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Abstract

In many large metropolitan areas, public transport is very heavily used, and
ridership is approaching system capacity in the peak periods. This has caused a
shift in attention by agency decision-makers to strategies that can more effectively
manage the demand for public transport, rather than simply increase overall
demand. In other words, a need has arisen to understand not only why people use
public transport as opposed to other modes but also how they use public transport,
in terms of their ticket, mode, and time-of-day choices. To that end, fares become an
increasingly important policy tool that can trigger certain behavioral changes
among riders.

This thesis develops a methodology to model, at the disaggregate level, the
response of public transport users to fare changes. A discrete-continuous
framework is proposed in which ticket choice is modeled at the higher (discrete)
level and frequencies of public transport use, based on mode and time-of-day, are
modeled at the lower (continuous) level. This framework takes advantage of the
availability of smartcard data over time, allowing individual-specific behavioral
changes with various fare policies to be captured.

This methodology is applied to London’s public transport system using
Oyster smartcard data collected between November 2005 and February 2008. The
results indicate a strong inertia effect in terms of ticket choice among public
transport users in London. An individual’s prior ticket choice is found to be a very
important factor in determining their future ticket choice. This is also evident when
we simulate the effects of two policy changes on ticket choices. We find that the
impact of changing the prices of period tickets may take several months or more to
fully materialize.



In terms of the frequency of public transport use, the results indicate
estimated short and long-run fare elasticities of -0.40 and -0.64, respectively, for
travel on the London Underground and equivalent estimates of -0.08 and -0.13 for
travel on bus. The estimated Underground fare elasticities are comparable to those
in the literature. The bus fare elasticities, on the other hand, are relatively smaller, in
absolute value, than prior estimates. This difference reflects the small variations in
bus fares in the dataset on which the model was estimated and the low fare
sensitivity for users under such variations.

Furthermore, we apply the model, in conjunction with related assumptions
and findings from previous research, to evaluate an AM peak pricing scheme on the
London Underground, in which travelers are charged £2.00 between 8:30am and
9:15am, rather than the current fare of £1.50. This application estimates that such a
policy could potentially decrease AM “peak-of-the-peak” demand on the
Underground by about 9%, with the reduction in ridership shifting either to a
different mode or to a different time period.

Thesis Supervisor: Nigel H. M. Wilson
Title: Professor of Civil and Environmental Engineering
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Chapter 1

Introduction

With the introduction of new ticketing technologies and the increasing complexity
of fare structures in public transport systems worldwide, fares have become an ever
more important tool in managing the demand for public transport. This thesis
presents a fare policy-sensitive framework to model that demand and applies the
framework to the public transport system in London using a dataset of smartcard
users over time.

This chapter presents the research motivation, objectives, and approach, as

well as a brief introduction to London’s public transport system.

1.1 Motivation

Most studies and models that have examined public transport demand are
concerned with the overall level of that demand in the context of a multi-modal
transport system. This involves looking into the factors that affect mode choice
(public transport versus other modes), for example, or how overall demand for
public transport responds to changes in factors such as fares or service levels.

In many large metropolitan areas, public transport is very heavily used, and
ridership is approaching system capacity in the peak periods. This has caused a
shift in attention to strategies that can more effectively manage the demand for
public transport, rather than simply increase the overall level of that demand. In
other words, a need has arisen to understand not only why people use public
transport as opposed to other modes but also how they use public transport. To that
end, fares become an increasingly important policy tool that can trigger certain

behavioral changes. Such changes include, but are not restricted to:
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1. The choice among the various public transport modes: If rail and bus, for
example, are two viable options for a certain trip, adjusting relative fares
between these two modes can influence an individual’s public transport mode
choice.

2. The choice of ticketing medium and ticket type: Fare differentials can be used to
influence people’s choice among smartcards and paper tickets, for example, and
among the different ticket types available on a public transport system. These
ticket types may include a per journey fare, a weekly period ticket, or a monthly
period ticket.

3. Time-of-travel choice: Introducing fares that vary by time of day can shift
people’s departure times for certain types of trips.

4. Path choice: Although this has not been widely discussed and may not be
applicable in the foreseeable future, charging path-based fares may be an
effective way to spread public transport demand across different routes in a
public transport system. Currently, fares are either flat or are charged based on
the origin and the destination of a journey; however, given the available
technologies and by installing additional equipment, it is conceivable to charge
people different fares for the same origin and destination based on the paths
they choose.

This thesis will study the use of fares as a policy instrument that affects three
of the choices listed above: mode choice, ticket choice (i.e. the choice of a ticket
type), and time-of-day choice. The choice of a ticketing medium will be addressed
in the analysis but will not be modeled explicitly. Path choice will not be considered
in this thesis.

To conclude, the motivation behind this research lies in the need for effective
demand management strategies for public transport systems—strategies using fares
as a policy instrument to create behavioral changes that would lead to more
effective use of existing networks. In order to develop such strategies, a modeling
framework is needed to assess people’s responsiveness to changes in fare policy.
(For a comprehensive, non-technical overview of public transport fare policy, see
Fleishman et al., 1996.)

14



1.2 Research Objectives

The objective of this thesis is to develop a robust, policy-sensitive tool to assess the

impacts of changes public transport fares on mode, ticket, and time-of-day choices.

This will be done through the development of a modeling framework that can

capture people’s responsiveness to changes in the fare structure with respect to

these three choice dimensions. We will specifically address the following questions:

1. Why do people choose certain ticket types over others? How important are the
monetary prices of the various ticket types in making that choice?

2. How do holders of the various ticket types use public transport? What modes do
they use? At what times of day do they choose to make their trips? And how
important are fares in determining these decisions?

Answering these questions will provide a better understanding of what fare
changes needed to be made in order to make more effective use of the existing

public transport network and infrastructure.

1.3 Research Approach

The methodology developed in this thesis is based on using longitudinal smartcard
(or automated fare collection systems--AFC) data to measure people’s
responsiveness to fare changes. Having such disaggregate data allows us to ‘follow’
individuals over time and observe changes in their mode, ticket, and time-of-day
choices.

The premise behind using such an approach is that individuals’ past
behavior plays an important role in determining their current and future behavior.
To that end, changes in fare policy should not be expected to have an immediate
effect on all users of the system, as past behavior (in terms of ticket, mode, and
time-of-day choices) can represent a form of inertia that causes a delayed effect or,
in aggregate terms, a gradual shift in behavior.

The methodology we propose uses statistical models that have been applied
in the past in transportation as well as other disciplines. Applying our methodology

requires preprocessing the raw smartcard data by constructing a panel structure in
q prep g y gap
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which individuals (represented by cards) are observed over multiple pre-defined
time intervals. The data preprocessing, described in detail in Section 5.1, requires
some aggregation from the journey level to the individual level. This aggregation
allows for conducting the analysis without the need to consider choices and
attributes at the origin-destination level, which are often not necessary in a fare
policy context, while maintaining a disaggregate dataset.

Since the methodology will be applied to the public transport system in
London in this thesis, it may be useful to present a brief overview of public

transport services in London. This is the topic of the next section.

1.4 Overview of London’s Public Transport System

Public transport in London consists of an extensive network of bus and rail lines,
the majority of which are planned and regulated and, in some cases, operated by
Transport for London (TfL), a local government body created in 2000 as part of the
Greater London Authority.
The public transport network in London includes the following modes:
1. Buses—consisting of a fleet of 6,800 scheduled buses!.
2. The Underground (commonly known as ‘the Tube”) —consisting of eleven heavy
rail lines that operate mostly underground.
3. National Rail—consisting of rail lines that run beyond the boundaries of the
Greater London area and are operated by various train operating companies.
— In November 11, 2007, TfL became the contracting authority for a portion
of National Rail services that primarily serves East and North London.
These services constitute what is known as the ‘London Overground’, a
brand which has now become part of the TfL family.
4. The Docklands Light Rail (DLR)—a light rail line that serves East London.
5. Tramlink —consisting of three tram routes that operate in South London.
According to the 2007 London Travel Report, around 27.6 million journey

segments were made in London on an average weekday in 2006 (a journey segment

1 Source: http://www.tfl.gov.uk/corporate/modesoftransport/1548.aspx, Retrieved February 15, 2008.
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is defined as a one-way movement in which a single mode is used). As shown in
Figure 1-1, a significant proportion (around 37%) of these journey segments was
made on public transport modes. The figure shows that bus is by far the most
widely used public transport mode in London, followed by the Underground,
National Rail, and then DLR. (Note that Tramlink journeys, which constitute a very
small proportion of total journey segments, are included in the ‘bus’ category in
Figure 1-1.) Figure 1-2, on the other hand, illustrates the significance of public
transport in central London. The figure shows the mode split as a percentage of the
1.1 million people entering central London on an average weekday in 2006. It
indicates that close to 90% of those people entering central London in the morning
peak do so on a public transport mode.

It should also be noted that the mode share of public transport in London has
been steadily increasing over time. This is shown in Figure 1-3, which indicates that
public transport mode share has risen from about 29% in 1993 to 37% in 2006. This
increase is partly the result of service improvements throughout the system but is
also due to various policies that were meant both to encourage the use of public
transport and to discourage the use of the car. (Figure 1-3 shows a corresponding
significant decrease in the mode share for car between 1993 and 2006.) One such
policy involves a congestion charge which was imposed in 2003 (and revised in

2007) on all cars entering central London between 7am and 6pm on weekdays.

Underground
10%

DLR
1%

. Walk
Bicycle

2%
Motorcycle
1%

Figure 1-1: Mode split in London on an average weekday in 2006
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Figure 1-2: Mode split for journeys to central London in the morning peak (7am-10am) on an
average weekday in 2006
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Figure 1-3: Public transport and car mode shares in London over time

Another policy meant to encourage the use of public transport was the
launching of the Oyster smartcard as a new ticketing medium in London in
December 2003. The launch of the Oyster card, which is now accepted on the
Underground, buses, the DLR, Tramlink, and in several National Rail stations, was
accompanied by subsequent fare policy changes which were meant to encourage its
adoption. These changes will be discussed in more detail in Section 3.2. It should be

noted at the outset, however, that all the data on which the models developed in
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this thesis are estimated come from transactions made using Oyster cards at

Underground station gates and on board buses.

1.5 Thesis Organization

This thesis is divided into six chapters. Chapter 2 reviews previous research on
public transport fare policy and models. We discuss papers from the literature that
are most relevant to the research objectives and present a brief review of the
methodologies used in these papers.

Chapter 3 discusses fare policy at Transport for London. It includes a
detailed description of the current fare structure in London, presents patterns and
trends relevant to this analysis, and explains how TfL currently assesses the impacts
of fare changes on demand and revenues.

In Chapter 4, we present our proposed methodology. The chapter starts with
a conceptual framework, after which we present the proposed model structure, and
the theoretical background that pertains to that structure.

Chapter 5 includes the application of the proposed methodology to London’s
public transport system. We describe the preprocessing of the Oyster data and
present the empirical model specification and estimation results. The chapter
concludes with some policy applications and an overview of how the estimation
results could be incorporated into models currently used at TfL.

Chapter 6 concludes this thesis with a summary of the findings, as well as

limitations and suggestions for future research.
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Chapter 2

Literature Review

This chapter reviews previous research on public transport fare policy analysis.
Assessing the impacts of fare changes on public transport demand has been studied
in a vast number of research papers and reports over the years. The selection of
papers reviewed here is by no means comprehensive but is representative of the
various methodologies used in this area of study.

We should note that the research presented here pertains mostly to public
sector pricing and fare policy, which is most relevant to public transport in North
American and western European metropolitan areas. In many other cities, public
transport is run by private operators to which concepts of profit-maximizing
private sector pricing are more applicable.

In public sector pricing, the objective is to maximize social welfare, which is
the difference between social benefits and social costs. These benefits and costs
include those of the public transport agency, the users of the public transport
system, and others, including the residents of the metropolitan area. Given the
variety of stakeholders involved, public sector fare policy often involves tradeoffs
between simplicity, financial performance, and equity (Colin Buchanan, 2006).

In Section 2.1, we present the different contexts in which public transport
fare policy has been studied and then discuss the contexts that are most relevant to
this thesis. In Section 2.2, we use the first section as a basis to review the

methodologies applied in some of the prior work.
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2.1 Evolution of Public Transport Fare Policy Analysis

2.1.1 Overview of Fare Policy Issues

Public transport fare policy has evolved greatly over the past few decades. Setting
fares in the past was often just a matter of defining one flat fare level for each mode
of public transport. Period passes were introduced in many public transport
systems as a way to guarantee a fixed revenue stream but also to provide an
incentive for users to switch to public transport given the convenience and the
potential savings that can be incurred by using these passes. Fare policy has also
addressed issues of equity by offering different fares to the elderly and, in some
cases, to students or to other segments of the community (Fleishman et al., 1996).

In recent years, fare policy has become a tool in managing public transport
demand. This has been mainly due to the changing needs of public transport
agencies, which have become more focused on reducing costs and increasing
revenues, but it is also due to the emergence of smartcards and new ticketing
technologies that have allowed these agencies to apply more complex fare
structures and to adopt demand management strategies that can result in more
productive use of their systems (Fleishman et al., 1998). Some of the uses of fare
policy as a demand management tool were listed in Section 1.1 and will be

addressed later in this thesis.

2.1.2 Types of Models Used in Fare Policy Analysis

This evolution of fare policy has resulted in the use of various types of models to
assess the impacts of fare changes on public transport demand. For systems with a
simple fare structure in which there is a flat cash fare and two or three period
passes (e.g. weekly pass, monthly pass, and annual pass), a certain set of models
would provide satisfactory results. However, for more complex fare structures, one
might need to use a different set of models that reflect these structures and relax
some of the assumptions made in the simpler models. The various types of fare
policy models are well-researched and documented in the literature. In this section,

we will briefly review some of these models.
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We start with the simplest of these models or, more precisely, models that
predict public transport demand under a simple fare structure. Such models
include the four-step transportation planning model, which is a cross-sectional,
trip-based model that consists of trip generation and attraction, trip distribution,
mode split, and trip assignment. The ‘mode split’ step in these models generally
includes the different public transport and non-public transport modes available in
the metropolitan area being studied. Inputs to this step usually include travel time
and travel cost variables, as well as public transport service attributes (such as
frequency, speed, and capacity) and attributes of the road network. The output is
the mode split of the trips produced in the first two steps. In such models, there is
usually one measure of fare for each public transport mode, and the interest is
typically in modeling the total demand for public transport in the context of the
overall transportation system (Horowitz, 1993, and Bhat, 1995). Since these models
are cross-sectional, they do not provide a full picture of how future fare changes
will affect public transport demand. They are, however, still widely used in
metropolitan areas worldwide.

As period passes became more ubiquitous, a new set of models emerged to
try to explain the factors affecting people’s choices among the various ticket types.
Such models were not meant to be a substitute for the four-step model, as they did
not directly predict public transport use but only considered choices among
different “products” and how important factors such as income or potential savings
from period passes are in determining that choice. These models were also applied
on cross-sectional datasets, usually obtained from surveys (Hensher, 1998).

Time-series models have also been developed in the literature to assess the
impacts of fare changes over time on public transport demand. Such models were
typically linear regression equations that varied in complexity and were estimated
on datasets spanning several years (Mitrani et al, 2002). They usually produced a set
of demand elasticities (i.e. percentage changes in public transport demand resulting
from a one percent increase in fares) and, in some cases, cross elasticities (i.e. the

percentage change in the demand for one public transport mode resulting from a
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one percent increase in the fare level of another public transport mode or in the cost
of travel on some other non-public transport mode).

The elasticities produced by these models are often used as inputs to another
set of models used at public transport agencies. These latter models are typically
composed of a number of spreadsheets in which all the different ticket types or ‘fare
classes” are accounted for. The spreadsheets include a ‘base case’ scenario with the
current fare and demand levels for each ticket type. One can then enter the
elasticities of demand for the various ticket types and, in some cases, the cross
elasticities (e.g. the demand for bus resulting from a one percent change in the train
tare). The model then produces estimated demand and revenue levels for proposed
fare policies.

The advantage of these “spreadsheet models” is that they can account for
complex fare structures in which there are many ticket types and fare levels. The
disadvantage is that the elasticities used as inputs to these models are exogenous
and need to be estimated separately. This becomes harder if the spreadsheet
includes more ticket types, as that would mean that more elasticities are needed
(one for each ticket type and, ideally, cross elasticities between each pair of ticket
types). Furthermore, these models are mostly aggregate and do not account for
heterogeneities among different individuals and demand segments.

To summarize, we have outlined the following types of models in which
public transport fare policy has been analyzed:

1. Cross-sectional mode split models
2. Ticket choice models

3. Aggregate time-series models

4. “Spreadsheet models”

In this thesis, we are interested primarily in modeling the effects of fare
changes on how people use public transport services. To that end, we will focus on
the last three types of models listed above. Ticket choice models developed in the
prior literature provide useful insight into the methodologies used to capture such
choices, as well as the factors that are presumed to influence them. Time-series

models, although they are mostly aggregate, unlike the model proposed in this
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thesis, introduce a temporal aspect to the analysis, which is crucial if one wants to
have accurate forecasts of demand under future fare policies. Finally, “spreadsheet
models” used by public transport agencies give a better understanding of how
these agencies account for their complex fare structures in forecasting demand.
Section 2.2 presents a review of the methods used in developing and
estimating ticket choice and aggregate time series models in the literature. Models

used in London will be discussed in detail in the next chapter.

2.2 Review of Methodologies

2.2.1 Prior Literature on Fare Modeling

In this subsection, we review the methodologies used in previous studies to
develop and estimate ticket choice models and aggregate time-series models for
public transport.

There are very few papers in the literature on public transport ticket choice.
These papers vary in the methodologies they use. Some use survey data and
present descriptive statistics on the profile of pass users as opposed to cash fare
users, for example, while others develop more complex discrete choice models to
measure the effect of different factors on ticket choice.

An example of the first methodology can be found in Dittmar (1983). The
paper provides a profile of monthly pass users in the San Francisco Bay Area. It
gives an overview of the design of a survey in which respondents were asked about
their public transport use patterns, the reasons for which they bought a monthly
pass, their interest in purchasing an intersystem pass (which did not exist at the
time), and other questions related to their preferences for marketing and
distribution of fare media. The survey results indicate that convenience and savings
were important reasons for people to choose monthly passes. Respondents who
used local service also cited the option of using the pass for discretionary trips as
another important factor.

Hensher and King (1998), Hensher (1998), and Taplin, Hensher, and Smith

(1998) use a more rigorous methodology to analyze the choice among different
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public transport ticket types. These papers develop and estimate discrete choice
models using revealed and stated preference data. The model structure they use is
the heteroskedastic extreme value logit (HEVL), which differs from classical
multinomial logit models by allowing for varying cross elasticities among different
ticket types. Hensher (1998), for example, used a combination of revealed and
stated preference data to estimate a ticket choice model for the Sydney (Australia)
metropolitan area. The choice set in the model consisted of three options for train
users: single, weekly, and TravelPass (which allows travel on trains, buses, and
ferries) and four options for bus users: single, TravelTen (which includes ten one-
way trips), bus TravelPass (which allows travel on buses and ferries only), and
TravelPass. Note that since the choice set in this paper was defined by mode and
ticket type, mode switching, in additional to ticket switching, was accounted for in
the results. The dataset included respondents” public transport use patterns at the
time the survey was conducted (these are the ‘revealed preference” data) as well as
their potential use patterns under two hypothetical scenarios, a ‘low fare” scenario
and a ‘high fare’ scenario—‘low” and ‘high” being relative to the fare levels at the
time of the survey (these are the ‘stated preference’ data). The explanatory variables
in the model include travel time, fares, car ownership, and ‘“train captivity” and ‘bus
captivity” dummy variables for individuals who cannot switch modes. The result of
the analysis in this paper is a matrix of elasticities and cross elasticities for the
different ticket types.

