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ABSTRACT

Coadjoint orbits of Lie groups play important roles in several areas of mathematics
and physics. In particular, in representation theory, Kirillov showed in the 1960's
that for nilpotent Lie groups there is a one-one correspondence between coadjoint
orbits and irreducible unitary representations. Subsequently this result was exten-
sively generalized by Kostant, Auslander-Kostant, Duflo, Vogan and others. In this
thesis we give a formulation in the setting of coadjoint orbits, of the Mackey theory
of induced representations.

Let G be a real Lie group, N C G be a normal subgroup. Denote by g and n the
Lie algebras of G and N respectively. Let p E n*, the dual space of n, and Y be the
coadjoint orbit of N through p. There is a natural G action on n*. Let

K = Gy = {g E G; g-q E Y for all q E Y}

be the stabilizer subgroup of Y, and t = LieK. Then restricting G action on n* to
K gives us a K action on Y. Under the assumption that the stabilizer subgroup Np
is connected, we can always, by getting rid of so-called Mackey's obstruction, find
a suitable K-homogeneous space W on which N acts trivially so that Y x W is a
coadjoint orbit of K. We call Y x W the little group data. On the other hand, K acts
on G on the right; this induces a Hamiltonian K action on T*G which commutes with
the left action of G. Therefore, K acts on T*G x Y x W in a Hamiltonian fashion.
The reduced space of T*G x Y x W with respect to K at 0 is a well defined symplectic
manifold, and we prove that this reduced space is a coadjoint orbit of G. We also
show that any coadjoint orbit of G can be reconstructed this way. Quantization of
this classical construction gives us the Mackey theory of induction. A special case of
this theory, the semi-direct product case, was worked out by Sternberg and Rawnsley
in the 1970's.
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Chapter 1

Preliminary Topics

1.1 Hamiltonian action and Marsden-Weinstein

Reduction

We review some basic concepts of symplectic geometry which will be used throughout

the whole paper. Let (M, w) be a symplectic manifold, C"(M) be the set of the real

valued smooth functions on M. For any function f E C"(M), we denote by (f the

Hamiltonian vector field of f. Namely,

(1.1) t(ýf)w = df,

the inner product of (! and w is df. An automorphism €: M -- M is said to be a

symplectomorphism if it preserves the symplectic form,

(1.2) O*w = W.

Let G be a Lie group whose Lie algebra is g. Suppose G acts on M. We say that the G

action on M is symplectic if each of the elements of G serves as a symplectomorphism

of M. For any ý E g, we denote by (1 the infinitesimal generator of ( for the g action

on M. It is defined as

(1.3) ( (p) = d t=oexp(-. p), for any p E M.



The infinitesimal version of the symplectic action is expressed as the Lie derivative

of w with respect to (1 for any ý E g being zero:

(1.4) ICw = 0.

By the Weil formula

(1.5) C£tw = d(t((ý)w) + ,(ý)dw,

we see that, since w is closed, (1.4) is equivalent to

(1.6) d(t(~()w) = 0.

Therefore the G action is symplectic means that all t(ýU)w are closed. Moreover, if

they are exact, we have some function ft for each ( such that

(1.7) t(~')w = dfl .

It is clear that such a ft is determined up to a constant. Suppose this gives rise to a

map A : g -- C(M) by A(() = fl. We call f4 the Hamiltonian function for (1, or

simply, (. A short calculation shows that the Poisson bracket {fe, f'} for (, q E g is

a Hamiltonian function f[lt7] for [(, r]. Namely

(1.8) t([, 7 ]'U)w = d{fl, f1}.

In particular, it follows that there is a skew-symmetric bilinear map

c : g x -+ R so that

(1.9) {f(, f,} = f•, P + c (~, \ ).

The Jacobi identity implies that the map cx satisfies the condition

(1.10) c\([, T/], •) + cA([?7, 1], ) + c\([(, ], 1) = 0, for all , 77, C E g.

This condition is known as the 2-cocycle condition for cA regarded as an element of

A2(g*). It is of our interest to see if we can choose A so that cx is identically zero, in

other words, A is a Lie algebra homomorphism. In order to see whether it is possible,



let us choose another linear map A : g --- C(M) which also lifts the infinitesimal

action of g on M. Let the linear map p : g -+ C(M) be p(ý) = A(A) - A(ý). We

now compute that

(1.11) ={A(),A(i)} = +{A(),A(7)} = A([AA]) + cA((,r )
= ([, 77]) + C(, ) - P([, 77]).

Thus, c,(ý, rj) = cA(ý, r) - p([ý, 7r]). Therefore in order to be able to choose A so that

cý = 0, there must exist a p E g* such that cA = -bp where 6p is the skew-symmetric

bilinear map on g satisfying bp(ý,77) = -p([,77 ]). This condition is known as the

2-coboundary condition.

Definition 1.1.1. The symplectic g action on M is said to be Hamiltonian if there

is a lifting of infinitesimal action which is a Lie algebra homomorphism. In this case,

X is called a Hamiltonian G-space.

In the case that G action on M is Hamiltonian, we may define a moment map D :

M --- g* by

< D(p),c >= f (p), for any p E M and ( E g.

There is a natural coadjoint action of G on g*. With respect to this action and the

G action on M, we have

Proposition 1.1.1. 4 is G-equivariant.

It is helpful at this moment to introduce the following terminology.

Definition 1.1.2. Let q: X --- Y be a smooth map between two differential man-

ifolds. We say that y E Y is a clean value of 0 if the set 0-1(y) C X is a submanifold

in X and, for each x E 0-1(y), we have T0-1'(y) = kerd.,.

Note that any regular value of 0 is a clean value.

Now suppose 3 E g* is a clean value of the moment map C. Proposition 1. 1. 1 implies



that the stabilizer subgroup Go acts on the submanifold O-'($). Suppose in addition

that the space of Gg orbits on '-1(/), M, = 4-'(O)/Gp, can be given a structure

of a smooth manifold in such a way that the quotient map 7r, : D-1(3) --* M, is a

smooth submersion. Then Marsden-Weinstein proved

Theorem 1.1.1. There is a symplectic form D on M3 so that

(1.12) i'w = f t,

where i : D-1(/l) -- + M is the inclusion map.

This reduction is called the Marsden-Weinstein reduction, and the space M3 is called

the Marsden-Weinstein reduced space. This will be the main tool we use to study

the structure of coadjoint orbits.

Remark 1.1.1. Let G, be the stabilizer subgroup for some p E -1(/3). Then the

dimension of the Marsden-Weinstein reduced space is:

(1.13) dimMo = dimM - dimG - dimGo + 2dimG,.

1.2 Coadjoint Orbits

We now review some fundamental properties of our main object, the coadjoint orbits

of Lie groups. Let G be a Lie group and X be a coadjoint orbit of G through a point

p E g'. Let G, be the stabilizer subgroup of p. Then X = G/G,. There is a canonical

symplectic form on X described as follows.

Since X is a G-homogeneous space, any tangent vector at point q E X can be written

as (O(q) for some ( E g. We define Qfx a two-form on X by

(2.14) Qx(q)(O(q), 77(q)) = - < q, [ý, r7 >

It is easy to see that (2.14) is well defined by checking that it only depends on (O and q7

but not on the choice of ( and r7. Furthermore, Sx is also closed and non-degenerate.



Hence it defines a symplectic form on X. This is known as the Kirillov-Kostant sym-

plectic form.

G acts on X naturally by the coadjoint action. The following result can be proved

by the direct computation.

Proposition 1.2.1. G action on X is Hamiltonian with the moment map

L : X -- ) g* being the inclusion map.

Thus we see that any coadjoint orbit is a Hamiltonian G-homogeneous space. What

is more significant is the converse assertion given by Kostant as well as Souriau.

Proposition 1.2.2. Suppose G action on X is Hamiltonian and transitive, then X

is a covering space of some coadjoint orbit of G.

We give a proof by using the moment map. For this, we need the following lemmas

for the general symplectic manifolds M. They are also useful later.

Lemma 1.2.1. The transpose map of dim : TmM - g* is the composition of the

following two maps:

g -- TmM, ( - (m)

and

T,M Tu M, v 4 t(v)wm.

Lemma 1.2.2. The image of d,' in g* is g,, the annihilator of gm in g*, where ga

is the Lie algebra of the stabilizer subgroup Gm.

Lemma 1.2.3. The kernel of d(m is the symplectic orthocomplement of the tangent

space to the G orbit through m.

Lemma 1.2.4. The orbit of G through m is open if and only if d,•m is injective, i.e.,

4 is an immersion at m.



Lemma 1.2.5. If G acts transitively on M, t is an immersion; and if M is connected,

the converse is true.

Proof of Proposition 1.2.2: Since the G action on X is Hamiltonian, we have a

moment map t : X --o g*. Pick a point m E M, let p = t(m) E g* and X be

the coadjoint orbit of G through p. Since t is G equivariant, and G action on X

is also transitive, we see that Imt is X. Locally, by Lemma 1.2.5, dt,$ is injective.

Hence 4 is locally diffeomophic. This implies that as manifolds t : M - X is a

covering. We claim that this covering pulls back the symplectic form wx on X to the

symplectic form w = WM on M,

VW*X = W.

Indeed, for any ý E g, we denote by (I the vector field on M corresponding to ý, and

2ý the vector field on X corresponding to ý. For any v, w E TmM, p = t(m), we need

to check

(2.15) (wx)p(dm(v), d,,,m(w)) = wm(v, w).

Since G acts transitively on M, the map

S- TM,

is onto. There exist (, 1r E g such that v = ((m) and w = 7 (m). The G-equivariance

of D implies

dm(v) = ):(p) and dm(w) = rt(p).

Hence,

RHS of (2.15) = wm(~(m),i, (m)) = -{ff•}(m)

= -f•"lo](m) = - < [(,y ], (m) > = - < [I,c],p >= LHS of (2.15).

Thus we are done. o



Corollary 1.2.1. Under the coditions of Proposition 1.2.2, if in addtion, the moment

map b is one to one, M is symplectomorphic to a coadjoint orbit of G.

Corollary 1.2.2. Under the conditions of Proposition 1.2.2, if in addition, H1i() and

H2(g), the homology groups of Lie algebra g, are vanishing, M is symplectomorphic

to a coadjoint orbit of G.

1.3 Kazhdan-Kostant- Sternberg Reduction

In this section, we introduce another type of symplectic reduction based on the fol-

lowing theorem given by Kazhdan-Kostant-Sternberg.

Let us use the notations developed in the previous sections. Namely, we have a mo-

ment map 4 : M - g* for the Hamiltonian G action on M. Then we have (see

[11])

Theorem 1.3.1.(Kazhdan-Kostant-Sternberg, 1978) If 4 intersects an orbit X C g*

cleanly, then -' (X) is coisotropic and the leaf of the null foliation through m in

D-'(X) is the orbit of M under GO(,,), the connected component of the isotropic

subgroup of 4(m).

Theorem 1.3.1 associates a symplectic manifold to an orbit X by taking the quotient

of 4ý-(X) by its null foliation, t-x(X)/null foliation, provided this null foliation is

fibrating. Let us denote by Zx this quotient symplectic manifold and call this reduc-

tion the Kazhdan-Kostant-Sternberg reduction. On the other hand, we have another

version of the Marsden-Weinstein reduced space Mx. Let us consider the product

space M x X- where X- is the symplectic manifold X equipped with the negative

symplectic form -wx. The space M x X- is equipped with the symplectic form

w - wx. It is easy to see that G acts on M x X- by product in a Hamiltonian fashion

with the moment map T : M x X- -- + g* defined by T(m, q) = 4(m) - q. A

point p E X is a clean value of $ if and only if 0 E g* is a clean value of %I, and



in which case, the Marsden-Weinstein reduced space Mp is symplectomorphic to the

reduced space Mx = ',-'(O)/G. We call the latter space Guillemin's version of the

Marsden-Weinstein reduction. Both of these two spaces will be used frequently later

regarded as the same space.

We now suppose that the stabilizer subgroup Gp of some p E X, hence of all points

on X, are connected. The following theorem gives beautifully the relation between

two types of reduced spaces we discussed above (see [10]).

FTheorem 1.3.2. Under the hypotheses of Theorem 1.3.1, asssume that the null

foliation is fibrating over a symplectic manifold, Zx. Then Zx is a Hamiltonian

G space with the moment map 4 Zx given by bz [m] = $(m) where [m] is the

equivalent class of m E 4-'(X). We can identify Zx/G with Mx. Furthermore, we

have a symplectomorphism of Zx with Mx x X and this is a G morphism when we

regard Mx as a trivial G space.

Sketch of proof: Since -I'(X) is invariant under the action of G, we know that

each of the vector fields ( M is tagent to 4-'(X) and hence w(ý'M, v) = 0 for all

v E null foliation. This is to say dfý = 0 on the null foliation where f4 is the lifting

function of the infinitesimal action of ý on M. Hence fý is constant on the leaves

of the null foliation. It defines a function F4 on Zx. By Theorem 1.3.1, the G

action preserves the null foliation and hence defines an action on Zx preserving its

symplectic structure. Moreover, by the relation between the symplectic form on Zx

and the restriction of w to 4- 1(X), we see that the action of G on Zx is Hamiltonian

with F4 being the lifting of the infinitesimal action of ( on Zx. This lifting gives rise

to a moment map 'Dzx satisfying 4zx[m] = 4(m).

