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Abstract

Cells are continuously sensing and processing information from their environments
and responding to it in sensible ways. The communication networks on which such
information is handled often consist of systems of chemical reactions, such as signaling
pathways or metabolic networks. This thesis studies the dynamics of systems of
chemical reactions in the context of biological cells.

The first part of this thesis analyzes the osmo-regulation network in yeast, respon-
sible for the regulation of internal osmolarity. We measure the system’s step response
in single cells, and find that the steady state is independent of the input, a property
termed perfect adaptation that relies on integral feedback control. We then consider
the signaling cycle, a pattern of chemical reactions that is often present in signaling
pathways, in which a protein can be either active (e.g., phosphorylated) or inactive
(e.g., unphosphorylated). We identify new regimes of static and dynamic operation,
and find that these cycles can be tuned to transmit or digitize time-varying signals,
while filtering input noise.

The second part of this thesis considers systems of chemical reactions where
stochastic effects are relevant, and simplifies the standard models. We develop an
approximate model for the time-evolution of the average concentrations and their
variances and covariances in systems with and without spatial gradients. We also
describe a framework to identify and derive approximate models for variables that
evolve at different time scales in systems without spatial gradients. These tools can
help study the impact of stochastic and spatial effects on system behavior.
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Chapter 1

Introduction

One of the main goals of quantitative or systems biology is to understand the cell

— and ultimately, the whole organism — as a system whose inputs and outputs

are well identified, and whose time-dependent behavior may be predicted from its

inputs (see Figure 1-1). Such an understanding of the cell will enable one to predict

the consequences of controlled or uncontrolled changes in the system structure (e.g.,

through mutations or acquired diseases) or inputs (e.g., through drugs or hormones).

The resulting knowledge could be widely applied in a variety of fields, particularly to

enhance human health through such endeavors as improved drug design, or to engineer

biological systems that aid in the production of a wide range of useful compounds,

including biofuels. However, the biological systems that regulate cellular processes

are quite complex, typically comprising of multiple chemical species, such as proteins,

that interact across many time scales and involve multiple levels of regulation through

positive and negative feedbacks. Another complicating feature is the non-linearity

of the resulting dynamics, which often also involve stochastic and spatial effects.

Engineering disciplines have well-developed theories and tools to deal with similarly

complex systems, and have the potential to significantly advance our understanding

of biological systems.

Cells are the fundamental modules of life. They continuously sense information

from their environment, process it, and respond in ways that presumably maximize

their chances of reproducing, thereby continuing life. On the other hand, when ex-
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Figure 1-1: The cell as a dynamical system.

amined more closely a cell looks like a fluid-filled bag, perhaps with several internal

compartments, where a mix of compounds diffuse happily with no apparent purpose

or direction, occasionally reacting with one another. So how does the system-level

cellular behavior emerge from the mix of compounds found within a cell? Finding

a reasonable answer to this question is the main motivation behind the work in this

thesis, which focuses on the development of modeling tools and frameworks for bio-

chemical systems, and on the study of a particular biological system.

This thesis reports work on two main initiatives, both which often include ideas

inspired by engineering systems theory: (1) the study of a specific biological system,

the yeast osmo-regulation network, through a joint theoretical and experimental ap-

proach, and (2) the development and application of easy-to-use modeling tools and

frameworks for biological systems.

The Yeast Osmo-sensing Network

For many years, most research of biological systems was either exclusively experimen-

tal or exclusively theoretical. Recently, however, several groundbreaking studies have

intertwined theory and experiments, exploiting this interplay to broaden and deepen

our understanding of biological phenomena. Such interdisciplinary studies are still

relatively rare because of a considerable knowledge and communication gap in the

theoretical/experimental spectrum. Some of the most exciting opportunities within

systems biology focus on specific biological systems that require interdisciplinary re-

12



search teams and a strong interplay between theory and experimentation. I have been

a part of one such study for the last two years.

The system of study is the osmo-regulation network in Saccharomyces cerevisiae,

the organism more commonly known as budding yeast. This network adjusts the cell

internal osmolarity in response to environmental changes to maintain an appropriate

osmotic pressure across the cell membrane. Such homeostatic behavior is character-

istic of biological systems, and is one of the properties of living organisms.

Together with a biologist and a physicist, I developed an assay to measure the

dynamics of pathway activity in live single cells with a relatively high temporal res-

olution. We have shown that the system perfectly adapts to step inputs (i.e., has a

steady-state that is independent of the inputs magnitude). Guided by ideas from con-

trol theory, we performed further experimentation to locate the part of the system

providing a particular type of feedback (integral-feedback) that guarantees perfect

adaptation. In the process, we have also shown that the system’s dynamics are

largely independent of gene expression. Additionally, we show that the enzymatic

activity of a protein in the network is essential for the observed perfect adaptation,

suggesting the existence of unknown protein-protein interactions in the system. This

work is described in detail in Chapter 2.

Modeling Biochemical Systems

Biological networks often contain thousands of nodes and interactions among them.

Even the simplest organisms have thousands of genes, and the protein product of

each may exist in a range of different states (e.g., phosphorylated once, twice, or

not at all). To better understand network function, recurrent motifs are identified

and characterized in the hope that they behave similarly within different networks.

In Chapter 3, we analyze the static and dynamic behaviors of the nearly ubiquitous

phosphorylation cycle motif. The analysis there reveals the existence of four cycle

regimes, two of which were previously known. It also shows that the cycle can be

thought of as a first-order low-pass filter with gain and cut-off frequency that cells

13



can tune through changes in gene expression and/or in rate constants. This flexibility

may allow cells to restrict the range of frequencies that stimulate a specific signaling

pathway.

The mechanisms by which cells sense, transmit, process and react to external and

internal information invariably involve systems of chemical reactions, such as signal-

ing cascades, metabolic pathways, and gene networks. For many cellular processes,

these seemingly different networks are interconnected with each other despite often

operating on different time scales. As such, it is a remarkably difficult yet important

problem to build a comprehensive, mathematical model that accurately describes a

network’s dynamics, even if the network is well characterized from a biological stand-

point and has known parameter values.

To best reflect cellular conditions, such a comprehensive model would necessarily

incorporate stochastic effects (e.g., due to low-molecule numbers), spatial effects (e.g.,

due to diffusion and compartmentalization), and nonlinear dynamics with multiple

time scales. Currently, models that include these effects are available, but they are

too complex for all but the simplest of systems. A fundamental goal of this thesis has

been to apply model-reduction techniques (e.g., separation of time scales and moment

truncation) to simplify available modeling frameworks, allowing the effects described

above to be either simply modeled or neglected altogether.

To this end, this thesis develops a simple extension to the deterministic, spatially

homogeneous model of mass-action kinetics to account for stochastic effects. The

resulting model, referred to as mass fluctuation kinetics (MFK) and discussed in

Chapter 5, is obtained through moment truncation from the fully probabilistic model

of stochastic chemical kinetics introduced in Chapter 4. The MFK model tracks the

expected concentrations of the species in the system, as well as their variances and

covariances. Unlike other standard modeling approaches, the MFK model accurately

describes the critical effect that fluctuations can have on the mean concentrations of

a systems molecules. Additionally, it provides first and second-order statistics of the

dynamic behavior of a biochemical network, while being significantly easier to build

and analyze than the full model of stochastic chemical kinetics.

14



This thesis also develops in Chapter 6 a simple separation-of-time-scales method

for stochastic chemical kinetics that identifies the slow variables in a system, fa-

cilitating creation of a simpler model in which the system state depends only on

dynamics of the slow variables. Combining this approach with an MFK model yields

an even simpler description of a stochastic biochemical network than either MFK or

separation-of-time-scales alone could provide.

Incorporating both spatial and stochastic effects into a biochemical network model

is an enormous but important challenge. Perhaps the most common current approach

is to use the spatial chemical master equation (SCME), where a system’s volume is

partitioned into many sub-volumes, and diffusion is modeled as a first-order reaction

between adjacent sub-volumes. The SCME describes the time evolution of the joint

probability of the molecule numbers of all species in all sub-volumes. The resulting

model is so complex that even statistical simulation of very simple systems is pro-

hibitively difficult. This thesis describes an MFK model obtained from the SCME

that directly tracks the averages, variances and covariances of all the concentrations

in the system. This spatial MFK model is significantly simpler to construct and

use than the SCME. The SCME and the related MFK model is described in detail

in Chapter 7. Lastly, some concluding remarks and directions of future work are

discussed in Chapter 8.
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Chapter 2

The Osmo-regulation Network of

Saccharomyces cerevisiae

Summary

This chapter describes a study of the osmo-regulation network in Saccharomyces

cerevisiae (or budding yeast), a biological network comprised of signaling pathways,

and metabolic and gene networks.1 The osmo-regulation network, highly conserved

across organisms, is responsible for regulating the internal osmolyte concentration in

response to changes in environmental osmolarity. Negative feedback can serve many

different cellular functions, including the reduction of noise in transcriptional networks

and the creation of oscillations in circadian systems. However, only one special type of

negative feedback (integral feedback) can ensure robust performance in homeostatic

systems, yielding a system behavior termed perfect adaptation, where steady-state

output is independent of steady-state input. Here we measure single-cell dynamics in

the Saccharomyces cerevisiae hyperosmotic shock network, which regulates membrane

turgor pressure. Importantly, we find that the nuclear enrichment of the MAP kinase

Hog1 perfectly adapts. We use small-molecule inhibitors and dynamic measurements

of cell volume, Hog1 nuclear enrichment, and glycerol accumulation to assess the

network location of the mechanism responsible for perfect adaptation, and we build a

1The material in this chapter has been submitted for publication to Cell.
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simple model of the system. Notably, Hog1 kinase activity, but not gene expression,

is required for Hog1 perfect adaptation, suggesting that this networks homeostatic

function may critically depend on protein-protein interactions.

2.1 Introduction

Cells are typically subjected to time-varying environments, yet must finely regulate

the levels of many of their key physiological variables, which allows them to thrive in

a wide range of experimental conditions. Often, this homeostatic behavior is accom-

plished by complex systems of chemical reactions known as biochemical networks.

They typically consist of signaling pathways, where proteins interact and modify one

another to process and transmit signals, metabolic networks that change the con-

centrations of key cellular metabolites, and gene networks that adjust protein levels.

Measuring the system’s dynamics is often a challenging task, particularly when mea-

surements of signaling pathways or metabolic networks are needed.

Feedback is a ubiquitous regulatory feature of biological systems, characterized

by the system output either directly or indirectly contributing also to the input. A

system exhibits positive feedback when its output reinforces an input; for example, in

the regulation of HIV-1 latency, the Tat protein is both an output of the system and

a potent activator of many viral genes, including Tat itself ([151]). In systems with

negative feedback, by contrast, the output opposes the input, as in the eukaryotic

cell-cycle oscillatory system, where cyclin-B accumulation leads to formation of the

MPF, which subsequently activates the APC, ultimately resulting in degradation of

cyclin B ([115]).

Quantitative models are increasingly being used to study the function and dy-

namic properties of complicated, feedback-laden biological systems. These models

can be broadly classified by the extent to which they represent specific molecular

details of the network. At one extreme are the exhaustive models that dynamically

track quantities of virtually all biomolecules in a system, using differential equations

based either on known or assumed reaction stoichiometries and rates. This modeling
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approach has produced exceptional results in the modeling of EGF receptor regula-

tion ([127]) and crosstalk in yeast signal transduction ([125]), though in general it

can suffer from overfitting or the omission of important reactions not yet biologically

identified.

At the other end of the modeling spectrum is the minimalist approach, which aims

to fit and predict a systems input-output dynamics with only a few key parameters,

each potentially the distillation of a large group of reactions. Though such models

frequently lack reaction- and network-specific details, they excel at providing intuitive

and general insights into the dynamic properties of recurrent system architectures.

For instance, two elegant studies of bacterial chemotaxis —a system said to perfectly

adapt because abrupt changes in the amount of ligand only transiently affect the

tumbling frequency, whereas steady-state tumbling is notably independent of the

ligand concentration— highlighted a general feature of all perfectly adapting systems

([9, 156]).