The methodology used in the above three papers provides a good
framework for modeling the factors that affect ticket switching as well as public
transport mode switching. The disaggregate models in these papers allow for
capturing individual-specific heterogeneities. Also, the use of combined revealed
and stated preference data and the inclusion of ‘captivity’ dummies capture
people’s inertia when it comes to ticket and mode choice. The methodology,
however, assumes that public transport use is an exogenous variable that does not
depend on ticket and mode choice. In reality, people may have different use

patterns depending on their ticket choices.
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Another paper worth mentioning, although it was written many years before
the ones just discussed, modeled the choice between cash fares and monthly passes
in Sacramento, California using a simple binary logit model which was estimated
on a cross-sectional dataset (Page, 1981). The explanatory variables included
savings or losses incurred by using a pass, the ratio of the number of work trips to
all trips for each person, the number of cars per worker in a household, income, and
gender. The results showed that the initial cash outlay to purchase a monthly pass
is a deterrent to people with limited incomes and that low income people are more
sensitive to the savings made by using a pass. It should be noted that the model
assumed different effects for savings compared to losses (i.e. positive and negative
values of the difference between the cash fare cost of monthly use and the price of a
monthly pass). The results were consistent with behavioral economic theory and
indicated that a dollar lost caused more disutility than a dollar saved.

Ticket choice has also been studied in the literature in the context of peak
pricing. Given the increasing levels of peak-period crowding on many public
transport systems, the idea of charging a premium for traveling during that period
has become more appealing. One recent study examined the possibility of
spreading the peak by implementing peak pricing on National Rail services in the
United Kingdom (UK Department for Transport, Transport for London, and
Network Rail, 2007). The study involved focus groups and a travel survey to assess
people’s flexibility in terms of the timing of the trip and the level of crowding
during the peak. The responses obtained from these focus groups and surveys were
used to estimate a discrete choice model, in which individuals choose between
thirty-minute intervals during which they travel. The utility of each of these
intervals included the following explanatory variables: travel time, fare, crowding
level, and time displacement (i.e. the amount of time displacement relative to the
preferred or current time of travel).

The results in the report, obtained from the focus groups, surveys, and by
simulating travel on a number of corridors, have significant policy implications.
They indicate that 45% of passengers have no flexibility in their arrival times in

central London. A significant proportion of those who do are high-income
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individuals, who are generally senior managers and professionals. Furthermore, the
results show that significant percentage changes in fares and in seating capacity are
required in order to produce behavioral change. For example, the penalty cost for
traveling 60 minutes later was estimated at £12. The report also found there to be
significant interactions between fares, crowding levels, and time displacement. In
other words, a fare surcharge may not be sufficient to induce changes in the times
of travel if crowding levels remain high.

The abovementioned report provides rich insight into the policy implications
and the potential feasibility of implementing peak pricing schemes on public
transport systems. The models developed in the report, however, cannot be readily
applied to other public transport systems since they rely on very detailed survey
data, as well as data on crowding levels on public transport vehicles.

The models discussed so far are based on cross-sectional data and, hence,
cannot be used as reliable forecasting tools, as they do not provide temporal fare
elasticities. Next, we will discuss time-series models that have been developed and
estimated mostly at the aggregate level.

There is a vast literature in which aggregate analyses are conducted to assess
the impacts of changes in fares or other variables over time on public transport
demand, as well as to measure the change in the demand for one public transport
mode given a change in fares of another. The methodologies applied in this
literature are derived from basic economic theory and have been applied not only
on public transport but also on a myriad of products and services. In most of these
papers, a direct demand function is specified (the function can have different forms
but is usually a linear, log-linear, or log-log function) and then estimated using an
econometric method on a dataset that typically spans several years. The basic
premise behind these models is that by controlling for different variables, one can
capture the effect on demand of changes in prices (or fares in the case of public
transport). The obvious disadvantage of these models arises from the fact that they
are aggregate, which means that individual-specific differences are not captured.

Litman (2004) and Oum et al. (1992) provide fairly comprehensive surveys of

the various studies done to estimate public transport demand elasticities and cross
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elasticities (Oum also includes estimates of demand elasticities for other transport
modes.) In many previous studies in which more detailed data are available,
elasticities are estimated separately for peak travel and off-peak travel or for the
short-run and the long-run. For example, Pham and Linsalata (1991) as referenced
by Oum et al. (1992) estimated a peak-hour fare elasticity of -0.18 for bus travel in
large cities with more than one million people. This implies that a 10% increase in
peak-hour fares in those cities will result in a 1.8% decrease in peak-hour bus travel.
The off-peak elasticity for those same cities was estimated at -0.39. This makes sense
since off-peak travel is generally more sensitive to fare levels. The peak and off-
peak elasticities for smaller cities with less than one million people were estimated
at -0.27 and -0.46, respectively. The estimates in this study are based on short-run
(less than two years) data from 52 US transit systems during the late 1980s.

Mitrani et al. (2002) specified a log-linear demand function for public
transport services in London (bus and Underground). The model was estimated on
data from 1970 to 2000. Given the lack of ridership data, the paper used an index
that is a function of revenue as the dependent variable. In other words, revenues
were used as a proxy to infer ridership. The estimated demand elasticities were -
0.64 for bus and -0.41 for the Underground. The paper also includes estimates of
demand elasticities with respect to income and levels of vehicle mileage operated.

The above methodologies are reviewed more extensively in TRL (2004). The
report provides a comprehensive survey of public transport fare elasticities
estimated in prior literature, including elasticities by income group, age group, trip
purpose, distance traveled, and other criteria. The report also discusses the
differences between short- and long-run fare elasticities and the methods and
assumptions used in estimating each of them. It outlines two ways by which
elasticities with different time horizons are estimated:

1. The use of cross-sectional data while making assumptions about the time-scale
of the response to fare changes
2. The use of time-series data and dynamic econometric models in which a gradual

response over time is represented explicitly
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The choice of a methodology and the assumptions made may very well affect
the estimated elasticity values, as indicated in the abovementioned report. In our
methodology, we develop dynamic econometric models making use of
disaggregate panel data (in which individuals are observed over time).

Table 2-1 shows some estimates of short- and long-run public transport fare

elasticities estimated in prior research and referenced by TRL (2004).

Fare elasticities
Mode
Short-run Long-run
Bus -0.2to-0.3 | -0.7to -0.9
Urban rail -0.3 -0.65

Table 2-1: Short- and long-run fare elasticities for bus and urban rail in the UK

2.2.2 CTA Fare Model

This subsection presents the fare model used at the Chicago Transit Authority
(CTA). We discuss this model in some detail since it is the most comparable to the
methodology proposed in this thesis, in terms of accounting for ticket choice and
the fact that public transport use is dependent on that choice. The review in this
subsection is based on an earlier review by Hong (2006).

Figure 2-1 shows a flowchart that summarizes the CTA fare model. Before
the model can be used, a survey must be conducted to collect data on demographics
and to categorize CTA riders into “market groups” based on frequency of travel
and the type of fare used (Full Fare or Senior/Disabled Reduced Fare). The average
number of trips by time period and mode is then estimated, after which a macro is
executed to estimate the initial (base) share of each fare type (or “fare media shares”
as denoted in the flowchart).

In Step 2, the new fare structure is entered and a discrete choice nested logit
model is estimated to determine the shares of the different fare types in each market
group. The upper level of the nested structure includes three ticketing medium
alternatives: pay-per-use, cash, and passes, while the lower level includes the fare

types within each ticketing medium (Transit Card and Chicago Card under the pay-
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Step 1: Establish a Baseline Scenario Step 2: Estimate New Fare Media Share
Enter base fare structure e Enter proposed fare structure
Run macro to generate initial e Calculate new monthly cost of travel
fare media share for riders in each market group using
Calculate monthly cost of travel proposed fares
for riders in each market group e Nested logit model calculates new
using base fares fare media share

Step 3: Compare the Base and New Fare Media Shares for Each Market Group
If there is a loss in fare media share, the monthly cost of travel using proposed fares
used in Step 4 is as calculated in Step 2
If there is an increase in fare media share, the monthly cost of travel using proposed
fares used in Step 4 is calculated based on a weighted average of the previous
monthly costs across all market groups

Step 4: Estimate the Elasticity Impact and Ridership Change for Sample Ridership

Mid-point elasticity is used to calculate the percentage change in ridership resulting
from the fare change

Calculate the predicted number of trips for each fare medium and market group
using the elasticity impact factor, base number of trips, and new fare media share
calculated in Step 2

Predict Total Revenue
Calculate the revenue for sample ridership by multiplying new monthly cost for all
trips by elasticity impact and new fare media share calculated in Step 2
Expand this revenue to obtain annual estimates for entire CTA ridership

Predict Special Fare Media Ridership
Changes in the Link-Up Pass are based on the change in the cost of that pass and
changes in the number of Metra riders
Changes in the use of Student Fares are based on changes in the student fares and
changes in the cost of the high school permit
Changes in the use of the U-Pass are based on changes in the number of students
eligible and changes in the average cost per day of the pass
Changes in the use of the Visitor Passes are based on changes in the cost of these
passes.
Changes in the use of Child Fares are based on changes in this fare and changes in
the total ridership of the CTA.

Figure 2-1: Flowchart of CTA fare model
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per-use alternative and monthly, weekly, and visitor passes under the ‘passes’

alternative).

After the fare type shares are determined, fare elasticities are estimated in
Step 3. Elasticities are calculated using different methods based on whether there is
a gain or loss in each fare medium and market group compared to the base case.

In Step 4, the elasticities calculated in the previous step are applied to
estimate changes in frequency of use based on the changes in fare types. This step
represents one of the key similarities between our proposed methodology and the
CTA fare model: changes in ridership, or frequency of use, are modeled as being
dependent on changes in fare type shares.

Step 5 converts trips to unlinked boardings (or journey segments) based on
previously measured transfer patterns of the different types of trips (e.g. peak bus
trips generally include two boardings). After Step 5, changes in ridership on special
fare media are estimated.

The CTA fare model is a good example of how public transport fare policy
analysis should be done in an agency with a fairly complex fare structure. The
decision on ticket type or fare type should not be disassociated from the frequency
of public transport use. This is the basis of our proposed methodology which will
be presented in detail in Chapter 4.

The following points should also be noted about the CTA fare model:

e The macro used to generate baseline data does not explicitly require any
baseline smartcard data, as it uses the survey data that are input to the model.
This can be especially useful to predict the adoption rate of smartcards before
introducing them as a fare medium, although this would require making some
initial assumptions, sometimes arbitrarily, on the expected penetration rate.
(Smartcard data can be used later as they become available to produce more
accurate baseline shares for the different fare media.)

e The nested logit model structure allows for incorporating various fare policies
and fare structures and to better account for ticket switching, including
switching among different fare media. A change in fares for any ticket type can

be easily accounted for in the empirical specification of the model, and the
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addition of a new ticket type can also be addressed by adding that ticket to the
nest of its corresponding fare media. One should keep in mind, however, that
major changes to the fare structure require making additional assumptions
regarding the initial penetration rate for new ticket types.

The CTA fare model differs from our methodology in that it requires survey
data to establish a baseline scenario (as opposed to our model, which relies on
smartcard data). Despite the advantage discussed above regarding the ability to
predict smartcard shares before such a fare medium is introduced, relying on
surveys can be costly, especially if the public transport agency wants to update the
baseline shares on a regular basis.

Furthermore, the CTA model is cross-sectional and, thus, makes some
assumptions on people’s responsiveness to fare changes when used for forecasting
purposes. In other words, predicting the effects of a change in the fare structure
requires adjusting cross-sectional attributes to produce fare media shares and
ridership estimates under ‘before” and “after’ scenarios, without taking into account
any dynamics that can influence the choice of fare media. Our model, on the other
hand, uses a panel data structure that accounts for such dynamics and for changes
in individuals” behavior over time. Such a data structure, as we explain later, can
even be useful in predicting the behavior among new adopters of smartcards
without having any information on their past use patterns under the cash fare. This
is because smartcard data from past time periods can be used to develop proxy
measures that capture the effects of fare policies causing switches among fare
media.

To conclude, this chapter has presented a review of the various contexts in
which fare policy models have been developed and reviewed prior work that is
most relevant to the motivation for this thesis. Next, we turn to fare policy in

London.
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Chapter 3

Fare Policy in London

Public transport fare policy has become integral in guiding short and long-run
transport strategies in London. The Mayor of London’s Transport Strategy states
that fare policy should be used “to make public transport more attractive and
affordable, with more consistency between modes, greater simplicity and
convenience for passengers, shorter queues and quicker journeys”. The document,
most recently revised in July 2006, also includes short-run proposals to freeze bus
fares and to cap Underground fares in real terms.

The introduction of the Oyster smartcard in December 2003 has made fare
policy an increasingly powerful tool in managing public transport demand. This is
also evident in the Mayor’s Transport Strategy, which states that “Transport for
London (TfL) will develop targeted fare options using Smartcards to offer benefits
to passengers, increase use and reduce delays”.

In this chapter, we first introduce the fare structure on London’s public
transport system. We then present some spatial and temporal patterns and trends
based on this fare structure and conclude with a discussion on how the effects of
fare changes on demand are currently modeled at TfL. The material in this chapter
raises the questions and hypotheses that underly our proposed methodology,

which is presented in Chapter 4.

3.1 Introduction to London’s Fare Structure

3.1.1 Overview

Public transport fare structures are generally classified into the following categories
(Colin Buchanan, 2006):

1. Graduated fares, in which fares vary by origin-destination pair,
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2. Zonal fares, in which fares vary by zones or regions of travel, and
3. Flat fares, in which a flat fare is charged for all trips.

The fare structure in London is a combination of the second and third
categories listed above. Bus, DLR, and Tramlink trips are charged on a flat fare
basis, while Underground and Overground trips are charged based on the zones of
travel. Examples of public transport systems with different types of fare structures
include those in Boston and New York, both of which have flat fares, and
Washington, DC, which has graduated fares for rail and flat fares for bus. Clearly,
graduated and zonal fares require a mechanism for validating both entries and exits
into stations or onto public transport vehicles. This is not the case for flat fare
structures, in which the cost of travel is not a function of the destination.

Figure 3-1 shows the London Underground and Overground networks with
the underlying zonal map. Zones 1 thru 6 fall within the boundaries of the Greater
London area, while Zones 7 thru 9 fall beyond these boundaries®>. As mentioned
above, fares on the London Underground and Overground vary by zones of travel.
Specifically, a premium is charged for travel that includes Zone 1. This means that
travel between two Underground stations, for example, is charged a premium if the
path between those two stations passes through Zone 1 (even if neither station is in
Zone 1)°. Furthermore, Underground and Overground fares increase as the number
of zones between origins and destinations increases.

In addition to the modal and zonal variations discussed above, fares in
London also vary by ticketing media and, in some cases, by time of day. This is
shown in Table 3-1, which presents the various criteria (or attributes) by which fares

vary on London’s public transport network.

2 On January 2, 2008, Zones A, B, C, and D were replaced by Zones 7, 8, and 9 (shown on the map in
Figure 3-1). Zone 7 replaced both Zones A and B, Zone 8 replaced Zone C, and Zone 9 replaced Zone
D.

3 To our knowledge, TfL currently uses an ad-hoc approach to determining the most likely chosen
path between each origin-destination pair on the London Underground in order to set the fare for
that pair.
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Figure 3-1: Zonal map of the London Underground and Overground networks (TfL Website)

Criterion Fare Differential(s)

Ticketing medium Cash (magnetic stripe) fares > Oyster fares.

Zones (Underground and Premium charged on travel that includes Zone 1.
Overground only) Fares increase as number of zones of travel increases.
Time-of-Day For some ticket types: Peak fares > Off-peak fares.
Mode Underground and Overground fares > bus and Tramlink fares.

Table 3-1: Fare differentials in London

3.1.2 Ticket Types*

As is the case with many public transport operators worldwide, TfL offers its

customers a wide range of ticket types. These ticket types vary as described in Table

4+ The information in this section was obtained through correspondence with Tony Richardson at TfL
as well as from the latest edition of the booklet “Your Guide to Fares and Tickets” issued by TfL in
January 2008.
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3-1, and some are also issued with different time validities. The number of ticket
types offered in London is very large, as there are tickets for many of the possible
ticketing medium, zonal validity, time-of-day, mode, and time validity
combinations. An exhaustive list of all ticket types in London is not required for the
purposes of this thesis. Instead, we provide the following summary in which the
ticket types are grouped into three categories:

1. Single (per journey) Fare Tickets: available on both Oyster cards (on which
these tickets are known as “Pay-As-You-Go”) and magnetic stripe cards. Fares
among these tickets vary as follows:

e Opyster fares are significantly lower than cash fares.

e Underground, Overground, and DLR fares are greater than bus and
Tramlink fares.

e On the Underground and Overground, different fares are charged
depending on the zones of travel. A premium is charged for travel
through Zone 1, and the fare increases as the number of zones of travel
between the origin and the destination increases. Bus and Tramlink
journeys are charged a flat fare.

e Fares charged for Underground and Overground journeys made on
Mondays thru Fridays between 7:00am and 7:00pm are greater than those
charged for travel during all other times (including public holidays).

In February 2005, TfL introduced daily price capping on all Oyster Pay-As-You-
Go (PAYG) journeys. Under this pricing scheme, PAYG users are not charged
more than a certain amount during a 24-hour period (from 4:30am on a given
day to 4:30am on the next day). This amount (or price cap) is £0.50 below the
price of a Day Travelcard or bus Pass and varies by time of day (peak vs. off-
peak) and zones of travel. Price capping was introduced to encourage the
adoption of Oyster by ensuring that users will always get the best value out of
their Oyster cards, at least on a daily basis.

2. Travelcards: allow unlimited travel on all public transport modes, with a few

exceptions®. Travelcards can be issued with different time validities. Day and

5 Travel on Tramlink is permitted only with Travelcards that cover a zone beyond Zone 2.
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Three-Day Travelcards are available only on magnetic stripe cards, while
Weekly, Monthly, and Annual Travelcards are available only on Oyster cards.
Furthermore, within each of these time validities, there are multiple types of
Travelcards, as follows:

e For Day Travelcards: One can choose to buy a Zone 1-2, 1-3, 1-4, 1-5, 1-6,
1-9, 2-6, or 2-9 Travelcard. For each of these zonal validities, one can
purchase a peak Travelcard, which allows travel at all times of the day, or
an off-peak Travelcard, which allows travel at all times except from
4:30am to 9:30am on working days.

e For Three-Day Travelcards: One can choose to buy a Zone 1-2 or Zone 1-6
Travelcard.

e For Weekly, Monthly, and Annual Travelcards: One can choose to buy a
Zone 1-2, 1-3, 1-4, 1-5, 1-6, 1-7, 1-8, or 1-9 Travelcard or one that allows
travel between any two zones or among any three, four, five, six, or eight
zones as long as they do not include Zone 1.

Zonal restrictions apply only to Underground, DLR, and Overground travel, in

addition to the Tramlink restrictions noted previously.

. Bus Passes: allow unlimited travel on bus and Tramlink. Bus Passes can be

issued with different time validities, similar to those of Travelcards (although
there is no three-day bus Pass). There are no variants of Bus Passes based on the

zones of travel.

It should be noted that the prices of monthly and annual period tickets (be they

Travelcards of Bus Passes) are always set at 3.84 and 40 times the price of the

corresponding weekly period ticket, respectively.

