
Quantum-Classical Correspondence in Response Theory

by

Maksym Kryvohuz

B.S., Moscow Inst. of Phys. and Tech., Moscow (2001)
M.S., Moscow Inst. of Phys. and Tech., Moscow (2003)

Submitted to the Department of Chemistry
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2008

© Massachusetts Institute of Technology 2008. All rights reserved.

Author ..........
r 64 Department of Chemistry

March 14, 2008

Certified by .......
Jianshu Cao

Professor of Chemistry
Thesis Supervisor

Accepted by........
Robert W. Field

Chairman, Department Committee on Graduate Students

-CHVES



This doctoral thesis has been examined by a Committee of the
Department of Chemistry as follows:

Professor Troy Van Voorhis...
S Chairman, Thesis Committee

Assistant Professor of Chemistry

Professor Jianshu Cao....
IV Thesis Supervisor

Professor of Chemistry

Professor Robert W. Field........
Haslam and Dewey Professor of Chemistry



Quantum-Classical Correspondence in Response Theory

by

Maksym Kryvohuz
Submitted to the Department of Chemistry

on March 14, 2008, in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

Abstract

In this thesis, theoretical analysis of correspondence between classical and quantum dy-
namics is studied in the context of response theory. Thesis discusses the mathematical
origin of time-divergence of classical response functions and explains the failure of clas-
sical dynamic perturbation theory. The method of phase space quantization and the
method of semiclassical corrections are introduced to converge semiclassical expansion of
quantum response function. The analysis of classical limit of quantum response functions
in the Weyl-Wigner representation reveals the source of time-divergence of classical re-
sponse functions and shows the non-commutativity of the limits of long time and small
Planck constant. The classical response function is obtained as the leading term of the
h-expansion of the Weyl-Wigner phase space representation and increases without bound
at long times as a result of ignoring divergent higher order contributions. Systematical
inclusion of higher order contributions improves the accuracy of the h expansion at finite
times. The time interval for the quantum-classical correspondence is estimated for quasi-
periodic dynamics and is shown to be inversely proportional to anharmonicity. The effects
of dissipation on the correspondence between classical and quantum response functions
are studied. The quantum-classical correspondence is shown to improve if coupling to
the environment is introduced. In the last part of thesis the effect of quantum chaos on
photon echo-signal of two-electronic state molecular systems is studied. The temporal
photon echo signal is shown to reveal key information about the nuclear dynamics in the
excited electronic state surface. The suppression of echo signals is demonstrated as a
signature of level statistics that corresponds to the classically chaotic nuclear motion in
the excited electronic state.
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Chapter 1

Introduction

1.1 Motivation

A complete knowledge of the optical polarization is sufficient for the interpretation of any

spectroscopic measurement and is the central object in the theory of optical spectroscopy

[1]. The standard theoretical approach for the computation of optical polarization em-

ploys perturbation theory and represents polarization in terms of the power series of

applied electric field. The n-th order polarization is completely described by the n-th

order response function which carries complete microscopic information necessary for the

calculation of optical measurements [2, 1].

Quantum mechanical perturbation theory provides an expression for the response func-

tion in terms of nested commutators of radiation-matter interaction operators [1]. The

exact evaluation of this expression is a challenge even for small number of degrees of

freedom N, and the complexity of calculations growths exponentially with N. The latter

motivates the investigation of semiclassical approach to the calculation of response func-

tions [3, 4, 5, 6]. The classical limit of the quantum response function is usually obtained

by replacing commutation relations with Poisson brackets and neglecting terms of higher

order in the Plank constant [7]. However, this leads to vital differences between the results

from quantum and classical calculations. The simple classical limit of the response func-

tion diverges with time because of the instability of classical nonlinear dynamics [8, 9].



For a given energy of the system, both linear and nonlinear classical response functions

diverge. It was pointed out by van Kampen that even a weak perturbation leads to the

failure of classical nonequilibrium perturbation theory at sufficiently long times [10]. De-

spite this argument, the application of linear response theory does not lead to practical

difficulties since phase space averaging over the initial density matrix with Boltzmann

distribution cancels the divergence at long times [8]. However, the divergence of nonlin-

ear response functions for microcanonical ensembles cannot be cancelled [11]. Thus the

question of the validity of the application of the classical response theory arises.

On the other hand, we know that classical mechanics still well describes our quantum

mechanical world in many cases. This suggests to investigate the limits of the validity of

classical approach and to indicate the region where the quantum mechanical effects start

to dominate. Because of the central role that response functions play in spectroscopic

measurements it is thus of importance to study the quantum-classical correspondence in

the context of response theory and to draw the borders between classical and quantum-

mechanical dynamics.

The elucidation of the classical-quantum correspondence of response functions has

conceptual and practical implications. (1) Spectroscopic measurements are often inter-

preted in terms of classical dynamics. For example, an effective Hamiltonian has been

used to describe the bending spectrum of acetene at high excitation energy from high-

resolution spectroscopy [12, 13]. Through classical or semi-classical approximations, the

measured spectrum can then be mapped to normal-mode or local mode motions solved

from the effective Hamiltonian. Heisenberg's correspondence relation and its generaliza-

tion to non-linear response functions provide the theoretical basis for such mapping. (2)

The dynamics of polyatomic molecules has stimulated topics such as intramolecular vi-

brational relaxation, isomerization, and energy localization [14, 15, 16, 17, 18, 19, 20, 21].

A fundamental question is the manifestation of classical chaos in quantum dynamics and

possible spectroscopic signals [2, 22, 23, 24]. (3) Of particular interest is the solute-

solvent system, where the solvent has to be treated classically and solute quantum me-

chanically [25, 26, 27, 28, 29]. (4) Another important direction is the possibility of



developing classical pictures of quantum concepts, such as phase coherence and relax-

ation. These pictures will advance theoretical understanding of quantum coherence con-

trol [30, 31, 32, 33, 34, 35] and vibrational line-sphapes [36, 37, 38, 39, 40, 41, 42].

1.2 Overview

In the present thesis quantum-classical correspondence is studied in the context of re-

sponse theory. In Chapter 2 the issues of the classical response theory are outlined. The

divergence of nonlinear response functions is shown to persist for microcanonical systems

with any type of equilibrium phase space distribution density.

In Chapter 3 the issue with the simple classical limit of the response function is

indicated. To resolve the problem of divergence of classical response functions in micro-

canonical ensembles the concept of phase space quantization is proposed. It is shown that

by imposing an uncertainty volume on the order of Planck constant around the classical

microcanonical surface in phase space and by averaging over this volume the classical

response functions are made to converge to their quantum mechanical analogs. The

Heisenberg correspondence principle between the quantum matrix element and the classi-

cal Fourier component is restored in this approach. The implementation of the proposed

phase space quantization approach is illustrated for the two-dimensional Henon-Heiles

system of coupled oscillators.

In Chapter 4 the mathematical origin for the divergence of the classical response

functions is found. The issue of divergence is shown to arise from the non-commutative

behavior of long time limt_. and the small Planck constant limho. The original quantum

expression of response functions requires setting the limit t - o00 before taking the limit

of h --+ 0. The latter is violated in classical mechanics, where the limit h --+ 0 is always

taken first, thus resulting in problems at long times in response theory. The time interval

of the validity of classical response theory is derived for the systems with quasiperiodic

dynamics. The semiclassical corrections to the classical response function are obtained

in the form of power series of the Planck constant and is shown to converge the classical



linear response function of microcanonical Morse oscillator to its quantum mechanical

analog.

The semiclassical representation proposed in Chapter 4 is tested on the system of a par-

ticle in square-well potential and is shown to recover quantum recurrences of momentum-

momentum correlation function, which are absent in classical form of the correlation

function.

In Chapter 5 the effects of dissipation on the cross-over time of the quantum-classical

correspondence in response theory is discussed. It is shown that dissipative effects increase

the time of the quantum-classical agreement, thus making the system of interest more

classical.

In Chapter 6 the quantum signature of chaos is discussed in the context of nonlinear

spectroscopy. The classical non-linear response functions was proposed by Mukamel to

carry the signature of chaotic dynamics [3] because stability matrices at long times show

exponential divergence for chaotic dynamics and linear divergence for regular dynamics.

The quantum-mechanical signature of chaos is discussed in Chapter 6 and non-linear spec-

troscopic experiment is proposed to illustrate quantum effects of the underlying classical

dynamics. The suppression of photon-echo signal in the proposed experiment may serve

as an indicator of quantum chaos.



Chapter 2

Classical divergence of non-linear

response functions

2.1 Introduction

Response theory predicts the response of a physical system to an external disturbance

perturbatively and forms the theoretical basis of describing many experimental measure-

ments. It was first pointed out by van Kampen that even a weak perturbation leads to

the failure of classical nonequilibrium perturbation theory at sufficiently long times.[10]

Despite this argument, the application of linear response theory does not lead to practical

difficulties because phase space averaging over the initial density matrix with Boltzmann

distribution cancels the divergence at long times. Yet, thermal distribution may not

remove the divergence of nonlinear response functions. In this chapter we study the

divergence of classical response functions of quasi-periodic systems. The analytical treat-

ment of the behavior of the classical response function has not been studied except for a

few exactly solvable anharmonic systems such as quartic [8] and Morse [6, 5] oscillators,

showing that in some cases classical response functions diverge at long times. However,

the divergent behavior in the general case of systems with regular dynamics has not

been systematically investigated. The proof of the divergence has important implications

for the conceptual development of quantum-classical correspondence in response theory



and can be established by employing the methods of Fourier expansion and asymptotic

decomposition.

The response function is well-defined quantum mechanically in eigenstate space and

is expressed by a set of nested commutators

- [..(Tn),'(71 a a (2.1)

where 7, = - 1 ti and a(i(t), '(t)) is the system polarizability or dipole momentum

operator. The classical limit of the quantum response function (4.2) is usually obtained

in the limit of h -- 0 by replacing quantum commutators with Poisson brackets and

neglecting higher order terms in the Plank constant,

RCn)(tn, ...i, tl)

= (-1)n({f{...{a(Tn), a(Tn_l)}, ... , a(T1)}, a(0)}), (2.2)

where {...} are Poisson brackets. Yet, thus defined, classical response theory has several

difficulties. The expression (4.3) contains stability matrices which grow in time linearly

for integrable systems [8] and exponentially for chaotic systems [43]. It was thus noted

that the stability matrix may be a sensitive probe of classical chaos [3]. The growth results

in the divergent behavior of classical response functions for a given initial condition in

phase space.

Yet, while individual trajectories may be sensitive to the perturbation of initial con-

ditions leading to the divergence of the classical response functions, the phase space

averaging over the initial density matrix in some cases eliminates these difficulties and

makes, for instance, linear response finite at all times [3]. Averaging over the Boltzmann

distribution successfully cancels the divergence and does not lead to practical difficulties

in applying linear response theory. In fact, the ensemble averaged molecular dynamics

simulation technique has been applied extensively in condensed phase vibrational spec-

troscopy. Mukamel and Leegwater considered the question whether the thermal averaging

over initial conditions can cancel the divergence of the nonlinear response function in the



same way as it does for the linear response function [8]. They found that for a quar-

tic oscillator the third-order response function R(3)(t3 = const, 0, tl) indeed converges

after thermal averaging. However, Noid, Ezra and Loring have shown that R(3)(t,O, t)

diverges even after thermal averaging for the canonical ensemble of noninteracting Morse

oscillators [5]. Before this divergent behavior of the classical nonlinear response func-

tions was pointed out, the MD simulations of liquids supported the idea of convergence

by Boltzmann averaging [44, 45]. A many-body system in thermodynamic limit such as

liquid can be described with dissipative dynamics. Dissipation suppresses the interfer-

ence among the classical trajectories making the nonlinear response function finite at all

times. Nevertheless, for a non-dissipative quasiperiodic dynamics, the thermal averag-

ing over the initial density matrix does not necessarily remove divergence of the classical

nonlinear response functions [11]. In this chapter we generalize the above results to all

non-dissipative systems with quasi-periodic dynamics and show that there always exists

a direction in (t,, ..., t1) space along which the nonlinear response function R•7)(t,, ..., tl)

diverges and no smooth distribution function of phase space initial conditions can remove

this divergence.

2.2 Classical Response Functions of Systems with Reg-

ular Dynamics

Regular dynamics allow simple analytical description and have a convenient representation

in action-angle variables [7, 46, 47, 48]. Making use of the quasi-periodicity, we expand

a dynamic function a(t) in Fourier series [7] ca(t) = En Oane', where p = wt + Wpo

are angle variables and w(J), an(J) are functions of actions J only. For the purpose of

simplicity, we consider one-dimensional systems. The discussion can be easily extended to

a system with an arbitrary number of degrees of freedom, replacing scalars with vectors.

Substituting a one-dimensional form of Fourier series into the expression (4.3) for the

classical response function and using the identity Tr[{A, B}C] = Tr[A{B, C}], we get



the following results for the three lowest order response functions

R(1)(t) = -Tr (a(t){a(0), p})

=- dJaneznwt J dpoFk(J, 0o)e'(n+k)ýo (2.3)
n,k

R(2) (t2 tl) = Tr ({I(t 2 + t1), C(tl)}{a(0), p})
= dJe%(n+m)wtl +nwt2

n,m,k

{ an - amm +t 2 mnanam }8J 8J )8Jai
x J doFk (J, 0)o)e'(n+ m + k)o (2.4)

R) (t3, 0o t1)

= -Tr({a(t3 + ti), a(tl)}{a(tl), {a(0), p}})

E- J dJe(n+m+s±)t+znwt3m
n,m,k,l

x (ann - amm +t3mnnam

x J dyoes(n +m+1+k)Wo (2.5)

f 8 Fk Ow & Fkx a to a + Ztila + zkFk)iaoJ kJ J o

where Fk(J, ( o) = ZakkO - f _. Classical expressions for non-linear response functions

(2.4)-(2.5) contain terms with time-dependent pre-exponential factors that can diverge at

long times. Below we prove that non-linear response functions indeed diverge at tn -+

oc and no phase-space distribution density can remove the divergence. Obviously, the

presence of these terms in the above expressions is a consequence of the anharmonicity

#9- Oý 0 whereas harmonic systems - 0 do not encounter any difficulties in application

of classical response theory [5] (it should be mentioned that for a completely harmonic

system, non-linear response function treated here are identically zero if the dipole moment

depends linearly on position). In the rest of the present chapter we assume that the system

is anharmonic and does not have stationary points 2 = 0.



We start with the linear response function (2.3). After the integration over o'o is

carried out, the expression for Rc' ) (t) takes the form

Rc)(t) = - fnk (J)nw tdJ (2.6)
n,k

The integrals in Eq.(2.6) have a form of the Fourier integral G(t) = ' f (x)etS(x)dx, which

has well-known asymptotic decompositions at large values of parameter t. For physical

applications, the interval [a, b] can always be chosen to be finite and the distribution

density p(J, o), potential surface U(r(J, W)), and anharmonic frequency w(J) are usually

smooth functions (two times continuously differentiable functions at least). Thus, the

following asymptotic decomposition at large values of parameter t is valid

G(t) f(b) etS(b) f(a) eztS(a) + O(t-2) (2.7)
ztS'(b) ztS'(a)

which for the linear response function (2.6) results in

R 1)(t) = 1 E ( nwit C(2) ) + 0(t - 2) (2.8)
nk

where C(1) C(2) w and w2 are constants. From Eq.(2.8) one can see that the linear re-
sponse function decays to zero as O(1/t) or faster for any smooth phase-space distribution

density p. The latter justifies the convergence of the linear response function for thermal

distributions p = 1e- PH [8]. The direct application of Eq.(2.7) to the Morse potential

with thermal distribution results in the asymptotic behavior shown in Fig.2.1. The exact

numerical calculation agrees with the asymptotic expression (2.8) at long times.

Next, we examine the behavior of the classical second-order response function (2.4).

Integrating out Wo the expression (2.4) can be written in the following form

R(2)(t 2, tl) = fnmk(J)e(n+m)wt1+zn±t2dJ
n,m,k

+t2 nmk (J)e(n+m)wt• + 'nt2dJ (2.9)
nO0,mO0,k

The first term in Eq.(2.9) will converge at large tl and t 2 similar to the linear response

function discussed previously. The problem is the second term. Different from the linear



R(t)

4D

Figure 2.1: The linear response function for the 1D Morse oscillator. The solid line rep-
resents the exact calculation with the classical formula (2.3), the dashed line corresponds
to the first asymptotic term O(1/t) from Eq.(2.8).

response function, the expression for the second order response function has directions in

(t 1, t 2 ) plane, along which the power of the exponent in (2.9) is zero or time-independent.

These directions are defined by

(n + m)ti + nt2 = C, (2.10)

and obviously depend on the type of polarization function a(t) in the way that a particular

polarization function has particular spectral components ak and thus a particular set of

values of n and m. We now consider one of these directions by fixing n and m at values

n* and m*, and assume that n* # 0, then t 2 = - (n*+m*) t + . Along this direction

the second order response function (2.9) becomes

R(2)(t2(t1),t) = dJ(fm(J) + -gnmk(J))
n,m,k

X e% (mn*-nm*)wtl+z% uwC(n* + m*

- n* tm* dJgnmk(J)
n,m k

× e (mn'*-nm*)wtl+jz'• • C , (2.11)
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Figure 2.2: The second-order classical response function for the 1D Morse oscillator with
the fourth-order polarization a = (b + b+)4 is shown in (a). The spectrum of a(t) is
presented in the top right corner (b), where w0o is the fundamental frequency. The behavior
of the classical second-order response function along the direction t2 = tl + 1 is shown in
the inset (c).

where C is a constant from the expression (2.10). In summation over n and m in Eq.(2.11),

all the integrals with (mn* - nm*) = 0 in the exponent will decay as O(1/t 1 ) or faster,

as discussed for the linear response function, and thus the first part of the expression

(2.11) will decay at tl --+ oc, while the second part will remain bounded 0 (1). Yet, the

integrals with (mn* - nm*) = 0 result in the linear divergence O(t1 ) of the second term

in the expression (2.11). There will be at least one such term (n = n*, m = m*) in the

summation over n and m while all such terms must satisfy the condition m/n = m*/n*.

