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Abstract

Reactive oxygen species, produced endogenously or by exposure to
environmental chemicals and ionizing radiation, induce a wide range of
DNA lesions. The products resulting from direct oxidation of the deoxyribose
sugar have been extensively characterized in vitro. Moreover, the chemical
environment of cellular DNA is postulated to play a direct role in the
chemistry of radical-mediated damage. Here glutathione, a major thiol in
mammalian cells, is shown to inhibit the formation of 3'-phosphoglycolate in
an in vitro model involving y-radiation of a plasmid restriction fragment. To
further assess the role of glutathione in oxidative DNA damage, comparisons
of the C4'-chemistries induced by calicheamicin '11 and a structural analogue,
calicheamicin 01I, were made. The unique activation of calicheamicin 011,
which unlike calicheamicin '11 does not require thiols, provides an
opportunity to determine the effects of thiols on the formation of these DNA
damage products.

In addition to studying the effects of glutathione on oxidative DNA damage,
the relative level of strand breaks versus base damage was investigated for
four oxidizing agents. The premise for these studies is that the variety of
chemical mechanisms associated with different oxidants should result in a
unique spectrum of DNA damage products. To test this hypothesis, both
strand breaks and 8-oxoguanine (8-oxoG) were measured in DNA after
exposure to y-radiation, Fe(II)-EDTA/H 20 2, Cu(II)/H 20 2, and peroxynitrite at
concentrations approaching physiological relevance. The ratio of 8-oxoG to
strand breaks varied more than 10-fold depending on the oxidizing agent:
- 0.4 for peroxynitrite and Cu(II)/H 20 2 and - 0.03 for Fe(II)-EDTA/H 20 2 and

y-radiation. The level of 8-oxoG relative to strand breaks produced by
peroxynitrite was higher than that produced by Fe(II)-EDTA/H 20 2 and
y-radiation, which is consistent with the altered reactivity or accessibility of a
non-hydroxyl radical species produced by peroxynitrite.

Thesis Supervisors: Dr. Peter C. Dedon Dr. Steven R. Tannenbaum
Titles: Associate Professor of Toxicology Professor of Chemistry and Toxicology
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Introduction



DNA strand breaks have been studied both in vitro and in vivo and

their quantitation has been used as an index of the overall DNA damage and

repair occurring in cells [1]. Most evidence favors a role for radical-mediated

oxidative DNA damage in the etiology of cancer and in cell death [2-4]. In

general, bistranded lesions appear to correlate best with the cytotoxicity

associated with oxidizing DNA-damaging agents [5]. Furthermore, available

evidence indicates that the structure of double-strand lesions affects the ability

of cells to repair DNA damage. For example, an abasic site opposite a strand

break has been shown to be repaired less efficiently by both exonucleases and

endonucleases when compared to damage consisting of an abasic site alone [6-

11]. However, due to the multitude of different DNA lesions that are

produced, the biological effects of individual lesions have proven difficult to

assess.

Oxidation of DNA by y-irradiation, bleomycin (BLM), transition metal

cations/hydrogen peroxide complexes, the enediyne anti-tumor antibiotics

and other genotoxic agents occurs via radical-mediated processes [12-16].

These agents induce specific types of deoxyribose sugar damage including

oxidized apurinic/apyrimidinic (abasic) sites. Characterization of these

products and putative intermediates has provided insights into both the

mechanism of their formation and their biological significance [12-16].

Information about these radical-mediated DNA damaging events have

proven important for understanding the role of these products in the aging

process and in neoplastic diseases.

Radical-mediated oxidation of deoxyribose produces a variety of

products depending on the position at which the damage occurs (reviewed in

[15]). Abstraction of the 1'-hydrogen results in the formation of a 2'-deoxyribo-

lactone abasic site [17,18]. Abstraction of the 4'-hydrogen produces either a 4'-



keto-l'-aldehyde abasic site or strand breaks with 3'-phosphoglycolate (3'-PG)

and 5'-phosphate ends [14,19]. Bleomycin [12] and calicheamicin [20] are

examples of agents that cause C4'-hydrogen abstraction, while damage

produced by Fe(II)-EDTA [16] and, as I show in this thesis, peroxynitrite

consists of 3'-PG residues among other products that are consistent with C4'-

chemistry. Finally, 5'-hydrogen abstraction results in a strand break with a

3'-phosphate and a 5'-nucleoside aldehyde [15,21]. From the major groove of

DNA, radical-mediated removal of the 3'-hydrogen results in a strand break

with a 3'-phosphoglycoaldehyde and a 5'-phosphate [22]. Abstraction of the

2'-hydrogens which sit both in the major and minor grooves of DNA is not

energetically favored [23].

While there are many agents that have been found to produce

oxidative DNA damage, the mechanisms of product formation appear to

differ significantly. For example, deoxyribose fragmentation following initial

C4'-hydrogen abstraction can partition along either of two pathways to form

an abasic site or a strand break with a 3'-phosphoglycolate residue and base

propenal [12,15]. Moreover, neocarzinostatin (NCS) [24], esperamicin A1 (ESP

Al) [25] calicheamicin yl (CAL yl ) [20] and C-1027 [26] all produce the 3'-PG

residue only as part of a double-stranded lesion, while the same product

forms in single-strand breaks produced by BLM [19], y-radiation [27,28],

possibly Fe(II)-EDTA [16] and peroxynitrite as shown here in Chapter 1. In one

of the proposed mechanisms for the formation of 3'-PG in single-strand

breaks resulting from exposure to y-irradiation, a C4'-oxyradical intermediate

is believed to be involved [29]. Reduction of this putative intermediate could

to lead to the formation of the 4'-keto-l'-aldehyde abasic site [29]. These

examples highlight the complexity of our current understanding of the

mechanisms by which various oxidizing agents damage DNA.



Recent observations with neocarzinostatin and the related enediynes

ESP A1 and CAL 711 suggest that there is an unique chemical mechanism

involved in the formation of double-stranded lesions. In our laboratory, we

have observed that 3'-PG, which results from abstraction of the C4'-hydrogen,

occurs only in the bistranded lesions induced by NCS and CAL 711 [20,24,30].

Similar observations have been made with the C5'-chemistry produced by

NCS: namely, the 3'-phosphate-ended fragments arising from

3'-formylphosphate residues occur at a lower frequency in single-stranded

lesions [24,30]. Moreover, the formation of these two products may also occur

via an oxyradical intermediate [24,30]. This conclusion is based on the

appearance of NCS-induced 3'-PG residues in single-stranded breaks and the

increased formation of 3'-formylphosphate observed under anaerobic

conditions in the presence of a nitroaromatic radiation sensitizer, which

presumably reacts with the carbon radical (thereby serving as an oxygen

substitute) to form the oxyradical intermediate. [24,31,32].

The observed damage chemistry of bistranded lesions is consistent

with an interaction between damage sites on opposite strands of the lesion.

To explain this phenomenon, a model has been proposed in which the

peroxyradicals at the C4'- and C5'- positions on opposite strands react across

the minor groove to form a tetraoxide bridge [24]. Breakdown of the bridge

may occur by a Russell-like mechanism involving elimination of molecular

oxygen [29]. This results in the formation of alkoxyradicals on each strand that

proceed to form either the 3'-PG residue (C4'-chemistry) or 3'-phosphate-

ended fragments (C5'-chemistry) [24]. The partitioning of C4'-chemistry in a

double-stranded lesion to produce either an abasic site or a strand break may

have implications for the toxicity of the lesion in vivo.

Deoxyribose damage resulting from "activated bleomycin" is perhaps



one of the best understood of all these oxidative DNA-damaging agents

[12,19,33-35]. As shown in Figure 0.1, the mechanism of deoxyribose

degradation following C4' hydrogen abstraction has been shown to occur by

two distinct pathways. The mechanism leading to the release of an alkali-

labile 4'-keto 1'-aldehyde abasic site 8 (pathway A) has been well established

[33,35], whereas the pathway which leads to the formation of 3'-PG and base

propenals (pathway B) still remains obscure [12,19]. This mechanism is

believed to involve the formation of a 4-peroxy radical 2 which is

subsequently reduced to 3. This in turn undergoes a Creigee-type rearrange-

ment that ultimately leads to the formation of 3'-phosphoglycolate 6 and base

propenal 7 [19]. Similarly, these products have been characterized for other

genotoxic agents and the proposed mechanisms of their formation have been

based on this model.

Extensive research has been done to elucidate the mechanisms by

which 3'-PG-ended lesions are formed in vitro [12,29,36,37]. Limited research

has been done, however, to directly address the question of the chemical

mechanism of oxidative deoxyribose sugar damage in vivo. Damage in cells

may differ from that in vitro studies due to factors unique to the cellular

environment that have not been fully considered. In order to understand the

chemistry of 3'-PG formation in vivo, the unique environment of the DNA

(i.e. the presence of thiols, histone proteins, chromatin structure) must be

taken into account when designing experiments to address this problem.

Glutathione, the main endogenous cellular non-protein thiol [38], is

known to protect against toxic radical species. In an in vitro experiment

involving the y-irradiation of a plasmid restriction fragment, I show that

glutathione inhibits the formation of 3'-PG. Determining whether this

protection involves prevention of deoxyribose oxidation or reduction of



deoxyribose radical intermediates, thereby inhibiting DNA fragmentation, is

an important research question as it relates to understanding the biological

responses to radical-mediated DNA damage. The goal of this thesis is to

characterize the C4'-chemistry induced by y-radiation, peroxynitrite and

calicheamicin, and to determine the effect of several factors (buffer

composition, the presence of glutathione, and pH) on the formation of 3'-

phosphate and 3'-PG by these agents. The results of these studies provide a

means to begin to clarify the conflicting chemistries of the variety of small

molecules that oxidize the deoxyribose sugar, such as Fe(II)-EDTA,[16],

peroxynitrite [39-41], bleomycin [19,42] and the enediynes [15].
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Chapter I.

DNA Strand Breaks Produced by y-Radiation and Peroxynitrite



Introduction

y-Radiation Chemistry. The principle oxygen-centered radicals are:

OH, O' -, 02' -, H0 2
°, 03;-, ROO °, RO'. Most of these species are implicated in

the biological and toxic processes in cells [43,44]. The energy required to form

free radicals from molecular compounds is provided by either high energy

particles (e-, p+, cc) or by electromagnetic waves ( y-rays, synchroton radiation,

etc.) [29]. The high energy (typically MeV) of an incident particle or

electromagnetic wave ultimately results in a large number of small energy

deposits (-60-100 eV), each of which provides enough for ionization and

excitation of an average of one or two molecules. In irradiated water or

aqueous solutions, the resulting electrons, charged and neutral species, and

non-radical species that are generated are eaq-, HO, "OH, H 2, H20 2 [29].

The formation of these so-called primary species occurs in 10-10 seconds.

There are, however, a number of mechanisms by which these primary

radicals can selectively be either scavenged or inter-converted [29]. The most

important of the processes with respect to the oxygen radicals is the

conversion of hydrated electrons into hydroxyl radicals as shown below:

eaq- + N 20 + H 20 + 'OH + OH- +N 2.

Other significant reactions in an irradiated aqueous solution are the

conversion of hydrated electrons into hydrogen atoms, the generation of

superoxide and the removal of hydrogen atoms and hydroxyl radicals by

alcohols. Finally, radiation chemistry provides the possibility of generating

free radicals which in high polarity solvents are mainly homogeneously

distributed and whose physical and chemical properties can selectively be

studied.

von Sonntag and coworkers [23,29] have undertaken extensive studies

of the DNA damage induced by y-radiation, under conditions believed to



involve hydroxyl radical-mediated processes. Although most of the hydroxyl

radicals add across the double bond of the nitrogenous bases, more than 20%

of the hydroxyl radicals may directly abstract hydrogen atoms from deoxy-

ribose [45]. In addition to the generation of abasic sites resulting from N-

glycosylic bond labilization following base modification, numerous abasic

sites have been shown to occur subsequent to hydrogen abstraction from the

deoxyribose in y-irradiated DNA. For example, Dizdaroglu et. al. [45] detected

the formation of 2-deoxy-D-erythro-pentonic acid from calf thymus DNA

irradiated under both aerobic and anaerobic conditions. This species is

believed to arise by the abstraction of hydrogen from the C1'-position,

followed by base release and the formation of the alkali-labile abasic site with

a lactone at Cl'. Evidence for this product has also been found in NCS-

mediated strand scission [17,18].

