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Abstract

This dissertation consists of an empirical chapter, an econometrics chapter, and a the-
oretical chapter, all of which advance the study of the price elasticity of expenditure on
medical care. In Chapter 1, I estimate the price elasticity of expenditure on medical
care across the quantiles of the expenditure distribution. My identification strategy
relies on family cost sharing provisions that generate differences in marginal prices
between individuals who have injured family members and individuals who do not. I
use a new censored quantile instrumental variables (CQIV) estimator, which allows
me to examine variations in price responsiveness across the skewed distribution of
medical expenditure. The CQIV estimator does not require any parametric assump-
tions to account for individuals who consume zero medical care. Using CQIV, as
well as traditional estimators, I find elasticities that are an order of magnitude larger
than those in the literature. My CQIV estimates suggest strong price responsiveness
among people who spend the most. I find that the price elasticity of expenditure is
approximately -2.3, which is stable across the .65 to .95 quantiles of the expenditure
distribution.

In Chapter 2, Chernozhukov and Kowalski (2008), we develop a censored quantile
instrumental variables (CQIV) estimator. The CQIV estimator handles censoring
nonparametrically in the tradition of Powell (1986), and it generalizes standard cen-
sored quantile regression (CQR) methods to incorporate endogeneity. Our computa-
tional algorithm combines a control function approach with the Chernozhukov and
Hong (2002) CQR algorithm. Through Monte-Carlo simulation, we show that CQIV
performs well relative to Tobit IV in terms of median bias and interquartile range.

In Chapter 3, I develop a structural model to estimate the price elasticity of
expenditure on medical care. The model relies on deductibles, coinsurance rates, and
stoplosses that generate nonlinearities in consumer budget sets. The model generalizes
existing nonlinear budget set models by allowing for more than one nonconvex kink.
Furthermore, it incorporates censoring as a corner solution. Unlike reduced form
models, the model utilizes identification from utility theory, it allows for preference
heterogeneity, and it allows for the direct calculation of welfare effects.
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Introduction

Evaluation of the latest wave of cost control and patient empowerment initiatives,

broadly known as “consumer-directed care,” depends critically on the underlying price

elasticity of expenditure on medical care. The extent to which price responsiveness

varies with expenditure also has important policy implications. This dissertation

consists of an empirical chapter, an econometrics chapter, and a theoretical chapter,

all of which advance the study of the price elasticity of expenditure on medical care.

The first two chapters employ and develop semiparametric econometric methods, and

the third chapter develops a structural econometric method.

In Chapter 1, I estimate the price elasticity of expenditure on medical care across

the quantiles of the expenditure distribution using detailed claims and enrollment data

on individuals in employer-sponsored health insurance plans. To examine the effect

of marginal price on expenditure while avoiding mechanical relationships induced by

cost sharing parameters, I use an instrumental variables strategy. Identification in

my strategy relies on family-level cost sharing provisions, which generate differences

in marginal prices between individuals who have injured family members and individ-

uals who do not have injured family members. Because a large number of individuals

consume no medical care, my strategy requires the use of estimators that account for

censoring in the dependent variable. However, traditional censored estimators require

strong distributional assumptions. In response to this concern, I use a new censored

quantile instrumental variables (CQIV) estimator. The CQIV estimator handles cen-

soring without any distributional assumptions, and it allows me to examine variations

in price responsiveness across the skewed distribution of medical expenditure. Using

CQIV, as well as several traditional censored estimators for comparative purposes,
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I find elasticities that are an order of magnitude larger than those in the literature.

In particular, my CQIV estimates suggest strong price responsiveness among people

who spend the most. I find that the price elasticity of expenditure is approximately

-2.3, which is stable across the .65 to .95 quantiles of the expenditure distribution.

In Chapter 2, Chernozhukov and Kowalski (2008), we develop a new censored

quantile instrumental variables (CQIV) estimator and describe its properties and

computation. The CQIV estimator handles censoring semi-parametrically in the tra-

dition of the Powell (1986), and it generalizes standard censored quantile regression

(CQR) methods to incorporate endogeneity in a manner that is computationally

tractable. Our computational algorithm combines a control function approach with

the CQR estimator developed by Chernozhukov and Hong (2002). Through Monte-

Carlo simulation, we show that CQIV performs well relative to Tobit IV in terms of

median bias and interquartile range in a model that satisfies the parametric assump-

tions required for Tobit IV to be efficient. Given the strong parametric assumptions

and the constant coefficients required by Tobit IV, the gains to CQIV relative to

Tobit IV are likely to be large in empirical applications.

In Chapter 3, using the theory of utility maximization subject to a nonlinear

constraint, I develop a structural model to estimate the price elasticity of expenditure

on medical care among people with traditional health insurance policies. The model

relies on deductibles, coinsurance rates, and stoplosses that generate nonlinearities in

consumer budget sets. Relative to reduced form demand models, the model utilizes

additional identification from utility theory, it describes behavior consistent with

the functional form of the demand function, it allows for preference heterogeneity

across agents, and it allows for the direct calculation of the welfare effects of price

changes. Furthermore, it incorporates censoring in a manner that is consistent with

a corner solution decision to consume zero care. The model generalizes existing

nonlinear budget set models by allowing for more than one nonconvex kink. Relative

to other nonlinear budget set applications, the medical care application allows for

a particularly tight link between the agent’s actual budget set, the model, and the

estimation strategy.
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Chapter 1

Censored Quantile Instrumental

Variables Estimates of the Price

Elasticity of Expenditure on

Medical Care

1.1 Introduction

Spending on medical care is increasing by almost any metric, and yet the effects of

consumer price on medical care utilization are not well understood. Even so, the

most recent wave of cost control initiatives in medical care depends on consumer

responsiveness to price. An understanding of the price elasticity of expenditure on

medical care and the extent to which it varies across the expenditure distribution is

crucial in evaluating these initiatives.

The first wave of cost control in medical care, which began in the 1960’s, was

also predicated on consumer responsiveness to price. It used cost sharing mechanisms

such as deductibles and coinsurance rates to limit spending on the demand side. In

contrast, in the 1980’s, the second wave of cost control, known as managed care, took

the form of constraints on the supply side. Managed care limited patient choice to
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certain provider networks and relied on doctors in those networks to manage spending.

Although spending levels temporarily decreased, managed care did not curb spending

growth, and it caused consumer outcry against limited access to procedures.

In response to managed care, a third wave of cost control is currently in its

nascent stages. This wave of cost control falls broadly under the name of “consumer-

directed care.” Like the first wave, consumer-directed care imposes constraints on

the demand side by encouraging individuals to purchase high deductible policies and

pay for routine expenses out of pocket. Although the ideas of consumer-directed care

have been circulating for several years (see Eichner, McClellan, and Wise (1997)),

they have just recently gained traction. The Medicare Modernization Act, enacted in

December 2003, included provisions for the establishment of health savings accounts

(HSA’s), tax-advantaged accounts that can only be opened by the holders of qualified

high deductible policies.

The rationale behind the encouragement of high deductible policies is that

when the deductible increases, some consumers will pay a higher marginal price for

the last dollar of care that they consume. In a simple model of medical care con-

sumption, if consumers know that they will meet the deductible by the end of the

year, the amount of the deductible should not affect consumption because the amount

paid toward the deductible will induce a pure income effect. Consumers should con-

sume throughout the year based on the marginal price that they expect to face at

the end of the year. However, if an increase in the deductible ensures that some

individuals will no longer meet the deductible, making their expected year-end price

higher, total yearly medical expenditures for these individuals should decrease. Given

the rationale behind the encouragement of HSA’s, the policy-relevant parameter is

the responsiveness of total yearly medical expenditures to variation in the year-end

marginal price of care, and this is precisely the parameter that I estimate.

However, the price elasticity of expenditure need not be constant. In partic-

ular, it could change with the quantiles of the expenditure distribution. Specifically,

the effectiveness of the mechanisms that consumers use to manipulate medical expen-

diture could vary with the level of expenditure. For example, for minor ailments,
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consumers could limit expenditure by deciding not to go to the doctor, but for more

serious ailments, consumers could limit expenditure by choosing a less expensive hos-

pital or a more minimalist treatment plan. If consumers become less price responsive

as expenditure increases, policies aimed at making consumers more price responsive

will have a limited impact because consumers with the largest expenditure are re-

sponsible for the most dollars of medical spending. However, if consumers remain

price responsive as expenditure increases, policies that increase cost sharing for high

spenders are likely to be more effective at reducing overall medical spending. It

should be noted, though, that the optimality of such policies also depends on the

health impact of foregone expenditure and the value of insurance as expenditure in-

creases. In this paper, I focus only on measuring price responsiveness across the

quantiles of the expenditure distribution.

In the existing economics literature, there is evidence of a modest price elastic-

ity of expenditure on medical care, which is assumed constant across the expenditure

distribution. This evidence comes from three generations of estimates: the RAND

health insurance experiment of the 1970’s, an approach using medical claims by Eich-

ner (1997, 1998), and recent reduced form studies that focus on the price elasticity

of demand for prescription drugs. My strategy builds on these three generations of

estimates.

The RAND health insurance experiment, which took place between 1974

and 1982, randomized subjects into health insurance plans of varying generosity and

estimated the price elasticity of expenditure on medical care to be around -.2. See

Manning et al. (1987), Keeler and Rolph (1988), Keeler (1992), and Newhouse (1993)

for a discussion of methods. However, to induce people to participate in the study,

researchers set a very low cap on out-of-pocket costs. Since over 70% of subjects with

inpatient spending exceeded this cap, it is difficult to assess their price sensitivity.

Through the use of recent data on plans with less generous cost sharing parameters,

I can observe meaningful price variation for the current policy environment.

Eichner (1997, 1998) used medical claims data to estimate the price elasticity

of expenditure on medical care to be approximately -.3. The main innovation of his
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approach was his instrument. I capture the spirit of his instrument here, but I modify

it to take more family interactions into account and to increase the plausibility of the

exclusion restriction. Because of data limitations, Eichner was not able to observe

people who did not submit any claims, which could result in bias. In my data, I

observe people with zero medical expenditure, and I include them in my analysis

through the use of a new censored quantile instrumental variables (CQIV) estimator.

Recent reduced form studies such as Li et al. (2005), Hsu et al. (2006), and

Chandra et al. (2006) use changes in cost sharing provisions over time to estimate the

price elasticity of demand for prescription drugs and medical care among the elderly.

Unlike these studies, I focus on the price elasticity of expenditure on all medical care

in the non-elderly population. In their estimates, Li et al. (2005) use a price index for

simplicity, but my strategy allows for a tighter link between expenditure and marginal

price.

Though my study is most comparable to the aforementioned partial equilib-

rium analyses, it should also be noted that some general equilibrium evidence exists.

Specifically, Finkelstein (2007) examines the price elasticity of expenditure on medical

care in response to the establishment of Medicare. She finds much larger elasticities

than those in the partial equilibrium literature.

The primary goal of my paper is to measure how consumers respond to the

marginal year-end prices that they face for medical care within employer-sponsored

health insurance plans. Specifically, I am interested in how this responsiveness varies

with quantiles of the expenditure distribution. As a starting point, in Section 2,

I explain how the cost sharing provisions of traditional employer-sponsored health

insurance plans govern the marginal prices paid by individuals and families. Given

the traditional cost sharing provisions and the specific provisions that govern family

policies, I identify a subset of individuals who, because of injuries to family members,

face lower prices than they would otherwise. My instrumental variables identification

strategy, which I discuss in detail in Section 3, formalizes the comparison of expen-

ditures between these individuals and other individuals whose marginal prices are

unaffected.
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To execute my strategy, I use recent, comprehensive, longitudinal data on

medical claims, which I describe in Section 4. I focus on the plans offered by one em-

ployer because doing so allows me to isolate variation in cost sharing provisions from

other plan attributes. Furthermore, one of the offered plans has a $1,000 deductible,

which is coincidentally the initial qualifying amount for a plan to be considered eli-

gible for use with a health savings account in the 2003 legislation. Because all plans

have deductibles that are presumably large enough to be economically meaningful,

and plans only differ in the deductible and stoploss, I can use data from all plans and

isolate within-plan price variation for identification.

The underlying variation that I use for identification is so pronounced that I

can illustrate it in simple graphs, which I discuss along with formal results in Section

5. The transformation of the underlying variation into an elasticity estimate requires a

censored estimator because approximately 40% of individuals in my sample consume

no medical care in the entire year. I present results from three standard censored

estimators: a truncated model, a two-part model, and a Tobit model. However,

these estimators require strong distributional assumptions, and the impact of these

assumptions on the results is unclear.

In response to this concern, I use a new censored quantile instrumental vari-

ables estimator which is semiparametric in the sense that it does not require any

distributional assumptions to handle censoring. The CQIV estimator is a generaliza-

tion of Powell’s censored quantile estimator that incorporates instrumental variables

in a way that is computationally tractable. Chernozhukov and Kowalski (2008) de-

velop the CQIV estimator, which has its first application here. Relative to mean

estimators, CQIV is particularly advantageous in my application because medical ex-

penditures are so skewed: 25% of individuals account for 94.5% of expenditures in

my main sample. The CQIV estimator allows me to examine price responsiveness at

the upper quantiles of the medical expenditure distribution.

My estimates of the price elasticity of expenditure on medical care are much

larger than those in the literature. I find that the people who spend the most on

medical care are particularly price responsive. Across the .65 to .95 quantiles of the
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expenditure distribution, the price elasticity of expenditure is stable around -2.3, with

a point-wise 95% confidence interval at the .80 quantile of -2.7 to -2.0. In Section 6,

I perform several refinements to main specification, and my findings do not change. I

also conduct two robustness tests in Section 7 that go beyond the main specification

to examine the validity of the instrumental variables strategy, and I find that my

results are robust. In an extension of my main results in Section 8, I find evidence

of strong complementarity between prescription drug expenditures and expenditures

on other types of medical care. In Section 9, I provide empirical and simulation

evidence to explain the discrepancy between my estimates and the RAND estimates.

In Section 10, I conclude and discuss implications for future research.

1.2 Background: Marginal Pricing for Medical

Care

Traditional employer-sponsored health insurance plans have three major cost sharing

parameters: a deductible, a coinsurance rate, and a stoploss. The “deductible” is the

amount that the consumer must pay before the insurer makes any payments. Before

reaching the deductible, the consumer pays one dollar for one dollar of care, so the

marginal price is one. After meeting the deductible, the insurer pays a fractional

amount for each dollar of care, and the consumer pays the rest. The marginal price

that the consumer pays is known as the “coinsurance rate.” After the consumer

has paid the deductible and a fixed amount in coinsurance, the consumer reaches

the “stoploss,” and the insurer pays all expenses. For consumers that have met the

stoploss, the marginal price is zero. Figure 1-1 depicts how the deductible, coinsurance

rate, and stoploss induce a nonlinear relationship between the total amount paid by

the consumer and the total amount paid by the consumer plus the insurer. The

consumer faces three distinct marginal prices, depicted as the slope of each segment.

The intercepts on each axis are exact for a consumer insured as an individual with

no family members, but they can move toward the origin for a consumer insured as
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part of a family.

If a consumer is insured as a member of a family, the general cost sharing

structure is the same, but an additional family-level deductible and stoploss enable

one family member’s spending to affect another family member’s marginal price. As

a concrete example, suppose that a plan has an individual deductible of $500, and

it also has a family deductible that is three times the individual deductible ($1,500).

Each family member must meet the individual deductible unless total family spend-

ing toward individual deductibles exceeds the family deductible. Since the family

deductible is three times the individual deductible, if a family has fewer than four

members, all family members must meet the individual deductible. In a family of

four, when the first, second, and third family members go to the doctor, they each

face the individual deductible of $500, and then they pay according to the coinsur-

ance rate, as if they were insured as individuals. However, when the fourth family

member goes to the doctor, if the family deductible of $1,500 has been met through

the fulfillment of three individual $500 deductibles, he makes his first payment at the

coinsurance rate. In families with more than four members, the family deductible is

fixed at $1,500, and it can be met by any combination of payments toward individual

$500 deductibles. A similar interaction occurs at the level of the stoploss. Given the

family-level cost sharing parameters, some individuals will face lower marginal prices

than their own medical spending would dictate.

The marginal price variation induced by the family cost sharing parameters

suggests a simple way to study price responsiveness by comparing expenditures of

individuals whose families have and have not met the family deductible. The flaw

with this type of identification strategy is that individuals in families that have met the

family deductible may be more likely to consume medical care for reasons unrelated to

its price, such as contagious illnesses or hereditary diseases. For this reason, instead

of comparing individuals according to whether or not their family members have met

the family deductible, I compare individuals according to an instrumental variable.
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1.3 Identification Strategy

To identify the effect of marginal price on an individual’s medical care expenditure,

I use an instrumental variable – whether or not a family member has an injury.

The first stage effect of a family member’s injury on the individual’s marginal price

is possible in families of four or more because of the family deductible and family

stoploss described above. When one family member receives treatment for an injury,

the family is more likely to meet the family deductible than it otherwise would have

been, and any individual in the family is more likely to face a lower marginal price

than his own spending would dictate. Empirically, I find that one family member’s

injury does indeed affect another family member’s marginal price.

Given the first stage, the key to the identification strategy is an exclusion re-

striction: one family member’s injury cannot affect another family member’s medical

spending outside of its effect on his marginal price. Strictly speaking, direct viola-

tions of the exclusion restriction are not possible. Since the outcome that I study

is the medical spending of an individual in a family, and not the medical spending

of the entire family, expenditure for the treatment of one family member’s injury is

not included in the outcome variable. Furthermore, since one family member’s injury

does have a direct effect on his own medical expenditure, and the injury itself likely

influences his decision to consume follow-up medical care and care for secondary ill-

nesses, I use injured family members only to construct the instrument, and I do not

include them in the estimation sample. If two or more family members are injured,

all injured family members are excluded from the estimation sample.

Other potential violations of the exclusion restriction involve indirect effects

of one family member’s injury on another family member’s medical spending that

occur through a mechanism other than the marginal price. I include only specific

injury categories in the determination of the instrument to preclude any mechanisms

that involve physical contagion. The complete set of injury categories included in the

determination of the instrument are intracranial injuries, superficial injuries, crushing

injuries, foreign body injuries, burns, and complications of trauma and injuries to the
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nerves and spinal cord. These injury categories should be severe and unexpected

enough that treatment for an injury in these categories should not be related to an

underlying family-level propensity to seek treatment, which could lead to a violation

of the exclusion restriction. An indirect test for violations of the exclusion restriction

based on family-level propensities to seek treatment, presented in Section 7.1, lends

support to my identification strategy.

To further avoid violations of the exclusion restriction, and also to avoid mea-

surement error, I determine the instrument only on the basis of whether an individual

was treated for an injury, and not on the basis of the spending associated with the

treatment. If the instrument included a measure of injury spending, the instrument

could be related to another family member’s medical spending through a family-level

propensity to go to expensive doctors, thus violating the exclusion restriction. Since

my instrument is only based on the treatment margin, a family-level propensity to

go to expensive doctors will not violate the exclusion restriction. However, such a

propensity could raise concerns if the price elasticity of expenditure on medical care

is not homogenous in the population.

In any instrumental variables setting, if the treatment effect of interest is

not homogenous in the population, the estimated effect is a “local average treatment

effect,” which is intuitively the average effect on “compliers” who would not have

received the treatment absent the intervention of the instrument. In this setting,

compliers are people who have a family injury which causes them to face a lower

price than they would have absent the injury. Although it is not possible to identify

compliers because doing so would involve the observation of a counterfactual state

in which a family member did not get injured, Angrist, Imbens, and Rubin (1996)

propose a formal methodology to examine the average characteristics of compliers in a

setting with a binary treatment and a binary instrument. The multivalued treatment

in my application precludes the use of the Angrist et al. (1996) methodology, but I

can still informally describe the compliers as the population for which the first stage

is likely to be the strongest. For example, the first stage will likely be strongest

among people who go to more expensive doctors, because the higher the expense, the
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higher the likelihood of meeting the family deductible. In addition, the first stage

will likely be strongest among accident-prone families, because having an injury in

the family is a necessary prerequisite to being a complier. Lastly, the first stage is

likely to be strongest among large families because large families have more people

to contribute to the fixed family deductible.

1.4 Data

1.4.1 Data Description

I use recent proprietary data from a US firm with over 500,000 insured employees.

The data for my analysis are merged together from several databases compiled and

distributed by Medstat. In my merged dataset, in addition to observing inpatient,

outpatient, and prescription drug claims, I also observe characteristics of the offered

plans and associated enrollment characteristics. The Medstat claims data are partic-

ularly well-suited to my analysis because the medical claims data identify the ben-

eficiary and insurer contributions on each claim. Because beneficiaries must submit

claims to receive reimbursement, and because the firms that pay the claims collect

the data, incentives are aligned to ensure the accuracy and completeness of the claims

data.

A major advantage of the Medstat data over standalone claims data is that

if beneficiaries do not file any claims or discontinue enrollment, I can still verify their

coverage and observe their demographic characteristics in the enrollment database.

Since the data are longitudinal, I can track individuals and their covered family

members over time as long as the subscriber remains at the same firm. One limitation

of the Medstat data is that I do not observe employees or family members who are

not covered, and I do not observe health insurance options available outside the firm.

However, according to the 2006 Kaiser Annual Survey of Employer Health Benefits,

82% of eligible workers enroll in plans offered by their employers, so I should observe

a large majority of workers at the firm that I study.
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I focus on data from one firm to isolate marginal price variation from other

factors that could vary by firm and plan. The main advantage of the firm I that

I study is that the four plans that it offered in 2003 and 2004 varied only in the

deductible and stoploss. I rely on within-plan price variation for identification, but

plan-related local average treatment effects are possible, and I investigate them in

Section 6.2. Table 1.1 presents a comparison of the cost sharing parameters across

plans. The individual deductibles vary from $350 to $1,000, and the family deductible

is always three times the individual deductible, as in the example described above.

Net of deductibles, the family stoplosses are always twice as large as the individual

stoplosses.

Overall, the simple cost sharing parameters introduced above provide a very

accurate description of the marginal prices that consumers face at this firm. Al-

most all covered medical spending counts toward the deductible and stoploss, except

for spending on prescription drugs, which I analyze separately because it is covered

separately. Unlike in many medical plans, there is no fixed per-visit payment.

The only complication in the cost sharing structure at the firm that I study

is that the plans offer incentives for beneficiaries to go to providers that are part of a

network. All four plans are a common type of health insurance plans called preferred

provider organization (PPO) plans. According to the Kaiser 2006 Annual Survey of

Employer Health Benefits, 60% of workers with employer-sponsored health insurance

are covered by PPO plans. PPO plans do not require a primary care physician or

a referral for services, and there are no capitated physician reimbursements. How-

ever, there is an incentive to visit providers in the network because there is a higher

coinsurance rate for expenses outside of the network. In the firm that I study, the

general coinsurance rate is 20%, and the out-of-network coinsurance rate is 40%. The

network itself does not vary across plans. In the data, there are no identifiers for

out-of-network expenses, but, as demonstrated by Figure 1-2, which plots beneficiary

expenses on total expenses, beneficiary expenses follow the in-network schedule with

a high degree of accuracy, indicating that out-of-network expenses are very rare. Ac-

cordingly, in my analysis, I assume that everyone who has met the deductible faces
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the in-network marginal price for care. My main results do not change when I ex-

clude the small number of beneficiaries whose out-of-pocket payments deviate from

the in-network schedule.

1.4.2 Sample Selection

Although selection into the firm that I study could be a cause for concern, the firm

has employees in every region of the United States, and it is large enough that id-

iosyncratic medical usage should not be a problem. With over 800,000 people covered

by the plans offered by this firm, this firm is large, even among other large firms in the

Medstat data. Furthermore, all of the component Medstat databases are available

for this firm for 2003 and 2004, so I can check for internal consistency by comparing

results across both years. Beginning in the 2003 data, the Medstat data include fields

that make the determination of marginal price and continuous enrollment very accu-

rate. Since these data are so recent, they should provide an accurate description of

current health insurance offerings and usage. Because the covered population consists

of active, non-union employees in the retail trade industry, my findings should have

widespread external validity.

Within the firm, the main selection criterion that I apply is a continuous

enrollment restriction. Since my outcome of interest is year-end expenditure, and

family members play a role in the determination of the instrument, I only include

individuals in my sample if their entire families, with the exception of newborns, are

enrolled for the entire plan year. I retain families with newborns on the grounds that

child birth is an important medical expense. Care before death is also an important

medical expense, but I cannot make an exception for individuals who die because I

only observe in-hospital deaths, and there are none recorded in the unselected sample.

In my main results, which use the 2004 and 2003 data as separate cross-sections, I

only require that the family is enrolled from January 1 to December 31 of the given

year. Selection due to the continuous enrollment restriction eliminates over 30% of

the original sample in each year. Analysis of other firms in the Medstat data suggests
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that the rate of turnover at this firm is comparable to the rate of turnover at other

large firms.