TfL also provides a large number of concessionary tickets. Children, the

unemployed, and other segments of society are offered a discounted selection of

ticket types, some with zonal and time validities and modal restrictions similar to

the ones discussed above. So-called “Freedom Passes” are also issued for the elderly

and disabled and allow them free travel on London’s public transport network.

In the remainder of this thesis, we will focus mostly on travel on the London

Underground (LU) and London Buses, both because these modes are by far the
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most widely used on London’s public transport network (see Figure 1-1) and
because fare policy decisions pertaining to other modes are generally tied to those
of the Underground and buses. DLR fares are generally set within the same fare
structure as the London Underground, while Tramlink fares are set to be equal to
bus fares. The London Overground, although it has a separate fare structure, has
only been part of TfL since November 2007, so including it as part of a longitudinal

or panel data analysis is not feasible.

3.1.3 Chronology of Fare Changes®

Before we discuss the spatial and temporal trends in London’s public transport
system, it is important to highlight fare changes and major fare policy decisions that
have taken place over the past few years and that have shaped the current fares
environment in London discussed in the previous subsection.

First, we present a chronology of fare policy decisions through which the
Oyster card was rolled out into the public transport system, and then we highlight
some specific fare changes that have taken place.

1. Fare policies related to the introduction of Oyster:
e September 2002: Oyster card first introduced on TfL staff passes.
e May-June 2003: Monthly and Annual Travelcards and Bus Passes became
available on Oyster.
e September 2003: Monthly and Annual Travelcards and Bus Passes were
mandated to Oyster.
e October 2003: Weekly Travelcards and Bus Passes became available on

Oyster.

e January 2004: Oyster PAYG was launched on the Underground and DLR.

e February 2004: Oyster Freedom Passes were introduced.

e May 2004: Oyster PAYG was launched on buses and Tramlink.

e February 27, 2005: Oyster daily price capping was introduced. As mentioned

above, this fare policy guaranteed best value pricing on a daily basis.

¢ The information in this section was obtained through correspondence with Tony Richardson at TfL.
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e September 2005: Weekly Travelcards were mandated to Oyster.

e November 19, 2006: The Underground entry charge on Oyster PAYG was
increased to the maximum cash fare (£4.00). This meant that users who do
not tap out at the end of their Underground journey get charged the
maximum cash fare, while those who do are refunded on exit the difference
between the maximum cash fare and the actual fare based on the zones of
travel.

e January 2007: Weekly Bus Passes were mandated to Oyster.

2. Specific changes to fares and costs of period tickets (from January 2005
onwards):

e Prices of all Travelcards and Bus Passes were increased in January 2005,
January 2006, and January 2007 to reflect overall inflation levels. Prices of
Travelcards were also increased in January 2008.

e Oyster PAYG fares and cash fares were increased in January 2005.

e PAYG Underground fares were reduced in January 2006 by £0.10-£0.20 and
have not changed since.

e In November 2006, Underground cash fares were set at £4.00 for travel that
includes Zone 1 and £3.00 for all other travel and have not changed since.

e On September 30, 2007, Oyster bus fares were reduced from £1.00 to £0.90,
and the price of the Weekly Bus Pass was reduced from £14.00 to £13.00.
(This also affected the prices of Monthly and Annual Bus Passes given the
relationship between those and the price of a Weekly Bus Pass mentioned
earlier.)

Some of the above fare changes were not implemented consistently across all
the different zonal validities available on some ticket types. However, they
generally reflect the policies outlined in the Mayor’s Transport Strategy, as well as a
clear policy objective at TfL to encourage the adoption of the Oyster card. This is
very clear in the example shown in Table 3-2, which compares the Oyster single fare

and the equivalent cash fare over time for Underground travel within Zone 1.
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Zone 1 Underground Oyster single fare | Equivalent cash fare
January 2005 £1.70 £2.00
January 2006 £1.50 £3.00
January 2007 £1.50 £4.00

Table 3-2: Oyster and cash fares over time for Zone 1 Underground travel

3.2 Patterns and Trends

This section describes some patterns and trends from London based on the fare
structure described above. The figures in this section highlight variations in public
transport demand that form the basis for the proposed methodology presented in
the next chapter. Data for these figures are based on a random (unbiased) sample of
Oyster cards’.

Figures 3-2 and 3-3 show the number of journey segments made using
Oyster cards on the Underground and bus, respectively, by ticket type. The figures
shows a generally increasing trend, with more people adopting Oyster cards, either
by switching from magnetic stripe tickets or by switching to public transport from
other modes. (Note that the dips in the figure correspond to holidays, such as
Christmas and Easter.)

In Figure 3-2, we see that Weekly Travelcards had been the most popular
ticket type on the Underground before they were overtaken by PAYG in early 2006.
This increasing popularity in PAYG can be attributed to policies such as daily price
capping, as well as the increasing differentials between cash and Oyster PAYG
fares.

Figure 3-3 shows a similar pattern. PAYG has also become the most
frequently used Oyster ticket type on buses, followed by Weekly Travelcards and
Bus Passes. The use of PAYG on buses has also been increasing at a much faster rate
compared to other ticket types, on which the number of journey segments has
remained fairly constant since the beginning of 2007. Also of note in Figure 3-3 is
the sudden increase in the use of (Oyster) Weekly Bus Passes in early 2007. This is

mostly because Weekly and Monthly Bus Passes, as noted earlier, were mandated

7 Details on how this sample was constructed are presented in Chapter 5.
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to Opyster in January 2007, forcing people who had previously used the paper
equivalents of those tickets to switch to Oyster. Finally, in both Figure 3-2 and
Figure 3-3, the number of journey segments on annual and, to a certain extent,

monthly period tickets has been fairly constant over the recent past.

Number of Underground journey segments
(millions)

=—=PAYG

Monthly Travelcard == Annual Travelcard

Weekly Travelcard

Figure 3-2: Underground Oyster journey segments over time by ticket type
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Figure 3-3: Bus Oyster journey segments over time by ticket type
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These trends are also highlighted in Figures 3-4 through 3-6, which present
the relative shares of Oyster ticket types on Underground and bus in November
2005, November 2006, and November 2007, respectively. The figures show a clear
increase in the share of PAYG in this two-year period. This is due to the adoption of
PAYG by new Oyster users during this time period (e.g. occasional system riders
who had previously paid in cash or purchased single or return tickets for each trip)
but is also due to switching to PAYG by customers who had previously used other
ticket types. PAYG has become an increasingly attractive alternative for both
existing and new Oyster users, given the high differential with cash fares, as well as
other factors, such as daily price capping and automatic top-up for registered
Oyster cards, which was introduced on the Underground in September 2005 and on
buses in June 2006.

As mentioned in the introduction of this thesis, fare policy can be used not
only to influence ticket choice but also to address time-of-day variations. Figures 3-7
and 3-8 show variations in times of travel on the Underground and bus,
respectively, by ticket type. (Note that the vertical axes in these two figures are the
percentage of daily journeys on each mode.) What is striking about the patterns in
Figure 3-7 are the clearly sharp peaks in Underground weekday travel —the AM
peak being between 8am and 9am and the PM peak between 5pm and 6pm. Such
patterns suggest an opportunity for fare policy to play a role in spreading these
peaks and possibly allowing more users into the system. On the other hand, bus
travel, as shown in Figure 3-8, exhibits time-of-day variations that are much more
spread out.

The peaking patterns in the figures also indicate that a majority of both
Underground and bus travel in the peak is on period tickets (be they Weekly,
Monthly, or Annual Travelcards or Weekly or Monthly Bus Passes in the case of
bus travel), whereas off-peak travel is more equally divided between PAYG and
period tickets. This difference implies that any fare policy that aims to spread peak
demand should not only target PAYG fares but also take into account that the

majority of peak travel is on period tickets.
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Figure 3-7: Time-of-day variations in Underground weekday travel by ticket type by 15-minute
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Figure 3-8: Time-of-day variations in bus weekday travel by ticket type by 15-minute interval
(January 2008)

The figures in this section highlight the following patterns in public transport
use in London:
e The continuing adoption of Oyster as the primary ticketing medium

e The increasing use of Oyster PAYG
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e The sharp peaking patterns on the London Underground and the differences in
ticket types between peak and off-peak users

e The differences between Underground and bus use, especially by time of day
These patterns shed light on some of the variations in public transport

demand that would not be obvious if one looked only at overall public transport

ridership over time, for example. These variations also raise some questions and

hypotheses that we will use to formulate our proposed model structure in the next

chapter. Before doing so, however, it is useful to review the current fare modeling

practice at TfL.

3.3 Current TfL Fare Models

The previous two sections highlighted the complexity of the fare structure for
London’s public transport system. This complexity requires models that can
accurately capture the effects on public transport demand of changes in the
multiple dimensions of fare.

In Chapter 2, we presented the different types of fare models and the
contexts in which each is used. We discussed the use of “spreadsheet models” at
many public transport agencies and how such models can account for complex fare
structures with multiple modes and ticket types. Inputs to these models typically
include sets of elasticities and cross elasticities, base fare levels, base demand or
revenues, and new fare levels. These inputs are used to produce a set of demand or
revenue estimates predicted under the new fare levels.

In this section, we present a detailed review of TfL’s fare modeling process,
which is a type of spreadsheet model. A similar review was done in a previous
report (Colin Buchanan, 2006), from which we obtained the figures in this section.

TfL’s spreadsheet models are stored in two Microsoft Excel files: the
Underground fare model and the bus fare model. The inputs and outputs in the two
models are similar, but the Underground fare model is more complex, given the
zonal variations in fares. Given this, we will focus this review on the Underground

model.
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Figure 3-9: Outline of fare models currently used at TfL

Figure 3-9 presents an outline of TfL’s spreadsheet models. According to the
figure, there are four steps by which revenue and demand estimates are produced
and reviewed:

1. Gross Yield calculation: This step uses base fares, base demand levels, and new
fares to calculate the gross yield, which is the change in revenues assuming no
change in demand and no ticket switching. This is highlighted in Figure 3-10,
which shows that revenues under the new fare structure (labeled ‘B” on the

tigure) are calculated by multiplying new fares by existing demand.

A: Existing Demand x Old Fare

Gross Yield=B-A
A

Y

B: Existing Demand x New Fare

Figure 3-10: Gross Yield calculation in the current TfL model

2. Net Yield calculation: This step updates the gross yield estimate produced in
the first step by accounting for changes in demand within each ticket type but
not across ticket types (i.e. it does not account for ticket switching). In this step,

own price elasticities are required for each type. The own price elasticity of a
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ticket type is the percentage change in demand of that ticket type given a one
percent increase in its own price. The elasticities are entered manually into the
spreadsheet. Figure 3-11 summarizes the process by which the net yield is
calculated. As shown in the figure, new fare levels are multiplied by new
demand (as opposed to ‘existing demand’ in the first step). The new demand, in
turn, is estimated by multiplying the price elasticity for each ticket type by the

percentage change in fares for that ticket type.

A. Existing demand x Old New fare — Old fare Price elasticity
fare Old fare of demand
New demand

v

C. New demand x New fare

v
Net yield=C-A
A

Figure 3-11: Net Yield calculation in the current TfL model

3. Final Net Yield calculation: In this step, ticket switching is accounted for using
a set of cross elasticities. The cross elasticity of demand for ticket type X with
respect to the price of ticket type Y is the percentage change in demand of ticket
type X resulting from a one percent increase in the price of ticket type Y. Figure
3-12 gives an example of how cross elasticities can be used to compute the
change in demand for Oyster single fares given a change in cash single fares.
The numbers in the figure are purely illustrative. In TfL’s fare models, switching
to and from Oyster PAYG and to and from Travelcards is considered. Switching
between different types of Travelcards and between different modes is not

explicitly accounted for in the model.
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A. New cash single fare — Old cash single fare = 20% B Cross elasticity
Old cash single fare =+07

v

Change in demand for Oyster single
fare

=AxB=+14%

Figure 3-12: Example of the use of cross elasticities to determine switching from cash single fares to
Opyster single fares

4. Monitoring: The estimates produced by the model are monitored on a
continuing basis in order to assess the performance of the model and to
determine whether certain elasticity estimates need to be recalculated.

The spreadsheet model described above includes Oyster and non-Oyster
tickets, all the possible zonal validities provided by TfL, and the adult and child
fare for each ticket type. Oyster PAYG price capping is also accounted for.
Although price caps are currently set at £0.50 below the price of a Day Travelcard
(which varies by zones and by time-of-day), the model offers the flexibility of using
different price caps.

Furthermore, it is important to note that the measure of base demand that is
input to the model is the total monetary value of ticket receipts for each ticket type.
Using pre-determined revenue apportionments, these receipts are allocated among
the Underground, buses, and the train operating companies (which operate
National Rail services). The values of the ticket receipts are also converted to
journeys using a set of values for ‘trips per ticket’ for each mode. However,
elasticities and cross elasticities are always applied on ticket receipts (i.e. they
represent the percentage change in ticket receipts, not journeys, resulting from a
one percent increase in fares).

To summarize, TfL’s spreadsheet models include the following parameters,
which are all pre-determined and can be modified manually by the user:

e Own price elasticities for each ticket type

e Cross elasticities that measure potential (aggregate) switching to and from
PAYG and to and from Travelcards
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e Revenue apportionments among the Underground, London Buses, and train
operating companies

e Underground, bus, and National Rail trips per ticket per day for each ticket type

e Price caps for Oyster PAYG

Given base demand levels, base fare levels, and new fare levels, the above
parameters are applied to produce a set of predicted demand levels.

The models described above clearly account for the complex fare structure of
London’s public transport system by including the various ticket types. However,
the performance of the model depends heavily on the values of the elasticities and
cross elasticities that it uses. Some of the values currently used are based on rules of
thumb, while others were estimated in past studies, which were mostly aggregate
and only considered elasticity values by mode (e.g. Bus own elasticity and
Underground own elasticity) without accounting for the differences among ticket
types.

Furthermore, the current TfL fare models do not explicitly account for mode
switching. As mentioned earlier, the models are stored in two separate Excel
spreadsheets, one for the Underground and the other for bus. The effect of a change
in fares on one mode on demand for the other is, therefore, not modeled.

Also, as is the case with most spreadsheet models, the TfL models are highly
customized for the current fare structure. This makes it harder to predict changes in
demand due to the introduction of new ticket types, for example, or the
introduction of fare policies that are not consistent with the current structure. For
example, the current model does not allow for modeling switching between period
tickets (e.g. from monthly period tickets to weekly period tickets), since it assumes
fixed monthly-to-weekly and annual-to-weekly price ratios that cannot be easily
modified.

Another weakness of the current spreadsheet models is that they are cross-
sectional and, thus, do not account for certain dynamics when used for forecasting
purposes. As is the case with the CTA fare model discussed in Chapter 2, the TfL

model uses cross-sectional data to produce ‘before” and ‘after’ scenarios, whereas

49



the methodology we propose in the next chapter uses a panel data structure that
accounts for dynamics resulting from past behavior.

Finally, the methodology proposed and applied in this thesis aims to provide
more accurate and robust measures of passengers’ responsiveness to fare changes.
In the short run, some of these measures may be input and used as part of the
spreadsheet model described above. The integration of our results with TfL’s

models will be discussed in Chapter 5.
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Chapter 4

Proposed Methodology

The objective of this thesis, presented in Chapter 1, is to develop a robust, policy-
sensitive tool that can accurately predict the effect of fare changes on public
transport demand. Chapter 2 reviewed some of the models that have been used in
the past for that purpose and discussed their advantages and disadvantages in the
context of the changing needs of public transport agencies and the increasing
complexity of public transport fare structures. The previous chapter used London
as an example to illustrate this complexity. We gave some evidence on how public
transport demand varies by the different ticket types, modes, and times of travel
and briefly discussed how fare policy has played a role in shaping public transport
demand in London and how it can continue to do so in the future.

In this chapter, we build on the material covered so far to present our
proposed methodology for modeling the effects of fare changes on public transport
demand. We start by discussing the conceptual framework on which our model is
based. Then, we present the proposed model structure, followed by the theoretical
background and finally a brief summary of the chapter. The methodology we

develop here is applied to London’s public transport system in the next chapter.

4.1 Conceptual Framework

Model development typically begins by specifying in conceptual terms the
variables (observed or unobserved patterns or trends) that are to be modeled and
the factors that are thought to influence these variables. In this thesis, we want to
develop a model that accurately captures the effects of fare changes on public
transport demand. In other words, we want to model public transport demand

using fares as one of the factors that influence that demand.
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In order to have an accurate measure of the effect of fares on public transport
demand, one needs to control for other factors. Public transport demand is
influenced not only by fares but also by other factors that are specific to individuals
or to the transport system. By controlling for such factors, one can ‘isolate’ the effect
of fares on an observed change in public transport demand and, thus, provide a
more robust policy tool and a more effective means for public transport demand
management.

Furthermore, it is important to define at the outset what we mean by “public
transport demand”. In Chapter 2, we reviewed models that used aggregate
ridership over time, for example, to capture this demand. However, such measures,
as discussed earlier, may no longer be adequate given the complexity of public
transport fare structures. The patterns and trends in Chapter 3 emphasized that
complexity by highlighting the demand variations in the following three
dimensions, which we use, in turn, to define public transport demand in our
framework:

1. Mode choice

2. Ticket choice

3. Time-of-day choice
Demand in London and many other public transport systems varies by the above
three dimensions because of many factors, including fare variations. A fare
differential between two modes affects mode choice. Likewise, a higher peak fare
affects time-of-day choice.

Also, note that we use the word “choice” to define the above three
dimensions since the analysis in this thesis is done at the disaggregate (i.e.
individual) level. One can alternatively use aggregate shares of modes, ticket types,
and time segments to characterize public transport demand. We should also note
that the choices listed above are interdependent, as clearly shown in Chapter 3.
Time-of-day choice, for example, affects mode and ticket choice. Similarly, ticket
choice affects both mode and time-of-day choice.

Given the above discussion, we will use the following conceptual model for

our analysis:
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Public transport demand, characterized by individuals” mode, ticket, and time-of-

day choices, is a function of the following;:

1.

Fares: Overall fare levels and fare differentials across tickets, modes, and times
of day affect public transport demand. Exploring and quantifying this
relationship is the objective of this thesis.

Service attributes on public transport modes: Travel times, station access times,
crowding levels, and many other public transport service attributes influence
demand in any of its three dimensions. Peak-hour crowding, for example, may
influence time-of-day or mode choice and, in some cases, ticket choice.

Service attributes on non-public transport modes: Although we are studying
variations within public transport demand, it is important to keep the overall
transport system in mind. In the context of the choices listed above, one could
think of “no ticket” and “non-public transport mode” as being alternatives in
the ticket and mode choice sets, respectively. In other words, people always
have the option of not using public transport at all.

Individuals” socioeconomic characteristics: Public transport demand is affected
by individual-specific socioeconomic characteristics. Factors such as income may
influence all three choice dimensions. A recent study, cited in Chapter 2, found
that a significant proportion of UK National Rail users who are flexible in their
arrival times in central London are high-income senior managers and
professionals (UK Department for Transport, Transport for London, and
Network Rail, 2007). This example illustrates how income can influence time-of-
day choice on public transport.

Individuals” travel patterns and preferences: Public transport demand is also
influenced by other individual-specific factors. These include the tolerance of
crowding, mode preferences, and the frequency and purpose of travel.
Institutional factors: Strict work schedules, the provision of public transport
subsidies by employers, and other institutional factors may have a clear effect on
public transport demand in all its dimensions.

It is not possible to account for all the factors listed above in the empirical

specification of our model, due mostly to data constraints. Rather, the conceptual
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model represents an “ideal dataset” scenario and serves only to guide the

development and specification of our model.

