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Abstract: 
 

Daylighting design has great impact on the performance and aesthetical quality of a work of 

architecture but requires many issues to be addressed during the design process. The way 

existing daylighting tools deliver data to designers is still inefficient. The output display has no 

quick switch between quantitative and qualitative data and simply considers single moments 

with fixed weather condition. Designers are interrupted in their design process, and they usually 

need to make a data synthesis themselves, with the risk of overlooking critical periods or aspects 

of the design.  

 

Therefore, this thesis proposed a new data visualization method to improve this situation and 

create a more efficient data transmission between the designer and the program to better 

inform and support the design process. It used some existing research work in progress and 

developed a functional data visualization platform to simultaneously present sufficient 

quantitative and qualitative data over the year while linking closely the performance to annual 

weather variations, sun positions, and surroundings. As a result, designers are able to focus on 

refining their design while still taking into account the environmental influence over time in a 

convenient way. The proposed platform will work as an analysis interface for the ongoing 

LightSolve project at MIT Daylighting Lab. 
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Chapter 1  

Introduction 
 

 

1.1 Daylight in Architecture 
 

“We were born of light. The seasons are felt through light. We only know the world as it is evoked 

by light …… To me natural light is the only light, because it has mood – it provides a ground of 

common agreement for man – it puts us in touch with the eternal. Natural light is the only light 

that makes architecture architecture.”  

                                                                -- Louis I. Kahn 

 

Daylight has always played a major role in architecture. It is one of the essential resources for 

helping people sensing the world of architecture [Brawne, 2003], and is a primitive source of 

illuminating people’s activities to make the building more functional and revealing the shape of 

the building [Millet, 1996]. Light, especially daylight, is dominant in our sensation of form and 

space, and without light, any form and space equals nothing [Brawne, 2003]. Therefore, 

daylighting plays a significant role in the architectural design process as well. It also helps create 

particular visual effects and atmosphere for different building purposes [Baker, 1993]. From the 

very beginning in architectural history, a great numbers of architectural masterpieces were 

created by architects that were in fact driven by the idea of how to use daylight in their designs 

[Büttiker, 1994] [Guzowski, 2000]. 

 
“Until the second half of the twentieth century when fluorescent lighting and cheap electricity 

became available, the history of daylighting and the history of architecture were one.” [Lechner, 

2001] Because of the difficulty of getting cheap and efficient artificial light before the widely 

used electric lighting, getting enough daylight was one of the major objectives for architects 

[Lechner, 2001]. The building itself had to be functional by allowing people to perform indoor 

activities during the day, and it also had to be lit by daylight. 

 

This idea contributed greatly to every architectural evolution. The goal of letting more natural 

light enter the buildings was reflected in the structural changes in these evolutions [Lechner, 

2001] [Broadbent, 1988]. For instance, from the Romanesque barrel vault to Roman groin vault, a 

distinct change was to get rid of the massive bearing walls supporting the barrel vault and using 

columns with flying buttresses to support the vault instead (figure 1.11). By doing this, the walls 

in the vaulted space were no longer used for supporting purpose. It became possible to increase 

the amount of daylight entering the building, because more windows with larger area were 

allowed on the walls rather than only allowed few small openings on the bearing walls for barrel 

                                                        
1 All figures are produced by the author unless noted. 
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vault [Lechner, 2001]. Gothic architecture is another example (figure 1.2). Its major goal was to 

get more daylight in by maximizing the possible window area in its structure system. Its skeleton 

construction of the flying buttresses allowed build very large windows [Lechner, 2001].  

 

During the period of the Renaissance, windows became a dominant element on the building’s 

façade. The typical floor plans in that period basically followed the pattern of “E” and “H” 

because these types of design could increase the façade area for a given floor area [Lechner, 

2001], hence, increase the window area. At the same time, high ceilings were used in 

combination with room depths about twice the floor to ceiling height so that every where was 

possible to get access to daylight [Broadbent, 1988].  

 

In the nineteenth century, iron and glass structure was available for architects thanks to the 

industrial evolution [Broadbent, 1988] [Lechner, 2001]. Buildings with full glass skins became 

possible, such as the landmark design of the Crystal Palace by Paxton at London, built in 1851 

(figure 1.3).  

figure 1.1: Romanesque barrel vault (left), Roman groin vault (right).  
www.uky.edu/Classes/A-H/323/restricted/terms.htm 

figure 1.2: Gothic architecture. 
www.gargoylegothica.com/ 

figure 1.3: Crystal Palace designed by Paxton, 
London. www.ric.edu/faculty/rpotter/cryspal.html 
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This trend continued in the twentieth century. The popular international style created by Mies 

van de Rohe was famous because of his use of iron and glass structures in skyscrapers (figure 1.4). 

Although it maximized window area in the façade and allowed daylight to come in freely, there 

was no control of solar heat gain and people found it very difficult to stay comfortable without 

blocking sunlight. The more difficult control of daylight made electric lighting became the 

preferred and major lighting source, while air conditioning became more and more popular to 

provide comfortable temperature [Lechner, 2001].  

 

This situation was in great part caused by the cheaper and easily controlled electric lighting. 

People realized they could get the same amount of illuminance by simply using electric light 

without considering any details of the building orientation, openings, depth, and so on [Lechner, 

2001]. Daylight was no longer the central element in architecture.  

 

“The energy crisis of the mid-1970s led to a reexamination of the potential for daylighting” 

[Lechner, 2001]. People began to realize that daylight was still valuable because of its aesthetic 

effects and biological benefits [Guzowski, 2000]. Further more, many masters of architecture 

during that period, such as Frank Lloyd Wright and Louis Kahn, achieved perfect integration of 

daylighting considerations with their architectural design. In Wright’s Guggenheim Museum 

(figure 1.5), daylight is used “to illuminate the artwork both with indirect light from windows 

and with light from an atrium covered by a glass dome.” [Lechner, 2001]. The innovative 

geometry combining with this daylighting system creates a dramatic atmosphere. In Louis Kahn’s 

Kimbell art museum (figure 1.6), the use of skylight with a curved roof structure created a 

similar effect as the vaulted space and helped illuminate the exhibition room nicely [Büttiker, 

1994].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
figure 1.4:  
Seagram building by Mies van der Rohe. 
www.greatbuildings.com 

figure 1.5:  
Guggenheim Museum by Frank Lloyd Wright. 
www.greatbuildings.com 
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It is easy to find how daylight has influenced architectural design since the beginning of 

architectural history. This is revealed in the appearance of different architectural styles around 

the world according to different climate conditions [Lechner, 2001] in how visual effects are 

produced in the buildings [Brawne, 2003], in how energy efficiency considerations are brought in, 

and how health issues of the building’s users have influenced design factors [Guzowski, 2000].  

 

1.2   Daylight as an Influencing Factor for Design 
 

Daylighting has deeply influenced architecture throughout history. In the National Capital of 

Bangladesh hospital (figure 1.7) designed by Louis Kahn, the innovation of using solid walls to 

create “double skins” was driven by the idea of blocking and diffusing direct sunlight caused by 

Dhaka’s low latitude and motivated by prevention of solar gain and glare issues [Büttiker, 1994] .  

In the Pantheon in Rome (figure 1.8), solar movement helps to form the dimension of the 

hemispherical dome and its decorations [Fontoynont, 1999].  In Alvar Aalto’s Seinäjoki Library 

(figure 1.9), the orientation of the skylight monitor was determined by the sun’s azimuth while 

the geometry of its shading systems was based on the sun’s altitude during the summer and 

winter [Guzowski, 2000]. All these examples reveal a strong relationship between design 

parameters and lighting parameters.  

figure 1.6:  
Kimbell art museum by Louis Kahn. 
www.greatbuildings.com 

figure 1.7:  
National Capital of Bangladesh hostpital 
by Louis Kahn [Büttiker, 1994]. 

figure 1.8:  
Pantheon in Rome. 
www.greatbuildings.com 
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The most important design parameters in terms of daylighting are building orientation, geometry, 

position and size of apertures, shadings, and materials used in walls and glazing. These decisions 

will influence lighting performance which is assessed based on the building’s required 

illuminance level and desired lighting atmosphere. We can create a mapping between the 

building’s functionality, a design parameter, to the required illuminance level, the corresponding 

lighting parameter.  A working area in an office building typically requires an illuminance of 

about 300 lux illuminance level to provide adequate lighting for people to read and write, while 

the entrance of the same office building would only need an illuminance of about 100 lux.  

 

Local environmental factors, such as latitude of the location, weather conditions, sun angle 

ranges, etc, also have a great impact on these decisions. For example, the latitude of the 

location can greatly affect the direct sunlight entering into the interior space. When the building 

is located at low latitude with high sun angles, the distance between building and its 

surroundings and the distance between different parts of the building can be short while still 

allowing sunlight to come into the interior space (figure 1.10). This is not true at high latitude, 

when the sun is normally low; these distances always have to be long enough to allow sunlight to 

penetrate (figure 1.10). Hence, the buildings orientation and geometry have to be designed to 

response this attribute of its location. Weather variation is also needed to take into account in 

many cases. Because under an overcast day, only diffuse daylight is available, while under a 

clear sky the major contribution of the natural light is the direct radiation. This variation 

sometimes caused entirely different design of the same type of projects [Guzowski, 2000]. 

Therefore, the architectural design is needed to consider this variation as well.  

 

The above discussion reveals a strong influence of these daylight factors in the building’s 

performance. It clearly shows that it is necessary to integrate daylighting considerations into the 

architectural design.  

 

figure 1.9:  
Seinäjoki Library by Alvar Aalto. 
picasaweb.google.com/Dasulele/Vaas
a4Week 

figure 1.10:  
Relationship between sun angles and the building distance. 
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1.3 Structure of Thesis 
 

The structure of this thesis is organized based on the design and development of a new data 

visualization method and a functional platform implementing the proposed method. 

 

In Chapter 2, it discusses the data visualization in the architectural design process in terms of 

daylighting and what data representations are important and have to be delivered to the 

designer to support him comprehensively evaluating the daylighting performance and making 

appropriate design decision. In addition, it studies the data visualization process of existing 

lighting simulation, how they inform and support the design process, and what their data 

visualization limitations are. 

 

In Chapter 3, it presents thesis’s objectives of creating a new method for data visualization 

focusing on daylighting, simultaneously displaying various types of information, and conveniently 

accessing data over the whole year. In addition, it mentions that this method uses existing 

research work, the quantitative temporal map being developed at MIT Daylighting Lab, as the 

major quantitative data output, and it also uses the concept of the render engine being 

developed at RPI Department of Computer Science, as the way to quickly produce qualitative 

rendering outputs. It introduces that a platform is developed to implement the proposed method 

and will work as an analysis interface for the ongoing LightSolve project at MIT Daylighting Lab.  

 

In Chapter 4, it presents the design and development of the data visualization platform 

implementing the proposed data visualization method and introduces the main features of the 

platform and other simulation methods. 

 

In Chapter 5, it presents four validations of the proposed method. The first validation is a case 

study that analyzes existing buildings in two current tools. It then discusses their limitations and 

makes a comparison between them and the proposed platform. The second validation tests 

whether the proposed method can inform and support better the design process. A demo 

museum design is developed under the influence of the proposed data visualization platform. 

The third validation tests whether the proposed platform is able to reveal the real performance 

issues. It presents the interview to the space user at Stata Center Room 32-376 and the analysis 

result displayed in the platform. The fourth validation platform is a survey to architectural 

students. This validation tests whether the platform is intuitive and useful from these intended 

users. 

 

Chapter 6 is the conclusion of the thesis. It summarized the major achievements and research 

discoveries. In addition, it also discussed the possible future work and potential research 

beneficiaries of the thesis production.  

 

Appendices 1 and 2 presents the material settings of the digital model for the Yale Center for 



 15 

British Art in AutoDesk 3Ds Max 2009 and Ecotect 5.5 in Chapter 5’s first validation. 

 

Appendices 3 and 4 presents the material settings of the digital model for the Stata Center Room 

32-376 in AutoDesk 3Ds Max 2009 and Ecotect 5.5 in Chapter 5’s first validation. 

 

Appendices 5 and 6 present the questionnaire and its survey results for the validation test 4. 
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Chapter 2  

Research Context: Data Visualization in the Design 

Process 
 

 

2.1  Architectural Design Process 
 
Architectural design process is usually being described as a non-linear process that cannot be 

quantified easily; however, there are still constant drivers that motivate the design as it moves 

toward its final iteration. The architectural design process can be considered as a process of 

creating forms and spaces [Broadbent, 1988].  
 
The design process can be described as a sequence of steps [Broadbent, 1988]:  

1) accumulation of data 

2) isolation of a general concept or ‘Form’ 

3) development of the ‘Form’ into the final scheme 

4) presentation of the final scheme 

 

In the first step, the designer will gather various types of information, such as the function of the 

project, the client’s needs, the potential space users, the requirement of the building’s area, 

the urban context, etc. Information of previous designs which have been known by the designer 

may also be presented in his mind as a database of possible design solutions for this topic.  

 

After an architect accumulates data in the first step, he is able to formulate an initial design 

concept, and a list of basic design possibilities and design constraints becomes clear in his mind. 

Most architects will begin their creation by a series of conceptual drawings (figure 2.1) based on 

that list. This process of creating initial conceptual drawings corresponds to the second process, 

the isolation of a general concept or ‘Form’. As is argued in Michael Brawne’s “Architectural 

thought: The Design Process and The Expectant Eye” [Brawne, 2003], “Architecture thought is 

primarily non-verbal thought …… Visual thinking is particularly relevant at the design stage which 

is also the stage in which an architect makes the most significant impact.” Architects always 

begin their design by images either on paper or in their mind. Those conceptual drawings have 

already contained the architect’s initial thinking of function, lighting, structure, etc, and they 

are mainly sketches which are simply composed by black marks on white paper.  

 

The third step, the development of the ‘Form’ into the final scheme, is the major part of the 

architectural design process. In fact, this process cannot be considered as only one step when we 

look at it on a deeper level,  because it contains a loop of the  ‘Form’  development.  In this 
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development, the designer follows the typical trial-and-error process to first evaluate his design 

and then perform experiments on refining the geometry and adding more design detail. These 

evaluations may reflect the consideration from many different perspectives, such the aesthetic 

consideration which is a very important criterion in architecture, the lighting effect, the 

structure system, etc. They can be entirely based on the designer’s own design goal, his personal 

experience, and works he is familiar with. They may also be based on professional calculations 

provided by consultants he is working with or by some computer simulation programs. From 

these evaluations, the designer may realize his design experiment may not work well within 

some basic design constraints and may raise some new constraints. He would search for other 

possible solutions and implement them in the next experiment. Until the architect reaches to 

the perfect moment, the images of the building in his mind will keep changing in every possible 

direction and keep moving from simpleness and vagueness to complexity and accuracy. In the 

final step where all the design decisions have been made, the designer will prepare final 

drawings and presentations for future construction.  

