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ABSTRACT

This thesis describes a flexible model for representing images of objects of a certain class,
such as faces, and introduces a new algorithm for matching the model to novel images from

the class. The model and matching algorithm are very general and can be used for many

image analysis tasks.

The flexible model, called a multidimensional morphable model, is learned from example

images (called prototypes) of objects of a class. In the learning phase, pixelwise correspon-

dences between a reference prototype and each of the other prototypes are first computed

and then used to obtain shape and texture vectors associated with each prototype. The mor-

phable model is then synthesized as a linear combination that spans the linear vector space

determined by the prototypical shapes and textures.

We next introduce an effective stochastic gradient descent algorithm that automatically

matches a model to a novel image by finding the parameters that minimize the error between

the image generated by the model and the novel image. Several experiments demonstrate the

robustness and the broad range of applicability of the matching algorithm and the underlying

morphable model.

This approach can provide novel solutions to several computer vision tasks, including the

computation of image correspondence, object verification, face recognition, optical character

recognition, image synthesis and image compression.

Thesis Supervisor: Professor Tomaso Poggio

Title: Uncas and Helen Whitaker Professor, Dept. of Brain and Cognitive Sciences



ACKNOWLEDGMENTS

First and foremost my thanks to Tommy Poggio for his guidance and support throughout

my 7 years as a graduate student. Tommy is the epitome of a scientist and his tireless

devotion to his research continues to amaze me. I feel privileged to have worked with him.

My thanks to Eric Grimson for his guidance throughout my graduate student days. I

have benefited greatly from Eric's advice and enthusiasm. The great environment that I

was lucky enough to be a part of at the MIT Artificial Intelligence Lab owes much to the

dedication of Eric.

Also, I thank Paul Viola for all the help he has given me during the course of my

research. Paul's advice, comments and suggestions have contributed greatly to this work.

His intelligence, personality and energy are a huge addition to the faculty at the AI lab.

Thomas Vetter at the Max Planck Institute in Tubingen, Germany also contributed

greatly to this thesis. Our collaboration on the bootstrapping work is a very important part

of this thesis. I had a number of enlightening discussions with Michael Oren about this

thesis. He suggested the notation that I use in chapters 2 and 3.

I would also like to acknowledge fellow students Charles Isbell, David Beymer, Kah-Kay

Sung and Tony Ezzat for helpful discussions throughout my graduate studies.

Thanks to my Magazine St roommates for all the good times while working on my thesis:

Tim "Burger King" Tuttle, David "Surly" Bailey, Greg "Hubs" Hubbard, Ari "the girl next

door" Drackonakis, Alvin "Sue Everybody" Chin, Josh "Outrageous" Cott, and Matissa "Ski

Bum" Hollister. Thanks to Lee "Fry on" Zamir, John "Ro Cham" "Bar" Axon, and James

"You are killing me" Sarvis for their friendship and "insightful" critiques of my research.

Thanks also to the Posse and my ultimate teammates for providing ample avenues for thesis

avoidance.

A big thanks to my parents, Jane and Jeff Jones, for nurturing the scientist in me and

for just being great parents.

And finally, thanks to Sarah Sarvis for making it all worthwhile.

This thesis describes research done at the Artificial Intelligence Laboratory and within the Center for Biological and

Computational Learning in the Department of Brain and Cognitive Sciences at the Massachusetts Institute of Technology. This

research is sponsored by grants from ARPA-ONR under contract N00014-92-J-1879 and from ONR under contract N00014-93-1-

0385 and by a grant from the National Science Foundation under contract ASC-9217041 (this award includes funds from ARPA

provided under the HPCC program) and by a MURI grant N00014-95-1-0600. The author was supported by an AASERT grant

from ONR.



Contents

1 Introduction 9

2 Shape Model 16

2.1 Representing shape as a flow field ............... ....... .. 17

2.2 Linear combinations of shape ................. ....... 18

2.3 Formal specification of the shape model ..................... . . . 18

2.4 M atching the model ..................... .......... 20

2.5 Computing the correspondences for the prototypes . .............. 22

2.6 Exam ples . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . . .. . . . . 23

2.6.1 Cartoon faces ... ... .. .. ......... ............ 23

2.6.2 Stick figures . . . . . . . . . . . . . . . . . . .. . . . . . . . . . .. . 26

2.6.3 OCR example ............................... 27

3 Multidimensional Morphable Models 29

3.1 Vector representation ............................... 29

3.2 Linear combinations of shape and texture . .................. . 32

3.3 Formal specification of the model ........................ 33



36

.. .... ...... .. 36

.. .... ...... .. 40

... .... ...... . 41

. . . . . . . . . . . . . . 41

. . . . . . . . . . . . . . 42

... .... ...... . 43

4 Matching a Multidimensional Morphable Model

4.1 Minimizing an error function..............

4.2 Stochastic gradient descent ..............

4.3 Pyramid representation ................

4.4 Pseudo code for the matching algorithm . . . . . .

4.5 Compressing the model using principal components

4.6 Probabilistic model ..................

5 Examples of Multidimensional Morphable Models

5.1 Face M odel # 1 .. .. .. ... .. .. .. .. ... .. .. .. ..... .. .

5.2 Face m odel # 2 .. .. .. ... .. .. .. .. ... .. .. .. .. ... .. .

5.3 Car m odel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 Robustness Experiments

6.1 Robustness to translation ............................

6.2 Robustness to rotation ..............................

6.3 Robustness to scale .. ............. .................

6.4 Robustness to occlusion .............................

7 Modeling Illumination Changes

7.1 Adding new prototypes ..............................

7.2 Matching images with different illuminations . . . . . . . . . . . . . . . . . .

8 Automatically Computing Prototype Correspondences



8.1 Adding to a morphable model ................

8.2 The basic recursive step ...................

8.2.1 Example. ......................

8.3 A bootstrapping algorithm for creating a morphable model

8.3.1 Pseudo code of an efficient algorithm . . . . . . . .

8.4 R esults . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8.4.1 Face im ages ......................

8.4.2 D igits . . . . . . . . . . . . . . . . . . . . . . . . .

8.5 Conclusions . . . . . . . . . . . . . . . . . . . . .. . . . .

9 Comparison to Eigenfaces

9.1 "2's" example ...... ......... .. ..... ...

9.2 Face exam ple .........................

10 Hierarchical Morphable Models

10.1 M ain idea . . . . . . . . . . . . . . . . . . . . . . . . . . .

10.2 Manually specifying components . . . . . . . . . . . . . . .

10.3 Formal specification ......................

10.4 Matching the hierarchical morphable model . . . . . . . .

10.5 Example hierarchical morphable model . . . . . . . . . . .

11 Top-down approach to low-level vision

11.1 Ideal edge detection ................................

.......... 76

.......... 76

. . . . . . . . . . 78

. . . . . . . . . . 78

. . . . . . . . . . 80

.......... 81

.......... 81

.......... 85

.......... 88

89

89

90

95

95

98

98

101

104

111

111



11.2 Solving other visual tasks ...........................

12 Applications

12.1 Example-based correspondence

12.2 Image analysis ..........

12.3 Face recognition .........

12.4 Object verification .......

12.5 Object tracking .........

12.6 Image compression . . . . . . .

12.7 Optical character recognition ..

13 Conclusions

A Combining flow fields

118

. . . . . . . . . . . . 118

.... ..... ... 119

.... ..... ... 120

..... .... ... 121

. . . . . . . . . . . . 121

. . . . . . . . . . . . 122

. . . . . . . . . . . . 122

123

125

127

127

128

B Image warping

B.1 Forward warping ................................

B.2 Backward warping ...............................

113



Chapter 1

Introduction

The field of computer vision is concerned with the problem of how to automatically analyze

images to extract information about the objects in them. For example, a typical problem

in computer vision is face recognition in which the computer is given an image containing

a face and the task is to identify the person. Other typical problems include facial expres-

sion recognition, object detection, object tracking in a video sequence and optical character

recognition.

In order to solve such problems, it is necessary for the computer to have some knowledge

about the world. In face recognition, for example, the computer needs a database containing

information about what each person that it is supposed to recognize looks like. What form

this knowledge should take is an open question.

One approach to representing knowledge for vision tasks is to use a model for each object

or object class in which one is interested. In this case, an input image is analyzed by trying to

match the model to the object(s) in the image. A successful match effectively parameterizes

the image in terms of the model parameters. Therefore a successful match gives detailed

information about the objects in the image. Such an approach is called a model-based

approach.

Within the model-based framework there are important questions about how to represent
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Figure 1.1: Small ezample set of 5 face prototypes

a model and how to match the model to an input image. The main contribution of this thesis

is a new framework for modeling object classes and a new matching algorithm for fitting the

model to a novel image. The model is called a multidimensional morphable model (or just

morphable model). It uses many two-dimensional example images to specify an object class

and then uses an iterative gradient descent optimization procedure to match the model to a

novel image. One advantage of this model is that new object classes can be represented by

giving a number of examples of the class. In addition, the matching algorithm is simple and

robust and can be used for many image analysis problems including recognition, verification,

tracking and compression.

In addition to the practical advantages of morphable models, there is also convincing

psychophysical and even physiological evidence suggesting that the human visual system

often uses strategies that have characteristics of object representations based on 2D rather

than 3D models ([Edelman and Bulthoff, 1990]; [Sinha, 1995]; [Logothetis et al., 1995];

[Bulthoff et al., 1995]; [Pauls et al., 1996]). This research suggests that 2D models may be

a fruitful approach to vision.

The multidimensional morphable model is intended to model object classes as opposed

to just individual objects. By object class, we mean a set of objects that are very similar but

also have differences in their shape or texture. Some examples of object classes are faces,

cars and human hearts.

Briefly, a multidimensional morphable model can be described as follows. First, a number
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of example images (called prototypes) are provided for a particular object class. For example,

figure 1.1 shows a few prototypes for the class of faces. Next the pixelwise correspondences

between one of the prototypes, chosen as the reference, and each of the other prototypes

is computed. The computation of correspondences may be done in an automatic way as

described in chapter 8 although in some cases it may require manually specifying some

corresponding points. The correspondence field for each prototype is considered to be a

description of the 2-D shape for that prototype. The texture (grey level intensities) for

each prototype is then obtained by normalizing it (using the correspondence field) to have

the same shape as the reference image. The normalized textures are simply the prototype

images warped such that they are in pixelwise correspondence with the reference image. The

morphable model is then the set of all images whose shape is a linear combination of the

prototype shapes and whose texture is a linear combination of the prototype textures (as

explained in detail in chapters 2 and 3). Once a model is thus defined it can be used to

match to novel input images in the following way. An error is defined between the novel

image and the current guess for the best fitting model image. This error is then minimized

by an iterative gradient descent procedure. Once a novel image is matched by a model, the

resulting model parameters (the linear coefficients of the shape and texture) can be used

for a variety of applications. Notice that the matching algorithm uses image synthesis to

perform analysis.

The ideas which lead to the formulation of morphable models are rooted in the work

of [Poggio and Vetter, 1992], [Vetter and Poggio, 1995], [Beymer et al., 1993] (see also

[Beymer and Poggio, 1996]), [Ullman and Basri, 1991] and [Shashua, 1992]. The "linear

class" idea of [Poggio and Vetter, 1992] and [Vetter and Poggio, 1995] together with the

image representation, based on pixelwise correspondence, used by [Beymer et al., 1993] (see

also [Beymer and Poggio, 1996]) is the main motivation for this work. Poggio and Vetter

introduced the idea of linear combinations of views to define and model classes of objects.

They were inspired in turn by the results of [Ullman and Basri, 1991] and [Shashua, 1992]

who showed that linear combinations of three views of a single object may be used to obtain
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any other views of the object (barring self-occlusion and assuming orthographic projection).

Poggio and Vetter defined a linear object class as a set of 2D views of objects which cluster

in a small linear subspace of 72"n where n is the number of feature points on each object.

They showed that in the case of linear object classes under orthographic projection, rigid

transformations can be learned exactly from a small set of examples. Furthermore, other

object transformations (such as the changing expression of a face) can be approximated by

linear transformations. In particular, they used their linear model to generate new virtual

views of an object from a single (example) view. The focus of the work of [Poggio and Vetter,

1992] and [Vetter and Poggio, 1995] is image synthesis as opposed to the emphasis on image

analysis in this thesis.

Much of the work in this thesis has been reported in [Jones and Poggio, 1995] which

describes the shape model, [Jones and Poggio, 1996] which describes the full morphable

model and [Vetter et al., 1997] which describes a bootstrapping algorithm for automatically

finding correspondences among the prototypes.

There are many other approaches to modeling objects and object classes. We will discuss

a few of these approaches to give some perspective on what has been done before and how

this thesis differs.

There have been a number of approaches that build models based on deformable curves.

Such approaches attempt to model the contours or edges in an image. The work of [Kass

et al., 1988] on snakes is a well known and influential example. A snake is a spline which

when placed on an image is attracted to features like lines and edges. They can be used for

edge detection, motion tracking and stereo matching. To model a person's lips for example,

a snake could be defined with the basic shape of a pair of lips. When placed on an image

containing a particular pair of lips, the snake fits itself to the lip contours thus parameterizing

the shape of the lips. The snake model could also be used to track the lips in a video sequence.

A similar approach known as deformable templates was formulated by [Yuille et al., 1992].

Their models also consist of curves although they are more constrained than snakes in the
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ways they can move. The idea is that a deformable template for an eye should only be allowed

to deform in ways that still produce eyes. Their deformable templates are constructed by

hand by defining an energy functional which can be a tedious process.

The work of [Blake and Isard, 1994] is another noteworthy approach which models shapes

in terms of splines which are constrained in the ways they can move on an image. They use

a Kalman filter based matching algorithm which can track objects (such as hands or lips) in

a video sequence in real time.

The main differences with these contour-based approaches and morphable models is that

the contour models do not try to capture any texture information and they are designed by

hand as opposed to being defined by examples. The main advantage of such approaches is

that they are relatively fast and quite adequate for modeling low level features such as the

edges of an object class.

The work of [Kirby and Sirovich, 1990] and [Turk and Pentland, 1991] took the opposite

approach from the contour-based work which models only shape. They attempted to model

just the texture or grey-level information in an image. [Turk and Pentland, 1991] popularized

the approach under the name "eigenfaces". The idea is to use many example images of faces

to define a model. The model is simply a linear combination of the example images. Instead

of using all of the examples in the linear combination, only the first few eigenvectors are

used. These are called the eigenfaces. Pixelwise correspondences among the example images

are not used and thus the model does not strictly speaking have the properties of a vector

space. A new face image is matched by finding the linear combination of eigenfaces which

best reconstructs the input face. The coefficients of the resulting match can then be used

for recognition. This technique is fast and works well on novel faces which can be easily

aligned with the example faces to correct for rotations, translations and scale. It has trouble

handling different backgrounds with novel faces as well as occlusions in the input image. The

morphable model which takes into account the changes in shape among the example images

in addition to changes in texture is much more robust to changes in the input image such as
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affine transformations and occlusion (see chapter 9).