Let us denote by p the projection from 4-'(X) onto Zx. Let z = [m] E Zx,

and p = zx [m] = (I(m). By Theorem 1.3.1 p(am) = p(m) for all a E GO. Since

p(am) = ap(m) we conclude that Go C G,. On the other hand the moment map DZx

is a G morphism, we know that G, C Gp. Since Gp is connected, we conclude that

Gz = G,. Thus the moment map gives a diffeomophism of the G orbit, G - z through



z and the orbit X. Let Fp = D' (p) = =-'(p)/Gp = Mx. We have the map

0: X x F - Zx, ¢(ap, z) = az,

which is well defined since G, = GP for all z E Fp. On the other hand we have the

map

-I(X)--- -(0),

which induces a map Zx/G - T-'(O)/G = Mx and we denote by 0, the com-

bination of this induced map and the projection Zx -- Zx/G. So we have the

map

4•zx x i : Zx -- X x Mx

whose inverse is 0. This proves that 0 is a diffeomophism. Furthermore, the G

equivariance of D derives

(3.16)

By this formula and Lemma 1.2.3 one may get that 0 is a symplectomorphism. O

m - (m, D(m>)),

< d'm(rMI),( >= - < Q(m), [r,(1 >



Chapter 2

Inductive Structure of Coadjoint

Orbits

2.1 Semidirect Products

We start this chapter by looking at the structures of the coadjoint orbits of the groups

of semidirect products given by Sternberg (see [7]).

Let G = HxV be the semidirect product of a Lie group H and a vector space V on

which H acts. We may write the elements of G as the matrices g = v where

a E H and v E V. The Lie algebra of G is the semidirect sum g = E V where 4 is

the Lie algebra of H. The elements of a can be written as the matrices = (A

where A E b and x E V. We may then compute the coadjoint action of G by the rule

of matrix groups and end up with

(1.1) Ad;G(a, p) = (Ad~a• + a-'p 0 v, a-1p),

for any (a, p) E B' = 4* x V', where H action on V* is the one induced from the H

action on V, and p 0 v E 4* is defined as the following:

(1.2) < pO v, A >=< p, Av >, for any A E 4.

12



One can see from this formula that all G orbits are fibered over the H orbits in V*.

We may describe the G orbits fibering over the H orbit 0 through p in V' as follows.

Let Hp be the stabilizer subgroup of H at p, and let bp be its Lie algebra. Since !, is

a subalgebra of 4, restriction of any a E V* to Ip will give an element in b;. We have

Lemma 2.1.1. For any a, 3 E b',

a - =p O v for some v E V

if and only if

Sketch of Proof: Since < p ® v, 7 >=< q7p, v > for any q E I, but rp = 0 if 77 E b,,

we see that < pG v, 7 >= 0 for all 77 E bl. This proves that p V C tb, the annihilator

of ý, in Iý. By counting the dimension, one may see that these two vector spaces are

the same. O

Lemma 2.1.1 gives us clearly the picture of all coadjoint orbits of G fibering over

0. Namely, the fiber over p is O x W, where W is the orbit of Hp through aib,.

Another viewpoint of this picture is, when we identify TpO with b0, any coadjoint

orbit of G is fibered over some cotangent bundle of 0 with the typical fiber above

(p, () E T*O being some coadjoint orbit of H,. Note that V acts on V* trivially. Thus

the stabilizer subgroup of G at p is G, = Hp V and the similar argument shows that

G orbit through p is exactly H orbit through p and the coadjoint Gp orbit through

(a, p) E g; = ý; x V* is W x {p} where W is the orbit of Hp through a. Therefore any

coadjoint orbit of G can be described as a fibration over some cotangent bundle of G

orbit 0 in V* with the typical fiber above (p, () E T*O being some coadjoint orbit of

G,. This gives us a complete inductive picture of coadjoint orbits of the semidirect

product G via the data of G orbits in V* and the coadjoint orbits of some "smaller"

group G,, which we call the "little group". Practically, to compute the coadjoint orbits

of the high dimensional Lie groups is in general difficult. This inductive constructions

offer us a very effective way to do it. This will be illustrated later.



2.2 Inductive Construction of Coadjoint Orbits

We now construct the coadjoint orbits of general Lie groups in terms of the data of

some subgroups by using the symplectic induction method. Let G be a Lie group,

N C G be a connected normal subgroup. Denote by g and n their Lie algebras

correspondingly. Let Y C n* be an arbitrary coadjoint orbit of N. There is a natural

G action on n given by conjugation. It induces a dual action of G on n'. Let

K = Gy = {g E G; g -q E Y for all q E Y}

be the stabilizer subgroup of Y and e = LieK.

Definition 2.2.1. The subgroup K above is called the little group of G related to

the coadjoint orbit Y of the normal subgroup N.

The restriction of G action on n* to K gives rise to a K action on Y. Obviously this

action is transitive. Let W be a K-homogeneous space on which N acts trivially.

Then it's easy to see that K acts by product on Y x W transitively. Now we assume

this action is Hamiltonian with the moment map

T, :Y x W -)t*.

Definition 2.2.2. The space Y x W is called little group data if the following con-

ditions are satisfied:

1) W is a K-homogeneous space;

2) N acts on W trivially;

3) K acts on Y x W by product in a Hamiltonian fashion.

As a subgroup of G, K acts on G to the left converted from the right action, namely

a -g = ga-



for all a E K,g E G.

This action induces a Hamiltonian action of K on T'G. If we use the left trivialization

of T*G to get

T*G = G x g*,

the K action on T*G is

(2.3) a (g, ) = (ga-1,Ad*a)

for all a E K, g E G and a E **, where

(2.4) < Ad*a,a

for all ( E g.

The moment map of this action is

%F2: T*G

l2(g, a)(2.5) - -ale.

Taking the sum symplectic form, we creat a new symplectic manifold

M=T*GxYxW.

By the product, K acts on M in a Hamiltonian fashion. The moment map is

whereM --- *,

where

(2.6) '(g, a, p, w) = %2(9, ) + %1(p, w)
= -a 1, +91 (p, w).

for all g E G,a E g*,p E Y, andw E W.

Obviously, the K action on M is free. By the Marsden-Weinstein reduction, we have

a reduced space

X1 = P-r'(O)/K.



On the other hand, G acts on itself to the left, inducing a Hamiltonian G action on

T*G as follows:

(2.7) gx - (g, a) = (gig, a)

for all gl, g E G, a E g*.

The moment map of this action is

41 : T*G -- g*,

4I(g, a)= Ad*a.

Let G act on Y x W trivially. Then we have a Hamiltonian G action on M, com-

muting with the K action, therefore factorizing through the reduction to give rise to

a Hamiltonian G action on X1. The moment map of this action is

D : X -- ,

(2.8) a([g, a, p, w]) = Ada,

where [g, a, p, w] E X1 is the equivalent class of (g, a, p, w) E T-1(0). We want to

show that 1ý gives us a covering map from X1 to a coadjoint orbit of G.

We now start to look at the structure of the coadjoint orbits. First of all, let x E g*

such that p = x I, E Y. We would like to observe the orbit through x under the action

of Np, as a subgroup of G, on g*.

Let

(2.9) to = { 3 E g', Ole = 0}

be the annihilator of e in g*, and No be the connected component of Np. We have

Lemma 2.2.1. No ' x = x + to.

Proof: Let n, = LieNp. We first look at the behavior of the infinitesimal action.

Define

S:np --- g*

(2.10) j() = x



for any ( E n%; the right hand side of (2.10) is the infinitesimal action of ( on x. We

may see that

(2.11) Imj C to.

Indeed, one can easily get

(2.12) e = gp + n.

Hence for any E np, 1 = 71 + 772 E t, where 71 E gp, ri2 E n, and

< .,7) >=< . X, 711 > + < ý., X712> .

But

< " l >, =

< X77,77 2 >a

- < 1, [P,1771 >,
< X, [1 ,, 7 >,
< P, [771,,1 >-
- < 711. p- , >n

0,

- < X, [C,7'12] >a

- < p,[,,n2] >.

- < P, 7r2 >n

0.

< X,7 >= 0

for any 77 E e. Namely,

f* x E to

for any ( E n,. Hence (2.11) holds. Furthermore, we have a short exact sequence

0 --+ ln, -• -+ 0o

17

and

Thus

(2.13)



where i is the inclusion.

To prove this, it only remains to show that

(2.14) dim(n,/n.) = dime'.

For this, let us suppose X to be the coadjoint orbit of G through z. As a subgroup

of G, N acts on X in a Hamiltonian fashion. The moment map is

r : X --- n*

(2.15) ir(X1) = xZlI.

Let 0 be the G orbit in n* through p. Then 7r is a submersion from X onto O.

It's a basic result of symplectic geometry that

Imd'r, = no,

where no is the annihilator of n, in n*.

Hence

(2.16) dimO = dim(Imdr,) = dimn° = dimN - dimN,.

It follows that

(2.17) dimN, = dimN - dimO = dimN - dimG/G,.

But on the other hand,

or

(2.18)

dimN - dimNp = dimK - dimG,,

dimN + dimGp = dimNp + dimK.

By (2.17) and (2.18),

dimN, = dimN - (dimG - dimG,)

= dimN + dimGp - dimG

= dimN, - (dimG - dimK)

= dimN, - dime0 .

Y N/N, 2 K/G,.



Namely,

dim(N,/N,) = dime0 .

It completes the proof of (2.13).

We now go to the group level in terms of exponential map. Note that

(2.19) exp .x = +. x + • x +..

for any E %n.

One may observe that for any xz E to,

(2.20) .- = 0.

Indeed, for any qr E g,

[q, 77] E n C e.

It implies

< (.Xj, 7 >= 0

for all 77 E g.

Hence (2.20) holds.

Therefore, (2.19) is simplified to

(2.21) exp( x = x + -x E x + te.

Since N° is connected, any v E NO can be written as

v = exp1 ... exxs

for some 1,*,'", E n,.

Then by (2.21) and (2.20), we have

v.x=X + +i... + X1

< X1, [C 771 >= o.

(2.22)



where xz = , - x E to.

(2.22) gives us an injection from N- . x into x + to. We claim that it is also surjective

since for any y E to, we have by (2.13) an element ý E n, such that

Then

ezxp( z = X + y.

This completes the proof of the lemma. O

Remark 2.2.1. By this lemma, we see that if N, is connected, Np x = x + t. This

is an interesting situation. For example, if we can choose n to be the nilradical of a

and N the connected and simply connected Lie group on n, all Np are connected. In

general, we need to work with the covering of G for this purpose. We will see in the

next chapter that this condition is fairly important.

For our structure theorem we only need N, z D x + to, which is generally true.

Namely we need

Corollary 2.2.1. For any X1,z 2 E g*, if X111 = X21, E Y, then there is an element

v E N 2,I. such that

V' -X = z2.

Proof: Since x2 - Xt E te, by Lemma 3.1, there is an element v E Np such that

v zX = X1 + (2 - ) = 2. O

We also would like to list another corollary to Lemma 2.2.1 here which we need to use

in the next chapter.

Corollary 2.2.2. Under the assumption of Lemma 2.2.1, if Np is connected, GN,

is a closed subgroup of G.



Proof: First of all, since G, stabilizes Np, GN, is a subgroup. To show that G,NiV

is closed, we only need to show that NpG, is closed. We claim

NG, = {a E GI ax E x + t'}.

Indeed, by Lemma 2.2.1, it is obvious that

N,G, C {a E GI ax E x + tO).

On the other hand, for any a E {a E GI ax E x + o0}, by Lemma 2.2.1, there exists

an element v E Np such that ax = vx. This implies v-la E G,. Namely, a = vb for

some b E GQ. This concludes the proof. O

With Corollary 2.2.1, we are now ready to state that the reduced space X1 given early

in this section is a coadjoint orbit of G up to covering. Thanks to Kostant-Souriau's

classification of the Hamiltonian G-homogeneous spaces (see Proposition 1. 2. 2) we

only need to prove the following result.

Theorem 2.2.1. G acts on X1 transitively.

Proof: The proof of the theorem is straitforward.

For any two elements

[gi, ai,p, wi] E Xx, i = 1,2,

there exists a E K such that

(2.23) a - w, = w 2 .

But a . Pi E Y, hence there exists u E N such that

(2.24) ua . p = P2.

Note that N acts on W trivially, we have by (2.23) and (2.24) that

(2.25) at (pi, wx) = (P2, w2),
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where

al = ua E K.

Since the moment map

%F1 : Y x W--+ '*

is K-equivariant, following (2.25), we have

( - Pi(ai.(p1,w1))

= a1 -F~iw)

Recall that the moment map for K action on M = T*G x Y x W is

I : M -- t ,

'(g, a, q, w) = -ale + %P(q, w)

and

(gi, ai, Pi, wi) EI -'(0),

it follows

(a1 -•c)le = a-" (a•t1) = al j-1(P,j)
= F1(p,P2,W2) = a2e.

Hence, by Corollary 2.2.1, there exists v E Nc2 1. such that

val -a1 = o2.

