
A Schematic Editor and Netlist Extractor in Java

by

David M. Liebson

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degrees of

Bachelor of Science in Electrical Science and Engineering

and Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

May 17, 1997

Copyright 1997 David M. Liebson. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and
distribute publicly paper and electronic copies of this thesis

and to grant to others the right to do so.

Author
Department of Electrical Engineering and Computer Science

May 17, 1997

Certified by
Anantha Chandrakasan

Thesis Supervisor

Accepted by
Arthur C. Smith

Chairman, Department Committee on Graduate Theses

0(. • 9 1997

A Schematic Editor and Netlist Extractor in Java

by

David M. Liebson

Submitted to the
Department of Electrical Engineering and Computer Science

May 17, 1997

In Partial Fulfillment of the Requirements for the Degrees of
Bachelor of Science in Electrical Science and Engineering

and Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

In this thesis, I implemented a hierarchical schematic editor with netlist extraction

capability for both Verilog and SPICE formats. This tool, WebTop, allows the rapid

graphical development of electronic circuits. WebTop can interface with other CAD

tools available on the Internet for circuit simulation and power estimation. WebTop can

interact with distributed online libraries of cells to support collaborative design. WebTop

was implemented completely in the Java programming language for maximum platform-

independence.

Thesis Supervisor: Anantha Chandrakasan
Title: Analog Devices Career Development

Assistant Professor of Electrical Engineering

ACKNOWLEDGMENTS

I would like to thank my thesis advisor, Anantha Chandrakasan, for giving me the

opportunity to work on this project.

My extreme gratitude to Debashis Saha, for his invaluable contributions of ideas,

code, time, and raw debugging power! Debashis provided all of the Verilog support,

most of the Web-oriented features, and the original design for hierarchical structures.

Thanks to Jennifer Mead, Danielle Coffing, and my entire family for moral

support and constant encouragement.

TABLE OF CONTENTS

ACKNOWLEDGMENTS 3

TABLE OF CONTENTS .. 4

LIST OF FIGURES .. 6

1. INTRODUCTION ... 7

1.1 Web-based CAD ... 8

1.2 Available Web-based Tools... 9

2. OVERVIEW OF WEBTOP ... 11

2.1 Purpose of WebTop .. 11

2.2 Implementation of WebTop ... 15

2.3 Overall Structure of the Code ... 17

3. WEBTOP IN DETAIL ... 19

3.1 Data Structures .. 20
3. 1.1 Cell related data structures.. 20

IO Pin 20
Cell.. 22
Prim itiveCell 24
Schem aticC ell 24
Schem atic 25

3.1.2 Other data structures 27
Pin 27
L ibC ell 28
W rapU til 28

3.2 GUI Components .. 29
3.2.1 ControlPanel and ImageButton .. 29
3.2.2 SchematicPanel ... 30
3.2.3 StatusPanel ... 33
3.2.4 WebTopFrame .. 33
3.2.5 LibMgr, ComponentBox, ComponentPanel, and UrlDialog 34
3.2.6 ColorManager and repaintcanvas .. 35
3.2.7 PropertyBox and PropertyField 37
3.2.8 InputBox 38
3.2.9 T extV iew 38
3.2.10 SimpleDialog and DialogPanel .. 38
3.2.11 PSGr 39

3.3 PrimitiveCell Classes .. 40

3.5 Top-level WebTop Applet ... 41

4. DESIGN EXAMPLE .. 44

5. SUMMARY .. 52

APPENDIX A - WEBTOP USER MANUAL 54

Basics ... 54

Main Applet .. 55

Schematic Editor .. 56
C ontrol panel 56
Schem atic editor m enus 59

File menu............................. 59
Edit m enu 60
Library menu...... 63
Cell menu 63
Fundam ental m enu 64
Extract m enu 66
C onfiguration m enu................................... 67
H elp m enu 67

Library Manager .. 67
Mouse-Based functions.. 68
Library manager menus .. 69

File m enu...................................... 69
Cell m enu 71
H elp m enu 73

Color Manager .. 73

Property box ... 75

APPENDIX B- WEBTOP FILE FORMAT 76

APPENDIX C - CLASS FILE REFERENCE GUIDE 82

REFERENCES 91

LIST OF FIGURES

Figure 1: Example of a circuit design in WebTop 12
Figure 2: Example of a circuit shown as a "black box"............................... 13
Figure 3: WebTop overall structure ... 18
Figure 4: WebTop data structure classes... 20
Figure 5: Cell highlighting 24
Figure 6: Pin grid... 28
Figure 7: U ser interface classes... 29
Figure 8: Scrollbar and events 36
Figure 9: Carry generator circuit ... 46
Figure 10: Sum generator circuit... 47
Figure 11: Inverter circuit.. .. 48
Figure 12: Full adder circuit... ... 48
Figure 13: Four bit ripple-carry adder... 49
Figure 14: Four bit adder ready for use .. 49
Figure 15: Main applet window .. 55
Figure 16: Schematic editor window.. 56
Figure 17: C ontrol panel.. .. 56
Figure 18: Spice Models menu items ... 67
Figure 19: Library m anager... .. 68
Figure 20: Example of a symbol view.. 69
Figure 21: U RL dialog box... ... 70
Figure 22: Example of the Add Cell command............................. 72
Figure 23: Example of the Edit Cell command 73
Figure 24: Color manager window.. 74
Figure 25: Property box... .. 75
Figure 26: Example Cell for file format... 80

1. INTRODUCTION

As use of the Internet becomes widespread, the potential for remote collaboration

on design projects increases. However, the existing software tools at this time do not

allow the user to use the Internet to maximum advantage. This thesis proposes to create

part of a larger framework to enable the Internet-based design, simulation, and fabrication

of integrated circuits and systems. Specifically, this thesis will involve the construction

of a schematic editor and netlist extractor using Sun Microsystems' Java programming

language [2]. This tool, known as WebTop, allows the user to draw a circuit schematic

(referred to as a cell throughout this document) in a fully graphical, drag-and-drop

interface and then to extract a netlist file suitable for simulation with various industry-

standard circuit simulators, such as SPICE or Verilog. WebTop supports hierarchical

structures: any given cell may be composed of other, lower-level cells. At the lowest

level of abstraction, a large library of commonly used components is built in to WebTop

to facilitate the creation of more complex cells. In addition to the built-in library of

standard electronic components, additional component types may be created by the user

and accessed either from local disk or a distributed network of World Wide Web

(WWW) based object repositories (WebTop servers). WebTop is a Java applet that can

theoretically be run under any Java environment. As of this writing, security restrictions

in most available Java implementations prevent full functionality of WebTop. Full

functionality is supported under Sun Microsystems' appletviewer program'; other

' Sun's appletviewer is available from the URL http://java.sun.com/products/jdk. WebTop was
developed and tested using JDK version 1.02.

7

browsers such as Netscape Navigator 2 or Microsoft Internet Explorer 3 may have

difficulties with operations involving local disk access or network access.

1.1 Web-based CAD

Now that a brief introduction to WebTop has been given, it is best to step back

and examine its context in a wider field. Why is it useful to have a schematic editor that

can work with the Web? First, collaboration in design becomes easier. If a common set

of cells can be placed on an Internet server, geographically distant people can have easy,

instant access to each other's work. If every user of WebTop makes the circuits (cells)

that they create available publicly, then designs become progressively easier, as more

complex cells become available. This public availability of cells can reduce redundant

effort; perhaps a cell you need has already been designed by someone else. Also, the

availability of other circuits online may can provide reference when designing new

circuits. Existing circuits can suggest new methods or techniques to be used in other

projects.

Another benefit of Internet integration is the ability to connect to other tools that

are already available on the Internet. Such tools include circuit simulators and power

dissipation estimators. Connection to simulation tools is interesting, because circuit

simulators are often expensive and computationally intensive. Because the schematic

2 Netscape Navigator is available from the URL http://www.netscape.com. WebTop was tested
with Netscape Navigator version 3.01.

3 Microsoft Internet Explorer is available from the URL
http://www.microsoft.com/products/inteprod.asp. WebTop was tested with Microsoft Internet Explorer
version 3.0.

editor is not itself computationally intensive, low end machines can be used for the design

work, while a dedicated, powerful server processes simulations. Cost can be reduced, as

each server can simulate circuits submitted by many users, reducing the need to purchase

multiple copies of the software.

Connection to power estimators is also extremely interesting, because power

dissipation estimation is a difficult, often overlooked aspect of the design process. Use of

tools specifically designed for power analysis can greatly reduce simulation time needed.

In the future, all sorts of CAD tools will be available on the Internet. Soon, it

should be possible to complete the entire design process, from drawing the schematic to

ordering the fabrication, all from a machine connected to the Internet.

1.2 Available Web-based Tools

As noted previously, some CAD tools are already available on the Internet.

One such tool is WebSpice, developed by Debashis Saha in conjunction with the

WebTop project. WebSpice accepts a SPICE netlist as input, processes the netlist, and

returns the results to the user.

In the power estimation category, there are at least two WWW-based tools

existing. One is Pythia[7], developed by Thucydides Xanthopoulos. Pythia accepts a

Verilog netlist, and estimates the power dissipation of the design.

Another power estimator is PowerPlay[3], by David Lidsky. PowerPlay works

more on a higher, more conceptual level than Pythia does. Rather than accepting a netlist,

PowerPlay asks questions about capacitance, frequency, area, and other circuit

parameters. Not all of these parameters are required; PowerPlay does the best it can with

the information it is given. WebTop does not interface with PowerPlay at this time;

however, if in the future WebTop is expanded to allow for a more conceptual, "top-

down", concept-oriented design style, PowerPlay integration may be a useful future

feature.

Another tool worth mentioning is the applet upon which WebTop is based.

WebTop is based upon a program called "Digital Simulator," released into the public

domain by Iwan van Rienen [6]. This program is written in Java, and implements a basic

schematic editor along with a simple digital simulator. However, this applet does not

have all of the features desired for the schematic editor. The program is not extensible, in

that no additional components can be defined without recompiling the entire program.

No hierarchical features are present. Also, netlist extraction is not supported. Although

simulation features are present, and useful for design verification, complete simulation is

not possible with the built in features. Although the "Digital Simulator" lacks some

features, the user interface is excellent. Thus, the interface portions of Digital Simulator

have been retained, and the extra features (such as hierarchy and netlist extraction

support) have been added to produce WebTop. Digital Simulator has been used as a

starting point by other research groups working on Web-based tools. Notably, the Web-

Based Electronic Design (WELD) project at the University of California, Berkeley [5],

modified Digital Simulator. The WELD project's modifications enable Digital Simulator

to interact with their Synopsys design compiler4. However, the WELD project's

modifications do not add all of the features desired.

Thus, there are tools available to simulate and perform useful analysis of

electronic circuits. However, no tool exists to permit the efficient creation of input for

these other tools. WebTop, which is an extended version of the original Digital

Simulator applet 5, has been developed to meet this need.

2. OVERVIEW OF WEBTOP

This section is intended to give a general overview of what WebTop does, how

WebTop was developed, and how WebTop is structured internally.

2.1 Purpose of WebTop

WebTop is a hierarchical schematic editor that supports netlist extraction into

various formats. What exactly does this mean?

First and foremost, WebTop is a schematic editor. The fundamental purpose of

WebTop is to allow the user to generate nice-looking schematics on the screen in a

straightforward manner. That is to say, WebTop functions as a drawing program for

schematics. The figure below shows an example of a circuit drawn with WebTop. Cells

4 The modified version of Digital Simulator is available from the URL
http://yoyodyne.eecs.berkeley.edulDigSim/DigSim.html. Documentation of the modifications made to the
Digital Simulator applet by the WELD project can be found at the URL
http://yoyodyne.eecs.berkeley.edu/DigSim/readme.html.

5 WebTop was developed from the original distribution of the Digital Simulator applet. The
WELD project's modifications are not incorporated into WebTop.

11

can be placed, moved, and deleted with ease.

are supported as well, for repetitive structures.

The usual cut, copy, and paste operations

Nij 4, .i

M,::: :
-qi'''''
.............: :

-IL
M9 : : :
1 1&0 2ii ..

M2:...
5A4• ,2i:

M4.

. M8 ..

M1 0: :

.

1li St i 2

i W !

i........

i : : : : : :i
..

...

..... :........ :. l

H

H

i.
" I

MS

M6,

5:4i•1~2:

M12. .

M13: .
Mi :......

120 2u.....................!...... :. . :. :. .. : :. . :

Figure 1: Example of a circuit design in WebTop

However, if the schematic has many repetitive structures, hierarchy is probably a

better option than repeated cutting and pasting. WebTop's hierarchical features allow a

collection of cells to be made into another cell. Only the specified nodes are brought out

of the cell for external connection. Thus, complexity can be easily managed. Figure 2

shows the circuit of Figure 1 represented in this "black box" format. Such conversion

from the full circuit representation of Figure 1 to the "black box" representation of Figure

12

I

~BPPBSrSdl~XP~P~ ~iZ~i~P1~-~ ~(FIO~·~·i~*LB1P~i~PS~SI~:fk~ ~nc~~g~lq~ ~b~-~YS~L~~ ~ry~n:l

............

: :. : :. : : : : : :
! ~·

-~---·--------·-^--· ·---- ·---- 3 II
..............

. 11 111 1
............

..

q-

•

...I ... II ..I...

5A0 'ý":

2 is automatic. In the terms used by WebTop, Figure 1 shows the schematic view of the

sum cell and Figure 2 shows the symbol view.