Through selection based on the detailed fields in the Medstat data, I can be

confident that my selected sample consists of accurate records. Since families are

important to my analysis, I perform all selection steps at the family level. I eliminate

families that switch plans, families that have changes in observable covariates over

the course of the year, and families that have demographic information that is incon-

sistent between enrollment and claims information. I also eliminate families that have

unresolved payment adjustments. Statistics on each step of the sample selection are

available on request. Taken together, these steps eliminate less than seven percent of

individuals from the continuously enrolled sample.

In this clean sample, just over 25% of employees with other insured family

members are insured in families of four or more. In my main specifications, I restrict

the estimation sample to people in families of four or more to ensure that intra-family

interactions in cost sharing parameters are possible. The 2004 main estimation

sample includes 127,119 individuals from 29,010 families of four or more. Although

the stoploss induces some intra-family interactions in marginal price in families of

three, I restrict the estimation sample to families of four or more so that deductible

interactions are also possible. In a robustness check, I examine employee-spouse

couples precisely because price interactions are not possible.

To better control for unobservables, in some specifications, I limit my estima-

tion sample to the employee in each family, and I use other family members only in

the determination of the instrument. In some specifications, I also include individuals

identified as spouses in the estimation sample. Restricting the sample to employees or

employees and spouses sacrifices power because it does not take the price responsive-

ness of all family members into account, but it arguably provides the best control for

unobservables on the grounds that employees at the same firm have some common

characteristics that they do not necessarily share with the spouses and children of

their co-workers. Moreover, restricting the sample to employees eliminates the need

to address possible correlations in price responsiveness among family members.
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1.4.3 Summary Statistics

In the 2004 sample, mean year-end medical expenditure by the beneficiary and the

insurer is $1,484.74 in the sample of employees and $1,134.83 in the sample that also

includes spouses and dependents. However, the mean is not a very informative sum-

mary statistic for medical expenditures because many people consume zero care, and

the distribution of medical spending among those who do consume care traditionally

has a long right tail. In my full sample, almost 40% of people consume zero care in the

entire year, and people in the top 25% of the expenditure distribution are responsible

for 94.5% of expenditures. Given this skewness, I analyze the logarithm of expen-

diture instead of the level. The first panel of Table 1.2 summarizes the expenditure

distribution across bins that follow a logarithmic scale. Excluding individuals with

zero expenditure, the distribution of positive expenditure follows an approximately

lognormal distribution, with 31.1% of individuals in the expenditure range between

$100 and $1,000, and smaller percentages of individuals in the bins above and below

this range. The distribution of expenditures in the full sample, summarized in the

second column, is similar. Table 1.3 presents analogous summary statistics for the

2003 samples.

In Table 1.4, I compare the expenditure distribution in my sample to the

expenditure distribution from a nationally representative sample, the 2004 Medical

Expenditure Panel Survey (MEPS). I restrict the MEPS sample to include only non-

elderly individuals, and I exclude expenditures on prescription drugs. As shown in

Table 1.4, on a percentage basis, the skewness in my sample is relatively comparable

to the skewness in the MEPS, but my sample has a slightly more concentrated right

tail. On a levels basis, spending in the MEPS is higher than spending in my sample.

For example, the .95 quantile of the expenditure distribution in my sample is $5,457 as

compared to $8,282 in the MEPS. Part of this discrepancy seems linked to the lower

tail of the distribution. In the MEPS sample, only 19.40% of the sample consumes

zero care, roughly half of the percentage that consumes zero care in my sample.

Although it is possible that my sample selection criteria are more likely to eliminate
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individuals with nonzero expenditure, I do not eliminate enough individuals to explain

the difference between my sample and the MEPS. It is perhaps more plausible that

my sample is representative of people with employer-sponsored coverage, but people

with other types of coverage in the MEPS consume more care. Expenditure within

employer-sponsored plans is interesting in its own right because roughly three out of

five nonelderly Americans have access to them (Kaiser 2006). It is also plausible

that the actual claims data are more accurate than the MEPS survey data on the

grounds that people are more likely to respond to a survey on medical expenditure if

they have nonzero expenditure.

The second panel in Table 1.2 depicts the distribution of the endogenous

variable, the marginal price for the next dollar of care at the end of the year. I

calculate the marginal price to reflect the spending of the individual and his family

members. If the individual has not consumed any care and the family deductible has

not been met, the marginal price takes on a value of one because the individual still

needs to meet the deductible. In the employee sample, 57.3% of beneficiaries face a

marginal price of one, 38.3% of employees face the coinsurance rate of .2, and 3.9%

of employees have met the stoploss and face a marginal price of zero. This price

variation should be large enough to be meaningful.

The distribution of the instrument, “family injury,” shows that 13.4% of

employees have at least one family member who is injured in the course of the year.

Since injured employees are excluded from the sample, all of the injuries included in

the determination of the instrument in the employee sample are to spouses and other

dependents. In the full sample, injuries to employees are included in the determination

of the instrument, and the same injury can be reflected as a “family injury” for more

than one person. Overall, 12.6% of individuals in the full sample have an injury in

the family.

Even though injured people are excluded from all estimation samples, I report

statistics on the injured people in Table 1.5. If a person has any claim for an injury

with an ICD-9 code in one of the listed categories, he is included in the count in

the first column. Complications of trauma and injuries to the nerves and spinal
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cord are the most prominent. The distribution of injuries across 2003 and 2004 is

remarkably stable, which could indicate that the firm is large enough that injuries are

not idiosyncratic. In the second column, I report the mean year-end total expenditures

for the injured people to demonstrate that their spending should be large enough to

have a meaningful effect on the price that their family members face. The last three

columns of Table 1.5 show the number of affected family members in each estimation

sample by injury category.

The remaining panels of Table 1.2 summarize the distribution of covariates.

Family size varies from four to eleven, with 60.2% of people in families of four. The

composition of the full sample reflects the composition of a family of four, with almost

as many spouses as employees and twice as many dependents. The full sample is

gender balanced, but 57.4 percent of employees are male. All employees are between

the ages of 20 and 65 in 2004. The distribution of “year of birth” in the full sample

shows a bimodal age distribution – the 7% of people in the sample aged between 21

and 30 are in a valley in the age distribution between the parents and the children.

Given the variation in the covariates, I control as flexibly as possible for

family size and family composition. If some factor related to family structure causes

one family member to get injured and another member to spend more on medical

care, there could be a violation of the exclusion restriction. Conditional on flexible

controls for family structure, the exclusion restriction should be valid.

The panel that depicts the distribution of “employee class,” shows that 70.1%

of the employees are salaried, and the remaining employees are hourly. One of the

limitations of the Medstat data is that it does not include any income measures,

but subscriber class could serve as a crude proxy. At this firm, hourly and salaried

employees have health insurance, but their medical expenditure patterns could differ.

The distribution of the sample by Census region in the penultimate panel

demonstrates that the firm has a very national reach. The largest concentration of

employees is in the West South Central Census region, where 28.3% of the sample

resides. There are also high concentrations of employees in other central regions.

The final panel depicts the distribution of employees and families across the
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four plans. Each plan has a unique individual deductible, which I use as the plan

identifier. A comparison of the plan distribution between the employee sample and the

full sample shows that larger families do not select differentially into plans. Almost

60% of employees and families are enrolled in the most generous plan, which has a

$350 deductible. Since this plan is the most popular, and since the low deductible

makes the people in this plan the most likely to experience a price change for a fixed

amount of spending, it is likely that the behavior of the people in this plan has a

substantial influence on my results.

1.5 Results

1.5.1 Graphical Results

The raw variation in the data that drives my instrumental variables approach is so

pronounced that it can be discerned graphically, without the assistance of complex

estimators. In instrumental variables parlance, the effect of family injury on expendi-

ture is the “reduced form,” and the effect of family injury on the year-end price is the

“first stage.” The simple instrumental variables estimate is the ratio of the reduced

form to the first stage. To show the variation that drives the instrumental variables

strategy, I present graphical depictions of the reduced form and the first stage in the

2004 sample of employees.

To demonstrate the reduced form, in the top panel of Figure 1-3, I present

the cumulative distribution (cdf) of expenditure conditional on family injury. The

cdf of expenditure for employees with no family injury is represented by a solid line,

and the cdf of expenditure for employees with a family injury is represented by a

dashed line. In this depiction, each quantile on the y axis is associated with a value

of the logarithm of expenditure on the x axis. Since the lines never cross, it is clear

from the figure that employees with family injuries have higher expenditures at all

quantiles. This should reassure us that regression results will not be driven by a

few large spenders with family injuries. The y intercepts of each line indicate that
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family injuries affect the extensive margin decision of whether or not to consume any

care; only 30% of people with family injuries consume zero care, as opposed to 37%

of people with no family injuries. The figure also suggests that family injuries affect

the intensive margin decision of how much care to consume conditional on consuming

any care; median expenditure is $120 among employees with no family injuries and

$203 among employees with family injuries. To examine whether the difference

between the lines at all quantiles is driven by effects on the extensive margin, I create

a similar figure, not shown here, that depicts cumulative distributions conditional

on positive expenditure. The lines of the new figure do not cross, indicating that

even among employees with positive expenditure, employees with family injuries have

higher expenditure at each quantile. Columns 3-4 and 5-6 in the first panel of Table

1.2 demonstrate the same finding with conditional probability density functions.

To demonstrate the first stage effect of family injury on the year-end price,

in the bottom panel of Figure 1-3, I present the cumulative distribution of year-end

price conditional on family injury. Since the year-end price takes on only three

values, the cdf is a step function, but I connect the points of the step function with

straight lines to aid in the visual interpretation. The lines in this figure do not cross,

indicating that employees with family injuries are more likely to face lower prices

than their counterparts without family injuries. Labels on the y axis show that 56%

of employees with family injuries spend more than the deductible, while only 41% of

employees without family injuries spend more than the deductible. Similarly, 6.8%

of employees with family injuries spend more than the stoploss, while only 3.5% of

employees without family injuries spend more than the stoploss.

The depiction in the bottom panel also allows us to assess which price change,

the change from 1 to .2 or the change from .2 to 0, yields the most identification.

Following Angrist and Imbens (1995), the vertical difference between the cdf’s at the

new price is proportional to the weight in an instrumental variables estimate formed

from a weighted combination of separate Wald estimates for each price change. Since

the difference in the cdf’s is largest at the price of .2, the figure indicates that most

identification comes from the price change between 1 and .2, and some identification
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comes from the price change between .2 and 0.

As a more formal alternative to the bottom panel of Figure 1-3, a simple

ordinary least squares (OLS) regression of year-end price on family injury and a set

of covariates discussed below indicates that having an injury in the family decreases

the year-end price by 11 percentage points, with a standard error of .7 percentage

points. The R-squared of this first stage regression with the covariates partialled

out is .0096, implying a concentration parameter (defined as NR2/(1 − R2)) of 281.

Based on this evidence, “weak instruments bias” is unlikely to be a problem in this

application.

If the instrumental variables strategy mimics a randomized experiment, the

inclusion of control variables should not have a substantial impact on the estimate,

but should merely make it more precise. One way to assess the importance of control

variables to the instrumental variable strategy is to examine the distribution of each

variable conditional on the values of the instrument. Ideally, in this setting, individ-

uals who have any injured family member would be similar in all observable ways to

those who do not have an injured family member.

Columns 3-4 and 5-6 of Table 1.2, starting with the panel on family size,

give the distribution of covariates conditional on family injury. The distribution of

family size shows that individuals in larger families are slightly more likely to have

injuries in their families, as is to be expected if the incidence of injures is distributed

evenly across individuals. Given this discrepancy, I include flexible controls for family

structure in my formal estimates. Specifically, I include a dummy for the presence of

a spouse on the policy, the year of birth of the oldest and youngest dependent, and the

count of family members born in each of the year ranges in the table, with the 1999-

2004 range saturated by year. In the remaining panels of Table 1.2, the distribution

of the other control variables appears much less sensitive to the instrument. However,

complex interactions between these variables would not be visible in the table. To

test for complex interactions between variables, I regress family injury on the flexible

controls for family structure and saturated controls for all of the other covariate rows

in Table 1.2. The F test of the null hypothesis that the coefficients on all variables
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are zero is rejected with a test statistic of 13.35 and degrees of freedom (32, 28997),

suggesting the need to control for covariates. In my formal estimates, I include

the controls from the aforementioned regression specification to account for complex

interactions and to improve the precision of the estimates.

1.5.2 Results using Traditional Estimators

The large frequency of zeros in the distribution of year-end expenditure complicates

the formalization of the above graphical results. Even though the zeros arise from

a decision to consume zero medical care, econometrically, they can be treated in

the same manner as zeros that arise from a traditional censoring mechanism, such

as a report of a zero when desired medical expenditure is negative. It is intuitive

to understand the zeros in the context of a traditional censoring mechanism when

analyzing the logarithm of expenditure, which is advisable here given the skewness

in the expenditure distribution. It is always possible to represent censoring as a

monotonic transformation of a variable, and here, the monotonic transformation of

expenditure takes the following form:

ln Ei = max((ln Ei)
∗, ε) = T ((ln Ei)

∗) (1.1)

where T (x) ≡ max(x, ε), E represents total year-end medical expenditures by the

beneficiary and the insurer, and (ln Ei)
∗ is the hypothetical uncensored value of ln Ei.

When estimators account for censoring at ε, the specific value of ε is immaterial as

long as ε is more extreme than all observed uncensored values, so that no information

is lost. In practice, I set ε equal to -.7 in my data, so that all observations with zero

expenditure have a value that is smaller than the logarithm of 50 cents, the smallest

observed nonzero expenditure.

If estimators that do not allow for censoring are used on data censored at

ε, bias can arise. Intuitively, when ε is observed in the place of a value that should

be much smaller, a line that fits the observed values will be biased toward zero.

Formally, in OLS and traditional instrumental variables models, censoring in the
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dependent variable induces a correlation between the error term and the independent

variable that leads to bias.

In the econometrics literature, there are several techniques to deal with cen-

soring in the dependent variable. Three of the most popular censored models are the

truncated model, the two-part model, and the Tobit model, and I present estimates

using each model in turn. I also present estimates that incorporate instrumental vari-

ables into these models. Estimation of these models with my data and instrumental

variables strategy allows me to compare my results to those in the existing literature

on the price elasticity of expenditure on medical care.

Truncated Model

The truncated model deals with censored observations in the simplest way, by drop-

ping them. Because of data limitations, Eichner’s sample was truncated in the sense

that he did not observe a large fraction of the sample that consumed zero care. To

facilitate a simple comparison of my results to Eichner’s results, I estimate maximum

likelihood regressions that assume a truncated normal distribution for the error term.

In the first column of Table 1.6, I present results from the truncated regression of the

logarithm of expenditure on year-end price P and a set of controls X as given by the

following specification:

ln E = αP + X ′β + u, E > 0, u v TN(0, σ2). (1.2)

The coefficient on year-end price and the associated lower and upper bounds

of the 95% confidence interval are presented in the table. The coefficient would be in

the form of an elasticity if I estimated a specification using the logarithm of year-end

price, but I cannot do so because year-end price can take on values of zero. Instead,

I transform the coefficient using the following arc elasticity formula:

ηarc =
ln(ya

yb
)

ln(a
b
)
. (1.3)
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I use an arc elasticity instead of a point elasticity because, as discussed above,

identification comes mainly from the large price drop from 1 to .2. Specifically, as a

function of the estimated coefficient α̂, and the prices of interest, the transformation

that I use is as follows:

η̂ =
̂(ln E|P = .2)− ̂(ln E|P = 1)

ln( .2
1
)

=
α̂(.2− 1)

ln( .2
1
)

≈ .50α̂. (1.4)

This formula yields the “price elasticity of expenditure.” For a homogenous good

with a linear price, the “price elasticity of expenditure” η, is related to the “price

elasticity of demand” ηdemand, by the following equation:

η =
∂ ln E

∂ ln P
=

∂ ln(Q · P )

∂ ln P
=

∂ ln Q + ln P

∂ ln P
=

∂ ln Q

∂ ln P
+ 1 = ηdemand + 1 (1.5)

where Q measures units of medical care. By subtracting one from the expenditure

elasticity, I could arrive at the price elasticity of demand for medical care under

the simplifying assumption that medical care is a homogenous good with a linear

price that is borne entirely by the consumer. However, since the literature generally

reports expenditure elasticities, I report expenditure elasticities in brackets under

each coefficient.

The estimated expenditure elasticity from the truncated regression is -1.4,

indicating that a one percent increase in price is associated with a 1.4% decrease

in expenditure. Truncation should bias this estimate toward zero, but endogeneity

should bias this estimate away from zero. In the second column, I present results

from the truncated IV regression based on the following model:

lnE = αP + X ′β + u, E > 0, u v TN(0, σ2) (structural) (1.6)

P = Z ′γ + X ′ψ + v, E > 0 (first stage) (1.7)

where all variables are defined as above, Z is a dummy variable that indicates
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family injury, and α is the coefficient of interest. In the truncated instrumental

variables regression, the elasticity computed according to the arc elasticity formula

is -.8. Given that endogeneity should bias the estimate OLS away from zero, it is

intuitive that this estimate is smaller than the OLS estimate. Even with deliberate

truncation, both of these estimates are substantially larger than Eichner’s estimate of

-.33, suggesting that estimates obtained with other estimators on the full set of data

are likely to be large.

Two-part Model

Many of the results from the RAND experiment come from estimators that model

censored outcomes with a two-part model (2PM), which is very common in the health

literature (see Duan et al. (1983)). The advantage of the two-part model is that it

allows the decision to consume any care to be determined in a process separate from

the decision of how much care to consume. The probability density function for

year-end expenditure, E, in the two-part model is as follows:

f(E|X) =
{
[Pr(d = 0|X)1−d Pr(d = 1|X)d]f(E|d = 1, X)d

}
(1.8)

where I define d = 1 if expenditure is positive and d = 0 if expenditure is zero,

and other notation is the same as above. Because the probability density function,

and hence the likelihood function, is separable between the term in brackets and the

last term, this model can be estimated in two parts. As emphasized by Duan et al.

(1983), this separability does not depend on an independence assumption between

the two parts. The first part is generally estimated by a probit model:

Pr(d = 1|X) = Φ(X ′
1β1) (1.9)

where Φ(·) is the standard normal cumulative density function. The second part

is generally estimated by a truncated log-normal OLS regression as in (1.2), which

imposes the following distributional assumption:
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ln E|d = 1, X v N(X ′
2β2, σ

2
2). (1.10)

Although the logarithmic transformation deals with skewness as in the truncated

model, the primary purpose of the logarithmic transformation in the two-part model

is actually to allow for a tractable linear conditional mean function. Although ex-

penditure can take on only positive values, the logarithm of expenditure can take on

both positive and negative values, so the assumption of a linear conditional mean is

more justifiable. Expected medical expenditure is given by the expression:

E[E|X] = Φ(X ′
1β1) exp[X ′

2β2 + σ2/2]. (1.11)

The two-part nature of this model makes the calculation of marginal effects

and elasticities complex. See Mullahy (1998) for a discussion. In particular, if there

is heteroskedasticity, so that σ2 is a function of X2, even though β1 and β2 can be es-

timated consistently, the marginal effects can be inaccurate. Several techniques have

been developed to deal with potential heteroskedasticity in these models, but I will

follow Duan et al (1983) here in making the simplifying assumption of homoskedas-

ticity for computational convenience. I calculate the marginal effect of year-end price

P (included in the vectors X1 = X2) as follows:

∂ ln E[E|X]

∂P
=

ln(Φ(X ′
1β1)) + X ′

2β2 + σ2
2/2

∂P
= β1P

φ(X ′
1β1)

Φ(X ′
1β1)

+ β2P (1.12)

where β1P and β2P are the coefficients on P . To estimate this expression, I

estimate β2 with the truncated OLS and IV models, I estimate β1 with the probit

model, and I estimate the inverse Mills ratio, φ(X ′
1β1)/Φ(X ′

1β1), by predicting it for

every observation in the data and taking the average. I transform this marginal effect

into an elasticity using the arc elasticity formula as in (1.4). In the fourth column

labeled “OLS 2PM,” I present the marginal effects and the elasticity for the Two-Part

model including a probit first step and an OLS second step. As expected because
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this estimate accounts for the zeros, the implied elasticity of -1.9 is larger than the

elasticity implied by the truncated OLS regression.

Because of random assignment to plans in the RAND experiment, it was not

necessary to account for endogeneity in the RAND two-part model. However, in the

fifth column, I attempt to account for endogeneity here by replacing the truncated

OLS second part of the model with a truncated IV second part of the model. I do

not run probit IV in the first step because the probit IV coefficients may not be

identified given the first stage homoskedasticity assumption and the discreteness of

the endogenous variable. (See Chesher (2005).) With this attempt to account for

endogeneity, the estimated elasticity is -1.6, which is slightly smaller than the two-

part model estimate that does not account for endogeneity, but it is still much larger

than estimates from the RAND experiment.

Tobit Model

Unlike the two-part model, the Tobit model, developed by Tobin (1958), models the

intensive and extensive margins simultaneously. In addition, the Tobit model can be

readily extended to deal with endogeneity with a two-step estimator developed by

Newey (1987). Tobit estimates are obtained by maximizing a censored log likelihood

function that is derived by assuming that the error term is normally distributed.

In the presence of non-normality or heteroskedasticity, the estimates are inconsistent.

The instrumental variable version of Tobit is particularly restrictive because it imposes

additional distributional assumptions: a homoskedasticity assumption on the first

stage error term and a joint normality distributional assumption on the structural

and first stage error terms. Furthermore, it is unlikely that the Tobit IV assumption

of homoskedasticity in the structural equation holds given the discreteness of year-

end price, the endogenous variable. However, I present results from the Tobit model

here because it is arguably the most popular way to deal with censoring, and because

Eichner’s results are based on a variation of the Tobit model.

In column 6 of Table 1.6, I present results from a Tobit regression. The
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estimated elasticity of -4.1 is quite large, but we might expect it to be biased away

from zero because of endogeneity. Column 7 presents results obtained with Tobit IV.

After dealing with endogeneity, the estimated elasticity shrinks to -3.2.

The elasticity presented in column 6 is based on the marginal effect of year-

end price on the conditional mean of the latent variable, which can be thought of as

desired medical spending. However, the marginal effect of year end-price on actual

medical spending may also be of interest. It can be calculated according to the

following equation based on the censored conditional mean:

∂E[ln E|X, E > 0]

∂P
= βP Φ(X ′β/σ)

where all variables are defined as in the two-part model. I estimate this marginal

effect by predicting the scaling factor Φ(X ′β̂/σ̂) for every observation. I then multiply

the sample mean of this expression by β̂P , and I calculate the arc elasticity according

to (1.4). As shown in column 8, labeled “Tobit IV mfx,” the estimated elasticity of

actual spending is still quite large at -1.9.

1.5.3 Introduction to CQIV

The advantage of CQIV relative to the traditional estimators discussed above is that

it does not require distributional assumptions to handle censoring, and it allows for

estimation at several conditional quantiles of the dependent variable, instead of just

at the conditional mean. In this application, given that the distribution of medical

expenditure is skewed, effects on the upper end of the expenditure distribution are

generally of interest in discussions of cost containment. CQIV allows me to estimate

the price sensitivity of the people with the highest expenditure. It also allows me to

examine how price sensitivity varies across the expenditure distribution. Since CQIV

is a quantile estimator, it is robust to extreme values.

Even absent outliers, which are likely in this application given the skewness

in medical expenditures, quantile estimators and mean estimators are not likely to

yield the same point estimates because they do not estimate the same quantities.
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Quantile estimates and mean estimates will be similar if the underlying treatment

effect is linear and the error distribution is symmetric and homoskedastic. To the

extent that quantile and mean estimators are linear approximations to underlying

nonlinear functions, it is likely that they will yield different estimates.

CQIV estimates are also likely to be different from estimates obtained with

traditional estimators because CQIV is a semiparametric estimator, and the tradi-

tional estimators discussed above depend on distributional assumptions on the error

term. If the distributional assumptions are correct, the other estimators are more

efficient. If the distributional assumptions are incorrect, CQIV is more robust.

The functional form of the CQIV model that I estimate is very flexible, in

that it allows for random coefficients on year-end price and the control variables that

vary with the quantiles of the expenditure distribution. Specifically, I estimate the

following model:

ln E = T (α(U)P + X ′β(U)) ≡ T (X̃ ′
iθ(U)) (1.13a)

P = φ(X, Z, V ) (1.13b)

V statistically dependent on U (1.13c)

U |X, Z v Uniform(0,1) (1.13d)

τ 7→ α(τ)P + X ′β(τ) strictly increasing in τ (1.13e)

where the variables are as defined above, the censoring function T (x) is defined as

above, and α(τ), the coefficient of interest, varies with the quantile, τ . The expression

given by (1.13d) is completely general because the quantiles of any distribution always

follow a uniform distribution. The expression given by (1.13e) is a standard “rank

invariance” condition. A sufficient condition for rank invariance is that the ordering of

observations does not change with treatment: people who begin at the median remain

at the median when the entire distribution experiences a price change. A necessary

condition for rank invariance is that deviations from the original ordering are not

systematic after the price change. To understand the theoretical and computational
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underpinnings of how the CQIV estimator applies to this model, it is intuitive to

consider censoring and endogeneity separately.

The CQIV estimator handles the theoretical issues associated with censoring

in the spirit of Powell’s censored quantile regression (CQR) model (Powell (1986)).