Set

a = va 1 E K.

We observe that the restriction of K action on Y x W to N is the product action of

the coadjoint action of N on Y and the trivial one on W. It follows

h1i(q, w)1 = q.

22
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In particular,

(2.29)

So

(2.30) f2j, = T,(P2

(2.30) tells us v E N,. Then by (2.25),

(2.31) a (pl, w) =

So far we get

(2.32) a * (ai, p,,w) = (a2, p2, w).
Let

9 = g2ag 1 E G.

Finally

9 [gl, ai,lP, pwi] = [991g, api, w]

= [92a, ai,pl, wi]

= [- 1  (g2, aa, ap, awl)]

= 192, a, p2 ,w2]

Hence, G acts on Xx transitively.

Thus, we obtain a covering space of some coadjoint orbit of G from the little group

data. In fact we may get the orbit itself rather than a covering space if we choose the

little group data good enough.

Lemma 2.2.2. The moment map 4 is injective provided

Proof: Suppose [gX, z,, p, w ], [92, z2 P, p 2, w2j X1 and

1I is injective.

C91 ,s, pi, ,w,, = [192, z,, pr, w1.

, W2)l = P2.

val . (pl, wl)

v. (p, w2)

(p2, W2 ).

T1(P2, W2)ln = P2.



By (2.8), it means

Ad;1al = Ad; x2.

But xll, = Pi E Y and x2I, = P2 E Y, we have glpl = 92P2. It follows that

a = gtg91 E K. Thus restriction of Ad; ,l = Ad;2 x2 to e gives

atI(p1, w) = I (p2 , w2 ).

Therefore,

apl = P2, and awl = W2,

since for %Fl is K-equivariant and one-one. It then follows

[g191,,PI,wi] = [g92a, a-'X2,p,w]

= [a-1(g2, z 2, P2, w2)]

= [92 , x2P 2, w 2 .

Thus we are done. O

It says that if we choose our little group data good enough in the sense that Y x W

is a coadjoint orbit of K other than only a covering space to some coadjoint orbit,

the constructed space X1 is also a coadjoint orbit of G rather than merely a covering

space.

2.3 Symplectic bundles

Let P -+ M be a principal G bundle for some Lie group G, where G acts on P to

the right, and p : T*M -+ M be the natural projection. We may pull the bundle

P -, M back to T*M to get a principal G bundle p1P -+ T*M. Let us denote

by P this pull back bundle. For any Hamiltonian G space Q we may form a fiber

bundle P XG Q = (P x Q)/G associated to P -+ T*M. Sternberg showed in [21]

that this associated bundle is a symplectic manifold with a modified symplectic form

depending on the choice of the connection on the principal bundle P -+ T*M. On



the other hand, Let us consider the Hamiltonian G space T*P x Q where G action

on T*P is induced from the left action of G on P converted from the right action by

g p = p. g-. Let T1I and %I2 be the moment maps for the G actions on T*P and Q

respectively, 91 + T2 is then a moment map for the product G action on T'P x Q.

This action is free and 0 E g* is a regular value of T1 + i2. By the Marsden-Weinstein

reduction we get a reduced symplectic space (T*P x Q)o. Weinstein showed (see [23])

Theorem 2.3.1. The reduced space (T*P x Q)o is symplectomorphic to the sym-

plectic bundle P XG Q -+ T*M.

Sketch of Proof: Let p E P lie over m E M. By the infinitesimal action of g on P

and the natural projection we have an exact sequence:

(3.33) 0 -+ g- TpP -+ TM -- 0.

Its dual is

(3.34) 0 +-g TP ~- TM •-0.

We choose a connection 0 on P - M. By definition it is a linear map from TP

to g, whose dual splits the exact sequence (3.34). In particular, we get a linear map

T;P --+ TM and consequently a map T*P -+ T*M by putting together these maps

for all p E P. It is not difficult to check that this map is constant on G -orbits,

so it induces a map (T*P x Q)o -+ T*M. On the other hand we notice that P is

the pullback of T*M to P as well as being the pullback of P to T*M. Thus the

maps T/P --- T M define a map T*P -- . Taking the product with Q we get a

G-equivariant map T*Px -' P x Q.
The next thing to notice is that the restriction of A to (' 1 + T 2)-'(0) is a diffeomor-

phism. Indeed, if we fix (p, q) E P x Q, the map restricted to T/P x Q takes ((, q) to

(77, q) where 77 is the horizontal part of ( with respect to the connection O. Requiring

that i1(() = T2 (q) means fixing the vertical component Il(') of ý. Hence, ý is

uniquely determined by q and q. It follows that A induces a diffeomorphism Ao from

(T*P x Q)o = (' 1 + I2)-'(O)/G to (P x Q)/G = x G Q. Furthermore one may see



that this diffeomorphism is a symplectomorphism with respect to the canonical sym-

plectic form on the Marsden-Weinstein reduced space (T*P x Q)o and the modified

symplectic form on the symplectic bundle P xoQ related to the connection O. o

Now let us look at the inductive construction of the coadjoint orbits. We have a

principal K bundle G -+ G/K and a Hamiltonian K space Y x W. In the way

discussed above we may construct a symplectic bundle G xK (Y x W) --* T*(G/M).

Hence, by Theorem 2.3.1 our reduced space X1 constructed in the last section can be

realized as this symplectic bundle. In terms of this picture we may give an intuitive

description of the transitive G action on X 1. Namely, G acts transitively on GIK;

K acts transitively on Y x W leaving GIK fixed; finally, Np acts transitively on the

cotangent space T:(GIK), leaving everything else fixed. Combination of all those

effects, we get the transitive G action on X1 .

Remark 2.3.1. We would like to mention here that the symplectic bundle pic-

ture shows clearly that our inductive construction is a generalization of Guillemin-

Sternberg's result introduced in the begining of this chapter.



Chapter 3

Converse Problem

3.1 Little Group Data

In this chapter we consider the converse problem. For any given coadjoint orbit X

of G, can we find the suitable little group data so that X can be reconstructed from

such data in the way we introduced in the last chapter?

Throughout this chapter, we assume that Np for all p E n* are connected if not

otherwise mentioned. We may find the little group data naturally as follows.

Take a point xo E X, let po = zxo, E n*, and Y the coadjoint orbit of N through

p. As before we denote by K the stabilizer subgroup Gy. We assume the stabilizer

subgroup Np is connected through out this chapter. Recall (2.15) in Chapter 2

7 : X - n*

7r() =(x

is the moment map for the N action on X.

We put the negative Kirillov-Kostant symplectic form on Y, denoted by Y-, and by

product N acts on X x Y- in a Hamiltonian fashion. The corresponding moment

map turns out to be

ri : X x Y- --- n*,



(1.1) ri(z, p) = xl, -p.

The Marsden-Weinstein reduction gives rise to a symplectic manifold

w = ~-'(O)/N.

Remark 3.1.1. Note that r-1 (po) = KE/GZo. To see ir-(po)/Np is a well defined

manifold, we only need to see that GoNp. is a closed subgroup. This is true due to

Corollary 2.2.2. So W - Ir-1 (po)/Np is a well defined manifold.

There is a natural K action on X x Y- by product, which induces a K action on

W since N is a normal subgroup of both G and K. Let us have a close look at this

induced action. First we have an easy result.

Lemma 3.1.1. The K action on W is transitive.

Proof: For any (zx,pi) E rj'1 (0), i = 1,2, we can find a E G such that

(1.2) a - zl = 2.

Restrict (1.2) to n, it gives by (1.1)

(1.3) a pl = P2•.

So

a * (xi, pl)= (=2, P2),

and

(1.4) a [x1,p l] = [X2, P2],

where [x,p] is the equivalent class in W of (z,p) E ir 1'(0).

Note that (1.3) also implies that a E K, which completes the proof. o

Note: In the case that the K action on Y is Hamiltonian, so will be the K action on

W. Consequently, the K action on Y x W is Hamiltonian. But the last assertion is

always true. We will prove this next.



So far we already have the materials Y and W. N acts on W, of course, trivially. To

see that such materials really meet our requirement, we need the following result.

Lemma 3.1.2. The K action on Y x W by product is Hamiltonian.

Proof: An equivalent version to see the reduced space W is to look at the moment

map

" : X - n*.

For po E Y C n*, the Marsden-Weinstein reduction at po is

7r -'(po)/Np.

Our W = 7r l(O)/N is just Guillemin's version of this reduction, Namely

(1.5) W -'(po)lN,.

On the other hand, let us consider the Kazhdan-Kostant-Sternberg reduction

Zy = r-'(Y)/Null foliation.

We take a look at the K action on X. Since for any x E ir-(Y), and a E K,

(a )x. , = a . (xl) E Y.

Namely, a -x E 7r'(Y).

So 7r-(Y) is an invariant subspace of the K action. On the other hand, for any

p E Y, if v E No, it is easy to see that ava- ' E Nd. ,. Therefore, by Theorem 1.3.1,

there is an induced K action on Zy. In fact, this action is also Hamiltonian. To see

this, for any ( E t, let

f4 : X- R

be the lift of the infinitesimal action of t on X. So we have

We observe that f4 is constant on the null foliation.

Indeed,

(1.6) t((')Wx = df ,



where wx is the canonical symplectic form on X. For 77 E Null foliation,

(q)Wx I"-v(y) = 0.

7-1(Y) = K o,

Since

(1.7)

V is tangent to r-'(Y). Hence,

(1.8) wx( W, 7) = 0.

So

(1.9)

This implies that Qd is constant on

Therefore, Q induces a function

dfl(n) = 0.

the null foliation.

f4 : Zy -- + R,

which gives us the moment map for K action on Zy.

Meanwhile since N, is connected, Theorem 1.3.2 says that Zy r Y x W. It is not

difficult to check from the proof of Theorem 1.3.2 that the action of K on Zy corre-

sponds to the product action of K on Y x W under the above symplectomorphism.

Thus, the K action on Y x W is Hamiltonian.

Therefore, we conclude

Proposition 3.1.1. The space Y x W we choose above is a little group datum of K.

3.2 The Complete Construction of Coadjoint Or-

bits

We are now ready to reconstruct X from the little group datum Y x W we choose

in the last section. by some fundamental computation, one can write out explicitly

the formula of the moment map for this K action on Y x W without difficulty. Note



that we can write u - p, u E N, for the elements on Y, and [x, po], x E ir-'(po), for

elements on W q- 7r'(O)/N. Then the moment map is

T : Y x W--- t*

(2.10) T x(U -po, [,po]) = (u -x) I.

It can be seen directly from (2.10) that I1 is K equivariant. Namely, for any a E K,

let u' E N such that

au = ula

since for N is a normal subgroup of K; and

a -Po = ua ' Po

for some Ua E N. Let w = [x,po], then

,iV(a -(u - o, w)) = Ii(au .po, a w)

= i(u'a. po, [a -x, a po])
= 'I(u'ua p o, [a . , u• Po])

= ' 1(u'ua • pO, [u•' a., po])

= u. -(u1a -z)

= ua x

= au x

= a. •l(upo, w).

It follows (2.10) that '1 sends Y x W to the coadjoint orbit of K through xole.

Lemma 3.2.1. The moment map TI is injective.

Proof: Suppose

',1(u1 -Po, [X1, Po]) = I1(u2 Po, [X2, po]).



Hence ulxile = u2x21e. Restricting this to n gives us u1po = u2po. Hence u = uluI2 E

NPo. Therefore,

(u2 .po,[zz,po]) = (u1 po,[2 i,u-_ 1p])
= (uiPo, [zXpo).

This completes the proof. O

We may now construct a reduced space Xi from the chosen little group data Y x W.

We have

Theorem 3.2.1. D(X1) = X. Furthermore, O is a symplectomorphism.

Proof: To show O(X1) = X, it suffices to show that

O(X) nX 0.

In fact, if we take

A = [e, xo, po, wo],

where e is the identity element of G and wo = [zo, Po] E W, by (4.45) A is a well

defined element in X1. But

O(A) = Adxzo = xo E X.

So XI covers X. By Lemma 3.2.1 and Lemma 2.2.2, 0 is a symplectomorphism.

Thus we are done. O

Hence, the constructed space X1 exactly recovers the coadjoint orbit X under the

symplectomorphism 0. We summarize our result as follows.

Theorem 3.2.2. For Lie group G and a normal subgroup N, the inductive con-

struction from any little group data Y x W gives rise to a covering space of some

coadjoint orbit of G. Furthermore, it gives rise to a coadjoint orbit if the little group

data is chosen good enough in the sense that it is symplectomorphic to a coadjoint

orbit of the corresponding little group. Conversely, if the stabilizer subgroups Np for



all p E n* are connected, all coadjoint orbits of G can be constructed inductively from

the suitable little group data.

By means of Theorem 2.3.1 we conclude that

Proposition 3.2.1. Let G be any Lie group with a normal subgroup N such that

the stabilizer subgroups Np for all p E n* are connected. Then any coadjoint orbit of

G can be realized as a symplectic fiber bundle over T*(G/K) with the typical fiber

being some coadjoint orbit of K where K is some certain little group.