Figure 2: Example of a circuit shown as a "black box"

User defined SchematicCells can be saved to local disk, or accessed from

networked WebTop servers. Thus, users can easily create and access libraries of useful

cells.

Of course, this would all be useless if you couldn't actually do anything with these

cells. WebTop supports netlist extraction in both SPICE and Verilog formats. That is,

once you draw your cell, you can automatically generate a netlist suitable for SPICE or

Verilog simulation6. Instead of drawing the circuit out on paper, labeling the nodes, and

generating the SPICE netlist by hand, you get the netlist automatically. For example, for

the example circuit from Figures 1 and 2, we get the following SPICE netlist:

* WEBTOP Spice Netlister *
* Copyright: Massachusetts Inst. Of Tech *

6 The Pythia power estimator supported by WebTop has restrictions on the types of Verilog input it
can process. The Verilog output produced by WebTop is target towards processing by the Pythia power
estimator.

13

I A --F.- -ýsi A:: : : : : : I

.MODEL NMOS NMOS LEVEL=2 LD=0.15U TOX=200E-10
+ NSUB=5.37E15 VTO=.74 KP=8E-5 GAMMA=0.54
+ PHI=0.6 U0=656 UEXP=0.157 UCRIT=31444
+ DELTA=2.34 VMAX=55261 XJ=0.25U LAMBDA=0.037
+ NFS=1E12 NEFF=1.001 NSS=1E11 TPG=1.0 RSH=70
+ CGDO=4.3E-10 CGSO=4.3E-10 CJ=0.0003 MJ=0.66
+ CJSW=8E-10 MJSW=0.24 PB=0.58

.MODEL PMOS PMOS LEVEL=2 LD=0.15U TOX=200E-10
+ NSUB=4.33E15 VTO=-0.74 KP=2.7E-5 GAMMA=0.58
+ PHI=0.6 U0=262 UEXP=0.324 UCRIT=65720
+ DELTA=1.79 VMAX=25694 XJ=0.25U LAMBDA=0.061
+ NFS=IE12 NEFF=1.001 NSS=1E11 TPG=-1.0 RSH=121
+ CGDO=4.3E-10 CGSO=4.3E-10 CJ=0.0005 MJ=0.51
+ CJSW=1.35E-10 MJSW=0.24 PB=0.64

*** TopLevel Cell Instancesum! ***
Xsum! A B Ci Co! Vdd! S! sum!
*** End TopLevel Instance ***

*** TopLevel Sub-ckt: sum! ***
.SUBCKT sum! A B Ci Co! Vdd! S!
MM1 Vdd! A _node_1 Vdd! PMOS w=5.4u l=1.2u
MM2 Vdd! B _node_1 Vdd! PMOS w=5.4u l=1.2u
MM3 Vdd! Ci _node_1 Vdd! PMOS w=5.4u l=1.2u
MM4 _node_1 Co! S! Vdd! PMOS w=5.4u l=1.2u
MM5 Vdd! A _node_2 Vdd! PMOS w=5.4u l=1.2u
MM6 _node_2 B _node 3 Vdd! PMOS w=5.4u 1= 1.2u
MM7 _node_3 Ci S! Vdd! PMOS w=5.4u l=1.2u
MM8 S! Co! _node_4 0 NMOS w=1.8u 1=1.2u
MM9 _node_4 A 0 0 NMOS w= 1.8u 1= 1.2u
MM10 _node_4 B 0 0 NMOS w=1.8u 1=1.2u
MM11 _node_4 Ci 0 0 NMOS w= 1.8u 1= 1.2u
MM12 S! Ci _node_5 0 NMOS w=1.8u 1=1.2u
MM13 _node_5 A _node_6 0 NMOS w= 1.8u 1= 1.2u
MM14 _node_6 B 0 0 NMOS w=1.8u 1=1.2u
.ENDS
*** End TopLevel Sub-ckt ***
.end
* -- Extraction Completed --*

This netlist is generated completely automatically. No knowledge of SPICE is

necessary to create the basic netlist. Once the netlist is created, simulation control

statements can be added, and the SPICE file submitted to the WebTop server for

simulation.

This is a very basic introduction to WebTop's functionality. Appendix A presents

an exhaustive list of WebTop's features.

2.2 Implementation of WebTop

WebTop was developed in Sun Microsystems' Java programming language. Java

was chosen due to its flexibility and platform-independence. Furthermore, some previous

work in schematic editors was available in the public domain. WebTop is based on a

public domain applet called "Digital Simulator" (DigSim). Although WebTop looks at

first glance very much like the original, unmodified DigSim, the appearance is

misleading. Although the interface looks similar, there is little similarity in source code

between the two applications.

As of this writing, Sun is supporting two different versions of the Java

specification. The older version, JDKI.02 is widely supported by third-party web

browsers. The newer version, JDK1.1 supports many useful features not included in

JDK1.02. However, as of this writing, no third-party web browsers support the JDKI.1

specification. In order to test the functionality of the application, we had to be able to run

it. Thus, WebTop has been developed using the JDK1.02 specification.

One new JDK1.1 feature was used in WebTop, because patches to JDKI.02 are

available to implement the features7. These are the remote-method invocation features

7 The patches to add RMI features to JDK1.02 are available from the URL
http://chatsubo.javasoft.com. These patches are pre-beta unsupported software but have performed
adequately in testing.

15

(RMI), used by WebTop for efficient file storage and loading. The utility of the RMI

features was sufficient to warrant its use, even with the inconvenience of installing

patches.

According to Sun's documentation, JDK1.02 applications should continue to run

in JDKI.1 environments. Testing indicates that this is untrue for most non-trivial Java

program. Most problems result from Sun's replacement of methods with similar, but

different calls. Sun's documentation specifies that such deprecated methods should

continue to work for at least one JDK release after their deprecation. In practice, such

methods are often removed in the next JDK release.

These problems between version of the JDK specification will eventually require

that WebTop be converted to JDKI.1 when JDK1.1-compliant web browsers become

standard. Problems in porting the WebTop code to JDKI.1 should be minimal. The

JDKI.1 compiler will produce a warning when it finds outdated code. Sun provides a

reference to find the updated versions of deprecated methods (reference).

WebTop has been tested under Microsoft Windows NT 4.0 (Intel processor) and

Sun Solaris 5.4. On the Intel platform, WebTop has been tested using Sun's

appletviewer, Netscape Navigator, and Microsoft Internet Explorer. On the Sun machine,

WebTop was tested under appletviewer and Netscape Navigator. As WebTop is written

entirely in Java, it should in theory run properly on other platforms. However, during

development, many compatibility problems were detected between platforms, and even

between different browsers on the same platform. Because most of the software related

to Java, as well as the Java specification itself is evolving rapidly at this point in time,

testing is essential to verify the WebTop is functional under a given environment before a

large-scale design effort is started. Unfortunately, there is no guarantee that WebTop will

be compatible with the future versions of software that WebTop works with now, due to

the rapid evolution of the Java specification.

2.3 Overall Structure of the Code

WebTop is a fairly large application. It consists of approximately 13,000 lines of

code, spread across 55 different class files. Approximately half of the class files are

descended from code present in the original Digital Simulator applet; the other half are

completely new. The files descended from the original Digital Simulator have for the

most part been heavily modified. While attacking this amount of code may seem

intimidating at first, it is fortunately not as bad as it looks. The classes in WebTop break

down into three major categories: data structures, graphical user interface components,

and PrimitiveCells. Many classes include features of both the data structure and GUI

component categories, but in general a class falls more naturally into one of the categories

than the other. The applet class itself (WebTop), due to its top-level nature, is best

treated on its own, as it combines the previous categories, as well as having distinct

characteristics of its own.

Figure 3: WebTop overall structure

Data structure classes are further classified by what their purpose is. One large

group of classes implements the hierarchical cell structure used by WebTop. The base

class is Cell, and other classes such as PrimitiveCell and SchematicCell descend from it.

Other data classes used to implement the cell structure include IOPin, which specifies an

interface from a cell to the rest of the world. Not all of the data structure classes are

directly related to the cell structure. The Schematic class represents an arbitrary

collection of cells, and is used for tracking groups of cells. For example, one Schematic

structure might contain all of the cells on the screen, one schematic may contain the

results of a cut, copy, or paste option, and so on. In general, the data structure classes are

used to store, manage, and manipulate data that is used by other parts of the applet.

Graphical User Interface classes are responsible for managing the interaction

between the user and the applet. Anything you see displayed on the screen is an instance

of a GUI component class. Often, the GUI component classes display the data contained

within a data structure class to the user. GUI component classes can be further divided

into two main groups: primary and secondary. Primary GUI component are the GUI

components that the user spends the most time interacting with. Primary GUI

components would include SchematicPanel, ColorManager, and others. Secondary GUI

components tend to be transient in nature - they appear only long enough to display some

information, or to request some information from the user. Secondary GUI components

may also be "helpers" for primary GUI components. Thus, in the following detailed

discussion of WebTop internals, secondary GUI component classes are discussed along

with the primary GUI component they are associated with. Secondary GUI component

classes in WebTop include ComponentBox, TextView, and so on.

PrimitiveCell classes implement the basic building-block cells. Circuit

components such as resistors, transistors, capacitors, voltage sources, and so on are

PrimitiveCells. Each different PrimitiveCell that WebTop supports has its own class,

because each component needs different initialization, has a different drawing routine,

interacts with netlist extraction differently, and so on. Approximately half of the class

files in WebTop are PrimitiveCell classes.

3. WEBTOP IN DETAIL

With that brief overview of WebTop's internal organization, it is possible to

explore WebTop's inner workings in a more detailed manner. This section is intended to

provide some understanding of how the different class files of WebTop interact to

produce a working application, and perhaps to explain some of the more subtle points of

some of the functions. It is not intended to be a complete guide to WebTop; for that, the

source code must be consulted. The source code is commented, so that looking at the

source code will be most beneficial. The best way to learn about how WebTop works is

to read this thesis, use WebTop, and then read the source code.

In this section, only the most important members and methods of each class are

discussed. If a member or method is not mentioned in this section, it is either of minor

importance, or straightforward to understand by reading the source code. A reference

guide to the class files of WebTop is provided in Appendix C.

3.1 Data Structures

As mentioned before, WebTop contains various data structures that are used to

storing and manipulating critical data. Most of these data structures are related to the

hierarchical cell structure; some are not.

Figure 4: WebTop data structure classes

3.1.1 Cell related data structures

These classes are generally concerned with representing cells, groups of cells, or

portions of cells. This subset of classes consists of: IOPin, Cell, PrimitiveCell,

SchematicCell, and Schematic.

IOPin

An IOPin is a portion of a cell. Specifically, it represents a connection between

cells. All PrimitiveCells have IOPins; most SchematicCells have IOPins as well.

Because IOPins are the only way to connect between cells, any cell that is to be re-used in

other designs must have IOPins. The only type of cell that would not have IOPins is the

absolute top-level cell of a design.

The IOPin structure, in its role as a connection between cells, must keep track of

several important pieces of data. Thus, each member of the IOPin is discussed separately.

The first member, int type, represents the kind of pin that the IOPin is. These

types are defined statically and finally in IOPin.java. In this version, there are input pins,

output pins, and input/output pins. The type distinction matters only when drawing the

pin. An input-type IOPin represents an input to the cell from the rest of the world, and is

drawn from the active end to the passive end. with an arrow at the passive end. An

output-type IOPin represents an output from the cell to the rest of the world, and is drawn

from the passive end to the active end, with an arrow at the active end. An input/output-

type IOPin is a simple line segment connecting the active end and the passive end, and is

drawn with no arrow.

As mentioned above, each IOPin has an active end and a passive end. The active

end is the end that wires can connect to. The passive end cannot be connected to, and is

intended to be placed adjacent to the main body of its parent cell.

The active end of the IOPin is tracked by the member Point IOPinPos. This point

is specified relative to the origin of the parent component.

The passive end of the IOPin is implicitly tracked by the member Dimension

IOPinDim. IOPinDim represents an (x,y) offset from the active end of the IOPin to the

passive end.

The member String pin_name tracks the "real" name of the IOPin. This name

never changes, no matter how the cell might be connected. This name is intended to be

descriptive of the pin's function: "Input A", "Vdd", "Output" and so on.

The member String lexical_name tracks the name of the circuit node that the

IOPin is connected to. This name is set when extracting a netlist, and can of course

change depending on how the IOPin is connected.

The member boolean showtext controls whether or not the pin_name is displayed

when the pin is drawn. For a PrimitiveCell, showtext is generally false. For a

SchematicCell, showtext is true.

The final member Vector ConnComps is used only when extracting a netlist. It is

used to track which other cells this IOPin is connected to.

Cell

The Cell class represents the basic cell, which is the base of all hierarchical

structures. This class is abstract; you will never actually encounter a generic cell object.

Often, descendants of the Cell class are cast to type Cell to simplify processing of large

numbers of cell. The various types of cells are rather similar, so most of the functions can

go into the parent class.

The member Hashtable Parameters contains various parameters of the cell, such

as name, value, and so on. These parameters can affect how the Cell is drawn, and

particularly how the Cell is represented in extracted netlists. The keys of this hashtable

are Strings representing the name of the parameter. The associated key is a String

containing the value of the parameter.

The member Vector pins contains a list of all IOPins associated with this Cell.

The member String views[] contains an array of views (Symbol, Schematic,

Spice, Verilog, etc.) set for this cell. Views do not have any particular meaning for

PrimitiveCells, but they do matter for SchematicCells. The views are included in the

generic Cell class to simplify processing of large numbers of cells.