Taking the above arguments into account, the expression (2.11) at large t1 behaves as

S(t2t) 2 tlfdJ V jnm(J)e awC. (2.12)
n - n*

The case when the summation in Eq.(2.12) can be exactly zero is when 9-n,-m = -gn,m

and C = 0. Yet if C = 0, the right side of the expression (2.12) does not disappear. Then

there exist infinitely many lines (n + m)t1 + nt 2 = C in (t1, t2 )-plane, along which the

second-order classical response function diverges in a non-oscillatory manner as O(tl) and

there is no smooth phase space distribution function that can remove this divergence.

kAýWj
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One should also note that R(2)(t 2 = const, tl) and R(2)(t 2, tl = const) are bounded, as

follows directly from Eq.(2.9) using decomposition (2.7).

The numerical examples of the classical second order response function are shown in

Fig.2.2 for the Morse and in Fig.2.3 quartic oscillator. The obvious difference of the di-

vergent behavior in both figures comes from the fact that polarizations a(t) have different

spectral components as shown in Figs 2.2(b) and 2.3(b). Thus, the direction of the most

intensive divergence is tl - t 2 = C1 in Fig.2.2(b) for the Morse oscillator with polarization

a= (b+b+)4 [6] and 2tl -t 2 = C2 in Fig.2.3(b) for the quartic oscillator with polarization

= x.

The same line of reasoning can be applied to analyze the behavior of the classical

third-order response function R(3)(t 3, 0, tl). Rewriting Eq. (2.5) in the form

R(3)(t7, 0, t1)

- J bnmkl (J) e(n+m+l)wti + t3dJ
n,m,k,l

+t1 fnmkl ' e(n+m+)wti+znwt3 VdJ
n,m,k,l

+t6 E J nmk)e(n+m+1)wt+mnwt3 d
n,m,k,l

+tit 3  J hnmk(J)(n+m+1)wtj +nwt3 dJ, (2.13)
n,m,k,l

the directions (n + m + 1)tl + nt3 = C, C #: 0 result in non-oscillatory quadratic divergence

O(t 2) of R(3)(t 3(t 1), 0, t1 ) for any smooth phase-space distribution density. Again, using

the decomposition (2.7) one can see that R 3)(t 3, 0, t = const) and RC3 (t3 = const, 0, tl)

are bounded functions of time. The latter agrees with the results reported in Refs.[8, 5]

for the quartic and Morse potentials.

The numerical results for R(3) (t3 , 0, tl) are presented in Fig.2.4 for the system of ther-

mally distributed quartic oscillators. The numerical calculations observe the linear diver-

gence along the diagonal tl = t 3 = t due to the smallness of the quadratic terms O(t 2)

along the directions (n + m + l)tl + nt3 = 0 within the length of the numerical calculation.

The same divergence was observed in [5] for the thermally distributed Morse oscillators.
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Figure 2.3: The second-order classical response function for the 1D quartic oscillator with
polarization a = x is shown in (a). The typical spectrum of a(t) is presented in the top
right corner (b), where wo is the fundamental frequency. The behavior of the classical
second-order response function along the direction t 2 = 2tl - 1 is shown in the inset (c).

The low temperature approximation 3D >> 1 used in [5] means that the motion of the

system takes place in nearly harmonic region, resulting in almost a single spectral com-

ponent Iall of a(t) = x(t) (like that on Fig.2.3(b). Thus the term, quadratic in time, is

exactly zero as it follows from Eq.(2.5)

R 3) (t, 0, t) t n4 4 dJ (2.14)(n= 1
- t 2 (Zn5 (a dJ.

n=±l 5-1 a

It is possible now to generalize the discussion to the n-th order response function.

Substituting Fourier decompositions of a(t) into the expression for the classical response

function Rc)(tn, , tl1), one obtains the terms containing exponents e"w(ktz+' . +kntn) with

the time-dependent prefactors tPt...to , a + 0 + ... + 6 < n - 1. These terms diverge in

time as O(tMt3...tn) on the plane k;tl +... + k*t, = const in (tl, ... , tn) space. In particular,

the direction tn = C,, t_l1 = C- 1, ..., t3 = C3, kjt 2 + kttl = C allows the same range

of discussions as for R(2)(t 2 (tl), t1 ) and R(3)(t, 0, t) stated above, showing that no phase

space distribution function can remove the divergence of R(n")(C, ... , C3, (C- krtl)/k, tl)

along this direction.

i ;



Figure 2.4: The third-order classical response function R(3 )(t3 , 0, t1 ) for the iD quartic
oscillator with polarization a = x is shown in (a). The linear divergent behavior of
R(3)(t, 0, t) is shown in the inset (b) with the quadratic divergence of R(3 )(t3 , 0, tl) along
the direction t3 = tl - 1 presented in the inset (c).

2.3 Conclusions

In the present chapter we have studied the divergent behavior of the classical response

function for a system with regular dynamics and demonstrated that no smooth phase

space distribution function of the initial conditions can remove the divergence of the clas-

sical nonlinear response function for quasi-periodic systems. Our analysis generalizes the

analytical and numerical results obtained earlier for Morse and cubic oscillators [6, 5, 8].

It shows the conceptual difficulty of taking the classical limit of the quantum response

theory because the quantum nonlinear response function is finite and the classical non-

linear response function diverges for systems with regular dynamics. One possible reason

was pointed out by van Kampen, [10] who argued the validity of the application of classical

time-dependent perturbation theory. Another reason resides in the fact that, while both

infinite quantum mechanical and classical perturbation series represent the same physi-

cal quantity, which is polarization P(t), individual expansion terms are not necessarily

equivalent. In contrast to the quasi-periodic motion, the chaotic and dissipative dynamics

[49, 45, 44, 50, 43] appear to observe the convergence of the classical response functions.

The correspondence of the classical limit with the quantum and experimental quantities



remains a challenge and is a subject for future study.





Chapter 3

Non-divergent Classical Response

Functions from Uncertainty

Principle: Quasi-periodic Systems

3.1 Introduction

The difficulty of quantum mechanical calculations of the nonlinear response functions for

large anharmonic systems provides a strong motivation for investigating the semiclassical

approach for evaluating these observables [3, 4, 5, 6]. The classical limit of the quantum

response function is usually obtained by replacing commutation relations with Poisson

brackets and neglecting terms in higher order of the Plank constant [7]. However, this

leads to vital difference between the results from quantum and classical approaches such as

long-time divergence as discussed in previous chapter. The problem of classical divergence

is a conceptual question of quantum-classical correspondence, which is the subject of

discussion in the present chapter.

An analytical approach to the calculation of the classical response function was re-

ported in Ref. [6], where the algebraic structure of the one-dimensional Morse oscillator

was explored. It was shown that the replacement of the microcanonical distribution func-

tion with the uniform distribution function of the width h and 2h results in exact quantum



mechanical expression for the linear response function with linear polarization operator

a = (b + b+ ) and quadratic polarization operator a = (b + b+)2 , respectively, and almost

exact expression for the second-order nonlinear response function with polarization opera-

tor a = (b+ b+)2 . Yet, a general form of polarization operator may result in divergence of

the classical second and higher order response functions. In the present chapter we gener-

alize the approach proposed in Ref. [6] and show that using the uncertainty principle (or

phase space quantization) we conveniently obtain the classical result that has well-defined

quantum correspondence, both conceptually and numerically. We consider the quantum

response function for a given eigenstate and its classical microcanonical limit. Start-

ing with the classical expression for the response function we replace the microcanonical

phase-space distribution density with the uniform distribution density within the phase-

space volume O(h') around the classical trajectory. It may seem that this replacement

should not lead to any considerable changes since in classical limit h -- 0 the latter distri-

bution density becomes the microcanonical 6-function. Yet, the behavior of the classical

response function changes drastically once the replacement is made. Finally we obtain

the non-divergent classical expression which corresponds to the quantum mechanical one

through the Heisenberg's correspondence principle, where each time-dependent quantum

matrix element (ula(t) v) is replaced with the (u - v)th classical Fourier component of

a(t), evaluated along the classical trajectory with mean action (Ju + J,)/2 [51, 52]. This

correspondence principle was also used in spectral analysis technique proposed in Ref.

[53] and showed a good agreement between the quantum and semiclassical linear spectral

intensities and frequencies. The semiclassical approach developed in present chapter has

a convenient representation in action-angle variables. Thus we assume that the system

under consideration with N degrees of freedom has N independent first integrals, i.e. the

bounded motion in phase space is equivalent to motion on N-torus [54]. This assumption

restricts the variety of systems and includes only those with quasiperiodic motion, that

is separable systems or non-separable systems with a weak coupling [7].

The discussion in the present chapter is organized as follows: In Sec.3.2 the expression

for the linear response function of N-dimensional systems is obtained. We show in general



that the uncertainty width O(h) is necessary to match classical and quantum results. In

Section 3.3 the classical expression for the nonlinear response function is considered.

Starting with the lowest order nonlinear response function we show that n-dimensional

uncertainty O(h n ) around the microcanonical energy surface in multidimensional phase

space is necessary to obtain a non-divergent classical formula for the nth-order nonlinear

response function. Classical and quantum expressions for the nonlinear response function

turn out to have the same form. The result is generalized for the system with N degrees

of freedom. The numerical calculations for the 2nd-order nonlinear response function of

a two-dimensional system (coupled oscillators) are presented in Section 3.4, followed by

general comments and conclusions in Sec. 3.5.

3.2 Linear Response

The expression for the response function can be obtained by using time-dependent per-

turbation theory [2, 1], giving

where the operator a(t) stands for the time-dependent polarizability in Raman spec-

troscopy or the time-dependent dipole momentum in IR spectroscopy. The classical me-

chanical expression for the response function [3] may be obtained in the limit h --+ 0

Rcn)(t,..., t) = (-1)n({ {...{o (-), a (rn-1)}, ..., ca(-ri)}, c(0)}), (3.2)

where {...} are Poisson brackets. In this section we concentrate on the linear response

function R ) (t) = (z/h)([a (t), ao(0)]) and its classical correspondence R( ) (t) = -({a(t), a(0)}).

Using identity Tr[{A,B}C] = Tr[A{B,C}] we write

R( ) (t) = -Tr({a(t), C(O)}p) = -Tr(a(t){a(0), p}). (3.3)

As mentioned in the introduction, we assume that the motion of the system is quasiperi-

odic, and therefore we consider classical response functions in action-angle variables, which

can be found employing the technique of the EBK quantization [55, 56, 57]. Making use



of the quasiperiodicity of motion in the limit of infinitely long time interval, T -- oo00, we

can express any dynamical variable f(t) as a convergent Fourier expansion [7, 51]:

f (t) = E fnln2 ... nN e(nw l+n22+...+nNLIN)t (3.4)
nln2...nN

or in terms of angle variables c0 = &t + ýo as:

f(t) = E fln2l•.N e (nfl1 +n22+...+nNN)t, (3.5)
nln2 ... nN

where {wl} are N fundamental frequencies and { oi} are N arbitrary constants. It is

assumed that all frequencies wi are incommensurate. The fundamental frequencies are

easy to obtain considering the Fourier transform of the generalized coordinates - the

highest peak in the Fourier spectrum of such a coordinate corresponds to one fundamental

frequency [55, 56, 57]. Action Jj can then be expressed in terms of fundamental frequencies

and Fourier coefficients of Cartesian coordinates Qj as [55, 56, 57]

Jj = - nj(nlwl + n 2w 2 + ... + nNWN)
nln2...nN

x [IQlnln2...nN 2 + IQ2nln2... N N 2 + ... + IQNnn 2 N...nN 2] (3.6)

The difficulty of practical application of the numerical EBK quantization grows with

increasing the number of degrees of freedom N. Yet, theoretically decomposition (3.5)

may be applied to the system with arbitrary N, which allows analytical description of a

many-body quasiperiodic systems. With this, we continue to consider classical response

function in action-angle variables.

3.2.1 One-dimensional System

First, we consider a one-dimensional system with coordinates { J, ý}. The Poisson bracket

in Eq. (3.3) is then

S= aa(0) p Oa(0) p (3.7)
a(0), pJ} = (3.7)

where p is the normalized distribution function. Considering distributions p = p(J)

uniform in sp, we will have only the first term in Eq. (3.7) and the classical expression for



the linear response function in Eq. (3.3) is then

R(1) - doodJa(t) ap(J) (3.8)
0<Po O J

According to Eq. (3.5) we can express polarization a(t), a dynamical variable, as a Fourier

series

a(t) = a nez" (3.9)
n

where cý = wt + WOo and w = dcp/dt = OE/oJ is a fundamental frequency. On substituting

Eq. (3.9) into Eq. (3.8) and integrating out ýpo we have

R()(t) = 2m z njanj2 enmtag J) dJ (3.10)
n

Considering microcanonical distribution p = (1/21r)6(J-Jo), the integral in Eq. (3.10)

gives well-known linear time divergence [10] of the classical response function

R1)(t) = E n (tn2 2 9W 2 n . (3.11)

If, instead, we introduce an uncertainty A around the trajectory J = Jo,

I1 1 if Jo - •< J < Jo +

p(J) = 2 2 2Jo (3.12)
0, otherwise ,

then Eq. (3.10) becomes

zn 1 2 enwt zn - 2 nwt (3.13)Ian e J=Jo-a/2 n ni J=Jo+A/2n n

We now compare this result with quantum-mechanical formula for the linear response

function

R (t) = (glau)12 e-(Eu-Eg)t/-h - I a(glIU)1 2 e-,(Eg-Eu)t/nl (3.14)

U U

and notice that they will have similar expressions if A = InIh. This result was first

observed in Ref. [6], where it was found that classical description of one-photon transition

in the linear response of one-dimensional (1D) Morse oscillator will give exact result if



A = h , and A = 2h for two-photon transition. Indeed, let us show that the classical

expression

R • ll 2 znwt 2 znwt (3.15)

n n

gives the exact result for 1D Morse oscillator. We consider the simplest case of linear

polarization operator a = b + b+ which has the following classical limit for the Morse

oscillator [6]:

2 2J2 X .
1 / 2

Xac = (x J2  XeJC)'os(O), (3.16)

where ý = [1 - (2XeJ/h)]wot + po and wo = 02D/32/p with Xe = hi//8D-p are the

parameters for the Morse potential. Polarization (3.16) has only two Fourier components,

therefore

R(1) (t) Z |_112e-sut Z 1 2eWt
C1 -I lJ= Jo-J/2 + h la, J=Jo-h/2

h lalee" J=Jo+/2 + Il J=Jo+h/2

2
(1 - ) {(v + 1)(1 - Xe(v + 1)) sin[(1 - 2Xe(v + 1))wot]
(1 - Xe) h
- v(1 - XeV) sin[(l - 2XeV)wot]}, (3.17)

where the quantization condition Jo = (v + 1/2) was used. The last expression coincides

with the quantum result [6].

3.2.2 Two-dimensional System

Next, we examine the classical response function for the two-dimensional system (coupled

oscillators). By analogy to Eq. (3.8) the expression for the classical response function is

R(1) = - d oxd odJdJa(t) a(O) Op(J,, J,) Oa(O) ap(J, Jy)) (3.18)
R =-do, J, c )oy dJ

where we again use the fact that distribution p is uniform in poý and Woy. Fourier decom-

position of polarization a(t) = En•,n, an,nye (nx x+ ny'py) yields

RR x(t)= 422 + dJxdanxn,, 12e(nxi x+ nY -Y)t

x n- + n p(J., Jy). (3.19)



Microcanonical distribution function p(Jx, J,) = (1/47r2)6(Jx - xo)6(Jy - Jyo), which

comes as a limit of quantum mechanical eigenstate, again results in the linear time diver-

gence of the classical response function (3.19). Yet, as in the case of 1D system we may

introduce uncertainty O(h) around the trajectory to remove this divergence. First, we

notice that our (2D) problem with the transition frequency nxwx + nwy can be converted

into 1D problem with one-photon transition on frequency ak after the change of variables

Jxnx - + ny jy

Jx n2 + n2J + n2 + n2
x Y x Yjny nx,

" n 2 + 2 x n + n+2 Y'x Y x y
_ E OE aJx aE &J,W - oJ- J + = wxnx - wyny
OE E a x J aEO aJ

WY - + -J = wny - wyn, (3.20)a a, Jx aJ, OJV a-,
The classical response function now becomes

f-.--- & -~x

R()(t) = 4w2 dxdjtI |wxI n t p(Jx, J,). (3.21)

with the microcanonical density p(Jý, Jy) = (1/47r2)6(J - J yo)6 (J, Jyo). Integrating

out J, we get

R((t) = n Ij anxn2nv xt a x - J) , (3.22)

which is the same as the one-dimensional linear response function (3.10). As previously

we now introduce uncertainty A = h, which changes microcanonical distribution density

6(Jx-J o) to the uniform distribution density within the width h, (1/h)9((j, - Jxo) + h/2)

xO(h/2 - (JY - Jxo)). This results in

R()(t) = ~ onZnyIt nx Can 2 it , (3.23)
nxny Jx=JLo-r/2 n, J o+/2

JV=J1,o J= Jyo



or in terms of the old variables {Jx, Jy} the classical expression for the linear response

function becomes

R() (t)  = - J • •(•x•+n•)
nxny J -JXo -nxh/2

JY=JYo-nyh/2

3 tonxy 2el(nxwx+Yw)t (3.24)
fnxy Jx= Jo+nxh/2

Jy=Jo+nyh/2

From here it follows that in order to describe the transition on frequency n,ýw + nw, in

classical language, we need to run the classical trajectory that corresponds to the mean

values of actions

Jx = J±o + nh/2 = h(vx + 1/2) + nxh/2

(h(vx + 1/2) + h(v, + nx + 1/2))/2

(Jxo + Jxf)/2,

(3.25)

Jy = Jyo + n,h/2 = h(v + 1/2)+ nyh/2

= (h(vy + 1/2) + h(vy + n, + 1/2))/2

= (JyO + Jyf)/2,

where Jxo and Jyo are action variables of the initial semiclassical state and Jxf and Jyf

are action variables of the excited semiclassical state.