Specifically, it was shown that a negative feedback loop implementing integral

feedback is both necessary and sufficient for robust perfect adaptation in any bio-

logical system. Mathematically, a dynamic variable (e.g., x) whose rate of change is

independent of the variable itself (i.e., the dx/dt equation contains no terms involv-

ing x) is an integrator, and integral feedback describes a negative-feedback loop that

contains at least one integrator. Biologically, a biomolecule acts as an integrator if its

rate equation is not a function of the biomolecule concentration itself; such a situation

arises if, say, the synthesis and degradation reactions are saturated (see below). By

providing specific mechanistic restrictions that apply to any perfectly adapting sys-

tem, these two studies underscored the function and significance of perfect adaptation

in homeostatic regulation and demonstrated the power of the minimalist modeling

approach.
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2.2 The Osmo-regulation Network of Saccharomyces

cerevisiae

In order to activate the proper adaptive mechanism at the proper time, cells have

evolved extensive signal-processing machineries, including signal-transduction cas-

cades that initiate at the membrane and culminate in the nucleus. Mitogen-activated

protein kinase (MAPK) cascades are among the most closely studied and highly con-

served signal-transduction pathways. Their defining feature is a core module of three

kinases —the MAPKKK, the MAPKK, and the MAPK— that sequentially phospho-

rylate each other. Activated by this phosphorylation, the MAPK itself often mediates

a broad transcriptional response to the extracellular signal. Most eukaryotes contain

several MAP kinases and several corresponding upstream pathways, each of which

is tuned to respond to a specific stimulus. Remarkably, even though some pathways

share common components, they are quite robust to cross-talk, precisely regulat-

ing fundamental processes including homeostasis, immunity, synaptic plasticity, and

development.

S. cerevisiae is the yeast that is typically used for baking bread and brewing beer

or wine. It is a unicellular eukaryotic (i.e., with a nucleus) organism that divides by

budding, so it is typically called budding yeast. Budding yeast is an important model

organism in cell biology, because it grows rapidly, it can be cultured easily, and can

be genetically manipulated with relative ease. Budding yeast cells are separated from

their environment by their cell membranes, which are semi-permeable, i.e., they let

water and other molecules pass freely through them while stopping others. Those

molecules stopped by the membrane are called osmolytes; their concentration in a

solution is the solution’s osmolarity.

When the osmolarities on the two sides of a semi-permeable membrane are dif-

ferent, and in the absence of other forces, osmosis results in water flow from the low

osmolarity to the high osmolarity side of the membrane. The internal osmolarity

of cells is typically higher than that of their environments. In the absence of other

processes, osmosis would then drive water flow into the cell, resulting potentially in
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cell rupture. However, as the internal volume of the cell increases, the cellular mem-

brane and wall stretch and exert an opposing pressure on the incoming fluid resulting

in a steady-state volume. Therefore, fluid within cells is typically pushing on the

membrane and cell wall. This so-called turgor pressure is what drives bud growth in

budding yeast, allowing them to divide.

Figure 2-1: Budding yeast regulate their internal osmolarity in response to changes
in external osmolarity by adjusting glycerol levels.

Maintaining an adequate difference between internal and external osmolarity is

then of utmost importance for budding yeast. If the internal osmolarity is too high

the cell membrane and wall can rupture, while if the internal osmolarity is too low

then water flows out of the cell, leaving the cell unable to divide or, in the extreme

case, completely dried up. Importantly, budding yeast are immobile creatures that

live in environments with time-varying osmolarities. So how do they regulate their

internal osmolarities in response to environmental osmolarity changes? It turns out

they do so via a complex system of chemical reactions, the osmo-regulation network,

that adjusts the internal concentration of a specific osmol, glycerol (see Figure 2-1).

When the external osmolarity drops, this network lets glycerol leak out of the cell.

When the external osmolarity increases, the osmo-regulation network dynamics lead

to glycerol accumulation. We focus here on the system response to hyper-osmotic

shocks, i.e., increases in the external osmolarity.

Minimalist modeling tactics have been successfully applied to the osmosensing

network in the budding yeast S. cerevisiae ([86]). The core of this network is a
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highly conserved mitogen-activated protein kinase (MAPK) cascade, one of several

such cascades in yeast that regulate processes ranging from mating to invasive growth

while being remarkably robust to cross-talk despite their many shared components

[77, 76]. Yeast cells maintain an intracellular osmolarity in excess of the extracellular

osmolarity, thereby creating positive turgor pressure across the cell wall and mem-

brane that is required for many processes including budding itself. Sudden drops

in turgor pressure, potentially caused by an upward spike in the external osmolyte

concentration, are detected by membrane proteins such as Sln1 ([120]), which rapidly

initiates a sequence of phosphorylation-dephosphorylation reactions that propagate

down the Hog1 signaling pathway. This pathway is named after its key protein, the

Hyper-Osmotic Glycerol protein 1, or Hog1. The last three proteins in the pathway

constitute a MAPK cascade. Protein Hog1, the MAPK, is the human homologue of

p38, which has been involved in cancer.

Activation of the Hog1 pathway results in the double phosphorylation of Hog1

(Figure 2-2a). Upon dual phosphorylation, the normally cytoplasmic and inactive

Hog1 becomes activated and translocates to the nucleus ([45]), where it plays direct

and indirect roles in a broad transcriptional response ([107]). GPD1 and GPP2 , which

encode key glycerol-producing factors, are among the activated genes, and they facili-

tate osmoadaptation through the increase of intracellular osmolarity ([1, 121, 77]). In

fact, glycerol accumulation, a process in which Gpd1, Gpp2 and other enzymes cat-

alyze reactions that convert one glucose molecule into two glycerol molecues, has been

shown to comprise 95% of the internal osmolarity recovery ([119]). The subsequent

restoration of turgor pressure leads to nuclear export of Hog1, which is dephosphory-

lated by several nuclear and cytoplasmic phosphatases ([154, 79, 150]).

Non-transcriptional feedback mechanisms are also important for the hyperosmotic-

shock response, and recently Hog1 has been implicated in these processes. For in-

stance, Hog1 has been shown to phosphorylate the metal-ion antiporter Nha1, mod-

ulating its ion-efflux properties to accelerate osmoadaptation ([116]). Hog1 may also

affect permeability of the Fps1 channel, which allows passive export of glycerol from

the cell when at optimal turgor pressure ([96]). Upon hyperosmotic shock, however,
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Figure 2-2: a. Diagram of the budding yeast osmo-regulation network, and b. corre-
sponding system/engineering diagram.

the Fps1 channels close rapidly, leading to retention of intracellular glycerol ([137]).

Under arsenite stress, Hog1 has been shown to phosphorylate Fps1 ([141]), thereby

decreasing its permeability to arsenite, though it has not yet been shown whether

Hog1 phosphorylates Fps1 during hyperosmotic shock. The Hog1 pathway has also

been shown to upregulate glycerol synthesis via phosphorylation and potent acti-

vation of 6-phosphofructo-2-kinase (PFK2 ), a key glycolytic enzyme that increases

production of glycerol precursors ([33]). Though direct phosphorylation of PFK2 by

Hog1 has not been investigated, PFK2 has many consensus MAPK phosphorylation

sites that become phosphorylated upon hyperosmotic shock ([33]).

23



Built upon the extensive genetic and biochemical characterization of hyperosmotic-

shock regulation, the exhaustive dynamic model of the Hog1 system was successful

at recapitulating many known system features with precise molecular detail ([86]).

Furthermore, it accurately predicted previously untested behaviors, such as the dy-

namics of Hog1 activation, transcriptional activation, and glycerol accumulation in

response to sequential osmotic shocks. Biochemical characterization of most systems

is rarely so rich to be deemed exhaustive, nor so lacking to consider a system as a

black box. Thus, models combining elements from both approaches can also be quite

useful, such as a recent study that started with the exhaustive osmoadaptation model

and abstracted several elements to yield a reduced representation ([52]). Here we take

the reverse strategy, starting instead with the minimalist model (Figure 2-2b) and

then using biological measurements and engineering principles to better understand

systems-level dynamics and their relation with network topology.

I was involved in two studies of this system. In one of them, described in detail in

the PhD thesis of Jerome Mettetal ([101]) and in [100], we viewed the osmo-sensing

network as a ”black box,” and used sinusoidal inputs to build a minimal model of the

system. In the other study, the one described next, we hyperosmotically stress yeast

cells and monitor the dynamics of cell volume, Hog1 nuclear enrichment, and glycerol

accumulation. In response to step inputs of osmolyte, we observe perfect adaptation

of Hog1 nuclear enrichment, and this adaptation occurs with very low cell-to-cell

variability. Perfect adaptation in this feedback system requires an integral-feedback

mechanism, and we use molecular and modeling techniques to assess its location in

the network. Specifically, we find that the perfect adaptation requires Hog1 kinase

activity but does not require new protein production, suggesting that Hog1 may im-

plement integral-feedback via a yet-unknown role in protein-protein interactions that

increase the internal osmolyte concentration. Measurements of glycerol accumulation

support this crucial role for Hog1 kinase activity and, as with the observation of per-

fect adaptation, impose further restrictions on the types of models that can describe

the system. We present a simple quantitative model based on our various biological

findings that captures the key features of our data.
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The Network Diagram

Figure 2-2a summarizes the biological structure of the osmo-regulation network, and

makes evident that the interactions amongst the different processes in the network

result in several feedback loops that together determine the overall system behavior.

Engineering disciplines, and particularly control theory, have developed tools and re-

sults that are specially well-suited for understanding such complex dynamical systems

with multiple feedback loops (e.g., see [106, 81]). We later draw on some of these

tools and results in developing a systems-level understanding of the osmo-regulation

network, whose corresponding network diagram is shown in 2-2b. There the input to

the network is the external osmolarity u(t); the difference, or error, between u(t) and

the cell’s internal osmolarity g(t) defines the turgor pressure, which feeds into the

cellular signaling subsystem that corresponds to the signaling pathway starting with

Sln1 and resulting in phosphorylated Hog1. Phosphorylated Hog1 has an increased

kinase activity, which is the input to Hog1-dependent processes that result in internal

osmolyte (glycerol) accumulation (e.g., through Fps1 phosphorylation and gene ex-

pression). Other processes that are Hog1 independent also respond to the error and

lead to glycerol accumulation.

2.3 Measuring the Dynamics of the Osmo-Regulation

Network

The Yeast Strain

In order to study the osmo-regulation network, we developed an assay to measure

pathway activity using Hog1’s spatial localization as a proxy for its phosphorylation.

We measure the nuclear accumulation of Hog1 and cellular volume in single cells over

time in response to controlled changes in external osmolarity. We fused a yellow-

fluorescent protein (YFP) to the C-terminus of endogenous Hog1 (Hog1-YFP) in

haploid cells from which a protein called Sho1 was deleted. Sho1 deletion disables

one of the two parallel branches that activate Hog1. We focus on the Sln1 branch here
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Figure 2-3: Apparatus with a chamber where yeast cells are stuck on its surface, while
media from one of two inputs flows over them.

for several reasons: (1) Sln1 dominates the response at the shock levels we assayed

(data not shown and old ref), and (2) whereas the stimuli affecting Sho1 are not well

understood, turgor pressure is the well-characterized input to the Sln1 branch, thus

aiding our modeling and data analysis. To identify the nucleus and thereby facilitate

our computation of nuclear Hog1 enrichment, we fused a red fluorescent protein to

Nrd1 (Nrd1-RFP), a strictly nuclear factor.

Figure 2-4: Phase-contrast, YFP and RFP images of the response to a step input
sampled at three time points. Phase-contrast images allow us to find regions with
and without cells, YFP images show the spatial distribution of Hog1 within each cell,
and RFP images define nuclear regions within cells.
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The Measuring Device

We developed a simple flow-chamber apparatus to permit the changing of media and

acquisition of images simultaneously. Happily dividing cells (i.e., in log-growth phase)

are loaded into the chamber (see Figure 2-3), where they adhere to a coverslip coated

with concanavalin A. Media with or without excess osmolyte is then washed over

the cells throughout each experiment, and in less than two seconds the media within

the chamber can be swapped completely between the two types (data not shown).