4.2 Model Structure

As described in the research approach in Chapter 1, the model we develop in this
thesis is based on disaggregate, trip-level smartcard data. The availability of these
data allows the use of discrete choice modeling methods in the analysis. A question
that arises from this is the extent to which we can use such methods and the level of
aggregation that is necessary in order to make the analysis feasible and allow the
resulting model to serve its intended purpose.

When developing a discrete choice model, one needs to have information on
some, or all, of the alternatives available in the choice set, as well as their attributes.
Consider a trip that a person makes by bus from point A to point B, using a weekly
period ticket, and departing point A at 8:00am. Developing discrete choice models
for the mode, ticket, and time-of-day choices for that trip requires answers to the
following questions, in addition to the attributes of the trip that was made:

e What other modes could have been used? If a rail alternative is available, could
that have been used for the trip (i.e. are points A and B accessible by rail)? What
are the service attributes (e.g. travel times) on the other modes? How does the
mode choice for this trip affect the ticket and time-of-day choices?

e What other ticket types could have been used (e.g. a per journey fare or a
monthly period ticket)? What would the cost of this trip be under the different
alternatives? How does the ticket choice for this trip affect the mode and time-
of-day choices?

e What are the other times of day at which this trip could have been made? Did
the person consider 3:00am, for example, when making their time-of-day choice?
What are the service attributes at other times? How does the time-of-day choice
for this trip affect the mode and ticket choices?

Answers to these questions cannot be directly inferred from smartcard data
alone. Some require either the development and administration of a survey or

conducting an analysis at the origin-destination level (to determine, for example,
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the available modes and the travel times on each mode), which is more useful in an
operations, rather than a fare policy, context. On the other hand, the questions in
the second bullet point above pertaining to ticket choice may easily be addressed.
Public transport ticket types and their costs are easy to obtain. The effect of the
ticket choice on the mode and time-of-day choices can be determined to a
reasonable level of detail (e.g. a bus period ticket may only be used on buses and an
off-peak fare may only be used during off-peak periods).

To resolve the issues related to modeling mode and time-of-day choices, we
can aggregate the data to the individual (or smartcard) level. By doing so, we will
have to model the frequency of trips made by a given individual during a given
time period on each mode and at each time of day, rather than the discrete choice of
mode and time of day for each trip. This aggregation eliminates the need for trip-
specific attributes for each mode and time-of-day alternative but retains the ability
to capture the tradeoffs between these different alternatives. For example, a fare
differential that would make the ‘off-peak’ alternative more favorable than the
‘peak’ alternative in a time-of-day discrete choice model would also make the
frequency of travel in the off-peak period higher than in the peak period in a model
which considers trips aggregated to the individual level.

To maintain consistency across all three choice dimensions, we will also
model ticket choice at the individual, rather than the trip, level. Note, however, that
even with such an aggregation, we will still be able to model ticket choice within a
discrete choice framework (rather than modeling the frequency of travel by a given
individual during a given time period with each ticket type). This is because we can
assume that, during a short enough time period, an individual makes one ticket
choice (rather than one for each trip, as is the case with mode and time-of-day
choices). An individual who purchases a weekly period ticket at the beginning of a
week, for example, will most probably not use a different ticket type during that
week for trips that can be made with the weekly ticket he/she already holds.

Given the above discussion, we now want to develop a framework to model
the following:

1. A discrete ticket choice
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2. The frequency of use on each available public transport mode and time-
of-day segment (Time-of-day segments can be defined based on a
number of criteria as discussed later in this section.)

As mentioned earlier, mode, ticket, and time-of-day choices are

interdependent (i.e. one choice affects the other two). To account for this:

e Frequency of use will be modeled in mode-time-of-day segment combinations
(e.g. Bus peak use and bus off-peak use). Doing so accounts for the relationship
between mode and time-of-day choices.

e Frequency of use will be modeled based on ticket choice. Doing so accounts for

the relationship between ticket choice and the two other choices.
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C;is a ticket type.

Q; is the frequency of usage onmode i and time segment s given ticket choice C;
Jis the number of ticket types available.

M;is the number of modesin which travelis permitted given ticket choice C;

5;is the number of defined time periods in which travelis permitted given ticket choice C;.

Figure 4-1: Proposed model structure

Figure 4-1 summarizes the proposed model structure. The top level in the
tigure captures the choice among the different ticket types. Under each ticket
choice, there is a set of frequencies of use defined by a mode and time-of-day
segment. Ideally, time-of-day segments would be defined based on the fare
structure at hand since we are developing a policy-sensitive fare model. So, if there

are two fare levels, peak and off-peak, for a given ticket type, then we would define
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two time-of-day segments (‘peak’ and ‘off-peak’) for that ticket type under the
assumption that the frequency of use would be different in each segment given the
difference in fares. Note that the model structure has the flexibility of defining
different modes and time-of-day segments for different ticket types. This allows

accommodation of more complex fare structures.

4.3 Theoretical Background

The proposed methodology presented in the previous section involves modeling a
discrete choice and one or more continuous quantities that are based on that
discrete choice. A class of models, known as discrete-continuous models, has been
developed specifically for that purpose. Discrete-continuous models are well
documented in the literature and have been applied in many contexts, including car
ownership and use (Train, 1993). The basic theory underlying discrete-continuous
models is presented in Subsection 4.3.1.

In Subsection 4.3.2, we introduce a dynamic aspect to the analysis. So far, we
have talked about ticket choice and frequency of use “by a given individual during
a given time period”. Given a suitable dataset, however, our methodology can be
extended to allow for modeling individuals” behavior over time. In other words, we
can use individuals’ ticket choices and frequencies of use through multiple time
periods in order to better understand the effects of fare changes on public transport

demand and to produce a more powerful forecasting tool.

4.3.1 Discrete-Continuous Models

In many cases, individuals are faced with two interdependent choices: one that is
made among a discrete set of alternatives and another that is made among a
continuous set of alternatives. In the proposed methodology presented above, a
discrete choice is made among ticket types and a continuous choice is made about
the number of public transport journeys.

The interdependence among the two choices can be illustrated with basic

microeconomic theory. Figure 4-2 shows an individual’s indifference curves in a
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world with two goods: (1) public transport journeys and (2) all other goods and
services. The figure includes two budget constraints: one that is linear (in red) and
another that is non-linear (in blue). The linear budget constraint applies if the
individual chooses the per journey fare option. The individual in that case would
make public transport journeys (i.e. move along the red line) up to a point that
maximizes their utility, which is the point of tangency between the red line and the
indifference curves. Note that the slope of the red line represents the cost of each
journey in terms of ‘all other goods and services’.

The non-linear budget constraint, on the other hand, applies if the individual
chooses the period ticket option. In that case, the individual would first have to pay
the fixed cost of the ticket (represented by the vertical portion of the blue budget
constraint), after which they can make any number of journeys without additional
cost. The horizontal portion of the budget constraint indicates that journeys under a
period ticket are free. Naturally, it is not rational for an individual to purchase a
period ticket without making any journeys, as this moves them down the vertical
axis and reduces their utility. Also, note that after purchasing a period ticket, the
utility of the individual keeps increasing as they make more public transport
journeys. This implies that the individual should make an infinite number of public
transport journeys. Of course, this does not occur in reality because of time
constraints (not shown in the figure) and because the demand for transport is a
derived demand which depends on a more complex set of decisions that pertain to
other activities and choices.

In the simple example provided in Figure 4-2, we can find the optimal ticket
choice for a given individual for any number of journeys. This is done by mapping
every point on the horizontal axis to the budget constraints that provides the higher
utility (i.e. the budget constraint that is higher on the graph above each point on the
horizontal axis). At point ‘x’, the individual is indifferent between a per journey fare
and a period ticket. At any point to the left of ‘x’, the individual would be better off
with a per journey fare, and at any point to the right of x’, he/she would be better

off with a period ticket.
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All othergoods and services

Price of
period ticket

| \

X Publictransport journeys

= Budget constraintwith period ticket
= Budget constraintwith per trip fare
— Indifference curves

Figure 4-2: Microeconomic framework for ticket choice and public transport use

Figure 4-3 provides an example in which an individual is choosing between a
period ticket and a per journey fare with best value pricing. In that case, an
individual who chooses the per journey fare is guaranteed not to pay more than the
price of a period ticket throughout the span of the time period covered by that
ticket. (An example from London would be the choice between PAYG, which is
capped on a daily basis, and a Day Travelcard.) In that case, the individual is
indifferent between the two ticket types at point ‘x” and any point to the right of it,
but he/she is still better off with the per journey fare at any point to the left of ‘x’.

These two figures highlight the interdependence between the discrete and
continuous choices. Ticket choice is based on public transport use (an individual
who expects to make more journeys would purchase a period ticket), and public
transport use is based on ticket choice (an individual who chooses a period ticket
will probably make a larger number of journeys than one who chooses a per
journey fare because of the horizontal portions of the budget constraints shown
above). The figures also show that both fixed and variable costs under each set of
alternatives affect both ticket choice and public transport use. For example, a

change in the per journey fare would change the slope of the red line in Figure 4-2.
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This would naturally affect the number of journeys made, but it might also affect
ticket choice, since the location of point ‘x” on the horizontal axis would shift as the
slope of the red line changed. In other words, a change in the per journey fare
would change the minimum number of journeys that would make purchasing a
period ticket worthwhile.

All other goods and services

Price of
period ticket

¥

M Publictransport journeys

=== Budget constraint with period ticket
= Budget constraint with per trip fare and bestvalue pricing
— Indifference curves

Figure 4-3: Microeconomic framework for ticket choice and public transport use with best value
pricing

The framework presented in the two figures is simplistic. First, it ignores any
temporal dynamics in ticket choice and public transport use. Second, it assumes
that these two decisions are based solely on monetary costs. We relax these
assumptions in Subsection 4.3.2. Before doing so, however, it may be useful to
provide the analytical context for discrete-continuous models based on utility
maximization theory. The notation and derivations below are based mostly on
Train (1993).

Traditional, or so-called ‘direct’, utility functions measure an individual’s
utility given the quantity of goods and services consumed. U(x1,x2), for example, is

the utility of an individual who consumes x: of the first good and x: of the second
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good in a bundle of two goods. The utility-maximizing bundle, call it (x1*, x2%),
varies with price levels for x: and x2 and with income levels for the individual.

If we were to map only the utility-maximizing bundles under different price
and income levels (rather than the entire direct utility function with different
quantities of x1 and x2), we would obtain the indirect utility function, call it Y. So,
we have:

e Direct utility function U(x1, x2): is the utility given quantities of x1 and x:
e Indirect utility function Y(ps, p2, y): is the utility of the utility-maximizing bundle
at price levels p: and p2 and income level y

Using indirect utility functions is preferred in demand analyses, because one
could easily derive the consumer’s demand curve given such utility functions. This
is done using Roy’s identity which states that the demand for good i is defined as
the negative of the partial derivative of the indirect utility function with respect to
the price of i divided by the partial derivative of the indirect utility function with
respect to the individual’s income (Hausman, 1985). So, using the above notation,

we have:
' oY [ oy
for i =1 or 2. See Train (1993) for a proof of Roy’s identity.

Now, we extend the above discussion to account for the availability of two or
more (discrete) alternatives to choose from before selecting the utility-maximizing
(continuous) quantity of the good. Let the choice set available to an individual be ],
the price of alternative i in | be p;, the observed and unobserved characteristics of
each alternative i in | be zi and wi respectively, and the socioeconomic
characteristics of the individual be s.

To put this in the context of ticket choice and public transport use, let us
assume | includes the following three alternatives:

1. Perjourney fare
2. Weekly period ticket
3. Monthly period ticket
Given the above set, we have the following indirect utility functions:

Y1 =0 (normalized to zero)
61



Y2 =folpa, y, 22, 5, w2)
Ys = fs(ps, y, z3, 5, w3)

Each of the above functions is called a conditional indirect utility function,
since it represents the utility given that a certain alternative is chosen. In turn,
alternative i in | is chosen if and only if Yi > Yj for all j in | (where i # j). And since
the unobserved characteristics wi are not deterministicc we can say that the
probability of choosing alternative i is:

Pi=Prob(Yi>Yj), foralljin ] wherei#j

To summarize, modeling the interdependent decisions of ticket choice and
public transport use requires first specifying either the indirect utility function of
each alternative in the ticket type choice set or the demand function for public
transport use and then deriving the other function using Roy’s identity.

The interdependence between the two decisions is accounted for in the
derivation of the demand functions, which is done from conditional indirect utility
functions (i.e. utility functions that apply given that a certain alternative is chosen). On
the other hand, accounting for the joint decision when specifying and (sequentially)
estimating an empirical model requires taking further corrective actions, as
explained below.

After estimating a discrete choice model for ticket choice, in which the
alternatives are similar to the ones specified in the set | above, one cannot simply
specify a linear regression model for public transport use under each alternative
and estimate it using OLS. This is because each of these models will be estimated
only on individuals who chose the respective alternative. As a result, estimating a
simple OLS model without taking any corrective measures would result in what is
known as “selectivity bias” or “self-selection bias” in the estimated coefficients. For
example, in a regression equation for public transport use given the ‘per journey
fare’ ticket type, the resulting fare coefficient (i.e. the estimated effect of fare
changes on public transport use) will not reflect the true sensitivity to fare changes
of the entire population. This is because such a regression model would not take
into account any possible ticket switching to or from the ‘per journey fare’ ticket

type that would also affect use (the dependent variable). In other words, a fare
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change for ticket type j does not only affect the frequencies of use for those who
chose that ticket type, as it could also cause other users to switch to ticket type j,
which, in turn, would affect the observed frequencies of use for that ticket type.
This selectivity bias can be addressed using different methods which are
highlighted in Train (1993) and Mannering and Hensher (1987). We will use one of

those methods in our empirical example in Chapter 5.

4.3.2 Model Development with Panel Data

So far, we have presented our methodology in a static framework in which we
model individuals” ticket choices and public transport use in a given time period
based on fares and other factors. Introducing dynamics allows for capturing time-
specific factors (e.g. seasonality effects) that may affect the two decisions and, more
importantly, for including individual-specific factors and inertia in the model.
Inertia implies that the decisions made by an individual in prior time periods affect
their decisions in the current time period.

When developing and estimating a dynamic econometric model, it is
important to distinguish between inertia and unobserved individual-specific
factors. The occurrence of car accidents is sometimes used to illustrate this
difference. If person X was in a car accident in both periods 1 and 2, then we cannot
say that the occurrence of the accident in period 2 was a result of the accident in
period 1 (i.e. a result of inertia). Rather, the second accident was a result of
unobserved individual-specific factors, such as reckless driving. In public transport
ticket choice and use, both inertia and unobserved individual-specific factors play a
role. An individual may purchase a monthly ticket because they do so every month
(inertia) and also because they have a high income that allows them to do so (an
unobserved individual-specific effect—assuming income is unobserved and, hence,
not explicitly controlled for in the model).

Modeling inertia and unobserved individual-specific effects requires having
a panel dataset in which a number of individuals are observed over multiple time
periods. Econometric models account for inertia and unobserved individual-specific

effects as follows (Heckman, Statistical Models for Discrete Panel Data, 1981):
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e Inertia is known as “state dependence” in discrete choice models and is
addressed by including alternative-specific dummy variables (or functions of
these variables) indicating whether or not each alternative was chosen in the
previous period. In regressions (i.e. continuous models), inertia is addressed by
including lagged dependent variables. So, if y: was the dependent variable, we
could add y+1 as an independent variable to indicate that the observed value of
the dependent variable in period t-1 influences the observed value of that
variable in period .

e Unobserved individual-specific effects (also known as serial correlation or
unobserved heterogeneities) are addressed either by assuming “fixed effects”
(i.e. a constant individual-specific effect for each individual in the sample) or
“random effects” in which each individual-specific effect is modeled as a
distribution, rather than as a constant. In the latter case, the error term for each
observation (in both the utility and regression specifications) is split into a term
that does not vary by individual and one that varies with each observation.

One can account for either inertia or unobserved individual-specific effects
or both when developing models using panel data. If neither effect is accounted for,

the model is said to be static and would treat each observation separately.

4.4 Summary of Methodology

We conclude this chapter by summarizing the basic formulation and data

requirements for the methodology outlined above.

Our proposed methodology consists of developing the following set of
models:

1. A disaggregate discrete choice model for public transport ticket choice: In this
model, the systematic utility of each ticket type alternative is specified. The
result is a set of choice probabilities (one for each alternative) for each
individual-time period observation in the sample.

2. Aggregate regression models for public transport use: A set of models is

developed for each ticket choice alternative. The dependent variable in each
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model is the frequency of public transport use for a given mode and time of day
conditional on the ticket choice.

Estimating the above set of models requires a panel dataset, in which
individuals are observed over time. This will allow controlling for inertia and/or
unobserved individual-specific effects that could determine both ticket choice and
the frequency of public transport use.

To conclude, this chapter has presented our proposed methodology for
modeling the effects of fare changes on public transport demand. We started by
presenting a conceptual framework. This was followed by the proposed model
structure and an overview of the theory underlying that structure. In the next
chapter, we apply our methodology to London’s public transport system and

present a policy analysis of the results.
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Chapter 5

Model Application and Policy
Analysis

In this chapter, we apply the methodology developed in Chapter 4 to London’s
public transport system using disaggregate Oyster card data. We specify an
empirical model based on the structure presented earlier, present the estimation
results, and discuss the policy implications of those results. In Section 5.5, we
present four applications of the model illustrating how it can be used to evaluate
different fare policy decisions in London. The chapter concludes by highlighting
ways in which the results of the analysis could be incorporated into models
currently used at Transport for London.

Before delving into the empirical specification of the model, however, we
will discuss, in some detail, the preprocessing of the Oyster data. The dataset in its
raw format cannot directly be used to apply our model, since it does not represent a
panel dataset in the traditional sense. In a panel dataset, there are discrete time
periods in which individuals are observed. In the raw Oyster dataset, however, we
only observe a series of taps-in (and taps-out for Underground journeys) by Oyster
cards over a time continuum. The preprocessing of the data is the topic of the first

section of this chapter.

5.1 Data Preprocessing

In order to apply the methodology proposed in Chapter 4, we will need a panel

dataset with a structure similar to that shown in Table 5-1. Such a data structure

66



includes observations for individuals (or cards®) over a set of discrete time periods.
In Table 5-1, which is purely illustrative, we observe card n:in three time periods
(t1, t2, and t3) and card n2 in two time periods (t: and t2). This example represents an
unbalanced panel dataset, in which not all individuals are observed in every single
time period (as opposed to a balanced panel dataset, in which each individual in the
sample is observed in every time period). The dataset we will construct in this
section will also be an unbalanced panel dataset, since Oyster cards appear and

disappear from the sample in different time periods.

Card Time Ticket Frequency of use (by mode and Explanatory variables
period choice time of day)
ny t;
n;g t,
ny t3
n, t;
n; t,

Table 5-1: Panel data structure required to apply the proposed model

In the raw Oyster dataset used in this analysis, each observation represents a
journey segment made on London’s public transport system. Some of the fields (or
data items) in each observation include the following;:

e The date on which the journey segment was made

e An encrypted ID for the Oyster card which was used to make the journey
segment

e The mode on which the journey segment was made

e The boarding and alighting stations for Underground journey segments and the
bus route for bus journey segments.

e The start time of the journey segment (and the end time for Underground
journey segments)

e The ticket type used for the journey segment

8 We will use “card” and “individual” interchangeably, assuming that each Oyster card in the
sample represents one individual. This assumption ignores the fact that some cards may be shared
by friends or members of the same family.
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In order to transform the raw data into a panel with a structure similar to
that in Table 5-1, we need to address two issues: (1) the definition of the discrete
time periods of the panel and (2) the definition of “ticket choice” as it pertains to
these time periods. These issues have been resolved as follows:

1. A week starting on Sunday and ending on Saturday has been defined as a time
period in the panel. Given this definition, we are assuming that every individual
in the sample makes one distinct ticket choice every week. There are certainly
flaws in such an assumption, since individuals can change the ticket type they
use halfway through a week or use multiple ticket types in a given week;
however, as Table 5-2 shows, the assumption is generally valid. In other words,
we do not lose much by aggregating the data to the week level. The table shows
the distribution of cards observed in the week between November 30 and
December 6, 2007 based on the percentage of journey segments made with the
most frequently used ticket type during that week. The fact that 91% of those
cards used only one ticket type during the week studied supports our definition

of a week as the time period in the panel.

