DEVELOPMENT OF DESIGN CURVES FOR RECIRCULATING WELL TECHNOLOGY: MASSACHUSETTS MILITARY RESERVATION CHEMICAL SPILL 10 PLUME

by

Paul Richard Cabral

Submitted to the Department of Civil and Environmental Engineering on May 9, 1997, in Partial Fulfillment of the Requirements for the Degree of Master of Engineering in Civil and Environmental Engineering

ABSTRACT

The Massachusetts Military Reservation (MMR), located in Cape Cod, Massachusetts, has hosted numerous branches of the military since 1911. Intense land use and uncontrolled chemical releases have caused the contamination of groundwater known as the Chemical Spill 10 (CS-10) plume. Originally, the plan for the remediation of the CS-10 plume involved pump and treat technology. However, the Technical Review and Evaluation Team (TRET), opposed this technique, fearing ecological damage to local ponds. The TRET recommended the evaluation of recirculating well technology by conducting a pilot test in an area of high contamination. Recirculating wells are favored because they treat groundwater without the need and expense of pumping the groundwater to the surface for treatment, and cause little or no disturbance of the water table elevations.

The objective of this thesis was to develop recirculating well design curves specifically for the MMR. These design curves relate the recirculating well pumping rate to the resulting upstream capture zone. The graphs were based on the recirculating well designs of IEG Technologies Corporation and EG&G Environmental, Inc. and the specific soil characteristics of the MMR.

In order to accomplish this task, a three-dimensional, finite-element model was developed to estimate the upstream capture zone for various pumping rates. The site-specific recirculating well design curves were generated on the basis of these results. The results indicate that IEG’s recirculating well retreats more groundwater, while EG&G’s recirculating well captures more of the untreated groundwater plume.

In conclusion, the site-specific design graphs and dimensionless design graphs will aid in the design of future recirculating well systems at the MMR, because engineers will be able to estimate the upstream capture zone based on the pumping rate.

Thesis Supervisor: Peter Zeeb
Title: Lecturer of Civil and Environmental Engineering
ACKNOWLEDGMENTS

I would first like to say that this thesis would not have been possible without the love and support of my family. I want to thank my Mom, my Dad, and Clara. I am forever in their debt and I thank them for teaching me that to be a rich man you only need one thing...a family that loves you.

I would now like to thank my high school sweetheart and best friend, Lauri Chaves for all her love and support. I thank her with all my heart and I will never forget all the emotional support she gave me over the past year. I specially thank her for always being there to talk to me during the tough times. In addition she was never afraid to give me a kick in the butt when I needed it.

Next I must thank Dr. Peter Zeeb, my thesis advisor. I know he was very busy at work; therefore, I thank him for taking time out of his busy schedule to advise me. His professional guidance was instrumental in the success and completion of this thesis. Next, I would like to acknowledge Bruce Jacobs and Enrique López-Calva for their help and guidance through all the DYNSYSTEM simulations.

I would like to send a very special thank you to Professor David Marks who always believed in me. I thank him for allowing me to become part of the M. Eng. program; thereby, forever changing my life. I would also like to thank Shawn Morrissey and Charlie Helliwell of the M. Eng. program for all their advice and willingness to listen.

Next, I would like to acknowledge my fellow recirculating well project members: Carl Kim, Tina Lin, and Mathew Smith. Without their dedication and hard work, the group project would not have been such a success. I would specially like to thank Tina Lin for teaching me the DYNSYSTEM code, without her help I would have never been able to start my thesis.

Finally, I would like to all the M. Eng. students who shared in all the wild nights in Room 1-143. I would specially like to thank all the members of the late night crew: Dan Baker, Becky Kostek, Jill Manning, Juan Carlos Pérez, Seth Schneider, and last but not least the President of the late night crew Dave Lockwood. I enjoyed all laughs and thank everyone for making the tough times a little more enjoyable.
LIST OF FIGURES

Figure 2-1: Site Location Map ..14
Figure 2-2: MMR Site Map ..15
Figure 2-3: Upper Cape Cod Geologic Map ..18
Figure 2-4: Upper Cape Cod Water Table Contour Map ...20
Figure 2-5: UTES/BOMARC CS-10 Operable Units ...22
Figure 2-6: Extent of CS-10 Plume ..26
Figure 3-1: Recirculating Well Technology Conceptual Flow Diagram ..28
Figure 3-2: IEG Recirculating Well Technology Conceptual Flow Diagram ..34
Figure 3-3: IEG Circulation Cell Dimension Notations ...36
Figure 3-4: EG&G Recirculating Well Technology Conceptual Flow Diagram38
Figure 3-5: EG&G Circulation Cell Dimension Notations ..40
Figure 4-1: Vertical Longitudinal Cross Section of the Flow Field Produced43
Figure 4-2: Notation for the Upstream Capture Zone ...45
Figure 4-3: Herrling Charts ..46
Figure 4-4: Herrling Chart for Stagnation Point ...48
Figure 4-5: Finite Element Grid ..51
Figure 4-6: IEG Technologies Corporation Model Vertical Discretization ..56
Figure 4-7: EG&G Environmental, Inc. Model Vertical Discretization ..58
Figure 4-8: IEG’s Model Particle Starting Position ..60
Figure 4-9: EG&G’s Model Particle Starting Position ...61
Figure 4-10: IEG’s Upstream Capture Zone ..62
Figure 4-11: EG&G’s Upstream Capture Zone ..63
Figure 5-1: IEG Technologies Corporation Recirculating Well Schematic ...70
Figure 5-2: IEG Upstream Capture Width vs. Pumping Rate ..70
Figure 5-3: IEG Dimensionless Upstream Capture Width vs. Pumping Rate70
Figure 5-4: EG&G Environmental, Inc. Recirculating Well Schematic ...71
Figure 5-5: EG&G Upstream Capture Width vs. Pumping Rate ...72
Figure 5-6: EG&G Dimensionless Upstream Capture Width vs. Pumping Rate72
Figure 5-7: IEG Percent of Groundwater Flow vs. Pumping Rate ..74
Figure 5-8: IEG Flow of Groundwater into Well vs. Pumping Rate ..74
Figure 5-9: EG&G Percent of Groundwater Flow vs. Pumping Rate76
Figure 5-10: EG&G Flow of Groundwater into Well vs. Pumping Rate76
LIST OF TABLES

Table 3-1: IEG Installation Summary ...31
Table 3-2: EG&G Installation Summary ..32
Table 3-3: IEG Circulation Cell Dimensions ..35
Table 3-4: EG&G Circulation Cell Dimensions ..39
Table 4-1: IEG Technologies Corporation Model Input55
Table 4-2: EG&G Environmental, Inc. Model Input ...57
Table 5-1: Summary of Results for IEG Technologies Corporation66
Table 5-2: Summary of Predicted for EG&G Environmental, Inc.67
Table 5-3: IEG Capture Zone with different Water Table Elevations68
Table 5-4: EG&G Capture Zone with different Water Table Elevations68
Table 5-5: IEG Upstream Capture Width vs. Pumping Rate69
Table 5-6: EG&G Upstream Capture Width vs. Pumping Rate71
Table 5-7: IEG Percent of Recycled Flow vs. Pumping Rate73
Table 5-8: EG&G Percent of Recycled Flow vs. Pumping Rate75
LIST APPENDICES

APPENDIX A: MODEL INPUT AND COMMAND FILES FOR IEG TECHNOLOGIES CORPORATION

APPENDIX A.1 COMMAND FILE FOR DYNFLOW ... 85
APPENDIX A.2 COMMAND FILE FOR DYNTRACK CAPTURE ZONE SIMULATIONS 87
APPENDIX A.3 PROPERTY FILE USED FOR DYNTRACK ... 93
APPENDIX A.4 COMMAND FILE FOR DYNTRACK RETREATMENT SIMULATIONS 94
APPENDIX A.5 DYNPLOT GRAPHICAL OUTPUT OF CAPTURE ZONE FOR DESIGN PUMPING RATE .. 98
APPENDIX A.6 DYNPLOT GRAPHICAL OUTPUT OF CAPTURE ZONE FOR DIFFERENT PUMPING RATES ... 102
APPENDIX A.7 DYNPLOT GRAPHICAL OUTPUT OF RECIRCULATING ZONE FOR DIFFERENT PUMPING RATES .. 113

APPENDIX B: MODEL INPUT AND COMMAND FILES FOR EG&G ENVIRONMENTAL, INC

APPENDIX B.1 COMMAND FILE FOR DYNFLOW ... 126
APPENDIX B.2 COMMAND FILE FOR DYNTRACK CAPTURE ZONE SIMULATIONS 128
APPENDIX B.3 PROPERTY FILE USED FOR DYNTRACK ... 135
APPENDIX B.4 COMMAND FILE FOR DYNTRACK RETREATMENT SIMULATIONS 136
APPENDIX B.5 DYNPLOT GRAPHICAL OUTPUT OF CAPTURE ZONE FOR DESIGN PUMPING RATE .. 139
APPENDIX B.6 DYNPLOT GRAPHICAL OUTPUT OF CAPTURE ZONE FOR DIFFERENT PUMPING RATES ... 143
APPENDIX B.7 DYNPLOT GRAPHICAL OUTPUT OF RECIRCULATING ZONE FOR DIFFERENT PUMPING RATES .. 154
1. INTRODUCTION

The Massachusetts Military Reservation (MMR), located in Cape Cod, Massachusetts, has hosted numerous branches of the military since 1911. The training and maintenance activities associated with MMR have adversely affected the regional Cape Cod ecological system by releasing a number of hazardous compounds into the environment. Section 120 of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980 provides guidelines for the remediation of hazardous constituents released from federal facilities. CERCLA also authorizes the United States Environmental Protection Agency (USEPA) to include sites formerly owned or operated by another federal agency to be placed on the National Priorities List (NPL) (CMMD, 1996). The NPL is a list of hazardous waste sites ranked in order from high potential for adverse health effects to low potential for adverse health effects. MMR was added to the NPL in 1989 and is currently being investigated under the Installation Restoration Program (IRP) section of the Environmental Restoration Program.

1.1 Problem Definition

In January 1996, the 60 percent remedial design for all plumes by Operational Technology (OpTech) called for 100 percent containment using pump and treat technology. Residents, however, opposed this technique, fearing ecological damage to local ponds due to the lowering of water levels caused by extracting large quantities of groundwater. Hence, the Technical Review and Evaluation Team (TRET) deemed the design unacceptable. The TRET recommended the evaluation of recirculating well technology. Recirculating wells are favored because they treat groundwater without the need and expense of pumping the groundwater to the surface for treatment, and cause little or no disturbance of the water table elevations.

1.2 Team Objective

Because this technology is relatively new, a team of four Master of Engineering students from the Department of Civil and Environmental Engineering at the Massachusetts Institute of Technology will evaluate the performance of IEG Technologies Corporation and EG&G Environmental, Inc. recirculating well equipment. Pilot installations of these two well designs
were installed for the Unit Training Equipment Site/Boeing Michigan Aerospace Research Center (UTES/BOMARC) plume in December 1996. First, the team will complete a general study of the recirculating well technology including a review of applications of this technology. Second, the team will model the remediation process of this technology in order to evaluate the design parameters. Third, the team will investigate the geotechnical issues associated with recirculating wells. Finally, the team will determine the feasibility and cost-effectiveness of using recirculating well technology for the remediation of CS-10 versus OpTech’s proposed pump and treat design.

1.3 Individual Objective

This thesis is part of a group evaluation of recirculating well technology. The objective of this thesis is to develop recirculating well design curves specifically for the MMR. These design curves will relate the recirculating well pumping rate to the resulting upstream capture zone. The graphs will be based on the recirculating well designs of IEG Technologies Corporation and EG&G Environmental, Inc. and the specific soil characteristics of the MMR. The design graphs will aid in the design of future recirculating well systems at the MMR, because engineers will be able to estimate the upstream capture zone based on the pumping rate.

Recirculating well design curves were first developed by Herrling (Herrling et al., 1991). Herrling’s recirculating well design graphs can be used as a first approximation of the upstream capture for recirculating wells with screens fixed at the top and bottom of the aquifer. Although EG&G Environmental, Inc. recirculating wells consist of two screened intervals, the screens are placed at the top and bottom of the plume rather than at the top and bottom of the aquifer. In contrast, IEG Technologies Corporation recirculating wells consist of three screened intervals which are placed at the top, middle, and bottom of the plume. Because of these differences, site-specific design graphs will be developed for the use of engineers at MMR.
1.4 Scope

This thesis describes the development of recirculating well design graphs specifically for the MMR. Chapter 2 provides a detailed site description, including the location, history, and physical and environmental conditions of both the MMR and the UTES/BOMARC (CS-10) site.

Chapter 3 describes recirculating well technology. Included in this section is a discussion of its advantages, disadvantages, and the specific recirculating well designs used at the MMR.

In Chapter 4, the method of designing recirculating wells is presented. First, an introduction to the design protocol is discussed. Then, a review of Herrling’s article on the design of recirculating wells is presented. Finally, the design approach used to develop the recirculating well design graphs for the MMR is explained.

In Chapter 5, recirculating well design graphs for the MMR are presented. Specifically, design graphs that relate the recirculating well pumping rate to the resulting upstream capture zones are shown. Included in this chapter is a discussion of the significance of the design curves in optimizing the remediation design.

Chapter 6 and 7 concludes the thesis with a discussion of the implication of the design curves and additional work that would enhance the results.
2. BACKGROUND AND SITE DESCRIPTION

This section includes background information and site descriptions of the MMR, and more specifically the CS-10 plume. In order to investigate a remediation technology for the CS-10 plume, it is vital to have an understanding of the location, history, and the physical and environmental conditions of both the MMR and the CS-10 plume.

2.1 MMR Background and Site Description

This section describes the physical and environmental conditions of MMR. The focus of this section includes location, history of operation, surrounding land use, climate, geography, geology, and hydrogeology of the MMR.

2.1.1 Location

The MMR lies in the upper western portion of Cape Cod, Massachusetts. It occupies approximately 22,000 acres (35 square miles) within the towns of Bourne, Sandwich, Mashpee, and Falmouth in Barnstable County (see Figure 2-1).

The MMR is divided into four principal areas (see Figure 2-2):

- **Maneuver Range and Impact Area** - A 14,000 acre site occupying the northern 70 percent of MMR and used for training and maneuvers.

- **Cantonment Area** - A 5,000-acre area located in the southern portion of MMR. This area includes administration, operational, maintenance, housing, and support facilities for the base.

- **Airfield** - A 4,000 acre area located along the south eastern edge of the MMR. This area contains the runways and support facilities for aircraft.

- **Massachusetts National Cemetery** - A 750-acre area located along the western edge of the MMR. This area contains the Veterans Administration (VA) cemetery and support facilities.
Figure 2-1
Site Location Map
Massachusetts Military Reservation
Recirculating Well Technology
Masters of Engineering Thesis

Source: Jacobs Engineering, 1996b
Source: The Commonwealth of Massachusetts Military Division, 1996

Figure 2-2
MMR Site Map
Massachusetts Military Reservation
Recirculating Well Technology Masters of Engineering Thesis
2.1.2 History of Operation

While military activity at MMR began in 1911, most military activity occurred after 1935 by the U.S. Army, U.S. Navy (USN), U.S. Coast Guard (USCG), U.S. Air Force (USAF), Massachusetts Army National Guard (ARNG), U.S. Air National Guard (ANG), and the Veterans Administration (VA). The level of activity at MMR has varied over its history. The most intense U.S. Army activity occurred during World War II (WWII) and the demobilization period after WWII. During this period, the Cantonment Area housed thousands of troops and operated a large motor pool. The USN carried on advances in naval aviation flight training during the last two years of WWII. The USAF maintained an intensive airborne surveillance operation from 1955 to 1970 (CDM Federal, 1993).

Currently, the ARNG and U.S. Army Reserve conduct a variety of training activities at the MMR. The USCG air station at MMR provides medium-range search and recovery support of the 1st Coast Guard District and Atlantic Area. The ANG air station at MMR operates and maintains a squadron of F-15 fighter aircraft to protect the northeastern United States from armed attack. The USAF operates the Precision Acquisition Vehicle Entry - Phase Array Warning System (PAVE-PAWS) for missile and space vehicle tracking. The Veterans Administration also maintains the Massachusetts National Cemetery at the MMR (CDM Federal, 1993).

2.1.3 Surrounding Land Use

Land uses in the area surrounding MMR include recreational activities such as golfing, swimming, boating and hunting. Two adjacent ponds, John’s Pond and Ashumet Pond, support swimming, fishing, boating and water skiing. The Shawme Crowell State Forest and Crane Wildlife Management Area support camping, fishing, hiking, and mountain biking. Camp Good News, a summer camp for children, is located on Snake Pond. Besides recreational usage, land is also used for agriculture. Most of the agricultural land is used for the cultivation of cranberries. The remaining land is used for the residential, commercial, and industrial sectors (CDM Federal, 1993).
2.1.4 Climate

The climate at MMR is classified as humid continental. The Atlantic Ocean moderates the temperature; therefore, Cape Cod undergoes warmer winters and cooler summers than inland areas in Massachusetts. February is usually the coldest month of the year with daily temperatures ranging from 23°F to 38°F. July is usually the warmest month of the year with daily temperatures ranging from 63°F to 78°F (CDM Federal, 1993).

Precipitation is fairly evenly distributed throughout the year, with the least rainfall occurring in June. The average annual rainfall is 46 inches (NCDC, 1990). The net annual recharge is estimated to be 21 inches (LeBlanc, 1982). Prevailing winds are from the northwest between the months of November and March with an average wind speed of 12 mph. Between the months of April and October, the prevailing winds are from the southwest with an average wind speed of 9 mph. Tropical and oceanic storms occasionally cause short periods of much higher wind speeds (CDM Federal, 1995).

2.1.5 Geology and Geography

Western Cape Cod is composed of glacial sediments deposited during the retreat of the Wisconsinan glacier between 7,000 and 85,000 years ago. The western Cape Cod geology is dominated by three sedimentary units: Buzzards Bay moraine, Sandwich moraine, and Mashpee pitted plain. The Buzzards Bay moraine and Sandwich moraine are located along the western and northern edge of Cape Cod with the Mashpee pitted plain located to the south and east (see Figure 2-3). The Buzzards Bay and Sandwich moraines are composed of ablation glacial till, which is unsorted material ranging from clay to boulder-size rocks deposited at the leading edge of two lobes of the Wisconsinan glacier. The Mashpee pitted plain is a glacial outwash plain composed of poorly sorted fine to coarse-grained sands. The Mashpee pitted plain is underlain by fine-grained glaciolacustrine sediments and base till (CDM Federal, 1993).

The sediment thickness ranges from 175 feet near Cape Cod Canal in the northwest to 325 feet at the thickest portion of the Buzzards Bay moraine. The Mashpee pitted plain outwash sediment varies in thickness from approximately 225 feet in the north to 80 feet near Nantucket Sound.
Figure 2-3
Upper Cape Cod Geologic Map
Massachusetts Military Reservation

Source: E.C. Jordan, 1989
The thickness of the glaciolacustrine sediment and base till underneath the Mashpee pitted plain increases as the Mashpee pitted plain sediment decreases. The granodiorite bedrock lies approximately 300 feet below ground surface and slopes to the south-east (CDM Federal, 1993).

MMR is located on two types of geographic terrain. The Cantonment Area lies on a southward sloping outwash plain with elevation ranging from 100 to 140 feet above sea level. The area north and west of the Cantonment Area lies in the southern portion of the Wisconsinan Age terminal moraines. The presence of irregular hills within this area causes the elevation to range from 100 to 250 feet above sea level, while kettle hole ponds and depressions are found over the entire site (CDM Federal, 1993).