At each time point, we acquire phase-contrast, YFP, and RFP images. Figure 2-4

shows sample images taken at three different time points in response to a step input.

These images show a transient accumulation of Hog1 in the nucleus shortly after

a hyperosmotic shock, and ubiquitous localization shortly before and long after the

shock.

Quantifying the System’s Response

We developed custom image analysis algorithms to quantify the dynamic single-cell

volume and Hog1 nuclear accumulation responses to changes in the extracellular

osmolyte concentration, which we chose to be NaCl. Our algorithms segment the

images at each time point to produce the image regions corresponding the each cell

and to each cell’s nucleus.

To quantify the Hog1 response of cell number i through its Hog1 nuclear accumu-

lation, we first define the raw nuclear accumulation ri(t), defined as the ratio of the

average nuclear YFP intensity to average whole-cell YFP intensity. That is, letting

Ni(t) and Ci(t) respectively denote the pixels corresponding to the nuclear and whole

cell regions of cell number i at time t, we have that

ri(t) =

1
nni (t)

∑
j∈Ni(t)

yj

1
nci (t)

∑
j∈Ci(t)

yj

, (2.1)

where yj is the YFP intensity of pixel number j, and nni
(t) and nci

(t) are the number

of pixels in Ni(t) and Ci(t), respectively. The raw nuclear enrichment ri(t) then

27



quantifies the relative concentration of Hog in the nucleus relative to that of the

whole cell. Additionally, defining ri(t) as a ratio of YFP intensities automatically

corrects for photo-bleaching, a process that results in decreasing YFP intensities in

sequential images.

Figure 2-5: Step response of Hog1 nuclear enrichment y(t). The jagged traces corre-
spond to single cell traces, the blue line to the population average, and the shaded
regions to the one-stadard-deviation bands about the population average.

We focus on what we call the Hog1 relative nuclear enrichment hi(t), or more

simple just the Hog1 nuclear enrichment, which we define as

hi(t) =
ri(t)

ri(to)
− 1 . (2.2)

The nuclear enrichment hi(t) simply tracks relative changes of the initial ratio of

nuclear to whole-cell YFP intensities.

Figure 2-5 shows the Hog1 nuclear enrichment in response to a step of 0.4M

NaCl. The jagged traces there correspond to single-cell traces. The blue line is the

population average, obtained as the sample mean of the nuclear enrichments of all cells

in the sample. Similarly, the shaded region corresponds to the one-standard-deviation

bands about the population average. Importantly, note that the steady-state nuclear

enrichment is identical to its pre-stimulus level. We elaborate on this in the next
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section.

Our algorithms also allow us to quantify relative volume changes from the collected

images. Specifically, our analysis produces the number of pixels nci
(t) that constitute

each cell as a function of time; this number is proportional to the cell’s area, so

assuming that the cell is a sphere n
3
2
ci(t) is proportional to the cell’s volume. Because

we are interested in relative volume changes from baseline, we accordingly define the

volume ei(t) of cell number i, referred to also as the error for reasons that will become

clear in the next section, by

ei(t) =

(
nci

(t)

nci
(to)

) 3
2

− 1 . (2.3)

The error e(t) thus tracks the relative volume changes.

Figure 2-6: Step response of cell volume e(t). The jagged traces correspond to single
cell traces, the blue line to the population average, and the shaded regions to the
one-stadard-deviation bands about the population average.

Figure 2-6 shows the cell volume e(t) in response to a step of 0.4M NaCl. The

jagged traces there correspond to single-cell traces. The blue line is the population

average, obtained as the sample mean of the nuclear enrichments of all cells in the

sample. Similarly, the shaded region corresponds to the one-standard-deviation bands

about the population average. In response to the osmoshock, cell volume has a quick
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decrease followed by a slower recovery. In contrast with the Hog1 nuclear enrichment,

cell volume does not reach a steady-state, but instead continues increasing throughout

the experiment. This indicates that at some point the turgor pressure, which decreases

shortly after the osmoshock, has returned to a level that allows cells to grow and divide

again.

Figure 2-7: Single-cell traces and population statistics for Hog1 nuclear enrichment
in unstimulated cells.

The previous figures also show that there is remarkably low cell-to-cell variability

introduced by reactions in the MAPK cascade, since measurements both upstream

(volume) and downstream (Hog1) were comparably noisy. In fact, fluctuations in un-

stimulated cells are of a similar magnitude (Figure 2-7), further suggesting that most

of the cell-to-cell variability observed may come from the experimental setup itself.

Taken together with studies investigating the noise generated from gene-expression-

based systems, these data then suggest that the osmoadaptation signaling system

generates output signals with very low noise, despite the fact that the system itself

contains many proteins expressed at noisy levels.

2.4 Hog1 and its Perfect Adaptation

Quantitative measurement of Hog1 nuclear enrichment over a range of hyperosmotic

shock strengths reveals that the kinetics of the response depend on shock-strength but

steady-state nuclear enrichment does not (Figure 2-8). This behavior, having a steady
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state that is independent of the input’s steady state, is termed perfect adaptation in

Biology.

Figure 2-8: Hog1 nuclear enrichment (top) and cell volume (bottom) in response
to step inputs of various magnitudes. The traces correspond to average behavior,
obtained by averaging the population averages of at least four different experiments.
The shaded regions around each trace correspond to day-to-day variability of the
population averages; their width is twice the standard error of the population averages
obtained from the different experiments.

A perfectly adapting system is particularly well suited for regulating homeostasis

because it helps the cell respond to a deviation from a resting environment, but the

response does not persist if the deviation itself defines a new resting environment.

The best-characterized system that implements perfect adaptation is the bacterial

chemotaxis network, in which the cell attempts to reach a maximum in the external

chemoattractant concentration by reorienting less frequently as the level of chemoat-

tractant rises (e.g., see [10, 9, 2, 156, 11]). Classic experiments measured the rate of
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Figure 2-9: Hog1 nuclear enrichment in response to a step increase of external osmo-
larity, for a variety of osmols.

reorientation in response to an upward and persistent spike in chemoattractant and

found that it perfectly adapts: despite a transient decrease in reorientation follow-

ing the spike, the steady-state reorientation frequency is the same as its pre-spike

level. Other biological systems that perfectly adapt include blood calcium levels in

parturient cows ([34, 82]).

Figure 2-8 shows that within 5 minutes, Hog1 nuclear enrichment reaches a max-

imum, after which it slowly decreases. Crucially, the steady-state Hog1 nuclear en-

richment of cells stimulated with 0.2M, 0.4M, and 0.6M NaCl is the same as that

of cells not treated with NaCl. Furthermore, such behavior is not NaCl-specific, as

it was observed with KCl and sorbitol treatment as well (Figure 2-9). The data on

Figure 2-8 also demonstrate that the system is nonlinear; Hog1 nuclear enrichment

saturates at about 0.45, and the dynamic response becomes wider with increasing

input magnitudes.

Interestingly, in response to a 0.2M NaCl shock, nuclear enrichment returns to

its steady-state within 15 minutes of the shock. This suggests that, at least at lower

salts, the addition of new proteins through gene expression, which typically has slower

dynamics, may play a minor role in the recovery. This is surprising in light of the

current understanding in which enhanced expression of Gpd1 and Gpp2 is a key

process of the system response.

Additionally, more frequent sampling of the Hog1 response shows that nuclear en-

32



richment starts within 10 seconds of the osmoshock (data not shown). This indicates

that it takes less than 10 seconds for the phosphorylation signal to travel down the

Hog1 signaling pathway.

The cell volume, shown in Figure 2-8, decreases within seconds of the osmoshock,

and then slowly recovers. While Hog1 nuclear enrichement reaches a steady state

(identical to its pre-stimulus level), cell volume continues increasing throughout the

experiment, indicating that cells continue growing and dividing after a transient re-

covery to the osmoshock. This continued growth requires that the turgor pressure

was restored during the transient response, and suggests turgor pressure also per-

fectly adapts to step inputs. Presumably, the main objective of the osmo-regulation

network is to regulate turgor pressure so that it perfectly adapts, allowing the cell

to continue growing and dividing despite step changes in external osmolarity; Hog1s

perfect adaptation would then be a consequence of this regulation.

Interestingly, for stronger hyperosmotic shocks (e.g., [NaCl] = 0.6M), the Hog1

signal returned to its pre-stimulus level before the volume did. It is still possible,

however, that pre-stimulus turgor pressure has indeed been restored at a smaller

volume in these cells, since it has been shown that membrane invagination occurs

in proportion to hyperosmotic shock strength. Because turgor pressure is a function

of both membrane surface area and the osmotic difference across the membrane,

this invagination would decrease the cell volume required to achieve the pre-stimulus

turgor pressure.

2.4.1 Integral Feedback

Perfectly adaptation has been extensively studied in engineering and control. Control

theoretic studies of perfect adaptation have shown that a system can perfectly adapt

if and only if it contains an integral-feedback controller (which may only be made

apparent after a change of coordinates, e.g., see [156]). Thus, the fact that we observe

perfect adaptation in Hog1 nuclear accumulation requires the existence of integral-

feedback control in the hyperosmotic shock response. We here show how integral

feedback can give rise to perfect adaptation, and argue for necessity only later in the
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chapter.

Consider the standard control theory system schematic in Figure 2-10. The system

receives an external input u(t), generates an observable output y(t), and is comprised

of two systems, called the plant and the controller. The output y(t) of the plant is

the input to the controller, which itself generates an output g(t) that gets combined

with the external input to generate the input to the plant e(t) = y(t) − g(t), which

we call the error.

Figure 2-10: Simple control diagram network schematic.

Both the controller and the plant impact overall system behavior. For instance,

suppose that the controller simply integrates its input over time to produce its output,

i.e., that dg
dt

= ky(t), for some positive constant k. Further suppose that the overall

system is stable, so that it settles to a steady-state in the presence of a sustained

input u(t) = uo. Then at steady-state, dg
dt

must be zero, which directly implies that

y(t) is zero at steady-state, so that the plant’s output perfectly adapts. If the fact

that the plant’s steady state is zero implies that its steady-state input is zero, a not

uncommon situation, then we also have that the error e is zero at steady state, so

that g = uo at steady-state.

Could the perfect adaptation of the osmosensing network be understood in the

context of the previous argument, taking the plant to be the system that takes in

turgor pressure and outputs our measured Hog1, and the controller the system that

takes measured Hog1 as its input and outputs internal osmolarity? Because g =

uo at steady-state, then if we change the steady-state external osmolarity by ∆u,

the internal osmolarity g changes by the same amount ∆g = ∆u. However, since

g is the controller’s output we then have that ∆u =
∫∞

to
ky(τ)dτ, namely that the
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Figure 2-11: Area under the Hog1 response in Figure 2-8a versus the magnitude of
the step input.

integral under the Hog1 response y(t) is directly proportional to the change in external

osmolarity.

Remarkably, despite the evident non-linearity of the Hog1 response (see Figure

2-8a) its integral does increase linearly with the magnitude of the input, as shown in

Figure 2-11. However, the line does not cross the x-axis at zero, but at a positive

shock. This is possibly due to the fact that Hog1 is not the single input into glycerol

accumulation, so Hog1-independent processes potentially contribute part of the ∆g,

perhaps only up to a maximal amount after which they let Hog1 finish the adapta-

tion. For now, we interpret the linearity of Figure 2-11 as an encouraging indicator

that glycerol accumulation may behave like a simple integrator, responsible for the

network’s perfect adaptation.

Note that the previous argument did not require the plant to be a linear system,

but only that the overall system reaches a steady state in the presence of a sustained

input. The previous argument can be directly generalized to other types of controllers

of the form
dg

dt
= f(y(t)), (2.4)

where f(y(t)) is a nicely behaved function that has the same sign as its argument h,

but is otherwise arbitrary. The key observation here is that f(y(t)) is independent
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of the output, so that g(t) is simply the time-integral of f(y(t)). Such controllers are

called integral controllers.

