently available from several sources. These

include sequence alignments 84, the six structures of AdoMet radical members

(coproporphyrinogen III oxidase (HemN)' 09, BioB los, MoaA, an enzyme involved in

molybdenum cofactor biosynthesisil '0 ,11 , LAM98, TYW1, which is involved in

biosynthesis ofa wyobutosine, a modified tRNA base" 2, 3"' and PflAEll4), comparisons

of those structures3 136 ,37, and structure-based sequence alignments 1"5. The AdoMet

radical fold is a splayed, six-stranded partial TIM barrel, which is extended in each

enzyme in order to tailor the individual enzyme to its substrate. Notably, the enzymes

structurally characterized to date all use relatively small molecules as substrates, making

the structure of the activating enzyme reported in Chapter III highly anticipated.

I.C.3. The pyruvateformate-lyase system

Decades of effort have led to our current understanding of pyruvate formate-lyase (Pfl)

and its mechanism, reactivity and structureol '' L6. Though many questions remain

concerning certain aspects of its mechanism and regulation, Pfl is a well characterized

system and, along with aRNR, is considered one of the two prototypical Glycyl Radical



Enzymes (GRE, see below)"" '18. Through the use of an anaerobically stable radical

harbored by an active site glycine residue (G734), Pfl catalyzes the fermentation of

pyruvate to acetyl-CoA and formate via a homolytic carbon-carbon bond cleavage

reaction (Figure 1.6)10'. This enzyme, found in facultative and obligate anaerobes, serves

as the organism's sole source of acetyl-CoA for the Krebs cycle under fermentative

conditions'°.

Because it catalyzes such an important metabolic reaction, several mechanisms of

regulation are employed to control Pfl100,1 9-123. In addition to transcriptional regulation,

Pfl requires posttranslational activation, which results in introduction of a radical on

G73424,99 -101. The activation reaction occurs via stereospecific hydrogen atom abstraction

and depends upon PflAE (Figure 1.7)99,124 . Because exposure of the activated Pfl to

oxygen results in irreversible cleavage of the polypeptide chain at the radical-harboring

glycine' 01, a mechanism exists to restore Pfl activity in case of brief oxygen exposure. A

short protein with homology to the last 59 residues of Pfl, including G734, associates with

cleaved Pfl and can interact with PflAE to yield an active enzyme complex' 25. This short

protein, called YfiD in E. coli, is thought to act as a "spare part" to repair oxygen-cleaved

Pfl with minimal energy expenditure' 25. Little is known at present about these

mechanisms of posttranslational regulation of Pfl, and research is currently ongoing.

Multiple structures of the inactive form of Pfl have described it as a ten-stranded

barrel made up of two five-stranded 13 sheets in an antiparallel orientation with respect to

each other126-131. The active site is located at the center of the barrel, made up of residues

from the barrel and from two "finger loops" that extend into the barrel from either side

(Figure 1.8). The radical-harboring glycine residue is always found at the tip of one of

these two finger loops, buried far from the surface (8 A from the surface of Pfl' 26).



Many similarities between Pfl and aRNR exist, including their use of a glycyl

radical, their similar structures and their reliance on an activating enzyme 24'99-102. Since

the discovery and characterizations of these two enzymes, several other related enzymes

have been identified13 2-135 that seem to share these features as well. This family of

enzymes has been referred to as the Glycyl Radical Enzymes (GREs) 117,'18,134, and at

present includes Pfl, aRNR, glycerol dehydratase 133 (Gdh), benzylsuccinate synthase132

(Bss) and 4-hydroxyphenylacetate decarboxylase'35 (Hpd). Each of these enzymes

requires introduction of a glycyl radical by an AdoMet radical activating enzyme, but the

details of that activation reaction are not currently understood.

L.C.4. Remaining questions concerning the AdoMet radical superfamily

The basic radical initiation reaction held in common by the AdoMet radical enzymes and

outlined in Figure 1.9 is now generally accepted. The field is now poised to take

advantage of the wealth of information the laboratories of Frey, Marquet, Jarrett,

Broderick, Booker, Fontecave, Hoffman, Cronan and many others have provided, to fill

the remaining gaps in our understanding of this superfamily and then extend that

knowledge to other family members, the majority of which are completely

uncharacterized. With the structural analyses of several superfamily members complete,

we can now focus on obtaining a more detailed understanding of the individual AdoMet

radical enzymes and answering the remaining questions alluded to in the above sections

and summarized here. How exactly do these enzymes surmount the barrier to AdoMet

cleavage presented by the large differences in reduction potential of AdoMet and a

typical 4Fe-4S cluster? Can we more clearly describe the inner-sphere electron transfer

we envision occurring between the 4Fe-4S cluster and the AdoMet sulfonium to affect



cleavage of AdoMet? Do members of the AdoMet radical superfamily share a specific

mechanism of control over the 5'-dA* intermediate, or does this vary along with the

different reactions each individual enzyme catalyzes and substrates they bind? In

addition, the specific factors that govern AdoMet usage as cofactor or cosubstrate are still

unclear, even with a range of AdoMet radical structures in hand. Related to this, how one

enzyme is capable of using two molecules of AdoMet during the course of one turnover

is controversial, as we will discuss in more detail in Chapter IV. Finally, perhaps the

most far-reaching unknown regarding the AdoMet radical family concerns plasticity of

the fold; for example, how is the same basic core fold modified to enable so many

different types of chemistry, what are the detailed mechanisms of each enzyme after

radical generation and how does this impact our understanding of the evolution of the

superfamily?

Perhaps with the exception of exceedingly well-characterized LAM, so many

details have yet to be understood about the reactions catalyzed by the individual AdoMet

radical enzymes. The process of cluster reconstitution in the BioB and LipA systems to

allow multiple turnovers, if it does indeed occur, has yet to be shown in vitro35'136

Definition of the requirements for full activity of many AdoMet radical enzymes such as

BioB, LipA, HemN and MoaA is a fundamental problem plaguing the field that has yet to

be resolved34,"10 ,137 '138 . Very little is known regarding how glycyl radical formation

occurs in the GRE / GRE activase systems; specifically, complete characterization of the

proposed conformational change is an important and challenging next step 124,129. Finally,

sequence alignments show that although the Class III RNR activase catalyzes the same

reaction as the other GRE activases, it likely differs from these enzymes in terms of its

overall fold and residues in the active site"15. Further characterization of this particular



enzyme will assuredly yield additional insight into plasticity and evolution of the AdoMet

radical fold.

The work presented in Chapters III and IV of this thesis aims to help answer questions

concerning catalysis by the GRE activases, and in particular, PflAE. In Chapter III, we

describe the structure of PflAE in both the apo and substrate-bound forms, revealing the

first structure of an AdoMet radical activase. We will discuss the architecture of PflAE

and its active site, providing a structural basis for understanding glycyl radical formation

by this enzyme. In addition, we describe docking studies conducted between PflAE and a

fragment of the Pfl structure in order to provide a testable hypothesis for full complex

formation between the two enzymes. In the context of the AdoMet radical core fold, the

significance of these structures lies in the fact that PflAE is the most basic AdoMet

radical enzyme structurally characterized to date. Then, in Chapter IV, we will examine

the structures ofPflAE, HemN, BioB, MoaA and LAM in detail, comparing them in

terms of their overall architecture, AdoMet binding site and substrate binding sites, and

discussing the implications of their similarities and differences on catalysis.
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I.E. Figures

Figure I.1: Various known FeS cluster forms. The FeS clusters and their ligands are
shown in ball and stick, colored as follows: protein carbons, grey; oxygen, red; nitrogen,
blue; sulfur, gold; iron, ruby; molybdenum, magenta; nickel, teal; copper, green. The
clusters shown are: (a) 2Fe-2S cluster from Rieske FeS protein (2NWF)'3 9 from
Rhodobacter sphaeroides (b) 4Fe-4S cluster of high-potential FeS protein (IUA) 140 from
Thermochromatium tepidum (c) H-cluster of Desulfovibrio desulfuricans hydrogenase
(1HFE) 13 (d) nitrogenase P-cluster from Azotobacter vinelandii in the reduced state
(3MIN) 141 (e) FeMo-cofactor from Azotobacter vinelandii (PDB IMIN)11 (f) The C-
cluster of bifunctional CODH/ACS from Clostridium thermoaceticum (1MJG)'6 and (g)
the A-cluster of CODH/ACS from Clostridium thermoaceticum (1MJG) 16. The copper
atom in this cluster binds in a heterogeneous site capable of binding copper, nickel, and
zinc.
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Figure 1.2: Schematic of the (a) isc and (b) sufoperons from E. coli involved in FeS
cluster bioassembly. The nifoperon is similar to the isc gene cluster. The five proteins
marked as "unknown" likely provide energy for the system by a mechanism that is
currently uncharacterized. The proteins involved in regulation of the sufoperon (Fur,
OxyR in E. coli) are not shown. This figure was adapted from reference 46.
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Figure 1.3: The general cluster bioassembly pathway, as described in reference 46.
Colors are the same as in Figure 1.2. Briefly, a cysteine desulfurase (with the help of
SufE in some systems) and an unidentified iron donor build a cluster into a scaffold
protein by transferring sulfur and iron, respectively. The scaffold protein then transfers
the cluster to a target protein (white circles). The remaining proteins in each operon -
ferredoxin, HscA / HscB, SufBCD - are involved in this process in some way, which at
this point is unclear.

qnn c•affnld nrnftin

SufE
SufS

holo target proteir

donor?

iut E

SufS

U~V J~U1 I VLU YL VI·VLII

I

o loal scaffold 

prote 
napo target protein



Figure 1.4: Ligation of the 4Fe-4S cluster by AdoMet in the AdoMet radical
enzymes. This figure was adapted from reference 90.
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Figure 1.5: Representative AdoMet radical enzyme reactions. In (b), Ri and R2

correspond to the remainder of the coproporphyrinogen III tetrapyrrole macrocycle. This

figure was adapted from reference 39.
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Figure 1.6: Reaction catalyzed by Pfl. (a) Overall Pfl reaction and (b) Pfl reaction
mechanism, as proposed in reference 126.
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Figure 1.7: Pfl activation reaction catalyzed by PflAE. This figure was adapted from
reference 90.
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Figure 1.8: Structure of the Pfl monomer. 03 strands are colored yellow, a helices
magenta, and the two active site finger loops are colored blue (cysteine loop) and red
(glycine loop, with G734 in spheres).

Figure 1.9: Radical generation by the AdoMet radical enzymes.
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Chapter II: Crystal Structure of slr0077/SufS

II.A. Summary

Cysteine desulfurases play an important role in sulfur metabolism, acting as a

source of sulfur for insertion into iron-sulfur clusters, vitamins, cofactors, and other

biomolecules. These enzymes catalyze the P-elimination of sulfur from a substrate

cysteine molecule using pyridoxal 5'-phosphate and an enzyme cysteine sidechain. Two

different types of cysteine desulfurases catalyze this reaction: the Group I IscS-like

enzymes, and the Group II SufS-like enzymes. In this study, the crystal structure of SufS

from Synechocystis sp. PCC 6803 was solved by molecular replacement with the E. coli

SufS enzyme as the search model, revealing a structure homologous to the other cysteine

desulfurases and identifying a possible binding site for activating factors.

Note: Reproduced with permission from Tirupati, B., Vey, J. L., Drennan, C. L., and
Bollinger, J. M., Jr., Kinetic and structural characterization of Slr0077/SufS, the
essential cysteine desulfurase from Synechocystis sp. PCC 6803. Biochemistry 43
(38), 12210 (2004)1. Copyright 2004 American Chemical Society. The paper has
been edited and expanded to focus on the x-ray structure in the main body of the
chapter.



II.B. Introduction

Sulfur metabolism has been increasingly recognized as an important and complicated

process. Biosynthetic pathways that involve incorporation of sulfur into a molecule or

cofactor include those of iron-sulfur clusters2-", the thiamin 12'"3, molybdopterin14, biotin

and lipoate cofactors, and thionucleosides' 5' 7. Cysteine (or cystine) is typically used as

the source of sulfur for these pathways, which use the persulfidic (or sulfane) form of

sulfur during transfer'". Cysteine itself is formed directly from the reaction of sulfide

with O-acetylserine, demonstrating that a certain amount of free sulfide must be present

in cells19; however, it is thought that persulfidic sulfur, though as reactive as sulfide and

possibly toxic in its own right20, is more easily handled and therefore better suited for

these biosynthetic pathways18. Persulfidic sulfur is always found either bound to a

protein or as part of a larger molecule, such as thiosulfate, making possible more specific

interactions and control.

There are several enzymes known to be capable of forming persulfidic sulfur from

cysteine (or related molecules, such as cystine or thiosulfate)18. The cysteine

desulfurases, NifS, IscS and SufS, are currently the best characterized of these enzymes.

Cystine lyase (C-DES) 2122, cysteine desulfidase 23, rhodanese (and rhodanese-like

proteins)24 and mercaptopyruvate sulfurtransferase 25 can also generate persulfidic sulfur,

and have been implicated in some of the biosynthetic pathways mentioned above26 - in

particular, iron-sulfur cluster bioassembly. A key theme observed in the literature on

sulfur metabolism (and iron-sulfur cluster biosynthesis, as well) is redundancy,

underscoring the importance of these systems and complicating more detailed analyses of

individual enzymes and pathways.



As mentioned above, cysteine desulfurases (CDs) are by far the best characterized

enzymes that provide sulfur for incorporation into biomolecules. They catalyze the PLP-

dependent P-elimination of sulfur from cysteine, yielding alanine and an enzyme-bound

persulfide (Figure II.1). Sequence similarities divide the cysteine desulfurases into two

distinct groups2 7. Group I enzymes, which include IscS and NifS 27, are usually essential

for survival of the organism, and are generally thought to be responsible for the majority

of iron-sulfur cluster biosynthesis 6' 728 ,29. On the other hand, the Group II enzymes

(known as SufS) are typically nonessential and have lower cysteine desulfurase activity

in comparison with the Group I enzymes, an observation that led to their initial

designation as selenocysteine lyases (because their activity towards cysteine is lower than

toward selenocysteine). The low observed activity of these enzymes could, however, be

related to the role of the sufoperon in repair of oxidative damage to iron-sulfur clusters30-

33. In fact, SufS - and not the otherwise encoded Group I enzyme - has proven essential

in several organisms, including Synechocystis' , Bacillus subtilis34 and Mycobacterium

smegmatis3 5, suggesting that these organisms rely on the sufmachinery for iron-sulfur

cluster biosynthesis rather than the isc machinery. To date, structures of several cysteine

desulfurases have been published: NifS from T. maritima36, IscS from E. coli (both

group I enzymes)" 7 and SufS from E. coli (a group II enzyme) 38". The structure of C-

DES from Synechocystis, a PLP-dependent lyase that catalyzes the same reaction by a

slightly different mechanism, has also been published41' 42. Structurally, all of the

cysteine desulfurases are made up of two domains: a larger domain that binds PLP and a

smaller domain that harbors the active site cysteine.

In this study, the cysteine desulfurase of interest is encoded in the sufoperon.

Appearance of the sufoperon (in the absence of an isc operon) in ancient organisms hints



that it could be the precursor to the more modern cluster biosynthetic machinery, making

it a good system for investigation33. In comparison to the Isc and Nif systems, it is

thought to be the simplest of the three, and subsequent investigation into its putative role

in oxidative damage repair will prove fascinating. Additionally, genetic evidence

suggests that the suf machinery is the primary source of iron-sulfur clusters in plant

chloroplasts43"4 9. As more of the enzymes involved in cluster bioassembly are

biochemically and structurally characterized, it will be quite interesting to identify the

features that enable the sufoperon to operate under oxidative conditions, if that is indeed

its role, and to investigate the other differences between the separate cluster biosynthetic

machineries that allow such specialization.

SufS from Synechocystis (sySufS) is a Group II CD27. In addition to sySufS, two

group I CDs, Slr0387 and S110704, are encoded in the Synechocystis sp. PCC 6803

genome50,51, and unlike A. vinelandii, H. pylori and S. cerevisiae, only the group II CD is

essential to survival of the cyanobacterium6,7,2~s; 9,2 . Careful biochemical characterization

ofsySufS was conducted by our collaborators B. Tirupati and J.M. Bollinger to begin to

understand the detailed mechanism of iron-sulfur cluster assembly in chloroplasts'.

Briefly, their findings, which were published with our structure', are as follows.

The as-isolated form of sySufS contained 0.58 equivalents of PLP and exhibits

the expected absorption maxima at 425 nm for the cofactor, which could be reduced by

addition ofNaBH4
1. Addition of substoichiometric amounts of L-cysteine leads to

decrease in the absorption at 425 nm and an increase at 342 nm, after which the spectrum

slowly relaxes to the resting state. This relaxation does not occur when the active site

cysteine, C372, is mutated to alanine. An analysis of these changes has led to the

conclusion that substrate binds to cause the first spectral change, and then a slow



chemical step, possibly cleavage of the substrate C-S bond, cleavage of the persulfide

intermediate or release of the product alanine, results in regeneration of the first

spectrum'.

To determine which chemical step is the rate-limiting one that causes such a slow

return to the resting state, the individual steps were characterized'. Rate of the attack of

C 3 7 2 on the substrate sulfur was monitored by formation of radiolabeled enzyme with

[35S]-L-cysteine, while the persulfide cleavage step was followed via the volatilization of

sulfur. These experiments confirmed that incorporation of the radiolabel into sySufS

occurred on the same time scale as the slow spectral change, consistent with attack by

C372 on the substrate being the rate-limiting step. In addition to these experiments,

steady-state kinetic analysis of sySufS and C372A-sySufS showed that the mutant enzyme

retained some activity in the presence of dithiothreitol and excess concentrations of L-

cysteine. This activity was attributed to attack on the substrate cysteine sulfur atom by

free L-cysteine, which was shown to occur in experiments with both the wild type and

mutant sySufS'.

The preliminary kinetic characterization' has shown that formation of the

cysteinyl persulfide intermediate by sySufS occurs at a rate 1,000-fold slower than when

catalyzed by a group I CD53 . The slow rate suggests that an accessory factor, such as

SufE54 ,55, must be required to accelerate attack of the active site cysteine on the substrate.

In the remainder of this chapter, we describe the structure of sySufS and discuss its

mechanistic implications.

II.C. Results and Discussion

II. C. 1. Overallfeatures ofPLP-bound SufS



Molecular replacement was used to solve the structure ofsySufS, a Group II cysteine

desulfurase, to 1.8 A resolution. SufS from Synechocystis PCC sp. 6803 is a

homodimeric protein structurally homologous to E. coli SufS39 (ecSufS) (rmsd 1.1 A over

401 Ca atoms, 50% sequence identity, all as calculated by Dali56), T. maritima NifS36

(rmsd 2.1 A over 353 Ca atoms, 27% sequence identity), and other PLP-dependent

proteins, such as C-DES41 (rmsd 2.3 A over 361 Ca atoms and 26% sequence identity)

from Synechocystis.

Pyridoxal 5'-phosphate is observed covalently linked to Lys231 of each monomer,

and a molecule of glycerol can be seen in electron density maps in each active site where

substrate is expected to bind based on previous structures of ecSufS39 and other related

PLP-dependent enzymes. In addition to this, a well-ordered detergent molecule appears

bound to one of the monomers at a crystal lattice contact.

II. C. 1.a. Overall Fold

Structurally, sySufS is a member of the Fold Type I family of PLP-dependent enzymes

(also referred to as the a-family) 57-59. Like the rest of those enzymes, sySufS consists of

two domains: a large domain that binds PLP, and a smaller domain that harbors the

active site cysteine (see Figure II.2a for the overall topology of a sySufS monomer

(numbering of secondary structural elements is in agreement with that used previously6o),

and Figure II.2b for the fold of the dimer). The main fold of the large N-terminal domain

is a seven-stranded 03 sheet with topology AGFEDBC. This sheet is surrounded on both

sides by a helices (Figure II.2a). The individual strands are all parallel, with the

exception of strand G, which follows the loop that contains the lysine that links to PLP in



the resting enzyme state (K23 1). PLP binds at the C-terminal side of the 0 sheet, with its

phosphate group bound at the N-terminal end of helix 5. The smaller C-terminal domain

adopts a three-stranded antiparallel 0 sheet with a helices packed on one side and one

helix (helix 17) on the "inner" side, closer to the active site. A loop preceding strand f of

this domain harbors the active site cysteine C372 and helix 17. The N-terminal 35

residues of sySufS are also part of this smaller C-terminal domain.

The sySufS dimer is formed by oligomerization at the N-terminal larger domain,

with an interaction surface provided mainly by helices 5, 8 and 14 along with strands H

and I. Some contacts are made with the large domain's main 0 sheet (Figure II.2b) and

with the sySufS smaller domain. The dimerization surface stretches quite far along both

monomers, allowing extensive interactions between the two molecules. Differences in

the overall structure of sySufS with respect to ecSufS38 40 are limited to short insertions

and deletions such as a short insertion between strands H and I, and several minor

differences in secondary structure assignment (see Figure 11.3).

II. C 1. b. Comparison to other PLP-binding proteinfolds

The cysteine desulfurases are members of the largest and best-characterized family of the

five different PLP-dependant enzyme folds, referred to as fold type I, the a-family or the

aspartate aminotransferase family39,59,6 1 (Figure 11.4), represented here by

diaminopelargonic acid synthase6 2. These enzymes are typically homodimers (though

larger oligomeric complexes are known) and contain two domains, as described above for

sySufS. In this fold type, the pyridine nitrogen is typically coordinated by an aspartate

residue, though other interactions are not strictly conserved, suggesting fine-tuning of

each enzyme for its individual reaction. The PLP-dependant enzyme fold type I family



can be further divided into six subclasses based on the details of their N-terminal domain

structure s9, with sySufS a member of the cystathionine synthase-like subclass.

Fold type II, or the tryptophan synthase 0 familys7 59, is characterized by a PLP-

binding region formed by two P sheets (one four-stranded and one six-stranded), both

surrounded by helices (Figure 11.5), as observed in the tryptophan synthase structure63 .

These two sheets form two separate domains of the protein, and each member of this

family typically contains a separate regulatory subunit or domain in addition to the PLP-

binding domain or subunit. A cleft between the two P sheets accommodates the PLP

binding site, where PLP is bound with the re side facing away from the protein and a

serine ligating the pyridine nitrogen.

The third PLP-dependant enzyme fold type is the alanine racemase family57 59.

These enzymes are also typically homodimeric, with two domains per chain - a TIM

barrel domain, and a second mainly-P domain (Figure II.6)6 .PLP binds in a cleft

formed between the two domains, with its phosphate group at the N-terminus of the last

TIM barrel helix (as in the fold types I and II enzymes) and its pyridine nitrogen typically

bound by an arginine residue.

D-amino acid aminotransferase and branched-chain aminotransferase are

members of the PLP-dependant fold type IV57-59. Like fold type I, these enzymes consist

of two domains, with the PLP binding site formed between the two domains65. The N-

terminal domain is smaller, with a six-stranded antiparallel P sheet, while the larger C-

terminal domain folds into a mixed P sheet that wraps into a partial P barrel (Figure 11.7).

This second domain forms the PLP binding site, with the PLP pyridine nitrogen ligated

by a glutamate residue.



Glycogen phosphorylase represents the fifth PLP-dependant enzyme fold type59,

though it uses the phosphate of PLP for proton transfer rather than using the cofactor in

the typical way. Glycogen phosphorylase has three domains, with PLP binding at the C-

terminal domain (Figure 1I.8)66. The phosphate group is again bound at the N-terminus

of an a helix, and in this fold type, no hydrogen bonds are made to the pyridine nitrogen.

II. C. 2. Active site of SufS

II. C. 2.a. Location and general description of the active site

The sySufS active site is located at the dimerization interface and between the large and

small domains. Residues from both monomers of the dimer make up the active site of

sySufS. The majority of the active site is made up of residues from the first molecule,

but several important interactions to the substrate are provided by the second molecule; in

particular, residues located on the partially disordered loop connecting helices 3 and 4,

and the loops before and after the [3 turn motif (Figure II.9). The PLP binding site is

provided primarily by the larger N-terminal domain (see below), while the residues

involved in catalysis, including C372, originate from the smaller C-terminal domain or the

second molecule. When bound to sySufS, the substrate is likely oriented in the active site

for catalysis by N180, R367, R387, NS8b and E259b. Nucleophilic attack is carried out by C372,

and stabilization of the resulting persulfide intermediate is made possible by H129, H370,

and the amino group of E259b.

Most of the active site residues are conserved between sySufS and ecSufS39.

Differences include several conservative substitutions (such as replacement of an alanine

residue that packs against the PLP with cysteine), and increased disorder in the loop

between helices 3 and 4, which in ecSufS make up one side of the active site cleft. This



disorder was not surprising, as the residues in that loop have been implicated in

facilitating substrate diffusion 39; however, it may be involved with interactions between

sySufS and its target protein.

II. C. 2. b. PLP Binding

Numerous contacts in the sySufS active site, several of which are shown in Figure 11.9,

bind PLP tightly. Notable residues include K231, which forms an imine linkage with the

PLP aldehyde in the resting state, 12o9, providing hydrogen bonds to the pyridoxal

nitrogen, and H128 and C207, packing against the pyridine ring. Figure II.10 shows a

composite omit map contoured at 1 a focused on the area of the PLP linkage. The bond

between C4a. of the cofactor and NC of Lys231 is not coplanar with the pyridine ring of

the cofactor. This nonplanarity was unanticipated, as small molecule crystallography has

shown that the oxidized form of the coenzyme has a conjugated ring system which

extends to the imine linkage and coplanarity has been observed in enzymes such as

phosphoserine aminotransferase67, though several PLP-dependant enzymes, including

lysine 5,6-aminomutase, also exhibit this nonplanarity60' 68'6 9. Because the crystals were

yellow, it was assumed that the linkage was in the oxidized form, since the reduced form

is colorless. However, electron density maps calculated from the data collected on a

crystal treated with sodium borohydride clearly indicates that the PLP-lysine linkage has

virtually the same stereochemistry in both the reduced and "oxidized" crystals. Attempts

to crystallize protein that was pre-reduced with sodium borohydride were not successful.

One possible explanation of this observed nonplanarity is that the enzyme as we

have crystallized it is indeed in its reduced form, and that the yellow color of the crystals

arises from unbound PLP in solution adventitiously bound within the crystal. However,



the enzyme is purified with PLP bound, and no PLP was added during the purification' or

crystallization. Another possible explanation is photoreduction of the linkage by X-rays

during data collection, which could occur during data collection using synchrotron

radiation.

II. C.2.c. The Active Site C372

In the cysteine desulfurases, an active site cysteine performs a nucleophilic attack on the

sulfur atom of the substrate cysteine, resulting in P-elimination of the sulfur atom and

formation of a protein-bound persulfide. This active site cysteine residue, C372, resides

on a short loop emanating from the smaller C-terminal domain of sySufS. The persulfide

is stabilized in sySufS by interactions with H129, H370 and the amino backbone atom of

E259b (Figure 11.9). In our structure, the enzyme is in its resting state, with a water

molecule occupying the site that would presumably accommodate the persulfidic sulfur

atom. We are certain that the density observed in this site corresponds to a water

molecule, and not a sulfur atom, because the distance observed between this density and

the sulfur atom of C372 is longer (3.4 A) than we would expect to see for a true persulfide

(2.3 A). In addition, refinement of the model with a water molecule in this site results in

more reasonable B-factors than are obtained when the model is refined with a persulfide

at C372.

Attempts were also made to structurally characterize sySufS in substrate-bound

and intermediate-bound forms by cocrystallizing both the wild type and a C372A variant

of the enzyme with L-cysteine, L-alanine and L-serine. Only one dataset of good quality

was obtained from these experiments, and was collected from the C372A enzyme



cocrystallized with L-cysteine. However, the resulting electron density was unclear

around the active site, so no publishable model was refined.

The enzyme under study here, sySufS, catalyzes the same reaction and has the

same general fold as the Class I CDs, such as IscS from T. maritima (tmIscS). Because

biochemical characterization showed that sySufS was inefficient in catalysis in

comparison to tmIscS, a brief comparison of the structures of the two enzymes was

carried out to identify any structural features that may explain the biochemical

observations. Several differences within the active sites become apparent when

comparing the sySufS structure to that oftmIscS36 (Figure II.11). Most notably, the

active site cysteine and the loop upon which it resides is disordered in the IscS structure,

and the finger loop created by strands H and I in SufS (two short antiparallel 03 strands,

colored yellow at top right of Figures 11.9 and II.11) is missing in IscS. As one can see in

Figure II.11, the two areas described above are close in space, and the presence of one

could possibly make up for (with respect to the dimerization surface) the absence of the

other.

II C.2.d. N-octanoylsucrose binding

Another point of interest in the sySufS structure is the location of the bound detergent

molecule (n-octanoylsucrose). The sucrose moiety is visible at a crystal lattice contact,

while the hydrocarbon chain can be seen inserted between the two domains of chain A,

the last carbon positioned 11 A from the active site cysteine (Figures 11.12, II.13). As it

is observed in only chain A of the two molecules per asymmetric unit, chain B was used

to investigate differences caused by detergent binding. Structural rearrangements in the

area surrounding the detergent are limited to movement of Phe (2 A), and slight



(approximately 0.5 A) adjustment of the backbone and side chains immediately adjacent

to the detergent. No structural rearrangements are propagated to the active site, and it is

currently unclear whether this binding has any functional relevance. However, the

detergent has a mostly-hydrophobic binding pocket (Figure II.12) into which it fits quite

well, and the residues involved in this binding site are fairly highly conserved (Figures

II.14, II.15), suggesting that this area of the protein structure may have some importance.