2.1.6 Hydrogeology

The aquifer system in western Cape Cod is unconfined and is recharged by infiltration from precipitation. The high point of the water table occurs as a groundwater mound beneath the northern portion of MMR; therefore, groundwater flows radially outward (see Figure 2-4). The aquifer is bounded by the ocean on three sides, with groundwater discharging into Cape Cod Bay on the north, Buzzards Bay on the west, and Nantucket Sound on the south. Groundwater also discharges into the Bass River in Yarmouth, which forms the eastern lateral aquifer boundary (CDM Federal, 1995).

Surface water at the MMR includes streams and kettle hole ponds in the Mashpee pitted plain. A kettle hole pond is a pond created when buried glacial ice melts creating a local depression. Kettle ponds intercept the water table but cause only local impact on slope and direction of groundwater (CDM Federal, 1995).

The major geology of western Cape Cod is Mashpee pitted plain, which consists of coarse-grained sand and gravel outwash sediment underlain by finer-grained sediments. The hydraulic conductivity of the outwash sediment ranges up to 380 ft/day with a hydraulic gradient range of 0.0014 to 0.0018 ft/ft. The hydraulic conductivity of the underlying fine grained sediment is only 10 percent of the outwash; therefore, the bulk of regional groundwater is transmitted
I
BUZZARDS BAY

KEY
OBSERVED AVERAGE WATER
TABLE CONTOUR IN FEET.
DATUM IS SEA LEVEL. CONTOUR
INTERVAL 10 FEET.

SCALE
1" = 1 MILE
0 0.5 1

Figure 2-4
Upper Cape Cod Water Table Contour Map
Massachusetts Military Reservation

Source: CDM Federal, 1995 and USGS, 1984

RG
Recirculating Well Technology
Masters of Engineering Thesis
through the upper outwash layer, where the horizontal flow velocities range from 1 to 3.4 ft/day (CDM Federal, 1995).

2.2 CS-10 Background and Site Description

This section describes the physical and environmental conditions of CS-10. Location and site history are also described in this section.

2.2.1 Location and Land Use

The CS-10 area of contamination is located adjacent to the northeastern boundary of MMR, immediately north of the MMR Sandwich gate on Greenway Road, geographically within the town of Sandwich, Massachusetts (see Figure 2-5). CS-10 occupies approximately 38 acres and is currently used for maintenance and storage of vehicles for the ARNG. Approximately 25 ARNG personnel currently work at CS-10 as part of the UTES operations (CDM Federal, 1993).

The nearest MMR housing is located approximately 19,000 ft southwest of the site. The nearest off-MMR housing area is located in the Town of Sandwich, with the closest home approximately 650 ft from the eastern fence line. Approximately 75 households are located within a half mile of the CS-10 site in the Town of Sandwich. The residences to the east of CS-10 are all served by private wells (CDM Federal, 1993).

2.2.2 History of Operation

Before 1956, the CS-10 location was occupied by a rifle range. In 1958, the Army Corps of Engineers began constructing the BOMARC missile facility for the USAF. The BOMARC facility was operated by the USAF from 1960 until it was decommissioned in 1973. In 1973, the facility was transferred from the USAF to the ARNG. In 1978, UTES began their activities at the site (CDM Federal, 1993).

2.2.2.1 BOMARC Activities

In December 1960, the 26th USAF Air Defense Missile Squadron began operating the BOMARC site at the MMR under Strategic Air Command control, with technical maintenance assistance
from Boeing Corporation. Between 1960 and 1973, the USAF maintained 56 BOMARC ground-to-air missile and launcher systems on site (CDM Federal, 1993).

Two models of BOMARC missiles were maintained at MMR. The BOMARC-A missile, a nuclear-warhead-capable missile, was powered by both a liquid-fuel rocket booster and a ramjet engine. The BOMARC-A missile was stationed at MMR beginning in 1960 and then phased out and replaced by BOMARC-B. The BOMARC-B was also a nuclear-warhead-capable missile which used a solid-fuel rocket booster. The BOMARC-B model was operational from 1962 to 1972. Because of the classified nature of the site activities, little public information exists regarding system operations and maintenance activities, but existing building design plans provide good indication of past actions. The BOMARC facility at MMR consisted of a power plant, a fire station, security and administrative buildings, missile maintenance building, fueling and defueling facility, fuel and oxidizer storage tanks, and 56 missile launcher shelters. The operations that generated the most hazardous waste at the BOMARC facility were missile guidance system maintenance, engine maintenance, and fueling and defueling operations (CDM Federal, 1993).

The maintenance of the guidance system would have required the use of halogenated solvents. Common solvents used by the military during this time period would most likely have been methylene chloride, 1,1,1-trichloroethane (TCA), trichloroethene (TCE), and tetrachloroethene (PCE). It is possible that the military switched to a freon-type solvent like chlorofluoromethane in the last few years of the BOMARC facility activities (CDM Federal, 1993).

The BOMARC-A missile ramjet engine used JP-4 jet fuel. JP-4 contains benzene, toluene, ethylbenzene, xylenes, naphthalene, 2-methylnaphthalene and other hydrocarbons. Waste JP-4 was generated as a result of refueling and maintenance and was disposed by using a leaching field (see CD-24 in Figure 2-5). The BOMARC-A missile also used liquid fuel to boost the missile to its cruising speed before the ramjet engine would take over and propel the missile to its target. In the BOMARC-A missile, the liquid fuel, Aerozine 50, reacted with a strong oxidizing agent, red-fuming nitric acid (RFNA), to produce the force needed to propel the rocket. Aerozine 50 consists of a 50:50 mixture of hydrazine and unsymmetrical dimethylhydrazine
(UDMH). Waste RFNA was disposed of in a neutralization pit containing crushed limestone (see Building 4645 in Figure 2-5). Waste hydrazine and UDMH were pumped into a waste fuel tank and released at a slow rate into a spill pit (see CD-18 in Figure 2-5) to allow complete auto-oxidation to occur (CDM Federal, 1993).

Other potential sources of site contamination at AOC CS-10 from BOMARC activities include vehicle fueling, vehicle maintenance, and power plant operation. Vehicle fueling was conducted at a fuel pump island, which was supplied by a 6,000 gallon underground storage tank (CPT-91 in Figure 2-5). Vehicle maintenance was conducted in the northern portion of Building 4642. The steam-heating and electrical power generation station was operated in Building 4606. No. 2 fuel oil was used to generate steam for the facility heating and electrical power. While these sites were potential sources of contamination, no documents exist to indicate the amount of waste produced or if any fuel spills occurred (CDM Federal, 1993).

2.2.2.2 UTES Activities

The UTES maintenance shop began operating at the BOMARC site in 1978. Currently, UTES is responsible for the maintenance of 300 to 350 armored and wheeled vehicles used for the ARNG training activities at MMR. The maintenance activities are conducted in Building 4601. Waste generated by UTES activities include and have included waste oil, halogenated solvents, petroleum distillate solvents, battery electrodes, paints, and paint removal solvents. From 1978 to 1985, UTES stored waste material in a 500 gallon trailer located near building 4601. From 1978 to 1983, the full 500 gallon trailer was towed to the Defense Property Disposal Office at MMR for disposal. From 1983 to 1985, the full 500 gallon trailer was towed to and emptied into a former BOMARC 10,000 gallon stainless steel RFNA tank located near Building 4607. In 1985, the 10,000 gallon tank were cleaned and removed from the site. Over the years the transfer of waste to the 500 gallon trailer caused the contamination of approximately 25 cubic feet of soil. After the decommissioning of the 500 gallon trailer in 1985, the contaminated soil was removed. Currently, UTES collects its waste into 55 gallon drums and stores them at the Camp Edwards Temporary Hazardous Waste Storage Facility (Building 4600) before they are shipped to an off-site disposal area (CDM Federal, 1993).
2.2.3 CS-10 Plume

As a result of intense land use and improper waste management, the activities at the UTES/BOMARC site have created a large amount of contaminated groundwater. The CS-10 plume originates near the eastern edge of the MMR property line under the UTES/BOMARC site (see Figure 2-6). The plume is approximately 12,500 feet long, up to 3,600 feet wide, up to 135 feet thick, and 140 feet below ground surface at the toe. Trichlorethene, Tetrachlorethene, cis-1,2-dichloroethene (c-1,2-DCE), benzene, lead, and manganese have all been detected in the CS-10 plume (CDM Federal, 1993).
Figure 2-6
Extent of CS-10 Plume
Massachusetts Military Reservation

Source: Jacobs Engineering, 1996a
3. RECIRCULATING WELL TECHNOLOGY REVIEW

Recirculating well technology is a new method for in situ remediation of volatile organic compounds (VOCs). The treatment system primarily removes VOCs from groundwater by the physical process of air stripping. While the recirculating well at the MMR uses a modified design, the original recirculating well design relied on pressurized air to lift water through the well and promote the transfer of VOCs from the liquid phase to the vapor phase (see Figure 3-1). Groundwater entered the well through the screened opening and was lifted upward by the pressurized air. The diffused air bubbles stripped the VOCs from the groundwater. The stripped VOCs were collected and treated while the groundwater returned to the aquifer through a second screened opening. Additionally, the aeration of groundwater promoted in-situ aerobic biodegradation of VOCs (Jacobs Engineering, 1996a).

As a result of the contaminated groundwater entering the recirculating well at one screened interval and discharging out of the well at another screened interval, a circular flow cell develops in the aquifer. The circular cell causes a portion of the contaminated groundwater to be recirculated, which further reduces the contamination. The retreatment of groundwater is one reason why recirculating wells have an advantage over pump and treat systems. Another advantage of recirculating wells over pump and treat systems is that recirculating wells provide in situ treatment with minimal drawdown effects (Jacobs Engineering, 1996a).

The following sections discuss advantages and disadvantages of the technology along with the specific well designs currently used at the MMR.
Clean Air
Air Injection
CO₂ Addition for Scaling Control (if required)

Vacuum Blower
Vapor Phase Activated Carbon

Extracted Vapor

Vapor/Liquid Knockout Pot

(small quantity)

Liquid Containment

Ground Surface

Recharge Air from Blower

Vacuum System Discharge to VOC Vapor Treatment

Extracted Vapor

Ground Surface

Vadose Zone

Saturated Zone

Recirculation Zone

VOC Contaminated Water

Clean Water

Soil Vapor

Upper Recharge Screen

Lower Extraction Screen

Bubble Diffuser

Packer

Stripped VOC Vapors

Recirculating Well Technology

Conceptual Flow Diagram

Massachusetts Military Reservation

Source: Jacobs Engineering, 1996a

Figure 3-1
Recirculating Well Technology
Masters of Engineering Thesis
3.1 Advantages and Disadvantages of Recirculating Wells

Recirculating wells have advantages and disadvantages over both pump and treat systems and air sparging systems. In order to understand the advantages associated with recirculating wells, one must understand the basic concepts behind treating VOCs with each system. As stated in the previous section, recirculating wells extract contaminated groundwater from one screened interval, treat the groundwater, and re-inject the treated groundwater at another screened interval in the same well. Pump and treat systems extract contaminated groundwater, treat the groundwater above the surface, and re-inject the treated groundwater at another location. Air sparging treats groundwater without the need to capture it. The succeeding sections discusses the advantages and disadvantages of recirculating wells, relative to pump and treat and air sparging.

3.1.1 Advantages over Pump and Treat Systems

Recirculating wells have numerous physical and cost advantages over pump and treat systems. First, recirculating wells strip VOCs without extracting large amounts of groundwater, thereby eliminating the environmental impact associated with drawdown. Water table drawdown can impact wetlands, water resources, saltwater intrusion, and foundation settlement. The second advantage of recirculating wells is the creation of a local groundwater circulation cell, in which groundwater travels both horizontally and vertically. The induced vertical flow is effective in flushing areas which are usually untreated because of horizontal heterogeneities. As a result, time and cost of remediation may be reduced. The third advantage over pump and treat systems is associated with enhanced biodegradation. After the VOCs are stripped, the groundwater returned to the aquifer is saturated with dissolved oxygen; therefore, the recirculating well creates an environment conducive to aerobic biodegradation. The enhanced biodegradation can also reduce the time and cost associated with remediation. The fourth advantage is that recirculating wells do not require that groundwater be extracted to the surface; consequently, recirculating wells reduce the cost associated with permitting and monitoring of groundwater extraction and reinjection. Finally, recirculating wells do not need separate reinjection wells; hence, the capital cost is reduced compared to a standard pump and treat system (Metcalf and Eddy, 1996a).
3.1.2 Advantages over Air Sparging

Recirculating wells also have numerous physical and cost advantages over air sparging systems. First, recirculating wells remove groundwater from the surrounding media; consequently, the air is able to contact the groundwater without the interference caused by the soil particles. The greatest limitation of an air sparging system is the phenomenon known as air channeling. When air travels through soil, it chooses the path of least resistance. Once the path is established, air will tend to travel through this channel. By stripping groundwater in the well vault, air channeling is eliminated; therefore, the air stripping efficiency of recirculating wells are more reliable than air sparging systems (Metcalf and Eddy, 1996a).

The second advantage is that recirculating wells extract groundwater; thus, they can be used to contain a contaminated plume, while air sparging systems cannot. The third advantage over air sparging systems is that recirculating wells cause the groundwater to travel horizontally and vertically. The horizontal component of the flow gradients is more effective in flushing areas farther from the well. As a result, time and cost of remediation may be reduced. The fourth advantage of recirculating wells is that they are cheaper to install compared to air sparging systems, because air sparging systems consist of two types of wells: an air injection well and a soil vapor extraction well. Since recirculating wells do not need a separate soil vapor extraction well, the capital cost is reduced compared to air sparging (Metcalf and Eddy, 1996a).

The final advantage of recirculating wells is that they can be installed in deep aquifers. Where as an air sparging system can be installed to remediate only the vadose zone or plumes near the phreatic surface of an aquifer, recirculating wells can be installed to remediate the vadose zone, as well as deep plumes in both phreatic and confined aquifers (Metcalf and Eddy, 1996a).

3.1.3 Disadvantages of Recirculating Wells

Only two companies in the world, IEG Technologies Corporation and EG&G Environmental, Inc., hold patents on the design of recirculating wells. Recirculating wells have been used in Germany to remove VOCs from the groundwater and vadose zone for ten years. The use of recirculating wells in the United States is still very limited (see Tables 3-1 and 3-2 for list of
installations). Because the data associated with the advantages of recirculating well on United States sites are scarce, the MMR is proceeding with caution and conducting a pilot test of both IEG’s and EG&G’s equipment.

\textbf{Table 3-1: IEG Installation Summary (IEG, 1996)}

<table>
<thead>
<tr>
<th>Date</th>
<th>Location</th>
<th>Type of System</th>
<th>Geology</th>
<th>Contaminant</th>
<th>Horizontal Hydraulic Conductivity (cm/Sec)</th>
<th>Total Depth (Feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1992</td>
<td>Gas Station</td>
<td>UVB 400</td>
<td>Saprolite Clayey Silt with Sand</td>
<td>Gasoline</td>
<td>1.0×10^{-4}</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>Troutman, NC</td>
<td>Single Pump</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>USAF Riverside, CA</td>
<td>UVB 400</td>
<td>Alluvial Fan Silty Sand</td>
<td>Chlorinated Hydrocarbons</td>
<td>7.5×10^{-3}</td>
<td>81.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Single Pump</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>Confidential</td>
<td>UVB 400</td>
<td>Saprolite Silty Sand with Clay</td>
<td>Chlorinated Hydrocarbons</td>
<td>1.8×10^{-3}</td>
<td>133.5</td>
</tr>
<tr>
<td></td>
<td>Charlotte, NC</td>
<td>3-Screens Single Pump</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Single Pump</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>W.R. Grace</td>
<td>UVB 400</td>
<td>Saprolite Silty Clay with Clay</td>
<td>Gasoline</td>
<td>1.0×10^{-4}</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>Chester, SC</td>
<td>Single Pump</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>U.S. Navy</td>
<td>UVB 400</td>
<td>Fine to Medium Sand</td>
<td>Creosote</td>
<td>1.0×10^{-3}</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Gainesville, FL</td>
<td>Single Pump</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>New York State</td>
<td>UVB 400</td>
<td>Fine to Med. Sand</td>
<td>BTEX</td>
<td>8.8×10^{-3}</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Yonkers, NY</td>
<td>Single Pump</td>
<td>Sandy Gravel</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.2 Design and Use at MMR

The following sections discuss the design of the specific recirculating wells installed for pilot-testing at the CS-10.

3.2.1 IEG Technologies Corporation

SPB Technology, Inc., a licensed representative of IEG Technologies Corporation, has installed two UVB (German acronym for vacuum-vaporized well) systems for the CS-10 groundwater contaminated plume at the MMR site. UVB technology provides in situ groundwater remediation by producing a vertical circulation cell that captures VOC-contaminated groundwater. The captured VOC-contaminated groundwater is then remediated by the combination of air stripping and bioremediation processes. Advertising literature provided by IEG further indicate that the UVB system can be enhanced to treat other contaminants by adding...
systems such as biofilters, bioreactors, carbon adsorption containers, metal removal equipment, or nutrient addition. The UVB technology provides in situ remediation while maintaining an equilibrium flow in the aquifer, thereby eliminating the drawdown effect associated with traditional pump and treat systems (Jacobs Engineering, 1996a).

The UVB system installed at the MMR uses a specially adapted groundwater well that incorporates three screened casing sections, a groundwater stripping reactor located inside the well vault, an aboveground blower used to generate the negative pressure in the well, and a contaminant vapor collection system (see Figure 3-2). The aboveground blower is used to remove the contaminated air from the well vault, thereby creating a negative pressure within the vault. The negative pressure causes fresh air to enter the well vault through the fresh air pipe. It is this fresh air that is used to strip the VOCs from the groundwater. The fresh air pipe is connected to a stripping reactor which forms air bubbles as it jets through the pinhole plate of the stripping reactor and mixes with influent groundwater. There is a mass transfer of contaminants from the water phase to the air phase as bubbles expand and release the VOCs in the upper portion of the well vault, where they are transported by air flow to the carbon absorption treatment system (Jacobs Engineering, 1996a).

Because of the three-screen casing design, two types of circulation cells will be developed: a standard (clockwise) circulation cell on top of a reverse (counter-clockwise) circulation cell. The middle screen is installed in the vertical center of the plume. An intake pump is positioned in the center of the twenty-foot screen and packed off from the remaining well casing to create a reduced hydraulic head zone. The water is pumped to the UVB air stripping system located near the ground surface within the well vault, where VOCs are removed from the groundwater. After air stripping, the water is split into two streams and each stream is then pumped back down to either the upper or lower well screen. Because there are two areas of increased head and one area of reduced head, water flows horizontally and vertically into the center and creates the two circulation cells (Jacobs Engineering, 1996a).
Figure 3-2
IEG Recirculating Well Technology
Conceptual Flow Diagram
Massachusetts Military Reservation
Recirculating Well Technology Masters of Engineering Thesis

Source: Jacobs Engineering, 1996a
IEG Technologies estimated the circulation cell dimensions using the well design and aquifer parameters. The capture zone bottom width \(B_b \), and the top width \(B_t \), are estimated for an upstream distance from the UVB of five times the height of the plume. The distance \(S \) is the stagnation point upstream and downstream of the UVB system or the maximum expansion of the sphere of influence of the UVB system (See Figure 3-3). The determination of the size of the capture, treatment, and release zones, the stagnation point, and time of particle travel were estimated and based upon models developed by Herrling et al. (1991). The calculations were performed using a proprietary software program. Table 3-3 lists the estimated dimensions for each of the two IEG Technologies Corporation UVB wells installed at MMR (Jacobs Engineering, 1996a).