Biological Integrators

Saturated enzymatic reactions can result in biological Integrators. Consider a sub-

strate (e.g., a protein) that can be in one of two chemical states: active (e.g., phospho-

rylated) and inactive (e.g., dephosphorylated). Inactive substrates become activated

through an enzymatic reaction catalyzed by enzyme E1, and active substrates get

deactivated by another enzyme E2. Under appropriate conditions (see Chapter 3 or

[63]), the rate of change of the concentration of active substrate A is well approxi-

mated by

dA(t)

dt
= k1

E1

(
S − A(t)

)
K1 + E1 + S − A(t)

− k2
E2 A(t)

K2 + E2 + A(t)
,

where E1 and E2 are dynamic variables that denote the total concentrations of E1 and

E2, respectively. The total concentration of substrate is S. K1 and K2, and k1 and k2,

are the Michaelis-Menten, and the catalytic rate constants of E1 and E2, respectively.

The standard Michaelis-Menten rates are a special case of the functions above (which

are themselves valid more generally), obtained when the enzyme concentrations E1

and E2 are small.

The equation above shows that in general, the rate of change of active substrate

concentration depends on the concentration itself. However, when the activation

and deactivation reactions are operating in saturating substrate excess (i.e., when

K1 + E1� (S − A), and K2 + E2 � A ) then the equation above simplifies to

dA(t)

dt
= k1E1 − k2E2.

In such a situation, the rate of change of active substrate is independent of the

concentration itself, resulting in a biological integrator, where the dynamics of A(t)

may be obtained simply by integrating the function k1E1 − k2E2 over time. We

speculate later in this chapter about the possibility of active PFK2 , a protein involved
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in glycerol synthesis that may be activated directly by Hog1 phosphorylation, being

the key integrator in the system.

Perfect Adaptation For Linear Systems

We have argued above that integral feedback is sufficient for the plant’s output to

perfectly adapt. Showing necessity is much more elaborate mathematically (the in-

terested reader is referred to [156] and [131]); here we satisfy ourselves with a weaker

argument that applies to the osmosensing network diagram assuming it is a linear

time-invariant (LTI) system (e.g., any driven system of linear ordinary differential

equations with constant coefficients, which is at rest at the start of the experiment).

All linear time-invariant systems are fully characterized by their transfer function

T (s), which relates the Laplace transforms2 of the system’s input and output to each

other via:

Y (s) = T (s)U(s), (2.6)

where U(s) and Y (s) are the Laplace transforms of the input and output, respectively.

Importantly, an LTI system has one or more integrators in it if its transfer function

explodes (i.e., its magnitude becomes infinite) when evaluated s = 0.

At steady-state, the output of the system is simply given by

yss = T (0)uss, (2.7)

where uss and yss denote the steady-state input and output, respectively, and T (0)

is simply the transfer function evaluated at the frequency zero. For linear time-

invariance systems, perfect adaptation then requires T (0) = 0, so that yss is indepen-

dent of uss.

2The (uni-lateral) Laplace transform X(s) of a time trace x(t) is given by

X(s) =
∫ ∞

t

x(τ)e−sτdτ, (2.5)

where s is a complex number. When s is purely imaginary the Laplace transform is the Fourier
transform. See [106] for a good overview of linear time-invariant systems, including Laplace and
Fourier transforms.
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Perfectly Adapting Signals Lie Downstream of Integrator

Figure 2-12: System diagram with an integrator flanked by two subsystems. The
signals upstream of the integrator perfectly adapt, while those downstream do not.

Consider a system with the network diagram shown in Figure 2-12, where all

the variables represent deviations from the systems rest level (i.e., all the internal

variables and the system input are identically zero at rest). The system has a single

input, u(t), and a single negative feedback loop containing three subsystems: an

integrator and two flanking subsystems called upstream and downstream based on

their positions relative to the integrator. The error, e(t), is the difference between

the input u(t) and s3(t), which is the output of the downstream subsystem and the

last signal in the feedback loop. The error is the input to the upstream subsystem,

which has output signal s1(t). The integrator subsystem integrates and potentially

scales its input s1(t) to generate its output s2(t), which then serves as the input to

the downstream subsystem.

Assume that the overall system is stable and that a persistent step-input, u(t) =

uo, is applied at time t = 0. At steady state, all the signals in the system are

constant, and in particular, because s2 is constant, s1 must be zero. Therefore, the

steady-state level of s1 is independent of the system-input level, and the output of the

upstream subsystem exhibits perfect adaptation. Now assume that when the steady-

state output of the upstream subsystem is zero, its steady-state input is identically

zero. This is certainly the case if the upstream subsystem is a stable linear system,

but it is true more generally as well (e.g., for non-linear systems with a single steady

state). Then, perfect adaptation of s1 implies perfect adaptation of the error, e. This,

in turn, directly implies that the last signal in the loop at steady state is identical to

the input, i.e., s3 = uo. If the downstream subsystem is stable (and, in particular, has
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no integrators in it), then, since its steady-state output is non-zero, its steady-state

input s2 must also be non-zero. This argument shows that the signals upstream of the

last integrator in the negative feedback loop perfectly adapt, while those downstream

of it do not.

2.4.2 The Integrator in the Osmo-sensing Network

These experimental data discussed so far already begin to restrict the possibilities of

where in the osmo-sensing network the integrator can be. The potential locations we

consider are four subsystems denoted H, I, D, and G (Figure 2-13). The H subsystem

represents all relevant reactions that link an osmotic disturbance at the membrane

with Hog1 nuclear enrichment; for example, the MAPK cascade and nuclear-import

reactions are in this subsystem. In the D subsystem are Hog1-dependent mecha-

nisms that promote glycerol accumulation, such as the transcriptional activation of

genes that encode for glycerol-producing enzymes (e.g., Gpd1, Gpp2) and potential

protein-protein interactions initiated by Hog1 that lead to glycerol accumulation. In

subsystem I are the Hog1-independent mechanisms that contribute to osmolyte pro-

duction, such as export-channel closure and gene-expression mediated by stress factors

other than Hog1. Finally, subsystem G represents the metabolic reactions involved in

glycerol synthesis and any other reactions that contribute to glycerol accumulation.

Positing that each subsystem either contains an integrator or does not, we generated

the 16 possible network configurations to guide our further analysis (Figure 2-13).

A critical aid in finding which of the subsystems contains the integrator(s) is

the fact that with respect to the furthest-downstream integrator in a feedback loop,

quantities upstream perfectly adapt, and those downstream do not. For instance,

the observation that turgor pressure perfectly adapts —indeed, this is the primary

function of regulating osmotic stress— stipulates that at least one integrator must

exist in H, I, D, or G, since turgor pressure is upstream of each of these systems

within the feedback loop. This allows us to reject network configuration (a), where

none of the subsystems acts as an integrator. The previous result is easiest to see

assuming that the subsystems are all LTI systems. Using techniques from control
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Figure 2-13: We consider all combinations for the presence (orange) or absence (green)
of integrators in the subsystems H, D, I, and G, yielding the sixteen possibilities (a)
through (m). For the reasons listed at top-right, which consider data from Figures
2-8 and 2-15, certain networks can be rejected. Only networks (d) and (g) satisfy all
the constraints, and we implement (d) when later fitting the data to a model.

engineering, it is a straightforward task to obtain transfer functions from a given

network diagram (given the transfer functions of the networks subsystems) or from

the system of differential equations describing the system dynamics. The transfer

function relating the system input to the error in the network of Fig 2-2b is given by

Tue(s) =
1

1 + G(DH + I)
,

where G, D, H and I are the transfer functions of the four subsystems in the network.

Their dependence on the variable s has been omitted to avoid clutter (i.e., G(s)
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is simply written as G). Perfect adaptation of the error requires that Tue(0) = 0,

which consequently implies that at least one of the four subsystems has a transfer

function that goes to infinity (explodes) at s = 0. We can then conclude that perfect

adaptation of the error requires that at least one of the four subsystems has at least

one integrator.

Similarly, the transfer function between the system input and glycerol is given by

Tug(s) =
G(DH + I)

1 + G(DH + I)
,

which shows that as long as there is a single integrator in the feedback loop (i.e., as

long as G(DH+I) explodes at s=0), then Tug = 1, and the steady-state glycerol will

equal the input, producing a steady-state error equal to zero.

The observation of Hog1 perfect adaptation imposes an additional constraint.

Specifically, if the only integrator in the feedback loop were in subsystem H, then

Hog1 nuclear enrichment would not perfectly adapt, because it is downstream of H.

Equivalently, the transfer function of the input to Hog1 is given by

Tuh(s) =
H

1 + G(DH + I)
,

so having integration only at the H subsystem does not result in Tuh(0) = 0. Thus,

at least one of subsystems I, D, and G must contain an integrator, permitting the

rejection of configuration (b).

Perfect Adaptation Requires Hog1 Kinase Activity, but not Gene Expres-

sion

We searched further for the location of the integrator by assessing whether biochemi-

cal inhibition of specific reactions ablated Hog1 perfect adaptation. Our first attempt

blocked gene expression in the whole cell by pre-treating cells with the translation-

elongation inhibitor cycloheximide, and then monitored cell volume and Hog1 nuclear

enrichment in response to hyperosmotic shock. In the absence of salt shock, cyclo-
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Figure 2-14: (A) Cultures from the cell line indicated (e.g., Wildtype or hog1-as)
were treated with 100µg/ml cycloheximide (CHX) or 24µg/ml PP1, as specified in
the legend. Only the dark-blue line corresponds to a culture that was osmoshocked,
and this trace was included to provide a sense of scale. The +CHX and +PP1 traces
shown here were subtracted from the response of osmostressed cells, to correct the
raw traces and obtain a measurement of the osmostress-specific response. The traces
of osmostressed cells corrected in this manner are shown in Figure 2-15. Dotted
lines show the average response, obtained by averaging the population averages from
three or four experiments, and the error boundaries depict the standard error of the
average response. (B) Volume traces from the corresponding experiments in (A). As
with the traces in (A), the traces here were substracted from those of osmostressed
cells to correct raw volume measurements and obtain the osmostress-specific responses
shown in Figure 2-15c.

heximide treatment decreased the growth in cell volume and led to a small increase

in baseline Hog1 nuclear enrichment (Figure 2-14). Importantly, however, just as in

wildtype cells, the steady-state level of both volume-growth and Hog1 nuclear en-

richment in salt-stressed, cycloheximide-treated cells returned exactly to the baseline

levels, indicative of perfect adaptation (Figure 2-15a). Despite the fact that gene ex-

pression is required for recovery from severe osmotic stress ([13]) and that hundreds

of genes are activated or repressed in response to shocks ranging from mild to se-

vere ([107]), these data indicate that gene expression is not required for Hog1 perfect
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Figure 2-15: (A) Wildtype cells were loaded into a flow cell in minimal media. The
green curve depicts the population mean and standard error (N=3) from experiments
in which 100µg/ml cycloheximide was added to the cells five minutes before 0.4M
NaCl entered the flow cell. The trace is corrected for drift in the Hog1 nuclear
enrichment in cells not stressed with NaCl (see Figure 2-14). The blue curve illustrates
cells that underwent the same osmo-shock but were not treated with cycloheximide.
(B) Nuclear enrichment of (hog1-as)-YFP in cells treated with 24µM PP1 prior to
hyperosmotic shock with 0.4M NaCl. As with the WT+CHX trace in (A), this trace
is corrected to highlight the salt-specific response. The population mean and standard
error (N=3) are plotted. (C) Volume traces from the corresponding experiments in
(A) and (B), again corrected to highlight the salt-specific response.

adaptation to 0.4M NaCl, a moderate salt stress.