I. C.3. Implications for Catalysis

The biochemical characterization ofsySufS has shown that, in comparison to the Group I

cysteine desulfurases like IscS, the Group II enzymes catalyze desulfurization at a slower

rate as a result of a less efficient nucleophilic attack on the substrate by C3721, 53-55,70. This

inefficiency may arise from a shorter, more constrained active site cysteine loop in the

SufS enzymes, as observed here and in structures of SufS from other organisms38"

(Figures 11.2 and II. 11). The extra flexibility conferred by the longer, disordered loop in

IscS makes it physically more capable of nucleophilic attack on the substrate sulfur,

while the active site cysteine is more restrained in SufS, making it less active toward the

cysteine substrate". This hypothesis fits with the observed activities of the enzymes:

because selenium is more easily polarizable than sulfur, SufS is better capable of

catalyzing the elimination reaction with selenocysteine than with cysteine27,40. A

plausible hypothesis would therefore be that SufS requires accessory factors (i.e.

SufE 54 ,55) to increase its activity toward cysteine. Because of the high conservation

observed at the n-octanoylsucrose binding site (Figure II. 15), this site represents one

possible location on SufS that an accessory factor could be expected to bind.



II.D. Materials and Methods

II.D. 1. Protein crystallization and data collection

Protein was obtained from Ms. Bhramara Tirupati in the laboratory of J. M.

Bollinger (Pennsylvania State University). Protein purification was carried out as

described'. Standard hanging drop vapor diffusion methods were used to crystallize

sySufS in a cold room at 40C over a reservoir solution of 0.1 M Tris pH 8.0, 0.25 M

MgCl2, and 25% PEG 4000. Optimal crystals (Figure II. 16) were grown from drops

made by mixing 21tL protein stock solution (17 mg/mL sySufS in 100 mM HEPES pH

7.8 and 3% glycerol), 0.5 gtL adjusted well solution (0.1 M tris pH 8.0, 0.3 M MgCl 2,

28% PEG 4000), 0.2 gtL microseeding solution (1:10,000 dilution of crystals grown over

the above reservoir solution), and 0.3 tL of a 44 mM n-octanoylsucrose solution

(Hampton Research). Crystals grown from these conditions appeared in 1-2 days and had

an intense yellow color, presumably due to bound PLP. Prior to data collection, crystals

were transferred to reservoir solution supplemented with 20% glycerol for 30 seconds

and flash cooled in liquid nitrogen.

The crystals belong to the space group P212 121 with unit cell dimensions a=88.9

A, b=89.3 A, and c=142.0 A, and contain two molecules ofsySufS per asymmetric unit.

Data were collected to 1.8 A resolution at ALS beamline 5.0.2 and processed using

DENZO and SCALEPACK7ý (see Table II.1 for data collection statistics).

II.D.2. Structure determination and model refinement

The structure of sySufS was determined by molecular replacement with AMoRe72

using a polyalanine-substituted model derived from ecSufS (PDB code 1JF9) 39.

Refinement was carried out using CNS73, protein model building was done in



XtalView 74,75, and Quanta (Molecular Simulations, Inc) was used for the construction and

fitting of the n-octanoylsucrose detergent molecule. Of 420 residues per monomer,

residues 7-414 were observed in electron density maps, with one chain break per

molecule (between 59 and 62 of chain A, and between 59 and 63 of chain B). See Table

11.2 for refinement statistics.

II.D.3 Cocrystallization experiments

Cocrystallization experiments were carried out in an attempt to obtain a structure

of sySufS in complex with substrate or reaction intermediates. Several protein samples

were used: the wild type sySufS (wt), the C372A mutant sySufS (C372A), and the wild

type sySufS reduced with NaBH 4 (red-wt). The amino acids used for cocrystallization

were obtained from Hampton Research. Cocrystallization experiments were set up in

different ways. First, the wt and C372A samples were cocrystallized with L-cysteine only,

at 0.5, 1.0, 1.5, 2.5, 5.0 and 10.0 mM, all with the n-octanoylsucrose additive. Both

hanging and sitting drops were set up, and drops were set up both with and without

microseeding. The concentrations of all components of the previous crystallization

conditions (section II.D.1) were maintained. Next, the wt and C372A were cocrystallized

with L-cysteine, L-alanine and L-serine. In this case, a 3-fold excess of the amino acid

was pre-incubated with the protein for 15 minutes prior to crystallization. Drops were set

up maintaining the crystallization conditions described in section II.D. 1, both with and

without microseeding. Finally, wild-type sySufS crystals were reduced with NaBH 4 and

cocrystallized with L-cysteine. An aqueous solution of 10 mM NaBH 4 in 0.24 % NaOH

was added to wild type sySufS and monitored by UV-Vis spectroscopy at 335 and 425

nm to ensure that reduction of the enzyme-PLP linkage was complete. After reduction,



the buffer was exchanged to 100mM HEPES pH 7.8 and 3% glycerol, the enzyme was

pre-incubated with L-cysteine and cocrystallization experiments were set up as described

above.

One crystal (slr62) obtained by cocrystallization of C372A-sySufS with L-

cysteine was of sufficient quality to collect data. This data (Table 11.3) was phased by

molecular replacement with AmoRe, yielding a model that was refined in CNS to R/Rfe

= 18.45 / 22.87. See Appendix 1 for a description of SufS / SufE cocrystallization

experiments.

II.D. 4. Reduction of sySufS crystals with NaBH4

Crystals of sySufS obtained as described in section II.D.1 were reduced as

follows. 0.5tL ofa IM solution of NaBH4 was added to a drop containing one single

and yellow sySufS crystal. This crystal (slr70) was cryoprotected and frozen as described

in II.D.1 and used to collect 158 frames of data, at which frame crystal decay prevented

further useful data collection. The data from slr70 extended to 1.95 A resolution (Table

11.3). Phasing was accomplished by molecular replacement, and the model was refined in

CNS without PLP to R/Rfre = 24.39 / 26.51. Maps calculated from the resulting model

clearly contained PLP in the same orientation as the published model.
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II.F. Tables and Figures

Table II.1: Data Collection Statistics for wild-type sySufS

a Rsym = (I hki i il(hkl) - <I(hkl)>)/ hkl i i (hkl) for n independent reflections and i
observations of a given reflection. <I(hkl)> = average intensity of the ith observation.
bNumbers for the highest resolution shell are shown in parentheses.

wavelength (A) 1.100
resolution (A) 50-1.80

Rsym (%)ab 6.2 (32.4)

total observations 979 036
unique reflections 99 625

avg redundancy 4

<I/o> b 18.1 (4.5)

completeness (%)b 94.4 (82.2)

Table 11.2: Refinement Statistics for wild-type SufS

a Rcyst = Zh Fo(h) - Fc(h) /I Fo(h), where Fo and Fc are the observed and calculated
structure factors, respectively. Rfee is calculated using the same equation with a test set of
reflections that are not used during refinement." Chain A/chain B.

resolution (A)
reflections (working/test)

Rryst/Rfree (%)a

residues

total protein atoms

total ligand atoms

total solvent atoms
disordered side chainsb

rms deviation

bonds (A)
angles (deg)

Ramachandran analysis
most-favored

allowed

generously allowed
disallowed

50-1.80

85,453/9531

19.4/21.8

811

6213

81

538
13/9

0.0098

1.35

655 (91.1%)
60 (8.6%)
2 (0.3%)

0



TFable 11.3: Data processing statistics from crystals slr62 and slr7O.

Crystal sir62 slr70

Resolution (A) 2.6 1.95

Rsymm 8.5 (35.7) 4.4 (34.1)

I/o 10.1 25.8

Redundancy 5.0 3.0

Completeness (%) 98.2 (96.0) 87.2 (85.2)



Figure II.1: The reaction catalyzed by the cysteine desulfurases (figure was obtained

from J. Martin Bollinger, Pennsylvania State University).
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Figure II.2: Overall fold of sySufS. (a) Stereoview of the crystal structure ofsySufS
monomer with secondary structural elements labeled as in reference 60. Strands in the
large domain are in capital letters, strands in the small domain are in lowercase letters,
and helices are numbered. PLP, glycerol (labeled "glyc") and n-octanoylsucrose (labeled
"oct") are depicted in spacefill, and active site cysteine C372 is depicted in sticks. Several
secondary structural elements in SufS differ from those in E. coli SufS: helices 2, 7 and
13 of E. coli SufS are absent in sySufS, and strand d of the E. coli enzyme is missing in
SufS, replaced spatially by strand a'. The chain break between helices 3 and 4 is marked
with two red asterisks. (b) Stereoview of the SufS dimer with one chain colored blue and
the other colored yellow. PLP, glycerol, active site cysteine C372, and n-octanoyl sucrose
are depicted as in a, and the chain break is again denoted with two red asterisks.



Figure 11.3: Superposition of sySufS and ecSufS in stereoview. The cartoon
representations of both enzymes are shown, with sySufS in teal and ecSufS in yellow.
PLP from both enzymes is shown in spheres colored as follows: grey, carbon; blue,
nitrogen; red, oxygen; orange, phosphorus.



Figure II.4: PLP-dependent enzyme fold type I: Diamino-pelargonic acid synthase,
PDB code 1QJ5. The enzyme is shown in cartoon representation with PLP shown in
sticks. Strands are colored yellow, helices blue, and PLP carbons green.

Figure 11.5: PLP-dependent enzyme fold type II: Tryptophan synthase, PDB code
1UBS. Colors are as in Figure II.4. The regulatory subunit is colored grey.

tri 1*



Figure 11.6: PLP-dependent enzyme fold type III: Alanine racemace, PDB code
1SFT. Colors are as in Figure II.4.

Figure 11.7: PLP-dependent enzyme fold type IV: D-alanine aminotransferase, PDB
code 1DAA. Colors are as in Figure II.4.



Figure 11.8: PLP-dependent enzyme fold type V: Glycogen phosphorylase, PDB code
1GPB. Colors are as in Figure II.4. For clarity, the N-terminal domains are colored grey.



Figure 11.9: Stereoview of the sySufS active site. The carbons of the PLP are colored
green, and sidechains near the active site are labeled by one-letter abbreviation and
number (carbons colored grey, oxygen red, nitrogen blue, sulfur yellow, phosphorus
magenta). The two monomers are colored as in Figure II.2b, and sidechains from the
yellow chain are labeled with one-letter abbreviation, number, and a lowercase b.
Glycerol bound at the active site is shown in thick sticks. Two red asterisks indicate the
chain break between helices 3 and 4.

Figure II.10: PLP-K231 imine linkage. Composite omit electron density map contoured
at lo is shown around the covalently bound PLP cofactor and glycerol in the active site.
Atoms are colored as follows: carbon, grey; oxygen, red; nitrogen, blue. Ca traces are
shown for both molecules in the dimer, with chains colored as in Figure II.2b.



Figure II.11: Superposition of sySufS (yellow) and IscS from T. maritima (purple).
C372, PLP, and glycerol are depicted in ball-and-stick, and are colored as follows: grey,
carbon; red, oxygen; blue, nitrogen; yellow, sulfur. In this figure, the red squares denote
where traceable density ends as a result of the disordered IscS active site loop (see text).
03 strands H and I are labeled.

Figure 11.12: The detergent binding site. This figure shows the electron density
surrounding the detergent binding site, with a 2Fo-F, omit map contoured at 1 Cy in dark
blue, and an Fo-F, omit map contoured at 1 ( shown in teal. The maps were calculated in
CNS and omit the n-octanoylsucrose detergent only.



Figure 11.13: The detergent binding site. This stereoview shows the location of the
detergent binding site with respect to the N-terminal and C-terminal domains and the
proximity of the n-octanoylsucrose carbon chain to the active site cysteine. sySufS is
shown in the same orientation and with the same colors as in Figure 11.2, with the
exception that PLP, glycerol and n-octanoylsucrose are shown in stick representation, and
the PLP carbons are shown in green. The active site cysteine loop is highlighted in teal,
as are the carbons of C372, which is shown in stick representation.



Figure 11.14: Empty detergent binding pocket. ESPript 76 was used to calculate the
sequence conservation of the sySufS residues surrounding the binding site of the n-
octanoylsucrose detergent molecule. The sySufS surface near this binding site in the
chain without bound detergent is displayed and colored by sequence conservation in
rainbow colors, with red being 100% conserved and blue representing 0% conservation.

Figure II.15: Detergent binding pocket. The sySufS surface of the chain with bound
n-octanoylsucrose is displayed and shown in the same orientation as shown in Figure
11.14. The detergent molecule is shown as sticks, colored as follows: grey, carbon; blue,
nitrogen; red, oxygen.



Figure 11.16: Photograph of sySufS crystals.



Chapter III: Structural Insights into Glycyl Radical Formation by

Pyruvate formate-lyase Activating Enzyme

III.A. Summary

Pyruvate formate-lyase activating enzyme is responsible for the generation of a

catalytically essential glycyl radical on G734 of pyruvate formate-lyase. The activating

enzyme, a member of the AdoMet radical superfamily, generates this radical via the

direct, stereospecific abstraction of a hydrogen atom from pyruvate formate-lyase.

Insight into the interactions between the activase and the loop containing G734 ofpyruvate

formate-lyase is provided by the structures reported here of the substrate-free and

substrate-bound forms of the activase. These first structures of a glycyl radical-forming

enzyme reveal how the glycine loop is positioned in the active site of the activase and the

conformational change the activase undergoes to bind substrate.

Note: This chapter has been submitted in manuscript form for publication.



III.B. Introduction

Pyruvate formate-lyase activating enzyme (PflAE) is a member of the "AdoMet

radical" or "Radical SAM" superfamily, which is characterized by both the presence of a

conserved CX3CX2C sequence motif that coordinates an essential 4Fe-4S cluster and by

the use of S-adenosyl-L-methionine (AdoMet or SAM) for 5'-deoxyadenosyl radical (5'-

dA*) generation, 2, 3. Cleavage of AdoMet to form 5'-dA* requires reduction of the 4Fe-

4S cluster with one electron, which is provided in Escherichia coli by flavodoxin4.

AdoMet radical enzymes act on a wide variety ofbiomolecules in numerous pathways.

For example, biotin synthase (BioB) 5, coproporphyrinogen III oxidase (HemN)6 and

molybdenum cofactor biosynthetic enzyme A (MoaA)7 are involved in vitamin/cofactor

biosynthesis; lysine 2,3-aminomutase (LAM) facilitates the fermentation of lysine8; spore

photoproduct lyase repairs UV-induced DNA damage9; and class III ribonucleotide

reductase (aRNR) activase, like PflAE, catalyzes the formation of glycyl radicals'0 . The

structural basis by which AdoMet radical enzymes are able to react with such a diverse

group of substrates, including dethiobiotin, DNA and proteins is a key question in the

field. The structure of PflAE from E. coli, described here, provides a first view of a

member of the AdoMet radical superfamily for which the substrate is an enzyme, and

thus the first activase for a glycyl radical enzyme (GRE).

Because of their oxygen-sensitive nature, GREs - 14 are proposed to have evolved prior

to the appearance of oxygen in the atmosphere, and some speculate that aRNR may be a

truly ancient enzyme' 5, as the original RNR was likely involved in the conversion of

RNA- to DNA-based life'6 . Unlike RNR, which converts ribonucleotides to

deoxyribonucleotides, Pfl is a central metabolic enzyme that converts pyruvate and

coenzyme A (CoA) to acetyl-CoA and formate' 7. Found in both prokaryotes and



eukaryotes, Pfl provides the sole source of acetyl-CoA for the Krebs cycle under

fermentative conditions. X-ray analysis reveals a common fold for GRE family members

as a ten-stranded P-barrel, with two sets of five-stranded sheets running anti-parallel to

each other and a buried glycine residue at the tip of the second of two 0 finger motifs' -

23. In one of the more fascinating activation reactions in biology, PfIAE (a monomer of

28 kDa) stereospecifically abstracts a hydrogen atom from residue G734 of Pfl

(homodimer of 170 kDa), generating the catalytically relevant glycyl radical species24.

Because G734 is buried 8 A from the protein surface i', the direct abstraction of a hydrogen

atom from this residue is difficult to conceptualize. Once established, the glycyl radical

is surprisingly stable25, catalyzing multiple turnovers via a putative active site thiyl

radical. Though stable under anaerobic conditions, the radical-harboring glycine is

susceptible to destruction by oxygen exposure, which results in irreversible cleavage of

the polypeptide and inactivation of the enzyme26. Interestingly, some organisms have

developed a mechanism to restore Pfl activity after oxygen exposure. A short protein with

homology to the last 59 residues of Pfl, including G734, is activated by PflAE and

associates with cleaved Pfl to yield a working enzyme complex27. This short protein,

called YfiD in E. coli, is thought to act as a "spare part" to repair oxygen-cleaved Pfl with

minimal energy expenditure. Thus both Pfl and YfiD are natural substrates for PflAE in

E. coli. In vitro, peptides of as few as seven residues containing the sequence

surrounding G734 can also act as substrates24. In order to understand how the AdoMet

radical activases catalyze formation of glycyl radicals, we solved the structure of PfiAE

in both the substrate-free (AE) and substrate-bound (pept-AE) forms. Our results

support the proposal that a small domain of Pfl harboring G734undergoes a



conformational change, thereby positioning G734 in close proximity to the AdoMet bound

at the active site of PflAE.

III.C. Results

III.C. 1. PflAE Overall Fold

PflAE is a monomeric, single-domain enzyme, and with 245 amino acids, it is the

smallest AdoMet radical enzyme of known structure (see Methods, Tables II.1, 11.2 and

Figures III. 1 and 111.2). Both the 2.25 A resolution AE and the 2.8 A resolution pept-AE

structures show a partial TIM barrel fold with a 4Fe-4S cluster ligated by the canonical

CX3CX2C motif. Although the AE crystals were grown in the presence of AdoMet, this

co-substrate is observed only in the pept-AE structure, where it ligates the 4Fe-4S cluster

and packs against the 7-mer RVSGYAV peptide substrate (Figures III.1, 1I.2). PflAE

consists of the (3/a)6 "AdoMet radical " core and, unlike the other AdoMet radical

enzymes, few secondary structural elements outside of the core fold are present to "close

off" the opening of the partial barrel (Figure 111.3). Only 65 amino acids of PflAE are

not part of the core region, including P31', loop A, loop C, and a6 (Figure 111.3). The C-

terminal "top" of the partial barrel is covered by two long loops located after strands p1

(loop B) and P6 (loop C). The N-terminal "bottom" and the lateral opening of the barrel

appear highly solvent-exposed.

III. C. 2. AdoMet Radical Core

The AdoMet radical core fold of PflAE consists of a "splayed" sheet similar to

those observed in structures of other AdoMet radical family members5 -8 (see Table 111.3

for RMSDs). The active sites of these enzymes are located within the lateral opening and



are made up mainly of residues originating from the C-terminal ends of each f3 strand

within the core's sheet (Figure 111.3). The 4Fe-4S cluster of PflAE is located at the C-

terminal end of the partial barrel (Figure 111.3), with the unique iron coordinated by

AdoMet through the amino nitrogen (2.2 A) and carboxyl oxygen (2.2 A). The distances

observed between AdoMet and the cluster (Figure III.4a) are in agreement with the

spectroscopic data observed with this enzyme28 - 30 and are similar to those seen in the

other AdoMet radical structures 5- 8 . These close interactions between AdoMet and the

cluster are consistent with the theory that inner-sphere electron transfer can occur

between the cluster of PflAE and AdoMet to generate 5'-dA*29. Several residues that

form the AdoMet binding site are part of motifs conserved amongst all of the AdoMet

radical enzymes, such as the GGE motif (G77, G78, and E79 in PflAE) and the GxIxGxxE

motif(PflAE residues V168, V170, G172 and E175)31. As discussed previously31, these two

motifs bind the AdoMet methionine directly and serve to stabilize the binding site for the

adenine moiety, respectively (Figure III.4b). Additional interactions with AdoMet

(Figure III.4b) are similar to those observed in other AdoMet radical enzymes, although

the identity of the residues is often not conserved5 - 8, a difference due in part to the large

number of contacts made by backbone atoms. One interesting variation is the presence of

two histidines, H37 and H202, which pack against the AdoMet adenine ring. As discussed

below, these residues are likely important for the ability of PflAE to bind a protein

substrate. Finally, D104 and R166 are the two protein residues that are located closest to

C5' of AdoMet in this structure, but neither makes an exceedingly close hydrogen

bonding interaction with either AdoMet or the peptide substrate (Figure III.4). These two

residues are completely conserved in PflAE sequences. Taken together, the high

conservation and suggestive positioning observed leads to the theory that these two



residues are in some way involved in catalysis through control of the 5'-dA*

intermediate, orientation of the substrate or another less obvious role. This remains to be

shown by mutagenesis studies.

III. C. 3. Peptide Binding

The peptide (RVSGYAV) binds in a bent conformation (Figure III.4c, III.4d)

across the lateral opening of the partial barrel, interacting primarily with residues from

loops A, B and C (Figure 111.3). Six of the seven amino acids in the peptide are visible in

the structure, with the first amino acid, R731, disordered due to a nearby crystal lattice

contact. Binding of the peptide seals the active site from solvent, burying the cluster and

AdoMet and providing a protected environment for radical generation (Figures 111.5,

111.6). The binding of peptide also appears to stabilize AdoMet binding to PflAE, since

no discernible AdoMet density is present in the substrate-free structure, despite the fact

that AdoMet was present during crystallization (Figure III.1). Although previous

spectroscopic studies28' 29' 30' 32 have shown that AdoMet binds to PflAE in the absence of

substrate, and our data do not explicitly contradict these results, the lack of sufficiently

substantial density for AdoMet in its binding site in the substrate-free form (Figure 111.7)

suggests that substrate serves to stabilize AdoMet in its binding site. This possibility is

attractive from a biological perspective because it provides a potential mechanism to

prevent uncoupling between AdoMet cleavage and glycyl radical generation: only in the

presence of substrate would AdoMet favor a stable catalytic conformation. Though the

AdoMet is buried in the pept-AE structure, a large surface area including the peptide

itself and the N-terminal sides of some [3 strands remains solvent exposed. Presumably,

these surfaces will be buried in the full Pfl-PflAE complex.



The peptide substrate in the pept-AE structure corresponds to the seven-residue

consensus sequence around G734 ofPfl: RVSGYAV (Km = 0.22 mM, Vm = 11

nmol/min'mg, compared to 1.4 piM and 54 nmol/min mg for pfl)24. This motif is highly

conserved in Pfl. However, there is poor consensus at this site between all glycyl radical

containing enzymes, with only the residues corresponding to R73 1 and G734 being

completely conserved (Figure 111.8). Specific residues on PflAE required for or involved

in the activation reaction have not been examined in detail, although it is known that the

enzyme harbors no activity towards a peptide corresponding to the similar Class III RNR

consensus sequence, RVCGYLG, which substitutes a Cys for S733, a Leu for A736 and a

Gly for V737
24

Despite some observed specificity towards the Pfl glycine loop sequence24,

contacts are made mainly to peptide substrate backbone atoms (Figure III.4c). In

contrast, all of the contacts to the peptide are made by side chains of PflAE, each of

which are highly conserved and include a DGxGxR motif located on loop A (Figure 111.3,

III.4c). The key interactions made by PflAE to bind peptide serve three purposes: (1)

orienting the glycine in the active site, (2) controlling the overall peptide conformation

and (3) imparting selectivity. Three specific residues ensure the proper orientation of

G734 with respect to AdoMet in the active site: D16 of the DGxGxR motif and fully

conserved N38 hydrogen bond to the glycine amino and carboxyl groups, while H37

reaches across the AdoMet adenine ring to help orient the residue (Figure III.4c). These

specific interactions ideally position G734 for hydrogen atom abstraction, with an AdoMet

C5' to G734 Ca distance of 4.1 A (Figure III.4c), similar to those observed in BioB (3.7

A)5 and KAM (3.8 A)8. The peptide conformation is dictated by the van der Waals

interactions with loop A and hydrogen bonding interactions provided by K208 and N38 to



A 736. Finally, selectivity appears to arise from interactions with F25 at residue A 736 (F25

should prevent binding of a larger amino acid) and with L204 and H207 at Y735 (through

packing and hydrogen bonding interactions) (Figure III.4c). Because the other

interactions observed in this structure are to peptide backbone atoms, specificity at these

other positions is likely governed by the effect of side chain identity on the conformation

of the peptide backbone itself. Unfortunately, crystal packing prevents modeling ofR73 1,

leaving its role in the activation reaction and the reason for its conservation unclear,

though others have proposed that it is involved in the stabilization of the glycine loop

structure in the native state of a GRE 19. The pept-AE interactions observed here are not

electrostatic in nature, consistent with the observation that the activation reaction is not

affected by increasing the salt concentration of the activation reaction buffer33.

Comparison of the AE and pept-AE structures (RMSD = 0.774 A) allows us to

distinguish any structural rearrangements associated with AdoMet and peptide binding

(Figures 111.9 - III.11). The major conformational change upon binding of the peptide

occurs in loop A, which harbors the activase-specific DGxGxR motif (D16G17xG19xR2 1 in

PflAE) (Figure III.9a). As the loop swings up towards the active site to form contacts

with the peptide, the largest movement occurs in residue D16, which is displaced -10A at

the CO atom (Figure III.9b). R21 of the DGxGxR motif anchors the beginning of strand

p31 and may stabilize the 0 sheet during this motion. This movement is likely essential to

the activation reaction, in enabling a structural change in Pfl and/or orienting the glycine

loop in the active site. Several other side chain rearrangements or reordering occur and

appear important in forming the AdoMet binding site (H37 , L199, H202) and binding

peptide (N38, H207, K208).



III. C. 4. Docking Studies

Areas of high conservation on the PflAE surface that could be involved in

protein-protein interactions, such as with Pfl or flavodoxin, were identified (see

Methods). These include: (1) the active site, (2) the N-terminal side of the 03 sheet, and

(3) behind loop B (Figure III. 12a). The preservation observed at the active site (region 1)

was expected and is more extensive than just the area involved in binding the peptide.

Regions 1 and 2 are adjacent to one another, suggesting that the two areas may together

form the PFL binding surface. The location of region 3 proximal to the 4Fe-4S cluster is

ideal for interactions with flavodoxin.

A theoretical model of the mode of interaction between Pfl and Pf1AE was

generated by manual and computational docking studies (see Methods and Figures 111.13

and III.14). The best docking model was obtained using the pept-AE structure and a

portion of Pfl with high homology to YfiD (the small protein capable of undergoing

activation by PflAE) 27. This region of Pfl will be referred to as a "radical domain" (RD)

and corresponds to Pfl residues 712 - 759 (Figure III.12b, III. 12c). In the docking model,

the glycine loop of RD points into the active site of AE, positioned similarly to the

peptide observed bound in the experimental maps (Figure III. 12d - f, III. 15), though

increased conformational flexibility allows the peptide to bind in a more extended

conformation towards its C-terminal end. This difference in conformations could also be

due in part to the fact that RD was treated as a rigid body in the docking studies and not

allowed to adjust to its new binding environment. Despite this rigid body treatment, the

distance predicted between AdoMet and RD G734 Ca (4.6 A) in the docking model agrees

reasonably well with that observed between the AdoMet and G734 Ca of the bound

peptide (4.1 A). The interactions between H37, N38 or L204 and RD are similar to those



observed in the pept-AE structure, though the bidentate interaction of N38 and the

contacts between F25, K208 and the peptide are lost. Residues from PflAE and RD in the

docking model are also poised to make several additional interactions (Figure III. 12f),

including RD residue R731 with PflAE residues Elo (the side chain of which is disordered

in this structure), D16, N38 and D104. In addition, R753 of RD could interact with E197 or

the C-terminus, highly conserved PflAE residues N3s and H202 are positioned to interact

with RD glycine loop and RD Y735 stacks against PflAE L204, which is always

hydrophobic (Figure III.12f). Of the residues involved in these possible interactions, E1o,

D1 6 , N38 and H202 are notable in that they are fully conserved among the PFL activases,

and E197 is always either glutamate or aspartate. RD also contacts conserved surface

regions 1 and 2 (Figure III.12e), providing a reasonable explanation for their preservation

across the activases.

III.D. Implications of the PflAE structures

The AdoMet radical superfamily is capable of catalyzing some of the most

difficult chemical reactions known in biology via the breaking ofunactivated C-H bonds

to form substrate radicals2' 3. The structures described here illustrate the surprising

plasticity of the core fold and extend our understanding of the activation reactions of the

GRE family. The AdoMet radical structures5- 8 show that, in general, the size of the

specific enzyme tends to increase as its substrate gets smaller, a point emphasized by

PflAE's small size and conspicuous lack of non-core secondary structural elements. As

the most compact of the structurally characterized AdoMet radical enzymes, with 245

residues compared to next-smallest MoaA's 340 residues, PflAE defines the minimal

machinery required for generation of 5'-dA*. The majority of interactions between PflAE



and its substrate occur outside of the 180-residue AdoMet radical core, as less than one

half of the contacts between the PflAE and the peptide substrate originate from within the

core.

The mechanism of activation of Pfl and other GREs is an open question, though

six independent structures18 - 23 of inactive GREs have revealed their 10-stranded f3 barrel

folds. Although the radical-harboring G734 is buried 8A from the surface of the protein'1 ,

hydrogen atom abstraction by 5'-dA* to form the glycyl radical occurs directly and

stereospecifically24. In order to allow access of the activase to the catalytic glycine, a

dramatic conformational change within Pfl would have to occur. This ATP-independent

process could proceed in two ways, the first through the action of the activase via

conformational changes induced by its binding. Alternatively, Pfl itself could be

conformationally flexible, at times adopting a more open conformation that exposes G734,

but which is less thermodynamically stable than the conformation observed in the crystal

structures.

The findings presented here provide important insight into the possible modes of

interaction in the full physiological complex and suggest that Pfl is a modular protein

capable of conformational flexibility, although they do not answer the question of how

the necessary conformational changes occur. Because the peptide used in these studies is

known to stimulate AdoMet cleavage by PflAE24, the pept-AE structure is relevant to the

physiological reaction. The location of peptide binding and the AdoMet C5' to G734 Ca

distance are consistent with the substrate binding sites observed in the other AdoMet

radical enzyme structures5' 8. Additionally, the torsional angles of G734 observed in this



structure are similar to both those seen in the Pfl structure 18' 21 and those predicted for the

Pfl glycyl radical by quantum-chemical studies of the EPR parameters of the Pfl radical34.