Besides the formation of abasic sites subsequent to oxidative DNA

damage, numerous deoxyribose degradation products are also known to occur

[12,15]. Using y-irradiation as a source of oxidative damage, the laboratory of

Haseltine and co-workers identified two products resulting presumably from

C4' hydrogen abstraction [27,28]. One of these products was a 3'-phospho-

glycolate-ended DNA fragment which was differentiated from the other 3'-

phosphate-ended fragments using high resolution gel electrophoresis.

Further characterization of these products revealed that the more rapidly

migrating of the two damage products contained the 3'-PG moiety. This

lesion was suggested to contribute to the cytotoxic, mutagenic and

carcinogenic effects of y-irradiation based on a model in which insufficient

repair of 3'-PG inhibits DNA polymerase [28]. However, Winters et. al.

subsequently isolated three distinct enzymes from HeLa cells that were able to

remove 3'-PG from both y-irradiated and bleomycin-treated DNA [46]. These



enzymes all possessed class II AP endonuclease activity and were able to

convert the lesions into substrates for DNA polymerases. Despite the

isolation of these putative repair enzymes, the contribution of 3'-PG

formation to the cytotoxicity associated with oxidative DNA damage in vivo

still remains unclear.

The Chemistry of Peroxynitrite. The chemistry of the peroxynitrite

(ONOO-) has been studied for decades [47]. A burst of interest in this inorganic

peroxyacid occurred in 1990, however, when Beckman, Freeman and

coworkers published a landmark paper which suggested that nitric oxide (NO)

and superoxide (02-) could combine to form peroxynitrite in vivo [48]. The

peroxynitrite anion is relatively stable, but its acid, peroxynitrous acid,

rearranges to form nitrate with a half-life near 1 sec at pH 7 and 37 'C The

pKA of HOONO has been determined to be 6.8 [49,50].

During its decomposition at physiological pH, peroxynitrite can

produce some of the strongest oxidants known in a biological system,

initiating reactions characteristic of the hydroxyl radical, nitronium ion and

nitrogen dioxide [51]. Based on these observations, the toxic effect of peroxy-

nitrite was postulated to be derived from the formation of hydroxyl radicals

[52-54]. However, recent evidence suggests a more complicated picture and

has led to a model in which an unstable, vibrationally-active peroxy-nitrous

acid intermediate with the reactivity of hydroxyl radicals is involved in

peroxynitrite-mediated damage [50].

By either mechanism, the genotoxic potential of peroxynitrite is likely

to involve oxidation of both the bases and deoxyribose of DNA. As evidence

of the latter, King et. al., [39] have observed that peroxynitrite produces

sequence-neutral strand breaks in DNA in vitro. Peroxynitrite was also

shown by Kennedy et. al. [41] to produce the base damage product 8oxo-



guanine at levels higher to those observed for y-radiation and Fe(II)-

EDTA/H 20 2. However, relatively little is known about the mechanism by

which peroxynitrite initiates DNA cleavage or the identity of deoxyribose

degradation products.

Koppenal et. al. have used empirical observations and thermodynamic

hypotheses to suggest that peroxynitrite does not decompose homolytically

into free hydroxyl radical and nitrogen dioxide [50]. The evidence that has

been generated in support of a vibrationally active intermediate is as follows:

1) The rate constant for the reverse reaction,

OOH + N0 2 " -- ONOOH

has been estimated to be in the range of 1013-1015 M-1 s-1. This value exceeds

the experimentally determined rate constant of 1.3 x 109 M-1 s-1 and the

diffusion limited rate constant of 1010-1011 M-1 s-1.

2) The entropy of activation is small, (3 ± 2 cal/mole - K) compared to

activation energies previously calculated for homolysis of RO-OR bonds

which are generally on the order of - 12 cal/mole - K.

3) The hydroxyl radical scavengers DMSO and tert-butylalcohol do not

affect the rate of peroxynitrite decomposition. If homolysis of HOONO does

occur, it is expected that such potent hydroxyl radical scavengers would effect

the rate of nitrate formation.

The ubiquitous nitric oxide (NO) has been implicated as both a

physiologically-important signaling molecule [55-57] and a potent toxin and

mutagen [58,59]. Peroxynitrite, formed by the reaction of NO with superoxide

[48,49], represents one of several possible mediators of the genotoxic

properties of NO [50]. Activated macrophages produce high levels of both NO

and superoxide ([60] and references therein). It is thus possible that the

cytotoxic properties of activated macrophages and the increased risk of cancer



associated with chronic inflammation are, in part, related to the production of

peroxynitrite.

The objective of this study is to identify the deoxyribose degradation

products arising from treatment of DNA with peroxynitrite by comparison

with the known chemistries of y-radiation. There are two questions that

highlight the importance of these studies. First, does peroxynitrite produce

damage via preferential attack of one or both grooves of DNA? Second, if

peroxynitrite-mediated damage does not involve a hydroxyl radical

intermediate, will the deoxyribose fragmentation products differ from those

formed by other agents that produce hydroxyl radical such as y-radiation and

Fe(II)-EDTA/H 20 2? Identification of the chemistry of the damage products in

peroxynitrite-mediated DNA damage will provide answers to both of these

questions. The effects of GSH and radical-scavenging buffers on the

partitioning of C4'-chemistry will also be investigated.



Material and Methods

Chemicals. ONOOK/KNO 3 was kindly provided by Dr. William A.

Pryor, Biodynamics Institute, Louisiana State University. The plasmid pUC19

and restriction enzymes HindIII and EcoRI were purchased from New

England Biolabs. PvuII was obtained from Gibco-BRL. Calf intestine alkaline

phosphatase and G-50 sephadex columns were obtained from Boehringer

Mannheim. Putrescine dihydrochloride, hydrazine, phenol, chloroform and

N,N,N'N'-tetramethylethylenediamine (TEMED) were obtained from Sigma

Chemical Co. Acrylamide/bisacrylamide (19:1) solutions and isoamyl alcohol

were purchased from American Bioanalytical.

Description of y-Radiation Source. DNA solutions were exposed to

y-radiation in a Gammacell-220 (Atomic Energy of Canada Ltd.). The

Gammacell-220 utilizes an annular cobalt-60 (60Co) source permanently

enclosed within a lead shield, a stainless steel cylindrical drawer (for

placement of samples), and a drive mechanism which moves the drawer up

or down along the center line of the source. 60Co decays with a 5.271 year half-

life to stable Nickel-60 (60Ni). During this decay process, 60Co emits two

cascades gamma rays with energies of 1.1732 MeV and 1.3325 MeV, for a

combined energy of 2.5057 MeV. The dose rate of the Gammacell-220 during

these experiments was calculated to be 5.55 Gy/min.

Source of Peroxynitrite. The reagent used to oxidize the end-labeled

restriction fragment was a solid form of peroxynitrite generated by photolysis

of potassium nitrate (KNO3) [39]. This damaging agent was synthesized by

irradiating reagent grade crystalline KNO 3 at 254 nm for 2 hr. under nitrogen

gas at a temperature of 42 oC. This 7-irradiation produced a yellow solid which

contained 26 gmol of ONOOK per gram of solid.



5'-[32p] end-labeling of EcoRI-or HindIII-digested pUC19. The plasmid

was uniquely labeled with [32p] at the 5' end of either the EcoRI or HindIII

cleavage site by successive application of alkaline phosphate, T4 kinase and

[y- 32p JATP (150 gCi) [61]. Radiolabeled DNA was separated from the

unincorporated labeled nucleotide using a G50-sephadex column, phenol:

chloroform extraction followed by ethanol precipitation. The plasmid DNA

was then digested with either HindIII or PvuII to generate either a 50 bp or 143

bp restriction fragment, respectively. The radiolabeled DNA fragments of

interest were subsequently separated from the larger fragments on a non-

denaturing 12% polyacrylamide gel. The fragments of interest (see Figure 1.1

for sequence of EcoRI/HindIII pUC19 fragment and Figure 1.2 for sequence of

HindIII/PvuII pUC19 fragment) were then excised from the gel, eluted into

gel elution buffer (300 mM sodium acetate, 1 mM EDTA pH 7.0), ethanol

precipitated and resuspended in either deionized water or HEPES buffer (50

mM HEPES, 1 mM EDTA, pH 7.0).

3'-[32p] end labeling of HindIII/PvuII-digested pUC19. The supercoiled

plasmid DNA was successively digested with HindIII and PvuII and ethanol

precipitated using standard procedures [61]. The DNA (10 gg) was then

resuspended in deionized water and reacted with [oc- 32P Idideoxy ATP (50 gCi)

and terminal deoxynucleotidyl transferase (100 units) in 100 mM sodium

cacodylate, 2 mM CoC12, 200 gM f-mercaptoethanol, pH 7.2, at 37 'C for 1 hr.

The reaction was stopped by adding EDTA to a final concentration 5 gM. The

3'-[32p ] labeled 143 bp fragment was then isolated from the larger fragment by

resolving on a 12 % acrylamide gel and eluting as described earlier.

Preparation of Maxam-Gilbert chemical sequencing standards. Maxam-

Gilbert chemical sequencing standards were prepared [62] and used in these

experiments to serve as markers of either 3'- (for 5'- [32p] labeled samples) or



5'- (for 3'-[32p] labeled samples) phosphate-ended deoxyribose fragmentation

products [24,30]. The 5'- and 3'-end-labeled 143 bp HindIII/PvuII fragments

(7.2 x 105 cpm) were reacted separately in the presence of 30 jgg/mL sonicated

calf thymus DNA (CT DNA) with either 1% (v/v) formic acid (purine-specific

reaction) or 25 mM hydrazine (pyrimidine-specific reaction). Following these

reactions, the DNA was cleaved at the damage sites by incubating at 90 OC

with 100 mM piperidine. The samples were then lyophilized and

resuspended in deionized water three times and finally resuspended in

sequencing gel loading buffer (0.05% bromophenol blue, 0.05% xylene

cyannol, 20 mM EDTA in 95% (v/v) deionized formamide).

y-irradiation of 5'-[32p] labeled EcoRI/HindIII pUC19. The chamber

dose rate for the Gammacell-200 as of 2/1/93 was determined to be 6.4

Gy/min. Prior to each use the dose rate was calculated using an equation

which relates the decay constant to the initial dose rate. Based on the dose

rate at the time of irradiation, the radiolabeled restriction fragment (3.6 x 105

cpm/reaction) containing 30 gg/mL CT DNA (unlabeled carrier DNA) in

either deionized H20 or 10 mM HEPES, 1 mM EDTA, pH 7.0, and controls

were then y-irradiated for varying lengths of time. The samples were kept in

the cylindrical drawer of the Gammacell-200 for exposures of y-radiation

ranging between 4 and 1200 Gy. After irradiation, each sample was

immediately placed on ice for at least 1 hr. prior to ethanol precipitation to

ensure that each reaction had gone to completion.

Peroxynitrite Treatment of 5'- and 3'-[32p] labeled HindIII/PvuII pUC19.

DNA cleavage was initiated using a range of concentrations of peroxynitrite.

Initially, the solid peroxynitrite was weighed in 1.5 mL Eppendorf tubes after

which solutions of end-labeled DNA (3.6 x 105 cpm) containing 30 pgg/mL calf

thymus DNA in 50 mM sodium phosphate and 0.1 mM diethylenetriamine-



pentaacetic acid (DETAPAC), pH 7.4 were added to the solid, vortexed for 30

seconds to initiate the reaction. The final concentrations of ONOO were 132,

264 and 528 gM. The reactions were allowed to proceed at room temperature

for 1 hr prior to desalting over G-50 sephadex quick spin columns and ethanol

precipitation in preparation for chemical modification of the damage

products.