The members Point Pos and Dimension Dim track the position and size of the

Cell. Pos specifies the upper left-hand corner of the Cell relative to the origin of the

SchematicPanel. Dim contains the offset of the lower right-hand corner of the cell,

relative to the upper left-hand corner.

The members Point HitBox and Dimension HitBoxSize perform a similar

function to the previously mentioned Pos and Dim members. However, they track

aspects of the HitBox, which is the area that is used to determine if the Cell has been

clicked upon. The HitBox should always be contained entirely within the area specified

by Pos and Dim.

The members boolean Selected and boolean PropBoxActive control different

types of highlighting that maybe applied to a Cell. Selected-style highlighting is used

when the user has clicked on the component. It consists of small squares drawn around

the corners of the Cell's HitBox. PropBoxActive-style highlighting is applied to a Cell

when a PropertyBox associated with this Cell has the user input focus. It is similar to

Selected-style highlighting; however, the squares for PropBoxActive-style highlighting

are larger than Selected-style highlighting. It is important to note that a given Cell may

have no highlighting, one type, or both types simultaneously. Figure 5 below depicts both

types of highlighting.

.................. P.P.hftighi.......: : : :

Figure 5: Cell highlighting

PrimitiveCell

The PrimitiveCell class is a descendent of the Cell class. It is used to represent

the built-in Cell types that come with a release of WebTop. These PrimitiveCells are the

basic electronic components that arbitrary, more complex components can be built up

from. PrimitiveCells can not be supplied or modified by the end user of WebTop.

The PrimitiveCell has no members not present in the generic Cell type. Some

extra constructors are provided, and the abstract methods of the Cell class are properly

overridden.

SchematicCell

The SchematicCell class is a descendent of the Cell class. It is used to represent a

user-defined Cell. Basically, a SchematicCell is a Cell that can contain other cells. These

cells can be of the PrimitiveCell or SchematicCell type.

The SchematicCell class has three members not present in the generic Cell class.

The member Vector subcells contains the other cells that are contained within this

SchematicCell. The members int totalGridX and int totalGridY indicate the size of the

pin grid for this cell. The size of the pin must be tracked in case the Expand Horizontal

24

or Expand Vertical commands are used while editing a cell; if a cell larger than the

default 100x 100 size were to be loaded without re-sizing the pin grid, errors would result.

The SchematicCell class has a few interesting methods that are not a part of the

Cell class. These methods deal with the extra complexity of the subcells.

The GetSubCell() method is used to extract the essential data from a

SchematicCell. It produces a "stripped-down" version of the SchematicCell. The

resulting SchematicCell preserves the name and the pins of the original SchematicCell.

The fixupo method is used to properly determine how to draw the SchematicCell.

Because SchematicCells can have different name lengths and different numbers of pins,

the SchematicCell class must be able to account for this variation. The fixupo method

sets the Dim, HitBox, and HitBoxSize members of the SchematicCell, and the IOPinPos

and IOPinDim members of each associated IOPin.

The dumpCell() and parseCell() methods are used for saving and loading

WebTop-format files. The dumpCell() method produces a String representing the

SchematicCell in the WebTop file format described in Appendix B of this document.

The parseCell() method performs the inverse operation of producing a SchematicCell

from a WebTop-format String. In this version, neither method is particularly robust with

respect to error handling. The parseCell() method, in particular, would benefit from a real

parsing scheme, rather than using the java.util.StringTokenizer routines.

Schematic

The Schematic class represents an arbitrary collection of cells. The Schematic

class is used extensively throughout the GUI portions of the WebTop code. The

Schematic structure was present in the original Digital Simulator package, and has

25

continued into WebTop. The Schematic could be partially replaced in some portions of

the user interface code with proper references to the Vector subcells of the SchematicCell

class, but often the code is easier to understand in terms of the Schematic class. The

Schematic class is essential to the Cut, Copy, and Paste operations. The Schematic class

is also used to track which components in the current cell are selected. Even though the

Schematic class is used primarily for user interface functions, it is classified along with

the cell-related data structures because of its role as an arbitrary collection of cells.

The member Vector Components tracks each cell present in the Schematic. It is

similar, but not identical, to the Vector subcells of the SchematicCell. The Vector

subcells of the SchematicCell contains all of the subcells of the SchematicCell, whereas

the Vector Components of the Schematic can be empty, contain some subset of the Cells

in the current Cell, contain Cells not present in the current Cell, and so on.

The member boolean Modified keeps track of whether or not modifications have

been made since the current Cell was last saved. This is used for user interface purposes.

By checking the state of this member, WebTop can determine whether or not to ask for

confirmation before discarding the current Cell.

The method PasteSchematico is rather complicated. Cutting and pasting is

generally complicated in WebTop, because there are many special cases that can occur.

Furthermore, duplicate names must be avoided, aliasing between objects must be

avoided, and proper consistency between all data structures must be maintained. This

method is sufficiently complicated that a quick guide to what it does is appropriate. The

first for-loop of this method iterates over all of the Components to find the minimum x

and y values of the component positions. These values are used to determine where to

26

place the Cells that are to be pasted. The next for-loop also iterates over all of the

Components. A copy of each component Cell is made (the actual component itself

cannot be used, or aliasing problems would result). Next, this new copy is given a new

name, such that its name does not conflict with the name of any other Cell present.

Because there are special cases of cells requiring special behavior, the generation of new

names accounts for the bulk of this method's code. Once the new name is generated, the

new Cell is added to the current Cell. Finally, the current Cell is checked to make sure

that no cycles have been introduced.

The method RemoveSameElementso removes the cells in a schematic from that

schematic, as well as from the current Cell. This method is called when a number of

Cells are selected, and the Cut command is performed. The selected cells must be

removed from the current cell, as well as from the schematic containing all currently

selected components.

3.1.2 Other data structures

Not all of the data structure classes in WebTop are used to manage Cells. Some

data structures are used to maintain other information.

Pin

The Pin class represents a connection point for components. The schematic editor

maintains a pin grid; that is a two-dimensional array of Pin objects. Schematics are build

upon this grid. Each point of the grid is a single Pin object.

- Pin grid

Figure 6: Pin grid

The member Vector Components keeps track of the Cells that are connected to the

Pin. This information is used when extracting a netlist. Care must be taken to update this

pin information every time a Cell is added, deleted, or moved.

LibCell

The LibCell structure is a condensed form of a Cell used by the library manager.

It extracts only the information about a cell that is needed by the library manager; the type

of the Cell (currently, all Cells in the library manager are of type SchematicCell), the

name of the Cell, and the views associated with the Cell. This information is used to

generate the lists seen in the library manager itself.

WrapUtil

WrapUtil is not actually data structure; rather, it is a collection of useful methods

that don't really fit anywhere else. Because these methods are used for the manipulation

of data, WrapUtil falls somewhat into this general category of classes.

The methods in WrapUtil are used to prepare data or headers to send to network

servers. The methods allow specification of delimiters and various parameters used to

prepare the data.

..z

3.2 GUI Components

As previously mentioned, many of the class files in WebTop implement features

of the user interface

Figure 7: User interface classes

3.2.1 ControlPanel and ImageButton

The ControlPanel is a part of the schematic editor window. It is panel of buttons

that may be clicked to execute commands. This panel is provided as a fast way to access

certain common commands without having to select them from the menus. Buttons are

provided for the New cell, Cut, Copy, Paste, Pointer mode, Wire mode, and Junction

mode commands. The ControlPanel itself is composed of a collection of ImageButton

objects.

Buttons may be in one of several different states. Buttons can be enabled,

disabled, pressed and selected. In each case, the button has a slightly different

appearance. All of the different button possibilities are loaded from one master image,

'images/allbuttons.gif'. This master image is loaded into the Image CopyImage member

of the ControlPanel class. The code checks the state of the button, and then copies the

appropriate button image from the master CopyImage into the appropriate location in the

Image ImageBuffer member. The Image ImageBuffer member contains the graphics of

all of the buttons of the ControlPanel, and is used to paint the ControlPanel. Methods are

provided to set the state of each button. This is necessary because some buttons, such as

Cut, Copy, and Paste, may be enabled or disabled at different times during the operation

of WebTop.

The ControlPanel implements the mouseMove(), mouseEnterO, and mouseExitO

convenience methods in order to provide a simple sort of help to the user. The

mouseMove() method checks which button the mouse pointer is in. If the mouse pointer

is in an enabled button, the schematic editor's status message is updated with a message

indicating which button the mouse is on. This functionality is supported in case the user

forgets which icon is associated with each function.

The ImageButton class is a single button of the ControlPanel. Most of the actual

functionality is in the ControlPanel class. ImageButton provides the state variables for

each button (selected, pressed, enabled) and methods for manipulating the state of each

button. The draw() method of each ImageButton calculates the proper range of the

CopyImage that should be copies to show this ImageButton in the proper state.

3.2.2 SchematicPanel

The SchematicPanel is part of the schematic editor window. The SchematicPanel

displays whatever cell is currently being worked on, and handles most of the user

interaction.

The SchematicPanel class contains many members for tracking the position of the

window, the last component selected, and so on. Most of these members are self-

explanatory. The members int GridXOffset and int GridYOffset are used to help

determine which part of the SchematicPanel is actually visible on the screen. Because the

SchematicPanel itself is larger than the window that contains it, scrollbars are necessary.

GridXOffset and GridYOffset represent the coordinates, in gridpoints, of the upper left-

hand corner of the screen. The SchematicPanel also contains two Schematic objects as

members. These members, Schematic SelectSchematic and Schematic CopySchematic,

are used for cut, copy, and paste operations. The SelectSchematic contains all cells that

are currently selected. When a cell is selected, it is added to the SelectSchematic; when a

cell is deselected, it is removed from the SelectSchematic. The CopySchematic

implements the buffer in cut, copy and paste operations.

When the Cut command is issued, the SelectSchematic is copied to the

CopySchematic. The cells in the SelectSchematic are removed from the current cell, and

the SelectSchematic is emptied. When the Copy command is issued, the SelectSchematic

is copied to the CopySchematic, and retained. When the Paste command is issued, a copy

of the CopySchematic is made, and added to the current cell.

The SchematicPanel is responsible for much of the user interaction in WebTop.

Thus, a large amount of the code is dedicated to handling user input. For the most part,

convenience methods such as mouseDownO and mouseUpo have been used for clarity.

Although JDK1.02 does not explicitly support keyboard shortcuts for commands,

such functionality can be supported by handling keypress events. Unfortunately, different

Java environments differ in handling of keyboard events. The observed differences have

31

been in which GUI component receives the events. For example, on Microsoft Windows

platforms, the SchematicPanel will receive any keyboard events generated while the

SchematicPanel has the input focus. However, on Sun Solaris platforms, keyboard events

are generated in the WebTopFrame. The practical consequence of this difference is that

any critical keyboard shortcuts implemented by handling keypress events must be handled

in both SchematicPanel and WebTopFrame.

For efficiency reasons, the paint() and update() methods of SchematicPanel are a

bit more complicated than absolutely necessary. First, it is important to distinguish

between the purposes of the paint() and update() methods. The paint() method just paints

on the screen; it assumes that nothing has changed state. The paint() method is called by

the Java system when the component has been covered by another window, moved, or

otherwise affected by other aspects of system operation. The update() method actually

does most of the work of drawing the SchematicPanel properly. When something about

what is to be displayed changes, it is update() that should be called. This is why the Java

repaint() method calls update(), not paint(). The actual graphics displayed by the paint()

method are held in an Image structure called ImageBuffer. The paint() method checks

that nothing actually needs to be updated, and then simply draws the existing

ImageBuffer. The update() method is more complicated, as it must actually build the

ImageBuffer. To build the ImageBuffer, the update() method starts with an image of the

grid, draws a border around it, draws all of the cells on top of it, then adds other things

that may or not be present, such as wires in the process of being drawn, a SelectBox,

junctions, and so on.

3.2.3 StatusPanel

The StatusPanel is part of the schematic editor window. It is a small panel at the

bottom of the schematic editor window used to display messages to the user. These

messages provide information about what mode the editor is in (Wire, Pointer, Junction),

help about the ControlPanel, and so on.

3.2.4 WebTopFrame

The WebTopFrame is the schematic editor window. It contains the ControlPanel,

SchematicPanel, and StatusPanel, and the schematic editor's menus. The schematic

editor's menus comprise most of WebTopFrame's members. The member Vector

AvailableComponents contains a list of PrimitiveCells available to WebTop, and is used

to simplify some of the menu handling code. The member Vector MenultemsToDisable

is an artifact of the original "Digital Simulator" applet. It is used to disable menus that

could possibly perform actions at inappropriate times. In the original applet,

MenultemsToDisable would be used while a simulation was running. In the current

version of WebTop, menus are always available. However, the MenultemsToDisable

structure has been maintained in the event that such functionality would be useful in the

future.

The WebTopFrame is also responsible for handling the events of the

SimpleDialog class. The events of the SimpleDialog class are handled here, instead of in

the SimpleDialog itself, so that callbacks to the top-level WebTop applet class can be

made. Such calls could be made by adding a reference to the applet to the SimpleDialog

class, but this arrangement allows the same functionality in a less confusing manner.

Most of the code of the WebTopFrame is to handle the menus. In the

handleEvent() method, the label of the activated menu item is checked, and the

appropriate action taken. Most menu commands call routines in the top-level applet class

WebTop.