Percentage of journeys made using most frequently used ticket type | Percentage of cards
100% 91%
75-100% 6%
60-75% 2%
50-60% 1%
<50% 0%

Table 5-2: Distribution of Oyster cards based on the percentage of journeys made with the most
frequently used ticket type in the week of 11/30-12/6/2007

2. Given our above definition of a time period, the definition of “ticket choice”
becomes straightforward. The ticket type “chosen” by an individual in a given
week is the ticket type by which most of that individual’s journey segments
were made during that week. Given the information in Table 5-2, the ticket
choice for a given individual in a given week actually represents the only ticket
type used in that week for 91 percent of individuals and the ticket type used for
more than half of the journeys for the remaining 9 percent of individuals.

In this analysis, we will consider only the following ticket types:
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Pay-As-You-Go (PAYG)
Weekly Travelcard
Monthly Travelcard
Annual Travelcard
Weekly Bus Pass
Monthly Bus Pass

AL e

Although there are many more ticket types available on Oyster cards, we
only consider the above ticket types because they are by far the most widely used,
as shown in Chapter 3.

This section discussed the preprocessing of the raw dataset to make it usable
in the context of our proposed methodology. In order to estimate the discrete-
continuous model on the Oyster dataset, some further preprocessing is needed. This
mostly relates to constructing the explanatory variables and will, thus, be discussed

in the next section, which presents the empirical specification of the model.

5.2 Model Specification

Using the procedure outlined in the previous section, we can now use Oyster data
to specify and estimate a discrete-continuous model for ticket choice and public
transport use in London. This section presents the empirical specifications of both

the discrete and continuous sub-models.

5.2.1 Discrete Choice Sub-Model

As mentioned earlier, the six ticket choices that will be considered in this analysis
are PAYG, Weekly Travelcard, Monthly Travelcard, Annual Travelcard, Weekly
Bus Pass, and Monthly Bus Pass. The ticket choice sub-model of the discrete-
continuous model will be specified and estimated as a multinomial logit model. For
a detailed overview of multinomial logit models and other discrete choice models,
see Ben-Akiva & Lerman (1985).

Since we are working with smartcard data, the information we have on the

different users of the system is limited. We also have little information on service
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attributes on public transport and non-public transport modes. As a result, our
model does not include measures for all the variables listed in the conceptual
framework in Chapter 4. The only factors we use to explain the ticket choice that an
individual makes in a given week are (1) the individual’s previous choice (this
captures the inertia effect discussed earlier) and (2) the expected cost of travel under
the different ticket alternatives. The expected cost of travel under each available
ticket type in a given week is estimated using that individual’s previous travel
patterns. More specifically, an individual’s expected travel patterns in week ¢ are
assumed to be similar to their observed travel patterns in week f-1. One
shortcoming in using this approach is that it does not account for other factors that
may affect expected cost. For example, if week t-1 did not include any holidays,
whereas week t included one holiday, the measure of expected cost for week ¢
would not be very accurate, since frequency of use (and, as a result, cost) in week ¢
would probably be significantly lower than in week t-1. (This may be especially
problematic in capturing cases where people temporarily switch between tickets,
for example from Monthly Travelcards to Weekly Travelcards, because of
upcoming holidays.) Addressing this can be done either by simply accounting for
holidays when estimating expected cost (by scaling down the previous week’s costs
depending on the number of holidays in the current week) or by using more
advanced techniques to model expected cost (see Section 6.2).

Furthermore, using the choice and the cost of travel in the previous week as
factors that explain ticket choice raises some questions regarding the first
observation of each Oyster card in the sample. In other words, having no “previous
choice” or a measure for expected cost, how do we predict the very first ticket
choice that an Oyster user makes? To address this, we use information on what
other “first-time users” have done in the past. More precisely, we use an aggregate
measure of ticket shares among previous first-time users to better predict what
current first-time users will choose as their ticket type. This can be thought of as an
aggregate extension to the disaggregate inertia effect. For an individual whom we
have observed in the past, the current ticket choice is a function of that individual’s

previous choice; for a “new” individual whom we have not observed in the past,
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the current ticket choice is a function of previous choices made by other
individuals. Such an approach helps predict the first choice of each card and also
captures some policies not explicitly accounted for that change the relative
attractiveness of the various ticket types over time.
Given the above discussion, we have the following specifications for the

systematic utilities of each ticket type”:

Vpavene = Bravcrirstons(PAYGMovAvg,_y X FirstObsy, ) + Bpayc PAY Gpe—q

+ BravccostCOStpavem,t

Vwrent = awre + BwrcWTCoe—1 + Bweost COStwren,t

Vurcnt = @urc + BwreMTCpe—1 + BucostCOSturem,e

Varene = Qarc + BwrcATCoe—1 + Bacost COStarc e

Vwspnt = Qwep + BwepWBPni—1 + Bwcost COStwpp e

Vuppnt = @mpp + BuppMBPy 1 + BuycostCOStuppn,e

where

PAYG corresponds to the Pay-As-You-Go alternative,

WTC corresponds to the Weekly Travelcard alternative,

MTC corresponds to the Monthly Travelcard alternative,

ATC corresponds to the Annual Travelcard alternative,

WBP corresponds to the Weekly Bus Pass alternative,

MBP corresponds to the Monthly Bus Pass alternative,

Vine is the systematic utility experienced by individual 7 in week t if he/she chooses
alternative i,

in¢ is a dummy variable equal to 1 if alternative i was chosen by individual 7 in
week t and 0 otherwise,

PAYGMovAuvg: is a weighted moving average of observed shares of PAYG among
all previous first-time users from week 1 up to week t,

FirstObsnt is a dummy variable equal to 1 if week ¢ is the first week in which

individual 7 is observed and 0 otherwise,

9 The utility of each ticket type is the sum of the systematic utility and an error term. In multinomial
logit models, the error terms are assumed to have an extreme value distribution (Ben-Akiva &
Lerman, Discrete Choice Analysis, 1985).
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Cost; ¢ is the expected weekly cost of travel using alternative i for person n in week
[

The variable PAYGMovAvg, which, when interacted with the dummy
FirstObs, addresses the issues raised regarding the first observation of each card, is

estimated as follows:
tPAYGShare; + (t — 1)PAYGShare;_q + ---+ 2PAYGShare, + PAYGShare,

PAYGMovAvg, = t+(t—1D+—+2+1

where
PAYGShare, is the aggregate share of PAYG among individuals who are observed
for the first time in week ¢.

From the above expression, we see that PAYGMovAuvg: is a weighted moving
average in which the most recent week has the highest weight and in which weights
decrease arithmetically for preceding weeks. Note that the model includes only the
share of PAYG among previous first-time users. This is because fare policies in
London and behavioral changes over time generally tend to affect the share of
PAYG relative to all other ticket types and not, for example, the share of Weekly
Travelcards relative to Monthly or Annual Travelcards. The interaction term
PAYGMovAvg,_, X FirstObs,, can be thought of as an “adjustment factor” that
modifies the attractiveness of the various ticket types over time for first-time users.
Without this term, the attractiveness of each ticket type to first-time users is
restricted by the alternative-specific constant to be the same throughout the entire
panel. In other words, excluding this term would make the probability of a new
user in 2005 choosing PAYG equal to the probability of a new user in 2007 choosing
PAYG. This is not realistic given the changing policies in London that have aimed
to make PAYG a more attractive alternative (see Chapter 3).

PAYGShare, is meant to be an aggregate measure of the ticket choices of
previous first-time Oyster users. A simpler measure that could have been used is
the share of PAYG among first-time Oyster users in the previous week (t-1).
However, in our exploratory data analysis, we found some week-to-week
fluctuations in ‘first-time ticket shares’. The overall trend, however, indicated an
increasing share of PAYG among new adopters of the Oyster card. In order to

capture this trend, we, therefore, chose to use a weighted moving average measure,
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which, despite being a function of the shares of PAYG among first-time users in all

previously observed weeks in the sample, gives the highest weights to the most

recent weeks.

Next, we discuss the cost variables used in the above specifications.
Calculating the cost variables for each observation (i.e. for each individual in a
given week) is not straightforward. PAYG cost is not simply the number of journeys
made during the week multiplied by a fare level and the cost of travel under a
Weekly or Monthly Travelcard, for example, is not the same for all individuals in a
given week. This is because Underground fares in London differ by zones of travel,
as discussed in Chapter 3. PAYG Underground fares are different for travel that
includes Zone 1 and varies by the number of zones through which an individual
passes during a journey segment. Travelcard prices vary in a similar way. Given
these variations, it s important to have a fairly accurate estimate of the costs of
travel under the different ticket type for each observation in the sample.

Our ticket choice model is not meant to capture the choices among Weekly,
Monthly, or Annual Travelcards with different zonal validities (e.g. the choice
between a Zone 1-2 Weekly Travelcard and a Zone 1-4 Weekly Travelcard). This is
because we are not modeling destination choice but, rather, studying the choice
among different fare options given an individual’s destination choice. The approach
we use to calculate the cost variables should, therefore, be based on finding the
most likely zones of travel for each observation in order to produce a realistic choice
set that an individual faces in a given week.

Given this, we use the following approach to calculate the cost variables:

1. Every observation is classified into an LU fare category. Fare categories are
defined by (1) whether or not travel to Zone 1 is included and (2) the difference
between the innermost and outermost zones through which Underground travel
is permitted. This corresponds to the criteria by which fares vary in London. The
LU fare category to which an observation, corresponding to individual n in
week t, is assigned depends on the patterns of use for individual n in the
previous week in which they are observed. So, if most Underground journey

segments made by individual n in week t-1, for example, were from Zones 1 to
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2, then the observation for individual # in week t will be assigned to the LU fare
category of “Zone 1-2”. In other words, the expected LU fare category for an
individual in a given week is the most frequently used fare category for that
individual in the previous week in which he/she is observed. Individuals who
either do not make any Underground journeys in their previous observed week
or who do not tap out after most of their Underground journeys in that week are
assigned to a special LU fare category in which the PAYG Underground fare is
the average of that fare for all other categories and in which the price of a
Weekly, Monthly, and Annual Travelcard is the average of the prices of those
Travelcards for all other fare categories.

2. The cost of the Weekly, Monthly, and Annual Travelcard is assigned to each
observation based on its LU fare category (which, in turn, is based on use in the
previous week). Note, however, that if an individual is first observed with a
Monthly Travelcard in week ¢, then their Monthly Travelcard cost would be zero
for weeks t+1, t+2, and t+3 (because they would already have a valid Monthly
Travelcard in those weeks, so their cost of travel under a Monthly Travelcard
alternative would be zero). Time validities are addressed in a similar fashion for
Annual Travelcards and Monthly Bus Passes.

3. The costs of the Weekly and Monthly Bus Passes are the same for all individuals
in a given week, since there are no zonal variations of these period tickets.

4. PAYG cost for each observation is calculated by multiplying the Underground
fare corresponding to the observation’s fare category by the number of
Underground journeys made in the previous week and the bus fare (which is
the same across all fare categories) by the number of bus journeys in the
previous week. To account for daily price capping, the number of journeys used
in the PAYG cost calculations is modified, such that if an individual made an
average of more than three journeys per day in a given week, only three of those
journeys are counted.

Note that the assignment of a fare category and the calculation of the costs of
the different alternatives use patterns of public transport use in the previous

observed week. This is because we are developing a model that attempts to explain
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people’s behavior. When an individual is assumed to make a ticket choice at the
beginning of week t, their expected use is something that is not observed (because it
would not yet have occurred). Our model uses past use patterns as a measure of
expected use and uses those patterns to calculated expected costs. In summary, we
are assuming that use in period t is similar to use in period ¢-1 in terms of the fare
category (i.e. zones of travel), frequency of travel on each mode, and the
distribution of travel (in terms of journeys per day). The first observation of each
card has an expected cost of zero for all alternatives (since we would not have
information on the past use of the individual using that card). The dummy
variables corresponding to the previous choice would also be equal to zero for the
tirst observation of each card.

Finally, after having discussed the definitions of the explanatory variables in
the ticket choice sub-model, we present our a priori expectations on the signs of the
coefficients:

e The dummies indicating previous choice are all expected to have positive
coefficients. Choosing ticket type i in week t would make an individual more
likely to choose that ticket type in week t+1. (This is the inertia effect or the effect
of ‘state dependence’ discussed in Chapter 4.) In fact, we would expect the
dummy variables in the utility functions of monthly period tickets (i.e. the
Monthly Travelcard and Monthly Bus Pass) to be larger in magnitude than those
in the utility functions of weekly period tickets (and, similarly, we expect the
dummy variable in the Annual Travelcard utility function to be larger than the
dummy variables in the other utility functions). This is because the inertia factor
is stronger on a weekly basis for period tickets with longer time validities. For
example, an individual with an Annual Travelcard is more likely to be observed
choosing that ticket type for multiple consecutive weeks compared to a Monthly
Travelcard, simply because an Annual Travelcard is valid for 52 weeks, whereas
a Monthly Travelcard is only valid for about 4 weeks.

e The interaction term (PAYGMovAvg,_, X FirstObs,,) is expected to have a
positive coefficient. As the adoption of PAYG increases among first-time users,

future first-time users are more likely to choose PAYG.
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e The coefficients of the cost variables are expected to be negative. As the cost of
travel under a given ticket type increases, the probability of choosing that ticket
type decreases (holding all other factors constant). Notice that period tickets
with the same time validities have the same cost coefficient. This is based on the
assumption that a £1 in the cost of a weekly period ticket, for example, causes
the same disutility across all types of weekly period tickets, since such tickets
share the same time validity and payment schedules (in terms of upfront
payments).

Before presenting the specifications of the continuous sub-models, it may be
useful to note that the ticket choice sub-model developed above represents what is
known as a “holding model”, as opposed to a “transaction model”. Our definition
of ticket choice is based on use patterns and not on some transaction that is
observed in which an individual purchases a certain ticket type. In a transaction
model, observations in which an individual holds a valid Annual Travelcard that
was purchased earlier, for example, are not included (because they are not
associated with any transaction). In our model, on the other hand, we include these
observations with the Annual Travelcard cost equal to zero (as discussed above). In
other words, our model is explaining the decision of “holding” different ticket types
on a weekly basis as opposed to the decision to purchase a ticket. The difference

between the two types of models is subtle but is, nevertheless, worth noting.

5.2.2 Continuous Sub-Models

The second part of our proposed methodology includes a set of continuous
regression models in which the dependent variable is the frequency of public
transport use based on the ticket choice. Multiple types of ‘frequency of use’,
defined by mode and time of day, can be modeled under each ticket type. Ideally,
the modes and times of day by which the frequencies of use are defined would be
based on the fare structure at hand. More precisely, each type of frequency of use

defined under a ticket choice should have one value for the per journey fare.
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Ticket type Weekly frequencies of use to be modeled
PAYG Uncapped Underground journeys
Uncapped bus journeys

Capped Underground journeys

Capped bus journeys

Weekly Travelcard | Underground journeys

Bus journeys

Monthly Travelcard | Underground journeys
Bus journeys

Annual Travelcard Underground journeys
Bus journeys

Weekly Bus Pass Bus journeys

Monthly Bus Pass Bus journeys
Table 5-3: Frequencies of use to be modeled for London

Table 5-3 shows the frequencies of use we defined for each ticket type in
London. For each Travelcard, we model the number of Underground journeys and
the number of bus journeys, and for each Bus Pass, we model the number of bus
journeys. (Again, the unit of time in the panel we have constructed is a week, so we
are modeling the frequency of use by an individual in a given week.) For PAYG, we
have defined four types of frequency of use: uncapped Underground journeys,
uncapped bus journeys, capped Underground journeys, and capped bus journeys.
Note that these types are defined such that there is one value for per journey fare
for each. This is clear for uncapped bus journeys, for which the per journey fare is
the bus fare, and capped Underground and bus journeys, for which the per journey
fare is zero. Uncapped Underground journeys, on the other hand, are assumed to
have the same per journey fare for each individual in a given week. This fare is
defined as the PAYG per journey Underground fare in the fare category to which
that individual is assigned in that week (i.e. the fare category most frequently used
by that individual in that week). Furthermore, since there are actually two PAYG
per journey fares for each fare category (one that is effective from 7am to 7pm on
weekdays and another that is effective at all other times, as discussed in Chapter 3),
we also assume that the per journey fare of uncapped Underground journeys is that
of the most frequently used time period (between the two time periods defined
above). Note that we do not separately model the journeys made in these different

time periods (as suggested by our model structure), because they do not clearly
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represent a ‘peak’ and an ‘off-peak’ period in the traditional sense. As a result, one
cannot make straightforward a priori hypotheses on the differences in fare
elasticities within these two periods and on any tradeoffs or trip time switching that
is made between them. In fact, when we estimated two separate models, one for
Underground peak use and another for Underground off-peak use (based on the
peak and off-peak fares defined in the current fare structure), we obtained an off-
peak fare coefficient that was statistically insignificant. We also obtained
counterintuitive results when we added the fare of each time period in the use
equation of the other period to account for any time-of-day tradeoffs.

Also, note that we do not include the Underground fare as a factor that
explains bus travel and vice versa. This is because the dataset on which we estimate
the model includes frequencies of use measured in journey segments and not in
complete journeys or trips that include interchanges. As a result, the Underground
and bus can be either substitutes or complements, so it is not clear how fares on
each mode would affect demand, as defined by the dataset, on the other.

Since we are modeling frequency of use based on ticket choice, we need to
correct for selectivity bias in the regression equations, as discussed earlier. To do so,
we will use the following selectivity bias correction term defined by Hay, Dubin,
and McFadden and referenced by Hensher and Milthorpe (1987):

Une =1 < (B, P
SBC,, = 21— 1n(B, +Z MGne)  Sjnt
T el "(Pine) j=1( Un.el 1—ij)
Jj#i

where
SBC,,; is the selectivity bias correction term for the observation corresponding to
individual n and week ¢,

i is the chosen ticket alternative,

A

P

i is the probability of individual n choosing ticket alternative i in week ¢t
estimated by the ticket choice sub-model,

J .| is the size of the choice set for individual n in week t.

nt
The above term is defined for each observation (i.e. individual-week) in the

sample and is a function of the probabilities of the chosen alternative and the non-
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chosen alternatives, as well as the size of the ticket type choice set. The term is
added to each ‘frequency of use’ regression equation to correct for selectivity bias.
The estimated coefficient for this term is expected to have a negative sign'®.

Given the above discussion and based on data availability, we specity the
following empirical regression models for frequencies of use for each of the ticket

types defined in the ticket choice sub-model:

For the PAYG alternative:
LUyncapnt = @1 + B1LUyncapnt-1 + B2Holidays, + y,LUFare,  + 1,SBCp ¢ + €15
Busyncapnt = a2 + B7BUSyncapni—1 + PgHolidays, + y,BusFare,, + 1,SBCy,
+ &nt
LUcapni = @3 + BoLUcapnt—1 + BroHolidays, + t3SBCy ¢ + €3¢
Buscapnt = @4 + P11BUScapne-1 + PraHolidays, + 1,SBCp e + €4t
where
LUyncapn, is the number of uncapped Underground journey segments made by
individual #n in week ¢,
BuSyncapn,t is the number of uncapped bus journey segments made by individual n
in week ¢,
LUcapnt is the number of capped Underground journey segments made by
individual #n in week ¢,
BusScapne is the number of capped bus journey segments made by individual 7 in
week
Holidays, is the number of holidays in week ¢ (0, 1, or 2),
&i n¢ is the unexplained error term for the observation corresponding to individual n

and week t in regression equation i.