The pept-AE structure illustrates one possible mode of interaction between Pfl and the

activase in which the glycine loop extends across the surface of the PflAE active site.

The unexpected motion undergone by loop A to bind substrate is likely a feature

conserved among all of the activases, as evidenced by high conservation of the DGxGxR

motif and by the conservation of the residues that come into contact with the motif after it

binds substrate. This loop could play a major role in the conformational change of Pfl by

shifting the glycine loop into the PflAE active site, and it is most certainly essential to the

proper orientation of G734.

Through sequence comparisons and docking studies, we were able to identify a

fragment of Pfl, residues 712 - 759, that we believe is the main unit that interacts with

PflAE in the full complex. This 48-residue fragment forms a small domain that connects

to the 03 barrel of Pfl through a short loop. Rotation of this "radical domain" (RD) about

a single hinge point moves the glycine loop out of the barrel, making it accessible to the

activase (Figure III.16). This motion could occur with few rearrangements of Pfl and

minimal steric clashes. Our current view of the Pfl-PflAE complex formation is that

PflAE binding either helps position RD outside of the Pfl barrel or captures a

conformationally flexible RD in its "out" conformation. With RD rotated out of Pfl to a

sufficient degree, PflAE loop A can swing up to bind and orient G734 properly. The

resulting docking model is attractive in terms of the positioning of G734 with respect to

the AdoMet, explaining the two regions of PflAE surface conservation, and providing a

role for conservation of residues Dis, H37 and N38 in RD binding. After radical



generation, RD rotates back into the Pfl barrel, likely with the help of PflAE to shield the

radical. Presumably after glycyl radical formation, a conformational change of the

glycine loop must serve to lock the loop in place, preventing destruction of the protein

radical. After generating a radical in one monomer of the Pfl dimer, PflAE's task is

complete. Unknown allosteric effects are thought to prevent activation of the second

monomer, explaining the observed half-of-the-sites reactivity18 . Since RD used in these

docking studies has an identical sequence to the C-terminal 48 residues of YfiD,

monomeric YfiD is expected to interact with PflAE in a similar way.

The Pfl system is responsible for a fundamental, metabolically essential chemical

transformation and is believed to be representative of one of Nature's most ancient

enzymes. Our PflAE structures identify the regions and residues involved in activation

and complex formation with Pfl, and provide a much needed structural framework for

future experiments on this system.

III.E. Materials and Methods

III.E. 1. Crystallization ofAE

PflAE was purified according to published procedures35s 36 except that 1 mM DTT

was included in all buffers. The peptide (RVSGYAV, purity 2 98 %) was obtained from

Celteck Peptides. AdoMet was synthesized using AdoMet synthetase as previously

described36 . Crystals of AE were obtained in a Coy anaerobic chamber under an

atmosphere of 5% H2 / 95% Argon gas mix at room temperature via hanging drop vapor

diffusion by mixing 1 [tL protein (0.730 mM in 50 mM HEPES, 200 mM NaCl, 1 mM

DTT, 7.25 mM AdoMet, pH 7.5) and 1 jtL crystallization buffer (0.1 M Tris pH 8.5, 25%



PEG 3350). Drops were equilibrated against a well solution of 2.5 M ammonium sulfate

to improve reproducibility and the crystallization time (typically four days). To improve

diffraction quality, a detergent (0.11 mM octaethylene glycol monododecyl ether, C1 2E8,

Hampton Research) was added to the crystallization drop and to all cryoprotectant

solutions. Crystals were cryoprotected with a final concentration of 20% PEG 400 or

20% 2-methylpentane-2,4-diol (MPD) added to the crystallization solutions, followed by

freezing in liquid nitrogen in the anaerobic chamber.

III.E.2. Data collection and structure determination ofAE

Multiple Anomalous Dispersion (MAD) and native datasets were collected at the

Stanford Synchrotron Radiation Laboratory (SSRL) on beamlines 9-1, 9-2 and 1-5, and at

the Advanced Light Source (ALS) on beamline 5.0.2. MAD datasets were collected in

200-300 wedges using the inverse beam technique at the iron absorption edge, inflection

and a remote wavelength. The highest quality datasets are presented here (Table III.1).

The data processed in mosflm 43 and HKL200044 scaled reasonably well in space groups

C2 (three molecules per asymmetric unit, ASU), P3 1 (two molecules / ASU) and P3 12 1

(one molecule / ASU). The data were of poor quality as judged by X2 and mosaicity

values (which ranged between 1.0 and 1.8) and were initially difficult to index due to

poor spot profiles and multiple lattices. Attempts to phase the data in P3121 were

unsuccessful, and the first reasonable maps were generated in P3 1. In the P3 1 space

group, two iron sites (one for each cluster per molecule) were found by SOLVE 37

(www.solve.lanl.gov) using SAD data obtained with the iron peak wavelength dataset.

These sites matched anomalous difference Patterson maps calculated by XtalView39 and



yielded interpretable maps to 3.5 A resolution after refinement of the iron sites in

SHARP"3 (FOM (acent/cent) = 0.65 / 0.48) and solvent flattening in SOLOMON45.

III.E.3. Initial model building and refinement ofAE using MAD data

A model comprising two molecules (residues 5 to 230) was built in XtalView into

solvent-flattened experimental maps calculated to 3.5 A resolution. After building the

cluster binding loop and placing the cluster ligands into density, the individual iron sites

were fit and refined to calculate maps to 2.87 A resolution. The higher resolution maps

were used to further complete the model, and approximately 40% of the residue side

chains were added. Two chain breaks per molecule were observed, the first at residues

46-48 and a second break of unknown length toward the C-terminal end of each chain.

The side chains of residues at the C-terminus could not be modeled unambiguously.

High R factors and overfitting of the model in CNS 40, possible signs of twinning, led to

use of the 1 0 0 -1 -1 0 0 0-1 twin law (which corresponds to the h,-h-k,-l symmetry

operator) in SHELXL4 6 with a twin fraction of 0.5 (perfect merohedral twinning), though

the intensity distribution of the data was normal and did not indicate twinning in any of

the twin tests used. Refinement by this strategy yielded encouraging R factors (R =

28.82, Rfree = 34.69), though no further improvement was possible. These problems

(possible twinning and poor data quality) initially prevented the complete refinement of

the model. A second crystal form was then identified, allowing us to surmount this

problem.

III.E.4. Crystallization ofpept-AE



Substrate-bound PflAE was also crystallized at room temperature using hanging

drop vapor diffusion in an anaerobic chamber. The initial conditions were identified by

sitting drop vapor diffusion using high throughput trays and the Hampton Index Screen.

Crystals formed in approximately six days from drops comprised of 1 ILL protein (0.68

mM protein, 6.80 mM AdoMet, 6.95 mM peptide, 50 mM HEPES, 200 mM NaCl, and 1

mM DTT) and 1 iL crystallization buffer (100 mM HEPES pH 6.8, 3.5 M sodium

formate). Larger crystals were obtained after optimization of the original condition by

addition of detergents (Detergent Screens, Hampton Research). A single drop containing

0.2 mM 2,6-dimethyl-4-heptyl-p-D-maltopyranoside as an additive yielded several large

(80 gIm x 80 gtm x 100 gm) crystals of good enough quality for data collection. These

crystals were cryocooled with liquid nitrogen directly from the drop in the anaerobic

chamber and stored for synchrotron data collection.

III.E.5. Data collection and structure determination ofpept-AE

Native and MAD datasets were collected on beamlines 9-1 and 9-2 at SSRL. The

data were processed with HKL2000 in space group P6 122, with 1 molecule per ASU and

a solvent content of 54.2% (Table III.1). Because molecular replacement with the model

built from the first crystal form did not yield a solution that refined well, MAD data was

used to obtain experimental maps. One site corresponding to the iron sulfur cluster was

identified with SOLVE and refined in SHARP. The resulting maps were solvent

flattened in SOLOMON (through SHARP) to give interpretable density to 2.77 A

resolution (FOM (acent/cent) = 0.47 / 0.33).

III.E. 6. Model building and refinement ofpept-AE



The model built from the first crystal form was fit into the new experimental maps

manually, followed by rigid-body refinement in CNS. The new maps allowed placement

of most side chains and correction and placement of the entire polypeptide backbone

(residues 2-245), with no chain breaks, as well as placement of the cluster, AdoMet and

peptide substrate. Calculation of phase combined 2Fo-F, and Fo-F, maps in CNS using

the MLHL target allowed confident assignment of the peptide substrate orientation.

Refinement was carried out in CNS with no sigma cutoff to Rwork = 22.9 and Re = 26.1

with 5.2% of reflections in the test set (Table 111.2). The final model contains PflAE

residues 2-256, 4 iron atoms, 4 sulfur atoms, 27 AdoMet atoms, six peptide substrate

residues, 16 waters and five formate molecules (10 atoms) from the crystallization

conditions.

III.E. 7. Final model building and refinement ofAE using pept-AE structure

After the pept-AE model was refined to reasonable R factors, these coordinates,

minus the peptide substrate, were used to refine against data from the first crystal form.

Refinement was carried out in CNS and SHELXL in C2, P31 and P3 121 to determine the

proper space group. Fortunately, refinement using the new (corrected) model in CNS in

P3121 (with no twin law) gave better R factors and improved electron density maps.

Apparently the initial experimental maps were simply too poor to correctly build parts of

the model, in particular the loop following 06, which extends 25 A over the cluster from

the C-terminal end of the 0 sheet and includes 25 residues. Rounds of manual rebuilding

and refinement in CNS with no sigma cutoff were done to a final Rwo and Rf, of 23.9

and 32.6, respectively, using a test set of 9.5% of reflections (Supplementary Table 2).



This final model contains residues 1-245 of PflAE, 4 iron atoms, 4 sulfur atoms, and 49

waters.

We have confirmed in several ways that our AE data is indeed not twinned. First,

there was no indication of twinning in the cumulative intensity distribution of the AE data

(the following programs and servers were used to confirm: Merohedral Crystal Twinning

Server (http://nihserver.mbi.ucla.edu/Twinning/) 47, the Merohedral Twin Detector:

Padilla-Yeates Algorithm (http://nihserver.mbi.ucla.edu/pystats/) 48, Scala49 in ccp450 and

CNS). Further tests on the AE data processed in P3 121 did not indicate any twinning in

that space group. Second, it is unlikely that a strong anomalous signal would be detected

- and then used to successfully generate reasonable experimental maps - in perfectly

twinned data. Third, the self rotation functions calculated in for this data are completely

consistent with the space group P3 121. Fourth, the twin operator (h,-h-k,-l, equivalent to

k,h,-l) used for refinement in Shelxl is actually a symmetry operator for space group

P3121. Finally, we were able to obtain lower R factors with the corrected model with

normal refinement in CNS. We therefore attribute the overfitting observed in our final R

factors and the high Rfree to poor data quality, and limit our discussion of the AE model as

a result.

III.E. 8. Model preparation for docking studies

The AE and pept-AE models were docked with a fragment of the PFL model

(RCSB code 2PFL)'8 corresponding to the portion of PFL homologous to the small

protein YfiD27 (residues 700 - 759). This fragment, termed the PFL radical domain

(RD), was further truncated at the N-terminus to improve docking results and minimize



steric clashes. When the pept-AE was used in docking studies, the peptide residues were

deleted from the model before manipulation.

II.E. 9. Manual docking

A manual docking model of the RD with pept-AE was generated by orientation of

the glycine loop of the RD in the active site in as close a conformation as possible to that

of the bound peptide (see Figure III.1). This docking model (Figure 111.6) was used as a

guide to help evaluate the complexes output by ZDOCK41.

III.E. 10. Docking with ZDOCK

The docking algorithm ZDOCK generates the possible binding modes of two

proteins based on their shape complementarity, electrostatics and desolvation energies41.

ZDOCK was used as described on the program's website (http://zlab.bu.edu/zdock/).

Residues ofpept-AE and the RD were blocked from evaluation by the program if their

involvement in the catalytically relevant complex was not expected (i.e., residues located

on the opposite side of the AE with respect to the active site, see Figure III. 14).

III.E. 11. Evaluation of docking models

The top 20 complexes as scored by ZDOCK from each of six separate trials were

evaluated based on the position of Pfl G734 with respect to the AE active site and distance

between G734 Ca and AdoMet C5'. Also, the degree of conservation of residues on the

surface of PflAE, calculated using ESPript42, was used to evaluate the docking models.

The eight most reasonable models were then refined using rigid-body refinement and

minimization in CNS (with no X-ray term) and reevaluated based on the criteria



mentioned above as well as possible hydrogen bonding contacts, interaction of RD with

conserved AE residues, and agreement with biochemical data on the involvement of

specific Pfl residues in complex formation. In particular, R731 of Pfl is necessary for the

Pfl activation reaction, while the hydroxyl groups of S733 and Y735 are not required24. The

model reported here (ZDOCK score of 31.12) was selected as the best complex based on

the criteria discussed above, although it was not the highest-scored in the automated

docking algorthims.

III.E. 12. Equipment and Settings

All figures were generated with Pymol5s with the exception of Figure 111.8, which

was generated with ClustalW52 and Weblogo53. Adobe Photoshop was used to add labels

to all figures.
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III.G. Tables and Figures

Table III.1: Data Collection Statistics.

Dataset

Vavelength (A)

Space Group

Resolution (A)

Rsymm (%)

Unique Obs

I/sigma

%Complete

Redundancy

a

AE

Peak Inflection Remote Native

1.73542 1.74166 1.37755 1.00000

P3,21 P3,21 P3,21 P3,21

2.87 3.20 3.70 2.25

7.1(30.5) 7.0(27.8) 7.9(26.0) 7.8(32.2)

9997(1021) 7363(742) 4680(460) 11183(1103)

36.9(7.4) 37.6(8.3) 21.1(7.1) 23.9(4.0)

100.0(100.0) 99.9(100.0) 99.8(100.0) 99.0(93.7)

10.8(10.9) 10.7(10.8) 5.0(4.9) 9.6(4.4)

58.09 58.25 58.27 57.98

117.27 117.64 117.85 117.37

Values in parenthesis refer to the high-resolution bin.
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pept-AE

Peak Inflection Remote Native

1.73955 1.74158 1.36241 1.00000

P6122 P6,22 P6,22 P6,22

2.90 2.80 2.70 2.80

9.8(42.0) 8.1(36.9) 7.3(35.9) 5.2(35.6)

12853(1152) 12677(1107) 14585(1406) 8085(731)

18.6(2.7) 13.1(3.1) 19.9(3.1) 25.4(3.63)

98.5(87.6) 88.7(78.6) 98.6(95.8) 98.7(94.3)

9.8(5.8) 5.4(5.0) 5.5(4.0) 5.5(4.4)

74.56 74.41 74.43 74.35

187.98 187.46 187.61 187.45



Table 111.2: Refinement Statistics.

?.esolution Limits (A)

V Unique Reflections

Reflections in Test Set

Rwork (%)a

free (%)

Average B factor (A2)

Protein

4Fe-4S

AdoMet

Peptide

Water

Bond length deviation (A)

Bond angle deviation (0)

Pept-AEI AE

38.19-2.25

19688

1869

23.9

32.3

56.3

55.7(1902)

44.3(8)

N/A

N/A

59.0(49)

0.006

1.4

Values in parenthesis refer to number of atoms.
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29.13 - 2.77

8376

438

22.9

26.1

80

76.9(1872)

59.7(8)

75.7(27)

104.4(42)

81.0(16)

0.008

1.5



structures of AdoMet radical proteins.

AE

BioB

HemN

MoaA

LAM

Pept-AE

0.77 (245)

2.04 (100)

1.99 (109)

1.56 (145)

2.05 (101)

RMSDs are shown in A.
shown in parenthesis.

AE

2.08 (98)

2.01 (115)

1.47 (140)

1.97 (107)

The number of CQx atoms matched in the calculation is
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Table II.3: RMSDs between



Figure III.1: Stereoview of AE active site with the 4Fe-4S cluster and protein
sidechains shown in sticks and colored as follows: iron, ruby; sulfur, gold; carbons, grey;
oxygens, red and nitrogens, blue. Water molecules are shown as red spheres. A 2Fo-F,
electron density map calculated by CNS and contoured at 1 o is shown in blue mesh.
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Figure 111.2: Stereoview of pept-AE active site with the 4Fe-4S cluster, AdoMet and
peptide and protein sidechains shown in sticks and colored as in Figure III.1 with the
following exceptions: AdoMet carbons are colored green, and peptide substrate carbons
are teal. A phase-combined 2Fo-F, electron density map calculated by CNS and
contoured at 1 a is shown in blue mesh.
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Figure 111.3: Stereoview of PflAE monomer with secondary structural elements
assigned numerically (helices in cyan, strands in yellow). The loops following strands
P31', 3 1, and 36 are labeled A (red, residues 10-20), B (purple, residues 27 - 47) and C
(orange, residues 201-225). The 4Fe-4S cluster (ruby and gold), AdoMet (green carbons)
and peptide (teal carbons) are depicted in sticks with oxygens colored red and nitrogens
colored blue.
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Figure 111.4: Substrate and cofactor binding. Colors are as in Figure 111.3, with
protein side chain carbons in grey. Conserved motifs32 are labeled in blue. Composite
omit maps are shown as a blue mesh and are contoured at 1 a. Hydrogen bond lengths
and other distances are represented as red dashed lines. a Detail of cluster - AdoMet
interaction with composite omit map contoured around the AdoMet. Distances of interest
between the unique iron of the 4Fe-4S cluster and AdoMet atoms are shown. b AdoMet
- protein interactions. R166 and D104 do not make hydrogen bonds to either substrate, but
may be involved in catalysis. c Peptide - protein interactions. d Omit map contoured
around the peptide.

d .1 '
/7J4

Loop A
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Figure 111.5: Stereoview of active site showing detail of AdoMet - peptide
positioning. The 4Fe-4S cluster, AdoMet and the peptide are shown in sticks colored as
follows: iron, ruby; sulfur, gold; AdoMet carbons, green; peptide carbons, teal. The
protein surface is shown colored by atom type (protein carbons, light grey; oxygens, red;
nitrogens, blue).
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Figure III.6: Surface representation of pept-AE showing that no AdoMet (green) or
4Fe-4S cluster atoms (ruby and gold) are solvent exposed when substrate is bound. The
bound peptide is in teal carbons with AE carbons in grey, oxygens in red and nitrogens in
blue.
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Figure 111.7: Comparison of the electron density maps of the substrate-free and
substrate-bound PflAE models at the AdoMet binding site. Colors are as in
Supplementary Fig. 2. a The pept-AE model is shown with a phase-combined 2Fo-F,
electron density map calculated by CNS and contoured at 1 . b The AE model with a
2Fo-F, electron density map calculated by CNS and contoured at 1o is shown. To
visualize the AdoMet binding site, we show AdoMet from the pept-AE model
superimposed on the AE model. There is clearly no density for AdoMet in the AE model
electron density maps, beyond a relatively small amount of density at the 4Fe-4S unique
iron, which may result either from AdoMet interacting with the cluster without becoming
well ordered in its binding site or from undefined buffer atoms. We have modelled this
density as a water. It does not appear that the substrate binding site is occluded by
components of the crystallization conditions, though this is a distant possibility and all
crystal lattice contacts are located far from this site.
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Figure 111.8: Glycyl radical enzyme consensus motifs. Alignments were performed
with ClustalW48 using 15-16 sequences for each GRE subfamily, and logos were
generated using WebLogo49. The letter size represents the frequency at which the residue
is observed at that position in the sequence. Basic residues are colored in blue, acidic
residues in red, and others in black. Consensus motifs shown are: a Pfl. b Class III
RNR. Residues at position 2 are Val and Thr. c Glycerol dehydratase. Residues at
position 7 are Ala, Asp and Val. d 4-Hydroxyphenylacetate decarboxylase. Residues at
position 7 are Ala, Asp and Gly. e Benzylsuccinate synthase. f Overall GRE. Residues
at position 2 are Val and Thr; at position 7 are Ala, Val, Gly, Asp.

aRVSGYAV

RVAGYSA
RV GxSA RVcGY
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Figure III.9: Conformational change of PflAE upon substrate binding. Colors are as
in Figure 111.3 unless otherwise noted. a The AE and pept-AE models were
superimposed and colored in gray, with areas undergoing a conformational change
highlighted (blue, AE; red, pept-AE). Loops A, B and C are labeled. b Close-up view of
the active site showing side chain rearrangements upon substrate binding. AE carbon
atoms are colored blue, pept-AE carbon atoms red, oxygen red, and nitrogen blue.
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Figure III.10: Conformation of Loop A in the AE model. This figure shows two
views of LoopA with 2Fo-Fc composite omit density calculated in CNS and contoured
here at 1a. The AE model is displayed in sticks and colored as in Figure III.1, with the
exception of the Loop A residues which for clarity have yellow carbons. For comparison,
Loop A from the pept-AE model is displayed as lines, with carbons colored magenta.
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Figure III.11: Conformation of Loop A in the pept-AE model. This figure shows
LoopA from the pept-AE model in a similar orientation as in Figure III.2, with 2Fo-Fc
composite omit density calculated in CNS and contoured here at Ior. The AE model is
displayed in sticks and colored as in Figure III.2, with the exception of the Loop A
residues which for clarity have magenta carbons. For comparison, Loop A from the AE
model is displayed as lines, with carbons colored yellow.
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Figure III.12: Docking studies of PflAE. Colors are as in Figure III.3 unless specified.
a Surface representation of the pept-AE colored by sequence conservation as calculated
by ESPript4 , showing the same view of the pept-AE as in Figure 111.3 and rotated 1800
from that orientation. Sequence conservation is represented in rainbow colors, with areas
of 100% conservation in red, and 0% conservation in blue. The three conserved regions
are numbered. b Topology diagram of PFL showing 10-stranded ca/j barrel (strands in
yellow) with RD highlighted in pink and helices denoted 1 (PFL residues 712-720) and 2
(744-752). An N-terminal domain is omitted for clarity. c Cartoon representation of the
PFL dimer in grey with RD in pink. d Best docking model output by ZDOCK, with Ca
of G734 displayed in spacefill and RD colored as in b. e Docking model, with RD
displayed as in d. The pept-AE is colored as in a, and is shown in the same orientation.
An arrow indicates a loop from RD. f Detail of active site of docking model colored as in
d, with side chains of interest shown in sticks. RD side chains are labeled in magenta,
pept-AE side chains in black. Dashed lines indicate possible side chain interactions
between pept-AE and RD.
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Figure 111.13: Manual docking model. Pept-AE is colored as in Figure 111.3, with the

RD displayed as magenta cartoons. The peptide is shown in sticks for comparison.
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Figure 111.14: Surface representation of pept-AE colored as in Figure III.1, with
residues blocked from the docking calculations highlighted in green. Orientations are
as in Figure III.9.

Figure 111.15: Comparison of the conformation of residues 732-737 in the pept-AE
model (teal carbons) and the docked RD domain (magenta carbons). To make this figure,
the best docking model was superimposed with the pept-AE model. The Ca of each G734
is shown as a small sphere.
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Figure 111.16: Proposed Pfl conformational change. Stereoview of the Pfl dimer (PDB
code 2PFL) showing close-up view of one monomer and focusing upon the RD domain
in two orientations. The orientation in a is rotated approximately 600 about a horizontal
axis with respect to b. The RD is colored light pink in its native conformation and
magenta in the proposed accessible conformation. The other Pfl finger loop containing
the active site cysteines (C418 and C419) is colored yellow. The Cao atoms of G734, C418
and C419 are shown in spheres.
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Chapter IV: Structural Insights into Radical Generation by the

AdoMet Radical Superfamily.

IV.A. Summary

Recent years have brought many advances in our understanding of radical generation by

the AdoMet radical enzyme superfamily. These enzymes utilize a 4Fe-4S cluster and S-

adenosylmethionine to produce the 5'-deoxyadenosyl radical intermediate, which they are

then able to use to catalyze substrate-specific reactions, such as sulfur insertions, the

generation of a stable protein-bound glycyl radical, eliminations and rearrangements.

The recent structural characterizations of five AdoMet radical enzymes have provided a

wealth of information about the molecular basis for catalysis by this superfamily. The

structures now available encompass very disparate chemical reactions, which is reflected

in the structural diversity of their overall three dimensional folds. In this review, we

summarize the AdoMet radical enzyme structures, analyze the five structures in terms of

4Fe-4S cluster, AdoMet and substrate binding, and discuss the similarities and

differences between the enzymes.
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IV.B. Introduction

The AdoMet radical enzymes -also referred to as the Radical SAM enzymes (here we

will use the term "AdoMet radical" to minimize confusion that may arise from alternate

uses of the abbreviation "SAM") - are a newly identified enzyme superfamily' capable of

catalyzing radical chemistry similar to that performed by the AdoCbl-dependant

enzymes 2-4. Some reactions catalyzed by AdoCbl-dependant enzymes have AdoMet

radical-catalyzed counterparts, such as lysine-5,6-aminomutase (56LAM)5'6, which has

the AdoMet radical cousin lysine-2,3-aminomutase (LAM)2'79 and Class II

ribonucleotide reductase (RNR)1', which is substituted under anaerobic conditions by

Class III RNR (aRNR), a glycyl radical-containing enzyme activated by an AdoMet

radical activase". The AdoMet radical and AdoCbl-dependant enzymes have in common

the 5'-dA. intermediate, a highly oxidizing and unstable radical intermediate that has

never been observed, though its existence has been shown indirectly through the use of

an allylic analog 12, incorporation of a radiolabel into the C5' position of the 5'-

deoxyadenosine product13 and by its covalent addition to a substrate analog to form a C-

adenosylated product 14. The AdoCbl enzymes produce 5'-dA* via homolytic cleavage of

the Co-C5' bond of the corrin cofactor, whereas the AdoMet radical enzymes generate the

radical by reductive cleavage of a much simpler cofactor, AdoMet 2,15 . Comparison of the

two enzyme families has led to the description of AdoMet by Baker and Frey as the "poor

man's adenosylcobalamin" on account of its relative simplicity and lower energetic cost

of production2, though this description of AdoMet is not fully accepted.

The AdoMet radical enzymes are attractive from an evolutionary perspective for

this relative simplicity and other reasons. They require components that theoretically

would have been available in the ancient world 16, and although a primordial precursor of
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AdoCbl could also have existed 17, it has been theorized that AdoMet preceded AdoCbl in

the prebiotic world2. AdoMet radical superfamily members are found spread across the

kingdoms of life and catalyze a highly diverse set of reactions',18 , again implying an

ancient origin with ample time over the course of evolution to diversify. Finally,

members of this family are involved in fundamental biological processes that presumably

evolved early on, such as ribonucleotide reduction, cofactor biosynthesis and

metabolism3' 4. However, as typical with a topic such as evolution, there are quite a few

entirely valid arguments both for and against designating the AdoMet radical enzymes as

ancient -21. In any case, they are themselves an important and interesting class of

enzymes.

As mentioned above, the AdoMet radical enzymes all catalyze radical chemistry

and are united as a superfamily by their common mechanism of radical generation ' 3 '4

(Figure IV.l.a). The main hallmark of the superfamily, a conserved CX3CXýC motif(4

tyrosine, phenylalanine, histidine or tryptophan), coordinates an iron sulfur cluster that

is instrumental in initiation of the radical reaction. Years of excellent biochemical

characterization by multiple laboratories on several family members have unambiguously

shown that a typically oxygen-sensitive [4Fe-4S]' + cluster is the active iron-sulfur species

in each of the AdoMet radical systems2224. The 4Fe-4S cluster is ligated by the three

cysteines of the conserved motit leaving one iron unligated and therefore unique25. The

second hallmark of the superfamily is a glycine-rich region involved in binding a

molecule of AdoMet'. This bound AdoMet ligates the unique iron of the 4Fe-4S

cluster25-28 and serves as the direct source of 5'-dA*25. Experiments have shown clearly

that this interaction with the [4Fe-4S]' + cluster leads to reductive cleavage of AdoMet to

form the radical29. Though the detailed mechanism of this process is still unclear, it is
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thought to occur by electron transfer from the cluster to AdoMet through the AdoMet

sulfur atom4 7'28. Clarification of how AdoMet activation to generate 5'-dA* is

accomplished is one area of active research in the AdoMet radical field.

Since the classification of these enzymes as a superfamily, researchers have

elucidated key details of the radical generation processes, begun characterization of new

AdoMet radical enzymes, and published the first few crystal structures of superfamily

members. This chapter will focus on the key aspects of the first five complete structures

in order to highlight the structural features of the superfamily and identify the main

elements involved in substrate binding and catalysis.

IV.C. Summary of Reactions and Structural Studies

The AdoMet radical structures now available represent a good cross section of the

superfamily in terms of their diverse reactions and substrates 9' 30 -35 (Figures IV. 1, IV.2).

Each structure was solved by multiple anomalous dispersion (MAD) techniques (Table

IV. 1), and, as discussed below, is characterized by a partial or full (P1/a)8 barrel fold (also

called the TIM barrel fold; see section IV.D.1). The structure of TYW134,35, an AdoMet

radical enzyme involved in biosynthesis of wyobutosine, will not be discussed here due

to the fact that its coordinates are not yet available.

IV. C.1. PflAE

Along with LAM, PflAE is one of the best characterized of the AdoMet radical enzymes.

This enzyme is a member of the AdoMet radical activase subfamily, all of which perform

a direct hydrogen atom abstraction from a target Glycyl Radical Enzyme, forming a

catalytically essential glycyl radical (Figure IV.l.b). PflAE itself forms a glycyl radical
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on G734 of pyruvate formate-lyase (Pfl), activating it for homolytic cleavage of pyruvate

to form acetyl-CoA and formate. This reaction is one of extreme importance, as under

fermentative conditions, the Pfl reaction serves as the organism's sole source of acetyl-

CoA.

