

Resilient Provision of a Public Good

Jing Chen and Silvio Micali

CSAIL, MIT

December 2, 2008

Abstract. We present two resilient mechanisms for the provision of a public good. Both mechanisms adopt a knowledge-based benchmark.

Introduction Our first mechanism is appropriate to the case when the players —i.e., the potential beneficiaries of the good— are few in number and/or know each each other quite well. (In this case, for concreteness, we envision the provisioning to occur in a *laboratory*, and refer to the good as —a new piece of— *equipment*, to the players as members of the lab, and to the potential provisioner as the *lab director*.)

Our second mechanism is more appropriate when the players are quite numerous and/or may have only *local knowledge*, that is, each player only knows a few of the other players. (In this case, for concreteness, we envision the provisioning to occur in a *city*, and refer to the good as a *public park*, to the players as citizens, and to the potential provisioner as the *mayor*.)

Notation. Let $N = \{1, \ldots, n\}$ be a set of players, and $\gamma \in \mathbb{R}^+$ the cost (to the "potential provider") of provisioning the good. A player *i*'s valuation of the good is a non-negative real. The profile of all possible valuations of the players is denoted by \mathbb{V} . The profile of the players' true valuations is denoted by TV. An outcome is a pair (x, P), where x is a bit indicating whether the good will be provided (x = 1) or not (x = 0), and P is a profile of prices (real numbers). A payer's utility is $TV_i \cdot x - P_i$. A player *i*'s general external knowledge, denoted by GK_i , is *i*'s information about TV_{-i} . A player *i*'s relevant external knowledge, denoted by RK^i , is a subprofile in \mathbb{V}_{-i} such that, for each $j \neq i$, RK^i_j is the maximum value with GK_i and less than TV_i . All knowledge of a player is private to him.

In the two mechanisms below, "numbered steps are performed by players, and bullet ones by the mechanism."

1 Our First Mechanism

Mechanism \mathcal{M}_1

- Set x = 0 and $P_i = 0$ for each player *i*.
- 1. Each player i simultaneously and publicly announces a valuation subprofile V^i for players in -i.
- Set: $\gamma_i = \sum_{j \in -i} V_j^i$ for each player *i*, and $\star = \arg \max_i \gamma_i$. (We shall refer to player \star as the "star player".)
- If $\gamma_{\star} < \gamma$, HALT.
- 2. (If $\gamma_{\star} \geq \gamma$) Each player *i* such that $V_i^{\star} > 0$ publicly and simultaneously announce YES or NO.
- If some player announces NO, reset $P_{\star} = P_{\star} + V_i^{\star}$ for each player *i* who announces NO, and HALT.
- (If all players announce YES) Reset: (1) x = 1; (2) $P_{\star} = \gamma \gamma_{\star}$; and (3) $P_i = V_i^{\star}$ for each player $i \neq \star$.

Variant. In the last mechanism step replace instruction 2 with the following instruction (2') $P_{\star} = \alpha \cdot (\gamma - \gamma_{\star})$, where the coefficient α is a constant between 0 and 1 (so as to generate a "surplus" for the lab).

2 Our Second Mechanism

Mechanism \mathcal{M}_2

- Set x = 0 and $P_i = 0$ for each player *i*.
- 1. Each player *i* simultaneously and publicly announces (A) a subset of players $S_i \subset -i$ and (B) a valuation subprofile V^i for the players in S_i .
- $\forall j$: If $j \notin S_i$ for all $i \neq j$, then set $EV_j = 0$; else, $n_j = \arg \max_{i \neq j} V_j^i$, and set $EV_j = V_j^{n_i}$. Set $K = \sum_j EV_j$.
- If $K < \gamma$, HALT.
- 2. $(K \ge \gamma) \forall j$ such that $EV_j > 0$ publicly and simultaneously announces YES or NO.
- If some player announces NO: $\forall k$ such that player k announces NO, reset $P_{n_k} = EV_k$. HALT.
- (All players announce YES) (1) reset x = 1 and $P_j = EV_j$ for all j; (2) $\forall j$, reset $P_{n_j} = P_{n_j} (K \gamma) \frac{EV_j}{K}$.

Variant. In the last mechanism step replace instruction 2 with the following instruction

$$(2') P_{n_j} = P_{n_j} - \alpha \cdot (K - \gamma) \frac{EV_j}{K}$$

where the coefficient α is a constant between 0 and 1 (so as to generate a "surplus" for the city).