We now generalize the expression for the linear response function to the N-dimensional

case (N degrees of freedom). Rotating and scaling N-dimensional action space similar

to transformations (3.20) to get li = OE/O0J1 = -N ini we reduce the N-dimensional

problem to 1-dimensional problem with effective action J 1 as in Eq. (3.22). Imposing

the uncertainty h around Ji and transforming action-space back, we obtain the general

expression for the classical linear response function of the system with N degrees of

freedom



i 2 i(TN njwj)'tR(1)(t) S 1 10fllnl2... nN 2

1 ni ... 12ef(E nj j).t i (3.26)
n •.n2 ... nN 

J=Jo+i/2

which means that one should run classical trajectory with mean actions J, = (Jjo +

Jjf)/2, j = 1, ... , N , to find classical spectral amplitude Rg)(w) of the transition with

frequency w = N njj.

The result in (3.26) reproduces the well-known Heisenberg's correspondence principle

[51, 52, 53] between the quantum matrix element (ula(t)lv) and the classical (u-v)th

Fourier component of a(t), evaluated along the trajectory with mean action (Ju + J,)/2.

This correspondence turns out to be almost exact for several exactly solvable systems

such as harmonic and Morse oscillators [51] and explains the coincidence of classical and

quantum results noted in Ref.[6] and in previous section.

3.3 Nonlinear Response

The nonlinear response function contains more detailed dynamical information than the

linear response function. First, we focus on the lowest order nonlinear response function

R(2) (71,7 2) -- 1 2 ([[o (t 2), o(ti)], a(O)]), (3.27)

where t 2 = 71 + 72, t = T71. The Fourier-Laplace transform of the second-order response

function is defined as

R(2)(plI, CD2) = j dTl J dT2R(2)(TI, T2 ) exp(ic 1IT1 + i 2 T2 ). (3.28)

It is convenient to work with the symmetrized spectrum [? 49, 58]

S(A, Q2) = 1R(2) (Q1, 1 - Q2)+ (2)(Q2, Q1 + Q2) , (3.29)

which contains all the information about 2D response in the range of (Q• > 0, I21 < Q1 ).



In the Heisenberg representation the time dependence of the polarization operator

is given by oa(t) = eiHot/ha(O)e- iHot/h . The quantum expression for R(2)(71, T2 ) can be

written as

R (Ti,72 ) gl[[( + T2), a(Tl)], a(0)]|g)

h2- E (gEg (o) l)(Ula(o)lv)(l a(o)lg)
V U

x [exp (i(E, - E.)(T1 + T2)/h) exp (i(E, - E,)Tr/h)

- exp (i(E, - Ev)(T I + T2)/h) exp (i(Eg - Eu)T1/h)

- exp (i(E, - E,)(T1 + T2)/h) exp (i(E, - Eg)Ti/h)

+ exp (i(E v - Eg)(Ti + T 2)/h) exp (i(E u - Ev)T1/h)], (3.30)

where Ek is an energy eigenvalue that corresponds to a specific eigenstate Ik) - I|k, k2, ..., kN)

of the system with N degrees of freedom. State 1g) is the initial state which is not nec-

essary the ground state. As mentioned previously, to obtain the classical limit for the

response function we should change quantum commutators to Poisson brackets:

R(2) (T1 , T2)= ({{(t 2), a(t 1)}, a(0)}) (3.31)

Again, we use action-angle variables to describe classical motion. In previous section

it was shown that the number of degrees of freedom does not play any important role,

therefore we start our considerations with one-dimensional system with coordinates { J,

ý}. As shown in Appendix A the nonlinear response function (3.31) will have the following

expression

S(2) 2  (a(t) a( (tl) a(t 2) ~1(tl) ON(O) ap
RC(T 1 ,T 2 ) = dJd o K a 0 ) (3.32)

S( = do o aJ aJ 8 o 8 o OJ

Now we make use of the quasi-periodicity of motion to decompose a(t) into fun-

damental frequencies as we did in Eq. (3.9) for the linear response function a(t) =

E• aei ( wt + o°) . Substituting it into Eq. (3.32) and integrating out ýo0 we get



R(2)(T, T2 ) i dJ(n +,m) mom Da- -- m einwtl imwt2

DJ D) a&J

+imn(m + n)(tl - t 2 ) w n--m dinwtl +imwt2 J (3.33)

Microcanonical distribution density p = -6(J - Jo) again leads to the time divergence

of the response function (3.33). If we now impose uncertainty A = O(h) with the distri-

bution density given by Eq. (3.12) we will still have time divergence due to the second

term in Eq. (3.33). Yet, if mn = 0 there will be no second term and we may describe

spectral peaks (Q 1,Q 2)={(0, mw), (mw, 0), (nw, -nw)} of symmetrized spectrum S(Ql,Q 2 )

with formula (3.33) using density (3.12); these are transitions that involve only two states.

Thus, one can see that by considering single classical trajectory with uncertainty O(h)

around it one can correctly describe transitions between two states - the case of linear

response function and the case of nonlinear response function for transitions (Q1,Q2)={(0,

mw), (mw, 0), (nw, -nw)}. The latter explains the non-divergence of the 2nd-order re-

sponse function with quadratic polarization obtained in Ref. [6]. Indeed, polarization

a = (b+b+b) 2 results only in spectral peaks (Q1 , Q2) = {(0, 2w), (2w, 0), (2w, -2w)}, there-

fore phase averaging within uncertainty 2h does not lead to the divergence of the classical

response function at long times.

3.3.1 One-dimensional Systems

Yet, in general the second-order response function involves transitions between three

states (Fig.3.1). Therefore one trajectory is not sufficient. We need to employ multi-

ple trajectories in our method. This will solve one more problem of the quantum-classical

correspondence - the correct account of anharmonicity effects on the frequencies of tran-

sitions between successive states (Fig.3.1). It was impossible to do so having only one

fundamental frequency from single trajectory simulation. Multiple trajectories concept

is usually used to calculate stability matrices in the classical expression of the nonlin-

ear response function [3]. Yet, stability matrices diverge. To overcome this difficulty we



a..'It

II - w -- n-

Luw.mW, AW n=(~n~r)w .

E(Jo +mh)
E(Jo -A/2)

EQ10

(b)

Figure 3.1: The consecutive transitions from the quantum (a) and the classical single-
trajectory (b) approaches. The simple classical method on the single trajectory gives
only one average frequency w, = w(Jo + A/2), which corresponds to action Jo+A/2, and
therefore is not able to account for Aw(Ig) -- 1u)) ' Aw(lu) -+ Iv)).

propose another approach. First, we start with introducing additional variables to the

classical expression of the nonlinear response function (3.31) as shown in Appendix B.

R 2(T1, T2) = {{(J 3, 3), a(J2 , 2)3, a (Ji, On)13

x -16(J1- Jo)6(J 2 - J1 )(J 3 - J1 )dJidJ2dJ3dcpo (3.34)
27

where 03 = w(J 3)t 2 + o, 'P2 = w(J 2)tl + 0po and brackets {... }3 are defined as

A, B3 = + + B - +a a A. (3.35)0o1203 0J 1  8J 2 +

Polarizations a in Eq. (3.34) are now evaluated on three separate trajectories, which at

this step have the same initial conditions J1 J 2 = J3 = Jo, 020o c30 = (Po. We can also

consider Eq.(3.34) in another way - as a trajectory in 4-dimensional space {J 1 , J2, J3, ý}

with microcanonical distribution density

P(J 1, J2, J3) = 6(J 1 - Jo)(J 2 - J1)6(J 3 - J1) (3.36)
2r

As previously our main assumption is that this microcanonical distribution function

p(J1 , J2, J 3 )can be replaced with the uniform distribution function within volume O(h2 )

around the trajectory {(J1 , J2, J3 , W) : J1  = J2 = J3 = Jo}. In Appendix C such an

uncertainty volume is found from the condition of the nondivergence (i. e. absence of

I:,



derivatives Oa(t)/oJj) of the classical response function (3.34) (see Fig.

provided by the distribution density

P(J1 , J2, J3)
1

2 0((J_ - Jo) + A 1/2)0((A 1/2) - (J1 - Jo))

xO ((J2 - J1)+ A2/2) ((A2/2) - (J2 - Ji))

X6 J3+-- 2  -Ji)m m

With distribution (3.37) the classical expression for the second-order response function,

as shown in Appendix C, becomes

(3.38)(2) "_)= -(m + n)mR (1,72) = ,m
n,m

am(J3)a (J2)L_-m-n (J 1)eim(J3)(r1 +72)+inw(J2)r1

-amC (J3 ) an (J2)-m-n(J1 )eimw(J3)(-1 +T2)+inw(J 2)71

-am (J 3 )an (J2)-m-n (J 1 )eimwn (J3) ( r +7• 2)+inw(J2)71

+am(J3)a-(J2)m-n (J1)eimwi(J3)(r+ 2) +in(J 2)

J1 =Jo+Ai/2

J2=Jo+A2 /2+A 1/2

J3 =Jo+(Ail-A2(n/m))/2

J1 =Jo-A1/2

J2=Jo+A 2 /2-A1/2

J3=Jo-(AI+A2(n/m))/2

Ji=Jo+Ai/2

J 2 =Jo-A 2 /2+AI/2

J 3=Jo+(Ai +A 2(n/m))/2

J.=Jo-A /2

J2 =Jo-A 2 /2-A 1 /2

J3=Jo-(Al -A2(n/m))/2

(3.37)

3.2), which is



Comparing classical result (3.38) with quantum result (3.30) we can see that the

forms of the two expressions are the same. As in the case of the linear response function

the arbitrariness of the size of the uncertainty volume for the classical nonlinear response

function (Fig.3.2) is removed from the requirement of coincidence of quantum and classical

expressions, i.e. for A1 = m + n h and A2 = m Ah. With this, the final formula for the

classical second-order response function takes the following form

-1

R(2), (T, 2) = 1 (3.39)
n,m

am (J 3 )Ctn (J 2 ) aO-m-n (J 1) Cimw(J3)(rl+T2)+infl(J2)r1

-am (J3)a ( m-2 n (J 1)eimr w(J3a )(Tr +T2 )+i n w (J 2 )T1

-m (J 3 )an (J 2 ) a-m-n (J1 )eimw(J3)(71 +T2 )+ilW(J2)I71

J1i=Jo+(n+m)h/2

J2=Jo+mh+nh/2

J3=Jo+mh/2

Jl=Jo-(n+m)h/2

J2 =Jo-nh/2

J3=Jo-nh-mh/2

Ji =Jo+(n+m)h/2

J2 =Jo+nh/2

J3 =Jo+nh+mh/2

am (J3 )n ( 2) -m-n (J 1 )imw(J3)(rl +Tr2)+inw(J2)71

J1=Jo-(n+m)h/2

J2=Jo-mh-nh/2

Ja=Jo-mb/2

Careful comparison of quantum expression (3.30) and classical expression (3.39) shows

that agian each quantum-mechanical propagator (vajlu) exp (i(Ev - Eu)t/h) is replaced

with the Fourier component a,_ (J) exp (i(Z - U)w(J)t)lJ=(J+Ju)/2 in the classical for-

mula. Therefore, for instance, to calculate the classical second-order response of 1D-



Jo

J0- J0 + JI

Figure 3.2: Distribution density p(J1 , J2, J3) for the second-order response function in
(J1 , J 2)-plane.

system in the process shown on Fig.3.1a, one should run three classical trajectories { J, (po}

with actions Jo + nh/2, Jo + nh + mh/2, Jo + (n + m)h/2 and find fundamental frequen-

cies and spectral components of a(t) along these trajectories. One can check that formula

(3.39) reproduces almost exact quantum result for 1-dimensional Morse oscillator with

quadratic polarization a = (b + b+)2 , as shown in Ref.[6].

3.3.2 nth-order Response Function for Multidimensional Sys-

tems

The result (3.39) can be generalized for the system with N degrees of freedom. As it was

shown for the linear response function, by scaling and rotating multidimensional action

space we may reduce a N-dimensional problem to one dimensional one. As an example,

the second part of Appendix B contains transformations for the second-order response

function of two-dimensional systems. The final formula for N-dimensional system have the

same result as for one-dimensional system but with vectors instead of scalars (compare Eq.

i t" i1 1 .. ... . .. . . ..NOW NIN



(3.15) with Eq. (3.26)). The second-order classical response function for N-dimensional

system reads

-1
R() (I, T2) 2 (3.40)

n,m

x-
f =f+(f+ff)h/2

J2=7f+fih+i4h/2

J3=:f+rnh/2

Ji -Jo-(iiS-iiith/2

f2=J-fO iih/

1=Jo+(i+-i )h/2

J3 = Jo+fih+fifh/2

Jf2 =JfOn-h-inh/2J2-Jo-f&-h/2

where Jk = (Jk, Jk2 , --...JkN), a = aMmlm2m...N and rJc = mlwl -+ m 2w 2 + ... + mNwN.

Basing on the results for the first- and second-order response functions it becomes

possible to find the classical result for the nth order response function. As it was no-

ticed previously the difference between the results for N-dimensional system and for one-

dimensional system is that all scalar parameters of the 1-D system turn to N-component

vectors. Therefore, for the purpose of simplicity, we may consider only one-dimensional

systems. The classical expression (3.15) for the linear response function can be rewritten

in the form

- z77 (•)o•,•(•) am_7( J- )eiJ3)C (eij )( 72-)a _+ •-:) + )

-affil (J3) ail ( a-7)-nfi_ ( • ) i'ff (J) (T1-•F2 )+i•0•(•2)Tj 1



R((t) = an(Ji)a - n(1J 2)einw(J2)t

n h1 =Jo-nh/2

J2=Jo-nh/2

- an(Ji)acn(J2)e inw(J2) (3.41)
n Ji=Jo+nhi/2

J2=Jo+nh/2

with distribution density within the volume O(h) in 3-dimensional space {J1, J2 , oo0 given

by

p(Ji, J2) 1 Inj(J1 - Jo)6(J 2 - J1 ), (3.42)
27rwI InI hi

where 9A(x) = O(x + A/2)0(A/2 - x) is a square-function of the width A. Comparing

Eq. (3.42) with Eq. (3.37) it becomes clear, that in order to obtain the non-divergent

classical expression for the nth-order nonlinear response function, one should impose

uncertainty within the volume O(h ) around the trajectory in (n+1)-dimensional phase

space. The uncertainty volume is given for each sequence of transitions jko)o - Iko +k) -

Iko + ki + k2) -+ .- + Iko + ... + k) -+ Iko) by the distribution density

1 1
P(J1, J27J )xl h Jn+l) =k1P(J~2, 2Ik, h n+lx -k, + l k2 h x 1k, +- k2 + k3[ h x ...

xl 1kllh(J1 - Jo) x |Okl+k 2 |h J2 -l 1)  (3.43)

XOIkl+k2+k 3Ih J k1 + k 2 + k

x... x Ok+..+knl Jn 2 ... -n-
ki + k2 +... + kn k + k2 + ... + k,_1

(+ k + k2 + ...+ k k + k2 + ... + kn

Again, distribution functions (3.43) result in the replacement of the quantum mechanical

matrix elements (vlalu) with the Fourier coefficients of a(t), evaluated along the classical

trajectory with average action (J, + Ju)/2. The latter can be verified by the detailed

calculation of the 3rd-order response function R3) (T1, T2 , 73) using the distribution density



in Eq.(3.43). It is useful to check that in the limit h -- 0 the distribution density (3.43)

becomes a microcanonical density in the form of the product of 6-functions as in Eq.(3.36).

3.4 Numerical Calculations

In this section we show how one can numerically implement the above results. We compute

the second-order nonlinear response function of the two coupled oscillators and compare

its symmetrized spectra S(QI, Q 2 ) from quantum and classical calculations. We consider

Henon-Heiles Hamiltonian [59]

H 1 ,2 0 2 0 2) + 2 . 3)  (3.44)
2H + Y+ ±+ y )x+A(y + ) (.4

with w = 0.7, w = 1.3, A = -0.1, r = 0.1.

The symmetrized spectrum of the second-order response function is given by equation

(3.29). The Fourier-Laplace transform R(2) (&1, I2) of the quantum-mechanical result

(3.30) is

R•(2) (CJ1,C2) 4h2 EE (g a(O)Iu)(u L a (O)Iv)(vIa (O)lg)

x [6 ( - (E, - Ev)/h) 6((C2 - (Eg - E,)/h)

-6 (C1 - (Eu - Eg)/h) 6 (C2 - (Eu - Ev)/h)

+ 6 (D,1 - (Eu - Eg)/h) 6 (C2 - (Ev - Eg)/h)] (3.45)

The Hamiltonian in Eq. (3.44) is diagonalized in a local mode basis of 225 harmonic

oscillator wave functions and the quantum spectrum (3.45) of the second-order response

function is calculated. We consider the polarization operator in the form

a= 2 + y2. (3.46)

The symmetrized spectrum SQ(QI, Q 2) is plotted on Fig.3.4a. The system is consid-

ered to be initially in the state |g) = 11,1). At this energy Henon-Heiles system obeys

quasiperiodic motion as seen from numerical calculations.