Remark 3.2.1. We emphasize that in the converse problem we assumed N,0 there-

fore all Np for p E Y are connected. The coadjoint orbits of G can be recovered by our

symplectic inductive costruction only up to the covering without this assumption. In

the cases of nilpotent and solvable groups, as well as semi-direct products, we may al-

ways be able to choose N to be the connected and simply connected nilpotent groups.

In this case Np are connected. In general we may not be able to choose such normal

subgroups. It is also noticed that the orbit method works out the representations of

the nilpotent and solvable groups (see [12] and [2]) but only for the representation of

covering of groups in general.

3.3 Examples

To illustrate our results, we will look at some examples of constructing coadjoint or-

bits of Lie groups on the little group data.

Example 6.1. G, = GL(m,R)xR m , the semidirect product of GL(m,R) and R".

Take N = Vm = Rm, and denote Hm = GL(m, R); as we remarked, all coadjoint orbits

of Gm can be built up as fiber bundles over the cotangent bundles of G orbits in V,

with the typical fibers being coadjoint orbits of the stabilizer subgroups of H, at the

corresponding points in V,:. Let us do it by induction.



First of all, let us look at

G1 = Hx V1.

In this very simple case,

(3.11) G== a aER-{0}, xER}
0 1

and

(3.12) g = LieG = ) A,X ER .

As the vector spaces,
g* 2

Take

1 0 ( 1
el - , e2 =

0 0 0 0

a basis of g, and {e*,e2} the dual basis of g*. Let a = (xo,yo) E g*, 0, be the

coadjoint orbit through a. We have

1. yo 5 0, O, is the union of the upper-hemiplane y > 0 and the lower-hemiplane

y < 0;

2. yo = 0, 0, = {a};

Now we turn to study the general case

G, = HmxVm, m > 2

Denote now G = Gm, H = Hm, V = V,. There are totally two G orbits in V*,

namely,

Oo = {0}, and 0 = V* - {0}.

Over 0o, the orbits of G correspond to the orbits of the stabilizer subgroup Ho = H.

Let's build up coadjoint orbits of G over T*O. Take, for example, the point

p = (10, ... , 0) 0.



By the straitforward calculation, we get

(3.13) HP Gn_-.

Hence every coadjoint orbit of Gm through some z E g* with q = xlv,,, 0 can be

realized as a fiber bundle over T'O with the typical fiber being some coadjoint orbit

of Gn- 1. While we already know the case of G1, we can then build up the orbits of

all Gm by induction.

For instance, in the case of n = 2, we may get that G2 has

1. One open orbits;

2. one-parameter family orbits of codimension 2;

3. two-parameter family orbits of codimension 4;

4. one-parameter family orbits of codimension 6.

Example 6.2. Conformal Heisenberg Lie groups.

Let Hn be the 2n + 1 dimensional Heisenberg group, G = R+xH,, the semidirect

product of R+ and H,, where the R+ action on H, is

(3.14) A. -(v, t) = (Av, A•t)

for all A E R+ and (v, t) E H,.

Take N = H,.

H, = R2" x R, the product on H. is

1(3.15) (u, ) . (v, t) = (u + v, t + s + -~(u, v))

where Q is the standard symplectic form on R2n .

The Lie algebra of H, is n = R2"+
-= R23 x R, and the Lie bracket on n is

[(R , t), ( ,s)] = (0, b(s, r7)).

Take the standard basis {ej} of n, where

ej= (0,--. ,071,0,7...,0), i= 1,...,2n + 1.



Let {e-} be the dual basis of n" = R2"+ '. It is well known that for any point p =

(c1, * , c2n+1) in n, the coadjoint orbit of N through p, say Yp, is

1. the hyperplane X2n+1 = c2,n+l if c2,+l 0 0, or

2. just the single point p if c2n+1 = 0.

In the first case, we have

K = Gy = 1 x H. 1 H..

Therefore, K acts on any Yp in the Hamiltonian fashion. By the Note to Lemma 4.1,

we only need to pick the little group data W to be orbits of K on which N acts

trivially. Of course, they are those fixed points of coadjoint action of N on the

hyperplane 2,n+1 = 0.

If we write

g = R x R2n+1 with n = R2n+1 C g,

let fo = (1,O ,,O and f; = (0), 01,0,...,0)= ei, i= 1,...,2n+ 1. Equip g*
2n+2 i

with the dual basis f, --... fn+}. Then for those a = (co, ... , c2n+) with c2,,+l 0

the coadjoint orbit of G through a is the fiber bundle over T*(R+) with the typical

fiber R2" .

In the second case, if p # 0, once again,

K = Gy, = G, = 1 x H. H..

The construction of coadjoint orbits of G is similar to the first case.

If p = 0, K = G. Our theorems tell us that all coadjoint orbits of G through

(co, 0, ... , 0) are acted by H, trivially.

Example 6.3. Consider

G= 0 b f EGL(3, R); a, b, c> 0

00c



the group of the upper triangular matrices. Then

g= 0 y w 2 gl(3, R)
0 0 z

Take

N = 0 1 f EGL(3, R)

I 0 0 1

A basis of g is chosen as

0 1 0 0 0 1 0 0 0
e= 0 00 ,e2= 0 00 ,e3 = 0 0 1

0 0 0 .0 0 0 0 0 0
1 000 000 0 1 0 0

e4 = 0 0 0 , e= 0 1 0 , e6=  0 0 0

001 000 00-1

Then el, e2, e3 form a basis of n.

Let et, e2, e* be the dual basis in n*, (x', 2 2, x3) be the corresponding coordinate

system. For p = (A1, A2, A3) E n', it is not difficult to see that the orbit of N through

p , say Y,, is

1. hyperplane x3 = A3 if A3 # 0;

2. single point p if A3 = 0.

In the first case,

K=GY,= 0 b f EGL(3, R); a, b>O .

= LieK, and el,... , e5 form a basis of e.

Let e, ... , e; be the dual basis in t'. It's easy to see that Y, is not an orbit of K.



By the moment map (2.10), we may find the corresponding little group data Yp x W,

such that

TI(Y, x Wp) = K-orbit through / = zxI

where x E g* satisfying x Ie= p.

Let B, = K-orbit through /. By examining the proof of Theorem 4.3, we see that in

the construction of X 1, Yp x W, can be replaced by Bp, while, of course, T1 being

replaced by the inclusion map.

Practically, for example, if we take p = (0, A2, 0) E Y, where A2 # 0, let 3 =

(0, A2, 0, 0, 0) E e*, then it can be calculated that

(3.16) BO = {A2(f, 1, -d,df, -df) e t*, f,d E R}.

We conclude that the coadjoint orbit of G through x such that sxe = / is the fiber

bundle over the 2-dimensional space T*(G/K) with the typical fiber BO given by

(3.16).

Similarly, we may construct other orbits of G in this way.



Chapter 4

The Mackey Obstruction

4.1 Extension of Representations and the Mackey

Obstruction

One may ask that why we choose our little group data in the way given in Chapter 2

and Chapter 3. We will see that realizing the orbit Y of N as a coadjoint orbit of the

little group K is the classical version of extending an irreducible unitary representation

of N to a representation of K. There is in general an obstruction to this extension.

In this chapter we will review such obstructions and discuss it at the classical level.

This will explain the choice of the little group data.

Let G be a real Lie group, N C G be a normal subgroup, and N^ be the set of the

equivalent classes of the irreducible unitary representations of N. Since N is normal

in G, there is a natural action of G on N^ . Pick a representation p E N ^ , we assume

that G fixes p. One would like to ask that if p can extend to an irreducible unitary

representation of G in the sense that there is such a representation of G with the

restriction of it to N being p? The answer in general is no. There is an obstruction

(called the Mackey obstruction) to extend p to a unitary representation of G. In

general, p can only extend to a projective representation p' of G. Namely

(1.1) p'(ab) = ,(a,b)p(a)p(b)



for any a, b E G, where the 2-cocycle a satisfies

(1.2) |a(a,b)l = 1,

(1.3) a(e,a) = a(a,e) = 1, and

(1.4) a(ab,c)a(a,b) = (a,bc)a(b,c),

where e is the identity of G. po is a representation only if a = 1. But it extends to a

representation of some central extension G' of G with respect to the circle group T.

Namely, we define

Go = {(t,a) T x G},

where the multiplication of this group is defined as

(1.5) (t, a) (s, b) = (ts/a(a, b), ab).

Then G' is a group with the identity (1,e) and (a(a,a-1)/t,a-1 ) is the inverse of

(t, a). We have the exact sequence of groups

(1.6) 1 G - G-- e,

where

i(t) = (t, e), j(t, a) = a.

We define

pO': G' --- ,Aut(H7),

where 7 is the representation space of p;

(1.7) p (t, a) tp'(a).

It is easy to check that pg is a unitary representation of Go. The 2-cocycle a is the

obstruction to extend p to a representation of G. We may define the Mackey obstruc-

tion by the following procedure.



First, let us recall the definition of the Baer product.

Let

1) 1 -- Q -- El F -- 1

2) 1 Z--- E2 -2 F -- 1

be two exact sequences of groups where Z is in the center of Q. Let R C E1 x E2

consist of all pairs (el, e2) E El x E2 such that

ki(e) = 42(e2).

Let S be the subgroup of R of the form (z, z-1 ), z E Z. Define the Baer product

El 0 E2 = R/S.

Note that if we define

O(el, e2)= 01(e) = 02(e2), (el,e 2) E R,

then 0 defines a homomorphism of E1 0 E2 onto F with the kernel (Q x Z)/S. Also

(Q x Z)/S is isomorphic to Q, so E1 0 E 2 satisfies the exact sequence

3) 1 -- Q -- El Ez - F --• 1.

We call (3) the Baer product of (1) and (2).

For p E N ^, we define a unitary representation A of T x N as follows:

1(tv) = tp(v), for any t E T, v E N.

We have

Theorem 2.1. (Mackey) Given the group extension

1) 1 - Tx N -- Tx G-- G/N -.-. 1,

there exists a unique group extension

2) 1 ---, T - F -- ) G/N --- 1

satisfying the following conditions:

A) T is central in F;



B) if Gb = F0 (T x G) is the Baer product, then there exists a unitary representation

pý of Gý such that p4 ITxN= ýP

Definition 2.1. The group extension (2) above is called the Mackey obstruction of

G at p or the obstruction to extend p from N to G.

In the case that the exact sequence (2) is trivial, or splitting, Theorem 2.1 says that

p can extend to a representation of G.

Remark 2.1. Auslander-Kostant and Brezin showed in [2] and [4] how to compute

the Mackey obstruction from a particular 2-cocycle on Lie algebras in certain cases.

Roughly, let g and n be the Lie algebras of G and N respectively. There is a subspace

a of g such that

g = a D n as vector spaces, and 0[a, n] = 0.

where f is some element in g*, the dual space of g. Then let r : g -- g/n and let

0 : g/n --+ a be the unique linear mapping such that r o 0 is the identity mapping of

g/n. Define a bilinear form a on g/n by

o)= - o([9,9i]), 0E g/n.

a gives rise to a 2-cocycle on g. It was also used to construct the Mackey obstruction

in the articles mentioned above. We call it the Mackey 2-cocycle.

4.2 Classical version of the Mackey obstruction

We now translate the Mackey obstruction into the classical language. Let G and N

be as above where N is connected. Let Y C n* be a coadjoint orbit of N such that the

natural action of G on n* fixes it.We assume that the stabilizer subgroup NP of coad-

joint action of N at some point p, hence all points, on Y is connected. The Mackey

obstruction can be interpreted as the obstruction to realize Y as a coadjoint orbit of G.



Proposition 4.1. The G action on Y is symplectic.

Proof: For any automorphism 0 : n -- n, 0 preserves the Poisson structure on n* so

it carries symplectic leaves into symplectic leaves. Moreover, if Y1 is a symplectic leaf

and Y2 = 0t(Y 1 ) then 0t is a symplectomorphism of Y1 onto Y2 .

Let fv be the canonical symplectic form on Y. Proposition 4.1 says that t((O)fy

is closed. In addition, if N is simply connected it is easy to see that Y is simply

connected and hence t(C)fly is exact. Indeed, N -- Y is a fibration with fiber N,.

By the long exact sequence in homotopy

... -- ~r1(N) --+ ,r(Y) -+ ro(Np) --'- ro(N),

we see that if 7r,(N) = 7ro(N) = 0, then r1(Y) = 7ro(Np). In other words, if N is

simply connected, then Np is connected if and only if Y is simply connected. We will

however show that t(l)fly is exact even when N is not simply connected and in fact

we will construct a canonical function 0 : Y -+ R such that t(CO)1(y = d04. Pick a

point po E Y. We can write

Y = {v.po; vE N}

Let zo be an element in g* such that xol, = po. Define the map

: Y --- R

by

(2.8) 04(v -Po) =< v -zo, > .

By Lemma 2.2.1 we see that it is well defined. We want to show that

(2.9) -(ýl)fly = dkf.

Note that Y is an N-homogeneous space. Any vector at q E Y can be written as

6b(q) for some 6 E n.

We need to show that

(2.10) t(II)y(bl) = d().



