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Abstract

The development and implementation of a free-flying robot navigation and control
system, using vision-based position and attitude sensing, is described. The system
has been implemented in real-time for an actual free-flying underwater robot,the
Submersible for Telerobotic and Astronautical Research (STAR), with standard, in-
expensive computer hardware. Excellent performance and robustness characteristics
are achieved for a variety of applications, including automatic station-keeping and
small controlled maneuvers. Experimental results are presented indicating the pre-
cision, accuracy, and robustness to disturbances of the vision-based control system.
The study proves the feasibility of using vision-based robot control and navigation
and provides a foundation for developing the system for more general tasks.

The complex vision sensing problem is reduced through linearization to a simple
algorithm, fast enough to be incorporated into a real-time vehicle control system.
Vision sensing is structured to detect small changes in vehicle position and orientation
from a nominal positional state relative to a specially designed navigation target. The
vision target is used to provide sensitivity to six degrees of freedom of motion and
to simplify image processing. The system uses a constant, linear inversion matrix to
measure the vehicle state from the locations of navigation features in an image.
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Title: Bradley Career Development
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Chapter 1

Introduction

Mankind's exploration has led us beyond the heavens into space and past our shores

into the depths of the oceans. As interest in these exciting new worlds has grown,

so has the need to develop robot technology to help humans overcome the dangers

and high costs of working in these harsh environments. A main concern of the 1990

Advisory Committee on the Future of the U.S. Space Program was the risk and cost

encountered by humans working in space. One of the study's major recommendations

was for NASA to develop robotics technology to be used in the exploration and

settlement of space.

Free-flying robots are being extensively studied for a variety of applications from

satellite servicing to exploration of the ocean floors. Robots may perform these tasks

either autonomously or by teleoperation with the aid of a human operator. In either

case, it is crucial to have a precise measure of the vehicle's position and orientation

as it interacts with its environment. For such functions as station keeping, docking,

manipulator arm control, and obstacle avoidance, an accurate measure of the robot's

positional state is essential.

One promising method for navigation of both space and underwater robots is

based on machine vision using an on-board video camera and digital image processing

hardware. A vision sensing system is relatively simple to implement in terms of

hardware since most free-flying robots will already be carrying video cameras for

teleoperation but also has the power to handle a wide range of applications. The



underlying assumption for such a system is that distinguishable features, of known

physical shape and position in the environment, exist within the camera's field of

view which can be used as navigation targets. This assumption can be met for most

"interesting" tasks requiring precise position control by the physical properties of the

environment (for example tracking a satellite's markings during a rendezvous) or with

an artificially added navigation target.

The complexity and inflexibility of most current vision algorithms have prevented

their use for real-time free-flying robot navigation. To be useful for robot navigation, a

vision system must be fast and simple enough to be implemented on current computer

technology and still have the power to perform useful robot tasks. This thesis presents

a simple, yet accurate, vision-based navigation and control system implemented in real

time for a free-flying underwater robot applicable to a variety of robotic applications.

1.1 Free-Flying Robot Navigation

Free-flying robots such as JASON and SEA SQUIRT1 are being used today to ex-

plore underwater environments. Underwater vehicles can use a variety of sensors for

navigation including inertial sensors, water pressure sensors, and sonar. Although

there are currently no free-flying robots in space, there has been extensive research

on their development using underwater robots. The Space Systems Lab (SSL), now

at the University of Maryland, has been a pioneer in the use of neutrally-buoyant

underwater space robot simulators. The SSL has studied the use of inertial sensing

and acoustic ranging for navigation of its free-flying underwater robots [5]. Types of

sensors proposed for robot navigation in the zero-gravity environment of space include

inertial sensors, radar, laser range finders and radio beacons.

Although these space-based sensors are similar to underwater sensors, they are

not directly transferable from one environment to the other. Vision-based position

and orientation sensing can bridge the gap between the two environments. This is

'Built by the Woodshole Oceanographic Institute, JASON has been used to study the wreckage
of the Titanic. SEA SQUIRT is an autonomous vehicle developed by the MIT Sea Grant program
to study frozen lakes.



a great advantage for underwater space robot simulation since the actual technology

to be used in space can be tested on Earth. Since vision sensing is passive, it has

the added advantage of being easier to implement than an acoustical or radio beacon

system.

The MIT Laboratory for Space Teleoperation and Robotics (LSTAR), directed by

Prof. Harold Alexander, has built an underwater space robot simulator which has

evolved from earlier SSL vehicles: the Submersible for Telerobotic and Astronautical

Research (STAR). Unlike the vehicles from the SSL, STAR's navigation and control

system employs a vision-based sensing system which is described in this thesis.

1.2 Submersible for Telerobotic and Astronauti-

cal Research (STAR)

STAR, shown in Figure 1-1 in the MIT Alumni Pool, is an underwater version, in

form and function, of future free-flying space robots. The vehicle is neutrally buoyant

in both depth and orientation in order to simulate zero-gravity six degree of freedom

(DOF) movement as in space. The major discrepancy between the underwater and

space environments is the mass and drag of the water an underwater vehicle interacts

with as opposed to the vacuum of space. However, neutral buoyancy simulation is still

an effective method for simulating space based operations on Earth [1]; the Neutral

Buoyancy Facility, at the Marshal Space Flight Center, is used extensively by NASA

for astronaut training.

LSTAR is using STAR to develope and test a wide range of space robot technology;

the laboratory's areas of research include teleoperated vehicle control, autonomous

control, and the use of manipulator arms. Pan and tilt camera platforms, helmet

mounted stereoscopic displays, and the use of visual reference cues are being studied

to aid teleoperated control. The automatic vehicle control research has concentrated

primarily on vision-based sensing for navigation and control.

The vehicle's body, roughly 4 ft x 3.75 ft x 3 ft with the outside structure attached,

houses the robot's on-board electronics and battery compartments. STAR is propelled
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Figure 1-1: STAR in MIT Alumni Pool
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by eight propellor motors which allow full six degree of freedom vehicle maneuvering2

The robot is connected to a surface control station through an umbilical linked to the

vehicle's on-board computers. For a more detailed description of STAR's subsystems,

see Section 3.1.

1.3 STAR Vision-Based Navigation and Control

STAR's current vision-based control system has evolved from earlier LSTAR machine

vision research. St. John-Olcayto studied the use of high contrast vision targets for

vision-based position and orientation sensing [14]. Azarbayejani developed an elegant

vision navigator capable of tracking a navigation target based on an extended Kalman

filter of a free-flying robot [6]; simulations of Azarbayejani's system running on an

Apple Macintosh IIx ran at a speed of 2.5 steps per second.

The scope of the vision-based navigation and control system described here has

been simplified in order to create a workable real-time system using STAR's computer

hardware. Nevertheless, the system provides good and robust performance for a

number of useful and interesting robot tasks such as station keeping and making

the vehicle a stable platform for a manipulator arm. The system presented here also

provides the foundation for adding expanded capabilities such as tracking an arbitrary

target while flying a complex trajectory.

STAR's vision-based control system uses a specially designed navigation target

(similar to the one used by Azarbayejani [6]) designed to provide motion sensitivity

and to simplify vision processing as described in Section 2.1. In order to linearize

the complex vision sensing problem, the control system operates about a predefined

nominal vehicle position and orientation relative to the target; the vision sensing

system is used to detect small angular and translational deviations from the nominal

state. In the current framework, the vision-based control system can be used for

autonomous station-keeping, small closed-loop teleoperated maneuvers, and flying

2The propulsion system for an underwater vehicle such as STAR is vastly different than those
of space robots. Propellor motors have a continuous range of thrust but spacecraft reaction jets
provide only "on/off" thrust.



Figure 1-2: STAR and Fixed Navigation Target

trajectories from one nominal state to another. A picture of STAR in station-keeping
mode opposite the navigation target is shown in Figure 1-2.

At each time step, the image of the target from STAR's video camera is digitized
in real-time with a standard frame-grabber board and the digitized image is processed
to compute the vehicle's position and orientation relative to the target. These vision-
based state measurements are combined with angular rate sensor measurements to
provide the feedback for the robot position and attitude control system. A digital
controller updates commands to the vehicle's eight thrusters based on the current

error between the commanded state input and the measured states. The thrusters,
in turn, reposition and reorient the vehicle based on the control commands. A block

diagram of the vision-based controller is shown in Figure 1-3.
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Figure 1-3: Navigation and Control System Block Diagram

1.4 Thesis Overview

The two major components of the free-flying vision-based navigation and control sys-

tem are described in Chapters 2 and 3. Chapter 2 describes vision-based position

and attitude sensing; the specially designed navigation target and vision sensing al-

gorithm are also described in detail. The robot position and attitude control system

is developed in Chapter 3. Specifics of the software and hardware implementation of

STAR's vision-based control and navigation system are also covered there. Experi-

mental results from tests of the final vehicle control system are presented in Chapter 4.

Applications of the vision-based navigation and control system for free-flying robots

and recommendations for further development are discussed in Chapter 5.

° °



Chapter 2

Vision-Based Position and

Orientation Sensing

This chapter describes a linearized method for detecting small deviations in position

and orientation of a free-flying robot using images of known navigation features. The

real-time system is developed using STAR's navigation target; however, the basic

derivation also applies to arbitrary navigation features. Although some simplifications

and assumptions have been made, the methodology can be expanded to more general

cases as discussed in Section 5.1.