 

2.2  Data Use in Design Process 
 

The designer formulates the basic concept and design goals he would like to achieve based on 

the information he accumulates in the first step. For example, the urban context may become an 

important criteria to determine the orientation and the basic geometry; the function of the 

building may tells the designer how much space is needed for transportation and how much 

space is needed for individuals to work inside; previous works may reveal him possible lighting 

effect he could get in this design.  

 

In the trial-and-error process during the third step, the design refinements are mainly informed 

by the information from every evaluation, therefore, the smoothness of the data delivery 

between the designer and these evaluations becomes crucial for this design process. The 

figure 2.1:  
Conceptual sketches by Louis Kahn (left) [Büttiker, 1994] and Tadao Ando 
(right, www.arkitectrue.com/arts-centre-by-tadao-ando/). 
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inefficiency data transmission can also effect the design process. It can cost too much time for 

the designer to collect them, and as a consequence, interrupt the design process greatly. Some 

important information may have a dangerous of being neglected because it is very inconvenient 

to obtain it. Therefore, this inefficiency greatly interrupts the designer’s interpretation of this 

information and makes him impossible to make comprehensive evaluation and concentrate on 

the design exploration itself.  

 

In sum, plenty of information is needed to be collected and delivered to the designer during the 

design process. They deeply informed the design process and play a significant role in supporting 

the design decision making. To keep the data transmission process smooth enough would be 

helpful to let the designer put all his attention on the design itself and make good final 

production. 

 

 

2.3  Important Data Representations of Lighting and Their Influence in Daylighting Design 
 
As discussed in Chapter 1, daylighting has a great impact on the building’s lighting performance 

as well as the architectural design process. Lighting, especially daylighting, influences the design 

process since the early design stage. The design is influence deeply by many elevation results 

including the information of daylighting evaluations. However, “the sun never knew how great it 

was until it struck the side of a building” said by Louis Kahn [Johnson, 1975], it reveals this highly 

unpredictable property of light, especially daylight. Hence, it is crucial to have some efficient, 

accurate, and comprehensive way to assist the designer to evaluate the space’s daylighting 

performance so as to smooth the trial-and-error process and help the designer making 

appropriate design decisions in terms of daylighting. 

 
In order to better understand the daylighting performance of a design, different data 

representations need to be obtained and evaluated. Qualitative data, such as hand sketches or 

pictures from physical scale models (figure 2.1, 2.2), are well known data representations that 

have been widely used by architects to evaluate the visual effect of the space in the 

architectural design centuries ago [Brawne, 2003] [Baker, 1993]. Because of the rapid 

development of computer technology, computer renderings (figure 2.3) have begun to play an 

important role as available qualitative data for the prediction of the visual effect with increasing 

speed and flexibility of handling the repetition of remodeling parameters during the design 

process. To make the evaluation of a daylighting design comprehensive, the designer needs to 

obtain sufficient quantitative data to test whether the lighting condition of the space meets its 

function requirement [Brawne, 2003] [Fontoynont, 1999]. Interior illuminance level distribution 

and daylight factor distribution (figure 2.4) are the most common examples of quantitative data 

used by designers and the lighting professionals [Reinhart, 2006]. Getting enough qualitative and 

quantitative data and to evaluate daylighting performance is helpful for making appropriate 

design decisions; however, the understanding of the link between the outside environment and  
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the space is also very important to lead the design in the right direction and help find 

appropriate solutions to some daylighting problems. The quantitative and qualitative data tell 

the designer what the space’s performance under certain conditions is, while the information of 

the outside environment, such as the sun position, sky conditions, and the surroundings, can 

reveal why the space interacts with light in a particular way [Guzowski, 2000]. Creating a 

seamless transmission of information between the designer that neither interrupts nor 

artificially sequences the design process but rather supports it comprehensively is crucial for a 

design tool to be successful.  

figure 2.2:  
Physical scale model for a housing design, 2002 

figure 2.3:  
Computer rendering by Art-Lantis for a housing 
design, 2005 

figure 2.4:  
Daylight factor distribution at the work plane level of a classroom by Ecotect, 2007 
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2.3.1  Qualitative Representations 
 

Qualitative visualization of space has a long history that dates back to the very beginning of 

architecture. Before the invention of rendering techniques, hand sketch and phyical scale 

models were a major resource for design visualization [Baker, 1993] [Ander, 1995]. They are still 

primary design tools nowadays, even though computer rendering is becoming more and more 

popular in today’s design field. Hand drawings provide the designer an opportunity to freely 

describe the visual thinking process which happens in his mind [Brawne, 2003]. Great amounts of 

evidence on how hand sketches (figure 2.1) can support and influence the architect’s thought 

process can be found in the works of many famous architects, such as Louis Kahn, Alvar Aalto, 

and Le Corbusier. In Kahn’s work, we can find many hand sketches that describe his initial design 

ideas and the lighting effect he was looking for in these projects [Büttiker, 1994]. Some of them 

are simply line drawings with black and white indicating shadow and brightness (figure 2.5), 

some other sketches contain more gradual color between black and white to represent the 

diffuse effect of the space (figure 2.1, 2.6). The hand sketches often represent the designer’s 

initial design goals related to lighting, especially daylighting. When the design process goes to 

the next step, the designer needs more visual information with a precise description of the space.  

Hand sketches no longer fit this requirement, since it is hard to dynamically display the view of 

the building from different perspectives using a hand sketch while the whole geometry is 

changing at the same time. Other tools, such as physical scale models, then become necessary 

and powerful tools to obtain qualitative data for the architectural design [Baker, 1993]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

figure 2.5:  
 

figure 2.6: hand sketch by Steven Holl for Museum of 
Contemporary Art Helsinki, Finland. 
www.arcspace.com/studio/s_holl/pages/9_jpg.htm 
 

figure 2.5: hand sketch by Renzo Piano for Jean Marie 
Tjibaou Cultural Center, New Caledonia, 1992 
[Lampugnani, 1994].  
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Compared with two dimensional drawings, scale models provide a different way to present 

accurate three dimensional information of a design before the actual building is built [Baker, 

1993] [Ander, 1995]. One of the great advantages of physical models is that the designer can 

easily obtain visual information from any possible view for the design by simply rotating the 

model. It is very helpful during the design process, when the designer needs to go back and forth 

to refine his design from every crucial perspective and make sure to have harmony among 

different parts of the design. By choosing materials of appropriate dimensions and of colors 

similar to the ones intended for the real building, the physical scale model can provide a reliable 

lighting simulation of the space (figure 2.7) [Baker, 1993] [Ander, 1995].  

 

On the other hand, digital models and computer renderings have become widely used in the 

architectural field. Nowadays, as is the case with physical scale models, digital models can easily 

provide views from any perspective; it also provides a much more flexible way of remodeling the 

design and updating visual information from computer renderings at any stage during the design 

process. Thus, computer modeling and rendering tools have become a very important resource 

today to provide qualitative data for design. All these tools help the designer to gather enough 

qualitative data to reveal the visual effect of the space and support the designer to make 

appropriate design decisions. 

figure 2.7: Physical scale model 
used for a simulation test of the 
light shelf, 2007.  
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2.3.2  Quantitative Representations 
 

Unlike qualitative data, which tells the designer what the space looks like from a visual 

perspective, the quantitative data represent the space’s performance from a numerical 

perspective. It provides precise numerical values that represent different levels that can be 

switch to the visual information displayed in the qualitative data [Baker, 1993].  

 

Illuminance indicates how much light that a particular area receives based on the amount of 

energy the light brings, and the human’s sensitivity to the wavelengths contained in the light. Its 

unit is the lux (or lumen per square meter). The illuminance value is higher when more light is 

coming in. Generally speaking, spaces with different functions have various lighting 

requirements and are given in the table 2.1 shown below. The actual required light level for 

particular person may be higher or lower depending on his own condition and the surrounding 

environment. (Research has shown that the required lux level for certain activities is lower when 

using daylight, as compared to using artificial light.) Therefore, obtaining illuminance levels and 

light distribution within the space can help the designer to evaluate whether his design fits its 

future function. Simply having qualitative renderings is not enough for designers to make such 

estimation when the quantitative data is missing.  

 

Lighting Requirements Lux Examples 

Low 20-70 Circulation, Stairs 

Moderate 120-185 Entrance, Restaurant 

Medium 250-375 General tasks 

High 500-750 Reading, Writing 

Very high > 1000 Precision tasks 

table 2.1 

 

Daylight factor (figure 2.4) is a metric widely used in daylighting design. It calculates the ratio of 

the illuminance level obtained at a certain point inside the space to the illuminance level 

obtained at an outside point with no obstruction and under an overcast sky. Because it selects an 

overcast sky as its tested weather condition, it is a worst case scenario evaluation that simply 

considers diffused daylight from the sky as the major light source and neglects direct sunlight. In 

this case, the orientation, the climate, the location, and the time are not taken into account. It 

is however able to give a quick idea to the designer of how much impact certain design decision 

will have on the performance, such as position and size of openings and material selections, etc. 

The LEED system used it as determining criteria to assign daylighting credits to a building 

(Projects with 75% areas having over 2% daylight factor could obtain 1 credit for daylighting in 

LEED version 2.1).  

 

Daylight autonomy is another quantitative metric for daylighting evaluation [Reinhart, DAYSIM, 

2006]. Unlike the daylight factor, which is a static metric considering an overcast sky without 
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including orientation, climate and time variation, daylight autonomy is a dynamic metric that 

addresses the change in weather over the year [Reinhart, 2006]. It calculates the percentage of 

working hours when a minimum work plane illuminance is maintained by daylight alone. While 

the daylight factor metric is available in many lighting simulation tools’ quantitative output, 

daylight autonomy is a new metric being produced by DAYSIM and now integrated into Adeline, 

and emerging as a default alternative. 

 

Distinct from illuminance, which indicates how much flux a surface receives, the luminance 

metric describes the amount of light the surface emits in a given direction. Achieving a 

harmonious luminance distribution is crucial in daylighting design. Unevenly distributed 

luminance values can cause serious glare problems that might disturb people’s work, such as 

reading, writing, and using the computer. Therefore, buildings like schools, offices, and labs 

have to have careful control of glare to make sure people’s everyday work will go smoothly.  

 

From the discussion of qualitative and quantitative data, it is apparent that qualitative hand 

sketches and renderings tell the designer what the space looks like, but it cannot indicate 

whether the lighting level in this space meets its function.  Quantitative data are able to 

provide comprehensive description of how much light the space can get and emit; however, 

quantitative data poorly describes the way how light interacts with color, shadow, and the 

building geometry. In daylighting design, both qualitative and quantitative data are necessary 

and crucial information for the designer to evaluate the daylighting performance of the design. 

 

2.3.3  Link between the Daylighting performance and the Changing Outside Environment 
 

Qualitative data helps to visualize an architectural design while quantitative data helps to 

validate whether the lighting condition meets the requirement for particular functions. Both of 

them describe the daylighting performance of the space. However, even their combined 

knowledge is still not quite enough to make appropriate daylighting evaluation and design 

decisions, since it is also crucial to know the circumstances under which this particular 

daylighting performance happens. Understanding the link between the performance and the 

environment that drives this performance is then necessary to make appropriate design 

improvement.  

 

As Guzowski argued in “Daylighting for sustainable design” [Guzowski, 2000], “The track of the 

sun, the conditions of the sky, the climate, and the nature of the site are significant bioregional 

forces that influence daylighting”. Although the building’s own characteristics such as the 

orientation, geometry, opening’s position and size have a great impact on how daylight interacts 

with the space, the outside environment is the major important predetermined factor (although 

not always well known and definitely not controlled) influencing the interior daylighting 

performance of a building.  
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Sun position is the major factor that influences how direct sunlight can penetrate the building 

and create shadow [Guzowski, 2000]. Sun position varies according to location and time of day 

and year (figure 2.8). In the northern hemisphere, we get deeper sunlight penetration early in 

the morning from an east-facing window and late in the afternoon from a west-facing window. It 

also brings longer shadows during the winter than during the summer.  

 

Having an understanding of sunlight variation over time of day is critical when doing daylighting 

design. The designer should ensure that the building can benefit from the direct sunlight 

resource at certain times of day at that particular location. Although looking at the renderings or 

quantitative analysis metrics is able to tell you a west facing room in the northern hemisphere is 

dark in the morning, the designer has to do research on the sun movement so as to understand 

what causes this performance in the rendering. In this case, changing the orientation of the 

façade or adding openings on the east façade may have greater impact on improving the 

illuminance level of the space than increasing the opening size on the west facade. Hence, 

linking the sun position with the qualitative and quantitative data is helpful for the designer to 

figure out the reason of the problem. 

 

In addition, sky conditions (figure 2.9) are another important environmental factor that 

influences interior daylighting performance. Natural light has two components: one is the direct 

radiation from the sunlight, the other one is the diffuse radiation from the sky [Baker, 1993] . 

figure 2.8: The path of the sun is different over the year 
[Winchip, 2005].  
 

figure 2.9: different sky conditions: clear (top), partially cloudy 
(middle), and overcast (bottom).  
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Under clear skies where there are no clouds, the sun is the brightest with the bluest sky color. 

The diffuse radiation from the sky itself only takes 10% to 20%. Under an overcast sky, the 

situation is at the opposite extreme; the diffuse radiation becomes 100% with no direct radiation 

from the sun and the sky becomes grey. Thus, the sky has different illuminance distributions 

under different weather conditions. In this case, to explain why the space has certain daylighting 

performance at particular location and time has to take into account not only the sun position 

but also the sky condition at that moment. Although some location have similar latitude and 

longitude, if they have entirely different weather patterns over time, they may still need to use 

different designs to achieve the same daylighting performance requirement [Guzowski, 2000]. 

Therefore, knowing the sky condition at a certain moment and the sky condition distribution 

over the year is also crucial for the designer to improve his design and better adapt it to the 

climate at a particular location. 