The purified 5'-end labeled DNA was then split into thirds. The

portions were either kept on ice for 1 hr as a control, treated with 100 mM

putrescine dihyrochloride for 1 hr. at 37 'C to cleave all drug induced abasic

sites to phosphate-ended fragments, or treated with 100 mM hydrazine (pH 7)

for 1 hr at ambient temperature to convert the 4'-keto 1'-aldehyde abasic site

to 3'-phosphopyridazine-ended strand breaks. A description of the various

chemical treatments, the structures of possible products and their migrations

relative to 3'-phosphate ended Maxam-Gilbert standards is described in Figure

1.3. Following these chemical modifications, the samples were again ethanol

precipitated in preparation for gel resolution of the damage fragments.

Sequencing gel and PhosphorImager analysis. The C4'- and C5'-

deoxyribose fragmentation products induced by treatment of the DNA with y-

radiation and ONOO- were identified by resolving the treated samples on 30

cm x 40 cm 20% polyacrylamide gels containing 8.3 M Urea. The identity of

the sugar fragmentation products is determined by resolving the treated

samples along with Maxam-Gilbert sequencing standards and making

comparisons of the products based on the expected gel mobilities as described

in Figure 1.3. Prior to loading on gels, 2.5 x 104 cpm aliquots of the samples

were lyophilized, resuspended in 3 gL sequencing gel loading buffer, boiled

for 3 min, and chilled on ice for 3 min. Electrophoresis of the samples was

then performed at 60 watts for 11-15 hr. The gels were then fixed in



sequencing gel fixing solution (10% acetic acid, 10% methanol), dried under

vacuum and exposed to a phosphor screen for a minimum of 16 hours. The

gel was scanned and analyzed using a Molecular Dynamics Phosphorimager

and ImageQuant software.



Results

y-irradiation of EcoRIIHinIII pUC19 in deionized H20. The purpose of

this experiment was to serve as a positive control for the formation of 3'-PG,

since this experiment has been previously done by Haseltine and coworkers

[27,28]. Ultimately, the DNA damage products observed following y-irrad-

iation of this 5'-[32p] labeled substrate will be compared to those produced

subsequent to treatment with peroxynitrite. In this experiment the end-

labeled fragment, containing 30 gg/mL CT DNA in deionized H20, was

exposed to 0, 4, 8, 16, 25, 50 and 100 Gy of y-radiation. As shown in Figure 1.4,

a linear dose response is observed as the exposure to y-radiation is increased.

A band migrating as expected for 3'-PG is also observed and shown to increase

linearly with exposure to y-radiation. This putative 3'-PG residue is consistent

with the chemistries previously associated with C4'-hydrogen abstraction

with y-radiation, BLM, NCS and CAL yi.

Increased levels of y-radiation are required to form 3'-PG when samples

are irradiated in HEPES buffer. It was found that in the presence of 10 mM

HEPES buffer, a substantial reduction in both overall DNA damaged and in

3'-PG was observed. Once, again, there is a linear dose response to increased

exposure to y-radiation and both 3'-phosphate- and 3'-PG-ended fragments

were formed. As shown in Figure 1.5, a control for the levels of damage

formed subsequent to a 16 Gy irradiation in deionized H 20 was also run on

this gel so that direct comparison in the damage levels could be made.

Evaluation of the gel reveals that nearly a 10-fold increase in exposure to

y-radiation was required to achieve the level of 3'-PG previously formed in

deionized H 20.

Glutathione inhibits the y-radiation-mediated production of 3'-PG.

Following the observed effect of HEPES on y-radiation-mediated C4'-



chemistry, questions regarding the effects of physiologically relevant cellular

components on the damage arose. Glutathione has been shown to offer

protection against the destructive effects of reactive oxygen intermediates and

free radicals in cells [38,63]. Therefore, using the sequencing gel analysis

previously employed for y-radiation in H20 and HEPES buffer, the effect of

GSH on the formation of 3'-PG was assayed. As shown in Figure 1.6, the

relative amounts of 3'-PG formed as compared to the number of phosphate

ended fragments is lowered in the presence of 50 mM GSH. This is consistent

with a model in which GSH causes a shift in the C4'-chemistry by reducing

the putative radical intermediates that lead to the formation of 3'-PG as

proposed in Figure 1.7.

Evidence for the formation of 3'-PG in peroxynitrite-mediated damage.

Putative 3'-PG-ended DNA fragments were observed when the 5'-end labeled

fragment was treated with peroxynitrite as shown in Figure 1.8. Moreover,

subsequent treatment with hydrazine led to the formation of a putative 3'-

phosphopyridazine residue, which provides evidence for the presence of the

4'-keto 1'-aldehyde abasic site. Evidence for the formation of the 3'-glycol-

aldehyde was sought by treating the ONOO- damaged DNA with sodium

borohydride (see Figure 1.9). However, the results of this experiment were

inconclusive.

An increase in the intensity of the 3'-phosphate-ended fragment,

following cleavage with putrescine provides additional support for the

existence of the abasic site [20]. The presence of the putative 3'-PG band in the

ONOO-mediated damage is an important observation, because it serves as yet

another example of an oxidizing agent that forms this product in vitro.

Given the diverse group of oxidants that have been shown to produce 3'-PG,

questions regarding the potential significance of this product arise, especially



as it relates to the cytotoxicity of these oxidizing agents.

Analysis of the C5'-chemistry induced by peroxynitrite. The

HindIII/PvuII pUC19 fragment was 3'-ended labeled with [32p] and treated

with 528 iiM peroxynitrite (samples contained 30 gg/mL CT DNA in 50 mM

phosphate buffer pH 7.4) as described in Materials and Methods. The treated

sample and control were then split in half and one portion was treated with

100 mM sodium borohydride to reduce the 5'-nucleoside aldehyde, which

results from initial C5'-hydrogen abstraction, to the slower-migrating

nucleoside. Although most of the damage appears to have 5'-phosphate ends

(see Figure 1.10), there are several low intensity bands that may be the 5'-

nucleoside aldehyde. The existence of this residue will have to be confirmed

using other techniques such as HPLC and mass spectrometry.



Discussion

Under aerobic conditions, y- irradiation of aqueous solutions produces

several radical species that are able to cause strand breaks in DNA [29]. The

radical-mediated damage is known to consist of lesions that result from direct

oxidation of the nitrogenous base or the deoxyribose [45,64]. Here I focus on

products that result from abstraction of the C4'-hydrogen atom from

deoxyribose and report the effect of buffer composition and the presence of

GSH on the nature of the products observed. In Figure 1.4, the formation of

the y-radiation-induced 3'-PG is shown and its formation is demonstrated to

increase in a dose dependent manner.

The presence of radical scavengers is known to effect the amount of

oxidative DNA damage produced with y-radiation [29]. The purpose of

comparing the levels of damage produced in deionized water to that in

HEPES buffer was to identify factors which may either alter the production of

3'-PG. As shown in Figure 1.5, a nearly 10-fold increases in y-radiation

exposure is required to form 3'-PG in the presence of HEPES buffer. These

results also revealed that the composition of the buffer can be modified in

order to determine the effect of cellular components on the formation of 3'-

PG. Through these in vitro experiments, new insights into factors which

influence the formation of this 3'-PG in vivo can be obtained.

The environment of cellular DNA is believed to play a direct role in

the chemistry of radical mediated damage. Numerous advances have been

made in understanding the chemistry of oxidative DNA damage in vitro.

However, the mechanisms of DNA damage in vivo have yet to be defined. In

order to provide new insights into the role of specific cellular components on

radical-mediated DNA damage, the effect of GSH on the formation of 3'-PG

was investigated. GSH has been shown to offer protection against the



destructive effects of reactive oxygen intermediates and free radicals in cells

[38,63]. As shown in Figure 1.6, GSH inhibits the formation of 3'-PG in an in

vitro model involving y-radiation of a plasmid restriction fragment (see 2000

Gy exposure in the presence of 50 mM GSH). However, it is unclear whether

GSH serves primarily as a radical scavenger or reducer of the putative

deoxyribose radical intermediates in vivo. Understanding the mechanism by

which GSH offers protection against radical-mediated DNA damage may aid

in the design of drugs to combat the deleterious effects of radical species on

cells.

A possible role for GSH in the reduction of putative radical inter-

mediates, which would explain the apparent shift from 3'-PG to 3'-phosphate-

ended fragments, is based on a model presented by Ross et. al. [65]. Essentially,

as GSH reduces these radical intermediates, it forms a glutathionyl radical

(GS °) which can lead to the formation of additional radicals via the reactions

shown below:

GSH + R' - GS° + R-H

GS° + GSH -4 GSSG °- + H +

(disulfide radical)

GSSG*-+ 02 - GSSG + 020-

2020- + 2H + - H202 + 02
(spontaneously dismutates)

Fe2+ + H 20 2 - Fe3+ + OH- + OHO

In this model, the reduction of oxidized radical species by GSH leads to the

formation of addition hydroxyl radicals (OH*) which can lead to further

oxidations of the DNA or chain termination events with existing deoxyribose

sugar radicals. As shown in Figure 1.7, the presence of GSH in y-irradiated

solutions of DNA could shift the partitioning of the C4'-chemistry toward the

formation of the 4'-keto-l'-aldehyde abasic site. This putative chain



termination reaction may explain the cellular protection provided by GSH

against oxidative DNA damage in vivo [38,63].

Having investigated the role of GSH in y-radiation-mediated damage, I

was interested in characterizing the DNA damage products caused by ONOO-

and relating the chemistry to that observed with y-radiation. Peroxynitrite

(ONOO-), the product of product of superoxide reacting with nitric oxide, is a

strong oxidant which is postulated to be long lived in vivo relative to

hydroxyl radical [66]. The unusual stability of ONOO- (relative to hydroxyl

radical) may contribute to its toxicity by allowing it to react more selectively

with cellular targets. A major factor contributing to peroxynitrite's toxicity

may be its stability as an anion, even though ONOO- is 36 kcal mol-1 higher in

energy than its isomer, nitrate [67].

King et. al., demonstrated that ONOO- produces non-specific

deoxyribose fragmentation products typical of the hydroxyl radical [39], and

Salgo et. al. and Kennedy et. al. [40,41] found that it causes nicks in plasmid

DNA. Here I provide evidence for peroxynitrite-mediated formation of 3-

phosphoglycolate, 4'-keto-l'-aldehyde and 5'-nucleoside aldehyde. These

products have previously been observed in the oxidative DNA damage

produced by y-radiation [28,68], BLM [12,19,33], CAL y11 [20,69], ESP A1 [25,70]

and NCS [14,24]. Once the products have been unambiguously characterized

using analytical techniques such as HPLC/MS, the mechanism by which these

products are formed and the nature of the oxidizing species may be

determined. Obtaining knowledge about the structure of the "activated

species" will further our understanding of this potent oxidant and could aid

in designing agents to combat the toxic its effects of ONOO in vivo.

Based on the results of the gel mobility shift assay presented here, it is

evident that ONOO- produces 3'-PG following initial abstraction of the C4'-



hydrogen. These lesions may represent a genotoxic event, due to the observed

requirement of repair enzymes to convert the damage to a substrate for DNA

polymerase [46]. Moreover, the base propenal, a product shown to accompany

the formation of 3'-PG in BLM [12,19] and y-radiation damage, has been

shown to be cytotoxic [71,72]. Evidence for the genotoxicity of the base

propenal and other products of oxidative DNA damage is limited. However,

Dedon et. al. recently found that the base propenal forms a mutagenic

pyrimidopurinone adduct of guanosine following direct oxidation with BLM,

CAL ýy and ONOO [73]. These results suggest that, in addition to the direct

genotoxicity of oxidative DNA lesions, the base propenal may also contribute

to the mutagenic burden of a cell exposed to these agents. Furthermore, these

results coupled with the formation of 3'-PG highlight the significance of C4'-

chemistry as a mutagenic and genotoxic event in vivo.