2.1 Vision Navigation Principles

The underlying function of vision based navigation for a free-flying robot is to deter-

mine the motion of the vehicle from a changing video image of the robot's environ-

ment. For example, assume an underwater vehicle's camera is pointed at the uniform

stripes on the floor of a pool; as the vehicle moves in a direction perpendicular to

the stripes, the image of the stripes would appear to move in the opposite direction

in each successive video frame. By measuring the changing locations of the stripes

in the image, the motion of the robot relative to the stripes can be determined. For

vision-based free-flying robot navigation, there must be enough navigation features

(for example, the edges of the pool stripes) in the camera's image to detect six degree



of freedom motion. In the previous example, if the vehicle were to move along the

direction of the stripes, that motion would not be detectable since the location of the

stripes' edges would not change in successive frames.

The function of the vision-based navigation system is to determine the change

in camera position and orientation, or pose, from the changing image of the naviga-

tion features being used. Linearization about a nominal camera pose simplifies this

complex relationship and leads to a very efficient real-time implementation which is

described below.

2.2 Measurement Equations

For vision-based navigation, it is necessary to first be able to determine where a point

in 3-D space (in this case, a navigation feature point) will fall on a video image. With

certain simplifying assumptions, the problem of locating points on the image is very

straightforward and can be solved through simple geometry.

2.2.1 Camera Model

The measurement equations which are the basis of the vision navigation system are

derived from the ideal pinhole camera model which is a simple, yet accurate, model

for most lensed cameras [12]. The camera is modelled as an enclosed box containing a

light-sensitive plate' known as the image plane; the lens is modelled as a tiny pinhole

located at a fixed distance from the image plane. All light coming into the camera is

assumed to pass through the pinhole and land on the image plane. The corresponding

location of any point in 3-D space on the 2-D image plane can therefore be found by

tracing a single light ray from the point of interest, through the pinhole, and onto the

image plane. The pinhole camera model is illustrated in Figure 2-1.

Figure 2-1 also illustrates some common machine vision terminology. The pinhole

is known as the center of projection (COP). The optical axis is defined as the line

'Most small cameras being used for robotic applications today have a CCD imager.
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Figure 2-1: Pinhole Camera Model

which is perpendicular to the image plane and passes through the COP. The distance

along the optical axis between the image plane and COP is the principal distance or

effective focal length (f). The point of intersection between the optical axis and the

image plane is the principal point.

2.2.2 Image Projection Equations

The geometry used to locate the corresponding position of a point in space on the

image plane is derived from the pinhole camera model. Figure 2-2 shows a point,

P, in 3-D space and its corresponding location on the image plane. The figure also

illustrates the inversion of the image due to projection. For most applications, it is

convenient to work with an equivalent image plane located at +f along the optical

axis which eliminates the confusion of dealing with an inverted image (as shown in

Figure 2-3). The equivalent image plane, from now on refered to simply as the image

plane, and the corresponding image point locations are shown in Figure 2-3.

The right-handed reference frame with axes (Xc, Yr, Z) that is used to locate

points on the image is also shown in Figure 2-3. The origin of the frame is located

S - 40--
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Figure 2-2: Projection of Point in Space onto Image Plane
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Figure 2-4: Xc Projection Component

at the COP with the Z, axis pointing out of the camera along the optical axis. The

image plane is located at Z, = +f and is parallel to the Xc and Y, axes; Xc points

"right" and Y, points "down" if the camera is held upright.

Reducing the projection problem to the plane defined by Y, = 0 shows the geomet-

ric relationship for finding x (Figure 2-4). The two triangles with the same included

angle, 0, yield the following Image Projection Equation:

fXx = (2.1)

Similarly for the Yc component:
fY

(2.2)



2.3 Vision-Based Camera Pose Computation

When viewing an object, the position and orientation of the camera determines where

the image of the object will fall on the image plane. For example, when viewing a

point in space (such as a small light source) straight-on, the image of the point will

be in the center of the image plane. As the camera is turned away from the point,

the image of the point will move away from the center of the image plane. Given

the pose of the camera, the location of an image point can be calculated through the

image projection equations.

Vision-based position and orientation sensing is the inverse problem to the pre-

vious example: given the location of image feature points, what is the pose of the

camera? The methodology used measures small angular and positional deviations

from a predetermined nominal camera pose. Using a fixed nominal state allows all

the information of the navigation features (Section 2.3.2) to be pre-computed, thereby

saving a great deal of computational time within each control loop. The nominal state

can be used as a fixed state for automatic station-keeping, or several nominal states

can be pre-computed and linked together for flying simple trajectories.

2.3.1 Camera State Computation

The general derivation of the camera pose computation is based on tracking N arbi-

trary points at (xi, yi) in the image plane. Several feature points are used to overcome

tracking errors and to detect six degree of freedom camera motion, as discussed below.

At each time step, the current locations of N points in the image plane are mea-

sured. These point locations form a (2N) x 1 vector, 1', of the following form:



Xl

Y1

X2

Y2

XN

YN

(2.3)

The pose of the camera relative to the target is given by the vector, xc, as defined

by the camera reference frame in the nominal state:

X
Y

5c = (2.4)

The first three elements of X'e describe the translational displacement of the camera

reference frame. The last three elements give its attitude in terms of three Euler

angles. Since for this application the vision navigator only deals with small angular

displacements, noncommutativity and singularities associated with Euler angles are

neglected 2 . The directions of the three Euler angles are shown in Figure 2-5. These

angles describe the roll, pitch, and yaw motions of the camera which are defined to be

consistent with roll, pitch, and yaw as usually applied to aerospace vehicles. However,

due to the conventions of assigning a camera reference frame, the Euler angles are

defined about different axes than those normally used for body reference frames (see

Section 2.4.1).

The nominal location of each of the feature points on the image plane can be pre-

2For vision-based tracking during large maneuvers, it would be necessary to use an alternative
representation, such as a quaternion, for the angular state.

P'
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Figure 2-5: Directions of Camera Frame Euler Angles

computed from the image projection equations with the camera at its nominal state

since the camera focal length, the dimensions of the target, and range to the target

are all known. The nominal point locations are expressed below by the nonlinear

function, h, in terms of the nominal state, Xco:

Po = h(Xco) (2.5)

However, the nominal point positions alone are not of great interest since the goal

is to measure deviations from the nominal camera pose. This is accomplished through

a first order Taylor series expansion about the nominal state which is reasonable since

state deviations are assumed to be small. This expansion gives a linear relationship

which determines the changes in image point locations for small changes in vehicle

state.

Arbitrary point locations are first expressed as small deviations from their nominal

values and then expanded:

= P• + 60

h(XCo) + 6P



eh()h XC 6, R (2.6)

Simplifying Equation 2.6 gives the following approximation for deviations in edge

point locations for small changes in camera state:

8' -, HS'CP X (2.7)

2.3.2 Geometric Derivation of Sensitivity Matrix

This section explains a simple method for geometrically computing H, known as the

sensitivity matrix, for the N image feature points of interest.

Structure of Sensitivity Matrix

Equation 2.7 is expanded below to show the structure of the

one image point at (xi, yj):

= ax av axiiaz
oYiaz

axi
8a

2aY

ap00
0y,

ao

8 g

sensitivity matrix for

5X

6Y

5Z

b-f

(2.8)

Motion Sensitivity in the Xc Direction

Equation 2.1 is used to directly compute the sensitivity of the image point locations

to translational motion for the ith point:

ax iCO

OY gCO

(2.9)
zoi

(2.10)= 0
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Figure 2-6: Image Sensitivity to Camera Roll

Oxi I fXo0
aZi 2 co Z02,

i= (2.11)zoi

To determine the signs of the sensitivity terms, it is useful to think in terms of

the physical problem. For example, as the camera moves along +Xc, the image will

move in the opposite direction; as the camera moves toward an object along the +Z,

axis, the image of the object will appear to grow.

Figure 2-6 indicates the geometry necessary to compute the sensitivity of image

feature points to camera roll motion. The perspective of the figure is looking forward

from the COP at the feature point. The point, P', represents the corresponding

image of the feature point. If the camera rolls right by a, the image plane and

camera reference frame axes are thereby rotated by the same amount. The following

equations compute the new location of the point, P', in the rotated frame under the

assumption that the roll angle is small:

I

%0



Go00 = ' + a

x = r cos Oo

y = r sin o

x' = r cos 0'

XI = r cos(Oo - a)

= r(cos 0o cos a + sin Go sin a)

; r(cos Go + sin Goa)

From the expression for the

motion can be calculated:

new location of P', the sensitivity of Xc locations to roll

'Xi
'ico

= r sin Oo = Yo, (2.12)

Pitch rotation will change the location of the image points in the Xc direction

since the range to the target will be changed by pitch motion. The sensitivity of

the range, moving from Z to Z', due to a positive pitch rotation (as illustrated in

Figure 2-7) is computed below given that the distance between the image point and

the COP, r, is unchanged by the rotation:

= Oo+0

= r coS Go

= r sin Go

= r cos 0'
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Figure 2-7: Image Sensitivity to Camera Pitch

Z' = r cos(Oo + P)

= r(cos 0, cos P - sin 0, sin 1)
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From this relationship between pitch and Z, the sensitivity of point locations along

the Xc axis to pitch can be found:

a xi
aa 9co

Saxj ax

= +o(-x
x0i Yo

f
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-Zo 1 o)f

(2.13)

Figure 2-8 indicates that a small yaw rotation by y about the COP effectively

COP
Z
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Figure 2-8: Image Sensitivity to Camera Yaw

changes the angle between the optical axis and the light ray from a point in space.