Table 3-3: IEG Circulation Cell Dimensions

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal Pumping Rate</td>
<td>20 m³/hr (88 gpm)</td>
</tr>
<tr>
<td>Internal Pumping Rate for Each Cell</td>
<td>10 m³/hr (44 gpm)</td>
</tr>
<tr>
<td>Downstream and Upstream Stagnation Point (S)</td>
<td>16.4 m (54 ft)</td>
</tr>
<tr>
<td>from the UVB System for Each Cell</td>
<td></td>
</tr>
<tr>
<td>Top of the Capture Zone Width (Bₜ) for Each Cell</td>
<td>2.1 m (6.9 ft)</td>
</tr>
<tr>
<td>Bottom of the Capture Zone Width (Bₚ) for Each Cell</td>
<td>34.1 m (112 ft)</td>
</tr>
<tr>
<td>The Separation Distance Between UVB Perpendicular to the Groundwater Flow (D)</td>
<td>27.4 m (90 ft)</td>
</tr>
<tr>
<td>Natural Groundwater Entering Each Circulation Cell (Qₒ)</td>
<td>8.04 m³/hr (35.4 gpm)</td>
</tr>
</tbody>
</table>
Figure 3-3
UVB Circulation Cell Dimension Notations
Massachusetts Military Reservation

(a) Upstream Capture Zone
\[B_T = \text{Top Width of Capture Zone} \]
\[B_B = \text{Bottom of Radius of Influence} \]

(b) Plan View of Sphere of Influence
\[S = \text{Stagnation Point} \]
3.2.2 EG&G Environmental, Inc.

Metcalf and Eddy, a licensed representative of EG&G Environmental, Inc., has installed two NoVOCs™ systems for the CS-10 groundwater contaminated plume at the MMR site. NoVOCs™ technology provides in situ groundwater remediation by producing a vertical circulation cell that captures VOC-contaminated groundwater. The captured VOC-contaminated groundwater is then remediated by the combination of air stripping and bioremediation processes. The NoVOCs™ technology provides in situ remediation while maintaining an equilibrium flow in the aquifer, thereby eliminating the drawdown effect associated with traditional pump and treat systems (Jacobs Engineering, 1996a).

The NoVOCs™ system used at the MMR incorporates a dual casing design with two-screened intervals, a diffuser, an aboveground blower, and a contaminant vapor collection and treatment system (see Figure 3-4). The aboveground blower is used to remove the contaminated air from the recirculating well so the air can be treated by a carbon absorption system. The treated air is then injected back into the NoVOCs™ well. It is this treated air that is used to strip the VOCs from the groundwater. The treated air pipe is connected to a diffuser which forms air bubbles and mixes with influent groundwater. There is a mass transfer of contaminants from the water phase to the air phase as bubbles expand and release the VOCs in the upper portion of the NoVOCs™ well (Jacobs Engineering, 1996a).

The NoVOCs™ well uses a two-screened interval design with the upper screen located near the top of the plume and the lower screen located near the bottom of the plume. An intake pump is positioned in the center of the bottom screen to create a reduced hydraulic head zone. The water is pumped through the inner 6-inch casing, to the top of the NoVOCs™ well, where VOCs are removed from the groundwater. After air stripping, the treated groundwater spills out of the inner 6-inch casing into the outer 10-inch casing where it travels down to the upper screens and creates an increased hydraulic head zone. Owing to areas of increased and reduced head, water flows horizontally and vertically into the bottom screen and creates the circulation cells (Jacobs Engineering, 1996a).
CLEAN AIR FROM BLOWER

ITREATED WATER

STRIPPING ZONE, AIR-WATER MIXTURE

UNCONTAMINATED AIR OR WATER

CONTAMINATED AIR OR WATER

AIR-WATER MIXTURE

Source: Jacobs Engineering, 1996a

Figure 3-4
EG&G Recirculating Well Technology
Conceptual Flow Diagram
Massachusetts Military Reservation
Recirculating Well Technology
Masters of Engineering Thesis
The circulation cell dimensions were estimated by EG&G based on the aquifer parameters. The distance B is defined as the radius of influence. Radius of influence is the maximum distance the recirculating well affects the groundwater flow. The distance S_u is the stagnation point upstream, and the distance S_d is the stagnation point downstream of the NoVOCs™ system (See Figure 3-5). The determination of the size of the radius of influence is based on dimensionless curves developed using the MODFLOW numerical groundwater flow model. Table 3-4 lists the estimated circulation cell dimensions for each of the EG&G Environmental NoVOCs™ systems installed at the MMR (Metcalf and Eddy, 1996a):

Table 3-4: EG&G Circulation Cell Dimensions

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal Pumping Rate</td>
<td>45.5 m³/hr (200 gpm)</td>
</tr>
<tr>
<td>Upstream Stagnation Point (S_u)</td>
<td>45.7 m (150 ft)</td>
</tr>
<tr>
<td>Downstream Stagnation Point (S_d)</td>
<td>42.7 m (140 ft)</td>
</tr>
<tr>
<td>Radius of Influence</td>
<td>51.8 m (170 ft)</td>
</tr>
<tr>
<td>The Separation Distance Between NoVOCs™ Perpendicular to the Groundwater Flow (D)</td>
<td>30.5 m (100 ft)</td>
</tr>
</tbody>
</table>
Recirculating Well Technology

Masters of Engineering Thesis

Figure 3-5

NoVOCs™ Circulation Cell Dimension

Notations

Massachusetts Military Reservation

Recirculating Well Technology

Masters of Engineering Thesis
4. METHOD OF DESIGNING RECIRCULATING WELLS

The design of recirculating wells is based on the air-to-water ratio required to strip VOCs from the groundwater. The first task in designing recirculating wells is to determine the maximum concentration of pollutants present at the site, because the air-to-water ratio is calculated to treat the maximum groundwater contamination. The air-to-water ratio is the amount of air that is required to volatilize the organic chemical from the aqueous phase to the gas phase (Jacobs Engineering, 1996a). The equilibrium partitioning of a contaminant between aqueous and vapor phase is quantified by the Henry’s Law constant, which relates the aqueous phase concentration of a chemical to its partial pressure in the gas phase. The tendency for volatilization is determined by the ratio of the actual aqueous and vapor phase concentrations to the Henry’s Law constant (Hemond and Fechner, 1994). The calculated air-to-water ratio is used to determine the internal groundwater pumping rate and air blower rate. Once the ratio is known, the groundwater pumping rate is maximized to produce the largest cost-effective upstream capture zone. This is accomplished by comparing the cost associated with an increase in the pumping rate and air blower rate to the decrease in the number of wells. Since the pumping rate controls the capture zone and number of wells, the following sections discuss two methods for determining the upstream capture zone of recirculating wells. The first is a general numerical modeling approach used by Herrling et al. (1991) to produce design curves. The second is a site specific numerical modeling approach used to produce design curves for MMR.

4.1 Herrling Approach

Recirculating wells’ design characteristics for the size of the capture zone, the stagnation point, and time of particle travel have been calculated based upon numerical models developed by Herrling et al. (1991). They discuss the development of the circular flow system, sphere of influence, and capture zone associated with recirculating wells. The article also includes diagrams for dimensioning recirculating wells. The following is a summary of Herrling et al.’s results.
4.1.1 Sphere of Influence and Capture Zone

To estimate the sphere of influence and the capture zone for a recirculating well, Herrling et al. performed a numerical investigation. In order to calculate the complex three-dimensional flow field produced by recirculating wells, Herrling et al. made the following assumptions:

- Aquifer is of constant thickness.
- Aquifer is confined.
- Aquifer hydraulic conductivities are radially homogeneous. Although horizontal layers with different conductivities can be used, and hydraulic conductivities may be anisotropic, each layer may have only one vertical and one horizontal conductivity.
- Steady-state conditions.
- Advective transport only.

The three-dimensional flow field is obtained by superimposing a horizontal uniform flow field on the radially symmetric recirculating flow field. The radially symmetric flow field is computed about a vertical axis with a finite length line source (upper well screen) and finite length line sink (lower well screen). After each solution is computed on its own grid, the superposition of the different flow fields is achieved by interpolating and adding the different flow vectors at the various nodes of a simple rectangular grid.

4.1.1.1 Recirculating Well Flow Field

A vertical longitudinal cross-section through the well in the direction of regional flow shows the complex flow field produced by a recirculating well (see Figure 4-1). The figure shows the resulting streamlines caused by three different uniform flow velocities (0.0 m/day, 0.3 m/day, and 1.0 m/day), while all other parameters remain constant.

Figure 4-1 shows the groundwater flowing downward to the lower screened section as it flows from upgradient. The groundwater is then captured and transported upward inside the well casing and allowed to return to the aquifer via the upper screened section. The flow field can be plotted in such a simplistic way in this longitudinal section, otherwise the complex three-dimensional flow field has to be considered.
Darcy Velocity = 0.0 m/day

Darcy Velocity = 0.3 m/day

Darcy Velocity = 1.0 m/day

Source: Herrling et al., 1991

Figure 4-1
Vertical Longitudinal Cross Section of the Flow Field Produced Massachusetts Military Reservation
Recirculating Well Technology Masters of Engineering Thesis
For a simple, fully penetrating extraction well in a confined homogenous aquifer, a separating streamline can be defined where all the water within the line is captured by the well and all the water outside the line flows past the well. In contrast to a simple extraction well, where the flow can be considered horizontal, the flow around a recirculating flow must be regarded as three-dimensional. Therefore, the water flowing toward the recirculating well cannot be delineated by a simple separating streamline but by a curved separating stream surface instead. The curved stream surface must be calculated on the basis of the three-dimensional flow field and three-dimensional particle tracking method.

4.1.1.2 Diagrams for the Dimensioning of Recirculating Wells

Figure 4-2 introduces Herrling's notation for an upstream cross section through the capture zone normal to the natural groundwater flow direction for one or two recirculating wells. BT and BB are the upstream capture widths, H is the height of the aquifer, A is the capture area, and D is the maximum distance between two wells such that no contaminated groundwater passes without being treated. Figure 4-3 shows the numerical results represented in dimensionless form for the sizing of recirculating wells. The results of Figure 4-3 were calculated for an upstream distance of five times the height of the aquifer from the well and for a constant ratio of the intake screen length to aquifer thickness (a/H) of 0.25.

The widths BT and BB of the upstream capture zone, measured at the aquifer top and bottom, are shown in Figure 4-3a. The ratios of BT/H and BB/H are dependent on the ratios Q/(H^2v), K_h/K_v, and a/H where Q is the groundwater extraction rate, v is the Darcy velocity, K_h and K_v are the horizontal and vertical hydraulic conductivities respectively. Figure 4-3a illustrates how sensitive the results are to the degree of anisotropy.

Figure 4-3b shows the results for the influx area of the upstream capture zone, while Figure 4-3d shows the maximum well distance (D) between two wells without allowing contaminated groundwater to pass. The ratios of A/H^2 and D/H is dependent on the same parameters as the widths BB/H and BT/H.
Source: Herrling et al., 1991

Figure 4-2

Notation for the Upstream Capture Zone

Massachusetts Military Reservation

Recirculating Well Technology

Masters of Engineering Thesis
(a) Width B_T and B_B of the Upstream Capture Zone at the Aquifer Top and Bottom

(b) Influx Area A of the Upstream Capture Zone

(c) Maximum Well Distance D at which the Contaminated Groundwater cannot Pass Between the Wells without being Treated

(d) Upstream Discharge Q_0 in the Capture Zone, which is Diluted with the Circulating Water to the Total Well Discharge Q

Source: Herrling et al., 1991

Figure 4-3
Herrling Charts
Massachusetts Military Reservation
Recirculating Well Technology
Masters of Engineering Thesis
When contaminated groundwater flows into a recirculating well, it is diluted with water that has already been treated by the well. Thus, the contaminant concentration of the water within the recirculating well will be lower than in the upstream plume. Figure 4-3d illustrates the ratio of untreated groundwater flowing into the well \(Q_o \) to the total flow into the well portion \(Q \). The ratio \(Q_o/Q \) is again dependent on the same parameters as the widths of the upstream capture zone. Figure 4-3d can be used to estimate the expected concentration in the water within the well casing for the dimensioning of a UVB installation.

In Figure 4-4 the upstream distance \(S \) of the stagnation point at the aquifer top from the well axis is described. The stagnation point is maximum expansion of the circulation cell parallel to groundwater flow. The ratio of \(S/H \) is also dependent on the parameters \(Q/(H^2v) \), \(K_H/K_v \), and \(a/H \). The location of the stagnation point is highly sensitive to the anisotropy of the aquifer. The knowledge of the distance \(S \) from the stagnation point can be used to determine the positions of measuring equipment.

In the direction of groundwater flow, the circulation cell has a maximum expansion of \(S \) to the upstream and downstream sides. Normal to the groundwater flow, the maximum radius of the sphere of circulation is approximated by \((B_B + B_T)/4\), and in the case of several wells in one line by \(D/2 \).

The charts in Figures 4-3 and 4-4 can be used to size a recirculating well or a field of recirculating wells when the parameters \(K_H/K_v \) and \(Q/H^2v \) can be estimated. For an irregular well field, a layered aquifer, or in special critical cases, the charts in figure 4-3 and 4-4 cannot be used but a numerical calculation must be performed in order to determine the sphere of influence and upstream capture zone.
Figure 4-4
Herrling Charts for Stagnation Point
Massachusetts Military Reservation

Source: Herrling et al., 1991
4.1.2 Shortfalls of the Herrling Approach

Herrling’s recirculating well design curves can be used as a first approximation of the upstream capture for recirculating wells with screens fixed at the top and bottom of the aquifer (Herrling et al., 1991). However, both well designs tested at the MMR differ substantially from the Herrling’s Model. Although EG&G Environmental, Inc. recirculating wells consists of two screened intervals, the screens are placed at the top and bottom of the plume rather than at the top and bottom of the aquifer. Furthermore, IEG Technologies Corporation recirculating wells consists of three screened intervals which are placed at the top, middle, and bottom of the plume. The number of screens and location of screens will hydraulically affect the upstream capture zone, thereby affecting plume-wide remediation scheme. Also, the height of the water table above the screened intervals may hydraulically affect the upstream capture zone. Because the difference between the recirculating wells installed at MMR and the recirculating well used by Herrling, a site specific numerical model was developed.

4.2 Numerical Model Approach

Because Herrling’s recirculating well design curves are not based on the exact recirculating wells installed at the MMR, a numerical model was developed to produce site specific design curves. The design curves will be a useful tool when designing recirculating wells for other areas on the MMR, because they were developed using the specific hydrogeology characteristics of the MMR, as well as the specific design of the wells that were used at the site. To develop recirculating well design graphs similar to design Herrling charts in Section 4.1 for the MMR, a particle tracking investigation was conducted using the DYNSYSTEM groundwater flow and transport software package. The following sections highlight the computer software package used and steps taken in performing the particle tracking investigation. The particle tracking investigation determined the upstream capture zone, the effect of the water table elevation on the upstream capture zone, and the percentage of recirculated groundwater for both IEG Technologies Corporation and EG&G Environmental, Inc. recirculating wells for various pumping rates.
4.2.1 DYNSYSTEM™ Description

In order to develop the design curves, the DYNSYSTEM™ was employed because of its versatility and powerful computation ability. The DYNSYSTEM™ computer program, developed by Camp Dresser and McKee (CDM), simulates three-dimensional groundwater flow and advective-dispersive contaminant transport. The DYNSYSTEM™ comprises of three components:

- DYNFLOW
- DYNTRACK
- DYNPLOT

The DYNFLOW component is a FORTAN-based program that simulates three-dimensional groundwater flow using the Galerkin finite element formulation. The DYNTRACK component of the DYNSYSTEM simulates three-dimensional advective-dispersive contaminant mass transport. DYNTRACK uses the same three-dimensional finite element grid, aquifer properties, stratigraphy, and flow field used in and generated by the DYNFLOW model. DYNTRACK can perform simple, single-particle tracking of conservative contaminants or complex three-dimensional transport including first-order decay, absorption, and dispersion. The DYNPLOT component is the graphical pre- and post-processor which supports DYNFLOW and DYNTRACK. In the pre-processing phase, DYNPLOT is used to build the finite element grid which is essential to both the flow and transport models. In the post-processing phase, DYNPLOT is used to display plan and cross-sectional results of both the flow and transport simulations (CDM Inc., 1995).

4.2.2 Model Development and Procedure

The first step in the development of a groundwater flow model was the creation of a finite element grid using DYNPLOT (see Figure 4-5). The dimensions of the finite element grid were chosen by multiplying the projected upstream capture zone given by the recirculating well vendors by a factor of 5 to insure that the recirculating well did not interfere with the boundary. A grid 800-foot wide and 1200-foot long was chosen. First, a 100-foot diameter grid with 222 nodes and 425 elements was built radially around the recirculating well node. The 100-foot
Figure 4-5
Finite Element Grid
Massachusetts Military Reservation
Recirculating Well Technology
Masters of Engineering Thesis
diameter grid was then expanded to fill the 800-foot by 1200-foot grid for a total of 1031 nodes and 1985 elements. Radial grid generation allowed the horizontal discretization of the nodes to be very dense near the well and slowly decrease in density until reaching the boundaries. High resolution in areas of interest allows more numerical calculations for change in head, thereby increasing the accuracy and precision of groundwater flow and contaminant transport. Once the flow field was established, the head contours were viewed to insure the recirculating well under operating circumstances did not interfere with the boundary conditions. Head contours were also viewed to insure the node resolution near the recirculating well was adequate to represent the rapidly changing head.

The next step in the development of the groundwater flow model was the creation of the necessary DYNFLOW input file. The DYNFLOW file defines the soil stratification, soil properties, water table elevations, recirculating well pumping rate information, and boundary conditions. For this investigation, the soil column was divided into 18 layers or 19 levels with horizontal hydraulic conductivities \(K_x\) and \(K_y\) set to 297.2 ft/day, vertical hydraulic conductivity \(K_z\) set to 59.5 ft/day, specific storitivity \(S_s\) set to 0.00001, and specific yield \(S_y\) set to 0.07. The water table elevation was fixed to 36.1 ft above sea level (asl) at the upstream boundary and 34.4 ft asl at the downstream boundary, thereby producing a regional gradient of 0.0014 ft/ft. The 0.0014 ft/ft hydraulic gradient was given by CDM Federal (1993) and Masterson (1996). At the location of the recirculating well, positive and negative fluxes were assigned to the appropriate nodes to simulate the extraction and reinjection of groundwater by the recirculating well.

Once the DYNFLOW file was prepared, three different transport simulations were created. The first simulation investigated the upstream capture zone. The second simulation investigated the effect of the water elevation on the capture zone. The third simulation investigated the percentage of extracted groundwater that was previously treated by the recirculating well.
4.2.2.1 Capture Zone Simulation

For the capture zone simulation, a DYNTRACK file and property file were created. The DYNTRACK file defined the particles' starting positions, the time steps, and the total duration for the particle track simulation. In the DYNTRACK file, particles were seeded at a distance of five times the plume height upgradient of the recirculating well.

In conjunction with the DYNTRACK file, a property file was created that assigns values for the interrelationship between the particles and the aquifer in order to accurately simulate the mass transport of contamination. These interrelationship characteristics include the dispersion coefficient, effective porosity, and retardation factor. This file set the dispersion coefficient to zero, effective porosity to 0.35, and retardation factor of one. The value 0.35 for effective porosity was chosen because it is a typical value for a glacial outwash sand (Daniel, 1993). Dispersion and retardation were ignored during a hydraulic capture zone investigation, because their effect is insignificant compared to the advection transport process associated with the groundwater velocity caused by the recirculating well.

Once the files were written, DYNTRACK was run to obtain the steady state transport solution for the recirculating well. DYNPLOT, the graphical processor, was used to view the resulting capture zone as defined by the particle tracks.