 

Furthermore, the physical surroundings of the building may have a significant impact on the 

daylighting performance [Guzowski, 2000]. The relative position of the surrounding to a building, 

the distance between the surroundings and the building, and the surface properties of the 

surroundings are all important factors that affect how much and in what way light comes into the 

building (figure 1.10). Sometimes, although the surrounding’s position and distance is 

appropriate for the building, it has a large area of reflective façade facing the building so that 

the building is still suffering great glare problems from it as was the case of Frank Gehry’s Disney 

Concert Hall in Los Angeles (figure 2.10). As a result, the designer has to consider the possible 

effect of the surroundings on daylighting performance and develop his design to fit the urban 

environment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 figure 2.10: Walt Disney Concert Hall, Los Angeles, CA, USA, designed by Frank Gehry.  
www.terragalleria.com 
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Since all the environmental factors discussed above are not static over the year, looking at 

daylighting performance for individual moment in time is not enough to demonstrate the quality 

of the daylighting design and find potential problems. The design that works well with low sun 

angle direct sunlight may perform badly during noon time or under an overcast sky. To make sure 

the building is able to respond with the variation of these daylighting environmental factors, the 

designer has to explore the performance over the whole year. This is the only meaningful way a 

designer can understand the underlying annual variation patterns of the sun position, sky 

condition, the surroundings and how the space interacts with these variations.  

 
In summary, developing an appropriate daylighting design requires the designer to obtain enough 

qualitative and quantitative data simultaneously to understand the daylighting performance and 

corresponding outside environmental information that has an impact on the interior 

performance (figure 2.11). In addition, it is crucial for the designer to examine annual variations 

in daylighting rather than a set of static moments under fixed weather conditions. Creating such 

a data transmission method that successfully delivers these daylighting data during the design 

process will be helpful to inform the designer and assist him in refining the design in a more 

appropriate direction. 

 

2.4  Data Visualization Study of Existing Lighting Simulation Tools 
 

Before making any design decisions, a designer will usually run some tests to get a sense of 

whether his design solution performs according to his initial design goals. He then (typically) 

resorts to some tool that can help perform these evaluations in advance to see if further 

modification is needed or not. In this case, the physical scale model has been a popular design 

tool in the architectural field for centuries, because it helps visualize the shape of the building 

and provide an exploration platform for the architect to develop the design from a schematic 

stage to detailed levels. It is also an excellent tool for the lighting study of the building (figure 

2.7) [Broadbent, 1993]. 

  

However, there are still some limitations for physical scale models. In the architectural design 

figure 2.11: Important data representations in terms of daylighting design and their relationship 
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process, there is always a repetition of evaluating a design solution, revising it if necessary, and 

going back to the beginning to test it again. It is clearly inconvenient to rebuild a physical model 

every time in this sequence. At the same time, some materials cannot be scaled easily, although 

it is easy to scale the geometry. This can cause lighting related quantitative measurements to be 

inaccurate [Broadbent, 1993]. The rapid development of computer aided design tools provides 

the designers with an efficient alternative to scale models. In computer simulation tools, the 

designer can easily change the digital model of his design and run lighting simulations by giving 

sufficient details of the geometry and the material under an appropriate sky model. Many 

programs like Radiance and LightScape can provide precise quantitative lighting analysis and 

realistic visualizations of the space (figure 2.11). From the web – based survey held from 

December 2nd 2003 to January 19th 2004 which focused on the use of daylight simulations in 

building design [Reinhart, 2006], an increasing interest in using computer simulation tools to 

support lighting related design issues has been found. In this survey, around 79% of all 

respondents including designers and engineers as well as researchers who indicated their 

consideration of daylighting during the design process used computer simulation tools (the 

survey itself has made through an electronic mailing list which many participants have biased the 

result according to the authors). On the other hand, one former mail-in survey in 1994 

[Aizlewood, 1994] showed that 77% of daylighting specialists still used scale models as their 

simulation tools. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 figure 2.12: Realistic renderings and illuminance false color renderings by Radiance (top, 2007) and 
LightScape (bottom, 2008). 
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Currently, many lighting simulation programs are available, and can be categorized based on 

their users. Users of the first category are basically designers including architects, lighting 

designers, and interior designers. Lighting professionals, such as engineers, lighting consultants, 

and lighting designers would belong to the second category. The difference between the 

simulation program users of these two categories is caused by the different available output and 

needs of users.  

 

2.4.1  User Based Lighting Simulation Tools Comparison 
 

Designers tend to use rendering tools [Reinhart, 2006] such as 3D Max and LightScape because 

the highly visual interactive features of these programs can fit the need of the visual thinking 

which is predominant during the design process [Broadbent, 1988]. These tools mainly focus on 

visualizing the architectural space with a user-friendly interface. Many of the programs, such as 

3D Max, Rhino, and Maya, provide the capability of modeling complex geometries including 

curved shapes. The rendering function is embedded in those tools so that it creates a continual 

process between modeling and visualization of the design. Some other softwares like LightScape 

and Maxwell are independent rendering tools with powerful support for importing CAD model; 

thus, they can collaborate nicely with existing modeling tools including the ones mentioned 

above.  

 

Geometric development and aesthetic exploration are very important activities in the 

architectural design process [Broadbent, 1988] [Brawne, 2003]. The ease of creating complex 

models in modeling (e.g., 3Ds Max, Maya) allows the designers to freely create models and 

explore various types of forms in a digital visual environment instead of making comparatively 

time-consuming physical scale models. After creating the appropriate shape of the design, the 

designer can use the embedded rendering functions or other separate rendering programs (e.g., 

LightScape, Maxwell) to run the visualization process of the space by assigning desired materials 

to the scene at a particular location and time. Both the modeling and rendering interfaces are 

designed to be friendly and simple for the designers to use. These characteristics fit the result of 

a web-based survey in 2003 [Reinhart, 2006] indicating designers’ preference to use tools that 

are simple to manipulate. Beautiful, photorealistic rendering can also be very powerful when the 

designer is communicating with clients who may be unprofessional in architectural design and 

likely to be convinced by this visualization information; this could be another reason why the 

usage of rendering tools in the architectural process by designers is so popular. 

 

On the other hand, lighting professionals are more likely to use lighting simulation tools that are 

capable of detailed, accurate quantitative calculations [Reinhart, 2006], such as AGi32, Lumen 

Design, Adeline, Ecotect, Dial-Europe, SuperLite, and others. Different tendencies between 

designers and lighting professionals reveal their diverse needs of data output and working styles. 

As we discussed above, the designer’s work focuses on creating and developing different forms 

that fit the required functions of the building; as a result, the great amount of work focuses upon 
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the visualization process of the space. Lighting professionals have different concerns from 

designers regarding daylighting. Their work focuses more on technique, such as the invention 

and validation of lighting systems, providing daylighting related solutions for architectural design, 

development of new materials for lighting, etc. These activities require them to gather enough 

quantitative data about lighting in order to have precise information about the lighting 

performance and make improvements based on the results of data analysis.  

 

Most rendering programs provide the import function from CAD models; however, the import 

process does not usually go smoothly, and there are many limitations on the geometry imported 

[Reinhart, 2006] [Ubbelohde, 1998] [Bryan, 2002] [De Groot, 2003]. Some programs can support 

complex geometries. For instance, Lumen Designer, AGi32, Ecotect, and Radiance allow the user 

to either create complex geometry or import from other modeling tools. However, the import 

process is not very smooth. Compared to professional modeling software, like the 3Ds Max and 

Rhino, the efficiency of modeling in these tools is still not very high, and they still have 

limitations on complex curved shapes [the author’s observation] (such as Delight, that only 

allows rectangular geometries [Reinhart, 2006]). Some programs, such as Dial-Europe, do not 

have model import and creation function at all, although it provides a list of predefined shapes 

for the users to choose to approximate their design.  

 

Because of the particular needs of lighting professionals, the tools in the second category usually 

focus on providing support for various quantitative calculations such as illuminance and 

luminance distribution, daylight factor distribution (figure 2.4), etc. Some of them also have the 

capability of producing qualitative photorealistic renderings (e. g., AGi32, Adeline, Ecotect, 

Lumen Designer, and Radiance). Although many programs in this category are not very 

user-friendly environment, they allow the user to define the material on a more detailed level (e. 

g., Radiance, AGi32, Adeline) than rendering tools in the first category. Therefore, lighting 

professionals, who have the particular requirement of defining materials for advanced 

daylighting systems in order to perform accurate examinations, can benefit from these 

functions. 

 

This geometry restriction and less user-friendly interface limit the creative process of the form 

development that has been considered as one of the essential activities in architectural design, 

and that partially explains why most designers refrain from them [Reinhart, 2006]. Designers 

usually do not have strong technical background related to lighting; therefore, they need to 

spend much more time learning about the meaning of quantitative data representations and how 

they link with the visual effect when using these programs.  

 

All of the features of those programs discussed above reveal reasons of why designers feel more 

comfortable using rendering tools, while lighting professionals are more likely to use detailed 

and precise lighting simulation tools. In order to understand their performances of being used as 

lighting simulation tools during the design process, we need take a further step to look at the 



 30 

following aspects in those programs from a designer’s standpoint: 1) whether these program are 

able to create successful data transmission between the program and the designer; 2) whether it 

can provide sufficient support for the design process to help the designer make better design 

decision related to daylighting. 

 

2.4.2 Available Data Representations 
 

In the first category, software like 3D Max, LightScape, V-Ray, FinalRender, Brazil, Maxwell, and 

Rhino (with flamingo as its rendering plug-in using ray-tracing and radiosity techniques) can 

provide highly detailed photorealistic renderings (figure 2.13). SketchUp is a modeling tool with 

less support for curved shapes that can also provide direct shadow rendering as its output (figure 

2.14). It needs to work with Art-Lantis, a rendering tool for SketchUp, to produce realistic 

renderings (figure 2.3). In terms of quantitative lighting analysis, only LightScape and 3D Max can 

provide some quantitative analysis (figure 2.12) in the form of false color renderings that 

represent illuminance and luminance, most programs simply focus on simulating the visual effect 

(figure 2.16).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

figure 2.13: Rendering by Maxwell.  
www.maxwellrender.com. 

figure 2.16: Available data output and their data visualization process of tools in the first category 
for designers. 

figure 2.14: SketchUp rendering for a housing design, 
2005. 
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In the second category of software, sufficient quantitative analysis functions are provided. The 

interior illuminance /luminance distribution and daylight factor distribution for the whole scene 

or for specific areas are the most common quantitative data offered by these programs [Reinhart, 

2006] [Ubbelohde, 1998] [Bryan, 2002]. Some programs such as DAYSIM and Adeline can also 

perform the daylight autonomy calculation. In addition, DAYSIM can also give a prediction of the 

annual electric lighting use based on the daylighting evaluation. Some programs are able to 

provide the user with quantitative analysis reports for each calculation (e. g., Lumen Designer, 

Daysim). Adeline is one of the few programs that can perform a visual comfort analysis 

calculated by the Radiance engine embedded.  

 

The quantitative data is usually presented as a table, a grid with numerical values, a graphic grid, 

or contour lines on the plan views and section views of the building. In Lumen Designer, AGi32, 

and Adeline, the illuminance values are displayed in a grid within the calculated areas with 

numerical values or contour lines (figure 2.17). In Ecotect, a more intuitive graphic grid with 

different colors representing different levels of illuminance/daylight factor value is used (figure 

2.4). Radiance also provides contour lines with renderings to display illuminance/luminance 

distribution (figure 2.18). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

figure 2.17: Illuminance values combining with the line drawing perspective in Lumen Designer (left) 
and daylight factor values presented in the axonometric view in AGi32 (right). 
www.lighting-technologies.com/Products/LumenDesigner/ 
www.agi32.com 

figure 2.18: Realistic rendering combining 
with contour lines to present illuminance 
distribution of the space, 2008 
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Programs like Ecotect, Lumen Designer, Adeline, AGi32, and Radiance can provide photorealistic 

renderings as the qualitative output. Other programs like SuperLite and Daysim do not have 

rendering functionality, but their output can be imported into Radiance for future rendering. 

Programs like Dial-Europe and DELight have no rendering function at all.  

 

Comparing these two groups of tools, it is obvious that the programs in the second category 

provide much more powerful support for quantitative output than the first category (figure 2.19). 

Some of the programs in this category also provide photorealistic renderings, while almost every 

program in the first category has this function.  However, there are many programs in the 

second category that only have quantitative output. The accuracy of the first category is higher 

than the second category, whereas the first category has a more user-friendly environment than 

the second category. 

 

2.4.3 Data Switch 
 
In the first category, although the accuracy of the qualitative and quantitative output (if 

available) from these programs is different, the way of displaying data is similar. All of them 

provide the visualization of the digital model with different display formats (e.g., wire frame, 

shaded). The user can obtain one image or an animation file after each rendering calculation. In 

3D Max and LightScape, the user is able to choose either realistic rendering or quantitative 

illuminance/luminance false color rendering as the output. All these programs will only present 

one rendering output (either realistic renderings or false color images if any), and there is no 

way to view them simultaneously. In short, for 3D Max and LightScape, viewing different data is 

in a sequential way, while other tools have no data representation switch available (figure 2.16).  

 

In the second category, for those tools that have both quantitative output and qualitative output 

(Ecotect, Lumen Designer, Adeline, AGi32, Radiance, etc) there are several ways to switch 

between displaying different types of data. Ecotect, Lumen Designer, Adeline and AGi32 are able 

to simultaneously present a grid with numerical values and line drawings like plan view, section 

view, and perspective view (figure 2.17). AGi32 has developed an application called “daylight 

figure 2.19: Available data output and their data visualization process of tools in the second 
category for lighting professionals. 
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study viewer” (figure 2.20) that can simultaneously present the renderings and false color 

images for multiple moments defined by the user in advance. Ecotect allows the user to preload 

renderings and false color images and view them easily by selecting corresponding tabs (figure 

2.21), and the user can view graphic grid in a perspective view (figure 2.4).  

 

The switch between quantitative data and the qualitative data are quick (if we consider line 

drawings as simple qualitative data). However, the line drawing format with almost no material 

and lighting effect, so it is insufficient to inform the designer the realistic visual effect of his 

design. In order to perform the data switch between quantitative data and qualitative 

photorealistic renderings, only AGi32 and Ecotect have provide some assistance, and the process 

in other programs is more or less the same as in programs in the first category. The user can only 

view either quantitative data or quantitative data each time in most programs (figure 2.19), 

unless the user decides to put the rendering windows next to the quantitative analysis result 

himself, and it is sometimes impossible in many programs.  

 

Therefore, in terms of the data switch between quantitative data and qualitative photorealistic 

renderings, the user has to view different data in sequence in both two categories. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

figure 2.20: “Daylight study viewer” in AGi32 which can present renderings and false color images 
simultaneously. 
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figure 2.21: “Radiance image viewer” in Ecotect which presents the rendering output and can 
allow user to manually load different types of renderings and present them in tab. 
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2.4.4 Daylighting Performance and Outside Environment in Data Output 
 
There are three factors of the outside environment that can affect inside daylighting 

performance. These are: sun position, sky conditions (weather), and physical surroundings. 