In contrast, Hog1 does require its kinase activity for perfect adaptation. To assay

the effect Hog1 activity exerts on its own adaptation, we mutated the endogenous

Hog1 gene such that the kinase activity of the mutant (hog1-as) could be specifically,

rapidly, and inducibly ablated by the ATP-analog 1-NM-PP1 (PP1); see [152]. In

the presence of PP1, perfect adaptation is lost (Figure 2-15b), as steady-state Hog1

accumulation does not return to its pre-stimulus level. As with the cycloheximide

experiments, these results were corrected for the effect PP1 has on cells not shocked

with salt (see Figure 2-14). This failure to adapt is not an artifact of the documented

defect in nuclear import and export of hog1-as because nuclear enrichment returned to

the pre-stimulus level upon removal of the stimulus (Figure 2-16). Furthermore, the

effect is specific to Hog1-kinase activity, since cells expressing wildtype Hog1 perfectly

adapted even in the presence of PP1 (Figure 2-17). Finally, PP1 treatment diminishes

the post-shock volume recovery (Figure 2-15c), suggesting that kinase-dead Hog1
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persists in the nucleus because turgor pressure is not restored. We conclude that

Hog1 kinase activity is necessary for the proper functioning of the integral-feedback

controller in the osmoadaptation network.

Figure 2-16: Hog1-as cells were grown and loaded into a flow-chamber using media
lacking PP1. For five minutes prior to hyperosmotic shock, PP1 was introduced into
the flow media. The +PP1 was supplemented with 0.4M NaCl to provide hyper-
osmotic shock. After 30 minutes, the +NaCl/+PP1 media with replaced by +PP1
media lacking NaCl. Hog1 nuclear enrichment was monitored throughout the experi-
ment. Notably, upon removal of the hyperosmotic stress after 30 minutes, Hog1 exited
the nucleus, returning to the pre-stimulus level, indicating the Hog1-as is capable of
undergoing nuclear export if hyperosmotic stress is alleviated. Error bars represent
the standard error of the population average obtained from three independent exper-
iments.

In the presence of PP1, the connection between Hog1 and the D subsystem is

broken, resulting in the modified transfer function

Tuh(s) =
H

1 + GI
,

. Given that Hog1 does not perfectly adapt in this case, we know that the product

G(s)I(s) does not explode at s = 0, which implies that there is no integrator in the

series connection of the G and I subsystems. This can be either because neither the G

nor I subsystems posses integrator(s), or because one does but the other itself perfectly

adapts. We argue later that the former is much more likely than the latter. The

combination of all our findings points to D as the subsystem with the last integrator

in the feedback loop, the key integrator responsible for perfect adaptation of the error

and of Hog1.
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Figure 2-17: Wildtype cells grown in NaCl/PP1 media were loaded into the flow
chamber, and then treated with PP1 for five minutes (e.g., NaCl/+PP1 media) be-
fore being hyperosmotically shocked by media with 0.4M NaCl (e.g., +NaCl/+PP1
media) at t = 0. Notably, nuclear enrichment throughout the experiment was di-
minished relative to PP1 cells, but perfect adaptation was still intact. Error bars
represent the standard error of the population average obtained from three indepen-
dent experiments.

Since PP1-treatment effectively severs the feedback loop between nuclear Hog1

and the Hog1-dependent mechanisms (i.e., the D subsystem), the loss of perfect adap-

tation further constrains the possible locations for the integrator(s). In particular,

the Hog1-independent subsystem (the I subsystem) cannot contain the last integrator

in the feedback loop. If it did, then the turgor pressure must perfectly adapt, and

Hog1 likely would as well, yet we observe neither; thus, we reject scenarios (c), (f),

(i), and (l) from Figure 2-13. Similarly, we can reject scenarios where both I and G

(the glycerol-accumulation subsystem) act as integrators (i.e., scenarios (j), (m), (o),

and (p), Figure 2-13), since this would also ensure perfect adaptation in the system.

We argue that the most likely network is one in which subsystem D has an inte-

grator and G does not. If G did have an integrator, then the only way turgor pressure

would fail to perfectly adapt in the presence of PP1 is if the output of the I subsys-

tem itself perfectly adapted. We consider this scenario extremely improbable since

it would require that all Hog1-independent osmotic-stress mechanisms be transient

despite persistent loss of turgor pressure. The effect of each mechanism would have

to cease within the 20-minute period before Hog1 reaches steady state in PP1-treated

cells. On the basis of this argument, we reject scenarios (e), (h), (k), and (n) from
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Figure 2-13, leaving only scenarios (d) and (g), where the D subsystem is the last

integrator in the feedback loop.

Proper glycerol accumulation requires Hog1 kinase activity

We expected that the failure of PP1-treated cells to perfectly adapt corresponded to a

glycerol-accumulation defect. Therefore, we measured internal glycerol accumulation

in cells with intact or inhibited Hog1 kinase activity. In cells not treated with PP1

(PP1), intracellular glycerol rose rapidly after hyperosmotic shock but remained con-

stant in unshocked cells (Figure 2-18a). In PP1-treated cells (+PP1), hyperosmotic

shock caused a slight increase in internal glycerol, but the level achieved was signifi-

cantly less than in PP1 cells, consistent with loss of turgor-pressure and Hog1 perfect

adaptation. In accordance with our deduced network scenario, there was a striking

similarity between the traces of Hog1 nuclear enrichment and the rate of internal glyc-

erol accumulation in PP1 cells (compare Figure 2-8a and Figure 2-18b). If subsystem

D is simply an integrator and most of the osmo-recovery is due to the Hog-dependent

branch of the network, then the rate of glycerol accumulation would effectively be the

derivative of the integral of Hog1. The rate of glycerol accumulation would therefore

be simply a scaled version of the Hog1 curve. In +PP1 cells, where perfect adapta-

tion is lost, this correspondence is also lost: the Hog1 and glycerol-accumulation-rate

curves diverge at their post-stimulus steady-state levels.

Insufficient glycerol accumulation in +PP1 cells prompted us to investigate the

effect of Hog1 kinase activity on glycerol synthesis and leakage. We measured cell-

density-normalized levels of total glycerol and extracellular glycerol over time in the

presence and absence of osmotic shock and PP1 (Figure 2-18c,d). First, we observed

a role for Hog1 kinase activity in regulating glycerol leakage independent of osmotic

stress. In particular, cells cultured overnight in PP1 media containing 0.0M, 0.1M, or

0.2M NaCl spanned a two-fold range in intracellular glycerol levels, and addition of

PP1 caused significant glycerol leakage in each preparation (Figure 2-18e). Interest-

ingly, upon stressing cells with salt, the transient decrease in glycerol leakage observed

in PP1 cells was also apparent in +PP1 cells, consistent with certain glycerol-leakage

46



Figure 2-18: (A) Dynamics in the concentration of intracellular glycerol (OD540 measurement
from glycerol kit; see Methods), corrected for cell-growth (OD600 measurement), were measured in
hog1-as cells in the presence and absence of 24µM PP1 (administered 30 minutes before experiment)
and hyperosmotic shock with 0.4M NaCl (administered at t = 0). Data points represent the mean
of three independent experiments, with error bars showing the standard deviation. (B) The glycerol
accumulation rate versus time. Rates were computed as the slope of the traces in (A), and the time of
each plotted point corresponds to the midpoint of the two time points used in the slope computation
(e.g., the slope between the 0-minute and 15-minute time points is plotted at 7.5 minutes). Error
bars represent the combined standard deviation from data points in (A), assuming measurements
were independent at different time points. (C) and (D): Dynamics in the extracellular (C) and
total (D) glycerol concentration (see Methods) in experiments outlined in (A) and described in the
main text. Data points and error bars are as described in (A). (E) PP1-treatment causes leakage of
intracellular glycerol. hog1-as cells were grown overnight in media containing 0.0M, 0.1M, or 0.2M
NaCl. Cultures were split, and one culture was treated with 24µM PP1. After 30 minutes, the
intracellular glycerol concentration from both cultures was measured as in (A) and plotted as blue
and green bars. From the same cultures, the total glycerol was measured as in (D; see Methods)
and plotted in purple. The PP1-induced fall in intracellular glycerol is not coupled by a fall in total
glycerol, indicating that glycerol is being leaked from the cell.
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mechanisms operating independently of Hog1 kinase activity (Figure 2-18c).

As with glycerol leakage, the role for Hog1 in regulating glycerol synthesis is com-

plicated. In the absence of osmotic stress, PP1 cells produce glycerol at a rate propor-

tional to the cell-growth rate (Figure 2-18d). In contrast, synthesis grows at a much

faster rate in +PP1 cells, presumably to counteract the increased glycerol leakage

just discussed. Together, these data demonstrate that cells can upregulate glycerol

synthesis even in the absence of Hog1 kinase activity. Upon hyperosmotic stress, how-

ever, PP1 cells rapidly and significantly upregulate glycerol synthesis, whereas +PP1

cells cannot further upregulate synthesis. We conclude that either this upregulated

glycerol-synthesis rate is the maximum that can be achieved, or Hog1 kinase activity

is required for the osmoshock-induced increase in glycerol synthesis that contributes

to glycerol accumulation.

Simple model captures key data features

To test the validity of our deduced network scenario, we attempted to fit it to our

Hog1 and glycerol data gathered in the presence and absence of PP1. For simplicity

and to minimize parameters, we assume the system is linear and consider only data

gathered for hyperosmotic shocks from 0.0M to 0.4M. This restriction neglects some

aspects of system behavior (e.g., saturation of Hog1 nuclear enrichment for stronger

osmotic shocks; Figure 3a) but still includes most important dynamic features.

We model the H and G subsystems as first-order linear systems, D as an integrator,

and I simply as a constant. Letting s1(t) be the measured Hog1, s2(t) be the output

of the D subsystem, and s3(t) be glycerol, the previous modeling assumptions result

in the network diagram in Figure 2-19, and in the following differential equations:

d

dt


s1

s2

s3

 =


−γh 0 −kh

αh 0 0

0 1 −(αi + γg)




s1

s2

s3

 +


kh

0

αi

u. (2.8)

The measured glycerol is simply a scaled copy of s3, given by g = cgs3. We

model addition of PP1 by setting αh to zero, effectively breaking the connection
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Figure 2-19: Model diagram showing the transfer functions we implemented for the
network subsystems, resulting in the differential equations in (2.8).

between the H and D subsystems, and by letting the gain of Hog1 activation kh

take on a new value kh to reflect the impact of loss of kinase activity on the nuclear

import/export dynamics of Hog1. The resulting model is then completely specified

by seven parameters.

Parameter Value
kh 4.96× 10−1 min−1

k′h 1.47× 10−1 min−1

γh 3.69× 10−1 min−1

γg 1.19× 10−1 min−1

αi 8.06× 10−2 min−1

cg 7.76
αh 1.06× 10−2 min−1

Table 2.1: Parameter values for the model fits shown in Figure 2-20a-d.

To test whether this model can explain the measured Hog1 and glycerol dynamics

in the presence and absence of PP1, we fit the model simultaneously to four time

traces: the measured Hog1 and glycerol dynamics both in the presence and absence

of PP1 in response to a shock of 0.4M NaCl. We defined a fitting function that

assigns a cost to every choice of parameter values. We computed a cost for each of

the four time traces to which we fit the model, where the cost for each trace is the

time-averaged squared difference between the model prediction and the data. The
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Figure 2-20: (A)-(D): Our seven-parameter model fits well with the Hog1-nuclear-
enrichment and intracellular-glycerol data gathered from hog1-as cells stressed with
0.4M NaCl in the presence or absence of PP1 (model fit shown in purple, experi-
mental data in gray). The model captures the perfect adaptation of Hog1 nuclear
enrichment in the absence (A) of PP1, as well as the loss of perfect adaptation in
the presence of PP1 (B). Similarly, the model fits well with the dynamics of internal
glycerol accumulation (C and D). (E) Cartoon representation of key features of yeast
hyperosmotic shock response, explained in detail in the Discussion. Hyperosmotic
shock is applied at t = 0. Green membrane channels are open, allowing the transport
of glycerol, shown as purple circles. Upon closure, the channel is depicted in red.
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overall cost of a given set of parameter values is simply the sum of the costs from

the four individual time traces. We then use the fminsearch routine in Matlab (The

Mathworks, Netwon, MA) for unconstrained nonlinear optimization to find a set of

parameter values resulting in a minimum of the fitting cost function. The resulting

parameters, listed in Table 2.4.2, were used to produce the model fits shown in Figure

2-20a-d. We find the model captures the key data features.