10 The selectivity bias correction term defined above is negatively related to the error term in the
utility specifications of the ticket choice sub-model. For two observations in which all the
explanatory variables in the utility functions are equal, the one with the larger error terms (i.e. the
more inherent inclination to choose one alternative over the others) is expected to have a higher
frequency of use. So, a higher SBC implies a lower frequency of use (holding all else constant).
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For each of the Weekly, Monthly, and Annual Travelcard alternatives:

LUp: = ajs + Bj13LUp -1 + Bj1aHolidays; + 1j5SBCy ¢ + € n ¢
BuSn't = a]‘,6 + ,Bj’15BuSn't_1 + ﬁj,16H0lidaySt + Tj,GSBCTL,t + ej’n't

where

LU, is the number of Underground journey segments made by individual 7 in

week t,

Bus,, ; is the number of bus journey segments made by individual #n in week ¢,

j corresponds to the type of Travelcard (Weekly, Monthly, or Annual).

For each of the Weekly and Monthly Bus Pass alternatives:

Busp: = a7 + Pr17Busn i1 + BrigHolidays, + 14 7SBCr ¢ + Exne

where

k corresponds to the type of Bus Pass (Weekly or Monthly).

Following are some a priori hypotheses we can make about the signs of the

coefficients in the above specifications:

The coefficients for PaSt use (ﬂl/ 37/ B9r ﬁllr ﬁWeekly,13/ BMonthly,13/ BAnnual,lB/

ﬂWeekly,lSr ﬂMonthly,lSr ﬁAnnual,lSI ﬁWeekly,l% and .BMonthly,17) are all eXPeCted to be

positive. An increase in the observed number of journeys for an individual in
week f-1 results in an increase in the expected number of journeys for that
individual in week t.

The coefficients for the number of holidays in a given week (B,, fs, P10, P12
ﬂWeekly,M/ ﬁMonthly,lzL/ IBAnnual,lz}/ IBWeekly,16/ BMonthly,lﬁr BAnnual,lGr BWeekly,lSr and
Buontniy,1s) are all expected to be negative. An individual will tend to make
fewer journeys in a week with holidays compared to one with no holidays.

The fare coefficients (y; and y,) are expected to be negative. An increase in the
per journey fare for PAYG users will result in a lower frequency of use.

As mentioned above, the coefficients for the selectivity bias correction terms (t;,
T2, T3, Tar Tweekly,5, TMonthly,5, TAnnual,5: TWeekly,6: TMonthly,6, TAnnual,6r TWeekly,7/ and
Tumonthly,s) are expected to have negative signs.

Finally, we should note that for the first observation of each card, we follow

a similar approach to that used in the ticket choice sub-model. The ‘past use” in

mode i for an individual who is first observed in week ¢ with ticket choice j is the
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weighted moving average up to week t-1 of the aggregate frequency of use on
mode 7 for individuals who had chosen alternative ;.
The next section describes the dataset on which the discrete-continuous

model was estimated.

5.3 Dataset

The raw dataset used in this analysis includes journey segments for 5% of the
Oyster cards in London. At the end of every TfL period!, the dataset is updated
with the journey segments of 5% of new cards that joined the Oyster system during
that period.

The sample used in this analysis spanned the time period between Sunday,
November 20, 2005, and Saturday, February 2, 2008. Using the procedure described
in Section 5.1, a panel was constructed with 115 weeks (with every week starting on
a Sunday and ending on a Saturday). Oyster cards which were not sold at full-price
or included some form of a special ticket (e.g. Freedom Pass or Staff Pass) were
excluded from the dataset. The remaining sample included 642,985 cards
(appearing in either some or all of the 115 weeks) and was too large to work with
using the available processing power. To address this, we randomly sampled about
5% of those cards (29,239 cards) and used this smaller sample to estimate the model.
We later used another 5% random sample to validate our model.

Data for the four weeks starting on October 15, 2006 (week 48) and ending on
November 11, 2006 (week 51) were missing from the raw dataset. To make our
panel dataset complete, the following simple procedure was followed to impute the
missing values of the dependent variables (ticket choice and frequencies of use) and
the explanatory variables:

1. Cards that appeared in the sample in both weeks 47 and 52 (i.e. before the after
the four ‘missing’” weeks) were assumed to have appeared in all four missing
weeks. The values of the dependent and explanatory variables for those cards in

weeks 48 and 49 were assumed to be equal to what they were observed to be in

11 A TfL period is four weeks long. The first period (P1) of every calendar year starts on April 1, and
the last period (P13) for that year ends on March 31 of the next calendar year.
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week 47, and the values of those variables for this group of cards in weeks 50
and 51 were assumed to be equal to what they were observed to be in week 52.

2. Cards that appeared in the sample in week 47 but did not appear in week 52 or
in any subsequent week were assumed not to have appeared in the sample in
any of the four missing weeks.

With the above imputation, we have a full panel dataset with 115 weeks and
just over 29,000 Oyster cards. The cards were observed in as few as one week and as
many as 115 weeks. Figure 5-1 shows the distribution of the sampled cards based
on the number of weeks in which they were observed. According to the figure,
about 50% of the cards in the sample are observed in 35 weeks or less. In other
words, the median turnover time for an Oyster card is just under nine months. The
relatively short turnover time is expected, since many people, especially those who
often use PAYG or weekly period tickets, tend to either lose or discard their Oyster
cards and, thus, use multiple cards over time. This is not expected to happen as
often for people who use period tickets with a time validity of one month or longer,
since they are required by TfL to register their Oyster cards (Transport for London,
2008).

In the next section, we present the estimation results for the discrete-

continuous model.
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Figure 5-1: Distribution of sampled cards based on the number of weeks in which they were active
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5.4 Estimation Results

In this section, we present the results we obtained estimating the models specified

in Section 5.2 on the dataset described in the previous section.

5.4.1 Discrete Choice Sub-Model

The ticket choice sub-model specified earlier was estimated as a multinomial logit
model using Biogeme!?. The model specification includes dummies for previous
choice (as shown earlier) but does not account for serial correlation. The ticket
choice sub-model was, therefore, estimated assuming pure state dependence and no
unobserved heterogeneities (see Subsection 4.3.2).

All six alternatives (PAYG, Weekly Travelcard, Monthly Travelcard, Annual
Travelcard, Weekly Bus Pass, and Monthly Bus Pass) were made available to the
tirst observation of each Oyster card in the sample. For every other observation, Bus
Passes were included only if 70% or more of public transport journeys in the
previous observed week were made on bus. The size of the choice set for each
observation was, therefore, either four or six.

Table 5-4 shows the estimation results. The signs of the estimated coefficients
are all in accord with our a priori expectations. What stands out in these results are
the high levels of significance for the coefficients of the inertia variables. This has
significant policy implications for TfL, as is illustrated in the next section. Any
changes to the relative costs of the various ticket alternatives will result in a slow,
belated response because of the strong inertia effect.

The increasing magnitude, in absolute terms, of the cost coefficients as the
time validity increases indicates the disutility associated with large upfront
payments. A £1 increase in the weekly cost of travel with a Monthly Travelcard, for

example, corresponds to an increase in the upfront payment of about £4 when the

12 Biogeme is a software package developed by Professor Michel Bierlaire at the Ecole Polytechnique
Fédérale de Lausanne in Switzerland. Biogeme version 1.6 was used to estimate the ticket choice
sub-model.
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ticket is purchased. This disutility does not have direct policy implications but is a

result of the way our holding model and the cost variables were defined.

Variable Estimated Coefficient
(t-stat)
Weekly Travelcard constant (Weekly Travelcard) 0.731 (25.34)
Monthly Travelcard constant (Monthly Travelcard) -0.183 (-6.47)
Annual Travelcard constant (Annual Travelcard) -1.67 (-31.42)
Weekly Bus Pass constant (Weekly Bus Pass) -0.507 (-19.30)
Monthly Bus Pass constant (Monthly Bus Pass) -1.66 (-45.33)
For first-time users: Share of PAYG among previous first-time users (PAYG) 2.75 (58.70)
Previous observed choice was PAYG (PAYG) 2.97 (154.25)
Previous observed choice was Weekly Travelcard (Weekly Travelcard) 2.69 (140.85)
Previous observed choice was Monthly Travelcard (Monthly Travelcard) 4.15 (153.59)
Previous observed choice was Annual Travelcard (Annual Travelcard) 7.35(78.78)
Previous observed choice was Weekly Bus Pass (Weekly Bus Pass) 3.50 (136.24)
Previous observed choice was Monthly Bus Pass (Monthly Bus Pass) 5.17 (105.96)
PAYG cost (PAYG) -0.051 (-64.47)
Weekly Period Ticket cost (Weekly Travelcard and Weekly Bus Pass) -0.091 (-79.21)
Monthly Period Ticket cost (Monthly Travelcard and Monthly Bus Pass) -0.132 (-109.75)
Annual Period Ticket cost (Annual Travelcard) -0.250 (-43.51)
Number of observations 530,020
Final log likelihood -130,619.36
Adjusted rho-squared 0.837

Table 5-4: Estimation results for the ticket choice sub-model

Furthermore, the alternative-specific constants estimated above (all relative
to the PAYG constant, which was fixed at zero) show an inherent preference for
Weekly Travelcards over PAYG. In other words, the model shows that in the case
where the weekly cost of travel is the same across all alternatives and when there is
no inertia effect, the Weekly Travelcard is a more attractive alternative than PAYG.
This might be because holding a Weekly Travelcard provide individuals with
unlimited journeys without having to worry about paying the per journey fare
under PAYG or about the longer-term commitment associated with a Monthly or
Annual Travelcard.

Finally, the variable measuring the share of PAYG among previous first-time
users (having a value of zero for any observation that is not the first for a given
card) has a significant positive coefficient, as expected. This indicates that as PAYG

becomes more popular (which, in fact, has been the case because of marketing
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efforts and policies such as daily price capping), new Oyster users become more
likely to choose PAYG as their first ticket.

In order to validate the performance of the ticket choice sub-model, the
estimation results were used to predict choice probabilities for a validation sample
(i.e. a sample other than the one used for the estimation). The observed (denoted
‘Obs.”) and predicted (denoted ‘Pred.”) aggregate shares are shown in Table 5-55.
The shares are shown both for the entire panel and for the first observations of each
card in the panel. (Note that these shares are not cross-sectional and, thus, have no
intuitive meaning, since they measure aggregate ticket shares over multiple time

periods. They are included here only for the purposes of validating the model.)

Subset PAYG Weekly Monthly Annual Weekly | Monthly
Travelcard | Travelcard | Travelcard | Bus Pass | Bus Pass
Full panel Obs. | 57.5% 17.40% 11.30% 4.50% 6.10% 2.70%
Pred. | 57.7% 17.70% 11.50% 4.50% 5.90% 2.70%
First observations | Obs. | 58.2% 24.0% 6.1% 1.8% 7.7% 2.0%
Pred. | 57.7% 22.6% 9.1% 2.0% 6.5% 2.1%

Table 5-5: Comparison of observed and predicted shares in the validation sample

The numbers in Table 5-5 are promising and indicate that the ticket choice
sub-model performs very well. The absolute difference between the observed and
predicted shares does not exceed 3%. The table also shows that the model performs
well in predicting the aggregate shares of ticket types among ‘first observations’, for
which the choice probabilities are calculated based solely on the alternative-specific
constants and past aggregate shares of PAYG. Having a model that produces fairly
accurate predictions for new Opyster users is important, as it provides a useful
forecasting tool that can accommodate not only changes in the relative costs among
the various ticket types but also the increasing attractiveness or awareness of some
ticket types due to unobserved factors. (One should keep in mind, however, that the
validation sample used above was obtained from the same time period as the

sample on which the model was estimated. Ideally, the model should be validated

13 Predicted aggregate shares for a ticket type are calculated by taking the average of the predicted
individual choice probabilities for that ticket type.
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using a sample that spans a different time period in order to determine whether
there are any time-specific factors that affect the performance of the model.)

We will use the above estimation results to conduct some simulated policy
analyses in Subsection 5.5. Before doing so, however, we present the estimation

results for the continuous frequency of use sub-models.

5.4.2 Continuous Sub-Models

Including the selectivity bias correction term in the regression equations of the
continuous sub-models allows us to estimate these models using common
econometric models to obtain unbiased and consistent estimators for the
coefficients. The regression models specified in Section 5.2 were estimated using
Stata and assuming random effects. The results for the PAYG sub-models and

period ticket sub-models are shown in Tables 5-6 and 5-7, respectively.

Estimated coefficient (t-stat)
Variable PAYG
Uncapped Capped
LU Bus LU Bus
Constant 2.96 2.90 0.156 0.181
(125.30) | (40.75) | (68.47) | (101.55)
Past use 0.369 0.385 0.123 0.362
(219.66) | (228.72) | (67.34) | (210.66)
Holidays -0.574 -0.575 | -0.019 | -0.013
(-56.37) | (-38.48) | (-7.89) | (-3.31)
SBC -0.134 -0.276 | -0.005 | -0.031
(-18.06) | (-25.15) | (-2.91) | (-12.10)
Fare -0.601 -0.329 - -
(-58.65) | (-4.48)
Overall R? 0.480 0.49 0.07 0.13
Number of
Observations 308,788

Table 5-6: Estimation results for the frequency of use sub-models for PAYG
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Estimated coefficient (t-stat)
Variable Weekly Monthly Annual Weekly | Monthly
Travelcard Travelcard Travelcard Bus Pass | Bus Pass
LU Bus LU Bus LU Bus Bus Bus
Constant 5.06 5.46 5.04 3.69 4.22 0.946 14.38 13.91
(112.61) | (94.06) | (119.66) | (71.85) | (75.51) | (33.15) | (82.41) | (64.87)
Past use 0.349 0.467 0.410 0.516 0.447 0.821 0.309 0.342
(112.92) | (160.73) | (117.92) | (154.58) | (81.14) | (224.10) | (51.83) | (47.91)
Holidays -1.10 -1.09 -1.48 -0.850 -1.52 -0.633 -2.47 -2.71
(-34.77) | (-21.33) | (-44.69) | (-21.24) | (-31.77) | (-11.82) | (-18.62) | (-20.61)
SBC -0.029 0.191 -0.019 -0.002 -0.15 -0.137 0.176 -0.065
(-1.93) (7.90) (-1.30) (-0.14) | (-5.19) | (-4.19) (3.62) (-1.23)
Overall R? 0.450 0.587 0.471 0.691 0.483 0.673 0.303 0.460
Number of 90,862 63,607 24,541 26,518 | 15,704
observations

Table 5-7: Estimation results for the frequency of use sub-models for period ticket alternatives

Again, the results are mostly in accord with our a priori expectations
discussed earlier. The coefficients for past use are positive; the coefficients for the
number of holidays are negative, and the coefficients for most of the selectivity bias
correction terms are negative. The fare coefficients in the uncapped LU journeys
and uncapped bus journeys regression equations are also both negative. These
latter coefficients can be used to calculate fare elasticities (i.e. the percentage change
in the number of uncapped weekly LU journeys and uncapped weekly bus journeys
given a one percent increase in the respective fares). In order to calculate such

elasticities, we use the point-slope formula, which is typically specified as follows:

., . ~X
Elasticity, , ., = [)’?
where
Elasticityy ,, ¢ x is the elasticity of Y with respect to X, or the percentage change in
Y given a one percent increase in X,
B is the estimated coefficient for the variable X in a linear regression equation in
which Y is the dependent variable and X is one of the explanatory variables.
By substituting the estimated fare coefficient, the average fare, and the
average number of uncapped journeys, we can obtain fare elasticities for both LU
and bus. Since the regression equations include past use, these elasticities represent

short-run fare elasticities. In order to obtain long-run elasticities, or measures of
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people’s responsiveness to fare changes in the long run, we assume that past use is
equal to current use. So, the original specifications of the PAYG uncapped sub-
models from Subsection 5.2.2 can be rewritten as follows:
LUyncapnt = @1 + B1LUyncapne + B2Holidays, + y;LUFarey  + 11SBCp ¢ + €10
BuSyncapnt = a2 + B7BUSyncapne + BsHolidays, + y,BusFare, ; + 1,5BCy + &3¢
(Notice that the subscript in the ‘past use’ variables is now ¢, not ¢-1.)
By rearranging the terms in the above equations, we obtain:
(1 = B)LUyncapnt = @1 + BHolidays, + y,LUFare, + 1,SBCp, ¢ + €15
(1 — B7)BuSyncapnt = a2 + BgHolidays, + y,BusFare, ; + 1,5BCy + &30t
Dividing both sides of the first and second equations by (1 — ;) and (1 —S;),

)41 Y2
d .. B
(1-B1) an -7 y

substituting the estimated values of these coefficients in the point-slope formula, we

respectively, we now have long-run fare coefficients of

obtain the long-run fare elasticities. Table 5-8 shows the short and long-run

elasticities for uncapped PAYG journeys on both LU and bus.

Mode Short-run elasticity | Long-run elasticity
Underground -0.40 -0.64
Bus -0.08 -0.13

Table 5-8: Short and long-run fare elasticities for uncapped PAYG journeys

The long-run elasticities in the table are comparable to but generally lower
than those currently used at TfL: -0.48 for LU and -0.25 for bus!4. The elasticity
values are also comparable to those in the literature. Mitrani et al. (2002), referenced
in the literature review, estimated a fare elasticity on the London Underground of -
0.41, which is very close to our short-run elasticity estimate shown in Table 5-8. The
authors also calculated a fare elasticity for bus travel in London of -0.64, which is
larger in absolute terms than our estimate. One possible reason for this difference,
as well as for the difference between our estimated bus fare elasticity and the one
currently used at TfL, is that the dataset on which we conducted our analysis had

little variation in bus fares (bus fares were either £1.00 or £0.90 in the dataset). The

14 These elasticity estimates were obtained from TfL’s spreadsheet model. Since ‘short run’ in the
context of our model represents a period in the order of a few weeks, we compare TfL's elasticities to
our long-run estimates.
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relatively small (in absolute value) bus fare elasticities, therefore, reflect the low fare
sensitivity for bus users under such small variations.

Finally, we should note that the estimation results for the period ticket sub-
models shown in Table 5-7 have no direct fare policy implications. They do,
however, provide some insight into the differences in travel patterns between the

different period ticket holders.

5.5 Policy Applications

In this section, we apply the estimation results of the discrete-continuous model to

some fare policy scenarios for London.

5.5.1 Increasing the Prices of Monthly Travelcards and Bus Passes

The prices of Monthly Travelcards and Bus Passes are currently set at 3.84 times the
price of their weekly equivalents. Here, we forecast the response of public transport
users in London to a fare policy in which that multiple is increased to 4.5. The
reasoning behind such a policy change would be the fact that the convenience—
perceived by some—of holding a Monthly Travelcard compared to other tickets can
override the effect of a relatively small increase in the monetary cost of that ticket
for some users.

In order to produce the forecasts, we simulate the ticket choice sub-model
over 66 weeks, starting with the last week in our sample (1/27 to 2/2/2008) and
ending with the week of 4/26/2009 to 5/2/2009. The simulation is repeated under
two scenarios: (1) no changes in fares and (2) an increase from 3.84 to 4.5 in the
monthly-to-weekly price ratio. While the ticket choice sub-model is simulated, the
‘previous choice’ dummies are updated based on the simulated choices for the
previous week. The validities of period tickets held by individuals are also updated.
This is important in accounting for delayed responses to fare changes due to
holding period tickets that have not yet expired.