The image of a point will move in the -X, direction for a positive yaw motion. The

sensitivity of image point locations along X, to a small yaw motion is computed below

again in terms of the nominal location in the image :

- = tan 0o

, = - f sec2'0,

= f(1+(Xi (2.14)

Motion Sensitivity in the Yc Direction

By symmetry, the sensitivity of image point locations in the Y, direction are derived

in the same manner. In this case, the measured locations of points are unaffected by

X translation:

II Sz
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Figure 2-9: Vision Navigation Target
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Sensitivity Matrix for STAR's Navigation Target

The navigation features which are used to compute the camera pose with STAR's

vision-based navigation system are parts of a specially designed navigation target.

A schematic diagram of the vision target used by STAR's real-time system is shown

in Figure 2-9. The target was designed to simplify the image processing needed to

determine the locations of its image features. It allows fast vision processing, using

STAR's current hardware.

Side View

(2.15)

T



The target consists of a row of three white squares, 15 cm wide and separated by

15 cm, centered on a black background. The center square is raised by 15 cm from

the plane of the other squares providing the necessary sensitivity to translational and

rotational motion as discussed below.

A key aspect of the target is the high contrast between the black and white regions.

This reduces the image processing of the target to finding the edges between the

target's white and black regions. Reducing the search for image features to simple

edge detection saves a great deal of the computational time needed to access the

digital video data. For example, since only edges are of interest in the image, it is

not necessary to scan every single pixel in the center of a white square or far within

the black background region.

The target's straight edges allow for a further simplification of the actual image

processing by reducing the search for edge locations to one dimension. Since the

vision-based navigation system is designed to detect small deviations from a nominal

positional state, the targets edges are not expected to move very much in the image

so it is only necessary to scan perpendicularly across edges. The edge detection

algorithm searches across horizontal edges to find changes in edge location along the

vertical image axis and similarly across vertical edges to find edge location changes

along the horizontal image axis.

The simplest black and white edge detection algorithm is know as thresholding

which compares the brightness of a picture cell (pizel) in the image to a constant

threshold value. If the pixel is brighter than the threshold, it is assumed to be white

and if not it is black. The major disadvantages of simple image thresholding are

sensitivity to video image noise and the gradual brightness transition across the actual

image of an edge. There are more sophisticated techniques for edge detection, such as

the method used by Azarbayejani of finding the maximum of the brightness gradient

across an edge [6]. However such techniques require increased search time due to their

complexity. Since computation time is a major concern for implementing STAR's real-

time system, thresholding was used with success in various lighting conditions during

both day and night pool tests.



In the framework of the previous derivation, N measurements are taken along the

target edges to determine the deviations from the nominal positions. The navigation

target edge locations are measured only perpendicularly across an edge (the first half

of the samples for the vertical edges in the X, direction and the other half in the

Y, direction for horizontal edges). For STAR's navigation target, the edge deviation

vector, 6e' (expressed as, S~, in the previous general derivation) is given below:

bel

e = e(2.16)

beN

The appropriate sensitivity matrix must be computed for STAR's vision target

edges, which are the navigation features of interest. For a given nominal camera state

with the squares at arbitrary angles, the edge deviation sensitivity can be computed by

calculating the dot product of the edge point sensitivities in the X, and Y, directions

and the perpendicular direction to each edge. For a nominal camera pose directly

opposite the center of the target with the target's squares aligned with the X, and Y,

directions, the previously derived sensitivity equations can be applied directly (since

the X, and Ye directions are perpendicular to the edges). Equation 2.7 is expanded

below, term by term, to show the complete structure of the sensitivity matrix for the

measured vertical and horizontal edge deviations on the navigation target:

be' Hbx',c



View from Camera Directly Opposite Target Center

Figure 2-10: Motion Sensitivity of Center Square
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Six DOF Motion Sensitivity

The derivation of the sensitivity matrix illustrates how the raised center square of

STAR's navigation target allows for the needed sensitivity to six degree of freedom

camera motion. Since the center square is closer to the COP when the camera is in

its nominal state, its edges will move by a different amount than those of the other

squares for a particular motion. If the center square was not raised, there would

be no information available to distinguish a Y, translation and a pitch by an angle

/ (similarly Xc translation and yaw rotation would be indistinguishable). This is

illustrated in Figure 2-10 showing the large motion of the center square in relationship

to the outer squares for combined lateral translation and yaw of the camera.

View from Rotated Camera to Left of Target Center
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Figure 2-11: Refraction

Refraction Effects Underwater

Scuba divers are familiar with the effect that objects appear to be larger and closer

underwater when viewed through a diving mask. This is caused by the bending

of light, called refraction, as it passes between the denser water medium and air.

Obviously, for an accurate underwater vision-based position sensing system, refraction

must be taken into account. With a few simple assumptions however, refraction can

easily be incorporated in the vision-based navigator.

The amount that light bends as it travels from one medium to the other can be

calculated by Snell's Law in terms of the indez of refraction (n) of the two media

[11]; This is illustrated in Figure 2-11 showing that as light passes at an oblique angle

through the boundary of two different media it will bend toward the denser medium:

nl sin 91 = n 2 sin 02 (2.18)

To model the underwater video camera, a few assumptions are made to simplify

the problem. The boundary between air and water is modelled at the camera's COP

(ignoring the small gap of air between the lens and the waterproof camera housing

and also the glass of the housing). It is also assumed that all the angles involved
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Figure 2-12: Refraction Effect on Underwater Image

are small, which is reasonable given the target dimensions and the nominal ranges of

interest. Figure 2-12 illustrates the altered location due to refraction of the image of a

point when viewed underwater. The image of a fixed point will move from location zl,

when viewed in the air, to x2 because of refraction. Refraction causes a magnification

of the image underwater.

To deal with the effects of magnification underwater, a new effective focal length

is derived below from Figure 2-12 given that n,,,t, = 1.33 and n,i, = 1. This

scaled focal length simply replaces the original focal length in the calculation of

the sensitivity matrix for an underwater vision sensing system. From the indices of

refraction, the relationship between zx and X2 can be computed:

sin 021.33 =
sin E1
tan 02
tan 01
X2/f



From the ratio of x1 and 2, a new effective focal length can be found:

x2 = 1.33x1

= (1.33f)-

f' = 4/3f (2.19)

2.3.3 Positional State Computation From Edge Locations

Equation 2.17 is the basis for computing the camera state deviations from the mea-

sured changes of navigation target's edge locations. However, H is not square since

with even only one sample along each square's edge (N = 12) the sensitivity matrix

has dimensions of 12 x 6 and is therefore not invertible. To reduce the necessary

computation time of the real-time system, a simple linear least-squares inversion (for

which the accuracy increases with more samples) is performed through the pseudoin-

verse of H [15]:

Ht = (HTH) -HT

& -c = HtbG (2.20)

The pseudoinverse of H can be computed if the product (HTH) is invertible. This

condition is met if the columns of the sensitivity matrix are independent, which is the

mathematical requirement that navigation features must be sensitive to six degree of

freedom motion. Because of the raised center square, the sensitivity matrix of STAR's

navigation target is invertible. With (N > 60) edge samples, the resulting S6c was

found to be quite accurate despite noisy edge location measurements.

Ht is also constant for a given nominal state and can therefore be computed be-

forehand outside of the control loop again saving computation time. The position and

orientation sensing of the camera has therefore been reduced to a linear multiplication

of a constant matrix and the measured changes in edge locations.



Figure 2-13: Reference Frames

2.4 Robot Positional State Computation

The final step is to transform the measured camera states to the states of the robot

which are used as inputs to the vehicle control system. This is done through a

reference frame transformation.

2.4.1 Fixed, Body, and Camera Coordinate Frames

Figure 2-13 shows the three main reference frames associated with the vision naviga-

tion problem (in this case, an underwater robot in a pool) [8]. These frames are used

to determine the relative positions and orientations of the camera, the robot body,

and the fixed environment. The camera, body, and fixed frames are all right-handed

with axes (X, Y, Z).

The fixed (environment) reference frame can have any orientation. However, there

may be an orientation which is "natural" to a particular physical situation. For the

case of a free-flying underwater robot, the fixed frame's origin is naturally located at

the water's surface with the Zf axis pointing down (which allows direct correlation



to depth measurements).

The robot body reference frame can also be defined according to the most con-

venient orientation; in general, the origin of the body frame is located at the robot's

center of mass. The body frame assigned to STAR follows the same conventions as

those of airplanes with the Xb axis pointing forward out of the upright vehicle, the

Yb axis pointing right, and the Z6 axis pointing down. Its origin is located at the

vehicle's center of mass. The body reference frame Euler angles are assigned with the

usual convention with roll about Xb , pitch about Yb , and yaw about Zb.

As discussed in Section 2.2.2, the camera's reference frame is defined according to

common machine vision conventions.

2.4.2 Camera to Body Frame Transformation

For the most general application, a camera will not be rigidly mounted on a free-flying

robot. For example, a pan and tilt unit would allow the camera to view a navigation

feature in one direction while the robot flies in another. However for the scope of this

thesis, it is assumed that the camera is rigidly mounted to the body of the robot which

results in a constant transformation from the camera to body reference frames. In

the more general case, the transformation would need to be updated as the camera's

orientation relative to the vehicle changes.