The classical expression for R)(2) (L1, 1 2 ) arises from the Fourier-Laplace transform of

Eq. (3.40):

Z2)-1 (3.47)
( )4h 2

nx {ny,mT,my

xJ3me, nxny (J2) a-mXnx,-my-ny 1)

X•(01 - M•i3(J3) - "(J 2 ))6•(- 2 - '(J 3))
z=Jo+(i+rf)h/2

f2=fo+ffih+(iih/2)

f,=f 4+ffi/2
-amm, (J3)any (J2)a-mx-nx,-my-ny (J 1)

X6(;i - r3(J) - i&(3 2))8 L)6 2 - rW(J3 ))
fl2:Jo- (ii:-{-if)r/2

f2=f 07-i'h/2

-amxmY (J3)anxn (J2)m-nx,-my-ny (J 1 )

X6( .l - 4, .(( )- '(.(• 2))6(C. 2 - 'MWo( ))

j 2 =fJ +(i+ff)h/ 2

2=fO+Efih/2

f3=fo+fih+(ffih/2)

+amXMY ( J3)cnxnn, (J2)a-mx-nx,-m y (J 1)

x6(- r(J 3 ) -3 ( J 2))6( 2 - u (J3))
A= A-(H+,•)h/2

where J = (J•, Jy), W = (wx, wy), M = (mx, my), n = (nt, n). Given the spectrum of o(t)
one can select nonvanishing terms in the above sum. The typical Fourier spectrum of a

in the vicinity of the initial state I1,1) is shown in Fig. 3.3. It has 11 significant spectral

components: C0o,o, al,O, C2,0 , -1 0,2 , a•,2, 1,2,C,0, ~ -2,0 , al,- 2, O0,- 2 , C-1,-2, for which
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Figure 3.3: Spectral components of a(t) = x 2 + y2 in the region of the initial state

11, 1). Representation of the spectral frequencies in terms of the fundamental frequencies

{wx, ~y} leads to decomposition given by Eq. (3.5).

-, _,-n, = (a•,•y)*. Therefore classical expression (3.47) will have only those values of

rM = (mr, my), n' = (nr, ny), which satisfy the equality

m, n, E {(0, 0), (1, 0), (2, 0), (-1, 2), (0, 2), (1, 2), (-1, 0), (3.48)
(3.48)

(-2, 0), (1, -2), (0, -2), (-1, -2)}.

In total, there will be 73 such combinations. To calculate the contributions of all the

terms in the expression (3.47) we need to run 17 classical trajectories with action variables

J = h(N, + 1/2), Jy = h(Ny + 1/2), where mean quantum numbers (Nx, Ny) are

(0, 1), (0.5, 1), (1, 1), (1.5, 1), (2, 1), (2.5, 1),

(0, 2), (0.5, 2), (1, 2), (1.5, 2), (2, 2), (2.5, 2), (3.49)

(0, 3), (0.5, 3), (1, 3), (1.5, 3), (2, 3).
The above 17 trajectories are sufficient for calculating the complete two-dimensional clas-

sical spectrum for the system (3.44) with polarization (3.46). To run the above trajectories



we need to find proper initial conditions, which will result in quantum numbers (3.49)

according to formula (3.6). It was shown in Ref. [59] that semiclassical spectrum of

Henon-Heiles system reasonably agrees with quantum mechanical one if the initial con-

ditions were chosen by selecting Ji from unperturbed Hamiltonian. Thus, we take mean

quantum numbers (3.49) for unperturbed actions Jx, J, and run classical trajectories

keeping track of coordinates x(t), y(t) as well as a(x,y). Applying Fourier transform to

x(t), y(t) and a(t) evaluated on the same trajectory we select fundamental frequencies

{wX,wy} from the spectrum of x(wx,wy), y(wx,wy),[55, 56, 57] and find spectral compo-

nents of a that correspond to these fundamental frequencies (e.g. Fig.3.3). The results

of classical simulations and corresponding quantum mechanical results are presented in

Table 3.1. The final symmetrized spectrum Sc (Q , Q 2) from the classical calculations is

shown on Fig.3.4(b). Both Table 3.1 and Fig.3.4 show good agreement of quantum and

classical results. The discrepancy between quantum mechanical and classical calculations

may arise from three reasons:(a) the semiclassical quantization does not result in exact

quantum mechanical spectrum, (b) the mean-action trajectory does not appropriately ap-

proximate the quantum matrix element, (c) the classical initial conditions do not lead to

the desired quantized actions (3.6). The main error of the present calculations results from

the fact, that in classical simulations we have used initial conditions of the unperturbed

Hamiltonian. The latter can be improved by selecting better initial conditions.

3.5 Conclusions and Discussions

In this chapter we have found that the replacement of the microcanonical distribution

density with the uniform density within volume O(hn ) in the expanded multidimensional

phase space removes the inherent time divergence of the classical linear and nonlinear

response functions. Each set of transitions, which corresponds to one term in quantum

mechanical formula, defines a particular quantized phase-space uncertainty volume in the

classical formula. The form of uncertainty volume is determined by the requirement of

non-divergence of classical response function, which restricts the class of distribution func-
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Figure 3.4: Symmetrized 2-D spectrum S(w0, w2 ) for Henon-Heiles system. (a) Quantum

mechanical result (using formula (3.45)); (b) classical result (using formula (3.47)).



tions and their arguments, and the requirement of a discrete spectrum, which selects only

theta- and delta-functions in the expression for distribution density. The resulting clas-

sical response function is of the same form as the quantum response function for a given

initial eigenstate. Classical and quantum expressions have well-defined one-to-one corre-

spondence if the coefficients of the terms in the classical series are the same as those in the

quantum formula. Setting these coefficients to be equal, we define the size of uncertainty

volume and, in particular, justify the proposed phase-space quantization condition found

empirically in Ref. [6]. As a result, we arrive at Heisenberg's correspondence principle,

where each matrix element (u(a(t)jv) in the quantum formula corresponds to the classical

Fourier (u-v)th coefficient of a(t). The same correspondence principle was used in the

spectral analysis technique proposed in Ref. [53] and showed good numerical agreement

between classical and quantum results. At the same time, for the nonlinear response, we

arrive at the multiple trajectories approach, which avoids the divergent interference of

classical trajectories.

One may speculate on the possible reasons for the construction of the uncertainty prin-

ciple in classical response theory. We present a simple physical explanation below. The

energy of an isolated quantum mechanical system will not increase, i.e. a system will not

respond to the external influence, unless a quantum transition occurs. And if it occurs,

the action J, as pointed out by Bohr, changes discontinuously by AJ = nh for allowed

n-photon transition. Our primary goal is to describe quantum mechanical response with

classical dynamics. Yet, in classical mechanics there is no discontinuity - the influence

of any force will result in an immediate continuous response of the system, therefore the

smallest response of a classical system is zero. How is it possible to describe quantum

dynamics, in which the smallest response of the system is AJ = nh, with continuous

theory (classical dynamics), in which the smallest response of the system is AJ = 0 ?

One possible solution is to introduce the uncertainty nh to the latter. This is exactly

what we have obtained in the present chapter - to describe a n-photon transition in the

response function we need to introduce the uncertainty nh for the classical action. Multi-

ple independent transitions (in the case of nonlinear response) need multiple independent



uncertainties, which results in uncertainty volume in the expanded action space. There-

fore the expanded action space introduced in our approach is not just a result of algebraic

manipulations, but is also based on intuitive physical argument. The latter also turns out

to be in agreement with the results mentioned in the Introduction. Indeed, since the non-

linear response function needs a phase space averaging in the expanded phase space then

the Boltzmann averaging, which is intrinsically an averaging within the original phase

space, fails to converge the classical nonlinear response function for the constant-energy

system with quasiperiodic motion. The concept of configurational or thermal averaging

has been invoked in several classical and quasi-classical approximations of quantum dy-

namics, including wave-packet dynamics, non-adiabatic dynamics and centroid dynamics

[60, 25, 26, 27, 28, 29, 61, 62, 63]. In the current context, phase space quantization can

be generally established for quasiperiodic systems and leads to exact quantum mechanical

results for a class of integrable Hamiltonians.

The results of this chapter raise a conceptual question of whether the classical ex-

pression for the response function (3.2) is an appropriate limit of the quantum expression

(3.1). Indeed, the theory of semiclassical quantization of Poisson brackets [64, 65] es-

tablishes the relation between quantum commutator and Poisson brackets in the form

[f, ] = zh{f, g} + O(h 2), where the remainders O(h 2) are power series in whose coef-

ficients are bidifferential operators acting on f and g. The quantization parameter h

is considered to be small but finite, thus O(h2) can be neglected as long as the pref-

actor of h2 is finite. However, this is not the case in response theory. The expression

for quantum response function contains commutators [a(t 2), a(tl)] of the same dynami-

cal operator a(t) taken at different times. Thus the differential operators in O(h2) will

result in classical divergent derivatives Onxk(t2)/xj(tl) n (n-th order stability matrices),

which become infinitely large at times t 2 -* oc and elimination of these terms is not

justified. We usually do not face the above problem since most applications of classical

mechanics contain Poisson brackets of the functions evaluated at the same moment of

time (for example, commutator of dynamical function with Hamiltonian) and therefore

we can always take instantaneous coordinates and momenta as system variables avoiding



stability matrices. The O(h 2) is thus finite and can be omitted in the limit of h - 0,

resulting in the correspondence principle [f, g] --+ h {f, g}. Yet, we cannot do the same

for the response function and the correct account of the higher order terms in is also

impossible. In the present chapter we show that the classical response function can still

be calculated as a limit of a quantum expression from the correspondence principle [f,

] -- zh {f, g} if we change microcanonical 6-functions to square-functions of the width

O(h) , -O((J - Jo) + nh/2)0(nh/2 - (J - J0)). Surprisingly as it may seem, while the

replacement of the distribution functions lies within the error of O(h), which is introduced

as a result of eliminating higher order terms in the Plank constant, the classical response

function changes drastically and becomes very close to quantum result once phase-space

is quantized.

3.6 Appendix A: Simplification of Classical Response

Functions.

In this Appendix we simplify the expression for the classical response function

RC )(1,T2) = ( {{l(t 2 ), a(tl)}, a(0)}) = Tr({{fa(t 2), a(tl)}, (O)}p). (3.50)

Using identity Tr[{A, B}C] = Tr[A{B, C}] we find

R)(T1 , T2) = Tr({&(t 2),a(tl)}, {a(O), p})
/ do2 p (Oa(t2) Oa(t1) Oa(t2) 1a(tl)

do o OJ OJ avo
( a(0) Op Oa(0) Op (3.51)

ao J - J o/(3.51)

If p does not depend on ýp, then

R~)(T1, _2 ) = Tr({a(t2),o(t 1)}, {a(O),p}) (3.52)

[dJ 2r d2(Oa(t2) a• (tl) _ O(t 2) &a(tl)) Oa(0) Op
Jo a o OJ OJ a Jo )O0o OJ

55



Another approach used in the text is

= Tr(a(t2), a(tl)}, {a(0), p})

= Tr(a(t2), {a(ti), {a(0), p}})

d(O a(t) adWoa(t2) 0 Oo aJ

_ o(ti) a

aJ O(p90

•O(0o) ap
So80 &JJ(Oa(O) Op

avo aJJ

which is obtained by successive applications of identity Tr[{A, B}C] = Tr[A{B, C}].

3.7 Appendix B: Expanded Phase Space

3.7.1 A. One-dimensional System

In this Appendix we introduce additional variables into the expression for the classical

second-order response function and thus effectively increase the dimensionality of phase

space. Using identity a(J1 ) = f a(J 2)6(J 2 - J1)dJ 2 we introduce variables J 2 and J3 into

the expression (3.31)

R( (T1 , T2) = {a(J, c, t 2), a(J,, , )(J , )},a(JI, O )}- 6(J1 - Jo)dJjdpoJ G~o, 27r

=1( (f a 3(J3 )6(J 3 - J1 )dJ3 ) a (f a 2(J2)6(J 2 - J1 )dJ2)

a (f a3(J3)5(J 3 - Jl)dJ3) a
O Ja

(f a2(J2)6(J2 - J1)dJ 2)
80po

,al(J1i)}

x 6rS(Ji - Jo)dJJldpo

6/3  ( J3 - J 1) - a 2 ( J2 ) S ( J2 - J 1)

S(0 aJi
as(J3 - J,)

-a 3(J3 ) ail ao2(J2)~6(J
2 - J1))

x -6(Ji - Jo)d JdJ2d 3d(po27r

R) (·ri, 72 )

I dJ j/ 2xo

(3.53)

, i(J 1)}

rl T\· ·T T

(3.54)



Using a0(j2-lj) _ o6(J2-jl) and integrating by parts over J3 and J2 the terms in Eq.

(3.54), we obtain

-[(AaeJ~8 0
8o 2

Oa3 (J3 ) J2 O(J 3J3 ) 02 J2 ) 0, (Ji)
o+ aJ 2o J2 J3  0 )

+ (D003 (J3)a 2 (J2 ) 2 a3 (J3) 12 (J2)
1J3 00 1J2 aJ3 00

x -6(J1 - Jo)6(J2- J1)(J3- J1I)dJldJ2 dJ3do
2which is equivalent to

which is equivalent to

S{{i3 (J3), 3a 2(J2)}3 , a1(J 1)} 3

x --1(J, - Jo)6(J2 - J21)(J 3 - Ji)dJldJ2dJ 3dcpo
2w

0a1 (J 1)
0Po

(3.55)

(3.56)

where {A, B}3 = A (= a B - B (1Oýo ai l 1

3.7.2 B. Two-dimensional System (Two Degrees of Freedom)

Repeating the same steps (3.54) - (3.55) for the system with two degrees of freedom {Jx,

J,, Cxp, cy} we will get the same expression as (3.55) but with vectors J = (Jx, Jy) and

oPO = (Pox, roy) instead of scalars J and W0. Substituting Fourier decomposition of a

S 
O (j )n e (i(nxw•u j )+ nyw/ j ) ) t + i (n ýoo° +n y ° y ) )

nxn
T1x•%y

-• = ~,(J)
(3.57)

the classical second-order response function for the system with two degrees of freedom

takes the form

,7 2 )

R() (TI, 7T2)

rl T

+ +
19J ah + + A.

+ -52+ -a-

a~j (ii ýOj3



R (TI, T72)

= E
x D 2/'

(i (
a

+ n2x)

-i• I [(nx

0(.(3) aJ9
fn 3 1

(3)

na3

a
n3x

OJ2X

+ ( 3y+ ± 2y) a

+aJ-

+n 3Y n
j2y n 2

S 3 (2)

jly I nlI

+ (+3y n2y)

(2)
- n2xn2 aJ3

- (2) (9
- o n2x

n2 1 J 3x

+ 3
±Oriyaj <)n

x 4 (J - J1)0 2- J 1 )(J 3 - Jl)dJ1ddJdd 047T2
(3.58)

where we have used the condition n'l + 2+ n 3= 0 for non-vanishing value of the integral

over ýpo

Now we make transformations in 6-dimensional space {Jlx, Jly, J 2x, J2y, J3x, J3y}

and introduce new variables J = f (J , J2, 3), j = 1,2,3. For the particular case of

n3~n2y 2 n2xn3y we take such variables Jj that

(n3x + ?n2) + (n3 + r2y)
OJlx i1, oJly

a
= n3x a 2(O2x

t t= n- 2x

With this, expression (3.58) becomes

C() (71,T2)

+ aj 3x

O 3x

lfin2iL3

-(1) i a
-za

1 aj2x
1

x 47 2 1(ji 1

*x6(J3 (J2, J3)

+ aJ3

+ n3y

+· (a2y
2y O 2y

(2) a (3)

n2 J3 X n3

(3) L2)za a (2

n -3 2 n -2

- J)6(J2( 2 , J3) - Jl(J1))

19J
S(J) af dJdJ3dJ d0

23JY

which after integrating out Jil, J2y, J3y has the same form as one-dimensional expression

(3.55). The cases n3xn2y = n2xn3y can be considered separately as well.

+ n2yj• 3y

+±2 x) ( a7

(3)
n3

a 3y
± a 3y)/

(3.59)

i (2) - (3)
n 2 J3

(3.60)

(3) (2)
n3a 2 n 2 Oil, ni-(1)

Ez

Thus, each



set of transitions gl, g2, .. , gN) -+ Ui, 2 , ... , UN) -- IV1U, 2, ... VN) - Igl, 92, ..., gN) can

be described by the appropriate series of transitions in one-dimensional system Igl) --
fi) --+ -IM 1 .

3.8 Appendix C: Uncertainty Distribution Density

for Two-time Response

In this Appendix we derive an explicit expression for the distribution density p(J1, J2, J3)

that does not lead to the divergence of the classical expression for the second-order non-

linear response function

R•(, T2) = { {(J3, 3), ao(J 2, P2) }3, 0(J , 00) }3

xp(J1, J2, J3)dJldJ2dJ3 dýpo (3.61)

Performing integration by parts we get

CR) , I 7T2 ) dJdJ2dJ 3dpo

xaC(J 3 , p3) {a(J2, ¢2), (Ji , (o), p(Ji, J2, J3 )}3}3  (3.62)

Our goal is to find such function p(Ji, J2, J3 ), that will not result in divergent deriva-

tives oa(t)/&Jj, and at the same time will not have derivatives a"p/8J" higher than

first-order ones. The latter is necessary to have discrete spectrum of R ) (Ql, 7Q2), i.e. in

the form of 6-functions. One may notice that the derivative - + - + ) in brackets

{A, B} 3 does not influence a multiplier of the form f(aJ, + bJ 2 + cJ3 ), if a + b + c = 0.