4.2.2.2 Effect of the Water Elevation Simulation

For the second simulation, the DYNFLOW file was altered to demonstrate the effect of the water table elevation would have on the capture zone. First, the water table elevation was increased by 40 ft. while maintaining the hydraulic gradient at 0.0014 ft/ft. Using the same DYNTRACK and property files from the capture zone simulation, the steady state transport solution was obtained.

Second, the water table elevation was decreased by 35 ft. while maintaining the hydraulic gradient at 0.0014 ft/ft. Using the same DYNTRACK and property files from the capture zone simulation, the steady state transport solution was obtained.
4.2.2.3 Recirculating Particle Simulation

For the third simulation, a new DYNTRACK file was created to investigate the percent of recirculated particles. The DYNTRACK file defined the particles’ starting positions, the time steps, and total duration for the particle track simulation. In this DYNTRACK file, particles were seeded 2 ft. radially around the recirculating well injection screens.

Similar to the capture zone simulation, a property file was used to assign values for the interrelationship between particles and aquifer in order to accurately simulate the mass transport of contamination. The values of dispersion coefficient, effective porosity, and retardation factor remained unchanged. See the above section for more detail.

Once the files where written, DYNTRACK was run to obtain the steady state transport solution for the recirculating well. Upon the completion of the simulation, DYNTRACK created an output file. By viewing the output file, the number of particles that were removed from the system by the recirculating well was determined. DYNPLOT, the graphical processor, was used to view the resulting sphere of influence as defined by the particles tracks.
4.2.3 Flow and Transport Simulation for IEG Technologies Corporation Well

The following table lists the inputs used in the numerical simulation of IEG’s recirculating well and Figure 4-6 illustrates the vertical discretization used for the model.

Table 4-1: IEG Technologies Corporation Model Input

<table>
<thead>
<tr>
<th>Flow Model Input (see Appendix A1)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Pumping Rate</td>
<td>88 gpm</td>
</tr>
<tr>
<td>Grid</td>
<td>800 x 1200</td>
</tr>
<tr>
<td>Layers</td>
<td>18</td>
</tr>
<tr>
<td>Levels</td>
<td>19</td>
</tr>
<tr>
<td>Horizontal Hydraulic Conductivity</td>
<td>297.2 ft/day</td>
</tr>
<tr>
<td>Vertical Hydraulic Conductivity</td>
<td>59.5 ft/day</td>
</tr>
<tr>
<td>Specific Storitivity (Ss)</td>
<td>0.00001</td>
</tr>
<tr>
<td>Specific Yield (Sy)</td>
<td>0.07</td>
</tr>
<tr>
<td>Hydraulic Gradient</td>
<td>0.0014</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Property File Input (see Appendix A2)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dispersion Coefficient</td>
<td>0</td>
</tr>
<tr>
<td>Effective Porosity</td>
<td>0.35</td>
</tr>
<tr>
<td>Retardation Factor</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Capture Zone Simulation (see Appendix A3)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Particles</td>
<td>420</td>
</tr>
<tr>
<td>Time Step</td>
<td>0.11 day (2.6 hr)</td>
</tr>
<tr>
<td>Duration</td>
<td>1200 days</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recirculated Particle Simulation (see Appendix A4)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Particles</td>
<td>216</td>
</tr>
<tr>
<td>Time Step</td>
<td>0.042 days (1 hr)</td>
</tr>
<tr>
<td>Duration</td>
<td>200 days</td>
</tr>
</tbody>
</table>
Figure 4-6
IEG Technologies Corporation Model
Vertical Discretization
Massachusetts Military Reservation

Recirculating Well Technology
Masters of Engineering Thesis

56
4.2.4 Flow and Transport Simulation for EG&G Environmental, Inc. Well

The following table lists the inputs used in the numerical simulation of EG&G’s recirculating well and Figure 4-7 illustrates the vertical discretization used for the model.

Table 4-2: EG&G Environmental, Inc. Model Input

<table>
<thead>
<tr>
<th>Flow Model Input (see Appendix B1)</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Pumping Rate</td>
<td>200 gpm</td>
</tr>
<tr>
<td>Grid</td>
<td>800 x 1200</td>
</tr>
<tr>
<td>Layers</td>
<td>18</td>
</tr>
<tr>
<td>Levels</td>
<td>19</td>
</tr>
<tr>
<td>Horizontal Hydraulic Conductivity</td>
<td>297.2 ft/day</td>
</tr>
<tr>
<td>Vertical Hydraulic Conductivity</td>
<td>59.5 ft/day</td>
</tr>
<tr>
<td>Specific Storitivity (Ss)</td>
<td>0.00001</td>
</tr>
<tr>
<td>Specific Yield (Sy)</td>
<td>0.07</td>
</tr>
<tr>
<td>Hydraulic Gradient</td>
<td>0.0014</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Property File Input (see Appendix B2)</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dispersion Coefficient</td>
<td>0</td>
</tr>
<tr>
<td>Effective Porosity</td>
<td>0.35</td>
</tr>
<tr>
<td>Retardation Factor</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Capture Zone Simulation (see Appendix B3)</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Particles</td>
<td>574</td>
</tr>
<tr>
<td>Time Step</td>
<td>0.08 day (1.92 hr)</td>
</tr>
<tr>
<td>Duration</td>
<td>1200 days</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recirculated Particle Simulation (see Appendix B4)</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Particles</td>
<td>144</td>
</tr>
<tr>
<td>Time Step</td>
<td>0.042 days (1 hr)</td>
</tr>
<tr>
<td>Duration</td>
<td>200 days</td>
</tr>
</tbody>
</table>
Figure 4-7

EG&G Technologies Corporation
Model Vertical Discretization
Massachusetts Military Reservation

Recirculating Well Technology
Masters of Engineering Thesis
4.2.5 Discussion of Simulations

As illustrated in Table 4-2 and Table 4-3, the only differences between the IEG model and the EG&G model are the:

- Number of particles used in the capture zone simulation.
- Time steps used in the capture zone simulation.
- Number of particles used in the recirculated particle simulation.

More particles were used in the capture zone simulation for EG&G’s model than IEG’s model, because the hydraulics associated with EG&G recirculating well caused a larger capture width than IEG recirculating well. This was discovered during the simulation of EG&G’s capture zone; therefore, particles were added to increase the vertical particle wall width by 100 feet to insure the capture zone could be viewed accurately (see Figure 4-8 and 4-9 for IEG and EG&G particle starting positions vertical particle wall).

A smaller time step was used in the capture zone simulation for EG&G’s system in order to produce a more accurate transport model. DYNTRACK calculates the new location of a particle based on a velocity vector and time step. If a velocity vector is extremely high and the time step is large, a particle could bypass the recirculating well. The hydraulics associated with EG&G’s recirculating well produced higher velocities; therefore, a smaller time step was needed to decrease the time between calculation of particle positions (see Figures 4-10 and 4-11 for IEG and EG&G capture zone).

The number of particles used in the recirculating particle simulations for IEG and EG&G were different because the physical setup of the recirculating well. The same number of particles were placed in each model layer, but the number of layers in which the particles were placed changed according to the recirculating well system. For IEG, particles were placed in each of the six reinjection layers (see Figure 4-6). For EG&G, particles were placed in each of the four reinjection layers (see Figure 4-7).

By following the procedure described in Section 4.2.2 and using the input values described in Section 4.2.3 and Section 4.2.4, the upstream capture zone, the effect of the water table elevation,
Figure 4-8
IEG's Model Particle Starting Position
Massachusetts Military Reservation
Recirculating Well Technology
Masters of Engineering Thesis
Figure 4-9
EG&G's Model Particle Starting Position
Massachusetts Military Reservation
Recirculating Well Technology
Masters of Engineering Thesis
Figure 4-10
IEG's Upstream Capture Zone
Massachusetts Military Reservation
Recirculating Well Technology
Masters of Engineering Thesis

Captured
Not Captured
Figure 4-11
EG&G's Upstream Capture Zone
Massachusetts Military Reservation

Captured
Not Captured

- Recirculating Well within 600.0 ft
- Ground Surface
- Top of Screen
- Bottom of Screen
and the percentage of recirculated groundwater flow for both recirculating wells can be viewed. Chapter 5 presents the results obtained from the simulations using the design pumping rate, and illustrates the effect of pumping rate on the upstream capture zone and the percentage of recirculated groundwater flow.
5. RESULTS AND DISCUSSION

The following sections present the results obtained from the particle tracking investigation and discusses the results and their implications for design of a plume-wide treatment system.

5.1 Comparison Between Model Results and Herrling Charts

5.1.1 IEG Technologies Corporation

Using the numerical model described in Section 4.2, the resulting upstream top width (B_T) was 139 ft, the resulting upstream middle width (B_m) was 257 ft, and the amount of recirculated groundwater was 36 percent at the design pumping rate of 88 gpm.

Using the design curves of Herrling et al. (1991) (see Figure 4-3) to predict the capture width and percent of recirculated groundwater, the Darcian velocity was needed. With a horizontal hydraulic conductivity equal to 297.2 ft/day and a hydraulic gradient equal to 0.0014, the Darcian velocity is equal to 0.416 ft/day. With the pumping rate equal to 44 gpm, plume thickness equal to 60 ft, and the Darcian velocity equal to 0.416 ft/day, $Q/(H^2v)$ equals 5.6. One half the pumping rate and plume thickness are used because IEG Recirculating Well is equal to two recirculating wells stacked one on top of another. Therefore, one circulation cell is determined with half the pumping rate (44 gpm) and half the aquifer thickness (60 ft.). With $Q/(H^2v)$ equal to 5.6 and the anisotropy ratio (K_H/K_V) equal to 5, the corresponding values (read from Figure 4-3a) for the top width (B_T) and bottom width (B_B) are 36 ft and 222 ft, respectively, for each cell, while the percentage of recirculated groundwater equaled 42 percent.
Table 5-1: Summary of Results for IEG Technologies Corporation

<table>
<thead>
<tr>
<th></th>
<th>Predicted By Herrling's Charts</th>
<th>Predicted By Numerical Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pumping Rate</td>
<td>88 gpm * (44 gpm each cell)</td>
<td>88 gpm</td>
</tr>
<tr>
<td>Width at Top</td>
<td>36 ft</td>
<td>139</td>
</tr>
<tr>
<td>Width at Bottom (or Middle)</td>
<td>222 ft</td>
<td>257 ft</td>
</tr>
<tr>
<td>Percent Recirculated</td>
<td>42%</td>
<td>36%</td>
</tr>
</tbody>
</table>

*IEG Recirculating Well is equal to two Recirculating Well stacked one on top of another; therefore, one circulation cell is determined with half the aquifer thickness (60 ft.) and half the pumping rate (44 gpm).

5.1.2 EG&G Environmental, Inc.

Using the numerical model described in Section 4.2, the resulting upstream top width (B_T) was 210 ft, the resulting upstream bottom width (B_B) was 402 ft, and the percent recirculated groundwater equaled 41 percent at the design pumping rate of 200 gpm.

Using Herrling’s charts (see Figure 4-3) to predict the capture width and percent of recirculated groundwater, the Darcian velocity was needed. With a horizontal hydraulic conductivity equal to 297.2 ft/day and a hydraulic gradient equal to 0.0014, the Darcian velocity is equal to 0.416 ft/day. With the pumping equal to 200 gpm, plume thickness equal to 120 ft, and the Darcian velocity equal to 0.416 ft/day, Q/(H^2\nu) is equal to 6.4. With Q/(H^2\nu) equal to 6.4 and the anisotropic ratio (K_h/K_v) equal to 5, the corresponding values (read from Figure 4-3a) for the top width (B_T) and bottom width (B_B) are 108 ft and 468 ft, respectively, while the percentage of recirculated groundwater equaled 45 percent.
5.1.3 Discussion of Comparison

Table 5-1 and 5-2 report the values for the upstream capture width and the percentage of recirculated groundwater as predicted by both the DYNNSYSTEM groundwater model and Herrling charts (1991). The predicted values based on the site-specific numerical model are slightly different than the predicted values provided by the Herrling charts. The first reason for the discrepancy is the number and spacing of the screens. Despite this difference, a consistent method was used to calculate the value for both the capture zone and the percentage of flow recirculated (see Section 5.1). The second reason for the discrepancy is based on the ratio of one screen length (a) to the plume height (H). In Figure 4-3, the ratio of a/H used in Herrling charts is shown as 0.25, while the ratio for IEG’s recirculating well is 0.167 (10ft/60ft), and the ratio for EG&G’s recirculating well is 0.125 (15ft/120ft). The a/H ratio controls the percent of recirculated water and the upstream capture zone. If the plume height (H) is constant, a larger a/H ratio means that a recirculating well has a larger line sink (a) and a larger line source (a). With a larger line sink (a) and line source (a) and a constant plume height (H), the distance between the screens is shortened, thereby causing greater recirculation between them. Because the extracted groundwater now includes more previously treated groundwater, the relative amount of untreated groundwater decreases reducing the capture area. The third reason for the discrepancy is due to the inability to accurately read the values from Herrling’s charts (1991).
Because of the fundamental differences in the two methods of predicating upstream capture width and percentage of recirculated groundwater, site specific design graphs were developed for the MMR. First, CS-10 design graphs were produced that could aid engineers in the designing of a treatment system for the remediation of the CS-10 plume. Then, dimensionless design graphs were produced to assist in the design of recirculating well treatment systems for other plumes on MMR, or potentially at other sites.

5.2 Effect of Water Table Elevation Simulation

Table 5-3 is the resulting upstream capture width observed for IEG Technologies Corporation recirculating wells with a pumping rate of 88 gpm and different water table elevations (see Appendix A5 for DYNPLOT graphical outputs).

<table>
<thead>
<tr>
<th>Water Table Elevation (ft asl)</th>
<th>B_T (ft)</th>
<th>B_M (ft)</th>
<th>B_B (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>139</td>
<td>257</td>
<td>49</td>
</tr>
<tr>
<td>35</td>
<td>139</td>
<td>257</td>
<td>49</td>
</tr>
<tr>
<td>75</td>
<td>139</td>
<td>257</td>
<td>49</td>
</tr>
</tbody>
</table>

Table 5-4 is the resulting upstream capture width observed for EG&G Environmental, Inc. recirculating wells with a pumping rate of 200 gpm and different water table elevations (see Appendix B5 for DYNPLOT graphical outputs).

<table>
<thead>
<tr>
<th>Water Table Elevation (ft asl)</th>
<th>B_T (ft)</th>
<th>B_M (ft)</th>
<th>B_B (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>210</td>
<td>415</td>
<td>402</td>
</tr>
<tr>
<td>35</td>
<td>210</td>
<td>415</td>
<td>402</td>
</tr>
<tr>
<td>75</td>
<td>210</td>
<td>415</td>
<td>402</td>
</tr>
</tbody>
</table>

The reported values in Tables 5-3 and 5-4 illustrate that the elevation of the water table did not effect the upstream capture zone. In general, the water table boundary does not affect the upstream capture zone because it lies above the re-injection screen and does not deflect the
stream lines produced by the recirculated well. Therefore, it is not necessary to produce different design curves for different water table elevation.

5.3 Design Curves

In order to develop design curves that relate the upstream capture curve to pumping rates, numerous DYNSYSTEM simulations were conducted for different pumping rates (see Section 4.2.2 for description of method). The following are the results obtained for IEG Technologies Corporation and EG&G Environmental, Inc.

5.3.1 Capture Zone Simulation

5.3.1.1 IEG Technologies Corporation

With the aid of DYNPLOT, the following results were obtained for different pumping rates (see Appendix A6 for the complete set of DYNPLOT graphical outputs).

<table>
<thead>
<tr>
<th>Pumping Rate (gpm)</th>
<th>(B_T) (ft)</th>
<th>(B_M) (ft)</th>
<th>(B_B) (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>17</td>
<td>126</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>86</td>
<td>186</td>
<td>10</td>
</tr>
<tr>
<td>75</td>
<td>123</td>
<td>235</td>
<td>26</td>
</tr>
<tr>
<td>88</td>
<td>139</td>
<td>257</td>
<td>49</td>
</tr>
<tr>
<td>100</td>
<td>152</td>
<td>269</td>
<td>60</td>
</tr>
<tr>
<td>125</td>
<td>176</td>
<td>285</td>
<td>76</td>
</tr>
<tr>
<td>150</td>
<td>197</td>
<td>299</td>
<td>94</td>
</tr>
<tr>
<td>175</td>
<td>211</td>
<td>312</td>
<td>107</td>
</tr>
<tr>
<td>200</td>
<td>226</td>
<td>326</td>
<td>121</td>
</tr>
<tr>
<td>250</td>
<td>256</td>
<td>352</td>
<td>148</td>
</tr>
<tr>
<td>300</td>
<td>283</td>
<td>369</td>
<td>176</td>
</tr>
</tbody>
</table>

Note: \(B_T \) is the Upstream Capture Width at the Top of the Plume
\(B_M \) is the Upstream Capture Width at the Middle of the Extraction Screen
\(B_B \) is the Upstream Capture Width at the Bottom of the Plume

Table 5-5: IEG Upstream Capture Width vs. Pumping Rate
Figure 5-1: IEG Technologies Corporation Recirculating Well Schematic

Figure 5-2: IEG Upstream Capture Width vs. Pumping Rate

Figure 5-3: IEG Dimensionless Upstream Capture Width vs. Pumping Rate
5.3.1.2 EG&G Environmental, Inc.

With the aid of DYNPLOT, the resulting upstream capture curves were obtained for different pumping rates (see Appendix B6 for the complete set of DYNPLOT graphical outputs).