2.5 Discussion

We have measured the yeast hyperosmotic-shock response and shown that Hog1 nu-

clear enrichment perfectly adapts, which implies that the system must contain an

integrator that ensures perfect adaptation. Despite a well-known role in mediating

an osmostress-induced transcriptional response, Hog1 does not require gene expression

to perfectly adapt. However, we were able to ablate perfect adaptation by inhibiting

Hog1 kinase activity, suggesting that an interaction between Hog1 and a factor in-

volved in glycerol accumulation may serve as the integrator. Taken together, these

experiments greatly reduced the set of network scenarios that could describe the sys-

tem dynamics. We chose one of the most-probable models and found that with only

seven parameters, we could fit both Hog1 and glycerol dynamics in the presence and

absence of Hog1 kinase activity. Our analysis suggests that the integrator is a Hog1-

dependent mechanism (i.e., in the D subsystem). Most known reactions linking Hog1

with glycerol production rely on gene expression, such as the upregulation of GPD1

and GPP2 . However, less is known about reactions in which Hog1 phosphorylates

a substrate directly involved in glycerol accumulation. Although future experiments

will be required to determine exactly which reaction is an integrator, the search may

be facilitated by considering reactions downstream of Hog1 that are most likely to

operate at saturation, since saturated reactions are one way to biologically implement

integration, as discussed above and in Chapter 3, and in [63].

A particularly enticing possibility is that active PFK2 is the output of the integra-

tor in the feedback loop. Active PFK2 increases the production of glycerol precursors
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from the glycolysis pathway, and it is activated by phosphorylation on Ser644 in re-

sponse to hyperosmotic shock in a manner dependent on the Hog1 MAPK cascade.

PFK2 may be activated by Hog1 kinase activity since it has consensus sites for MAPK

phosphorylation. Remarkably, estimates of protein abundance from a genome-wide

fluorescent fusion-protein study ([53]) indicate that PFK2 significantly outnumbers

Hog1, approximately 90,000 to 7,000. If Hog1 indeed activates PFK2 , then the rate

of this reaction would likely be independent of the PFK2 concentration because of

active Hog1 saturation. Although the phosphatase of PFK2 is not known, most

characterized serine phosphatases have fewer than 10,000 copies in the cell, with the

most-abundant having less than 20,000 copies. Thus, it is certainly possible that the

reaction deactivating PFK2 is also operating at saturation, with a rate independent

of the PFK2 concentration. If the reactions activating and deactivating PFK2 are

indeed saturated, then the rate of change of active PFK2 will be independent of

PFK2 itself, making active PFK2 the output of the integrator responsible for the

networks perfect adaptation and proper homeostasis.

A dynamic perspective on hyperosmotic shock recovery

Our results yield the following dynamic portrayal of osmoregulation (Figure 2-20e).

In the absence of hyperosmotic shock, cells maintain a constant internal glycerol con-

centration. Glycerol is synthesized at a rate slightly higher than that required to

keep pace with cell-growth, and some glycerol is leaked. Hog1 kinase activity regu-

lates this leakage of glycerol even in the absence of hyperosmotic shock as evidenced

by the decrease in internal glycerol upon addition of PP1 to hog1-as cells (Figure

2-18e). The simultaneous and comparable increase in external glycerol suggests that

the role for Hog1 is regulating not the degradation but rather the export of glyc-

erol, presumably through a role at the membrane. The required Hog1 kinase activity

in unstressed cells likely comes either from a few phosphorylated and active Hog1

molecules and/or from many unphosphorylated Hog1 molecules, each with low basal

kinase activity. Our results cannot definitively distinguish between these two possi-

bilities, but they nonetheless support the former: even in unstressed cells, it appears
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that at least some Hog1 is activated since fluorescence in the nucleus and cytoplasm

are comparable (Figure 2-4). Soon after a hyperosmotic shock (Figure 2-20e, panel

ii), turgor pressure decreases, causing a concomitant fall in cell volume and rise in the

activation and nuclear accumulation of Hog1. Within the first 15 minutes of shock

with 0.4M NaCl, both the synthesis and leakage of glycerol are modulated to increase

internal glycerol; the glycerol synthesis rate increases (Figure 2-18d) while the leakage

rate falls in a manner independent of Hog1-kinase activity (Figure 2-18c). Beyond the

first 15 minutes (Figure 2-20e, panel iii), cell volume rises (Figure 2-8b); nuclear Hog1

accumulation begins to fall (Figure 2-8a); the rate of glycerol synthesis continues to

rise (Figure 2-18d), and some glycerol begins to leak to the exterior (Figure 2-18c). It

is noteworthy that internal glycerol continues to increase beyond 15 minutes in PP1

cells (Figure 2-18a) but not in +PP1 cells, indicating that +PP1 cells prematurely

leak as much glycerol as they synthesize. If leakage prevention were stronger and/or

endured for longer, then these cells could also accumulate enough glycerol to perfectly

adapt; these data suggest that Hog1 kinase activity plays a role in the maintenance

of glycerol retention beyond 15 minutes, though its effect may be indirect.

Beyond 30 minutes (Figure 2-20e, panel iv), the Hog1 nuclear enrichment level is

the same as the pre-stimulus level (Figure 2-8a), the hallmark of perfect adaptation.

Although the pre- and post-stimulus rates of glycerol accumulation are identical (Fig-

ure 2-18b), glycerol synthesis and leakage are significantly higher after the stimulus

than before it (Figure 2-18c,d). This has a nontrivial implication on system modeling.

In particular, it invalidates models in which the integrator is immediately upstream

of glycerol accumulation (i.e., the last step of the G subsystem). To see this, sup-

pose that the rate equation describing glycerol accumulation were an integrator. By

definition, the rate would then be independent of the current internal glycerol concen-

tration, and thus both the synthesis and degradation rates would also be independent

of internal glycerol. But, the inputs to the G subsystem, namely the activity of Hog1

and the Hog1-independent factors that respond to turgor pressure, are identical pre-

and post-stimulus. Only the internal concentration of glycerol has changed, and yet

the rates of synthesis and leakage change as well. Thus, even if the G subsystem
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were to contain an integrator, which we argued against earlier, it would not be the

last reaction in the subsystem. Because our deduced model has a first-order system

downstream of the integrator, it can accommodate increased synthesis and leakage of

glycerol despite perfect adaptation in turgor pressure and Hog1 activation.

A systematic approach for biological systems analysis

The Hog1 system is well characterized genetically and biochemically, and it has long

served as a paradigm for studying eukaryotic MAPK signal transduction. More re-

cently, the important dynamic properties of the network have been explored by several

modeling efforts, including the exhaustive model in [86] and its simplified counterpart

[52], as well as our minimalist model in [100]. Each has its own virtues; for instance,

the exhaustive model makes predictions about the levels of each species in the model,

such as GPD1 mRNA, phosphorylated Ssk2 , and glycerol-3-phosphate.

Our modeling efforts here and in [100] underscore the power of applying engineer-

ing principles to any biological system that has well-defined and quantifiable inputs,

internal variables, and outputs. In analyzing such systems, first measuring the fre-

quency response (as we do in [100]) provides an estimate of the number of relevant

dynamic variables that a minimal model should have; additionally, these measure-

ments may reveal the basic computation or function that the system performs. For

systems potentially involving hundreds of reactions, each with unique kinetics, such

analysis can appreciably reduce the complexity of a model without compromising, and

potentially enhancing, the insight into systems-level behavior. Once the minimum

number of dynamic variables has been estimated, the existing biochemical knowledge

of the system can be leveraged to infer which biological quantities correspond to the

relevant dynamic variables, and to create a basic network diagram such as the one in

Figure 2-2b. Biological quantities whose importance has been established in previous

studies, such as glycerol and cell volume for the yeast osmotic-shock response, and/or

quantities with dynamics that are expected to change on an appropriate time-scale

are all good candidates for relevant dynamic variables. By measuring the dynamics

of the internal variables in the systems network diagram, the model can be further
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constrained, and links can be drawn more confidently between model elements and

biological mechanisms.

Perfect adaptation is one such dynamic feature that restricts potential models,

where a basic result from control engineering provides important information about

biological mechanism. We expect similar analyses to be particularly useful in the

study of other homeostatic systems that are ubiquitous in biology (e.g., blood cal-

cium levels in [34]), where perfect adaptation is presumably the paramount dynamic

property of the network. Most of these systems will likely achieve robust perfect

adaptation through a negative feedback loop with one or more integrators; thus, an

important future endeavor is to better understand how biological systems implement

integration at the molecular level. Since the simple loss of integral feedback can fun-

damentally transform the function of a systemfrom one with transient output into one

with persistent and potentially deleterious outputidentifying and characterizing bio-

logical mechanisms providing integral feedback should be instrumental in the future

study of homeostatic systems, the design of perfectly-adapting biosynthetic circuits,

and the development of therapeutics to combat disease.

2.5.1 Methods

Strain background and construction

Our haploid wildtype strain here (DMY017) was derived from the DMY007 strain of

Mettetal et al, the only difference being that the SHO1 ORF was excised via PCR,

using methods described in Mettetal et al. Our PP1-sensitive strain (DMY034) was

created by deleting the HOG1 ORF from DMY017 (DMY030), generating a single-

base mutation of HOG1 on a plasmid using QuikChange (Stratagene), and then

inserting the resulting hog1-as ORF into DMY030 using PCR integration. For more

detail on this, please refer to the PhD thesis of Dale Muzzey.
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Glycerol assays

All glycerol measurements were performed by Dale Muzzey. DMY034 cells were

grown overnight in 100ml selective minimal media containing 0.0M, 0.1M, or 0.2M

NaCl. Once cells entered log phase, cultures were supplemented either with PP1

(1-NM-PP1, EMD Biosciences) dissolved in DMSO or the same volume of DMSO

alone. Thirty minutes later, 50ml of the culture was vortexed in a flask containing

1.17 grams NaCl crystals such that [NaCl] would rise by 0.4M when dissolved; this

approach permitted us to change only the salt concentration, diluting neither the cells

nor the media. At each time point (0, 15, 30, 60 minutes) relative to the addition of

salt, three samples were collected: 100µl for cell density, 200µl for the total glycerol

measurement, and 10ml that yields both the external and internal measurements.

Between sample collections, flasks were shaking at 225rpm in the 30C incubator.

To account for changes in cell density throughout the experiment, the OD600

was measured on a sample containing cell culture and fresh water in the ratio 1:10;

because salt-shock affects cell volume, we diluted cells in water to ensure that the

volumes of salt-shocked and unshocked cells were roughly comparable.

The 200µl sample harvested for the total glycerol measurement was incubated at

95C for 10 minutes and then spun at 13000rpm for 3 minutes to pellet cell debris.

A sample of the supernatant was added directly to the Free Glycerol Reagent Kit

(Sigma) as directed and then the OD540 was meausured.

The 10ml sample was first spun at 2000rpm for 2 minutes. To acquire the external

glycerol value, a sample of the supernatant was added to the glycerol kit, and the

OD540 was measured. For the internal measurement, cells in the pellet were washed in

1ml fresh media that matched the cell media in [NaCl] in order to prevent hypoosmotic

shock and internal glycerol leakage during washing. After another flash spin, cells were

resuspended in 1ml fresh media and then incubated, spun, and sampled as described

for the total glycerol measurement.
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Chapter 3

Operating Regimes of Signaling

Cycles: Statics, Dynamics, and

Noise Filtering

3.1 Summary

A cell is subjected to constantly changing environments and time-varying stimuli. Sig-

nals sensed at the cell surface are transmitted inside the cell by signaling pathways.

Such pathways can transform signals in diverse ways and perform some preliminary

information processing. A ubiquitous building block of signaling pathways is a cy-

cle of covalent modification (e.g., phosphorylation and dephosphorylation in MAPK

cascades). What kind of information processing and filtering can be accomplished by

this simple biochemical circuit?