Figure 5-2 shows the results of the simulation. The vertical axis indicates the

difference between the simulated aggregate share of a ticket type under the policy
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change and the simulated aggregate share of the same ticket type under the base
policy. The trends in the figure show a forecast shift from Monthly Travelcards and
Bus Passes to their weekly equivalents and, to an even greater extent, to PAYG. The
simulations indicated that the aggregate share of PAYG in the last simulated week
would be 68.1% without the policy change and 70.8% with the policy change. For
Monthly Travelcards, these shares would be 7.1% and 3.3%, respectively. Note that
we are simulating changes in ticket choice (i.e. the most frequently used ticket type)
and not in frequency of use. The higher share of PAYG under the fare policy change
will lead to a reduction in the total number of journeys, since PAYG users on
average make a smaller number of trips compared to period ticket holders, as
shown by the results of the continuous sub-models estimated above. This is also
evident in the sample on which the model was estimated, where individuals who
switched from Monthly Travelcards to PAYG made, on average, 5.3 fewer journeys
per week using PAYG compared to the number of weekly journeys they used to

make with a Monthly Travelcard.

Share with policy change minus share
without policy change

Time

=——=PAYG

Weekly Travelcard Monthly Travelcard

Annual Travelcard

Weekly Bus Pass Monthly Bus Pass

Figure 5-2: Simulation results for increasing the monthly-to-weekly price ratio

Figure 5-2 emphasizes the importance of simulation in making use of the

estimation results presented in this thesis. The models we have developed are
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largely based on inertia effects and past behavior. It is, therefore, expected that any
policy change will have a delayed or gradual impact on public transport demand.
This is clearly evident in the figure, which shows gradual changes in ticket shares
that eventually stabilize five to six months after the new policy is implemented.
Aggregate ticket shares for Monthly Travelcards and Bus Passes with and
without the policy change are summarized in Table 5-9, which shows that the
reductions in the shares of both Monthly Travelcards and Bus Passes exceed the
percentage increase in their respective prices. These differences indicate that
demand for monthly period tickets in London is elastic in the long run. This is not
surprising, as public transport ticket types represent very close substitutes. An
individual can make the same public transport journey with almost any ticket type,
so a change in the relative prices of these ticket types is expected to trigger a shift in

demand towards the cheaper alternative.

Ticket type Shares in last simulated week Expected reduction in share
Without price increase | With price increase
Monthly Travelcard 7.1% 3.3% 54%
Monthly Bus Pass 2.5% 1.7% 32%

Price increase = (4.5-3.84) / 3.84=17%
Expected reductions in shares are both greater than 17%
Demand for Monthly Travelcards and Bus Passes is elastic

Table 5-9: Changes in ticket shares resulting from increasing the monthly-to-weekly price ratio

Table 5-10 shows the revenue implications resulting from the policy change
being studied and indicates a predicted net loss of £1.55 million in monthly Oyster
fare revenues. This is due to a decrease in revenues from monthly period tickets
(due to the increase in their price and to their elastic demand) that is larger than the
corresponding increase in revenues from other period tickets.

Finally, the following should be noted about Table 5-10:

e The revenue estimates under ‘before fare change’ represent those realized by
TfL in the last observed month in the sample (period 11 of 2007) °.

e Revenues from period tickets were adjusted based on the ticket switching
patterns shown in Figure 5-2. For PAYG, we also accounted for expected

changes in use patterns due to switching from Monthly Travelcards or Bus

15 Base case revenue estimates were obtained through correspondence with Pauline Matkins at TfL.
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Passes to PAYG. To do so, we used observed changes in use from the sample of
individuals who actually made the switch from monthly period tickets to PAYG.
Changes in use due to ticket switching are expected and form the basis of our
modeling methodology, in which ticket choice and public transport use are two

interdependent decisions.

Revenue Source Monthly Oyster revenues (millions)
Before Fare Change After Fare Change Net
PAYG £66.78 £71.09 £4.31
Weekly Travelcards £31.23 £34.55 £3.32
Monthly Travelcards £21.08 £11.48 -£9.60
Annual Travelcards £6.37 £6.88 £0.50
Weekly Bus Passes f£l11.61 £12.21 £0.60
Monthly Bus Passes £3.28 £2.59 -£0.68
Total £140.35 £138.80 -£1.55

Table 5-10: Revenue implications of increasing the monthly-to-weekly price ratio

5.5.2 Increasing the Prices of Annual Travelcards

Increasing the prices of Annual Travelcards may be another way by which TfL
could raise revenues, especially since users of Annual Travelcards are more likely to
be high-income individuals who are less sensitive to price changes.

In order to test the effect of such a policy change, we simulate the ticket
choice sub-model under a scenario in which the price of an Annual Travelcard is
increased from 40 times the price of a Weekly Travelcard to 46 times that price. The
simulation results are shown in Figure 5-3 and indicate a slow decrease in the share
of Annual Travelcards over time compared to what it would have been with no
policy change. The predicted shares of Annual Travelcards in May 2009 with and
without the proposed policy change are 2% and 2.9%, respectively.

What stands out in Figure 5-3 is that most users who are predicted to switch
away from Annual Travelcards are expected to use PAYG or Weekly Travelcards as
an alternative. This is not intuitive, as one would have expected most of the increase
to be in the share of Monthly Travelcards, since it may have represented the “next
best alternative’ to those who had previously used an Annual Travelcard. The only
justification we can provide for the switching patterns shown in Figure 5-3 are that

(1) the model, given current ticket shares, produces more favorable predictions for
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PAYG and (2) the dataset on which the ticket choice sub-model was estimated
included no instances in which the annual-to-weekly price ratio was different from
40, possibly resulting in inaccurate predictions in terms of switching patterns across

period tickets (but not in terms of reductions in the share of Annual Travelcards).
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Share with policy change minus share
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-1.0%
-1.5%
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Time
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Figure 5-3: Simulation results for increasing the annual-to-weekly price ratio

Table 5-11 presents the predicted aggregate shares of Annual Travelcards in
May 2009 with and without the price increase. The numbers, as is the case with the
previous application, indicate a highly elastic demand for Annual Travelcards.
Increasing the prices of these period tickets by 15% will result in a larger reduction
in their aggregate share. We should note, however, that the observed price elasticity
in this case (i.e. the ratio of the percentage change in shares to the percentage
change in price) is about -2, which is smaller, in absolute terms, than the observed
price elasticity of -3.18 for Monthly Travelcards indicated by the numbers in Table
5-9. This implies that, although the demand for both types of tickets is elastic, users
of Annual Travelcards are less likely to switch to a different type than users of

Monthly Travelcards.
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Shares in last simulated week
Without price increase | With price increase
Annual Travelcard 2.9% 2.0% 31%

Price increase = (46-40) / 40 = 15%
Expected reduction in share is greater than 15%
Demand for Annual Travelcards is elastic
Table 5-11: Changes in ticket shares resulting from increasing the annual-to-weekly price ratio

Ticket type Expected reduction in share

Table 5-12 presents the revenue implications of increasing the annual-to-
weekly price ratio from 40 to 46. The table shows a net loss of about £530,000 in
monthly Oyster fare revenues. As in the previous subsection, the revenue estimates

shown in the table account for changes in use for those who switch from Annual
Travelcards to PAYG.

Revenue Source Monthly Oyster revenues (millions)
Before Fare Change After Fare Change Net
PAYG £66.78 £67.48 £0.69
Weekly Travelcards £31.23 £31.93 £0.70
Monthly Travelcards £21.08 £21.27 £0.19
Annual Travelcards £6.37 £4.21 -£2.17
Weekly Bus Passes £11.61 £11.63 £0.02
Monthly Bus Passes £3.28 £3.31 £0.04
Total £140.35 £139.83 -£0.53

Table 5-12: Revenue implications of increasing the annual-to-weekly price ratio

5.5.3 Increasing the Prices of All Travelcards

The third application we consider involves increasing the prices of all Travelcards
by 10% (without changing the monthly-to-weekly or annual-to-weekly ratios). This
application pertains to switching between PAYG and Travelcards, as opposed to
the ones above, which modeled switching across all ticket types. We believe the
results in this subsection may be more robust than the ones above, since the dataset
on which the discrete-continuous model was estimated does include instances
where prices of Travelcards have increased. (In the previous two applications, the
predicted switching patterns may not be as accurate since, as mentioned earlier, the
monthly-to-weekly and annual-to-weekly price ratios were constant throughout the

observed time period.)
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Again, we simulate the expected ticket shares with an increase in the prices
of Weekly, Monthly, and Annual Travelcards by 10%. The results are shown in
Figure 5-4 and Table 5-13. The figure shows a large increase in the predicted share
of PAYG between February 2008 and February 2009. What is interesting about this
change in the share of PAYG is that it appears to be the largest in magnitude in the
first three to four months of the policy change, after which the rate of change
decreases. This may be because most of the ‘switchers” in the first few months
initially used Weekly Travelcards, whereas in later time periods, the less price-
sensitive Monthly and Annual Travelcard users switch to PAYG (again, time
validities also play a role in this slow decrease). This is also evident in the changes
in shares of the different Travelcards. The decrease in Weekly Travelcard shares
seems to stabilize a few months after the price change, whereas the changes in
Monthly and Annual Travelcard shares stabilize about one year after the price

increase.

Share with policy change minus share
without policy change

Time

e PAY G

Weekly Travelcard Monthly Travelcard

Annual Travelcard Weekly Bus Pass Monthly Bus Pass

Figure 5-4: Simulation results for increasing the prices of Travelcards

In Table 5-13, we see that the smallest percentage reduction in shares is in
Annual Travelcards, followed by Weekly Travelcards and Monthly Travelcards. As
mentioned earlier, Annual Travelcard users are expected to be less sensitive to price

changes compared to others. This may explain the relatively low reduction in usage
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among those users. On the other hand, the difference between the reductions in
Weekly and Monthly Travelcards may be due to the high level of convenience of
Weekly Travelcards perceived by users (this is also evident in the discrete choice
sub-model results, shown in Table 5-4, where Weekly Travelcards had the highest
alternative-specific constant). We should note, however, that despite these relative
differences, the changes in shares for all Travelcards exceed 10%, which indicates an

elastic demand for these Travelcards when PAYG fares remain constant.

Ticket type Shares in last simulated week Expected reduction in share
Without price increase | With price increase
Weekly Travelcard 13.7% 10.9% 20%
Monthly Travelcard 7.1% 5.2% 27%
Annual Travelcard 2.9% 2.5% 14%

Price increase = 10%
Expected reductions in shares are all greater than 10%
Demand for Travelcards is elastic
Table 5-13: Changes in ticket shares resulting from increasing the prices of Travelcards

Table 5-14 presents the revenue implications from increasing the prices of all
Travelcards by 10%. The table again shows a net reduction in revenues of about £5
million, indicating that the loss in revenues from Travelcards is not offset by the
increase in revenues from PAYG (and Bus Passes). Despite the perceived
convenience of using Travelcards, it seems that the increasing popularity of PAYG
and policies such as daily price capping have caused this relatively large predicted
switch from Travelcards to PAYG, which, in turn, is expected to lead to a net loss in
monthly Oyster revenues. (Note that, as in the previous applications, the revenue
estimates in Table 5-14 have been adjusted to account for changing use patterns

among people who switch from the different Travelcards to PAYG.)

Revenue Source Monthly Oyster revenues (millions)
Before Fare Change After Fare Change Net
PAYG £66.78 £74.11 £7.32
Weekly Travelcards £31.23 £24.97 -£6.26
Monthly Travelcards £21.08 £15.43 -£5.65
Annual Travelcards £6.37 £5.45 -£0.92
Weekly Bus Passes f£11.61 £11.82 £0.21
Monthly Bus Passes £3.28 £3.53 £0.25
Total £140.35 £135.31 -£5.05

Table 5-14: Revenue implications of increasing the prices of Travelcards

96




The three applications presented so far result in an expected loss in monthly
Oyster revenues. This has significant policy implications for TfL, as it indicates that
changing the relative prices of tickets (as opposed to increasing overall price levels)
may not be a suitable strategy to raise revenues. This is because, as discussed
earlier, the different ticket types are seen by public transport users in London as
close substitutes.

Finally, the following should be noted about the above three applications:

1. We expect that many users who were predicted to switch to PAYG were initially
making a financially irrational choice by using a period ticket, even before the
simulated fare changes took effect. Given the complexity of the fare structure in
London, many period ticket (as well as PAYG) users were found to be making
an irrational choice when comparing what they had paid for their tickets to what
they would have paid under PAYG (see Frumin, 2008). The simulated fare
changes, which all involved increases in the prices of some period tickets,
exacerbated the already irrational behavior of some users (i.e. they increased the
difference between the expected cost of travel under a period ticket and the
expected cost of travel under PAYG) causing them to switch to PAYG.

2. The simulations did not account for new Oyster cards entering the system or
current Oyster cards dropping out of the system. We still believe, however, that
the results in terms of predicted aggregate shares of the various ticket types are
fairly accurate, especially since the relative differences among these Oyster ticket
types have generally been stable over the past few months (after the
disproportionate increase in the share of PAYG due to marketing efforts and the
introduction of policies such as daily price capping).

3. The sample on which the simulations were performed included both the sample
on which the discrete-continuous model was estimated and the validation
sample (used in Table 5-5). The reason behind pooling the two samples was to
obtain a large dataset on which to perform the simulations, given that the only
observations included in those simulations were those from the last week in the
panel (1/27 to 2/2/2008).
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5.5.4 AM Peak Pricing on the London Underground

The fourth and final policy application we consider in this thesis is the

implementation of AM peak pricing on the London Underground. The patterns in

Chapter 3 showed sharp morning and afternoon peaks on the Underground. In

other words, the highest levels of demand on a typical weekday are observed

during relatively short time intervals. Such patterns suggest an opportunity for fare
policy to play a role in spreading peak demand. By charging a premium for travel
in the peak periods, one would expect some of the demand to shift to other modes

(be they public transport or non-public transport modes) and to time periods

preceding and following the one during which a premium is charged. Peak

spreading can be an effective means for allowing more users into the public
transport system, especially given the constraints on the infrastructure (in terms of
the ability to run additional trains).

In order to implement an effective peak pricing strategy on the

Underground, the following should be taken into consideration:

1. With the current fare structure, charging a premium on peak travel for PAYG
customers without modifying the pricing structure for period tickets would
probably not result in the desired change in ridership levels. This is because (1)
most peak travel on both Underground and bus is made on period tickets, as
shown in Chapter 3, and (2) implementing such a policy may induce some
PAYG users to switch to period tickets in order to avoid either paying a
premium or changing their travel schedules.

2. Queues may form at entry or exit gates (depending on how the peak premium is
charged) where people would wait for the peak period to end before entering or
exiting the station to avoid paying the premium. Addressing this issue requires
careful consideration of the timing and structure of the peak pricing scheme,
which may involve, for example, a gradual increase in fares before the peak
period begins and a gradual decrease after the peak period ends, rather than a
sudden change in fares at certain points in time.

3. Peak pricing should be implemented on a short time period during which

demand is at its highest level. Applying a peak pricing strategy on a wide time
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interval may induce many public transport users to switch to different modes
rather than change their times of travel.
The example we provide here does not address the first two points above.

We present expected ridership changes under a peak pricing strategy that is applied

only on PAYG, without considering ticket switching or any changes to the fare

structure. We assume a one-time, rather than a gradual, change in fares at the start
and end of the peak period and assume that fares are charged based on exit (i.e. tap-
out) times. The third point is addressed by applying peak pricing in the example
below on a relatively short time period in which demand is at its highest levels.

Furthermore, our example is applied only to Underground travel in the AM peak.

The methodology developed in this thesis theoretically allows for modeling
tradeoffs among modes and times of day. This is done by adding the fare on a given
mode and time of day as an explanatory variable in the regression sub-models
measuring demand on other modes and times-of-day. This was not done in this
thesis because (1) as mentioned earlier, given that we measure frequency of use by
journey segments and do not account for interchanges, tradeoffs between modes
are not clear, and (2) fares in the current fare structure do not really have a role in
any time-of-day tradeoffs experienced by travelers. Using the model specified in
this thesis to assess the impacts of a peak pricing strategy, therefore, requires
making certain assumptions about peak period travel behavior on public transport
in London. To that end, we do the following:

1. The PAYG sub-model for uncapped LU trips is re-estimated with the dependent
variable being the number of (weekly) uncapped journeys (based on exit times)
on the Underground made on weekdays between 8:30am and 9:15am, the time
period with the highest demand in the AM peak. (Note that we also tried an
alternative approach, in which three PAYG sub-models are estimated, one for
each 15-minute time interval in the period between 8:30am and 9:15am. We
opted for the single regression approach, because the current fare structure for
the Underground does not include any time differentials in the peak period, so

estimating fare elasticities at the 15-minute level does not produce any useful

99



results with regards to assessing people’s sensitivity to fares within relatively
short intervals.)

2. Using the results, we estimate an AM peak-period fare elasticity. This elasticity
measures the effect of a one percent increase in fares between 8:30am and
9:15am on the frequency of use on the Underground during that time period.

3. A cross elasticity of bus use with respect to Underground fare obtained from the
literature and is adjusted to represent the cross elasticity in the AM peak period.

4. Observed PAYG demand levels on the Underground are adjusted as follows:

a. Ridership levels in each of the three 15-minute intervals in the time
period during which a premium is charged (8:30-8:45am, 8:45-9:00am,
and 9:00-9:15am) are reduced based on the estimated fare elasticity.

b. The reduction in ridership in the second 15-minute interval (8:45-9:00am),
which represents the peak-of-the-peak, is assumed to have shifted to a
different mode (be it a public transport or a non-public transport mode).
The assumption made in this step is that peak-of-the-peak users are not
willing to shift their times of travel.

c. Based on the AM peak-period cross elasticity of bus use with respect to
Underground fares, we find the percentage (X) of the reductions in
ridership in the first and third 15-minute peak intervals (8:30-8:45am and
9:00-9:15am) that shifted to bus. The remaining percentage (100-X) of the
reductions is assumed to have shifted to a different time period.
Passengers who initially traveled between 8:30am and 8:45am are
assumed to have shifted to the 8:15-8:30am time interval, while those who
initially traveled between 9:00am and 9:15am are assumed to have shifted
to the 9:15-9:30am time interval. The assumptions made in this step are
(1) the AM peak-period cross elasticity is assumed to be smaller, in
absolute value, than the frequency of use elasticity estimated by the
regression sub-model, (2) “‘mode shifters’ in the first and third 15-minute
interval remain on public transport but switch to bus, and (3) ‘time
shifters” are only willing to shift one 15-minute interval from their

original time of travel.
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Table 5-15 presents the estimation results for the AM peak period regression
sub-model (non-peak-period travelers are excluded from this analysis). Using the
point-slope formula, we find a long-run AM peak-period fare elasticity of -0.28,
which, as expected, has a smaller absolute value compared to the long-run fare
elasticity of -0.64 estimated for all PAYG users and shown in Table 5-8. More
precisely, the peak-period elasticity is about 44% the value of the overall elasticity.
This relationship between the two elasticities is used to find a peak-period cross
elasticity of bus demand with respect to Underground fares. Mitrani et al. (2002)
estimated an overall cross elasticity of 0.13, which indicates that a 10% increase in
Underground fares would result in a 1.3% increase in bus ridership. Multiplying

this elasticity by 44%, we obtain a peak-period cross elasticity of 0.06.