Let q = vpo E Y, at q,

RHS of (2.10) = 6 (€•)(q)

-= dIt=o(exp - t6b q)
d

_= It=o < exp - t vo, >,

= -<6vXzo,' >,

=< vxo, [6, ], >
< Xo v-1[6,7] >,
< Po,07 V[6,7 ] >n

=< q, [6, ] > g

= - < q, [, 6] > .

On the other hand, there exists an 4 E n such that 6 (q) = - (q). Thus

LHS of (2.10) = ny(6 (q), b6(q))

=- < q, [6, 6] > .(2.12)

But 6U(q) = (U(q) means ( . q = 6 - q on n, so

< C q, 6 >=< 6 - q,6 > .

Namely,

Hence (2.11) = (2.12), which says (2.10) holds.

Therefore, the G-action on Y has an infinitesimal lift 0 : 4 - 4. In general, 4 is
not a Lie algebra homomorphism. There is a 2-cocycle

o: g x g -- R

satisfying

(2.13) o'(, ) = -(, ),

(2.11)

< q, [, 6] >=< q, [6f,6] >.



and

(2.14) a([. q], () + a([77, C(, ) + a([(, ~1, 4) = 0

such that

(2.15) { k', )7 } = a((, 4) + 0,1 .

Classically, this 2-cocycle is the Mackey 2-cocycle. It prevents Y being a coadjoint

orbit of G. Y is a coadjoint orbit of some central extension of G with respect to the

circle group T. At the algebra level, define

gG { (IS,.), S E R, ' E g},

where

(2.16) [(s, ), (t, r)] = (a(V, 77), [ý, 77],).

It's easy to check that (2.16) does define a Lie bracket for g• .

We have an exact sequence of Lie algebras

0 - R-, --~ gQ B_ --.- 0,

where i(s) = (s, 0), and j(s, ) = (. go is a central extension of g with respect to R.

Let GC be the corresponding central extension of G with Lie algebra go, we have

1 T 1• G J AG e.

G' acts on Y by the recipe

ii q = J(ii) q, for any ii E G, q E Y.

The corresponding infinitesimal action is

(s,•) -q = q.

Define

¢(,, : y -~ R

(2.17) ¢(3"')(vpo) =< v o, > +s.



Since

(s, )7 = Q , and 0(,') = q0 + s,

we have

(2.18) L((S, )U)Qy = d- ( '•' ).

So 0(o,) is a lift of the (s, () action. Furthermore,

(2.19) { (J), (t,)} = {4 + s, •. + t} = { , Y }
= (.)+ [..

But

)[(, (,)] = ((,o ), , )

= a(ý, 7) + 0[~,.]

Hence,

(2.21) { (3,) , V(t,,) = O[(,04,(t ,)].

This implies that # : (s, ) V- (9,) is a Lie algebra homomorphism.

Therefore, 0 defines a moment map T for G' action on Y; in other words, the G"

action on Y is Hamiltonian. Moreover, T(vpo) E (go)*, and

(2.22)

TL(vpo) = vxo + 1*, where 1* E R*, 1*(s) = s.

If v1zo = V2xo, then v1po = v2po. Thus T is 1-1. By Proposition 1.2.2, we have proved

Proposition 4.2.2. Y is a coadjoint orbit of GC.

4.3 Auslander-Kostant's treatment

To get a coadjoint orbit of G, we need to get rid of the 2-cocycle a. For this purpose,

we consider another G-homogeneous symplectic space (W, Qw) satisfying:

(2.20)

< k(vpo), (3, ) >= (,0 )(0po) =< 0o, ý > +S,



1) N acts on W trivially;

2) G acts on W symplectically with the infinitesimal lifting which has the obstruction

-a.

We form the product space Y x W with the product symplectic form. The first

condition implies G acts on Y x W transitively. The second condition implies that W

is a coadjoint orbit of the group extension G-". When Y and W product together,

the obstructions cancel out. Therefore we have

Proposition 4.3.1. Y x W is a covering space of some coadjoint orbit of G.

Proof: Let us denote by 04 the lift of the infinitesimal ( action on W. Set

01 : --- Poisson(Y x W),

4 () = , where
(3.23) 1 I\ (p, w) = (p) + 0(w).

Then 0 '- 4 is a lift of the infinitesimal ( action on Y x W. Moreover,

= (, ,q) + 0"'1 _(, , q) + 0'"

Hence, 01 is a Lie algebra homomorphism. Therefore, it gives rise to a moment map

Tx : Y x W - g*. By Proposition 1.2.2, Y x W is a covering of some coadjoint

orbit of G.

If we can choose W good enough so that the moment map 91 is 1-1, we then get a

coadjoint orbit of G from Y. As matter of fact, such a "good" W always exists.

Let us discuss this in a little bit more generality. We consider now the situation

of Chapter 3; namely, we no longer assume G fixes Y and consider the stabilizer



subgroup K = Gy. The problem now is to get a coadjoint orbit of K from Y. We

take a coadjoint orbit X of G sitting over Y in the sense that XIn, Y. Let

r : X - n*

be the projection. It is actually the moment map for the N action on X. Denote by

Y- the space Y equipped with the negative symplectic form -ny, let

ri : X x Y- --- n*

be the map rix(, p) = r(x) - p. It is the moment map for product action of N on

X x Y- with 0 as a regular value. By the Marsden-Weinstein reduction, we get a

reduced space W = r -'(O)/N. Since N C K is normal, we can define a K action on

W as follows:

a [x, p] = [ax, ap], a E K, [x, p] W.

K actions on X and Y- are symplectic. It follows that the K action on X x Y- is

symplectic. The latter action induces a symplectic K action on W.

We have the infinitesimal lifting " : t -- Poisson(Y). Let us now define a map

1 : I -+ Poisson(W),

1(() = €•, where

(3.24) 0•[X, p] =< ," x >, -' (p)

for any [x, p] E W.

To see that 01 is well defined, we only need to check that

(3.25) O/[X, po] = [ i[z1, Pol

for x, x 1 E X, xI, = po, x ln = po and [x,po] = [xi, Po] E W.

But [x, po] = [x1, po] implies that there exists u E Np, such that zx = ux. Hence,

S[zXi,po] = < C,x >. -0(po)

=< 4, x, I >, -q(po)

=< , (uz)1e >e -O (po)
=< 4, u(xI,) >e -04(po).



By Lemma 2.2.1, since Nmo is connected, Np0 fixes xze. Thus, we conclude

4[xzi,po] =< ( e >e -k (Po) = 0' [XPo].

Proposition 4.3.1. 04 is the lifting of the infinitesimal ( action on W with the

obstruction -a.

Proof: Let

.: X- R
(3.26) 4•() =< C, >.

It is well known that ~ ( is the lift of the infinitesimal K action on X, which is

Hamiltonian. There is no obstruction for 42.
First, we show that

(3.27) t((w)tw = d0j.

For any E E x(W), a vector field on W, there exists a vector field

SE X(r'(0)) C X(X x Y-) such that j,.(E1) = -, where

jl : K~1 (0) -1 W is the projection. We denote by il the inclusion

-1 (0) -- X x Y-. Now for any (x, p) E 7r'(0),

1(X, p) = =(') T 1 '(p),
where '-(x) E TX and E'J'(p) E TpY. So

d '(E)[z, pi

(3.28)

= d¢'(j1.(Ex))[z,p]

= jid4(E-x)(x,p)

= d(j'¢•)(E,)(z,p)

= d-(E'()(x) - dO (E' )(p)
- d¢4(E•)(x) - d .)

On the other hand,

t(ýW)fw(=)[Xý, P = QW(V, E)[x, P



= w(ji.-Xxy-_, 1)[Xpl
= i'*Xxy-(Xx,-_,z1)(X,p)

(3.29) = f x(Y ,-E)(x)- •y(T,hE~)(p).

Comparing (3.28) and (3.29) we

To compute the obstruction,

(3.30)

see that (3.27) holds.

= { , ~ }(x) - {l , l }(p)

20""- (x)- 0"'n!(p) - a (,,7)
- € .,[Ap - ([•,q)-

Therefore, the obstruction for €1 is -a.

Corollary 4.3.1. W is a coadjoint orbit of the central extension K - ' of K with

respect to T.

Our W now satisfies two conditions we set before. Also we have

Lemma 4.3.2. K acts on W transitively.

Proof: For any two points [zx,po],[z 2 ,po] E W, we may find g E G such that

g -x1 = x 2. It follows that g -Po = po so that g E K. But then a - [xz, Po] = [ 2 , Po].

We now have the material we need to get a coadjoint orbit of K.

Proposition 4.3.2. Y x W is a coadjoint orbit of K.

Proof: It only remains to show that the moment map

T1 : Y x W - t*

(3.31) Tl(vpo, [x, Po]) = vzo + xle - Xo,

where x0o is a point in t* sitting over Po E Y, is 1-1.

I l, }[X, p]



We claim that this moment map can be rewritten as

(3.32) 'i(vpo, [x, po]) = vxz,.

To see this, we need to show

(3.33) VXo + x11 - Xo = vxje,

in other words,

(3.34) v(xIe - xo) = xle - xo, for any v E N.

Note that

(xle - xo)1 = po - po = 0.

In fact, we claim that for any w E t*, wj,% = 0, then v - w = w on t. Since N is

connected, we only need to consider it at the algebra level. For any 6 E n, r1 E t,

< 6 w, 7 >,= - < w, [6, 71 >=0

since for [6, 77] E n.

Hence, 6. w = 0.

We now show this moment map is 1-1. Suppose vixile = v2x2 1e, then vxpo = v2 Po

since for xx and x2 all sit over po. It follows that va1 vx E N.. Since v21 vixilI =

x21e,by Lemma 2.2.1, there exists an element v E Np, such that vvv2 Ivx 1 = x 2. Let

u = vv21 v1 E Np, we conclude that

(viPo, [ X, Po]) = (v 2po, [uzX , upol) = (v2po, [z2, poj).

So I1 is 1-1. By Proposition 1.2.2, Y x W is a coadjoint orbit of K.

Remark 4.3.1. Our method here reflects at the classical level Auslander-Kostant's

treatment to the Mackey obstruction in their paper [2] on representation theory of

solvable Lie groups.



Chapter

Geometric Quantization and

Induced Representations

5.1 Prequantization

From now on, we would like to apply our inductive structure of coadjoint orbits to

the group representation theory to get the corresponding quantum picture by using

the geometric quantization method. For this we review some basic facts about the

geometric quantization. Let us start with the prequantization. We copy down some

important facts from [14].

Let (M, w) be a symplectic manifolds, L -' M be a line bundle over M, and S be the

set of the smooth sections of L. Let V be a connection on L, namely a linear map

V : X(M) --- End S, where v - V,,

such that for any f E COO(M) one has

(1.1) Vf, = fV,

and for any s E S

(1.2) vfs = (vf)s + fVa.



We observe that if U C M is an open set and s E S(U) is a nowhere vanishing section

on U then one could associate to s a 1-form a(s) E 1'(U) so that

(1.3) v, s = 27ri < a,v > s, for all v E X(M).

Let us denote by SX(U) the set of the nowhere vanishing smooth sections over U and

LX the open subset of L given by LX = UL' over all m E M where L' is L, - 0.

Let fr = TlrLx. Then LX is a C' bundle over M. By multiplication, Cx acts as a

group of diffeomorphisms of LX where the orbits are just the fibers Lx. The 1-form

1d on Cx is invariant under the multiplication by Cx. Denote by r : Cx - Lx

the map given by the action. Then there exists a unique 1-form 1,m on L' such that

T(/m) = 27ri z

Definition 5.1.1. A connection 1-form on LX is a 1-form a E Q1(LX) such that

1) a is invariant under CX;

2) For all m E M one has alLx = Om.

We have

Proposition 5.1.1. Let M be a manifold and let L be a line bundle over M. If V

is a connection in L, there exists a unique connection form a E 1'1(LX) such that for

all open U C M and all s E Sx (U) one has

(1.4) a(s) = s*(a).

Conversely if a is a connection 1-form on LX then there is a unique connection V on

L such that (1.4) is satisfied for all s E SX(U) and all open U C M.

Therefore, equivalent to the line bundle with connection (L, V), we may say the line

bundle with the connection 1-form (L, a). For such a line bundle we have

Proposition 5.1.2. Let (L, a) be a line bundle with connection over M. Then there

exists a unique 2-form Q E 2'(M) such that

(1.5) da = Fr*l.



Moreover, if U C_ M is open and s E SX(U) is arbitrary then

(1.6) da(s) = lu.

Definition 5.1.2. The 2-form f) is called the curvature of (L, a) and is written

fl = curv(L, a).

Lemma 5.1.1. If curv(L, a) = 0 and if M is simply connected, then the parallel

translation is independent of path.

We now consider the metric on L.

Definition 5.1.3. A Hermitian structure on L is a function H on the set of all

(x, y) E L x L where r(z) = r(y) such that

1) H induces a 1-dimensional Hilbert space structure on Lm for all m E M and

2) one has IHI2 E CX(LX) where JH12 is the positive-valued function on LX defined

by IHI(x) = H(x, x).

We simply write (x, y) for H(x, y). If a is a connection form on LX, H is called

a-invariant if

(1.7) v(s, t) = (••S, t) + (s, 'Vt)

for all s, t E S and all v E X(M). We have

Lemma 5.1.2. (L, a) has an invariant Hermitian structure if and only if 2ri(a - U)

is exact.