EcoRI i HindIII
CGATTCGAGCTCGGTACCCGGGGATCCTCTAGAGTCGACCTGCAGGCATGCAGCTT

CTTAAGCTCGAGCCATGGGCCCCTAGGAGATCTCAGCTGGACGTCCGTACGTTCGAA

Figure 1.1. EcoRI/HindIII fragment of pUC19. Sites of CAL recognition (heavy bar) and
damage sites (arrows) are shown.



AGC TTG CAT GCC TGC AGG TCG ACT CTA GAG GAT CCC CGG GTA

CCG AGC TCG AAT TCA CTG GCC GTC GTT TTA CAA CGT CGT GAC TGG

GAA AAC CCT GGC GTT ACC CAA CTT AAT CGC CTT GCA GCA CAT

CCC CCT TTC GCC AG

3'

Figure 1.2. Sequence of 143 bp HindIII /PvuII pUC19 fragment. (single stranded) The CAL
recognition sequence on the opposite strand (shown in Figure 1.1) is underlined.



Figure 1.3. Expected products and gel shifts following chemical modicification of oxidized
5'-[32p] end-labeled DNA with putrescine, hydrazine and sodium borohydride.

Fragmentation Product Chemical Modification Observations on Gel
Migrates - 1/4 bp faster

3' Phosphoglycolate " No Treatment than Maxam-Gilbert
standards.

No new band, instead the
2' Deoxyribonolactone * 100 mM Putresine intensity of phosphate

band increases.
4 New band appears with a4'Keto 1' aldehyde * 100 mM Hydrazine slower migration than

abasic site Maxam-Gilbert standards
New band appears with a3' Phosphoglyco- * 100 mM NaBH 4  slightly faster migration

aldehyde than the aldehyde.
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Figure 1.4. y-irradiation of EcoRI/HindIII pUC19 fragment in deionized H20. The
5'-[ 32P] end-labeled DNA was exposed to a 0-100 Gy range of y-radiation to indentify
the 3'-phosphoglycolate ended damage product (band migrating -1/4 of a base pair
faster than the 3'-phosphate ended fragment). Lanes AG, G, and CT correspond to the
Maxam-Gilbert sequencing standards.
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Figure 1.5. y-irradiation of EcoRI/HindIII pUC19 fragment in HEPES buffer. The
5'-[ 32P] end-labeled DNA was exposed to a 0-800 Gy range of y-radiation in the
presence of HEPES buffer (and 16 Gy in water) to determine the effects of the radical
scavenging buffer on the overal levels of damage and the formation of the 3'-phospho-
glycolate ended damage product. Lanes AG, G, and CT correspond to the Maxam-Gilbert
sequencing standards.
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Figure 1.6. Effects of GSH and Na2+ on the formation of 3'-PG. In this experiment, the EcoRI/HindIII
pUC19 fragment was y-irradated in the presence of increasing concentration of GSH and NaC1. The
lanes containing NaC1 are repesented by the symbol(Na +2) above the gel. The plus (+) sign indicates
samples whcih contained GSH. The exposures to y-radiation are shown at the bottom of the gel. Lanes
AG and CT correspond to Maxam-Gilbert sequencing standards.
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Figure 1.7. Proposed role of glutathione in protecting cells against radical-mediated
DNA damage (a) and partitioning of C4'-chemistry toward the formation of the 4'-keto
1'-aldehyde abasic site as opposed to 3'-PG (b).
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0 132 264 528 'gM ONOO"
AG C CT C P HF C P FH P H C P -H CT C A C

Figure 1.8. Evidence for the formation of ONOO-mediated 3'-phosphoglycolate. The
5'-[32p] end-labeled HindIII/PvuII pUC19 fragment was treated with 0,132, 264 and 528 tgM
ONOO. Reactions with Putrescine (P) indicates the presence of abasic sites (increased intensity
of phosphate band in these lanes). Reactions with Hydrazine (H) provides evidence for the
existence of 4'-keto-l'-aldehyde (based on the putative 3'-phosphopyridazine bands in these
lanes). Lanes AG and CT represent Maxam-Gilbert chemical sequencing standards.
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Figure 1.9. Putative formation of 3'-glycoaldehyde by peroxynitrite. Treatment of 5-[32p]
end-labeled HindIII/PvuII pUC19 fragment with 528 pM ONOO- and subsequent analysis of
damage chemistry via modification of oxidized deoxyribose products with putrescine (P),
hydrazine (H) and sodium borohydride (BH4: reduces putative 3'-glycoaldehyde to slower
migrating species). Lanes AG and CT represent Maxam-Gilbert chemical sequencing standards.
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Figure 1.10. Analysis of C5'-chemistry induced by peroxynitrite. The 3'-[32P] end-labeled

HindIII/PvuII pUC19 fragment was reacted with 0 and 528 pM ONOO- and subsequently

treated with sodium borohydride (BH4) to reduce the putative 5'-nucleoside aldehyde to the

slower migrating nucleoside residue.
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Chapter II.
C4'-Chemistries-Induced by Calicheamicins y11 and O1'



Introduction

Calicheamicin ylI (CAL y11) [74,75], a member of the enediyne family of

anti-tumor antibiotics (see figure 2.1 for structure) isolated from fermen-

tations of Micromonospora echinospora ssp. Calichensis, has been shown to

interact with double-helical DNA causing site-specific double-stranded

cleavage [20,76]. The observed cleavage occurs predominantly at TCCT, TTTT

and CTCT sequences [76] and results from the unique positioning of the drug

in the minor groove of DNA [77,78]. However, CAL 711 appears to interact

with DNA by recognition of local DNA conformation or flexibility [79,80]

rather than a direct reading of these DNA sequences. This conclusion is based

in part on the number of different sequences damaged by CAL •1l [79,81,82]

and the dependence of the damage frequency on the flanking sequences [81] or

the intrinsic flexibility of the recognition site [80].

CAL y11 contains several unusual structural features, including a

glycosylated hydroxylamino sugar, an enediyne moiety and a labile

methyltrisulfide group. Reduction of the methyltrisulfide by thiols leads to a

Bergmann-type rearrangement of the enediyne moiety to a nondiffusible 1,4-

dehydrobenzene diradical species which initiates oxidative strand scission by

hydrogen abstraction from deoxyribose [15,83]. The resulting sugar radicals

then proceed to interact with molecular oxygen to undergo position-specific

degradation reactions resulting in abasic sites or strand breaks.

Single molecules of CAL yj1 have been shown to produce predomi-

nantly double-stranded lesions [20], with the typical three base pair staggering

of the damage in a 3'-direction indicative of minor groove binding [15,81,84].

Moreover, isotope transfer studies, hydroxyl radical footprinting and the

NMR solution structure of the CAL y1
1/DNA complex all suggest that the

drug binds to target sequences with its carbohydrate tail extending toward the



5'-end of the purine strand of its recognition sequences [69,76-78,85]. The tail,

which appears to adopt a right-handed screw which complements that of the

minor groove [86], has been demonstrated to be responsible for the sequence-

selectivity of the drug and is a major contributor to its binding energetics [86-

88].
Calicheamicin 011 (CAL 01), (see Figure 2.1 for structure) a synthetic

analogue of CAL y11, was designed to differ only with respect to its triggering

device [89]. Whereas CAL y1l has a methyltrisulfide trigger which is activated

by thiols such as GSH, CAL 611 has a thioacetyl group that undergoes

hydrolysis under mildly basic conditions. Once activated, CAL Oil has been

shown to yield high levels of double-stranded breaks with the same sequence

selectivity and damage chemistry observed with CAL y11 as I demonstrate

here. The recognition and cleavage of TCCT, TTTT, and CTCT sites of helical

DNA by CAL 01i is also attributed to its oligosaccharide tail which is identical

to that of CAL y1I. As previously discussed, the carbohydrate tail has been

shown to contribute to the selective binding to these sequences in the parent

compound [90]. Moreover, the potency of CAL O11 as a DNA cleaving agent in

neutral or basic media was shown by Nicolaou et. al. to be further potentiated

by thiols as expected from the higher nucleophilicity of sulfur nucleophiles as

compared to oxygen-centered nucleophiles.

Surprisingly, there was an increased cytotoxicity associated with

CAL 801 compared to CAL ylI (up to 1000-fold) in certain cell lines [89]. There

are several possible hypotheses which may account for this phenomenon:

(1) CAL 011 is more efficient at producing DNA damage than CAL y11 in these

cell lines; (2) CAL O1i targets different regions of the genome than CAL yl' in

the cell lines; (3) CAL O81 targets other as yet undetermined cellular targets

(i.e. RNA, proteins, lipids, or carbohydrates). However, based on the



observation that nearly 103 molecules of the drug is needed to kill a cell, (Xu,

unpublished results) it is unlikely that any species of RNA, protein, lipid or

carbohydrate can be the predominant cytotoxic cellular target. Likewise, CAL

'11 would have to show greater selectivity for critical gene loci than CAL 711

for the second hypothesis to be true. Thus, it more likely that the different

triggering moieties contribute greatly to the different potencies in producing

DNA damage at the genomic level, thereby making CAL O11 a more efficient

cell killing molecule than CAL 711. Ongoing research in our laboratory

designed to test these hypotheses is currently underway.

As shown here, CAL 011 and CAL 711 produce damage at the same

sequences. However, the identity of the deoxyribose fragmentation products

formed by these drugs has not been clearly defined. The goal of this research is

to compare the deoxyribose fragmentation products formed by CAL 011 to

those previously characterized for CAL 711. The unique activation of CAL 01',

which unlike CAL yIr does not require thiols, provides an opportunity to

determine the effect thiols on product formation. Furthermore, through

comparisons of the C4'-chemistries of CAL '11 versus CAL yl1 new insights

into the effects of thiols on the partitioning of the damage between the 4'-

keto-l'-aldehyde abasic site and strand breaks consisting of 3'-PG and 5'-

phosphate ends will be obtained.



Material and Methods

Chemicals. Calicheamicin 711 was kindly provided by Dr. G. Ellestad,

Wyeth-Ayerst Research; calicheamicin 011 was provided by Dr. K. C.

Nicolaou, Scripps Research Institute. Restriction enzymes HindIII and PvuII

in addition to pUC19 were purchased from New England Biolabs and Gibco-

BRL, respectively. Calf intestine alkaline phosphatase and G-25/G-50

sephadex columns were obtained from Boehringer Mannheim.

Complementary oligonucleotides (20-mer) CAL3 and CAL4 were synthesized

by Genosys. Putrescine dihydrochloride, hydrazine, GSH, y-glutamyl-glycine

(Glu-Gly) and TEMED were obtained from Sigma. Acrylamide/bisacrylamide

(19:1) solutions were purchased from American Bioanalytical.

5'- [32P] end-labeling and annealing of oligonucleotides. Aliquots

(3 gg) of the single-stranded 20-mer CAL4 (see Figure 2.2 for structure), were

labeled with [32p] at the 5'-end by incubation with 150 jgCi [y 32P ]ATP and 10

units T4 kinase for 1 hr. at 370 C (61). The reaction was stopped by addition of

EDTA (final concentration of 50 gpM) and removal of unincorporated

nucleotides on a G-25 sephadex column. Finally, a 3-fold excess of the

complementary oligonucleotide CAL3 (see Figure 2.2 for structure) was added

to the 5'-end labeled DNA, boiled for 3 min, and slowly cooled to room

temperature for several hours. The double-stranded oligonucleotide was

ethanol precipitated and resuspended in either 50 mM sodium phosphate, pH

7.4 or HEPES buffer (50 mM HEPES, 1 mM EDTA, pH 7.0).

5' -[32p] end-labeling of HindIII digested pUC19. The plasmid was

uniquely labeled with [32p] at the 5'-end of the HindIII cleavage site by

successive application of alkaline phosphates, T4 kinase and [y 32P ]ATP [61].