Recent structural characterization of PflAE has yielded two models of the 4Fe-4S

bound form of the enzyme, in both the substrate-free and substrate-bound states. The two

structures were solved by iron-MAD techniques from two different crystal forms at 2.25

A and 2.8 A resolution, respectively (Table IV. 1). The substrate-bound PflAE model has

the 4Fe-4S cluster, AdoMet and a seven-residue peptide substrate ordered in the active

site. The particular peptide used in this study, RVSGYAV, corresponds to the seven

residues of the Pfl glycyl radical loop, and has been shown to be a good substrate for

PflAE (Km = 0.22 mM, Vx = 11 nmol/min'mg, compared to 1.4 gpM and 54

nmol/min mg for Pfl)'3.The substrate-free model, which was refined to higher resolution

but is less ordered, contains only the 4Fe-4S cluster, even though AdoMet was included

in the crystallization conditions. Any analysis of this model should take into account

disorder in several of the loops near the active site of the substrate-free PflAE model, as

well as the medium resolution of the substrate-bound form. The disorder observed in the

substrate-free form is likely physiologically relevant, related to conformational flexibility

of parts of the enzyme in the absence of substrate (see Chapter III).

IK C.2. HemN

One of the first AdoMet radical enzymes to be structurally characterized, HemN, is one

of the more recently biochemically characterized members of this superfamily. It

catalyzes two oxidative decarboxylations of the propionate sidechains on rings A and B
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of coproporphyrinogen III to vinyl groups, yielding protoporphyrinogen IX, an important

heme precursor (Figure IV. 1.b). This reaction requires cleavage of two molecules of

AdoMet36 '37, along with the action of an unidentified electron acceptor. Though HemN

has been better characterized in recent years, full activity is still only obtained with the

addition of cell free extract3638. Presumably the addition of cell extract is necessary in

order to provide the electron acceptor, but the fact remains that the reaction requirements

are currently incompletely defined, as in several other AdoMet radical systems3.

However, this aspect of the HemN reaction - the enzyme's inability to complete the

reaction in the absence of the electron acceptor - has made it amenable to spectroscopic

characterization of radical reaction intermediates38 .

The HemN structure was solved by iron-MAD techniques, refined to 2.07 A

resolution (Table IV. 1), and contains the 4Fe-4S cluster, the cluster-bound AdoMet, and

an additional molecule of AdoMet, termed SAM2, bound within the active site3o. The

possible role of SAM2, which could be physiologically relevant or an artifact of the

crystallization conditions, is discussed in section IV.F.5. The actual substrate of this

enzyme is not present in this model, and as mentioned above, the electron acceptor is also

absent.

IV C.3. BioB

Several AdoMet radical enzymes catalyze sulfur insertion reactions, and BioB, as well as

the more recently characterized LipA, is at this point the archetype for this subfamily.

BioB uses two molecules of AdoMet to insert a sulfur atom into positions C6 and C8 of

dethiobiotin, forming the thiophane ring of biotin (Figure IV. .b). The structure of

BioB 31helped resolve a controversy regarding the source of sulfur for this reaction,
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substantiating the theory that a protein bound 2Fe-2S cluster is destroyed during catalysis

to form biotin3. This was later demonstrated by incorporation of selenium into

dethiobiotin to form selenobiotin39. It is currently unclear whether BioB is a true

enzyme, because under in vitro conditions the protein has only ever completed a single

turnover, consistent with the observed destruction of the 2Fe-2S cluster40. It is thought

that the cluster is regenerated in vivo through the actions of currently unidentified

enzymes 41. Components involved in reconstitution of this cluster in vivo have not yet

been identified, though this is an area of ongoing research.

The 3.4 A resolution model of the BioB homodimer was solved by our laboratory

using iron-MAD methods (Table IV. 1). Along with HemN, it was one of the first two

AdoMet radical enzymes structurally characterized, revealing the core AdoMet radical

fold and confirming coordination of an iron from the 4Fe-4S cluster by AdoMet3 1

Structure based sequence alignments conducted using the BioB structure predicted the

six-stranded partial TIM barrel fold of the AdoMet radical enzymes with specific motifs

involved in AdoMet binding'" (discussed in Section IV.F). In the BioB structure, the

4Fe-4S cluster, AdoMet, the dethiobiotin substrate and a catalytically relevant 2Fe-2S

cluster were observed bound to the active site. The resolution of the BioB structure is

relatively low, and as mentioned above, the components required for reconstitution of the

2Fe-2S cluster have not yet been identified; however, this structure comprises all of the

components required for catalysis and is therefore a complete model of the BioB pre-

turnover Michaelis complex. Turnover is not observed only because there is no reductant

present in the crystallization conditions.

IV C. 4. MoaA
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One of the first steps of molybdenum cofactor biosynthesis is the rearrangement of

guanosine-5'-triphosphate (5'-GTP) to form precursor Z (Figure IV.l.b). Subsequent

steps convert this intermediate to molybdopterin by forming the dithiolene group of

molybdopterin that is responsible for coordination of molybdenum. Precursor Z differs

from the intermediates of related pterin biosynthetic pathways in that C8 of the purine is

retained, inserted between C2' and C3' of the ribose4 2,43. The formation of precursor Z is

catalyzed by two enzymes, MoaA and MoaC, and though both structures have been

solved, their specific roles during catalysis are presently unclear 32,33 '44. The identity of

the actual substrate of each enzyme is also unknown, though 5'-GTP does bind to

MoaA33. Finally, the question of whether MoaA and MoaC form a protein-protein

complex is still unresolved.

Multiple structures of MoaA are available, each packing as a homodimer, with the

essential 4Fe-4S cluster and an additional 4Fe-4S cluster at the C-terminus (Table IV.1).

The MoaA structures solved include the "apo" (AdoMet-free) state, solved by iron-MAD,

the AdoMet-bound state, solved by molecular replacement (MR) using the apo-MoaA

structure as the search model, and the 5'-GTP-bound state with the AdoMet cleavage

products in the AdoMet binding site, solved again by MR using the MoaA-AdoMet .

complex structure32,33. A structure of a triple mutant of MoaA has also been solved by

MR with the AdoMet-bound MoaA model, in which the residues mutated (R17/2/26268A)

are all involved in 5'-GTP binding33. The second 4Fe-4S cluster seems to be involved in

substrate binding, ligated at a unique iron by the 5'-GTP or, in the absence of 5'-GTP,

dithiothreitol (DTT). Because the specific MoaA reaction has not been fully

biochemically characterized, these structures may not represent a complete description of

the components required for catalysis. MoaC may indeed form a complex with MoaA.
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Also, because the structure of MoaA complexed with AdoMet and 5'-GTP was obtained

by soaking the MoaA-AdoMet crystals in a solution with 5'-GTP, it could be argued that

crystal contacts may have prevented a conformational change required for catalysis.

IV. C 5. LAM

Of all of the AdoMet radical enzymes, LAM is currently the best characterized3. It

catalyzes the migration of the amino group from C2 to C3 of lysine, using pyridoxal 5'-

phosphate (PLP) to bind the substrate through the typical imine linkage (Figure IV.l.b).

Experiments probing the radical reaction mechanism have been conducted using substrate

analogs. The LAM system has also been used to indirectly show the formation of the 5'-

dA* intermediate using an AdoMet analog' 2. The reaction, essential components and

mechanism of LAM have been very well characterized, and this enzyme has also been

used to further investigate the details of AdoMet cleavage by this family of enzymes4 5.

At this point, LAM is the prototypical AdoMet radical enzyme.

The structure of Clostridium subterminale 4Fe-4S-LAM in complex with

AdoMet, substrate lysine and PLP was solved by iron-MAD techniques to 2.1 A

resolution9 (Table IV. 1). The model is a homotetramer, with extensive dimerization and

tetramerization interfaces (Section IV.D.2.e). As was the case in the BioB crystallization

conditions, turnover was prevented by omission of a reductant; therefore, this structure

closely represents the Michaelis complex.

IV.D. Overall Fold

IV.D. 1. AdoMet Radical Core
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The AdoMet radical structures reveal a common core fold responsible for radical

generation to which additional protein structural elements can be added to tailor the

enzyme to a particular substrate. As mentioned previously (here and

elsewhere4' 9" 8' 30 ,32'4 6,47), this core fold is comprised of six P/a motifs arranged in a

manner that is reminiscent of a TIM barrel and is thought to be common to all of the

superfamily members on the basis of structure-based sequence alignments48. The TIM

barrel fold itself is characterized by an eight-stranded, all-parallel 0 sheet made up of

repeating p/a motifs, curved such that the eight strands form a barrel, surrounded on the

outside by the eight helices (Figure IV.3). The AdoMet radical core is similar to this

fold, but contains only six of the eight l/a motifs, resulting in the formation of a "partial"

or "3/4" TIM barrel (Figures IV.4 - IV.8, panels a and b, IV.9, IV. 10). The helices of

each p3/ unit are located on one side of the sheet (the "outer" side of the barrel), while

the active site is located on the opposite (or "inner") side. The curvature of the core P

sheet is typically less than that of a full barrel, except in the case of BioB, which does

form a complete eight-stranded barrel. In the majority of the structures, the partial TIM

barrel has less curvature (appearing "splayed"), reflecting that the orientation of the l3/

motifs can vary slightly depending on the remaining protein fold. Protein elements

outside of the core domain are involved in imparting specificity to the individual proteins,

and provide surfaces for oligomerization as well.

The lack of closure of the partial barrel results in exposure of one face of the 3

sheet, which forms what is here referred to as the barrel's lateral opening. This opening

can be "covered" or "plugged" by protein elements outside of the AdoMet radical core,

typically from the C-terminal region with some minor contributions from the N-terminus
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or another molecule (Figures IV.4 - IV.8). It is within this lateral opening that the active

site resides. The essential 4Fe-4S cluster and AdoMet bind via loops emanating from

core p strands. The cluster binding loop follows p31 and harbors the canonical CX3CX C

motif (Figure IV.10). Binding of the 4Fe-4S cluster and AdoMet is discussed in more

detail in sections IV.E and IV.F of this chapter, respectively.

Superimposition of the AdoMet radical core from each protein shows that the

structure of this domain is very highly conserved (Figures IV.9). The core domain is

defined here as beginning at the N-terminus of the strand that leads into the cluster-

binding loop (PflAE R21, HemN L53, BioB Q41, MoaA D15, and LAM RII 6) and ending at

the C-terminus of the sixth strand (PflAE P200, HemN N24 1, BioB M223, MoaA E195, LAM

Q291), at which point the five structures begin to diverge. The first section of the core, the

first strand and the cluster-binding loop, are the most varied between the five structures

(Figure IV.9). The remaining protein fold shows very little variation, with strands 32 -

P6 and the helices that follow them almost identically positioned in each structure. The

helices of the core show more variation between the five structures than the strands,

though one helix of note, helix a4A, is missing in the LAM structure (Figure IV.10).

Helix a4A (Figure IV.9a), which is located on the loop connecting 34 and a4, is

positioned along the top of the partial barrel, with the helix C-terminus pointing towards

the cluster. This helix is absent in the core of LAM, but is replaced by a helix from an N-

terminal domain of that protein. Finally, the structures begin to diverge at strand P6 and

the loop following it in order to appropriately accommodate substrate.

IVD.2. Protein elements outside of the AdoMet radical core
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The AdoMet radical core is typically located at or near the N-terminus of the molecule,

while the length and sequence of the C-terminal region are highly divergent between the

different AdoMet radical subfamilies. This observation leads to speculation that the C-

terminal region in large part determines substrate specificity, which is a tempting

conclusion but is also an oversimplification, as a significant portion of the substrate

binding site (discussed in section IV.F) is provided by the core itself. While it is simpler

to think of these enzymes as containing separate domains, with the substrate binding site

at the interface of those domains, examination of the AdoMet radical structures (Figures

IV.4 - IV.8) shows that this is not necessarily true. HemN (Figure IV.5) does appear to

have two separate domains, but PflAE, BioB, MoaA and LAM each contain additional C-

terminal (and N-terminal) protein elements that extend or complete the core domain.

These additional elements can add oligomerization interfaces and help form the substrate

and cofactor binding sites, as we will see in more detail below. A common theme in the

AdoMet radical structures is embellishment or extension of the central core both by the

N-terminus (as in PflAE, Figure IV.4) and by C-terminal protein elements. Strands are

added to the C-terminal side of the core sheet in LAM (Figure IV.8), while in HemN

(Figure IV.5) and MoaA (Figure IV.7), the C-terminus adds strands to both sides of the

core and in BioB (Figure IV.6), strands are added to complete a (P1/a)8 barrel. Below we

look in more detail at the non-core folds of the five individual AdoMet radical structures.

IVD.2.a. PflAE

PflAE is by far the simplest of the five AdoMet radical structures, comprising very few

structural elements outside of the core domain (Figure IV.4). An N-terminal P strand

positioned antiparallel to the main 0 sheet and a C-terminus ending in a final helix and
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short strand are the only additions the protein makes to the AdoMet radical core (Figure

IV.4.a, b). As a result, a large surface is available for interaction with the protein

substrate. The lack of additional structural elements also means there is no

oligomerization surface, consistent with PflAE being a monomer.

IKD.2.b. HemN

HemN does contain an additional domain outside of the AdoMet radical core formed by

the C-terminal region of the protein (Figure IV.5.a, b). The C-terminal region extends the

sheet of the core by two antiparallel P strands and then forms a P finger motif that

traverses the N-terminal side of the core sheet (orangish-yellow in Figure IV.5.c). This

small motif covers the lower portion of the AdoMet radical core's lateral opening and

presumably contacts substrate. The polypeptide chain then rejoins the N-terminal side of

the core to further extend the P sheet on that side (orange in Figure IV.5.c). Finally, the

C-terminus of HemN forms a small 3/ca domain that contacts the P finger motif and more

fully covers the N-terminal side of the lateral opening (red in Figure IV.5.c). Forming

what was termed a "trip-wire" by Layer et al., the first approximately 50 residues of the

HemN structure wrap around the upper part of the C-terminal 3/a domain, possibly

involved in substrate binding (Figure IV.5.c)30 . The overall architecture of HemN forms

a deep cleft that allows access to the lateral opening of the partial barrel fold. Though a

separate C-terminal domain is formed, no oligomerization surfaces are created, as HemN

is also a monomer. HemN is indeed the only enzyme that contains a full second domain

possibly involved in substrate binding. This suggests that the second domain fills the

need for any structural stability or other benefits that may be conferred by

oligomerization.
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IV.D.2.c. BioB

Unlike the other four AdoMet radical structures, BioB forms a true TIM barrel (Figure

IV.6). The six-stranded AdoMet radical core is slightly more curved than the other

structures and is extended at the C-terminus by two 3/ca motifs, which complete the barrel

(Figure IV.6.a, b). The substrate binding site is located at the center of the barrel,

sandwiched between the AdoMet and the 2Fe-2S cluster 31 . Several helices from the N-

terminus before the start of the core form the dimerization surface, along with the non-

core helices of the barrel (Figure IV.6.c). BioB is known to be a dimer 49.

IV.D.2.d. MoaA

The MoaA structure (Figure IV.7) is similar to HemN in that the C-terminus of the

protein adds 3 strands to both the C-terminal and N-terminal sides of the AdoMet radical

core. A set of three antiparallel P strands are appended to the C-terminal end of the core

sheet (yellow and light orange in Figure IV.7.c), followed by addition of two antiparallel

strands to the N-terminus (darker orange in Figure IV.7.c). The protein chain ends in a

helix that is situated with its N-terminal end pointing towards the second 4Fe-4S cluster

(red in Figure IV.7.c). Loops in the C-terminal region complete the substrate / second

cluster binding site; specifically, those connecting the C- and N-terminal extensions and

the loop before the final helix (Figure IV.7.c). The dimerization surface is formed by the

final MoaA helix, the C-terminal edge of the 1 sheet, and the loops within and connecting

these protein elements. Like PflAE, the N-terminal end of the MoaA sheet is not buried

by other protein elements.
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IKD.2.e. LAM

The structure of LAM is a dimer of dimers, with an extensive and highly conserved

dimerization surface at the bottom (N-terminal end) of the AdoMet radical partial barrel,

and a C-terminal region with low overall sequence conservation that forms the

tetramerization interface (Figure IV.8). The LAM monomer does have two separate

domains (blue corresponds to the first domain, and green to red the second domain in

Figure IV.8.c), but in this case, the second domain is at the N-terminus of the protein and

does not appear to be near the substrate binding site. The LAM polypeptide chain begins

with a small helical domain (blue in Figure IV.8.c) that stacks upon the top of the

AdoMet radical partial barrel. This domain is likely involved in providing a buried

environment for the 4Fe-4S cluster (discussed in section IV.E). The AdoMet radical core

follows this domain and is then extended by two additional P strands outside of the core

that form a [3 finger motif (orange in Figure IV.8.c) similar to that seen in the HemN

structure (yellow in Figure IV.5.c). The remainder of the LAM C-terminus is involved in

a domain swap essential to oligomerization. A long loop after the main LAM domain

extends towards the surface of a second molecule, where the protein forms a three-

stranded antiparallel P sheet that appears to form the majority of the tetramerization

interface (labeled "A" and colored orange in Figure IV.8.c; part of a LAM chain that

forms the tetramer is shown in peach in Figure IV.8.a,b). Finally, the C-terminus (red in

Figure IV.8.c) wraps around the tetramer, providing more extensive interactions with the

other molecules (the second molecule is colored dark grey and the remaining two

molecules of the tetramer are colored light grey in Figure IV.8.c).

The substrate binding site of LAM is created by the loop preceding the core (blue

in Figure IV.8.c), the lateral opening within the AdoMet radical core itself and the P
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finger motif following the core (orange in Figure IV.8.c). The remainder of the binding

site is formed by the loop leading from the core into the 0 finger motif of the second

LAM molecule (colored dark grey in Figure IV.8.c). Quite a large amount of the C-

terminus of the LAM polypeptide chain facilitates oligomerization, though (as in BioB

and MoaA), there does not appear to be a large substrate binding domain per se. Rather,

the substrate binding site is formed by the addition of several structural elements and

loops outside of the AdoMet radical core. Finally, the presence of the second LAM

polypeptide deeply buries each LAM active site at the N-terminal side of the AdoMet

radical core.

IV.E. The FeS cluster

IV.E. 1. Location of the 4Fe-4S cluster binding site

The most well known feature of the AdoMet radical enzymes is their use of three

cysteines from a completely conserved CX3CX4C motif to bind an anaerobically stable,

site-differentiated 4Fe-4S cluster25. The unique iron of the cluster is coordinated by the

methionyl moiety of a bound molecule of AdoMet25-28.

The 4Fe-4S cluster is bound at the C-terminal end of the AdoMet radical partial

3-barrel core domain, located above the lateral opening discussed above (Figures IV.4 -

IV.9). The CX 3CX4C motif, also as described above, resides on a loop (termed the

cluster-binding loop) following the first P strand of the AdoMet radical core. The length

of this particular loop varies from enzyme to enzyme, depending on the spacing of the

j3/c motifs surrounding it. PflAE and LAM have cluster-binding loops of similar length

and orientation, but those of the other three structurally related enzymes differ widely
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(Figure IV.9). The cluster-binding loop length varies from approximately 20 residues in

PflAE and HemN to 30 residues in BioB. The loop winds around the cluster from

"behind" (closer to the core helices) to the front of the cluster, towards the lateral opening

of the AdoMet radical core. Residues following the CX3CX4C motif are therefore

located near the substrate, as discussed in section IV.G.2 below. This loop may also

provide part of the interaction surface for binding of the physiological reductant (see

section IV.H).

IV.E.2. The environment surrounding the cluster

The nature of the chemistry catalyzed by the AdoMet radical enzymes suggests that the

4Fe-4S cluster should be fully protected from solvent, and this seclusion is for the most

part observed in all of the structures. Solvent exposure is observed in MoaA, but the

form of the enzyme crystallized may not be the full Michaelis complex due to the

absence of MoaC and therefore not a completely representative picture of catalysis.

Various degrees of solvent exposure and/or burial of the cluster are observed in each

enzyme. For example, the 4Fe-4S cluster of the substrate-free MoaA is solvent exposed,

while that of LAM is completely buried. The cluster is typically located approximately

7-10 A from the nearest protein surface, which in all five structures except for MoaA is

formed opposite the lateral opening by the cluster-binding loop. Because the 4Fe-4S

cluster binds at the C-termini of the core PI strands but inside the ring of helices, it is

buried by the loops of the C-terminal end of the partial barrel. Helix a4A, which is

structurally conserved in all of the AdoMet radical enzymes except LAM, plays a large

part of burial of the cluster. In LAM, this helix is not part of AdoMet radical core; rather,

it is replaced by a helix contributed by the N-terminal helical domain of this enzyme,
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which suggests a vital role for helix a4A. Another important element involved in burying

the 4Fe-4S cluster is the aromatic residue of the CX3CX4C motif, which is conserved in

all of the AdoMet radical enzymes except the aRNR activase. Finally, several of the

enzymes, PflAE and HemN in particular, have additional long loops immediately

following the AdoMet radical core that fold over and presumably help bury the cluster.

IV.E. 3. Interactions between the 4Fe-4S cluster and AdoMet

The crystal structures of AdoMet radical enzymes confirmed the results of several

spectroscopic studies that showed that AdoMet binds directly to the 4Fe-4S cluster2528 .

Ligation to the cluster presumably helps to secure AdoMet in the binding site and

properly positions it for radical generation. Coordination of the unique iron by the amino

nitrogen and carboxylate group has also been shown spectroscopically for PflAE and

LAM, and several distance estimates were obtained, such as the AdoMet carbonyl carbon

to iron and methyl carbon of AdoMet to iron distances (Table IV.1). Again, the

structures have been, for the most part, consistent with the spectroscopic results (Table

IV. 1). Differences between enzymes are observed, which may be a result of variations in

constraints used during refinement, the variety of resolutions obtained for the structures,

or real deviations in the coordination geometries between enzyme family members.

Though there is some variation between distances observed for the direct interactions

between the unique iron and the AdoMet methionyl moiety, the biggest differences are in

the distances from the cluster to the AdoMet sulfur atom, which range from 3.1 A (LAM)

to 4.0 A (BioB) to the closest iron and from 3.4 A (MoaA) to 4.2 A (BioB) to the nearest

sulfide, and from the methyl carbon atoms to the iron, with a range of 3.5 A (PflAE) - 5.4

A (BioB). Despite these variations, superimposition of the coordinates of the 4Fe-4S
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cluster and AdoMet from each of the structures (Figure IV.11) shows that the sulfur atom

occupies a nearly identical position with respect to the cluster; therefore, the distance

differences observed with respect to the AdoMet sulfur atom likely result from the

combined discrepancies in refinement parameters of the cluster, AdoMet and cluster-

AdoMet ligation. However, the methyl group position does vary significantly between

the structures. This may result, again, from discrepancies in refinement parameters or,

more likely, from differences in the overall AdoMet positioning by the individual

enzymes. This, along with other differences in the AdoMet conformation bound by the

enzymes, may reflect their ability to tailor the active site to the specific reaction being

catalyzed. In the following section, the AdoMet binding site is examined in more detail

to understand more fully how the enzymes ligate AdoMet in order to produce 5'dA..

IV.F. AdoMet binding

IVF. 1. AdoMet conformation

The AdoMet conformation observed bound to the AdoMet radical enzymes is similar in

each structure (Figure IV. 11). The molecule always adopts an anti conformation at the

glycosidic bond in these enzymes, but varies in terms of the puckering of ribose (3'-endo

in the majority of the enzymes, with PflAE and MoaA as the exceptions). In terms of the

position of the methionine with respect to the 5'-dA moeity, AdoMet can assume a

variety of conformations, either "folded" or "extended" based on the torsional angle at

atoms 04'-C4'-C5'-SB (referred to as the xV torsional angle)50. The lowest energy

extended conformation of AdoMet has a y torsional angle of-180', compared to <900

for folded conformations. In contrast to the majority of protein structures with bound

AdoMet, all of the structures of AdoMet radical enzymes bind AdoMet in the folded
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conformation, with the sulfonium located close to 04' of the ribose ring. HemN is the

outlier of the group on this point, binding AdoMet with a y torsional angle of -112.800,

compared to -48.750 (BioB), -73.96' (MoaA), -60.420 (LAM), and -64.29' (PflAE). The

implications of the folded state of AdoMet observed in these enzymes are still being

established, though it has been observed that when AdoMet is bound with the purpose of

serving a reactive role (transfer of one of the groups bound to the sulfonium), it adopts an

extended conformation, and when bound as an activator or substrate, as in MetJ and

AdoMet decarboxylase, it binds without a preference for the extended xV torsional angles.

The overall conformation AdoMet adopts when bound to an AdoMet radical enzyme is

likely extremely important to enable electron transfer from the cluster. It is notable that

although the conformations of AdoMet observed amongst the AdoMet radical enzymes

do differ somewhat, superposition of the 4Fe-4S cluster and AdoMet coordinates from

each enzyme reveals that all of the enzymes place the AdoMet sulfur atom in a highly

similar position with respect to the 4Fe-4S cluster (Figure IV. 11). This observation is

consistent with the theory that electron transfer occurs to the AdoMet sulfur atom.

The anchoring of AdoMet by an iron-sulfur cluster via the methionyl amino and

carboxyl atoms had, of course, never been observed in a protein before structural

characterization of an AdoMet radical enzyme, all of which employ a unique structural

motif for binding AdoMet.

IV.F.2. General properties of the AdoMet binding site

In all of the AdoMet radical enzyme structures9'30 33'51 , AdoMet is observed bound across

the top (C-terminal end) of the partial or full TIM barrel in a binding site made up of

residues from each of the core 03 strands (Figures IV.10, IV.12). The binding site is
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hydrophilic and provides residues for several specific interactions with AdoMet (see

below). Although little conservation is observed across the superfamily, many of the

residues involved in binding AdoMet and/or substrate are highly to fully conserved

within individual AdoMet radical subfamilies, such as the BioB protein subfamily.

The nature of the chemistry performed by the AdoMet radical enzymes suggests

that the active site would require burial within a protected protein environment during

catalysis to prevent quenching of the radical. This sequestration of the active site from

solvent is indeed observed in the BioB, LAM and substrate-bound PflAE structures9e3 ,'51

Formation of the full PflAE-Pfl complex, as opposed to the smaller peptidic substrate

observed bound in the crystal structure51, will certainly result in even more extensive

burial of the active site. The HemN and MoaA structures do not provide a complete view

of the substrate-bound forms of those enzymes, and as one would expect, their active

sites are solvent exposed30' 32,33. Though several structures of MoaA are available, there is

no pre-catalysis substrate-bound form for analysis of the buriedness of the AdoMet

binding site at that stage of turnover (Table IV. 1). Additionally, the MoaA reaction

requires presence of another protein, MoaC, whose function during catalysis is

unknown44. Further investigation of these two enzymes, and structural characterization

of more of the AdoMet radical superfamily members, will clarify this aspect of catalysis.

IV F.3. Overall description of the AdoMet binding site

Low sequence conservation within the AdoMet radical superfamily may arise in part

from the location of the AdoMet binding site in these proteins. Because AdoMet binds

across the top of the P barrel-like sheet, the residues of the binding site originate from

loops following each 3 strand, and are therefore dispersed throughout the primary
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sequence (Figure IV. 10). This dispersion hinders identification of a specific AdoMet

binding motif. Low sequence similarities notwithstanding, comparison of the five

currently available AdoMet radical structures shows that they all employ remarkably

similar modes of interaction with AdoMet. Examination of the dendrogram visualization

of the AdoMet radical core domains constructed by Sofia et al.' demonstrates that the

AdoMet radical structures we now have are distantly related within the superfamily and

represent a good cross-section of the sequence space covered by the individual members.

Therefore, the structural comparison conducted here allows us to provide a general

description of AdoMet binding in this superfamily that is likely applicable to all of the

members (Figure IV.10).

IV.F.3.a. The AdoMet methionyl moiety

As discussed previously, the methionyl carboxylate and amino groups of AdoMet ligate

the unique iron of the AdoMet radical 4Fe-4S cluster in order to help anchor and orient

the molecule for electron transfer, and possibly alter the redox potential of the 4Fe-4S

cluster and/or AdoMet. In each structure, the amino group is observed binding close to

the C-terminus of strand 132, making hydrogen bonds with backbone atoms of the "GGE

motif' - also termed the "glycine rich region" - located on that strand (Figure IV. 12;

PflAE G77, G78, E79; HemN G 12, G113, T114; BioB Aloo, Alo, W102; MoaA G74, G75, E76 ;

LAM G170, G171, D172). In some cases the sidechain of the residue at position 3 of this

motif is within hydrogen bonding distance of the AdoMet amino group (Figure IV.12).

The hydrogen bonds provided by this motif are the only interactions observed to the

amino group, and ensure the correct orientation of this part of AdoMet in the active site,

as well as proper coordination of the unique iron by the methionyl moiety. In contrast,
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much more variation is observed with respect to contacts with the AdoMet carboxylate

by the AdoMet radical enzymes. In fact, it is this particular interaction with AdoMet that

varies the most between the individual enzymes in terms of location within the primary

sequence of the residues involved, with residues originating from 03, the loop following

03, a3 and P4 (Figures IV.10, IV.12). The majority of the enzymes use a conserved

arginine, lysine or histidine (PflAE K131; HemN R184; BioB R173; LAM H230) to bind and

orient the carboxylate, while the MoaA binding site provides threonine and serine

hydroxyls for hydrogen bonding (T102, S128). Positioning of this portion of AdoMet is

further fine tuned by interactions with backbone atoms (PflAE T105; HemN V146 and G170;

BioB G132; MoaA N104), additional sidechain atoms (PflAE D104 and D129) or, as in LAM,

a tightly bound water molecule. These variations in binding likely yield the different

conformations of the AdoMet methionine in the five structures discussed here (Figure

IV.11), ranging from the "compact" conformation of the methionine moiety observed in

the LAM structure to the "elongated" one bound to BioB.