3.2.5 LibMgr, ComponentBox, ComponentPanel, and UrlDialog

The LibMgr is responsible for maintaining collections of cells. LibMgr also is

responsible for netlist extraction in both Verilog and SPICE formats, and communication

with Internet-based tools. Most members of LibMgr are used to maintain the lists of

libraries, cells, and views available. Some members are used to handle netlist extraction.

Many of the methods of LibMgr are used to manipulate cells; addCell(),

deleteCell(), getCell() and so on. This type of method is straightforward.

Another group of methods is used to connect the LibMgr and the top-level

WebTop applet class. These are the methods that perform major actions of the LibMgr

that affect the schematic editor, such as adding a cell, editing a cell, and so on.

The addToSchematico method is called to add a new SchematicCell from the

LibMgr to the current cell in the SchematicPanel. The cell to be added is copied from the

LibMgr and given a proper name. Then, the Cell is checked to ensure that its addition to

the current cell will not cause cycles in the extracted netlist. Next, the

SchematicCell.fixupo method is called. This method must be called so that the new

SchematicCell will draw properly. The information needed to properly draw a given

SchematicCell is not necessarily saved with the SchematicCell, so the information must

be regenerated any time the SchematicCell is used.. The new SchematicCell is then ready

to be added into the SchematicPanel's current cell.

34

Many methods are provided for loading and saving cells in a variety of formats.

These methods are bulky, but straightforward.

The final grouping of methods is used for the netlist extraction process. These

methods represent each Cell in the circuit as a sub-circuit, and then define every sub-

circuit necessary with the proper details.

LibMgr has a few small helper classes associated with it. These classes are small

interface components used by the LibMgr to implement some of its functions. Two of

these classes, ComponentBox and ComponentPanel, are used to display the symbol view

of a Cell in the library. ComponentPanel is an extension of Panel with the paint method

overridden to draw the symbol view of a Cell. ComponentBox is an extension of Frame

that contains the ComponentPanel. The Frame class cannot be used by itself, because the

Frame class does not handle WINDOW_DESTROY events, and we want to be able to

close the window properly. The third helper class, UrlDialog, allows the user to enter

parameters necessary to load a cell from a URL.

3.2.6 ColorManager and repaintcanvas

The ColorManager is used to configure the colors used to display various

elements of WebTop's interface. The ColorManager provides a list of elements that

colors can be set for, scrollbars to set the color, and an area that displays a sample of the

current color.

The only interesting aspect of the ColorManager's implementation is the code to

handle the scrollbars. This code requires extra care, because it seems that every Java

environment WebTop has been tested in handles scrollbars in a slightly different manner.

Scrollbars can generate five different events that are of interest: SCROLL_LINE_UP,

35

SCROLL_LINE_DOWN, SCROLL_PAGE_UP, SCROLL_PAGE_DOWN, and

SCROLL_ABSOLUTE. The line events are generated when the scrollbar is moved a

single unit in either direction (by clicking on the arrow). The page events are generated

by clicking in the scrollbar itself. The absolute event is generated by clicking on the

scrollbar's slider, positioning it, and releasing the mouse. Figure 8 shows a scrollbar and

identifies the event that would be generated by clicking on specific locations.

SCROLL_ABSOLUTE

SCROLL- NE_UP

SCROLL_PAGE_DOWN SCROLL_PAGE_UP

Figure 8: Scrollbar and events

Although one would expect the Scrollbar itself to handle these various events

without intervention by the user, this is not the case on the Microsoft Windows platform.

For each type of event, the value of the scrollbar must be explicitly set to the value

contained within the argument of the event that is generated, or the scrollbar does not

update at all. The behavior of the scrollbars differs remarkably between different Java

environments. Scrollbars in Microsoft Internet Explorer behave properly. Netscape

Navigator doesn't generate SCROLL_ABSOLUTE events; instead, a series of

SCROLL_LINE events are generated as the slider is positioned. This is a disaster when a

large window must be repainted many times on a slow machine. Sun's appletviewer will

hang if scrollbar events are generated in rapid succession. Any attempt to generate a

SCROLL_ABSOLUTE event will hang, as will holding down the mouse button in a

SCROLL_PAGE region. No solution or source for these bugs could be located.

3.2.7 PropertyBox and PropertyField

The PropertyBox is used to set the Parameters of a cell. The PropertyBox can

appear when the cell is first added, or by the user double-clicking on the cell in the

schematic editor window. The implementation of PropertyBox is for the most part

straightforward.

Several aspects of the code are worth noting. First, some of the Parameters of the

Cell may be read-only (such as instanceName). Therefore, a test must be performed

when a list item is selected. If the selected list item should be read-only, the

PropertyField must be set to its non-editable state. The other interesting method of the

PropertyBox is the method HighlightCell(). This method is used to adjust the

SchematicPanel's viewing area so that the component associated with this PropertyBox is

visible on screen. This method calculates the range of pin grid indices that are visible on

screen, tests if the Pos member of the associated Cell is within that range, and adjusts the

range if necessary.

The PropertyField is a simple extension of TextField. The PropertyField captures

the TextField's ACTION_EVENT, which is generated when the user presses return in the

TextField. The updateValueo method of the PropertyBox is called when the

ACTION_EVENT is generated. The GOT_FOCUS event is also handled so that the

PropBoxActive highlighting of the associated Cell does not disappear when manipulating

the data in the PropertyField.

The repaintcanvas class is used to implement the color sample of the

ColorManager. The repaintcanvas is an extension of canvas with a paint method that

draws the sample area.

3.2.8 InputBox

The InputBox is a simple extension of Dialog used only to enter a name for a new

Cell. That is, the InputBox is only called a part of the sequence performed when the

"New Cell" command is issued. The InputBox is a modal dialog; it will block the input

to other interface objects while it is onscreen. This is desirable in this case because we

don't want the user editing the new Cell until it is completely set up; It is easier to set the

name and related parameters of the new Cell when it is still in a fresh, known state.

3.2.9 TextView

The TextView is used to show the SPICE and Verilog views of the Cell. It

consists of a frame with an optionally editable TextArea for displaying the view, and a

few buttons for control purposes. The implementation of the TextView is

straightforward.

3.2.10 SimpleDialog and DialogPanel

The SimpleDialog is used throughout to pop up a message to the user. The

dialog's text, buttons, and optional graphics are all specified in the call to the

SimpleDialog constructor. The events of the SimpleDialog are handled by the

WebTopFrame class.

The DialogPanel class is used to contain all of the data of the DialogPanel,

including the buttons, captions, and optional graphics. This class was implemented

separately to keep the interface to the SimpleDialog clean.

The DialogPanel must take the caption String supplied to the SimpleDialog

(which is a sing String, possibly containing '/n' characters) and split it into multiple

Strings (one for each line of the caption) that Graphics.drawStringo can handle.

The DialogPanel is also responsible for loading and managing the optional image

that may be displayed in the SimpleDialog. Graphics for 'warning' and 'error'/'stop' are

provided for added emphasis.

3.2.11 PSGr

PSGr is a class used for outputting Adobe PostScript files 8. Adobe PostScript is a

popular page formatting language used in most printers [1],[4]. Thus PostScript is a

logical output format, due to its wide support. PSGr extends the standard AWT.Graphics

context, such that the usual Graphics methods can be used to generate PostScript output.

This is indeed fortunate, because all of the existing draw() methods for components can

be reused.

The version of PSGr used within WebTop is slightly modified to meet particular

requirements. In particular, the regularly released version of PSGr does not support

landscape printing, does not support scaling to fit a page, and does not support margins.

8 PSGr is a part of a larger Java applet called Jlpr. PSGr was developed by Ernest Friedman-Hill
and is included in WebTop under his copyright notice: PSGr is (C) 1996 Ernest Friedman-Hill and Sandia
National Labs. Right to unrestricted personal and commercial use is granted if this acknowledgment is
given on product or packing materials.

39

WebTop will automatically determine whether landscape or portrait mode is most

appropriate. That is, the schematic will be oriented such that the longer dimension of the

schematic is along the long edge of the page. Furthermore, WebTop will scale the

schematic to fit on one page. This scaling is one way; the schematic will be reduced in

size if necessary, but will not be expanded if the default size takes less than a full page. If

the schematic is very large, the output may be too small to read. However, due to the

hierarchical features of WebTop, a single schematic should rarely grow to such a size.

3.3 PrimitiveCell Classes

WebTop supports twenty-five different PrimitiveCell classes. Of these

PrimitiveCell classes, only a few of them are particularly interesting from an

implementation standpoint. Most of the PrimitiveCell classes are simple descendants of

PrimitiveCell, simply overriding the necessary methods, but not implementing any

additional methods.

Four of the PrimitiveCell classes warrant special treatment: Wire, isolnputPin,

isoOutputPin, and isoInputOutputPin. The classes isoInputPin, isoOutputPin, and

isolnputOutputPin are collectively referred to as "isoPin."

Wire must be implemented somewhat differently do to the completely different

method by which wires are drawn and manipulated. Despite being lumped with the

PrimitiveCell classes, a Wire is not in fact a PrimitiveCell! Nothing is particularly subtle

about the workings of the Wire class.

The three different varieties of isoPin are special because they represent the

IOPins in a SchematicCell's schematic view. When building a new SchematicCell, the

various forms of isoPin are used to indicate a connection between the outside world to

the cell. In the implementation, care must be taken to maintain consistency between the

isoPin cells included in the schematic view of a SchematicCell and the SchematicCells

pin structure. This special case handling appears primarily in Schematic, SchematicCell,

and WebTop, not in the implementations of the isoPin classes themselves.

The PrimitiveCell classes may be divided up into categories based on what

extraction formats they permit.

PrimitiveCells not supported by SPICE extraction, but supported by Verilog

extraction are: AND, Buffer, Inverter, NAND, NOR, OR, XNOR, and XOR.

PrimitiveCells supported by SPICE extraction, but not supported by Verilog

extraction are: C, E, G, I, L, NMOS4, PMOS4, R, V, and Vcc.

PrimitiveCells supported by both SPICE and Verilog extraction are: NMOS and

PMOS.

PrimitiveCells not supported by either SPICE or Verilog extraction are: GND,

Wire, isoInputPin, isoOutputPin, and isolnputOutputPin. These components should be

filtered out by the netlist extraction code. Any attempt by the netlist extractor to include

these components is a bug in WebTop, and will be reported as an error by the netlist

extractor code.

3.5 Top-level WebTop Applet

The WebTop class is the basic, top-level class that contains everything else.

Many of the most important members and methods of WebTop are included in the

WebTop class itself to provide more global access. Most of the methods of WebTop are

called from other classes, but are included in the WebTop class to take advantage of the

local access to important data structures.

All of the main user interface structures are members of WebTop. These

members are: WebTopFrame frame, ControlPanel MyControlPanel, StatusPanel

MyStatusPanel, SchematicPanel MySchematicPanel, LibMgr libmgr, and ColorManager

cm

The members Image ImageBuffer and Image GridImage are used for drawing

purposes. Image ImageBuffer contains the actual graphics drawn to the screen. Image

GridImage contains a image of grid points on the proper background color. The purpose

of these images is discussed in the SchematicPanel section.

WebTop also contains data structures to track the contents of the current cell. The

member Schematic MySchematic contains every cell that is part of the current cell. The

member SchematicCell TopCell actually is the current cell. The member SchematicCell

NewTopCell is used to temporarily hold a cell when an operation calling for discarding

the current cell is performed.

WebTop also contains some data structure-type classes for managing important

data. The member Pin PinGrid[][] is a two-dimensional array of Pin objects that keeps

tracks of where components are connected and what they are connected to. Conceptually,

the PinGrid[][] corresponds to the grid of points drawn in the SchematicPanel. The

member Hashtable Comphash is used to generate names for new cells added to the

current cell.

WebTop contains many other members to keep track of positions, sizes, and other

important but straightforward features. Most of the methods are also straightforward and

simple. However, some of them are not.

The UserWantsEditSchematicO method is called when the user wants to see the

schematic view of a SchematicCell. This method first gets confirmation that the user

really wants to discard the current cell. Next, the current cell is discarded. Data

structures such as the PinGrid, GridImage, and Comphash are rebuild to be accurate for

the new cell. Finally, the SchematicPanel is repainted so that the updates are visible.

The most complicated methods of WebTop are used for labeling circuit nodes

automatically. Circuit nodes are labeled prior to netlist extraction, or when saving.

The UserWantsExtacto method is the most important method relating to node

extraction. It is the only method in WebTop related to node labeling that is called

directly; the other methods in WebTop related to node labeling are called by this method.

First, the lexical_names of IOPins must be cleared. Next, each Pin in the PinGrid updates

its list of connected components. Next, every node that is connected to some external

source must be labeled. This includes any circuit node that is connected to an

isoInputPin, isoOutputPin, isolnputOutputPin, or GND cell. If any cell is found to be

connected to more than one external source, an error message is generated. After all of

the external names are propagated throughout the circuit, any nodes that are not labeled

are given names.

The AssignNames() method is actually responsible for naming nodes. The most

difficult part of naming a node is to find everything that is connected to a given circuit

node, because many components can be connected to a single circuit node by wires. It is

also important to avoid infinite looping while determining what is part of each circuit

node. This method accepts several parameters. The types of these parameters are Cell,

IOPin, boolean, String, and boolean. The IOPin is the most important, as it reveals which

IOPin we are attempting to label. The Cell is the cell that the IOPin is attached to. The

String and booleans are used when forcing a certain name to propagate from another

point, such as a GND cell or an isolnputPin. This method checks if the IOPin in question

already has a name. If it does, an error has occurred and is reported. If not, the IOPin is

named. Next, everything else connected to this component is named as well. This

includes any other components that may be connected directly to this IOPin, as well as

anything else connected to any wires connected to this IOPin. Wires are difficult to deal

with, because they can connect to other wires, form loops, and so on. Thus, each time we

encounter a wire, it is added to a Vector. This Vector should be checked every time a

new wire is encountered, to make sure looping does not occur.