Programs like 3D Max, LightScape, Maxwell, V-Ray, FinalRender, and SketchUp in the first 

category have the ability to select different sun positions by defining the time and location (by 

cities in the program’s database, or by latitude and longitude). Except for SketchUp, these tools 

also allow the user to select different sky conditions, but the input parameters are rather simple. 

The surrounding environment totally depends on how much the user models it and assigns 

materials and in what level of detail. It is obvious the support of environmental settings in these 

programs is weak.  

 

Although they have simple outside environment parameters as optical input for qualitative 

rendering output, there is no related environmental information displayed in the final data 

output with the renderings (figure 2.22). Generally, the way for the designer to check with these 

outside parameters linking to the rendering’s daylighting performance needs to seek them in 

several definition panels or display all of these panels at the top of the program (this is a very 

inconvenient and cumbersome procedure, and is sometimes impossible) [based on the author’s 

experience]. In short, in most of the data output, the link between the daylighting performance 

and the outside environment (sun position, sky condition, and physical surroundings) is in a very 

non-intuitive way or completely absent. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

figure 2.22: Maxwell presents only one rendering output each time with no other information 
related to the outside lighting condition, so as many other tools in the first category for designers. 
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The built-in sky models defined in the second category are much more complete and follow the 

CIE standard. Most of the programs provide CIE clear sky (with or without sun), CIE standard 

overcast sky, and uniformly overcast sky (figure 2.23) (e. g., Ecotect, Lumen Designer, Adeline, 

Radiance, SuperLite, Dial-Europe) [Ubbelohde, 1998] [De Groot, 2003] [based on the author’s 

experience]. Most programs are able to let the user specify the sun position by defining the time 

and location information from either the latitude and longitude or the built-in map system. Some 

programs allow the user to define the condition of the physical surrounding. However, in terms of 

linking these environmental information with quantitative and qualitative data output, the 

situation in this category are more or less the same as in the first category (figure 2.21, 2.19). 

The user has to go back to the related setting interface to look at those parameters.  

 

In summary, the support of setting the outside environment in the calculation is better in the 

second category, but both types of programs lack the link between performance and the outside 

conditions in their data output. This important link becomes even weaker in the designer’s mind 

when he is trying to make decisions that need to take this connection into account.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

figure 2.23: The sky 
setting panel in Ecotect 
(top) and Lumen Designer 
(bottom).  
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2.4.5 Data Output and Time Variation 
 
All of the programs discussed in the first category have the same feature regarding their data 

output for daylighting performance and the period of time represented. The rendering output 

always represents individual in each calculation. They are capable of generating animations as 

one type of output that can cover a period of time; however, it is still composed of a series of 

calculations for each frame and is a time-consuming process. If the user wants to have an annual 

estimation of his design, he has to manually select several crucial moments to run simulations 

depending on his own lighting design experience, rule of thumb or available guidelines. The link 

between daylighting evaluation and the period of time is simply one rendering corresponding to 

one single moment (figure 2.16). The user would easily neglect some crucial moments and rely 

on performance presented in several individual moments to make the evaluation. It clearly 

cannot provide enough support for helping the designer make better design decisions that 

consider daylighting performance over the whole year. 

 

Some programs in the second category do provide some annual quantitative analysis. For 

example, Many programs like Ecotect and Adeline produces daylight factor distribution graph 

(figure 2.4), and DAYSIM provides daylighting autonomy calculation. But the daylight factor 

cannot truly be considered as an annual evaluation since it only takes into account overcast sky. 

The daylight autonomy can simply tell the user in what percentage his design receives enough 

light over the year, but it cannot really tell the user when the design receives enough light and 

when it does not.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

figure 2.24: Annual shadow analysis in Ecotect, image credit: Eleftheria Fasoulaki, SMArchS, Computation 
and Design 
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The “daylight study viewer” in AGi32 can present renderings and false color images for multiple 

moments (figure 2.20). Ecotect creates a new way of checking direct shadows for the entire year 

by presenting annual shadow ranges in the line drawing renderings (figure 2.24). Also, the user 

may actively change the time – either time of day or time of year, keeping the other fixed – and 

view on-the-fly in Ecotect’s 3D sun chart (figure 2.25). These features in Ecotect can be 

considered as a quick link between the simplified qualitative outputs (line drawing rendering) 

and the time variation. Nevertheless, the line drawing is not powerful enough to inform the user 

the visual effect of the space. In terms of the qualitative photorealistic renderings and time 

variation in the data output display, except for AGi32’s “daylight study viewer” other programs 

still do not support this link. In programs that provides photorealistic rendering function (e. g., 

Adeline, AGi32, Ecotect, Lumen Designer, Radiance), the user is only able to have one rendering 

output each time and manually collect them for further analysis.  

 

In these two categories, programs do not really provide powerful method to link their 

quantitative and qualitative output with the time variation, except for AGi32’s “daylight study 

viewer” (figure 2.16, 2.19). The user has to manually collect data for every individual moment 

and organize them together to perform annual performance analysis. 

 

 

 

 

figure 2.25: 3D sun chart in Ecotect  
 



 39 

2.4.6 Data Output and Design Goals 
 
The rendering tools in the first category provide rendered pictures of single moments as their 

primary output. The qualitative rendering output simply provides the prediction of the space’s 

visual effect; thus, there is no information embedded that can directly indicate if the visual 

effect reaches the designer’s initial goals. Creating the link between the qualitative data and 

designer’s design goals has to be done by himself in his mind based upon experience or available 

guidelines.  In other words, the link between data and initial design goals does not exist in 

programs in this group. However, providing such a link in the lighting simulation tool between the 

data output and the design goals is greatly helpful for the designer to accelerate the speed of 

analyzing the data and to avoid possible misunderstanding of the data that might affect future 

decision making as an embedded professional lighting assistant. 

 

In the second category, quantitative output and qualitative renderings are the major output. 

Compared to the first category, some programs allow the designer to identify the function of the 

space (e.g., DAYSIM, Dial-Europe) and perform analysis based on the predetermined function. 

Although different spaces have their own particular functions, function can not be directly 

considered as a design goal in that it simply refers to the people’s general activities in this space, 

and it does not concern of the difference between projects and aesthetic considerations. Many 

other programs simply not have this function at all, and the user needs to analysis the data 

himself to determine whether the space’s performance reaches his design goals. Therefore, the 

user himself is still responsible for evaluating the data output from these programs to see if the 

lighting performance reaches his initial design goals in terms of quantitative aspect and 

qualitative aspect. The link between the output and the design goal is missing in the data 

display.  

 

2.4.7 Comparison Summary 
 
From the comparison of the existing lighting simulation programs, similar features of the data 

transfer between the program and the user can be found in the first category referring to 

designers and the second category referring to lighting professionals. Most rendering tools in the 

first category have the qualitative photorealistic rendering as the primary data output format. 

The way they present renderings is one image each time. Definition of the parameters related to 

the outside lighting environment such as the sun position and the sky condition is allowed in most 

of the programs, but related information is not included in their output display. On the other 

hand, the simulation tools used more frequently by lighting professionals have sufficient 

quantitative output and qualitative photorealistic rendering output with high accuracy. There 

are some combinations of these two types of data representations in their data display; however, 

the overall data transmission between programs and users occurs in a sequential way and does 

not allow the user to quickly switch between different types of data. Environment settings are 

better supported with high accuracy in the second category; but the output display still does not 
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emphasize the link between the performance and the relevant outside lighting environment as in 

the first category. Neither group has an efficient data visualization process that can truly 

efficiently inform and support the daylighting design (figure 2.11, 2.16, 2.19).  
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Chapter 3  

Thesis Research Method 
 

 

3.1  Objectives of Thesis 
 

The inefficient data visualization process between programs and designers in existing daylighting 

simulation programs discussed in the previous chapter greatly interrupts the design process and 

does not truly support the designer to understand daylighting performance comprehensively and 

make appropriate design improvement, which can meet the lighting requirement and adapt to 

the local weather condition and surroundings over the year at the same time.  

 

Therefore, the thesis decides to create a more efficient data visualization method2 that 

addresses all these issues simultaneously. It aims to simultaneously present quantitative graphs 

with qualitative realistic renderings and provide the user easy access to data over the whole year; 

meanwhile it closely links the daylighting performance displayed in these quantitative and 

qualitative data with corresponding outside environmental information, such as the sun position, 

sky condition, and physical surroundings. It is able to assist the designer to comprehensively 

interpret and evaluate these various types of data while minimizing his effort of collecting and 

searching data so that the design can concentrate on his design activities in a smooth way.  

 

3.2  Thesis Approach 
 
This data visualization method uses the existing research work developed by a PhD student, Sian 

A Kleindienst at the Building Technology Program at MIT Department of Architecture, as one data 

output. This temporal map3 (figure 3.1) [Kleindienst, 2008] is a new form of data that shows 

daylighting performance of the AOI (the area of interest, it is an area which the user is interested 

in getting detailed quantitative information) over the whole year and takes into account weather 

variation. Instead of simply indicating how much light the space gets, it is a goal based metric 

and presents how closely these design goals are met over the whole year. Four types of 

goal-based dynamic metrics are currently under developing to analyze the space’s performance 

from the four critical aspects; these are whether the space gets enough light (illuminance based), 

whether the space has glare issues (luminance based), whether the space gets too much solar 

heat gain, and whether the light distribution is satisfying [Andersen, 2008]. All these attributes 

meets the need  of the  data visualization during  the design process  in terms of daylighting,  
                                                        
2 This data visualization method is part of the broader LightSolve project which is currently under developing at MIT 
Daylighting Lab and collaborating with RPI Department of Computer Science. 
 
3 More detailed information about the temporal map is introduced in the following paper: 
Sian Kleindienst, Magali Bodart, Marilyne Andersen. ‘Graphical Representation of Climate-Based Daylight Performance to 
Support Architectural Design’. Submitted to Leukos, 2008 
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figure 3.1: The temporal map-the x-axis represents days of the year, the y-axis represents hours of the 
day. The red color represents the tested area reaches the designer’s initial design goal set in advance; 
the blue color represents the space fails to achieve the goal. 
 

figure 3.2: In the calculation of the temporal map, it splits daylight hours into 56 moments which have 
similar sun position and weather conditions. Each moment can be linked to particular point on the 
temporal map, qualitative renderings, and corresponding outside lighting conditions. 
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therefore, the author decides to choose this metric as the major quantitative data output in the 

proposed data visualization method.  

 

Since an original method [Kleindienst, 2008] is developed to generate temporal maps by 

categorizing the weather into four sky types as clear, clear turbid (polluted), intermediate, and 

overcast (ASRC-CIE sky model by Perez) and splitting the daylight hours over the year into 7 x 8 

periods that have similar sun position and weather conditions (figure 3.2). The author intends to 

integrate realistic renderings for these 56 moments with the temporal map (figure 3.2), hence, 

the author decides to use the render engine [Cutler, 2008] currently being developed by RPI 

Department of Computer Science as a way of quickly producing accurate renderings for the 

proposed method (the engine is yet not ready to use, so all the renderings in this thesis were 

produced in 3Ds Max and Radiance). 

 

The purpose of the proposed data visualization method is to simultaneously present quantitative 

and qualitative data and dynamically link photorealistic renderings for the 7 x 8 periods with the 

temporal map over the whole year. In addition, it intends to integrate the environmental 

information such as the sun angles, sky conditions, and building’s physical surroundings 

corresponding to these 56 moments. As a result, the designer is able to understand the 

daylighting performance more comprehensively, and find out advantages of his design and 

potential weakness while aware of the influence of the outside circumstances in the 

performance; therefore, the platform will be able to increase the chance for the designer to 

take the advantage of the natural environment and appropriately adapt his design to the 

particular location. 
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Chapter 4 

Design and Development of an Interactive Data 

Visualization Platform 
 
 
4.1  Concept of Proposed Platform 
 
This data visualization platform aims to link the annual climate-based temporal map dynamically 

with the renderings for all AOIs, related sky dome views, and local surroundings. The designer is 

able to browse through the temporal map, and all the renderings and outside environmental 

information are updated simultaneously (figure 4.1). In addition, it is able to present analysis 

results for several areas that the designer is interested in, instead of simply displaying results for 

one single area per time. Furthermore, it allows the designer to view the daylighting 

performance from a climate-based aspect or any weather condition (clear, clear-turbid, 

intermediate, and overcast) that he is interested in. Thus, the designer can check the 

quantitative and qualitative data simultaneously and easily access the performance for any AOI 

at any moment over the year while knowing corresponding outside environmental variations. 

 

The data visualization platform was developed using the Java 6 platform. The size of the 

platform is 1020 pixel x 750 pixel, which is designed for most screen sizes (1024 pixel x 768 pixel) 

currently used. The platform contains two basic components: the data exploration panel on the 

right and the control panel on the left (figure 4.2).  

 

The data exploration panel uses the Java desktop pane so that it can present analysis results for 

several different design projects in internal windows (figure 4.3). The default layout (figure 4.2) 

of the data exploration internal window allows the user to view analysis results for at most 3 

different areas that he is interested in. It contains quantitative temporal maps, the rendering for 

the sky dome and physical surroundings, the elevation/plan view with sun ray, and the actual 

digital model. 
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figure 4.1: In the proposed data visualization method, when the user is browsing the temporal map, the 
rendering and corresponding outside lighting condition will be updated simultaneously. 
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figure 4.2: The complete view of the data visualization platform. 
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figure 4.3: The platform can allow the user load different design projects simultaneously. 
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4.2  Interactive Data Browsing 
 

When the designer is browsing the temporal map, the corresponding rendering window 

automatically updates its rendering with time and date information for the representative 

moments with corresponding to the current cursor position (figure 4.4). In the default layout 

where three temporal maps are presented at the same time, the cursor browsing on any 

temporal map will drive the other two cursors to move in the same manner, and the other two 

AOI renderings will update as well. By default, the AOI rendering is produced under the dominant 

sky condition for that representative moment. The cursor movement on the temporal map also 

triggers all the corresponding outside environmental information (sky dome, surrounding, and 

sun rays) and the elevation renderings (figure 4.4).  

 

At the same time, the “time info” panel and “sky info” panel (figure 4.5) on the left control 

panel automatically respond to this interactive browsing of the year on the temporal map. The 

“time info” panel always presents the solar time for the current cursor position on the temporal 

map. The user can switch to the legal time by pressing “change to legal time” button. When the 

default “climate-based” option is turned on, the sky info panel will show the dominant sky 

condition and its occurrence (in percent of time) that associates to the current period. The user 

can also turn on the “manual selection” option and define the sky condition from the combo box 

(figure 4.5) that he prefers to look at. In this case, the sky info panel will always present the 

occurrence percentage of the chosen sky type, and AOI renderings will be updated as renderings 

corresponding to this change. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
figure 4.4: Dynamic link between daylighting performance and outside lighting environment. 
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figure 4.4: Dynamic link between daylighting performance and outside lighting environment. 
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By dynamically linking the quantitative goal-based temporal map with photorealistic rendering 

for corresponding AOI, the designer can better understand how daylighting performance varies 

over time from both aesthetic and technical perspectives and whether the space reaches his 

initial design goal. More importantly, the interactive browsing integrates the local weather 

variation and outside conditions into the daylighting evaluation in an intuitive way.  Thus, the 

designer is aware of the potential impact of the outside environment on the space’s daylighting 

performance and can seek possible design solutions that fit the initial goal and the local 

environment. 