Signaling cycles are particularly known for exhibiting a highly sigmoidal (ultra-

sensitive) input-output characteristic in a certain steady-state regime. Here we sys-

tematically study the cycle’s steady-state behavior and its response to time-varying

stimuli.1 We demonstrate that the cycle can actually operate in four different regimes,

each with its specific input-output characteristics. These results are obtained using

1The material in this chapter has been published in [63].
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the total quasi-steady-state approximation, which is more generally valid than the

typically used Michaelis-Menten approximation for enzymatic reactions. We invoke

experimental data that suggests the possibility of signaling cycles operating in one of

the new regimes.

We then consider the cycle’s dynamic behavior, which has so far been relatively

neglected. We demonstrate analytically that the intrinsic architecture of the cycles

makes them act — in all four regimes — as tunable low-pass filters for small enough

time-varying deviations of the input from baseline level, filtering out high-frequency

fluctuations or noise in signals and environmental cues. Moreover, the cutoff frequency

can be adjusted by the cell. Numerical simulations show that these analytical results

continue to hold quite well even for bigger time-varying deviations from baseline

level. We suggest that noise filtering and tunability make signaling cycles versatile

components of more elaborate cell signaling pathways.

3.2 Introduction

Cells rely on chemical interactions to sense, transmit, and process time-varying signals

originating in their environment. Because of the inherent stochasticity of chemical

reactions, the signals transmitted in cell signaling pathways are buried in noise. How

can cells then differentiate true signals from noise? We examine this in the context

of a basic but ubiquitous module in signaling cascades: the signaling cycle. While an

individual signaling cycle is simply an element of a large signaling network, under-

standing its response is an essential first step in characterizing the response of more

elaborate signaling networks to an external stimulus ([117, 124]).

Each cycle consists of a substrate protein that can be in one of two states: active

(e.g., phosphorylated) or inactive (e.g., dephosphorylated), see Fig.3-1. The protein is

activated by a protein kinase that catalyzes a phosphorylation reaction. The protein

gets inactivated by a second enzymatic reaction catalyzed by a phosphatase. The

activity/concentration of the kinase can be considered as an input of the cycle. The

response of the cycle is the level of phosphorylated substrate protein that is not bound
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to the phosphatase and can thus interact with any downstream components of the

signaling pathway.

Signaling cycles can also require multiple phosphorylations for activation. Fur-

thermore, cycles of phosphorylation are frequently organized into cascades where the

activated substrate protein serves as a kinase for the next cycle. Activation of the

first kinase in a cascade can be triggered by a receptor that has received a specific

stimulus (ligand, photon, dimerization, etc.). In addition, feedback processes may

be present. The dynamics of signaling cascades have been the subject of active re-

search using modeling and experiments. Theoretical and computational studies of

eukaryotic signaling cascades span a broad range of questions such as those concern-

ing the dynamics of the EGFR ([153]) or apoptosis signaling pathways ([94]), the

propagation of noise and stochastic fluctuations ([139, 123, 12]), the role of feed-

backs ([18, 89, 92, 84]) and scaffolding proteins ([91, 16]), the contribution of re-

ceptor trafficking ([147]) and spatial effects ([3, 85, 92]), the origin of bistability

([98, 109, 90]) and oscillations ([123, 26]), and the consequences of multiple phospho-

rylations ([123, 135, 66, 26, 108, 44, 43, 149]).

In this paper, our focus will be on the statics and dynamics of the basic singly mod-

ified signaling cycle. The seminal contribution Goldbeter and Koshland considered

the steady-state response of this basic cycle and demonstrated that, under appropri-

ate conditions, the response can be in a highly sigmoidal ultrasensitive regime, or in a

hyperbolic regime ([61]; see below). Most modeling studies have assumed that all sig-

naling cycles operate in the ultrasensitive regime; a few studies have also considered

the hyperbolic regime ([32, 72]). Here we demonstrate that there are actually four

major regimes, with the ultrasensitive and hyperbolic regimes being two of them.

Several previous studies that treat signaling cycles as modules have focused on

the steady-state response to a constant input, largely ignoring responses to time-

varying stimuli (see e.g., [61, 42, 66]). A study of Detwiler et al. ([32]) considered

the dynamic response of the cycle in the hyperbolic regime (when both forward and

backward reactions are first-order), and found low-pass filtering behavior. A recent

study also examined the dynamic response of these two regimes and compared them

59



in their robustness to intrinsic and extrinsic noise ([93]).

Here we systematically consider both the steady-state response, and the dynamic

response to time-varying stimuli. To model the enzymatic reactions in the signaling

cycle, we use the total quasi-steady-state approximation (tQSSA; see [142]). The

tQSSA is valid more generally than the Michaelis-Menten rate law, which assumes

the enzyme to be present in much smaller concentration than its substrate, an as-

sumption that is not generally valid in signaling pathways. We then use our model to

examine possible regimes of the cycle, and identify two new steady-state regimes, for

a total of four different behaviors, each being potentially useful in different signaling

applications. Although these four regimes are defined at extreme parameter values,

we numerically show that in fact together they cover almost the full parameter space.

We obtain analytic approximations to the steady-state characteristics of each of the

four regimes, and refine the conditions under which the two regimes identified by

Goldbeter and Koshland are in fact achieved.

To obtain a fuller picture of the signaling cycle and its function, we then analyze

its response to time-varying kinase activity. We demonstrate analytically that the

intrinsic architecture of the cycles makes them act — in all four regimes — as tunable

low-pass filters for small enough time-varying deviations of the kinase activity from

baseline levels. Numerical simulations show that these analytical results continue to

hold quite well even for bigger deviations from baseline level.

The four different regimes of the signaling cycle make it a versatile element, able

to perform various signaling functions, while its low-pass filtering enables it to operate

in noisy environments. These properties may help explain why signaling cycles are

so ubiquitous in cell signaling.
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Figure 3-1: Diagram of the signaling cycle. The cycle consists of a protein that
can be in an inactive (I) or active (A) form. It is activated and deactivated by
two enzymatic species, termed kinase (E1) and phosphatase (E2), respectively. The
reactions and reaction rates that describe the cycle are shown on the right.

3.3 Results

3.3.1 Model

The signaling cycle is modeled by two enzymatic reactions, as illustrated in Fig.

3-1: A forward enzymatic reaction catalyzed by kinases (enzyme 1, E1) produces

active proteins (A) from the inactive ones (I), and a backward reaction catalyzed by

phosphatases (enzyme 2, E2) de-activates active proteins:

I + E1

a1−⇀↽−
d1

IE1
k1−→ A + E1 (3.1)

A + E2

a2−⇀↽−
d2

AE2
k2−→ I + E2. (3.2)
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Here a1 (d1) and a2 (d2) are substrate-enzyme association (dissociation) rates, and k1

(k2) is the catalytic rate of the forward (backward) enzymatic reaction. For notational

convenience, we shall use the same symbol to denote a chemical species as well as its

concentration. The input to the cycle is the total concentration of the active kinase,

E1 = E1 + IE1, while the output is the concentration of the free (i.e., not bound to

phosphatase) active protein A.

While such systems are usually studied using Briggs-Haldane or Michaelis-Menten

(MM) approximations (see [20, 102]), both can be inapplicable as they assume much

lower concentration of the enzyme than of the substrate. In fact, substrates and

enzymes of MAPK pathways are usually present at comparable concentrations in S.

cerevisiae and Xenopus oocyte cells (as reported in [42] and consistent with data from

the library of GFP-tagged proteins [53]).

Instead, we rely on the total quasi-steady-state approximation (tQSSA; see [142,

143, 144, 126] and Section 3.5 below) to obtain the following equation for the con-

centration of the total active protein, A = A + AE2:

dA(t)

dt
= k1

E1

(
S − A(t)

)
K1 + E1 + S − A(t)

− k2
E2 A(t)

K2 + E2 + A(t)
. (3.3)

Here X denotes the concentration of an unbound chemical species and X denotes the

total concentration of bound and unbound forms; S stands for the total concentration

of substrate protein (in both active and inactive forms); and K1 = k1+d1

a1
and K2 =

k2+d2

a2
are the MM constants for the kinase and the phosphatase, respectively. We have

written A(t) explicitly with its time argument t to emphasize that it is a dynamic

variable; however, for notational simplicity, we will omit the time argument in the

rest of the paper and simply write A. The quantities E1, E2 and S are constant here

(although later in the paper we consider the dynamic response to small variations

in E1). Even though the above equation is written in terms of A, the free active

protein concentration A, which is of primary interest, is simply recovered through the

expression A = K2+A
K2+E2+A

A (see Section 3.5.1).

Equation 3.3 shows the dependence of the rate of production of the active protein
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on the number of kinases through the first term (phosphorylation), and on the number

of phosphatases through the second term (dephosphorylation). In particular, when

the total amounts of both kinase and phosphatase are small ( E1 � K1 + S − A

and E2 � K2 + A), the two terms in Equation 3.3 reduce to the standard MM rates

for the forward and backward enzymatic reactions of the cycle. The tQSSA has also

been recently proposed and applied by Ciliberto et al. in [29] to model networks of

coupled enzymatic reactions, including interconnections of phosphorylation cycles.

Our key equation 3.3 simplifies for extreme combinations of parameter values

(i.e., regimes) that are still of potential biological interest. This equation allows us

to analytically examine (a) the possible cycle regimes of the system in steady state,

and (b) the dynamic response of the system to time-varying inputs (time-varying

activation of the kinase). The numerical results we present here are not constrained

by the quality of the approximation since they are based on direct simulation of the

mass action kinetics equation for the full system of reactions of Equations 3.1 and 3.2

(see Methods).

3.3.2 Four Regimes of the Signaling Cycle

Each enzymatic reaction can be in one of two qualitatively different regimes: a satu-

rated one where almost all the enzyme is bound to its substrate, and an unsaturated

one ([46, 148]). The regime of the reaction depends on the relative concentrations

of a substrate and the enzyme (E), and on the MM constant (K) of the enzymatic

reaction. The unsaturated (first-order) regime, where the rate of reaction is linearly

proportional to the substrate concentration, occurs when the substrate is much less

abundant than the sum of the MM constant of the reaction and the enzyme concen-

tration (e.g., for the second reaction, K2 + E2 � A). In the saturated (zero-order)

regime, the rate of reaction is almost independent of the substrate concentration and

is proportional to the enzyme concentration. This occurs when the substrate is much

more abundant than the sum of enzyme concentration and its MM constant (e.g., for

the second reaction, K2 + E2 � A).

Since the signaling cycle is built of two enzymatic reactions, it can exhibit four
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Figure 3-2: Steady state behavior of the four cycle regimes. A When both
enzymes are unsaturated the steady state response is hyperbolic. The parameters
used for this cycle are S = 1000, a1 = 1, K1 = 10000, a2 = 1, E2 = 50, K2 = 10000,
k1 = 1 and k2 = 1 where all reaction rates are in units of 1/sec, concentrations
and Michaelis constants are in nM, and second order reaction rates (a1 and a2 are
in 1/nMsec. B When the kinase is saturated and the phosphatase unsaturated a
linear response results. The parameters here are S = 1000, a1 = 100, K1 = 10,
a2 = 1, E2 = 50, K2 = 10000, k1 = 500 and k2 = 10000. C When the kinase is
unsaturated and the phosphatase saturated a threshold-hyperbolic response results.
The parameters for this cycle are S = 1000, a1 = 100, K1 = 10000, a2 = 100,
E2 = 100, K2 = 1, k1 = 25 and k2 = 1. D When both enzymes are saturated an
ultrasensitive response results. The parameters used for this cycle are S = 1000,
a1 = 100, K1 = 10, a2 = 100, E2 = 50, K2 = 10, k1 = 1 and k2 = 1. The parameters
for the four cycles were chosen to be comparable in magnitude to values found in the
literature (see [78, 84], for example).

regimes of signaling (see Fig. 3-2), corresponding to the two regimes of each reaction.

The conditions for each of the four regimes are summarized in Table 3.1. The steady-

state behavior of two of the four regimes (when the kinase and the phosphatase are

either both saturated or both unsaturated, referred to as ultrasensitive and hyper-

bolic, respectively) has been characterized earlier by Goldbeter and Koshland ([61]).