Censoring induces attenuation bias in traditional quantile regression much in the

same way it induces bias in mean regression. Quantile regression is based on the

assumption that the conditional quantiles of lnE depend linearly on P . Since quan-

tile regression uses information from the entire sample, if some observations on lnE

are censored, the quantile regression lines can be biased toward zero at all quantiles.

However, because quantiles are invariant to monotonic transformations, and censor-

ing is a monotonic transformation, quantile estimators can be extended to handle

censoring without any distributional assumptions. Intuitively, Powell’s estimator

eliminates attenuation bias by using the entire sample to determine which observa-

tions are least likely to be censored and estimating the coefficients based on those

observations. Technically, Powell’s model incorporates a censoring mechanism di-

rectly into the estimator. Powell’s censored regression model, as applied to Equation

(1.13a), abstracting away from endogeneity, is as follows:

θ̂(τ) minimizes
n∑

i=1

ρτ (ln Ei − T (X̃ ′
iθ)). (1.14)

where ρτ (u) = {(1 − τ)1(u < 0) + τ1(u > 0)}|u|. Despite its intuitive appeal,

this model is rarely used because the function T (x) induces nonconvexities in the

objective function that present computational difficulties.

Chernozhukov and Hong (2002) devised a tractable computational algorithm

for Powell’s model based on the idea that Powell’s censored regression model estimates

the coefficients using observations that are not likely to be censored. Accordingly,

the algorithm is a three-step procedure that predicts which observations are least

likely to be censored and estimates the coefficients based on those observations. The

first step involves a parametric prediction of the probability of censoring based on a

probit or logit model. A set fraction of observations that are unlikely to be censored
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are retained for estimation via quantile regression in the second step. After the

second step, a larger set of observations is retained based on the predicted values of

the dependent variable. This sample gets asymptotically close to the ideal sample of

non-censored observations, and consistent estimates are obtained through a third step

of quantile regression on this sample. In the computation of the CQIV estimator, I

use an analog of the Chernozhukov and Hong (2002) algorithm to handle censoring.

In its theoretical handling of endogeneity, the CQIV estimator is based on

the instrumental variable quantile regression estimator of Chernozhukov and Hansen

(2008). Following Chernozhukov and Hansen (2008), the “structural quantile func-

tion”

Sln E(τ |p, x) = T (α(τ)p + x′β(τ)) (1.15)

describes the quantile function of the latent outcome variable ln Ep, which could be

observed for each potential price p and potential set of covariates x if these variables

could be manipulated as in a randomized experiment. Given the conditional uniform

distribution of U , and the rank invariance condition, the event {ln E ≤ Sln E(τ |P, X)}
is equivalent to the event {U ≤ τ}, yielding the following conditional moment restric-

tion:

Pr[ln E ≤ Sln E(τ |P,X)|Z, X] = τ. (1.16)

Intuitively, this conditional moment restriction requires that the instrument is inde-

pendent of the residual at each quantile τ , which can be interpreted as a generalization

of a standard instrumental variables assumption to a quantile framework. Based on

this conditional moment restriction, the true coefficients will satisfy the structural

quantile function which satisfies

arg min
f∈F

Eρτ [(ln E − Sln E(τ |P,X)− f(Z,X)] (1.17)

where F is the class of measurable functions of (Z, X). CQIV estimates are

based on a finite sample analog of (1.17). In Chernozhukov and Kowalski (2008),
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Victor Chernozhukov and I propose an algorithm to compute estimates according to a

finite sample analog of the above equation using a control function approach. In the

current paper, which was completed prior to Chernozhukov and Kowalski (2008), I use

a slightly different algorithm, which is a more direct combination of the Chernozhukov

and Hong (2002) and Chernozhukov and Hansen (2008) algorithms. The main CQIV

results of this paper are the same across both algorithms up to the reported number

of significant digits. Formally, in this paper, I estimate the CQIV coefficients for

each quantile τ as follows:

(γ̂(α, τ), β̂(α, τ)) = arg min
β,γ

Qn(τ, α, β, γ) (1.18)

Qn(τ, α, β, γ) =
1

n

n∑
i=1

ρτ (ln Ei − T (αPi + X ′
iβ)− Z ′

iγ). (1.19)

To execute the algorithm, for each τ, I run the τ−censored quantile regres-

sion of ln Ei − αPi on X and Z, over a grid of α ∈ A, where A is chosen to be large

enough to incorporate all plausible values of the coefficient of interest. I choose

α̂(τ) to be the value for which the coefficient on the instrument, γ̂(τ), divided by its

variance, is closest to zero. Formally, α̂(τ) is the value in the grid that yields the

smallest value of the objective function W (α) as follows:

α̂(τ) = arg inf
α∈A

[W (α)], W (α) := [γ̂(α, τ)′]Â(α)[γ̂(α, τ)]. (1.20)

In practice, I set A(α) equal to the inverse of the asymptotic covariance matrix

of
√

n(γ̂(α, τ) − γ(α, τ)) so that W (α) is the Wald statistic for testing γ(α, τ) = 0.

All values of α that produce a value of W (α) lower than the .95 critical value of the

chi-squared distribution fall within a 95% confidence interval on α̂(τ). In practice,

the highest and lowest such values of α are reported as upper and lower bounds on

the estimated α̂(τ). Although this procedure does not yield a standard error and

associated symmetric confidence interval, the upper and lower bounds serve the same

purpose. Following a proof by Chernozhukov and Hansen (2008) these upper and
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lower bounds are robust to weak identification.

I transform the estimated α̂(τ) into an expenditure elasticity via a direct

analog of (1.4). For point estimates of the coefficients on the other covariates, I

report the values of those coefficients at α̂(τ). The upper and lower bounds of these

coefficients are computed as the highest and lowest values of these coefficients for

which α̂(τ) is within its 95% confidence interval.

1.5.4 Main Results

Although it is intuitive to compare mean elasticities to median elasticities, it is not

possible to obtain reliable CQIV results at the median because of the heavy censoring

of expenditure in this application. Intuitively, at conditional quantiles where zero

expenditure is likely, the marginal price can have an effect on two margins - the

decision to spend anything at all, and the decision to change spending conditional on

spending a positive amount. If changes in price and other factors are not sufficient

to induce people to visit the doctor at all, it is not possible to estimate the effect

of small changes in price. With 40% censoring, it seems reasonable that CQIV

coefficients are not reliable at the median. In CQR, results cannot be obtained at

the quantile corresponding to the percent of censored observations because there is

noise in the prediction of which observations are least likely to be censored. In CQIV,

the prediction of which observations are least likely to be censored depends on the

instrument, which adds noise to the prediction. The lowest quantile for which results

can be obtained in this paper is the .55 quantile, but estimates at the lowest estimable

quantiles are not very precise.

To demonstrate the relative precision of the CQIV estimates across quantiles

from .55 to .95, Figure 1-4 presents separate graphs of the CQIV objective function,

W (α), at each quantile, as estimated in the sample of 2004 employees. The horizontal

axis of each graph is the estimation grid over the year-end price coefficient α, which

extends from -10 to -2 in increments of .1. The vertical axis of each graph is the

value of W (α) evaluated at each α. The horizontal line, drawn at the same value in

47



the graph for each quantile, is the critical value for a 95% confidence interval on α.

In each graph, all values of α for which the value of W (α) is below the horizontal line

are within the 95% confidence interval on the coefficient on year-end price at that

quantile.

As shown in the three graphs in the top row of Figure 1-4, identification is

very limited in the .55 to .65 quantiles, where a wide range of values of α, including the

lower limit of the grid, are included in the 95% confidence interval. However, at higher

quantiles, the shape of W (α) becomes more convex, and the range of values within

the 95% confidence interval narrows. At all quantiles, the value of the objective

function is relatively large at the upper limit of the grid. To facilitate comparison

across quantiles, a few extreme values of W (α) greater than 30 are omitted from the

graphs. Values of the objective function at an α of zero (not shown) are well above

those depicted, indicating that zero is well outside the 95% confidence interval at all

estimated quantiles. Even though the grid is over the year-end price coefficient α, and

not the elasticity, it is worth noting that zero is never in the 95% confidence interval

on α, indicating that the transformed elasticity will not be zero.

In each graph, the point estimate on the year-end price coefficient is the

value of α at which the objective function W (α) is minimized. The first row of Table

1.7 presents the corresponding point estimates and their associated upper and lower

bounds in tabular form. In the table, I only report estimates from the .65 quantile

and above. As in the previous table, expenditure elasticities are shown in brackets.

In all of the CQIV results in this paper, since the grid on α is in increments of .1, the

expenditure elasticity is estimated in increments of .05, and I report its value to one

decimal place.

In all of the estimated quantiles, the CQIV expenditure elasticities are an

order of magnitude larger than those in the literature. For example, at the .85 quan-

tile of the expenditure distribution, the implied expenditure elasticity is -2.3, which

indicates that a one percent increase in price would decrease spending at the .85

quantile of the expenditure distribution by 2.3 percent. This elasticity estimate is

fairly stable across the quantiles from .65 to .95, indicating that price responsiveness,
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though strong, does not tend to vary among people in the highest quantiles of the

expenditure distribution.

The next two sets of rows in Table 1.7 present coefficients estimated on less-

restrictive samples that include spouses and other dependents in each family. The

patterns in the estimates across the quantiles are very similar to those in the employee

sample, but the estimates are slightly more precise given the larger sample sizes. The

elasticities estimated on the 2003 sample, presented in the bottom panel of Table 1.7,

show remarkably similar patterns. The similarity of the estimates between 2003 and

2004 provides some evidence of robustness, and it suggests that price responsiveness

did not change between 2003 and 2004. Even though price responsiveness does not

tend to vary across the estimated quantiles, the coefficients on the covariates, not

reported here, vary dramatically, indicating that models such as Tobit IV, which

impose constant treatment effects for all coefficients, sacrifice flexibility.

The last column of Table 1.7 presents Tobit IV coefficients for comparison to

the CQIV coefficients. I present the untransformed Tobit IV coefficients, which give

the effect on desired spending, because they should be the most comparable to the

CQIV coefficients at high quantiles. Since Tobit IV imposes a constant treatment

effect across all quantiles, the single Tobit IV coefficient can be compared directly

to the CQIV coefficient at each quantile. In all specifications, the estimated Tobit

IV coefficient is more negative than all of the quantile coefficients above the .65

quantile. If the underlying price responsiveness is constant across the expenditure

distribution, a large difference between the Tobit IV estimate and the CQIV estimates

could indicate that the distributional assumptions made by Tobit IV are restrictive.

Formally, a Hausman (1978) test statistic can be constructed to compare the Tobit

IV estimate to the CQIV estimates at each quantile. This is a joint test of the Tobit

IV normality and homoskedasticity assumptions. If these conditions hold, Tobit IV

should be consistent and efficient, and CQIV should be consistent. It is possible to

construct the test statistic through a bootstrapping procedure, but the discrepancy

between the estimates is so large that the test null hypothesis is rejected though

informal comparison.
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As another method of comparison, it is also informative to construct an infor-

mal bound on the mean estimate by transforming the distribution CQIV of estimates.

Assume, based on the main CQIV estimates, that the expenditure elasticity is con-

stant at -2.3 from the .65 quantile to the top of the expenditure distribution. Since

we cannot measure price responsiveness at other quantiles of the distribution, make

the conservative assumption that the expenditure elasticity is zero at these quantiles.

If the true price responsiveness at these quantiles is zero, a lower bound on the true

mean elasticity, assumed constant over all quantiles is (1 − .65) × −2.3 = −.805.

This lower bound is very similar to the truncated instrumental variables elasticity,

the lowest elasticity attained in the above comparison of traditional estimators.

1.5.5 Closer Examination of Endogeneity

As discussed above, a simple OLS regression in this application should be biased

toward zero because of censoring, and it should be biased away from zero because of

the mechanical link between expenditure and marginal price. In contrast, the CQIV

estimator should not be biased because it accounts for censoring and endogeneity.

To get a sense of the magnitude of the endogeneity, it seems instructive to compare

the main CQIV coefficients to similar coefficients obtained through CQR, just as

one would compare IV coefficients to OLS coefficients; however, censoring makes the

comparison less straightforward.

Table 1.8 presents CQIV coefficients and CQR coefficients. The CQR coeffi-

cients in the second row are estimated according to the algorithm of Chernozhukov

and Hong (2002), and those in the third row are estimated directly using Powell’s

censored quantile regression objective function. In both sets of censored quantile coef-

ficients, I report an extra significant digit to demonstrate that although the estimates

are asymptotically the same, they differ slightly in finite samples. It is easy to report

an extra significant digit for the CQR estimates because, unlike the CQIV estimates,

they are not estimated on a grid. At the lowest estimated quantiles, both sets of

CQR estimates are larger in magnitude than the CQIV estimates, as expected. How-

ever, this relationship reverses above the .70 quantile, where the CQIV coefficients
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are estimated more precisely.

To understand why the CQIV coefficients can sometimes be larger in mag-

nitude than the CQR coefficients, it is helpful to recall that both estimators use

information to select the sample based on the observations that are least likely to be

censored. However, the CQIV estimator uses more information than the CQR esti-

mator because it selects the sample based on the instrument as well as the covariates.

Thus, in the presence of endogeneity, the CQR estimator still suffers from censoring

bias toward zero, even though the CQIV estimator does not.

1.6 Specification Tests

1.6.1 Timing of Family Injury

Regardless of the timing of the family injury, I aggregate medical spending over the

entire plan year to ensure that I capture all expenditure responses to injuries. Unlike

in other analyses, where the year is a useful construct that allows for a discrete

representation of variables that move continuously, the plan year has intrinsic meaning

because the cost sharing parameters reset at the end of the plan year. An event-study

design based on the timing of family injuries would be difficult to implement here

because there is no reason that family members should react immediately as long as

they react before the end of the plan year. Similarly, a regression discontinuity design

based on the timing of the price change would not have much power. Immediately

after a family injury, consumers can see price changes coming even if the actual

meeting of the family deductible does not occur until much later, so price responses

need not coincide with the timing of the price change. Furthermore, since such a

small fraction of the sample receives care on any given date, intertemporal patterns

in medical care usage are difficult to detect, and they are easily confounded with

seasonal patterns. Even though my estimates will not generally capture shifting of

expenditures from month to month, they can capture shifting of expenses from year

to year. To the extent that many insurance contracts only cover beneficiaries for a
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single year, year-end expenditures are a policy-relevant outcome.

In my main specifications, by examining year-end expenditures, I make the

implicit assumption that individuals have enough time to react to all family injuries

before the end of the plan year. As the timing of the family injury approaches the

end of the year, this assumption becomes less plausible, but I do not automatically

omit family injuries that occur near the end of the year for fear of imposing a seasonal

bias. Table 1.9 shows the distribution of the first family injury claim by month. I

measure the timing of the first claim on the grounds that the first claim is the first

possible opportunity for a family response. Measurement of the first claim shifts

observed injury incidence toward the start of the year, but a seasonal pattern is still

visible in the table.

As a specification test, I drop the 810 employees that have their first family injury

in October or later, and I re-estimate my main specification. If these employees do

not have sufficient time to react to family injuries, or if their expenditures are driving

my main results, the results in this specification test should differ from the main

results. The second panel in Table 1.10 shows the results from this family injury

timing specification test. At all quantiles, the point estimates are almost exactly the

same as the point estimates from the main specification, shown in the first panel.

For comparative purposes, the next specification in Table 1.10 shows results obtained

by dropping all 3,076 employees with family injuries before October. As expected

given that this specification eliminates almost 80% of injuries, the confidence intervals

on these estimates are large and often include the upper and lower bounds of the

estimation grid. A finding of larger price responsiveness in this specification would be

cause for concern, because, if anything, we expect that estimated price responsiveness

should be lower if some people with family injuries late in the year will not have

adequate time to respond. However, the point estimates suggest the same or slightly

less price responsiveness than that in the main specification.

In the next two specifications of Table 1.10, I report results from similar spec-

ification tests that include injuries from only the first and second half of the year,

respectively. Elasticities based on injuries from the first half of the year are slightly
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higher than the main estimates, at approximately -2.5, and elasticities based on in-

juries from the second half of the year are slightly lower than the main estimates.

These specification tests suggest that the effect of the timing of the injury on the

main elasticity estimates is small relative to their overall magnitude. Thus, I include

injuries that occur throughout the year in my main specification to avoid potential

seasonal bias within my year-end expenditure model. An extension of my year-end

expenditure model to a full dynamic model could be an interesting area for future

research.

1.6.2 Income Effects

In my analysis, there is potential cause for concern if family injuries affect family

income and family income affects expenditure. In my analysis, I cannot control for

income directly because I do not observe it. As mentioned above, I try to proxy for

income with covariates. In addition, I can rely on Newhouse (1977), which shows

that income effects on medical expenditure tend to be large across countries and small

within countries, to argue that income effects should be small in response to an injury.

However, it is perhaps more convincing to test directly for income effects directly in

my data.

Since all of the individuals in my data are insured, the income loss from an injury

itself is likely to be small, but the income loss associated with an injury can be larger

if it prevents the injured party from working. The idea behind my specification test

is that if there are large income effects due to the injury of a wage earner, we might

expect an employee’s response to a spouse’s injury to be different than an employee’s

response to a child’s injury. Accordingly, I re-estimate the main specification two

times: one time keeping just the employees with child injuries or no family injuries,

and another time keeping just the employees with spouse injuries or no family injuries.

As shown in the third panel of Table 1.10, the specification with just child injuries

gives almost the exact same point estimates as the main specification with spouse

AND child injuries, which is not surprising given that 4/5 of the injuries in my

sample are to children. The specification with just spouse injuries, which is not as
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well identified, also yields point estimates that are the similar or, if anything, smaller

in magnitude. All in all, this specification test suggests that income effects are not

large relative to my main elasticity estimates.

1.6.3 Plan Variation

As discussed above, employees can select into four different plans, and most employees

are included in the $350 deductible plan. The main specification includes a saturated

set of plan controls, but it does not allow price responsiveness to vary by plan. If

we assume that injury occurrence is independent of factors leading to plan selection,

then we can test the viability of restricting price responsiveness to be the same across

plans. Though the main specification relies on within-plan identification, this test

uses across-plan variation. In plans with lower deductibles, injuries should have

larger first stage effects on price than they would in plans with higher deductibles

because a given injury has a larger chance of causing the deductible to be met when

the deductible is lower. If the first stage does indeed vary by plan as expected, and

price responsiveness does not vary by plan, then the reduced form effect of price on

expenditure should also vary by plan, leading to instrumental variables estimates that

are the same across plans. However, if price responsiveness is not the same across

plans, instrumental variables estimates will yield a local average treatment effect that

gives the most weight to the price responsiveness in the plan with the largest first

stage.

In Table 1.11, I present results from OLS first stage regressions by plan. Although

the CQIV algorithm used in the main specification does not explicitly use an OLS

first stage, OLS estimates should be informative because the econometric issues that

motivate the use of CQIV do not arise in the first stage. As shown in the first column,

in the sample that includes all plans, a family injury reduces year-end price by .11,

relative to a mean price of .65. As expected, columns 2 through 4 show that the first

stage coefficient decreases as the deductible increases. Furthermore, the magnitude

of the decrease in the point estimates corresponds roughly to the magnitude of the
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decrease in the deductible. Continuing the test, in the fourth panel of Table 1.10,

I present results from a full CQIV specification estimated only on the employees in

the $350 deductible plan. In separate CQIV regressions for the other plans that

are not shown in the table, the point estimates have similar magnitudes, but the

95% confidence intervals are very wide. In all specifications, price responsiveness is

broadly the same by plan as it is in the main specification, suggesting that there must

be a differential reduced form effect by plan to compensate for the differential first

stage. Since the lowest deductible plan is the most popular, and it has the largest

first stage, most identification comes from the lowest deductible plan, but this test

lends support to the restriction that price responsiveness is the same across plans.

1.6.4 Outpatient Spending vs. Inpatient Spending

Since the potential for cross-substitution is so vast among the medical services cov-

ered by the plans that I study, I do not examine expenditure responses by therapeutic

category. However, it could make theoretical sense to separate inpatient expenditure

from outpatient expenditure because it is conceivable that they are not close substi-

tutes and that price responsiveness varies across these two types of expenditure. The

intuition behind estimating separate inpatient and outpatient expenditure specifica-

tions comes from a concern that inpatient expenditures could be driving the results

in my main specification. These specifications have precedent because the RAND

study examined both types of spending separately, and they are feasible because the

Medstat data clearly differentiates inpatient spending from outpatient spending.

With few exceptions, individuals with any medical expenditure have outpa-

tient expenditure. Approximately 64% of the sample has some outpatient expen-

diture, and only 4% of the sample has some inpatient expenditure. On average,

individuals with any outpatient expenditure spend $1,585.90, and individuals with

any inpatient expenditure spend $9,068.30. If I omit inpatient expenditures from

the dependent variable and get similar estimates, I can be more confident that large

inpatient expenditures, which could be less elastic a priori, are not driving the results.

In the fifth panel of Table 1.10, I present the results from a modification of the
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main specification in which the dependent variable includes only outpatient spending.

The results in the table suggest that the elasticity of outpatient expenditure with re-

spect to marginal price is approximately -2.0 across the .65 to .95 quantiles, which

is slightly smaller than the elasticity of total expenditure. However, the estimates at

each quantile of the outpatient specification are not directly comparable to the esti-

mates in the main specification. In the main specification, the quantile assumption

is that the log of the conditional quantiles of inpatient plus outpatient expenditures

are linear in the price, and in the outpatient specification, the quantile assumption

is that the log of the conditional quantiles of outpatient expenditures only are linear

in the price. Given these differing assumptions, the coefficients at specific quantiles

cannot be compared without further restrictive assumptions. For example, it is likely

that people with inpatient expenditures are likely to be above the .95 quantile of the

main specification, but it would be restrictive to assume that they are also above

the .95 quantile in the outpatient specification. This example highlights a general

phenomenon: although it is natural to use mean estimators to compare models with

different dependent variables, similar comparisons are less natural with quantile esti-

mators. Quantile estimates from a regression that includes only inpatient spending

in the dependent variable provide an even starker example of the difficulty of compar-

ing quantile models with different dependent variables. Since inpatient expenditures

are zero at the .95 quantile, the quantile coefficients are not even identified at or

below any of the quantiles reported in the table, making comparison to the main and

outpatient specifications very difficult.

However, the general intuition that suggests comparing a specification with

inpatient expenditures only to the main specification comes from experience with

mean estimators which can be biased because of extreme values. Such tests have

less merit in applications that use quantile estimators because quantile estimators are

not as sensitive to outliers. Rather, if people with inpatient expenditures are at the

highest quantiles of the main specification, and they have different underlying price

responsiveness, this will be reflected in coefficients estimated at the highest quantiles.

In the last panel of Table 1.10, I present results estimated on the baseline specification
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at the .975 through the .995 quantiles in increments of .005. The point estimates

suggest that price responsiveness is larger among consumers with the very highest

expenditures. However, the confidence intervals are very large and often include the

endpoints of the estimation grid. The large confidence intervals are likely a result of

poor identification in the region of the very highest expenditures; employees at the

highest quantiles are unlikely to change expenditure in response to a family injury.

Especially since inpatient expenditures are so infrequent in the sample, and since

individuals with inpatient expenditures are generally in the highest quantiles of the

total expenditure distribution, it is likely that identification in the main specification

comes mostly from outpatient spending. Furthermore, on the whole, the estimated

outpatient elasticities are similar to the elasticities in the main specification.

1.7 Robustness Tests

1.7.1 Couples Data

For the instrument to satisfy the exclusion restriction in the main specification, it

must be true that one family member’s injury does not affect another family member’s

spending outside of its effect on his marginal price. At the firm that I study, in families

of two, there is no mechanical effect of one family member’s spending on another

family member’s marginal price. Therefore, any effects of one family member’s injury

on another family member’s spending presumably operate through another channel.

Although the exclusion restriction is not an econometrically testable restriction in the

main sample of families of four or more, evidence that there is no effect of one family

member’s injury on another family member’s spending in a family of two supports

the validity of the exclusion restriction in the main specification.

To formalize this test, I use the following model, which I estimate with censored

quantile regression:

57



ln E = Z ′δ(U) + X ′β(U) (1.21)

U |X, Z v Uniform(0,1)

τ 7→ Z ′δ(τ) + X ′β(τ) is strictly increasing in τ.

This specification differs from the main specification only in that, in instrumental

variables terminology, it examines the “reduced form” effect of the family injury on

lnE directly. A traditional instrumental variables specification would not be infor-

mative here because the first stage cannot exist in families of two.

I estimate this specification on the “couples” sample of 2004 employees in

employee-spouse families of two. For comparison, I also estimate this specification on

the sample of employees in families of four or more. Because price interactions are

possible through the stoploss for people in families of three, I do not include people

in families of three in this test. To ensure that the results from the family sample

are as comparable as possible to the results from the couples sample, I estimate an

additional family specification that is only identified off of injures to spouses.

Column 7 of Table 1.2 presents summary statistics on the couples sample.