There has been some recent work which combines both shape and texture information

into a single framework. [Choi et al., 1991] use example face images to build a model which

consists of linear combinations of example shapes and example textures. They use a 3-D

head model to help find correspondences among the example faces. The 3-D head model

is first fit to an input face by using 3-D affine transformations and contour fitting in order

to get the correspondences to the novel face. Then a set of linear equations is solved to

find the best linear combinations of shape and texture to match the novel face. This work

has many of the elements of the morphable model. The main difference is that they use

a 3-D head model to help find correspondences. This undermines the advantage of using

2-D examples to define a model. They use the same technique (3-D head model) for finding

correspondences to novel input images which obviates the need for a matching algorithm.

Taylor and coworkers ([Cootes and Taylor, 1992]; [Cootes and Taylor, 1994]; [Cootes

et al., 1992]; [Cootes et al., 1994]; [Cootes et al., 1993]; [Hill et al., 1992]; [Lanitis et al.,

1995]) developed a model known as an active shape model to represent object classes. Their

example-based model includes both shape and texture but fits them separately to a novel

input image. Shape in their framework consists of the positions of a sparse set of feature

points in each example image. These points are typically specified by hand. This results in a

contour model for the shape which is fit to a novel input image. Once the shape model is fit,

the input face is normalized to a canonical shape. The texture of the resulting normalized

input image is then reconstructed as a linear combination of normalized example images.

Unlike active shape models, morphable models use a dense correspondence field to model

shape changes. Also, shape and texture are combined seamlessly into a single framework as

opposed to fitting the texture after the shape has been matched. Finally, morphable models

use a different matching algorithm than active shape models. However, this is the work

closest in spirit to ours.

Hallinan [Hallinan, 1995] also proposed a framework for modeling faces which includes
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changes to the shape as well as the texture. Hallinan does not use examples to build a

shape model. Instead he uses a deformable template for the face. His main focus is on

modeling illumination changes using example images. His work shows that it is practical to

model illumination changes using only about a small number of example faces with various

illuminations. We use a similar technique to model illumination in chapter 7.

Another paper which proposes a similar technique for modeling object classes is [Nastar

et al., 1996]. They treat an image as a deformable 3-D mesh and then use prototypical warps

to constrain how the 3-D mesh can be deformed for a particular object class. Their technique

does not incorporate the example textures (only the warps). The matching algorithm they

use is also different from the one we use for morphable models.

The work of Choi et al., Taylor et al., Hallinan and Nastar et al. are similar in that

their methods all synthesize model images in order to analyze novel input images. There

has also been a good deal of work (especially on object recognition) which is not based

on synthesizing images. These techniques generally find certain features in an input image

(such as lines and corners) and use these features to index into a database of feature vectors

for known objects in order to determine if the input image contains features which are very

similar to features of objects in the database (see for example [Roberts, 1966], [Biederman,

1985], [Grimson, 1990], [Jacobs, 1992]). Such methods are more suited to recognizing an

object from a large database of known objects than the synthesis/analysis paradigm simply

because of the computational complexity of matching a large number of models to an input

image as required by the synthesis/analysis approach. The synthesis/analysis approach is

intended for situations in which one is concerned with only one or a few different object

classes.



Chapter 2

Shape Model

Before we describe the full multidimensional morphable model in detail, we will first

explain the shape model which is a major part of the morphable model. The shape model

has interesting applications of its own, for example for matching contours in images and for

optical character recognition.

The shape model for a particular object class is defined from a number of prototypical

example images which show many of the different shapes that instances of the object class

can take. Since we are only interested in the shapes for now and not the textures, we will

use line drawings for the example images. Figure 2.1 shows an example of a small set of

prototype images to define a class of cartoon faces.

Figure 2.1: Small example set of 6 prototypes for a class of cartoon faces
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2.1 Representing shape as a flow field

In order to represent how the shape changes among the different prototypes, we need to

know how the features of the object class move from one prototype to the next. Also, we

need to decide what exactly to use as "features". Instead of trying to track a sparse number

of features such as corners or T junctions (which may not be invariant over the entire set of

possible example images), we choose to use the densest possible feature set. We will consider

every pixel in the example images to be a feature ([Beymer et al., 1993], [Beymer and Poggio,

1996]). To represent shape changes we choose one of the prototypes as a reference prototype

and compute the pixelwise correspondences from the reference prototype to each of the other

prototypes. The pixelwise correspondences are stored in the computer as a flow field which

is simply a matrix of x, y displacements which tell for each pixel in the reference image where

it corresponds in a prototype image. There is one flow field for each prototype image (not

including the reference image).

Knowing the pixelwise correspondences from the reference image to another prototype

image allows one to warp the reference image onto the prototype. This means that the

pixels of the reference image can be moved according to the flow field and can yield any

image between the reference and prototype images. In other words, the correspondences

from a reference cartoon face with an open mouth to a cartoon face with a closed mouth

can be used to render cartoon faces with partially open mouths by warping according to a

fraction of the flow field.

Since we are only concerned here with line drawings and since only the black pixels are

important in a line drawing, one may wonder why we need a full set of correspondences which

includes the white pixels. The answer is two-fold. First, the matching algorithm which is

described later will use blurred line drawings which makes more of the pixels relevant. Also,

when we extend these ideas to real grey-level images, all of the pixels are important and the

current formulation can be used without change.
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0.5 + 1.0

Figure 2.2: The rightmost cartoon face was obtained as a linear combination of the examples
on the left in the following way. The flow field from the reference image (not shown) to each
of the two prototypes on the left was given. One half of the flow field for the first example
plus the flow field for the second example was computed. This summed flow field was used to
warp the reference image, yielding the cartoon face on the right. The resulting cartoon face
has holes due to the warping algorithm which is why it is "rougher". This example shows that
adding together half of the "closed mouth" prototype plus the "rotate left" prototype yields a
cartoon face which is rotated left with a half closed mouth.

2.2 Linear combinations of shape

To encompass all the desired shapes that a particular image from an object class may take the

shape model should include more than just the images "inbetween" the reference image and

one other prototype. We want to allow all linear combinations of prototypical shapes. For

example, figure 2.2 shows a valid model image obtained by linearly combining two prototype

shapes. We would like the model to include all such linear combinations.

2.3 Formal specification of the shape model

In this section we will formally specify the shape model. An image I is viewed as a mapping

I: 7 2 _Z

such that I(x, y) is the intensity value of point (x, y) in the image. I = [0, a] is the range of

possible grey level values. For eight bit images, a = 255. (For black and white line drawings

the pixels have either the value 0 or 255.) Here we are only considering grey level images,

although color images could also be handled in a straightforward manner. In practice images
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are discrete and bounded, but we are assuming them to be continuous and unbounded for

simplicity of notation. To define a model, a set of example images called prototypes are

given. We denote these prototypes as Io, I1,... , IN.

Let Io be the reference image. The pixelwise correspondences between Io and each ex-

ample image are denoted by a mapping

Sj : R 2 _ I2

which maps the points of 1o onto Ij, i.e. Sj(, y) = (X, y) where (3, Y) is the point in Ij

which corresponds to (X, y) in Io. We refer to Sj as a correspondence field or flow field and

also as the shape vector for Ij.

The shape model is defined as the set of images Im'' ,de, parameterized by c = [co, Cl, ... , cN],

such that
N

Imodel ( ciSi) = 0Io (2.1)
i=O

where the notation I o Si denotes function composition, i.e. I o Si = I(Si).

The summation E~O ciSi describes the shape of every model image as a linear combina-

tion of the prototype shapes.

In order to allow the model to handle translations, rotations, scaling and shearing, a

global affine transformation is also added. The equation for the model images can now be

written

N

Imodel o (A o 1 ciSi) = Io (2.2)
i=O

where A: 72 -- 7Z2 is the 2D affine transformation

A(x, y) = (pox + ply + p 2, P3X + P 4Y + P). (2.3)

We assume that the coordinate system of the prototype images has its origin at the center of

the image so that rotations are about the center of the image. The constraint EN c = 1 is
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imposed to avoid redundancy in the parameters since the affine parameters allow for changes

in scale. The parameters of the model are the ci's and pk's.

When used as a generative model, for given values of c and p, a model image is rendered

by computing Im odel in equation 2.2. For analysis the goal is, given a novel image I"17 , to

find parameter values that generate a model image as similar as possible to Inove' . The next

section describes how.

2.4 Matching the model

The analysis problem is the problem of matching the morphable model to a novel image.

The general strategy is to define an error between the novel image and the current guess

for the closest model image. We then try to minimize this error with respect to the linear

coefficients c and the affine parameters p. Following this strategy, we define the sum of

squared differences error

E(c, p) = [Inovel(, ) - mode (, y)]2 (2.4)

where the sum is over all pixels (x, y) in the images, InowC is the novel line drawing being

matched and Imodel is the current guess for the model line drawing. Equation 2.2 suggests

to compute Imodel working in the coordinate system of the reference image. To do this we

simply apply the shape transformation (given estimated values for c and p) to I"no"v and

compare it to the shape-free model, that is

1N N

E(c, p) = 2 [io o (A o cSi)(X, y) - Imodl o (A o cS,)(X, y)] 2. (2.5)
0,y i=O i=O

To simplify this equation we define
N

3(x, y) = (A o e cSi)(X, y) (2.6)
i=O

and also use equation 2.2 to yield

E(c, p) = [I"'n' 0 (, y) - Io(X, y)] 2 . (2.7)
E~c P)= -'•o2 - ,Y



CHAPTER 2. SHAPE MODEL

Minimizing this error yields the model image which best fits the novel image with respect

to the L2 norm. We use here the L2 norm but other norms may also be appropriate (e.g.

robust statistics).

In order to minimize the error function any standard minimization algorithm could be

used. We have chosen to use the stochastic gradient descent algorithm [Viola, 1995] because

it is fast and can avoid remaining trapped in local minima. We describe this algorithm in

more detail in chapter 4.

There are two important techniques which we use to improve the robustness of the match-

ing algorithm. The first is to overcome the fact that the prototypes and input image are all

black and white line drawings which means that there is little gradient information in the

image. To solve this problem, we simply blur the novel image. This means we blur the black

pixels onto neighboring pixels according to a gaussian distribution.

The second technique we use to improve robustness is to create a pyramid representation

of the model [Burt, 1984]. This requires creating an image pyramid for each flow field and

for the reference image as well as the novel image. The result is a shape model for each

different level of the pyramid. The matching is then done first for the coarsest level and

the resulting match is used to initialize the matching algorithm at the next higher level of

resolution. This coarse-to-fine approach is explained in more detail in chapter 4.

Stochastic gradient descent requires the derivative of the error with respect to each pa-

rameter. These derivatives can be calculated straightforwardly and are given for the full

morphable model in chapter 4.

One important point that may not be obvious is that the minimization algorithm does not

need to deal with the problem of "holes" in the model image. A hole occurs after warping

when a pixel in the model image is not mapped to (i.e. the flow field from reference to

model image is not onto). The matching algorithm that we have presented does not render

a full model image at each iteration to compare with the novel image (although this may

be a useful way to think about what the algorithm is doing). Instead a small number of
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pixels in the reference image are randomly chosen at each iteration and the guess for the

corresponding point in the novel image is computed according to the linear combination of

flow fields (plus the affine transformation). The corresponding point may not be integer

valued in which case the gray scale value can be interpolated from neighboring pixels or the

corresponding point can be rounded. In either case, the gray scale value of this point is then

compared to the gray scale value of the reference image pixel to yield an error. Then the

gradients with respect to each model parameter are computed for this pixel. This is done

for each random pixel selected by the stochastic gradient descent algorithm.

2.5 Computing the correspondences for the proto-
types

Before we show some example shape models, we should first explain how the pixelwise corre-

spondences between the reference prototype and each of the other prototypes are obtained.

Chapter 8 describes an automatic technique which uses a bootstrapping idea to compute

correspondences. However, the bootstrapping algorithm does not work for all sets of pro-

totypes. In such cases we have other semi-automatic techniques. One technique for line

drawings is to use a drawing program which represents line drawings as Bezier curves. The

reference image is drawn first and saved. Then to get any other prototype, the control points

of the Bezier curves for the reference image are moved around. No Bezier curves are added

or removed. To find the pixelwise correspondences between the reference and prototype

images along the Bezier curves, one simply traces over each pair of corresponding Bezier

curves (which are parameterized by time) and records pixels that occur at the same time

step as corresponding. The Bezier curves are sampled at a constant velocity. This procedure

yields the correspondences for the pixels along the Bezier curves. To find the other corre-

spondences, a simple interpolation algorithm is used to estimate unknown correspondences

by looking at nearby pixels whose correspondence is known.

Another technique we use for line drawings when the Bezier curve representation is not



CHAPTER 2. SHAPE MODEL

available is to simply specify a sparse set of corresponding pixels by hand and then to

interpolate to get a dense flow field as described above.

2.6 Examples

The following three examples show shape models for cartoon faces, stick figures and hand-

written "2's". In all of these examples, the pixelwise correspondences were obtained by the

Bezier curve technique described above.

2.6.1 Cartoon faces

Figure 2.3 shows a set of prototype images used to define a shape model for a class of

cartoon faces. This model can then be fit to novel drawings of similar cartoon faces using the

matching algorithm described in section 2.4. The model includes examples of the cartoon

face with an open mouth, with a closed mouth, with a smile and with head rotation to

the left and right. There is also an example in which the eyes are thin in the vertical axis

as well as a separate example in which the eyes are thin in the horizontal axis. Together

these two examples can be used to synthesize examples in which the eyes are thin in both

axes which means the eyes can become very small circles. Also, note that there are some

seemingly strange examples (such as one eye being higher than another). These are included

because we want to use the model to match novel cartoon faces which people may draw.

Since people often draw rather strange faces (perhaps to try to crash the system), we have

tried to anticipate such challenges.

Figure 2.4 shows some novel cartoon faces which were used as input to the matching algo-

rithm and the resulting best matches of the model. One can see that the matching algorithm

does a good job of finding a closest fitting model image (which is a linear combination of

the prototype shapes). Note the last two novel images. Both have head shapes that cannot

be recontructed from the prototype images. The matching algorithm still does a good job
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Figure 2.3: Prototypes for a class of cartoon faces. The prototype in the upper left corner
was chosen as the reference prototype. The pixelwise correspondences from the reference
prototype to each of the other prototypes was computed using the Bezier curve technique
described above.

of finding the best fitting oval for each of these heads.

This example also illustrates a potential application: facial expression recognition. Al-

though this application is much more useful with real images of faces, this cartoon example

illustrates the idea. We can estimate how much smile the novel face has by simply looking

at the coefficients of the model after matching. Since only the third and fourth prototypes

are examples of smiling faces, the coefficients of these two prototypes tell to what degree the

novel cartoon face is smiling. Similarly for open mouth (only prototypes 2 and 4 have closed

mouths) and for pose (the last two prototypes deal with head rotations). These estimated
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Novel
Face

mouth open = 0.58 mouth open = 0.00 mouth open = 1.00 mouth open = 0.61
smile = 0.64 smile = 1.00 smile = 0.00 smile = 0.60
pose = 1.00 pose = -0.87 pose = 0.30 pose = 0.40

Figure 2.4: Matches to four novel cartoon face images. An expression recognition applica-
tion is illustrated by the facial expression parameters listed after each example which were
computed automatically as described in the text.

expression parameters are listed below each match in figure 2.4. They vary from 0 to 1 for

the smile and open mouth parameters and from -1 (rotated left) to +1 (rotated right) for

the pose parameters.