We say that two line bundles with connections are isomorphic if there is a vector bun-

dle isomorphism between them which preserves the connection forms. In this sense

we may talk about the equivalent classes of line bundles with connections, I = [(L, a)].

Obviously, the curvature is fixed for all members in the same equivalent class. We

denote by £c(M, f) the set of equivalent classes of the line bundles with connections

whose curvatures are f.



Now we look at the symplectic form w on M. Note that [w] E H'(X, R). There is a

natural inclusion H'(X,Z) -+ H'(X,R).

Definition 5.1.4. w is called integral if [w] is in the image of H'(X, Z).

We have

Proposition 5.1.3.4c(M,w) is not empty if and only if w is integral.

In the case that w is integral and ( = [(L,a)] E £c(M,w), let R be the set of the

smooth functions on M, we have a well defined map

6: R -- End S,

(1.8) 6(f)s = (Vt, + 2rif)s,

where ýf is the Hamiltonian vector field of f.

Proposition 5.1.4. The map 6 is a representation of R on S.

Definition 5.1.5. The representation 6 is called prequantization.

Now we focus on the special case of coadjoint orbit. Take X to be a coadjoint orbit

of some Lie group G. X has a canonical symplectic form w = wx. One would ask

that when this w is integral. One beautiful answer given by Kostant is the following:

Theorem 5.1.1. Let GO be the set of the characters X of the stabilizer subgroup Gp

of some point p E X satisfying dx = 2rv/''plgp. Then w is integral if and only if G!P

is not empty.

Practically, this theorem offers us a very effective criterion to tell whether an orbit is

integral. One could see this point later.



5.2 Polarization and Quantization

The prequantization gives us a representation of R, which might induces a representa-

tion of the group if we start with a coadjoint orbit. The problem is this representation

space is "too big". We need to "cut" half of it. This idea originated from physics.

From group representation point of view, this representation space is too big to give

the irreducible representation. For this surgery we need to introduce polarizations.

Definition 5.2.1. A polarization of a symplectic manifold (M, w) is a map F which

assigns to each point m E M a subspace F, C (T,)c of the complexified tangent

space at m, satisfying:

1) F is involutary and smooth;

2) F is maximally isotropic with respect to the extension of w to (TM)C;

3) For each m E M, Dc = Fm n F,,, has constant dimension k.

Two extreme but very important examples of the polarizations are the following.

Example 5.2.1. k = n = dimM. In this case F = F and the polarization is called

real polarization. We only need to consider TM other than (TM)c. A real polariza-

tion is then a Lagrangian foliation on M. One example is the cotagent bundle TM.

We may choose fiber foliation as a real polarization. This is known as the vertical

polarization.

Example 5.2.2. Another extreme case is k = 0. Let us look at a Kahler manifold

(M, w, J). It has a natural polarization defined by

(2.9) F,,, = {vm E (TM)c I Jv = -v/'Vm}I, m E M.

In the local complex coordinates {za} Fm is the linear span of the set { } of anti-

holomorphic coordinate vectors at m. In this case Fm fn F, = {0}. A polarization

with this property is called a Kahler polarization.



Given a polarization F, we have a real distribution E such that F + T = Ec. Re-

member another distribution D we difined above, we have

(2.10) E, = {v E TmMJw(v, u) = 0, for all u E D,,}

and

(2.11) Dm = {u E T,MIw(u, v) = 0, for all vE E,}.

The involutivity of F implies that D is an involutive distribution so that D defines a

foliation of M. We denote by MID the space of all leaves and by rD : M -- MID

the canonical projection.

Definition 5.2.2. A polarization F is said to be geometrically admissible if

1) E is involutive;

2) the leaves of D are simply connected;

3) The spaces MID and MIE of leaves of D and E, respectively, are quotient mani-

folds of M and the canonical projection rED : MID -+ MIE is a submersion.

Let F be a geometrically admissible polarization. We denote by !F the frame bundle

of F in the sense that the fiber 93 over each point m E M is the set of ordered

basis of the complex vector space Fm. This is a principal GL(n, C) bundle. There is a

unique double covering r : ML(n, C) -- GL(n, C) where the covering group ML(n, C)

is called the complez metalinear group. Therefore, there exists a principal ML(n, C)

bundle BF which double covers 9, so that the diagram



- x ML(n, C) --· +F

93F x GL(n, C) -F

commutes, where the vertical maps are given by the double coverings and the hor-

izontal maps by the group actions. An element of %ý is call a metalinear frame of

Fm. Thus, we have a pricipal ML(n, C) bundle SF = UBf. A section a : U -~ r3F

over an open set U C M is said to be Hamiltonian if there exist .1, - - , n E C"(U)

such that poa(m) = (ý, (m),.. ,~~,(m)) for all m E U, where L : 3F -- ,+ F is the

covering map.

Let X : ML(n, C) - C be the unique holomorphic function such that

1) x(g)2 = det r(g),

2) X(1) = 1

for all g E ML(n, C). Let ML(n, C) act on C by multiplying x(a), and associate it

to the principal ML(n, C) bundle ýF S M, we get a complex line bundle LF, whose

fiber LF is isomorphic to the space of the complex-valued functions v on ýF such that

v(bg) = X(g- )v()

for all metalinear frames b and all g E ML(n, C). LF is called the complex line bundle

of half-F-forms. A C' section v : M -+ LF is called a half-F-form and the space of

all .uch sections is denoted by F(LF). A half-F-form r is said to be Hamiltonian at

m M if there exists a Hamiltonian section a of metalinear bundle 'F on a neigh-

bourhood U of m such that v,(a(p)) = 1 for all p E U. There is a unique connection

V on LF such that (Vev)(m) = 0 for all ( E F if v is Hamiltonian at m.

In terms of the symplectic form w we may identify Em with the space of all complex-

valued linear functions on TM/D, which is denoted by (TmM/D)*.

Let (M, w, L) be a prequantization, F be a geometrically admissiable polarization on

M, and LF be the bundle of half-F forms over M.



Definition 5.2.3. A polarization F is said to be positive if

(2.12) - w((, ) _ 0 for all ( E F.

We now suppose in addition that F is positive. We consider the line bundle L 0 LF.

There is a unique connection on L 0 LF such that

(2.13) Vt(s 0 v) = (Vs) 0 v + s 0 V~v

for all s E F(L) and all v E F(LF).

Write

rF  = ¢ e r(L ® LF); V~4 = 0 for all ( E F.

Each pair of the wave functions i 1 = sl 0 Vl, 0 2 = s2 0 V2 in rF defines a density on

MID. Explicitly, let m E M and let b E tF be a metaframe at m such that p(b) =

(1, , ) E F aand 1,, k is a basis for Din. Choose (1, · , En T,Mc so that

{~ 1, ', • , , (,"", , n} is a symplectic basis. Then c = {1rD-.k+1,.. I *rD.~n, i7rD.(1,' , .. rD

will be a basis for (TMID)c at x = rD(m). We define

(2.14) (01, 02)(x, c)

= < , S2 > (m)lwn-k(6k+1,1k+1,... • v , n) 2I1(b)V2().

It can be checked that (01, 02) is a well defined density on MID. We consider

14 = { E rTFI JM/D(', 0) < }

Then we can define an inner product on "oE as the following:

(2.15) < 1, 02 >= JM/D (0 02)

NH is a pre-Hilbert space under this inner product. Denote by "NF the Hilbert space

obtained by completion of "iof .This is the quantized space. We call it quantization.

Remark 5.2.1. The quantizable functions in COO(M) are those whose Hamiltonian

vector fields preserve the polarization F under Lie derivative. When there is a Hamil-

tonian group action on M preserving the polarization, all lifting of the infinitesimal



action are quantizable. In this case, the quantized space 'HF carries a representation

of the Lie algebra.

An equivalent definition of the geometric quantization can be obtained by using the

half densities instead of the half forms.

Definition 5.2.4. Let V be an n-dimensional vector space over R. Let a > 0. Then

IA"~IV is the vector space of all C-valued functions v defined on the space 9S(V) of

the ordered bases of V such that

(2.16) v(vl, , v,) = I det(aji) Iv(wl, , w)

whenever (v l ,. -, v,), (wl,..., wn) E ~ and satisfy

(2.17) wi = ajivj, i = 1,.. ,n.
j=1

For the cotangent bundle T*M --+ M of any n-dimensional manifold M, we may

then define the bundle of a-densities IA"nl~T*M over M by asking the fiber over

m E M to be the space IA"n T,*M. When a = 1, we say simply densities. It is

easy to observe that for any two sections vi, v2 E FIAnlIT*M, the product vlv 2 is

a section of the bundle of densities. Therefore we can use the half densities instead

of the half forms to define the integration. More explicitly, let F, D and E be as

before, under the assumption that all D-leaves are connected and simply connected,

any polarized section of L - M corresponds to a section of the reduced bundle

LID -+ MID. Then as we have done by using the half forms, we may define a

pre-Hilbert space structure on the space of all compactly supported sections of the

line bundle IA"I T'(MID) 0 LID. This space naturally corresponds bijectively to

the space of all sections of IA"fl½(TM/D)* 0 L covariant constant along the leaves of

D and with compact support modulo D. Therefore, we may turn the latter into a

pre-Hilbert space whose completion NHF is the quantized space. Readers are refered

to [3] for the details.



5.3 Induced Representations

In this section we give an application of our inductive construction of coadjoint orbits

on group representations in terms of the geometric quantization method. Let G be

a connected Lie group, N C G be a normal subgroup. We will consider the cases

of G being nilpotent or solvable Lie groups. In these cases, N can be chosen to

be some connected and simply connected nilpotent subgroups so that all Np are

connected for all p E n* and exp : n - N are diffeomorphic. Recall that, using

our notations before, a coadjoint orbit X of G is symplectomorphic to the reduced

space X 1 = i-'(O)/K. We denote by B = TI(Y x W) the image of Y x W under

the moment map 11 : Y x W -+ t*, it is a coadjoint orbit of K. In the case that

the quantizations of B and X give rise to the unitary representations of K and G

respectively, we want to describe the relation between these two representations. Let

us start with the prequantization.

Let zo E X sit over bo E B and bo E B sit over po E Y. By Theorem 5.1.1, to see

whether the prequantizations exist for X and B, we only need to see whether G'x0

and K' are not empty. In fact, we have the following result.

Proposition 5.3.1. G'o is not empty if and only if KI is not empty.

Proof: First of all, we observe that G., C Kbo. Indeed, for any g E Go0, gxo = xo

implies gpo = po. Hence, g E K. Then by xole = bo we get that gbo = bo. Therefore,

if K'o # 0, we may pick Xj E K' , and let X = xiGx0o. It is straightforward to see

that X is a character of G,0 and

dx = 27rV--Xlgo0.
It means that x E G~,. Conversely, if x E G~,, we want to construct a character X, E

K10 from X. For this, we notice that according our assumption, N is simply connected

and nilpotent so that the exponential map exp : --+ N is a diffeomorphism. It

follows that No is nonempty and contains a unique character. We denote by X2

this character. Note that N,0 C No is again simply connected and nilpotent, X

and X2 agree on ,i o by the defining properties, these two characters also agree on



N 0o. For any a E Kýo, we have abo = bo. This implies that axolt = Xolt. Thus, by

Corollary 2.2.1, there exists v E Npo such that azo = vzo. It follows that a = vg, for

some go E G 0. We define

X: Kbo -- C

(3.18) x1(a) = X2(v)x(ga).

(3.18) is well defined. Indeed, if a = vga = v'g,, then v'-'v = gg,'. This implies

v'-1 g = g9.g E No n Gro = N,,. Therefore,

x(g'g-') = X2(V-'V).

It follows that

x(gs)x(g ' ) = X2(v'-')X2(v).

This is equivalent to

2(v)x(Sg) = x2(V')x(g9).

Hence, xl(a) does not depend on the choice of v and g,.

To see X1 is a character, we need to show that

(3.19) XI(aa') = xj(a)Xj(a'), for all a, a' E K,.

Suppose a = vga, a' = v'g=a, then

X (aa') = Xl(vgav'g'gaga)

= X2(v)x2(gav'g')x(ga)x(ga).

So it remains to show that

(3.20) x2(g9v'g, 1) = X2(V')

Since v' = exp( for some C E n0, and

gav'ga = exp(ga),



we have

x2(gv 'g9a) = X2(exp(ga())

= exp(< 2r-vP po, 9( >)

= exp(2x7r -i < , 9o,9 >)

= exp(2ir7CT < g-1 xo, >)

= exp(2rV-C < xo, C >)

= exp(2 v/-- < o,C >)

= x2(V')

To see that X1 E Kio, we need to show

(3.21) dX1 = 21rx 1botbo.

Indeed, for any ý E ebo, we may write

ý = ( + 77, C E npo, q E g,0 = txo C tbo.