Comparison with Column 1 shows that employees in couples tend to be much older

than employees in families of four or more, suggesting that the couples population

consists mostly of older “empty nesters” and young couples without children. Fur-

thermore, employees in couples have much higher average expenditures on medical

care than their counterparts in families of four or more. Only 24% of employees in

couples consume zero care, as opposed to 36% in families of four or more. Given

that employees in the couples sample consume more medical care, we should be more

likely to observe spurious effects of other family injuries on spending in the couples

sample than in the family sample. Since the couples sample is much larger than the

family sample, to remove effects of sample size from the comparison, I conduct the

estimation in 100 random subsets of the couples sample of the same size as the family

sample.
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The results in the first row of Table 1.12, which were estimated on one cou-

ples sample, show that the effect of the instrument on expenditure in couples is not

statistically different from zero. In the 100 random couples samples taken together,

the median point estimate at each quantile is generally not statistically different from

zero. In contrast, the coefficients in the family specification in the second row sug-

gest that employees with an injured spouse or dependent spend .27 to .45 percent

more on their own medical care. In many quantiles, the entire confidence interval for

the families exceeds the entire 95% confidence interval for the couples. In the family

specification, the 95% confidence interval never includes zero. In contrast, the 95%

confidence interval includes zero at almost all quantiles in the couples specification.

In the couples point estimates shown, even though the pointwise confidence intervals

at the .65 and .75 quantiles do not include zero, a conservative calculation of a uni-

form confidence interval over all quantiles would include zero, given that the lower

bounds at these quantiles are already so close to zero. Tobit coefficients, shown in the

last row for comparison, do not include zero in the confidence interval, but they are

substantially smaller in the couples specification than they are in the family specifi-

cation. Overall, this comparison lends strong support to the validity of the exclusion

restriction.

One concern with the couple/family comparison is that identification in the

couples specification comes from family injures to spouses, and identification in the

family specification comes from family injures to spouses as well as other dependents.

To the extent that injures to spouses are fundamentally different than injuries to

dependents, this comparison becomes less informative. Furthermore, it is possible

that injuries to children are less likely to violate the exclusion restriction than injuries

to spouses. For example, if an employee is sick, he might spend less time watching his

child, and his child may be more likely to get injured. In this scenario, there will be a

violation of the exclusion restriction because the employee will have medical expenses

for his own illness, and his child will be injured, and these two phenomena are not

related through the marginal price of medical care. However, a similar story is less

plausible in relation to the injury of a spouse. Thus, a family specification identified
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off of injuries to spouses provides a better comparison for the couples specification,

and it could be interesting in its own right. A CQIV version of this specification was

presented above in the discussion of income effects, but I re-estimate a reduced form

version of this specification for comparison to the couples specification here.

The third row of Table 1.12 presents results from a family specification that is

identified off of injuries to spouses. In this specification, 760 employees have injured

spouses and 25,124 employees have no family injuries. Relative to the main family

specification, 3,126 of the 3,886 families with non-spouse injuries are eliminated from

the sample. Even though the instrument should have less power in the modified

family specification, the confidence intervals do not include zero at any quantile,

further reinforcing the validity of the exclusion restriction when compared to the

couples specification. Moreover, the point estimates are stable across the two family

specifications, suggesting that the identification strategy is robust to the source of

the family injuries included in the instrument.

1.7.2 Longitudinal Data

Identification in my main specification relies on price shocks faced by employees when

dependents have an injury. Given the price responsiveness suggested by the main

specification, if injuries are true shocks to the price, then employees in families with

injuries should spend more in the year of the injury than they did in the previous

year. To formalize this test, I limit my sample to employees in families of four or

more in which every family member is continuously enrolled in 2003 and 2004. This

requirement severely limits the sample size. I also exclude employees who have

injuries themselves in either year. On the resulting estimation sample of 18,743

individuals, I estimate the following specification with ordinary least squares:

E2004 − E2003 = b1Z2004only + b2Z2003only + b3Z2004&2003 + X ′β + v (1.22)

where the dependent variable, (E2004 − E2003), is the change in expenditure from
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2003 to 2004. The first three independent variables flexibly represent three of the

four possible changes in family injury status from 2003 to 2004: Z2004only is a dummy

variable that indicates that the individual had a family injury in 2004 but not in 2003,

Z2003only is a dummy variable that indicates that an individual had a family injury

in 2003 but not in 2004, and Z2004&2003 is a dummy variable that indicates that the

individual had a family injury in both years. The vector X, which contains the 2003

values of the standard set of controls, is omitted from initial estimates.

The coefficient b1 is of interest because it gives the change in expenditure

between 2003 and 2004 for individuals that only have a family injury in 2004 relative

to individuals who have no family injury in either year. If a family injury represents

a true shock to the price, and family members respond in the year of the injury,

this coefficient should be positive. Similarly, the coefficient b2 is of interest because

it gives the change in expenditure between 2003 and 2004 for individuals that only

have a family injury in 2003 relative to individuals who have no family injuries. This

coefficient should be negative.

Conditional on positive b1 and negative b2, comparison of the magnitudes of

b1 and b2 allows for a one-sided test of the null hypothesis that consumers increase

contemporaneous expenditures through a mechanism other than inter-year expendi-

ture shifting. Assuming that the contemporaneous expenditure increase in response

to a family injury is the same in 2003 and 2004, and consumers achieve this contem-

poraneous increase by shifting forward 2004 expenditures to 2003, b2 will be negative

and larger in magnitude than b1, and the null hypothesis will be rejected in favor of

inter-year expenditure shifting. If, instead, b2 is smaller in magnitude than b1, we

cannot reject the null hypothesis because it is possible that employees begin treat-

ment in 2003 in response to an injury but then have some residual expenditure that

extends into 2004. The sign of the coefficient on Z2004&2003 is theoretically ambiguous

because the first stage price response need not be the same in both years, but it is

included as a control variable.

The specification estimated here differs in several ways from other specifica-

tions estimated in this paper. Unlike in the previous specifications, the dependent
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variable is specified in levels so that the dummy variables allow for a fixed level change

in expenditure from 2003 to 2004 instead of a fixed percentage change. Because I am

fundamentally interested in the effect of a difference in family injury status on the

overall sample, and not on the people who experience the largest changes in expen-

ditures, I do not estimate a quantile model. Furthermore, because the values of the

dependent variable can be negative or positive, there is no need for a censored es-

timator. There is a mass point in the dependent variable at zero because 21.5% of

individuals have no change in expenditures from 2003 to 2004, but the overall distri-

bution of the dependent variable is approximately symmetric, so OLS should be an

appropriate estimator.

In the sample, only 1.6% of employees have a family injury in 2003 and 2004,

suggesting that there is limited persistence in family injury status, so it is plausible

that family injuries are indeed shocks to most families that experience them. A

further 16.3% of the sample has a family injury in one year but not in the other:

5.5% of employees have a family injury in 2004 only, and 10.8% of employees have a

family injury in 2003 only. The remaining employees have no family injury in either

year.

The estimates in Table 1.13 support the conclusion that family injuries induce

shocks to spending in the year that they are experienced. The first coefficient in the

first column, the estimate of b1, indicates that individuals with a family injury in 2004

and no family injury in 2003 have an expenditure difference between 2004 and 2003

that is $482.58 larger than the analogous expenditure difference for individuals who

never have a family injury. This coefficient is statistically significant at the 5% level,

and it remains statistically significant and of a similar magnitude in the specification

in the second column, which includes demographic control variables. Although the

estimated b2 is not statistically significant in either column, the sign is negative as

expected. The point estimate indicates that individuals with a family injury in 2003

and no family injury in 2004 spend $82.12 more in 2003 relative to 2004 as compared

to individuals who do not have a family injury in either year. Though the standard

errors on this point estimate are large, they do not include negative amounts larger in

62



magnitude than the estimate of b1, so the null hypothesis that increased expenditure

in 2003 is not the result of direct shifting of expenditure from 2004 is maintained.

To further investigate potential inter-year expenditure shifting by decompos-

ing the 2004 effect out of the difference specification, I estimate an analog of (1.13)

with 2004 expenditure as the dependent variable. If the negative estimated b2 comes

primarily from shifting of expenses from 2004 to 2003 in response to an injury, the

new coefficient on Z2003only should be negative. Alternatively, if the negative esti-

mated b2 comes from follow up to care initiated in response to an injury in 2003, the

new coefficient on Z2003only should be positive. Unlike in the previous specification,

OLS is no longer as appropriate because of censoring and skewness, but I use it for

comparison to the previous specification. The new estimated coefficient on Z2003only

in the specification with covariates indicates that employees with family injuries in

2003 spend $244.23 more in 2004 than employees with no family injuries in 2003 or

2004. The 95% confidence interval includes only a limited negative range, provid-

ing little evidence in favor of expenditure shifting from 2004 as the mechanism for

increased spending in 2003.

Overall, the results using longitudinal data indicate that employees with a family

injury in 2004 but not 2003 spend more in the year of the injury than they did in the

previous year, relative to people with no family injuries in either year. Examination of

the panel data in the other direction indicates that employees with a family injury in

2003 but not 2004 spend more in the year of the injury than they do in the subsequent

year, relative to people with no family injuries in either year. Further examination

indicates that the mechanism for the increased expenditure in 2003 is not likely to

be full shifting of expenditures from 2004, but these results are not conclusive. In

another context, Oyer (1998) finds evidence of inter- and intra-year shifting of key

business variables by business executives with annual contracts. Given the large

expenditure elasticities estimated in this paper, identifying the mechanisms through

which consumers manipulate medical expenditure is an important topic for future

research.
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1.8 Extension: Prescription Drug Cross-Price Elas-

ticity

In the plans that I study, prescription drugs are not included in the main cost sharing

provisions, so the marginal price of prescription drugs differs from the marginal price

of other medical services. Thus, it is possible to examine the cross-price elasticity

of prescription drug expenditure with respect to the marginal price of other medical

services. To do so, I estimate the main CQIV specification with prescription drug

expenditure in the place of other medical expenditure as the outcome variable.

In the drug specification, the first stage is the same as it is in the main

specification, but the exclusion restriction changes. If the exclusion restriction is

valid in the main specification, it is plausibly also valid in the drug specification.

A violation of the exclusion restriction in the drug specification would require that

one family member’s injury is related to another family member’s drug expenditure

through a mechanism outside of the marginal price of other medical services.

The cross-price elasticity can be obtained from the coefficient on the marginal

price of other medical services in the drug specification. If services and drugs are per-

fect complements, the cross-price elasticity of prescription drugs will be the same as

the own-price elasticity of services. If they are complements, but not perfect com-

plements, the cross-price elasticity will be smaller in magnitude but still negative. If

they are not related, the cross-price elasticity will be zero, and if they are substitutes,

the cross-price elasticity will be positive.

In the main estimation sample of 2004 employees, there is slightly more cen-

soring in drug expenditures than in overall expenditures: 52% of people in the main

estimation sample consume no drugs, and 38% of people in the main 2004 estimation

sample consume no services. Given the higher degree of censoring, I am not able to

estimate the cross-price elasticity at the .65 quantile, but I can estimate it at all of

the other quantiles estimated in the main specification. However, because of reasons

discussed with regard to inpatient and outpatient spending, it is not necessarily ap-

propriate to compare estimates from the drug specification to estimates from the main
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specification on a quantile-by-quantile basis, though comparisons of overall patterns

can be informative.

Table 1.14 presents results from the main specification and the drug specifica-

tion. Overall, the estimated cross-price elasticity varies non-systematically across the

quantiles from -1.3 to -2.3, suggesting a strong complementarity between prescription

drug expenditures and expenditures on other medical services. It is important to note

that this complementarity is on a percentage basis, and not on a dollar-for-dollar ba-

sis. In the sample, mean prescription drug spending is $277.94, and mean spending

on other services is $1,484.75.

The estimated strong complementarity is surprising given recent results by

Li et al. (2005), who examine changes in prescription drug copayments over time and

find evidence of substitution between prescription drugs and other medical services.

Mathematically, the cross-price elasticity of other medical services with respect to the

marginal price of prescription drugs should be the same as the cross-price elasticity of

prescription drugs with respect to the price of other medical services. Empirically, it

seems likely that the Li et al. results differ from mine precisely because their variation

comes from drug prices instead of the price of other medical services. Furthermore,

they examine dynamic variation in drug prices across years, and I examine within-year

variation in the price of medical services. Findings from the RAND experiment, which

also examined within-year price variation, suggest that complementarity is possible

because prescription drug expenditures have a strong relationship to the number of

visits to the doctor, which varies with plan cost sharing parameters. However, the

RAND experiment did not allow for direct estimation of the cross-price elasticity

because prescription drugs were covered under the same cost sharing provisions as

other medical services.

In the final rows of Table 1.14, I present results from another CQIV specifi-

cation, in which the dependent variable is the logarithm of the sum of prescription

drug expenditures and expenditures on other medical services. Given the evidence of

strong complementarity, this specification arguably estimates a more policy-relevant

parameter because it captures the effect of marginal prices on a wider range of medi-
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cal expenditure. The estimated coefficients suggest that the elasticity of spending on

prescription drugs and other medical services with respect to the price of other med-

ical services is approximately -1.9 across the .65 to .90 quantiles. At the .95 quantile,

this elasticity is even larger.

1.9 Comparison to RAND

1.9.1 Scope of Comparison

The estimates that I present here are an order of magnitude larger than those com-

monly cited from the RAND experiment. There could be a multitude of reasons for

this discrepancy, including a possible change in the underlying expenditure elasticity

over the decades between the RAND study and my study and a difference in behav-

ior between people in experimental plans and people in actual plans. While some

potential explanations of this disagreement are difficult to assess, it is possible and

instructive to examine differences in methodology behind the RAND estimates and

my estimates.

Below I discuss the calculation of the RAND estimates of the price elasticity of

expenditure on medical care. I emphasize that the RAND methodology assumes a

myopic response to contemporaneous marginal price, and my methodology assumes

a forward-looking response to year-end marginal price. Next, I present evidence of

forward-looking behavior among the individuals in my data. Lastly, I conduct a

simulation in my data under conditions intended to mimic the plans and assumptions

of the RAND experiment. The simulation shows that by assuming myopia when

some individuals are forward-looking, it is possible to estimate an elasticity that is

an order of magnitude smaller than the true elasticity.

1.9.2 Review of RAND estimates

To induce subjects to participate in the RAND experiment, researchers had to guar-

antee that participants would be subject to very low out-of-pocket costs, so all plans
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in the experiment had a yearly stoploss of $1,000 or less in 1974-1982 dollars. Fur-

thermore, each year, all families were given lump sum payments that equaled or

exceeded their out-of-pocket payments. The experimenters randomized families into

plans with initial marginal prices of 0%, 25%, 50%, 95%, but after family spending

reached the stoploss, marginal price was zero for the rest of the year, regardless of

plan. In practice, the stoploss was binding for a large fraction (roughly 20%) of par-

ticipants. Approximately 35% of individuals in the least generous plan exceeded the

stoploss, as did approximately 70% of individuals with any inpatient care. To put

these rates in a broader context, less than 4% of individuals met the stoploss in my

non-experimental data.

RAND researchers recognized that the stoploss affected their ability to calculate

the price elasticity of expenditure on medical care based on the experimentally ran-

domized prices:

“In order to compare our results with those in the literature, how-

ever, we must extrapolate to another part of the response surface, namely,

the response to coinsurance variation when there is no maximum dollar

expenditure. Although any such extrapolation is hazardous (and of lit-

tle practical relevance given the considerable departure from optimality

of such an insurance policy), we have undertaken such an extrapolation

rather than forego entirely any comparison with the literature.” (Manning

et al. (1987), page 267)

Manning et al. (1987) cited three sources of estimates of the price elasticity of ex-

penditure on medical care in the RAND data, the most prominent of which was based

on a simulation by Keeler and Rolph (1988) and not on the Manning et al. (1987)

four-part model. Keeler and Rolph (1988) recognized that a comparison of year-

end expenditures based on the experimentally induced coinsurance rates across plans

could be misleading because behavior was influenced by stoplosses. They therefore

used the experimental data to simulate year-end-expenditures in hypothetical plans

without stoplosses, and they based their elasticity estimates on this simulated be-
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havior. To conduct the simulation, they assumed myopic responses to marginal price

and examined the frequency of visits for all participants in the period for which their

families still had over $400 remaining before meeting the stoploss. Notably, they in-

cluded people in families that far exceeded the stoploss in the simulation. Based on

calibrated parametric assumptions on the frequency of visits and the cost per visit,

they forecasted year-end expenditures, and they compared forecasted expenditures

across coinsurance plans relative to the free plan to attain their elasticity estimates

using the following midpoint arc elasticity formula:

ηmidpoint =
(e1 − e2)/(e1 + e2)

(p1 − p2)/(p1 + p2)
(1.23)

where p denotes the coinsurance rate and e denotes simulated expenditures relative

to the free care plan. The often-cited RAND elasticity estimate of -.22 comes from

a comparison of predicted expenditures across plans with 95% and 25% coinsurance

rates as follows:

ηRAND =
(71− 55)/(71 + 55)

(25− 95)/(25 + 95)
≈ −.22 (1.24)

The magnitude of this arc elasticity should be roughly comparable the arc elas-

ticities that I calculate, which are based on a price change from 100% before the

deductible to the 20% coinsurance rate. One key methodological difference, how-

ever, is that I use within-plan price variation instead of across-plan price variation.

Given the current policy environment, which focuses on the effect of high deductibles

on medical spending, the ideal experiment for today’s policy environment would ar-

guably focus on price variation within plans. Another key difference between the

RAND methodology and my methodology comes from the underlying treatment of

myopia vs. foresight.
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1.9.3 Evidence of Foresight

In the simple model of medical care expenditure on which I base my analysis, the

most important parameter is the year-end marginal price. According to the model,

if an individual expects to meet the stoploss by the end of the year, he will consume

medical care all year as if his marginal price is zero, and expenditures paid at the

randomized marginal rate will induce only an income effect. In contrast, by forecast-

ing expenditures based on expenditure patterns before the stoploss is met, the Keeler

and Rolph (1988) analysis assumes a strong form of myopia.

To address the assumption of strong myopia, I present simple suggestive evidence

of forward-looking behavior in my data. The test that produces this evidence is that if

individuals are forward-looking, individuals who expect to meet the deductible should

not change the intra-year pattern of expenditures when a family injury occurs, but

individuals who do not expect to meet the deductible should. To examine people who

plausibly expected to meet the deductible in 2004 absent family injuries, I identify

individuals whose 2003 own spending exceeded the 2003 individual deductible as

“High 2003” spenders. I identify all other individuals as “Low 2003” spenders. Within

these two 2003 spending categories, I compare average monthly expenditures before

and after the month of the first family injury. As in the main estimation sample,

individuals with own injuries are excluded from the sample. I also omit individuals

whose first family injuries occur in January or December so that it is always possible

to observe spending before and after the family injury.

The top panel of Figure 1-5 presents the results from the sample of 2,265 employees

with 2004 family injuries and complete 2003 expenditure data. A comparison of the

two bars on the left to the two bars on the right shows that individuals with high

2003 spending spend more on average in 2004, regardless of the timing of the family

injury. Within each set of bars, the comparisons provide evidence of forward-looking

behavior. As expected, the left set of bars shows that employees with low 2003

spending spend more on average after the family injury than they did before the

family injury. Also as expected, the right set of bars shows that employees with high
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2003 spending do not appear to alter their spending patterns in response to the timing

of a family injury.

Formally, the t statistic for the paired t test of the difference in mean spending

before and after the injury is 1.17 for low 2003 spenders and .1083 for high spenders,

so neither difference is statistically significant. However, in the bottom panel, when

instead of restricting the sample to employees, I use the entire sample, low spenders

also spend more on average after the injury, and the difference in means is statistically

significant for low 2003 spenders (t=-2.74) and is not statistically significant for high

2003 spenders (t=.4748). Given that this test is only conducted on the universe of

people with family injuries from February-December, it is plausible that the employee

sample size of 2,265 is not large enough to detect statistically significant effects, but

the full sample size of 9,075 is.

This test has several limitations, notably that it relies on averages even though

medical expenditures are censored and skewed, and it has imperfect controls for sea-

sonality of medical expenditures. The question of whether consumers are myopic or

forward-looking is complicated and interesting in its own right, and should be inves-

tigated more completely. However, this test provides suggestive evidence against the

Keeler and Rolph (1988) assumption of myopia.

If consumers are forward-looking, it is problematic to assume that the initial

statutory marginal price ever governs behavior of participants who expect to meet the

stoploss, even in the period before the stoploss is met. Including these participants

in the simulation should bias estimates of price responsiveness downward because

variation across plans will be less pronounced among participants who expect to

meet the stoploss and thus do not respond to at all to the statutory marginal price.

Furthermore, participants with the highest coinsurance rates are more likely than

participants with the lowest coinsurance rates to meet the stoploss, and thus they are

more likely to behave as if care is free, which further attenuates elasticity estimates

toward zero. More broadly, the lack of experimental price variation among the highest

spenders is unfortunate because, given the skewness in the distribution of medical

expenditure, the price responsiveness of the highest spenders is a very policy-relevant
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parameter.

1.9.4 Simulation Exercise

To calculate expenditure elasticities, Keeler and Rolph (1988) simulated the expen-

diture response to plans with a higher stoploss than the true stoploss in their data.

To illustrate potential bias in the Keeler and Rolph (1988) methodology, I conduct a

theoretical reverse of the RAND exercise, in which I simulate the response to plans

with a lower stoploss than the true stoploss in my data. One advantage of my simula-

tion over the RAND simulation is that it leads to within-sample predictions, whereas

the RAND simulation led to out-of-sample predictions.

Since the RAND simulation included people who faced a zero effective year-end

marginal price but attributed their behavior to a nonzero statutory marginal price, the

RAND estimates should be biased toward zero. In my simulation, I simulate behavior

governed by a zero effective marginal price, but I attribute this behavior to a nonzero

statutory marginal price in the estimates, and I demonstrate the magnitude of the

resulting bias toward zero. Under assumptions intended to mimic the conditions of

the RAND experiment in my simulation, I estimate a simulated elasticity that is an

order of magnitude smaller than the true elasticity.

The simulation steps are as follows:

1. Estimate the following specification using my data and my methodology:

ln E = αP + X ′β + u (1.25)

where all variables are defined as above. Retain estimates for subsequent steps.

In practice, I estimate my model in my data using Tobit IV, and I estimate a

price elasticity of -3.2. I do not use CQIV for this simulation because I am

interested in a mean estimate for comparison to RAND.

2. Predict log expenditure for all individuals using the estimated coefficients and
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the empirical values of P and X:

l̂n E = α̂P + X ′β̂ (1.26)

3. To mimic the spending response to a new, lower stoploss than that in the

actual plans, choose a group of individuals for whom the new stoploss will be

low enough that they will reasonably expect to meet it. Calibrate the size of

this group according to the percentage of individuals who met the stoploss in

the RAND study. For this group, compute a simulated predicted expenditure,

which assumes an effective marginal price of zero, even though the nominal

year-end marginal price for these individuals in the actual plans is often non-

zero:

l̃n E = α̂ ∗ 0 + X ′β̂ (1.27)

Since α̂ < 0 and P ≥ 0, it follows that l̃n E > l̂n E. This makes intuitive sense

because, given downward sloping demand, people who face a price of zero will

spend more on medical care than they would if they faced a nonzero marginal

price. For example, in the data, there is an individual who faces a year-end

nominal marginal price of .2, and has total year-end spending of $927.00. Based

on his nominal marginal price and the values of his values of X, his predicted

log spending is 5.7244, which by exponentiation, translates into $306.25. In the

simulation, when I predict his log spending based on a year-end effective price

of zero, the new predicted value is 6.9970, which by exponentiation, translates

into $1,093.25.

4. Re-estimate the price elasticity using my methodology on the dataset of pre-

dicted expenditures and nominal marginal prices, and compare it to the “true”

elasticity as computed by the price coefficient α̂, estimated in the first step.

To determine whose expenditures to alter in the third step, I examine expen-

ditures on the family level because the RAND stoplosses were on the family level.

Since approximately 20% of subjects met the stoploss in the RAND study, I place
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approximately 20% of my sample into in hypothetical plans in which the effective

marginal price is zero. Specifically, this subset includes 6,015 people with no family

injuries whose total family spending exceeds $5,500 (20.7% of the entire sample, and

23.9% of the sample with no family injuries).

It is plausible that families without injuries whose expenditures exceed $5,500

would have met the $1,000 stoploss in the RAND plans, even accounting for overall

and medical inflation. In the least generous plan in my data, when family total

beneficiary plus insurer spending is $5,500, beneficiary spending is $3,000+($5,500-

$3,000)*.2=$3,500. Similarly, in the most generous plan in my data, when family total

beneficiary plus insurer spending is $5,500, beneficiary spending is $1,050+($5,500-

$1,050)*.2= $1,940. In my data, since the stoplosses are so much higher than they

were in the RAND experiment, very small numbers of individuals meet the stoploss.

Among the individuals whose expenditures I alter, the average statutory marginal

price is .4 (29.4% at 1, 52.6% at .2, and 14.6% at 0).