The plasmid DNA was then run over a G-50 sephadex column and digested

with PvuII to generate a 143 bp fragment, which was subsequently purified



from the larger 185 bp fragment on a non-denaturing 12% polyacrylamide gel.

The fragment of interest was then excised from the gel and the DNA was

eluted by the crush-and-soak method. DNA was then purified by ethanol

precipitation and resuspended in HEPES buffer.

Preparation of Maxam-Gilbert chemical sequencing standards. Maxam-

Gilbert chemical sequencing standards of the 143 bp HindIII/PvuII fragment

and 20-mer oligonucleotide were prepared and used in these experiments to

serve as markers of 3'-phosphate ended deoxyribose fragmentation products

[62]. The 5'-end labeled DNA substrates (-5 x 105 cpm) were reacted in the

presence of 30 Cgg/mL sonicated calf thymus DNA (CT DNA) with either 1.0%

(v/v) formic acid (purine-specific reaction) or 25 mM Hydrazine (pyrimidine

specific-reaction). Following these reactions, the DNA was cleaved at the

damage sites by incubating at 90 'C with 100 mM piperidine. The samples

were then lyophilized and resuspended in double deionized water thrice and

finally resuspended in sequencing gel loading buffer (0.05% bromophenol

blue, 0.05% xylene cyannol 20 mM EDTA in 95% (v/v) deionized formamide).

Treatment of 20-mer with CAL yi1 and CAL 011. Initially, DNA stock

solutions consisting of 5'-[ 32 P] end-labeled 20-mer (CAL4), 30 gg/mL CT DNA

and 5 mM GSH or 5 mM Glu-Gly in either phosphate buffer or HEPES buffer.

The reactions were initiated by adding (2-6 gL) aliquots of CAL Y1' and CAL 811

dilutions to portions of the DNA stock (final volume = 100 jgL) and reacting at

37 'C for 1 hr. After the incubation, the reaction mixture containing the

damaged 5'-end labeled oligonucleotide was split into thirds. The portions of

the CAL y•1 and CAL 01 treated samples were either kept on ice for 1 hr. as a

control, treated with 100 mM putrescine dihyrochloride for 1 hr. at 37 'C to

cleave all drug induced abasic sites to phosphate-ended fragments, or treated

with 100 mM hydrazine (pH 7) for 1 hr. at ambient temperature to convert the



4'-keto 1'-aldehyde abasic site to 3'-phosphopyridazine-ended strand breaks.

Treatment of HindIIIIPvuII fragment with CAL 71I and CAL '11. DNA

damage reactions of the end-labeled HindIII/PvuII fragment were initiated by

adding aliquots (2-6 gL) of calicheamicin stock solutions in methanol to

mixtures containing 30 •gg/mL CT DNA and 5 mM GSH and/or 5 mM Glu-

Gly in HEPES buffer (final volume = 100 QL). The reactions were allowed to

proceed for 1 hr. at 37 'C. Following treatments with CAL 11y and CAL 01I , the

5'-[32P] end-labeled fragment was reacted with 100 mM putrescine and 100

mM hydrazine as described for the 20-mer.

Sequencing gel and phosphorimager analysis. The CAL yTi and

CAL 011 treated samples were ethanol precipitated to desalt samples in

preparation for resolution of damage chemistries on either 30 cm x 40 cm (20-

mer) or 30 cm x 60 cm (143 bp fragment) 20% polyacrylamide gels containing

8.3 M Urea. Prior to loading on gels, 2.5 x 104 cpm aliquots of the samples were

lyophilized, resuspended in 3 jgL sequencing gel loading buffer, boiled for

3 min, and chilled on ice for 3 min. Electrophoresis of the samples was then

performed at 60 watts for 12-15 hr. (30x40 cm gels) or at 75 watts for 18-20 hr.

(in 30x60 cm gels). The gels were then fixed in sequencing gel fixing solution

(10% acetic acid, 10% methanol), dried under vacuum and exposed to a

phosphor screen for a minimum of 16 hr. The image was scanned using a

Phosphorimager (Molecular Dynamics) and analysis was performed using

ImageQuant software.



Results

Effect of buffer on the distribution of CAL ylI-mediated C4'-

chemistry. The annealed 5'-[32P] end-labeled 20-mer (CAL34) was treated

with CAL ylI (1 mM) in the presence of HEPES buffer (pH 7.5) or 50 mM

phosphate buffer (pH 7.5) at 37 'C for 1 hr. The purpose of this experiment was

to determine the effect of these two buffers on the distribution of the C4'-

chemistry induced by the drug. There was increased damage at the

recognition sequence in the presence of HEPES buffer compared to phosphate

buffer (see Figure 2.3). However, the level of damage appears to be greater in

the secondary recognition sequence (data not shown). The resolution of 3'-PG

from the 3'-phosphate ended fragment was not complete in this experiment,

but subsequent PhosphorImager analysis of the gel revealed that there was an

identical relative formation of the product in the presence of either HEPES or

phosphate buffers. Moreover, the appearance of the expected 3'-phospho-

pyridazine band following treatment with hydrazine confirms the existence

of C4'-chemistry in the presence of both buffers.

Different relative levels of 3'-phosphoglycolate and 3'-phosphate

ended fragments are produced by CAL y1' and CAL 01'. The 5'-[ 32p] end-

labeled 20-mer was used in these experiments and treated with a range of CAL

yi' concentrations (0-1 gM) and 10 gM CAL 011 in the presence of 10 mM GSH

and 10 mM Glu-Gly, respectively. The pH of the GSH and Glu-Gly solutions

were determined to be -7.5. The samples also contained 30 gg/mL CT DNA

and were incubated at 37 °C for 1 hr. (CAL y1I treatment) and 48 hr (CAL 011

treatment) in 50 mM phosphate buffer, pH 8.5 . As seen in Figure 2.4, a dose

response was observed over the 0-1 pM range of CAL ,1 and the amount of

CAL 011 required to cause the cause the same level of damage as the 1 gM

CAL j11 treatment was -10-fold greater.



Whereas the ratio of 3'-PG/3'-phosphate appears to be -1.0 in the

CAL y11-treated samples, the ratio is > 4.0 in the CAL 011-damaged lanes. It is

possible that this increased production of 3'-PG in CAL 01 -mediated damage

may be related to it increased cytotoxicity in certain cell lines [89]. Further-

more, there was no evidence for the 3'-phosphopyridazine fragment in either

the CAL '11 or CAL 011 treatments (see Figure 2.4). This may be the result of

hydrolysis of the 3'-phosphopyridazine or modification of the 4'-keto-l'-

aldehyde abasic prior to treatment with hydrazine due to the fact that the pH

of the buffer was raised to 8.5 in this experiment to ensure activation of

CAL 01.

Increased damage is observed when longer sequences of DNA are

treated with both CAL y71 and CAL 01'. Because of the high concentration

of CAL 011 and the long incubation times that were required to observe the

damage using the CAL34 oligomer, I decided to use the 143 bp HindIII/PvuII

pUC19 as a DNA substrate to compare the damage chemistries-induced by

CAL 711 and CAL 01I . Preliminary results in our laboratory have suggested

that CAL y11 may find its recognition sequences by "tracking" along DNA

sequences (Dedon, unpublished results). Furthermore, the length of the DNA

sequence is postulated to have an effect on the amount of DNA that the drug

produces. Comparisons of the levels of CAL 711 and CAL 01
1-mediated damage

observed with the 20-mer CAL34 and the 143 bp HindIII/PvuII fragment may

provide evidence in support of this hypothesis.

The 5'-[32p] end-labeled HindIII/PvuII fragment was treated with 0.4 gM

CAL 711 or 2 gM CAL 011 in 50 mM HEPES, 1 mM EDTA, pH 7.0, containing 30

gg/mL CT DNA and incubated at 37 °C for 1 hr. Following these treatments,

the DNA was treated with putrescine and hydrazine as previously described.

In this experiment, the resolution of the 3'-PG ended fragment



(from the 3'-phosphate ended fragment) in the CAL ylI-treated lane was not

complete (see Figure 2.5). Treatment of the CAL yll-damaged DNA with

hydrazine led to the expected 3'-phosphopyridazine product which is

indicative of the presence of the 4'-keto-l'- aldehyde abasic site.

Apparently there was no reaction in the CAL 01
1-treated lane which

may be due to the neutral pH of the buffer. However, there was evidence for

the formation of both 3'-phosphate and 3'-phosphopyridazine in the CAL 01'-

treated samples following reaction with hydrazine. This suggests that the

drug was inactive during the initial 1 hr incubation and that the addition of

hydrazine activated CAL 011. Additionally, the drug was able to produce

damage products (at the same sequences as CAL 71y) consisting of both

3'-phosphate (possibly 3'-PG) and 4'-keto-l'- aldehyde abasic sites.

Apparent activation of CAL '01 by hydrazine. The experiment

described above with the HindIII/PvuII was repeated with the following

modifications in the experimental design. In order to determine the effects of

GSH activation on the chemistries observed with CAL yjr and CAL 011, three

sets of reactions were performed. The three sets were treated with 0.4 gM CAL

y11 and 1 gM CAL 611 in the presence of either: (1) 5 mM GSH, (2) 5 mM Glu-

Gly or (3) 2.5 mM GSH/2.5 mM Glu-Gly.

5 mM GSH reactions: The primary recognition sequence ( 5'-TCCT-3')

is damaged in the unmodified CAL y11 treated lane (prior to putrescine and

hydrazine treatments). The expected products indicative of C4'-hydrogen

abstraction were observed after treatment with putrescine and hydrazine (see

Figure 2.6). There was no damage in the unmodified CAL 01
1-treated samples.

However, the putrescine- and hydrazine-treated samples had substantial

damage at the primary recognition sequence.

5 mM Glu-Gly reactions: As expected, treatment with CAL y•1 resulted



in no damage in the primary sequence (or any secondary sequences) prior to

or after reactions with putrescine and hydrazine. This result confirms that

Glu-Gly is acting merely as an ionic strength control and does not play a role

in activation of the drug. Also there was there was a substantial level of

damage in the unmodified CAL 01I-treated samples. Minimal damage was

observed following the reaction with putrescine and following treatment

with hydrazine there was evidence for the 4'-keto-l'-aldehyde (see Figure 2.6).

This result suggests that both of these amines are able to activate CAL 011.

Unlike CAL •1I, which requires thiol activation, CAL 01I is probably a more

cytotoxic compound in vivo due to the multitude of compounds (including

hydroxide ion) which can facilitate its activation.

2.5 mM GSH/2.5 mM Glu-Gly reaction: Following treatment with

CAL •1I, there is evidence for C4'-chemistry in the unmodified DNA and in

the putrescine- and hydrazine-treated DNA. The presence of GSH (which

activates the drug) is responsible for the appearance of the C4'-damage

products (see Figure 2.6). There was no damage in the unmodified CAL O1I-

treated DNA and there was minimal damage in the putrescine-treated

samples. However, there were substantially greater levels of damage in the

hydrazine-treated samples. The fact that the buffer is at pH 7.0 is most likely

responsible for the lack of damage in the unmodified CAL 01i treatments.



Discussion

Calicheamicin y•1, an enediyne anti-tumor antibiotic, has been studied

extensively in vitro and has been shown to produce predominantly double-

stranded breaks in duplex DNA upon incubation with thiols [20]. Recently, a

structurally related analogue (CAL 011) was synthesized [89] which, unlike the

naturally occurring compound (CAL 711), can be activated by hydrolysis in

alkaline solutions. In this thesis, the deoxyribose fragmentation products

resulting from C4'-hydrogen abstraction by these two compounds were

characterized using gel mobility shift assays. In particular, comparisons of the

levels of 3'-PG formed by these compounds were made in an effort to relate

the formation of this lesion to the genotoxicity of these damaging agents.

Additionally, the effects of factors such as buffer composition, pH, length of

DNA, and the presence of GSH were addressed.