Therefore it is reasonable to look for the expression of p(J1, J2, J3) in the form

p(Ji, , 2, J3) = f,(J1 )f 2(alJ + bJ 2)f 3(a2J1 + b2J2 + C2J 3 ) (3.63)



where al + bl = 0, a2 + b2 + c2 0. Substituting this into Eq. (3.62) we get

( 19 2  a o 1(Ce a 9ý L[oil
f( fl(J 1 J) f2(al bJ 2)f 3 (a2J + b2J2

8 DoJ
0O

-a3- 0J 2 020 ' (JI)f2(aiJ1 + bIJ 2)f 3(a2J1 + b2J2 + c2J3) dJ1 dJ 2dJ 3d 0oO3p2 I

8a 2 01cl a
-C3 Oo f (J1 ) a1 (f 2(alJ1 + bIJ 2)f 3(a2J1 + b2J 2 + C2J3))0ý0 aý00 i (3.64)

+3a2 1\J 1 2a b lJ1 + bJ2)f3(a2 1 + b 2~ )) d Jd 2dJh3do

where in the last step integration by parts was used. After substituting Fourier decom-

position ac(Jj, j) = E" at(Jj)e in j and integrating out Wo, the last expression in (3.64)

becomes

R(2)(Ti, T2 ) nm
n~m I dJidJ2dJ 3 27ram( J3 )on(J2)t-m-n (J)(-m - n)f1(JI)

x n o + (Tn +•n) )22 (f2 (al

x exp(imw(J 3)t 2 iMnw(J 2)tl)

J1 + bIJ 2)f 3(a2J1 + b2J 2 + C2

(3.65)

We now find such coefficients a2, b2 , c2 and al, bl that na 2 + (n + m)b2 = 0. These

coefficients can be chosen as a2 = -(n + m), b2 = n, c2 = m, al = -1, bl = 1. Finally the

distribution density and the response function take the following form

p(J1, J2, J 3) f(J 1)f 2(J 2 - JI)f 3(mJ 3 + nJ2 - (n + m)J1)

R ) (Ti, 7T2 )

(3.66)

27r dJldJ2dJ 3

n,m
xam( 3)on( 2)o-m-n (J)(-m - n)m

x f{(J 1)f2(J 2 - Ji)f3 (mJ 3 + nJ 2 - (r + m)Ji)

exp(imw(J 3)t 2 + iznw(J 2)tl) (3.67)

For the microcanonical distribution density p(J 1, J2, J3), functions fl(J 1) and f 2(J2 -

J1) would be 6-functions 6(J1 - Jo) and 6(J 2 - J1) correspondently, which lead to the

2J3)]



divergence of the classical response function (3.67). Yet, we may impose two uncertainties

to the functions fi(J1 ) and f2(J 2 - J1 ) replacing 6-functions with the step-functions of

the width A

fi(J 1 ) 0((J1 - Jo) + A-/2)0(A1 /2 - (Ji - Jo))

f2(J2 - J1) = -((J2 - J1) + A2/2)0(A 2/2 - (J2 - J1 ))

This removes the divergence of the classical response function since no derivatives of

6-function appears in R ((Ti, T2 ). The normalized uncertainty distribution density then

has the following form

(3.68)

I 0((J1 - Jo) + A 1/2)0((A 1/2) - (J1 - Jo))

x0 ((J 2 - J1 )+ A2/2)0 ((A 2/2) - (J2 - J1))

x6 3+J+ n -n + m)m m

and the classical response function (3.67) becomes

R(2) (71, 2) -(m + n)1
n,m

am(J3 )an (J 2) -m-n (1 )eimw(J3)(r1+72 )+inw(J 2 )l

x

-am( J 3 ) n( J2)O-mn (J 1)eimw(J3)(-7- +,r2 )+inw(J 2 )r1

(3.69)

(3.70)

Ji=Jo+Ai /2

J 2 =Jo+A 2 /2+A 1 /2

J3 =Jo+(A -A 2 (n/m))/2

J1= Jo-A 1 /2

J2 -Jo+A 2/2-A 1/2

J3=Jo-(Al+A2(n/m))/2

p(J, J2, 3)



-arm(J3)Pn (J 2 ) a-m-n (JI)eirmw(J3)(7T1+T2) inw(J2)T1

+am (3)n, (J 2 )OC m-n (Jl) eimw(J3)(T1rT2) inw(J2)T1

Ji=Jo/+A 1 /2

J2=J0 -A 2 /2+Azi/2

J3 =Jo+(A i +A2 (n/m))/2

Ji=Jo-A 1 /2

J 2 =Jo- 2 /2-A 1 /2

J 3 = Jo-(Al -A 2 (n/m))/2



Table 3.1: Quantum matrix elements and correspondent classical Fourier components for
the two-dimensional Henon-Heiles system.

(UxuyIa(0)|vxVy )a
(0,1|a 10,1)
(0,0ola 0,2)
(o,11a 10,3)
(0,21a 10,2)
(0,3la 10,3)
(0,21a 10,4)
(0,01a 11,2)
(0,1 a 11,1)
(0,21a 11,0)
(0,11a 11,3)
(0,21a 11,2)
(1,1la 10,3)
(0,31a 11,3)
(0,21a 11,4)
(0,41a 11,2)
(1,1la 1,1)
(0,1Ia 12,1)
(1,1la 11,3)
(1,21a 11,2)
(0,21a 12,2)
(1,31a 11,3)
(1,21a 11,4)
(0,31a 12,3)
(1,1la 12,1)
(1,1a 12,3)
(2,11a 11,3)
(1,21a 12,2)
(1,31a 12,3)
(1,21a 12,4)
(2,21a 11,4)
(1,11a 13,1)
(2,la 12,1)
(2,21a 12,2)
(1,31a 13,3)
(2,31a 12,3)
(2,21a 12,4)
(2,11a 13,1)
(2,21a 3,2)
(2,11a 13,3)
(3,11a 12,3)

a Matrix elements of the polarization operator in the eigenbasis of (3.44).
b Frequencies of transition between quantum states in the first column, WQ

I(uxwyla(0) lvxv•y a
2.00

0.54

0.93

2.94

3.98

1.32

0.100

0.62

0.12

0.18

0.98

0.22

1.36

0.27

0.32

3.55

1.03

0.88

4.59

1.04

5.72

1.24

1.06

1.08

0.25

0.30

1.61

2.18

0.38

0.43

1.78

5.15

6.27

1.83

7.52

1.16

1.59

2.26

0.31

0.35

= IE, - Ell/h
C Fourier components of a(t) calculated along the classical trajectories J, = h(N. + 1/2), Jy = h(Ny +

1/2) (each quantum mechanical matrix element (vz, vVy laJv +n, vv +ny) corresponds to Fourier coeffi-

cient a ,,n, evaluated on the classical trajectory Jx = h(vx + (nx/2) + 1/2), Jz = h(vy + (ny /2) + 1/2)).
d Frequencies of the Fourier components in the fifth column, Cn•mv, = naw., (Nx, Ny) + nywy(N., Ny).

WQb

0

2.552

2.526

0

0

2.498

3.221

0.680

1.861

3.182

0.668

1.846

0.655

3.140

1.830

0

1.357

2.501

0

1.332

0

2.472

1.306

0.676

3.152

1.825

0.664

0.650

3.107

1.808

1.349

0

0

1.295

0

2.443

0.672

0.659

3.120

1.803

an n(Nx,,Nv))C

ao,o(0, 1)

aO,2(0, 1)

ao,2(0, 2)

ao,o(0, 2)
ao,o (0, 3)

io,2 (0, 3)

al,2(0.5, 1)

a•,o(0.5, 1)

a- 1,2(0.5, 1)
a1,2(0.5, 2)

l1,o(0.5,2)

a-1,2(0.5, 2)

al,o(0.5, 3)

al,2(0.5, 3)

a-1,2(0.5, 3)

ao,o(1, 1)

a2,0(1, 1)

aO,2(1, 2)

ao,o(1, 2)

a2,o(1, 2)

ao,o(1, 3)

aO,2(1, 3)

a2,0(1, 3)

al,o(1.5, 1)

ax1,2(1.5, 2)

a-1,2(1.5, 2)

al,o(1.5, 2)

ai,o(1.5, 3)

a1,2(1.5, 3)

C_-1,2(1.5, 3)

a2,o(2, 1)
ao,o(2, 1)

ao,o(2, 2)

a2,o(2, 3)

ao,o(2, 3)

ao,2(2, 3)
a1,o( 2 .5, 1)

al,o(2.5, 2)

a1,2(2.5, 2)

a-1,2(2.5, 2)

an., (Nx, Ny) c
2.08

0.62

1.03

3.12

4.32

1.36

0.102

0.59

0.12

0.16

0.79

0.23

1.38

0.22

0.31

3.60

0.82

0.91

4.65

0.98

5.87

0.94

0.96

0.89

0.24

0.21

1.25

2.12

0.32

0.46

1.65

5.18

6.30

1.47

7.61

1.03

1.24

2.06

0.30

0.34

WCd

0

2.558

2.527

0

0

2.497

3.225

0.679

1.868

3.175

0.663

1.848

0.652

3.137

1.833

0

1.354

2.504

0

1.327

0

2.474

1.300

0.675

3.154

1.830

0.662

0.648

3.106

1.810

1.346

0

0

1.292

0

2.447

0.669

0.658

3.123

1.808





Chapter 4

Semiclassical Wigner Approximation

4.1 Introduction

Applications of multidimensional spectroscopy to large molecules and condensed phase

systems have motivated the calculation of response functions using classical dynamics. [8,

3, 6, 5, 44, 45, 50] Classical evaluation of response functions usually employs the simple

correspondence rule between the quantum commutator [A, B] and the classical Poisson

bracket th{A, B}. However the classical response theory has several problems. Van Kam-

pen cautioned the validity of the application of classical perturbation theory to the calcu-

lation of a system's response.[10] Recent numerical and analytical results demonstrate the

divergence of both linear and non-linear classical response functions at long times. [3, 5, 11]

Yet, while the quantum response function is well defined and can be rigorously calculated,

the problems appear after the classical limit is taken. The key question is whether the

classical limit is taken appropriately. In the present chapter we follow the derivation of

the classical limit from the phase space representation of quantum mechanics to show

that the simple classical limit of the response function in terms of Poisson brackets is not

valid at long times. The upper time limit for the quantum-classical agreement, i.e., the

crossover time, is found to be inversely proportional to system's anharmonicity.

The nonlinear response P(n)(t) to the n-th order in the applied field E(t) is described



P(n) (t) = dtn... j dtl

x E(t - tn)...E(t - tl -... tJ)R(")(tn, ... , itl), (4.1)

with the n-th order response function R (n) [1]

R(n) (t I, ..., t1)

=- h ([[... [n(-1) , 8 (Tn I)], ... , '(T1) ] , '(0)]), (4.2)

where Tn = • =1 ti and the operator &(i(t), i(t)) stands for the polarization operator

or the dipole operator. The classical expression for the response function is obtained by

replacing quantum commutators with Poisson brackets and neglecting the higher order

terms in the Planck constant (h --+ 0)

R () (t i, .., tl)

= (-1)n({I{... {a(r), a(T~_1)},..., a(T1)}, a(O)}), (4.3)

where {...} are Poisson brackets. But can we neglect higher order terms? To answer this

question we examine the classical expansion of quantum mechanics.

4.2 Wigner Representation of Quantum Mechanics

We begin with the Weyl-Wigner-Moyal symbol-calculus approach, [66, 67, 68] which in-

troduces Weyl transforms (scalar functions) instead of operators and the Wigner function

instead of the state vector using the rule

1 1
symb(A) - ah(p, q) = dve( h)p" (q - vlAq + 2v) (4.4)2 2

The non-commutative Moyal product that corresponds to non-commutative product of

quantum operators follows directly from the definition of the Weyl transform

symb(AB) - ah * b

= an exp (] b (4.5)

66



where the arrows indicate the direction of operation of the derivative. The quantum

commutator [A, B] in the phase space representation then corresponds to Moyal brackets

{an, bh}h = an *bn-bh *an

= 22ah sin bh

( 2 aq Op oqp q

S aq ap Op 8q)

- -an 0 p b + ... (4.6)24 (q 8p 8p aq
where the first term is the classical Poisson brackets multiplied by zh. Hence, an appro-

priate phase space representation of the quantum response function takes the form

R)(tn, ..., tl) =  - dpdqp (p q)

x {{...{aOn(rn), n(7,_n-1)}, .., O(T1)}n, an(0)In. (4.7)

Eq.(4.7) and Eq.(4.2) are equivalent expressions of quantum response functions.

The evaluation of the classical limit of Eq.(4.7) can be illustrated for quasiperiodic

systems. We introduce the semiclassical wave function[69, 70, 71, 72, 46, 62, 47] corre-

spondent to eigenvalue En = H(Jn = nh + 3h):

(~Pn) = (2r)-N/2e2p, (4.8)

where N is the dimensionality of the system and 3 is the Maslov index. We use semi-

classical wave function (4.8) to express the Weyl transform in action-angle basis (J, W),

[72, 69, 70, 71]

r 
1 1

ah(Jn, p) -7 d 2 jJAJIp +2

= ak(Jn)ek~. (4.9)
k

The latter is just a Fourier decomposition of the classical function

a(J, p) = ak(J)ek~. (4.10)
k



Thus, the Weyl symbols in semiclassical representation (4.8) are classical functions with

quantized actions J. Angle variables W obey classical dynamics as required by WKB

approximation (4.8). The expression (4.7) thus reads

x { {... {a(T), a(T7n )}I, ... , a(T1)}l, a(O)}h (4.11)

which differs from the classical expression (4.3) in the use of the Moyal bracket

{a, b}h = 22a sin 0 - ) b. (4.12)2 89 8J WJ 89
The classical limit of the Moyal bracket {...,..}r, follows directly from Eq. (4.6) by omitting

the higher order terms in the Planck constant and preserving only the first (Poisson-

bracket) term: lim 0o{f..., ...Ah = h{..., ...}. Yet, this simple limit is not valid for response

theory. The higher order terms in the expansion (4.6) can be omitted only if the prefactor

of h~ is finite. However, this is not the case in response theory. The expression for the

response function contains commutators of the same operator &(t) evaluated at different

times [&(t), &(0)]. The expansion (4.6) of the Moyal bracket {a(t), a(O)}hr thus leads to

the n-th order stability matrix

-aq(t)M ( ) a= q(t) (4.13)
aq(0)n-kap(0)k

in each h"-term. For the classical motion, stability matrices diverge as O(tn) for integrable

systems and exponentially for chaotic ones. Every h' term in the series of {a(t), a(O)}j in

Eq. (4.6) carries a time-divergent factor which becomes infinitely large as t -4 oc, implying

that at sufficiently long times a small hn will be compensated by large t'. Thus, time

divergence of the classical response function arises from the simple limit in the form

(4.3) neglecting terms which can be larger than the leading term at long times. Strictly

speaking, taking the usual classical limit h -- 0 we interchange the limits limt,-o and

lim__0O which are non-commuting. The noncommutativity of the limits t --- oc and h -- 0

was pointed out by Berry in [73]. The response function (4.7) is well-defined for any

moment of time, but the exchange of the two limits and the subsequent elimination of



higher order terms of Moyal bracket expansion (4.6) lead to the well-known problem

of time-divergence.[10, 5, 8, 6, 11] It is worth noting that we do not meet the same

difficulties with the limit {a, b}hr -- h{a, b} (and thus with the correspondence principle

[A, B] -+ zhh{a, b}) in equilibrium applications where the commutators are evaluated at

the same moment of time. Without the presence of stability matrices, the elimination of

the higher order terms in h is justified.

4.3 The Convergence of Semiclassical Series

Our main argument is that response functions can be systematically evaluated with classi-

cal observables by calculating higher order terms of Moyal expansion (4.6). Resummation

of the infinite terms in the Moyal bracket expansion converges to a semi-classical result

which has one-to-one correspondence to the quantum response function.

We demonstrate the above argument by first establishing the convergence of series

for {a(t 2 ), b(tl)}h in Eq. (4.11) for regular systems. Fourier decomposition (4.10) reduces

expression (4.12) to

{a(t 2 ), b(tl)}h = e a{ (aneln(2)) e- = (bmemw(t1))
n,m

- {e -_ F (anesn(t2)) ea (bmesmw(t1)) (4.14)
n,m

where W(t) = wt + po with w = oE/&J. Suppose {a, b}r, is taken at a particular value of

the quantized action J = Jj, the translational operator exp (A a) in Eq.(4.14) leads to

{a(t2), b(tl))}rj=jj

= (ane•nP(t2) ji+ _) (bmezmw(tl)l j jj -)
n,m

- (ane nW(t2) Ijj hm) (bme'mw(t1) jjj+h ) (4.15)
n,m

where the summation over n or m can be truncated for a given precision. In particular,



considering the quantum matrix element (vI [(t 2), b(ti)] v)

(V| [ald( 1(tl) v = (t2)v+ n) v + n1(tl) v
n

- (v b(tl)v + n)(v + n I(t 2) v) , (4.16)

it follows from Eq.(4.15) that its classical correspondence takes the form

{a(t2), b(tl)} dipo (4.17)
n

S (a-ne-znWt2lj=j+_) (2bnewtl j=J,+

n--E. aem•°t2 I ) (bjne -inwtl j=j_.

which does not lead to a time divergence. As a result, the semi-classical response function

Eq. (4.11) maps to the quantum response function (4.2) through the Heisenberg's corre-

spondence principle [52, 74] between the quantum matrix element and classical Fourier

component: (v + nI&(t) v) +--+ afnemwt J,+nh/2. We recently used phase space quantization

to arrive at the same quantum-classical correspondence and generalized the correspon-

dence principle to non-linear response functions.[6, 75] Surprisingly, the semiclassical ex-

pression (4.11) or equivalently Eq.(4.17) still leads to exact quantum results for several

exactly solvable systems including the harmonic oscillator and Morse oscillator discussed

later. [6, 75]

4.4 The Crossover Time

Let us estimate crossover time when the quantum mechanical effects in the h-expansion

of Moyal brackets {ý(t), c(O)}n start to play a significant role. For a 1D system the first

two terms of the Moyal bracket expansion (4.12) are

{a(t), a(0) }=h( Oa(t) da(O) o a(t) •a(O)
(p o 0J OJ O0 /

Zh3 () 0 0 >

-- ) (0) + ... (4.18)
24 o 0J OJ &(Po



With Fourier decomposition (4.10), the derivatives oa(t)/oJ in the above expression

results in time-divergent terms tzn~- a, eznwt+%nwo. At long times, the first term (Poisson-

bracket term) in (4.18) is of the order of the divergent derivative (tI | tlamax~,

the second is of the order of its highest divergent derivative o I t3lamax ()3 ,
where lamaxl is the largest spectral component in the decomposition (4.10). Obviously

the second term becomes significant when it is of the same magnitude as the first term

htlaax-12 3 ma2 ()3, giving the crossover time

1
t* _h . (4.19)

hJI

For the harmonic systems &w/aJ = 0 the crossover time (4.19) is infinite, implying that

the response functions of harmonic systems can be successfully calculated using the single

Poisson-brackets term. Eq. (4.19 ) justifies the known-equivalence of quantum and classical

response functions for harmonic systems. However, any anharmonicity Ow/OJ $ 0 leads

to the finite value of the crossover time t* (4.19), and the crossover time decreses with

anharmonicity.[76] Beyond the critial time, t > t*, one should expect the failure of the

correspondence principle [&(t), &(0)] +-+ th{a(t), a(0)} and thus the need to include higher

order terms in the expansion of the Moyal product.