Although this example is intended mainly to illustrate the shape model and matching

algorithm, it might be useful as a practical application. Suppose you have a large database

of real face images with different expressions and you want to be able to retreive images

based on their facial expressions. Then an interesting user interface might use a cartoon face

model to index into the database of real faces. The idea is that a user could draw a cartoon

face which has roughly the expression that he wants in a real face image. The matching

algorithm could use the cartoon face shape model to analyze the expression parameters of

the cartoon face and then use these expression parameters to index into the database and

retrieve the desired real face images (which have been labelled according to their expression).

Closest
Model
Image

1' ~.

I
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7

Figure 2.5: Prototypes for a class of stick figures. The prototype in the upper left corner
was chosen as the reference prototype. The pixelwise correspondences from the reference
prototype to each of the other prototypes was computed using the Bezier curve technique
described above.

2.6.2 Stick figures

Figure 2.5 shows a set of prototypes which define a simple class of stick figures. The prototype

in the upper left corner was chosen as the reference prototype. The pixelwise correspondences

from this reference prototype to each of the other prototypes was computed using the Bezier

curve technique described in section 2.5. Figure 2.6 shows four novel stick figures and the

best matching model images found by the matching algorithm. The novel stick figures are

matched very well by the model.

. t

-f
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Novel
Figure

Closest
Model
Image

Figure 2.6: Four examples of matching the stick figure model to novel stick figures.

2.6.3 OCR example

Another application of the shape model is optical character recognition (OCR). The shape

model can be used for OCR in the following way. A shape model for each character is

created from examples. Figure 2.7 shows a small set of prototypes for the numeral "2".

These prototypes were used to form a shape model for twos. For a full digit recognition

application, one would need such a model for each digit. To classify an input digit, each of

the digit models would be fit independently to the input. The shape model which best fit

the input digit would determine which digit it is. In addition to looking at the L 2 error of

the matches, one could also analyze the coefficients of each of the models after matching to

determine unlikely sets of parameters and use this also to rule out some matches. This idea

is explored in more detail in section 4.6. Figure 2.8 shows some example matches for the

twos shape model to illustrate the idea.
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Figure 2.7: Prototypes for a
as the reference prototype.
each of the other prototypes

Novel
Two

Closest
Model
Image

2
a

class of twos.
The pixelwise
was computed

2

The prototype in the upper left corner was chosen
correspondences from the reference prototype to
using the Bezier curve technique described above.

2
Q

2
Figure 2.8: Five examples of matching to novel twos.
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Chapter 3

Multidimensional Morphable Models

In this chapter we will formally introduce the multidimensional morphable model for rep-

resenting object classes. In the next chapter we will describe a matching algorithm for

matching the morphable model to a novel image and thus performing image analysis.

3.1 Vector representation

The morphable model is based on linear combinations of a specific representation of exam-

ple images. In order for a linear combination of image representations to make sense, the

representation must have the properties of a vector. In particular, adding two image repre-

sentations together must yield another representation of an image from that object class. We

argue that in order to treat the representation of images as vectors, the example images must

be in pixelwise correspondence. For images considered as bitmaps, operations like addition

and linear combination are not meaningful. A better way to represent images is to associate

with each example image a shape vector and a texture vector (see for instance [Beymer and

Poggio, 1996]).

The shape vector (as described in chapter 2) of an example image associates to each pixel

in the reference image the displacement of the corresponding point in the example image.

The texture vector contains for each pixel in the reference image the grey level or color
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reference prototype

i,,.r. ·· ·-- ............ ------- --- ---
--- ··rir~rrr---- ---------

'iMi

. T I ...........

shape s texture t

Figure 3.1: An (s, t) vectorized image representation. Pizelwise correspondences are com-
puted between image prototype and a standard reference image. Shape s consists of the
(Az, Ay) displacements between each pizel in the reference image relative to its correspond-
ing position in the prototype image. The shape s is the flow field (illustrated as a matrix of
vectors) that specifies how the pizels of the reference image move to get to their corresponding
points in the prototype image. The texture t is the texture of prototype backward warped to
the shape of reference image.

value for the corresponding pixel in the example image. Figure 3.1 illustrates the vectorized

representation for a face prototype. We refer to the operations which associate the shape and

texture vectors to an image as vectorizing the image. The shape vector is typically obtained

by an optical flow algorithm or by the more powerful bootstrapping algorithm described in

chapter 8. The texture vector is obtained by backward warping (see Appendix B) the pixels

of the prototype image onto the reference shape by using the already computed shape vector.
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Instead of two separate vectors we can also consider the full texture-shape vector which

has dimensionality 3N where N is the number of pixels in the image. There is one component

per pixel for the texture (assuming grey-scale images) and 2 components per pixel for the x

and y displacement of the shape. The term shape vector refers to the 2D shape (not 3D!)

relative to the reference image. Note that edge or contour-based approaches are a special

case of this framework. If the images used are edge maps or line drawings then the shape

vector may include only entries for points along an edge without the need of an explicit

texture vector.

The shape and texture vectors form separate linear vector spaces with specific properties.

The shape vectors resulting from different orthographic views of a single 3D object (in which

features are always visible) constitute a linear vector subspace of very low dimensionality

spanned by just two views ([Ullman and Basri, 1991]; see also [Poggio, 1990]). For a fixed

viewpoint a specific class of objects with a similar 3D structure, such as faces, seems to

induce a texture vector space of relatively low dimensionality as shown indirectly by the

results of [Kirby and Sirovich, 1990] and more directly by [Lanitis et al., 1995]. Using

pixelwise correspondence [Vetter and Poggio, 1995] and [Beymer and Poggio, 1995] showed

that a good approximation of a new face image can be obtained with as few as 50 base faces,

suggesting a low dimensionality for both the shape and the texture spaces. As reviewed

by [Poggio and Beymer, 1996] correspondence and the resulting vector structure underlie

many of the recent view-based approaches to recognition and detection either implicitly or

explicitly.

Certain special object classes (such as cuboids and symmetric objects) can be proved

to be exactly linear classes (see [Poggio and Vetter, 1992]). Later we will show that there

are classes of objects the images of which - for similar view angle and imaging parameters

- can be represented satisfactorily as a linear combination of a relatively small number of

prototype images.
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Model Texture Prototype Textures

Figure 3.2: a) The prototype shapes are linearly combined according to the coefficients c to
yield a model shape. b) Similarly, the prototype textures are linearly combined according to
the coefficients b to yield a model texture. c) Finally, a model image is rendered by forward
warping the model shape according to the model texture.

3.2 Linear combinations of shape and texture

Given the vectorized representations for a set of prototype images describing some object

class, the associated morphable model is the set of all images whose shape (relative to the

reference image) is constrained to be a linear combination of prototype shapes and whose

texture is constrained to be a linear combination of the prototype textures. Figure 3.2

illustrates the model. A particular model image is synthesized by independently choosing

CHAPTER 3. MULTIDIMENSIONAL MORPHABLE MODELS
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some setting of the linear coefficients for the shape and texture. A model shape vector (flow

field) is then obtained by a weighted sum of prototype shape vectors. Likewise, a model

texture vector is obtained by a weighted sum of prototype texture vectors. The model image

can then be rendered by forward warping the model texture vector according to the model

shape vector (see Appendix B for a simple warping algorithm).

3.3 Formal specification of the model

In this section we will formally specify our multidimensional morphable model. This for-

mulation follows the formulation of the shape model in chapter 2 but extends it to include

texture.

As before, an image I is viewed as a mapping

I: R2_+I

such that I(x, y) is the intensity value of point (x, y) in the image. I = [0, a] is the range of

possible grey level values. Let Io, I1,.. ., In be the prototype images. A naive approach might

model this class of images using a linear combination of the images ([Turk and Pentland,

1991]) as follows:
N

Imodel = Zbi. (3.1)
i=0

This approach does not result in good matches as shown in figure 3.3. The underlying

reason for this method's poor performance is that the example images are not in pixelwise

correspondence. Our image representation is instead based on pixelwise correspondences.

Let Io be the reference image. As with the shape model, the pixelwise correspondences

between Io and each example image are denoted by a mapping

Sj : R2 * R2

which maps the points of Io onto Ij, i.e. S1(x,y) = (i^, y) where (3, y) is the point in Ij

which corresponds to (x, y) in Io.
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Best match using linear combination
Novel image of raw example images

Figure 3.3: Example of a novel image matched using a linear combination of raw example
images. The example images consisted of 100 faces, which are shown in figure 5.1 - 5.3. The
best match is blurry using this model because the example images are aligned and scaled but
are not in pixelwise correspondence.

We define the mapping Tj : V2 - [ as

Tj(x, y) = Ij 0 Sj(x, y) = I 3(Sy(, y)). (3.2)

Tj is the backward warping of image Ij onto the reference image 10. In other words, {Tj}

is the set of shape-free prototype images - shape free in the sense that their shape is the

same as the shape of the reference image. The idea of the model is to combine linearly the

textures of the prototypes all warped to the shape of the reference image and therefore in

correspondence with each other. The resulting texture vector can then be warped to any of

the shapes defined by the linear combination of prototypical shapes.

More formally the flexible model is defined as the set of images I"modl, parameterized by

b = [bo, bl,..., bN], c = [co, cl,..., cN], such that

N N

Imodel ( cSA) = E bTj3. (3.3)
i=O j=0

The summation E•, cAS2 describes the shape of every model image as a linear combination

of the prototype shapes. Similarly, the summation ,N,"-0 b3Tj describes the texture of every
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model image as a linear combination of the prototype textures. Note that the coefficients

for the shape and texture parts of the model are independent.

Again, as we did with the shape model, we wish to allow the model to handle translations,

rotations, scaling and shearing. Therefore, a global affine transformation is also added. The

equation for the model images can now be written

N N
"Imode o (A o E cSi) = E bjTj (3.4)

i=O j=O

where A: 7R2 - %2 is the 2D affine transformation

A(x, y) = (pox + ply + p2, + p4 y + ps). (3.5)

The two linear combinations, for shape and texture respectively, use the same set of

prototype images but two different sets of coefficients. The parameters of the model are the

ci's, b1's and pk'S.

Now that we have formally defined the multidimensional morphable model, we want to

use it for image analysis by matching it to novel images. The matching algorithm is a

straightforward extension of the matching algorithm for shape models, and is decribed in

the next chapter.



Chapter 4

Matching a Multidimensional
Morphable Model

The matching algorithm for morphable models is basically the same as the algorithm for

shape models. Again, we define an error between the novel image and the current guess for

the closest model image. We then minimize this error with respect to the linear coefficients

c and b and the affine parameters p.

4.1 Minimizing an error function

Following this strategy, we define the sum of squared differences error

E(c, b, p) = E [I"el(zX, y) - Imodel(, y)] 2  (4.1)

where the sum is over all pixels (x,y) in the images, Ino""' is the novel gray level image

being matched and Imodel is the current guess for the model gray level image. As with the

shape model, we apply the shape transformation to the novel and model images so that we

are working in the coordinate system of the reference image. This transformation yields the

following error equation

1N N
E(c, b, p) = E[In,,•el o (A o 1 ciS,)(x, y) - Imodel (A o E c2S,)(x, y)]2_ (4.2)

E2 ,, i=O i=o
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Using the definition for S from equation 2.6 and also using equation 3.4 we simplify the error

equation to

E(c, b, p) = 2 ,j[I o 9l o=(x, y) - )]
ON 3j=o

(4.3)

Minimizing this error yields the model image which best fits the novel image with respect

to the L 2 norm. Other norms that weight outliers less may work even better.

We have chosen to use stochastic gradient descent to minimize this error function. We

describe it in more detail in section 4.2.

Figure 4.1 gives a simple outline of the matching algorithm.

Stochastic gradient descent requires the derivative of the error with respect to each pa-

rameter. The necessary derivatives are as follows:

[n"•ve o 3(, y)
N- N biTj(x, y)] TC(x, y)
j=0 o

N 1I "no e 0 -( X ', y )
E_ bjTj(O, y)] p

j=0 api

Snovel 0 S(x, y)
aci

Inovel (, y)
a(x,Y) Y)(2,3)

OA(x, y) %a • cSi(x, y)
aci

These equations are derived straightforwardly from the chain rule. Recall that A(x, y) is a

vector function with two components, i.e. A(x, y) = (A", A'). Similarly S(x, y) = (S", SY).

The matrices of partial derivatives are

OE
aci -9 [Inovel

N
o0 (X, y) - ZbjTj(x, y)]

j=0

OInotel 0 -(x, y)
aci

OE
9pi -1

CHAPTER 4.
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Goal is to match the model
to some novel input image:

Algorithm:

Initialize model parameters to 0.

I Synthesize model image:

Define error function between novel and model images:

Error =

Compute gradient of Error with respect to the model
parameters.

Take a small step in the negative gradient direction to
get new model parameters.

m Repeat until error stops improving.

Figure 4.1: An illustration of the matching algorithm.
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OA(x, y)
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The So(x, y) term in the previous derivative is due to co = 1 - EC, c;.

I •rne o (z , y)
dpi
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To compute the spatial derivatives of the novel image, a finite difference approximation
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may be used:

aoI"l (X'Y)) [ oel", InveOIo(s, y) c [,(Ino( (2 , y) + (1,0)) - In (9(x, y)) - (1, 0)),

2(I,~'(n((, y) + (0, 1)) - Inoel((=,y) - (0, 1)))]

Given these derivatives, the stochastic gradient descent algorithm can be used straight-

forwardly to find the optimal c, p and b.

4.2 Stochastic gradient descent

To minimize the error function, any standard minimization algorithm could be used. We

have chosen stochastic gradient descent ([Robbins and Munroe, 1951], [Viola, 1995]) because

it is fast and is less likely to get stuck in local minima. The difficulty with minimizing the

error function in equation 4.3 is that the summation is over all pixels in the model image. For

a 256 x 256 pixel image, this is 65536 gradients to calculate at each iteration. We would like

to reduce this number to speed up the minimization. The idea of stochastic gradient descent

is to randomly sample a small set of pixels from the image and only compute the gradient

at those pixels. This gives an estimate for the true gradient. For each iteration of stochastic

gradient descent, a new set of pixels is randomly selected using a uniform distribution. As

Viola [Viola, 1995] discusses, this estimate for the gradient will be good enough to use for

optimizing the parameters if the gradient estimate is unbiased, the parameter update rate

asymptotically converges to zero and the error surface is smooth. In practice, we did not find

it necessary to have the parameter update rate get smaller with time. In our experiments we

typically choose only 40 points per iteration of the stochastic gradient descent. This results

in a large speedup over minimization methods - such as conjugate gradient - which compute

the full gradient over the whole image.
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4.3 Pyramid representation

The matching algorithm requires the initial guess for the position of the model image to

partially overlap the novel image. In other words, if one were to place the model image (using

the current affine parameters for the amount of translation) over the novel image (which may

be larger than the model image) then there should be significant overlap between the object

in the model image and the object in the novel image. The amount of overlap needed is

investigated in chapter 6. In order to make the matching more robust in this respect, we have

implemented a coarse-to-fine pyramid approach ([Burt and Adelson, 1983]; [Burt, 1984]).