IVEF.3.b. The AdoMet ribose

Some variation in the AdoMet radical enzymes is also evident in the details of their

interactions with the AdoMet ribose. Residues responsible for interacting with ribose

originate mainly from 04 (Figures IV.10, IV.12) with a few exceptions (those exceptions

include HemN D209 and LAM Q258, both from 05). The ribose hydroxyls can interact

with charged or polar protein sidechains directly (PflAE D129; HemN Q172, D209; BioB

N1 53, D155; MoaA S126; LAM Q258) or via waters bound in the active site (MoaA D12 8). In

some of the structures, the hydroxyl of the CX 3CX<C motif tyrosine (PflAE Y35; BioB
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Y 59; MoaA Y30) is within 4 A of a ribose hydroxyl, though it is unlikely that this residue

plays a major role in ribose binding because the hydroxyl group is not fully conserved

and this residue is more important in terms of adenine binding (see below) and protection

of the cluster from solvent. Finally, with the exception of BioB, each AdoMet radical

enzyme has a highly conserved charged or polar residue within strand P5 that interacts

with or is located very near the AdoMet ribose and/or substrate (PflAE R166; HemN D209;

MoaA N165 ; LAM Q258). Within each enzyme subfamily, that residue is positioned close

to the ribose hydroxyls and C5' of AdoMet as well as the substrate. Moreover, many

AdoMet radical enzyme subfamily members, not just those with known structure, appear

to have a similarly conserved residue at the same place in 35 (data not shown). The high

conservation and position of that residue in the structures (PflAE R1 66; HemN D209;

MoaA N165; LAM Q258) suggests an important role during catalysis such as in the

orientation of 5'dA* and/or substrate for proper hydrogen atom abstraction.

IV.F.3.c. The AdoMet adenine moiety

When bound to an AdoMet radical enzyme, the adenine moiety rests against 3-5

hydrophobic residue sidechains and is specifically recognized by 3-4 hydrogen bonds

made to protein backbone atoms. This portion of the binding site is made up mainly by

residues from p strands 5 and 6, with contributions from the CX 3CXWC motif of the

cluster-binding loop (Figure IV. 10). The interactions with adenine are maintained in the

superfamily and are more easily predicted than other interactions, though enzyme

evolution has resulted in a variety of compensatory mutations, particularly at those

residues involved in protein backbone to AdoMet hydrogen bonds. Hydrophobic

interactions are invariably provided by three specific regions of the primary sequences

142



(Figures IV. 10, IV. 12): (1) the conserved aromatic residue of the CX 3CXýC motif (Y35

in PflAE; F6s in HemN; Y59 in BioB; Y30 of MoaA; Hi31 of LAM), (2) a residue from 35,

located at position 2 of a conserved motif utilized in part for adenine binding, termed the

GxlxGxxE motif (V168 of PflAE; 1211 of HemN; I192 of BioB; V167 of MoaA; V260 Of

LAM) and (3) one or two residues located at the end of 36 that form a conserved

structural motif (L199, H202 of PflAE; F240, Y242 of HemN; V225 of BioB; 1194, F196 of

MoaA; Y290 of LAM). Hydrogen bonds are made to atoms NI and N6 of AdoMet by

backbone atoms. These backbone hydrogen bonds are made by the aromatic residue of

the CX3CXýC motif and by a residue from the adenine-binding structural motif of 136

(H202 of PflAE; A243 of HemN; V225 of BioB; M197 of MoaA; D293 of LAM). Lastly, N7

of AdoMet is in some cases hydrogen bonded by a backbone atom from the residue

immediately following the CX3CX4C motif (PflAE Y35, H37; HemN G70).

IVF.3.d. AdoMet binding motifs in the AdoMet radical superfamily

The solution of an AdoMet radical structure was crucial for identification of a preserved

AdoMet-binding protein fold and common AdoMet binding motifs in this superfamily.

The current availability of several structures has allowed identification of a conserved

structural motif in 16, as well as clarification of one in 15 that had been previously

identified (GxlxGxxE), both of which interact with the AdoMet adenine (Figure IV. 10).

The very low sequence homology between members of the AdoMet radical superfamily

prevents unambiguous naming of the motifs in a manner incorporating residue names.

This may lead to some confusion, as the motif names do not always correspond to the

sequence of each enzyme. However, the AdoMet binding motifs will be referred to in
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this discussion by the names they have already been given, and this section will attempt

to clarify the function of each motif.

The CX 3CX<C motif of the AdoMet radical superfamily functions mainly in

ligation of the cluster (see above). In addition, the aromatic residue present within this

motif in every enzyme except aRNR activase always provides hydrophobic interactions

to the adenine binding site and hydrogen bonds N6 of adenine via the backbone oxygen.

The "GGE motif' or "glycine-rich region" observed at the end of strand 12 invariably

binds the amino group of AdoMet, aiding in proper ligation of the cluster's unique iron.

This motif also forms the wall of this side of the active site and maintains the structure of

the loop region after 12.

The GxIxGxxE motif (15) and the 36 structural motif of the AdoMet radical

superfamily form most of the AdoMet adenine binding site. The GxIxGxxE motif,

named in reference to the BioB sequence, provides hydrophobic interactions to the

adenine portion of the binding site at its second conserved position (Figures IV.10 and

IV.13; PflAE V168; HemN 1211; 1192 in BioB; MoaA V167; LAM V260). Also, through one

or more conserved sidechain-to-backbone interactions, this motif helps to preserve the

structure of the AdoMet binding site as well (Figure IV.13). For example, the interaction

observed in BioB from E197 (position 5) to the backbone nitrogen of G194 (position 3) is

found in each of the five structures, though the residue at position 5 in the other structures

also interacts with the carboxyl backbone atom of the residue at position 2 (Figure

IV. 13). In addition, PflAE, MoaA and LAM share a conserved sidechain-to-backbone

interaction from position 6 (PflAE D175; MoaA D174; LAM D267) to the backbone amino

group of the residue in position 4. Sequence alignments suggest that this particular

interaction may be conserved in several other AdoMet radical enzymes, such as PylB,

144



NifB, BssD and possibly ThiH (Figure IV.10). Finally, position 1 of the GxIxGxxE

motif is more difficult to characterize, as it is highly conserved but its identity differs in

the individual AdoMet radical subfamilies. As discussed in section IV.F.3.b above, the

positioning of this residue near the AdoMet ribose and/or substrate in most of the known

structures (Figure IV.13), along with its high conservation within each subfamily,

implicates it as an important residue.

The 136 structural motit which does not have a consensus sequence, provides

hydrophobic interactions to the adenine from the residue in position 1 (with the exception

of BioB, which uses this residue to interact with substrate). The residue in the second

position of this motif hydrogen bonds to the AdoMet adenine N1 and N6 atoms via its

backbone amino nitrogen and carboxyl oxygen atoms (Figure IV.12).

IV F.4. Deviations and variations in AdoMet binding between the subfamilies

The major differences between these enzymes are readily apparent from the sequence

alignment in Figure IV. 10 and Figure IV. 12. The modes of interaction adopted by these

enzymes to bind the AdoMet ribose and carboxylate groups specifically vary widely. As

mentioned above, AdoMet carboxylate binding by these enzymes governs the position of

the methionyl moiety, resulting in the elongated or compact conformations observed

(Figure IV.11). For example, R173 of BioB is located at a distance further away from the

binding site, resulting in a more elongated methionyl conformation, while the location of

LAM H230 in the center of the binding site causes the methionyl group to bend inwards

(Figure IV.12.c, e). Note that the methionyl conformation is independent of the overall

AdoMet folded or extended conformation, which is a function of the x' torsional angle.

In addition, the hydrogen bonds formed to the AdoMet amino group by motif 2 vary
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between the enzymes. The specific residue of the motif providing backbone atoms for

hydrogen bonding can vary, as well as involvement of the last residue's sidechain. This

does not effect the position of the AdoMet amino group. Comparison of the ribose

binding interactions are less straightforward, with water mediating the contacts in MoaA

and LAM, involvement of backbone atoms in LAM, and the use of both charged and

polar residues in HemN and BioB. Beyond use of residues from mainly strand f34, and

the presence of a Glu or Asp nearby (with the exception of LAM), the AdoMet radical

enzymes share little similarity in this region of the AdoMet binding site.

Several minor differences are observed between the five structures in their mode

of interaction with the adenine of AdoMet, including the number and identity of the

contacting hydrophobic residues. The details of the hydrogen bonding to N6 and N7 of

the adenine ring also differ between the five structures. These differences are likely a

result of experimental differences such as presence or absence of substrate, the resolution

at which the structure was refined, or effects of the crystallization conditions. Overall,

the AdoMet adenine binding sites are more or less the same.

IV.F.5. Implications of the AdoMet binding site architecture on function and reactivity

The parts of the AdoMet binding site that are conserved across the AdoMet radical

enzymes are limited to those interactions that are made to the adenine and methionyl

amino group. This conservation results in a similar placement of those parts of AdoMet

in all of the structures (Figure IV. 11) and variations in the other groups, with the

exception of the sulfur atom. The sulfur atom in each structure is located in roughly the

same position, presumably to allow and optimize electron transfer to AdoMet from the

cluster52,53. The placement of the ribose and carboxyl portions of AdoMet differ more
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significantly in each enzyme than do the AdoMet adenine and methionyl amino groups,

which likely allows each enzyme to tailor the reaction to its unique substrate.

Conformational flexibility of AdoMet around its C5' atom presumably allows the

individual enzymes to more carefully control the position of the molecule to ensure

proper hydrogen atom abstraction from substrate upon generation of 5'-dA*.

An interesting question concerning the AdoMet binding site of these enzymes is

whether any specific structural features accompany use by some AdoMet radical

enzymes, LAM and SPL in particular, of AdoMet as a cofactor instead of as a

cosubstrate. Comparison of the five AdoMet binding sites has not identified any obvious

structural features that are related to this question. AdoMet does not appear to have more

extensive interactions in LAM as compared to the other enzymes; indeed, the HemN and

MoaA binding sites seem to provide more numerous contacts to AdoMet. R134 of LAM

does appear capable of physically restricting movement of AdoMet out of the binding site

by folding across the methionyl moiety of the cofactor to contact substrate (Figure

IV.12.e) and spectroscopic studies have shown that Met remains bound to the cluster

after cleavage of AdoMet during turnover52. However, R134 is not conserved in SPL, and

the crystal structure of MoaA with 5'-GTP shows the AdoMet cleavage products 5'-dA

and Met bound to the enzyme, demonstrating that the simple ability to retain the AdoMet

cleavage products does not affect how the enzyme uses AdoMet. Other factors such as

the requirements of the specific chemical reaction being catalyzed must govern this

difference in AdoMet usage. For example, in the LAM reaction, there is no net change in

oxidation state of the substrate, whereas in the PflAE reaction, a proton and electron are

transferred irreversibly from substrate to 5'-dA*, and in the HemN reaction, two of the

propionate side chains of coproporphyrinogen III are oxidized by two electrons each, thus
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requiring an additional electron acceptor3 6,38 ,54. Structural characterization of SPL or

identification and characterization of another AdoMet radical enzyme that uses AdoMet

as a cofactor will be necessary to clarify any AdoMet binding site characteristics, if any

exist, involved in this aspect of catalysis.

An additional question remaining with regards to AdoMet binding is how some

enzymes accomplish the cleavage of two molecules of AdoMet while others use only

one. Although initially controversial 55'56, studies conducted on BioB57 59, LipA6 and

HemN37 that quantitate and correlate AdoMet cleavage and product formation have

shown that these three enzymes require cleavage of two molecules of AdoMet for every

one molecule of product formed. It now remains to be shown how and where these

enzymes bind the second AdoMet and in what order the substrates / molecules of

AdoMet bind, including whether the enzymes actually bind two molecules of AdoMet

simultaneously during catalysis. These enzyme systems, however, are wrought with

many complicating factors that make even a complete description of the requirements for

catalysis difficult. BioB and LipA, for example, have still only been shown to turn over

once in vitro; in fact, 50 pM LipA only produces 18 giM of the lipoyl cofactor product6 .

Formation of the protoporphyrinogen IX product of HemN requires addition of crude cell

extract to assay mixtures36'38, presumably to include the reaction's as of yet unidentified

electron acceptor. As a result, the complete requirements for full HemN activity are

undefined. Clearly, our understanding of the biochemistry of these three enzymes is still

in its infancy.

There are three possible ways to explain the observed stoichiometry of AdoMet

cleavage in BioB, LipA and HemN. First, as proposed for LipA, each individual protein

monomer could carry out AdoMet cleavage once, releasing a stable intermediate and the
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AdoMet cleavage products 60. However, both sulfur atoms incorporated into LipA's

lipoate product are likely derived from the cluster of the same LipA polypeptide61 .

Further, there is no evidence that BioB releases a stable intermediate and even though 9-

mercaptodethiobiotin can be turned over into biotin by BioB62, the apparent Km for this

molecule is much higher than that of dethiobiotin63, and use of 9-mercaptodethiobiotin

does not increase the turnover numbers of the enzyme63. A second possibility is that each

enzyme binds and cleaves one molecule of AdoMet at a time, releasing the cleavage

products and then binding a second AdoMet molecule, all the while retaining the

substrate intermediate. This possibility is the most consistent with what we know of

BioB, since there does not appear to be room in the BioB active site for a second AdoMet

molecule to bind31, only minor readjustments of the BioB structure would be needed to

allow release of the AdoMet cleavage products31 and the intermediate formed could stay

attached to the 2Fe-2S cluster59. The final possibility, suggested by the observation that

two AdoMet molecules bind within the active site in the HemN structure30 , is that there

are two distinct AdoMet binding sites on the enzyme. This second AdoMet molecule

(termed SAM2) is either physiologically relevant or an artifact of the crystallization

conditions, binding where substrate would normally bind. Layer et al. hold that SAM2 is

involved in catalysis based on their modeling of the coproporphyrinogen III substrate in

the active site, both with and without presence of SAM230 . In their analysis, the

propionate sidechains could be better accommodated in the presence of SAM230.

Additionally, mutation of the residues contacting the structure's SAM2 affects AdoMet

cleavage3 . Contrary to the conclusions Layer et al. draw, however, the decreased

AdoMet cleavage they observe is consistent with those residues forming either a second

AdoMet site or the substrate binding site.
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Several factors strongly suggest an artifactual explanation of SAM2 binding.

First, each of the four other structures shows that substrate binds in a very specific

location with respect to AdoMet, with the substrate atom from which hydrogen atom

abstraction occurs approximately 4A from the C5' atom of AdoMet (section IV.G.2).

SAM2 of HemN is observed binding in this location (see section IV.G.2.b). Second,

there is no SAM2 binding site observed on BioB31, though BioB is known to utilize two

molecules of AdoMet during catalysis57" 9. Third, the nature of the chemistry catalyzed

would require close control of the orientation of each AdoMet and substrate molecule

involved in the reaction, and the SAM2 site does not indicate the same high level of

conformational control as exercised over the cluster-bound AdoMet. Although SAM2 is

recognized reasonably well by HemN through six possible hydrogen bonds mainly to the

ribose hydroxyls and hydrophobic interactions with three HemN residues, there are fewer

direct contacts to SAM2 than to the first AdoMet, suggesting that recognition of SAM2 is

less specific; indeed, the methionyl moiety of SAM2 is partially disordered30 (see section

IV.G.2.b). If SAM2 binding was physiologically relevant, one would expect to see a

tighter conformational control, as is wielded over the cluster-bound AdoMet (Figures

IV. 12.a-e) and the substrates in the other structures (discussed in section IV.G. 1).

Finally, the mechanisms Layer et al. propose for cleavage of the second AdoMet

molecule in the SAM2 site are troubling30 ,38 . First, they propose that a conformational

change in SAM2 occurs upon substrate binding, which would bring the sulfonium of

SAM2 into sufficiently close proximity to the cluster-bound AdoMet to allow electron

transfer to occur from the 4Fe-4S cluster to SAM2 via the cluster-bound AdoMet. Their

second proposal is that AdoMet cleavage occurs as is generally accepted to catalyze the

first substrate decarboxylation, followed by injection of the electron released by this
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process into SAM2, resulting in formation of the second 5'-dA*. Because the reduction

potential of a typical sulfonium ion is so high, achievement of such a difficult

mechanistic step by either of these two mechanisms - electron transfer through AdoMet

or reductive cleavage of AdoMet via a decarboxylation reaction - is unprecedented and

seems unlikely, especially when involvement of a presumably more suitable electron

acceptor is already expected. On the other hand, model systems have confirmed that

electron transfer to and subsequent cleavage of AdoMet can be mediated by iron-sulfur

clusters64' 65. The generally accepted theory for production of 5'-dA. from AdoMet

therefore centers on inner-sphere electron transfer to the AdoMet sulfonium enabled by

close proximity with the 4Fe-4S cluster4,27 '8 , and experiments aimed at clarifying this

mechanism are ongoing. Since components of the HemN reaction such as the

physiological electron acceptor have not been identified, these questions await further

biochemical and structural studies for clarification.

IV.F.6. Other known AdoMet-binding protein folds

Currently, the PDB (at the RCSB, http://www.rcsb.org/pdb) contains 295 total protein

structures of known AdoMet-binding proteins, 158 of which are unique (<95% identical

by sequence), whose coordinates include AdoMet (88 total, 72 unique) or S-

adenosylhomocysteine (AdoHCy - 207 total, 105 unique). The large majority of these

proteins are methyltransferases (MTases). As discussed by Kozbial and Mushegian19,

there are 15 distinct folds capable of binding AdoMet or AdoHCy, which can be divided

into the following 4 categories: (1) Rossmann-like, (2) 0 barrel-like, (3) "Double-p" and

(4) folds derived from other ligand-binding domains.
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The most common fold utilized to bind AdoMet is the Rossmann-like domain.

The typical MTase AdoMet-binding fold is a 7-stranded 3 sheet, adopting a mainly

parallel orientation with one strand, typically 37, oriented antiparallel to the others

(Figure IV. 14). AdoMet binds at the C-terminal loops following strands p31, 32, 33 and

34. The Rossmann-like AdoMet-binding fold includes most of the MTases, such as

catechol-O-MTase (COMTase)66 and the DNA:m5C MTases67, as well as some enzymes

that bind AdoMet but are not MTases, like spermidine synthase68 , the bacterial

fluorinating enzyme69 and cyclopropane fatty acid synthase70 . Additionally, several

classes of MTases employ a similar fold, such as the SPOUT MTases, thus named for the

first identified enzymes of this class, SpoU and TrmD MTases 71,72. The Rossmann-like

domain is similar to the p barrel-like domain observed in the AdoMet radical enzymes in

that the loops near the C-terminal ends of the P-sheet structure are responsible for binding

AdoMet. Also, these fold types are both commonly found in the context of larger protein

chains that contain both an AdoMet-binding region and a variable substrate-binding

region. Low sequence conservation like that observed between members of the AdoMet

radical superfamily is also observed between the Rossmann-like AdoMet binding

proteins.

Another less common fold able to bind AdoMet is the double-3 fold, in which

AdoMet binds between two P sheets. Examples of the double-3 fold include the SET

domain (named because the first proteins identified with this conserved domain were the

Su(var)3-9, E(Z) and Trithorax chromatin remodeling proteins19'73,74), such as that found

in PrmA MTase 75 (Figure IV.15.a), a class of MTases that transfer a methyl group to a

nuclear protein lysine residue, and AdoMet synthetase76 (Figure IV.15.b). Still other
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folds were generated by recruitment of broad-specificity ligand-binding folds to bind

AdoMet, such as in the case of ACC synthase (AdoMet methylthioadenosine lyase, a

member of a diverse PLP-dependant transferase family)77 and the MetJ repressor (Figure

IV. 15.c, a ribbon-helix-helix DNA-binding protein that uses AdoMet as a co-repressor)78 .

Finally, several enzymes, such as the methionine synthase (MetH) reactivation domain

(Figure IV.15.d)79, do not fit easily into any of these categories. The usual "cup-like"

shape of the MetH reactivation domain probably evolved to specifically recognize the

AdoCbl-binding domain of MetH. The AdoMet radical enzymes clearly form their own

unique class of AdoMet-binding proteins with little similarity to the other known

AdoMet-binding folds.

IV.G. Substrate binding to AdoMet radical enzymes

IV G. 1. Overall description of substrate binding site

The tight conformational control over AdoMet implied by the structures of the AdoMet

radical enzymes is likely also necessary over the substrates for proper orientation and, in

particular, the atom from which hydrogen atom abstraction occurs. Superposition of the

five structures of the AdoMet radical core shows that substrate / SAM2 (from HemN)

binds in a very similar site on all of the enzymes (Figure IV.16). The AdoMet radical

substrate binding site is located within the lateral opening of the core's partial TIM

barrel, which corresponds to the center of the full TIM barrel of BioB. As discussed

above (section IV.D.2), the substrate binding site is formed between the core region and

structural motifs located outside the core mainly at the C-terminus (Figure IV. 10, Figure

IV. 17). As would be expected based on the location of the substrate binding sites, those

core residues involved in substrate binding are strictly from the core f3 strands, with only
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three exceptions (PflAE H37, N38; LAM R134, which all immediately follow the

CX 3CX<C motif, Figure IV. 10).

A main function of the AdoMet radical substrate binding sites is likely to be

conformational control over the substrate in order to facilitate proper hydrogen atom

abstraction. There are typically several specific interactions made by the AdoMet radical

enzyme to its substrate (discussed in section IV.G.2). In addition to protein sidechain

interactions, some of the enzymes use a separate cofactor to help anchor substrate, such

as the PLP of LAM and the second 4Fe-4S cluster of MoaA. The combined interactions

between protein, cofactors and substrate result in a similar position of the substrate

abstraction point (Figure IV.18). However, the role of additional cofactors is not always

for substrate binding. While the PLP of LAM and the 4Fe-4S cluster of MoaA are

presumably used for substrate binding, the 2Fe-2S cluster of BioB is believed to serve as

a source of sulfur during catalysis59. The positions of the additional cofactors differ

accordingly between the enzymes (Figure IV. 16), reflecting the plasticity of the AdoMet

radical fold in its ability to accommodate different substrates. In the following sections,

we will examine the substrates and cofactors of the AdoMet radical enzymes of known

structure, their individual substrate binding sites, and any identified substrate-binding

motifs.

IV G.2. The substrate binding sites ofAdoMet radical enzymes

IV. G.2.a. PflAE

Pfl, a homodimeric enzyme of 85 kDa per monomer, is the actual substrate of PflAE. In

order to simplify the crystallization experiment, a small peptide corresponding to the

glycine residue of interest and the loop upon which it resides was used to obtain crystals
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of PflAE (Section IV.C.1). In experiments conducted by Knappe's laboratory, this

particular peptide (RVSGYAV) was shown to bind PflAE and stimulate its AdoMet

cleavage activity, proving that the peptide is a good substrate for this enzyme13. The

seven-residue peptide substrate binds across the lateral opening of the PflAE core,

making contacts mainly to protein residues originating outside of the core, with some

exceptions (Figure IV.17.a). The loop preceding the core plays a major part of substrate

binding in PflAE, providing the critical interaction between D15 and the amino group of

the peptide glycine residue (which corresponds to Pfl G734), as well as steric interactions

with the peptide (Figure IV.19). This loop, which carries a motif specific to all of the

AdoMet radical activases, (D/N)GxGxR, undergoes a major conformational change,

swinging up into the active site and becoming fully ordered to properly bind substrate.

The arginine of this motif interacts with neighboring P strands, preserving the structural

integrity of the AdoMet radical core during the loop's conformational change. Within the

core, two interactions are provided by the P strands - F25, which provides steric

interactions, and R166, which is not located close enough to make specific contacts to the

substrate, but may play a role in catalysis (Section IV.F.3.b). The only residues of the

substrate binding site that are from within the core but are not located on a P strand are

H37 and N38, which are both found on the cluster-binding loop, directly after the

CX3CX•XC motif. Again, these residues provide specific interactions with the substrate

at a critical place, the carbonyl group of the peptidic G734, and appear key to maintaining

the substrate conformation for hydrogen atom abstraction. Finally, residues L204, H207

and K208 make up the remainder of the substrate binding site. They are all located on a

loop immediately following the core that folds down over the cluster on the C-terminal

side of the core's P sheet. L204 and H207 are involved in recognition of a tyrosine residue
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of the peptide substrate, while K208 appears to help control the substrate conformation

through an interaction to a peptide backbone atom (Figure IV.19). Overall, the

coordination observed in the peptide-bound PflAE structure results in a distance of 4.1 A

between the AdoMet C5' atom and the Ca of G734. The main aspects of substrate binding

by PflAE identified by this structure are without a doubt the major interactions made in

the full Pfl/PflAE complex, but further biochemical and structural studies of the full

complex will provide a more detailed picture of these and any additional interactions.

IV G.2.-b. HemN

The substrate of HemN is coproporphyrinogen III, a heme precursor (Section IV.C.2).

However, the HemN structure was solved in the absence of the actual substrate; as

discussed above, a second molecule of AdoMet (SAM2) is observed where the substrate

would be expected to bind (Figures IV.16 and IV.18). Since there is no structure of

HemN bound to its natural substrate, the binding site described here is that of SAM2.

One side of the SAM2 binding site is made up by the first few strands of the core (pl-

P4). Structural motifs from within the C-terminal region form the other side (Figure

IV. 17.b). Specifically, some important residues in the binding site (Figure IV.20)

originate in the loop of the P-finger motif that follows the C-terminal HemN domain and

a p strand that extends the HemN core P sheet at its N-terminus (orange in Figure

IV. 17.b, light pink ribbons and carbons in Figure IV.20). Because the actual substrate is

not observed here and is much larger in size than AdoMet, the actual substrate binding

site likely extends further along the AdoMet radical core.
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Similar to the cluster-bound AdoMet, the adenine of SAM2 is recognized at the

N6 and N7 atoms by interactions with both backbone atoms of 1329, which may also

provide hydrophobic interactions (Figure IV.20). Y56 of strand p31 and F310 of the P finger

loop provide further hydrophobic interactions. The SAM2 ribose makes hydrogen bonds

to G112 and E145 of the core (from the loop following P2 and within P3, respectively). No

specific contacts to the methionine are observed, probably giving rise to the disorder

observed in this part of the molecule3o. Other notable residues in this area are Hss and

Q31 1, which are essential to catalysis36,47 but do not appear to make direct contacts to

SAM2. The actual substrate likely makes more specific contacts, especially to these

particular residues. F310 and Q311 are part ofa HemN-specific motit; 30KNFQGYTT3 15,

which corresponds to the P-finger motif. The P-finger itself may therefore be an

important substrate-binding motif for HemN, possibly playing a role in any

conformational changes associated with substrate binding.

IV G.2. c. BioB

Biotin synthase catalyzes the insertion of a sulfur atom into dethiobiotin to form biotin

(Section IV.C.3). The structure of BioB was solved in the presence of the actual

substrate dethiobiotin, with the 4Fe-4S cluster in the oxidized state in order to prevent

turnover2-24. In addition to the canonical 4Fe-4S cluster, a 2Fe-2S cluster is observed

within the TIM barrel, serving as the source of sulfur for turnover4 0,59. As apparent from

Figure IV.17.c, the substrate binding site is formed by residues from the middle of most

of the barrel's P strands, as is the 2Fe-2S cluster binding site. Several residues from

loops following the 3 strands make important interactions with the substrate as well.
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The six-carbon "tail" of dethiobiotin is held through the carboxylate by BioB

backbone atoms of residues L290, L291, T292 and T293, and by the hydroxyl of T292 (Figure

IV.2 1). The leucine sidechains, along with the sidechains of L45 and F285, provide a small

hydrophobic surface for the carbon chain of dethiobiotin to pack against. Three

conserved asparagines, N151, N153, and N222, together ligate the ureido ring of dethiobiotin

through hydrogen bonds to the nitrogens and carbonyl oxygen. Ns151 and N1 53 are part of

a conserved 150YNHNLD155 motif found in biotin synthases, which when mutated yield

inactive enzyme80 . These interactions hold dethiobiotin close to AdoMet, at a distance of

4.1 A and 4.0 A between C5' of AdoMet and C6 and C8 of the substrate, respectively.

Finally, the 2Fe-2S cluster bound within the BioB barrel is coordinated by three cysteine

residues (C97, C128 and Clss) and R260 (Figure IV.21b), which may aid in reconstitution of

the 2Fe-2S cluster or in modifying the characteristics of the cluster to aid in sulfur

transfer.

IK G.2.d. MoaA

5'-GTP is the substrate of MoaA/MoaC, which together catalyze the complicated

rearrangement of this substrate shown in Figure IV. l.b. The structure of MoaA in

complex with 5'-GTP and the AdoMet cleavage products 5'-dA and methionine was

solved by soaking 5'-GTP-free crystals in a solution containing 5'-GTP (Section IV.C.4).

The second 4Fe-4S cluster of MoaA is also observed in this structure, ligating 5'-GTP

through the nitrogens of the purine base. The 5'-GTP binding site is very extensive, and

is formed by all of the 0 sheets of the AdoMet radical core (Figure IV. 17.d). The C-

terminal region of MoaA (colored grey in Figure IV.17.d) that extends the core P sheet

on both sides is involved in substrate binding. Specific elements that form this side of
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the binding site are several (3 strands outside of the core and some loops in the C-terminal

region (highlighted orange in Figure IV. 17.d).

The triphosphate of 5'-GTP is very extensively coordinated, mainly by active site

arginines and lysines (Figure IV.22), including R17, K69, R71, K163, T102, N124, N165 and

R 192 . Specific contacts to the guanine base are made by R17, R266 and R268, while

hydrophobic interactions are provided by 1194, 1253, M197, F260 and L279 . One interesting

point that becomes apparent in an analysis of Figures IV.16 and IV.18 is that the

substrate of MoaA is located furthest away from the C5' atom of AdoMet than any other

substrate. However, four facts should be kept in mind while examining this structure: (1)

AdoMet is cleaved in this structure, though substrate has not been transformed, possibly

affecting the substrate binding site conformation, (2) MoaC, which is required for

catalysis, is absent from the structure and (3) the enzyme was crystallized without 5'-

GTP, which may prevent any necessary large conformational changes. Unknown

conformational changes may occur upon binding of MoaC that could shift substrate

closer to AdoMet. Finally, (4) because little is known about the specific mechanistic

steps of this reaction, we can not yet be sure that 5'-GTP is the actual substrate of MoaA.