When I re-estimate the model in the fourth step using predicted expenditures

and nominal marginal prices, I estimate a price elasticity of -.34, which is an order

of magnitude smaller than the original estimate of -3.2. It is possible to alter the

expenditures of other plausibly-sized subsets of individuals to yield similar results.

For example, when I alter the spending of a random 15% of individuals with no family

injuries, I estimate a price elasticity of -.33. In addition, when I alter the spending of

a random 50% of individuals with family spending that exceeds $2,000 and no family

injuries, I estimate a price elasticity of -.28. Overall, the results of these simulation

exercises suggest that if plausibly-sized groups of individuals are forward-looking, but

they are assumed to be myopic, estimates of the price elasticity of expenditure on

medical care could reflect a substantial bias toward zero.

1.10 Conclusion

This paper makes several contributions. Using recent, detailed data and a careful

identification strategy, I use the current econometric standard to estimate mean elas-
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ticities and compare my results to those in the literature. I find elasticities that are

an order of magnitude larger than those in the literature. I then go beyond the cur-

rent econometric standard to relax the distributional assumptions traditionally used

to deal with censoring by using a new censored quantile instrumental variables es-

timator. My CQIV estimates vary by quantile, which is advantageous because the

distribution of medical spending is so skewed. I find that the price elasticity of expen-

diture on medical care is very large among people who spend the most. Specifically,

across the .65 to .95 quantiles of the expenditure distribution, the price elasticity of

expenditure is approximately -2.3. This finding is stable across a variety of spec-

ification tests, and the results from other analyses support the robustness of the

identification strategy. In an extension of my main results, I find evidence of strong

complementarity between prescription drugs expenditures and expenditures on other

types of medical care.

The task for my future research is to incorporate the findings from this paper

into a broader model of medical care consumption. The results in this paper are

inherently “reduced form” in the sense that they do not impose restrictions from

economic theory to estimate the parameters. In a future paper, I intend to compare

these results to results from a “structural model” that incorporates restrictions based

on consumer utility maximization subject to a nonlinear budget set in the spirit of

Hausman (1985). A rigorous comparison of results from both strategies could lead to

a broader methodological contribution as well as a substantive one.
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Figure 1-3: Reduced Form and First Stage
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Figure 1-4: CQIV Objective Function
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Figure 1-5: Expenditure Before and After Month of First Family Injury
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Table 1.2: 2004 Summary Statistics

2004 Summary Statistics
Cells report column % by variable

Couples

Employees Everyone Employees

All All NO Family 

Injury

Family

Injury

NO Family 

Injury

Family

Injury

All

Variable (1) (2) (3) (4) (5) (6) (7)

Year-end Expenditure ($)

0 35.7 39.9 36.6 29.8 40.9 32.3 24.2

.01 to 100.00 11.0 12.2 11.0 10.9 12.3 11.4 7.9

100.01 to 1,000 31.1 31.4 30.8 32.8 30.9 35.0 33.8

1,000.01 to 10,000 19.0 14.4 18.5 22.1 13.8 18.2 27.6

10,000.01 to 100,000 3.2 2.1 3.0 4.5 2.0 3.0 6.4

100,000.01 and up 0.0 0.0 0.0 0.0 0.0 0.0 0.1

Year-end Price

0 3.9 3.1 3.5 6.8 2.7 6.1 6.7

0.2 38.8 32.8 37.2 49.1 30.9 46.0 47.2

1 57.3 64.1 59.3 44.1 66.4 48.0 46.1

Family Injury

0 (NO Family Injury) 86.6 87.4 100.0 0.0 100.0 0.0 96.1

1 (Family Injury) 13.4 12.6 0.0 100.0 0.0 100.0 3.9

Family Size

2 0.0 0.0 0.0 0.0 0.0 0.0 100.0

3 0.0 0.0 0.0 0.0 0.0 0.0 0.0

4 66.9 60.2 68.2 58.2 61.7 49.6 0.0

5 24.4 27.5 23.8 28.5 26.9 31.6 0.0

6 6.6 8.8 6.1 9.6 8.3 12.5 0.0

7 1.6 2.5 1.4 2.8 2.3 4.3 0.0

8 to 11 0.5 1.0 0.5 0.9 0.9 1.9 0.0

Relation to Employee

Employee 100.0 22.8 100.0 100.0 22.6 24.3 100.0

Spouse 0.0 19.0 0.0 0.0 18.9 19.8 0.0

Child/Other 0.0 58.2 0.0 0.0 58.5 55.9 0.0

Male

0 (Female) 42.6 49.9 42.7 41.9 49.9 50.2 60.2

1 (Male) 57.4 50.1 57.3 58.1 50.1 49.8 39.8

Year of Birth

1934 to 1943 0.1 0.1 0.1 0.2 0.1 0.1 10.9

1944 to 1953 4.0 1.8 4.1 3.2 1.8 1.5 44.3

1954 to 1963 30.9 12.9 31.1 29.7 12.9 12.8 26.5

1964 to 1973 51.8 20.8 51.5 53.7 20.5 22.7 10.6

1974 to 1983 13.2 7.0 13.2 13.2 6.9 7.6 7.6

1984 to 1993 0.0 27.9 0.0 0.1 28.0 27.1 0.1

1994 to 1998 0.0 16.0 0.0 0.0 16.1 15.4 0.0

1999 to 2004 0.0 13.5 0.0 0.0 13.6 12.8 0.0

Employee Class

Salary Non-union 29.9 30.2 29.9 30.4 30.2 30.0 10.3

Hourly Non-union 70.1 69.8 70.1 69.6 69.8 70.0 89.7

US Census Region

New England 1.4 1.4 1.4 1.5 1.4 1.6 1.6

Middle Atlantic 1.6 1.6 1.6 1.3 1.6 1.2 1.7

East North Central 15.6 15.7 15.8 14.5 15.8 15.1 14.2

West North Central 11.9 12.0 11.8 12.2 12.0 12.0 11.1

South Atlantic 19.0 18.9 19.3 16.9 19.2 17.2 23.7

East South Central 11.6 11.3 11.2 14.4 11.0 13.7 13.9

West South Central 28.3 28.3 28.4 27.4 28.5 27.3 24.5

Mountain 7.5 7.6 7.3 8.4 7.5 8.3 6.3

Pacific 3.1 3.2 3.1 3.4 3.1 3.5 2.9

Plan by Individual Deductible

350 59.8 59.9 58.7 67.2 58.7 67.8 67.1

500 17.0 16.9 17.3 15.6 17.2 15.2 15.4

750 6.3 6.3 6.6 4.8 6.5 4.7 5.3

1000 16.8 16.9 17.5 12.4 17.6 12.3 12.2

Sample Size 29,010 127,119 25,124 3,886 111,124 15,995 37,490

EveryoneEmployees

Families of Four or More
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Table 1.3: 2003 Summary Statistics

2003 Summary Statistics
Cells report column % by variable

Employees Everyone

All All NO Family 

Injury

Family

Injury

NO Family 

Injury

Family

Injury

Variable (1) (2) (3) (4) (5) (6)

Year-end Expenditure ($)

0 36.8 40.7 38.0 28.7 41.9 31.6

.01 to 100.00 11.4 12.5 11.4 11.4 12.5 12.2

100.01 to 1,000 31.1 31.7 30.7 34.4 31.1 36.2

1,000.01 to 10,000 17.8 13.3 17.2 22.3 12.7 17.5

10,000.01 to 100,000 2.8 1.8 2.7 3.3 1.7 2.4

100,000.01 and up 0.0 0.1 0.0 0.1 0.0 0.1

Year-end Price

0 3.4 2.5 3.1 5.3 2.2 4.8

0.2 37.5 31.6 35.8 49.4 29.8 44.9

1 59.1 65.9 61.1 45.3 68.0 50.3

Family Injury

0 (NO Family Injury) 87.7 88.3 100.0 0.0 100.0 0.0

1 (Family Injury) 12.3 11.7 0.0 100.0 0.0 100.0

Family Size

2 0.0 0.0 0.0 0.0 0.0 0.0

3 0.0 0.0 0.0 0.0 0.0 0.0

4 66.1 59.2 67.2 58.1 60.5 49.3

5 24.9 27.9 24.3 29.0 27.4 32.1

6 6.8 9.1 6.4 9.5 8.6 12.8

7 1.7 2.6 1.5 2.4 2.4 3.9

8 to 12 0.6 1.2 0.6 0.9 1.1 1.9

Relation to Employee

Employee 100.0 22.7 100.0 100.0 22.5 23.9

Spouse 0.0 18.8 0.0 0.0 18.7 19.9

Child/Other 0.0 58.5 0.0 0.0 58.8 56.2

Male

0 (Female) 43.4 50.1 43.4 43.1 50.1 50.2

1 (Male) 56.6 49.9 56.6 56.9 49.9 49.8

Year of Birth

1934 to 1943 0.2 0.1 0.2 0.2 0.1 0.1

1944 to 1953 4.7 2.1 4.8 4.4 2.1 2.0

1954 to 1963 33.9 14.1 34.0 33.3 14.0 14.6

1964 to 1973 50.2 20.0 50.0 51.5 19.8 21.6

1974 to 1983 10.9 6.7 11.0 10.6 6.7 6.8

1984 to 1993 0.0 30.4 0.0 0.0 30.5 29.8

1994 to 1998 0.0 15.5 0.0 0.0 15.6 14.8

1999 to 2003 0.0 11.0 0.0 0.0 11.4 10.2

Employee Class

Salary Non-union 29.4 29.8 29.4 29.5 29.9 29.0

Hourly Non-union 70.6 70.2 70.6 70.5 70.1 71.0

US Census Region

New England 1.4 1.4 1.4 1.6 1.4 1.7

Middle Atlantic 1.7 1.7 1.7 1.7 1.7 1.5

East North Central 15.5 15.6 15.4 16.7 15.5 16.9

West North Central 12.3 12.2 11.8 15.4 11.9 15.1

South Atlantic 18.5 18.4 19.2 13.5 19.1 13.2

East South Central 10.8 10.7 10.7 11.3 10.6 11.7

West South Central 29.1 29.1 29.2 28.7 29.2 28.5

Mountain 7.8 8.0 7.7 8.4 7.9 8.7

Pacific 2.9 2.9 2.9 2.8 2.9 2.8

Plan by Individual Deductible

350 63.4 63.4 62.7 68.8 62.7 69.0

500 17.1 17.0 17.4 15.6 17.2 15.4

750 5.7 5.6 5.8 4.5 5.8 4.2

1000 13.8 13.9 14.1 11.0 14.2 11.4

Sample Size 29,886 131,815 26,201 3,685 116,393 15,422

EveryoneEmployees

Families of Four or More
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Table 1.4: Comparison of Skewness

Comparison of Skewness

2004 Full Sample 2004 MEPS

Expenditure Rank $ Expenditure % Expenditure $ Expenditure % Expenditure

top 1% 16,074 34.00% 26,881 27.68%

top 5% 5,457 64.90% 8,282 54.89%

top 10% 2,267 80.69% 4,362 70.10%

top 15% 1,173 87.91% 2,754 78.83%

top 20% 717 91.96% 1,848 84.40%

top 25% 473 94.53% 1,305 88.15%

top 50% 84 99.58% 360 97.02%

mean 1,135 2,019

N 127,119 127,119 28,990 28,990

2004 MEPS expenditures based on the sample of individuals under age 65.

2004 MEPS expenditures exclude prescription drug expenditures.
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Table 1.5: Summary Statistics on Individuals with Injuries and Their Families

Summary Statistics on Individuals with Injuries and Their Families

2004 Sample Count Mean Expenditure

Count of 

Everyone

Count of 

Employees

and

Spouses

Count of 

Employees

Intracranial Injuries 331 $9,873.39 1,049 480 272

Superficial Injuries 1,276 $2,447.52 4,172 1,846 1,014

Crushing Injuries 59 $2,296.21 196 83 46

Foreign Body Injuries 536 $2,591.30 1,764 805 443

Burns 238 $3,146.49 819 336 189

Complications of Trauma 

and Injuries to the Nerves 

and Spinal Cord

3,241 $4,639.26 10,069 4,451 2,462

All Injuries 5,249 $3,871.19 15,995 7,052 3,886

No Injury 127,119 $1,134.83 111,124 46,133 25,124

Everyone 132,368 $1,243.34 127,119 53,185 29,010

2003 Sample

Intracranial Injuries 293 $11,134.06 1,004 465 249

Superficial Injuries 1,178 $2,291.38 3,857 1,702 927

Crushing Injuries 62 $5,937.69 197 92 50

Foreign Body Injuries 462 $2,516.10 1,541 685 390

Burns 250 $8,873.55 868 354 205

Complications of Trauma 

and Injuries to the Nerves 

and Spinal Cord

3,168 $4,125.15 9,809 4,300 2,328

All Injuries 5,031 $3,789.94 15,422 6,761 3,685

No Injury 131,815 $1,038.19 116,393 47,922 26,201

Everyone 136,846 $1,139.36 131,815 54,683 29,886

Note: Categories of selected injuries need not be mutually exclusive.

Statistics on non-injured people in family exclude people with ANY type of selected injury.

(Estimation Sample)(Excluded from Estimation Sample)

Injured Individuals Non-Injured Individuals in Family
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Table 1.7: 2004 and 2003 CQIV Year-End Price Coefficients for Various Samples

2004 and 2003 CQIV Year-End Price Coefficients for Various Samples 
Dependent variable:  Ln(Expenditure)

2004 Sample 65 70 75 80 85 90 95 Tobit IV

Employee

N= 29,010 Year-end price -4.4 -4.3 -4.5 -4.5 -4.5 -4.7 -4.5 -6.4

     lower bound -9.6 -6.8 -5.5 -5.3 -5.1 -5.1 -5.3 -7.4

     upper bound -3.3 -3.5 -3.6 -3.9 -4.2 -4.4 -4.2 -5.3

     [Elasticity] -[2.2] -[2.2] -[2.3] -[2.3] -[2.3] -[2.3] -[2.3] -[3.2]

Employee and Spouse

N= 53,185 Year-end price -4.9 -4.8 -4.7 -4.6 -4.6 -4.7 -4.8 -6.6

     lower bound -8.8 -5.4 -5.3 -5.2 -5.1 -5 -5.2 -7.3

     upper bound -3.9 -4.2 -4.1 -4.2 -4 -4.3 -4.2 -5.9

     [Elasticity] -[2.5] -[2.4] -[2.3] -[2.3] -[2.3] -[2.3] -[2.4] -[3.3]

Everyone

N= 127,119 Year-end price -4.1 -4.1 -4.1 -4.1 -4.2 -4.3 -4.1 -6.8

     lower bound -4.6 -4.7 -4.6 -4.3 -4.5 -4.7 -4.6 -7.3

     upper bound -3.9 -3.6 -3.7 -3.7 -3.7 -3.9 -3.9 -6.3

     [Elasticity] -[2.0] -[2.0] -[2.0] -[2.0] -[2.1] -[2.2] -[2.0] -[3.4]

2003 Sample

Employee

N= 29,886 Year-end price -9.1 -4.9 -4.6 -4.3 -4.5 -4.5 -4.5 -7.5

     lower bound -10 -9.7 -5.8 -5.2 -5.1 -5 -10 -8.6

     upper bound -3.7 -4.1 -3.9 -3.8 -3.6 -3.8 -4 -6.5

     [Elasticity] -[4.6] -[2.5] -[2.3] -[2.2] -[2.3] -[2.3] -[2.3] -[3.8]

Employee and Spouse

N= 54,683 Year-end price -9.7 -5.4 -5.1 -4.6 -4.6 -4.6 -4.6 -7.8

     lower bound -10 -9.5 -5.8 -5.5 -5.2 -5 -5.4 -8.6

     upper bound -4.9 -4.6 -4.3 -4 -4 -4 -4.2 -7.1

     [Elasticity] -[4.8] -[2.7] -[2.5] -[2.3] -[2.3] -[2.3] -[2.3] -[3.9]

Everyone

N= 131,815 Year-end price -5.4 -4.5 -4.5 -4.3 -4.2 -4.2 -4.2 -7.7

     lower bound -7.4 -5.1 -4.9 -4.9 -4.6 -4.7 -4.9 -8.3

     upper bound -4.4 -4.1 -4 -4 -4 -3.9 -4 -7.2

     [Elasticity] -[2.7] -[2.3] -[2.3] -[2.2] -[2.1] -[2.1] -[2.1] -[3.9]

Censored quantile IV results from a grid search over -10 to -2 in increments of .1.

Controls include: employee dummy (when applicable), spouse dummy (when applicable), male 

dummy, plan (saturated), census region (saturated), salary dummy (vs. hourly), spouse on policy 

dummy, YOB of oldest dependent, YOB of youngest dependent, family size (saturated with 8-11 

as one group), count family born 1944 to 1953, count family born 1954 to 1963, count family born 

1974 to 1983, count family born 1984 to 1993, count family born 1994 to 1998, count family born 

1999, count family born 2000, count family born 2001, count family born 2002, count family born 

2003, count family born 2004 (when applicable).

Censored Quantile IV
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Table 1.8: Closer Examination of Endogeneity

Closer Examination of Endogeneity
Dependent Variable: Ln(Expenditure)

Censored Quantile (IV)

65 70 75 80 85 90 95 Tobit (IV)

CQIV

Year-end price -4.4 -4.3 -4.5 -4.5 -4.5 -4.7 -4.5 -6.4

     lower bound -9.6 -6.8 -5.5 -5.3 -5.1 -5.1 -5.3 -7.4

     upper bound -3.3 -3.5 -3.6 -3.9 -4.2 -4.4 -4.2 -5.3

     [Elasticity] -[2.2] -[2.2] -[2.3] -[2.3] -[2.3] -[2.3] -[2.3] -[3.2]

CQR - Chernozhukov and Hong

Year-end price -4.63 -4.51 -4.44 -4.37 -4.25 -4.19 -4.15 -8.21

     lower bound -4.72 -4.59 -4.51 -4.44 -4.31 -4.24 -4.19 -8.33

     upper bound -4.54 -4.44 -4.38 -4.30 -4.19 -4.14 -4.11 -8.09

     [Elasticity] -[2.32] -[2.26] -[2.22] -[2.19] -[2.13] -[2.10] -[2.08] -[4.11]

CQR - Powell

Year-end price -4.67 -4.47 -4.44 -4.33 -4.27 -4.20 -4.15 -8.21

     lower bound -4.75 -4.54 -4.51 -4.39 -4.33 -4.25 -4.19 -8.33

     upper bound -4.60 -4.40 -4.38 -4.28 -4.21 -4.15 -4.12 -8.09

     [Elasticity] -[2.34] -[2.24] -[2.22] -[2.17] -[2.13] -[2.10] -[2.08] -[4.11]

Estimated on the 2004 sample of 29,010 employees in families.

Controls include:  male dummy, plan (saturated), census region (saturated), salary dummy (vs. hourly), spouse 

on policy dummy, YOB of oldest dependent, YOB of youngest dependent, family size (saturated with 8-11 as 

one group), count family born 1944 to 1953, count family born 1954 to 1963, count family born 1974 to 1983, 

count family born 1984 to 1993, count family born 1994 to 1998, count family born 1999, count family born 2000,

count family born 2001, count family born 2002, count family born 2003, count family born 2004.
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Table 1.9: Month of Family Injury

Count % Count %

Jan 1,019 6.4% 255 6.6%

Feb 1,050 6.6% 253 6.5%

Mar 1,329 8.3% 326 8.4%

Apr 1,512 9.5% 382 9.8%

May 1,566 9.8% 377 9.7%

Jun 1,536 9.6% 387 10.0%

Jul 1,445 9.0% 353 9.1%

Aug 1,542 9.6% 367 9.4%

Sep 1,554 9.7% 376 9.7%

Oct 1,488 9.3% 357 9.2%

Nov 1,039 6.5% 250 6.4%

Dec 915 5.7% 203 5.2%

Total 15,995 100% 3,886 100%

Samples limited to individuals in families with injuries.

Month of First Family Injury

       2004 Estimation Sample

         Everyone             Employees
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Table 1.10: CQIV Specification Tests

CQIV Specification Tests
Dependent variable:  Ln(Expenditure) or Ln(Outpatient Expenditure)

2004 Employee Sample 65 70 75 80 85 90 95 Tobit IV

Baseline

N= 29,010 Year-end price -4.4 -4.3 -4.5 -4.5 -4.5 -4.7 -4.5 -6.4

     lower bound -9.6 -6.8 -5.5 -5.3 -5.1 -5.1 -5.3 -7.4

     upper bound -3.3 -3.5 -3.6 -3.9 -4.2 -4.4 -4.2 -5.3

     [Elasticity] -[2.2] -[2.2] -[2.3] -[2.3] -[2.3] -[2.3] -[2.3] -[3.2]

First Family Injury Jan-Sep (Q1-Q3)

N= 28,176 Year-end price -4.2 -4.3 -4.5 -4.5 -4.6 -4.6 -4.6 -6.7

     lower bound -9.6 -6.9 -5.6 -5.5 -5.2 -5.4 -5.4 -7.7

     upper bound -3.3 -3.6 -3.7 -3.9 -4.2 -4.2 -4.1 -5.6

     [Elasticity] -[2.1] -[2.2] -[2.3] -[2.3] -[2.3] -[2.3] -[2.3] -[3.3]

First Family Injury Oct-Dec (Q4)

N= 25,934 Year-end price -3.2 -3.1 -4.0 -4.1 -4.1 -4.8 -4.6 -4.6

     lower bound -10.0 -10.0 -7.2 -5.9 -5.7 -5.5 -10.0 -7.8

     upper bound -2.0 -2.0 -2.0 -2.5 -2.7 -2.0 -2.0 -1.3

     [Elasticity] -[1.6] -[1.5] -[2.0] -[2.0] -[2.0] -[2.4] -[2.3] -[2.3]

First Family Injury Jan-Jun (Q1-Q2)

N= 27,104 Year-end price -5.7 -5.4 -5.0 -5.2 -4.8 -4.9 -4.9 -7.3

     lower bound -10.0 -10.0 -7.3 -6.6 -7.0 -5.8 -5.9 -8.5

     upper bound -3.8 -4.0 -4.3 -4.0 -4.2 -4.2 -4.2 -6.0

     [Elasticity] -[2.8] -[2.7] -[2.5] -[2.6] -[2.4] -[2.5] -[2.5] -[3.6]

First Family Injury Jul-Dec (Q3-Q4)

N= 27,030 Year-end price -2.7 -3.0 -3.6 -3.9 -4.4 -4.5 -4.2 -5.0

     lower bound -9.7 -6.7 -5.3 -4.9 -5.0 -4.9 -5.5 -6.8

     upper bound -2.0 -2.0 -2.3 -2.8 -3.0 -3.6 -3.9 -3.3

     [Elasticity] -[1.4] -[1.5] -[1.8] -[2.0] -[2.2] -[2.3] -[2.1] -[2.5]

Injuries to Children Only

N= 25,386 Year-end price -4.0 -4.2 -4.6 -4.6 -4.6 -4.7 -4.5 -6.3

     lower bound -9.7 -6.8 -5.5 -5.4 -5.4 -5.1 -5.1 -7.4

     upper bound -3.3 -3.3 -3.6 -3.9 -4.1 -4.3 -4.1 -5.2

     [Elasticity] -[2.0] -[2.1] -[2.3] -[2.3] -[2.3] -[2.3] -[2.3] -[3.1]

Injuries to Spouses Only

N= 25,884 Year-end price -4.7 -4.3 -4.3 -4 -4.2 -4.5 -4.6 -6.8

     lower bound -10 -10 -9.6 -6.6 -6.9 -5.5 -5.5 -9.0

     upper bound -2.5 -2.8 -2.5 -2.7 -2.7 -2.7 -3.5 -4.6

     [Elasticity] -[2.3] -[2.2] -[2.2] -[2.0] -[2.1] -[2.3] -[2.3] -[3.4]

$350 Deductible Plan Only

N= 17,353 Year-end price -3.9 -4.2 -4.4 -4.6 -4.5 -4.5 -4.7 -5.8

     lower bound -9.5 -6.1 -5.4 -4.9 -4.9 -4.9 -5.6 -6.8

     upper bound -3.3 -3.3 -3.6 -3.7 -4.1 -4.2 -4.1 -4.8

     [Elasticity] -[2.0] -[2.1] -[2.2] -[2.3] -[2.3] -[2.3] -[2.3] -[2.9]

Ln(Outpatient Expenditure)

N= 29,010 Year-end price -4.0 -4.0 -3.8 -4.0 -4.0 -4.0 -3.7 -6.1

     lower bound -5.9 -4.9 -4.8 -4.5 -4.5 -4.5 -5.1 -7.0

     upper bound -2.9 -3.0 -3.2 -3.4 -3.5 -3.6 -3.2 -5.2

     [Elasticity] -[2.0] -[2.0] -[1.9] -[2.0] -[2.0] -[2.0] -[1.9] -[3.1]

97.5 98 98.5 99 99.5

Baseline (Higher Estimated Quantiles)

N= 29,010 Year-end price -4.7 -5.0 -5.2 -5.6 -4.3

     lower bound -10.0 -10.0 -10.0 -10.0 -10.0

     upper bound -4.2 -4.2 -4.1 -3.5 -2.0

     [Elasticity] -[2.4] -[2.5] -[2.6] -[2.8] -[2.2]

Censored quantile IV results from a grid search over -10 to -2 in increments of .1.