Hence,

< dX, ( > + <

= 27r.T(< Po,

= 27rV C(< bo,

= 2x7rV(< bo,C

= 27r--(< bo,j

dx, r l >

> + < xo, 0 >)

> + < bo, r>)

We suppose now X is integral so that B is also integral. Let FO be a K-invariant

polarization on B. Since G acts on B trivially, Fo is also G-invariant. Take the

vertical polarization FG on T*G, which is G x K-invariant, we get a G x K-invariant

polarization F on the product space M = T*G x B. The reduction of F n (Tq-I(0))c

gives rise to a G-invariant polarization F on X. Let 7Ho and 'hf be the corresponding

quantized spaces of (B, Fo) and (X, F) respectively. Suppose No carries a unitary



representation of K and 7"tF carries a unitary representation of G. Our main result

of this section is the following theorem.

Theorem 5.3.1. 7 '•F is equivalent to the induced representation of ?-to from K to G.

For the proof of this theorem, we need to introduce the bundle of little group orbits.

Let G, N, X, Y, K, W, and B be as before. We construct a fiber bundle over the

space G/K as follows. For any [g] = gK E G/K, let us take po E Y, then g - Y is

a coadjoint orbit of N through the point p = gpo. We denote by Y,] this orbit. For

any b E B, we define gb E g* by

(3.22) < gb, 77 >=< b, g- 17 >, for any 77 E.

It is well defined since for any d E K 91 = Gy,[g] g-'dg E K, so g-'1r e. Let

8[g] = gB. It is easy to see that By1 is a coadjoint orbit of Kb1. Actually it is a

copy of B. B[,] = B. We can construct a fiber bundle B * G/K with the fiber

over [g] being B·1 ]. This is associated to the principal K-bundle G - G/K with the

typical fiber B. G acts on Bg] as transformations, carrying FO to F , a Kl]-invariant

polarization on B[]. If B is integral, each of all B,] is integral. The quantized space

"H[g] carries a unitary representation of K191. We can therefore construct a Hilbert

bundle R' -+ G/K such that the fiber over [g] is 1[g] . G acts on this bundle unitarily.

Therefore, taking a volume form on G/K which will be specified next, the completion

of the space of the square integrable smooth sections of H-, F0oh, carries a unitary

representation of G.

Define the map p2 : X -+ B as follows. For any x = [g, #, q, w] E I1-V(O)/K = X,

let

(3.23) P2(x) = g(q, w) E Bg].

It is easy to check that p2 is well defined. We define another map

P3 : X -+ G/K

(3.24) p3 [g, g, q, w] = [g].



This map is also well defined, and

P1 0 P2 = P3.

Let us now look at the relation between F and Fo. Recall the reconstruction of X from

the little group data. x E X corresponds to [e, x, b] E X1 where b E B and xlt = b.

Let a : g* --+ * be the natural projection. a(x) = b. Note that F C TXc C (Tg*)c

and Fo C TBc C (Tt*)c, F. and FbO can be regarded as subspaces of (Tsg')c and

(Tbt*)c respectively. We have the following result.

Lemma 5.3.1. F, = a='(FO).

Proof: By the definition,

F, = ((FG,,) ( FO) T(e,z,b) -'1(O))/K.

Let us write F, for both (.D(F,) C TX and F_ C T[e,.,b]XI. We have

((F(e,) ( Fb0) n T(C,,,b)-1(0)) = ((FG,) F) eb)

= {(z1 ,z 2), z1 E FI) C (T.g*)C, z2 E Fb, a.(z1 ) = z2}.

Let j : -'1(0) -- X 1 be the natural projection. Then we have a map

So oj : -1(0) -- t*

(g,#,bl) -~ (Ad,*))IJ.

This implies that F. C a;'(FOo). Since the both sides have the dimension dim(G/K)+

! dim B, they are evntually the same. 0

Remark 5.3.1. In general, if we think of a point x' = [g, x, b] E X, p2(x') = g b E

B[], then p2 ;,(F[ l) = F,,.

We are now ready to prove Theorem 5.3.1. First of all, let us look at the quantized

space of M = T*G x B. Since the line bndle LG over T*G is a trivial bundle and the



space of the polarized sections of this bundle with respect to the polarization FG can

be identified with the space of all smooth functions on T*G which are constant on the

fibers of T*G, and the latter is identified with C°"(G). Therefore, by definition and

the basic properties of Hilbert space, if we choose dg to be a left-invariant measure

on G, the quantized space R for M is

H G { I : -- < 0 (g), (9) >'Ho dg < o}.

When one quantizes the action of G on M, one obtains a unitary representation of G

on N given by

(3.25) (g - )(gi) = 0(g-1g).

Let V be the space of all smooth maps from G to No. By pushing down the K-

invariant polarized sections of the line bundle L over M to X, one can get the reduced

line bundle L over X and the polarized sections of L. In this way, one can obtain

an one to one correspondence between the space of the polarized sections of L which

are polarized with respect to F and the space of the polarized sections of L with

respect to F (see, for example, [8]). On the other hand, the space M/D is reduced

to X/D and the space of all half densities of X/D is identified with the space of all

half densities v of M/D satisfying (see [22])

(3.26) a - v = det(AdK(a))-'/2v, for all a E K.

Therefore, we have a natural map

(3.27) {J E la a. = det(AdK(a))-1/21, for all a E K} -- N'.

By the definition of the half densities, one can easily calculate that

(3.28) (a. - )(g) = det(AdG(a))-1/2a(l(gh)).

The factor det(AdG(a)) - 1/ 2 is due to the fact that the left invariant measure dg on G

is not invariant under the action of K, but transforms with det(AdG(a)). Hence, we

have the map

(3.29) {0 E V 10(ga- 1) = 7y(a)a(O(g)), for all a E K, g E G} -+ NF,



where the function 7 on K is defined by

det(AdK(a))
(3.30) 7(a)= t

Denote by V the space of the left hand side of (3.29). We need to define a measure

on V so that (3.29) is unitary. For this, we consider for 'k, 0 E V the volume form

< #,(g), O(g) > dg on G. Take a basis r1 ,. ., k of t, we have the infinitesimal

generators I,. -,7 on G. We then contract the form < k(g), O(g) > dg with

1 I,... qi to obtain a form a =< ?(g), (g) > dg(~i,. - ,I ) on G. Due to the

defining property of V, a is K-invariant, and thus is the pull-back of a volume form

on G/K. Integration of this volume form gives the inner product of 0 and 0. This

can be described in the following way.

We may define a strictly positive function p on G satisfying

(3.31) p(ga-') = 7(a)2p(g), for all a E K, g E G.

We denote by dp the volume form on GIK obtained from the volume form p(g)dg on

G in the procedure described above. We can then define

(3-32) < >=,= Ja < 0 (g)' I (g ) > dy.
/K p(9)

From this we see immediately that the left hand side of (3.29) is nothing but IndKt 0.

Thus, we have set up a G-equivariant map

(3.33) Ind~Ko -"• 7F

We now want to show that this map is bijective. To do this, we will find the inverse

map of (3.33). From the discuss above we see that the function 7 is introduced in by

using the half densities. So what we need to do is to find a map from the space of

all polarized sections of L to the space of all square integrable smooth sections of the

bundle over GIK whose fiber above [g] is the space of all polarized sections of the

line bundle LL91 - Bisl, translated from the line bundle Lo - B, with respect to the

polarization F19) so that it will give us the inverse map of (3.33) by combining the



indentity of the half densities (3.26). To see this, we need to look at the structures

of the leaves of the polarizations.

Lemma 5.3.2. F is a geometrically admissible polarization on X if Fo is a geomet-

rically admissible polarization on B.

Proof: We only need to examine the situation at x E X. Let us denote by P the

leaf of an involutive distribution P. By the definition, we have

Fx = ((FG,,x) D FO)n (T(,,x,b)-'1(0))C/K.

Since FO is K invariant, so is Fo; and G = FG, it follows that

F = (FG , FO0) (T'-(O0))c/K.

Hence,

F + F = (FG D (F° + r)) n (T 0-'(O))c/K,

and

E = (F + F) n TX = (FG ( EO) n TT-'(O)/K.

If EO is involutive, since EG = FG n TX is involutive too, we conclude that EG ( Eo

is involutive. The reduced space of the integral submanifold of EG e Eo gives us an

integral submanifold of E. Thus E is involutive. On the other hand, according to

Weinstein [23], X = -Ir(0)/K is a fiber bundle over T*(G/K) with the typical fiber

B. Looking carefully at his proof one sees that the E-leaf

E = (E G,) o E) n T 1-'(O)/K

corresponds symplectically to the fiber bundle over T*(G/K) with the typical fiber

Ebo. This concludes that all E-leaves have the same dimension.

Similarly,

D = (DG ( Do) n T-T'(0)/K.

By using the fiber bundle argument as above, if Do-leaves are simply connected, since

Te,(G/K) is simply connected too, D-leaves are also simply connected.



The last condition of the geometrical admissibility, namely the canonical map

X/D -+ X/E is a submersion, is obviously true since our symplectic manifolds

are coadjoint orbits and we may describe X/D, X/E by the qotient spaces of the

subalgebras of g. We can see this in the next section when we discuss the induced

representations of solvable Lie groups. 0

Now let us suppose that the polarization Fo is chosen to be geometrically admissible,

and so is F. It follows that D-leaves are simply connected. Since D is isotropic and

Curv(L, a) = QIx, we see that D-leaves are absolutely parrallel submanifolds for the

line bundle (L, a) -+ X, giving rise to a quotient bundle LID -+ X/D by "sticking"

the fibers of L over D-leaf together in the following way.

For any y = DD, let

L'= {s: D, -- L IV,s = 0, v E D}.

Since bD is absolutely parallel, s is uniquely determined by the equations Vs = 0

for v E D when s(x) is given, not depending on the curves on b,. So L' is an

1-dimensional space which is isomorphic to L,, for any x' E b2,. This defines the

bundle LID -4 X/D with the fiber L' above y = D,.

Let s be any polarized section of L. Then s gives rise to a section s/D of L/D.

Consider the map

p2: X ---B.

For any b' E Bg) C B and any X' E p2-1(b), by Lemma 5.3.1 we have that

T,(p 2-t(b')) _ ker(p2.) 1 C (p2.),' (F9L) n TX

= F, nTX = D,,.

Hence, p2-z(b') C D-leaf through x'. So Dro factorizes P2. Namely, there exists a map

p4 : B -+ X/D such that

P4 o P2 = 7rD.

Let LM be the line bundle over BU[. Then the pull back of LI/DIP(B%]) is just LP1 l.



And the restriction sI/Dp(13]) corresponds to

s91 : B3fq] L191,

polarized with respect to FM9] since p2 preserves the polarizations. This is the map

we need to give an inverse map of (3.33). This concludes the proof of Theorem 5.3.1.

5.4 Representations of Nilpotent and Solvable Lie

Groups

In the theories of nilpotent Lie groups and solvable Lie groups, the project of con-

necting the irreducible unitary representations with the coadjoint orbits of the Lie

groups has been worked out perfectly. We will construct all irreducible unitary rep-

resentations from the representations of "little groups" in such cases.

5.4.1 Nilpotent Case

We start with the Kirillov theory. The correspondence between the irreducible uni-

tary representations and the coadjoint orbits of a nilpotent group is well described

by the following theorem given by Kirillov (see [12]).

Theorem 5.4.1. Let G be a connected and simply connected nilpotent Lie group.

Then the quantization of any coadjoint orbit of G, which is, up to unitary equiv-

alence, independent of the choice of the polarizations, gives rise to an irreducible

unitary representation of G. Conversely, any irreducible unitary representation of G

is equivalent to such a quantization. Two irreducible unitary representations are not

equivalent to each other if and only if they correspond to the different coadjoint orbits.

Kirillov's theorem sets up an one to one correspondence between the irreducible uni-

tary representations and the coadjoint orbits of any connected and simply connected

nilpotent Lie group. Let G be a connected and simply connected nilpotent Lie group,



N C G be a connected and simply connected normal subgroup. For any coadjoint

orbit X of G, let Y be a coadjoint orbit of N over which X sits, K be the little group

related to Y and B be the little group data. The quantizations of X and B with

respect to the polarizations chosen in the discussed fashion give rise to the unitary

representations W and Nao of G and K respectively. By Theorem 5.3.1, W = Ind Go.

Combine this and Kirillov's theorem, we have

Theorem 5.4.2. Let G and N as above. Then for any little group K related to some

coadjoint orbit of N and any irreducible unitary representation Wto of K, Ind%7 o is
an irreducible unitary representation of G. Conversely, given any irreducible unitary

representation Wt of G, we may find a little group K and an irreducible unitary rep-

resentation -to of K such that It is equivalent to IndIHo0.

Proof: By Kirillov's theorem, we may transfer the problem to quantization. Since

in the nilpotent case, according to Kirillov, any coadjoint orbit is integral, Theorem

5.3.1 completes the proof. O

5.4.2 Exponential Solvable Case

We now consider a more general case. Let a be a real solvable Lie algebra. Then

there exists a sequence of the ideals

g = 0oDg 1  "D m = 0, m <n=dimg,

such that codimension of gj0+ in gi is 1 or 2. If for some i, the codimension of 4+1 in

gi is 1, we may pick ýo a nonzero element of g; not contained in gi+l, so that for all

(4.34) ad(fo) = 7(')ýo (mod gi+1),

where -7() is a linear form vanishing on [g, g].