As shown in Figure 2.3, there was identical production of 3'-PG in both

the HEPES and phosphate buffers. However, there was -25% more total

damage in the HEPES buffer. The relative formation of 3'-PG following

treatments with putrescine and hydrazine could not be determined in this

experiment, because the DNA was not purified prior to these reactions.

Moreover, as demonstrated here, these amines are able to activate CAL 011

and could alter levels of 3'-PG and 3'-phosphate produced by the drug.

Putrescine is known to express abasic sites as strand breaks with

3'-phosphate-ended fragments [20]. The results of this experiment suggest that

either putrescine is much more efficient at expressing abasic sites as strand

breaks in HEPES buffer, or that the levels of abasic site formation are greater

in the presence of HEPES buffer. The observed increase in total damage in the

presence of HEPES may provide support for the latter possibility. However,

from this experiment there is no evidence that would distinguish between



these two possibilities.

Treatment of the 20-mer CAL34 with a range of CAL y11 concentrations

(0-1 IM) and 10 gM CAL O11 in 50 mM phosphate buffer revealed that the

levels of 3'-PG was substantially greater with CAL 011 than with CAL yl• (see

Figure 2.4). Over the range of CAL y'1 concentrations used, the percent 3'-PG

as a fraction of the total damage increased from -30% to -50%. However, the

percent of 3'-PG in the 10 giM CAL 01I-treatment was >80%. This apparent

increased formation of 3'-PG in the CAL 01I-treated samples may explain the

increased cytotoxicity of CAL O11 as compared to CAL •yl in certain cell lines

[89]. Comparisons with equal concentrations of CAL 711 need to be made to

determine whether or not the increased formation of 3'-PG observed in the

CAL 01I-treated samples is dose dependent. Moreover, the fact that the CAL

01I-treated sample was incubated for 48 hr. (versus 1 hr for CAL yI-treated

samples) may have contributed to the differences described above. Finally,

reactions of both the CAL y•I- and CAL 01
1-treated samples with hydrazine did

not result in the formation of the expected 3'-phosphopyridazine which is

indicative of the presence of the 4'-keto-l'-aldehyde abasic site. The fact that

the pH was 8.5 in these reactions may have led to a hydrolysis of this abasic

site and hence a reduction in the 3'-phosphopyridazine product.

Because of the high concentration of CAL 1Oi and the long incubation

times that were required to see the damage using the CAL34 oligomer, I

decided to use the 143 bp HindIII/PvuII pUC19 as a DNA substrate to compare

the damage chemistries induced by CAL 711 and CAL 011. The 5'-]32p] end-

labeled fragment was treated with 0.4 jgM CAL 711 and 2 jiM CAL 1Ol (see

Figure 2.5). The 0.4 gM CAL yI, reaction resulted in a 57% production of 3'-PG

which is identical to that observed in the 0.3 gM CAL ylI-treated 20-mer.

There was no damage in the sample which was treated with 2.0 jgM CAL 01 .



However, upon treatment with hydrazine, there was evidence for the 3'-

phosphate-ended fragment and the 3'-phosphopyridazine. This suggests that

the drug is activated by putrescine. To further assess the role of both GSH and

hydrazine on the C4'-chemistries observed with CAL y11 and CAL 01, the

experiment was repeated with additional controls as described in the Results

section.

As shown in Figure 2.6, there was no damage in the 2 gM CAL 01'-

treated sample in the presence of GSH or both GSH and Glu-Gly. However,

treatment with Glu-Gly resulted in the formation of putative 3'-PG.

Subsequent reactions with hydrazine led to a product that migrated as

expected for the 3'-phosphopyridazine. There was no reaction in the CAL Y1I-

treated samples in the presence of Glu-Gly as expected since thiol activation is

required. This result confirms that Gly-Gly serves merely as an ionic strength

control in these reactions and does not participate in the activation of the

drug.

In conclusion, it appears as if the presence of GSH in the CAL Oi'-

treated samples causes a reduction in the formation of 3'-PG. This is evident

because putative 3'-phosphate and 3'-PG ended fragments were only seen in

the unmodified CAL 011 treated samples in the presence of Glu-Gly. As

mentioned in the Results section, the pH of the GSH and Glu-Gly solutions

were both at 7.5, therefore pH variations in these solutions cannot explain the

observed results. Further study is required to definitively determine the role

that GSH plays in the C4'-chemistry mediated by CAL 01 .



Figure 2.1. Structrure, activation, and DNA damage produced by Esperamicin A 1 and
Calicheamicins y', and 01I
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5'-GCTGATGATCCTAGACTGCC-3'
CAL3

5'-GGCAGTCTAGGATCATCAGC-3'
CAL4

Figure 2.2. Sequences of 20-mer oligonucleotides CAL3 and CAL4



0 (HEPES) 1 (HEPES) 0 (PHOS) 1 (PHOS) juM CAL(Buffer)

AG CT C P H C P H C P H C P H

Figure 2.3. Effect of buffer composition on the distribution of CAL y1' mediated C4'-chemistry.

The 5'-[32P] end labeled 20-mer (CAL34) was reacted with 1 mM CAL y7' in the presence of HEPES

and phosphate buffer.The oxidized DNA was subsequently left untreated (C), reacted with
putrescine (P) or hydrazine(H) in order to compare the chemistries at the 3' end (against
3'-phosphate-ended Maxam-Gilbert sequencing standards indicated as AG and CT).

__ · I·



CAL y (gM)

C H G GH 0.1 0.1H 0.3 0.3H 1 1H GG GGH 10 10H

Figure 2.4. Comparison of the C4'-chemistries induced by CAL y I and CAL 01I.The 5'-[32 P]-end
labeled 20-mer CAL34) was treated with a range of CAL y1' doses (0-1 iM) and 10 gM CALO' I.

Following oxidation of the oligomer, the samples were either left untreated (C) or reacted with
hydrazine (H) to form the 3'-phosphopyridazine of the 4'-keto 1'-aldehyde abasic site. The GSH (G)
and Glu-Gly (GG) controls were also reacted with hydradine. The Maxam-Gilbert sequencing
standards (AG and CT) served as controls of 3'-phosphate-ended fragmentation products.

AG CT

I IL I _ · ·

CAL 0 (gM)



CAL 0 (2gtM)

AG GG C H G C H CT

Figure 2.5. Treatment of the HindIII/PvuII pUC19 fragment with CAL yI and CAL 011. The 5' 32p
end-labeled fragment was reacted with 0.4 mM CAL yj and 2 mM CAL O1j. Following oxidation of
the DNA, the samples were either left untreated (C) or reacted with hydrazine (H) to form the 3'-
phosphopyridizine of the 4'-keto 1'-aldehyde abasic site. GSH (G) and Glu-Gly (GG) were added to
the DNA (without drug) and run on the gel to serve as a controls of background damage. The
Maxam-Gilbert sequencing standards (AG and CT) served as controls of 3'-phosphate-ended
fragmentation products.

CT AG
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CAL y (0.4 gM)



GSH (5gM) Glu-Gly (5 gM)

AC
-- G 0Op OH ' yP yH GT GG0 OP OH • yP yH

0

2.5 (uM) Glu-Gly
2.5 (gM) GSH

cQG A
TG 0 P OH YyP yH G

'I

Figure 2.6. Apparent activation of CAL 01
1by hydrazine and putrescine.The 5' 32P end labeled

Hind III/PvuII pUC19 fragment was treated with CAL 011 in three sets of reactions: (1) with GSH (G)
(2) with Glu-Gly (GG) and (3) with both GSH and Glu-Gly. After these reactions, the samples were
treated with putrescine and hydrazine as previously described. Lanes AG and CT correspond to
Maxam-Gilbert sequencing standards which serve as controls for 3'-phosphate-ended fragmentation.



Chapter III.
Quantitation of 8-Oxoguanine and Strand Breaks

Produced by Four Oxidizing Agents



Introduction

DNA damage resulting from exposure to reactive oxygen species plays

a role in a variety of biological processes such as mutagenesis, aging and

carcinogenesis [3,4]. Reactive oxygen species arise in normal cellular processes

such as metabolism and inflammation, and are generated during exposure to

environmental chemicals, y-radiation and transition metals [1,3,91,92]. The

variety of chemistries associated with different oxidants suggests that each

will produce a unique spectrum of DNA lesions consisting of single and

double strand breaks, modified bases, abasic sites, and DNA-protein cross-

links [93]. As part of an effort to relate genotoxin chemistry to DNA damage,

this study was undertaken to define the relative quantities of two different

DNA lesions, strand breaks and 8-oxoguanine (8-oxoG), produced by four

oxidizing agents: peroxynitrite, Cu(II)/H 20 2, Fe(II)-EDTA/H 20 2, and

y-radiation.

Each of these oxidants produces DNA damage by a different

mechanism. Peroxynitrite and its conjugate acid, peroxynitrous acid

(ONOOH), are highly reactive at physiological pH and are capable of oxidizing

a variety of biomolecules, including thiols, DNA and lipids [51]. Peroxynitrite

and SIN-1, a compound that simultaneously generates nitric oxide and

superoxide [94], both produce 8-oxoG [94,95] and strand breaks in DNA [40,94],

and it is possible that the formation of 8-oxoG in activated macrophages

relates to production of peroxynitrite [96]. However, peroxynitrite appears to

have a different reactivity than the hydroxyl radical [51], which may be

evident in the spectrum of DNA damage products that it produces.

Copper (Cu) is a biologically important metal that appears to play a role

in organization of the nuclear matrix [97]. In the presence of hydrogen

peroxide, copper(II) has been proposed to generate hydroxyl radical-like



species through the Fenton-type reactions [98,99]:

Cu(II) + H 20 2 -+ Cu(I) + H 20 + H +

Cu(I) + H 20 2 - Cu(II) + OH- + "OH

The preferential binding of both Cu(I) and Cu(II) to the N7 of guanine may

account for the high level of 8-oxoG produced by Cu and hydrogen peroxide

[100-102] and for the occurrence of Cu-mediated damage [13,103] and mutation

at runs of guanine [104,105]. This binding mode may also affect the relative

proportions of strand breaks and 8-oxoG produced by Cu.

Iron (Fe) is another physiologically important metal that has been

proposed to act as a catalyst for the formation of hydroxyl radical from

hydrogen peroxide by the Fenton reaction [106]:

Fe 2+ + H 20 2 -- Fe3+ + OHff + OH

Of particular interest is the EDTA complex of Fe(II) that, in the presence of

hydrogen peroxide, has been shown to generate a hydroxyl radical-like species

[107,108]. Unlike free Cu and Fe, the negative charge of the Fe(II)-EDTA

complex likely prevents it from binding to DNA phosphates or bases [108,109].

The resulting hydroxyl radical-like species may exist in the fluid phase, which

could account for the lack of base sequence-selectivity of strand breaks

generated by the complex [108,109]. In this respect, Fe(II)-EDTA may be similar

to y-radiation in its DNA damage spectrum.

In addition to a minor contribution from direct interaction with DNA,

y-radiation reacts with water to produce hydroxyl radicals and hydrogen

atoms by homolytic fission of oxygen-hydrogen bonds and to produce

hydrated electrons [29]. As with Fe(II)-EDTA, y-radiation-induced hydroxyl

radical can react with both deoxyribose and bases in DNA to produce damage

that includes strand breaks [110,111] and 8-oxoG [112].

While these four agents all produce strand breaks and 8-oxoG, they do



so by different mechanisms and in different locations in DNA. Even the final

common damage products can arise by different mechanisms. This is most

evident with oxidation of deoxyribose, which can result in both direct strand

breaks and oxidized abasic sites. For example, y-radiation and the antibiotics

neocarzinostatin and bleomycin all produce radicals that can abstract a

hydrogen atom from the C4'-position of deoxyribose [12,15,29,93]. The

resulting C4'-radical can undergo further reactions to form either a strand

break with a 3'-phosphoglycolate residue or a 4'-keto-l'-aldehyde abasic site

that leaves the sugar-phosphate backbone intact [12,15,29,93]. However,

formation of the ketoaldehyde abasic site is oxygen-independent with

bleomycin [12] and oxygen-dependent with neocarzinostatin and y-radiation

[15,29]. Identical products can thus arise by different mechanisms depending

on the chemistry of the oxidizing agent.