The method FindOtherEnd() is used when propagating a pin name down a wire.

Two forms of this method, differing in the parameters they take, are used. Each version

accepts parameters describing one end of the wire, and returns the Pin connected to the

other end of the wire.

Finally, the method KeepGoingo is used to propagate names down wires. It is

similar in function to the assign names; its function is to follow along any wire that is

encountered and assign the proper name to any pins connected.

4. DESIGN EXAMPLE

At a number of points in this thesis, the hierarchical features of WebTop have

been mentioned. This section will work through a example using several layers of

hierarchy to properly demonstrate the hierarchical features.

For this example, a four bit ripple-carry adder will be constructed at the transistor

level. The base adder design will be a simple static CMOS mirror adder. The

hierarchical features of WebTop will be used to keep each schematic a reasonable size.

To bit the ripple-carry adder, we can simply chain one bit adders together. To build a one

bit adder, both the sum and carry signals must be generated. Each of these signals can be

generated independently to keep the maximum Cell size down.

First, we build a cell to generate the carry signal. This cell takes input signals A,

B, and Ci, as well as a power supply voltage Vdd!, to produce the output signal Co!

. '.. M..... ... M......

. i. ii . MM6 :2 M !

SM ::::::: .: .. M..io..

Figure 9: Carry generator circuit

Next, we build a cell to generate the sum signal. This cell takes the same input

signals as the previous cell. This cell also takes a Co! signal as input. S! is produced as

an output

46

~~ ~~~~-~~--~-~ I

: :: Cpt :: : : : : :

r------+---+-----+--., .
. .. M9.:::::: ::.. MlO::::::: ... MIl::::

. . L8W12u: ::) :8W12u: : : : . L8W12u:

.... MI4:::::::::::::
. .) :8W12u: : : : : : : : : : :

~--+l_~---l .

A::::·" .

..-----------+-------+-----~ .

Figure 10: Sum generator circuit

The above circuits produce the complements of the actual sum and carry signals

desired. So, an inverter cell is needed to produce the proper signal polarity.

47

..

...........

.......... ...

Figure 11: Inverter circuit

Now, all the cells needed to produce a full adder are ready.

adder, just connect together the cells already made.

To produce the full

r..j o .m . D

CPA

B

B

Vdd!

A
B . . .
-Ci cn.
V8dd'

fuflldder~canyJ1··

I ' *

Figure 12: Full adder circuit

Now that a one bit adder exists, it's easy to chain four of them together to produce

a four bit ripple-carry adder.

~__)*·:·:·:·:·:·:ii:~:·:·:·_);:·:·::;·:·

:))I

·A·S! B ,A · , · · ·fijie

fulldderinvrter.2

....

............ I
II. II A.

.....................................

..

..

..I

...

-

dnuF erental Extrac
p

f ...de inverter:::::::Mullider iimrter -I......
....................:

S II

Iliriii II1
I

::::::sj:l::
:I

II :,
,,

MtX ** ,* ** :* ,* ** . .. ,ft ýb

........................ ...rý,Wb pIoibtde qP

------- --- - ----------- ----- ----I S3 ý w q m $4 . 7_7-...· ,.............. R .·rr·....

.....i .. :::r.it .::::::T h . . .~bd~ ~ lddtp
1 V~d ! J · ·· · I · ·' ' ' ' II L~d d

...toitdd r ~ d r 3·· - - II om~i~d er ~ a~ drT ! ý0.
h i: : : : I I : : : : : : : : : : : : h : : : I I : : : : : : : :.: : : : : : :~1 1 1 1 ········ ~~.11·.............. V d

.....

Figure 13: Four bit ripple-carry adder

Obviously, arbitrarily large adders could be built up by chaining these four bit

adder cells together.

----------------------------I w p [E x a m p le]i:::::::::::::i:::::::::: -:-·::.·:::·::: .::::::::::::::.;:: r;: ' :'::ii:::::::jjiii~:ij.:i: i~::::--l.:-m'':eb:': o B pi 13 ::::·::
Z t 'ch iwy:d Fudwta %d !iwaw H

P hiiiii~~iiii-::i~~i:

. S S

A2
B2 Cfo u it d.

B4'
VddF

Figure 14: Four bit adder ready for use

49

j

:i

i

-1
::

-j
:r
::

ii

1
j

j
j

:i

I,-

...

:

----- ------ ---- -:-::

This example, although simple, shows how powerful this hierarchy is. The simple

box in Figure 14 above contains almost one hundred transistors - but is available for

future designs at the single click of the mouse!

The SPICE netlist generated by the four bit ripple-carry adder pictured in Figure

14 is as follows. Note how each sub-circuit is only defined once, so increasing the size of

the adder wouldn't increase the size of the resultant SPICE file by a large amount.

* WEBTOP Spice Netlister *
* Copyright: Massachusetts Inst. Of Tech *

.MODEL NMOS NMOS LEVEL=2 LD=O.15U TOX=200E-10
+ NSUB=5.37E15 VTO=.74 KP=8E-5 GAMMA=0.54
+ PHI=0.6 U0=656 UEXP=O.157 UCRIT=31444
+ DELTA=2.34 VMAX=55261 XJ=0.25U LAMBDA=0.037
+ NFS=IE12 NEFF=1.001 NSS= E11 TPG=1.0 RSH=70
+ CGDO=4.3E-10 CGSO=4.3E-10 CJ=0.0003 MJ=0.66
+ CJSW=8E-10 MJSW=0.24 PB=0.58

.MODEL PMOS PMOS LEVEL=2 LD=O.15U TOX=200E-10
+ NSUB=4.33E15 VTO=-0.74 KP=2.7E-5 GAMMA=0.58
+ PHI=0.6 U0=262 UEXP=0.324 UCRIT=65720
+ DELTA=1.79 VMAX=25694 XJ=0.25U LAMBDA=0.061
+ NFS=1E12 NEFF=1.001 NSS=IE11 TPG=-I.0 RSH=121
+ CGDO=4.3E-10 CGSO=4.3E-10 CJ=0.0005 MJ=0.51
+ CJSW=1.35E-10 MJSW=0.24 PB=0.64

*** TopLevel Cell InstanceExample ***
XExample Example
*** End TopLevel Instance ***

*** TopLevel Sub-ckt: Example ***
.SUBCKT Example
XExample_fourbitadder 1 _node_1 _node_2 _node_3 _node_4 _node_5_node_6
_node_7 _node_8 _node_9 _node_10 _node_11 _node_12 _node_13 _node_14
_node 15 fourbitadder
.ENDS
*** End TopLevel Sub-ckt ***

*** Sub-Circuit fourbitadder
.SUBCKT fourbitadder Al B1 Ci A2 B2 A3 B3 A4 B4 Vdd! S1 S2 S3 S4 Co

Xfourbitadder_fulladder_1 Al B1 Ci Vdd! S1 _node_1 fulladder
Xfourbitadder_fulladder_2 A2 B2 _node_l Vdd! S2 _node_2 fulladder
Xfourbitadder_fulladder_3 A3 B3 _node_2 Vdd! S3 _node_3 fulladder
Xfourbitadder_fulladder_4 A4 B4 _node_3 Vdd! S4 Co fulladder
.ENDS
*** End Sub-Circuit

*** Sub-Circuit fulladder
.SUBCKT fulladder A B Ci Vdd! S Co
Xfulladder_sum!_1 A B Ci _node_1 Vdd! _node_2 sum!
Xfulladder_carry!_l A B Ci Vdd! _node_l carry!
Xfulladder_inverter_1 _node_1 Co Vdd! inverter
Xfulladder_inverter_2 node_2 S Vdd! inverter
.ENDS
*** End Sub-Circuit

*** Sub-Circuit sum!
.SUBCKT sum! A B Ci Co! Vdd! S!
MMI Vdd! A _node_1 Vdd! PMOS w=5.4u 1=1.2u
MM2 Vdd! B _node 1 Vdd! PMOS w=5.4u l=1.2u
MM3 Vdd! Ci _node_1 Vdd! PMOS w=5.4u 1=1.2u
MM4 _node 1 Co! S! Vdd! PMOS w=5.4u 1=1.2u
MM5 Vdd! A _node_2 Vdd! PMOS w=5.4u 1=1.2u
MM6 _node_2 B _node_3 Vdd! PMOS w=5.4u 1=1.2u
MM7 _node_3 Ci S! Vdd! PMOS w=5.4u 1=1.2u
MM8 S! Co! _node_4 0 NMOS w=1.8u l=1.2u
MM9 _node_4 A 0 0 NMOS w= 1.8u 1= 1.2u
MM10 _node_4 B 0 0 NMOS w=1.8u 1=1.2u
MM 1I _node_4 Ci 0 0 NMOS w=1.8u 1=1.2u
MM12 S! Ci _node_5 0 NMOS w=1.8u 1=1.2u
MM13 _node_5 A _node_6 0 NMOS w=1.8u 1=1.2u
MM14 _node_6 B 0 0 NMOS w=1.8u 1=1.2u
.ENDS
*** End Sub-Circuit

*** Sub-Circuit carry!
.SUBCKT carry! A B Ci Vdd! Co!
MM1 Vdd! A _node_1 Vdd! PMOS w=5.4u 1=1.2u
MM2 Vdd! B _node_1 Vdd! PMOS w=5.4u 1=1.2u
MM3 Vdd! B _node_2 Vdd! PMOS w=5.4u 1=1.2u
MM4 _node_1 Ci Co! Vdd! PMOS w=5.4u 1=1.2u
MM5 _node_2 A Co! Vdd! PMOS w=5.4u 1=1.2u
MM6 Co! Ci _node 3 0 NMOS w=1.8u 1=1.2u
MM7 _node_3 A 0 0 NMOS w= 1.8u 1= 1.2u
MM8 _node_3 B 0 0 NMOS w=1.8u 1=1.2u

MM9 Co! A _node_4 0 NMOS w=1.8u 1=1.2u
MM10 _node_4 B 0 0 NMOS w=1.8u 1=1.2u
.ENDS
*** End Sub-Circuit

*** Sub-Circuit inverter
.SUBCKT inverter A B Vdd!
MMI Vdd! A B Vdd! PMOS w=5.4u l=1.2u
MM2 B A 0 0 NMOS w=1.8u l=1.2u
.ENDS
*** End Sub-Circuit
.end
* -- Extraction Completed --*

5. SUMMARY

The software tool desribed in this thesis, WebTop, is part of a larger framework to

enable the Internet-based design, simulation, and fabrication of integrated circuits and

systems. Specifically, this thesis involved the construction of a schematic editor and

netlist extractor using Sun Microsystems' Java programming language. WebTop allows

the user to draw a circuit schematic (cell) in a fully graphical interface and then to extract

a netlist file suitable for simulation with various industry-standard circuit simulators, such

as SPICE or Verilog. WebTop supports hierarchical structures: any given cell may be

composed of other, lower-level cells. At the lowest level of abstraction, a large library of

commonly used components is built in to WebTop to facilitate the creation of more

complex cells. In addition to the built-in library of standard electronic components,

additional component types may be created by the user and accessed either from local

disk or a distributed network of World Wide Web (WWW) based object repositories

(WebTop servers). Because WebTop is written entirely in Java, it should run on any

platform that supports a Java virtual machine.

This is not to say that WebTop is a perfect application. It is new software, and use

of any new software package will reveal features that are missing, features that are

included but unnecessary, and other problems with the current version. In particular, the

user interface is somewhat awkward in this version. Following is a brief list of possible

future enhancements for WebTop.

First, WebTop should be updated to support the JDK1.1 specification. Although

such an update is not practical at the time of this writing due to the lack of JDKI.1-

compliant WWW browsers, the update will become necessary as JDK1.1 becomes

standard. JDKI.1 promises to be more robust than JDK1.02, and implements many

exciting new features such as printing, enhanced user interface components and keyboard

accelerators, while also improving performance.

Other work should focus on extending WebTop's capabilities. In this version of

WebTop, PrimitiveCells are fixed at compile time. It would be useful to have

PrimitiveCells handled more abstractly, so that PrimitiveCells could be added, removed,

or modified by the user, without having to recompile WebTop.

In this version of WebTop, SchematicCells always appear as a simple box.

However, schematics could be made more clear if other shapes were allowed. Standard

shapes for common circuits such as multiplexers, adders and multipliers exist. If such

shapes could be associated with SchematicCells, the clarity of the schematics produced

by WebTop would be greatly enhanced.

WebTop should be reorganized so that different netlist formats can be added

easily, possibly even at runtime. Currently, implementing a new netlist format would

involve adding a large amount of code, spread through many different class files.

53

APPENDIX A - WEBTOP USER MANUAL

WebTop is a schematic editor with netlist extraction capabilities. Basically,

WebTop allows you to draw your designs on the screen, then have the design simulated,

without having to worry about constructing the netlist yourself. WebTop has hierarchical

features, so that your designs can incorporated into larger systems.

This document serves more as a reference guide than a tutorial. All the features

and functions are listed here, so that you can look something up if necessary. In general,

the best way to learn how to work with WebTop is to play with it.

Basics

First, we must introduce the various components of the user interface. The names

indicated on the screen dumps here are used throughout the remainder of this document to

identify user interface components or general regions of the screen.