If the codimension of si+j in ag is 2, there exist the elements '1 , j2, linearly indepen-

dent mod gi+,, of 9i so that for all ý E g,

(4.35) ad(4ý1 ) = 71(ý)1 - 72 ())2 (modgi+l) and



ad(( 2) = 72(')61 + 71(ý)62 (modi+1 ),

where 71, 72 are linear forms on g vanishing on [g, ]. Then the set {7((), -7i() +

V/'7Y 2 (4 )} where 7, 71, 72 are obtained in the indicated fashion for all ga is called

the system of roots of g.

Definition 5.4.1. A real solvable Lie algebra g is exponential if its complex roots are

of the form (1 + VCTA)6(ý) where A is a nonzero real number and 6(e) is a real linear

form on 9. A connected and simply connected Lie group G is called exponential if its

Lie algebra g is exponential.

Obviously, all nilpotent Lie algebras are exponential.

Proposition 5.4.1. If G is an exponential solvable Lie group, g = LieG, then the

exponential map exp: g -+ G is an analytic isomorphism.

An easy fact is that any subalgebra or factoralgebra of an exponential Lie algebra

is again of the same kind. We will call an exponential solvable Lie group a type E

group. In the remainder of this subsection, our groups will be the type E groups

except otherwise mentioned. We want to describe Mackey's picture for all type E

groups. First, we quote the following theorem which generalizes Kirillov's result.

Theorem 5.4.3. (Bernat) For each coadjoint orbit X of G, there exists a suitable

polarization F so that the quantized space 7.F, which is independent of the choice

of such polarizations, gives an irreducible unitary representation of G. On the other

hand, any irreducible unitary representation of G can be obtained in this way up to

equivalence.

Note that such "suitable polarizations" could be chosen real. The meaning of "suit-

(4.36)



able" was obtained by Pukanszky, which is well known as the Pukanszky condition.

One version of this condition is described as follows.

Theorem 5.4.4. (Pukanszky) The representation 'HF is irreducible if and only if

each of all leaves of F is closed in g*.

In the nilpotent case, any polarization automatically satisfies the Pukanszky condi-

tion. It is not the case for the type E groups. For example, let

G = E GL(2,R), a > 0 .
0 1

Then the Lie algebra of G is

g= y gl(2, R)
0 0

Let
S(10 01

el = , e2 -
00 0 0

Then [el, e2] = e2.

Let el, e] be the dual basis of g* - R2 , then the upper hemiplane is a coadjoint orbit.

The only polarization satisfying the Pukanszky condition is the one whose leaves are

parallel to e*-axis. All other polarizations will give representations which are the sum

of two irreducible representations.

We are now ready to quantize the classical structure to get the induced representation

picture of the type E groups.

Let G be a type E group, N be a connected and simply connected nilpotent nor-

mal subgroup of G. Let X a coadjoint orbit of G, and Y, W, B, K, [g], z, p etc.

be defined as before. Then K is again a type E group. Choose a K-invariant real

polarization Fo on B satisfying the Pukanszky condition. By reduction, we have a



G-invariant polarization F on X. First of all, we have

Proposition 5.4.2. F satisfies the Pukanszky condition.

Proof: Since Fo satisfies the Pukanszky condition, Fo-leaves are closed in t*. By

translation, all F9-leaves in tg, are closed. It follows Lemma 5.3.1 that F-leaves are

closed in g*. Thus F satisfies the Pukanszky condition. 0

Therefore we have the representation oC of K and 7 'F of G given by quantization.

Theorem 5.3.1 says that R'F = Ind•i0o. Combining this with Theorem 5.4.3 we sum-

marize the representation picture as follows.

Theorem 5.4.5. Let G be a type E group and N be a connected and simply

connected nilpotent normal subgroup. Then for any little group K related to some

coadjoint orbit of N and any irreducible unitary representation Ho of K, Ind-0Ho is

an irreducible unitary representation of G. Conversely, given any irreducible unitary

representation h of G, we may find a little group K and an irreducible unitary

representation Ho of K such that H is equivalent to IndH1o.

5.4.3 General Solvable Case

We continue to describe the induced representation picture of general solvable Lie

groups based on Auslander-Kostant's theory. Things are more complicated in this

case since we need to deal with the complex polarizations and require more conditions

to get the representations from the quantization. First of all, let us review Auslander-

Kostant's theory. For this, we would like to introduce the algebraic version of the

quantization.

For moment let G be a general Lie group and g be its Lie algebra. We define an



alternating bilinear form on g for any / E g* as

(4.37) J0 (1, 7) = - < /, ([, [] >, for all (, r E g.

Then the stabilizer subalgebra gO of the coadjoint G action on g* is exactly the radical

of J,. Let us regard 3 as a complex valued linear functional on gc = g + v'.g.

Definition 5.4.2. A polarization at 0 is a complex subalgebra b C gC such that

1) go C b and b is stable under AdGp;

2) dirnc(gc/) = - dim.(g/g0 );

3) 01[4,4] = 0;
4) b + 6 is a Lie subalgebra of gC.

The definition says b is a maximal isotropic subalgebra of gc containing (g)c.

Let

o=4bng and e=(+6ii)ng.

Then

Sn i=o c  and +i6=e c .

Definition 5.4.3. A polarization b is said to be positive if v--TJp(z, ~) > 0 for all

Let n C g be the nilradical of g and p = /|n E n*

Definition 5.4.4. A polarization Ij is said to be admissible if it is positive and b• n

is a polarization at p.

Let us denote by E the connected subgroup whose Lie algebra is e. We say that the

polarization 4 satisfies the Pukanszky condition if the orbit E. - is closed in g*.

Auslander-Kostant's theory works for the type I group. In the solvable case we have

a beautiful geometric interpretation of the type I condition.



Theorem 5.4.6. (Auslander-Kostant) Let G be a connected and simply connected

solvable Lie group. Then G is of type I if and only if the following conditions are

satisfied.

1) Any 0 E g* is integrable. Equivalently, G1 Z 0, and

2) any orbit G - C g* is the intersection of a closed and an open set.

When f is integrable, namely G1 $ 0, let x0 E G1. Xp : Go --+ T is a character and

dXy = 2irVPClT g.

We are now ready to state Auslander-Kostant's celebrated theorem of representations

of solvable Lie groups.

Theorem 5.4.7. Let G be a connected and simply connected solvable Lie group,

g be the Lie algebra of G. For any 3 E g*, whether or not G is of type I, there

exists an admissible polarization at 3. Moreover, any admissible polarization g sat-

isfies the Pukanszky condition so that if f is integrable, a unitary representation of

G, indG(),3, 4), is defined, and is independent of the choice of the polarizations 4.

Furthermore, if G is of type I, then indG(Xp, 4) is irreducible and every irreducible

unitary representation is equivalent to a representation of this form. Finally, if G is

of type I, then indG(x,, i) and indG(XA, bl) are equivalent if and only if G - = G - 1

and X3 corresponds to Xp, under the action of an element g E G such that g3 = 01.

We are going to make use of this theorem to derive the relations between the quan-

tized representations of G and K. For this purpose, let us look at the relations of the

geometric and algebraic versions of polarizations.

Our underline symplectic manifolds now are coadjoint orbits. Let X be a coadjoint or-

bit of a Lie group G. We know that X can be equipped with the canonical symplectic



form we stated in Chapter 1, namely,

(4.38) w,(( , 197) = - < 3, [-, 77 > .

Let t be an (algebraic) polarization at x. We may construct a (geometric) polarization

on X. Notice that X - G/G,, hence, TX " g/g,. Let

F, = /(g,)c gc/(g)c '(TX)c

Since I is AdG, invariant, for any xz = gx, let

Fx, = g FT.

Then the distribution F on X with (F),, = F,, is a polarization on X. Furthermore,

such a correspondence is one to one, and 4 is positive if and only if F is. In the

case that x is integrable, X is integral, the representation given by the geometric

quantization is exactly indG(Xr , I) we mentioned in Auslander-Kostant's theory.

From now on, let us restrict ourselves to the solvable case. Let G be a connected and

simply connected solvable Lie group of type I, g be the Lie algebra of G, and n C g

be the nilradical of g. Let N be the connected subgroup of G whose Lie algebra is a.

Let X be a coadjoint orbit of G sitting over a coadjoint Y of N, and K be the little

group related to Y. e = LieK. Then n C t is also an ideal of t. In fact, we have

Proposition 5.4.3. n is the nilradical of t.

Proof: It is well known that

n = {~ E gj adg~ is nilpotent}.

Let nl be the nilradical of t. Then

ni = (rl E t adEte is nilpotent}.

By definition, n D n n t = n. On the other hand, for any 17 E n1 C g, since n1 C t and

nC t,
(adg?)ln = (ada)l1n : n - n

77



is nilpotent.

But

[g, g] C n,

thus,

adgq : -- n C g.

There exists an integer j such that

(adgr)J(adgirl = (adgl)'JIn(adgrl ) = 0

for all ( E g.

So

adgi : g -. g

is nilpotent. It follows that 77 E n. This shows n 2 ni. Hence

n= nl O

Therefore, we know that n is the nilradical of g and t simultaneously. Using our

notations before, x E X and b E B such that xzl = b. From a K-invariant polarization

FO on B we get a G-invariant polarization F on X. Under the correspondence

described above, we assume that F and Fo correspond to the polarizations 4 C g*

and bo C t* respectively. Let a: g* -- r be the natural projection. Lemma 5.3.1 says

that F, = ,,-'FbO.

Note that X = G -x. Hence, T,X = g - z, and by the bridge between the geometric

and the algebraic version of polarizations we just contructed, we have F, = g z.

Similarly, Fb = bo. b.

We now observe that actually

(4.39) F, = e0 = {1 E g*| 0bI = 0}.

Indeed, since for any zlx E F,, zl E 4, and any z2 E i,

< zIx, z2 >= - < X, [z1, z2] >= 0.



Hence,

F, o0

By counting dimension, we conclude that F, = =b in g*.

Similarly, we have FOb = boo in t*.

By Lemma 5.3.1, we know that

(4.40) .(bo ) = bo.

It follows that i D jo as the subalgebras of 9c . This implies that

b n cc Dbon tC =o.

On the other hand, notice that i n tc is an isotropic subalgebra of ec, which forces

Sn te c C o.

Therefore, we have

(4.41) bo = •n ec .

Thus,

(4.42) b n nC = 4 n ec n .c = on nc .

This implies that b n ac is a polarization of p = xln = bin if and only if Io n c is a

polarization of p.

On the other hand, one can easily see from the definition and the Kirillov-Kostant

symplectic form on the coadjoint orbits that F (or Fo) is positive if and only if I (or

bo) is positive. The following proposition solves the problem of positivity.

Proposition 5.4.4. If Fo is positive, so is F.

Proof: Let us denote by (, )M the symplectic form on M. Note that

(, )TrXB = ( , )T.G + (, )B.

Let

i: 9-'(0) -- T*G x B



be the inclusion map and

j : -1'(0) --+ X

be the canonical projection. Then the Marsden-Weistein reduction theorem tells us

that

So for

have

j'( )x = i( , )T-*GB.

[(Z, Z2)] E F where Z1 E (FG)c, Z2 E FO, since [(Z1, Z)] = [(Zr,Z 2)], we

-4-([(Zi, Z2)], [(Z,, Z2)])x = -Vr"-(Z,,Zl)rTG - "--(Z2,- 2 )B.

Note that FG is chosen to be the vertical polarization, and (, )T.G is the canonical

symplectic form on the cotangent bundle, so

(ZI, Z1)T*G = 0.

But

- V7(Z,,22 )B > 0.

Namely, F is positive.

Combine the argument

Proposition 5.4.5. If

above, we conclude that

4o is admissible, so is 4.

Remark 5.4.1. In the proof of Proposition 5.3.2, we mentioned that we would discuss

the last condition of the geometrical admissiblity in this section. Namely, we need

7rDE : XID --- XIE

to be a submersion. Notice that D, = b/g9 and E. = e/g,, so

(TrDE)* : TD,(X/D ) --- T,(X/E)

-J-i/ ([(zl, Z2)], [(Z,, Z2)])x 2 0.



is the projection

IO- g/c,
which is surjective.

We can now summarize the induced representation picture of the solvable Lie groups

as follows. Let G be a connected and simply connected solvable Lie group of type

I, X C g* be a coadjoint orbit of G. By Theorem 5.4.6, X is integral. Take a point

x E X, x is then integrable. Let n be the nilradical of g and N be the connected sub-

group whose Lie algebra is n. Let p, Y, K, B, b, etc. be defined as before. We choose a

polarization Fo on B such that Fo is geometrically admissible and the corresponding

(algebraic) polarization bo is admissible. By our canonical way we get a polarization

F on X. Then F is geometrically admissible and the corresponding (algebraic) po-

larization b is admissible, too. According to Auslander-Kostant, the quantization of

B gives a unitary representation 74o of K, which is independent of the choice of po-

larizations; the quantization of X gives an irreducible unitary representation Rt of G,

which is also independent of the choice of polarizations. Furthermore, any irreducible

unitary representation of G can be given by the quantization of some coadjoint orbit

X. Therefore, we have

Theorem 5.4.8. H = IndG NTo. Furthermore, any irreducible unitary representation

of G can be induced from a unitary representation of some certain little group of G.
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