 

4.3  Additional Simulation Methods 
 

The data visualization platform’s interactive browsing of the temporal map creates a quick 

switch from quantitative data to qualitative data, and lets the user easily access the daylighting 

performance over the whole year based on the actual climate variation instead of a set of static 

moments under fixed weather condition. In addition, several functions have been embedded in 

this platform in order to enhance the link between quantitative and qualitative data - i.e. 

between the performance and the influence of the outside environment.  The overall effect is 

to provide a better informed design process.  

 

4.3.1  Annual Image Map 
 
In order to help the user understand better the innovative goal-based temporal map, a 

qualitative translation (figure 4.7) called the Annual Image Map has been developed. The 

platform displays a diagram (figure 4.6) that is composed of 7 x 8 renderings corresponding to 

the 7 x 8 periods of similar moments in the temporal map, by pressing the “Annual Image Map” 

button on the Analysis panel (figure 4.8),. By default, each rendering will show the dominant sky 

type for the period it represents. The annual image map can be considered as a “visual temporal  

figure 4.5: “Time Info” panel and “Sky Info” panel. 
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figure 4.6: Annual Image Map working as a “visual version temporal map”. 
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map” to visualize the daylighting performance displayed on the temporal map for each period  

 

 

 

 

 

 

 

 

 

and represent the performance variation over time in terms of visual effects. Annual False Color 

Diagrams for illuminance and luminance will also be available so as to translate the goal-based 

performance information in the temporal map or the visual information in the annual image map 

to variations of light levels over the year. The user can also easily access other annual image 

diagrams or annual false color diagrams by pressing the forward and back buttons on the 

platform (figure 4.6). 

 

4.3.2  Simulation over Time and Date 
 
The features “Simulate Whole Day” and “Simulate Whole Year” in the analysis panel (figure 4.8) 

are able to produce an “animation” of a day passing or of a given same time over the whole year 

(figure 4.9). Renderings will be displayed in a time sequence and overlapped using “fade-in” and 

“fade-out” effects in between. The cursor on the temporal maps will move vertically over time 

at a given date or horizontally over dates at a given time. The environmental data (sky dome 

view, surroundings, and elevation with sun ray) will be animated in the same way (i.e., as a 

response to temporal map browsing or time/date simulations).  

 

figure 4.7: Translation between the quantitative temporal map and qualitative annual image map. 

figure 4.8: Analysis control panel. 
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By default, the simulation is climate-based with renderings presenting the dominant sky 

condition for their representative moments. The user is also able to customize the sky type in 

the sky info panel (figure 4.5) and run simulations under four different weather conditions (clear, 

clear-turbid, intermediate, and overcast). This function helps the user to experience the range 

of daylighting conditions as a sequence over the whole year and be aware of the impact of the 

variation relating to the solar position, the sky condition, and the surroundings. 

 

4.3.3 Comparison Panel 
 
If the user finds some crucial moments for his design and would like to study the daylighting 

performance on a comparative basis while keeping track of design improvements for these 

moments, he can use the gallery panel (figure 4.10) in the left control panel to save any moment 

he is interested in during the interactive exploration of the temporal map and then load 

renderings of saved moments in the comparison panel (figure 4.11) for further analysis.  

 

figure 4.9: Translation between the quantitative temporal map to qualitative realistic renderings. 

figure 4.10: Gallery Panel. 
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The moment selecting and saving process is very straightforward: when browsing the temporal 

map, the user simply needs to click on it at any position that represents his interested moment 

and freeze the cursor, then press “save” in the gallery panel to save the time information, the 

corresponding view for this AOI, and the dominant sky type. The cursor will be unfrozen by 

another click, and the user can continue his exploration. The whole interactive browsing will not 

be interrupted much by this moment saving process.  

 

The comparison of renderings in the comparison panel is very flexible. After specifying which 

design iteration the rendering belongs to, the user can determine its representative moment 

either from the gallery or by doing a manual selection. The default rendering will present the 

saved view under the dominant sky type, though the user can also easily override the selected 

camera and sky information (figure 4.12) to check the visual effect for any other views and 

weather conditions. It provides a convenient platform to keep track of the design improvement 

during the whole design process for certain AOIs and allow the user to study the space’s 

performance for different AOIs in the same design stage. 

 
 
 
 
 
 
 
 
 
 
 

figure 4.11: Using comparison panel to conveniently compare different design solutions and keep track of 
the design improvement during the design process. 
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figure 4.12: Comparison Panel. 
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Chapter 5  

Platform Validations  
 

 

5.1 Case Study of Current Tools 
 

In order to have a better idea of how these tools work with the designer and how the way they 

transfer data influences the design process, we have performed two case studies based on 

existing buildings using tools from the two categories discussed before. Since within each 

category, programs have more or less similar features in terms of the available data output and 

data display, the author decided to choose two programs to do the case studies: one from the 

first category, the other from the second category. The options offered in terms of data 

representations, their popularity within the architectural design field and their user 

environment friendliness are all taken into account in the selection process.  

 

As a famous rendering and modeling tool that has been widely used in the architectural field for 

a long time, 3D Max 8.0 was selected as the tool to represent the first category to do the case 

studies. Ecotect 5.5 was selected from the second category because it has sufficient quantitative 

analysis ability, a more user-friendly environment compared to other tools in its group, accurate 

qualitative photorealistic rendering ability provided by the embedded Radiance rendering engine, 

and its recent popularity in the architectural field.  

 

Since the case studies focus on how the data transmission process between the program and the 

designer affects daylighting design, designs that have more specific daylighting requirements 

related to its functionality were selected, and buildings like museums and offices were seemed  

very good examples for this validation, with different but strict lighting requirements.  

 

The Yale center for British Art designed by Louis Kahn (figure 5.1) was chosen as the museum 

case study. It requires a very evenly distributed illuminance level that has to be maintained 

within a range (e. g., 100lux to 200lux on walls for paintings) to provide enough lighting for 

viewing during the day and protect paintings from being damaged by too much heat gain from 

the light. The lighting environment should also provide good color rendering for all the exhibits. 

Therefore, daylight is a good choice for museum lighting in that it is rich during the day and it 

can provide very good color rendering compared to other lighting sources. Many innovative 

lighting components, such as the metal louver systems for the skylight (figure 5.2) and the 

wooden blinds used for the sidelight (figure 5.3), have been developed into to take the 

advantage of the natural light. In the case study, the exhibition room on the top floor illuminated 

by the skylight is selected as the tested area in 3D Max and Ecotect. 
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figure 5.1: Yale Center for British Art by 
Louis Kahn at New Haven, CT. 
Center courtyard [Prown, 1977] 

figure 5.2: Metal louver system created by 
Louis Kahn for Yale Center for British Art. 
[Prown, 1977] 

figure 5.3: Wood blind system created by 
Louis Kahn to translate direct sunlight to 
diffused light [Büttiker, 1994]. 
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The Stata Center at MIT (figure 5.4), a campus building with many irregular and curved shapes, 

was selected for the office case study. It also has specific lighting requirements. It has to provide 

the user inside the space enough light to read, write, perform precise tasks, etc. In addition, it 

needs to consider the visual comfort that can affect people’s work, such as glare issues and high 

luminance contrasts between the interior space and the outside environment. Although electric 

light can easily provide an acceptable lighting environment according to the considerations 

mentioned above, using natural light is still desirable because of the energy saving, health 

benefits, and aesthetic consideration. The office room located on the third floor with south east 

glazing is the tested area. 

 

5.1.1  Digital Model Preparation 
 

The main idea of this case study is to see in which way existing tools present the qualitative and 

quantitative data and whether the information transfer process is efficient and helpful for design 

decision making. Thus, the accuracy of the modeling, materials, and qualitative and quantitative 

calculation are not the main focus here.  

 

1) Yale Center for British Art 
 
The digital model was constructed in SketchUp based on the plans and sections (figure 5.5 - 5.7) 

found in “Louis Kahn Yale Center for British Art” by Bruno J. Hubert and “Louis I. Kahn Light and 

Space” by Urs Büttiker. The model was then imported into 3Ds Max 8.0 and Ecotect 5.5 for 

further analysis.  

 

The materials in this scene include white walls, wooden walls, concrete walls facing the interior 

courtyard and concrete ceiling structures, grey carpeting, and glazing used for the skylight. In 

3Ds Max 8.0, except for the glazing, all material assignments were based on the built-in 

architecture material library. The glazing material assignment was based on the built-in Raytrace  

figure 5.4: Stata Center at MIT, Cambridge, MA. 
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figure 5.5: Yale Center for British 
Art plans [Prown, 1977]: 
 
 
 
 
 
 
 
 
 
 
Second floor 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Third floor 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Roof 
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figure 5.6: Section of Yale 
Center for British Art 
[Prown, 1997]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
figure 5.7: Interior gallery 
room. 

figure 5.8: Digital model built in SketchUp for Yale Center for British Art and the chosen viewport (left). 
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Material. The settings for each material are shown in Appendices 1. The camera is placed in the 

corridor close to the window facing to the interior courtyard (figure 5.8). In Ecotect, the camera 

setting is similar to that of 3D Max 8.0. Most of the materials come directly from the built-in 

library in Ecotect 5.5. The material setting is shown in Appendices 2. 

 

2) Stata Center at MIT campus 
 
The digital model (figure 5.9) for Stata Center Room 32-376 (figure 5.10-12) is constructed in 

SketchUp based on the original Stata Center 3rd floor CAD model provided by the research team 

in the RVSN group at MIT (Robotics, Vision, and Sensor Networks Group, 

http://rvsn.csail.mit.edu) who are currently working on the project “Ground-Truth, As-Built 3D 

CAD Model of Stata Center”. The digital model for this case study includes the tested office area 

and the surroundings close by (figure 5.9).  

 

The materials in this scene include white interior walls, carpet floor, plywood panels used for 

dividing the working spaces, the plywood desk, the desktop, exterior specular metal surface 

facing to the office’s window, the glazing of the window in the tested office and the exterior 

adjacent building, and the rough metal window frame. As for material assignments for the Stata 

Center Room 32-376 in 3D Max 8.0, all materials come from the built-in architectural material 

library except for the glazing that is the built-in raytrace material. In Ecotect 5.5, materials 

directly come from the built-in library. The material settings for Stata Center in 3D Max 8.0 and 

Ecotect 5.5 are shown in Appendices 3 and Appendices 4. The camera points toward the 

south-facing glazing (figure 5.9). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

figure 5.9: Digital model built in SketchUp for Stata Center room 32-376. 
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figure 5.10: Third floor of 
Stata Center [Joyce, 2004]. 

figure 5.11: Stata center 
axonometric view from the East 
[Joyce, 2004]. 

figure 5.12: Stata center 
elevation from Vassar Street 
[Joyce, 2004]. 
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5.1.2  Daylighting Analysis in 3Ds Max and Ecotect 
 

In 3Ds Max 8.0, the user is able to get qualitative photorealistic renderings and quantitative 

illuminance and luminance false color renderings. Ecotect 5.5 provides more types of 

quantitative analysis, accurate renderings by Radiance engine, 3D sun chart for sun position and 

direct shadow analysis. In this case study, the author has performed all the available qualitative 

and quantitative analysis in 3Ds Max 8.0 and Ecotect 5.5 to make a comprehensive understanding 

of their data output and data transmission between the program and the designer.  

 

a) Data switch 
 
The author selected the advanced lighting – radiosity render engine to produce renderings in 3Ds 

Max. The radiosity calculation must first be performed, and then the user is able to choose a 

viewing angle for the generation of either photorealistic or false color renderings. The final 

rendering is displayed in a simple jump-out frame. In 3Ds Max 8.0, the process of generating 

qualitative realistic renderings and false color renderings proceeds is in sequence (figure 5.13). 

 

Ecotect 5.5 allows the user to select any area he is interested in to perform quantitative daylight 

factor and daylighting level (illuminance) distribution analyses. In each calculation, it calculates 

one analysis grid. However, if the user wants to perform several grid analyses, he has to relocate 

the current grid and perform calculation again. The calculation result of the previous grid is lost 

and can never be viewed unless the user has saved an eco file for it. Thus, viewing quantitative 

grid analysis results for different areas within one design is a sequential and unrepeatable 

process in Ecotect (figure 5.13). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

figure 5.13: Data visualization 
process of 3Ds Max 8.0 and 
Ecotect 5.5. 
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Ecotect can provide Radiance renderings that produce qualitative photorealistic output and 

quantitative false color outputs for illuminance and luminance. The Radiance rendering is 

displayed in Square One’s Radiance image viewer (figure 2.21). This image viewer allows the user 

to load different types of data and layouts them in tab. In this case, the process of viewing 

realistic renderings and false color renderings can almost be considered simultaneous (figure 

5.13). Because the user has to manually perform calculations for each rendering in advance and 

load the data himself, therefore, the process of viewing different types of data in Ecotect 5.5 

still needs too much extra effort of the designer, and would interrupt the design process.  

 

b) data output time variation 
 
3Ds Max 8.0 provides the qualitative photorealistic rendering and quantitative false color 

rendering for one single moment in time (figure 5.13). In Ecotect 5.5, except for the daylight 

factor and daylighting level (illuminance) grid analysis, the qualitative photorealistic rendering 

and quantitative false color/contour line rendering is also for one single moment (figure 5.13).  

 

In addition, neither 3Ds Max 8.0 nor Ecotect 5.5 provides a guide or recommendation as to what 

kind of time the designer may need to look at. In this case, the designer may pick times randomly, 

based on his own experience, or from other daylighting-related handbooks. As discussed in the 

previous chapter, understanding the daylighting performance over the year is crucial for the 

designer to find out possible problems and make appropriate daylighting design improvements. 