Table 5-6: EG&G Upstream Capture Width vs. Pumping Rate

<table>
<thead>
<tr>
<th>Pumping Rate (gpm)</th>
<th>B_T^* (ft)</th>
<th>B_M^* (ft)</th>
<th>B_B^* (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>0</td>
<td>144</td>
<td>47</td>
</tr>
<tr>
<td>50</td>
<td>0</td>
<td>215</td>
<td>157</td>
</tr>
<tr>
<td>75</td>
<td>66</td>
<td>276</td>
<td>221</td>
</tr>
<tr>
<td>100</td>
<td>98</td>
<td>310</td>
<td>275</td>
</tr>
<tr>
<td>125</td>
<td>130</td>
<td>338</td>
<td>315</td>
</tr>
<tr>
<td>150</td>
<td>155</td>
<td>364</td>
<td>345</td>
</tr>
<tr>
<td>175</td>
<td>182</td>
<td>391</td>
<td>375</td>
</tr>
<tr>
<td>200</td>
<td>210</td>
<td>415</td>
<td>402</td>
</tr>
<tr>
<td>250</td>
<td>265</td>
<td>455</td>
<td>445</td>
</tr>
<tr>
<td>300</td>
<td>310</td>
<td>485</td>
<td>480</td>
</tr>
</tbody>
</table>

Note: B_T is the Upstream Capture Width at the Top of the Plume
B_M is the Upstream Capture Width at the Middle of the Extraction Screen
B_B is the Upstream Capture Width at the Bottom of the Plume

Figure 5-4: EG&G Environmental, Inc. Recirculating Well Schematic
5.3.2 Recirculated Particle Simulation

In order to develop design curves that relate the percentage of retreated particles to pumping rates, numerous DYNSYSTEM simulations were conducted for different pumping rates. The following are the results obtained for IEG Technologies Corporation and EG&G Environmental, Inc.
5.3.2.1 IEG Technologies Corporation

Once the DYNTRACK simulation was complete, DYNTRACK created an output file. By viewing the output file, the number of particles that were removed from the system by the recirculating well was determined. Then DYNPLOT, the graphical processor, was used to view the resulting capture zone due to the extraction of groundwater by the recirculating well (see Appendix A7 for the complete set of DYNPLOT graphical outputs):

Table 5-7: IEG Percent of Recycled Flow vs. Pumping Rate

<table>
<thead>
<tr>
<th>Pumping Rate (gpm)</th>
<th>Total Number of Particles Seeded</th>
<th>Number of Particles Captured</th>
<th>Percent of Recycled Flow (Q_r/Q)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>216</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>25</td>
<td>216</td>
<td>1</td>
<td>0%</td>
</tr>
<tr>
<td>50</td>
<td>216</td>
<td>23</td>
<td>11%</td>
</tr>
<tr>
<td>75</td>
<td>216</td>
<td>62</td>
<td>29%</td>
</tr>
<tr>
<td>88</td>
<td>216</td>
<td>77</td>
<td>36%</td>
</tr>
<tr>
<td>100</td>
<td>216</td>
<td>89</td>
<td>41%</td>
</tr>
<tr>
<td>125</td>
<td>216</td>
<td>105</td>
<td>49%</td>
</tr>
<tr>
<td>150</td>
<td>216</td>
<td>119</td>
<td>55%</td>
</tr>
<tr>
<td>175</td>
<td>216</td>
<td>128</td>
<td>59%</td>
</tr>
<tr>
<td>200</td>
<td>216</td>
<td>133</td>
<td>62%</td>
</tr>
<tr>
<td>250</td>
<td>216</td>
<td>139</td>
<td>64%</td>
</tr>
<tr>
<td>300</td>
<td>216</td>
<td>144</td>
<td>67%</td>
</tr>
</tbody>
</table>

Note: Q_r is the Recycled Flow (gpm)
Q is the Pumping Rate (gpm)
Figure 5-7: IEG Percent of Groundwater Flow vs. Pumping Rate

Figure 5-8: IEG Flow of Groundwater into Well vs. Pumping Rate
Once the DYNTRACK simulation was complete, DYNTRACK created an output file. By viewing the output file, the number of particles that were removed from the system by the recirculating well was determined. Then DYNPLOT, the graphical processor, was then used to view the resulting capture zone due to the extraction of groundwater by the recirculating well (see Appendix B7 for the complete set of DYNPLOT graphical outputs).

Table 5-8: EG&G Percent of Recycled Flow vs. Pumping Rate

<table>
<thead>
<tr>
<th>Pumping Rate (gpm)</th>
<th>Total Number of Particles Seeded</th>
<th>Number of Particles Captured</th>
<th>Percent of Recycled Flow (Q_r/Q)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>144</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>25</td>
<td>144</td>
<td>1</td>
<td>1%</td>
</tr>
<tr>
<td>50</td>
<td>144</td>
<td>17</td>
<td>12%</td>
</tr>
<tr>
<td>75</td>
<td>144</td>
<td>34</td>
<td>24%</td>
</tr>
<tr>
<td>100</td>
<td>144</td>
<td>44</td>
<td>31%</td>
</tr>
<tr>
<td>125</td>
<td>144</td>
<td>49</td>
<td>34%</td>
</tr>
<tr>
<td>150</td>
<td>144</td>
<td>53</td>
<td>37%</td>
</tr>
<tr>
<td>175</td>
<td>144</td>
<td>56</td>
<td>39%</td>
</tr>
<tr>
<td>200</td>
<td>144</td>
<td>59</td>
<td>41%</td>
</tr>
<tr>
<td>250</td>
<td>144</td>
<td>64</td>
<td>44%</td>
</tr>
<tr>
<td>300</td>
<td>144</td>
<td>70</td>
<td>49%</td>
</tr>
</tbody>
</table>

Note: Q_r is the Recycled Flow (gpm)
Q is the Pumping Rate (gpm)
5.3.3 Discussion of Results and Optimization

The primary reason for developing recirculating well design curves was to determine which recirculating well produces a larger upstream capture zone. Similar to the discussion in Section 5.1.2, the distance between a line sink and a line source controls the percent recirculated and the upstream capture zone. The distance between the line sink and line source for IEG’s
recirculating well is 40 feet (see Figure 4-6). While, the distance between the line sink and line source for EG&G's recirculating well is 90 feet (see Figure 4-7). At a constant pumping rate, the recirculating well with the shorter distance between the screen intervals will have a larger percent of recirculation. Because IEG's recirculating well has a shorter distance between the screen intervals, it recirculates a greater percentage of re-injected groundwater than EG&G's recirculating well (see Figure 5-7 and Figure 5-9). At a constant pumping rate, the recirculating well that retreats a larger amount of re-injected groundwater extracts less untreated groundwater and thereby produces a smaller capture zone. As a result, IEG's recirculating well extracts less untreated groundwater (see Figure 5-8 and Figure 5-10) and produces a smaller capture zone (see Figure 5-2 and Figure 5-5) than EG&G's recirculating well.

The second reason for the development of recirculating well design curves is to aid the engineers at MMR in the design of a remediation system for CS-10. Figures 5-2 and 5-5 report the upstream capture zone as a function of the pumping rate. With this, a plume-wide remediation system for CS-10 can be established based on the recirculating well pumping rate and capture zone. The design curves were then converted into a dimensionless form (see Figure 5-3 and 5-6) to help design remediation systems for the other contaminant plumes on MMR.

These curves can also help to optimize a recirculating well remediation scheme to improve its cost-effectiveness. Figures 5-2 and 5-5 can be used to compare the cost associated with an increase in the pumping rate versus the benefit of an increase in capture zone. The pumping rate can then be optimized to provide a balance between the number of wells and the pumping rate. Figures 5-8 and 5-10 illustrate that the benefit associated with an increase in the pumping rate is not directly proportional to the increase in the upstream capture zone because the recirculating well increases the amount of retreated groundwater. Using the above design curves, a cost-effective recirculating well remediation scheme can be designed.
6. CONCLUSION

This thesis developed recirculating well design curves specifically for the MMR. These design curves related the recirculating well pumping rate to the resulting upstream capture zone. The graphs were based on results from numerical model simulations of both IEG Technologies Corporation and EG&G Environmental, Inc. recirculating well designs and the specific soil characteristics of the MMR.

First, the results indicate that the use of Herrling’s charts in the design of a remediation strategy for the CS-10 plume will over estimate the recirculation rate and underestimate the capture area. The results then verify that a fluctuation in the water table elevation will not effect the upstream capture zone. Finally, the modeling results indicate that IEG’s recirculating well retreats more groundwater while EG&G’s recirculating well captures more of the untreated groundwater plume for any given pumping rate.

In conclusion, the site-specific design graphs and dimensionless design graphs will aid in the design of future recirculating well systems at the MMR, because engineers will be able to estimate the upstream capture zone based on the pumping rate.
7. FUTURE WORK

The logical approach at this point is to use the collected pilot test data and calibrate the design graphs presented in Section 5.3. This can be accomplished by recording head measurements in the field and comparing the observed head values to the predicted head values by the numerical model simulation. With the observed head values, the model can be calibrated to represent the actual observed head values by adjusting the model’s hydraulic conductivity and the hydraulic gradient. With the calibrated model, new design graphs should be produced including design curves based on different a/H ratios. With the new graphs, engineers at MMR can be confident when using the graphs to predict the upstream capture zone and the amount of groundwater recirculated by the recirculating well for different pumping rates. The calibrated graphs can be a valuable tool during the design process, because engineers can determine the spacing between recirculating wells while capturing 100 percent of the plume.
8. REFERENCES

Langley, W., E. Klingel. Undated. *Case History of Hydrocarbon Remediation using the UVB Technology at a UST Site in Troutman, NC.*

Masterson, John P., Byron D. Stone, Donald A. Walter, and Jennifer Savoie. 1996. *Hydrogeologic Framework of Western Cape Cod, Massachusetts*.

Metcalf and Eddy. 1996a. *NoVOCs™ Recirculating In-Well Stripping*.

APPENDIX A: MODEL INPUT AND COMMAND FILES FOR IEG TECHNOLOGIES CORPORATION
Appendix A.1 Command File for DYNFLOW

!create output file of session
OUTP DYN1.OUT
!read plan view finite element grid
GRID READ GRID.GRF FORM
!set number of levels
LEVEL 19
!set a rising head boundary condition for all nodes in level 19 (water table elev. to stop
!the head from rising above this level
RISI LEVEL 19
!set z-coordinates for each node/level
ELEV -190. LEVEL 1
ELEV -180. LEVEL 2
ELEV -175. LEVEL 3
ELEV -170. LEVEL 4
ELEV -155. LEVEL 5
ELEV -140. LEVEL 6
ELEV -125. LEVEL 7
ELEV -120. LEVEL 8
ELEV -115. LEVEL 9
ELEV -110. LEVEL 10
ELEV -105. LEVEL 11
ELEV -90. LEVEL 12
ELEV -80. LEVEL 13
ELEV -70. LEVEL 14
ELEV -65. LEVEL 15
ELEV -60. LEVEL 16
ELEV 0. LEVEL 17
ELEV 45. LEVEL 18
ELEV 80. LEVEL 19
!fix nodes upgradient and downgradient of well
FIX NODE 901 - 916 level all
FIX NODE 476 - 482 level all
FIX NODE 532 - 539 level all
FIX NODE 781 - 784 level all
!set initial head value for all nodes
INIT 35.
!fix head boundaries upgradient and downgradient of well (overall 0.0014 ft./ft. head drop)
INIT 34.4 NODE 476 - 482 level all
INIT 34.4 NODE 532 - 539 level all
INIT 34.4 NODE 781 - 784 level all
INIT 36.1 NODE 901 - 916 level all
!define materials from bottom of plume to water table elev. - here only 1 type, fine to
!coarse grained sand
ELEM 310 LAYER 1 - 18
!specify pumping rate of well
FLUX 2824. NODE 1 LEVEL 2
FLUX 2824. NODE 1 LEVEL 3
FLUX 2824. NODE 1 LEVEL 4
FLUX -3388. NODE 1 LEVEL 7
FLUX -3388. NODE 1 LEVEL 8
FLUX -3388. NODE 1 LEVEL 9
FLUX -3388. NODE 1 LEVEL 10
FLUX -3388. NODE 1 LEVEL 11
FLUX 2824. NODE 1 LEVEL 14
FLUX 2824. NODE 1 LEVEL 15
FLUX 2824. NODE 1 LEVEL 16
!define areas of 1-D elements/node (screened intervals)
ONED 120 NODE 1 1 LEVEL 2 3
ONED 120 NODE 1 1 LEVEL 3 4
ONED 120 NODE 1 1 LEVEL 7 8
ONED 120 NODE 1 1 LEVEL 8 9
ONED 120 NODE 1 1 LEVEL 9 10
ONED 120 NODE 1 1 LEVEL 10 11
ONED 120 NODE 1 1 LEVEL 14 15
ONED 120 NODE 1 1 LEVEL 15 16
!specify recharge rate (ft/d)
RECH .0044 ELEM ALL
!define following properties of 1-d elements: #, K, Ss, Sy
PROP 20, 10000000.,0.,1.
!define following properties of material: #, Kx (ft/d), Ky, Kz, Ss, Sy
PROP 10, 297.2, 297.2, 59.53, .00001, .07
iter 10
goti
!save to file
SAVE RC1.SAV
XOUT
XCFI
Appendix A.2 Command File for DYNTRACK Capture Zone Simulations

!COMMAND FILE FOR CROSS-SECTIONAL PARTICLE TRACKING
!restore the Dynflow file
REST RC1.SAV
!create an output file
OUTP SAVE XS1.OUT FORM
!read the transport property
DPRO READ PROP.DPR
!Turn off dispersion simulation
XDISP
!set radius of capture for well
RADI 10
!set weight of particle
WEIGH 1000
!set starting time (units: days)
TIME 0
!set time step (units: days)
DT 0.11
!seed particles
PART
-250,600,-15
PART
-200,600,-15
PART
-180,600,-15
PART
-160,600,-15
PART
-145,600,-15
PART
-130,600,-15
PART
-115,600,-15
PART
-100,600,-15
PART
-90,600,-15
PART
-80,600,-15
PART
-70,600,-15
PART
-60,600,-15
PART
-50,600,-15
PART
-40,600,-15
PART
-30,600,-15
PART
-20,600,-15
<table>
<thead>
<tr>
<th>PART</th>
<th>PART</th>
<th>PART</th>
<th>PART</th>
</tr>
</thead>
<tbody>
<tr>
<td>-10,600,-15</td>
<td>-115,600,-40</td>
<td>160,600,-40</td>
<td>40,600,-50</td>
</tr>
<tr>
<td>0,600,-15</td>
<td>-100,600,-40</td>
<td>180,600,-40</td>
<td>50,600,-50</td>
</tr>
<tr>
<td>10,600,-15</td>
<td>-90,600,-40</td>
<td>200,600,-40</td>
<td>60,600,-50</td>
</tr>
<tr>
<td>20,600,-15</td>
<td>-80,600,-40</td>
<td>250,600,-40</td>
<td>70,600,-50</td>
</tr>
<tr>
<td>30,600,-15</td>
<td>-70,600,-40</td>
<td>-250,600,-50</td>
<td>80,600,-50</td>
</tr>
<tr>
<td>40,600,-15</td>
<td>-60,600,-40</td>
<td>-200,600,-50</td>
<td>90,600,-50</td>
</tr>
<tr>
<td>50,600,-15</td>
<td>-50,600,-40</td>
<td>-180,600,-50</td>
<td>100,600,-50</td>
</tr>
<tr>
<td>60,600,-15</td>
<td>-40,600,-40</td>
<td>-160,600,-50</td>
<td>115,600,-50</td>
</tr>
<tr>
<td>70,600,-15</td>
<td>-30,600,-40</td>
<td>-145,600,-50</td>
<td>130,600,-50</td>
</tr>
<tr>
<td>80,600,-15</td>
<td>-20,600,-40</td>
<td>-130,600,-50</td>
<td>145,600,-50</td>
</tr>
<tr>
<td>90,600,-15</td>
<td>-10,600,-40</td>
<td>-115,600,-50</td>
<td>160,600,-50</td>
</tr>
<tr>
<td>100,600,-15</td>
<td>0,600,-40</td>
<td>-100,600,-50</td>
<td>180,600,-50</td>
</tr>
<tr>
<td>115,600,-15</td>
<td>10,600,-40</td>
<td>-90,600,-50</td>
<td>200,600,-50</td>
</tr>
<tr>
<td>130,600,-15</td>
<td>20,600,-40</td>
<td>-80,600,-50</td>
<td>250,600,-50</td>
</tr>
<tr>
<td>145,600,-15</td>
<td>30,600,-40</td>
<td>-70,600,-50</td>
<td>250,600,-60</td>
</tr>
<tr>
<td>160,600,-15</td>
<td>40,600,-40</td>
<td>-60,600,-50</td>
<td>-200,600,-60</td>
</tr>
<tr>
<td>180,600,-15</td>
<td>50,600,-40</td>
<td>-50,600,-50</td>
<td>-180,600,-60</td>
</tr>
<tr>
<td>200,600,-15</td>
<td>60,600,-40</td>
<td>-40,600,-50</td>
<td>-160,600,-60</td>
</tr>
<tr>
<td>250,600,-15</td>
<td>70,600,-40</td>
<td>-30,600,-50</td>
<td>-145,600,-60</td>
</tr>
<tr>
<td>-250,600,-40</td>
<td>80,600,-40</td>
<td>-20,600,-50</td>
<td>-130,600,-60</td>
</tr>
<tr>
<td>-200,600,-40</td>
<td>90,600,-40</td>
<td>-10,600,-50</td>
<td>-115,600,-60</td>
</tr>
<tr>
<td>-180,600,-40</td>
<td>100,600,-40</td>
<td>0,600,-50</td>
<td>-100,600,-60</td>
</tr>
<tr>
<td>-160,600,-40</td>
<td>115,600,-40</td>
<td>10,600,-50</td>
<td>-90,600,-60</td>
</tr>
<tr>
<td>-145,600,-40</td>
<td>130,600,-40</td>
<td>20,600,-50</td>
<td>-80,600,-60</td>
</tr>
<tr>
<td>-130,600,-40</td>
<td>145,600,-40</td>
<td>30,600,-50</td>
<td>-70,600,-60</td>
</tr>
</tbody>
</table>

Note: The particle track command file must be entered in one column in order to successfully run the DYNTRACK particle simulation. The command file is presented here in four columns to save paper.
Note: The particle track command file must be entered in one column in order to successfully run the DYNTRACK particle simulation. The command file is presented here in four columns to save paper.
<table>
<thead>
<tr>
<th>PART</th>
<th>PART</th>
<th>PART</th>
<th>PART</th>
</tr>
</thead>
<tbody>
<tr>
<td>-115,600</td>
<td>160,600</td>
<td>40,600</td>
<td>-60,600</td>
</tr>
<tr>
<td>PART</td>
<td>-115</td>
<td>-115</td>
<td>-115</td>
</tr>
<tr>
<td>-100,600</td>
<td>180,600</td>
<td>50,600</td>
<td>-50,600</td>
</tr>
<tr>
<td>PART</td>
<td>-115</td>
<td>-115</td>
<td>-115</td>
</tr>
<tr>
<td>-90,600</td>
<td>200,600</td>
<td>60,600</td>
<td>-40,600</td>
</tr>
<tr>
<td>PART</td>
<td>-115</td>
<td>-115</td>
<td>-115</td>
</tr>
<tr>
<td>-80,600</td>
<td>250,600</td>
<td>70,600</td>
<td>-30,600</td>
</tr>
<tr>
<td>PART</td>
<td>-115</td>
<td>-115</td>
<td>-115</td>
</tr>
<tr>
<td>-70,600</td>
<td>-250,600</td>
<td>80,600</td>
<td>-20,600</td>
</tr>
<tr>
<td>PART</td>
<td>-115</td>
<td>-115</td>
<td>-115</td>
</tr>
<tr>
<td>-60,600</td>
<td>-200,600</td>
<td>90,600</td>
<td>-10,600</td>
</tr>
<tr>
<td>PART</td>
<td>-115</td>
<td>-115</td>
<td>-115</td>
</tr>
<tr>
<td>-50,600</td>
<td>-180,600</td>
<td>100,600</td>
<td>0,600</td>
</tr>
<tr>
<td>PART</td>
<td>-115</td>
<td>-115</td>
<td>-115</td>
</tr>
<tr>
<td>-40,600</td>
<td>-160,600</td>
<td>115,600</td>
<td>10,600</td>
</tr>
<tr>
<td>PART</td>
<td>-115</td>
<td>-115</td>
<td>-115</td>
</tr>
<tr>
<td>-30,600</td>
<td>-145,600</td>
<td>130,600</td>
<td>20,600</td>
</tr>
<tr>
<td>PART</td>
<td>-115</td>
<td>-115</td>
<td>-115</td>
</tr>
<tr>
<td>-20,600</td>
<td>-130,600</td>
<td>145,600</td>
<td>30,600</td>
</tr>
<tr>
<td>PART</td>
<td>-115</td>
<td>-115</td>
<td>-115</td>
</tr>
<tr>
<td>-10,600</td>
<td>-115,600</td>
<td>160,600</td>
<td>40,600</td>
</tr>
<tr>
<td>PART</td>
<td>-115</td>
<td>-115</td>
<td>-115</td>
</tr>
<tr>
<td>0,600</td>
<td>-100,600</td>
<td>180,600</td>
<td>50,600</td>
</tr>
<tr>
<td>PART</td>
<td>-115</td>
<td>-115</td>
<td>-115</td>
</tr>
<tr>
<td>10,600</td>
<td>-90,600</td>
<td>200,600</td>
<td>60,600</td>
</tr>
<tr>
<td>PART</td>
<td>-115</td>
<td>-115</td>
<td>-115</td>
</tr>
<tr>
<td>20,600</td>
<td>-80,600</td>
<td>250,600</td>
<td>70,600</td>
</tr>
<tr>
<td>PART</td>
<td>-115</td>
<td>-115</td>
<td>-115</td>
</tr>
<tr>
<td>30,600</td>
<td>-70,600</td>
<td>-250,600</td>
<td>80,600</td>
</tr>
<tr>
<td>PART</td>
<td>-115</td>
<td>-115</td>
<td>-115</td>
</tr>
<tr>
<td>40,600</td>
<td>-60,600</td>
<td>-200,600</td>
<td>90,600</td>
</tr>
<tr>
<td>PART</td>
<td>-115</td>
<td>-115</td>
<td>-115</td>
</tr>
<tr>
<td>50,600</td>
<td>-50,600</td>
<td>-180,600</td>
<td>100,600</td>
</tr>
<tr>
<td>PART</td>
<td>-115</td>
<td>-115</td>
<td>-115</td>
</tr>
<tr>
<td>60,600</td>
<td>-40,600</td>
<td>-160,600</td>
<td>115,600</td>
</tr>
<tr>
<td>PART</td>
<td>-115</td>
<td>-115</td>
<td>-115</td>
</tr>
<tr>
<td>70,600</td>
<td>-30,600</td>
<td>-145,600</td>
<td>130,600</td>
</tr>
<tr>
<td>PART</td>
<td>-115</td>
<td>-115</td>
<td>-115</td>
</tr>
<tr>
<td>80,600</td>
<td>-20,600</td>
<td>-130,600</td>
<td>145,600</td>
</tr>
<tr>
<td>PART</td>
<td>-115</td>
<td>-115</td>
<td>-115</td>
</tr>
<tr>
<td>90,600</td>
<td>-10,600</td>
<td>-115,600</td>
<td>160,600</td>
</tr>
<tr>
<td>PART</td>
<td>-115</td>
<td>-115</td>
<td>-115</td>
</tr>
<tr>
<td>100,600</td>
<td>-10,600</td>
<td>-115,600</td>
<td>160,600</td>
</tr>
<tr>
<td>PART</td>
<td>-115</td>
<td>-115</td>
<td>-115</td>
</tr>
<tr>
<td>115,600</td>
<td>0,600</td>
<td>-100,600</td>
<td>180,600</td>
</tr>
<tr>
<td>PART</td>
<td>-115</td>
<td>-115</td>
<td>-115</td>
</tr>
<tr>
<td>120,600</td>
<td>10,600</td>
<td>-90,600</td>
<td>200,600</td>
</tr>
<tr>
<td>PART</td>
<td>-115</td>
<td>-115</td>
<td>-115</td>
</tr>
<tr>
<td>130,600</td>
<td>20,600</td>
<td>-80,600</td>
<td>250,600</td>
</tr>
<tr>
<td>PART</td>
<td>-115</td>
<td>-115</td>
<td>-115</td>
</tr>
<tr>
<td>145,600</td>
<td>30,600</td>
<td>-70,600</td>
<td>-250,600</td>
</tr>
</tbody>
</table>