In an initialization stage, the matching algorithm creates image pyramids for the shape

vectors, texture vectors and novel image with each level of the pyramid containing an image

that is one fourth the size of the one below. To create an image of quarter size every other

pixel is replaced by a weighted averaging of neighboring pixels (a guassian weighting is

used). The flow fields (shape vectors) are also subsampled in this way by treating the x and

y components separately, and in addition all the displacements in the flow field are divided

by two at each level.

The minimization algorithm is first used to fit the model parameters starting at the

coarsest level. The resulting parameter values are then used as the starting point at the next

level. The translational affine parameters (p2 and ps) are multiplied by 2 as they are passed

down the pyramid to account for the increased size of the images.

4.4 Pseudo code for the matching algorithm

The following pseudo code describes the matching algorithm. The model is learned once

from the set of prototypes, i.e. the learning phase is only done once. The matching then

takes place for each novel image to be analyzed.

LEARNING PHASE
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Given the prototype images, Ij for j = 0,..., N

1. Compute pixelwise correspondences between prototype images and the reference

image Io using an optical flow algorithm or a semi-automatic technique: yields Sj

2. Compute texture vectors, Tj, by backward warping (Appendix B)

MATCHING PHASE

Given a novel image and a model defined by shape vectors {Sj} and texture vectors, {T }

1. Create image pyramids for I""nel, {Tj} and {S 3 }

2. Initialize parameters c and b (typically set to zero) and p = [1, 0, 0, 0, 1, 0] (the identity

transformation)

For each level in the pyramid beginning with the coarsest

3. Estimate the parameters c, p and b by iterating the basic step of stochastic gradient

descent either a fixed number of times or until the error stops decreasing significantly

4. Multiply the constant affine parameters P2 and ps by 2

5. Go to next level in the pyramid

6. Output the parameters

4.5 Compressing the model using principal compo-
nents

The prototypical shape vectors are not required to be orthogonal and in fact may not even

be linearly independent. The same is true of the texture vectors. This suggests that it might

be worthwhile to do a principal components analysis on the shape and texture spaces in

order to compress the model.

To do this, the eigenvectors for both the shape space and texture space are computed

independently. The eigenvectors of the shape space are computed by first putting each shape

vector, which is a flow field typically represented as two matrices, into one big vector. One
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way to do this is to simply place the elements in each column of the x displacement part

of the flow field into the top half of a vector, and then place the elements in each column

of the y displacement part of the flow field in the bottom half of the vector. This is done

for each flow field to form N vectors. If the prototype images are say 256 x 256 pixels then

the vectors just described will be of length 131,072. An analogous procedure is done for the

texture vectors to yield N vectors of length 65, 536 in this example. A standard eigenvector

algorithm can then be run separately on these vectors which represent the shape and texture

spaces.

The shape space and texture space representations can then be effectively "compressed"

by using only the first few eigenvectors (with largest eigenvalues) in the linear combinations

of the model (both for shape and texture). So after computing the eigenvectors for the shape

space, for example, they are used in place of the shape vectors in the matching algorithm.

Likewise for the texture space. The only change necessary to the matching algorithm is to

add in the mean shape or mean texture anytime a linear combination of shape or texture is

computed in the model. This is because the mean 'shape and texture are subtracted from

each shape and texture vector (respectively) when computing the eigenvectors.

We emphasize that the technique performs well without using eigenvectors, which however

can provide additional computational efficiency.

4.6 Probabilistic model

For many applications it is necessary to have a measure of how good the fit is to a novel

image after matching. One measure of this is simply the L2 error between the novel image

and the best fitting model image. We can also look at the parameters of the model to

determine how likely they are. The idea is that evei if the L 2 error is low, the parameters

may be so unlikely (meaning, for example, that the reference image had to be very greatly

distorted) that we should have low confidence that the novel image is actually a member of

the class of objects we are modeling. In order to determine the likelihood of the parameters,
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we need a probabilistic model of them. We develop such a model below.

The shape and texture spaces for a particular object class can be written in terms of

their principal components (as described in the previous section).

Let mea,, be the mean shape vector and let sl,..., SN be the eigenvectors of the shape

space. Let A,,..., AN be the eigenvalues of the shape space. Similarly, let tmean be the mean

texture and let t 1,... , tN and al,..., aN be the eigenvectors and eigenvalues (respectively)

of the texture space.

Define
N

Smodel = CiSi
i=1

and
N

Tmodel = biti
i=1

Now, given a set of parameters c and b found by the matching algorithm (using the

eigenvector representation for the shapes and textures), we want to know their likelihood.

We will assume that the model shape vector, Smodel, for some input Inovel falls at a particular

point along the si eigenvector with a probability that follows a Gaussian distribution. More

precisely we assume there is a 1-D Gaussian distribution along each eigenvector direction

with mean smean and variance A2. Hence,

Pr(Smodel 1 e_[(smmod,_s...).su] 2 /2 (4.4)

Similarly, for the texture space we assume there is also a 1-D Gaussian distribution along

each texture eigenvector with mean tmean and variance a1 . So,

Pr(Tmodel) = _1 -[(Tmodet tmean).ti]/2 (4.5)

We will assume the distributions along different eigenvectors are independent so the total

probability of a model shape is the product of the probabilities in each eigenvector direction:

S[(S odl-Smea ).s2 [(Smodel -smea)] 2  [( model_ s, ,e •n ) .sN] 2

Pr(Smodel) = 1 e 1. - " 2 N
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.2 2 1 .2

)12 ... 2 N-* /2;N N

since

(Smodel - Smean) * Si = (Cl1 C2S2 -... + CNSN) * Si

= Ci

since si - sj = 0 if i $ j and 1 if i = j.

Similarly for the model texture,

b
2  

b2

Pr(Tmodel) 2a2 2a 2a2 2a2·
ala 2 ... .N

(4.7)

Equations 4.6 and 4.7 can be used as a measure of confidence for any model shape and

texture found by the matching algorithm. Such a measure should be used along with the

L2 error (or some other measure of distance between images) to derive an overall confidence

measure.

(4.6)
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Chapter 5

Examples of Multidimensional
Morphable Models

The multidimensional morphable model was tested on three different sets of prototypes. The

first two are face databases. We choose faces because they form a very nicely defined object

class, and modeling faces yields a number of interesting and useful applications including

recognition, tracking and expression analysis. The last example is a set of side views of cars.

5.1 Face Model #1

The prototype faces for this model were collected by Thomas Vetter and Nikolaus Troje of

the Max Planck Institute in Tubingen, Germany. The images were originally rendered for

psychophysical experiments [Troje and Biilthoff, 1995] under ambient illumination conditions

from a database of three-dimensional human head models recorded with a laser scanner

(Cyberware). All faces were without makeup, accessories, and facial hair. Additionally, the

head hair was removed digitally (but with manual editing), via a vertical cut behind the

ears. The resolution of the 8 bit grey-level images is 256-by-256 pixels. Figures 5.1, 5.2, and

5.3 show the set of face prototypes.

The face images were aligned roughly by automatically adjusting them to their two-

dimensional centroid. The centroid was computed by evaluating separately the average of
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Figure 5.1: Thirty-five of the 100 prototypes in face model #1. The prototype in the top left
corner is the reference image.
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Figure 5.2: Thirty-five of the 100 prototypes in face model #1.
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Figure 5.3: Thirty of the 100 prototypes in face model #1.
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Output of matching
Novel image algorithm

Figure 5.4: Five examples of matching face model #1 to a novel face image.
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Novel image
Output of matching

algorithm

Figure 5.5: Five more examples of matching face model #1 to a novel face image.

m
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all x, y coordinates of the image pixels within the face independent of intensity value.

There are 130 faces in the Vetter-Troje database. One hundred faces were used as pro-

totypes and 30 were used to test the matching algorithm.

The pixelwise correspondences between a reference image (which in this case is the av-

erage face) and the 99 other prototype face images were computed automatically using the

bootstrapping algorithm described in chapter 8.

A principal components analysis was used to compress the shape and texture spaces

(independently) as discussed in section 4.5. It was found that 30 shape eigenvectors and

20 texture eigenvectors were enough to yield good reconstructions of novel faces using the

matching algorithm. The matching algorithm took about 3.5 minutes to run using 30 shape

and 20 texture eigenvectors, using an SGI Indy machine. There was no effort spent on trying

to optimize the code or find optimal stopping conditions on the matching algorithm. The

code could no doubt be speed up significantly. We used 3 pyramid levels and 8000 stochastic

gradient iterations per level for the matching algorithm. Also, 40 random points were used

at each iteration of the stochastic gradient algorithm.

Figures 5.4 and 5.5 shows some matches to novel faces. Overall, the novel image is

matched very well. It is interesting to note that as we expected individual details are not

reconstructed well. For example the first novel face in figure 5.5 contains a mole on her

left cheek. This mole is not recovered in the model image. However the overall shape and

texture is recovered well.

5.2 Face model #2

The prototype faces for face model #2 were collected by David Beymer at the MIT AI Lab

[Beymer, 1996]. These faces are more natural in that their head hair has not been removed

and some have facial hair. There are 62 faces in this database.

These images are 8 bit grey level with dimensions 184 by 226 pixels. In a preprocessing
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stage they were aligned according to the center of their eyes. This was done automatically

using a correlation-based eye finder.

The bootstrapping algorithm was used to find the correspondences from the average face

to each of the other prototypes. The average face (topmost image in figure 5.6) was computed

by the procedure described in chapter 8.

The 63 prototypes are shown in figure 5.6. Since we only had 63 images in this database

(counting the average face), we used 62 to form a model and then used the remaining one to

test the matching algorithm. We did this for each of the prototypes (except the reference).

We used 3 pyramid levels and 8000 iterations of stochastic gradient per level. The matching

algorithm took about 9 minutes to run using 61 prototypes. Again this is on an SGI Indy

running unoptimized code.

Figures 5.7 shows some typical matches to novel faces. The best fitting model images

shown in the figure have been cropped to remove the head hair. This is because the model

correspondences in the head hair region are not accurate. This is not surprising since the

correspondences between a person with short hair and a person with long hair are not well

defined in the hair region. In this case we are only concerned about the quality of the matches

in the facial region. As with face model #1, the matches are quite good.

5.3 Car model

To build a model of side views of cars we took pictures of 48 Matchbox cars. The

car images are 256 pixels wide by 96 pixels high. The images of the prototype cars were

normalized by making the distance between the center of the front and back wheels in each car

equal. The centers of the wheels were identified manually. Again, we used the bootstrapping

algorithm to find the correspondences among the prototypes. The bootstrapping algorithm

was only able to find good correspondences to 39 of the 48 prototypes. In general, the

correspondence problem for the cars is more difficult than for faces because some cars have
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Figure 5.6: The 63 prototype images of face model #2. The prototype in the top left corner
is the reference image which is the average face in this case.

APMAL
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Figure 5.7: Five examples of matching face model #1 to a novel face image.
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Figure 5.8: The 40 prototype images of cars
reference image (and also the average image).

The prototype in the top left corner is the
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Figure 5.9: Seven examples of matching the car model to a novel car image.
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features (such as spoilers) which are not found on other cars. Also, there is more variation

among the shapes of different cars.

The goodness of a correspondence field was judged by manual inspection. Figure 5.8

shows the 39 car prototypes for which good correspondences were found plus the average

image used as the reference. These prototypes were used to define a morphable model for

cars. The nine cars for which good correspondences were not found are mostly cars with

very different shapes from the average car and for which the correct correspondences are

ambiguous.

The matching algorithm was again run with three pyramid levels. Forty points were

chosen for each iteration of stochastic gradient descent. Stochastic gradient descent was run

for 8000 iterations per pyramid level. The running time on an SGI Indy was about 5 minutes.

To test the model on novel cars, we used the same procedure as with face model #2,

namely, one prototype was left out of the model and used as a novel image. Figure 5.9 shows

the results of matching the car model to seven novel car images. The overall shape of the

cars is matched well (except for the last example). However, the texture is not matched

quite as well as in the case of faces. The main reason for this is that the texture of cars is

much more random than with faces. There are not really any constraints on what markings

can appear on a car and therefore the texture is not modeled well using linear combinations

of prototypes. However, despite this problem, the matching algorithm does a reasonable job

of matching the shape of the novel cars.

Figure 5.10 shows the results of matching the model to four of the car images for which

bootstrapping could not find good correspondences. As expected, the matches are not quite

as good as with the previous examples. However, the matches do capture the general shape

of the cars adequately. To add such atypically shaped cars to the model it seems necessary

to manually specify the correspondences.
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Input image Output of matching algorithm

I
I

Figure 5.10: Four examples of matching the car model to a "difficult" novel car image.
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Chapter 6

Robustness Experiments

The results shown so far have all used novel input images which have already been roughly

aligned to the prototype images in terms of translation, rotation and scale. An important

question to ask is how well the matching algorithm performs when the input image is not

already aligned.

The performance of the matching algorithm depends on the error surface that is being

optimized. Since the error surface is not convex and is different for each input image and

for each set of prototypes, this question cannot be answered independently of a particular

input image and set of prototypes. Our method of testing robustness is thus an empirical

one in which a number of different input images with various transformations are tested to

determine how well they are matched. For these experiments we used face model #1 for

testing. Although the results only apply directly to these face images, a general idea of the

performance of the matching algorithm can be inferred from these results.

The succeeding experiments use the following strategy. The matching algorithm de-

scribed in chapter 4 is run on an input image which has been transformed using some known

transformation. The L2 error of the resulting match is then used to determine if the algo-

rithm found a "good match." Defining a good match is not obvious. The problem is that

the L2 error will sometimes be higher for a translated, rotated or scaled input image than

the original aligned image even though the synthesized best matching model image looks to
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a human observer like a good match. How much worse can the L 2 error become before the

best match is no longer good enough? Since the real measure we are using for what is "good

enough" is how it looks to a human observer, we have choosen the threshold for the L 2 error

based on the perception of a human observer. So, a good match is defined as one that has

L 2 error less than or equal to 1.2 times the error for the normalized input image. It was

found by visual inspection that an image with 1.2 times the error of the normalized input

image still looks very similar to the normalized input image. One with more error began to

look significantly different.

6.1 Robustness to translation

Input novel image Output after matching

Figure 6.1: Example of matching a novel face that has been translated 6 pixels in the x
direction and -10 pizels in the y direction. The matching algorithm automatically translated
the model image by optimizing the affine parameters for translation (as well as the other
parameters of the model).

The first set of experiments tested the robustness of the matching algorithm to changes in

translation. An example of a translated face image and the resulting best match is shown in

figure 6.1. Note that the affine parameters were initialized to the identity transformation, so

that to match the translated image, the matching algorithm had to change the translational

components of the affine parameters (P2 and ps) in order to align the model with the novel

image. Figure 6.2 summarizes the matching performance for six novel images over a range

of different translations from +20 pixels to -20 pixels in both the x and y directions. (Recall
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Figure 6.2: Summary of robustness tests for translation. Each filled-in square indicates a
translation for which the input image was matched well. The face above each grid is the
input image before translation.
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that the images are 256 x 256 pixels.)

The results are different for each novel input image, but in general the matching algorithm

can reliably match images that are off center by about ±15 pixels in both the z and y

directions.