With regard to base damage, our studies focus on 8-oxoG, which was

identified in 1984 by Kasai and Nishimura [113]. The development of a

sensitive analytical technique involving HPLC with electrochemical detection

[114] has made 8-oxoG an attractive marker for monitoring DNA damage in

studies with various oxidizing agents [115]. The role of 8-oxoG in

mutagenesis and carcinogenesis has been widely investigated [116] and many

studies have shown a correlation between the formation of 8-oxoG and

carcinogenesis [117]. Oxygen radicals appear to mediate the formation of 8-

oxoG in DNA through a reaction involving the addition of hydroxyl radical

to the C-8 of guanine [117]. This is followed by the subsequent loss of a

hydrogen atom, or by a one-electron oxidation of the C-8 position and

subsequent addition of water [116], which may again depend on the chemistry

of the oxidizing agent.

In an effort to understand the relationship between the reactivity of a



genotoxin and the DNA damage it produces, strand breaks and 8-oxoG for

peroxynitrite, Cu(II)/H 20 2, Fe(II)-EDTA/H 20 2, and y-radiation were

quantified at exposure levels approaching physiological relevance. We found

that the ratio of 8-oxoG to strand breaks was not the same for different oxygen

radical generating systems, and the relevant proportions of 8-oxoG and strand

breaks varied as a function of concentration for certain oxidizing agents.

These results are discussed in light of other investigations of oxidative DNA

damage spectra and the current models for the mechanism of action of the

four oxidizing agents.



Material and Methods

Chemicals. 2-Amino-6.8- dihydroxypurine (8-oxoG) was obtained from

Chemical Dynamics Corp. Plasmid pUC19 (2686 base pairs) was obtained from

New England Biolabs. Cyanogen bromide-activated Sepharose 4B, N2-methyl

guanosine, diethylaminetriaminepentaacetic acid (DETAPAC), phosphate

buffered saline (PBS), and putrescine were purchased from Sigma Chemical

Co. Cupric chloride, ethylenediaminetetraacetic acid (EDTA), potassium

phosphate (mono and dibasic), agarose, and acetonitrile were obtained from

Malinckrodt, hydrogen peroxide (30%) and ammonium acetate were

purchased from Fisher Scientific. Dimethyl Sulfoxide (DMSO) and 98%

formic acid were obtained from EM Science. Chelex 100 Resin and Poly-prep

columns were purchased from BioRad Laboratories. SpectraPor 7 membranes

with a MWCO of 1000 were obtained from spectrum. [y-32P]ATP

(150 mCi/mL) was obtained from Amersham. [3H]8-oxoG was generously

provided by Dr. William Boadi (Division of Toxicology, Massachusetts

Institute of Technology). Plasmid Giga prep purification kits were purchased

from Qiagen.

Preparation and purification of pUC19 plasmid DNA. Cultures of

DH5(a Escherichia coli cells were transformed with pUC19 plasmid and plated

on LB agar plates containing 50 gg/mL ampicillin. Colonies were then

isolated from the plates and grown to late log phase in standard LB medium

containing 100 gg/mL ampicillin [61]. Plasmid DNA was isolated using the

Qiagen Giga Plasmid/Cosmid Purification kit according to protocols

established by the manufacturer. After washing the DNA pellet with 80%

ethanol, the solvent was lyophilized and the plasmid DNA was dissolved in

50 mM potassium phosphate, pH 7.4 (treated with Chelex 100 resin).

The plasmid DNA was then dialyzed against 50 mM potassium



phosphate containing 1 mM DETAPAC for 12 hr at 4 0C to remove trace

metals and then against 50 mM potassium phosphate for an additional 12 hr.

at 4 oC. The concentration of the dialyzed plasmid was then determine by a

Hoechst dye assay using a Sequoia-Turner Model 450 fluorometer. To

minimize nicking of the plasmid it was stored in 200-gjg aliquots at -80 o C.

Synthesis of Peroxynitrite. A low ionic strength, high pH solution of

peroxynitrite anion (ONOO-) was synthesized using the ozonolysis of sodium

azide method described by Pryor et. al. [108]. The synthesis was achieved using

a Welsbach ozonator set at an oxygen pressure of 7 psi, a voltage of 60 V and

an ozone pressure ranging between 1.5-2.0 psi. A gas stream from the

ozonator was bubbled through a glass-frit into 100 mL of a 100 mM sodium

azide solution in deionized H20 (the pH was previously adjusted to 12 with

1 N NaOH) chilled to 0-4 oC in ice water for 90 min.

To optimize the yield of ONOO-, aliquots (300 giL) of the ozonated azide

solution were removed every 10 min and the concentration of ONOO- in

these fractions was determined spectrophotometrically (see Figure 3.1) in

0.1 N NaOH by measuring the absorbance at 302 nm using an extinction

coefficient of 1670 M 1 cm-1 [118]. The peroxynitrite was further characterized

for its ability to cause the nitration of L-tyrosine using a method described by

Beckman et. al. [119] as modified by Pryor et. al. [120].

Oxidation of pUC19 Plasmid DNA. y-Radiation, Fe(II)-EDTA,

peroxynitrite and Cu/H 20 2 treatment of plasmid was performed under single-

hit conditions in which each DNA molecule received less that or equal to one

damage event per reaction. This level of damage was chosen to insure the

physiological relevance of the study and reliability of strand break

quantitation assay. For each oxidizing agent, the plasmid concentration was

30 gg/mL in Chelex 100 treated 50 mM potassium phosphate, pH 7.4, and all



reactions were done at ambient temperature for 30 min. The ferrous

ammonium sulfate, cupric chloride, EDTA and hydrogen peroxide solutions

were prepared immediately prior to each treatment.

Reactions with Fe(II)-EDTA were performed at Fe(II) concentrations of

0, 0.5, 1.0, 1.5, 2.0, 2.5, 5, and 10 gM (Fe(II) solutions were prepared deionized

H 20 with a 2-fold molar excess of EDTA and 1 mM H20 2 (prepared in Chelex

100 treated phosphate buffer) for each treatment. Control studies revealed that

the damage reaction was complete at the end of the 30 min incubation and

that there was no further damage during the subsequent dialysis for 8-oxoG

analysis (vide infra; data not shown). Reactions with Cu(II) were performed at

CuC12 concentrations of 0, 5 7.5, 10, 12.5, 15, 20, 25 and 30 jgM ( prepared in

deionized H20) with 1 mM H20 2. The reaction was stopped by adding EDTA

to a final concentration of 1 mM EDTA. Previous studies have revealed that

EDTA abolishes Cu(II)/H 20 2 induced oxidative damage [121]. The

peroxynitrite reactions were performed at concentrations of 0, 0.25, 0.5, 1.0, 5,

10, 15, 20, 25 and 50 mM. Peroxynitrite has a half-life of -1 sec at pH 7.4 and

the nitrate rearrangement products have been shown to be unreactive [50].

Lastly, the plasmid was also reacted with y-radiation at 0. 0.125, 0.375, 0.5, 1, 5,

and 10 Gy exposures using a 60Co y source at a dose rate of 4 Gy/min. The

radiation experiments were performed in either air- or N20-saturated

phosphate buffer.

Preparation of random primer probe. A [32p] labeled random primer

probe using a modified version of the technique described by Feinberg et al.

[122]. Initially, 50 ng of Dde I-digested pUC19 and 1.25 units of a random

hexamer primer in a total volume of 3 pgL were boiled for 3 minutes and

immediately placed on ice. To this reaction mixture was added 10 gg BSA,

10 jiL of 2.5x reaction buffer (50 jiM dCTP, 50 jgM dGTP, 50 gM dTTP, 50 jim



P-mercaptoethanol, 12.5 mM MgCl 2 , 125 mM Tris, 500 mM HEPES pH 6.6),

100 gCi [o-_ 3 2P] dATP and 5 units Klenow fragment in a total volume of 25 igL

and the solution was incubated at 37 'C. After the incubation period, the

reaction was stopped by adding EDTA to a final concentration of 10 mM and

the Klenow fragment was inactivated by heating at 68 'C for 1 min. The

reaction mixture was then extracted with phenol:chloroform:isoamyl alcohol

and passed over a G50-sephadex spin column to remove unincorporated

radionucleotides.

Quantitation of stand breaks. Quantitation of damage in plasmids

treated with y-Radiation, Fe(II)-EDTA, peroxynitrite and Cu(II)/H 20 2 was

accomplished using a method similar to one described previously [37]. The

method involved damaging the plasmid under single-hit conditions,

assuming a Poisson distribution, and calculating the level of damage based on

the formation of single-strand nicked plasmid (form II) from the >95%

supercoiled (form I) starting material. After treatment with y-radiation, Fe(II)-

EDTA, peroxynitrite and Cu(II)/ H20 2 , a fraction of the plasmid DNA was

treated with putrescine (100 mM, pH 7, 1 h 37 °C) to cleave abasic site and

express the damage as nicked, form II plasmid.

The damaged plasmid (300 ng) was then loaded on a 1% agarose gel

(Tris-borate-EDTA), and the plasmid topoisomers (form I and II) were

resolved at 3V/cm for 3-4 hr. The gel was then dried under vacuum and

probed with the radiolabeled pUC19 random primer probe using hybridized

techniques [61]. The plasmid topoisomers were quantified by exposing the

radiolabeled gel to a phosphor plate and subsequently analyzing the image

using the ImageQuant software on a Molecular Dynamic PhosphorImager

(see figures 3.2, 3.3 and 3.4 for resolution of damaged plasmids on 1% agarose

gels).



Quantitation of 8-oxoguanine The base damage product 8-oxoguanine

(8-oxoG) was quantitated by Laura Kennedy as described elsewhere [41].

Briefly, monoclonal antibodies specific to 8-oxoG were produced as described

previously by Ravanat et. al. [123]. These monoclonal antibodies were

subsequently coupled to CNBr-activated Sepharose 4B [124]. Immediately

prior to use in the immunoaffinity columns, the antibody-modified gel was

washed with 50% DMSO to remove any bound 8oxoG. The gel was then

washed with an equal volume of water. The binding efficiency of the

antibody-modified gel was determined to be 75-80% using [3H]8oxoG.

N2-methyl-8-oxoguanosine was then synthesized [41] to serve as an internal

control for the amount of 8-oxoG which eluted from the immunoaffinity

columns.

For subsequent analysis of 8-oxoG, the y-radiation, Fe(II)-EDTA,

peroxynitrite and Cu/H 20 2 treated DNA was dialyzed against deionized water

for 16-20 hr at 4 'C. The absence of reducing agents, the low temperature, and

the fact that the reaction were completed or stopped prior to dialysis rule out

the possibility of significant adventitious DNA damage during the dialysis.

Following dialysis, the concentration of DNA in the solution was determined

by UV at 260 nm (1 OD = 50 gg), and 50 gg was aliquotted in triplicate into

screw-cap vials. The DNA was then dried under vacuum and hydrolyzed in a

final concentration of 60% formic acid at 100 'C for 1 hr. The formic acid was

then removed by centrifugation under vacuum and the hydrolyzed DNA was

resuspended in 0.5 mL PBS, loaded on the immunoaffinity columns, and the

bound 8-oxoG was eluted with 1.0 mL of methanol. After incubation at -20 oC

for 30 min and the addition of 150 jgL of N2-methyl-8-oxoguanosine solution

(10 pg/gL), the eluent was then dried by centrifugation under vacuum in

preparation for quantification of 8-oxoG by HPLC.