Note: The particle track command file must be entered in one column in order to successfully run the DYNTRACK particle simulation. The command file is presented here in four columns to save paper.
<table>
<thead>
<tr>
<th>PART</th>
<th>PART</th>
<th>PART</th>
<th>PART</th>
</tr>
</thead>
<tbody>
<tr>
<td>-200,600,-170</td>
<td>90,600,-170</td>
<td>-10,600,-180</td>
<td>-115,600,-190</td>
</tr>
<tr>
<td>-180,600,-170</td>
<td>100,600,-170</td>
<td>0,600,-180</td>
<td>-100,600,-190</td>
</tr>
<tr>
<td>-160,600,-170</td>
<td>115,600,-170</td>
<td>10,600,-180</td>
<td>-90,600,-190</td>
</tr>
<tr>
<td>-145,600,-170</td>
<td>130,600,-170</td>
<td>20,600,-180</td>
<td>-80,600,-190</td>
</tr>
<tr>
<td>-130,600,-170</td>
<td>145,600,-170</td>
<td>30,600,-180</td>
<td>-70,600,-190</td>
</tr>
<tr>
<td>-115,600,-170</td>
<td>160,600,-170</td>
<td>40,600,-180</td>
<td>-60,600,-190</td>
</tr>
<tr>
<td>-100,600,-170</td>
<td>180,600,-170</td>
<td>50,600,-180</td>
<td>-50,600,-190</td>
</tr>
<tr>
<td>-90,600,-170</td>
<td>200,600,-170</td>
<td>60,600,-180</td>
<td>-40,600,-190</td>
</tr>
<tr>
<td>-80,600,-170</td>
<td>250,600,-170</td>
<td>70,600,-180</td>
<td>-30,600,-190</td>
</tr>
<tr>
<td>-70,600,-170</td>
<td>-250,600,-180</td>
<td>80,600,-180</td>
<td>-20,600,-190</td>
</tr>
<tr>
<td>-60,600,-170</td>
<td>-200,600,-180</td>
<td>90,600,-180</td>
<td>-10,600,-190</td>
</tr>
<tr>
<td>-50,600,-170</td>
<td>-180,600,-180</td>
<td>100,600,-180</td>
<td>0,600,-190</td>
</tr>
<tr>
<td>-40,600,-170</td>
<td>-160,600,-180</td>
<td>115,600,-180</td>
<td>10,600,-190</td>
</tr>
<tr>
<td>-30,600,-170</td>
<td>-145,600,-180</td>
<td>130,600,-180</td>
<td>20,600,-190</td>
</tr>
<tr>
<td>-20,600,-170</td>
<td>-130,600,-180</td>
<td>145,600,-180</td>
<td>30,600,-190</td>
</tr>
<tr>
<td>-10,600,-170</td>
<td>-115,600,-180</td>
<td>160,600,-180</td>
<td>40,600,-190</td>
</tr>
<tr>
<td>0,600,-170</td>
<td>-100,600,-180</td>
<td>180,600,-180</td>
<td>50,600,-190</td>
</tr>
<tr>
<td>10,600,-170</td>
<td>-90,600,-180</td>
<td>200,600,-180</td>
<td>60,600,-190</td>
</tr>
<tr>
<td>20,600,-170</td>
<td>-80,600,-180</td>
<td>250,600,-180</td>
<td>70,600,-190</td>
</tr>
<tr>
<td>30,600,-170</td>
<td>-70,600,-180</td>
<td>-250,600,-190</td>
<td>80,600,-190</td>
</tr>
<tr>
<td>40,600,-170</td>
<td>-60,600,-180</td>
<td>-200,600,-190</td>
<td>90,600,-190</td>
</tr>
<tr>
<td>50,600,-170</td>
<td>-50,600,-180</td>
<td>-180,600,-190</td>
<td>100,600,-190</td>
</tr>
<tr>
<td>60,600,-170</td>
<td>-40,600,-180</td>
<td>-160,600,-190</td>
<td>115,600,-190</td>
</tr>
<tr>
<td>70,600,-170</td>
<td>-30,600,-180</td>
<td>-145,600,-190</td>
<td>130,600,-190</td>
</tr>
<tr>
<td>80,600,-170</td>
<td>-20,600,-180</td>
<td>-130,600,-190</td>
<td>145,600,-190</td>
</tr>
</tbody>
</table>

Note: The particle track command file must be entered in one column in order to successfully run the DYNTRACK particle simulation. The command file is presented here in four columns to save paper.
PART
160,600,-190
PART
180,600,-190
PART
200,600,-190
PART
250,600,-190

!store particle track in file
RESU 40 SAVE XS1.RES
GOTI 100
GOTI 200
GOTI 300
GOTI 400
GOTI 500
GOTI 600
GOTI 700
GOTI 800
GOTI 900
GOTI 1000
GOTI 1100
GOTI 1200
PRIN
!finish
XRES
XOUT
END
Appendix A.3 Property File Used for DYNTRACK

!dyntrack property file
!prop. no., disp.(long.), disp.(trans.), disp. ratio (vert./horiz.), effect. porosity, retardation
10,0.,0.,0.,0.35,1.00
20,0.,0.,0.,1.00,1.00
Appendix A.4 Command File for DYNTRACK Retreatment Simulations

!COMMAND FILE FOR CIRCULAR PARTICLE TRACKING
!restore the Dynflow file
REST RC1.SAV
!create an output file
OUTP SAVE SPHERE1.OUT FORM
!read the transport property
DPRO READ PROP.DPR
!Turn off dispersion simulation
XDISP
!set radius of capture for well
RADI 10
!set weight of particle
WEIGH 1000
!set starting time (units: days)
TIME 0
!set time step (units: days)
DT 0.042
!seed particles
PART
0.0000,2.0000,-180
PART
0.3473,1.9696,-180
PART
0.6840,1.8794,-180
PART
1.0000,1.7321,-180
PART
1.2856,1.5321,-180
PART
1.5321,1.2856,-180
PART
1.7321,1.0000,-180
PART
1.8794,0.6840,-180
PART
1.9696,0.3473,-180
PART
2.0000,0.0000,-180
PART
1.9696,-0.3437,-180
PART
1.8794,-0.6840,-180
PART
1.7321,-1.0000,-180
PART
1.5321,-1.2856,-180
PART
1.2856,-1.5321,-180
PART
1.0000,-1.7321,-180
<table>
<thead>
<tr>
<th>PART</th>
<th>0.6840,-1.8794,-180</th>
<th>PART</th>
<th>1.5321,1.2856,-175</th>
<th>PART</th>
<th>-1.7321,1.0000,-175</th>
<th>PART</th>
<th>-0.3473,-1.9696,-170</th>
</tr>
</thead>
<tbody>
<tr>
<td>PART</td>
<td>0.3473,-1.9696,-180</td>
<td>PART</td>
<td>1.7321,1.0000,-175</td>
<td>PART</td>
<td>-1.5321,1.2856,-175</td>
<td>PART</td>
<td>-0.6840,-1.8794,-170</td>
</tr>
<tr>
<td>PART</td>
<td>0.0000,-2.0000,-180</td>
<td>PART</td>
<td>1.8794,0.6840,-175</td>
<td>PART</td>
<td>-1.2856,1.5321,-175</td>
<td>PART</td>
<td>-1.0000,-1.7321,-170</td>
</tr>
<tr>
<td>PART</td>
<td>-0.3473,-1.9696,-180</td>
<td>PART</td>
<td>1.9696,0.3473,-175</td>
<td>PART</td>
<td>-1.0000,1.7321,-175</td>
<td>PART</td>
<td>-1.2856,-1.5321,-170</td>
</tr>
<tr>
<td>PART</td>
<td>-0.6840,-1.8794,-180</td>
<td>PART</td>
<td>2.0000,0.0000,-175</td>
<td>PART</td>
<td>-0.6840,1.8794,-175</td>
<td>PART</td>
<td>-1.5321,-1.2856,-170</td>
</tr>
<tr>
<td>PART</td>
<td>-1.0000,-1.7321,-180</td>
<td>PART</td>
<td>1.9696,-0.3473,-175</td>
<td>PART</td>
<td>-0.3473,1.9696,-175</td>
<td>PART</td>
<td>-1.7321,-1.0000,-170</td>
</tr>
<tr>
<td>PART</td>
<td>-1.2856,-1.5321,-180</td>
<td>PART</td>
<td>1.8794,-0.6840,-175</td>
<td>PART</td>
<td>0.0000,2.0000,-170</td>
<td>PART</td>
<td>-1.8794,0.6840,-170</td>
</tr>
<tr>
<td>PART</td>
<td>-1.5321,-1.2856,-180</td>
<td>PART</td>
<td>1.7321,-1.0000,-175</td>
<td>PART</td>
<td>0.3473,1.9696,-170</td>
<td>PART</td>
<td>-1.9696,-0.3473,-170</td>
</tr>
<tr>
<td>PART</td>
<td>-1.7321,-1.0000,-180</td>
<td>PART</td>
<td>1.5321,-1.2856,-175</td>
<td>PART</td>
<td>0.6840,1.8794,-175</td>
<td>PART</td>
<td>-2.0000,0.0000,-170</td>
</tr>
<tr>
<td>PART</td>
<td>-1.8794,-0.6840,-180</td>
<td>PART</td>
<td>1.2856,-1.5321,-175</td>
<td>PART</td>
<td>1.0000,1.7321,-175</td>
<td>PART</td>
<td>-1.9696,0.3473,-170</td>
</tr>
<tr>
<td>PART</td>
<td>-1.9696,-0.3473,-180</td>
<td>PART</td>
<td>1.0000,-1.7321,-175</td>
<td>PART</td>
<td>1.2856,1.5321,-175</td>
<td>PART</td>
<td>-1.8794,0.6840,-170</td>
</tr>
<tr>
<td>PART</td>
<td>-2.0000,0.0000,-180</td>
<td>PART</td>
<td>0.6840,-1.8794,-175</td>
<td>PART</td>
<td>1.5321,1.2856,-175</td>
<td>PART</td>
<td>-1.7321,1.0000,-170</td>
</tr>
<tr>
<td>PART</td>
<td>-1.9696,0.3473,-180</td>
<td>PART</td>
<td>0.3473,-1.9696,-175</td>
<td>PART</td>
<td>1.7321,1.0000,-175</td>
<td>PART</td>
<td>-1.5321,1.2856,-170</td>
</tr>
<tr>
<td>PART</td>
<td>-1.8794,0.6840,-180</td>
<td>PART</td>
<td>0.0000,-2.0000,-175</td>
<td>PART</td>
<td>1.8794,0.6840,-175</td>
<td>PART</td>
<td>-1.0000,1.7321,-170</td>
</tr>
<tr>
<td>PART</td>
<td>-1.7321,1.0000,-180</td>
<td>PART</td>
<td>-0.3473,-1.9696,-175</td>
<td>PART</td>
<td>2.0000,0.0000,-170</td>
<td>PART</td>
<td>-0.6840,1.8794,-170</td>
</tr>
<tr>
<td>PART</td>
<td>-1.5321,1.2856,-180</td>
<td>PART</td>
<td>-0.6840,-1.8794,-175</td>
<td>PART</td>
<td>1.9696,-0.3473,-170</td>
<td>PART</td>
<td>-0.3473,1.9696,-170</td>
</tr>
<tr>
<td>PART</td>
<td>-1.2856,1.5321,-180</td>
<td>PART</td>
<td>-1.0000,-1.7321,-175</td>
<td>PART</td>
<td>1.9696,-0.3473,-170</td>
<td>PART</td>
<td>0.0000,2.0000,-70</td>
</tr>
<tr>
<td>PART</td>
<td>-1.0000,1.7321,-180</td>
<td>PART</td>
<td>-1.2856,-1.5321,-175</td>
<td>PART</td>
<td>1.8794,-0.6840,-170</td>
<td>PART</td>
<td>0.3473,1.9696,-70</td>
</tr>
<tr>
<td>PART</td>
<td>-0.6840,1.8794,-180</td>
<td>PART</td>
<td>-1.5321,1.2856,-175</td>
<td>PART</td>
<td>1.7321,-1.0000,-175</td>
<td>PART</td>
<td>0.6840,1.8794,-70</td>
</tr>
<tr>
<td>PART</td>
<td>-0.3473,1.9696,-180</td>
<td>PART</td>
<td>-1.7321,-1.0000,-175</td>
<td>PART</td>
<td>1.5321,1.2856,-175</td>
<td>PART</td>
<td>0.6840,1.8794,-70</td>
</tr>
<tr>
<td>PART</td>
<td>0.0000,2.0000,-175</td>
<td>PART</td>
<td>-1.8794,-0.6840,-175</td>
<td>PART</td>
<td>1.2856,-1.5321,-175</td>
<td>PART</td>
<td>1.0000,1.7321,-70</td>
</tr>
<tr>
<td>PART</td>
<td>0.3473,1.9696,-175</td>
<td>PART</td>
<td>-1.9696,-0.3473,-175</td>
<td>PART</td>
<td>1.0000,-1.7321,-175</td>
<td>PART</td>
<td>1.2856,1.5321,-70</td>
</tr>
<tr>
<td>PART</td>
<td>0.6840,1.8794,-175</td>
<td>PART</td>
<td>-2.0000,0.0000,-175</td>
<td>PART</td>
<td>0.6840,-1.8794,-175</td>
<td>PART</td>
<td>1.5321,1.2856,-70</td>
</tr>
<tr>
<td>PART</td>
<td>1.0000,1.7321,-175</td>
<td>PART</td>
<td>-1.9696,0.3473,-175</td>
<td>PART</td>
<td>0.3473,-1.9696,-170</td>
<td>PART</td>
<td>1.7321,1.0000,-70</td>
</tr>
<tr>
<td>PART</td>
<td>1.2856,1.5321,-175</td>
<td>PART</td>
<td>1.8794,0.6840,-175</td>
<td>PART</td>
<td>0.0000,-2.0000,-170</td>
<td>PART</td>
<td>1.8794,0.6840,-70</td>
</tr>
</tbody>
</table>