In order to get an overall idea of how the space interacts with the daylight, the user needs to 

perform the daylighting analysis for several different moments over the year instead of simply 

looking at one single moment. In this case, the author selects 9 moments throughout the year 

based on the daylighting knowledge gained from the MIT 4.430 Daylighting Course. They are as 

shown in the table 5.1 below:  

 

March 21st/September 21st 9:00am 12:00pm 15:00pm 

June 21st 9:00am 12:00pm 15:00pm 

December 21st 9:00am 12:00pm 15:00pm 

 

table 5.1 
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3Ds Max 8.0: Photorealistic renderings for Yale Center for British Art (figure 5.14): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3Ds Max 8.0: Illuminance false color renderings for Yale Center for British Art (figure 5.15): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Illuminance false 
color renderings: 
0-1000 lux 
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Ecotect 5.5: Daylight factor calculations for Yale Center for British Art (figure 5.16): 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ecotect 5.5: Sun Position Analysis for Yale Center for British Art (figure 5.17): 
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Ecotect 5.5: Sun Position Analysis for Yale Center for British Art (figure 5.17): 
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Ecotect 5.5: Photorealistic renderings for Yale Center for British Art (figure 5.18): 
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Ecotect 5.5: Illuminance false color renderings for Yale Center for British Art (figure 5.19): 
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3Ds Max 8.0: Photorealistic renderings for Stata Center Room 32-376 (figure 5.20): 
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3Ds Max 8.0: Illuminance and luminance false color renderings for Stata Center (figure 5.21): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Illuminance false 
color renderings: 
0-3000 lux 

Luminance false color 
renderings: 
0-1000 cd/m^2 



 72 

Ecotect 5.5: Daylight factor calculations for Stata Center Room 32-376 (figure 5.22): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ecotect 5.5: Sun Position Analysis for Stata Center Room 32-376 (figure 5.23): 
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Ecotect 5.5: Photorealistic renderings for Stata Center Room 32-376 (figure 5.23): 
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Ecotect 5.5: Illuminance and luminance false color renderings for Stata Center Room 32-376 

(figure 5.24): 
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c) linking between data output and the outside environment 
 
In 3Ds Max 8.0’s data output display, there is no real link between the renderings and the sky 

condition and the physical surrounding. Ecotect 5.5 provides a very unique dynamic three 

dimensional sun chart (figure 5.13) to display the sun position at different moments and its 

movement over time. However, using this chart prevents the user from examining the interior 

space (figure 5.17, 5.23). In addition, no sky condition information is displayed with the 

rendering output. As in 3Ds Max, Ecotect has no real link between the daylighting performance 

and the sky condition and the surroundings (figure 5.11). 

 

5.1.3  Existing Problems 
 

As a typical modeling and rendering tool, 3D Max 8.0 does not have powerful and accurate 

quantitative daylighting analysis capabilities and the way of simultaneously presenting realistic 

renderings and false color images to assist the designer analyze them more efficiently. But for 

museum and office design, such as the Yale center for British art and the Stata center, 

simultaneously informed by the qualitative data and quantitative data simultaneously are in fact 

very important for the designer, and it is also important to understand the daylighting 

performance over the year to make sure the design has an acceptable annual performance.  

 

Compared to 3D Max 8.0, Ecotect 5.5 has much powerful and more accurate quantitative analysis 

ability and qualitative photorealistic rendering. Although its Radiance image viewer (figure 2.21) 

provides a quick way to let the user check photorealistic renderings and false color renderings 

quickly, the designer has to put so much effort in loading all the data in advance, and it is 

apparently not a good way to view all these types of data for different moments without being 

easily confused by numbers of tabs. 

 

In terms of linking the performance and outside lighting condition, both 3Ds Max 8.0 and Ecotect 

5.5 do not really pay much attention. Although the sun ray displayed in 3Ds Max’s modeling 

viewports shows the information of the sun position, it does not connect with individual 

renderings. Hence, for the designer’s of the project like the Yale Center for British Art, where 

the architect most focus on designing innovative lighting components that effectively utilize 

direct sunlight at different times (figure 5.25). Ecotect has better performance in terms of 

analyzing direct sunlight, so it can assist designer to perform quick direct sunlight penetration 

analysis over the year. But it is difficult to dynamically linking this information with the sun 

movement, because there is no way to check the interior sun penetration while stilling having 

the 3D sun chart (figure 5.17, 5.23). 

 

As for integrating weather variation into quantitative and qualitative data, they both do not 

support it. From analyzing data obtained from 3Ds Max, Frank Gehry may never notice that some 

spaces in the Stata Center have totally different daylighting behavior under clear skies and 
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overcast skies, and this variation may cause uncomfortable experience for the space user (it will 

be discussed in the next validation). Ecotect has much better support of the sky condition 

definition; however, it still does not include the sky information with the analysis output, and the 

user cannot perform calculations based on the weather data of the site. Due to the fact that 

weather and sky conditions have a great impact on the daylighting performance, the lack of this 

important link in 3D Max and Ecotect data display platform brings great difficulty for the 

designer in linking the daylighting performance displayed and its related weather condition and 

adapt his design to the local weather variation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5.1.4  Data Visualization Comparison 
 

In the case study for Stata Center Room 32-376, using either the rendering in 3Ds Max 8.0 or 

Ecotect 5.5 (figure 5.20, 5.23), it is not very straightforward to predict the potential glare 

problem on the computer screen simply by the rendering if the designer himself has no or little 

daylighting design experience. Even if he has enough knowledge to be aware of this problem, he 

has to check the false color renderings to find out the potential glare problem. Compared to 

these tools, the proposed data visualization platform can allow the designer to check the visual 

effect of the space while still noticing whether its performance from the temporal map (figure 

4.4). 

 

In existing tools, the author had to use her own daylighting knowledge to pick 9 moments to test 

the space performance over the whole year. For non professionals, it may cause serious problem 

for design decision-making if one relies only on the daylighting evaluations of arbitrary moments. 

However, in the proposed data visualization platform, the designer does not need to pick any 

moment in advance; it directly integrates information for the 56 moments over the whole year 

figure 5.25: Shadow analysis done by Louis Kahn for Yale Center for British Art 
[Joyce, 1977] 
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and allows the designer to access different moments easily using interactive browsing (figure 

4.4). It avoids the potential situation that non daylighting professionals may neglect annual 

performance and only pick a few random moments for the daylighting analysis. 

 

The author was also aware of the influence of weather in the interior performance, so every sky 

type is been chosen to perform tests for all 9 moments in Ecotect (3Ds Max 8.0 does not have real 

support for defining different sky conditions). From photorealistic and false color renderings 

(figure 5.20-5.24), which were viewed in sequence in these tools, the author found out that the 

glare issue caused by direct sunlight only happens under clear sky during the morning from Spring 

to Fall. However, there is no information which shows the variation of the local weather (Boston), 

it is hard to tell whether the glare issue will really happen at that period, because the weather 

might be cloudy for most of the time. There is also a problem of insufficient light for precise 

tasks (the space user needs to work on the robot very often) when there is no direct sunlight 

penetration displayed in renderings or when the sky is cloudy (figure 5.20-5.24). For the same 

reason, the author was not sure whether the possible overcast sky would bring more moments 

with insufficient light when the direct sunlight is supposed to come in.  

 

Compared to these tools, the concern of potential environmental impact on the daylighting 

performance is already addressed in the proposed data platform. When the user is interactively 

browsing the temporal maps and informed by dynamically updated renderings, the 

corresponding dominant sky condition for that particular location is also displayed in the left 

control panel (figure 4.5) as a default. Besides this, the sky information is visualized as the sky 

dome and 360 degree surrounding renderings at the bottom of the platform. The user no longer 

needs to worry about how his design interacts with the real situation. By using the sky type 

manual selection function (figure 4.5), the user will not only be aware about the dominant 

weather condition but also the probabilities of other possible sky types at that moment and the 

impact of the surroundings. It can be greatly helpful when performing daylighting evaluation for 

space like Stata Center Room 32-376 where the sky condition and exterior space plays an 

important role of the interior daylighting performance.  

 

In both 3D Max 8.0 and Ecotect 5.5, the quantitative and qualitative data are often displayed 

separately in a sequential way (figure 5.13). It can easily cause the designer to unconsciously 

focus on either the importance of achieving desired lighting level or the importance of nice 

visual effect.  Both technical and aesthetic considerations are crucial for daylighting design, 

and the inefficient data transfer process in 3D Max and Ecotect makes it difficult to 

simultaneously evaluate interior space performance and exterior environmental variation. It is 

nearly impossible to realize some potential problems discovered here if the designer has little to 

no daylighting experience, since he may not choose the correct moments for evaluation and 

neglect the impact of the outside environment. 

 

Instead of simply displaying data in most existing daylighting simulation tools, the LightSolve 
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data visualization platform proposed in this thesis places more emphasis upon how to present 

and deliver quantitative and qualitative data to the user so that the user can comprehensively 

understand all the information and be aware of the potential relationship among daylighting 

performance, the space design, and the outside environment. It closely links quantitative 

temporal maps and qualitative renderings, with the purpose of visually aiding the user in better 

understanding the quantitative output. More importantly, the natural environmental impact on 

the building’s performance is emphasized greatly in this platform; therefore, the user is able to 

focus on refining their design while still taking into account the environmental influence on it in 

a convenient way. 

 

 

5.2  Demo Museum Design informed by Proposed Data Visualization Method 
 
The proposed data visualization platform for LightSolve aims to create a successful data 

transmission between the program and the designer so as to inform the design process in a more 

efficient and intuitive way and support the designer in making appropriate design improvements. 

A demo museum design is developed in SketchUp and analyzed with this platform using the 

LightSolve algorithm to test whether the proposed platform reaches its objective. Since the 

render engine which will be used for generating temporal maps and renderings is now being 

developed at the Department of Computer Science at Rensselaer Polytechnic Institute in New 

York, leading by Professor Barbara Cutler, all the data presented in this validation test are 

currently pre-computed with Radiance and 3D Max; the temporal map is produced with Radiance, 

and the rendering is produced with 3D Max 8.0. 

 
5.2.1  Initial Design 
 
Concept: 
 
The hypothetical location of this demo museum design is in Boston. The basic concept is to use 

natural light to illuminate the museum’s interior space and provide appropriate lighting level for 

paintings and sculptures. The author decided to use skylight as the major lighting resource with 

few side openings so as to obtain enough natural light directly from the unobstructed sky and 

maximize the area of the exhibition walls for paintings.  

 

The exhibition area is composed of four similar rectangular elements with center skylights and 

side skylights adjacent to the walls (figure 5.26-5.27). Based on personal experience, the author 

thought this skylight arrangement is able to provide pleasant diffused natural light for the 

paintings on the interior walls. These four gallery rooms are connected by two fully open 

courtyards and two partial open corridors (figure 5.26-5.27). The corridors (figure 5.28) are 

selected as exhibition areas for sculptures, because the author thought that the daily motion of 

the Sun from east to west can bring much more direct sunlight to this area than the other two 
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courtyards (figure 5.29). Each gallery room has one narrow side window, facing to the open 

courtyards (figure 5.29) for the purpose of view and maximizing the exhibition area on the wall. 

A wooden arbor (figure 5.30) stands at the center of these corridors and courtyards and interacts 

with the direct sunlight to form diverse shadow effects and make the space more interesting. 

Four other similar arbors are set at each entrance of the museum; their purpose is to visually 

break the solid exterior walls with the vacant wooden structure (figure 5.29-5.30) and its 

shadows and create a rhythm of the elevation views.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

figure 5.26: Demo Museum - Axonometric view from the East South (left) and 
plan view (right). 

figure 5.27: Demo museum sections. 
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A digital model for this initial design was constructed in the SketchUp. Hypothetical surroundings 

(figure 5.31) were also constructed based on a real case of a campus area. In order to test 

whether this design was able to reach its initial goals, the author decided to use LightSolve to 

run a daylighting evaluation. Three AOIs (table 5.2) have been selected and assigned different 

design goals to perform the analysis: 

 

AOI_1 open corridor with skylight 

 GOAL:  get direct sunlight for sculptures 

AOI_2 exhibition work planes 

 GOAL:  get enough light for the exhibited things 

AOI_3 North and East walls for paintings in the North East gallery room 

 GOAL: 1. get enough light for paintings 

2. avoid direct sunlight hit onto paintings 

3. avoid too much light on paintings (< 200 lux) 

figure 5.28: Open corridor. figure 5.29: Inner courtyards 

figure 5.30: South elevation. 
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figure 5.31: Hypothetic surroundings. 

figure 5.32: Chosen AOIs for 
daylighting analysis. 
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As mentioned at the beginning of this chapter, the analysis results displayed in the proposed data 

visualization platform were currently pre-computed. Temporal maps were produced in Radiance 

by the PhD student Siân A Kleindienst in Building Technology Program at MIT Department of 

Architecture. Renderings were generated in 3D Max 8.0 by the author. 

 

Analysis Results Presented in the Proposed Data visualization platform: 
 
At the first glance, the author found out there was large areas of blue on the temporal maps 

(figure 5.33) for the last two AOIs (exhibition work planes and North East gallery walls) during 

the year. It meant the daylighting performance of these AOIs did not reach their goals defined by 

the author within these periods represented by the blue color. The exhibition work planes only 

have good daylighting performance early in the morning and late in the afternoon (figure 5.34), 

and the NE walls (North East gallery walls, the author will use NE walls to represent it in the rest 

of this thesis) has bad performance from around 9am to 3pm except for during the winter (figure 

5.34). The first AOI, the open corridor, has much better performance than the others. It has 

acceptable performance for most moments during the daytime, but it still did not meet its goal 

from October to the end of the year (figure 5.34). From the temporal maps, the author got an 

overall idea of the design’s performance and decided to use the interactive browsing to see what 

happened in the museum during those good and bad moments.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 figure 5.33: Analysis result for the initial design presented in the proposed data visualization platform. 
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figure 5.34: Good (top), Just-OK (middle), Bad (bottom) moments on temporal 
maps. 
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 figure 5.35: Moments that the sky condition is most likely overcast. Bad for 
corridor, but good for SW work planes and NE walls. 
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 figure 5.36: Moments that the sky condition is intermediate. Just OK for corridor, 
but bad for SW work planes and NE walls. 
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For the first AOI, the open corridor, what appeared as a bad moment on the temporal map 

corresponded to a rendering where no direct sunlight hit on the sculpture. Furthermore, the 

dominant sky condition on the platform was mostly overcast for those moments (figure 5.35). For 

the yellow and orange area on the temporal map (figure 5.36), which represents marginally 

acceptable performance, the rendering often shows that the sunlight patches are close to the 

corridor (figure 5.36). At the same time, the sun ray displayed in the elevation panel had a lower 

sun altitude comparing to those good moments in the central area on the temporal maps (figure 

5.36); the sky condition for these moments are usually intermediate and clear-turbid sky (figure 

5.36), which has less intensive direct radiation comparing to the clear sky. From around 9am to 

3pm from February to October, the corridor had relatively good performance on the temporal 

map, and it also showed from corresponding renderings that there is plenty of direct sunlight 

coming through the skylight and hitting on the sculpture (figure 5.37), and the sun altitude in 

this period are in a high angle range (figure 5.37). The dominant sky type for these moments was 

the clear and clear-turbid sky (figure 5.37).  