6.2 Robustness to rotation

Input novel image Output after matching

Figure 6.3: Ezample of matching a novel face that has been rotated 27 degrees. The matching
algorithm automatically rotated the model by optimizing the afine parameters for rotation.

Next we tested the robustness of the matching algorithm to changes in image plane

rotation. An example of a rotated face and the resulting best match is shown in figure 6.3.

Again, the matching algorithm must fit the rotated input image by changing the affine

parameters (in addition to the other parameters of the morphable model). Figure 6.4 shows

the results of matching six different input images with varying amounts of rotation. The

circular graphs show the error for the different amounts of rotation tested. Each line segment

radiating from the center of the circle is proportional in length to the error of the resulting

match for that rotation angle. The circle indicates the cutoff for good matches which is at

a distance of 1.2 times the error of the match for zero degrees rotation. In other words, any

rotation angle with a line segment ending inside the circle is considered a good match.

The results show that rotations from -30 degrees to +30 degrees are generally matched

well.

L
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Figure 6.4: Summary of robustness tests for rotation. Each line segment radiating from the
center is proportional in length to the error of the match at that angle. Angles for which the
line segment is inside the circle are considered good matches. The face above each grid is the
input image before rotation.

90 6060

/

)~n
150 /

0 180

30

0

330

270 3" J

'. .I\\

150

180

210

,\\W l///.

)
K

60

"\X fllii

/ 30

0

330

.... ,~.

210

210 ,1I/ \ \\\

'/



CHAPTER 6. ROBUSTNESS EXPERIMENTS

6.3 Robustness to scale

Input novel image Output after matching

Figure 6.5: Example of matching a novel face that has been scaled to 0.6 times original
size. The matching algorithm automatically scaled the model by optimizing the parameters

for scale.

The matching algorithm was next tested for robustness to scaling. An example of a scaled

face and the resulting best match is shown in figure 6.5. It is important to realize that the

information that the input face is a different size from the prototypes is not provided to the

matching algorithm. The algorithm automatically discovers this as it fits the parameters of

the model, including the affine parameters which allow for changes in scale. Figure 6.6 shows

the results of matching six different input images over a range of different scales. Each filled-in

square below the face images indicates a scale for which the matching algorithm successfully

matched the input image.

The results show that the matching algorithm can reliably match input faces with scales

between about .55 and 1.6 times the original size.

6.4 Robustness to occlusion

The final set of experiments test the ability of the matching algorithm to match partially

occluded input images. To match occluded images we had to modify the matching algorithm

slightly.

The matching algorithm picks points at random at each iteration of stochastic gradient
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Figure 6.6: Summary of robustness tests for scale. Each filled-in square indicates a good
match at that scale.

descent in order to estimate the gradient of the error. As long as most of these points come

from non-occluded regions then the estimate for the gradient should be good enough to

eventually lead to a minima. The only problem with this reasoning is that points which

come from occluded regions have the highest error and thus contribute most to the gradient.

Therefore, we would like to ignore points chosen from occluded regions, but unfortunately

we do not know which regions these are. So, in order to prevent large errors in occluded

regions from corrupting the gradient estimate too much, we modify the matching algorithm

to simply throw away points with high errors. We found empirically that only the first six

or so points (out of 40) with highest error were likely to come from occluded regions. So the

modified matching algorithm throws out the six sampled points with highest error at each

iteration of stochastic gradient.

Using this modified matching algorithm, the robustness to occlusion was tested as follows.

A solid rectangle was randomly placed over the input image to cover some percentage of the

face. The percentages tested were 5% through 40% at steps of 5%. The output of the



Novel Image with occlusion Output of matching alg

Figure 6.7: Examples of matching partially occluded face images. The input images to the
matching algorithm are in the middle column. These input images are occluded versions of
the face images in the left column. The output of the matching algorithm is shown in the
right column.
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error of the match.

match found by the

was compared against the original unoccluded image to determine the

Figure 6.7 shows some occluded input images and the resulting best

matching algorithm.

Figure 6.8 shows a graph which plots L 2 error versus percent of occlusion in the input

image. The L 2 error plotted for each occlusion percentage is an average of the L 2 error

over 10 different runs of the matching algorithm. On each run a new rectangle (with the

appropriate size for that occlusion percentage) was randomly placed over the input image.

The graph only shows the results for experiments run on one novel image, but other images

produced very similar results. The graph shows that the quality of the match degrades

gracefully with increasing occlusion percentage.

L2
erroi

Figure 6.8: Graph showing the gradual degradation of matching with increasing occlusion.
Each error bar (except the 0% one) is averaged over 10 runs of the matching algorithm in
which random occluding rectangles with the appropriate size were chosen.

Overall, the results show that the matching algorithm always reconstructs a reasonable

face despite large areas of occlusion. Facial features that are occluded are still reconstructed

CHAPTER 6. ROBUSTNESS EXPERIMENTS
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in a reasonable fashion.



Chapter 7

Modeling Illumination Changes

Novel input images cannot be guaranteed to be taken under the same lighting conditions as

the prototype images which define a morphable model. The models we have shown so far

are not able to match images with very different lighting conditions than the prototypes.

In order to make the model robust to changes in illumination we will add new prototypes

which were created under different lighting conditions. This is one of the strengths of an

example-based approach to computer vision - if the model does not capture some important

area of image space, one can simply add examples from that area.

7.1 Adding new prototypes

In the morphable model framework, it is most efficient to add examples of just the reference

image under different illuminations. We could, alternatively, add examples of all the existing

prototypes under different illuminations, but this would increase the number of prototypes

greatly. Instead we can add just examples of the reference image under various illuminations.

Since we know the pixelwise correspondences between the reference image and each of the

other prototypes, we can map the changes to the texture of the reference image due to a new

lighting condition onto each prototype. Thus, we can synthesize virtual views [Beymer, 1996]

of each prototype under the same lighting conditions for which we have examples for the



reference image. In addition, we can synthesize the prototypes under novel illuminations by

using linear combinations of the illumination prototypes that we are given. This is discussed

further below. To test this approach, we added examples taken under different illuminations

to face model #1. Figure 7.1 shows the prototypes we added. These prototypes are the

reference image rendered under various lighting conditions. The shape vectors for these

prototypes are all the null flow field. Only the texture vectors contain new information. So

the new model consists of the same prototypes as shown in figures 5.1, 5.2 and 5.3 plus the

new illumination prototypes shown in figure 7.1.

Figure 7.1: New prototypes added to face model #1 to handle new lighting conditions. The
image in the top left corner is the original reference image for comparison.
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7.2 Matching images with different illuminations

The new face model was tested on its ability to match novel images under various lighting

conditions (including novel lighting conditions not included as prototypes). The results

of various matches are shown in figures 7.2 and 7.3. The results show that new lighting

conditions are modeled very well.

Novel input
images:

Output of
matching
algorithm:

Novel input
images:

Output of
matching
algorithm:

Figure 7.2: Examples of matches by the the new face model for novel images with various
illuminations. There are two rows of novel image/best match pairs. The leftmost novel image
in each row is the novel image under the original, standard illumination.

The idea of linearly combining images of an object taken under varying illumination has
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Novel input
images:

Output of
matching
algorithm:

Novel input
images:

Output of
matching
algorithm:

Figure 7.3: More examples of matches by the the new face model for novel images with
various illuminations. Again, the leftmost novel image in each row is the novel image under
the original, standard illumination.
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also been explored by [Shashua, 1992] and [Hallinan, 1995]. Shashua showed that for Lam-

bertian surfaces under point light sources, only three example images are needed to span the

space of images of the surface under any lighting condition. Although faces are not exactly

Lambertian, linear combinations of example images can still be used to approximate other

illuminations. Similarly, Hallinan used example faces taken under many different lighting

conditions and then found the eigenvectors of the set of images to determine the best set

of illumination examples to span the space of possible images under different illuminations.

Hallinan also achieved good results for modeling new faces under different illuminations using

linear combinations of 5 illumination eigenvectors.

This same idea of modeling illumination changes by adding a few prototypes could also

be applied to the problem of modeling changes in pose. For the face models shown, all

prototypes and novel images are frontal views of faces. To handle input faces that are

rotated, we could simply add examples of the reference face with different poses. Because of

occlusion this will only work for small pose changes. From the work of [Beymer, 1996] we

expect that changes in pose of up to 30 degrees could be handled in this way.



Chapter 8

Automatically Computing Prototype
Correspondences

The distinguishing aspect of our multidimensional morphable models is that they are linear

combinations of prototype shape and texture vectors and not of images (see also [Beymer

and Poggio, 1996]). The prototypical images must be vectorized first, that is correspondence

must be computed among them.

This is a key step and in general a difficult one. It needs to be done only once at the stage

of developing the model. At run-time no further correspondence is needed. In fact matching

a model to a novel image yields the correspondence to the novel image. In some cases, we

computed correspondence among the prototypes with automatic techniques such as optical

flow [Bergen and Hingorani, 1990]. Sometimes, however, we were forced to use interactive

techniques requiring the user to specify at least some of the correspondences (see for instance

[Lines, 1996]). An automatic technique that could set prototypes in correspondence would

be therefore desirable even if very slow. In addition, any claim of biological plausibility

would require the demonstration of such a technique.

In this chapter we describe a bootstrapping technique that seems capable of computing

correspondence between prototypical images in cases in which standard optical flow algo-

rithms fail.
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8.1 Adding to a morphable model

Suppose that we have a morpable model consisting of N protoypes in correspondence. It

is tempting to try to use it to compute the correspondence to a novel image of an object

of the same class so that it can be added to the set of prototypes. The obvious flaw in

this strategy is that if the morphable model can compute good correspondence to the new

image then there is no need to add it to the morphable model since it will not increase its

expressive power. If the morphable model cannot compute good correspondences, then the

new prototype cannot be incorporated as such. A possible way out of this conundrum is to

bootstrap the morphable model by using it together with an optical flow algorithm.

/1z
/ I \

/ I \

I L 2

Figure 8.1: Given the morphable model provided by the combination of image 1 and image
2 (in correspondence), the goal is to find the correspondence between image 1 and the novel
image 3. Our solution is to first find the linear combination of image 1 and image 2 that
is closest to image 3 (this is image 1') and then find the correspondences from image 1' to
image 3 using optical flow. The two flow fields can then be composed to yield the desired
flow from image 1 to image 3.

8.2 The basic recursive step

Suppose that an existing morphable model is not powerful enough to match a new image and

thereby find correspondence with it. The idea behind the bootstrapping algorithm is first

to find rough correspondences to the novel image using the (inadequate) morphable model
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Figure 8.2: This figure shows the basic idea behind bootstrapping. Image (a) is the reference
face. Image (b) is a prototype. Image (c) is the image resulting from backward warping
the prototype onto the reference face using the correspondences found by an optical flow
algorithm. Image (d) is the model image which best matches the prototype using a model
consisting of 20 prototypical faces (which did not include image (b)). Image (e) is the
image resulting from backward warping the prototype onto the reference face using the flow
field which was composed from matching the face model and then running an optical flow
algorithm between image (d) and image (b) to further improve the correspondences. This is
the basic step of the bootstrapping algorithm.

and then to improve these correspondences by using an optical flow algorithm. This idea is

illustrated in figure 8.1. In the figure, a model consisting of image 1 and image 2 (and the

pixelwise correspondences between them) is first fit to image 3. Call image 1' the best fitting

linear combination of images 1 and 2. The correspondences are then improved by running

an optical flow algorithm between the intermediate image 1' and image 3. The two resulting

flow fields are combined (as described in Appendix A) to obtain a flow field from image 1

.

h 
G
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to image 3. Notice that this technique can be regarded as a class specific regularization of

optical flow, which constrains appropriately the correspondence.

8.2.1 Example

An example of our basic step is shown in figure 8.2. In this figure, an optical flow algorithm is

used to find the correspondences from image (a) to image (b). The resulting correspondences

are not very good as shown by image (c) which is the backward warp of image (b) according

to the correspondences found by optical flow. Image (c) should have the texture of image (b)

and the shape of image (a). A better way to find the correspondences to image (b) is to first

fit a small model of faces to image (b), by using as a model 20 prototype face images (with

known correspondences). The model was matched to image (b) as described in chapter 4.

The resulting best match is shown as image (d). Next, optical flow was run between image

(d) and image (b) to further improve the correspondences found by the matching algorithm.

The two correspondence fields were combined (see Appendix A) to get the correspondences

from image (a) to image (b). Image (e) is the backward warp of image (b) according to

the final correspondence. A comparison of image (c) with image (e) shows that better

correspondences are found by our basic recursive step relative to just using optical flow.

8.3 A bootstrapping algorithm for creating a mor-
phable model

The idea of bootstrapping is to start from a small morphable model consisting of just 2 proto-

typical images and to increase its size (and representational power) by iterating the recursive

step described above, progressively adding new images by setting them in correspondence

with the model.

There are two main problems with building a morphable model. The first one is to choose

the reference image, relative to which shape and texture vectors are represented. The second
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is to automatically compute the correspondences even in cases in which optical flow fails.

In principle, any example image could be used as the reference image. However, small

peculiarities in an image can influence strongly the matching process. Thus, an image which

is close to all images is more reliable, since the computation of the correspondence is more

stable for small distortions than for bigger ones. The average image of the whole data

set, for which the average distance to the whole data set is by definition at minimum, is the

optimal reference image. Since the correspondences between the images cannot be computed

correctly in one step, the average has to be computed in an iterative procedure. Starting

from an arbitrary image as the preliminary reference, a (noisy) correspondence between all

other images and this reference is first computed using an optical flow algorithm. On the

basis of these correspondences an average image can be computed, which now serves as a

new reference image. This procedure of computing the correspondences and calculating a

new average image is repeated until a stable average (vectorized) image is obtained.

The correspondence fields obtained through the optical flow algorithm from this final

average image to all the examples are usually far from perfect. The bootstrapping idea is

to improve the correspondences by applying iteratively the basic step described above while

also increasing the expressive power of the morphable model. We could incorporate into

the morphable model one new image at each timestep. The problem with this is that it is

not clear how to automatically determine for which new example image the correspondences

have been computed accurately. One possibility is to backward warp each example image

according to the computed correspondence field. To a human observer, mistakes in the

correspondence field usually lead to obvious errors in the backwarp warped face. However,

the identification of these errors seems to come from people's knowledge of human faces.

There does not appear to be a straightforward way to automatically identify such errors.

For example, we did not find a correlation between the presence of errors (as determined by

a person) and the L 2 error between the backward warped example image and the reference

image.
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Instead of incorporating one new example image at every iteration, we have implemented

an equivalent algorithm in which the first step is to form a morphable model from the corre-

spondences obtained from all images with optical flow. Since some of these correspondence

fields are not correct and all are noisy, this algorithm uses only the most significant fields

as provided by a standard PCA decomposition of the shape and the texture vectors. In-

stead of adding new images, the algorithm increases with successive iterations the number of

principal components, ordered according to the associated eigenvalues (the allowed range of

parameters of the selected principal components can also be increased with a similar effect).