For STAR, the vision navigation camera is usually mounted on the top, right

corner on the vehicle at coordinates (L,, L~, -L,) relative to the origin of the body

frame. The changes in camera state, measured by the vision system, must therefore

be transformed to the corresponding vehicle state changes. Pure translation along

an axis of the camera frame is simply transformed as the same translation along the

corresponding body frame axis. However, as Figures 2-14, 2-15, and 2-16 indicate,

transforming the angles is a bit more complicated. Rotation of the camera frame

is equivalent to the same rotation of the body frame with an added translational

displacement which must also be calculated.

Since all state deviations are assumed to be small, the linear transformation matrix

shown below can be used to convert camera states to robot body states for translation



Figure 2-14: Roll Transformation from Camera to Body Frame

Figure 2-15: Pitch Transformation from Camera to Body Frame
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Figure 2-16: Yaw Transformation from Camera to Body Frame

and orientation:

6Xb = Tb'c (2.21)

0 0 1 0 Lz L,

1 0 0 -L, 0 - L-

T 1 0 -LY Lx 0 (2.22)
000 1 0 0

000 0 1 0

000 0 0 1

This constant transformation matrix can also be pre-computed and combined

with the pseudoinverse of the sensitivity matrix so that one constant pre-computed

matrix multiplication is sufficient to compute the robot positional state from measured

changes in the target's edge locations during each control loop:

6Xb = (THt) 5 (2.23)



Chapter 3

STAR Vision-Based Navigation

and Control

Without six degree of freedom control, free-flying space and underwater robots cannot

effectively function in their environments. Almost all robotic tasks, such as maneu-

vering from place to place, station-keeping, and docking, depend on accurate vehicle

position and orientation control. Six degree of freedom position and attitude sensing

is therefore essential to the development of free-flying robot controllers. As discussed

in Chapter 1, vision-based sensing, in space and underwater, has several advantages

over conventional systems such as radar, laser range finders, and sonar.

The difficulty with vision-based position and attitude sensing is to develop a sys-

tem which is accurate and applicable to a variety of tasks, but is also fast enough to

be incorporated in a real-time robot control system. The goal of the vision algorithm,

developed in Chapter 2, is to provide sensing for an actual six degree of freedom robot

control system with relatively basic PC hardware. The test-bed for the vision-based

navigation and control system is the Submersible for Telerobotic and Astronautical

Research (STAR), a neutrally buoyant space robot simulator.

The specifics of STAR's vision-based navigation and control system, including

hardware, control system design, and software implementation, are described in this

chapter.



3.1 STAR Subsystems

Underwater simulation is an effective reproduction of the zero-g environment of space

here on Earth. By being neutrally buoyant in both depth and orientation, space robot

simulators, such as STAR, have six degrees of freedom of motion available like a free-

flying space robot. The major shortcoming of underwater simulation is the mass and

drag of water which is totally unlike the vacuum of space. Nevertheless, much can be

learned from underwater simulation. STAR is a platform for development of a variety

of space robot functions such as teleoperated control, use of a manipulator arm, and

autonomous control.

Most of the design, construction, and integration of STAR's major subsystems

was completed in the summer of 1991 under project manager Kurt Eberly, then a

graduate student in LSTAR [9]. There were several major factors which influenced

the development of STAR. The main requirements of the vehicle were to carry battery

power for eight hour pool test sessions, to house the powerful electronic systems which

are required for such advanced tasks as vision-based vehicle control and manipulator

control, and to be precisely neutrally buoyant in depth and orientation. Low mainte-

nance between pool tests was also a primary concern; all of the vehicle's subsystems

were therefore designed to be modular and easily serviceable. Finally, minimizing

development cost was also a design factor.

3.1.1 Structure

Unlike earlier space robot simulators, STAR has no large pressurized compartments.

With these earlier vehicles, air from a scuba bottle would be used to regulate the

pressure in the large electronics compartments. As the air supply would be decreased

during the course of a pool test session, the buoyancy and balance characteristics

of the vehicle would be dramatically changed. Because of the danger of expelled

hydrogen from discharged batteries, the battery compartments of these earlier robots

could not also be pressurized. However, the battery housings were not very stiff so

their volume would change as the vehicles ascended and descended. This caused



further unwanted changes of their depth buoyancy and rotational balance.

To avoid this problem, the main body of STAR is an entirely waterproof, unpres-

surized housing made of very stiff, 1/2 inch thick aluminum. The 3 ft x 2 ft x 2.25 ft

main body contains two battery drawers and a spacious electronics drawer which can

all be conveniently slid out for easy access. The drawer doors are sealed with O-rings.

Each battery drawer contains six 12V lead-acid gel cell batteries which provide

the power for the vehicle's electronic, propulsion, and other various subsystems (such

as cameras, pan and tilt camera unit, and manipulator arm). The on-board computer

system, power converters, and angular rate sensors are contained in the electronics

drawer. The main vehicle body was sized to carry these drawers and still be neutrally

buoyant.

Aluminum cages are attached to all sides but the front of STAR. These cages

protect the vehicle's body and provide attachment points for the thruster motors.

With the side cages attached, the dimensions of the vehicle are roughly 4 ft x 3.75 ft

x 3 ft. To simplify balancing the vehicle, weights are also attached to the aluminum

cages which can easily be repositioned along the vehicle's axes. Camera housings, a

thruster motor pressurization system, and a manipulator (which is currently being

built and tested) are also attached to the outer surfaces of the vehicle. Besides the

main aluminum body, all of STAR's structural parts can be easily disassembled and

reconfigured. Figure 3-1 provides a view of the back side of STAR showing the three

main drawers and side cages. The vehicle's thruster motors, which are enclosed in

white ducts and plastic grates, are also visible.

3.1.2 Electronics Drawer

The electronics drawer houses the three main components of the vehicle's on-board

computer system, a computer rack, STD I/O bus, and patchboard, as well as the vehi-

cle's inertial sensors and power converters. The computers, I/O bus, and patchboard

are conveniently housed on a 19 inch horizontal rack near the top of the electronics

drawer. The inside of the electronics drawer is shown in Figure 3-2.

STAR is equipped to carry up to three Ampro Little Board computers. The



Figure 3-1: Rear View of STAR
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Figure 3-2: STAR Electronics Drawer
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compact size, reliability, and low cost of the PC compatible Little Board computer

makes it ideal for this type of application. For the vision-based control system, only

one 20 MHZ Little Board/386 (with an Intel 80386-based processor and 80387 math

co-processor) is used, primarily to implement the digital compensator and activate

the vehicle's thrusters.

A major component of STAR's computer system is the QNX 4.01 operating system

from Quantum Software Systems Ltd. of Kanata, Ontario, Canada. QNX 4.01 is a

POSIX compatible "UNIX-like" operating system for PC's. QNX allows convenient

networking and communication between the robot's on-board and control station

computers; for example, software can be changed and down-loaded to the robot from

the control station allowing on-site software editing during pool tests. The control

station computer is linked to the vehicle with a 93f coaxial umbilical cable which

provides a reliable link as the vehicle maneuvers underwater. QNX is designed to be a

fast, real-time, multi-processing, multi-tasking operating system capable of more than

7,200 task switches per second. This feature makes a real-time vision-based robot

control and navigation system feasible with relatively basic PC computer hardware.

The various I/O cards which connect the on-board computers to the vehicle's

subsystems are housed in a STD bus rack. The STD bus was chosen because of its

compact size and relatively low cost. A specially designed interface is used between

the PC computers and the STD bus which allows multi-computer access to the I/O

bus. The primary I/O cards currently being used are a power switching card for

turning the main battery relays on and off, A/D converters for monitoring the on-

board inertial sensors, and motor control boards connected to the vehicle's thrusters

and manipulator arm motors.

A patchboard is included as an organized connection point for the many electronic

signals going from the STD bus to various points in the electronics drawer and outside

the vehicle. The patchboard makes all the electronic subsystems modular and easily

serviceable.

Most free-flying vehicles in space and underwater have inertial sensors, such as gy-

roscopes, for measuring angular rate. STAR also has three piezoelectric angular rate



sensors, manufactured by Watson Industries, mounted along the three vehicle axes

on the base of the electronics drawer. The angular rate measurements are used for an

orientation controller for teleoperated flight (as described below in Section 3.1.4) and

in conjunction with the vision-based orientation control system. Unfortunately, the

sensors suffer from a slight bias drift which must be updated when running orientation

controllers for more than half an hour.

The electronics drawer also contains the DC-DC power converters which pro-

vide power to the vehicle's electronics. These converters are connected to four of

the vehicle's twelve batteries; the other eight batteries power the vehicle thrusters,

manipulator motors, and camera platform. Throughout the vehicle's subsystems, a

careful attempt has been made to isolate the sensitive computer signals from the

noisy analog environment of the motors. Single point grounding rules have also been

strictly followed.

3.1.3 Propulsion

STAR is propelled by eight bi-directional thrusters which provide three degrees of

translational and three degrees of rotational motion. The four thrusters along the

Xb axis provide thrust for yaw and pitch rotation as well as translation along the Xb

direction. There are two thrusters directed in both the Y6 and Zb axis directions for

Y and Z translation and roll.

The thrusters are actually electric DC fishing trolling motors (the 35W model

manufactured by Minn Kota is used on STAR) with plastic propellors. Since the

seals on these motors are not designed for STAR's operating depths of up to 40 ft,

the motor housings are pressurized to 10 psi over ambient with a modified scuba

regulator. The motor assemblies are enclosed with fiberglass ducts and plastic grates

to protect divers during pool tests.

A National Semiconductor LM629 motion-controller chip controls each of the

thruster motors according to commands from the on-board computer. The LM629

is interfaced to the motor with an H-bridge Darlington transistor driver circuit for

motor actuation. The sensitive computer signals are separated from the noisy analog



signals with optoisolators.