Main Applet

I .,t•ol 14~I'•r:'

Applet started.

Figure 15: Main applet window

This is the main applet window. This (or something similar to it, depending on

how exactly WebTop is invoked) is what appears when WebTop is accessed through a

Web browser or appletviewer. The main applet window is not terribly useful; it merely

provides an easy way to show or hide the schematic editor window.

. ..- : . :-.:...".....,.

Schematic Editor

- Mermbar

- Control panel

- Schematic panel

- Status panel

Figure 16: Schematic editor window

This is the schematic editor window. It contains several sub-components (labeled

above) that will be frequently referred to throughout the remainder of this document.

Control panel

New Copy Pointer Junction

ut Paste Wire
Cut Paste Wire

Figure

The control panel provides

operations. Any of the functions may

17: Control panel

a convenient method for performing certain

be activated by clicking on the appropriate button.

If you forget which buttons perform which functions, a help message appears at the

bottom of the screen when you position the mouse pointer over one of the buttons.

The New button starts a new cell. If the current cell has been modified since the

last save, you will be prompted for confirmation before continuing. If you cancel, you are

returned to the original cell. If you continue, or if the original cell had not been modified

since the last save, you will be prompted for a new name. All components from the

previous cell will be removed and the pin grid will be returned to its default 100x100

size. Clicking the new button is equivalent to selecting the New command from the File

menu.

The Cut button will remove the selected components from the screen and place

them into a buffer. This buffer can be retrieved through use of the Paste command.

Whatever is in the buffer when the Cut command is run is overwritten, and cannot be

recovered. The Cut button is enabled only when one or more components in the current

cell are selected. If no components in the current cell are selected, the Cut button is

grayed out and cannot be clicked. Clicking the Cut button is equivalent to selecting the

Cut command from the Edit menu. It is also equivalent to pressing 'd' or 'D'.

The Copy button will copy the selected components from the screen and place

them into a buffer. This buffer can be retrieved through use of the Paste command.

Whatever is in the buffer when the Copy command is run is overwritten, and cannot be

recovered. The Copy button is enabled only when one or more components in the current

cell are selected. If no components in the current cell are selected, the Copy button is

grayed out and cannot be clicked. Clicking the Copy button is equivalent to selecting the

Copy command from the Edit menu.

The Paste button will add any components in the buffer to the current cell. The

components from the buffer will be placed at the location of the last mouse click on the

SchematicPanel, if possible. If the paste location is too close to an edge, some of the

newly added components will be relocated to keep them within the cell boundaries.

Whatever is in the buffer when the Paste command is executed remains in the buffer.

Repeated executions of the paste command will allow you to create repetitive structures

easily. If your cell contains many repeated structures, using hierarchy is probably a better

idea. Clicking the Paste button is equivalent to selecting the Paste command from the

Edit menu.

The Pointer button puts the editor in pointer mode. In pointer mode, you can

select components, move components, and change component's properties. To select a

component, position the pointer over the main body of the component and click. To

select multiple components, hold shift down while clicking on each component. To

select all the components in a particular region, click the mouse on one corner of the

region to select, and drag the mouse to the opposite corner of the region. All components

contained within the box will be selected. To move a component, click on the main body

of the component, and drag the mouse to the new location. If you select multiple

components, you can move them as a group in the same manner as a single component.

To change a component's properties, double click on the main body of the component to

pop up the component's PropertyBox. Clicking the Pointer button is equivalent to

selecting the Pointer Mode command from the Fundamental menu. It is also equivalent

to clicking the mouse on the status panel at the bottom of the screen.

The Wire button puts the editor in wire drawing mode. Wire drawing mode is

specifically for adding new wires to the cell. To add a new wire, click the mouse on one

endpoint, and drag to the other endpoint. If wires are drawn crossing, they will not

connect by default. If a wire crosses across the end of a component's pin, it will not

connect by default. If an endpoint of the wire is placed on a component's pin, or on

another wire, then a connection will take place. Connections are indicated by round

junctions. If no junction is present, no connection is made. Clicking the Wire button is

equivalent to selecting the Wire Mode command from the Fundamental menu.

The Junction button puts the editor in junction drawing mode. Junction drawing

mode is specifically for adding junctions to the cell. Junctions can only be added at grid

points on the interior of an existing wire. The restriction that junctions may only be

placed on grid points makes it difficult, if not impossible, to place junctions on a wire that

is not vertical or horizontal. When a junction is added, the involved wire is broken into

two wires, each of which can then be selected and moved independently. Clicking the

Junction button is equivalent to selecting the Junction Mode command from the

Fundamental menu.

Schematic editor menus

Most of the features of WebTop are accessible from the schematic editor's menus.

File menu

The New command starts a new cell. If the current cell has been modified since

the last save, you will be prompted for confirmation before continuing. If you cancel, you

are returned to the original cell. If you continue, or if the original cell had not been

modified since the last save, you will be prompted for a new name. All components from

the previous cell will be removed and the pin grid will be returned to its default 100x100

size. Selecting the New command from the File menu is equivalent to clicking the New

button in the control panel.

The PostScript command produces a PostScript output file of the current cell.

This functionality is available only if the applet has permission to write to the local disk.

Sun's appletviewer can be configured to allow local disk access; Netscape Navigator 3.x

and Microsoft Internet Explorer 3.x cannot. The PostScript output will be automatically

scaled to fit on one page with half-inch margins. WebTop will automatically choose

landscape or portrait mode based on orienting the longer edge of the cell to the longer

edge of the page. For square cells, the default orientation is portrait.

The Close command hides the entire editor window. It does not stop the applet

from running, and no data is lost. The editor window can be re-displayed by pressing the

"Show editor" button in the main applet window. The Close command is equivalent to

pressing the "Hide editor" button in the main applet window.

Edit menu

The Cut command will remove the selected components from the screen and place

them into a buffer. This buffer can be retrieved through use of the Paste command.

Whatever is in the buffer when the Cut command is run is overwritten, and cannot be

recovered. The Cut command is enabled only when one or more components in the

current cell are selected. If no components in the current cell are selected, the Cut

command is grayed out and cannot be selected. Selecting the Cut command is equivalent

to clicking the Cut button in the control panel. It is also equivalent to pressing 'd' or 'D'.

60

The Copy command will copy the selected components from the screen and place

them into a buffer. This buffer can be retrieved through use of the Paste command.

Whatever is in the buffer when the Copy command is run is overwritten, and cannot be

recovered. The Copy command is enabled only when one or more components in the

current cell are selected. If no components in the current cell are selected, the Copy

command is grayed out and cannot be selected. Selecting the Copy command is

equivalent to clicking the Copy button in the control panel.

The Paste command will add any components in the buffer to the current cell.

The components from the buffer will be placed at the location of the last mouse click on

the SchematicPanel, if possible. If the paste location is too close to an edge, some of the

newly added components will be relocated to keep them within the cell boundaries.

Whatever is in the buffer when the Paste command is executed remains in the buffer.

Repeated executions of the paste command will allow you to create repetitive structures

easily. If your cell contains many repeated structures, using hierarchy is probably a better

idea. Selecting the Paste command is equivalent to Clicking the Paste button in the

control panel.

The Select All command selects all of the components in the current cell. This is

equivalent to manually selecting each component, or drawing the select box around the

entire pin grid area.

The Zoom In command causes everything to look larger. This is for display

purposes only; actual dimensions of the pin grid or of the components themselves are not

affected. There is no limit (subject to system memory constraints) on how far you may

zoom in. The Zoom In command is equivalent to pressing 'z'.

61

The Zoom Out command causes everything to look smaller. This is for display

purposes only; actual dimensions of the pin grid or of the components themselves are not

affected. Zoom out is useful for working with large cells. The minimum size is

achievable is four pixels per grid cell; further Zoom Out commands will have no further

effect. The Zoom Out command is equivalent to pressing 'Z'.

The Expand Horizontal command increases the size of the pin grid by fifty pins in

the horizontal direction. The new pins are added at the right edge of the current cell. The

positions of components already in the current cell are not affected. There is no limit

(subject to system memory constraints) on how large the pin grid may become in the

horizontal direction. However, it is important to note that WebTop will slow down as the

size of the pin grid is increased. It is best to increase the size of the pin grid only as

needed. If the cell you are working on becomes very large, use of hierarchy is usually a

good way to decrease the area required for the cell.

The Expand Vertical command increases the size of the pin grid by fifty pins in

the vertical direction. The new pins are added at the bottom edge of the current cell. The

positions of components already in the current cell are not affected. There is no limit

(subject to system memory constraints) on how large the pin grid may become in the

vertical direction. However, it is important to note that WebTop will slow down as the

size of the pin grid is increased. It is best to increase the size of the pin grid only as

needed. If the cell you are working on becomes very large, use of hierarchy is usually a

good way to decrease the area required for the cell.

Library menu

The Show LibMgr command displays the library manager on the screen. The

library manager is discussed in a separate section of this document.

The Hide LibMgr command removes the library manager from the screen. The

library manager is discussed in a separate section of this document.

Cell menu

The Save Cell command saves the current cell in the library manager. This does

not mean that the cell has been saved permanently! This means only that the cell is now

available in the library manager. Without further action (in the library manager) the cell

will be lost when WebTop is closed. If the cell name of the current cell is not already

present in the library, it is added. If the cell name of the current cell is already present,

the cell already in the library is overwritten and cannot be recovered.

The Change Name command changes the name of the current cell. Any

component names left at the default value (CELLNAME_COMPONENTNAME_ID#)

are updated to reflect the name change. This command only affects the working copy of

the current cell; no changes are made to cells stored by the library manager.

The Spice View command allows the user to alter the cell's spice view. This

command will pop up a window with a text area for editing the spice view. If no spice

view is defined for the current cell, a dialog will appear to note that fact. Buttons to add

the view, delete the view, and cancel are provided. The Add View button will set the

view of the current cell to the text present in the text area. The Delete View button will

remove the spice view for the current cell. The Cancel button closes the view window

and leaves the spice view of the current cell unchanged.

63

The Verilog View command allows the user to alter the cell's Verilog view. This

command will pop up a window with a text area for editing the Verilog view. If no

Verilog view is defined for the current cell, a dialog will appear to note that fact. Buttons

to add the view, delete the view, and cancel are provided. The Add View button will set

the view of the current cell to the text present in the text area. The Delete View button

will remove the Verilog view for the current cell. The Cancel button closes the view

window and leaves the Verilog view of the current cell unchanged.

Fundamental menu

Unless otherwise noted, all of the commands in the Fundamental menu add the

correspondingly named PrimitiveCell to the current cell. For example, the R command

adds a resistor, the L command adds an inductor, and so on.

The Pointer Mode command puts the editor in pointer mode. In pointer mode,

you can select components, move components, and change component's properties. To

select a component, position the pointer over the main body of the component and click.

To select multiple components, hold shift down while clicking on each component. To

select all the components in a particular region, click the mouse on one corner of the

region to select, and drag the mouse to the opposite corner of the region. All components

contained within the box will be selected. To move a component, click on the main body

of the component, and drag the mouse to the new location. If you select multiple

components, you can move them as a group in the same manner as a single component.

To change a component's properties, double click on the main body of the component to

pop up the component's PropertyBox. Selecting the Pointer Mode command is

equivalent to clicking the Pointer button in the control panel. It is also equivalent to

clicking the mouse on the status panel at the bottom of the screen.

The Wire Mode command puts the editor in wire drawing mode. Wire drawing

mode is specifically for adding new wires to the cell. To add a new wire, click the mouse

on one endpoint, and drag to the other endpoint. If wires are drawn crossing, they will

not connect by default. If a wire crosses across the end of a component's pin, it will not

connect by default. If an endpoint of the wire is placed on a component's pin, or on

another wire, then a connection will take place. Connections are indicated by round

junctions. If no junction is present, no connection is made. Selecting the Wire Mode

command is equivalent to clicking the Wire button in the control panel.

The Junction Mode command puts the editor in junction drawing mode. Junction

drawing mode is specifically for adding junctions to the cell. Junctions can only be added

at grid points on the interior of an existing wire. The restriction that junctions may only

be placed on grid points makes it difficult, if not impossible, to place junctions on a wire

that is not vertical or horizontal. When a junction is added, the involved wire is broken

into two wires, each of which can then be selected and moved independently. Selecting

the Junction command is equivalent to clicking the Junction button in the control panel.

The PrimitiveCells in the External Pin menu are placed like any other of the

PrimitiveCells available from the Fundamental menu. However, these particular cells are

special. These cells (isoInputPin, isoOutputPin, and isoInputOutputPin) specify an

interface to the external world. In order to use the cell you are designing as a part of

larger cells, you must specify the inputs and outputs accessible from the rest of the world.

Each of these three cells implements a different type of pin. The functions are the same;

65

the type controls only how the pins are drawn. The isoInputPin is an input from the

external world to the cell. The isoOutputPin is an output from the cell to the external

world. The isoInputOutputPin is used for bi-directional signals. IsolnputPins become the

input pins of the SchematicCell and are drawn on the left side of the SchematicCell, with

arrows pointing in towards the main body of the SchematicCell. IsoOutputPins become

the output pins of the SchematicCell and are drawn on the right side of the

SchematicCell, with arrows pointing away from the main body of the SchematicCell.

IsolnputOutputPins become the input/output pins of the Schematic and are drawn on the

right side of the SchematicCell, with no arrows. Note that each of these special IOPin

structures must be connected to a different circuit node. Attempts to connect the same

node to multiple External Pin structures will result in an error.