 

The second AOI and third AOI, the exhibition plane and NE walls had an entirely different 

situation. Both of them had good performance early in the morning and late in the afternoon 

(figure 5.35). The author also could not find any direct sunlight penetration on the corresponding 

figure 5.37: Moments that the sky condition is most likely clear. Good for 
corridor, but bad for SW work planes and NE walls. 
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renderings for this period (figure 5.35). Meanwhile, the sky info panel and the sun position info 

panel indicated that in most of the time, the overcast sky is the dominant sky type. When the 

cursor moves to the blue areas in these two AOIs’ temporal maps, the dominant sky condition 

changed to be clear and clear-turbid in most of the time, and their renderings showed a lot of 

direct sunlight patches inside the space coming from the side and central skylight (figure 

5.36-5.37). It showed the lighting level is not in the acceptable lux range for the exhibition of 

artwork, and is probably much higher than the maximum level because of the direct radiation 

from sunlight. The penetrated sunlight was probably the main reason causing this problem.  

 

From this observation, it seems that for the open corridor, the problematic period in the winter 

(figure 5.38) was caused by weather variation in the Boston area. But for periods where 

performance was just acceptable (figure 5.34), it was because the sunlight has lower sun 

altitude (figure 5.38) and so that the light coming through the skylight could not directly hitting 

on the sculpture underneath, and the light supposed to be able to reach the sculpture was 

blocked by the ceiling near the skylight. The other two AOIs, the exhibition planes and NE walls, 

had good performance when the sky is overcast early in the morning, late in the afternoon, and 

in the winter. However, their performance dropped dramatically when the sky became clear and 

the sun angle became higher, because the sunlight went through the side and central skylight to 

hit on the plane and walls to bring extremely high illuminance level (figure 5.38). In this case, 

this initial design did not in fact reach its design goal (table 5.2, figure 5.32) and had to be 

revised in order to improve the current situation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

figure 5.38: Daylighting performances and their outside lighting conditions 
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5.2.2  Design Improvement and Daylighting Analysis 
 
Design Modification: 
 
The LightSolve program will include the optimization function to optimize the design based on 

the analysis and designer’s initial goals in the future. The optimization engine is currently under 

development, so in this section, the design optimization process was done by the author based 

on her personal daylighting knowledge. 

 

The frequently overcast sky in Boston, which caused the bad wintertime performance of the 

design, was clearly out of control of the author.  However, it is possible to modify the corridor’s 

skylight so as to allow the blocked sunlight through during the marginally acceptable moments 

(figure 5.35-5.37). Informed by the sun rays displayed in the elevation panel (figure 5.35-5.37), 

the author found out that the narrow skylight opening of the corridor could not allow low angle 

sunlight to come in and hit on the sculpture; therefore, increasing the width of the skylight may 

improve this situation. The author decided not to change the basic geometry of the skylight 

because she was satisfied with the proportion; instead, the opaque ceiling was displaced by a 

wooden railing structure with transparent glazing (figure 5.39-5.41). In addition, two reflective 

panels (figure 5.40-5.41) were added at the middle of the skylight so as to redirect some low 

angle sunlight to the sculpture.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
figure 5.39: Design adjustment from the initial design (left) to the second 
iteration (right). 
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figure 5.40: Corridor adjustment: 
initial corridor design (left) 
new corridor design (right) 

figure 5.41: Initial section (orange) and section in the second design iteration (green). 

figure 5.42: Elevation adjustments: Original elevation (left), new elevation design (right) 
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For the exhibition planes and the NE walls, the failure to block sunlight from the side and central 

skylight was the cause of the bad performance (figure 5.36-5.37). In order to improve this 

situation, the author decided to design a louver system for the side skylight and add more panels 

for the central skylight (figure 5.41).  

 

In terms of the aesthetic consideration, the corridor skylight in the initial design was a simple 

shape made by transparent glass (figure 5.39-5.41). The author refined its shape and added more 

detail for the supporting skeleton (figure 5.39-5.41) so as to bring a more elegant view of the 

skylight. From the renderings displayed on the platform, the author also realized that inner 

courtyards between the South and North gallery rooms had been totally blocked by solid walls 

facing the them (figure 5.41), and the narrow openings on these walls (figure 5.41) could hardly 

provide any interesting views of the courtyards for people inside. In order to exploit the view 

from the courtyards, the author decided to change those openings to big windows on north facing 

walls (figure 5.41).  The north facing window would have no direct sunlight control issues, since 

it mostly had only diffused skylight in this particular location. Furthermore, informed by the 

renderings in the elevation panel on the platform, it seemed each elevation had little difference 

among others (figure 5.42), and it made the exterior view rather uninteresting. The author 

decided to add different openings for the South and North facing walls with horizontal and 

vertical louvers (figure 5.42) which were designed based on the possible sun angles displayed in 

the elevation panel. 

 

The second version of the museum was constructed in SketchUp. The author kept the same 

design goals (table 5.2) and ran the daylighting evaluation using LightSolve algorithm as in the 

initial design stage.  

 

Analysis Results for the Second Design Stage: 
 
The temporal maps in the second evaluation showed the corridor better achieved its design goal 

compared to the first version (figure 5.43-5.44). Moments which had barely acceptable 

performance before showed improved performance in the current design. Comparing renderings 

in the comparison panel (figure 5.45), the corresponding renderings of the corridor showed that 

the new skylight system could bring much more sunlight for the sculpture (figure 5.45) for 

moments which only got little in the previous design (figure 5.45). The wooden railing structure 

also brought elegant shadow effects, and it helped to create a much stronger visual effect of the 

sculpture (figure 5.45). The open corridor could almost have access to the direct sunlight for 

most of the time when the sky is not overcast. The author felt satisfied with this part in this 

case.  

 

The exhibition plane had improved performance compared to the first version, and NE walls had 

more good moments (figure 5.44), although its bad period increased at the same time. From the 

interactive browsing and the annual image map (figure 5.47), it seemed that the space of the 



 91 

exhibition plane still got some direct sunlight patches from the side and central skylight during 

its bad period shown on the temporal maps (figure 5.47). The same situation happened in the NE 

walls. The louver system still did not prevent some direct light from hitting on the walls (figure 

5.48). In addition, when comparing renderings in the comparison panel, it showed that the 

revised corridor skylight brought much more sunlight on the walls when the sun angle became 

lower in the morning and in the afternoon (figure 5.45), which were moments that had 

acceptable performance in the previous design (figure 5.44). The renderings for both the 

exhibition plane and NE walls showed that panels of the central skylight did not efficiently 

minimize the sunlight penetration, and the louver system for the side skylight still needed to be 

adjusted in order to block all the possible louvers.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

figure 5.43: Analysis result of the second design iteration 
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figure 5.44: 
Changing of the 
temporal maps 

figure 5.45: Comparison of the 
corridor’s performance. 

figure 5.46: Comparison of the NE 
walls’ performance. 
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figure 5.47: Annual image maps for the SW work planes and NE walls. 



 94 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
figure 5.48: Bad moments for SW work planes and NE walls. 
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5.2.3  Louver System Adjustment 
 
Design Modification: 
 
In the third design stage, the author decided not to make any modification of the open corridor 

area, because its performance almost achieved the author’s design goal. This time, the author 

decided to strictly follow the sun angles displayed in the elevation panel on the platform to 

adjust the louver system for the side skylight so as to improve the performance of the exhibition 

plane and NE walls.  

 

A “skylight sculpture” (figure 5.49-5.50) was designed to work together with the existing panels 

to prevent direct sunlight from coming through the central skylight. From exploring the analysis 

data from the second version, the author found that sunlight penetration happened when the sun 

angle is higher than a certain degree (figure 5.48). Using this information, both the vertical and 

horizontal louvers were used in this “skylight sculpture” (figure 5.49-5.50) to block the high 

angle sunlight from the very top and the lower angle sunlight from the side way.   

 

Since the sunlight coming from the corridor brought more bad moments for NE walls (figure 5.46), 

the author decide to add some translucent curtains between the corridor and the gallery rooms 

(figure 5.51) so that the direct sunlight would change into diffused light with much less intensity.  

 

A new digital model was constructed in SketchUp. Keeping the same design goals, the author ran 

another daylighting analysis based on the LightSolve’s algorithm to check whether the third 

version could have any performance improvement. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
figure 5.49: “Skylight sculpture” added in the third design iteration (blue) 
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Analysis Results for the Third Design Stage: 
 
The temporal maps showed a great improvement of the exhibition plane and NE walls (figure 

5.52-5.53). Browsing those good moments on the temporal map, the rendering showed that the 

direct sunlight had been blocked satisfactorily (figure 5.52). During the period when the NE walls 

had been hit by the direct sunlight coming from the corridor skylight in the previous version, the 

sunlight no longer directly hit the walls in the current design (figure 5.54) because of the 

translucent curtains added (figure 5.51), and the performance of this period improved to 

“good”.  

 

The bad periods of the exhibition plane and NE walls were similar, from around 10am to 2pm, 

May to August (figure 5.53, 5.55). From the renderings, the author found out that although the 

“skylight sculpture” diminished the sunlight patches (figure 5.55) it still did not prevent all the 

patches on tested areas from the central skylight during this period. In addition, at around 10am 

in this period, the louver system of the side skylight still allowed the sunlight to come through 

and hit the floor area close to the exhibition plane and NE walls (figure 5.55). Although the 

failure of blocking all the sunlight coming from the central and side skylight still caused the bad 

figure 5.50: “Skylight sculpture”. 

figure 5.51: Curtains are added to block sunlight from the corridor. 
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periods on the temporal maps in this design stage, the analysis results told the author that the 

overall performance improved a lot in the third version (figure 5.56). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

figure 5.52: Analysis result for the third design iteration 

figure 5.53: Temporal maps’ improvement. 
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figure 5.54: NE wall’s performance comparison between the second iteration and the third iteration. 

figure 5.55: Bad moments SE work plane and NE walls. 
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5.2.4  Demo Design Discussion 
 
Three AOIs were selected in this demo museum design, and each of them had quite different 

design goals (table 5.2), but the platform could still easily allow the author to access any of them 

without jumping between several windows or gathering information for all of them manually for 

analysis (figure 5.55) as in most existing tools. It greatly shortened the time needed and made 

the design evaluation process much smoother. Even if the designer would like to check more than 

three AOIs at a time, which is usually what happens in real situations, he would be able to 

quickly browse any AOI using the “Back” and “Forward” function on the temporal map pane 

(figure 5.55). 

 

The interactive browsing in the proposed data visualization platform provided the author a very 

convenient way to check daylighting performance over time from both technical and aesthetic 

aspects while remaining aware of the environmental impact on performance. The author spent 

no effort on viewing data for different moments, while in the case study of the existing tools in 

the first validation test, the author had to manually save all the information and organize them 

by time to make it easy for future review.  

 

In this museum design, knowing the daylighting performance from both quantitative and 

qualitative perspective over the whole year is very crucial, since the design should achieve 

appropriate lighting level annually for the exhibits while providing a harmony visual effect that 

fits the artistic atmosphere. The interactive browsing in the platform gave the author a great 

freedom to do this without being interrupted by any complex manipulation process as in other 

existing tools. Being informed by these data simultaneously over the entire year enhanced the 

author’s understanding of the annual performance of this museum design and helped avoid the 

figure 5.56: Design improvement during the whole design process. 
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overlooking of some crucial moments.  

 

More importantly, the information of the sky, surrounding, and sun ray position provided by the 

platform highlighted the importance of the environmental impact on the interior daylighting 

performance. The probability of each sky type reminded the author to have an emphasis on the 

dominant weather while still considering the influence of all other possible weather types. The 

sun rays displayed in the elevation panel assisted the author when redesigning the louver system 

for the side skylights. All of the information gave the author the chance to consider the 

environmental influence on the space performance and make the design more sustainable by 

truly adapting to the outside environment. 

 

The comparison panel (figure 5.54) assisted the author in keeping track of the whole design 

process. The author could quickly compare renderings for any AOIs and check if the modified 

geometry and the louver system can truly improve the performance for the saved crucial 

moments or any other moment. The freedom to customize all related parameters (design stage, 

time information, AOI id, and sky condition) greatly simplified the ordinary comparison process 

in which the user has to save and organize the data himself.  

 

In sum, the proposed data visualization platform created an efficient data transmission between 

LightSolve and the author. It informed the designer how the space interacted with light over the 

year while allowing her to keep in mind what circumstance formed this kind of lighting condition. 

At the same time, it minimized the designer’s effort in gathering and viewing different types of 

data for several areas of interests so that the author could put most effort on analyzing the data 

and searching possible solutions to improve the design’s performance. 
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5.3  Validation of Revealing Real Performance Issues 
 

In order to test whether the proposed data visualization platform is able to reveal the real 

lighting situation of the space, the author interviewed Marsette Vona, the space user in Stata 

Center Room 32-376, to see what the actual lighting environment. The author then compared the 

information gathered from the space user with the information presented in the proposed 

platform. 

 

The first thing Marty mentioned was that the space has no curtain or blind. It makes the space 

totally exposed to the natural light all the time. When it is in the morning and the sky is clear 

enough (figure 5.57), Marty said there are some strong glare issues. At his position, which is 

actually the area simulated in the case study in the first validation (figure 5.9), the computer 

screen becomes too hard for people to look at (figure 5.58), because plenty of sunlight is hitting 

on it. Although Marty described himself as a person who likes this kind of bright environment, he 

admitted this situation is in fact difficult for people to use the computer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

figure 5.57: Stata Center room 32-376 and its user Marty 
Vona. 

figure 5.58: It is hard to look at the screen. 

figure 5.59: Plenty of sunlight for working 
on robots. 
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Besides working on the computer, a lot of Marty’s job is to work on robots, which is actually a 

precise task that usually requires a pretty high illuminance level. Marty’s desk for this work is 

perpendicular to his computer desk (figure 5.59). When the direct sunlight is coming in his 

working area and causing the serious glare problem on the computer screen, He felt very 

comfortable to work on his robots because the sunlight brought him a very bright environment. 

However, the period he can get the direct sunlight at his position is usually a couple of hours in 

the morning. When the sunlight no longer has the access to this space, the lighting level drops 

down dramatically, and Marty has to add additional task lighting (figure 5.60) to maintain enough 

light for his robot work. The same situation happens when the sky is cloudy. 

 

Sometimes when the sky is partially cloudy, then the interior lighting environment changes 

quickly between bright and dim. Marty thought it makes people’s eyes feel difficult to adapt the 

lighting environment in the same speed. Although the exterior building is covered by the highly 

reflective metal surface (like mirror, figure 5.60), he said it does not really bring him any 

reflected sunlight. However, the people sitting opposite to his desk complained she is actually 

bothered a lot by the reflected light during the afternoon.  