Until recently, the thruster motors' rotation speed was driven open-loop with a

pulse-width-modulated (PWM) signal. However, the performance of the robot's po-

sition and orientation control system suffered from sluggish motor response, stiction,

and limit cycling (see Section 4.3.2 for experimental results).. It was therefore de-

cided to add closed-loop velocity control for the thrusters. This was accomplished by

mounting an optical encoder to each motor to provide feedback of the motor shaft

angular velocity. The LM629 motor controller easily interfaces with an optical en-

coder and provides closed-loop motor velocity control. Appendix B gives a complete

description of the mounting of the Hewlett Packard HEDS-9140-A00 optical encoder

module and HEDS-5140-A13 encoder wheel in the thrusters, the digital compensator

implemented with the LM629 motor controllers, and the maximum motor shaft ve-

locity. With tight, closed-loop thruster velocity control, it is possible to implement a

responsive and accurate vehicle position and orientation control system.

3.1.4 Control Station

The control station at the surface of the pool serves as the interface between STAR

and a human operator. A pilot uses two 3-DOF joysticks, one for translational and

one for rotational motion, to manually fly the vehicle. Television monitors and a

helmet mounted display attached to a two-DOF head-tracker are used to provide

video feedback from STAR's on-board cameras. A Gateway 4000 computer, with a

20 MHz 80386-based processor, monitors commands from the pilot's input devices and

communicates with the vehicle's on-board computers. Since STAR is not equipped

with mass storage devices, the control station computer is also used to down-load

vehicle software and record data via the QNX operating system.

The vehicle's rate sensors have been incorporated into a closed-loop control system

which allows the pilot to command the rotation rate with the rotation joystick when

manually flying the robot (translation is controlled with open loop thrust commands).

This is a great advantage when flying the vehicle since it is much more difficult to

precisely point the vehicle with only open-loop torque commands. With the closed-



loop orientation control, a pilot has the necessary precision to engage the vision-based

controller as described in Section 4.1.

3.2 Machine Vision Hardware

Currently, the processing for the vision-based sensing system is performed with the

control station computer; the on-board camera's video signal is fed directly to the

control station and digitized with a frame grabber'. The frame grabber being used is

the Overlay Frame Grabber (OFG) from Imaging Technology, one of many standard,

inexpensive image processing boards available today.

The analog video signal from the vehicle's on-board black and white camera is

digitized with the frame grabber. A frame of the video image (composed of interlaced

odd and even scans) is divided into 480 rows and 640 columns giving 307,200 indi-

vidual pixel elements. An analog-to-digital (A/D) conversion of the incoming video

signal assigns a discrete brightness value to each pixel. An eight-bit frame grabber,

such as the OFG, provides a range of brightness values from 0 to 255 from black to

white. An image's brightness values can be accessed and analyzed through the two

dimensional array of pixels.

The camera used for STAR's vision-based control system is a Pulnix TM-7CN

which combines high resolution and compact size. The camera's CCD imager is also

divided into a two dimensional, 494(V) by 768(H), array of pixels. Each pixel of the

TM-7CN is very small with dimensions of 8.4 pm x 9.8 /m. Since the frame grabber

being used only digitizes 480 scan lines, 14 lines of the camera image are lost. Some

resolution is also lost since the camera's 768 horizontal image pixels are divided into

only 640 pixels with the frame grabber.

The development of the measurement equations in Chapter 2 relies on measure-

ments of image feature locations relative to the camera reference frame on the image

plane. It is therefore necessary to determine the location of a camera's principal

1This is the merely the most convenient setup for the current hardware; for an autonomous
vision-based controller, vision processing would have to be moved to a dedicated computer with
frame grabber on the robot.



point with a particular frame grabber to determine the origin of the camera frame.

Azarbayejani determined the location of the TM-7CN's principal point at pixel loca-

tion [303,278] on the OFG.

The scale factors to convert from OFG pixels, measured by the computer, to actual

distances along the TM-7CN's image plane, are derived below:

Sx (768) (8.4zm) = 1.008x10-' m/pixel (3.1)
640

Sy, = 0.98x10 - 5 m/pixel (3.2)

The frame grabber used has a feature which can modify the image displayed on a

monitor by overlaying colors on the original video signal. This capability is used with

the vision-based navigator to provide reference marks for aiding the pilot in manually

engaging the target as described in Section 4.1.

3.3 Control System Design

The goal for the control system design is to find a simple and fast real-time imple-

mentation that provides good performance and robustness to disturbances. The main

requirement of the vision-based control system is to accurately position and orient the

vehicle relative to the target for a variety of related applications. The control system

is used for automatic station-keeping, closed-loop maneuvers about the nominal state,

and positioning the vehicle during manipulator arm operation. Fast time response

with minimal overshoot is therefore essential for all six degrees of freedom. A tight

control system that can withstand disturbance forces and torques on the vehicle is

also essential especially when using the vehicle as a manipulator platform.

Controlling six positional states of the robot with eight thrusters is a complex

multi-input, multi-output (MIMO) control problem. It is difficult to derive a com-

plete model of the vehicle's dynamics in the water necessary for complex model-based



control algorithms. Fortunately, for the applications of interest, the vehicle's motions

are small and slow so that the complete nonlinear dynamics of the vehicle should not

effect the control system performance. A further useful simplification is to treat each

degree of freedom as decoupled from the others. From experiences of manually flying

STAR, this is a realistic first order approximation (for example an X translation com-

mand does not result in large yaw or pitch rotations). By decoupling the plant, one

single-input, single-output (SISO) compensator can be implemented for each degree

of freedom. Since each thruster is used for both translation and rotation, the com-

mands for each degree of freedom activated by a particular thruster are commanded

as a weighted sum; this ensures that a single degree of freedom's command does not

saturate the thruster.

Section 3.3.1 describes an attempt to model each degree of freedom; unfortunately,

the procedure used had limited success. However, from the general structure of the

plant and previous experiences with orientation rate control (see Section 3.1.4), it

was decided to first try simple proportional/derivative (PD) control for each degree

of freedom. Proportional/derivative control has several advantages over more com-

plex control algorithms: it requires minimal computation, it is possible to intuitively

tune the control gains for desired system performance, and it does not rely on a

precise plant model. Pure proportional/derivative compensators did work well for

the attitude degrees of freedom. For the translational degrees of freedom, propor-

tional/derivative control had to be developed into lead compensation since no rate

measurement is available. Sections 3.3.2 and 3.3.3 describe the digital compensators

used for orientation and translation control. Step responses of the control system for

each degree of freedom are presented in Chapter 4.

A primary concern during the development of STAR's vision-based control system

was the sampling period that could be achieved with the basic PC hardware. The edge

detection algorithm, vision sensing computation, and control system implementation

were all designed for a simple, fast implementation (without strict optimization of

the source code). The final six degree of freedom vision-based control system has a

sampling period of 0.1 sec. The system running at 10 Hz does an excellent job of



stabilizing and controlling STAR as shown in Chapter 4.

3.3.1 Plant Model

To aid the control system design, an attempt was made to experimentally model

the dynamics of STAR by measuring the vehicle's responses to commands for each

degree of freedom. With closed-loop control on the robot's thrusters, it was possible

to accurately measure the applied thrust. A yard-stick and underwater video camera

were used to measure the robot's responses.

Although a useful system model with accurate plant parameters was not obtained,

an important point was learned which aided the design of the final vision-based control

system. This information will be useful for future modelling of the vehicle (this will be

necessary for example for implementing an observer to estimate the vehicle states).

It was first thought that each of STAR's degrees of freedom could be modelled as

a double integrator (like a free-flying space vehicle) for the typical small and slow

motions of the vehicle under control. However, measurements from the video showed

that water damping plays a significant role in the vehicle's response. With half thrust

commands, the vehicle reached a terminal velocity within about 0.2 sec instead of

continuously accelerating over a longer period of time. The effects of water drag

on the vehicle's dynamics must therefore be included in a realistic model of STAR.

For the typically slow speeds of the vehicle, the water drag can best be modelled as

increasing linearly with velocity.

3.3.2 Proportional/Derivative Orientation Control

Designing a controller for STAR's angular degrees of freedom is greatly simplified

since STAR is equipped with angular rate sensors. Combining the angular rate mea-

surements from the inertial sensors with the vision-based angle measurements leads

to a very straightforward digital proportional/derivative (PD) compensator design

[10]. The control command (u) is computed for the current time step (k) from a

proporitional gain constant (K,) multiplied by the current angle (0) and a derivative
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Figure 3-3: Attitude Control System

gain constant (Kd) multiplied by the current angular velocity:

Uk = KpOk + KdOk (3.3)

Since the compensator has no dynamics (the angular velocity is measured directly

from the inertial sensors), the control equation implemented in software is very simple

and computationally fast.

Figure 3-3 shows a block diagram of the digital control system wrapped around

the continuous time plant for the vehicle's rotational degrees of freedom.

3.3.3 Lead Translation Control

Control of the robot's translational degrees of freedom is also based on simple pro-

portional/derivative control. However, unlike with the rotational degrees of freedom,

there are no direct velocity measurements available for the translational degrees of

freedom. An estimate of the velocity, from the position measurements, must there-

fore be computed by the digital compensator in order to provide damping. The

major drawback of differentiating the position measurements is the amplification of

measurement noise; this will cause the thrusters to "twitch" in response to noisy

measurements. This violent motor reaction was noticed with the preliminary control

Vehicle
id)



system and actually broke some of the plastic propellors. In order to calm the motor

response, a roll-off on the derivative control can be added (which is equivalent to lead

compensation).