At each iteration a morphable model is selected and used to match each image. The optical

flow algorithm estimates correspondence between the image and the approximation provided

by the morphable model. This field is then added to the correspondence field implied by

the matched model, giving a new correspondence field between the reference image and the

example. The correspondence fields, obtained by this procedure, will finally lead to a new

average image and also to new principal components which can be incorporated in an im-

proved morphable model. Iterating this procedure with increasing expressive power of the

model (by increasing the number of principal components) leads to stable correspondence

fields between the reference image and the examples. The number of iterations as well as

the increasing complexity of the model can be regarded as regularization parameters of this

bootstrapping process.

8.3.1 Pseudo code of an efficient algorithm

1A: Selecting a reference image.

Select an arbitrary image I. as reference image I,.j.

Until convergence do {
For all Ii (

Compute correspondence field Si between Ih and Ii using optical flow.

Backward warp Ii onto I,ef using Si to get the texture map Ti.



CHAPTER 8. AUTOMATICALLY COMPUTING PROTOTYPE CORRESPONDENCES81

} end For

Compute average over all Si and Ti

Forward warp Taverage using Saverage to create Iaerage

Convergence test: is Iaverage - Ief < limit ?

Copy Iaverage to Iref.

} end Until

1B: Computing the correspondence.

Until number n of principal components used in the morphable model is maximal {
Perform a principal component analysis on Si and separately on Ti.

Select the first n principal components for the morphable model.

Approximate each Ii by the morphable model with IJ"odel

Compute correspondence field SI between Imodel and Ii using optical flow.

Combine Si and Sm odel to yield Sinew .

Backward warp Ii onto Iref using S•" to get the texture map Ti.

Copy all S•n"e to Si.

Increase number n of principal components used in the morphable model.

end Until }

8.4 Results

The method described in the previous sections was tested on two different classes of images.

One class is frontal views of human faces and the second is handwritten digits.

8.4.1 Face images

The 100 face images shown in figures 5.1 through 5.3 were used to test the bootstrapping

algorithm.
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Figure 8.3: Five of the most difficult faces in our data set. The correspondence between face
images (left column) and a reference face can be visualized by backward warping of the face
images onto the reference image (three columns on the right). The correspondence obtained
through the optical flow algorithm does not allow a correct mapping (center column). The
first iteration with a morphable model consisting of two principal components already yields
a significant improvement (top row). After four iterations with 10, 30 and 80 components,
respectively, all correspondences were correct (right column)
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Figure 8.4: The left image shows the reference face with a number of points marked with
an "X". The right image shows the corresponding points on a prototype face. These corre-
spondences were found using the automatic bootstrapping algorithm.

The method described in the previous sections was successfully applied to all face images

available.

The step (1A) involving synthesis of the reference (average) image was tested for each

image as a starting image in the algorithm. As a convergence criteria we used a theshold on

the minimum average change of the pixel grey values. (The threshold was 0.3, whereas the

grey level range was 256). The threshold was reached in every case within 5 iterations and

mostly after 3. The final reference images could not be distinguished under visual inspection.

One of these reference images is shown in the second column of figure 8.3; the same reference

image was used for the final correspondence finding procedure.

Optical flow yields the correct correspondence between the reference image and each ex-

ample image only in 80% of all cases. In the remaining cases the correspondence is partly

incorrect, as shown in figure 8.3. The center column shows the images which result from

backward warping the face images (left column) onto the reference image using the corre-

spondence fields obtained through the optical flow algorithm. In the first iteration of the
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correspondence finding procedure the first 2 principal components of the shape vectors (that

is of the correspondence fields) and of the texture vectors are used in the morphable model.

Then the correspondence field provided by matching with the morphable model is combined

(as described in Appendix A) with the correspondence field obtained by the optical flow

algorithm between the face image and its morphable model approximation. The backward

warps using these correspondence fields are shown in the fourth column. The correspondence

fields were iterated by slowly increasing the number of principal components used in the mor-

phable model. After four iterations with 2, 10, 30 and 80 principal components respectively,

the correspondence fields between the reference face and all example images did not reveal

any obvious errors (right column). Figure 8.4 shows the reference image and a prototype

image and a few of the corresponding points found by the bootstrapping algorithm. Each

"x" on the reference image corresponds to the "x" one would expect on the prototype image.

Modeling the Test Images with 80 Principal Components
Bootstrapping Steps L 2/pizels Mahalanobis distance

Optical Flow only 7.78 2.11
2 Principal Components 7.94 2.06
10 Principal Components 7.85 2.02
30 Principal Components 7.95 1.99
80 Principal Components 8.01 1.97

Table 8.1: Results of matching a model consisting of 80 principal components on 30 test
images after each step of the bootstrapping algorithm. One can see that the average Ma-
halanobis distance decreases after each iteration of bootstrapping implying that the model is
improving. Conversely, the average L 2 error (between the reference image and the tezture
vector of each prototype) increases slightly.

In a second experiment, 30 test face images were used to evaluate the ability of the mor-

phable model to match novel faces. This experiment was used to document the improvements

and changes within the morphable model during the bootstrapping. The bootstrapping al-

gorithm was run on the training set as described earlier. After each bootstrapping step

the L 2 norm between the reference texture vector and the texture vector of each example

image was computed. Interestingly, the L 2 norm does not always reflect the improvement in

correspondence as observed by visual inspection. The L 2 norm may even increase slightly
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during the process (see Table 8.1).

After each bootstrapping step the 30 test images were approximated by the morphable

model formed by the first 80 principal components obtained on the training set of 100 images.

The Mahalanobis distance of each approximation to the average face image was computed.

During the bootstrapping procedure the Mahalanobis distance decreased in the average over

all test images as shown in table 8.1.

8.4.2 Digits

Data set and Preprocessing

The images used in these experiments were from the US postal service database (262 exam-

ples for each of the 10 digits). The original resolution of 16-by-16 pixels was increased to

32-by-32 pixels and the images were blurred with a Gaussian 5-by-5 kernel.

Evaluation

The bootstrapping algorithm was used for all 10 digits without modification. For each digit

we obtained a shape model from the first 250 digits in the dataset. The reference image

(average shape) is shown in the dashed boxes in figure 8.5. After computing the reference

image and the initial correspondence fields with optical flow, new correspondence fields were

obtained using 4 iterations of the bootstrapping algorithm. During the 4 iterations the

number of principal components used in the algorithm was increased from 2 to 10, 30 and

80, respectively. Figure 8.5 shows the first 5 principal shape components of the final shape

model.

The models obtained by the bootstrapping algorithm were used to match digits which

where not part of the training set. In figure 8.6 new images of the digit 3 are approximated

with three different models of digits. Clearly the "3" model approximates well each of the
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Figure 8.5: For each of the 10 digits the: figure shows the first five shape eigenvectors (left
to right) of the model (obtained from 250 prototypical digits). Each column displays how
each shape eigenvector changes relative to the average digit (in dashed box). The range of
the coefficient ranges from +5 (top) to -5 standard deviations (bottom) of each eigenvector.
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Figure 8.6: 10 examples of the digit 3 are approximated by 3 different shape models: in
A a model for "3", in B for "2's" and in C for "5's". In each case the top row shows the
target "3's", the center row shows the optimal approximation by the model and the third row
shows the difference between the top and center row. Each model, obtained automatically
by the bootstrapping procedure from 250 prototypes, consisted of the first 20 shape principal
components.

A
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new "3"T's, whereas the "5" and the "2" models provide very poor approximations. These

results suggest that the digit models obtained with bootstrapping could be used successfully

for recognition as well as for image compression.

8.5 Conclusions

The bootstrapping algorithm we described is not a full answer to the problem of computing

correspondence between prototypes. It provides however an initial and promising solution

to the very difficult problem of automatic synthesis of the morphable models from a set of

prototypical examples. Notice that we have used optical flow as one part of our bootstrapping

algorithm. In principle other matching techniques could be used within our bootstrapping

scheme.



Chapter 9

Comparison to Eigenfaces

The eigenface approach ([Kirby and Sirovich, 1990], [Turk and Pentland, 1991]) is a well

known approach in computer vision, which uses linear combinations of the raw example

images which is superficially similar to morphable models. Morphable models rely instead

on the linear combination of shape and texture vectors associated with the set of prototyp-

ical images. It is natural to ask how the two approaches compare. We describe here two

exemplary cases.

9.1 "2's" example

To illustrate the importance of the vectorized representation and therefore of setting the

prototype images in pixelwise correspondence, consider a set of prototypes for the numeral 2

shown in figure 9.1. We will first use this set of prototypical images and apply the eigenimage

approach which does not use pixelwise correspondences. Note that the "2" images are in

rough alignment and are normalized in scale. Figure 9.2 shows the mean image and the

eigenimages derived from the set of prototypes. Note that the eigenimage "2's" are noisy and

show, as expected, the ghosts of the prototype images of which they are linear combinations.

Figure 9.3 shows some typical matches of the eigenvector model to novel images of "2's".

The matches are not very good.
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Figure 9.1: Prototype examples for a class of handwritten "2's"

Next we contrast this to the matching produced using our shape model based on pixelwise

correspondences. Figure 9.4 shows the eigenvector representation for the shape vectors of

the "2's". The mean image was obtained by computing the mean correspondence field from

the prototype correspondence fields and then rendering it by warping the reference image

according to the mean correspondence field. Similarly, the eigenvector images were obtained

by finding the eigenvectors of the prototype shape vectors and then warping the reference

image according to the eigenvector correspondence fields. Figure 9.5 shows the matches

to novel "2" images using the morphable model. They are significantly better than in the

eigenimage case without correspondences.

9.2 Face example

As another example of the better match quality obtained by our image representation,

consider the case of frontal views of faces. The eigenface model of (Turk, 1991) was computed

from face database #1 shown in figures 5.1 - 5.3. These faces are aligned as described

in section 5.1. One hundred face prototypes were used to define the model and all 100

eigenvectors were used in the eigenface representation. The middle column of figure 9.6 shows

the matches to four novel faces found using the eigenface model. The right column of figure
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a)

b)

Figure 9.2: a) Mean image "2" found by averaging the prototype images of "2's". b) So-
called eigenimages of "2's", that is eigenvectors computed from the set of images of prototype
"2's" (without using pixelwise correspondences).
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Figure 9.3: Example matches to novel "2's" using the eigenimage approach. Matching with
eigenimages yields poor results.
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2 2
2
2 2

Figure 9.4: Mean "2" obtained by rendering the reference shape vector "2" which is equiv-
alent to warping the reference "2" with the average of the prototype correspondence fields
(top left in box) followed by the full set of the shape eigenvectors of the prototypes. They are
rendered as images obtained as warps of the reference "2" by the eigenvector correspondence
fields.
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Figure 9.5: Example matches to novel "2's" using the morphable model
output "2's" were blurred to fill in "holes" left after warping.

approach. The
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Figure 9.6: Example matches to novel faces (left) using the so-called eigenface approach
(middle) - which does not use pixelwise correspondence - and using our approach (right)
which uses pixelwise correspondences.
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9.6 shows the best matches for the morphable model which uses pixelwise correspondences.

The images produced by the eigenface approach are "fuzzy", and it is clear even from this

qualitative comparison that the morphable model results in superior matching relative to

the eigenface approach.

We have shown that the morphable model framework provides better matches to novel

images than the eigenface approach. In addition, the eigenface approach is not robust to

changes in translation, scale, rotation or occlusion whereas morphable models are.



Chapter 10

Hierarchical Morphable Models

In this chapter we will present some preliminary results on an extension of multidimensional

morphable models. The idea is to split the prototype images into components (such as eyes,

nose and mouth for face images) and create a model containing a hierarchy of components.

At the bottom level of the hierarchy is a set of components which are themselves morphable

models as defined previously. The upper levels of the hierarchy consist of linear combinations

of the positions of the components.

10.1 Main idea

Figure 10.1 illustrates a hierarchical morphable model for a face with 2 levels to the hierarchy.

The bottom level contains individual morphable models for the two eyes, the nose and the

mouth. The next level of the hierarchy consists of linear combinations of the positions of the

centers of each component in the example images. The output of the model uses these linear

combinations of vectorized components and positions to synthesize an image containing all

the components in the appropriate positions.

One advantage to such a model (relative to the standard morphable model) is that fewer

prototypes are necessary for each component to achieve the same quality of matches. This

is because each component will be less complex than the whole image and thus require fewer
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Figure 10.1: An illustration of a hierarchical morphable model with 2 levels. The bottom
level consists of component morphable models for the eyes, nose and mouth of a face. The
next level consists of linear combinations of the positions of each component. A particular
parameter setting yields an output face built from components.

m
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examples to span the possible component images. The model is also more expressive since

there are more degrees of freedom. One can think of it as a piecewise linear model instead

of just a linear model. Another advantage is that occlusion can be handled better using

components. For example, if one component is occluded in the novel image then the other

components can still be matched without being negatively affected by the occluded part of

the image. With the standard morphable model, occluded images can be matched, but the

quality of the match degrades with increasing amounts of occlusion (see figure 6.8).

The main disadvantage of the hierarchical model is that currently the components for

each prototype image must be specified by hand. Ultimately, we would like for prototype

images to be split into components automatically. Possible approaches to this problem

are the work of [Bell and Sejnowski, 1995] or more brute force techniques which look for

correlations in different regions of each prototype. A successful technique for automatically

finding components does not need to be computationally efficient since such a procedure

would only be done once to create a hierarchical morphable model. For now, however, to

illustrate the idea of hierarchical models we will assume the components are specified by

hand.

Another disadvantage to hierarchical models is the problem of "filling in" areas of occlu-

sion in the novel input image. Depending on the application, however, this filling in process

may not be needed. With the standard morphable model, small areas of occlusion in the

input image are automatically "filled in" in the output model image by using information in

the rest of the image. With a hierarchical model, this problem is harder to overcome. Since

the components are independent it is not clear how to use the information for components

which are not occluded to recontruct components which are. One possibility might be to fit

a hierarchical model to the occluded input image and then use the parameters for the com-

ponents of the hierarchical model which fit well to map to the parameters of an associated

standard morphable model, and thus synthesize a whole image which fills in the occluded

parts of the input image. We leave this problem for future work.
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10.2 Manually specifying components

Figure 10.2: An illustration of the manual tool used for selecting components. The face on

the left is the reference face. The components are chosen once for this face. The face on the

right is another prototype face. The components chosen on the reference face are specified

on this prototype face.

We are not currently addressing the problem of automatically finding components. In-

stead we have written a simple program which allows us to manually specify the components

in each prototype by placing rectangles on each prototype to specify the region for each

component. Figure 10.2 illustrates this process. Manually specifying components is not an

unreasonable burden since it is only necessary in the model building phase. After this phase,

the components of a novel input image are automatically found by the matching algorithm.

10.3 Formal specification

The formal model for hierarchical morphable models is similar to standard morphable models

with the addition of parameters which control the position of each component.

As before we have a set of prototype images Io, ... , IN. Io is the reference image. The

components are manually specified on Io by rectangular regions. The center of the rectangle

along with the height and width give the size and position of each component. Let K be the

number of components in each prototype.
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Let Ck be the set of x, y coordinates of Io which are contained in component k, i.e. Ck

is a rectangular region of Io defining component k.

For each prototype i, the kth component has correspondence field

Si : R•• -- R 2

Si"(, y) = (^, y) where x, y is a pixel in component k of the reference image and ^, y is the

corresponding point in component k of prototype i. Note that there is a different set of

shape vectors for each different component.