Controls include: employee dummy (when applicable), spouse dummy (when applicable), male 

dummy, plan (saturated), census region (saturated), salary dummy (vs. hourly), spouse on policy 

dummy, YOB of oldest dependent, YOB of youngest dependent, family size (saturated with 8-11 as 

one group), count family born 1944 to 1953, count family born 1954 to 1963, count family born 1974 

to 1983, count family born 1984 to 1993, count family born 1994 to 1998, count family born 1999, 

count family born 2000, count family born 2001, count family born 2002, count family born 2003, 

count family born 2004 (when applicable).

Censored Quantile IV

Censored Quantile IV
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Table 1.11: OLS First Stage By Plan

OLS First Stage By Plan
Dependent Variable: Year-end Price

All 350 500 750 1000

2004 Employee Sample (1) (2) (3) (4) (5)

Family Injury -0.111 -0.132 -0.083 -0.071 -0.044

     lower bound -0.124 -0.149 -0.115 -0.125 -0.075

     upper bound -0.098 -0.116 -0.050 -0.017 -0.014

Controls yes yes yes yes yes

R-squared 0.123 0.073 0.089 0.110 0.099

N 29,010 17,353 4,945 1,834 4,878

Controls include:  plan (saturated, when applicable), male dummy, census region (saturated), salary 

dummy (vs. hourly), spouse on policy dummy, YOB of oldest dependent, YOB of youngest dependent, 

family size (saturated with 8-11 as one group), count family born 1944 to 1953, count family born 1954 

to 1963, count family born 1974 to 1983, count family born 1984 to 1993, count family born 1994 to 

1998, count family born 1999, count family born 2000, count family born 2001, count family born 2002, 

count family born 2003, count family born 2004.

By Plan (Individual Deductible)
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Table 1.13: Robustness Tests Using Longitudinal Data

Robustness Tests Using Longitudinal Data
Continuously Enrolled 2003-2004 Employee Sample

Dependent Variable:              (Expenditure in 2004 - Expenditure in 2003)
N= 18,743 OLS OLS OLS OLS

2004 Family Injury Only (n= 1,037) 482.58 478.80 671.66 668.60

     lower bound 73.00 69.82 312.87 309.75

     upper bound 892.16 887.78 1030.44 1027.44

2003 Family Injury Only (n= 2,024) -82.12 -121.01 279.74 244.23

     lower bound -383.97 -423.56 15.32 -21.23

     upper bound 219.73 181.54 544.15 509.69

2004 & 2003 Family Injury (n= 295) 525.01 442.52 879.19 824.85

     lower bound -225.36 -306.51 221.88 167.64

     upper bound 1275.38 1191.55 1536.51 1482.05

Controls no yes no yes

Mean dependent variable: $139.66

People with selected injuries in 2003 or 2004 are dropped in both years.

Controls include (2003 values):  employee dummy (when applicable), spouse dummy (when 

applicable), male dummy, plan (saturated), census region (saturated), salary dummy (vs. hourly), 

spouse on policy dummy, YOB of oldest dependent, YOB of youngest dependent, family size 

(saturated with 8-11 as one group), count family born 1944 to 1953, count family born 1954 to 1963, 

count family born 1974 to 1983, count family born 1984 to 1993, count family born 1994 to 1998, 

count family born 1999, count family born 2000, count family born 2001, count family born 2002, 

count family born 2003.

(Expenditure in 2004)

Continuously enrolled 2003-2003 employee sample includes all employees for whom the entire 

family meets the selection criteria for 2003 and 2004.
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Table 1.14: Extension: Prescription Drug Expenditure

Extension: Prescription Drug Expenditure

2004 Employee Sample 65 70 75 80 85 90 95 Tobit IV

Dependent Variable: Ln(Expenditure)

N= 29,010 Year-end price -4.4 -4.3 -4.5 -4.5 -4.5 -4.7 -4.5 -6.4

     lower bound -9.6 -6.8 -5.5 -5.3 -5.1 -5.1 -5.3 -7.4

     upper bound -3.3 -3.5 -3.6 -3.9 -4.2 -4.4 -4.2 -5.3

     [Elasticity] -[2.2] -[2.2] -[2.3] -[2.3] -[2.3] -[2.3] -[2.3] -[3.2]

Dependent Variable: Ln(Drug Expenditure)

N= 29,010 Year-end price * -4.5 -3.9 -4.1 -3.6 -2.7 -2.6 -5.9

     lower bound * -6.3 -5.5 -5.0 -4.3 -3.8 -10.0 -7.0

     upper bound * -3.2 -3.2 -2.8 -2.6 -2.4 -2.0 -4.7

     [Elasticity] NA -[2.3] -[2.0] -[2.0] -[1.8] -[1.4] -[1.3] -[2.9]

Dependent Variable: Ln(Expenditure + Drug Expenditure)

N= 29,010 Year-end price -3.9 -4.1 -4.0 -3.9 -3.8 -3.7 -3.8 -5.6

     lower bound -5.2 -4.8 -4.4 -4.5 -4.4 -4.1 -10.0 -6.5

     upper bound -3.2 -3.1 -3.3 -3.4 -3.4 -3.2 -3.2 -4.7

     [Elasticity] -[2.0] -[2.0] -[2.0] -[2.0] -[1.9] -[1.9] -[1.9] -[2.8]

* Estimator did not converge.

Censored quantile IV results from a grid search over -10 to -2 in increments of .1.

Censored Quantile IV

Controls include: employee dummy (when applicable), spouse dummy (when applicable), male dummy, 

plan (saturated), census region (saturated), salary dummy (vs. hourly), spouse on policy dummy, YOB of 

oldest dependent, YOB of youngest dependent, family size (saturated with 8-11 as one group), count 

family born 1944 to 1953, count family born 1954 to 1963, count family born 1974 to 1983, count family 

born 1984 to 1993, count family born 1994 to 1998, count family born 1999, count family born 2000, 

count family born 2001, count family born 2002, count family born 2003, count family born 2004 (when 

applicable).
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Chapter 2

Censored Quantile Instrumental

Variables Regression via Control

Functions (by Victor

Chernozhukov and Amanda Ellen

Kowalski)

2.1 Introduction

Censoring in the dependent variable can introduce bias and inconsistency in tradi-

tional mean and quantile estimators because it induces a correlation between inde-

pendent variables and the error term. Several mean estimators such as Tobit IV have

been developed to produce consistent estimates in models with censored dependent

variables, but they often require strong parametric assumptions. Through a general-

ization of a traditional quantile estimator, Powell (1986) developed a semi-parametric

way to achieve consistent quantile estimates on censored data. However, the Powell

97



estimator has proven computationally difficult to execute, and it does not incorpo-

rate endogeneity. In this paper, we develop a new censored quantile instrumental

variables (CQIV) estimator that handles censoring nonparametrically in the tradition

of Powell (1986) and generalizes standard censored quantile regression (CQR) meth-

ods to incorporate endogeneity. Furthermore, we set forth a CQIV computational

algorithm that is simple to execute using standard statistical software. The results

of a Monte-Carlo simulation exercise demonstrate that the performance of CQIV is

comparable to that of Tobit IV in data generated to satisfy the Tobit IV assumptions.

The CQIV computational algorithm that we develop here uses a control term

approach to control for endogeneity in the structural equation. Newey, Powell, and

Vella (1999) describe the use of the control function approach in triangular simultane-

ous equations models with constant coefficients. Lee (2007) sets forth an estimation

strategy using a control function approach in a model with quantile structural and

first stage equations. Our model differs from his in that our model has a censored

dependent variable, and our first stage equation does not need to be additive. An ap-

plication of our CQIV method to the estimation of the price elasticity of expenditure

on medical care appears in Kowalski (2008).

In Section 2, we present the CQIV model and estimation methods. In Section

3, we describe the associated computational algorithm and present results from a

Monte-Carlo simulation exercise. In Section 4, we provide conclusions and discuss

potential empirical applications of CQIV.
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2.2 Censored Quantile Instrumental Variables Re-

gression

2.2.1 The Model

The general stochastic model we consider is the following “triangular” system of

quantile equations:

Y = max(Y ∗, C) (2.1)

Y ∗ = QY ∗(U |D, W, V ) (2.2)

D = QD(V |W,Z). (2.3)

In this system, Y ∗ is the latent response variable, Y is obtained by censoring Y ∗

above at the censoring variable C, D is the endogenous variable, W is a vector of

regressors, possibly containing C, V is a latent unobserved regressor, and Z is a

vector of instruments. Further, QY ∗(·|D,W, V ) is the conditional quantile function of

Y ∗ given the endogenous variable D, regressors W , and unobserved regressor V ; and

QD(·|W,Z) is the conditional quantile function of the endogenous variable D given

regressors W and instruments Z. Here, U is a Skorohod disturbance that satisfies

the independence assumption

U ∼ U(0, 1)|D, W,C, V, (2.4)

and V is a Skorohod disturbance such that

V ∼ U(0, 1)|W,C, Z. (2.5)

In the last two equations, we make the assumption that the censoring variable C is

independent of the disturbances U and V . This variable can, in principle, be related
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to W . Indeed, our notation allows us to capture possible dependence of W and C by

simply treating C as a component of W .

In the model above, to recover the structural function of interest, QY ∗(·|D, W, V ),

it is important to condition on an omitted regressor V called the “control function.”

The instrumental equation allows us to recover this omitted regressor as a residual

that explains movements in the variable D, conditional on the set of instruments

and other regressors. Nonparametric triangular models for uncensored data are

developed in Imbens and Newey (2002) and Chesher (2003); parametric nonlinear

variants of these models are also discussed in Wooldridge (2002); linear variants of

these models appear in the analysis of Hausman (1978). The model treated in this

paper differs from these earlier models by explicitly treating the case of a censored

response variable.

From the system of equations above, we have that

Y = QY (U |D,W, V, C) = max(QY ∗(U |D, W, V ), C). (2.6)

Thus, the conditional quantile function of the observed response variable Y is equal

to the conditional quantile function of the latent variable Y ∗, transformed by the

censoring transformation function max(·, C).

2.2.2 Estimation

To make estimation both practical and realistic, we make a flexible semi-parametric

restriction on the functional form of the structural quantile function. In particular,

we assume that

QY ∗(u|D, W, V ) = X̃ ′β(u), X̃ = T (D, W, V ) = (X, V̇ ), (2.7)
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where T (D, W, V ) is a collection of continuously differentiable transformations of ini-

tial regressors D, W, V . The transformations could be, for example, polynomial,

trigonometric, B-spline or other basis functions that have good approximating ability

for economic problems. In this notation, we also need to distinguish the part of the

vector T (D,W, V ) that only depends on V ; we denote this part V̇ . An important

property of this functional form is linearity parameters, which will lead us to a con-

struction of a computationally efficient estimator. The resulting functional form for

the conditional quantile function of the censored random variable is given by

QY (u|D,W, V, C) = max(X̃ ′β(u), C). (2.8)

This is the standard functional form first derived by Powell (1984) in the exogenous

context.

We then form the estimator for parameters of this function as

β̂(u) = arg min
β∈Rk

1

n

n∑
i=1

[1((Ẋi,
̂̇Vi)

′γ̂ > c)ρu(Yi − (X̃i,
̂̇Vi)

′β)], (2.9)

where ρu(x) = (u − 1(x < 0))x is the asymmetric absolute loss function of Koenker

and Bassett (1978), and Ẋ is a vector of transformations of vector (X̃, C). This

estimator adapts the estimator developed in Chernozhukov and Hong (2002) to deal

with endogeneity. We call the multiplier 1((Ẋi,
̂̇Vi)

′γ̂ > c) the selector, as its purpose

is to predict the subset of regressors where the probability of censoring is sufficiently

low to permit using a linear – in place of a censored linear – functional form for the

conditional quantile. We formally state the conditions on the selector in the next

subsection. This notational formulation allows for this estimator to be computed

through several steps all taking the form above. We provide necessary practical

details in the next section. This estimator may also be seen as a computationally
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attractive approximation to the Powell estimator applied to our case:

β̂p(u) = arg min
β∈Rk

1

n

n∑
i=1

[ρu(Yi −max((X̃i,
̂̇Vi)

′β,Ci))]. (2.10)

The control function V can be estimated in several ways. We can see that

V = V (D,W,Z) ≡ Q−1
D (D|W,Z) =

∫ 1

0

1{QD(v|W,Z) ≤ D}dv. (2.11)

Take any estimator for QD(v|W,Z) or for Q−1
D (D|W,Z), based on any parametric

or semi-parametric functional form. Denote the resulting estimator for the control

function as

V̂ = V̂ (D,W,Z) ≡ Q̂−1
D (D|W,Z) =

∫ 1

0

1{Q̂D(v|W,Z) ≤ D}dv. (2.12)

There are several examples: in the classical additive example, we have that

QD(v|W,Z) = Z̃ ′δ + Q(v), (2.13)

where Q is a quantile function, and Z̃ is a vector collecting transformations of W and

Z, so that

V = Q−1(D − Z̃ ′δ); (2.14)

in a non-additive example, we have that

QD(v|W,Z) = Z̃ ′δ(v), (2.15)

and

V =

∫ 1

0

1{Z̃ ′δ(v) ≤ D}dv. (2.16)
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The estimators then take the form

V̂ =

∫ 1

0

1{Z̃ ′δ̂(v) ≤ D}dv. (2.17)

Their asymptotic theory has been developed in Chernozhukov, Fernandez-Val, and

Galichon (2006).

2.2.3 Regularity Conditions for Estimation

In order to estimate and make inference on β(u) where u is the probability index of

interest in (0, 1), we make the following assumptions:

Condition 1 (Sampling) We have a sample of size n of identically and indepen-

dently distributed vectors (Yi, Di,Wi, Zi). The distribution function of (Yi, Di,Wi, Zi)

has a compact support and satisfies conditions stated below.

Condition 2 (Conditions on the Estimator of the Control Function) We have

that

̂̇V = ̂̇V (D, Z, W ), where ̂̇V ∈ V , (2.18)

where V is class of functions that are sufficiently smooth, in the sense that the class

satisfies Pollard’s entropy condition, and

√
n( ̂̇V − V̇ ) = B(D, Z, W )

1√
n

n∑
i=1

Si + op(1), (2.19)

where S1, ..., Sn are i.i.d. random vectors with finite second moments, and B(D, Z, W )

also has finite second moments.

Condition 3 (Conditions on the Selector) The selection rule is equivalent to the

form

1( ̂̇X
′
γ̂ > c), where γ̂ →p γ. (2.20)
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where for some b > 0

1(Ẋ ′γ > c) ≤ 1(Pr[Y = C|X, Z, V ] < u + b). (2.21)

The selector must also be nontrivial in the sense that

1(Ẋ ′γ > c) = 1(Pr[Y = C|X,Z, V ] < u + b) (2.22)

with positive probability.

Condition 4 (Smoothness Conditions ) (a) The conditional density fY (y|X =

x) is differentiable in the argument y, with a derivative that is uniformly bounded in

y and x varying over the support of (Y, X). (b) the mapping (α, V ′) 7→ P ((X̃i, V
′)′α >

v) is Lipschitz in α and in V ′, for α in an open neighborhood of γ0 and V ′ in V ′.

Condition 5 (Design Conditions) The matrices J̇ ≡ EfY (X ′
iβ(u)|Xi)XiX

′
i1[Ẋ ′

iγ >

c] and Λ̇ ≡ V ar[{(u−1(Yi < X ′
iβ(u)))Xi+E[fY (X ′

iβ(u)|Xi)XiB(Xi)]Si}·1(Ẋ ′
iγ > c)]

are of full rank.

Assumption 1 imposes standard independence conditions as well as compactness

of support of the data variables. We can relax the compactness at the cost of more

complicated notation and proofs. Assumption 2 imposes a high-level condition on

the estimator of the control function. This condition is plausible, and it holds for

the parametric estimators of the control function in the additive set-up, and also for

semi-parametric estimators of the control function in the non-additive set-up using

quantile regression (see Chernozhukov, Fernandez-Val, and Galichon, 2006). Assump-

tion 3 imposes a high-level condition on the estimator of the selector function. This

condition is plausible, and it holds for a variety of selectors based on the initial esti-

mates of the censoring probability and estimates of the conditional quantile functions.

Assumption 4 imposes some smoothness assumptions on the distribution of Y and on
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the distribution of the linear index entering the selector function. This assumption is

more or less standard, and it also appears to be plausible. Assumption 4 imposes a

design condition that allows us to identify the parameters of interest and also estimate

them at the standard
√

n rate.

2.2.4 Main Theorem

We obtain the following result that states that the CQIV estimator is consistent,

converges to the true parameter at
√

n rate, and is normally distributed in large

samples.

Theorem 6 Under the stated assumptions

√
n(β̂(u)− β(u))

d−→ N(0, J−1(u)Λ0(u)J−1(u)) (2.23)

See Appendix A for a proof. We can estimate the variance-covariance matrix using

standard methods and carry out analytical inference based on the normal distribution.

In practice, we find it more practical to use bootstrap and subsampling to perform

inference.

2.3 Implementation Details and Monte-Carlo Il-

lustrations

We begin our CQIV computational algorithm with Step 0 to facilitate comparison

with the Chernozhukov and Hong (2002) 3-Step CQR algorithm, which we follow

closely. For each desired quantile u,

0. Obtain a prediction of the control term, ̂̇V (and its transformations). A simple

additive strategy is to obtain ̂̇V by predicting the OLS residuals from the first
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stage regression of D on W and Z. If desired, higher order functions of the

predicted residuals can be included in X̃. We mentioned non-additive strategies

in the previous section.

1. Select a subset of observations, Jo, which are not likely to be censored using a

parametric probability model:

1(Yi > Ci) = p(X̃ ′
iγ) + εi (2.24)

where 1(Yi > Ci) takes on a value of 1 if the observation is not censored and

takes on a value of zero otherwise. Note that the control term, ̂̇V , is included

in X̃. In practice, a probit, logit, or any other model that fits the data well

can be used. Select the sample J0 according to the following criterion:

J0 = {i : p(X̃ ′
iγ̂) > 1− u + c}. (2.25)

In practice, it is advisable to choose c such that a constant fraction of observations

satisfying p(X̃ ′
iγ̂) > 1 − u are excluded from J0 for each quantile. To do so, set c

so that (1 − u − c) is the q0th quantile of p(X̃ ′
iγ̂) such that p(X̃ ′

iγ̂) > 1 − u, where

q0 is a percentage (10 worked well in our simulation). The empirical value of c and

the percentage of observations retained in J0 can be computed as simple robustness

diagnostic test at each quantile.

2. Estimate the standard quantile regression on the sample Jo:

β̂(u) minimizes
∑
J0

ρu(Yi − X̃ ′
iβ(u)). (2.26)

and, using the predicted values, select another subset of observations, J1, from

the full sample according to the following criterion:
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J1 = {i : X̃ ′
iβ̂(u) > Ci + δn}. (2.27)

In practice, it is advisable to choose δn such that a constant fraction of observations

satisfying X̃ ′
iβ̂(u) > Ci are excluded from J1 for each quantile. To do so, set (Ci +δn)

to be the q1th quantile of X̃ ′
iβ̂(u) such that X̃ ′

iβ̂(u) > Ci, where q1 is a percentage

less than q0 (3 worked well in our simulation). In practice, it should be true that J0

⊂ J1. If this is not the case, it is advisable to alter q0, q1, or the regression models.

At each quantile, the empirical value of δn, the percentage of observations from the

full sample retained in J1, the percentage of observations from J0 retained in J1, and

the number of observations in J1 but not in J0 can be computed as simple robustness

diagnostic tests. Coefficient estimates β̂(u) obtained in this step are consistent but

will be inefficient relative to estimates obtained in the subsequent step.

3. Estimate the standard quantile regression on the sample J1. Formally, replace

J0 with J1 in (2.26). The new estimates, β̂(u), are the 3-Step CQIV coefficient

estimates.

4. (Optional) With results from the previous step, select a new sample J2. Repeat

this and the previous step as many times as desired.

Beginning with Step 2, each successive step of the algorithm should yield estimates

that come closer to minimizing the Powell objective function. As a simple robustness

diagnostic test, we recommend computing the value of the Powell objective function

using the full sample and the estimated coefficients after each step, starting with

Step 2. This diagnostic test is computationally straightforward because computing

the value of the objective function for a given set of values is much simpler than

maximizing it. In practice, this diagnostic test can be used to determine when to

stop the CQIV algorithm for each quantile. If the value of the Powell objective
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function increases from Step s to Step s + 1 for s ≥ 2, estimates from step s can be

retained as the coefficient estimates.

We recommend obtaining confidence intervals through a bootstrapping procedure,

though analytical formulas can also be used. If the estimation runs quickly on

the desired sample, it is straightforward to draw R ≥ 100 bootstrap samples with

replacement and run each bootstrapped sample through all steps of the algorithm.

A confidence interval for each coefficient estimate can be formed from the .05 and .95

quantiles of the vector of point estimates obtained for each coefficient.

2.3.1 Monte-Carlo

The goal of the following Monte-Carlo simulation is to quantify the empirical perfor-

mance of CQIV relative to Tobit IV. For our simulation, we generate data according

to a model that satisfies the Tobit IV assumptions. When the Tobit IV assump-

tions are satisfied, Tobit IV is consistent and efficient, and CQIV at each quantile is

consistent but inefficient. Thus, estimates from both models satisfy the criteria for

a Hausman (1978) specification test, in which the null hypothesis is that the Tobit

IV assumptions are satisfied. Since the Tobit IV assumptions are satisfied in our

simulated data, a comparison of Tobit IV coefficients to CQIV coefficients at each

quantile quantifies the relative efficiency of CQIV in a model where Tobit IV can be

expected to perform as well as possible.

A model with constant coefficients facilitates comparison between the conditional

mean estimate of Tobit IV and the conditional quantile estimates of CQIV. Specif-

ically, for each of R Monte-Carlo repetitions, we generate N observations according

to the following model:
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Di = α0 + α1Zi + α2Wi + Φ−1(Vi), Vi v U(0, 1) (2.28)

Y ∗
i = γ0 + γ1Di + γ2Wi + Φ−1(U ′

i), U ′
i v U(0, 1) (2.29)

where (Φ−1(Vi), Φ
−1(U ′

i)) is distributed multivariate normal with mean zero and

covariance matrix

Σ =




1 ρ

ρ 1


 . (2.30)

Though we can observe Y ∗
i in the simulated data, in the censored data, we instead

observe

max(yi, Ci) = γ0 + γ1Di + γ2Wi + Φ−1(U ′
i). (2.31)

From properties of the multivariate normal distribution, we know Φ−1(U ′
i) =

ρΦ−1(Vi)+Φ−1(Ui), where Φ−1(Ui) is distributed N(0, 1−ρ2). Using this expression,

we can combine (2.28) and (2.31) for an alternative formulation of the censored model

in which the control term, V , is included in the structural equation:

max(Yi, Ci) = γ0 + γ1Di + γ2Wi + ρΦ−1(Vi) + Φ−1(Ui) (2.32)

This formulation is useful because it indicates that when we include the control

term in the structural equation, its true coefficient is ρ.

In our simulated data, we create extreme endogeneity by setting ρ = .9. For

simplicity, we set α0 = γ0 = 0, and γ0 = γ1 = 1. To generate the data, we draw the

disturbances Φ−1(Vi) and Φ−1(U ′
i) from a multivariate normal distribution with mean

zero and covariance matrix (2.30). We draw Zi from a standard normal distribution,

and we generate Wi to be a log-normal random variable that is censored from the right
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at its 95th percentile, r. Formally, we draw W̃i from a standard normal distribution.

We then calculate r = QW (.95), which differs across replication samples. Next, we

set Wi = min(eW̃i , r). For comparative purposes, we set the amount of censoring in

the dependent variable to be comparable to that in Kowalski (2008). Specifically,

we set Ci = C = QY (.38) in each replication sample. In results not reported here,

we set N = 30, 000 for comparison to Kowalski (2008). Here, we report results with

N = 1, 000 to demonstrate CQIV performance in a more conventional sample size.

For each of R = 100 replications, on the uncensored data, we compute traditional

IV estimates and IV estimates using the control function approach. On the censored

data, we compute traditional Tobit IV estimates and Tobit estimates using the control

function approach. Also on the uncensored data, we compute CQIV estimates at the

.05 to .95 quantiles in increments of .10.

In Table 2.1, we report the median bias and interquartile range (IQR) of the IV and

Tobit estimates. Bias on the coefficients on D and W is computed as (1−estimate).

Bias on the estimated control term, V̂ , the predicted residual from the first stage

regression of D on Z, W , and a constant, is computed as (.9 − estimate). The IV

and Control IV results in the first two rows of each section are numerically identical,

given the equivalence of the traditional approach and the control function approach

in a linear model. The median bias and IQR of these estimates provide a bound on

median bias and IQR absent censoring. In the censored data, the next set of results

demonstrates that Control Tobit IV represents a substantial improvement over Tobit

IV in terms of median bias and IQR. This comparison illustrates the value of the

control function approach in a nonlinear model.