The derivation of the digital lead compensator used for translational control is

given below [10]. The discrete compensator is derived from a continuous time pro-

portional/derivative controller with an added pole to roll off the derivative gain (a

lead compensator):

U(S) SG(s) = - + s K a (3.4)
z(s) S.(s4a

A backwards difference approximation of the derivative is used to derive the dis-

crete time version of the compensator:

Xk - Xk-1

T
1-z -1  z-1

T Tz
z-1

D(z) = Kp + Kd (3.5)
z - 1 + aTz

(3.6)

The denominator of the derivative control term can be expressed in terms of a

single constant, a' = 1/aT. As a' is increased from 0 to 1 in the z-plane, the derivative

control is rolled off faster:

z-1
D(z) = K + Kd ,

(KI + Kd)z - (K, a' + Kd) (3.7)
z - a/

Finally, the control difference equation implemented by the on-board computer is

derived from Equation 3.7:
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Figure 3-4: Translation Control System

Uk = (1Kp + Kd) xk - (Kpa' + Kd) Xk-1 + Uk- 1  (3.8)

Figure 3-4 shows a block diagram of the digital lead compensator used to control

each of the robot's translational degrees of freedom.

3.4 Software Implementation

The software for STAR's navigation and control system is written in "C" for the

control station and on-board computers. Vision processing, reading pilot commands,

and recording data are done with the control station computer. Monitoring the

angular rate sensors, computing the control commands, and activating the robot's

thrusters is performed by the on-board computer.

The vision sensing system currently uses a very simple method for finding the

changes in target edge positions. The search algorithm is simplified to be a fast im-

plementation. The edge detection algorithm performs a very fast binary search for the

current position of the edge between the black and white region; these fixed binary

scans are done from the nominal edge position determined by the vision system's

nominal state. The scans are performed only on the central 5 cm of each edge to

ensure that scans will find an edge for a particular maneuver. Figure 3-5 illustrates

the fixed scan method for finding the new edge positions; the dotted lines across the

edges represent the fixed scan locations and the dots represent the newly found edge

Plant Robot Body



Figure 3-5: Fixed Scans for Edge Detection

locations. In general, seven samples are taken along each edge to reduce the mea-

surement noise when computing the positional state through the sensitivity matrix.

In case an edge cannot be found along a scan line due to a large vehicle motion, the

vision-based control system is turned off and the vehicles thrusters are reset.

This simple search algorithm works well for station-keeping and for very small

commanded changes from the nominal state. However, the fixed search method is the

major drawback of the current system since the target cannot be tracked during large

maneuvers or for large disturbance inputs. A more sophisticated search algorithm is

currently being developed by LSTAR and is discussed in Chapter 5.

At the beginning of the control loop, the deviations of the edges from the nominal

positions are determined from the current image. The current vehicle position and

orientation is computed from the edge deviations through the precomputed state

transformation matrix, T, and precomputed pseudoinverse of the sensitivity matrix,

Ht (see Section 2.3.3). The current vehicle state measurements and pilot commands

are passed to STAR's on-board computer. Onboard the vehicle, the corresponding

thruster commands are computed from the current measured states and angular rate

measurements. The thrust commands are activated through the separate closed-loop

motor velocity controllers for each thruster. A schematic diagram of the software is

shown in Figure 3-6.
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Chapter 4

Experimental Results

Performance of the real-time vision-based control system during underwater tests of

STAR is discussed in this chapter. The experimental setup and responses of the

system to step inputs to each of the vehicle's six degrees of freedom are described.

Interesting observations of the vision-based navigation and control system's perfor-

mance and capabilities are also presented.

4.1 Testing Procedure

STAR's current vision-based navigation and control system was developed in stages

during five pool test sessions between late 1991 and spring of 1992. The three major

components of the system, which were developed simultaneously, are the vision-based

position and orientation sensing algorithm, inner-loop control of the thrusters, and

the robot position and attitude control system.

To determine if it is possible to implement a real-time vision-based control and

navigation system for STAR with relatively inexpensive and basic hardware (which is

described in detail in Chapter 3), the problem was first simplified as much as possible

to find the fastest possible implementation. The results of each stage of the system's

development were used to enhance the system to its current capabilities.

The initial development of the control system was as a regulator to keep the vehicle

in a fixed position and orientation relative to the navigation target. The first success-



ful orientation control was run with a fast and very simple vision sensing algorithm

which directly detects camera orientation changes from target edge location changes

(this primitive algorithm is discussed in detail in Appendix A). This preliminary

system was able to actively point the vehicle at the target but not control transla-

tion. Orientation control was implemented first because the accurate angular velocity

measurements from the on-board rate sensors made tight proportional/derivative ori-

entation control possible.

The next major step was full six degree of freedom station-keeping control, with

proportional/derivative attitude and proportional translational control, again using

the same simplified vision sensing algorithm. Damping was not yet added to the

translational states since the vision position measurements were quite noisy. The

pooi system response from this series of tests demonstrated the need for closed-loop

thrust control as discussed below in Section 4.3.2.

During the following pool test, with closed-loop angular velocity control on all

eight thrusters, the full six degree of freedom vision-based control system using the

linearized sensitivity matrix was implemented. The tight vehicle control of the system

and the low noise for the translational state measurements made it possible to add

damping for translational motion (the control system discussed in Section 3.3). Roll-

off was added to the derivative control to calm the response of the motors to save the

plastic propellors. As expected, damping dramatically improved the time response

for the translational states.

With this control system, the capability for adding a reference input to the system

was added. Step responses for the six degrees of freedom are presented below in

Section 4.2. The vision-based control system was able to robustly fix the robot's

position and orientation in the station-keeping mode. The system can also be used

for small but precise closed-loop position and orientation changes from the nominal

state. The reference inputs can be used for having the vehicle fly along a pre-computed

trajectory (automatic docking for example) or from the pilot's commands for closed-

loop teleoperated vehicle control.

The system offers the flexibility to be used in a variety of different situations;



various successful tests were run with two different camera lenses (a change was

made from a 9 mm to 4.6 mm focal length range to provide a closer nominal range

to the target), with different configurations of the camera on the vehicle, and with

various nominal states. This flexibility is useful for obtaining the most convenient

work space for a given robot task.

To engage the vision-based control system, the vehicle is first flown manually close

to the nominal state in order to position the target image within the fixed search area

used to scan for the location of the target's edges. To simplify the alignment process,

an overlay of the limits of the fixed scans is added to the video display with the frame

grabber as shown in Figure 4-1. Once the vehicle's position and attitude are close to

the nominal state, the vision control system is engaged and controls the robot to the

current nominal state and the reference inputs.

The power and flexibility of the QNX operating system made it possible to fine

tune the control gains in real-time during the pool test sessions which was extremely

useful. With the simple proportional/derivative control system it was possible to

intuitively adjust the proportional and derivative gains for stability, time response,

and overshoot. Fine tuning of the control system was simplified by concentrating

on each degree of freedom individually. The control system for each angle was first

developed; then with attitude control, the control for each translational degree of

freedom was added one at a time.

4.2 Control System Performance

To illustrate the performance of the vision-based robot position and orientation con-

trol system, step responses along each of the vehicle's degrees of freedom are presented

below; all tests were conducted with a 0.015 rad roll offset to increase the accuracy

of the vision state measurements as discussed below in Section 4.3.1.

Figure 4-2 shows the response of the vehicle to a step input along the Xb direction

(the commanded input is indicated by the solid line in the figure). In general. given

the limitations placed on the control gains by the durability of the plastic propellors



Figure 4-1: Overlay Markings for Engaging Vision Target
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Figure 4-2: X Step Response

and thruster strength, the system's response is quite good. The vehicle settles close

to the commanded position within 30 sec. The measurement noise along Xb is also

extremely small. Figure 4-3 shows the thrust commands for one X thruster during

the step response; once the state settles to the commanded input very little thrust is

required to keep the vehicle in position.

Figures 4-4 through 4-8 show the other states during the Xb step input in Figure 4-

2. Although all twelve edges of the target respond to motion along Xb, the control

of the other states is decoupled from the Xb motion as desired. The positions along

Yb and Zb remain close to the nominal zero positions throughout the Xb maneuver;

without integral control to correct the steady-state error, the positions along these

two axes do drift by a few centimeters. Since the position measurements along the Yb

and Zb directions each depend on the location of only six of the target edges, instead of

the changing size of the target's three squares as with range measurements along the

Xb axis, the measurement noise for these two degrees of freedom is larger. Attitude

control is also unaffected by the Xb step; the pitch and yaw angles do have small
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Figure 4-3: Thrust Commands for X Step Input

initial reactions when the Xb step is commanded, but they are quickly cancelled out

by the control system as indicated in Figures 4-7 and 4-8. The largest peak-to-peak

noise for the three angle measurements is only about 0.005 rad for roll.

The step responses for the Yb and Zb directions are shown in Figures 4-9 and 4-

10. The positions settle close to the commanded values within 20 sec with a smaller

overshoot than for the X step.

The advantage of having direct angular velocity feed-back is shown by the roll,

pitch, and yaw step responses (Figures 4-11 through 4-13). With accurate velocity

measurements, the orientation proportional and derivative controller has a very fast

time response for all three angles. However, without integral control for translation,

the pitch angle does not settle to the commanded input value as it also compensates

to point the vehicle at center of the target for the error in Z. Figure 4-14 shows the

thrust commands for one Yb motor in response to the roll step input.

r
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4.3 System Performance Observations

This section describes some interesting observations of the vision-based robot control

system's performance and capabilities.