Similarly, Tik is the texture vector of component k for prototype i.

Tk(x,y) = I o S (, y V) V(x,) E Ck.

Finally, we add a new vector, P , to the model which is the displacement of the (x, y)

position of the center of component k in prototype i (relative to its position in the reference

image). In other words, Pik is simply a vector pointing from the center of component k in Io

to the center of component k in Ii.

P = [

As with shape and texture, the position of each component in any model image is

constrained to be a linear combination of prototype component positions. The function

Qk : R2 _ R2 desribes this linear combination and is defined as

M

Qk(x, y) = ialP/ + (10.1)

where M is the number of prototype positions used. M is typically less then N (the number

of prototypes) since the position vector space is much lower dimensional than the shape

or texture space. The position vector space has dimensionality 2 x K since each of the K

components has 2 elements (x and y) in its position vector.
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So the first pass at defining a hierarchical morphable model is all model images Imodel

such that for each component k and (x, y) E Ck

N N

Imodel ko o ( ciSi)(x, y) = E bjTj(x, y). (10.2)
i=O j=0

The element missing from the above equation is the affine transformations which allow

for rotation, translation, scaling and shearing. We would like each component to have affine

transformations independently as well as having a global affine transformation. This will

allow an individual mouth component, for example, to rotate independently of the eyes and

nose and at the same time allow the positions of all the components to translate, rotate or

scale using the global affine parameters. We will add a component affine transformation, Ak,

as defined before to each component model and a global affine mapping, B, to the position

function, Qk. Let

Ak(xy) = (p +py+ p, pkx + py+ ) (10.3)

and

B(x, y) = (eoz + ely + e2, e32+ e4 + e5). (10.4)

Now we can define the full hierarchical morphable model as the set of all images Imodel

such that for each component k and (x, y) E Ck

N N
Imodel o B o Q o (Ak o E cS)(x, y) = bT(x, y). (10.5)

i=0 j=O

The mapping (Ak oY -o cASj) constrains the shape of component k to be a linear combina-

tion of prototype component shapes followed by a local affine transformation. The mapping

B o Qk constrains the position of component k to be a linear combination of prototype

component positions followed by a global affine transformation. The mapping j=0O b4Tý

constrains the texture of component k to be a linear combination of prototype component

textures.

The parameters of the hierarchical morphable model are the shape parameters, ck, the

texture parameters, bk, the position parameters a, the component-level affine parameters
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pk and the global affine parameters e.
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The index k goes from 1 to K (the number of

components).

10.4 Matching the hierarchical morphable model

We use the same matching algorithm as before except with the equation for the new model:

1 K
E(c, b, a, p, e) =

k=1 (0,y)ECjk

N N
Ino e' o B o Qko (A o E _ ctSk)(x, y) - ~ TJ(x(, y,

i=0 j=O

Stochastic gradient descent is used to minimize this error with respect to the model

parameters. We list the necessary derivatives after first introducing some notational conve-

niences.

To simplify some of the notation, let

N

F k = Bo Qk o Ak o Ec Sk
i=0

Also, recall that Sk is a vector function with two components in its output. To refer to

these components separately, we will use the notation SP = (Sk.x, St.y).

[I n e' o Fk(z, y) -

[InoVel

[I novel 0

N

ST (z, y)]
j=O

0 jnovel o F'(z, y)

aci

N
Fk (, y) - bE T (z, y)] T(, y)

j=o

N lno( el o Fk(z, y)
oF"'( . ) - bT "( . il F- 0

Fk

S j=0 J ia2  J
N k 

9 anovel o kF,1y)
- bT' (z, y)] apj=0J
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n N novel o Fk (, y)
[I."e o Fk(X, y) ~- b T (x, y)] oe,

j=0

Inovel o Fk(x, y)
6cy

r(novel(, ) B(, )
O(X, y) BoQko(Ako •o •S)(,) (,y) Qko(AkoN kc )(,y)o , o O o o. <.o(,,•)

(OQk(x, y) (AAk(x,y)
(X,y) Ako 0N=o, cS)(,y) ) iA(zx,y) N 0 cS(,y)

Co c 
S i(, 

Y)

ocy
OI"nel (x, y)

O(X,y) Fk(:,y)

I1novel o Fk(x, y)
Op

Inovel o Fk(x, y)
Oai

e e A1 1 p pP S1 .Seo e 0 1p pS .][ k k [10ee3 e4 0[ 1 [P3 4 L
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novIele(X, y)
a(X,y) k(oy)

S(e k Invel(X )
Ox Fk(x,y)

S(e k.x + ekpi novel y)

OInovel (, y)
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OB(C, y)
8e 3  QkoAko~N oei SN(Wy)

OB(z, y)

Be4 1Q'oAkho o eir) S(,y)

9B(z, y)
0e 5 qkoAko> 2 a ckSi (z,y)

= [O (Qk

= [0 (Qk

S[0, 1]T

o Ak o E
i=0

o Ak o ciS (sy)).y
i=0

To compute the spatial derivatives of
may be used:

S'nove'(m, Y) [(I (F
19(X) Y) 

Fh(,,y)

the novel image, a finite difference approximation

k(m, y) + (1, 0)) - In•de(Fk(z, y))- (1,0)),

(I novel(Fk (, y) + (0, 1)) - Inovel (Fk(m, y) - (0, 1)))].

10.5 Example hierarchical morphable model

As an example of a hierarchical morphable model we will use faces split into eyes, nose

and mouth components as shown in figure 10.1. We use the face database shown in figures

5.1 - 5.3 as prototypes. The components were selected manually as described in section 10.2.

Fifty prototypes were used for each component. We found that 50 prototypes were enough

to get very good matches. A principal component analysis could be used to further reduce

the number of prototypes needed, but this was not done in this example. Figure 10.3 shows

10 of the 50 prototypes used to define each component.

The correspondence fields for each component were taken from the full image correspon-

dence fields already computed for these faces using the bootstrapping algorithm (chapter

8).

Because we are using four components in this hierachical morphable model, there are
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right eye
components:

left eye
components:

nose
components:

mouth
components:

Figure 10.3: The face prototypes were split up into 4 components. 50 prototypes were used

for each component, 10 of which are shown here.
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Figure 10.4: Six example matches of the hierarchical face model to novel input images. The
individual components are matched very well. Compare this figure to figures 5.4 and 5.5

~
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8 elements in the "position vector space". The position prototypes (Pr) have 2 elements

(Ax, Ay) for each of the four components. Therefore, 8 linearly independent position pro-

totypes for each component would completely span the position vector space, effectively

making the positions of the components unconstrained. We used the first 7 eigenvectors of

the position vector space to constrain the component positions.

The stochastic gradient descent algorithm was run using just one pyramid level, 15 sam-

ples per iteration and 7000 iterations.

The results of matching the hierarchical morphable model to some novel input images

are shown in figure 10.4. There are some edge artifacts around each component due to the

warping algorithm used to render these images. However, by comparing these examples to

the results on the standard morphable model shown in figures 5.4 and 5.5 we see that the

hierarchical model finds better matches for each component.

This hierarchical morphable model was also tested on its ability to match occluded im-

ages. Figure 10.5 shows some examples of matching novel images which are occluded by solid

rectangles. Figure 10.6 shows some examples of matching novel images which are occluded

by cutting out pieces of other faces and pasting them over parts of the novel face. The

matches are good for components which do not contain occlusion. The reconstruction, how-

ever, of components which are even partially occluded is poor. This is the main difference

between the performance of the standard morphable model and the hierarchical morphable

model on occluded images. The hierarchical model does a good job of matching unoccluded

components even though the rest of the image may be heavily occluded. The quality of

matches for the standard model degrades even in areas where there is no occlusion. On

the other hand, the standard model does a better job of reconstructing areas where there

is partial occlusion because it uses information from the entire image to find a match. The

hierarchical model fits each component almost independently and so a partially occluded

component often leaves little information to use for reconstruction of that component. This

problem would of course be lessened if larger components were used so that partial occlusion
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Occluded input
image

Output of
matching algorithm

Occluded input
image

Output of
matching algorithm

Ul

Figure 10.5: Six examples of matching a partially occluded face using the hierarchical face
model. Unoccluded components are matched well independently of occluded regions.
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might still leave plenty of unoccluded area.

The properties of the hierarchical morphable model for matching partially occluded im-

ages make it useful for object detection or verification tasks. Suppose the task is to detect

a face (which may be occluded) in a cluttered scene. A hierarchical morphable model can

be used to match the unoccluded parts of the face well. The well-matched components can

then be used to decide if a face exists (using some heuristic such as "at least two components

must have a good match"). Determining if a component is well matched can be done by

simply examining the L 2 error for each component. The probability of the model parameters

can also be used to determine a good match.
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Occluded input
image

Output of
matching algorithm

Figure 10.6: Three more examples of matching a partially occluded face. Again the areas
which are not occluded are matched very well.
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Chapter 11

Top-down approach to low-level
vision

Perceptual tasks such as edge detection, image segmentation, lightness computation and

estimation of 3D structure are considered to be low or mid-level vision problems and are

traditionally approached in a bottom-up, generic, hard-wired way. An alternative approach

is top-down, specific for object classes and example-based. In this chapter we discuss the

use of multidimensional morphable models as a tool for a top-down approach to low-level

vision, and we discuss its implications for human perception.

11.1 Ideal edge detection

Consider the specific problem of estimating a line drawing from a grey level image. The line

drawing should ideally capture all the relevant "edges", in a way similar to an artist. As

many years of work on edge detection have shown (see for a review [Marr and Hildreth, 1980,

Haralick, 1980]), the problem is difficult, in part because physical edges - meant as discon-

tinuities in 3D structure and albedo that convey information about the object's shape and

identity - do not always generate intensity edges in the image. Conversely, intensity edges

are often due to shading effects produced by illumination and, therefore, do not always re-

flect intrinsic properties of the object. Several years ago the Turing Institute in Glasgow
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circulated a photograph of a face and asked fellow scientists to mark "edges" in the image.

Some of the edges that were found by the subjects of these informal experiments did not

correspond to any change in intensity in the picture; they corresponded to locations where

the subjects knew that the 3D shape had a discontinuity, for instance the chin boundary.

The traditional approach to edge detection - to use a general purpose edge detector such

as a directional derivative followed by a nonlinear operation - is bound to fail in the task

of producing a good line drawing, even if coupled with algorithms that attempt to fill edge

gaps, using general principles such as good continuation, and collinearity [Shashua and Ull-

man, 1988]. A quite different approach is to exploit specific knowledge about faces in order

to generate the line drawing. This approach runs contrary to the traditional wisdom in

computer vision, since it assumes that object recognition may be used for edge detection -

almost a complete subversion of the usual paradigm.

A possible implementation of this approach is based on casting it as a learning task. Given

a set of sample prototypical (grey level) face images and the corresponding line drawings,

drawn by an artist, the task is to learn the mapping that associates to a grey level image

of a face its "ideal" line drawing. We discuss next how to use a morphable model to realize

this general idea.

Suppose you have one morphable model built from grey level face images and a second

morphable model built from the prototypical line drawings associated with each grey level

face image. Then, given the image of a novel face, the approach is to estimate the parameters

of the best fitting grey-level morphable model and to plug the same parameter values into

the second morphable model built from the protoypical line drawings. This approach can

be regarded as learning from a set of examples the mapping between a grey-level face image

and its ideal line drawing. We have implemented an even simpler version of the scheme. We

assume that the ideal line drawing corresponding to the average prototype is available from

an artist, as shown in figure 11.1. We are using the same face database shown in figures

5.1 - 5.3. The matching of the morphable model obtained from the protoypes to a novel

grey level image provides a shape vector which is a linear combination of the prototypes and
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which effectively tells how to warp the average shape of the grey level prototype in order to

match the shape of the novel grey level image. Because the line drawings are supported on

a subset of the pixels of the corresponding grey-level images, the line drawings associated

with novel images can be obtained by warping the line drawing associated with the reference

prototype by using the estimated shape vector. Figure 11.2 shows a few examples of novel

images (not contained in the set of our prototypical examples) and the line drawing estimated

from each of them by our "ideal edge detector". To contrast this approach to a low-level

gradient-based approach, figure 11.2 also shows the edges found for each face image by a

Canny edge detector. Fig. 11.3 shows the ideal edge-map estimated for an input image with

potentially many irrelevant edges and partial occlusion of the relevant ones. As is evident

from the examples, our algorithm can detect and complete edges that do not correspond

to any intensity gradients in the image and ignores those non-intrinsic to faces. The power

of the algorithm derives from the high-level knowledge about faces, learned from the set of

prototypical images.

Figure 11.1: The reference face and its corresponding line drawing created by an artist.

11.2 Solving other visual tasks

Other supposedly mid-level visual tasks can be learned in a similar way. We briefly describe

two of them: the generation of "virtual" views and the estimation of 3D structure from single
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Figure 11.2: Examples of ideal edges found by the algorithm described in this chapter. The
left column shows the input novel images. The middle column shows the line drawings
estimated automatically by the algorithm which matches the morphable model to the novel
images and then appropriately warps the ideal edges of the reference image. For comparison,
the right column shows the edges found by a bottom-up edge detector (Canny, see [Canny,
1983]). Note that the ideal edges emphasize the perceptually significant features of the face
much better than the Canny edges.
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images.
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Figure 11.3: a) Example of ideal edges (second column) found for a partially occluded
input face (left column). The image in the third column show these edges overlaid on the
unoccluded input face. The fourth column shows the canny edge map for comparison. b)
An example of an image with shadows (first column). The ideal edges found by our method
are shown in column two and effectively ignore the edges produced by the shadows. The
overlayed image in column three shows that these edges are accurate. Column four shows
the canny edges.

Consider the case in which only one example image of an object is available instead of

several example views. This may occur in object recognition tasks in which an object has to

be recognized from a novel view. Vetter and Poggio ([Vetter and Poggio, 1996]) consider this

problem for linear object classes. As described in chapter 1, an object belongs to a linear

class if its 3D structure can be exactly described as a linear combination of the 3D structure

of a small number of prototypes ([Poggio and Vetter, 1992]). A new virtual view of an

object which belongs to a linear class can be generated exactly from a single example view,

represented as a 2D shape vector, provided appropriate prototypical views of other objects

in the same class are available (under orthographic projection). In this way, new views of a

specific face with a different pose can be estimated and synthesized from a single view (the

procedure is exact for linear classes; empirically, faces seem to be close to a linear class so
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that the procedure above provides a good approximation for pose and expression). Again,

this procedure can be formulated in terms of the learning metaphor in which a learning box

is trained with input-output pairs of prototypical views representing each prototype in the

initial and in the desired pose. Then for a new input image the system synthesizes a virtual

view in the desired pose [Vetter and Poggio, 1996].

The estimation of 3D structure from a single image would proceed in a very similar way,

if the image and the 3D structure of a sufficient number of prototypical objects of the same

class are available ([Poggio and Vetter, 1992], [Vetter and Poggio, 1996]). In our learning

box metaphor, the system, trained with pairs of prototype images as inputs (represented

as 2D shape vectors) and their 3D shape as output, would effectively compute shape for

novel images of the same class (compare with the somewhat different approach of [Atick

et al., 1995]). A similar approach may be extended to problems of color constancy and

motion analysis, in which the desired information about color or motion is provided in a

learning-from-examples scheme based on the use of a class-specific flexible model.