We illustrate the above arguments with the linear response function of constant-energy

Morse oscillator with the Hamiltonian ft = -_ + D (1- e-,q)2. In Ref. [6], we in-

troduced the one-photon polarization operator & = (b + b+ ) with its classical analog [6]

a(J, ) = 2 xe(J/•/) 2 -(J/) cos(p), where o = (1 - 2x-J) wot + po, wo = 2Da2/p and
V l-Xe h

Xe = ha/ulj •. The quantum linear response function for a given energy state E, is

then

R(1)(t)= <v[[(),&(o)lIv>
(1 2 (v + 1 - Xe(v + 1)2) sin {(1 - 2Xe(v + 1))wot}
(1 - Xe)-

(1- (v - XeV 2) sin {(1 - 2XeV)wot}. (4.20)(1 - Xe) h
The semiclassical expression (4.11)-(4.17) gives exactly the same result, when the quan-

tization condition J, = h(v + 1/2) was used. The simple classical limit in Eq. (4.3)



yields

R(1)(t)= - {a(t), a(0)} d6 JV d )C j27r

2
(1 - ) (1 - Xe(2v + 1)) sin {(1 - Xe( 2v + 1))wot}

woJt (1 - (1 - (2v + 1)Xe) 2) sin ((1 - Xe(2v + 1))wot}, (4.21)
(1 - Xe)h

which diverges linearly in time. The dependence of the semiclassical result (4.11) on

the number of terms in the Moyal bracket expansion is shown on Fig.4.1 for the one-

dimensional Morse oscillator with parameters wo = 5, Xe = 0.005, h = 1 and linear

polarization operator. The agreement between quantum (4.2) and classical (4.3) linear

response functions indeed starts to fail after time t* = 1/(hj •jL) = 1/(2XeWO) = 20

(Fig.4.1a). As we systematically include higher order terms of Moyal bracket expansion

the agreement with the quantum result extends to longer times. The account of all terms

of Moyal bracket expansion gives the exact quantum result.

Let us estimate the crossover time t* for real systems, liquids CS2 and Xe. The cur-

vature of Morse potential VM(r) = ((ee(1--r/re) - 1) - coinsides well with Lennard-

Jones potential VLj = 4E (((/r)12 - (ý/r)6) for a = 6 with re = N/2/.[77] For CS2 molecule

with ,p = 76 a.u. and mean Lennard-Jones radius 6 _- 3.5A1 we have t* = 1/2XeWo =

p(-¢/()2/ha 2 2_ 5 ps. For Xe, p = 131 a.u. and 6 = 3.911, thus t* - 10 ps. Both times

are on the same order of the time scales of the reported experiments and MD simulations

[44, 50]. However, MD simulations of real systems do not observe the divergence of the

response functions. It was demonstrated in [43] that the response functions for irregular

dynamics may convergence. Research is being continued to find the quantum-classical

correspondence for chaotic and dissipative systems. Yet, the crossover time t* derived in

this chapter remains a good estimation for the time interval of the validity of the classical

approximation to the exact quantum results in response theory.

We have shown that the problem of the time divergence of the classical response

function stems from the interchange of non-commuting limits h --+ 0 and t - oo, which

results in the elimination of the higher order terms of the Weyl transform of quantum

commutator [A(t), B(0)]. The proposed semiclassical expression (4.11) removes the clas-



I 5 1i.

0.5

0

-0.5

-1

1.

0.5

-05

1

0.5

0

-0.5

-1

0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140

1

0.5

-1

0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140

Figure 4.1: Linear response functions of constant-energy Morse oscillator. The solid lines
represent quantum results from Eq.(4.2) and the dashed lines represent semiclassical result
from Eq.(4.11) for the case of: (a) single Poisson-bracket term in the expansion of Moyal
bracket; (b) two lowest order terms of the expansion (h-term and h3-term); (c) three
lowest order terms (h, h3 , h5-terms); (d) four lowest terms (h, h3 , h5, h7-terms).



sical divergence. The accuracy of classical dynamics can be systematically improved by

incorporating higher order corrections beyond the crossover time.

4.5 Application of Semiclassical Corrections to Re-

store Quantum Recurrence of Momentum- mo-

mentum Correlation Function

In the present section we use the same idea of semiclassical representation in action-

angle variables stated above to show how semiclassical corrections of the higher-order in

the Planck constant restore quantum recurrence of a correlation function. In an early

paper, Deutch, Kinsey, and Silbey compared classical and quantum momentum autocor-

relation functions of a particle in a one-dimensional box.[78] They found that the classical

autocorrelation function decays irreversibly whereas the quantum function displays re-

currence, a signature of phase coherence. The classical autocorrelation function is the

simple h -- 0 limit of the quantum result, however, an analytic expansion of the quantum

autocorrelation function in terms of h has not been obtained. The non-analytic nature

of the quantum correlation function is related to the time-divergence in classical response

theory.[3, 5, 6, 11, 75, 79] Specifically, the reported divergence arises from the interchange

of non-commuting limits of h --+ 0 and t -+ oc. A semiclassical analysis of microcanonical

response functions leads to the phase-space quantization,[75] which removes the classical

divergence and results in a correspondence between quantum transitions and classical tra-

jectories. In this section, we derive a semiclassical h expansion of the canonical correlation

function using the Weyl-Wigner symbol-calculus approach and resum the expansion to

obtain non-perturbative expression which captures the quantum recurrence in canonical

correlation functions.

Following Ref. [78] we adopt the symmetrized quantum mechanical correlation function

C(t) = ITr [&eq (j(t)1 + pp(t))], (4.22)

where &eq is the Boltzmann operator. C(t) is often used in literature because of its Fourier



relation with the imaginary part X"(w) of the response function, C(w) = h coth(Phw/2)X"(w).

For a particle in one-dimensional box, the autocorrelation function (4.22) is given by [78]

2  +00 +00

C(t) = 3L2Z) I:_
k=--oo n=-oo

"exp [-((2k + 1)T  ]2 (
x2 4 (2k + 1) T nr

(2k + 1)2 - (2k + 1)2 2 ( )

x cos (2k + 1)2 (2k 1) ((2k + 1)T - n-)(2 (2k + 1) 2 (
x sin (2k + 1)2 )} (4.23)

where T = t /2-w7 2/AL 2, C = hV/1Pr 2/2/pL 2 and Z = _L1 exp(-n2( 2) is the partition

function. The quantum correlation functions (4.23) plotted on Fig.4.2 for two different

temperatures show the recurrence, a characteristic of the quantum autocorrelation func-

tion. However, as shown in Ref.[78], the simple classical limit of C(t)

CC1(t) = (p(t)p(O))

= dq j dppeq (p)pp(t) (4.24)

has a monotonically decaying profile (Fig.4.3).

To systematically examine the classical limit of Eq.(4.22) we use the Weyl-Wigner

symbol-calculus approach. Using the property Tr(AB) = (27h)- N f dpdqan(p, q)bn(p, q),

the expression (4.22) takes the form

C(t) = dpdqph(p,q)

x p(p, q, t)cos o(p pa (p, q) . (4.25)

The Weyl symbol ph(p, q) in coordinates {p, q} is the phase space momentum p, which

follows directly from the expression (4.4) written in Ip) basis. However, p,(p, q, t) does

not have a simple classical correspondence.[66] For this reason we switch to action-angle
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Figure 4.2: Quantum momentum autocorrelation functions for (a) C = 0.5 and (b) C = 0.2

variables {J, p} and express the Weyl transform (4.4) in Ijp) basis. The Weyl symbols

Ph(J, ýP, t) and Ph(J, ýp) for momentum and density operators in action-angle variables are

= p[J, (c(t)]

k= Zp(Jn)ez(Lt•o)

ph (Jn, (j)

(4.27)L Jinm,
S27rZ e-

m

where Z is the partition function.

Substituting (4.26) and (4.27) into Eq.(4.25) we get the semiclassical expression

(4.26)

d 1po 1
27 (2·rZ

x p(J, O(t)) cos

S(p(t)p(0))Q- 7

e- E(Jm) n,m)

h
2 - a7p,)] P(J, ý0(0))

3 p(8 4(.p(2)))

c(t)

Ph(Jn, ýO, t)

= p(Jn, ý)
f n [ T \ -

nC/

S 09-
9-•o O J

2

8 ^p(tf2p(0))

4

+ 384 (4.28)
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Figure 4.3: Classical momentum autocorrelation function (which is independent of tem-
perature in scaled time coordinates)

where D = ( ) and the average (...)Q is taken over the phase density (4.27)

with quantized actions. The phase space averaging (...)Q is related to the averaging (...)

over continuous phase space. Indeed, the summation over the discrete variable can be

converted to an integration over the continuous variable using delta-functions [78]

= dJ V (J - nh) (4.29)
n=l n=1

We know that for J > 0
0 0 0 1 2 0 0

6(J - nh) = 6(J - nh) = + cos (2rmJ/h). (4.30)
n=1 n=-oo m=1

Combining (4.29) with (4.30) we have

(f)Q -= (f + f cos(2mJ/h)/. (4.31)

where A = fo" e-E(J)dJ. The WKB approximation [80, 47, 71] (4.8) assumes that motion

occurs mainly in the region of J > h implying that the temperature is sufficiently high
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Figure 4.4: Classical momentum autocorrelation functions with averaging over continuous

(solid line) and quantized (dashed line) phase space for (a) ( = 0.5 and (b) ( = 0.2

1/1 >> h27 2/2puL 2 . Thus A/Zh - 1 as shown in Ref.[78] and we may skip the overall

factor (A/Zh) from further considerations.

The momentum autocorrelation function (4.25) thus reads

C(t) = (p(t)p(0)) + 2 p(t)p(0) cos (
m=1

h2 ,2 m 2mJ
- p(t))2p(0)) - )2p(o)) cos n + ... (4.32)

The first term in the expression (4.32) is the classical correlation function C01(t) and the

remaining terms are quantum corrections expressed as phase space averages of classical

functions. We note that in the usual classical limit, the h2n-terms in Eq. (4.32) or (4.25)

are omitted. However, every h2,-term in (4.25) has time-divergent derivatives (stability

matrix) Op(t)/&J, which grows linearly in time for integrable systems and exponentially

for chaotic systems. The small value of the factor h2, can be always compensated by

the large value of t. Thus the omission of these terms is not justified and leads to the

well-known problem of time-divergence of the classical response functions [3, 5, 79].
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Figure 4.5: Semiclassical momentum autocorrelation functions calculated from Eq.(4.36)
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The above argument can be supported by calculating C(t) with h2n-terms omitted.

The results from the evaluation of the first two terms in Eq.(4.32): Cd(t) and its correction

for phase space quantization, are plotted in Fig.4.4. Comparing Fig.4.2 and Fig.4.4 one

can see that phase space quantization restores quantum recurrence but yet with wrong

sings and thus higher-order terms in h are needed.

The convergence of series (4.32) can be shown analytically for the system under con-

sideration. Substituting (4.26) and (4.31) into (4.25) we have

C(t) = dJdpo 1 + 2 E cos(2rmJ/h)) e-E(J)
m=1

x pk(J)e'k(wt+ ýo) cos k j - n) Z pn(J)eezn"o (4.33)
n ekx n

Since exp (AJ ) f (J) = f (J + AJ), then

-~ -1 1$ 2

2.5

-0.75



C(t) = z dJ + 2 V: cos(2wmJ/h) e--E(J)
m=1

X 1 (IP12 COs(nwt))IJ-nh/ 2  (4.34)
n=-oo

For a particle in one-dimensional box P2k+1(J) = 2J/(2k + 1)L, w = BE J 7r2 JlL 2

and

(t) = dJ 1 + 2 cos(27mJ/h) ) e -2
m=1
m- --1

X E (2k4 ( h(2k + 1) 2 C rr 2 t K _ h(2k + 1)} (435)
k=-- (2k + 1)2L 2  2 AL 2  2

The straightforward integration of the expression (4.35) gives the semiclassical expression

+/ +00

0(t) = (3L2Z ) E E
k=-oo m=-oo

x exp , (2k + 1)T mr 2

{ 2 4 T 4 (2k + 1)T + (2(2k + 1)2 (2k +1)2  2 m ) 2

os (2k + 1)2 T(2k+4(1) (2k + 1)T  mr

2 (2k + 1)( 2

x sin (2k + 1)2 )}. (4.36)

The semiclassical result (4.36) reproduces the quantum expression (4.23) almost exactly

except for a constant term (2 = 3h27r2/2L 2p, which is negligible in the high temperature

regime required for the semiclassical analysis leading to Eq.(4.36).

In this section we have studied the classical limit of the quantum autocorrelation

function. The semiclassical expression for the momentum autocorrelation function of a

particle in a one-dimensional box is obtained. The Weyl-Wigner symbol-calculus approach

allows to find the explicit expressions for the semiclassical corrections to the classical

momentum correlation function. Resummation of the derived semiclassical series results

in an almost exact quantum formula. Because of the semiclassical nature of the analysis,



the agreement between quantum and semiclassical results improves at higher temperatures

(compare Fig.4.5 with Fig.4.2).





Chapter 5

The influence of dissipation on the

quantum-classical correspondence in

response theory

5.1 Introduction

In the previous chapters the concept of quantum-classical correspondence was discussed

for isolated systems. Yet, all real systems are open and subject to the influence of noise

from surrounding. The influence of noise is especially important in chemistry, where

the coupling between molecules and thermal bath is responsible for fluctuations in the

structure and energy levels of a molecule, the flow of energy into and out of molecules,

and thermally activated processes.

Coupling of quantum system to the surrounding results in the loss of quantum co-

herence in the system of interest [81, 821. Many theoretical and experimental works

have demonstrated that decoherence plays an essential role in quantum-classical corre-

spondence and that in the presence of decoherence the quantum dynamics behaves more

classically than in the absence of decoherence [83, 84, 85, 86]. This suggests that the

agreement between the quantum and the classical response functions will agree better if

coupling to bath is introduced. Quantitatively, we expect that the crossover time t* (de-



fined in the previous chapter as the time interval for the classical-like behavior of quantum

system) will increase if the effects of dissipation are included.

Dissipative systems are often defined as systems coupled linearly to a harmonic bath

[87]. The classical dynamics of these systems is described by generalized Langevin equa-

tion (GLE), which is obtained as a continuum limit of an infinite number of bath oscil-

lators. In this limit, the bath degrees of freedom are collectively accounted for by the

addition of friction term and random-force terms to the Newton's equations of motion

of the system of interest, thus resulting in a Langevin equation [87]. GLE has been a

convenient analytical tool in describing all the effects of dissipation.

The semiclassical approach to the quantum-classical correspondence in response the-

ory developed in previous chapters employs propagation along the classical trajectories as

a starting point to calculation of higher order quantum corrections. Thus, it is straightfor-

ward to extend this approach to the case of dissipative classical trajectories. The idea of

using classical Langevin trajectories in semiclassical calculations of the dynamics of quan-

tum systems coupled linearly to harmonic bath was also developed in Refs. [88, 89]. It

was shown [89] that in the continuum limit of the semiclassical initial value representation

the path integral over system paths includes only classical GLE paths.

5.2 The Model of Dissipative System

Many condensed phase systems can be characterized by the system of interest coupled

to a harmonic bath. The harmonic bath turns to be a convenient approximation since

it allows an analytical description and leads to the derivation of GLE. In this section

we consider a Morse oscillator linearly coupled to a harmonic bath. The system-bath

Hamiltonian with system potential V(q) = D(1 - exp(-uq))2 has the following form

p2 ,(5.1)P2 1 N 22H = + V(q)+ Ep2 + L j - C3q
j=1 3



where wj is a bath mode harmonic frequency and cj is a coupling strength. The equation

of motion for the system coordinate q takes the GLE form [87]

S+ V(• + dt'(t - t')q(t) = ((t), (5.2)

with the friction kernel

N 2

7(t) = c coss(w•t) (5.3)
j=1 3

and random force

N

(t)= c ( - q(0)) cos(wjt) + E- sin(wjt)). (5.4)

The friction kernel is related to the correlation of random force via fluctuation-dissipation

theorem

(((t)(t')) = kT'y(t - t'), (5.5)

where T is the temperature of the bath. For simplification, in the present analysis we use

delta-correlated random force with friction kernel y(t - t') = y6(t - t'), i.e. white noise.

The Langevin equation thus becomes

dV(q)
4 + + _q(t) = ((t), (5.6)

dq

The semiclassical response function that we have introduced in the previous chapter

has the following form

x{t{ ..h d(}p(Jk, W(5)

x {{...IOa (7"n), a (Tn-1) 1 n, a (T1) )I, ao(O) )1 (5.7)



where a(t)'s are classical observables evaluated along the classical trajectories and {...}.

is the Moyal bracket written in terms of classical action-angle variables

{a, b}J 2zasin - ) b.  (5.8)2 OWp J 8J OW
This representation was shown to be almost exact for Morse oscillator [79, 75], square-

well potential [90] and is exact for harmonic potential. It is interesting that quantum

corrections to the classical Poisson-bracket term in representation (5.7) come as higher

order derivatives of classical functions propagated along the classical trajectories. It is

straightforward to extend our semiclassical approach to the case of dissipative systems

replacing Newtonian classical trajectories with Langevin classical trajectories. As men-

tioned in the Introduction, an argument in support of the validity of this extension is the

possibility of similar replacement of classical dynamics in the initial value representation

semiclassical approach discussed in Refs. [89, 88].