HPLC System. The HPLC system consisted of a Hewlett-Packard model

1050 pump, an ESA model 5100A coulochem electrochemical detector and an

ESA model 5010 analytical cell. Separation of nucleobases was achieved using

a Supelco LC-18-DB 5gm column (25 cm x 4.6 mm) under isocratic conditions.

The mobile phase was 2% methanol in 50 mM ammonium acetate, pH 5.5,

with a flow rate of 1 mM/min.

Quantification of 8-oxoG by HPLC. Following immunopurification of

8-oxoG, the dried samples were resuspended in 50 gL of the HPLC mobile

phase. The samples were then injected onto the Supelco LC-18-DB 5gm

column, and the levels of 8-oxoguanosine were calculated by integration of

the areas under the 8-oxoG and N2-Methyl-8-oxoG peaks in the resulting

chromatograms. From a calibration curve relating known amounts of 8-oxoG

to N2-Methyl-8-oxoG, the ratio of 8-oxoG/ N2-Methyl-8-oxoG was the

converted to the number of 8-oxoG per 106 bases. The background level of 8-

oxoG was subsequently determined to be -5 residues per 106 bases. This value

was subtracted from the 8-oxoG levels induced by the oxidizing agents.



Results

y-Radiation [110-112], Fe(II)-EDTA/H 20 2 [108,109,125], Cu(II)/H 20 2

[100,126,127], and peroxynitrite [40,94] all produce strand breaks and 8-oxoG but

apparently by different mechanisms. Therefore, we used these four oxidizing

agents to compare the relative quantities of strand breaks and 8-oxoG

produced during oxidative DNA damage.

y-Radiation-induced Damage. The quantities of both 8-oxoG and strand

breaks were found to increase with increasing doses of radiation (Figure 3.5).

For all of the oxidizing agents, the formation of strand breaks was studied in

the range of "single-hit conditions" which corresponds to ~30-40 direct strand

breaks in 106 bases of pUC19 DNA according to a Poisson distribution [20].

Above this level of damage, the number of strand breaks is underestimated

because additional nicks in an already nicked plasmid cannot be detected by

topoisomer analysis. Under single-hit conditions, the increase in strand

breaks and 8-oxoG produced by y-radiation was nearly linear. However, the

amount of 8-oxoG formed was significantly less than the number of strand

breaks. The data reported are for air-saturated solutions since only slightly

higher levels of strand breaks were observed under N20, and no significant

effect was observed for 8-oxoG (data not shown).

Because oxidation of deoxyribose results in both strand breaks and

abasic sites, we sought to quantify abasic site formation by converting the

lesions to strand breaks with putrescine. This agent has been shown to cleave

virtually all types of induced abasic sites in DNA [9,20,70,128]. Interestingly,

putrescine treatment did not increase the number of apparent strand breaks

by more than 5% for radiation and the other oxidizing agents examined in

these studies (data not shown). This observation suggests that, under our

conditions, abasic sites represent a relatively small component of the total



DNA damage. Since abasic sites can also arise from loss of oxidized bases, the

small effect of putrescine treatment also indicates that putrescine did not

induce significant abasic site formation by reaction with bases lesions

produced by the four oxidizing agents.

Iron(II)-EDTA-induced Damage. As observed with y-radiation, there

was a linear increase in both strand break and 8-oxoG formation upon

treatment with Fe(II)-EDTA/H 20 2 (Figure 3.6). The relative levels of 8-oxoG

and strand breaks were similar to those observed with y-radiation, which is

consistent with a hydroxyl radical-like DNA damaging species.

Copper(II)-induced Damage. The levels of strand breaks and 8-oxoG

produced by Cu(II)/H 20 2 were different from those seen with y-radiation and

Fe(II)-EDTA/H 20 2 (Figure 3.7). Most significantly, the number of strand

breaks rose sharply between 7.5 and 12.5 mM Cu(II) while the quantity of

8-oxoG increased gradually. The different shapes of the strand break and

8-oxoG curves is consistent with the observations of Drouin et. al. in their

studies of strand breaks and base damage in isolated genomic DNA [129] and

suggests that strand breaks and 8-oxoG are produced by different mechanisms.

The levels of 8-oxoG were higher than those arising from y-radiation and

Fe(II)-EDTA, which is consistent with a site specific reaction involving copper

bound to the N7position of guanine [101,102].

Peroxynitrite-induced Damage. As shown in Figure 3.8, the levels of 8-

oxoG were higher than those observed for y-radiation and Fe(II)-EDTA,

indicating that the reactive oxygen species produced by peroxynitrite reacts

with a different selectivity than the hydroxyl radical produced by radiation or

the hydroxyl radical-like species associated with Fe(II)-EDTA. Additionally,

the shape of the strand break curve at lower concentrations of peroxynitrite

suggests that the reaction is biphasic in nature.



As mentioned earlier, there was little increase in strand breaks

following putrescine treatment of the peroxynitrite-damaged plasmid DNA.

This is important in light of the observation by Yermilov et. al. that

peroxynitrite produces higher levels of 8-nitroguanine than 8-oxoG and that

8-nitroguanine undergoes depurination with a half-life of -4 hr at 20 oC [95].

The lack of putrescine effect indicates that putrescine did not react with either

8-oxoG or 8-nitroguanine to produce strand breaks and that depurination did

not occur to any appreciable extent during DNA processing, since putrescine

would have converted the abasic sites to strand breaks.



Discussion

Oxidative DNA damage resulting from exposure to reactive oxygen

species is believed to play a significant role in mutagenesis, aging and

carcinogenesis [3,4]. In an ongoing effort to relate the chemistry of genotoxins

to the spectrum of DNA lesions they produce, we have examined the

quantities of 8-oxoG and strand breaks produced by four different oxidizing

agents. We have demonstrated that the relative levels of 8-oxoG and strand

breaks can vary by more than an order of magnitude and that they can vary

between different concentrations of a single agent as shown most dramatically

for Cu(II)/H 20 2. These results indicate the importance of understanding how

the chemistry of the oxidizing agents contributes to the different levels and

types of oxidative damage to DNA.

Both Fe(II)-EDTA/H 20 2 and y-radiation generate similar levels of 8-

oxoG and strand breaks which is consistent with the hypothesis that chemical

intermediates of similar reactivity are involved in each system. The results

are also consistent with previous studies in which the sequence specificity of

DNA damage produced by y-radiation was shown to be similar to that of

Fe(II)-EDTA [16,130]. In both cases, the majority of the DNA damage can be

attributed to a hydroxyl radical-like species generated by the reagent. It is

possible that the higher levels of strand breaks relative to 8-oxoG reflect the

different fates of the initial one electron oxidation products, the accessibility of

the Fe/EDTA complex to the DNA grooves, or, in the case of radiation, the

higher concentration of water molecules in the solution phase compared to

the grooves.

The levels of 8-oxoG relative to strand breaks were higher with Cu(II)

than with Fe(II)-EDTA or y-radiation. This difference could be due to

generation of a different DNA-damaging species or to the DNA binding



specificity of Cu(II). Preferential binding of Cu(II) to the N7 of guanine makes

the C-8 position susceptible to attack by hydroxyl radical or some other Cu-

induced oxidizing species.

Unlike the smooth rise in 8-oxoG formation, there was a sharp increase

in strand breaks between 7.5 and 12.5 mM Cu(II) (Figure 3.7). This sudden

transition was also observed with the Cu(II)/H 20 2/ascorbate system, which

indicates that it is not unique to the Cu(II)/H 20 2 reagent (data not shown). A

sharp increase in strand breaks and a more gradual increase in base lesions

was also observed by Drouin et al. in their studies of DNA lesions produced

by Cu(II)/H 20 2/ascorbate [129]. The results of both studies are consistent with

a model in which Cu-induced strand breaks and 8-oxoG are formed by

different mechanisms or DNA binding modes.

While the model that Cu-induced strand breaks and base damage occur

by different mechanisms is in contrast to the model proposed recently by

Toyokuni and Sagripanti [131], data from the two studies is in fairly good

agreement. At similar ratios of Cu to DNA, we observe a ratio of strand

breaks to 8-oxoG of -3 versus a ratio of -2 determined by Toyokuni and

Sagripanti [131]. In their studies, Toyokuni and Sagripanti held the Cu(II)

concentration constant and varied the level of H20 2 [131]. Since both base

damage and strand breaks produced by Cu have been shown to increase as a

function of increasing H20 2 concentration [129,132], their observation of a

linear relationship between strand breaks and 8-oxoG under these conditions

is consistent with the model that Drouin et al. [129] and we have proposed:

the ratio of strand breaks to 8-oxoG remains constant at one Cu concentration

with both lesions varying in parallel as a function of the H20 2 concentration.

Peroxynitrite also generated higher levels of 8-oxoG relative to strand

breaks than did Fe(II)-EDTA and y-radiation. This is consistent with a DNA-



damaging species other than hydroxyl radical such as a high energy form of

peroxynitrous acid [51]. On the basis of studies with hydroxyl radical

scavengers, the high energy intermediate is believed to be less reactive and

more selective than the hydroxyl radical [40,51]. Our data lend further

support to this hypothesis.

There are several interesting features of the peroxynitrite

concentration-damage profile shown in Figure 3.8. First is the plateau and

possibly decrease in 8-oxoG formation at high concentrations of peroxynitrite.

Yermilov et. al. also observed a plateau effect with peroxynitrite [95], while

Inoue and Kawanishi, using SIN-1, observed a decrease in 8-oxoG with

increasing peroxynitrite concentrations [94]. These observations are all

consistent with the recent studies of Uppu et. al. who observed that 8-oxoG is

susceptible to further oxidation by peroxynitrite [133]. Because they were

unable to detect 8-oxoG formation at high peroxynitrite concentrations (0.1-1

mM), Uppu et al. proposed that either 8-oxoG was not formed or that any 8-

oxoG that is produced is rapidly oxidized by peroxynitrite [133]. Our results

support the latter hypothesis. In addition to the use of a more sensitive 8-

oxoG assay, our ability to detect 8-oxoG is likely due to that fact we performed

the DNA damage reactions at lower peroxynitrite concentrations (0.25-100 gM

vs. 100-1000 pgM), which presumably reduced the second-order oxidation of 8-

oxoG by peroxynitrite. Our results cannot be attributed to different

preparations of peroxynitrite since we used the same procedure as Uppu et. al.

to prepare the peroxynitrite [133].

The second interesting feature of peroxynitrite-induced DNA damage

is the biphasic nature of strand break production. We are presently unable to

explain this phenomenon, but it may be due to some type of competing

second order reaction such as a self reaction of peroxynitrite.



In conclusion, we have determined that the relative quantities of sugar

and base damage produced by four different oxidizing agents vary as a

function of the chemistry and concentration of the agent. The results are

consistent with several previous studies and extend the observations into

physiologically relevant concentrations of oxidizing agents. The observations

made with each agent warrant further study.
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Figure 3.1. Synthesis of peroxynitrite using the ozonolysis of sodium azide method.
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Figure 3.2. Strand breaks induced by y-radiation and peroxynitrite. The plasmid pUC19 was
reacted with y-radiation and peroxynitrite as described the in Material and Methods section
and the form II (nicked) DNA was resolved from the form I (undamaged supercoiled) DNA.
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Figure 3.3. Strand breaks induced by Fe(II)/H 202. The plasmid pUC19 was reacted with Fe(II)/H 202
as described the in Material and Methods section and the form II (nicked) DNA was resolved from the
form I (undamaged supercoiled) DNA.
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Figure 3.4. Strand breaks induced by Cu(II)/H 202. The plasmid pUC19 was reacted with
Cu(II)/H 20 2 as described the in Material and Methods section and the form II (nicked) DNA

was resolved from the form I (undamaged supercoiled) DNA.
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Figure 3.5. 8-oxoG (o) and strand breaks (e) produced by y-radiation.
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Figure 3.6. 8-oxoG (o) and strand breaks (*) produced by Fe(II)-EDTA/H 202.
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Figure 3.7. 8-oxoG (o) and strand breaks (*) produced by Cu(II)-EDTA/H 202.
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