Note: The particle track command file must be entered in one column in order to successfully run the DYNTRACK particle simulation. The command file is presented here in four columns to save paper.
<table>
<thead>
<tr>
<th>PART</th>
<th>PART</th>
<th>PART</th>
<th>PART</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.9696,0.3473,-70</td>
<td>-1.0000,1.7321,-70</td>
<td>-1.2856,-1.5321,-65</td>
<td>1.8794,-0.6840,-70</td>
</tr>
<tr>
<td>2.0000,0.0000,-70</td>
<td>-0.6840,1.8794,-70</td>
<td>-1.5321,-1.2856,-65</td>
<td>1.7321,-1.0000,-60</td>
</tr>
<tr>
<td>1.9696,-0.3473,-70</td>
<td>-0.3473,1.9696,-70</td>
<td>-1.7321,-1.0000,-65</td>
<td>1.5321,-1.2856,-65</td>
</tr>
<tr>
<td>1.8794,-0.6840,-70</td>
<td>0.0000,2.0000,-65</td>
<td>-1.8794,-0.6840,-65</td>
<td>1.2856,-1.5321,-65</td>
</tr>
<tr>
<td>1.7321,-1.0000,-70</td>
<td>0.3473,1.9696,-65</td>
<td>-1.9696,-0.3473,-65</td>
<td>1.0000,-1.7321,-60</td>
</tr>
<tr>
<td>1.5321,-1.2856,-70</td>
<td>0.6840,1.8794,-65</td>
<td>-2.0000,0.0000,-65</td>
<td>0.6840,-1.8794,-60</td>
</tr>
<tr>
<td>1.2856,-1.5321,-70</td>
<td>1.0000,1.7321,-65</td>
<td>-1.9696,0.3473,-65</td>
<td>0.3473,1.9696,-60</td>
</tr>
<tr>
<td>1.0000,-1.7321,-70</td>
<td>1.2856,1.5321,-65</td>
<td>-1.8794,0.6840,-65</td>
<td>0.0000,-2.0000,-60</td>
</tr>
<tr>
<td>0.6840,-1.8794,-70</td>
<td>1.5321,1.2856,-65</td>
<td>-1.7321,1.0000,-65</td>
<td>-0.3473,1.9696,-60</td>
</tr>
<tr>
<td>0.3473,-1.9696,-70</td>
<td>1.7321,1.0000,-65</td>
<td>-1.5321,1.2856,-65</td>
<td>-0.6840,-1.8794,-60</td>
</tr>
<tr>
<td>0.0000,-2.0000,-70</td>
<td>1.8794,0.6840,-65</td>
<td>-1.2856,1.5321,-65</td>
<td>-1.0000,-1.7321,-60</td>
</tr>
<tr>
<td>Part</td>
<td>Part</td>
<td>Part</td>
<td>Part</td>
</tr>
<tr>
<td>-0.3473,1.9696,-70</td>
<td>1.9696,0.3473,-65</td>
<td>-1.0000,1.7321,-65</td>
<td>-1.2856,-1.5321,-65</td>
</tr>
<tr>
<td>-0.6840,1.8794,-70</td>
<td>2.0000,0.0000,-65</td>
<td>-0.6840,1.8794,-65</td>
<td>-1.5321,-1.2856,-65</td>
</tr>
<tr>
<td>-1.0000,-1.7321,-70</td>
<td>1.9696,-0.3437,-65</td>
<td>-0.3473,1.9696,-65</td>
<td>-1.7321,-1.0000,-60</td>
</tr>
<tr>
<td>-1.2856,-1.5321,-70</td>
<td>1.8794,0.6840,-65</td>
<td>0.0000,2.0000,-60</td>
<td>-1.8794,-0.6840,-60</td>
</tr>
<tr>
<td>-1.5321,-1.2856,-70</td>
<td>1.7321,-1.0000,-65</td>
<td>0.3473,1.9696,-60</td>
<td>-1.9696,-0.3473,-60</td>
</tr>
<tr>
<td>-1.7321,-1.0000,-70</td>
<td>1.5321,-1.2856,-65</td>
<td>0.6840,1.8794,-60</td>
<td>-2.0000,0.0000,-60</td>
</tr>
<tr>
<td>-1.8794,-0.6840,-70</td>
<td>1.2856,-1.5321,-65</td>
<td>1.0000,1.7321,-60</td>
<td>-1.9696,0.3473,-60</td>
</tr>
<tr>
<td>-1.9696,-0.3473,-70</td>
<td>1.0000,1.7321,-65</td>
<td>1.2856,1.5321,-60</td>
<td>-1.8794,0.6840,-60</td>
</tr>
<tr>
<td>-2.0000,0.0000,-70</td>
<td>0.6840,1.8794,-65</td>
<td>1.5321,1.2856,-60</td>
<td>-1.9696,0.3473,-60</td>
</tr>
<tr>
<td>-1.9696,0.3473,-70</td>
<td>0.3473,1.9696,-65</td>
<td>1.7321,1.0000,-60</td>
<td>-2.0000,0.0000,-60</td>
</tr>
<tr>
<td>-1.8794,0.6840,-70</td>
<td>0.0000,-2.0000,-65</td>
<td>1.8794,0.6840,-60</td>
<td>-1.9696,0.3473,-60</td>
</tr>
<tr>
<td>-1.7321,1.0000,-70</td>
<td>-0.3473,1.9696,-65</td>
<td>1.9696,0.3473,-60</td>
<td>-1.0000,1.7321,-60</td>
</tr>
<tr>
<td>-1.5321,1.2856,-70</td>
<td>-0.6840,1.8794,-65</td>
<td>2.0000,0.0000,-60</td>
<td>-0.6840,1.8794,-60</td>
</tr>
<tr>
<td>-1.2856,1.5321,-70</td>
<td>-1.0000,-1.7321,-65</td>
<td>1.9696,0.3473,-60</td>
<td>-0.3473,1.9696,-60</td>
</tr>
</tbody>
</table>

Note: The particle track command file must be entered in one column in order to successfully run the DYNTRACK particle simulation. The command file is presented here in four columns to save paper.
!store particle track in file
RESU 25 SAVE SPHERE1.RES
GOTI 25
GOTI 50
GOTI 75
GOTI 100
GOTI 125
GOTI 150
GOTI 175
GOTI 200
PRIN
!!finish
XRES
XOUT
END
Appendix A.5 DYNPLOT Graphical Output of Capture Zone for Design Pumping Rate
Figure A5-3: Water Table Simulation
Pumping Rate - 88 gpm
Water Table Elevation - 75 ft. asl
Massachusetts Military Reservation

Recirculating Well Technology
Masters of Engineering Thesis
Appendix A.6 DYNPLOT Graphical Output of Capture Zone for Different Pumping Rates
Figure A6-1: Capture Zone Simulation
Pumping Rate - 25 gpm
Water Table Elevation - 35 ft. asl
Massachusetts Military Reservation
Recirculating Well Technology
Masters of Engineering Thesis
Figure A6-2: Capture Zone Simulation

Pumping Rate - 50 gpm
Water Table Elevation - 33 ft. asl
Massachusetts Military Reservation

Recirculating Well Technology
Masters of Engineering Thesis
Figure A6-3: Capture Zone Simulation
Pumping Rate - 75 gpm
Water Table Elevation - 35 ft. asl
Massachusetts Military Reservation

RW Recirculating Well Technology
Masters of Engineering Thesis
Figure A6-4: Capture Zone Simulation
Pumping Rate - 100 gpm
Water Table Elevation - 35 ft. asl
Massachusetts Military Reservation

Recirculating Well Technology
Masters of Engineering Thesis
Figure A6-5: Capture Zone Simulation
Pumping Rate - 125 gpm
Water Table Elevation - 35 ft. asl
Massachusetts Military Reservation
Recirculating Well Technology Masters of Engineering Thesis
Figure A6-6: Capture Zone Simulation
Pumping Rate - 150 gpm
Water Table Elevation - 35 ft. asl
Massachusetts Military Reservation

Recirculating Well Technology
Masters of Engineering Thesis
Figure A6-7: Capture Zone Simulation
Pumping Rate - 175 gpm
Water Table Elevation - 33 ft. asl
Massachusetts Military Reservation

Recirculating Well Technology
Masters of Engineering Thesis
Figure A6-8: Capture Zone Simulation
Pumping Rate - 200 gpm
Water Table Elevation - 35 ft. asl
Massachusetts Military Reservation

Recirculating Well Technology
Masters of Engineering Thesis
Figure A6-9: Capture Zone Simulation
Pumping Rate - 250 gpm
Water Table Elevation - 35 ft. asl
Massachusetts Military Reservation
Recirculating Well Technology
Masters of Engineering Thesis
Figure A6-10: Capture Zone Simulation
Pumping Rate - 300 gpm
Water Table Elevation - 35 ft. asl
Massachusetts Military Reservation

Recirculating Well Technology
Masters of Engineering Thesis
Appendix A.7 DYNPLOT Graphical Output of Recirculating Zone for Different Pumping Rates
Figure A7-1: Recirculated Particle Simulation

Pumping Rate - 25 gpm
Water Table Elevation - 35 ft. asl
Massachusetts Military Reservation

RW Recirculating Well Technology
Masters of Engineering Thesis
Recirculating Well Technology
Masters of Engineering Thesis
Massachusetts Military Reservation

Figure A.7.2: Recirculated Particle Simulation
Pumping Rate - 50 gpm
Water Table Elevation - 35 ft. ad

Recirculating Well
Within 10.0 ft.
Ground Surface
Top of Screen
Bottom of Screen

Cross Section AA
Figure A7-3: Recirculated Particle Simulation
Pumping Rate - 75 gpm
Water Table Elevation - 35 ft. asl
Massachusetts Military Reservation

Recirculating Well Technology
Masters of Engineering Thesis
Figure A7-4: Recirculated Particle Simulation
Pumping Rate - 88 gpm
Water Table Elevation - 35 ft. asl
Massachusetts Military Reservation

Recirculating Well Technology
Masters of Engineering Thesis
Figure A7-5: Recirculated Particle Simulation
Pumping Rate - 100 gpm
Water Table Elevation - 35 ft. asl
Massachusetts Military Reservation

Recirculating Well Technology
Masters of Engineering Thesis
Figure A7-6: Recirculated Particle Simulation

Pumping Rate - 125 gpm
Water Table Elevation - 35 ft. asl
Massachusetts Military Reservation

Recirculating Well Technology
Masters of Engineering Thesis
Figure A7-7: Recirculated Particle Simulation

- Pumping Rate - 150 gpm
- Water Table Elevation - 35 ft. asl
- Massachusetts Military Reservation

RW
Recirculating Well Technology
Masters of Engineering Thesis
Figure A7-8: Recirculated Particle Simulation
Pumping Rate - 175 gpm
Water Table Elevation - 35 ft. asl
Massachusetts Military Reservation

Recirculating Well Technology
Masters of Engineering Thesis
Figure A7-9: Recirculated Particle Simulation
Pumping Rate - 200 gpm
Water Table Elevation - 35 ft. asl
Massachusetts Military Reservation

Recirculating Well Technology
Masters of Engineering Thesis
Figure A7-10: Recirculated Particle Simulation
Pumping Rate - 250 gpm
Water Table Elevation - 35 ft. asl
Massachusetts Military Reservation

Recirculating Well Technology
Masters of Engineering Thesis
Figure A7-11: Recirculated Particle Simulation
Pumping Rate - 300 gpm
Water Table Elevation - 35 ft. asl
Massachusetts Military Reservation

Recirculating Well Technology
Masters of Engineering Thesis
APPENDIX B: MODEL INPUT AND COMMAND FILES FOR EG&G ENVIRONMENTAL, INC.
Appendix B.1 Command File for DYNFLOW

!create output file of session
OUTP DYN1.OUT
!read plan view finite element grid
GRID READ GRID.GRF FORM
!set number of levels
LEVEL 19
!set a rising head boundary condition for all nodes in level 19 (water table elev. to stop
!the head from rising above this level
RISI LEVEL 19
!set z-coordinates for each node/level
ELEV -190. LEVEL 1
ELEV -180. LEVEL 2
ELEV -160. LEVEL 3
ELEV -155. LEVEL 4
ELEV -150. LEVEL 5
ELEV -145. LEVEL 6
ELEV -140. LEVEL 7
ELEV -135 LEVEL 8
ELEV -117.5 LEVEL 9
ELEV -100. LEVEL 10
ELEV -95. LEVEL 11
ELEV -90. LEVEL 12
ELEV -85. LEVEL 13
ELEV -80. LEVEL 14
ELEV -75. LEVEL 15
ELEV -65. LEVEL 16
ELEV 0. LEVEL 17
ELEV 30. LEVEL 18
ELEV 80. LEVEL 19
!fix nodes upgradient and downgradient of well
FIX NODE 901 - 916 level all
FIX NODE 476 - 482 level all
FIX NODE 532 - 539 level all
FIX NODE 781 - 784 level all
!set initial head value for all nodes
INIT 35.
!fix head boundaries upgradient and downgradient of well (overall 0.0014 ft./ft. head drop)
INIT 34.4 NODE 476 - 482 level all
INIT 34.4 NODE 532 - 539 level all
INIT 34.4 NODE 781 - 784 level all
INIT 36.1 NODE 901 - 916 level all
!define materials from bottom of plume to water table elev. - here only 1 type, fine to
!coarse grained sand
ELEM 310 LAYER 1 - 18
!specify pumping rate of well
FLUX -9626. NODE 1 LEVEL 4
FLUX -9626. NODE 1 LEVEL 5
FLUX -9626. NODE 1 LEVEL 6
FLUX -9626. NODE 1 LEVEL 7
FLUX 9626. NODE 1 LEVEL 11
FLUX 9626. NODE 1 LEVEL 12
FLUX 9626. NODE 1 LEVEL 13
FLUX 9626. NODE 1 LEVEL 14
!define areas of 1-D elements/node (screened intervals)
ONED 120 NODE 1 1 LEVEL 4 5
ONED 120 NODE 1 1 LEVEL 5 6
ONED 120 NODE 1 1 LEVEL 6 7
ONED 120 NODE 1 1 LEVEL 11 12
ONED 120 NODE 1 1 LEVEL 12 13
ONED 120 NODE 1 1 LEVEL 13 14
!specify recharge rate (ft/d)
RECH .0044 ELEM ALL
!define following properties of 1-d elements: #, K, Ss, Sy
PROP
20, 10000000., 0., 1.
!define following properties of material: #, Kx (ft/d), Ky, Kz, Ss, Sy
PROP
10, 297.2, 297.2, 59.53, .00001, .07
iter 10
goti
!save to file
SAVE RC1.SAV
XOUT
XCFI
Appendix B.2 Command File for DYNTRACK Capture Zone Simulations

!COMMAND FILE FOR CROSS-SECTIONAL PARTICLE TRACKING
!restore the Dynflow file
REST RC1.SAV
!create an output file
OUTP SAVE XS1.OUT FORM
!read the transport property
DPRO READ PROP.DPR
!Turn off dispersion simulation
XDISP
!set radius of capture for well
RADI 20
!set weight of particle
WEIGH 1000
!set starting time (units: days)
TIME 0
!set time step (units: days)
DT 0.3
!seed particles
PART
-300,600,-15
PART
-275,600,-15
PART
-250,600,-15
PART
-225,600,-15
PART
-200,600,-15
PART
-180,600,-15
PART
-160,600,-15
PART
-145,600,-15
PART
-130,600,-15
PART
-115,600,-15
PART
-100,600,-15
PART
-90,600,-15
PART
-80,600,-15
PART
-70,600,-15
PART
-60,600,-15
PART
-50,600,-15
<table>
<thead>
<tr>
<th>PART</th>
<th>PART</th>
<th>PART</th>
<th>PART</th>
</tr>
</thead>
<tbody>
<tr>
<td>-40,600,-15</td>
<td>-300,600,-40</td>
<td>50,600,-40</td>
<td>-115,600,-50</td>
</tr>
<tr>
<td>PART</td>
<td>PART</td>
<td>PART</td>
<td>PART</td>
</tr>
<tr>
<td>-30,600,-15</td>
<td>-275,600,-40</td>
<td>60,600,-40</td>
<td>-100,600,-50</td>
</tr>
<tr>
<td>PART</td>
<td>PART</td>
<td>PART</td>
<td>PART</td>
</tr>
<tr>
<td>-20,600,-15</td>
<td>-250,600,-40</td>
<td>70,600,-40</td>
<td>-90,600,-50</td>
</tr>
<tr>
<td>PART</td>
<td>PART</td>
<td>PART</td>
<td>PART</td>
</tr>
<tr>
<td>-10,600,-15</td>
<td>-225,600,-40</td>
<td>80,600,-40</td>
<td>-80,600,-50</td>
</tr>
<tr>
<td>PART</td>
<td>PART</td>
<td>PART</td>
<td>PART</td>
</tr>
<tr>
<td>0,600,-15</td>
<td>-200,600,-40</td>
<td>90,600,-40</td>
<td>-70,600,-50</td>
</tr>
<tr>
<td>PART</td>
<td>PART</td>
<td>PART</td>
<td>PART</td>
</tr>
<tr>
<td>10,600,-15</td>
<td>-180,600,-40</td>
<td>100,600,-40</td>
<td>-60,600,-50</td>
</tr>
<tr>
<td>PART</td>
<td>PART</td>
<td>PART</td>
<td>PART</td>
</tr>
<tr>
<td>20,600,-15</td>
<td>-160,600,-40</td>
<td>115,600,-40</td>
<td>-50,600,-50</td>
</tr>
<tr>
<td>PART</td>
<td>PART</td>
<td>PART</td>
<td>PART</td>
</tr>
<tr>
<td>30,600,-15</td>
<td>-145,600,-40</td>
<td>130,600,-40</td>
<td>-40,600,-50</td>
</tr>
<tr>
<td>PART</td>
<td>PART</td>
<td>PART</td>
<td>PART</td>
</tr>
<tr>
<td>40,600,-15</td>
<td>-130,600,-40</td>
<td>145,600,-40</td>
<td>-30,600,-50</td>
</tr>
<tr>
<td>PART</td>
<td>PART</td>
<td>PART</td>
<td>PART</td>
</tr>
<tr>
<td>50,600,-15</td>
<td>-115,600,-40</td>
<td>160,600,-40</td>
<td>-20,600,-50</td>
</tr>
<tr>
<td>PART</td>
<td>PART</td>
<td>PART</td>
<td>PART</td>
</tr>
<tr>
<td>60,600,-15</td>
<td>-100,600,-40</td>
<td>180,600,-40</td>
<td>-10,600,-50</td>
</tr>
<tr>
<td>PART</td>
<td>PART</td>
<td>PART</td>
<td>PART</td>
</tr>
<tr>
<td>70,600,-15</td>
<td>-90,600,-40</td>
<td>200,600,-40</td>
<td>0,600,-50</td>
</tr>
<tr>
<td>PART</td>
<td>PART</td>
<td>PART</td>
<td>PART</td>
</tr>
<tr>
<td>80,600,-15</td>
<td>-80,600,-40</td>
<td>225,600,-40</td>
<td>10,600,-50</td>
</tr>
<tr>
<td>PART</td>
<td>PART</td>
<td>PART</td>
<td>PART</td>
</tr>
<tr>
<td>90,600,-15</td>
<td>-70,600,-40</td>
<td>250,600,-40</td>
<td>20,600,-50</td>
</tr>
<tr>
<td>PART</td>
<td>PART</td>
<td>PART</td>
<td>PART</td>
</tr>
<tr>
<td>100,600,-15</td>
<td>-60,600,-40</td>
<td>275,600,-40</td>
<td>30,600,-50</td>
</tr>
<tr>
<td>PART</td>
<td>PART</td>
<td>PART</td>
<td>PART</td>
</tr>
<tr>
<td>115,600,-15</td>
<td>-50,600,-40</td>
<td>300,600,-40</td>
<td>40,600,-50</td>
</tr>
<tr>
<td>PART</td>
<td>PART</td>
<td>PART</td>
<td>PART</td>
</tr>
<tr>
<td>130,600,-15</td>
<td>-40,600,-40</td>
<td>-300,600,-50</td>
<td>50,600,-50</td>
</tr>
<tr>
<td>PART</td>
<td>PART</td>
<td>PART</td>
<td>PART</td>
</tr>
<tr>
<td>145,600,-15</td>
<td>-30,600,-40</td>
<td>-275,600,-50</td>
<td>60,600,-50</td>
</tr>
<tr>
<td>PART</td>
<td>PART</td>
<td>PART</td>
<td>PART</td>
</tr>
<tr>
<td>160,600,-15</td>
<td>-20,600,-40</td>
<td>-250,600,-50</td>
<td>70,600,-50</td>
</tr>
<tr>
<td>PART</td>
<td>PART</td>
<td>PART</td>
<td>PART</td>
</tr>
<tr>
<td>180,600,-15</td>
<td>-10,600,-40</td>
<td>-225,600,-50</td>
<td>80,600,-50</td>
</tr>
<tr>
<td>PART</td>
<td>PART</td>
<td>PART</td>
<td>PART</td>
</tr>
<tr>
<td>200,600,-15</td>
<td>0,600,-40</td>
<td>-200,600,-50</td>
<td>90,600,-50</td>
</tr>
<tr>
<td>PART</td>
<td>PART</td>
<td>PART</td>
<td>PART</td>
</tr>
<tr>
<td>225,600,-15</td>
<td>10,600,-40</td>
<td>-180,600,-50</td>
<td>100,600,-50</td>
</tr>
<tr>
<td>PART</td>
<td>PART</td>
<td>PART</td>
<td>PART</td>
</tr>
<tr>
<td>250,600,-15</td>
<td>20,600,-40</td>
<td>-160,600,-50</td>
<td>115,600,-50</td>
</tr>
<tr>
<td>PART</td>
<td>PART</td>
<td>PART</td>
<td>PART</td>
</tr>
<tr>
<td>275,600,-15</td>
<td>30,600,-40</td>
<td>-145,600,-50</td>
<td>130,600,-50</td>
</tr>
<tr>
<td>PART</td>
<td>PART</td>
<td>PART</td>
<td>PART</td>
</tr>
<tr>
<td>300,600,-15</td>
<td>40,600,-40</td>
<td>-130,600,-50</td>
<td>145,600,-50</td>
</tr>
</tbody>
</table>