Though it is likely that MoaA catalyzes the rearrangement reaction and MoaC is involved

in pyrophosphate release3, 3 , at this point we cannot rule out the possibility that the MoaA

substrate is actually formed by MoaC.

The second 4Fe-4S cluster binds to MoaA at the N-terminus of an a helix within

the C-terminal domain. It is coordinated by three cysteine residues, C261, C264 and C2 78,

which are all located on loops, again within the C-terminal domain of MoaA.

IV. G.2.e. LAM

159



The binding site provided by LAM for lysine and PLP is formed by several parts of the

enzyme. First, the loop connecting the N-terminal helical domain and the AdoMet

radical core provides part of the binding site (orange and grey in Figure IV.17.e). Some

strands from the core are involved in binding substrate, as is the cluster-binding loop.

Finally, protein elements outside of the core, such as a P finger motif and the loop

following that motif provide the remainder of the binding site. Some residues from a

second molecule of LAM provide interactions; specifically, the loop following the P

finger motif of one molecule interacts with the PLP of a second molecule (Figure

IV. 17.e). The cofactor, PLP, is extensively coordinated.

The substrate lysine molecule is bound by four residues in the LAM active site:

the carboxyl group is hydrogen bonded to R134 and S169, from the cluster binding loop and

strand P2, respectively (Figure IV.23.a). D293 and D330 both ligate the amino group of the

substrate, while Y290 provides hydrophobic interactions with the four-carbon chain.

These interactions together hold the substrate tightly in place, resulting in a distance of

3.8 A between the AdoMet C5' and CP of lysine.

In the absence of substrate, PLP forms an imine linkage to K337
81, which is

apparent in the structure9 (Figure IV.23.b). Interestingly, the pyridoxal nitrogen interacts

with only a water molecule ligated by the backbone atoms of R112, Y113 and R116, a rare

observation in PLP-dependent reactions. Typically the PLP pyridoxal nitrogen is

hydrogen bonded by asparate, serine, arginine or glutamate82 -84. Residues Eloo and R112

bind the PLP via a water molecule, as does Q258 of the GxIxGxxE motif The phosphate

group is coordinated by quite a few residues, including R116, R198, Y287, Y288, the water

molecule ligated by Q258, and G321 of the second LAM molecule. Hydrophobic

interactions with the pyridine ring are provided by L118. Finally, the sidechain of K337 is
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held in place to reform the imine linkage by the hydroxyl group ofY113. PLP is likely

essential for proper coordination and orientation of substrate lysine, as without it, the

other interactions provided by the protein to the lysine substrate would not be sufficient

to overcome the conformational flexibility of this long chained amino acid.

IV G.3. Conformational changes associated with substrate binding in AdoMet radical

enzymes

As discussed above, the radical reactions catalyzed by these enzymes would likely

require sequestration of the active sites from solvent during catalysis. This implies that

conformational changes will occur upon substrate binding in most of the AdoMet radical

enzymes, as has been observed for PflAE5s . Specifically, the HemN and MoaA active

sites appear very solvent exposed30 'o33 (Figures IV.5 and IV.7). In the case of MoaA, no

major conformational change is observed between the substrate-free and substrate-bound

forms, leaving the active site very open32,33. However, an additional protein, MoaC, is

required for activity, and its function during catalysis is as of yet unclear. It is possible

that MoaC helps to bury the active site in some way, either directly or by enabling a

conformational change. Obviously, further structural studies are required to identify

conformational changes associated with substrate binding in the AdoMet radical

enzymes, as only PflAE and MoaA have more than one structure available for

identification of changes.

IV G.4. Similarities and diferences in the substrate binding sites in AdoMet radical

enzymes
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As has been emphasized in this section, each of these enzymes (with the exception of

HemN) displays an ability to precisely control the conformation of its substrate (Figures

IV. 19 - IV.23). PflAE provides specific interactions to the peptide substrate and in

particular to G734, BioB and LAM use multiple hydrogen bonds to stretch their substrates

across the active site and MoaA uses a second 4Fe-4S cluster and extensive hydrogen

bonds to coordinate 5'-GTP. However, outside of this, there are virtually no similarities

between the substrate binding sites. The enzymes have very different protein motifs

outside of the AdoMet radical core, and the size and orientation of substrate binding sites

are also dissimilar. There is no similarity noted in the locations of bound cofactors

(Figure IV. 16). This variation is necessary in order to ensure that the substrate binds

properly to allow the correct hydrogen atom abstraction. From a structural point of view,

the substrate conformation is certainly one of the most important aspects of catalysis.

The highly divergent substrate binding sites discussed here reflect the diversity of the

substrates and reactions of the AdoMet radical enzymes.

IV.H. Reductant binding in AdoMet radical enzymes

The physiological reductants for most of these enzymes are flavodoxin and ferredoxin,

and they serve to reduce the 4Fe-4S cluster from the 2+ to the 1+ state. No biochemical

experiments aimed at determining where the reductant interacts with the AdoMet radical

enzymes have been conducted; however, since so many other aspects of the initial radical

generation are conserved, the general location of the reductant binding site should be

similar in each enzyme. Our laboratory5" and that of Dieter Jahn30 have proposed the

surface nearest the cluster-binding loop as this interface, and mapping the sequence

conservation of each enzyme onto its surface supports this theory (Figure IV.24).
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The surface proposed here for interaction with flavodoxin or another electron

transfer protein is formed mainly by the cluster-binding loop, with additional surface

added in some cases by the loops following strands j2 and 04. The loop following P2

seems to form part of the conserved surface of both PflAE (Figure IV.24.a) and BioB

(Figure IV.24.c), while that following P4 (along with the N-terminal residues of helix

a4A) forms part of the surface in HemN (Figure IV.24.b) and BioB. However, the

pattern of high conservation on this particular surface is not present on the surface of

LAM (Figure IV.24.e). The N-terminal helical domain of LAM (Section IV.D.2.e) sits

atop the partial barrel above the 4Fe-4S cluster, obstructing the putative reductant-

binding interface. It is not clear whether a conformational change could expose more of

this surface, or a different surface on LAM interacts with the reductant.

The particular surface discussed here is an ideal candidate for forming the surface

of interaction with the physiological reductant. The proximity of this surface to the

cluster makes this location desirable -this surface is typically the closest region to the

cluster (Section IV.E.2), within 7 to 10 A in each of the structures, which is a reasonable

distance for electron transfer85. Also, in order to prevent nonproductive cleavage of

AdoMet, one would expect the reduction of the 4Fe-4S cluster to happen after substrate

binds, when the active site is ready for catalysis. The location of this particular surface,

on the opposite side of the enzyme from the lateral opening of the AdoMet radical core

and active site, would allow retention of the reductant-enzyme interaction even with

changes at the active site, from substrate binding during catalysis to evolution of the

active site with preservation of the reductant binding site.

IV.I. Conclusions
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The currently available AdoMet radical structures provide an excellent cross-section of

the superfamily and describe the protein fold used for radical generation in great detail.

These structures have allowed an analysis of the similarities and differences between the

enzymes in terms of the core fold, AdoMet binding sites, overall AdoMet conformation,

and tailoring of the protein chain to specific substrates. Structure based sequence

alignments can now be used to predict the residues involved in AdoMet binding and

catalysis in other superfamily members. However, although several AdoMet radical

structures are available, further structural study is required of this family in order to more

clearly determine patterns of substrate binding and to clarify the structural questions that

remain concerning the five enzymes studied here. Examples of such questions include

the structure of the full PflAE/Pfl complex; how HemN binds the coproporphyrinogen III

substrate and whether SAM2 is physiologically relevant; whether conformational

changes occur in MoaA upon substrate binding; whether MoaC plays a structural role in

this reaction or catalyzes a distinct reaction; whether any conformational changes are

associated with substrate binding and release in BioB and LAM and where and how the

physiological reductant interacts with each AdoMet radical enzyme. Clearly, there is

much to be learned about this new and exciting class of enzymes.
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IV.K. Tables and Figures

Table IV.1: Available AdoMet radical structures. aThe structure HemN contains a
mixture of AdoMet enantiomers. The physiologically relevant enantiomer was used to
obtain the values in this table and to prepare all figures. bGTP-MoaA has the AdoMet
cleavage products bound. In this structure, the 5'-dA amino group does not ligate the
unique iron. A third MoaA structure, of the R17/266/268A triple mutant, has been
omitted from this table. CTYW1 is a very recently solved AdoMet radical enzyme
(coordinates not available at this time). This structure does not contain the 4Fe-4S
cluster, AdoMet or substrate.
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Figure IV.1: AdoMet radical reactions. (a) The general reaction each AdoMet radical
enzyme catalyzes to initiate radical chemistry. (b) Reactions catalyzed by the AdoMet
radical enzymes for which structures are currently known: PflAE, HemN (RI and R2 in
this reaction scheme correspond to the remainder of the coproporphyrinogen III
tetrapyrrole macrocycle), BioB, MoaA/MoaC, and LAM. Adapted from reference 4.
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Figure IV.2: Diagrams of the complete substrate of each structurally characterized
AdoMet radical enzyme. (a) PflAE substrate: Pfl (b) HemN substrate:
coproporphyrinogen III (c) BioB substrate: dethiobiotin (d) MoaA's putative substrate:
5'-GTP (e) LAM substrate: lysine.
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Figure IV.3: The (a) top and (b) side views of a typical TIM barrel fold. The
enzyme shown is triosephosphate isomerase solved by X-ray crystallography to 0.83 A
resolution, PDB code 1N55. 03 strands are colored yellow, and a helices are teal.
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Figure IV.4: Ribbon diagrams of PflAE. Shown are the (a) top view and (b) side view
of the monomer with the 4Fe-4S cluster, AdoMet and peptide substrate in stick
representation. The AdoMet radical core domain is colored as follows: helices, teal;
strands, yellow; loops, grey; cluster-binding loop harboring the CX3CX4C motif,
magenta. The AdoMet, 4Fe-4S cluster and substrate atoms are colored as follows: iron,
ruby; sulfur, gold; AdoMet carbons, green; substrate carbons, teal; oxygen, red, nitrogen,
blue. Protein elements outside the core are colored grey. (c) The PflAE monomer shown
in stereoview, with cartoons colored as a rainbow (blue at N-terminus, red at C-terminus).
The cluster, AdoMet and substrate are colored as in (a) and shown in thick ball and sticks
for clarity.
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Figure IV.5: Ribbon diagrams of HemN. Shown are the (a) top view and (b) side
view of the monomeric protein. The AdoMet radical core domain is colored as in Figure
IV.4.a with the 4Fe-4S cluster and two AdoMet molecules shown in stick representation.
(c) The HemN monomer shown in stereoview, displayed and colored as in Figure IV.4.c.
Note that the N-terminus, colored blue, is partially disordered as it wraps around the
molecule between the two domains (chain breaks and missing protein sequence).
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Figure IV.6: Ribbon diagrams of BioB. Shown are the (a) top view and (b) side view
of the monomer. The AdoMet radical core domain is colored as in Figure IV.4.a with the
4Fe-4S cluster, 2Fe-2S cluster, AdoMet and dethiobiotin shown in stick representation.
Here, the elements outside of the core (shown in grey) complete the (Pf/a) 8 barrel. (c)
The BioB dimer shown in stereoview, displayed and colored as in Figure IV.4.c. The
second molecule of the dimer is shown in light grey cartoons.
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Figure IV.7: Ribbon diagrams of MoaA. Shown are the (a) top view and (b) side viewof the monomer. The AdoMet radical core domain is displayed and colored as in FigureIV.4.a with the two 4Fe-4S clusters, AdoMet and 5'-GTP shown in stick representation.(c) The MoaA dimer shown in stereoview colored as in Figure IV.4.c.
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Figure IV.8: Ribbon diagrams of LAM. Shown are the (a) top view and (b) side view
of the monomer. In (a) and (b), the AdoMet radical core domain is colored as in Figure
IV.4.a., and part of a second LAM monomer is also shown in ribbons, colored peach.
The 4Fe-4S cluster, AdoMet, PLP and lysine substrate are shown in stick representation.
(c) The LAM oligomer shown in stereoview, displayed and colored as in Figure IV.4.c.
The second molecule is shown in dark grey cartoons, while the two other molecules of
the tetramer are shown in light grey cartoons. In order to help visualize the
oligomerization surfaces, the tetramerization surface is marked "A" in parts a and c, and
the dimerization surface "B" in parts b and c.
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Figure IV.9: Superposition of the five AdoMet radical core domains, shown in stereo
and colored as in panels a and b of Figures IV.4 - IV.8. Here are shown two side views
of the AdoMet radical core, from (a) the front and (b) the back.
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Figure IV.1O: Structure based sequence alignment of the AdoMet radical enzymes
(figure is on the following page). The five enzymes for which a structure is available are
listed at the top of the alignment with the main secondary structural elements labeled at
the top of the alignment, highlighted in yellow (strands) and teal (helices). Residues of
interest are colored as follows: the CX3CX4C motif cysteines are in red; residues that
contact AdoMet in green; residues that contact the substrate, blue; residues that contact a
cofactor, pink; and residues that contact both AdoMet and the substrate, orange. The
sequences of the first five enzymes are shown with no sequence gaps; however, the
remaining sequences do have some gaps. Residues of the four motifs discussed in the
text are boxed in red and identified as follows: red stars correspond to the cysteines of
the cluster-binding loop; red circles, the GGE motif; red triangles, the positions within
the GxIxGxxE motif; and red squares, the conserved structural motif. A previously
published alignment 18 was used as a starting point for this alignment. The alignment was
then adjusted manually to reflect the exact structural elements of each enzyme and, in the
case of the GxlxGxxE motif, to align the residues involved in conserved hydrogen
bonding networks.
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Figure IV.11: Overlay of the 4Fe-4S cluster and bound AdoMet from each of the
AdoMet radical enzymes. Colors are as follows: iron, ruby; sulfur, gold; oxygen, red;
nitrogen, blue. In order to distinguish the 5 enzymes, the AdoMet carbons of each
enzyme are colored as follows: teal, PflAE; magenta, HemN; orange, BioB; green,
MoaA; purple, LAM.
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Figure IV.12: Stereoviews of each AdoMet radical enzyme AdoMet binding site.
The protein backbone is shown as grey cartoons, with AdoMet and the 4Fe-4S cluster
shown in sticks (AdoMet, green carbons; iron, ruby; sulfur, gold) and core P3 strands
labeled 1 - 6. Protein sidechains that interact with AdoMet are shown as lines with
carbons colored dark grey. Hydrogen bonding contacts are shown as red (within 3.2 A
distance), green (3.2 - 3.7 A) or yellow (more than 3.7 A) dashed lines. Shown in this
figure are the AdoMet binding sites of(a) PflAE (b) HemN (c) BioB (d) MoaA (e) LAM.
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Figure IV.12, continued.
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Figure IV.12, continued.
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.. 3 Figure IV.13: The
GxIxGxxE motif.
AdoMet and the
4Fe-4S cluster and
the protein residues
making up this
motif are shown in
sticks, colored as in
Figure IV.4.
Shown are (a)
PflAE (b) HemN
(c) BioB (d) MoaA
(e) LAM. Note
that, with the
exception of BioB,
the sidechain of the
first residue of the
motif is positioned
similarly with
respect to the
AdoMet ribose and
atom C5'. Each
protein also has a
similar sidechain-
to-backbone
hydrogen bond in
the loop following
P5 (shown as a red
dashed lines). See
text for more
details.
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Figure IV.14: Stereoview of the typical MTase AdoMet-binding fold. A
representative MTase, catechol-O-methyltransferase (COMTase) ) , is shown here in
cartoons with strands colored yellow and helices colored teal. AdoMet, colored as in
other figures, is observed bound at the C-terminal end of a mixed, mainly parallel P-
sheet.

(1

187



Figure IV.15: Stereoview of other AdoMet binding folds, all with AdoMet bound. (a)
a typical SET domain (2NXE) 75, (b) AdoMet synthetase (20BV) 76, (c) the MetJ repressor
(1CMC) 78 and (d) the methionine synthase reactivation domain (1MSK) 79. Each is
shown in cartoon representation, colored as in Figure IV. 14.
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Figure IV.15, continued: (c) the MetJ repressor, (d) the methionine synthase reactivation
domain.
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Figure IV.16: The general substrate binding site in AdoMet radical enzymes. The
five structures were superimposed based on their AdoMet radical cores for this figure.
Shown are the five "substrates" of the enzymes in sticks, colored as follows: teal, PflAE;
magenta, HemN; orange, BioB; green, MoaA; purple, LAM. Also shown is the AdoMet
radical core and 4Fe-4S cluster of PflAE only with 1 sheets labeled, as well as the
AdoMet of PflAE in sticks, with carbons colored teal for clarity. The BioB 2Fe-2S and
MoaA 4Fe-4S clusters are also shown, displayed as in other figures.
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Figure IV.17: The substrate binding site of each AdoMet radical enzyme, highlighted
to emphasize the elements of each protein involved in forming the binding site. Shown in
this figure are the highlighted substrate binding sites of(a) PflAE with seven-mer peptide
substrate (b) HemN with SAM2 (c) BioB with dethiobiotin and 2Fe-2S cluster(d) MoaA
with putative substrate 5'-GTP and 4Fe-4S cluster (e) LAM with PLP and lysine. Each
figure is shown in stereo and colored as in panels a and b of Figures IV.4 - IV.8 with the
exception that the cluster binding loop is not colored magenta, and the cartoon is colored
red at the backbone atoms of residues that contact the substrate.
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Figure IV.17, continued.
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Figure IV.18: The relative positioning of the substrate hydrogen atom abstraction
point in the AdoMet radical enzymes. This figure was generated from the five enzyme
structures superimposed on their 4Fe-4S clusters and AdoMet only, to give a more
accurate comparison of the relative positions of the substrates with respect to the
AdoMet. The backbone, 4Fe-4S cluster and AdoMet are shown for the core of PflAE
only, and colors are as described in Figure IV.16. C5' of AdoMet is shown as a sphere.
The atoms from which hydrogen abstraction is known to occur (i.e. Co of G734 of the
peptide, C6 and C8 of dethiobiotin, and C3 of lysine) are shown as spheres. In the case
of MoaA, because AdoMet was not bound to the structure with 5'-GTP, the AdoMet-
bound structure (1TV8) was superimposed as described, and the 5'-GTP-bound structure
(2FB3) was then superimposed on that MoaA model.
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Figure IV.19: Stereoview of substrate binding by PflAE. The 4Fe-4S cluster,
AdoMet and substrate are displayed as in Figure IV.4.a. PflAE sidechains that interact
with the substrate are shown as lines, colored as in Figure IV. 12.
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Figure IV.20: Stereoview of SAM2 binding site in HemN. The 4Fe-4S cluster,
AdoMet and SAM2 are displayed as in Figure IV.5.a. HemN sidechains that interact
with SAM2 are shown as lines, colored as in Figure IV. 12. The P finger motif and 3
strand from the C-terminus that extends the AdoMet radical core region are both shown
in light pink (see text).
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Figure IV.21: Stereoview of (a) dethiobiotin binding and (b) the 2Fe-2S cluster of
BioB. The 4Fe-4S cluster, AdoMet and dethiobiotin are displayed as in Figure IV.6.a.
BioB sidechains that interact with the substrate are shown as lines, colored as in Figure
IV.12.
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Figure IV.22: Stereoviews of (a) 5'-GTP binding (b) the second 4Fe-4S cluster of
MoaA. The 4Fe-4S clusters, AdoMet cleavage products and GTP are displayed as in
Figure IV.7.a. MoaA sidechains that interact with GTP are shown as lines, colored as in
Figure IV.12.
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Figure IV.23: Stereoview of (a) substrate and (b) cofactor binding by LAM. The
4Fe-4S cluster, AdoMet, Lys substrate molecule and PLP are displayed as in Figure
IV.8.a. LAM sidechains that interact with the substrate are shown as lines, colored as in
Figure IV. 12. In (b), part of a second molecule is shown in light blue.
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Figure IV.24: Putative physiological reductant interaction surface for the AdoMet
radical enzymes. Shown in stereoview are the surfaces and cartoon representation of (a)
PflAE, (b) HemN, (c) BioB, (d) MoaA and (e) LAM from the back of the enzyme,
meaning the opposite side with respect to the lateral opening of the AdoMet radical core,
roughly the same view as in Figure IV.9.b. The surface is shown at 50% transparency
and is colored as a rainbow according to the extent of sequence conservation, with red
being 100% conserved and blue as 0% conserved. The extent of conservation was
calculated with ESPript, using a sequence alignment generated as follows. A BLAST
search was conducted via the ExPASy proteomics server using the sequence of the
enzyme that is structurally characterized as the query. The top 100 sequences were input
for alignment by ClustalW. The alignment output by ClustalW was then used as input to
ESPript.
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Figure IV.24, continued.
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Chapter V: Appendices

Appendix 1: Further studies of iron-sulfur cluster biosynthesis

A1.I Summary
In eukaryotes, the mitochondria are the site of the majority of iron sulfur cluster

bioassembly. The primary machinery involved is the Isc gene cluster, which is highly
conserved throughout the kingdoms of life. A second operon, the Suf gene cluster, has
been implicated in FeS cluster synthesis under oxidative conditions. Researchers have
postulated that the Suf operon acts as the primary biosynthetic machinery in certain types
of cyanobacteria. The Suf operon may represent an evolutionary precursor to the Isc
operon, and as it does not encode molecular chaperones (the Isc operon does), it may be a
more viable crystallization target.

Our lab previously solved the structure of SutS from Synechocystis PCC sp 6803
by molecular replacement (see Chapter 2). This protein is a sulfur donor for iron-sulfur
cluster biosynthesis. The biochemical characterization of that enzyme led to the
hypothesis that another enzyme, identified by others as SutE, would be required for
stimulating SufS cysteine desulfurase activity. SufE was shown to enhance the cysteine
desulfurase activity of SufS by greater than 40-fold, perhaps by facilitating regeneration
of the active site cysteine from the persulfide form through intermolecular sulfur
transfer'. We became interested in the mechanism of this enhancement, and whether it
could be investigated by X-ray crystallography. The next protein in the iron-sulfur
cluster biosynthetic pathway is termed the "scaffold protein", denoted IscU, IscA, or
SufA. Structural characterization by Cowan's group has led them to classify the T.
Maritima IscU as a molten globule-like protein. Nuclear magnetic resonance, near-UV
circular dichroism, 1-anilino-8-naphtalenesulfonic acid binding, free energy of unfolding,
and hydrodynamic radius measurements collected on IscU are unclear, and consistent
with either a molten globule or fully folded state2 . They introduce the term MDC -
multiple discrete conformers - to describe their results, and propose that the protein has a
high degree of tertiary structure but experiences mobility on the uts to ms time scale.

The goals of the research described here was to crystallize several components of
an iron-sulfur cluster biosynthetic pathway and to further structurally characterize those
components, with the main objective of gaining insight into the Sufbioassembly system.
Crystallization experiments were conducted focusing on the complex of SufS with the
stimulatory protein SufE. Homologous proteins from three different organisms -
Synechocystis, Synechococcus, and humans - were used for crystallization trials. It is
also hoped that in the presence of an interacting partner - a cysteine desulfurase, for
example - the scaffold protein will become more ordered, if there is indeed substantial
mobility.

A1.II. Crystallization experiments: SufS/SufE complex

The E. coli SutE and SufS proteins were received from S. Ollagnier-Choudens
(Fontecave laboratory, CEA, Grenoble, France; buffer=50mM tris pH 7.5, 20mM NaC1),
and the Synechocystis proteins were provided by B. Tirupati (Bollinger laboratory,
Pennsylvania State University; buffer= 100mM Hepes pH 7.8, 10% glycerol). Samples
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used for crystallization were the
following: 1:1 ecSufES (two preps,
mixed by Sandrine), 1:1 ecSufES+cys,
4:1 ecSufES, 1:1 sySufES.
Hampton Crystallization screens
(primarily Crystal screens 1 and 2,
Crystal screen lite, Index screen,
Peg/Ion screen, Sodium malonate
screen, and Peg/LiCl screen) were set up
with the SufES complexes (for the best
hit, see Figure Al.1).

Dynamic Light Scattering and Ni-NTA
chromatography were used to determine
whether the two proteins interact tightly.
The proteins coeluted from a NiNTA
column (200mM imidazole), confirming
that their interaction is reasonably tight;
however, the DLS results were more difficult to interpret. The % polydispersity of most
samples was too high to allow us to draw conclusions confidently. The protein (SufE) is
most likely not very stable under its storage conditions (50mM tris pH 7.5, 20mM NaCl),
a conclusion supported by observations of precipitation after each freeze/thaw cycle.
Storage conditions for the complex need to be optimized before crystallization trials can
be resumed.

A1.III. Crystallization experiments with bacterial scaffold proteins

Two similar putative scaffold proteins, IscA from Synechocystis sp. PCC 6803 (syIscA)
and IscA from Synechococcus PCC sp. 7002 (scIscA), were cloned into expression
vectors and overproduced in E. coli and with the goal of crystallizing one of them, in
complex with the cysteine desulfurase, if possible.

A1.III.A. sylscA

AI.III.A. 1 Construction ofpSylscAH 6

Al.III.A.1 a. Materials

Synechocystis sp. PCC 6803 genomic DNA was provided by B. Tirupati, Bollinger
laboratory, Pennsylvania State University. All DNA oligos were obtained from IDTDNA
technologies. Plasmid pET-15b was purchased from Novagen. DH5a and BL21 E. coli
cells, as well as DNA gel standards, were purchased from Invitrogen. Mini Ready Gels
were purchased from EmbiTec. The following kits from Qiagen were used: Miniprep
kit, PCR Purification kit, and Gel Extraction kit. Restriction enzymes, shrimp alkaline
phosphatase (SAP), T4 DNA ligase and T4 DNA kinase were obtained from New
England Biolabs. Pfu Turbo was from Stratagene.
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Figure Al.1: This phase separation was obtained in
high salt conditions, and was the most promising hit
obtained for the SufES complex. However, a gel
showed that SufS alone comprised the round gel-
like species depicted in this photograph, while both
proteins are present in the drop.



A1.III.A.1b. Methods and Results

The gene slr1417 was amplified by polymerase chain reaction (Figure
Synechocystis genomic DNA using the following primers:
5' end, 5'-GGAATTCCATATGAGCCAAGCCACCGCTACCC-3'.
3' end, 5'-GCGGATCCTTAAACCCCAAAGGATTTACCAC-5'
Restriction endonuclease sites are marked bold (5' end, Ndel, 3' end, BamH1), and the gene

A1.2) from

is underlined.

The target vector, pET-15b (Figure Al.3), was transformed into DH5a E. Coli cells for
propagation and prepared from the organism using Qiagen's Miniprep Kit. The purified
vector and amplified gene were digested with restriction enzymes BamH1 and Ndel.
The vector was also treated with shrimp (SAP) to dephosphorylate the 5' ends of the
digested vector. After digestion, the vector and insert were purified using Qiagen's PCR
purification kit and ligated using T4 DNA ligase. After a heat denature step, the ligation
reaction was transformed directly, without additional purification, into DH5ca E. coli cells
and plated out onto LB-agarose plates with ampicillin as the selection factor. The
ligation yielded a very high background, evidenced by an equivalent number of colonies
on vector-only control plates as on ligation reaction plates. Colonies were tested by PCR
for presence of the insert (Figure Al.2). Plasmid testing positive for the insert was
sequenced using the T7 promotor primer at the UPenn DNA Sequencing Facility.
Alignment of the pSyIscAH6 sequence with that of the slr1417 DNA sequence yielded
100% identity. pSyIscAH6 was then transformed into DH5a E. coli cells for propagation
and BL21 E. coli cells for protein expression. The translated pSyIscAH6 sequence is as
follows, with the slr1417 sequence in bold:

MGSSHHHHHHSSGLVPRGSHMSQATATQAKGIQLSDAALKHLLALKEQQGK
DLCLRVGVRQGGCSGMSYMMDFEEPNRATEHDEVFDYEGFQIICDRKSLLY
LYGLMLDYSNALIGGGFQFTNPNANQTCGCGKSFGV

203

Figure Al.2: Test PCR results.
Lane 1, 100bp DNA ladder (Invitrogen).
Lanes 2-10, PCR reactions.
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Figure Al.3: Vector map of pET-15b from Novagen.

AI.III.A.2 Protein expression, purification and characterization

A1.III.A.2a. Expression
Ampicillin at 100tg/mL was used at all times as the selection factor. BL21 E. coli cells
expressing pSyIscAH 6 were used to inoculate 10mL LB cultures, which were then
allowed to grow at 370C overnight. The next morning, 1L cultures were inoculated with
the overnight cultures and grown to an OD 600 of 0.8 - 1. The cultures were then induced
by addition of IPTG to 0.5-0.8 mM. Cells were harvested by centrifugation after 4-6
hours growth at 370 C and stored at -800 C.

A1.III.A.2b. Purification
Cells were resuspended in Buffer A (50mM sodium phosphate, 5mM DTT, 150mM
NaC1, pH 7.8) and sonicated to lyse (30 seconds of 2 sec on / 1 sec off, cycled 6-8 times).
The cell break supernatant was then incubated on prerinsed NiNTA resin (rinse buffer
was Buffer A + 10mM imidazole) at 40C for 1-2 hours. The resin was rinsed and then
washed with Buffer A + 50mM imidazole, and protein was eluted with Buffer A +
150mM imidazole. After dialysis to remove the imidazole, protein was run over a DEAE
anion exchange column equilibrated in Buffer B (50 mM tris, 5mM DTT, pH 7.8) and
eluted with a sodium chloride salt gradient. Protein fractions were pooled, concentrated,
dialyzed into Buffer B + 150mM NaC1, 5% glycerol, aliquoted and stored at -800C.
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Thus far, each separate purification has resulted in syIscAH 6 (expected molecular weight
= 12.9 kDa) with a contaminant that runs between the 24.5kDa and 36.6kDa molecular
weight standards. This contaminant has not been successfully separated from sylscAH 6,
so N-terminal microsequencing and MALDI mass spectrometry were used to identify it.
Interestingly, the sequencing results suggest that this band also contains syIscAH6,
perhaps in a disulfide-bridged dimeric form.