Due to the simplicity of the form of semiclassical corrections in the representation

(5.7), which are just functions of higher order derivatives O"a(t)/OaJ, it is now relatively

easy to study the effects of dissipation on quantum-classical correspondence. To proceed,

in the next section, we derive the equations of time-evolution of stability matrix elements

OQ(t)/Q(O), (Q = {q,p}) from the Langevin equation (5.6).

5.3 Time Evolution of Stability Matrix Elements in

the Presence of Dissipation

We return to the two-dimensional form of the Langevin equation (5.6)

dq

dp -- - yp + ((t) (5.9)
dt - q q=q(t)

Considering initial conditions q(O), p(O) as parameters, we take the partial derivative of

the equations (5.9) with respect to q(O) and p(O) to get the system of equations for the first



order stability matrix elements M = aq(t)/Oq(0), MqP = Op(t)/Oq(0), Mp = Oq(t)/op(0)

and MP = Op(t)/Op(O)

d

dt q
d
-M = -V" (q)M - TMP - 76(t)

d
dMt = MP (5.10)

dM = -V"(q)Mp -yM

where V"(q) = 0 2V/0q 2. Technically speaking, the derivatives of stochastic process (5.9)

are not defined. To resolve this issue, we perform differentiation with respect to q(0) and

p(O) before taking the continuum limit of infinite number of bath oscillators [87], i.e. we

get use of equations (5.3) and (5.4):

S c( axj - Lq(O) cos(wt) + sin(wt)
j=l 3

N 2

- -Z cos(wjt)
j=1 1j

= -y(t) (5.11)

o(t) c( X j  - q(o) cos(wjt) + LJ sin(wjt)

=0

In the continuum limit of infinite number of bath oscillators, friction kernel -y(t) is defined

by spectral density function, which in our case corresponds to the white noise with -y(t) =

-y6(t). This results in the simple expression for aý(t)/aq(0) in the form of delta-term

yS6(t), which appears in Eq. (5.10).

Considering equations (5.10) one can notice that, different from the original equations

of motion (5.9), equations (5.10) do not have explicit stochastic terms. The only source

of stochasticity comes through the stochastic behavior of q(t) which is contained in the

anharmonic terms of V(q), i.e. in the derivative V"(q) (thus, for instance, for harmonic



potential, equations (5.10) are analytical and do not contain any source of stochastisity).

It is thus expected that the effect of thermal fluctuations on time behavior of stability

matrices is smaller for systems with lower anharmonicities. Since time behavior of stability

matrix elements explicitly influences the time behavior of quantum corrections, which

stand for quantum coherence effects [79, 90], then we expect that the influence of the

bath temperature on quantum decoherence in response theory will be smaller for systems

with lower anharmonicity. The latter agrees with the well-known fact that an ensemble of

harmonic oscillators linearly coupled to a harmonic solvent dephases only through energy

loss and not through pure dephasing process [91, 92, 93, 94].

The effect of energy relaxation comes into equations (5.10) in the form of friction terms

-yMP and -yMP. To better illustrate the role of these terms on the process of dephasing

one may combine, for instance, the last two equations in (5.10) to get

MiI + 'yMp + V"(q)Mg = 0. (5.12)

The analogy between Eq.(5.12) and a damped driven harmonic oscillator can be seen

representing V"(q) with the leading harmonic and anharmonic terms, i.e. V"(q) = W2 +

fq(t) 0 w2 + fA cos(wt), where wo is the bottom-well harmonic frequency, f is the cubic

anharmonicity and q(t) = A(t) cos(wt) is the time dependence of system's coordinate at

the current value of energy. Substituting this into the expression (5.12) we get a simple

picture

My + YM~ + w Mq = fA(t) cos(wt)Mp. (5.13)

From here one can see that in the absence of friction y and anharmonicity f, the sta-

bility matrix element Mq does not diverge and oscillates periodically. In the presence of

anharmonicity, the amplitude of oscillations of matrix element Mpq increases due to the

driving "force" on the right side of the equation. This divergent behavior corresponds to

the preservation of coherence in the original system between the two classical trajectories

launched from the infinitely close initial points in phase space (since Mq represents the
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Figure 5.1: The behavior of stability derivatives for Morse oscillator in the presence of
dissipation. (a) isolated Morse oscillator; (b) dissipative motion with non-zero friction -y
and zero temperature; (c) non-zero friction y and temperature T.

derivative of q(t) over the initial condition p(O)). The introduction of friction term n/My
kills the divergence indicating the loss of coherence between the two classical trajectories.

The equations of motion for higher order stability derivatives anq(t)/8q(0)kOp(0)n- k,

anp(t)/aq(0)kap(O)n- k can be obtained in the same way as Eq.(5.10) by subsequent differ-

entiation of Langevin equation (5.9) over initial conditions. Similar to the behavior of the

first-order stability derivatives in the presence of dissipation, the growth of higher-order

stability derivatives will be reduced due to the friction 7 and the decoherence from the

stochastisity of q(t). The latter corresponds to dephasing due to energy relaxation and

pure dephasing.

What is more important to our purposes is that because of the damping (see for

instance Eq.(5.13)) the amplitude of oscillations of stability matrix elements reaches a

maximum value (see Fig.5.1). This amplitude becomes smaller as the ratio f/7 of the

amplitude of the "driving" force f, i.e. anharmonicity, and the damping coefficient -y

decreases (this dephasing corresponds to energy relaxation) or if the phase of the "driving"

i i
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force becomes more and more random (this corresponds to pure dephasing). At longer

times the amplitude of oscillations of stability derivatives decays to zero. The higher

order stability derivatives are more sensitive to dephasing (see Fig.5.2) than the lower-

order derivatives, which has clear physical explanation - it is much easier to destroy the

collective coherence of n classical trajectories as n increases, thus since stability derivatives

anq(t)/Okq(O)On-kp(0) reflect the coherence between the n classical trajectories, their

sensitivity to classical dephasing increases with n. For example, see Fig.5.2, the maximum

value of Oq(t)/lq(O) depends on friction as 1/7, the maximum value of a2q(t)/lq(0)2

is proportional to 1/y 2 , the maximum value of a3 q(t)/&q(0) 3 is proportional to 1/y .

Thus, at some values of bath parameters y and temperature T the higher order stability

derivatives become smaller than the first-order stability derivative, indicating that higher

order semiclassical corrections become less important than the first-order classical Poisson-

bracket term. At these and greater values of -y and T the dynamic behavior of system of

interest can be considered purely classical.

'-' ' ' ' ' ' ' ' I ' ' ' ' ' ' ' ' ' ' ' ' ' ' '



5.4 The criterion for classical behavior

In the presence of friction y, the approximate behavior of the amplitude of 0"q(t)/&q(O)n

is proportional to tn exp(-yt/2) (see Fig.5.2), which is a product of the regular divergent

behavior of the n-th order stability derivative O(tn), discussed in chapter 4, and an expo-

nential decay due to the friction. Thus, similarly to the discussion in section 4.2, in the

presence of friction the Poisson-bracket term of the Moyal bracket {a(t), a(O)} behaves

as h (2) t exp(--yt/2) and the second term, h3-term, behaves as h3 (2) t 3 exp(-yt/2).

The maximum value of the Poisson-bracket term is ' h () and the maximum value of

the first correction (h3-term) is ~ h3 (o ) '. The Poisson-bracket term dominates over
-y

the first correction term if

(w) 1 h w~ 1 (5.14)

i.e. when

1/h(8w/8J) > 1. (5.15)
1/~y

The expression in the numerator is the crossover time t* = 1/h(ow/&J) from Eq. (4.19)

and the expression in the denominator is on the order of the classical dephasing time

tdeph = 2/7 due to energy relaxation. The above inequality can be thus rewritten in the

form

- > 1. 
(5.16)

tdeph

Equation (5.16) sets a criterion on when a dissipative quantum dynamics can be considered

classical. According to this inequality, quantum corrections to classical dynamics become

unnecessary if classical dephasing is faster than the deviation of classical dynamics from

quantum dynamics, which means that the semiclassical hn-terms from the Moyal bracket

expansion should decay (with the characteristic time scale tdeph) before they become

important at t = t*.

Inclusion of bath temperature T will modify the above dephasing time in the well-

known form [2]

1 1 1
= - + , (5.17)

tdeph 2Tr/x Tp.deph.



where Trix is the dephasing time due to energy relaxation and Tp.deph. is a pure dephasing

time. For the potential with cubic anharmonicity f, i.e. U(q) = mwq 2 + ifq 3, coupled

linearly to thermal bath with temperature T and friction kernell -y(t), the dephasing time

can be found as [93]

1 Re [ý3(two)] f2(kT)
+ , Y(0)•(0) (5.18)

tdeph 2 4m 3w 6

where

00
(s) = (t')e-t'dt' (5.19)

is a Laplace transform of the kernel. For a Morse oscillator f = 6a 3D = 3mwoV 2mx•w /h,

and upon substitution of (5.19) and (4.19) into (5.16) we get the following criterion for

the validity of classical description of quantum dynamics in a dissipative Morse oscillator

t*_ Re[(2wo)] 95(0)kTo)] > 1 (5.20)
tdeph 4XeWO 4 hw02

5.5 Numerical Results

We can compare (5.20) with the quantum calculations of a dissipative Morse oscillator

done by Miller and co-workers, in which the effects of dissipation on the propagation of

the wave packet was studied using the semiclassical initial value representation technique

[95]. The spectral density of the bath was in the Ohmic form

J(w) = (rlmmwo)we - 1ww , (5.21)

with the cut off frequency w, well below the system oscillation frequency wo. The latter

means the absence of the energy relaxation contribution to the process of dephasing. The

ratio t*/tdeph in this case is

t* 9 7,kT-- (5.22)
tdeph 4 hwo

We compare the magnitude of this ratio for different values of T and TIe with the numerical

simulations from the Ref. [95], see Fig.5.3. One can see that quantum effects disappear

as the value of t*/tdeph approaches to 1.
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values of le, and T.

4 2.6 2.8 3.0



We have also calculated the linear response function of Morse oscillator with one-

photon polarization operator & = b+b+ (the same as in section 4.4) using the semiclassical

representation (4.7) in the case when the bath cutoff frequency wL is greater than system

frequency wo. To calculate semiclassical corrections up to the h5-term we calculated the

time-dependence of stability derivatives up to the 5-th order. The equations of motion of

the latter were derived by differentiating the Langevin equation (5.9) similarly to the ones

given by (5.10). Since neither of the differential equations for stability matrix elements

explicitly contains stochastic terms, we can use the regular Runge-Kutta scheme. The

stochastic equation (5.9) for q(t) and p(t) was solved with Euler integration scheme. The

initial conditions for the Morse oscillator were taken from the microcanonical distribu-

tion at the energy D/10, where D is the dissociation energy, with the same equilibrium

temperature of the bath D/10. The results of simulations are shown in Fig.5.4 for the

different values of friction strengths y. One can see that the contribution from the higher

order correction terms become less and less important as the friction strength y increases.

We also compare the latter results with the criterion (5.20), which in the case of large w,

can be written in the form

t* 7e 9 lekT
S = > 1 (5.23)

tdeph 2Xe 4 hwo

and see (Fig.5.4) that classical and semiclassical results start to coincide at t~ 1.
tdeph

5.6 Discussion

In this chapter we discussed the effects of dissipation on the behavior of semiclassical

corrections in the Moyal expansion (4.18). We have shown that the divergence of these

corrections, and thus their contributions to the summation in (4.18), can be significantly

reduced by introducing the effects of dissipation. At values of bath frication and tem-

perature, given by the criterion (5.20), the contribution of higher-order h'-terms to the

semiclassical series (4.18) is much smaller than the contribution from the classical Poisson-

bracket term and, therefore, at these and higher values of friction and temperature the

dynamics of system can be considered classical.
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Criterion (5.20) sets simple limits of when the dynamics of quantum system can be

described in terms of classical mechanics - one needs to compare the anharmonicity of a

system with the parameters of bath and if they satisfy inequality (5.20), then the dynamics

of system is classical. The underlying physics of the criterion is that decoherence effects

from dissipation destroy the spreading of the quantum wave packet, which is due to

anharmonicity. As long as quantum wave packet remains localized we can associate a

classical particle with it. In the absence of dissipation this characteristic time of wave

packet spreading/delocalization is the crossover time t* that we found in chapter 4, which

increases in the presence of dissipation.



Chapter 6

Suppression of photon echo as a

signature of chaos

6.1 Introduction

A great deal of theoretical work has been devoted a decade ago to study the signatures of

chaos in quantum systems [96, 97, 98, 99, 100, 101, 102]. It has been shown that systems

with regular dynamics possess Poisson energy level statistics, while systems with chaotic

dynamics possess GOE statistics. Obtaining level statistics from experimental spectrum

has several difficulties [103, 104], thus it is interesting to find the effect of different level

statistics on the time-domain signal, i.e. quantum signature of chaos in the time domain.

Single time-domain experiments provide an opportunity to find the signature of chaos

without necessity to resolve level statistics.

The basic idea in searching for a time-domain signature of level statistics lies in av-

eraging over the ensemble of time-dependent superposition states. Consider a quantum

state Ij), which is a superposition of two system's eigenstates In,) and In2) that corre-

spond to eigenvalues En, and En2 respectively, then after coherent excitation of [|0), it

will dephase due to the factor exp{z(E, - En2)t/h}. The average over ensemble of states

I0(t)) in some cases is equivalent to the average over level spacings E,, - En2, result-

ing in different time-domain signals for different level spacing statistics. Pechukas was



the first to propose the idea that the average survival probability P(t) = I(0(0) 1(t))1 2

behaves differently for systems with chaotic and regular dynamics [105]. This idea was

further developed by Wilkie and Brumer [106, 107] to show that the time resolved fluo-

rescence depends on the average survival probability and therefore carries signatures of

quantum chaos. The main difficulty of the approach proposed by Wilkie and Brumer is

the necessity to extract information about chaos from the exponential decay of fluores-

cence signal. In fact, the time-resolution of fluorescence experiment is on the order of

the time-scale of a correlation dip that carries the information about underlying chaotic

motion. Correlation dip appears at tco~ = h/N(AE) [106], where N is the number of

eigenstates involved in a superposition state and (AE) is the average nearest neighbor

spacing between the corresponding eigenvalues. To resolve level spacing (AE) one needs

to have level widths smaller than (AE), which means that the life time of levels should be

greater than tlife = h/(AE). Thus, the average time tlife that is needed for the excited

state to "produce" a signal is always greater than the characteristic time of interest tcorr

of this signal. To better resolve the time scale tcorr we can perform instead an ultrafast

time-resolved spectroscopic experiment.

In the present chapter we develop further the idea stated in [106] and to show how

to employ ultrafast spectroscopic techniques, in particular, the photon-echo technique,

to study nuclear level statistics on the excited electronic state surface. Consideration of

non-linear experiment is also interesting because so far the effect of chaos in non-linear

spectroscopy has been studied only in classical perspective. It was shown by Mukamel

and co-workers that classical non-linear response functions are good indicators of chaotic

dynamics, since they incorporate stability matrices that diverge linearly in time for sys-

tems with quasi-periodic dynamics and exponentially for systems with chaotic dynamics.

Chernyak and co-workers have recently shown [108] that classical non-linear signal for

chaotic motion shows instability in frequency domain which can be an indicator of chaos.

In present chapter we employ the difference in energy level statistics for Hamiltonians

with regular and chaotic motion to study quantum effect of chaos on the photon-echo

signal.



The dynamics (either regular or chaotic) which underlies particular energy level statis-

tics is of interest to chemical physicists. Thus, the model we consider is a multiatomic

molecule with two electronic states. Nuclear energy levels of the excited electronic state

obey either Poisson or GOE statistics, implying that nuclear dynamics in the excited elec-

tronic state is either regular or chaotic. Nuclear dynamics in the ground electronic state

is assumed to be harmonic with frequency Q0, which means that system has at least N

ground vibrational levels equally spaced with distance hQo; in section 6.4 we extend our

results to the case when ground electronic state has Poisson statistics of nuclear energy

levels, which better describes real polyatomic molecules [? ].

When the system is radiated by a short laser pulse of duration 7, each nuclear level in

the ground electronic state will coherently excite a bandwidth AQ - 1/7 of vibrational

levels in the excited electronic state. The condition to excite two or more vibrational

states in the upper electronic state is AQ > (AE)/h or equivalently r(AE)/h < 1, where

(AE) is the average level spacing in the excited electronic state. If this condition is

satisfied, then each of N ground vibrational states will produce one superposition 10(t))
state in the excited electronic state. It will be clarified in Section 6.2 that such group

excitation from N ground states results in the averaging over N(AE)/hQo eigenstates in

the upper electronic state, which will thus incorporate energy level statistics of the excited

electronic state.

In paper [106] by Wilkie and Brumer the excitation by partially coherent multimode

laser pulses from a single ground state was proposed as a way to incorporate energy level

statistics of the excited electronic state, in this proposal a single ground vibrational state

is irradiated by N laser pulses which are incoherent with each other. This approach

is rather difficult to implement experimentally since the number of modes N should be

significant (N > 100) and also incoherent to each other. Instead, in the present chapter,

we note that one can incoherently populate N ground states and then use a single-mode

laser pulse. For this reason, we initially randomly populate N vibrational states of the

ground electronic state using any available experimental techniques. The initial density

matrix for non-linear spectroscopy experiment will thus be pg = E a. gn) (g, 1, where



an is a population of the n-th vibrational level g,~) of the ground electronic state.

In section 6.2 we describe the non-linear experiment in detail and analytically derive

the expression for the third-order polarization. In section 6.3 we consider the differences

in photon-echo signal for systems with regular and irregular dynamics. In section 6.4 we

extend our results to the case of Poisson statistics of nuclear levels in the ground electronic

state. In section 6.5 we discuss the suppression of photon-echo signal at time T1 = 4 T for

chaotic systems.