In Table 2.2, we present the CQIV robustness diagnostic tests suggested above. In

our estimates, we used a probit model in the first step, and we set q1 = 10 and q2 = 3.

In empirical practice, we do not necessarily recommend reporting the diagnostics in

Table 2.2, but we have included them here for expositional purposes. In the top

110



section of the table, we present diagnostics computed after CQIV Step 1. At the

0.05 quantile, observations are retained in J0 if their predicted probability of being

uncensored exceeds 1 − u + c = 1 − .05 + .0445 = .9945. Empirically, this leaves

47.0% of the total sample in J0 in the median replication sample. In all statistics,

the variation across replication samples appears small. However, as intended by

the algorithm, there is meaningful variation across the estimated quantiles. As the

estimated quantile increases, the percentage of observations retained in J0 increases.

From these diagnostics, the CQIV estimator appears well-behaved in the sense that

the percentage of observations retained in J0 is never very close to 0 or 100.

In the second section of Table 2.2, we present robustness test diagnostics computed

after CQIV Step 2. Observations are retained in J1 if the predicted Yi exceeds Ci

+ δn, where the median value of Ci, as shown in the table, is 1.575, and the median

value of δn at the .05 quantile is 1.694. As desired, at each quantile, the percentage

of observations retained in J1 is smaller than the percentage of observations with

predicted values above Ci but larger than the percentage of observations retained in

J0. As shown in sections of the table labeled “Percent J0 in J1” and “Count J1 not

in J0” J0 is almost a proper subset of J1.

In the last section of Table 2.2, we report the value of the Powell objective function

obtained after CQIV Step 2 and CQIV Step 3. As shown at the far right of the last

section, on average, across the estimated quantiles, the final CQIV step represents an

improvement in the objective function in 36-51% of replication samples. In our CQIV

simulation results, we report the results from the second and third steps separately

for comparative purposes. In empirical practice, we recommend selecting results

from the second or third step based on the value of the objective function.

In Table 2.3, we report the median bias and IQR of the CQIV estimates from Step

3 and Step 2. Roughly, the absolute value of the median bias and IQR are highest

at the extreme quantiles. It is notable that even with 38% censoring, we are able
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to attain estimates at low quantiles. As shown in the penultimate set of columns,

CQIV Step 3 estimates of the coefficients on D and W have smaller absolute median

bias than comparable CQIV Step 2 estimates in 30% of the estimated quantiles, with

no clear pattern across the quantiles. In results with N = 30, 000, the gains to CQIV

Step 3 relative to CQIV Step 2 are larger. In terms of interquartile range, CQIV Step

2 almost always out-performs CQIV Step 3, illustrating the potential disadvantage of

increasing the number of steps in the CQIV algorithm.

The last two columns of Table 2.3 present the most important results of the

Monte-Carlo Simulation, the comparison between Control Tobit IV estimates from

Table 2.1 and the CQIV estimates in Table 2.3. In terms of median bias, CQIV

Step 3 estimates of the coefficient on D out-perform Tobit IV estimates in 90% of

estimated quantiles. In terms of IQR, Tobit IV estimates almost always out-perform

CQIV estimates, but comparison of the actual IQR values in Table 2.1 and Table

2.3 shows that the CQIV IQR has the same order of magnitude as the Tobit IV

IQR. Given that the simulated data satisfy the Tobit IV assumptions, the results of

this simulation should give a lower bound of CQIV performance relative to Tobit IV.

Since Tobit IV requires several parametric assumptions, the advantages of CQIV are

likely to be large relative to Tobit IV in applied work.

2.4 Conclusion

In this paper, we develop a new censored quantile instrumental variables estimator,

and we demonstrate its computation and finite sample performance using a Monte-

Carlo simulation. Censoring and endogeneity abound in empirical work, so CQIV

should be readily applicable. Kowalski (2008) uses CQIV to estimate the price

elasticity of expenditure on medical care across the quantiles of the expenditure dis-

tribution, where censoring arises because of the decision to consume zero care, and
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endogeneity arises because marginal prices explicitly depend on expenditure. In

another joint paper, we use CQIV in a duration model context. Specifically, we

re-estimate the McClellan, McNeil, and Newhouse (1994) model of the effect of car-

diac catheterization on elderly mortality, which uses differential distance to a cardiac

catheterization facility as an instrument. In addition to allowing for the censored

mortality of patients that are still alive, the CQIV estimator allows us to examine

the effect of cardiac catheterization across the quantiles of the mortality distribution.

Since CQIV can be implemented using standard statistical software, it should prove

useful to applied researchers.
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Table 2.1: Median Bias and IQR of IV and Tobit IV Estimators

Median Bias and IQR of IV and Tobit IV Estimators

Estimator Censored Y Median Bias IQR

Enodgenous Variable (p) IV no 0.0043203 0.0454494

Control IV no 0.0043203 0.0454494

Tobit IV yes 0.0332017 0.3733709

Control Tobit IV yes 0.0081629 0.0533828

Covariate (x) IV no -0.0009606 0.0558725

Control IV no -0.0009606 0.0558725

Tobit IV yes -0.0160931 0.0656968

Control Tobit IV yes -0.0007842 0.0527166

Control Term (vhat) IV no NA NA

Control IV no -0.0021902 0.0444503

Tobit IV yes NA NA

Control Tobit IV yes -0.0021902 0.0584879

N=1,000

Replications=100
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Table 2.2: CQIV Optimization Statistics Across Monte Carlo Replications

CQIV Optimization Statistics Across Monte Carlo Replications

CQIV Step 1

Quantile Median Min Max Median Min Max

0.05 0.0445 0.0396 0.0478 47.0 45.1 50.3

0.15 0.1266 0.1024 0.1411 50.2 48.7 52.3

0.25 0.2038 0.1640 0.2336 52.2 50.9 53.4

0.35 0.2675 0.2353 0.3226 53.8 52.9 54.4

0.45 0.3248 0.2765 0.4082 55.1 54.3 56.1

0.55 0.3769 0.2760 0.4962 56.5 55.7 57.3

0.65 0.4145 0.3105 0.5828 57.8 56.3 58.6

0.75 0.4320 0.2575 0.6026 59.4 58.1 61.2

0.85 0.3990 0.2803 0.5566 61.3 59.7 63.0

0.95 0.3012 0.2071 0.4588 64.3 62.3 66.4

CQIV Step 2

Quantile Median Min Max Median Min Max Median Min Max

0.05 1.6942 1.4888 1.9101 50.9 47.3 53.8 52.5 48.8 55.5

0.15 1.7066 1.4541 1.9218 54.2 52.2 56.3 55.9 53.9 58.1

0.25 1.6927 1.5111 1.9317 56.0 54.6 58.2 57.8 56.3 60.0

0.35 1.6940 1.5115 1.9402 57.9 56.1 59.8 59.7 57.9 61.7

0.45 1.7061 1.5343 1.9061 59.3 57.6 61.2 61.2 59.4 63.1

0.55 1.7178 1.5086 1.9763 61.1 58.6 62.3 63.0 60.5 64.3

0.65 1.7162 1.4424 1.9716 62.3 59.9 63.7 64.3 61.8 65.7

0.75 1.6988 1.4070 2.0034 64.0 61.3 66.1 66.0 63.2 68.2

0.85 1.7106 1.4774 1.9687 66.0 62.9 68.4 68.1 64.9 70.6

0.95 1.7457 1.4790 2.0917 69.4 66.7 72.4 71.6 68.8 74.7

Quantile Median Min Max Median Min Max Median Min Max

0.05 1.5753 1.3161 1.9234 100 98.7 100 36 2 77

0.15 1.5753 1.3161 1.9234 100 99.8 100 39 21 63

0.25 1.5753 1.3161 1.9234 100 100.0 100 39.5 24 59

0.35 1.5753 1.3161 1.9234 100 99.8 100 42 25 60

0.45 1.5753 1.3161 1.9234 100 100.0 100 42 23 60

0.55 1.5753 1.3161 1.9234 100 99.6 100 44 23 62

0.65 1.5753 1.3161 1.9234 100 99.8 100 45 25 60

0.75 1.5753 1.3161 1.9234 100 100.0 100 46 28 67

0.85 1.5753 1.3161 1.9234 100 99.8 100 47 19 70

0.95 1.5753 1.3161 1.9234 100 100.0 100 50 21 79

Comparison of Objective Functions

Objective Step 3<Objective Step 2

Quantile Median Min Max Median Min Max Median Mean

0.05 4999.2 4542.6 5676.9 5058.9 4544.1 5676.9 0 0.44

0.15 12149.9 10771.4 13387.1 12153.1 11074.9 13555.3 0 0.45

0.25 17174.0 15224.2 20048.9 17302.6 15603.5 20039.8 1 0.51

0.35 20517.6 17544.4 24204.7 20639.9 18449.6 24270.9 0 0.39

0.45 22304.0 19531.0 26483.2 22266.7 19668.4 26629.4 0 0.49

0.55 22399.1 19605.3 27112.7 22493.3 19327.3 27431.3 0 0.44

0.65 20336.7 16101.3 26245.7 20487.1 15402.0 26502.1 0 0.46

0.75 15684.5 10436.3 23983.3 15711.9 10984.3 23995.9 0 0.41

0.85 6822.4 -1123.4 15435.6 6744.1 165.9 15435.6 0.5 0.50

0.95 -14979.2 -23792.3 -6720.3 -15015.9 -23192.6 -6720.3 0 0.36

N=1,000

Replications=100

Objective Step 3 Objective Step 2

Deltan Percent J1

Percent J0 in J1 Count in J1 not in J0

c

Percent Predicted Above C

Percent J0

C
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A Proof of Theorem 1.

Below, const and K are generic positive constants. Ci denotes the censoring point.

Step 1. The rescaled statistic Zn =
√

n(β̂(u)− β(u)) minimizes

Qn(z, γ̂, V̂ ) ≡ 1√
n

n∑
i=1

Vin(z)1[(X̃i,
̂̇Vi)

′γ̂ > c], where (2.33)

Vin(z, V̂ ) ≡ √
n[ρu(εi − (X̃i,

̂̇Vi)
′z/
√

n) − ρu(εi)] and εi ≡ Yi − X ′
iβ(u). The claim is

that for any finite collection of points zj, j ≤ l

(
Qn(zj, γ̂, V̂ ), j ≤ l

) d−→ (
Q∞(zj), j ≤ l

)
, (2.34)

where

Q∞(z) ≡ Ẇ ′z + 1
2z
′J̇z

W
d
= N(0, Λ̇)

J̇ ≡ EfY (X ′
iβ(u)|Xi)XiX

′
i1[Ẋ ′

iγ > c],

≡ V ar[{(u− 1(Yi < X ′
iβ(u)))Xi + E[fY (X ′

iβ(u)|Xi)XiB(Xi)]Si} · 1(Ẋ ′
iγ > c)]

This claim above follows immediately from the standard CLT and LLN and some

standard calculations applied to the first order approximation

Qn(z, γ̂, V̂ ) = Qn(z, γ, V ) + z′E[fY (X ′
iβ(u)|Xi)XiB(Xi)]

1√
n

n∑
i=1

Si + op(1), (2.35)

which is obtained in the Step 2 below.

Matrix J̇ is invertible by assumption. Since functions Qn and Q∞ are convex,

finite, and continuous in z, and since function Q∞ is uniquely minimized at random
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vector −J̇−1Ẇ = Op(1), (2.34) implies

Zn
d−→ −J̇−1Ẇ (2.36)

by the convexity theorem (e.g. Pollard, 1989).

Step 2. For any fixed z, the empirical process

{Qn(z, γ′, V ′)− EQn(z, γ′, V ′), γ′ ∈ G, V ′ ∈ V} (2.37)

is stochastically equicontinuous in γ, where G ≡ {γ : |γ−γ0| ≤ δ} and δ > 0 is small.

Indeed, let

F =
{
(W,Z,D) 7→ 1[(X̃ ′, [V ′(W,Z,D)])γ > c], γ ∈ G, V ′ ∈ V}

(2.38)

and

Gn = {(W,Z,D, ε) 7→ √
n[ρu(ε− (X̃ ′, V ′(W,Z, D))z/

√
n)− ρu(ε)], V

′ ∈ V ]. (2.39)

and, finally,

Hn = F × Gn. (2.40)

By the boundedness assumptions, Hn has a constant envelope that is bounded. The

class of functions Gn is a uniformly Liphitz transformation of V . Using this fact it is

not difficult to show that the bracketing integral for Hn satisfies

J[](δn,Hn, L2(P )) ↘ 0, as δn ↘ 0. (2.41)

Indeed, the L2(P ) pseudo-metric on Hn is equivalent to the following pseudo-metric

on G × F . Let h1 ∈ Hn be defined by pair γ1, V1 and h2 ∈ Hn be defined by pair
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γ2, V2, then we define the pseudo-metric on G × F as

ρ(γ1, γ2, V1, V2) ≡ sup
n≥1

√
E|h1 − h2|2

.
√
‖γ2 − γ1‖2 +

√
E|V̇1(X, D, Z)− V̇2(X, D, Z)|2 +

√
E|V̇1(X,D, Z)− V̇2(X,D,Z)|2

.
√
‖γ2 − γ1‖2 +

√
E|V1(X, D, Z)− V2(X, D, Z)|2 +

√
E|V1(X,D, Z)− V2(X,D,Z)|2

. (‖γ2 − γ1‖2)
1/2 + (E|V1(X,D,Z)− V2(X, D,Z)|2)1/4 + [E|V1(X, D,Z)− V2(X, D, Z)|2]1/2

where the first inequality follows by triangular inequality and some simple direct

calculations, and the second from V̇ being a uniform Lipschitz transform of V , and

the last inequality is elementary. Using this inequality we can conclude that

J[](δn,Hn, L2(P )) . J[](δn,V , L2(P )) + J[](δn,G, L2(P )), (2.42)

where

J[](δn,V , L2(P )) + J[](δn,G, L2(P )) ↘ 0 as δn ↘ 0. (2.43)

where the first terms goes to zero by assumption on the class V ; and the second term

converges to zero trivially.

The stochastic equicontinuity condition implies that

Qn(z, γ̂, V̂ )−Qn(z, γ, V )− EQn(z, γ̂, V̂ ) + EQn(z, γ, V ) = op(1). (2.44)

Thus, to complete the proof, it remains to examine the behavior of

EQn(z, γ̂, V̂ )−EQn(z, γ, V ) = EQn(z, γ̂, V )−EQn(z, γ, V )+EQn(z, γ̂, V̂ )−EQn(z, γ̂, V )

(2.45)

We first show that EQn(z, γ̂, V ) − EQn(z, γ, V ) = op(1). We can suppress V in the
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analysis. We will show that for si(γ, γ0) ≡ 1[X ′
iγ > c]− 1[X ′

iγ0 > c]:

EQn(z, γ)− EQn(z, γ0)|γ=γ̂ ≡
√

nEVin(z)si(γ, γ0)|γ=γ̂ = Op(γ̂ − γ0), (2.46)

Write
√

nVin(z) ≡ −√n
[{u−1[εi ≤ 0]}X ′

iz
]
+
√

n
[−ηi(z){X ′

iz−εi

√
n}]≡ √

nV ′
in(z) +

√
nV ′′

in(z), where ηi(z) ≡ [
1(εi ≤ 0) − 1(εi ≤ X ′

iz/
√

n)
]
. For γ close enough to γ0,

X ′
iγ > c implies X ′

iβ(u) < Ci − v, a.s. for v > 0 small, for all i, so that

E
[√

nV ′
in(z)si(γ, γ0)|Xi, Ci

]
= 0 uniformly in i, (2.47)

since P
[
εi ≤ 0|Xi, Ci, Xiβ(u) < Ci − v

]
= u [ if Xiβ(u) < Ci, εi has u-th conditional

quantile at 0] . Also E
[√

nV ′′
in(z)si(γ, γ0)|Xi, Ci

]
=O

[
fu(0|Xi)z

′XiX
′
iz1(X ′

iβ(u) <

Ci − v)
]× si(γ, γ0), uniformly in i . Therefore,

EE
[√

nV ′′
in(z)si(γ, γ0)|Xi, Ci

]
= O

(
E

[
si(γ, γ0)

])
= O(γ − γ0). (2.48)

Next we consider the second term, and we can see by a direct calculation that

EQn(z, γ̂, V̂ )− EQn(z, γ̂, V ) = z′E[fY (X ′
iβ(u)|Xi)XiB(Xi)]

1√
n

n∑
i=1

Si + op(1)

¤
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Chapter 3

Nonlinear Budget Sets and

Medical Care

3.1 Introduction

Questions related to marginal prices for medical care are important for policy. First,

how does medical expenditure respond to the marginal prices that consumers face?

Second, what is the extent of preference heterogeneity across consumers? Third,

what are the welfare consequences of price changes? In this paper, I develop a

structural model and associated estimation strategy to answer these questions using

medical claims data.

Estimates of the price elasticity of expenditure on medical care must address

a fundamental endogeneity problem: in traditional insurance plans, marginal price

is often a function of the quantity of care consumed. The existing literature has

addressed the endogeneity problem with two main techniques. One way that the

literature has addressed endogeneity is through randomization. The RAND health

insurance experiment, which began in the 1970’s, randomized consumers into plans

with varying marginal prices. Using data from this experiment, Manning et al. (1987)
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estimated the price elasticity of expenditure on medical care to be -0.2. However,

some element of endogeneity remained because participants knew that they would

face a zero marginal price once their total family expenditures reached an amount

that was specified to them at the start of the experiment.

Another way that the literature has addressed endogeneity is through instrumen-

tal variables techniques. Eichner (1997, 1998) uses a clever instrumental variables

strategy that relies on family cost sharing provisions to estimate the price elastic-

ity of expenditure on medical care to be approximately -.3. In the first chapter of

this dissertation, I capture the spirit of Eichner’s instrument to estimate the price

elasticity of expenditure at several quantiles of the expenditure distribution, and I

attain estimates that are an order of magnitude larger than those in the literature.

One disadvantage of instrumental variables procedures is that they can produce local

estimates. Specifically, instrumental variables techniques in this setting do not allow

expenditure responses to prices manipulated by the instrument to lead to even lower

prices.

In this paper, I develop a third way to address the endogeneity problem in the

estimation of the price elasticity of expenditure on medical care. Specifically, I

develop a model based on utility theory in which expenditure and marginal price are

jointly determined. As in the other two methods, I must specify a functional form

for the demand function. Unlike the other two methods, my model allows me to

estimate the extent of preference heterogeneity, and it allows for welfare calculations.

Furthermore, it incorporates the decision to consume zero medical care directly into

the model instead of treating zeros as a “censored” outcome. The estimation strategy

that accompanies my model shares a tight link with the theory.

My model builds on the literature developed to estimate the elasticity of labor

supply using nonlinearities in the budget set induced by progressive taxes, following

Hausman (1985). Two other papers, Keeler, Newhouse, and Phelps (1977) and
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Eichner (1997), discuss nonlinearities in the budget set for medical care, but my

model incorporates additional elements of utility theory. In addition, I extend the

nonlinear budget set literature to allow for estimation when the budget set contains

more than one nonconvex kink.

In the following section, I describe the agent’s general problem of utility maximiza-

tion subject to a nonlinear budget set, and I describe the sources of the nonlinearities

in the budget set in my setting. In Section 3, I compare my application to other

applications in the nonlinear budget set literature. In Section 4, I derive the equa-

tions for the formal model and discuss regularity conditions. In Section 5, I develop

estimation strategies for empirical applications of the model. In the final section, I

conclude and suggest several directions for future research.

3.2 The Agent’s Problem

Consider a partial equilibrium setting in which agents consume dollars of medical

care, Q, and dollars of all other goods, A. For simplicity, utility is defined over

Q, and A, but the model could be extended in the spirit of Phelps and Newhouse

(1974) so that agents derive utility from health instead of medical care. I measure

medical care in terms of dollars of expenditure on all types of medical care rather

than in terms of specific services under the assumption that in most health insurance

policies, the marginal price that the consumer pays for a dollar of medical care does

not vary with the type of care consumed.

In traditional demand theory, expenditure is equal to quantity of units demanded

multiplied by the per-unit price. In my model, I make some slight modifications to

the standard notation from demand theory to incorporate expenditure on behalf of

the consumer by another party, the insurer. To do so, I measure the quantity of

units demanded, Q, in dollars of medical care, and I measure the per-unit price, p,
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in terms of the marginal price that the consumer pays for a dollar of medical care.

The marginal price that the insurer pays for a dollar of medical care is given by

(1− p). Since the marginal price paid by the consumer and the insurer always sums

to unity, the number of units of medical care demanded by the consumer, Q, is equal

to total expenditure on behalf of the consumer, Q×1 = Q. Thus, unlike in standard

demand models, Q measures demand as well as total expenditure. To fit this model

into traditional demand theory, I model Q as a function of p. In this framework, I

define the “price elasticity of expenditure on medical care” as

η =
d ln Q

d ln p
(3.1)

The traditional expression for expenditure, Q × p, defines expenditure by the con-

sumer, and it appears in the budget set. Expenditure by the consumer and the

insurer, Q, is an argument of the utility function.

Formally, an agent maximizes utility subject to a budget set following the general

constrained optimization problem:

v(y, p) = max
Q

U(Q,A : pQ ≤ y) (3.2)

where U is direct utility, v is indirect utility, y is virtual income as defined below,

and p is the marginal price of medical care, which can be a function of Q. The Q

that achieves the maximum can be expressed in terms of the demand function Q(y, p).

From standard utility theory, Roy’s Identity relates indirect utility to demand:

− ∂v(yis, ps)/∂ps

∂v(yis, ps)/∂yis

= Q(ys, ps). (3.3)

Therefore, given the budget set and conditions for integrability discussed below,

this model requires one and only one functional form for direct utility, indirect utility,
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or demand. Even though all three approaches are equivalent in terms of the model,

I proceed by specifying a functional form for demand. On the grounds that reduced

form work also requires a demand specification, this approach might be more palatable

and transparent than the approach of specifying a utility function. This model

incorporates reduced form identification as well as identification from restrictions

from utility theory, which are discussed in detail below. One advantage of this

approach relative to reduced form work is that the estimates can be interpreted in

the context of utility theory, allowing for welfare comparisons. Once I have specified

the functional form of the demand function, I move from the agent’s problem to

the population problem by specifying sources of unobserved heterogeneity. Before

discussing the specific functional forms for demand and utility, however, I describe

the budget set.

3.2.1 Nonlinear Budget Set for Medical Care

A traditional health insurance plan has three basic components: a deductible, a

coinsurance rate, and a stoploss. The “deductible,” is defined as the yearly amount

that the beneficiary must pay before the plan covers any expenses. The percentage

of expenses that the beneficiary pays after the deductible is met is known as the

“coinsurance rate”. The insurer pays the remaining fraction of expenses until the

beneficiary meets the “stoploss,” (also known as the “maximum out-of-pocket”), and

the insurer pays all expenses for the rest of the year.

Figure 3-1 illustrates how these three parameters generate nonlinearities in

the consumer budget set. This traditional partial equilibrium diagram relates medical

care expenditure in dollars by the beneficiary and insurer, Q, to expenditure on all

other goods, A. In this diagram, D denotes the deductible, C denotes the coinsurance

rate, and S denotes the stoploss. The budget set has three linear segments, denoted

by a, b, and c. The marginal price associated with each segment s is ps. Specifically,
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pa = 1 (3.4)

pb = C (3.5)

pc = 0 (3.6)

A central issue in nonlinear budget set models is that it is difficult to control for

income because nonlinearities in the budget set create a disparity between marginal

income and actual income. One approach to deal with this difficulty is to control

for what Burtless and Hausman (1978) call “virtual income.” Virtual income is the

income that the consumer would have if each segment of the budget set were extended

to the vertical axis. In the figure, actual income is denoted by Y , and virtual income

on each segment is denoted by ys. In terms of income and plan characteristics, virtual

income on each segment can be expressed as follows:

ya = Y (3.7)

yb = Y − (1− C)D (3.8)

yc = Y − S (3.9)

In practice, there are many other possible health insurance plan provisions.

For example, some plans restrict care to a certain provider network, require a per-

visit “copayment,” and impose lifetime limits on plan payments. Furthermore, in the

non-group market, premiums can vary with characteristics of the beneficiary unless

prohibited by community rating laws. However, for many policies, the three param-

eters discussed above provide a relatively complete description of plan attributes.
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3.3 Comparison to Nonlinear Budget Set Litera-

ture

The original nonlinear budget set literature estimated the labor supply elasticity

using nonlinear budget sets induced by progressive taxes. Hausman (1985) provides a

survey of the early literature. Some early estimates of the labor supply elasticity using

nonlinear budget set models include those of Hurd (1976) Rosen (1979), and Burtless

and Moffit (1985). Other applications of the nonlinear budget set model include the

demand for air conditioners in Hausman (1979), the disability insurance program in

Halpern and Hausman (1986), the Social Security earnings test in Friedberg (2000),

and 401(k) saving in Englehardt and Kumar (2006). However, the labor supply

elasticity remains the most prevalent application of the nonlinear budget set model.