 

From Marty’s information, it is apparent that the space has very high illuminance level when the 

direct sunlight is coming, but it has a serious glare problem on the computer screen at that 

moment. When there is no direct sunlight or the sky is overcast, the space appears too dim to 

perform precise task. The direct sunlight usually comes in during the morning for couple of hours. 

The exterior reflective surrounding does not bring him much reflected light.  

 

Based on this information, the author ran an analysis in LightSolve (the temporal map and 

renderings were all pre-computed in Radiance). For the illuminance temporal map, the author 

tested the area of the working plane using the same digital model used in the case study of 

existing tools in Chapter 5.1 (figure 5.9) with the goal of achieving lux level larger than 800lux, 

which is good for precise tasks. For the luminance temporal map that takes care of the visual 

contrast, the author tested the luminance ratio between the computer screen and the wooden 

figure 5.60: Additional task lighting (left) and reflective exterior (right). 
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board behind it (figure 5.58), and the goal is to have the ratio between 1 and 1:10, which is 

appropriate for ordinary people (figure 5.61).  

 

From the analysis result displayed on the proposed platform, the illuminance temporal map 

(figure 5.62) quickly told the user the space reaches its goal well enough from around 8am to 

12pm, mid March to October. During other period, the illuminance level on the working plane 

was out of the desired range. However, on the temporal map that represented the luminance 

ratio, the bad moment was actually similar with the good moment shown in the illuminance 

temporal map.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

figure 5.61: acceptable illuminance ratio for human. 

figure 5.62: Analysis in the proposed data visualization platform 
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figure 5.63: When the space has 
direct sunlight coming in. 
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figure 5.64: When the space has NO 
direct sunlight coming in. 
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The author than browsed this period to view corresponding renderings of the space. It turned out 

that most of the time the working plane got the access to the direct sunlight, while the computer 

screen was also exposed to the direct sunlight as well (figure 5.63). This phenomenon explained 

why the illuminance temporal map considered that period as a good moment while the 

luminance map considered it as a bad moment. And this situation fitted the information from the 

space user.  

 

When browsing those bad moments on the illuminance map, the author also found out that the 

dominant sky type was usually overcast in the sky info panel (figure 5.64). When the sky turned 

to other clearer sky condition (figure 5.64) during this bad period, the rendering always showed 

the work plane had no access to the direct sunlight (figure 5.64). This information matches what 

Marty introduced in the interview. He said the space becomes too dim for him to work on the 

robot when the sunlight moves away from his work plane and when the sky is cloudy.  

 

In order to understand why the space interacts with the sunlight in this manner, the author 

checked the rendering change of the surrounding (figure 5.63) and sun rays displayed in the 

elevation (figure 5.63). It showed that during the good period on the illuminance temporal map, 

the sun altitude is usually not very high (figure 5.63). This makes it possible for the sunlight to 

penetrate into the space and reach the tested work plane. There are many other moments that 

have the similar sun altitude (figure 5.64), but from the rendering, it showed the work plane still 

was not hit by the sunlight (figure 5.64). By checking corresponding surrounding renderings 

(figure 5.64), the author realized the sun was blocked by exterior obstructions. By manually 

customizing sky type to clear, it showed there are some other moments that were supposed to 

have the direct sunlight access to the work plane; however, the dominant weather condition of 

them is overcast. Therefore, the illuminance and luminance temporal map did not give many 

credit of this direct radiation in their calculation. In the future, the user will be able to directly 

view the sun azimuth by switching elevation panel to plan panel so as to check the direct sunlight 

access more comprehensively. Currently, this function is till under developed and not yet ready 

to use in this thesis. 

 

This validation test demonstrated the proposed platform has a strong ability of comprehensively 

presenting the real lighting performance of the space and its potential problems. The analysis 

results displayed in the platform greatly matched the information provided by Marty, the space 

user in the real place. Further more, the environmental information displayed on the platform, 

such as the sky type and its probability and sun rays in the elevation panel, efficiently helps the 

user to connect the daylighting performance with the outside lighting environment and 

understand better its influence over time. In consequence, the designer is able to get a 

comprehensive and realistic daylighting evaluation of the design, and he has better chance of 

making appropriate design improvement informed by the information delivered by this platform. 
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5.4  Validation Survey by Intended Users 
 

The aim of this survey is to test whether the proposed data visualization platform for LightSolve 

helps the designer understand better the daylighting performance and potential problems over 

the year and be aware of the influence of the outside lighting condition. In this survey, first a 

forty minutes presentation was given to the architectural student. It introduced the concept of 

LightSolve, features of this platform, and the demo museum design supported by it. Then the 

student had a hand-on exercise on the platform to experience it in person. Finally, the student 

filled out a questionnaire (appendices 5) which aims to gather feedback about the LightSolve 

project and this data visualization platform working as an analysis interface for LightSolve. This 

survey was in an interactive way, and the student could ask questions and discuss with the author 

at any time during this survey.  

 

Four architectural students from MIT Department of Architecture participated in this survey. Two 

of them are in the final semester of the Master of Architecture program; one of the other two 

students is the senior student of the Bachelor of Arts in Architecture major and has already been 

admitted by the Master of Architecture program at MIT, and the other one comes from the first 

year Master of Science in Architecture Studies in Computation and Design with a professional 

Bachelor of Architecture Degree already. All of these participants can be considered as having 

the professional experience in the architectural design.  

 

5.4.1  Survey Result 
 

1) The ordinary way to test the design’s daylighting performance: 
The questionnaire began with a question of identifying in what way the participant usually tests 

his design’s daylighting performance. Only one student from M.Arch program selected 

“Daylighting analysis tool” for this purpose; all other students use either “physical model” or 

“computer rendering” or both (appendices 6). It indicated that architectural students are more 

likely to consider the daylighting performance from the aesthetic perspective than technical 

perspective.  

 

2) The function of the information delivered by the temporal map on the platform: 
All participants believed the temporal map could provide a comprehensive daylighting 

evaluation of the design (appendices 6). Most of them thought temporal maps works well on 

considering the time factor in the daylighting design. In terms of detecting potential problems, 

although all of them indicated they can quickly target the problematic period of the whole year 

by the assistance of temporal maps, some of them still thought they need extra step to figure out 

what the problem is by looking at other data displayed on the platform. Some of them thought 

the weather information embedded in the temporal map were not that straightforward to figure 

out, and they need to combine the sky information displayed on the platform so as to integrate 

the weather factor in their design.  
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These feedbacks clearly showed that the temporal map is able to provide an overall estimation 

of the space performance, however, the designer still need to receive more detailed information, 

such as renderings and sky type information in order to understand better the quantitative 

information they’ve got before.  

 

3) The link between temporal maps and renderings: 
All participants considered the dynamic link between temporal maps and renderings in the 

interactive browsing could help them identify the problem type quickly (appendices 6), since the 

rendering can directly show whether the space is too dim or bright, or it has too much direct 

sunlight patches. This result fits the feedback from the previous question that the user need 

more information to detect the potential problem after they informed by the temporal map.  

 

Two participants thought this link helped them detecting what caused the daylighting problem, 

because they could figure it out from the rendering. However, the other two participants thought, 

although rendering and other information on the platform could assist them to figure out the 

reason, the process was still done by the user himself. Thus, they considered this dynamic link 

provided by the platform was not directly helpful for detecting what causes the problem.  

 

4) The combined info of time/date and daylighting performance on the temporal map: 
All participates’ answers of this question are similar (appendices 6). They all believed that the 

temporal map can guide the user to browse renderings for GOOD and BAD moments and be used 

as an interactive time/date graph to browse renderings. It demonstrated that linking the 

quantitative temporal map with the qualitative rendering over time to create the interactive 

browsing assists the user to quickly target the crucial moment and easily access to data of any 

moment in a convenient way. As for connecting space performance over time with outside 

lighting conditions, most participants felt they still needed to look at other environmental 

information displayed on the platform to create such a connection. 

 

5) Weather information displayed on the platform: 
All participants agreed that the weather information displayed in the sky info panel, sky dome 

and surrounding view panel (appendices 6) was very useful for them to understand performance 

over the year as a result of sky type probabilities and to connecting the visual effect with 

different sky types. In terms of adapting the design based on the predominant weather condition, 

three participants gave less credit on it. They thought they needed to make a further synthesis of 

the weather variation and the daylighting performance themselves in order to let the design 

adapt to the local environment. As mentioned in the first question, most participants in this 

survey have little professional daylighting knowledge. They are used to evaluate and develop a 

design from an aesthetic perspective. It explains why most of them thought they need more 

effort to integrate the weather information displayed on the platform and make their design 

adapt to this weather variation.  
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6) The sun ray displayed on the elevation panel of the platform: 
The author got similar answers of this question (appendices 6). All of them agreed that 

dynamically showing the sun ray changes on the elevation panel was an informative way to relate 

daylighting performance with sun angle variations. During the interview, all participants showed 

a great interest of this function, because they considered the sun angle as an important 

parameter in determining things such as the buildings geometry, openings, etc.  

 

7) The influence of the quantitative data (temporal maps) and qualitative data (renderings) 
in the design process: 

All participants thought the quantitative and qualitative data could give them more confidence 

in their design performance (appendices 6). However, most participants considered they still 

needed to synthesize themselves the information displayed on the platform in order to figure out 

the reason of the problems, the way to fix them, and explore alternatives which have not been 

considered based on their previous experience. These answers expressed that designers, who are 

used to evaluate the design simply from the aesthetic perspective, have a demand of having the 

software help detect potential problems of the daylighting performance and make design 

improvement. In fact, the platform itself works as an analysis interface in LightSolve, the 

LightSolve project will include the optimization function in the future that can assist the 

designer to make diagnostic of the existing problems and propose possible solutions based on the 

designer’s initial design goals.  

 

8) General feedback of the platform: 
All participants felt that they had no difficulty in learning the platform quickly with their design 

background (appendices 6). And most participants thought the platform had an educational 

potential in terms of acquiring daylighting knowledge. As discussed in the previous question, 

they thought the LightSolve program should provide more assistance on detecting the reason of 

the problem and proposing possible solutions so as to meet all the needs of designers.  

 

Question 11 and 12 are not discussed in this thesis, because they refer to the broader LightSolve 

project and have no direct relationship with the data visualization method developed in this 

thesis.  

 

5.4.2  Survey Discussions 
 
This survey indicated that the link between quantitative temporal maps and qualitative 

renderings over time helps the designer to comprehensively understand the annual daylighting 

performance based on the design goal from both technical and aesthetic aspects and find out the 

potential problems. In addition, the way of integrating information such as the sky condition and 

sun ray into the interactive browsing successfully emphasizes the influence of the outside 

lighting conditions in the interior lighting performance. More important, the platform allows the 
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user to acquiring more daylighting knowledge during the design process, and it may increase the 

chance of integrating daylighting considerations into the designer’s initial concept. In 

consequence, these responses showed that the proposed data visualization platform creates an 

efficient data transmission process between the platform and the user and support better the 

design process from a more integrated perspective. 
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Chapter 6  

Conclusion 
 

 

6.1  Thesis Achievements 
 

This thesis proposed a new data visualization method to better inform and support the 

architectural design process in terms of daylighting, and developed a functional platform that 

implemented the proposed method.  

 

In the background research, the author first studied the influence of daylight in architecture and 

did a background research of the architectural design process and looked at the data delivery 

and use during this process in general. From this study, the author found out the importance of 

having a smooth and efficient data visualization process is crucial to maintain a continual design 

process and comprehensive inform the design decision making. The author then analyzed the 

necessary data lighting representation in terms of daylighting design and in which way they 

should be presented and interpreted. In addition, the author also did research on the current 

lighting simulation tools to see what types of data representations they provide, how they 

visualize these data to the designer, and what their problems in term of data visualization are.  

 

Based on those researches, the author developed a new data visualization method that intends 

to improve the current situation and developed a function data visualization platform. The 

author decided to use two the existing research work in the proposed method because their 

attributes fit the need of the method. The first one was the temporal map developed by PhD 

student Sian A Kleindienst. The second one is the render engine currently being developed by RPI 

Department of Computer Science. Since the render engine is yet not ready to use, all the 

renderings in this thesis were produced in 3Ds Max and Radiance. 

 

In order to test the efficiency of the proposed method, the author did four validation tests. The 

first validation test made two case studies based on existing buildings (Yale center for British art 

and Stata Center Room 32-376) using 3Ds Max and Ecotect, two typical tools of existing lighting 

simulation tools. These case studies showed their capability of producing various data in high 

quality, however, it also showed they do not pay too much attention on how the data are 

visualized and delivered to the designer in order to better inform and support the design process. 

It showed that the proposed platform would keep the design process in a smoother way than 

these tools in the comparison at the end of the first validation.  

 

The second validation test was performed to test how a design project can be influenced by the 

proposed data visualization method. A demo museum design was analyze in the proposed 
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platform from its initial design stage, and most of the design improvement were greatly 

informed by the data presented on the platform. This validation test showed that the proposed 

method can assist the designer to understand better the daylighting performance over year and 

find out possible design solutions without interrupting the design process because of the data 

collecting and delivery.  

 

The third validation tests focused on whether the proposed method can reveal the real 

performance issues. The author interviewed the current space user at Stata Center Room 32-376 

to see what the problems of the space were. The author then built digital model and ran analysis 

in the proposed platform. It turned out the problems shown on the platform greatly matched the 

problems told by the space user. 

 

The fourth validation was a survey to intended users. Architectural Student at MIT Department of 

Architecture participated into this survey. The questionnaire results showed that all of them 

thought the platform was very easy to learn as their designer background, and the dynamic links 

among different types of data helped them to comprehensively understand the performance.  

 

These validation tests showed the proposed data visualization method achieved its objective of 

helping the designer to understand better the design performance while minimizing the extra 

effort needed to get all the data and analyze them efficiently.  

 

 

6.2  Future Work 
 
The data visualization platform will be integrated into the LightSolve project as an analysis 

interface in the future. It will be needed be linked with the render engine developed by RPI 

Department of Computer Science to make the proposed platform more functional.  

 

From the survey in the fourth validation test, it revealed that the designer needs to have an 

assistant to reveal reasons of those potential performance issues and provide possible design 

solutions. This fits the objective of the broader LightSolve project that aims at developing a 

highly innovative computational tool for daylighting design, which will be able to inform the 

design process through an interactive, goal-driven optimization based on expert rules of 

daylighting design in the future. The data visualization method proposed in this thesis can be 

extended to meet new data transmission demands during that optimization process. 
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