A .III.A. 2 Preliminary biochemical characterization

Reconstitution of syIscAH 6 was achieved anaerobically by direct addition of Fe2+ (in the
form of ferrous ammonium sulfate or ferrous sulfate) and S2- (sodium sulfide) to a
-4mg/mL protein solution in the presence of DTT. A dark brown color and substantial
precipitation formed immediately upon addition of Fe2+ and S2-, but the protein was
incubated anaerobically for approximately 2 hours before use of a G25 purification step
to remove small molecules. UV-Vis spectra confirm the presence of a cluster, but
occupancy has not yet been determined.

Reconstitution of the cluster was also attempted through addition of Fe2+ and cysteine in
the presence of catalytic amounts of Synechocystis SufS. Upon anaerobic incubation
(without the addition of DTT), the protein solution took on a slight pink color.
Unfortunately, attempts to observe a protein-bound FeS cluster were unsuccessful,
perhaps due to precipitation of syIscAH6 in the presence of a high concentration of Fe2+.

In order to determine whether there is a strong interaction between syIscAH 6 and sySufS,
protein preparations with 1:1 and 2:1 molar ratios (syIscAH 6:sySufS) were
chromatographed on size exclusion (Biosec SEC-S, Phenomenex) and NiNTA affinity
(Qiagen NiNTA His-bind Resin) columns. The size exclusion column did not have the
resolution capability required to distinguish between the proteins alone and in complex at
the flow rates used. The NiNTA affinity chromatography experiments did not show any
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Figure A1.4: syIscAH6 purification. Lane 1: Benchmark protein MW standards
(Invitrogen -bands correspond to the following molecular weights in kDa: 5.3, 13.5,
19.0, 24.5, 36.6,48.0, 62.4, 79.0, 110.2, 172.0). Lane2: CBP. Lane3: CBS. Lane4:
NiNTA column flow-through. Lane5: 10mM imidazole rinse. Lane6: start of 50mM
imidazole wash. Lane7: end of 50mM imidazole wash. Lanes8-15: 150mM imidazole
elution. Lane 16: Protein ladder. Lanes 17-19: DEAE fractions, peak 1. Lanes 20-30:
DEAE fractions, peak 2.



interaction between the two proteins, as sySufS eluted with 10mM imidazole, and
syIscAH 6 stuck to the column (eluted with 150mM imidazole).

A1.III.B. scIscA

AI.III.B.1. Purification of the untagged sclscA

Cells expressing the pSclscA plasmid (obtained from Gaozhong Shen, Bryant and
Golbeck laboratories, Pennsylvania State University) were sonicated to lyse, after which
the cell break supernatant was fractionated by ammonium sulfate precipitation steps. The
pellet obtained after the 30-60% fractionation was redissolved and dialyzed, followed by
an anion exchange (DEAE) chromatography step. To further purify scIscA, HIC
(phenyl-G-sepharose), hydroxyapatite, and size exclusion chromatography were used.
Because little amounts of purified protein were obtained with the established purification
protocol, the gene was cloned into a histidine tagged plasmid.

Al.III.B.2. Subcloning sclscA into pScIscAH 6

The gene encoding sclscA was amplified from pSclscA (provided by Gaozhong Shen,
Pennsylvania State University) by PCR using the following primers:
5' end: 5'-GGAATTGCATATGGCACAAACAACTACTG-3' (Ndel cleavage site)
3' end: 5'-CGGGATCCTTAAACCCCAAAAGATTTC-3' (BamH1 cleavage site)
Restriction endonuclease sites are marked bold (5' end, Ndel, 3' end, BamH1), and the gene is underlined.

The target vector (pET-15b) and insert were, after purification, digested with Ndel and
BamH1, and then ligated using T4 DNA ligase as described above. A high background
was again observed on vector-only control plates (due to vector religation), and the PCR
test was used again to identify successful ligation products. Plasmid encoding the scIscA
gene was sent to the UPenn DNA Sequencing Facility to verify correct ligation, and then
transformed into DH5a and BL21 E. coli cells for propagation and expression. scIscAH6
was purified as described for sylscAH6 in section Al.III.A.2b.
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Lane 1: 1kbp DNA ladder (Invitrogen)
Lanes 2-10: Test PCR reactions
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buffer (Figure A1.5). The reaction components were left mixing at 40C for the times
indicated. After further purification by size exclusion chromatography, samples were
transferred to a nitrocellulose membrane and sequenced by the MIT Biopolymers Lab.
The band expected to be product was confirmed as the thrombin-cleaved sylscA, with
sequence GSHMSQATATQAKGIQ.

Typically, the cleavage reaction was left incubating overnight at 40C. After completion
of cleavage, the reaction was purified by size exclusion chromatography (Figure A1.6).

A1.III.D. Crystallization of scaffold proteins

Crystallization experiments were set up using the Hampton Crystallization screens
(primarily Crystal screens 1 and 2, Crystal Screen Lite, Index screen, Peg/Ion screen,
Sodium malonate screen, and Peg/LiCl screen). The following protein samples were
used in crystallization experiments: syIscAH 6, syIscA, reconstituted syIscAH 6
(anaerobic), reconstituted syIscA(anaerobic), scIscAH 6. No crystals or potential crystals
were observed.

Crystallization experiments were also set up anaerobically using NFU (human IscU
homolog) obtained from Wing Tong at NIH, but they also did not yield crystals.
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A1.III.C. Tag removal from syIscAH 6

1 2 3 4 5 6 7 8 9 10 11

62.4 kDa
36.6 kDa

24.5 kDa

19.0 kDa

5.3 kDa

Figure Al.6: Thrombin cleavage reaction. Lanes are as
follows: 1) Benchmark molecular weight markers
(Invitrogen). 2) undigested control, 7.5jpL, lhr. 3) B,
7.5 piL, lhr. 4) C, 7.5 pL, lhr. 5) undigested, 1 pL, lhr.
6) B, 1 pL, lhr. 7) C, 1 pL, 1 hr. 8) undigested, 7.5 pL,
19hr. 9) B, 7.5 jL, 19hr. 10) C, 7.5 jiL, 19hr. 11)
undigested, luL, 19hr. 12) B, 1 gtL, 19hr. 13) C, 1 pL,
19hr. 14) C, 7.5 pjL, 19hr. 15) C, 1 pL, 19hr.

In order to help with crystallization
and avoid adventitious iron
binding, the N-terminal His tags of
both syIscA and scIscA were
removed. Thrombin cleavage of
the His tag was carried out,
confirmed by N-terminal
sequencing, and optimized, and
crystallization experiments were
set up (with both apo and
reconstituted sylscA) but did not
yield any hits.

To determine the appropriate
amount of incubation time and the
amount of thrombin (Novagen) to
add to the thrombin cleavage
reaction, 300tg sylscA was mixed
with (A) no thrombin, (B) 1U
thrombin or (C) 5U thrombin
dissolved in thrombin cleavage

and sc~scAH6



Two structures of IscA were then published,
both from E. coli (41% identity to slr 1417)4' 5.
These papers outlined the tertiary fold of the
E. coli scaffold protein and the quaternary
structure as well. However, the active site
cysteines thought to ligate the nascent cluster,
which are located on the C-terminal tail, were
disordered in both structures.

References

1. Loiseau L, Ollagnier-de-Choudens S, Nachin L, Fontecave M, Barras F. J. Biol.
Chem. (2003) 278:38352-9.

2. Mansy SS, Wu SP, Cowan JA. J. Biol. Chem. (2004) 279:10469-75.

3. Bertini I, Cowan JA, Del Bianco C, Luchinat C, Mansy SS. J. Mol. Biol. (2003) 331:
907-24.

4. Bilder PW, Ding H, Newcomer ME. Biochemistry. (2004) 43:133-9.

5. Cupp-Vickery JR, Silberg JJ, Ta DT, Vickery LE. J. Mol. Biol. (2004) 338:127-37.

208

1 23 4 5 6 7 8 9 10 11 12 13 14.15

-624 kDa

36.6 kDa

24.5 kDa

530ka

Figure Al.7: Size exclusion fractions following
thrombin cleavage of syIscAH-6 .



Appendix 2: Detailed Account of the Crystallographic Characterization of E. coli
Pyruvate-formate lyase Activase

A2.I. Summary
PflAE is an AdoMet radical enzyme in the activase subfamily, and catalyzes formation of
a stable glycyl radical on its target enzyme, pyruvate-formate lyase.

Crystals of substrate-free PflAE in two macroscopic forms were obtained to
eventually yield the problematic substrate-free structure: thin needles (10-20 PM X 200-
1000 ptM) and three dimensional crystals (50tpM X 50ptM).

The three-dimensional crystal form yielded data that were used to generate an
initial substrate-free model. These crystals were reproduced through the use of high
concentration salt in the wells of crystal trays, and the conditions were optimized to yield
diffraction-quality crystals for data collection. Diffraction of these crystals was improved
with detergents, and multiple datasets were collected at ALS and SSRL, as well as on our
home X-ray generator. The structure was solved by anomalous dispersion techniques
using the iron-sulfur cluster as the anomalous scatterer, and the current model comprises
residues 5 to approximately 233, with two chain breaks. Refinement proved difficult in
this case, with the Rfactors remaining high (specific values depend on the method of
refinement and space group used).

A second protein sample, this one containing the seven-residue substrate
(RVSGYAV) yielded a second crystal form that, upon increasing their size with
detergents, was taken to SSRL for data collection. These data were of much higher
quality than data from the substrate-free form, and yielded a model that refined well.
This new model was then used to identify incorrect regions of the substrate-free form,
eventually yielding another refined model.

This appendix contains a more detailed account of the crystallographic studies of
the two forms of PflAE described in Chapter 3. In all of this work, solutions were
degassed by bubbling with argon for 15 minutes per 2 mL of solution. Solutions with
higher amounts of PEG were degassed slightly longer.

A2.II. The substrate-free crystal form

A2.II.A. Protein crystallization of substrate-free
PflAE
E. coli PflAE (MW=28073 Da) was obtained from
Meng Li and Jian Yang (in the laboratory of Prof. Joan
Broderick, who is now at Montana State University
though Meng and Jian stayed at Michigan State
University). Initial crystals were obtained in 24-well
trays from a Hampton Screen Kit after 2-3 days by
mixing 1ttL protein (20mg/mL in 50 mM hepes,
200mM NaC1, ImM DTT, pH 7.5) with IptL
crystallization solution (0.1M tris DH 8.5. 25% PEG
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3350), equilibrated against 1 mL 0.1M tris pH 8.5, 25% PEG 3350. These first crystals
were very thin, brown needles with one very long dimension (-200-1000 microns -
Figure A2. 1). An SDS-PAGE gel confirmed that these crystals contained PflAE (Figure
A2.2). The crystals diffracted to about 6 A (Figure A2.3), and the cryoprotectants
glycerol, MPD, PEG 400 and ethylene glycol were prepared to test at liquid nitrogen
temperatures. Subsequent optimization of the two dimensional crystals did not yield
better-diffracting crystals; however, some drops were later discovered to contain three-
dimensional crystals. Efforts to reproduce and optimize these three-dimensional crystals
continued.

Optimization oI me crystallization conditions
continued as follows. Additive and detergent screens
(with conditions 0.1M tris pH 8.5, 25% PEG 3350)
were set up in high throughput and Linbro formats.
The rate of diffusion was increased by equilibrating
the drops against 0.5 - 1.0 mL of a 2 - 2.5 M solution
of ammonium sulfate, which eventually led to
reproduction of the 3D crystals shown in Figure
A24 T I nt lt dnr th+ fi 1 tLI dhrlVI d F

-- V.-. cL %W1 Ia• %CaI3 ,u llu t IM , %,~ U• G1Mti 11 0I Figure A2.4: The three-dimensional
the drop somehow caused formation of the three substrate-free crystal form.
dimensional crystals. More thorough screening of
conditions over wells containing ammonium sulfate followed, including microseeding,
additive screening, and repeating the sparse matrix screening (Hampton Index Screen).
The sparse matrix screen did yield similar 3D crystals in 5 crystallization conditions very
close to the initial hit (see Table A2.1). Screens incorporating a wider pH range and
0.2M salt (NaCl, MgC12, NH40Ac and NaOAc) were also carried out, but yielded very
few crystals (only 4 substantial crystals; other drops were empty or had very small, thin
crystals).
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Figure A2.2: SDS-PAGE gel showing that the
initial crystals contained PflAE. Lane 1, MW
markers (molecular weights shown in kDa); 2,
PflAE sample 1; 3, crystals A; 4, drop A; 5,
crystals B; 6, drop B; 7, PflAE sample 2. An
arrow denotes location of PflAE protein band.

4-

Pigure A3: Lnlraction trom the mitial substrate-
free PflAE crystals.



0.1M tris pH 8.5, 25% PEG3350
0.1M bistris pH 6.5, 28% PEG MME 2000
0.2M NaCI, 0.1M bis-tris pH 6.5, 25% PEG 3350
0.2M NH40Ac, 0.1M bis-tris pH 6.5, 25% PEG 3350
0.2M NH4OAc, 0.1M hepes pH 7.5, 25% PEG 3350

Table A2. 1: Substrate-free PflAE crystallization hits over high concentration ammonium sulfute wells.

The three dimensional crystals were used to screen cryoprotectant conditions.
Five crystals were frozen and screened for each cryoprotectant, with PEG 400 and MPD
yielding the best diffraction. Higher resolution reflections were streaky and diffuse in
both cryoprotectants, and addition of Detergent #2 from Hampton's Detergent Screen 1
(C12E8) to the holding and cryo solutions improved this streakiness. Addition of the
cryoprotectants (not carried out with PEG 400) to the crystallization conditions
themselves did not yield quality crystals. Some experimentation was carried out to
optimize the conditions including the detergent, including varying the drop volume and
ratio, the well volume, and preincubation of the protein with the detergent. In all cases,
the diffraction quality varies widely crystal-to-crystal, so a large number of crystals were
screened to identify crystals good enough for data collection. The final cryoprotection
solution used was 0.1 M Tris pH 8.5, 25% PEG 3350, 0.11 mM octaethylene glycol
monododecyl ether and either 20% PEG 400 or 20% 2-methylpentane-2,4-diol (MPD).

A2.II.B. Data collection and phasing of the substrate-free PflAE crystal forms

A2.II.B. 1. First home dataset -primitive tetragonal lattice
The first PflAE dataset was collected at home on a crystal grown in a high throughput
format tray with the following conditions: 0.1M tris pH 8.5, 26% PEG 3350. This crystal
did not grow over ammonium sulfate - it formed over several months of evaporation, and
grew off of the bottom of the HT tray. It was cryoprotected with 30% PEG 400, frozen,
and later annealed into cryo solution for 30 seconds before data collection to improve the
diffraction. A sample diffraction image is shown below. Data were collected to 3.5A
renhiltinn the crvystal indexed with a

primitive tetragonal lattice and scaled
well as any of the P422 space groups.
The cell dimensions were 58.9A x
58.9A x 134.0A with angles 900 x 900 x
900, and a reasonable value for solvent
content (39.9%) was calculated with one
molecule per asymmetric unit.

Space Group P43212
Resolution 3.5 A
Rsym 10.7(20.9)%
% refl rejected 0.20 %
Redundancy 8.9
I/sigma 18.2(8.36)
% Complete 99.6(98.4)

Table A2.2: Data statistics from first home
dataset of substrate-free PflAE.
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Anomalous scattering from the 4Fe-4S cluster was then used to attempt to obtain
phases from the home data (peak anomalous absorption for iron = 1.7 A, copper Ka
radiation = 1.5418 A. Output from Scalepack indicated a small amount of anomalous
signal, and anomalous pattersons were calculated using XtalView. The Harker sections
of those Patterson maps were examined to find one site corresponding to the iron sulfur
cluster. A site (0.1957, 0.1581, 0.1137) was identified by hand in space group P4 3212,
but refinement and calculation of electron density maps in SHARP did not produce
traceable maps (figure of merit (FOM) = 0.35, phasing power (PP) = 1.03 to 5.0A; FOM
= 0.18, PP = 0.51 to 3.5A). Sites identified with SOLVE and CNS did not match
Pattersons (all carried out in space group P42212). Other attempts to use SOLVE or CNS,
or direct observation of Pattersons, to find the site failed in the three space groups.
Molecular replacement with the biotin synthase structure was also unsuccessful. In order
to obtain a stronger anomalous signal, the crystal was shipped to SSRL for data
collection, but died upon further annealing by the staff there.

The primitive tetragonal cell observed in the first dataset was never reproduced.
All subsequent crystals were indexed as a primitive hexagonal space group.

A2.II.B.2. Second home dataset -primitive hexagonal lattice
The crvystal used for this data~et came
from the condition 0.1M tris pH 8.5,
26% PEG 3350, 0.1mM C12E8
(Hampton Detergent Screen 1 #2),
crystallized over wells containing 2.5 M
ammonium sulfate. The crystal was
cryoprotected with the crystallization
condition and 20% MPD, and data were
collected to 3.5A. The space group
proved more elusive, with both centered
orthorhombic (C2) and primitive
hexagonal lattices a possibility (the
latter having, depending on the specific
reflections chosen for use during
indexing, an unacceptably high
distortion index at times). Unit cell
dimensions were as follows: when
indexed as C2, 100.3A x 57.8A x Figure A2.6: Home source diffraction image of the

116.2A with angles 900, 89.90, 900; second lattice type.

when indexed as P3, 57.9A x 57.9A x
116.2A with angles 900, 900, 1200.

The data were integrated and scaled with Denzo and Scalepack, and the results
indicated the space group would be one of those based on P321. The mosaicity for this
data and subsequent data from these crystals was extremely high (greater than 1.50). For
these space groups Z=6, and with one molecule per asymmetric unit the crystal would
have a solvent content of 38%. Scalepack output files indicated a small anomalous
signal, which was used to calculate anomalous Pattersons. The Pattersons were analyzed
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by hand and a site was identified, but no useable electron density maps were obtained
from this data. Crystals were taken to the synchrotron to collect higher resolution data.

A2.II.B.3. Data from SSRL

A MAD experiment and two native datasets were collected at SSRL in March
2005. The crystals collected on were formed from 0.1M tris pH 8.6, 30% PEG 3350 in
hanging drops over 2.5 M ammonium sulfate, and were cryoprotected with the same
conditions containing 20% MPD. The unit cell and space group were similar to those of
the second home dataset (primitive hexagonal, probably P321 with unit cell - 57 A x 57
Ax 117 A, 900 900 1200).

Dataset X (A) E(eV) f'
peak 1.73958 7127.9 -6.9
inflection 1.74166 7118.5 -8.2593
remote 1.34761 9200
native 1.00089 12387 ---
native2 0.9797 12387 --

Table A2.3: Data collection information, SSRL.

f" dist (mm)
3.9909 190
2.3 190

350
- 350
-- 400

Processing this data was tricky, because the X2 values and mosaicity were very
high. To help lower the X2 values, the data was integrated with different mosaicity values
and spot sizes, partials were added over different blocks of data to increase the number of
legitimate observations, and the scale and B factors were fit during scaling. P3 121 and
P3221 were the space groups used at first for these datasets. Because of significant ice
rings, the native2 dataset was not fully processed (Table A2.3, A2.4).

SSRL
Beamline
Space Group
Resolution (A)
Rsym (%)
%refl rejected
Redundancy
I/sigma
% Complete
a(A)
c(A)

peak
9.2
P3121
2.8
9.5(34.0)
0.64
5.4
13.6(3.6)
99.3(99.0)
56.327
117.356

inflection
9.2
P3121
3.9
8.7(39.9)
0.13
5.6
17.4(3.45)
99.5(100.0)
56.317
118.166

remote
9.2
P3121
3.2
7.2(39.6)
0.14
5.8
19.7(3.4)
99.4(99.9)
56.39
117.925

nativel
9.2
P3121
2.65
7.3(35.2)
0.11
5
16.2(4.1)
96.6(97.1)
58.441
117.367

native2
9.1
P3121

Table A2.4: Data collection statistics, SSRL.

The Scalepack X2 test indicated presence of a strong anomalous signal in the peak
dataset, and anomalous Pattersons were calculated. Dispersive difference Pattersons
were also calculated using the remote and inflection datasets. Pattersons were inspected
by hand to identify the site, and SOLVE and CNS were both used to search for the site as
well (see Table A2.5). Sites identified in any of these three ways were checked against
the Pattersons and, if valid, refined in SHARP using either the peak (SAD) or all three
wavelength datasets (MAD). No traceable maps were produced from any of these sites,
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exp
time
30 sec
20 sec
20 sec
20 sec
60 sec



and problems were encountered with SHARP - the program refined the occupancies of
the site too high. See Table
phasing power statistics.

A2.5 for site coordinates and sample figure of merit and

SG x y z FOM

P3121 0.276 0.122 0.499

P3121
P3121
P3121

0.1638
0.594
0.834

0.768
0.780
0.232

0.008
0.160
0.008

P3121 0.166 0.767 0.008

Sites from
dataset
home

dataset2
home

dataset2
SSRL peak
ALS peak

ALS peak -
MAD

ALS peak -
peak

ALS peak
ALS mad

ALS peak

SSRL2
peak

0.166
0.233
0.769
0.600
0.767

0.767
0.834
0.597
0.830
0.172

0.008
0.008
0.159
0.991
0.308

0.42

0.38
0.37

traceable occ/b
PP map problems ?

2.4

2.37
2.354

yes
yes

0.18 0.9-1.6

0.37
0.37
0.82

2.343
2.31

0.94-4.4

0.66 0.9-1.6

0.989-
P3121 0.402 0.235 0.158 0.73 1.701

Table A2.5: Summary of the different heavy atom sites
with phasing statistics.

no
no
no

yes

yes

yes
yes

yes?
no
no

obtained from the substrate-free crystal form data

A2.II.B.4. Data from ALS
Because no traceable electron density maps could be produced from the home or

SSRL data using any of the sites identified by hand or by SOLVE/CNS, more data were
collected at ALS. It was hoped that the new data would be of better quality (and lower
mosaicity), allowing identification of the correct site.

Dataset
peak
inflection
remote
native

Table A2.6:

X(A) E(eV) f'
1.74037 7124 -6.9
1.74231 7116 -8
1.4 8856 -0.505
1 12387

Data collection information, ALS.

f"

3.9
2.3
2.7

dist (mm)
175
175
250
350

exp time
30 sec
30 sec
20 sec
30 sec

The crystals collected on at ALS were grown from 0.1M tris pH 8.0, 26% PEG
3350 (hanging drop over 2.5 M ammonium sulfate) and cryoprotected with 20% MPD in
the crystallization condition. The diffraction patterns could be processed with a primitive
hexagonal lattice or a centered orthorhombic lattice, as other data from these crystals, and
had a similar unit cell. All the data were processed in P3 121 first, because the intensity
pattern of the reflections seems to match that space group well.
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P3221
P3221

P31



Beamline 5.0.2 5.0.2 5.0.2 5.0.2
Space Group P3121 P3121 P3121 P3 121
Resolution (A) 2.6 2.75 2.75 2.7
Rsym (%) 9.1(34.6) 8.5(32.8) 8.8(30.2) 7.9(31.2)
% refl rejected 0.42 0.27 0.16 0.39
Redundancy 5 5.1 4.3 5.9
I/sigma 19.5 20.2 21.6 20.9
% Complete 99.5(97.3) 99.8(98.8) 98.9(95.0) 95.3(95.3)
a(A) 57.817 57.928 57.994 57.547
c(A) 116.525 116.649 116.653 115.725

Table A2.7: Data collection statistics, ALS.

The new data processed in P3 121 were used to refine against sites obtained
previously, as well as to find and verify any new sites. The old sites from the home and
SSRL datasets did not yield good electron density maps, so SOLVE was used to find new
sites, which were verified against Patterson maps. New sites (from using solve_sad and
solve_mad scripts) did not give traceable maps, nor did sites identified by CNS. The
occupancy and B factor refinement continued to be a problem with SHARP. To address
this, Uranium was used to model the heavy atom site, because it is the same MW as four
iron atoms. This did not fix the problem. Molecular replacement in AmoRe and Phaser
was tried using models derived from biotin synthase, but this was also unsuccessful.
Finally, the alternate space group P3221 was also tried (solve_sad and solvemad)
unsuccessfully.

Because the sites identified in the higher symmetry space groups were often at
special positions, a lower symmetry space group was tried. The ALS data was
reprocessed in P31 and very similar Patterson maps as those obtained in the higher
symmetry space groups were calculated. In this space group, SOLVE identified two sites
(see Table A2.5) that, upon refinement in SHARP, gave traceable maps. The secondary
structural elements for the two molecules present in the P3 1 ASU were built, and an NCS
matrix was eventually obtained for averaging. NCS averaging did not improve these
maps, however. Phase combination with the secondary structural elements and phase
extension with the native dataset also did not appear to improve the maps to a significant
extent as judged by visual inspection.

ALS peak inflection remote nativel
Beamline 5.0.2 5.0.2 5.0.2 5.0.2
Space Group P31  P31  P31 P31
Resolution (A) 2.6 2.75 2.75 2.7
Rsym (%) 7.8(30.3) 7.6(26.9) 7.5(25.6) 7.2(28.2)
% refl rejected 0.5 1.9 0.11 0.3
Redundancy 2.5 2.6 2.3 3.4
I/sigma 10.6(3.3) 11.5(2.9) 10.3(2.8) 12.3(3.8)
% Complete 97.4(89.0) 98.4(94.3) 93.9(85.4) 90.9(88.8)
a (A) 57.814 57.922 57.975 57.533
c (A) 116.528 116.651 116.651 115.719

Table A2.8: Data collection statistics in space group P31, ALS.
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Crystals were then taken to California for the third time to collect more complete
datasets.

A2.II.B.5. Data from SSRL, 2nd Trip
The crystals prepared for this trip were also grown from the conditions 0.1M tris

pH 8.0, 26% PEG 3350 and cryoprotected with 20%MPD. Data were collected under the
assumption that the space group was P3 1 to ensure a compete and highly redundant
dataset.

Dataset
Peak
inflection
Remote
Nativel
Native2

Table A2.9:

X(A)
1.73542
1.74166

E(eV)
7144.07
7118.5

f' f" dist (mm)
-5.1913 4.0543 220
-8.0985 1.9973 220

1.37755 9000 -0.4 2.7 300
0.97946 12387 335
1.00002 12387 350

Data collection information, SSRL2.

exp
time
20 sec
20 sec
20 sec
30 sec
45 sec

Dataset
Wavelength
Beamline
Space Group
Resolution (A)
Rsym (%)
Total Obs
Unique Obs
I/sigma
%Complete
Redundancy
%Comp(anom)
Redund
(anom)
a(A)
c(A)

Peak
1.73542
9.2
P3,
2.87
6.8(30.2)
107251(8059)
10145(750)
29.5(4.7)
99.9(100)
10.6(10.7)
99.3(98.8)

4.9(4.9)
58.0858
117.2673

Inflection
1.74166
9.2
P31
3.2
6.5(27.9)
77728(5886)
7380(552)
30.7(5.3)
99.9(100)
10.5(10.7)
99.9(100)

5.3(5.3)
58.2492
117.6435

Table A2.10: Data collection statistics in space group

Remote
1.37755
9.2
P31
3.7
7.8(27.4)
47805(3609)
4805(356)
25.2(7.0)
99.9(100)
9.9(10.1)
99.7(100)

4.8(4.7)
58.272
117.8511

P3 1, SSRL2.

Nativel
1
9.2
P3,
2.25
5.6(36.8)
83796(6334)
20926(1577)
19.2(2.5)
99.9(100)
4.0(4.0)

57.9772
117.3712

Native2
1
1.5
P31
2.4
4.1(21.3)
76209(5813)
16318(1571)
30.4(5.6)
97.2(92.7)
4.7(3.7)

57.005
116.662

Because the new detector on beamline 9-2 at SSRL was not yet supported
HKL2000/Denzo/Scalepack, mosflm was used to process the data from that beamline.

The same sites (obtained using SAD data with SOLVE from the ALS peak) were
refined in Sharp against the new data (both SAD and MAD data, cut off at 3.7A
resolution) to give good maps. The maps were two-fold NCS averaged and then used to
further build a model of the two molecules. Later, all of the MAD data were included (to
2.87A resolution) to refine the individual iron atoms of the cluster. This refinement
yielded much better maps, into which most of the model (residues 5 to approximately
233) was eventually built.

Because the data scaled so well in P3 121 and P3 221, the space group was still in
question. The data were reprocessed in P3 121, and molecular replacement was done into
the SSRL2 native2 dataset with the hope that the cluster site coordinates for P3 121 could
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be obtained from the MR solution. Though the site obtained this way matched the
Patterson map, no good electron density maps were calculated with it. Next, the SSRL2
peak data was used to find the site in P3 121 with SOLVE. This site did yield good
electron density maps, which were also used to improve the model.

Dataset Peak Inflection Remote Nativel Native2
Beamline 9.2 9.2 9.2 9.2 1.5
Space Group P3121 P3121 P3121 P3121 P3121
Resolution (A) 2.87 3.2 3.7 2.25 2.4
Rsym (%) 7.1(30.5) 7.0(27.8) 7.9(26.0) 7.8(32.2) 5.5(25.0)
I/sigma 36.9(7.4) 37.6(8.3) 21.1(7.1) 23.9(4.0) 32.9(6.7)
%Complete 100.0(100.0) 99.9(100.0) 99.8(100.0) 99.0(93.7) 98.2(95.9)
Redundancy 10.8(10.9) 10.7(10.8) 5.0(4.9) 9.6(4.4) 3.5(6.8)

Table A2.11: Data collection statistics in space group P3 121, SSRL2.