Extract menu

The Spice Models sub-menu contains a special kind of menu item. Instead of the

usual menu item, which executes a command when selected, these menu items change

state. If the menu item appears with a check, it is "on" or "true." If no check appears, the

menu item is "off"' or "false." Each of these special menu items corresponds to a

commonly used, predefined set of spice .MODEL statements. If the menu item is in the

"on" state at extraction time, the corresponding spice .MODEL statements are included in

the output file. Only one set of .MODEL statements may be included; Selection of one

set will automatically disable all other sets. By default, no .MODEL statements are

included.

Figure 18: Spice Models menu items

The Spice Extract command creates a spice netlist from the current cell and

displays the netlist on the screen. If errors are found while extracting the spice netlist,

they are noted in the spice output, and presented via dialog box.

The Verilog Extract command creates a Verilog netlist from the current cell and

displays the netlist on the screen. If errors are found while extracting the Verilog netlist,

they are noted in the Verilog output, and presented via dialog box.

Configuration menu

The Show Color Manager command displays the color manager on the screen.

The color manager is discussed in a separate section of this document.

The Hide Color Manager command removes the color manager from the screen.

The color manager is discussed in a separate section of this document.

Help menu

The options in the Help menu are currently disabled. They are reserved for future

versions of WebTop.

Library Manager

The library manager is responsible for collecting and organizing libraries of cells.

The library manager provides functionality for loading and saving cells, both to local disk

and to Internet-based servers.

- Memibar

Library Cell name Views

II I
Library list Cell list Views list

Figure 19: Library manager

Mouse-Based functions

Some of the functions of the library manager are available only through mouse

control. Other options are available both by mouse control and menu commands. In

terms of mouse control, functions are activated by either clicking or double clicking on

elements of the three lists contained by the library manager.

Currently, WebTop supports only one library. Thus, clicking or double clicking

in the library list has no effect.

Clicking on a cell name in the cell list will select that cell. While not a useful

thing to do by itself, several of the menu commands act upon whatever cell is selected in

the cell list. Double clicking on a cell name in the cell list is equivalent to selecting the

Add Cell command from the Cell menu.

Clicking on a view name in the views list will select that view. Double clicking

on a view name will actually take action. Double clicking on the Symbol view in the

views list will display a representation of the symbol view of the selected cell.. Figure 20

below shows an example of a symbol view.

WebTop carry! Symbol
fourbitadder Schematic
fulladder
inverter
sum!
SchematicCell

.~,,,.~.I I~ _~~~

i

i

Figure 20: Example of a symbol view

Double clicking on the Schematic view in the views list is equivalent to selecting

the Edit Cell command from the Cell menu. If a SPICE or Verilog view is present for the

selected cell, the view may be viewed, but not edited, by double clicking the appropriate

view name in the view list.

Library manager menus

Most of the functions of the library manager are accessible from the menus.

File menu

The Load Cell sub-menu contains a variety of commands for loading cells. The

Load From File command loads a WebTop-format cell file from the local disk (if the Java

environment WebTop is running in allows local disk access). The file to load is chosen

using a file dialog box specific to the operating system that you are running WebTop

under. The Load as Object command loads an RMI-format cell file from the local disk.

As with the Load Cell command, a local OS-specific file dialog box is used for file

fc. 1-ut, Itadik I

selection. The Load All command will attempt to load all of the files in a specified

directory as WebTop-format cells. If files not conforming to the WebTop format are

present in the specified directory, errors will result. In the JDK1.02 specification, there is

no way to select a directory using the local OS-specific dialog boxes. Thus, to use the

Load All command, you must select a particular file in the target directory. JDK1.02

does not allow the selection of directories, only of files. Even though a specific file in the

directory must be selected, all files in the same directory as the selected file will be

loaded. The Load URL command loads a cell from a specified URL, using a special URL

dialog box, show in Figure 21.

..,..

Cell Directory URL

http://apsara.mit.edu Mon.

Files
--a-' -- ---- --- ----- ---

Cell

lhttp: //aptaa.mit.edu/new. cell

Figure 21: URL dialog box

The URL dialog box allows specification of a WebTop server, and selection of the cell or

cells to load.

I
I
i

:i
·:i:
ii

;I
ti,:.riri

......................

The Save to File command will save a WebTop-format representation of the

specified cell to local disk (if the Java environment WebTop is running in allows local

disk access). The cell to be saved is selected by clicking on the cell name in the library

manager's cell list. WebTop will provide a local OS-specific file dialog to choose a

location and filename.

The Save to Object command is equivalent to the Save to File command, except

that the Save to Object command will save an RMI-format representation of the cell.

The Save All command is similar to the Save to File command. However, instead

of saving only the selected cell, all cells in the current library will be saved.

RMI-format cells load and save more quickly than the WebTop representations,

but take approximately three times as much space. Furthermore, RMI-format cells may

not be compatible across different platforms, and may not be compatible between

different WebTop versions. Thus, RMI-format is best used while developing cells, but

WebTop format should be used for long term compatibility purposes.

Cell menu

The New Cell command starts a new cell. If the current cell has been modified

since the last save, you will be prompted for confirmation before continuing. If you

cancel, you are returned to the original cell. If you continue, or if the original cell had not

been modified since the last save, you will be prompted for a new name. All components

from the previous cell will be removed and the pin grid will be returned to its default

100x100 size. Selecting the New Cell command is equivalent to selecting the New

command from the File menu of the schematic editor window, or to pressing the New

button in the control panel of the schematic editor window.

71

The Add Cell command adds a SchematicCell from the library manager to the

current cell. The currently selected cell in the library manager's cell list is added to the

current cell as a symbol view. That is, the cell is added as a "black box" with the proper

inputs and outputs. The contents of a cell added to a cell this way are not accessible to

the user. This command is analogous to adding a PrimitiveCell from the schematic editor

window. Figure 22 below shows the result of using Add Cell command to add an

inverter cell to a new cell called "Example".

Figure 22: Example of the Add Cell command

The Edit Cell command allows the user to alter the internals of a SchematicCell.

The currently selected cell in the cell list is the target of this command. If the current cell

has been modified since the last save, you will be prompted for confirmation before

continuing. If you cancel, you are returned to the original cell. If you continue, or if the

current cell has not been modified since the last save, the current cell will be discarded.

The internal working of the selected SchematicCell are displayed in full detail, and can be

modified in any way. Note that modifications to the cell do not take effect in the library

manager unless the cell is explicitly saved. Figure 23 below shows the result of editing

the same inverter cell that was added using "Add Cell" before.

Figure 23: Example of the Edit Cell command

The Delete Cell command removes a cell from the library. The currently selected

cell in the cell list is the target of this command. Note that this command simply removes

the selected cell from the library manager; it does not affect any copies of the cell saved

on disk or on remote WebTop servers.

Help menu

The Help menu has no options at this time; however, it will be expanded in future

versions of WebTop.

Color Manager

The color manager allows the user to configure the colors used to display the

various structures of the WebTop interface.

I I

Parameter list --
- Sample color patch

- Red scrollbar

- Green scrollbar

- Blue scrollbar

Figure 24: Color manager window

The color manager contains three major components: the scrollbars, the sample

color patch, and the parameter list. The parameter list contains the names of every

component with a user-configurable color. The sample color patch display the color of

the currently selected item in the parameter list. The scrollbars are used to set the color.

There are three scrollbars, each for one component of the color. The top scrollbar is for

red, the middle for green, and the bottom for blue. Figure 24 shows that red plus green

equals yellow in the RGB color space. To set a color, click on the appropriate target

parameter in the parameter list, and slide the scroll bars until the desired color is

achieved. For most parameters, the color in the schematic editor will change as the

scrollbars are manipulated; however, for efficiency reasons, the Background and Grid

colors will be updated onscreen only when the color manager is closed. To return any

component to its original default color, select the appropriate parameter from the

parameter list and click the Default button. To return all parameters to their default

values, click the All Default button.

Property box

The property box is used to modify the parameters of a cell. The property box is

displayed when a component is double clicked, or when the component is initially placed.

Every cell has a least two parameters, name and instanceName. The name parameter is

simply the name of the component associated with the property box, and may be changed.

The instanceName reflects the type of Cell that this property box is associated with, and

may not be changed. Cells may optionally have other parameters, such as value, length,

width, and so on. These optional parameters control how the component is represented

when extracted to a Verilog or SPICE format netlist.

---- -- ----- - --------- --- ---- --

width 112udintanceName
name

model

Figure 25: Property box

To view or alter a particular parameter, click on its name in the list at left. The

current value of the selected parameter will appear in the text field. To change the value

of the selected parameter, type the new value in the text field, and press return. The

appropriate component value will be updated, and the property box will remain visible.

Another way to update the parameter is to type a new value and click the update button.

The appropriate parameter will be updated, and the property box will be dismissed. In

order to dismiss the property box without updating anything, click the dismiss button.

There is no need to dismiss the PropertyBox when finished. When the PropertyBox is

given the input focus, the SchematicPanel's viewing area is adjusted so that the

75

associated component is visible onscreen, and highlighted with PropBoxActive-style

highlighting.

APPENDIX B- WEBTOP FILE FORMAT

As discussed elsewhere in this document, WebTop supports two different types of

cells, PrimitiveCells and SchematicCells. PrimitiveCells implement the fundamental

building blocks of a circuit, such as resistors, transistors, and so on. SchematicCells,

however, are more complicated. A SchematicCell is a single unit, composed of other

PrimitiveCells and SchematicCells. For example, a CMOS inverter would be a

SchematicCell - it would contain an NMOS transistor, a PMOS transistor, voltage

sources, and perhaps other components. Connecting several inverter cells together to

make a ring oscillator would result in another SchematicCell.

Due to the fundamental nature of PrimitiveCells, they are implemented as Java

classes. As of this writing, the PrimitiveCells available to the user is set at compile time.

PrimitiveCells cannot be added or removed from this version of WebTop at runtime; any

such changes require altering the source code and recompiling. Thus, there is no file

format for PrimitiveCells.

SchematicCells, however, are defined by the user. SchematicCells can be loaded

and saved to local disk, or loaded from a remote WebTop server. Thus, some file format

is necessary for the storage of SchematicCells. Perhaps the easiest solution to this

problem would be to use Java's RMI features to store the actual SchematicCell objects.

In practice, this solution is less than optimal. First, there is the potential for objects to be

incompatible across Java implementations. Although objects should nominally be

76

portable across different Java implementations, serious cross-platform compatibility bugs

were discovered during testing. A more serious problem with the use of RMI is future

compatibility. Use of the RMI features in this way would result in output files that would

work only with the particular version of WebTop that created them. If, in the next release

of WebTop, the object definition of SchematicCell should change, all previously existing

SchematicCell files would become incompatible with the new version. Thus, a special

format has been developed to store SchematicCells in. This format has been design with

future compatibility in mind. RMI storage options are also provided, for the RMI format

is much faster to load and save. However, the data files created with the RMI format are

approximately three times larger than the WebTop format for the same cell. The rest of

this appendix is concerned with the WebTop file format.

A SchematicCell output file is plain ASCII text. Every line in the SchematicCell

output file is terminated with an ASCII '/n' (newline) character. Lines are case-sensitive;

"This is a line" is not considered equivalent to "this is a line." Lines can be grouped into

three classes: version, separators, and parameters. Version lines indicate the version of

the WebTop file format a given file is written for. Separators are used to arrange

parameter lines into smaller, logical groupings.

Parameter lines contain a string or a number that represent some aspect of the

SchematicCell. In the files, parameter lines are not labeled. The position of the

parameter line relative to the appropriate separator lines determines what parameter the

line represents.

Separator lines always come in pairs. The first line of the pair is of the form

"@Begin SEPARATORNAME@", and the second is of the form "@End

77

SEPARATORNAME@" Between the opening half and closing half of a separator pair,

zero or more parameter lines may be enclosed. Seven different types of separators are

defined: TopCell, Basics, Spice View, Verilog View, Parameters, Pins, and SubCell.

TopCell separators surround the entire file. In the current version, they are

ignored; They are included in case future versions allow different types of cells to be

saved.

Basics separators enclose global parameters of the cell. Basics parameters are

used to set the correspondingly name members of the SchematicCell class. These

parameters are, in order : instanceName (String), totalGridX (int), totalGridY (int),

spiceViewPresent ("true" I "false"), verilogViewPresent ("true" I "false").

Spice View separators enclose the spice view of the cell. These separators are

required because the spice view is a string of arbitrary length. Anything between Spice

View separator lines is assumed to be part of the cell's spice view.

Verilog View separators enclose the Verilog view of the cell. These separators

are required because the Verilog view is a string of arbitrary length. Anything between

Verilog View separator lines is assumed to be part of the cell's Verilog view.

Parameters separators enclose the parameters defined for a cell. More

specifically, the contents of the cell's Parameters hashtable are enclosed here. The

contents of the hashtable are put into the file in key, value pairs. Thus, the first line after

the opening half of the Parameters separator is a key, the next line is the corresponding

value, the third line is a new key, and so on. Parameters are read in this fashion until the

block is terminated by the closing half of the Parameters separator.

Pins separators enclose a number of pins, and a list of pin descriptions. These pin

descriptions correspond to the IOPins in a cell's pins Vector. The first line following the

opening half of the Pins Separator line is an integer indicating the number of pin

descriptions to follow. Next is the series of pin descriptions. The pin descriptions

depend on what type of cell is being described. For a SchematicCell, each pin description

contains: type (int), lexical_name (String), pin_name (String). For a PrimitiveCell, each

pin description contains type (int) and lexical_name (String). The pin_name is not

required for the PrimitiveCell because the pin_name is set by the definition of the

PrimitiveCell, and never changes.