4.3.1 Effect of Camera Roll on State Measurement Noise

An important observation of the vision-based sensing system's performance is the

increased accuracy of the state measurements when the camera is at a small roll

angle. This is dramatically illustrated in Figure 4-15 for the Z state; the measurement

noise is greatly reduced when a roll step is commanded 14 sec within the run. This

reduction in measurement noise was observed for the other degrees of freedom as well.

This effect is a result of pixel quantization with the frame grabber and the naviga-

tion target. With no roll, the edges of the target's squares are horizontal and vertical.

An example is illustrated in Figure 4-16. For a vertical motion, all the points along an

horizontal edge will "jump" from one pixel row to the next creating a large apparent
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Figure 4-15: Decrease in Z Measurement Noise with Roll Offset
at T=14.3(s)

change of the camera's position. Once a roll angle is introduced, these edges are no

longer horizontal so edge locations will gradually change from one pixel row to the

next along the edge. The noise is effectively cancelled out along an edge's samples.

The analogous situation applies to vertical edges and the pixel columns.

4.3.2 Performance with Closed-Loop Thruster Control

Closed-loop control of the thrusters angular velocity plays a vital role in the vehicle

position and attitude control system. Only a small amount of thrust is required for

fine vehicle positioning and attitude control so the actual thrust commands from the

controller are usually relatively small (as shown by Figures 4-3 and 4-14). With simple

open-loop thrust control, the control system's commands must also provide enough

torque to overcome internal stiction in the thruster motors which leads to sluggish

motor response for small command inputs. It is also very difficult to accurately model

the effects of stiction for a particular motor.



Figure 4-16: Pixel Quantization and Edge Location Noise

Before optical encoders were installed in all of STAR's thrusters, a six degree of

freedom station-keeping vision-based control system was run with open-loop thrust

control except for translation along the Zb axis (the two motors along Zb were

equipped with encoders at the time of the test). In an attempt to overcome stiction,

the open-loop motor commands were increased to a minimum value which ensured

enough motor torque to spin the propellor. The control system was able to stably con-

trol the robot's position and attitude but with significantly poorer performance than

the final system presented in Section 4.2. Figure 4-17 shows the vehicle's yaw and

pitch angles during the automatic station-keeping. Unlike the control system with full

closed-loop thrust control, the yaw and pitch angles are noticeably "twitching" back

and forth during the control run; this was noticeably apparent while watching the

vehicle under control. This limit-cycling is caused by the open-loop thrust commands

which prevent fine control.

The solution to this problem (which is described in detail in Appendix B) is

to implement closed-loop motor shaft velocity control. By adding feedback of the

current motor shaft velocity with an optical encoder, a separate inner-loop control

system ensures that the motor spins at the desired rate; all the vehicle's thrusters

therefore respond quickly and uniformly to commands from the vision-based vehicle

control system. This inner-loop control gives the fine control needed to precisely
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Figure 4-17: Limitcycling with Open-Loop Thrust Commands

position and orient the vehicle.

4.3.3 Disturbance Rejection

As desired, the vision-based position and orientation control system can reliably re-

ject disturbance forces and torques applied to the vehicle. For one qualitative test,

12 lb of scuba weights were added to a corner of the vehicle while the vision system

remained locked on the vision target (when balancing the vehicle, just .5 lb of weight

dramatically changes the robot's buoyancy and rotational balance). Without integral

control to correct the steady-state error, the vehicle did drift from the nominal po-

sition by a few centimeters while the vision sensing system remained locked on the

navigation target.



4.3.4 Closed-Loop Teleoperated Control

During one pool test session, a test was run to qualitatively determine the precision

of the vision-based control system for a teleoperated docking task. A mockup of a

manipulator arm about 3 ft long (made of two fixed links with a 2.5 inch slot at the

end as an end effector) was attached to the front of STAR in the field of view of

the vision navigation camera. The pilot's goal for the test was to engage a fixed 1

inch diameter rod attached to the bottom of the navigation target with the "arm's"

end effector. Manually flying the robot, it was impossible to grasp the rod without

crashing into it. However, with closed-loop position and orientation control through

the vision navigation system, the test was extremely successful. The rod was easily

"grasped" since with the vision system the pilot was able to position the end effector

with better than a half a centimeter precision. Once the rod was engaged, the end

effector could be precisely slid along the length of the rod, disengaged, and re-engaged.

Figures 4-18 and 4-19 are photographs of STAR, with the camera in its aluminum

housing mounted on top of the vehicle, during these tests.



Figure 4-18: STAR with Fixed Manipulator
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Chapter 5

Conclusions

The development of STAR's real-time navigation and control system, based on the

linearized vision sensing technique, has led to a number of important results. The

linearized vision-based position and orientation sensing system has the necessary ac-

curacy and speed to be incorporated in a real-time robot control system. The vision-

based control system provides accurate, precise, and robust six degree of freedom

control, as shown in Chapter 4, with relatively basic hardware. The feasibility of

using vision-based position and orientation sensing for a variety of free-flying robot

navigation and control applications has been proven.

5.1 Real World Applications

The major accomplishment of the current vision-based navigation and control system

is that it provides the necessary position and attitude control for developing the ad-

vanced capabilities needed for space and underwater robots. With the vision system,

STAR is an ideal test-bed which can be extended to general underwater and space

free-flying robot research. The current system can be directly applied to six degree

of freedom control in the vicinity of a special navigation target. Accurate vision-

based control can also be extended to such free-flying robotic tasks as flying along

predetermined paths, obstacle avoidance, and serving as a free-flying platform for a

manipulator arm (effectively adding an additional six controllable degrees of freedom



to the manipulator).

This technology can easily be developed for autonomous control with all the vision

processing and control hardware on-board the vehicle. Such a vision system can also

be used for certain tasks to provide closed-loop teleoperated position and orientation

control as with the mock-up docking described in Section 4.3.4. Another exciting

possibility is combining automatic and teleoperated control to relieve the operator's

workload during teleoperation. For example, a human operator may manually control

a manipulator end effector as the vehicle, under closed-loop vision-based control, is

automatically repositioned and reoriented to provide the most convenient workspace

for the operator.

5.2 Recommendations for Further Development

The major drawback of the current system is the fixed scanning method used to

detect the current edge positions; this severely limits the range of motion of the

vehicle under vision-based control. LSTAR is currently successfully developing and

testing a scanning algorithm which tracks the corners of the target's squares in the

camera's field of view. To reduce the search time, the corner locations from the

previous image are used to find the current set of locations. The current vehicle state

is then computed with the corresponding pseudoinverse of the linearized sensitivity

matrix of the corner locations as discussed in Chapter 2. The speed of the enhanced

tracking algorithm is comparable to the original simple system so that the sampling

period of the vehicle control system is unchanged.

The current system relies on a friendly navigation target with easily detectable

features and sensitivity to six degree of freedom motion. Although it may not be

practical or possible to add such an artificial target for all robot tasks in space and

underwater, vision-sensing can still be applied to many key robot navigation tasks by

tailoring the vision system to the particular task. For example, assume a space robot

must fly along a truss beam on a space station; the range to the beam, perpendicular

distance from the beam, and relative roll angle can be computed with a vision sensing



system tracking the edges of the beam with the appropriate sensitivity matrix. With

additional sensing, such as inertial sensors and another camera to track other features

in the robot's environment, for measuring the vehicle's orientation and position along

the beam, a vision-based navigation system can conceivably still be effectively used

for this type of complicated task (such a task could easily be simulated by having

STAR fly along the swimming lane stripes on the MIT pool floor).

For robot control within a small range to the worksite, there may be enough easily

detectable natural features for six degree of freedom vision-based control. For exam-

ple, LSTAR is also currently testing the linearized vision sensing system with a much

simpler navigation target whereby the nominal state is defined relative to a single

target square viewed from a large angle. When viewed from an angle, the relative

positions and sizes of the front and back edges provide the necessary sensitivity to

six degree of freedom motion. This system is directly applicable to flying to and

capturing a box with a free-flying robot's manipulator.

There are several other issues which must also be considered for the development

of vision-based space and underwater robot control. Lighting plays a significant role in

space and deep underwater; for example, a vision navigation system for a space robot

operating in Earth's orbit will have to contend with severe changes between darkness

and brightness. A realistic system will also need to be able to incorporate several

camera views which would allow continuous tracking of various navigation features in

the environment as the view of the current feature is blocked by the vehicle's motion.

Another interesting area of research is the use of artificial intelligence (AI) in

vision-based free-flying robot navigation and control. AI may be able to handle a

number of foreseeable situations which would be catastrophic with a simple system:

* What if all or part of the navigation target is briefly blocked, for example by a

manipulator arm or cloudy water?

* Which arbitrary features in the robot's environment are usable navigation fea-

tures?

* How can the vehicle best recover from an tumble caused by a system failure



(for example a brief power failure which disables the computers)?