To facilitate comparison of the nonlinear budget set in my application to the non-

linear budget set in the labor supply application, Figure 3-2 depicts a nonlinear budget

set induced by a simple progressive tax. The after-tax wage, w, that a worker faces

varies with the tax rate, t. Comparison with Figure 3-1 is slightly difficult because

hours are a “bad,” but both figures are drawn so that the hypothetical arrow of in-

creasing preference points to the upper right. The labor supply application examines

the effect of the after-tax wage (the slope) on hours (the horizontal axis) controlling

for income (the vertical axis). Similarly, I examine the effect of the marginal price

(the slope) on quantity of medical care consumed in dollars (the horizontal axis)

controlling for income (the vertical axis).

Some difficulties that are present in the labor supply application are not present

in my application. For example, in the labor supply application, one important issue

is that several individuals work zero hours, and the potential wage for these individ-

uals is unknown. The medical care application does not suffer from this difficulty,

however. Although several individuals do not consume any medical care, the price
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that they would face is observable because it is determined by the insurance policy.

This transparency is possible because, unlike the wage, the price does not vary at the

individual level.

One advantage of the transparency of the price schedule in the budget set for

medical care is that the agent and the econometrician are likely to be aware of the

agent’s precise location on the budget set. Liebman and Zeckhauser (2004) hypothe-

size that individuals respond suboptimally to complex schedules - a phenomena that

they call “schmeduling.” While “schmeduling” may be very likely with respect to the

complex tax rules addressed by the labor supply elasticity estimates, it is arguably

less likely with respect to medical care because the price schedule is so simple. In the

labor supply application, since the slope of each segment varies with the underlying

marginal wage, the exact segment is often unknown to econometrician and possibly

the agent.

The transparency of the price schedule in the medical care application comes at

the cost of reduced underlying variation for identification. Blomquist and Newey

(2004) have developed nonparametric techniques to estimate nonlinear budget set

models which have been applied by Kumar (2004) and others. These nonparametric

techniques would likely have less power in this application because the slopes of

the segments of the budget set do not vary across individuals. Furthermore, the

Blomquist and Newey (2004) approach requires that the budget set be convex.

As is apparent from the comparison of Figure 3-1 to Figure 3-2, the budget set

induced by health insurance is inherently nonconvex, but the budget set induced by

progressive taxes is inherently convex. Nonconvexities make utility maximization

more complex because it is possible to have multiple tangencies between an indiffer-

ence curve and a nonconvex budget set. While convex budget sets imply “bunching”

at the kinks, nonconvex budget sets imply dispersion at the kinks. However, tech-

niques to examine “bunching” developed by Saez (2004) and Liebman and Saez (2006)
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can arguably be applied to study dispersion in this setting. Furthermore, although

progressive taxes generally lead to convex budget sets, more complex budget sets,

especially those that result from public assistance programs, can be nonconvex. Sev-

eral papers, including Burtless and Hausman (1978), Hausman (1980), and Hausman

(1981) estimate models that incorporate nonconvex segments. However, I am not

aware of any other papers that incorporate two or more nonconvex segments as I do

in my model.

3.4 Model Specification

Given a functional form for a demand function and a budget set, provided that

regularity conditions hold, an agent’s utility maximization problem is fully specified.

Proposition:

Given the following linear specification of the demand function:

Q(yis, ps) = α + βyis + γps + Xiδ (3.10)

and the budget set:

Ai = yis − psQi (3.11)

where Qi is the total amount spent on medical care on behalf of individual i, yis

denotes virtual income associated with segment s for individual i, ps denotes the price

per dollar of medical care associated with segment s, and Xi is a vector of covariates,

and Ai is expenditure on all goods other than medical care, if the Slutsky condition

γi + βQi ≤ 0 is satisfied and β 6= 0, it follows that:
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1. Indirect utility is given by:

v(yis, ps) = e−βps [
α

β
+ yis +

γ

β
ps +

Xiδ

β
+

γ

β2
] (3.12)

2. Utility is given by:

U(Qi, Ai) =
(βQi + γi)

β2
exp[

β(βAi −Qi + α)

βQi + γi

] (3.13)

3. The agent has a convex indifference curve for any fixed utility level U given by:

Ai(Qi, U) =
1

β2
(βQi − αβ + βQi log(

Uβ2

βQi + γi

)) +
γi

β2
log(

Uβ2

βQi + γi

) (3.14)

I discuss the Slutsky condition in more detail in a later section.

Proof:

1. To derive indirect utility, recall Roy’s Identity (3.3), which relates indirect util-

ity, v(yis, ps), to demand. The general solution of this partial differential equa-

tion for v(yis, ps) is as follows, where F is a general function:

v(yis, ps) = F

(
e−βps [

α

β
+ yis +

γ

β
ps +

Xiδ

β
+

γ

β2
]

)
(3.15)

Since utility only has meaning up to a monotonic transformation in this model,

set F equal to the function that returns its argument:

v(yis, ps) = e−βps [
α

β
+ yis +

γ

β
ps +

Xiδ

β
+

γ

β2
] (3.16)

This functional form satisfies Roy’s Identity:
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− ∂v(yis, ps)/∂ps

∂v(yis, ps)/∂yis

= −
(−βe−βps [α

β
+ yis + γ

β
ps + Xiδ

β
+ γ

β2 ] + e−βps [ γ
β
])

e−βps
(3.17)

= β[
α

β
+ yis +

γ

β
ps +

Xiδ

β
+

γ

β2
]− [

γ

β
] (3.18)

= α + βyis + γps + Xiδ = Q(yis, ps) (3.19)

Note that when β = 0, indirect utility is undefined.

2. To derive direct utility, using the demand function and the budget set, solve for

ps and yis in terms of Qi and Ai:

ps = −(βAi −Qi + α)

βQi + γi

(3.20)

yis =
−Q2

i + Qiα− Aiγi

βQi + γi

= Ai +
Qi(βAi −Qi + α)

βQi + γi

Substitute these expressions into the indirect utility function.

Although many general utility functions imply infinite utility and demand when

the price of one good is zero, this utility function implies finite demand when the price

of medical care is zero. From (3.10), we can see that when the price is zero, demand

is determined entirely by virtual income and covariates. This property makes the

model tractable without requiring any ad hoc assumptions about factors that make

the price of medical care nonzero after the stoploss is met.

3. To derive the indifference curve, fix utility and solve for Ai :

U =
(βQi + γi)

β2
exp[

β(βCi −Qi + α)

βQi + γi

] (3.21)

Ai =
1

β2
(βQi − αβ + βQi log(

Uβ2

βQi + γi

)) +
γi

β2
log(

Uβ2

βQi + γi

) (3.22)
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If and only if indifference curves are convex, the second derivative with respect to

Qi will be positive:

∂2Ai

∂Q2
i

=
−1

(βQi + γi)
≥ 0 (3.23)

It follows immediately that this condition will be satisfied when the Slutksy con-

dition holds.

3.4.1 Discussion of Conditions for Integrability

Symmetry and negativity of the Slutsky matrix is necessary to recover preferences

from demand. (See Mas-Collel et al. (1995).) In a partial equilibrium model, the

Slutsky matrix is necessarily symmetric. From the Slutsky equation, the Slutsky

matrix S is defined as.

S =
∂Q(yis, ps)

∂ps

+
∂Q(yis, ps)

∂yis

Q(yis, ps) (3.24)

It follows directly from this equation that for linear demand to satisfy negative

semidefiniteness of the Slutsky matrix, the following condition must hold:

γi + βQi ≤ 0 (3.25)

Since it must be true that Qi ≥ 0, and since we expect γi ≤ 0, β ≥ 0, this

condition is unlikely to be satisfied globally. Rather than making the unrealistic

assumption that β ≤ 0, so that the condition would be satisfied globally, or imposing

the condition directly, I impose γi ≤ 0 and check the estimated coefficients to see if

this condition holds. In practice, when the Slutsky condition is not met, indirect

utility will not be single-valued, and some consumers will locate along extensions of

budget segments that are in the interior of the budget set. Thus, violations of the
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Slutsky condition are readily apparent in data simulated according to the model.

In the nonlinear budget set literature, Slutsky conditions have received a great deal

of attention. In the labor supply literature, the Slutsky condition can be satisfied

globally if the labor supply elasticity is positive and the income elasticity is negative,

but it is not automatically satisfied. MaCurdy et al. (1990) and MaCurdy (1992)

brought attention to the role of Slutsky condition in the labor supply literature and

proposed an alternative local linearization method to smooth around the kinks in

the budget set and relax the Slutsky condition. However, Blomquist (1995) shows

that even under local linearization, the Slutsky condition must be satisfied for the

estimated parameters to be interpreted as labor supply parameters. He also shows

that neither method automatically produces parameter estimates that satisfy the

Slutsky condition. More recently, Heim and Meyer (2003) emphasize that though

the MaCurdy work is valuable because it demonstrates where the Slutsky condition

matters, it does not provide an alternative method. Following the literature, I

proceed subject to the caveat that the Slutsky condition must be satisfied.

3.5 Estimation

For purposes of exposition, I first describe an estimation strategy for a simple em-

pirical application with one nonconvex kink and one source of unobserved preference

heterogeneity. In turn, I then incorporate a second kink, a corner solution outcome,

and another source of unobserved preference heterogeneity. Finally, I discuss other

practical considerations for estimation.

3.5.1 Simple Case: One Nonconvex Kink

Assume that there is no stoploss. After meeting the deductible, agents purchase

all further medical care at the coinsurance rate. Formally, agents face a nonconvex
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budget set with only two segments, s = {a, b}. For now, assume that all agents

consume a positive amount of medical care. Given convex preferences, for each

individual, there is a region around each nonconvex kink point that will not be chosen.

We can allow the size of this region to vary by allowing γ, the coefficient on the price

term in the demand function, to vary across individuals with cdf Fγ. The generalized

demand specification is as follows:

Q(yis, ps) = α + βyis + γips + Xiδ (3.26)

Following the above derivation, the indirect utility function corresponding to this

demand function is as follows:

v(yis, ps) = e−βps [
α

β
+ yis +

γi

β
ps +

Xiδ

β
+

γi

β2
] (3.27)

Using this indirect utility function, it is possible to calculate a critical γab
i for

which an individual is indifferent between a point on either segment a or b:

v(yia, pa) = v(yib, pb) (3.28)

e−βpa [
α

β
+ yia +

γab
i

β
pa +

Xiδ

β
+

γab
i

β2
] = e−βpb [

α

β
+ yib +

γab
i

β
pb +

Xiδ

β
+

γab
i

β2
](3.29)

Rearranging, we can express γab
i in closed form:

γab
i =

−β{e−βpa [α + βyia + Xiδ]− e−βpb [α + βyib + Xiδ]}
e−βpa [βpa + 1]− e−βpb [βpb + 1]

(3.30)

If medical expenditure is a normal good, we expect γi to be negative for all i (as the

price increases, quantity demanded decreases). For very negative values of γi, the

quantity of medical care consumed will be small. As γi increases, there will be a

critical γab
i for which the agent will be indifferent between consumption of a bundle
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on the first segment and another bundle on the second segment. Formally, we expect

−∞ < γab
i < 0 ∀ i.

To develop a better understanding of the model, we can derive an expression for

the region of the budget set that will not be chosen for each individual. To do so,

express demand as a function of the budget segment and γab
i :

Qi =





Qia = α + βyia + γipa + Xiδ if γi < γab
i

Qib = α + βyib + γipb + Xiδ if γi > γab
i .





(3.31)

Technically, the case where γi = γab
i occurs with zero probability. However, this

case is important theoretically because it determines the size of the region that will

not be chosen. We can express the gap in quantity for each individual, gi, as follows:

gi = (Qib −Qia|γi = γab
i )

= β(yib − yia) + γab
i (pb − pa)

To further simplify this expression, we can express virtual income on each segment

in terms of actual income, Yi, the coinsurance rate C, and the deductible D by

generalizing (3.7)-(3.9) for individual heterogeneity

yia = Yi (3.32)

yib = Yi − (1− C)D (3.33)

yic = Yi − S (3.34)

and substituting pa = 1 and pb = C:
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gi = β(Yi − (1− C)D − Yi)− (1− C)γab
i

= −(1− C)(βD + γab
i )

The size of this region varies across individuals only through γab
i , which, as ap-

parent from (3.30), varies only through the covariates Xi, and income Yi. It follows

directly that if and only if income and the covariate do not vary across individuals,

the gap will not vary across individuals. We can determine how income affects the

size of the region by taking the following partial derivative:

∂gi

∂Yi

=
∂(−(1− C)γab

i )

∂Yi

(3.35)

=
β2(e−β(1−C) − 1)

β + 1− (1 + C)e−β(1−C)
(3.36)

This expression depends only on the income coefficient β and the coinsurance rate

C. In general, we expect β ∈ (0, 1). Therefore, e−β(1−C) ≤ 1 when β ∈ (0, 1). When

C = 1/5, as is common in many PPO plans, it follows that an increase in income

increases the size of the gap around each kink point. Intuitively, when income

increases, γab
i increases. It follows directly from (3.23) that an increase in γab

i makes

the indifference curve that intersects segments a and b less convex. Therefore, gi

increases. Similarly, assuming one covariate for simplicity,

∂gi

∂Xi

=
∂(−(1− C)γab

i )

∂Xi

(3.37)

= (1− C)δβ

(
(1− e−(1−C)β)

β + 1− (Cβ + 1)e−(1−C)β

)
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Since (Cβ + 1)e−(1−C)β < (β + 1)e−(1−C)β < β + 1, the denominator is positive, so

the whole expression shares the size of δ. Intuitively, if δ is positive, an increase in

Xi makes the indifference curve that intersects segments a and b less convex, and gi

increases. The opposite argument holds for negative δ.

Likelihood Function for one nonconvex kink

In this simple model, γab
i allows for a simple formulation of the likelihood. In general

terms, the likelihood of observing an individual i on a given segment of the budget

set is as follows:

Li = Pr(pa) + Pr(pb) (3.38)

where

Pr(pa) = Pr(via > vib) (3.39)

Pr(pb) = Pr(vib > via)

using the expression derived for γab
i and the distribution Fγ,

Pr(pa) = Fγ(γ
ab
i ) (3.40)

Pr(pb) = 1− Fγ(γ
ab
i )

Although this likelihood appears similar to that of a probit or logit model, the

functional form is different because heterogeneity enters multiplicatively instead of

additively.

Summing the log of the likelihood over all individuals, we can use MLE to solve:
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max
α,β,δ,θγ

∑
i

log Li (3.41)

where θγ are the unknown parameters of Fγ. As an alternative to traditional

maximum likelihood techniques, which can be difficult to implement when the likeli-

hood is complicated, this model can be combined with diffuse and hierarchical priors

so that it can be estimated in a Bayesian setting. Since Bayesian techniques require

integration of a posterior density instead of maximization of a function, they can be

more computationally tractable.

3.5.2 General Case: Two Nonconvex Kinks

In practice, estimating a model that assumes away the existence of the second noncon-

vex kink would arguably involve selection based on the dependent variable, leading

to bias. Therefore, I extend the model to incorporate a second nonconvex kink.

The presence of a second nonconvex kink leads to two more indifference conditions:

one for indifference between segments b and c and another for indifference between

segments c and a.

Following the above derivation, and substituting pc = 0 and pa = 1, we can express

γbc and γac as follows:

γbc
i =

−β{e−βpb [α + βyib + Xiδ]− 1}
e−βpb [βpb + 1]− 1

(3.42)

γac
i =

−β{e−β[α + βyia + Xiδ]− 1}
e−β[β + 1]− 1

(3.43)

The indifference condition between segments a and c makes it difficult to calcu-

late expressions for the region around each nonconvex kink that will not be chosen.

Furthermore, it makes the functional form of the likelihood much more complicated.
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The likelihood becomes a general multinomial model instead of an ordered model.

Likelihood Function for Two Nonconvex Kinks

In a traditional ordered model, like the ordered probit model, the outcomes are or-

dered, and a monotonic change in heterogeneity produces a monotonic change in the

ordered outcome. In contrast, in this model, the outcomes are ordered, but a mono-

tonic change in heterogeneity need not produce a monotonic change in the ordered

outcome, and the direction of the change can vary across agents. Thus, a more

general multinomial model is required. Specifically, the probability of a particular

segment is equal to the probability that virtual income is higher on that segment than

it is on the other two segments:

Pr(ps) = Pr(vis > vit ∀t 6= s)

Rather than express these probabilities as a complicated function of the three

indifference conditions defined by (3.30),(3.42), and (3.43), we can formulate the

multinomial model more succinctly in terms of indirect utility using a simple trick.

First, add an error term, εis, to indirect utility for each segment, and assume that εis

is distributed iid extreme value :

ṽ(yis, ps) = e−βps [
α

β
+ yis +

γ

β
ps +

Xiδ

β
+

γ

β2
] + εis (3.44)

Now, if we integrate out the εis, we are left with a simple closed form expression

(See Train (2003), page 78 for a proof):

Pr(ps|γi) =
evis

Σevis
(3.45)
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where, as defined above, vis is a function of γi. Assuming εis and γi are inde-

pendent, we can integrate this closed form over the distribution of γi to express the

following probability of each segment:

Pr(ps) =

∫
evis

Σevis
f(γi)dF (γi) (3.46)

The new likelihood for each observation is as follows:

L′i = Pr(pa) + Pr(pb) + Pr(pc) (3.47)

We can estimate the coefficients by substituting L′i for Li in (3.41).This likelihood

is now a random coefficients logit model. A variant of this model, in which (indirect)

utility is linear in the parameters, is used extensively in the industrial organization

literature, and it has been shown to be globally concave. However, the nonlinearity

of the parameters in this model makes estimation more difficult.

3.5.3 Extension to Include Zero Care

Until this point, we have not modeled the probability of choosing zero medical care.

Unlike in the labor supply application, in which the probability of zero working hours

by prime-aged males is low, in this application, the probability of choosing zero med-

ical care is high, with over 30% of agents choosing zero care in each year. Following

the industrial organization literature, one way to model the probability of choosing

zero medical care would be to model it as a fourth “outside good” with its own associ-

ated indirect utility. Alternatively, we could attempt to handle censoring that arises

from the decision to consume zero care nonparametrically. However, it is possible

to gain more identification and bring the model closer to the theory by explicitly

modeling the choice of zero care as a corner solution. The new demand function is

as follows:
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max(Q(yis, ps), 0) = α + βyis + γps + Xiδ (3.48)

In utility theory, indirect utility is direct utility evaluated at the chosen point

on the interior of the budget set. However, if the agent chooses a corner solution,

his choice is governed by utility, not indirect utility. The utility associated with

consuming zero care, obtained by plugging Q = 0 into (3.13) is as follows:

U(0, Ai) =
γi

β2
exp[

β(βyia + α)

γi

] (3.49)

The agent will choose to consume zero care if the utility associated with consuming

zero care is larger than indirect utility on all segments:

U(0, Ai) > v(yis, ps) ∀s (3.50)

As above, it is possible to express this condition in terms of a critical γ0s
i for each

segment s.

γ0s
i

β2
exp[

β(βyis + α)

γ0s
i

] > e−βpa [
α

β
+ yis +

γ0s
i

β
ps +

Xiδ

β
+

γ0s
i

β2
] ∀s (3.51)

However, because the ordering of these critical values need not be the same across

agents, it is simpler to formulate the model in terms of utility and indirect utility

instead of in terms of the critical values. As above, we can add an iid extreme value

error term εis to the expression for utility of zero care:

Ũ(0, Ai) =
γi

β2
exp[

β(βyia + α)

γi

] + εiz (3.52)

Now, we can add zero care as a fourth alternative, z, in the likelihood above.

Because the unobserved component of heterogeneity is additive and distributed iid
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with the εis of the three segments, a variant of the closed form expression (3.45)

applies. However, there is an additional complication. The Slutsky condition ensures

that maximum indirect utility on each segment will occur on the outer envelope of

the budget set. However, it does not ensure that maximum indirect utility will occur

on the region of the budget set associated with positive values of Q. In fact, because

unconstrained optimization always achieves weakly higher utility than constrained

optimization, and utility of zero represents a constrained alternative, the new segment

z will never be chosen. Thus, instead of adding utility of zero as a fourth alternative,

we can condition on Qi in the likelihood through the use of indicator functions:

Pr(pz) =

∫
fγ(γi)dFγ(γi)1(Qi = 0) (3.53)

Pr(ps) =

∫
evis

Σevis
f(γi)dF (γi)1(Qi > 0) (3.54)

The new likelihood for an individual observation is as follows:

L′i = Pr(pz) + Pr(pa) + Pr(pb) + Pr(pc) (3.55)

Unlike in the labor supply application, we know the chosen segment with certainty,

so we can condition on it in the likelihood. If an agent chooses zero care, we know

that utility governs his decision, and if an agent chooses a positive amount of care,

we know that indirect utility governs his decision. [Unfortunately, the likelihood as

written does not incorporate the functional form of the utility function. In Hausman

(1980) the utility function is incorporated into the model through the indifference

condition defined by (3.52). Is there another way to incorporate utility at zero into

the model?]
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3.5.4 Accounting for Additional Heterogeneity

In all likelihoods presented above, once the segment is known, the value of Qi is com-

pletely determined by the demand equation, or, at the corner solution, the value of

Qi is zero. As a consequence, all of the likelihoods presented above can be estimated

without the actual expenditure data as long as the segment is known. However,

in applications where precise expenditure data are available, it is desirable to incor-

porate these data into the likelihood. Furthermore, the extent to which predicted

expenditure differs from actual expenditure might be due to optimization error, which

we can model. In this application, we can think of optimization error as a manifes-

tation of a health shock or an inability to control the exact amount spent on care.

Burtless and Hausman (1978) allow an optimization error term to allow individuals

to locate in regions around the nonconvex kinks.

Intuitively, one way to incorporate the expenditure data is to maximize the like-

lihood subject to a moment condition that requires that the difference between pre-

dicted expenditure and actual expenditure is as small as possible. Within the maxi-

mum likelihood framework, we can achieve a similar objective by adding an additional

error term to the demand equation:

max(Q∗(yis, ps), 0) = α + βyis + γips + Xiδ + ωi (3.56)

Q∗
i = Qi + ωi (3.57)

Note that we observe Q∗
i , while Qi is predicted by the model. Assume ωi is

distributed N(0, σ2
ε). Given the additional assumption that γi, εis, and ωi are inde-
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pendent, the likelihood of observing an individual Qi is as follows:

Pr(ps) =

∫
f(γi)dγi(Q

∗
i = 0)+

∫
1

σε

φ(
Qi − α− βyia − γipa −Xiδ

σε

)
evis

Σevis
f(γi)dγi(Q

∗
i > 0)

(3.58)

This additional optimization error only affects the likelihood for those observations

with positive expenditure. As discussed in Hausman (1980), it is unlikely that there

is a divergence between actual and preferred consumption for people who consume

zero care.

3.5.5 Practical Considerations for Estimation

Extension to Unobserved Income

In many sources of medical claims data, information on income is not available, so

the model must be extended to deal with this data limitation. In practice, lack of

data on the insurance premium has the same implications as lack of income because,

like income, the premium shifts the entire budget set downward. At first blush, the

simplest way to deal with the lack of data is to assume that the coefficient on income

in my demand function is zero. However, as discussed above, indirect utility is not

defined when β = 0. To get around this difficulty, recall that virtual income varies

even when income does not. When we do not observe income, we can still substitute

for virtual income correction terms as follows:

yia = Y (3.59)

yib = Y − (1− C)D (3.60)

yic = Y − S (3.61)
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where Y is a measure of underlying income that is common to individuals. As

shown in (3.35), given this assumption, the convexity of indifference curves will no

longer vary across individuals with respect to income. However, as shown in (3.37),

the convexity of indifference curves will still vary with respect to covariates. Simula-

tion methods can be used to examine the robustness of estimates of γi when income

is not observed.

Other Extensions

The model that I have presented here can be extended to gain more identification

and take other features of health insurance policies into account. For example, the

model can be readily extended to allow for varying deductibles, coinsurance rates,

and stoplosses across different plans. Theoretically, the model can be extended to

incorporate time series variation. To facilitate comparison with the instrumental

variables literature, the model can also be extended to account for family interactions

in the cost sharing provisions.

3.6 Conclusion

In this paper, I have developed a model to estimate the price elasticity of expendi-

ture on medical care using medical claims data. This model allows me to estimate

heterogeneity in preferences, and it allows for welfare calculations following Haus-

man (1981). Furthermore, the model incorporates censoring due to the decision to

consume zero care with an approach that is firmly grounded in utility theory. By

generalizing the model to incorporate more than one nonconvex kink, I contribute to

the nonlinear budget set literature.

In future research, I intend to estimate this model with Marketscan medical claims

data used in the first chapter of this dissertation to produce reduced form instrumen-
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tal variables estimates. I can then compare and combine the structural and reduced

form techniques. Specifically, I can use estimates from the reduced form paper to

simulate the theoretical distribution of consumers that should be observed in the re-

gions around the kinks and then compare it to the empirical distribution following

Liebman and Saez (2006). More formally, I can incorporate the reduced form in-

strument into the structural model, and I can re-estimate the reduced form model

controlling for a virtual income correction. By comparing and combining reduced

form and structural approaches, I aim to make a methodological contribution as well

as a substantive one.
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