SubCell separators enclose descriptions of each subcell of a SchematicCell. In the

actual SchematicCell object, these are the Cells that would be found in the subcells

Vector. Because there may be different types of Cells in the subcells Vector

(PrimitiveCell, SchematicCell, Wire), there are three different formats that may be

enclosed within a SubCell separator.

A SubCell block for a PrimitiveCell contains: "PrimitiveCell" (literal String),

instanceName (String), Pos.x (int), Pos.y (int), a Parameters separator block, and a Pins

separator block.

A SubCell block for a SchematicCell contains: "SchematicCell" (literal String),

instanceName (String), Pos.x (int), Pos.y (int), a Parameters separator block, and a Pins

separator block.

A SubCell block for a Wire contains: xl (int), yl (int), x2 (int), y2 (int). These

indicate the coordinates of each end of the Wire.

The example cell shown in Figure 26 will demonstrate the use of each type of

separator and parameter line. It contains a SchematicCell, a PrimitiveCell (inductor) and

a wire, for demonstration purposes.

Figure 26: Example Cell for file format

When saved as a WebTop-format file, the cell looks like this:

@WebTop Version 1.01@
@Begin TopCell@
@Begin Basics@
Example
100
100
false
false
@End Basics@
@Begin Spice View@

@End Spice View@
@Begin Verilog View@

'i I

@End Verilog View@
@Begin SubCell@
SchematicCell
SchematicCell
6
6
@Begin Parameters@
instanceName
SchematicCell
name
Example_SchematicCell_1
@End Parameters@
@Begin Pins@
5
1
_node 1
_SchematicCell_Input_l
1
node 2
_SchematicCell_Input_2
2
node 3

_SchematicCell_Output_1
3
_node 4
_SchematicCell_InputOutput_l
1
_node 5
_SchematicCell_Input_3
@End Pins@
@End SubCell@
@Begin SubCell@
PrimitiveCell
L
7
24
@Begin Parameters@
instanceName
L
value
10n
name
Example_L 1
@End Parameters@
@Begin Pins@
2
3
_node_6
3

_node 7
@End Pins@
@End SubCell@
@Begin SubCell@
Wire
32
26
54
26
@End SubCell@
@End TopCell@

APPENDIX C - CLASS FILE REFERENCE GUIDE

This appendix contains an alphabetical listing of the class files that compose

WebTop and a brief description of each class' purpose.

* AND.class - the AND class is a PrimitiveCell class. It represents a two-input

and logic gate. This PrimitiveCell class supports Verilog extraction, but not

SPICE extraction.

* Buffer.class - the Buffer class is a PrimitiveCell class. It represents a single-

input buffer logic gate. This PrimitiveCell class supports Verilog extraction,

but not SPICE extraction.

* C.class - the C class is a PrimitiveCell class. It represents a capacitor. This

PrimitiveCell class supports SPICE extraction, but not Verilog extraction.

* Cell.class - the Cell class is a cell-related data structure class. The Cell class

is the basic building block of anything designed in WebTop. Any component

that can be added to the SchematicPanel is a Cell. Cells come in three

varieties: PrimitiveCells, SchematicCells, and Wires.

* ColorManager.class - the ColorManager class is a user interface class. The

ColorManager is used to specify the colors used to display various aspects of

the WebTop interface.

* ComponentBox.class - the ComponentBox class is a user interface class. The

ComponentBox is used by the LibMgr class to display the symbol view of a

SchematicCell from the cell library.

* ComponentPanel.class - the ComponentPanel is a user interface class. The

ComponentPanel is used by the LibMgr class to display the symbol view of a

SchematicCell from the cell library.

* ControlPanel.class - the ControlPanel is a user interface class. The

ControlPanel is a collection of mouse-clickable buttons that provide shortcuts

to common commands such as cut, copy, paste, etc.

* DialogPanel.class - The DialogPanel is a user interface class. The

DialogPanel contains the text, buttons, and optional graphic image of the

SimpleDialog class.

* E.class - the E class is a PrimitiveCell class. It represents a voltage-controlled

voltage source. This PrimitiveCell class supports SPICE extraction, but not

Verilog extraction.

* ExtractDialog.class - the ExtractDialog class is a user interface class. The

ExtractDialog is used to display the SPICE or Verilog netlist when it is

extracted by WebTop. The ExtractDialog also allows submission of the

netlist to other Web-based tools.

* G.class - the G class is a PrimitiveCell class. It represents a voltage-

controlled current source. This PrimitiveCell class supports SPICE extraction,

but not Verilog extraction.

* GND.class - the GND class is a PrimitiveCell class. It represents a

connection to ground. Any circuit node connected to a GND cell will be

named '0'. The GND cell should not appear in either SPICE or Verilog

netlists; the netlist extractor should automatically ignore GND cells.

* HelpDialog.class - the HelpDialog class is a user interface class. It is used to

display an online help message to the user. In this version of WebTop, online

help is disabled. The HelpDialog class has been kept because the online help

functionality should be added in later versions of WebTop, as new help files

are written.

* I.class - the I class is a PrimitiveCell class. It represents an independent

current source. This PrimitiveCell class supports SPICE extraction, but not

Verilog extraction.

* ImageButton.class - the ImageButton class is a user interface class. The

ControlPanel is a collection of ImageButtons; each individual button in the

ControlPanel is an instance of the ImageButton class.

* imagecanvas.class - the imagecanvas class is a user interface class. The

imagecanvas class is used to display the fancy WebTop graphic in the main

applet window.

* InputBox.class - the InputBox class is a user interface class. The InputBox is

used to prompt the user for a new cell name. The InputBox will block input to

all other user interface features while it is active (it is a modal dialog box).

* Inverter.class - the Inverter class is a PrimitiveCell class. It represents a

single-input inverter logic gate (not gate). This PrimitiveCell class supports

Verilog extraction, but not SPICE extraction.

* IOPin.class - the IOPin class is a data structure class. It represents a

connection point to a Cell object.

* isoInputOutputPin.class - the isoInputOutputPin class is a PrimitiveCell class.

It is used in the schematic view of a SchematicCell to specify a bi-directional

input/output pin in the symbol view. The isoinputOutputPin cell should not

appear in either SPICE or Verilog netlists; the netlist extractor should

automatically ignore isolnputOutputPin cells.

* isolnputPin.class - the isolnputPin class is a PrimitiveCell class. It is used in

the schematic view of a SchematicCell to specify an input pin in the symbol

view. The isolnputPin cell should not appear in either SPICE or Verilog

netlists; the netlist extractor should automatically ignore isolnputPin cells.

* isoOutputPin.class - the isoOutputPin class is a PrimitiveCell class. It is used

in the schematic view of a SchematicCell to specify an output pin in the

symbol view. The isoOutputPin cell should not appear in either SPICE or

Verilog netlists; the netlist extractor should automatically ignore isoOutputPin

cells.

* L.class - the L class is a PrimitiveCell class. It represents an inductor. This

PrimitiveCell class supports SPICE extraction, but not Verilog extraction.

* LibCell.class - the LibCell class is a data structure class. It is used by the

LibMgr class to keep track of the Cell objects loaded in the current cell

library.

* LibMgr.class - the LibMgr class is a user interface class. It keeps track of

cells in the library, loads and saves cells to local disk and network, and

performs other functions related to cell management.

* NAND.class - the NAND class is a PrimitiveCell class. It represents a two-

input nand logic gate. This PrimitiveCell class supports Verilog extraction,

but not SPICE extraction.

* NMOS.class - the NMOS class is a PrimitiveCell class. It represents a three-

terminal n-channel MOSFET. In a SPICE netlist, the bulk terminal of the

MOSFET is automatically connected to the "0" node (global ground). This

PrimitiveCell class supports both SPICE and Verilog extraction.

* NMOS4.class - the NMOS4 class is a PrimitiveCell class. It represents a

four-terminal n-channel MOSFET. This PrimitiveCell class supports SPICE

extraction, but not Verilog extraction.

* NOR.class - the NOR class is a PrimitiveCell class. It represents a two-input

nor logic gate. This PrimitiveCell class supports Verilog extraction, but not

SPICE extraction.

* OR.clas - the OR class is a PrimitiveCell class. It represents a two-input or

logic gate. This PrimitiveCell class supports Verilog extraction, but not

SPICE extraction.

* Pin.class - the Pin class is a data structure class. It represents a point in space

for components to connect to. Each grid point drawn in the SchematicPanel

roughly corresponds to a Pin object.

* PMOS.class - the PMOS class is a PrimitiveCell class. It represents a three-

terminal p-channel MOSFET. In a SPICE netlist, the bulk terminal of the

MOSFET is automatically connected to the "Vdd!" node. It is the user's

responsibility to define the Vdd! Node. This PrimitiveCell class supports both

SPICE and Verilog extraction.

* PMOS4.class - the PMOS4 class is a PrimitiveCell class. It represents a four-

terminal p-channel MOSFET. This PrimitiveCell class supports SPICE

extraction, but not Verilog extraction.

* PrimitiveCell.class - the PrimitiveCell class is a cell-related data structure

class. The PrimitiveCell class defines the type of cell that comes included

with WebTop.

* PropertyBox.class - the PropertyBox is a user interface class. It is used to set

the parameters of a cell, such as name, value, and so on.

* PropertyField.class - the PropertyField is a user interface class. It is used by

the PropertyBox class only.

* PSGr.class - the PSGr class is a user interface class. It is an extension of the

Graphics class that images to Adobe PostScript code instead of to the screen.

It is used to generate PostScript files.

* R.class - the R class is a PrimitiveCell class. It represents a resistor. This

PrimitiveCell class supports SPICE extraction, but not Verilog extraction.

* repaintcanvas.class - the repaintcanvas class is a user interface class. It is

used by the ColorManager to display a color sample.

* Schematic.class - the Schematic class is a cell-related data structure class. It

represents an arbitrary collection of cells. The Schematic class is used to track

all of the cells present, all of the selected cells present, and in cut/copy/paste

operations.

* SchematicCell.class - the SchematicCell class is a cell-related data structure

class. A SchematicCell is one that can contain other cells. The SchematicCell

is usually encountered in its "black box" symbol view form.

* SchematicPanel.class - the SchematicPanel class is a user interface class. It is

the main work area of WebTop. It contains the schematic (cell) currently

being edited.

* SimpleDialog.class - the SimpleDialog class is a user interface class. It is

used to display errors and messages to the user in a pop-up window.

* StatusPanel.class - the StatusPanel is a user interface class. It is used to

display messages or hints to the user. The StatusPanel is located at the bottom

of the SchematicPanel.

* TextView.class - the TextView class is a user interface class. It is used to

display the SPICE and Verilog views of a cell to the user. The TextView class

optionally allows the user to add, edit, or delete the SPICE or Verilog view.

* UrlDialog.class - the UrlDialog class is a user interface class. It is used by the

LibMgr class to input parameters necessary for loading cells from a network

server.

* V.class - the V class is a PrimitiveCell class. It represents an independent

voltage source. This PrimitiveCell class supports SPICE extraction, but not

Verilog extraction.

* Vcc.class - the Vcc class is a PrimitiveCell class. It represents a single-ended

voltage source. The Vcc value is specified relative to ground (SPICE node 0).

This PrimitiveCell class supports SPICE extraction, but not Verilog

extraction.

* WebTop.class - the WebTop class is the top-level applet class. This is the

executable class that should be run by appletviewer, or embedded in a web

page.

* WebTopFrame.class - the WebTopFrame class is a user interface class. The

WebTopFrame is the schematic editor window. It contains the ControlPanel,

SchematicPanel, and StatusPanel.

* Wire.class - the Wire class is a PrimitiveCell class. Despite being lumped

with the PrimitiveCell classes, it is not in fact a PrimitiveCell! The Wire class

implements ideal wires. The Wire cell should not appear in either SPICE or

Verilog netlists; the netlist extractor should automatically ignore Wire cells.

89

* WrapUtil.class - the WrapUtil class is a data structure class. It consists of a

collection of useful network-related methods. The methods of WrapUtil are

used to generate headers ad prepare data to be sent to network servers.

* XNOR.class - the XNOR class is a PrimitiveCell class. It represents a two-

input xnor logic gate. This PrimitiveCell class supports Verilog extraction,

but not SPICE extraction.

* XOR.class - the XOR class is a PrimitiveCell class. It represents a single-

input xor logic gate. This PrimitiveCell class supports Verilog extraction, but

not SPICE extraction.

REFERENCES

[1] Adobe Systems Incorporated. PostScript Language Reference Manual.
Addison-Wesley Publishing Company, 1985.

[2] J. Gosling and H. McGilton, "The Java Language Environment: a White
Paper," URL http://www.javasoft.com/doc/language_environment/

[3] D. Lidsky, "PowerPlay: an Interactive Design Experience,"
URL http://infopad.eecs.berkeley.edu/PowerPlay/

[4] Henry McGilton and Mary Campione. PostScript by Example. Addison-
Wesley Publishing Company, 1992.

[5] "WELD Project: Web-based Electronic Design,"
URL http://www-cad.eecs.berkeley.edu/Respep/Research/weld/index.html

[6] I. van Rienen, "Digital Simulator,"
URL http://www.lookup.com/Homepages/96457/digsim/index.html

[7] T. Xanthopoulos, "Pythia," URL http://braves.mit.edu/pythia-doc/pythia.html