Many of the advanced capabilities that will be needed for future free-flying space

and underwater robots can be handled with the development of more powerful vision-

based navigation and control systems. STAR's real-time navigation and control sys-

tem, based on the linearized vision algorithm, proves the feasibility of obtaining ac-

curate, precise, and robust performance from vision sensing with relatively basic

hardware. The door is open for exciting advances in the use of machine vision with

free-flying robots.
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Appendix A

Direct Sensing of Vehicle State

Changes from Edge Motion

A very simple algorithm was developed to detect changes in the vehicle position and

orientation directly from the location of the navigation target's edges in the video

image. This method is computationally fast and extremely simple; it was developed

as a preliminary vision sensing method which is intuitively simpler to debug than

using the pseudoinverse of the linearized sensitivity matrix as discussed in Chapter 2.

To determine by how many pixels an edge has moved from its nominal position,

n measurements are taken in the camera reference frame along each of the target's

squares. In Figure A-1 the search scans, ei which determine the number of pixels an

edge has moved, are labelled.

A.1 Orientation Sensing

To determine the changes in the vehicle's orientation, the angles are defined as the

pointing angles at the center square. Each angle change is computed from the average

of the pixel locations along the appropriate edges. For example, a positive pitch

vehicle rotation is detected by the motion of the center square's horizontal edges in the

positive Ye direction (Section 2.4.1 describes the orientation of the navigation reference

frames). Similarly, positive yaw rotation is detected from the average motion of the
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Figure A-i: Edge Location Scan Labels

center square's vertical edges in the negative X, direction. Positive roll is detected

by motion of the outer squares' horizontal edges; the edges move in the positive Y,

direction on the left square and in the negative Y, direction for the right square. This

is shown in the equations below:

( 7n 8n 9n 10n

Ci b OC (Z ej+ Z: ej :e - : e~j /4n
i=6n+l i=7n+l i=8n+l i=9n+ /
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(A.1)

(A.2)

(A.3)

A.2 Position Sensing

Similar averages are taken to determine position changes from the target's edge lo-

cations. Motion along the Xb axis is determined by the changing size of the target's

three squares; as the vehicle moves closer to the target along the Xb axis, the three

squares will become larger in the image. Motion along the Yb and Zb directions is

decoupled from yaw and pitch rotations by determining the difference in the aver-

age location changes of the center square's edges and the outer square's edges. The



position sensing equations are given below:
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Appendix B

Closed-Loop Thruster Angular

Velocity Control

In order to ensure fast, controllable, and uniform response from all eight of STAR's

propellor motors, closed-loop angular velocity control was added to each of the

thrusters. As shown by experimental results in Chapter 4, this inner-loop control

of the thrusters greatly improves the performance of the vehicle's position and atti-

tude control system. The development of the thruster control system was aided by

Paul Stach, an undergraduate student in LSTAR who has been heavily involved in

the design and construction of STAR's propulsion system.

The two main components of each thruster's control system are an optical encoder

mounted in the motor and a National Semiconductor LM629 Motion Controller inter-

faced to the on-board computer. The LM629 controller actively changes the current

applied to the motor to ensure that the motor spins at a desired velocity which in turn

corresponds to a desired thrust. The optical encoder measures the current angular

velocity of the motor shaft which is used in the feed-back path of the LM629 control

system.



B.1 LM629 Compensator

The LM629 Motion Controller uses a simple proportional/derivative (PD) compen-

sator to control the rotational velocity of the motor shaft. For the Minn Kota trolling

motors, suitable compensator control gains were experimentally found to be K, = 30

for the proportional gain and Kd = 100 for the derivative gain.

It is important to limit the maximum thruster speed commanded by the LM629.

The maximum rotational speed that can be achieved with the propellor motors un-

derwater is significantly slower than the maximum speed out of water. The control

system must be limited to the maximum underwater speed. In velocity mode, the

LM629 is actually continuously controlling the angular shaft position to correspond

to the desired velocity. Once too large a velocity has been commanded, the LM629

will continue to update the shaft position in an attempt to catch up to the com-

manded value even when a new velocity has been commanded. This has potentially

disasterous effects for control of the robot. The maximum velocity commands of the

LM629 were therefore limited to 3200 RPM for underwater operation.

B.2 Optical Encoder

There are two main components of an optical encoder: the encoder wheel and the

sensing module. The encoder wheel is mounted on the motor shaft; it has a series

of equally sized and spaced slits along its outer edge. The edge of the wheel is then

slid into a gap in the encoder module. The module contains a light-emmitting-diode

(LED) and a photo transistor which are located on opposite sides of the encoder

wheel slits. As the wheel spins, the light and dark regions detected by the optical

system produces a square wave; the duty cycle of the square wave determines the shaft

rotational speed. There is also a second series of slits (and optical detectors) which

are slightly offset from the outer set of slits. With two square waves, the resolution is

increased and direction of motion can be determined. The two optical encoder square

waves are fed directly back to the LM629 motion control chip; this is very convenient



since the decoding of the shaft angular velocity is handled by the LM629 without any

additional logic. It is therefore important to have "clean" square wave signals from

the optical encoder with sharp, right angles and little noise.

B.2.1 Choice of Optical Encoder

There are several factors which determined the choice of optical encoders to be used

for STAR's thruster motors. There is very limited space available in the prefabricated

Minn Kota trolling motors. The main requirements were therefore small size of the

encoder module and a compatible encoder wheel shaft diameter. It is also important

that the quality of the encoder signals is not affected by the axial shaft play of the

motors and the noisy electrical environment of the small motors. Low cost was also

a major concern.

These requirements are best met by the Hewlett Packard HEDS-9140-A00 encoder

module and HEDS-5140-A13 encoder wheel. The module fits well into the trolling

motor (see Section B.2.2 below); this model wheel has an 8 mm shaft diameter which

is very close to the 5/16 inch motor shaft diameter. The 9140/5140 series also has

the advantage of a small number of slits on the encoder wheel (500 counts/rev for

the models used). Unlike for angular position control, a lower resolution is desirable

for velocity control since there are usually many revolutions within a sampling period

(T) (the LM629 has a limit for the maximum number of counts for T) and finer slit

patterns are more susceptible to signal corruption from misalignment of the encoder

module and shaft play.

B.2.2 Encoder Module Mounting

The only space large enough for mounting the optical encoder in the trolling motors

is the end-bell of the motor (Figure B-1 labels the main motor sections); the cable

to the optical encoder is passed through a waterproof seal in the end-bell to avoid

running the sensitive signals along the motor magnets and coils. A mounting plate

is attached to the end-bell which rests on the thrust bearing housing in the center of
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Figure B-1: Trolling Motor Sections

the end-bell as shown in Figure B-2. Four 4-40 thread holes are tapped into the posts

in the corners of the end-bell to hold the mounting plate. The encoder module must

then be carefully aligned with the motor shaft according to specifications to ensure

good quality signals.

Axial shaft play must be considered when mounting the encoder wheel within the

gap of the module. To ensure that the wheel remains within the specified height

limits of the module gap, but still allow for thermal expansion, the shaft play of

the thrusters has to be reduced to 0.03 inch with spacer washers. When mounting

the encoder wheel, a 0.235 inch thick spacer is used between the mounting plate

and wheel. The spacer ensures that the encoder wheel can move by 0.015 inch in

both directions from the center of the module gap (as discussed below, the motor

is assembled with the motor shaft firmly against the thrust bearing of the end-bell

keeping the wheel at the lower height limit).

The following procedure was developed by trial and error for assembling and

disassembling the trolling motors once the encoder module has been mounted in the

motor end-bell. When assembling the motor with the optical encoder, it is important
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Figure B-2: Encoder Module Mounting Plate

to have a perpendicular motor shaft; the shaft is therefore mounted in the chuck

of a drill-press and the motor assembled on the drill-press table. Also since the

magnets in the center motor section constantly pull the shaft up from the end-bell,

the wheel would be damaged once it is in the gap of the encoder module. To avoid this

problem, the motor shaft is constantly held against the thrust bearing of the end-bell

throughout the assembly process. The motor assembly and disassembly procedures

are given below.

Motor Assembly with Encoder Module and Wheel

1. Tie back motor brushes with stiff wire providing a large enough gap for the

shaft and spacer washers.

2. Mark locations of the screw holes on the outside of the motor end-bell with a

marker.

3. Mount the top of the motor shaft in drill press chuck. Slip the motor's center

section (with the magnets) over the shaft.



4. Check all o-rings and add vacuum grease if necessary.

5. Rest the encoder wheel with the proper orientation on the spacer. Slip the end

of the shaft through the encoder wheel and firmly against the thrust bearing

of the end-bell which rests on the drill press table. Lock the drill press into

position to eliminate ALL shaft play.

6. Tighten encoder wheel set-screw and remove spacer.

7. Lower motor's center section and align with screw holes in end-bell.

8. While firmly holding shaft against end-bell (as perpendicularly as possible),

raise chuck, add the necessary spacer washers, and place the third motor section

with screws onto the shaft.

9. Re-lock the drill press with shaft again firmly against the end-bell's thrust

bearing.

10. Untie brushes and seal motor by tightening motor screws.

Motor and Optical Encoder Disassembly

1. Mount motor shaft in chuck and lock drill press with the motor shaft firmly

against the end-bell which rests on the drill press table.

2. Unscrew motor screws.

3. Raise third motor section and tie back motor brushes with stiff wire so that the

shaft with spacer washers can be slipped past the brushes.

4. While firmly holding shaft against end-bell (as perpendicularly as possible),

raise chuck and remove third motor section.

5. Re-lock the drill press chuck with the shaft firmly against end-bell thrust bear-

ing.

6. Raise center motor section from the end-bell.



7. Carefully loosen the encoder wheel set screw.

8. Release chuck and gently slip shaft through the encoder wheel and remove wheel

from encoder module.