Variable Estimated coefficient (t-stat)
Constant 0.606 (20.20)
Past use 0.590 (153.95)
Holidays -0.248 (-21.38)
SBC 1.294 (5.72)
Fare -0.058 (-5.03)
Overall R? 0.582
Number ?f 49712
Observations

Table 5-15: Estimation results for the frequency of use sub-model for uncapped Underground PAYG
use between 8:30am and 9:15am

We should note that our estimated peak fare elasticity (-0.28) is similar to the
fare elasticities obtained in a recent report (referenced in Chapter 2) looking into
possible peak pricing schemes on National Rail (UK Department for Transport,
Transport for London, and Network Rail, 2007). The report used survey data to
estimate a time-of-day choice model and simulated travel, based on the results of
that model, on a number of corridors. Several peak pricing scenarios were tested,
and the observed fare elasticities on the various corridors ranged between -0.35 and
-0.15.

We now test a peak pricing strategy in which a fare of £2.00 is charged for

Underground travel made between 8:30am and 9:15am. This represents a £0.50 (or

16 For the purpose of comparison, we also estimated a long-run off-peak fare elasticity equal to -0.78.
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33%) increase from current fare levels. The results are shown in Figures 5-4 and 5-5.
The first figure shows overall ridership levels before and after the peak pricing
strategy is implemented, while the second figure shows the breakdown of the
assumed switching patterns. The minus signs in the second figure indicate a shift
away from the corresponding time intervals (or from the Underground), and a plus

sign indicates a shift to the corresponding time interval.
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Figure 5-5: Underground PAYG ridership in the AM peak before and after peak pricing
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Figure 5-6: Underground PAYG ridership in the AM peak with peak pricing
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The results above show that the suggested peak pricing strategy would
reduce ridership between 8:30am and 9:15am by about 9%. (Note that this does not
take into account any users who would start using the Underground during that
time because of the reduction in crowding levels, for example.) Of the passengers
who no longer travel in this time interval, 51% shift to a different time interval, and
49% shift to a different mode. The majority of those who switch to a different mode
are presumed to have originally travelled in the peak-of-the-peak, represented in
this example by the 8:45-9:00am time interval.

This section presented some policy applications for the discrete-continuous
model developed earlier in this thesis and estimated on data from London. The
final section of this chapter discusses ways in which the estimation results could be

incorporated into models currently used at TfL.

5.6 Integrating the Results into Current Fare Models

This section explains how the methodology developed and applied in this thesis
can be integrated into models currently used at TfL.

In the short run, the outputs of the model estimated above could be used as
inputs to TfL’s spreadsheet fare models described in Section 3.3. The spreadsheet
models take ticket type and demand (i.e. usage) elasticities as inputs. Some of these
elasticities can be readily estimated from the results of our model and input into the
spreadsheet model. Table 5-16 shows the PAYG fare elasticities estimated by our
model for each fare category currently included in TfL’s spreadsheet models.

In addition to providing more robust elasticity estimates, our model also has
the advantage of being estimated at the individual level. This allows for producing
separate elasticity estimates, for both ticket choice and use, for any group of users
(e.g. peak users, frequent users, weekend users, or users of the various fare
categories, as shown in the above table). These estimates, in turn, can be used in the

spreadsheet model to produce more accurate demand and revenue forecasts.
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Fare category used in TfL Model | Estimated PAYG fare elasticity
LU: Zone 1 only -0.37
LU: Zone 1-2 -0.40
LU: Zone 1-3 -0.48
LU: Zone 1-4 -0.43
LU: Zone 1-5 -0.60
LU: Zone 1-6 -0.65
LU: 1 zone (excluding Zone 1) -0.23
LU: 2 zones (excluding Zone 1) -0.20
LU: 3 zones (excluding Zone 1) -0.32
LU: 4 zones (excluding Zone 1) -0.35
LU: 5 zones (excluding Zone 1) -0.38
Bus -0.08

Table 5-16: PAYG fare elasticities for fare categories included in TfL’s spreadsheet models

We should note, however, that not all outputs of our model are comparable
to the inputs to TfL’s spreadsheet models. In terms of ticket switching, for example,
TfL’s current models capture switching from cash fares to Oyster PAYG and other
Oyster period tickets—something which is not explicitly accounted for in our
model. The spreadsheet models, on the other hand, do not allow for switching
among the different period tickets (e.g. switching from Weekly Travelcards to
Monthly Travelcards) due to changes in their relative costs.

In the longer run, our methodology —including the ability to model ticket
switching—can be further integrated into TfL’s fare modeling capabilities by
continuously making use of smartcard data as they become available. By
developing automated computer procedures to preprocess the data, construct the
panel structure, and calculate the expected costs of travel under each ticket type,
TfL could continuously keep track of individuals’ ticket choices, as well as their
public transport use patterns. The discrete-continuous models specified above
could be re-estimated on a regular basis in order to update the various elasticity
estimates and validate the model’s performance in terms of the differences between
predicted and observed ticket shares and frequencies of use. This could all be done
as part of a larger effort to make more effective use of most recent smartcard data.
Developing a clear system in which the data are analyzed regularly has benefits in

many areas beyond fare policy.
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In summary, our methodology can be integrated in the short run into the
current spreadsheet model used at TfL by (1) providing a more robust, policy-
sensitive tool for calculating some of the exogenous inputs to the spreadsheet model
and (2) enhancing the performance of that model by making it more disaggregate
thus accommodating different subgroups or types of users. In the longer run,
however, realizing the full potential of our methodology requires integrating it

within a framework that makes use of smartcard data on a regular basis.
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Chapter 6

Summary and Conclusions

This thesis proposed a methodology for modeling the impacts of fare changes on
public transport demand. The methodology is based on using smartcard data over
time, where individuals’ past behavior can be used to infer their future behavior
and to obtain a more accurate estimate of the true impact of fare changes on their
ticket choices and public transport use patterns. We developed a discrete-
continuous framework in which ticket choice is modeled at the higher (discrete)
level and frequencies of use, based on mode and time-of-day, are modeled at the
lower (continuous) level. We then specified an empirical model for London’s public
transport system and estimated that model using smartcard data that were collected
between November 2005 and February 2008. The estimation results were mostly in
accord with our expectations and provided insight into some fare policy options
currently being considered by TfL.

In this chapter, we summarize our findings, first in terms of general
methodological conclusions and then in terms of specific conclusions for London.
This is followed by a discussion of the limitations of this research and some

directions for future work.

6.1 Summary of Findings

6.1.1 Methodological Conclusions

The following methodological conclusions can be extracted from the theoretical
framework and model estimation results contained in this thesis. These conclusions
are general in nature and can be used as guidelines in developing models that are

more complex than those presented in this thesis.
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Effective public transport demand management strategies require models that
capture the increasing complexity of fare structures in public transport systems.
Measuring public transport cost in one ‘average fare” variable may no longer be
adequate. Accounting for complex fare structures allows for having better
predictions of people’s choices and, hence, a more powerful forecasting tool.

An important part of capturing the complexity of fare structures is the ability to
model the choice among the various ticket types available on a public transport
system. Although this has been done in the past, it did not account for the
interdependence between ticket choice and public transport use, which is key in
determining overall ridership levels. Changing ticket choices cause changes in
public transport use patterns and vice versa.

The availability of smartcard data over a relatively long period of time allows
for developing models that use individuals’ past behavior as an explanatory
factor in determining their future behavior. Doing so accounts for ‘inertia’
effects that can explain the delayed or gradual impacts that certain fare changes
have on public transport demand. Longitudinal smartcard data can also be used
to capture unobserved factors, such as the changing awareness (or perceived

attractiveness) of the various ticket types.

6.1.2 Conclusions for London

Given that we have applied our methodology using data from London, it may be

useful to present some conclusions that pertain to the city’s public transport system.

The following conclusions are in addition to the ones listed in the previous

subsection, which are also applicable to London:

At many public transport agencies, analyzing available smartcard data is
becoming useful in various planning contexts, including fare policy. In London,
the high adoption rate of the Oyster card, as well as the availability of Oyster
data over time, provides a unique opportunity to use this dataset in order to
evaluate fare policy options and to understand how people use public transport.
In evaluating any new fare policy, TfL must take into account the time horizon

during which the effects of that fare policy are expected to take place. This time
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horizon may vary due to (1) the different inertia effects among ticket types and
(2) the different time validities for the tickets affected by the policy (i.e. the time
before a ticket expires, allowing its holder to switch to a different ticket type).
The policy applications shown in the previous chapter indicate that the impact
of a change in the price of monthly period tickets will take about five to six
months to fully materialize. On the other hand, an increase in the price of
Annual Travelcards triggers behavioral changes that stabilize about one year
after the price increase.

PAYG has become increasingly popular in London, especially among first-time
Oyster users. This is partly due to policies such as daily price capping and to
marketing efforts. Observing smartcard data over time can account for this
pattern. In addition to the changing cost of travel under PAYG due to fare
changes and the introduction of different policies, observing people’s behavior,
especially among new Opyster users, can give some insight into factors that
cannot be easily measured and that are contributing to the increasing popularity
of PAYG. (In our analysis, we included a measure of prior aggregate shares of
PAYG among first-time Oyster users in the ticket choice sub-model to account
for the changing “awareness’ or “attractiveness’ of that ticket type.)

The sharp peaks on the London Underground present an opportunity to
implement a peak pricing scheme that would spread the demand during those
time periods. The framework developed in this thesis allows for using smartcard
data to gauge users’ sensitivity to fare changes in the peak. This would help in
determining the most effective peak pricing scheme to implement. One should
keep in mind, however, that since peak pricing, and what it entails in terms of
changes in the pricing structure for period tickets, represents a radical change in
the fare structure in London. Using the available Oyster data, although it
presents some useful insight, may not provide the full picture when evaluating
such a policy. To that end, surveys and focus groups, such as those conducted
for the purpose of studying peak pricing on National Rail (UK Department for
Transport, Transport for London, and Network Rail, 2007), can be helpful in

complementing the analysis.
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6.2 Limitations and Directions for Future Research

To conclude this thesis, we discuss the limitations of our model and present, based
on these limitations, some directions for future research in the area of public
transport fare policy analysis.

Some of the limitations we present here pertain to the modeling framework
we developed, while others are specific to the application to London presented in
the previous chapter. Most of the limitations in the latter group have already been
discussed in the context of the analysis. They include the following:

1. Given the current fare structure, the model does not fully capture time-of-day
tradeoffs for public transport users in London. In order to test policies that
involve such tradeoffs, certain assumptions have to be made, such as the ones
used in the peak pricing analysis in Section 5.5. In the future, if such policies are
implemented and new data become available, some of these assumptions could
be relaxed.

2. The model, applied to London, does not capture tradeoffs between
Underground and bus. As mentioned earlier, this is because our analysis was
done at the journey segment level, without accounting for trips with
interchanges, in which bus, for example, represents a complement, rather than a
substitute, to the Underground. Capturing modal tradeoffs requires
preprocessing the smartcard data to determine what groups of journey
segments made by an individual represent a single journey (see Seaborn, 2008).
After doing so, the model could be used to produce cross elasticities between
modes.

3. The model uses a panel data structure in which one ticket type is assumed to
have been used by an individual during a given week. As mentioned earlier, we
have found that about 90% of Oyster cards in London were found to use exactly
one ticket type per week. It is conceivable, however, that as PAYG gains
popularity in the near future, more people may start using multiple ticket types
on their cards (e.g. a Zone 1-2 Weekly Travelcard for journeys between and
within Zones 1 and 2 and PAYG for all other journeys). If such a pattern

develops, our definition of ticket choice in the model becomes less valid.
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4. In the ticket choice sub-model, ‘expected cost’ is estimated using the observed
use in the previous week. This is a very simplistic approach and may result in
inaccurate estimates, especially in a week that includes holidays (and that is
preceded by a week with no holidays). Addressing this can be done either by
simply accounting for holidays when estimating expected cost (by scaling down
the previous week’s costs depending on the number of holidays in the current
week) or by using a more advanced approach that develops latent variable
models to estimate expected cost. (Expected cost for individual n in week t is an
unobserved, or ‘latent’, variable.) Such models may include structural equations
in which expected cost is a function of use in previous weeks, holidays,
seasonality effects, and other variables. (For an overview of latent variable
models and how they can be integrated with discrete choice models, see Bollen,
1989, and Ben-Akiva et al., 2002.)

5. The ticket choice sub-model was applied to London assuming pure state
dependence and not accounting for serial correlation. However, this does not
mean that in the long run, the minimum cost ticket type will be chosen. This is
because the model includes measures of the relative attractiveness of each
alternative (represented by the alternative-specific constants). To account for
both state dependence and serial correlation (i.e. unobserved heterogeneities),
one would need to use more advanced statistical methods (see Heckman, 1981
and Keane, 1997).

The above limitations present some opportunities for future research that
retain the proposed methodology but provide some adjustments that better capture
London’s public transport system and fare structure. This may involve revising the
empirical specifications for London to better incorporate time-of-day tradeoffs
when peak pricing is introduced, restructuring the model such that full journeys
with interchanges are accounted for, redefining “ticket choice” based on a new panel
data structure, improving the measure of ‘expected cost” in the ticket choice sub-
model, and using more advanced statistical methods to account for both state

dependence and unobserved heterogeneities.
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We should also note that capturing individual-specific variations need not be
done only through accounting for unobserved heterogeneities, as some of these
variations may be captured with actual data. For example, many Oyster cards in
London are currently registered. Using the postcode associated with each Oyster
card can provide estimates for some socioeconomic variables, such as income
(assuming the postcode within which the card is registered is for the home
address). Using these data present another direction for further research.

We now turn to more general limitations that pertain to the methodology
itself. One such limitation relates to the generation and suppression of smartcards.
The current methodology does not account for this, as illustrated in the simulations
in Section 5.5 in which we only used cards that appeared in the last observed week
in the panel without accounting for any cards disappearing from the sample or for
new cards appearing in the sample in the near future. One way in which this could
be accounted for in future models is to develop a framework in which future
smartcard generation and suppression are simulated over time based on past
patterns.

Using such an approach, however, may still be insufficient. As shown earlier,
Opyster cards in London have a relatively short lifespan, since many users either lose
their cards or get a new card in order to switch to a different ticket (as some may be
unaware of the ability to use multiple ticket types on the same card). This means
that the observed ‘generation and suppression’ of smartcards is due not only to new
users entering the system or existing users switching to non-public transport modes
but also to existing users obtaining multiple cards over time. The methodology we
developed, in addition to assuming that each card represents one individual (as
noted earlier), also implicitly assumes that each individual is represented by only
one card. Methodologically, if one wants to control for individual-specific effects,
the fact that the same individual may use multiple cards needs to be somehow
captured not only when simulating forecasts but also when specifying and
estimating the model.

Furthermore, there are other methodological limitations of this research that

relate to the continuous portion of the discrete-continuous model. Estimating
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multiple regression equations for frequency of public transport use by mode and

time of day introduces the following problems, which were summarized in a paper

that modeled the demand for local telephone service options (Train, McFadden, &

Ben-Akiva, 1987):

1. As the number of ‘frequency of use’” equations increases, so does the number of
parameters, since each equation theoretically includes its own ‘fare’ variable, as
well as those of all the other equations.

2. The dependent variables in the ‘frequency of use’ equations are truncated at
zero (i.e. the take a value greater than or equal to zero). This may introduce what
is known as ‘truncation bias” in the estimated parameters (Amemiya, 1974).
Correcting for this bias is complex, especially with a larger number of equations.

3. In our methodology, the ‘frequency of use’ equations are defined such that there
is one measure of the per journey fare for each. This definition may be
problematic in some cases, where it is not clear what that fare is. For example, in
our application of the model to London, the fare variable in the PAYG uncapped
Underground journeys regression did not represent the actual fare for each of
these journeys; rather, it represented the per journey fare for the LU fare
category on which the individual most frequently traveled during a given week.
Policies such as price capping also do not fit well with our definition for the
frequency of use equations. In our application, we used an ad-hoc approach to
define what journeys would have been capped and then modeled capped
journeys in two separate regression equations (capped Underground journeys
and capped bus journeys). In reality, however, such journeys should be modeled
as part of the total number of Underground and bus journeys, since they do not
really represent a different ‘class’ of use that individuals are choosing.

Developing a fully discrete model, in which mode, ticket, and time of day are
modeled as discrete choices, would address the above limitations. However, as
mentioned in the beginning of this thesis, such an approach would require knowing
the non-chosen alternatives for each journey and the attributes of those alternatives.

A fully discrete model, therefore, would require significant data preprocessing and

some analysis at the origin-destination level.
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In summary, the proposed model structure, in its current form, can be
improved to better capture factors specific to London that were not addressed in
this thesis. More generally, however, there are certain limitations to the model
structure itself that may call for the use of more advanced models for ticket, mode,
and time-of-day choices. The tradeoff between such models and the one proposed
in this thesis is between simplicity, in terms of the model structure and data
requirements and preprocessing, and the level of disaggregation. Our model
requires a dataset that is aggregated to the individual-week level, while a fully
discrete set of models would capture the impacts of fare changes at the journey
level.

Given the limitations discussed above, we conclude this thesis by
highlighting some key points on how our methodology could be applied at TfL, as
well as other public transport agencies:

e The methodology developed in this thesis could be readily used to model public
transport ticket choice and frequency of use. In order to do so, the available
longitudinal smartcard data must be preprocessed to produce the panel data
structure presented earlier. Given the available ticket types, as well as
knowledge of the modes and times of day on which travel is permitted for each
ticket type, the model can produce estimates for the effects of inertia and cost on
ticket choice, as well as the effects of past use, holidays, and the per journey fare
(where applicable) on frequency of use based on that ticket choice.

e When specifying the frequency of use sub-models, each regression equation
should be defined such that there is one constant fare value for its
corresponding journeys. So, if rail and bus fares are different for a given ticket
type, then rail use and bus use should be modeled in separate equations.

e By simulating the ticket choice sub-model over time, one could get accurate
measures for the effect of a fare change on ticket shares and the time horizon
during which that effect would fully materialize. The frequency of use sub-
models could also be simulated over time when evaluating changes in per

journey fares.
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Given that the ticket choice sub-model is discrete, the model produces
satisfactory results that capture switching among different ticket types. On the
other hand, the frequency of use sub-models, being continuous, can capture
tradeoffs between modes and times of day only when certain assumptions and
conditions are met:

— To capture tradeoffs between modes: The raw data should be

preprocessed to account for interchanges. Doing so allows for producing
measures for tradeoffs among the various modes. (At the journey
segment level, these tradeoffs are not clear, since some modes can be
either complements or substitutes to others.)

To capture tradeoffs between times of day: The fare structure should
include tickets or fare classes whose costs vary by time of day and where
such variations present a viable time-of-day choice that is made by users
of the system. The fare structure in London, for example, includes an
Oyster PAYG fare for travel between 7am to 7pm on weekdays and a
different Oyster PAYG fare for travel at all other times. Although these
fares do vary by time, they are both applied to relatively long time
periods, such that individuals are not really making a time-of-day choice

based on the difference between these two fare levels.

(Note that in the AM peak pricing application presented earlier, we made some

assumption on mode and time switching to address the above issues.)

Finally, as discussed in Section 5.6, the results of our application of the model
to London could also be used and integrated into TfL’s current fare models. The
estimated frequency of use elasticities, for example, could be incorporated into
TfL’s spreadsheet models, while keeping in mind that our estimated bus fare
elasticity is significantly smaller than previously estimated values, given the small

variations in bus fares in the dataset. Measures that relate to ticket switching, on the

other hand, may require a longer-term integration strategy to incorporate into TfL’s

fare modeling capabilities, given the new definition we propose for ‘ticket choice’

and the use of inertia as a factor that explains that choice.
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