A2.II.C. Refinement of the substrate-free PflAE model

At this point, most of the residues and approximately 40% of the sidechains had
been incorporated into the current model, with the exception of the loop following f36,
which had been built with only 10-residues. Parameters for the cluster were obtained and
verified in both CNS and SHELXL formats. Refinement was carried out in P3 121 and
P31 in CNS, but the R factors either remained high or indicated overfitting of the data.
For example, refinement of the model against one of the native datasets in space group
P3 121 resulted in an R and Rfree stuck at approximately 37 and 46. Refining in both
space groups in CNS has not brought the R factors down.

Several factors can cause this type of problem. High R factors such as these can
result from twinning, refinement in an incorrect space group, poor quality data, or other
problems. Each of these possibilities was investigated.

A2.II.C. . Twinning

Twinning was considered as a potential problem. Both the Yeates and CNS
twinning tests showed that the distribution of intensities did not suggest twinning, but
gave results that suggested almost perfect merohedral twinning (twin operator h, -h-k, -1),
though that specific twin operator would generate P3121 symmetry, and identification of
this twin operator was probably an artifact of the higher symmetry (meaning, the crystals
were actually P3 121). The same results were obtained with other data available in our lab
(BioB and thioredoxin data) that have been used to successfully determine crystal
structures in P3121, suggesting that the apparent twinning was an artifact of higher
crystallographic symmetry and that twinning was not the real problem. Refinement in
CNS of two molecules in P31 results in R=23 and Rfree=42, but refinement in SHELXL
in P3 1 with the following commands:

TWIN 100-1-1000-1
BASF 0.5 (approximate value - refined by program)
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eventually gave much better R factors (R=28, Rfree=34). Though the R factors were
greatly improved with this refinement technique in SHELXL, it was still unclear that
twinning was the cause of our high R factors.

The data were detwinned using CCP4 (keeping the anomalous signal by
detwinning I+ and I- separately) and used to generate maps, find the sites, and refine the
model. The anomalous signal was much lower after detwinning. Maps from SOLVE
were untraceable, and the two sites were closer than expected in comparison to the sets of
sites found previously. Maps generated by SHARP with old sites were much noisier than
what had been used before, but did contain some secondary structural elements.
Refinement against detwinned data also resulted in high R factors. Introduction of more
noise and reduction in the anomalous signal was expected, because the twin fraction used
was so high. Again, these experiments did not convince us that these data were twinned.

A2.II. C.2. Data reprocessing in order to improve dataset quality

Several strategies were pursued to determine the source of the refinement
difficulties unequivocally. First, because poor data quality could contribute to the high R
factors, the data were reprocessed to improve statistics such as x2 and Rsym. Second, self-
rotation functions were calculated for data processed in space groups C2 and P31 in an
effort to distinguish between the three space group possibilities. Next, all of the SSRL2
data were reprocessed in C2 and used to obtain new experimental maps in order to see
whether use of the lower symmetry space group would change the maps in any way.
Finally, the experimental model was refined against native data processed in various
other space group possibilities.

In order to address the possibility that the problematic refinement was caused by
poor quality data alone, we reprocessed SSRL2 data with HKL2000 in order to work with
cleaner datasets. Following reprocessing in space group P3 1 and P3 121, the R factors
remained high, and strangely, maps (experimental and model-biased) calculated from
these datasets (using old sites) were not as good as maps calculated from the mosflm-
processed datasets.

The data were then reprocessed in multiple space groups. A self-rotation function
was carried out with molrep in both space groups C2 and P3 1. The output indicated the
presence of a crystallographic (or very close to crystallographic) 3-fold and three
crystallographic (or, again, very close to crystallographic) 2-folds, as would be expected
for space group P3121 or P3221. These results again suggested that the correct space
group is P3 121 or P3221. Still, the models were refined in each space group to determine
the correct space group unequivocally.

A2.II.C.2.a. C2

The first SSRL2 native dataset (nl) was processed in space group C2 (see Table
A2.12 for statistics) and used for a molecular replacement search. A solution with
reasonable packing and orientations reminiscent of those observed in the trigonal space
groups was obtained using molrep. The three MAD datasets were reprocessed in C2 with

218



HKL2000 (see Table A2.12), and consistent indexing was verified, though merging R
factors indicated poor agreement between datasets, particularly the remote wavelength
data (Table A2.13).

Dataset Peak Inflection Remote Nativel
Beamline 9.2 9.2 9.2 9.2
Space Group C2 C2 C2 C2
Resolution (A) 2.87 3.2 3.7 2.25
Rsym (%) 7.2(32.7) 7.0(32.5) 8.4(31.9) 3.9(33.6)
I/sigma 13.3 (3.1) 15.7(4.1) 12.8(3.9) 19.8(2.8)
%Complete 98.4(97.6) 99.3(99.9) 98.2(100.0) 96.1(94.2)
Redundancy 3.6 3.7 3.6 2.7
a (A) 100.649 100.844 100.807 100.438
b (A) 58.089 58.293 58.445 58.073
c (A) 117.306 117.565 117.623 117.5
beta (") 90.011 89.961 89.874 90.034

Table A2.12: Data collection statistics in space group C2, SSRL2.

Peak Inflection Remote Nativel
Peak 11.2 22.3 8.9
Inflection 11.2 14.8 15.7
Remote 22.3 14.8 24.4
Nativel 8.9 15.7 22.4

Table A2.13: Merging Rfactors (%) for MAD data in C2, SSRL2.

The three iron sites obtained from the molecular replacement solution (estimated
by moving an atom into the center of the cluster's density) were used to generate
experimental maps with Sharp. There was a problem with site 2, which did not refine
properly in Sharp. Experimental maps were also generated from peaks identified by
SOLVE (using SAD with the peak data, Table A2.12, A2.13). The two sets of three sites
were later confirmed as identical.

SITES x y z
MR 0.118 0.782 0.824

0.798 0.973 0.492
0.921 0.387 0.843

SOLVE 0.883 0.499 0.175
0.082 0.101 0.158
0.299 0.249 0.491

Table A2.14: Sites obtained for SAD data in C2, SSRL2.

The phasing statistics presented in Table A2.15 were obtained by refinement of
the two sets of iron sites in Sharp to 3.7A resolution. Both sets of sites gave traceable
experimental maps, but the quality of those maps was not as high as those obtained in the
trigonal space groups. Three molecules were fit into both maps (molecules were fit into
SOLVE maps by hand, and the MR solutions fit the maps calculated with those sites -
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the maps were not superimposable) and the three-fold screw axis was identified in both
sets of solutions.

SITES x y z FOM PP occ problems?
MR 0.118 0.782 0.824

0.798 0.973 0.492 0.62 1-1.15 No
0.921 0.387 0.843

SOLVE 0.883 0.499 0.175
1.0-

0.082 0.101 0.158 0.64 1.381 No
0.299 0.249 0.491

Table A2.15: Phasing statistics to 3.7 A resolution for the sites obtained from MAD data in C2, SSRL2.

Effort was put into improving experimental maps by improving the quality of the
remote dataset. Suspicious frames were removed, scale and B factors were restrained or
allowed to refine, and fitting of parameters was done by frame or by batch. The remote
data's agreement with the other 3 datasets did not improve, and similarly the
experimental maps did not improve significantly.

A new test set was created for this dataset and the model was refined in C2 with
SHELXL to 2.25 A resolution, giving R=36.67, Rfree=47.05.

A2.II. C.2.b. P1

The first SSRL2 native dataset (Table A2.11) was reprocessed again, this time in
P1 with HKL2000. The statistics were as follows: Rsym = 3.1(30.1) % to 2.25 A,
I/sigma = 17.3(2.4), redundancy = 1.6 and completeness = 80.6(78.3)%. A solvent
content of 39.1% meant the cell would contain 6 molecules per asymmetric unit, and the
cell angles and lengths (57.999 x 58.071 x 117.506, 89.994, 90.034, 120.19) were almost
identical to the trigonal cell. Molecular replacement with AmoRe and molrep was
unsuccessful. To place the molecules appropriately in the cell, the six symmetry related
molecules within the P3121 cell were written into pdb files. The six molecules were
refined in CNS (no ncs restraints) with best Rfactors being R=46.53, Rfree=54.49.

A2.II. C.2.c. R3 /R3 2
Some effort was put into reprocessing the SSRL2 data in the rhombohedral space

groups. The first SSRL2 native dataset Table A2.11) was again used to test these space
groups. The distortion index given after indexing several images from the SSRL2
nativel and peak (SSRL2, Table A2.11) datasets gave a higher value (-6%) for the
rhombohedral lattice than acceptable. The SSRL2 nativel dataset (Table A2.11) was
processed using this lattice anyway, and the Rsym values obtained from multiple
attempts at processing in R3 was also unacceptably high (-20% overall). Molecular
replacement was attempted briefly with the nativel data integrated in P3 and scaled in
R3, but those attempts were unsuccessful. According to the distortion index for this
lattice, these space groups are very unlikely.

A2.III. The substrate-bound crystal form
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Luckily, a new crystal form was identified using a sample containing the fully
reconsitituted enzyme, AdoMet, and a seven-residue peptide substrate (RVSGYAV).
The optimized crystals were typically small but diffracted to (at best) 2.7 A at the
synchrotron.

A2.III.A. Crystallization of substrate-bound PflAE

Upon having difficulty during refinement of the protein model against data from
the "trigonal" crystal form, several new protein preps, with different substrates added,
were used to screen for new anaerobic crystallization conditions. Six different stocks
were received from Jian Yang in Joan Broderick's lab:

1. Activase (AE) alone
2. AE with 10x AdoMet
3. AE with 10x AdoMet and peptide
4. AE with 10x AdoMet and YfiD
5. AE with 10x AdoMet and PFL
6. AE alone in a different buffer

Sparse matrix screens (from Hampton Research) were used as a starting point to obtain a
new crystal form. Focus was placed on samples 2, 3 and 4 first, eventually yielding four
new possible hits:

1. Sample 2: HIS#45: 0.1M tris pH 8.5, 25% PEG 3350 - old conditions
2. Sample 2: CS1#2 over 2.0M (NH4 )2 S0 4 : 0.4M K, Na tartrate
3. Sample 2: CS1#37 over 2.0M (NH4)2SO 4: 8% PEG 4K, 0.1M NaOAc pH 4.6
4. Sample 3: HIS#25: 3.5M sodium formate pH 7.0
5. Sample 4: CS1#43 over 2.0M (NH4)2SO 4: 30% PEG 1500

The crystals obtained in HIS#25 with Sample 3 (the fourth hit listed above) were
reproduced and optimized to yield diffracting crystals. The components that were
optimized included buffer identity and pH, salt identity and concentration, drop volume,
drop ratio, well volume, well identity, various additives, and addition of microseeds.
Small crystals formed reproducibly, and the main hurdle to overcome to generate
diffracting crystals was their small size. The techniques used to increase crystal size
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were addition of detergents to both hanging and sitting drops, microseeding, and a
combination of microseeding and detergents. Large crystals could not be reproduced
consistently - apparently the factor influencing crystal size was independent of the
detergent and presence of seeds, though these techniques did seem to help. The largest
crystals (the ones used to collect data at SSRL) were all harvested from the same drop
(Tray label: AE+pept Reprod2, well number C4, both hanging and sitting drop, set up on
4/7/06).

The final crystallization conditions used to generate the crystals used for data
collection were as follows. Drops were set up either sitting on microbridges or hanging
on a coverslip against 500mL well solution consisting of 0.1M hepes pH 6.8, 3.5M
sodium formate. The drops contained 1~tL protein stock solution (with protein at 20
mg/mL), 0.8CpL well solution, and 0.2gtL methyl-4-heptyl-p-D-maltoside (Hampton
Detergent Screen 2 #3). Crystals took approximately six days to appear.

A2.III.B. SSRL3 data collection and phasing of substrate-bound PflAE

A2.IIIB.1. Data collection

Three MAD datasets and five native datasets were collected at SSRL and processed in
space group P6 122.
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Dataset
Peak1
Reml
Peak2

Infl2
Rem2
Peak3

Infl3
Rem3

Nativel
Native2
Native3
Native4
NativeS

X (A)
1.73948
1.36241
1.73950
1.74141
1.36241
1.73955
1.74158
1.36241
1.00000
1.00000
0.95000
0.95000
0.95000

E(eV)
7128.170
9100.000
7127.310
7119.530
9100.000
7127.140
7118.840
9100.000

12387
12387

13050.480
13050.480
13050.480

-6.456790
-0.300000
-6.412502
-7.824151
-0.300000
-6.410355
-7.940308
-0.300000

4.416056
2.600000
4.222880
2.466863
2.600000
4.212681
2.435220
2.600000

Table A2.16: Data collection information from substrate-bound PflAE crystals,

dist
(mm)
210
300
220
220
300
210
210
300
300
300
300
450
450

SSRL3.

exp
time
25
25
25
25
25
20
25
15
20
35
30
45
30

MAD data: Peakl and Remotel were collected on the same crystal, and suffered decay.
Peak2, Infl2 and Rem2 were each collected on the same crystal; 500 of each wavelength
was collected, but decay was again a problem. Finally, Peak3 (PXG2), Infl3 (PXG3) and
Rem3 (PXH1) were each collected on a separate crystal to minimize problems from
decay. This third MAD dataset was used to generate experimental maps.

The datasets used to generate experimental maps and to later refine the
Peak3, Infl3, Rem3 and Native2 Table A2.16, A2.17). The data processing
each of those datasets are compiled in Table A2.17.

model were
statistics for

Dataset
Wavelength

Beamline
Space Group
Resolution (A)

Rsym (%)
Total # Refl

# rej
% rej

Unique Obs
I/sigma

%Complete
Redundancy

a (A)
c (A)

Peak3
1.73955

9-2
P6122
2.9

9.8(42.0)
381294

825
0.22

12853(1152)
18.6(2.7)

98.5(87.6)
9.8(5.8)
74.56

187.979

Inflection3
1.74158

9-2
P6122
2.8

8.1(36.9)
145346

646
0.44

12677(1107)
13.1(3.1)

88.7(78.6)
5.4(5.0)
74.408
187.456

Remote3
1.36241

9-2
P6 122

2.7
7.3(35.9)
154570

461
0.30

14585(1406)
19.9(3.1)

98.6(95.8)
5.5(4.0)
74.426
187.608

Native2
1.000
9-2

P6122
2.8

5.2(35.6)
101174

59
0.06

8085(731)
25.4(3.63)
98.7(94.3)

5.5(4.4)
74.35

187.453
Table A2.17: Data processing statistics of SSRL3 - substrate-bound PflAE.

The data collected from this P622 crystal form, while lower resolution than hoped for,
were of much higher quality than any of the data from crystal form 1. The data indexes
in P622 easily, has reasonable mosaicities (Table A2.18), and scales together with
reasonable R factors.
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Res
Dataset Crystal Beam X (A) Rsym (%) Complete Redund I/sigma Mos (A)
Nativel PXI2 9-2 1 2.75 8.1(38.0) 96.5(77.0) 9.9(5.7) 22.2(2.39) 0.4-0.8
Native2 PXB1 9-2 1 2.8 5.2(35.6) 98.7(94.3) 5.5(4.4) 25.4(3.63) 0.3
Native3 H8 9-1 0.95 3.3 10.9(31.7) 99.6(99.0) 13.5(11.0) 24.3(6.0) 0.5
Native4 PXH1 9-1 0.95 3.3 10.4(40.7) 99.6(100) 10.1(10.1) 20.8(5.9) 0.4-0.8
Native5 PXH2 9-1 0.95 3 7.9(43.9) 99.9(99.8) 19.6(17.3) 40.5(6.4) 0.2-0.3
Table A2.18: Data processing statistics for each SSRL3 native dataset - substrate-bound PflAE.

A2.III.B.2. Obtaining phases for substrate-bound PflAE

Both molecular replacement and MAD techniques were used to attempt to phase the data.
One site corresponding to the iron-sulfur center was identified by SOLVE in space group
P6122 with the MAD3 data, and refined in Sharp to generate experimental maps to 2.7 A
resolution. The model built and partially refined against the first crystal form was fit
manually into the new experimental maps and rebuilt to match the new data.

A2.III.B.2a. Phasing the data by MR

Six different molecular replacement search models derived from the crystal form 1 model
were used to search for a solution from the native2 dataset. The six models (1 - full
chain, no cluster; 2 - full chain, with cluster; 3 - no loop6b, no cluster; 4 - no loop 6b,
with cluster; 5 - just barrel [20-157 only]; 6 - poly ala, no loop) each gave one of two
solutions with good Z scores. The two different solutions obtained were related by a
translation along c, due to the ambiguity in assigning z in trigonal space groups.
However, the molecular replacement solutions yielded high and overfit R factors when
refined in CNS. Because of high R factors and poor 2fo-fc density maps, I turned to the
MAD3 data to phase the substrate-bound PflAE data.

A2.III.B.lb. Phasing with the MAD3 data

Peak3 data yielded good anomalous difference Fourier maps with little noise and strong
signal. SOLVE identified one site (0.656, 0.194, 0.051) corresponding to the iron sulfur
cluster. The data were scaled (see Table A2.19) in CCP4 with reasonable R factors
between datasets, considering that the data came from three separate crystals.

To 3.5 A resolution Peak Infl Rem
Peak ------ 0.167 0.135
Infl 0.167 ------ 0.099

Rem 0.135 0.099

All data Peak Infl Rem
Peak ------- 0.182 0.135
Infl 0.182 ------ 0.11

Rem 0.135 0.11
Table A2.19: Scaling statistics (%) for the MAD data, SSRL3.
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Sharp refined the site to 3.5 A resolution and solvent flattened the density using
an optimized solvent content of 48.6%. After some fitting of the model and refinement
(which gave R factors in the upper 40s), the individual iron sites were placed and refined
to 2.77 A resolution.

Phasing Power
FOM(acen/cen) PAnom IAnom RAnom PIso Iso

To 3.5 A 0.53774/0.23406 1.638 1.264 1.622 0.423 0.317
To 2.77 A 0.45737/0.29772 2.049 1.135 1.659 0.429 0.918

Table A2.20: Phasing statistics yielded from SSRL3 MAD3 data.

A2.III.C. Refinement of substrate-bound PflAE

The native2 dataset was used to refine the model to reasonable Rfactors. The current
model has decent geometry (Table A2.21).

The model obtained from the first crystal form was dragged into the new
experimental maps and modified to match the new electron density. The major
adjustments involved were the loop preceding strand [31 and the loop following strand 06.
Rounds of refinement in CNS and rebuilding in Xfit were carried out to R factors of
32.45/36.11. Because initially refinement against native2 resulted in high, overfit R
factors, the first rounds of refinement in CNS were done against the MAD3 data to 3.0 A
with Hendrickson-Lattman phases included. Phase combined maps calculated in CNS
were used in conjunction with the experimental maps to rebuild the model. The peptide
was added after all of the ordered sidechains were fit into density, and refinement of the
protein model with the peptide was carried out against the MAD data in order to properly
orient the peptide.

The peptide direction was analyzed to confirm its orientation. Points considered
during this analysis included careful examination of the electron density, R factors, and
analysis of the resulting model in terms of reasonable hydrogen bonding interactions, an
orientation that observed in Pfl, consistency with results known from biochemical
experiments on this system, and the accessibility of the pro-S hydrogen atom of G734 to
the C5' atom of AdoMet.

A2.III.D. Reanalysis of substrate-free PflAE

The new model (refined against the substrate-bound data) was rebuilt and refined against
the apo data, yielding better R factors and demonstrating that errors in the model due to
poor experimental maps and data quality were responsible for the high R factors observed
previously, and not twinning.

A2.III.D. 1. Initial refinement rounds with unadjusted model

Different approaches to refinement were investigated with the substrate-bound PflAE
protein model, using only the protein chain and the 4Fe-4S cluster. The substrate-free
PflAE nativel dataset from SSRL2 was used, and the data was not detwinned or in any
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way manipulated. The different approaches used and the resulting R factors are
summarized here:

Shelxl P31 modeled as twinned 22 / 27
Shelxl P31 not modeled as twinned 34 / 42
Shelxl P3121 not twinned 59 / 56
CNS P31 not twinned 30 / 41
CNS P31 twinned 23 / 34
CNS P3121 not twinned 46/54

However, no twin tests confirmed twinning, including SCALA in CCP4, the CNS
twin test, the Yeates Twinning Server, and the Crystal Twinning Server based on Yeates
and Padilla's H-test.

A2.III.D.2. Refinement of a new substrate-free PflAE model: Comparison of different
datasets /space groups

All five datasets from PflAE crystal form 1 were reprocessed and scaled in the following
spacegroups: C2 (Table A2:22), P3 1 (Table A2:23) and P3121 (Table A2:24). The new
substrate-free PflAE model was used as a search model for molecular replacement into
each dataset scaled in each spacegroup (15 in total, all using the same search model).
Each solution was then refined to 2.8 A resolution in CNS against each reflection file in
the following way: Rigid / Minimize / Bindividual / Anneal / Bindividual. NCS
restraints were used when possible. The data:parameter ratios were determined taking
NCS restraints (segid A = segid B for P31 and segid A = segid B = segid C for C2,
nothing for P3 121) into account.

C2
nl als n1 ssrll n2_ssrll n1_ssrl2 n2_ssrl2

R ----- - -- - 25.80 24.12
Rfree - ------ ---- 27.72 28.94
data:param ---------- 2.19 2.09

P31
nl als n1 ssrll n2_ssrll n1_ssrl2 n2_ssrl2

R 28.50 28.99 29.65 26.03 26.21
Rfree 34.48 31.79 33.60 29.66 30.81
data:param 2.66 2.86 2.88 2.90 2.84

P3121
nl als nl ssrll n2_ssrll n1_ssrl2 n2_ssrl2

R 28.70 30.52 31.30 25.58 26.33
Rfree 37.01 36.22 35.59 32.28 35.42
data:param 1.40 1.48 1.48 1.46 1.44

These results demonstrate that the true space group of the substrate-free PflAE
data is P3 121. In addition to this, the reprocessing of each dataset likely improved the
data quality significantly. Further rounds of refinement were carried out using dataset
nlssrl2 in space group P3 121 to reasonable R factors and geometry (Table A2.21).
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AE
Resolution Limits (A) 38.19 - 2.
# Unique Reflections 19688

# Reflections -Test Set 1869

Rwor (%) 23.9
Rf~ (%) 32.3
Average B factor (A2) 56.3

Protein 55.7(1902
4Fe-4S 44.3(8)
AdoMet N/A
Peptide N/A

# protein atoms 1902
# water atoms 49
# non-protein atoms 8
Bond length deviation (A) 0.006
Bond angle deviation (0) 1.4
Ramachandran Plot

Residues in allowed regions (%) 84.6
Res in generously allowed region (%) 14.5
Res in additional allowed region (%) 0.5
Res in disallowed region (%) 0.5

Table A2.21: Refinement statistics, both substrate-free
Numbers in parenthesis refer to number of atoms.

Pept-AE
25 29.13-2.77

8376

438

22.9

26.1
80

76.9(1872)
59.7(8)

75.7(27)
104.4(42)

1914
16
50

0.008
1.5

84.3
15.3
0.5
0

(AE) and substrate-bound (pept-AE) forms.
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Table A2:22 Data statistics natives from substrate-hee PflAE crystals piocessed in (72, Numbers an brackets refer to the low
resolution bin re-flections, and numbers in parenthesis refer to the high resolution bin reflections. Bad rejection pattern refers to
whether a strange pattern is observed in thle rejections. which aises from poor agreement between symmetry related reflectionts. Rej
remaining refers to any rejections still listed in the scalepack output file after multiple rounds of scaling.

SG
Resolution (A)

Rsym (%)
Total Obs

Unique Obs
iVsigma

% complete
Redundancy

a (A)
b (A)
c (A)

# re1 rejected
total rafl

% refl rejected
masaiity C)

chiC2
error scale

sealing b factors
scale factors

syst abs present
bad rej pattern
rej not thrown

nt als
C2

50-2.7
[18 0121.8(61~7)

59,073
100.5

117.034
90.811
19290

1321576
14.70

too high
24+

1i ssrll
C2

50-2.65
[8,112t.1(42 5)
32875(3098)
17118(1696)
8.156(2.890)
85.5(84.9)

1.9205(1.827)
58 44 t
101 196
117.338
89.985
11108
222096

5.00
1.4-2.0
3.33

too high'
-3 to 2

OZ6- 04 - 0,8
no

low red
lots - not done

n2 ssri
C2

50-2.8
f5.4113.0(45.4)
57261t(3981)
15640(1644)

12.7(3.,72)
92.5(97.5)
3. 6(3.63)

58 566
101 423
117A455
89.97
31818

542109
5.87

1 2-,1.6
2.26

bad chi2 by res

no

lots

ni _ssrt2
C2

50-2.25
[2 713.7(33,2)
80121(7379)
30887(30O60)

18.1(2.52)
95.5(94.0)

2.6(24)
100425
58.ý065
117 484
90.036

974
398774

02
-1

1.00
0,9

(rad inea
0.9 steady

no
no - low red

none

n2 ssrt2
C2

50-2.5
f3 1)4.6(14.1)
85093(5255)
20774(1868)
25.50(6025)
89.9(82.9)
4.10(2.80)

98 724
56.993
116.602
89.956
6773

767783
09
-1 8
0.98
0.95

0-6, some high
-1, some high

1no

0



Table A2.23. Data tita staic s natives flom substrate-free PflAE crystals processd tI P3j. Numbevrcs to brackets refer to the low
resolution bin reflections. and numbers in parenthesis refer to the high resolutlon bin reflections. Bad rejection panem refers 10to

w•hether a strange pattern is observed in the rejections, which arises from poor agreement between symnmeItrry-related reflections. Rej
remaining refers to any rejections still listed in the scalepack output file after multiple rounds of scaling.

SG
Resolution (A)

Rsym (%)
Total Obs

Unique Obs
usigman

% complete
Redundancy

a (A)
b (A)
c (A)

# refi rejected
total refl

% refi rejected
mosaiaty (")

chI^2
error scale
bfactors

scale factors
syst abs present
bad rej pattern
rej not thrown

nt alss
P31

50-2.7
16.017.1(28.2)
36610(3178)
10769(1020)
1235(3.76)
90.9(88.8)

3.4(3.1)
57.533
57 533
115.719

897
273730

03
1,5-2.0
1.044
1.4

very widely
good
yes

few - low red
none

nl s1srll
P3,

50-2.65
13-.817.5(31.3)
34737(2822)
12355(1184)

12,2(3.6)
94.5(92.4)

2.9(2_4)
58,432
58,432
117-358

1831
220827

08
1.4-2.0
1.052
1A4

good
drop+restore

yes
yes? Low red

3

n2_ssrl
P3,

50-2.8
4.,5]9.5(37.5)
54787(4116)
1044(41103)
15,01(4.25)
94.1(98.5)
5.2(3.73)

58.511
58,511
117 432

2872
463485

06

1.286
1.4

good
good
yes
yes
-30

nl ssd22
P3,

50-2.25
[4-8]6.4(40.6)
82654(7502)
20500(2065)

14.6(3 39)
98.1(97.8)

4.0(3.6)
58.052
58,052
117,464

1089
396591

027
-1

0.991
1.5

0-12
slow decline

yes
yes
4

n2 ssrt2
P3,

50-2.4
1[3114.1(21.3)
76209(5820)
16318(1571)

30.4(5.6)
97.2(92.7)

4.7(3.7)
57.055
57,055
116 662

2596
406725

06
-1.8
1.08
0.8

range 0-3
incr slowly 1-1,6

yes
sortof

5



Table A2.24. Data statistics natives lim substrale-ftee PlAE cAlytls prcessed tI P3,21 Nutrbbers in brackets ireer to the lo",w
resolution bin reflections. and numbers in parenthesis refer to the higi resolution bin reflections. Bad rejection pattern refers to
whether a strange pattern is obsered in the rejections, which arises from poor' agreement between symmetrv-related reflections. Rej
remaining refers to any rejections still listed in the scalepack output file after multiple rounds of scaling.

SG
Resolution (A)

Rsym (%)
Total Otbs

Unique Obs
tisigma,

% complete
Redundancy

a (A)
b (A)
c (A)
b (')

# refl rejected
total refl

% refI rejected
mosaicty ')

chi"2
error scale

bfactors
scale factors

syst abs present
bad rej pattern
rej not thrown

nl als
P3,21
50-2.7

16 5]79(3;1,2)

36763
6252(589)
153.(5.0)

95.4(95.2)
59

57 548
57.548
115.726

895
273730
0,3

1.5-2.0+
1.061
14,

-5 to 3, outihersr
good
yes

some
1

nl ssrll
P3121

50-2.65
[4 017 5(352)

34676
6963(669)
16.3(4.1)

96,6(97.1),
50

58.441
58.441
117.366

2374
220827

1 1
1.4-1.9
1.031

14
srnooht, 0-4
drop~+estore

yes
some

0

n2 ssdl
P3121
50-2.8

[4 711 O,3(39 E-)
54774

5896(591)
16.93(5.667)
95.9(99.0)

929
58.512
58.512
117.436

2931
463485

0.811
1.1-1.6
1.166

1 4 high by res
good

1.0- 0.8 - 1-0
yes

-30

nl _ssrd2
P3,21

50-2.25
f4 916,6(43.3)

82763
11183(1103)

18.7(4.6)
98,2(987)

74
58 .051
58.051
117L46

1163
398541
029
-1

0,956
1!5

grad ncr 0, 11
slow decline

yes

n2_ssrt2
P3,21
50-2.4

[3 3]5 5(24•9)
75621

9015(861)
39-67(7.30)
98.2(95.9)

8.388
57.055
57.055
116.664

2766
406725

1 A
-1-8
1.179

0 8 (by res high)
-1 to 5
all -1
yes
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