Note: The particle track command file must be entered in one column in order to successfully run the DYNTRACK particle simulation. The command file is presented here in four columns to save paper.
<table>
<thead>
<tr>
<th>PART</th>
<th>PART</th>
<th>PART</th>
<th>PART</th>
</tr>
</thead>
<tbody>
<tr>
<td>160,600,-50</td>
<td>-20,600,-60</td>
<td>-250,600,-70</td>
<td>70,600,-70</td>
</tr>
<tr>
<td>180,600,-50</td>
<td>-10,600,-60</td>
<td>-225,600,-70</td>
<td>80,600,-70</td>
</tr>
<tr>
<td>200,600,-50</td>
<td>0,600,-60</td>
<td>-200,600,-70</td>
<td>90,600,-70</td>
</tr>
<tr>
<td>225,600,-50</td>
<td>10,600,-60</td>
<td>-180,600,-70</td>
<td>100,600,-70</td>
</tr>
<tr>
<td>250,600,-50</td>
<td>20,600,-60</td>
<td>-160,600,-70</td>
<td>115,600,-70</td>
</tr>
<tr>
<td>275,600,-50</td>
<td>30,600,-60</td>
<td>-145,600,-70</td>
<td>130,600,-70</td>
</tr>
<tr>
<td>300,600,-50</td>
<td>40,600,-60</td>
<td>-130,600,-70</td>
<td>145,600,-70</td>
</tr>
<tr>
<td>-300,600,-60</td>
<td>50,600,-60</td>
<td>-115,600,-70</td>
<td>160,600,-70</td>
</tr>
<tr>
<td>-275,600,-60</td>
<td>60,600,-60</td>
<td>-100,600,-70</td>
<td>180,600,-70</td>
</tr>
<tr>
<td>-250,600,-60</td>
<td>70,600,-60</td>
<td>-90,600,-70</td>
<td>200,600,-70</td>
</tr>
<tr>
<td>-225,600,-60</td>
<td>80,600,-60</td>
<td>-80,600,-70</td>
<td>225,600,-70</td>
</tr>
<tr>
<td>-200,600,-60</td>
<td>90,600,-60</td>
<td>-70,600,-70</td>
<td>250,600,-70</td>
</tr>
<tr>
<td>-180,600,-60</td>
<td>100,600,-60</td>
<td>-60,600,-70</td>
<td>275,600,-70</td>
</tr>
<tr>
<td>-160,600,-60</td>
<td>115,600,-60</td>
<td>-50,600,-70</td>
<td>300,600,-70</td>
</tr>
<tr>
<td>-145,600,-60</td>
<td>130,600,-60</td>
<td>-40,600,-70</td>
<td>-300,600,-80</td>
</tr>
<tr>
<td>-130,600,-60</td>
<td>145,600,-60</td>
<td>-30,600,-70</td>
<td>-275,600,-80</td>
</tr>
<tr>
<td>-115,600,-60</td>
<td>160,600,-60</td>
<td>-20,600,-70</td>
<td>-250,600,-80</td>
</tr>
<tr>
<td>-100,600,-60</td>
<td>180,600,-60</td>
<td>-10,600,-70</td>
<td>-225,600,-80</td>
</tr>
<tr>
<td>-90,600,-60</td>
<td>200,600,-60</td>
<td>0,600,-70</td>
<td>-200,600,-80</td>
</tr>
<tr>
<td>-80,600,-60</td>
<td>225,600,-60</td>
<td>10,600,-70</td>
<td>-180,600,-80</td>
</tr>
<tr>
<td>-70,600,-60</td>
<td>250,600,-60</td>
<td>20,600,-70</td>
<td>-160,600,-80</td>
</tr>
<tr>
<td>-60,600,-60</td>
<td>275,600,-60</td>
<td>30,600,-70</td>
<td>-145,600,-80</td>
</tr>
<tr>
<td>-50,600,-60</td>
<td>300,600,-60</td>
<td>40,600,-70</td>
<td>-130,600,-80</td>
</tr>
<tr>
<td>-40,600,-60</td>
<td>-300,600,-70</td>
<td>50,600,-70</td>
<td>-115,600,-80</td>
</tr>
<tr>
<td>-30,600,-60</td>
<td>-275,600,-70</td>
<td>60,600,-70</td>
<td>-100,600,-80</td>
</tr>
</tbody>
</table>

Note: The particle track command file must be entered in one column in order to successfully run the DYNTRACK particle simulation. The command file is presented here in four columns to save paper.
PART 0 -90,600,-80 0,600,-90 -200,600,-115
PART -90,600,-80 200,600,-80 PART PART
PART -80,600,-80 225,600,-80 10,600,-90 -180,600,-115
PART -70,600,-80 250,600,-80 20,600,-90 -160,600,-115
PART -60,600,-80 275,600,-80 30,600,-90 -145,600,-115
PART -50,600,-80 300,600,-80 40,600,-90 -130,600,-115
PART -40,600,-80 300,600,-90 50,600,-90 -115,600,-115
PART -30,600,-80 275,600,-90 60,600,-90 -100,600,-115
PART -20,600,-80 250,600,-90 70,600,-90 -90,600,-115
PART -10,600,-80 225,600,-90 80,600,-90 -80,600,-115
PART 0,600,-80 200,600,-90 90,600,-90 -70,600,-115
PART 10,600,-80 180,600,-90 100,600,-90 -60,600,-115
PART 20,600,-80 160,600,-90 115,600,-90 -50,600,-115
PART 30,600,-80 145,600,-90 130,600,-90 -40,600,-115
PART 40,600,-80 130,600,-90 145,600,-90 -30,600,-115
PART 50,600,-80 115,600,-90 160,600,-90 -20,600,-115
PART 60,600,-80 100,600,-90 180,600,-90 -10,600,-115
PART 70,600,-80 90,600,-90 200,600,-90 0,600,-115
PART 80,600,-80 80,600,-90 225,600,-90 10,600,-115
PART 90,600,-80 70,600,-90 250,600,-90 20,600,-115
PART 100,600,-80 60,600,-90 275,600,-90 30,600,-115
PART 115,600,-80 50,600,-90 300,600,-90 40,600,-115
PART 130,600,-80 40,600,-90 300,600,-115 50,600,-115
PART 145,600,-80 30,600,-90 -275,600,-115 60,600,-115
PART 160,600,-80 20,600,-90 -250,600,-115 70,600,-115
PART 180,600,-80 10,600,-90 -225,600,-115 80,600,-115

Note: The particle track command file must be entered in one column in order to successfully run the DYNTRACK particle simulation. The command file is presented here in four columns to save paper.
Note: The particle track command file must be entered in one column in order to successfully run the DYNTRACK particle simulation. The command file is presented here in four columns to save paper.
<table>
<thead>
<tr>
<th>PART</th>
<th>PART</th>
<th>PART</th>
<th>PART</th>
</tr>
</thead>
<tbody>
<tr>
<td>-160,600</td>
<td>-50,600</td>
<td>300,600</td>
<td></td>
</tr>
<tr>
<td>-145,600</td>
<td>-40,600</td>
<td>300,600</td>
<td></td>
</tr>
<tr>
<td>-130,600</td>
<td>-30,600</td>
<td>275,600</td>
<td></td>
</tr>
<tr>
<td>-115,600</td>
<td>-20,600</td>
<td>250,600</td>
<td></td>
</tr>
<tr>
<td>-100,600</td>
<td>-10,600</td>
<td>225,600</td>
<td></td>
</tr>
<tr>
<td>-90,600</td>
<td>0,600</td>
<td>200,600</td>
<td></td>
</tr>
<tr>
<td>-80,600</td>
<td>10,600</td>
<td>180,600</td>
<td></td>
</tr>
<tr>
<td>-70,600</td>
<td>20,600</td>
<td>160,600</td>
<td></td>
</tr>
<tr>
<td>-60,600</td>
<td>30,600</td>
<td>145,600</td>
<td></td>
</tr>
<tr>
<td>-50,600</td>
<td>40,600</td>
<td>130,600</td>
<td></td>
</tr>
<tr>
<td>-40,600</td>
<td>50,600</td>
<td>115,600</td>
<td></td>
</tr>
<tr>
<td>-30,600</td>
<td>60,600</td>
<td>100,600</td>
<td></td>
</tr>
<tr>
<td>-20,600</td>
<td>70,600</td>
<td>90,600</td>
<td></td>
</tr>
<tr>
<td>-10,600</td>
<td>80,600</td>
<td>80,600</td>
<td></td>
</tr>
<tr>
<td>0,600</td>
<td>90,600</td>
<td>70,600</td>
<td></td>
</tr>
<tr>
<td>10,600</td>
<td>100,600</td>
<td>60,600</td>
<td></td>
</tr>
<tr>
<td>20,600</td>
<td>115,600</td>
<td>50,600</td>
<td></td>
</tr>
<tr>
<td>30,600</td>
<td>130,600</td>
<td>40,600</td>
<td></td>
</tr>
<tr>
<td>40,600</td>
<td>145,600</td>
<td>30,600</td>
<td></td>
</tr>
<tr>
<td>50,600</td>
<td>160,600</td>
<td>20,600</td>
<td></td>
</tr>
<tr>
<td>60,600</td>
<td>180,600</td>
<td>10,600</td>
<td></td>
</tr>
<tr>
<td>70,600</td>
<td>200,600</td>
<td>0,600</td>
<td></td>
</tr>
<tr>
<td>80,600</td>
<td>225,600</td>
<td>10,600</td>
<td></td>
</tr>
<tr>
<td>90,600</td>
<td>250,600</td>
<td>20,600</td>
<td></td>
</tr>
<tr>
<td>100,600</td>
<td>275,600</td>
<td>30,600</td>
<td></td>
</tr>
</tbody>
</table>

Note: The particle track command file must be entered in one column in order to successfully run the DYNTRACK particle simulation. The command file is presented here in four columns to save paper.
Note: The particle track command file must be entered in one column in order to successfully run the DYNTRACK particle simulation. The command file is presented here in four columns to save paper.
Appendix B.3 Property File Used for DYNTRACK

!dyntrack property file
!prop. no., disp.(long.), disp.(trans.), disp. ratio (vert./horiz.), effect. porosity, retardation
10,0.,0.,0.,0.35,1.00
20,0.,0.,0.,1.00,1.00
Appendix B.4 Command File for DYNTRACK Retreatment Simulations

!COMMAND FILE FOR CIRCULAR PARTICLE TRACKING
!restore the Dynflow file
REST RC1.SAV
!create an output file
OUTP SAVE SPHERE1.OUT FORM
!read the transport property
DPRO READ PROP.DPR
!Turn off dispersion simulation
XDISP
!set radius of capture for well
RADI 10
!set weight of particle
WEIGH 1000
!set starting time (units: days)
TIME 0
!set time step (units: days)
DT 0.042
!seed particles
PART
0.0000,2.0000,-95
PART
0.3473,1.9696,-95
PART
0.6840,1.8794,-95
PART
1.0000,1.7321,-95
PART
1.2856,1.5321,-95
PART
1.5321,1.2856,-95
PART
1.8794,1.0000,-95
PART
1.8794,0.6840,-95
PART
1.9696,0.3473,-95
PART
2.0000,0.0000,-95
PART
1.9696,-0.3437,-95
PART
1.8794,-0.6840,-95
PART
1.7321,-1.0000,-95
PART
1.5321,-1.2856,-95
PART
1.2856,-1.5321,-95
PART
1.0000,-1.7321,-95
Note: The particle track command file must be entered in one column in order to successfully run the DYNTRACK particle simulation. The command file is presented here in four columns to save paper.
<table>
<thead>
<tr>
<th>PART</th>
<th>PART</th>
<th>PART</th>
<th>PART</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.9696,0.3473,-80</td>
<td>1.0000,-1.7321,-80</td>
<td>-1.2856,-1.5321,-80</td>
<td>-1.8794,0.6840,-80</td>
</tr>
<tr>
<td>PART</td>
<td>PART</td>
<td>PART</td>
<td>PART</td>
</tr>
<tr>
<td>2.0000,0.0000,-80</td>
<td>0.6840,-1.8794,-80</td>
<td>-1.5321,-1.2856,-80</td>
<td>-1.7321,1.0000,-80</td>
</tr>
<tr>
<td>PART</td>
<td>PART</td>
<td>PART</td>
<td>PART</td>
</tr>
<tr>
<td>1.9696,-0.3437,-80</td>
<td>0.3473,-1.9696,-80</td>
<td>-1.7321,-1.0000,-80</td>
<td>-1.5321,1.2856,-80</td>
</tr>
<tr>
<td>PART</td>
<td>PART</td>
<td>PART</td>
<td>PART</td>
</tr>
<tr>
<td>1.8794,-0.6840,-80</td>
<td>0.0000,-2.0000,-80</td>
<td>-1.8794,-0.6840,-80</td>
<td>-1.2856,1.5321,-80</td>
</tr>
<tr>
<td>PART</td>
<td>PART</td>
<td>PART</td>
<td>PART</td>
</tr>
<tr>
<td>1.7321,-1.0000,-80</td>
<td>-0.3473,-1.9696,-80</td>
<td>-1.9696,-0.3473,-80</td>
<td>-1.0000,1.7321,-80</td>
</tr>
<tr>
<td>PART</td>
<td>PART</td>
<td>PART</td>
<td>PART</td>
</tr>
<tr>
<td>1.5321,-1.2856,-80</td>
<td>-0.6840,-1.8794,-80</td>
<td>-2.0000,0.0000,-80</td>
<td>-0.6840,1.8794,-80</td>
</tr>
<tr>
<td>PART</td>
<td>PART</td>
<td>PART</td>
<td>PART</td>
</tr>
<tr>
<td>1.2856,-1.5321,-80</td>
<td>-1.0000,-1.7321,-80</td>
<td>-1.9696,0.3473,-80</td>
<td>-0.3473,1.9696,-80</td>
</tr>
</tbody>
</table>

!store particle track in file
RESU 25 SAVE SPHERE1.RES
GOTI 25
GOTI 50
GOTI 75
GOTI 100
GOTI 125
GOTI 150
GOTI 175
GOTI 200
PRIN
!finish
XRES
XOUT
END

Note: The particle track command file must be entered in one column in order to successfully run the DYNTRACK particle simulation. The command file is presented here in four columns to save paper.
Appendix B.5 DYNPLOT Graphical Output of Capture Zone for Design Pumping Rate
Figure B5-2: Water Table Simulation
Pumping Rate - 200 gpm
Water Table Elevation - 35 ft. asl
Massachusetts Military Reservation

Recirculating Well Technology
Masters of Engineering Thesis
Figure B5-3: Water Table Simulation
Pumping Rate - 200 gpm
Water Table Elevation - 75 ft. asl
Massachusetts Military Reservation

Recirculating Well Technology
Masters of Engineering Thesis
Appendix B.6 DYNPLOT Graphical Output of Capture Zone for Different Pumping Rates
Figure B6-1: Capture Zone Simulation

Pumping Rate - 25 gpm
Water Table Elevation - 33 ft. asl
Massachusetts Military Reservation

Recirculating Well Technology
Masters of Engineering Thesis
Figure B6-2: Capture Zone Simulation
Pumping Rate - 50 gpm
Water Table Elevation - 35 ft. asl
Massachusetts Military Reservation

Recirculating Well Technology
Masters of Engineering Thesis
Figure B6-3: Capture Zone Simulation
Pumping Rate - 75 gpm
Water Table Elevation - 35 ft. asl
Massachusetts Military Reservation

RW
Recirculating Well Technology
Masters of Engineering Thesis
Figure B6-4: Capture Zone Simulation
Pumping Rate - 100 gpm
Water Table Elevation - 35 ft. asl
Massachusetts Military Reservation
Recirculating Well Technology
Masters of Engineering Thesis
Figure B6-5: Capture Zone Simulation
Pumping Rate - 125 gpm
Water Table Elevation - 35 ft. asl
Massachusetts Military Reservation

Recirculating Well Technology
Masters of Engineering Thesis
Figure B6-6: Capture Zone Simulation
Pumping Rate - 150 gpm
Water Table Elevation - 35 ft. asl
Massachusetts Military Reservation

Recirculating Well Technology
Masters of Engineering Thesis
Figure B6-7: Capture Zone Simulation
Pumping Rate - 175 gpm
Water Table Elevation - 35 ft. asl
Massachusetts Military Reservation

Recirculating Well Technology
Masters of Engineering Thesis
Figure B6-8: Capture Zone Simulation
Pumping Rate - 200 gpm
Water Table Elevation - 35 ft. asl
Massachusetts Military Reservation

Recirculating Well Technology
Masters of Engineering Thesis
Figure B6-9: Capture Zone Simulation
Pumping Rate - 250 gpm
Water Table Elevation - 35 ft. asl
Massachusetts Military Reservation

Recirculating Well Technology
Masters of Engineering Thesis

- Recirculating Well within 600.0 ft
- Ground Surface
- Top of Screen
- Bottom of Screen
Figure B6-10: Capture Zone Simulation
Pumping Rate - 300 gpm
Water Table Elevation - 35 ft. asl
Massachusetts Military Reservation

- Recirculating Well within 600.0 ft
- Ground Surface
- Top of Screen
- Bottom of Screen

Recirculating Well Technology
Masters of Engineering Thesis
Appendix B.7 DYNPLOT Graphical Output of Recirculating Zone for Different Pumping Rates
Figure B7-1: Recirculated Particle Simulation
Pumping Rate - 25 gpm
Water Table Elevation - 35 ft. asl
Massachusetts Military Reservation

Recirculating Well Technology
Masters of Engineering Thesis
Figure B7-2: Recirculated Particle Simulation

Pumping Rate - 50 gpm

Water Table Elevation - 35 ft. asl

Massachusetts Military Reservation

Recirculating Well Technology

Masters of Engineering Thesis
Figure B7-3: Recirculated Particle Simulation
Pumping Rate - 75 gpm
Water Table Elevation - 35 ft. asl
Massachusetts Military Reservation

Recirculating Well Technology
Masters of Engineering Thesis
Figure B7-4: Recirculated Particle Simulation
Pumping Rate - 100 gpm
Water Table Elevation - 35 ft. asl
Massachusetts Military Reservation

Recirculating Well Technology
Masters of Engineering Thesis
Figure B7-5: Recirculated Particle Simulation

- Pumping Rate - 125 gpm
- Water Table Elevation - 35 ft.asl
- Massachusetts Military Reservation

Recirculating Well Technology
Masters of Engineering Thesis

RECYCLING WELL WITHIN 10.0 FT
GROUND SURFACE
TOP OF SCREEN
BOTTOM OF SCREEN
Figure B7-6: Recirculated Particle Simulation

- Pumping Rate - 150 gpm
- Water Table Elevation - 35 ft. asl

Massachusetts Military Reservation

Recirculating Well Technology
Masters of Engineering Thesis
Figure B7-7: Recirculated Particle Simulation
Pumping Rate - 175 gpm
Water Table Elevation - 35 ft. asl
Massachusetts Military Reservation

Recirculating Well Technology
Masters of Engineering Thesis

- RECIRCULATING WELL WITHIN 10.0 FT
- GROUND SURFACE
- TOP OF SCREEN
- BOTTOM OF SCREEN
Figure B7-8: Recirculated Particle Simulation

Pumping Rate - 200 gpm

Water Table Elevation - 35 ft. asl

Massachusetts Military Reservation

Recirculating Well Technology
Masters of Engineering Thesis
Figure B7-9: Recirculated Particle Simulation

Pumping Rate - 250 gpm
Water Table Elevation - 35 ft. asl
Massachusetts Military Reservation

Recirculating Well Technology
Masters of Engineering Thesis
Figure B7-10: Recirculated Particle Simulation
Pumping Rate - 300 gpm
Water Table Elevation - 35 ft. asl
Massachusetts Military Reservation

Recirculating Well Technology
Masters of Engineering Thesis