6.2 The Theory

We consider a system with two electronic states - ground 1g) and excited Ie). The adiabatic

Hamiltonian of the system is given by

H = Ig)H,(gl + le)(He + weg)(e, (6.1)

where Hg is the nuclear Hamiltonian on the ground electronic potential surface; He is the

nuclear Hamiltonian on the excited electronic potential surface; Weg is the electronic gap

between the minima of both potentials (Fig.6.1). The nuclear dynamics of interest (either

regular or chaotic) corresponds to Hamiltonian He, and thus the statistics of nuclear

energy levels in the excited electronic state is assumed to be either random (Poisson

Ensemble) or correlated (Gaussian Orthogonal Ensemble). Physically, only particular

areas of energy level spectrum of He obey particular level statistics - at low energies

nuclear dynamics is mostly quasiperiodic and thus the corresponding level statistics should

be that of Poisson Ensemble, while at high energies it can be chaotic with corresponding

statistics of GOE. By changing the carrier frequency of the excitation pulse we can select

the energy region of interest.

The most common technique in non-linear spectroscopy is a three-pulse photon-echo

experiment. In this experiment the system is irradiated with three subsequent pulses with

delay periods 71 and T2 between them. The measurement is done at time t after the third
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le)

Figure 6.1: The molecular level scheme for a two level system

pulse (Fig.6.2). The electric field acting on the system is

E(r, t) = El(t + 72 + T1)exp(zklr - zw1t) + E2 (t + T 2 ) exp(zk 2r - zw2t)

+ E3(t) exp(tk 3r - ZW3t), (6.2)

where wj and kj are frequencies and wave-vectors of the incident waves correspondingly,

Ej(t) denotes the temporal envelope. We assume that all three pulses have the same

frequencies wl = w2 = W = w0 and temporal envelopes E(t) = Eo exp(-t 2/2T 2), although

they have different orientation of kj. Photon-echo signal is measured in the direction

k, = k3 + k2 - ki [1]. The corresponding non-linear polarization is given by [1]

p(3 ) (k, = k3 + k2 - ki, t)

= dt3  dt2 djt [R2(t 3 2,t) + R 3(t 3,t 2, t1)]

x E3(t - t3)E2(t + 72 - t3 - t2)E*(t + 71 + T2 - t3 - t2 - t)

x exp[z(Wo - wg)(t3 - til)], (6.3)
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(a) A

echo

(b)

-1• "•2 _T t

Figure 6.2: Three-pulse photon echo experiment in (a) space and (b) time [1].

where the two response terms in the photon-echo signal are

R 2(t 3 , t 2, tl) = exp [-He(tl + t2 )] texp Ht3] f

x exp [-He (t 2 +• 3)] fexp [-4,Hti] Pg

exp [Heti ftexp [H(t2 + t 3)] 3

x exp [-Het 3] p exp

Here, A is the electronic dipole moment operator, pg = n, an gn) (gn is the ground state

nuclear density operator, with an the population of the n-th vibrational level Ign) of the

ground electronic state and N the total number of initially populated ground vibrational

states.

Assuming that pulses do not overlap, i.e. t, 72 , T1 > T (which is actually the necessary

condition in deriving Eq.(6.3) ) we can set the lower limit for the integrals in (6.3) to -oo.
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Using the completeness relation E In)(nI = 1 in (6.4) and (6.5) repeatedly we obtain

R2(t3,t2,tl) =

R2(t3,t2, tl) =

S (gIAIen) exp ['Eu (t1 + t 2)] (e. 1L9k) exp [Et 3] ke)
n,k,u,v

x exp [-Ee(t2 + t3) (e gn) exp [--Et l] exp[-3E g]  (

9n|k|es) exp E tiJ (ejfIA1gk) exp [ Ek(t2 + t3)] (9kj Iev)

x exp [-Eet3] (evIA|gn) exp [- Eg(tl +t 2)] exp[-3Eg]. (

3.6)

6.7)

Plugging (6.6)-(6.7) into (6.3) and performing integrations we get

P(3)(t) = (V E) afl(g(fVleU) (eU|lgk)(gkle)(eVln)

n,k,u,v

x e- ( k - Ev)2 2 /2 e - (E n -E) 2r 2 e (ek - n)(u-6 v)T 2

x {e%(Eu" - v)T2 + e(Ek - En)T2 } e (Ek-Ev)te (Eu-E ")T1, (6.8)

where we denote

SEng /h

Ek EEl/h

(Ee/h) - (Wo - Weg)

(E,/h) - (WO - eg).

Here, En and Ign) are the n-th eigenvalues and the n-th eigenstates of the Hamiltonian

H9, respectively; Eve and le,) are the v-th eigenvalue and the v-th eigenstate of He.

Matrix elements (ej 1I|gj) can be positive or negative depending on i and j. For systems

with chaotic classical limit the distribution of matrix elements is shown to be Gaussian

and centered around zero [109, 110]. Here we assume that (eiAftgj) are symmetrically

distributed around zero, with the mean value much smaller than the width of distribution.

The result of summation (6.8) is therefore determined by terms that contain squares of

coefficients (ei ]Jgj), i.e. by terms with {k = n, v - u}, {v = u, k - n} and {k = n, v =

u}. Let us consider the three cases separately, denoting contributions from each of them

P3) (t), Pb(3) (t) and (3)(t), respectively. The contribution from summation {k = n, v Z u}

103

(6.9)



p(3)(t) 3 ( 27rTEo)3 Z Z (gn I IC) 21Kg. an 2

n=1 U,)

X e-(En-E")
2

T
2

/2 -(En-Eu)
2

T
2

x {e(eu Ev)T2 + } eI(Ev Ev)teI(EI -E n)T1 (6.10)

where E' indicates the exclusion of terms with u = v.

In the Condon approximation, matrix elements (g9n| eu) can be represented as a

product of electronic dipole matrix element Po - (g Pje), which is a constant, and a

multidimensional Franck-Condon factor Sn, - ( g, uve,vu)j, which is the overlap be-

tween multidimensional nuclear wave functions. We expect no correlation between energy

spectrum (Ej - Ci) and multidimensional Franck-Condon factors Si . Therefore summa-

tion (6.10), which is the average "M ... = M(...), will result in the product of averages

(f(Sij)g(Ei - Ej)) = (f(Sij))(g(Ei - Ej)):

p('3) 3 (TTEo)3 A(Sn S )

N

x 3an E'e-(_ _,v) 2 T2/2e(En -u) 2 -2 {e2( • -eV)T- 2 + 1} e(n-Ev)t1(Eu-n)7M.11)

n-=1 u,v

where (SS v)' is the average of products of squared Franck-Condon factors for the verti-

cal transitions from the N ground vibrational states, u n v. Now we take a look at popula-

tions an - by the construction populations an are uncorrelated with the energy spectrum En

(for instance, populations from Boltzmann distribution an = exp(-fnE,)/Tr[exp(-PE,3)]

would definitely result in correlation between a, and &E, which we do not want). There-

fore, in summation over n, which is equivalent to the averaging over N ground states, we

can average an and En separately, giving

P•) (t)= ( TE)3 3 2 (S S '

N

x (an)Z E e(E v)2T 2/2e_ 2 Z(Eu-Ev)T2 + eZ(E"-Ev)teuI(EU-En(6..1 2)
u,v n=1

The last summation over n in the above equation can be performed by replacing it with

the integral E,, = f dn. Since, as discussed above, the first N ground vibrational levels
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are assumed to be harmonic (equally spaced) then e, = nQo and thus integration over n

gives

2()33 2 21 -(t r) 2

3 (} E (SeSr,)'(a)e

x 1 S e % ee(2t+r1) 3ezArr2 +1}
v r=+,12,...

x erf[ + +Ar + 3 -erf A +

(6.13)

3 (Ev/6- - Nwo)]))

where we have introduced new variable Ar - Au,_ = Eu - e,, which stands for the

distance between nearest r levels (r-th nearest neighbor distance). The error functions in

(6.13) defines the interval of nonzero terms in summation over ev, i.e. e, E {0, NQo}. The

difference of these two error functions is 2 on the interval E, E {0, NQo} and 0 outside.

We can neglect non-constant behavior of error functions (boundary effects) in the very

small region E, E {-2/7r, 2Xr/r} and e, E {N20 - 27r/T, NQo + 2wI/T} and consider the

superposition of two error functions in (6.13) as a step function, which equals 2 on the

interval E, E {0, NQo} and 0 outside. This results in a restricted summation over v from

0 to N, = NQoh/(AE), where (AE) is the average level spacing in the excited electronic

state. Equation (6.13) thus takes the form:

P(3) (t) (,)3 (v TEo) 31 2(S2 2 
(t -7- )2

x NQ 2 Ke e (2t+71) {elAr22 +
Sr=±,1±2,...

(6.14)

where the last averaging is due to the summation over v. Obviously, Ar is a func-

tion of es, therefore averaging over v results in an average over Ar - we will have

Nr = ((NQoh/(AE)) - r) N-$ NSoh/(AE) spacings (values of Ar) to average over, which

is actually a very good statistics, that becomes even better if (AE) < hQ00. Averaging

over Ar, on the other hand, can be done using nearest-neighbor distribution functions,
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which are known functions for both Poisson and GOE statistics [106]. Thus we have

S
r-+l ,±2,

e e3 (2t+T) { T2 +

-2je 3 COS

o

pr (A)dA.
r=1,2,...

2t + T1

3
+ cos [A

2t + 7T 1
3

For now we postpone further consideration of expression (6.15) until the next section and

continue with the remaining contributions P 3)(t) and P 3) (t). Denoting expression (6.15)

with F(t), we get the final expression for pa3)(t) in the form

(t _1 
)2

Pa~ )(t) = Ce- F(t), (6.16)

where C = ( ) ( 2 TEo) (SS , ,)'(a - 2N is a constant.

Let us now consider Pb(3) (t), it reads

P3(t) )(

N

(/V2TEo)3 E a,
n=1

SI g l, ) 12kv (g j j
k,v

X C(Ek -E, )272/2 e-(En -Ev)27

Using the same assumptions as in the derivation of P 3)(t) and replacing summations

Zn=0o and ZE- o with integrals fo/ dn and fo dk, respectively, we get

p (3) (t) I v _
Pb () = CT Q

7120

42 2
- r2(4t+2 +3-2)l 4+2 (6.18)

_ q) 3 (3F2EoF TEO 3p 2 tSnlv S2 - 2Nhwhere C'= ()3 ( kTE)pSan )  T ) Obviously the contribution of this

term to the overall non-linear polarization is negligible when the conditions of pulse non-

overlapping t, T, T2 > T are satisfied.

The last term to consider is Pc3) (t),

N

P'3)(t) =2 ( f Eo)N Ea,
n=1-

Ig, (9nl ~ie, ) ••
v

x e 2 (E- v)2n i e"' ( " - • )(T ) (6.19)
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x {1 + e(Ek-E-n)T2 } eI(k-EL)tC2(E6v-n)T1 , (6.17)
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which simplifies to

p 3) (t) = 2C (Sn e(SnuSnv)

The overall third-order nonlinear polarization reads

P(3) (t) = P3) (t) + P(3)(t) + P(3) (t)

Here we did not substitute for small contribution of P(3)(t) in

(6.21)

order not to overload

formula. One can see that at t = 71 we have an echo.

6.3 F(t) for two types of statistics

Obviously, F(t) carries the information about level statistics in the excited electronic

state. We now consider the two cases of statistics separately.

6.3.1 Poisson statistics

Systems with regular dynamics possess energy level statistics which is similar to Poisson

statistics. The expressions for the r-th nearest-neighbor distribution functions are given

in Appendix 6.6. For Poisson statistics we have

p ,(A) = (AE)/h (6.22)r=,2,...

r=1,2,....

Thus, F(t) for systems with regular dynamics reads

F(t) = hT(AE)
(2t+7l +37r2 )

2

e 4-r2 (2t+e 4)2
+ 47 4

"

Photon-echo signal measured in experiments is given by [1]

X(Ti, T2) J 00IP(t)12dt (6.24)

Substituting (6.21) and (6.23) in the above integral results in monotonically decaying

signals shown in Figs.6.3a-6.3b.
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= Ce- (t F(t) + 2 Sn ,) + (3)(t).

(6.23)
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6.3.2 GOE statistics

For GOE statistics, the summation of distribution functions (6.30)-(6.31) is shown in Fig

6.4 and can be well-approximated by the error function

pr (A) = - erf ( (6.25)
r ý 1,(AE) 2 (AE)

The result of numerical integration of (6.15) gives

( ((_E) 2t + 71  iN ((AE) (2t--)) (6.26)

F(t) = 2 f [ T + 72 + fa (6.26)L3 h 3

where a = 7(AE)/h and functions fc(x) can be well-approximated by analytic functions

_ 3w 3x2 8 erf 2 ()
f(X) = - e 4 - 2  (6.27)

2a 7X

One can see that f,(x) has a minimum, which corresponds to xmi, r 2.4a 3 /4 . Calculation

of signal (6.24) with (6.26) and (6.27) is shown in Figs.6.3c-6.3d. X(T1, T2) has a minimum

at T1 - 47 for any given value of 72 and its location along 71 axis is independent of T2.

We call this minimum a suppression of photon-echo signal.

6.4 Poisson nearest neighbor statistics in the ground

electronic state

So far we considered the vibrational spectrum in the ground state electronic surface to

be harmonic and assumed that we can find N > 1 such levels. Yet, for real systems like

polyatomic molecules this is not true. Instead, the low-energy vibrational spectrum of

polyatomic molecule formed by many degrees of freedom looks like random spectrum with

Poisson distribution of nearest neighbor energy levels [111]. Thus, the better approxima-

tion for the bottom N (with N > 1) vibrational energy levels is a random distribution

(i.e. Poisson distribution of nearest neighbor). The latter does not introduce any compli-

cations to the above equations. In this case we just need to represent the summation over

nuclear states -=1 in the ground electronic state surface in different way. For harmonic
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spectrum we had j,= f dn, with ,, = nQo. For random spectrum we can write

-=z Nj N (f 1 dc,, where E, is now a random variable uniformly distributed on the

interval (0, N(AE)o), with (AE)o the mean vibrational energy level spacing in the ground

electronic state. Thus, for the case of Poisson nearest neighbor statistics in the ground

electronic state, all the previously derived equations remain valid except everywhere one

needs to replace harmonic frequency 20 with the mean level spacing (AE)o0

6.5 Results and discussion

The main result of present analysis is that the photon-echo experiment carried out with

the conditions discussed in the Introduction should always result in the suppression of

echo-signal at T1 - 47 for chaotic systems, where 7 is a pulse duration. The time interval

between second and third laser pulse 72 does not influence the location of signal's minimum

along 71 axis. This suppression can be considerable, the general formula for the ratio

X(71, T2)/X(oc, o00) near the global minimum T1 = 4T, T2 = 0 is:

X(4-, 0) 8 2(S vS
)'  erf2()

Sx(o,- -8 SS 2ef (6.28)X (oo, 0) r (SA4,) (47)2

where 7 has dimensionless units h/(AE). We can estimate the above ratio assuming

ISn,, and jSj are uncorrelated uniformly distributed variables, then (SuS,v)'/(SV) =

(S 2)(S 2)/(S 4) = 5/9, which results in [X( 4 , 0)/X(oo, oo00)] - 0.36, T - 0. Thus the

suppression of photon-echo signal can be more than 50%.

On the other hand, the photon-echo signal of regular systems X(T(, T2) do not have

any minima (Figs 6.3a, 6.3b). Thus, the following conditions always hold: X( 4
T,,2) > 1x(0,() -

for regular systems and X(4,) < 1 for irregular systems (in real experiments X(T•, 72)

decays to zero due to different broadening mechanisms, but on the time scale of ultra-

fast experiment we can neglect broadening effects and thus to consider long time limit of

X(T, T2) as a constant, which we plot in Fig.6.3 as X(oo, oo)). Since the the location of

correlation minimum at -1 = 47 does not depend on 72 (Fig.6.3d), we can make above

inequalities stronger by averaging over some interval of T 2 . The latter averaging can
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Figure 6.4: The sum of r-th nearest neighbor distributions for GOE statistics (6.30)-(6.31)
(solid line). The approximation with error function (6.25) (dashed line).

remove experimental non-ideality and thus provide more conclusive measurements.

The physics of the observed suppression of the echo signal is the same as the physics

for the suppression of the averaged survival probability I (V)(0) j1V(t))12 discussed in Refs.

[105, 106]. The main idea is that since the energy levels obeying GOE statistics correlate

on the energy scale (AE), then the superposition state I1(t)) = E exp(-zEnt/h)ln > would

remember its initial conditions on the time scale At = h/(AE). This time scale defines

the interval of quantum coherence, which will "survive" after the averaging over initial

conditions and energy level statistics. During this time JI((0)1(t)) 12 would behave as a

typical quantum decoherence process with oscillatory behavior around its average value

due to quantum coherence effects. As a result I(V(0) 1(t)) 12 can go below its long-time

limit (it could have made several oscillations around its long-time limit, however the time

of coherence At ends up earlier than the second oscillation). For the regular motion,

however, the energy levels do not have any correlation, and thus no time interval At of

quantum coherence exists after the averaging over ensemble of levels. Therefore [I(t)) is

not correlated with its initial conditions, decaying to the limit of its statistical average.
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6.6 Appendix

The distribution functions pk(w) for regular systems (Poisson Ensemble) are [106]

Pk(W) =( <hE(AE),
hexp (AE)

(AE)(k - 1)!

The distribution functions for chaotic systems can be described by spacing distributions

of the Gaussian Orthogonal Ensemble [106]

7 wwh
P(W) = 2 (AE)

hexp -(r/4)([ h)]2•
(AE)

J2woerfc ( k(AE)27 (ak
exp { (wh - k(AE))2

2k
,k = 2, 3,...

with the variances Ok ~ Vk(4/r - 1)(AE).
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