In summary, we have shown how morphable models can be used to learn to perform

visual tasks in a top-down way, specific to object classes. From the point of view of a

neuroscientist, our demonstrations are nothing more than plausibility proofs that the visual

system can use simple learning processes to incorporate object specific knowledge and thereby

learn to perform seemingly 'low-level' visual tasks in a top-down manner [Cavanagh, 1991,

Mumford, 1992, Ullman, 1995]. We conjecture that perception in humans may rely on such

processes to a greater extent than commonly assumed. Of course, biological vision may use

bottom-up verification routines to validate the top-down "hallucination" (see [Ullman, 1995,

Mumford, 1992]). A similar verification approach (top-down and bottom-up) could also be

effectively used in machine vision implementations like the one described here.

Logically, our conjecture consists of two somewhat independent parts. The first one

is that, at least in some cases, the visual system may solve low-level vision problems by

exploiting prior information specific to the task and to the type of visual input.
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The second part of the conjecture relates to how these specific algorithms may be synthe-

sized by our visual system. The idea - which is the main point of this paper - is that visual

systems may learn algorithms specific to a class of objects by associating in each "prototyp-

ical" example an "ideal" output to the input view. The "ideal" outputs may be available

through other sensory modalities, sequences of images in time or even explicit instruction.

The notion of what constitutes an "ideal" output corresponding to a certain class of inputs

may change and evolve over time as the learning process encounters new examples. The sec-

ond part of the conjecture predicts that human subjects should be able to learn to associate

arbitrary outputs to input images of a certain class and to generalize from these learned

associations. There is a weak and a strong form of the conjecture. The strong form is that

the learning follows the morphable models algorithm we have used here in our plausibility

demontration. The weak form of the conjecture leaves open the specific learning scheme.

Preliminary psychophysical evidence favours the conjecture ([Sinha and Poggio, 1996]), with

more experiments under way. Further work may enable us to verify whether the strong or

weak form is to be preferred and in the latter case which learning scheme may be used by

the visual system.
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Applications

There are a number of interesting applications to which the morphable model and matching

algorithm can be applied. The focus of this thesis is to explain the underlying morphable

model framework and to explain how it can be applied to a number of problems in computer

vision. However, we leave the implementation of these applications for future work.

12.1 Example-based correspondence

The most basic application of multidimensional morphable models is to "vectorize" a novel

image (Poggio and Beymer, 1996), providing dense correspondences between two images of a

known class of objects. Once a novel image is approximated by the morphable model it is in

correspondence with the reference image (assuming the match was good). To compute the

pixelwise correspondences between two novel images, I,'• L and I ' ,el, in the same object

class, a morphable model for that class is first matched to each novel image. This gives

the flow field from the reference image to I *noe ' and from the reference to 12""I . We want

the flow field from Inovel to I2""' . To compute this, the flow field from the reference to

IJLo' must be reversed so that the flow field points from I"O" 'l to the reference. Once this

reversed field is computed then we can compute the flow field from I"n 'el to I~n•o" by simply

combining the flow fields from I"e '1 to the reference and from the reference to Ia~ d, (see
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Appendix A).

By reversed field, we simply mean if the vector points from (x, y) in the reference image to

(X', Yy') in Ip•l "e then the reversed vector points from (x', y') in Ine"' to (x, y) in the reference

image. To reverse the flow field from the reference to Ilnvel, we must be careful. The

flow field vectors which point to coordinates in I,""e• will often point to non-whole number

coordinates. So to compute the reversed flow field vectors from the (whole numbered) pixels

of I•p•el to the reference image we interpolate among the reversed vectors which fall closest

to each whole numbered coordinate. This can be a tricky algorithm to implement and in

practice, simply rounding the non-integral coordinates works well although with some loss

in accuracy.

This pixelwise correspondence technique can deal with larger variations between two

images than algorithms such as optical flow, provided that the images are of objects of a

known class.

12.2 Image analysis

Custom image analysis can be implemented by mapping the linear coefficients of the model

(c and b in equation 3.4) to higher level parameters such as pose or expression by using a

RBF network or other learning network [Poggio et al., 1993]. In other words, if some of the

prototypes represent changes in pose (for example) for the object class, then the coefficients

for these examples in the model can be mapped to a value representing the pose of the

object. As another example, consider a set of prototypes for faces which includes faces with

different expressions (smiling, frowning, angry, sad, etc), as in [Beymer et al., 1993]. After

matching a novel image of a face, the coefficients of the model can be used to determine if

the input face is smiling, frowning, etc. We call this technique for analyzing images "analysis

by synthesis" because model images are synthesized and then compared to the input image.

Another possible application in the image analysis domain is lip reading. A model of lips can

be built from examples. This model can then be used to track lips in a sequence of images
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D ->
Novel
Image

> Learning
> Network (RBF,
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Parameters
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Figure 12.1: A general image analysis system. The novel image is first matched by a mor-
phable model. The resulting model parameters become input to a learning network which
has been trained to map model parameters onto higher level parameters (such as pose or
expression), defined by the user.

(see also [Blake and Isard, 1994]). A mapping from model parameters to phonemes can be

learned to read the lips.

Figure 12.1 illustrates a general system for image analysis which first matches a morphable

model to a novel image and then maps the coefficients of the model to some higher level

parameters by using a learning network such as a radial basis function.

12.3 Face recognition

A similar approach can be taken to implement a face recognition system. First a morphable

model for the class of faces is built. For each person in the database, a number of different

face images should be used in the model (to capture how the face can appear differently

on different days). A principal components analysis of the shape and texture vectors is

then done using all the prototypes. Then, the eigenvectors with significant eigenvalues are

retained for the morphable model in both the shape and texture spaces. The eigenvector

representation is used so that the shape vectors are orthogonal as well as the texture vectors.

This eliminates the possibility of different sets of parameters yielding the same model image.

Next, the original example images are matched using the eigenvector morphable model and

the resulting model parameters (c and b in equation 3.4) for each person are used as input

000

0 0 0 Matcher
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to a standard classifier algorithm. The example images for each person form a class within

the class of faces. This classifier is then used to recognize a novel face by first matching

the eigenvector morphable model and using the resulting model parameters as input to the

classifier.

In order to achieve invariance to lighting conditions and pose, examples images of the

reference face under different illuminations and poses should be included in the example set.

12.4 Object verification

Morphable models can also be used for object verification. The verification task is to deter-

mine if a specific region of an image contains an instance of some object class or not. This

entails matching the morphable model for that object class to the region in question and

using the error of the final match and the likelihood of the resulting parameters (see section

4.6) to determine if the object exists there. A threshold can be set based on appropriate

statistics to determine if the match is good enough for positive verification. In principal,

this technique could also be used for object detection where the task is to find all instances

of the object class in an image, by simply starting the matching algorithm at evenly spaced

intervals in the image. However, with current hardware, this process is too slow for practical

object detection applications.

12.5 Object tracking

A morphable model can be used to track a (non-rigid) object in a video sequence. Given a

morphable model for the object class one is interested in tracking and a good starting point

for the object's location in the initial frame of the video sequence, the matching algorithm is

simply run on each frame using the parameters of the previous frame as the initial parameters.

Since the object's position, shape and texture will only change slightly from frame to frame,

the matching algorithm only needs to be run for a few iterations, making it fast enough to
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track an object in real time.

12.6 Image compression

Another application for our morphable model framework is image compression. The idea

is that novel images within a class of objects for which a model exists can be represented

using only the parameters of the model. The number of bytes needed to store the model

parameters is typically much smaller than the image itself. For example, consider the case

of faces: given a novel face, it can be represented in terms of the morphable model described

earlier. After matching, only the parameters of the model (c, p and b) need to be stored

for a total of 106 bytes (assuming 50 shape and texture eigenvectors are used and only 1

byte of persision is needed). The novel face can then be synthesized from these parameters

(assuming of course that the model is independently available).

12.7 Optical character recognition

As mentioned in section 2.6.3 a set of shape models (morphable models without texture

vectors) can be used for optical character recognition. The idea is to first build a shape

model from examples for each character that should be recognized. Then a novel character

is recognized by simply matching the shape models for each character to the novel input and

selecting the one with the lowest match error. The likelihood of the resulting parameters

can also be used as a criterion for classifying the novel character.
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Conclusions

In this thesis we have described a flexible model to represent images of a class of objects

and in particular we have described how to use it to analyze new images and represent them

in terms of the model. Our morphable model does not need to be handcrafted but can be

directly "learned" from a small set of images of prototypical objects. The key idea underlying

the morphable model is a representation of images that relies on the computation of dense

correspondence between images. In this representation, the set of images is endowed with

the algebraic structure of a linear vector space. Our morphable model spans the space of the

natural coordinates defined by the protoypes (or by an efficient linear combination of them

as provided by the Karhunen-Loeve transformation).

The main contribution of this thesis is to solve the analysis problem: how to apply

the morphable model for image analysis. Key to the analysis step is matching and a new

matching algorithm is the main focus of this thesis. We have presented experiments which

demonstrate the ability of various morphable models to match novel images for the same

object class as well as experiments which demonstrate the algorithm's robustness and lim-

its. We have also described how to learn a model from protoype images and compute the

pixelwise correspondences among the prototypes automatically. Analysis coupled with syn-

thesis offers a large number of applications of the morphable model, including recognition,

image compression, correspondence and learning of visual tasks in a top-down way, specific
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to object classes (e.g. estimation of contours, shape and color).

There are many directions for future research within the framework of morphable mod-

els. One obvious next step is to implement any of the applications suggested in chapter 12.

Another direction for future work is to further develop the hierarchical morphable model

described in chapter 10. Developing a method for automatically choosing components with

each prototype would be a big step forward. Also, it would be interesting to test the hierar-

chical model on an object detection or verification task. Another interesting idea to pursue

is combining the standard morphable model with a hierarchical model which provides more

detail in important regions after first matching the whole object with the standard model.

Finally, another direction for further research is to extend morphable models to three dimen-

sional data. The prototypes could be 3D Cyberware scans (or some other 3D representation)

and the matching algorithm would warp the 3D shapes to find good matches to a novel 3D

shape. Also, it may be possible to match 3D shapes to 2D images by rendering a 2D image

of the 3D model and comparing this to the 2D input image.

In conclusion, multidimensional morphable models provide a rich framework for ap-

proaching many important problems in computer vision, and also provide a fertile ground

for future research.
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Combining flow fields

In the bootstrapping algorithm we need to combine two flow fields which describe the pixel-

wise correspondences from image I, to 12 and from 12 to 13. Let dxl(x, y) be the x displace-

ment part of the flow field from I, to 12 and let dyi(x,y) be the y displacement part. In

other words, for any whole number pixel (x, y) in image /1, dxi(x, y) gives the displacement

of that pixel in the x direction in image 12. Likewise in the y direction for dyl(x, y). Similary,

let dz 2 (x, y) and dy2(x, y) make up the flow field from I2 to 13.

The problem is to combine these flow fields to get the flow field from I1 to 13. We will

call this new combined flow field, dx 3(x, y) and dys(x, y).

To do this we use bilinear interpolation. For every whole numbered pixel (x, y) in Ii,

the coordinate (z + dzx(x,y),y + dy1(z,y)) is the corresponding point in I2. However,

(x + dzx(x,y),y + dyi(x, y)) is not necessarily whole numbered. Thus we cannot use it to

index dx 2 and dy2 directly. Instead we must bilinearly interpolate to get the value of dx 3(x, y)

and dY3(x, y).

dx3 (x, y) = (1 - 6x)(1 - Sy) dx 2 ( L + dxZ(x, y)], [y + dy (z, y)]) +

Sx(1 - Sy) dx 2(Lx + dx 1(x,y)j + 1, Ly + dy 1(x,,y)) +

(1 - 6x)6y dx2([LX + dx (x, y)J, Ly + dy(x, y)J + 1) +
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Sx5y dx 2([x + dxl(x,y)] + 1, Ly + dyi(x, y)] + 1) (A.1)

where 6x = x + dxl(x,y) - [x + dxl(x,y)J and Sy = + dyi(x,y) - [y + dyi(x,y)]

Similarly for dys(x, y):

dy3(, y) = (1 - 6x)(1 -6 y) dy2( [ + dx(x, y)], [y + dyi(, y)])+

Sx(1 - Sy) dy2 ( L + dx,1(, y)] + 1, Ly + dyi(x, y)) +

(1 - 6x)Sy dy2( [X + dxi(x, y)], Ly + dyi(x, y)] + 1) +

68xy dy2(Lx + dx1(x, y)j + 1, Ly + dyi(x, y)] + 1).

APPENDIX A. 126

(A.2)



Appendix B

Image warping

To render a model image given a shape vector (flow field) and a texture vector, we use a

very simple forward warping algorithm. For more details on warping see [Wolberg, 1990].

B.1 Forward warping

Let the flow field be represented by dx(x, y) and dy(x, y), the x and y components of the flow

field, respectively. Let T(x,y) be the texture vector (which is simply a grey scale image).

The flow field describes the displacement for each pixel, (x, y), in the image T. To obtain

the forward warping of T by the flow field, dx and dy we simply move each pixel (x, y) to

the new location (x + dx(z, y), y + dy(x, y)). This process is complicated by two problems.

The first problem is that (a + dx(z, y), y + dy(x, y)) is not necessarily a whole number valued

coordinate. The second problem is that the resulting warped image, call it I(z, y), may have

holes - that is some pixels in I may not be mapped to.

There are various ways to resolve the non-whole number problem. We choose the simplest

and fastest since the results are satisfactory for our purposes. We simply round to the nearest

whole numbered pixel. Thus,

I(round(x + dz(x, y)), round(y + dy(x, y))) = T(x, y)

where the function, round(x), simply rounds x to the nearest integer.
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The problem of holes can also be solved in many ways. Again, we choose a simple and

fast technique to solve this problem. Our solution is for each hole (which can be detected by

simply keeping track of which pixels are not mapped to after forward warping) simply look

at neighboring pixels by following an ever-widening spiral trajectory around the hole until

a non-hole pixel is found (this is usually very close to the hole). Then the hole is simply

assigned the grey level value of it's nearest non-hole neighbor.

B.2 Backward warping

Given a flow field (dxz(, y), dy(x, y)) from the reference image to a prototype image I1,

the backward warping algorithm attempts to move the pixels of I, to their corresponding

locations in the reference image (as determined by the flow field). The only difficulty is

that the flow field may not point to integer locations in Ii. To solve this we use bilinear

interpolation.

So,

Ibckwd-warp(x,y) = (1 - 6x)(1 - Sy) IA([x + dx(x, y)J, y + dy(x,y)J) +

6x(1 - 6y) Ii(Lx + dx(x,y)J + 1, Ly + dy(x,y)]) +

(1 - Sx)6y I( [x + dx(x, y)], [y + dy(x, y)] + 1) +

6x6y Ii,( x + dx(x, y)J + 1, [y + dy(x, y)J + 1) (B.1)

where 6x = x + dx(x, y) - [x + dx(x, y)] and Sy = y + dy(x, y) - Ly + dy(., y)J.
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