Using tQSSA, we are able to refine the range of parameter values for which these

behaviors hold. The other two regimes have not been identified before, to the best of

our knowledge.
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Kinase Unsaturated Saturated
Phosphatase K1 + E1 � S − A K1 + E1 � S − A
Unsaturated hyperbolic signal
K2 + E2 � A transducing
Saturated threshold
K2 + E2 � A hyperbolic ultrasensitive

Table 3.1: Conditions for the four cycle regimes.

3.3.3 Steady-State Response

Hyperbolic (unsaturated kinase, unsaturated phosphatase)

In this regime, the cycle exhibits a hyperbolic steady-state response that saturates at

the value provided in Table 3.2 (see Fig. 3-2A). Using the tQSSA, we find that the

hyperbolic regime requires weaker conditions than previously thought (K2 + E2 � A

and K1 + E1 � S − A instead of K2 � A and K1 � S − A).

Regime Threshold for input (E1) Saturation level

hyperbolic – k1

k1+w2
(1− w2

k2
)S

signal-transducing – (1− ω2

k2
)( k1/ω2

1+k1/ω2
)S

threshold-hyperbolic K1/((k1/k2 − 1)(S/E2 − 1)) S − E2(1 + k2

k1
)

ultrasensitive E2k2/k1 S − E2(1 + k2

k1
)

Table 3.2: Expressions for threshold and saturation levels for steady-state regimes of
the cycle. Here ω2 = k2

E2

K2+E2
is the characteristic frequency of the phosphatase.

The recent study in [93] suggests that the hyperbolic regime is much more robust

to fluctuations and to cell-to-cell variability in kinase and phosphatase concentrations

than the ultrasensitive regime, which requires fine-tuning of the threshold level. The

hyperbolic regime transmits signals in a broad range of amplitudes, requiring no

tuning of cycle parameters.

Signal-Transducing (saturated kinase, unsaturated phosphatase)

We refer to this new regime as signal-transducing because, as discussed below, it

is ideal for transmitting time-varying signals without distortion, while attenuating
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higher frequency noise. Here we only point out that its steady-state response is lin-

ear with a slope (gain) of k1/ω2, where ω2 is referred to as the effective phosphatase

frequency (see Table 3.2 and section on Dynamic Response below), until it reaches

saturation (Fig. 3-2B, Table 3.2). Having a linear steady-state response, a property

unique to this regime, is potentially desirable for signaling that involves graded stim-

uli. Available biochemical data and in vivo measurements argue for the possibility of

this regime being present as a component in cell signaling cascades (see Discussion).

Threshold-Hyperbolic (unsaturated kinase, saturated phosphatase)

In this new regime, the output below a given input threshold is zero, and then in-

creases hyperbolically until it reaches its saturation level (approximated by the same

expression as the saturation level of an ultrasensitive regime). Figure 3-2C shows the

steady-state response of such a cycle.

Ultrasensitive (saturated kinase, saturated phosphatase)

The output in this regime is close to zero for inputs below a threshold, and increases

rapidly to a saturation value, consistent with the results obtained in [61] using the MM

approximation. Such highly sigmoidal behavior effectively quantizes the signal (see

Fig. 3-2D). This regime was termed ultrasensitive because, when the input is close to

the threshold, small input changes result in large changes of the steady-state output.

Interestingly, cells may adjust the threshold of this cycle by changes in phosphatase

level, E2.

The MM approximation fails, however, when the amount of enzyme becomes com-

parable to that of its substrate. Using the tQSSA we are able to refine the range of

parameter values required for ultrasensitive signaling. The criteria for ultrasensitiv-

ity obtained from the MM model ([61]), namely K2 � A and K1 � S − A, are

actually not sufficient conditions for the cycle to be ultrasensitive; instead we need

K2 + E2 � A and K1 + E1 � S − A. When the enzyme concentrations become

comparable to those of their substrates, there is no ultrasensitivity, as noted recently

by Bluthgen et al. in [14] by more complicated arguments.
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Figure 3-3: Relative error. Subfigures A, B, C and D respectively show the relative
error between the steady-state characteristic of the hyperbolic, signal-transducing,
threshold-hyperbolic and ultrasensitive regimes, and that of the tQSSA in Equation
3.3. To compute the error for a regime we first approximated the average squared
difference between the regime’s steady state and that of Equation 3.3, and then
divided its square root by the total substrate St (see Section 3.5.5 for more details).
A relative error of .1 then corresponds to an average absolute difference between the
steady state characteristic of the regime and that of Equation 3.3 of .1St. The figures
here show that the relative error for each regime is small for a wide region of the
K1 versus K2 space, demonstrating that the four regimes cover almost the full space.
The parameters used for this cycle are the same as those in Figure 3-2D, except K1

and K2 which were varied in the range of values shown in the x and y axes in this
figure. The dashed lines enclose the regions where each regime is expected to describe
the system well.

Incorporating Stochastic Effects

Considering stochastic effects due to low molecule numbers or small volumes, at

least at steady state, still results in the same four regimes and their corresponding

behaviors. Analogously to the mass action model introduced earlier, the signaling

cycle can be described by a fully probabilistic model with a time-varying probability

distribution governed by the master equation (see Chapters 4, 5 and 6) of the reactions
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in Equations 3.1 and 3.2. Separation of time scales (see Chapter 6) in this probabilistic

model, under appropriate conditions, results in the following approximate model for

the probability αi (i ∈ {1, . . . , SΩ}) that the number of molecules of A equals i:

d

dt
αi = αi−1fi−1 + αi+1bi+1 − αi(fi + bi). (3.4)

Here fi and gi are functions that respectively correspond to the probability per unit

time that a forward or a backward enzymatic reaction occur given that the number

of A molecules is i. These functions can be shown to be approximately given by (see

Chapter 6):

fi = k1Ω
E1

(
S − A

)
K1 + E1 + S − A

and bi = k2Ω
E2 A

K2 + E2 + A
,

where Ω equals the system volume times Avogadro’s number, and A = i/Ω.

Figure 3-4: Steady-state distributions for the four cycles in Figure 3-2 for three
steady-state kinase levels.

Equation 3.4 is the forward-Kolmogorov equation of a birth-death continuous-

time discrete-state Markov chain (e.g., see [49]). At steady-state, the probability
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Figure 3-5: Steady state behavior of the four cycle regimes in the presence of stochas-
ticity. The blue and red lines corresponds to the mean, and mean +/- three standard
deviations of the steady-state distribution. The same parameters as in Figure 3-2
were used, along with Ω = 1.

distribution for these Markov chains may be shown to be given by:

αi =
( i−1∏

j=0

fj

bj+1

)
α0, where

∑
i

αi = 1. (3.5)

The functions fi and gi simplify in each of the four regimes depending on whether

the enzymatic reactions are operating in the saturated or in the linear regime. The

equation above can then be used to obtain the steady-state distribution of the four

cycle regimes, from which the mean and standard deviations of active molecules can

be computed. The resulting steady-state distributions for the four cycle regimes are

specified in Table 3.3. Figure 3-4 shows the steady-state distributions for the four

cycle regimes at three steady-state kinase levels. Figure 3-5 shows the mean number

of active substrate molecules, along with the three-standard-deviation envelopes, for

the same cycles shown in Figure 3-2. Chapter 5 shows that the fluctuations around

the mean become proportionally greater as the number of molecules decreases. Here

assumed the total number of substrate molecules is 1,000, and fluctuations do not seem
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significant, except perhaps in the ultrasensitive regime. However, several proteins

may be present at significantly smaller numbers and fluctuations can become quite

significant.

Regime αi ∝ Steady-State Distribution Type

hyperbolic
(

N
i

)
pi(1− p)N−i binomial

signal-transducing

(
Ωk1E1

b

)i

/i! truncated Poisson

threshold-hyperbolic
(

N
i

)(
a

Ωk2E2

)i

i! unknown

ultrasensitive

(
k1E1

k2E2

)i

truncated geometric

Table 3.3: Steady-state distributions of active substrate, perhaps off by a normaliza-
tion constant. N is the total number of substrate molecules SΩ, a = k1E1

K1+E1
, b = k2E2

K2+E2

and p = a
a+b

.

In summary, we have demonstrated that a signaling cycle can operate in four

regimes that have qualitatively different steady-state responses to kinase activation.

Of the newly identified regimes, the signal-transducing regime is a good candidate

for sensing stimuli, when a graded and undistorted response is required. Depending

on the slope of its response, which is controlled by parameters of the cycle and can

be easily adjusted by the cell to a required level, the input signal may be amplified

or diminished. We consider factors influencing the choice of the regime for natural

signaling cycles in different cellular processes in the Discussion.

The four regimes we consider, although obtained only at extreme parameter values,

are actually quite descriptive of the system for a wide range of parameters, and

naturally partition the space of possible steady-state behaviors of the signaling cycle

into quadrants, as shown Fig. 3-3. This figure shows the relative error between the

steady-state characteristic of each of the four regimes and that of Eq.3.3 for a wide

range of kinase and phosphatase MM constants (see Section 3.5.5). It reveals that
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the regime approximations are quite good at a wide range of values of MM constant

(for example, the region with a relative error of less than 10% for each regime covers

almost a full quadrant in the plots), and not only when the MM constants take the

very large or very small values required in the regime definitions. This demonstrates

that these four regimes, though defined by extreme values of system parameters,

actually encompass the full space of cycle behaviors.

Understanding the steady-state response of the cycle is informative, but is only

part of the story; signaling cycles do not necessarily transmit steady inputs but rather

deal with time-dependent signals that reflect changing environmental conditions.

3.3.4 Dynamic Response

Signaling cascades in the cell are activated by receptors, which in turn get activated

by ligand binding and inactivated by internalization and other mechanisms. All of

these mechanisms produce time-varying signals, and are subjected to noise (i.e., rapid

and stochastic fluctuations) due to small numbers of molecules, diffusion, and other

effects. How can a cell extract a time-varying signal from noisy stimuli?

Response to signals of various frequencies: low-pass filtering

To address this question, we first study the response of the four regimes to time-

varying stimuli. A high-frequency signal is a proxy for the noise in the signal, so

understanding how the cycle responds to high frequencies is essential for understand-

ing its response to noise.

We studied the cycle’s response to oscillating kinase levels at different frequencies

and amplitudes: E1(t) = E0(1 + a sin ωt). This is not to say that sinusoidal inputs

need be biologically relevant, but systematically understanding the response to such

inputs gives one intuition about the response to more general inputs. Furthermore,

for small enough input variations around some background baseline level, the cycle’s

behavior is, to a first-order approximation, linear and governed by time-independent

parameters; in this situation the response to sinusoids determines the response to
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arbitrary inputs. In fact, in the signal-transducing regime the dynamic response of

the cycle (just as its static response) is linear for all non-saturating inputs, without

the restriction to small variations.

Figure 3-6: Magnitude of the response of the cycle O (normalized by the
steady-state saturation value) versus the input frequency ω, for three dif-
ferent input amplitudes a. The traces in A, B, C and D show the response of
the hyperbolic, signal transducing, threshold-hyperbolic and ultrasensitive switches,
respectively, shown in Figure 3-2. The solid lines are the analytical approximation
(Equation 3.6). The dotted lines are obtained from numerical simulation of the full
system.

Figure 3-6 shows the amplitude O of the variations in the output (normalized

by the steady-state saturation value of the cycle), obtained by numerical simulation

for three values of a, and as a function of input frequency ω. Invariably, the re-

sponse is flat and high at low frequencies, but starts to decrease after a particular

frequency is reached. These results are very well described in the case of the smallest

a (corresponding to 11% deviations) by the expression obtained analytically using

small-signal approximations (see Section E of Supporting Information):

O =

(
g√

ω2 + ω2
c

)
E0a, (3.6)
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where E0 is the background kinase level, and where the gain g and the cutoff frequency

ωc are functions of the cycle parameters that are different for the four regimes (see

Table 3.4). The analytical approximation continues to hold quite well even for larger

values of a, the deviation amplitude (up to 91% of the baseline for the results in

Figure 3-6). For frequencies much smaller than the cutoff, the amplitude of the output

variations is constant and proportional to the ratio of gain to cutoff frequency. For

frequencies above the cutoff, the output variations have an amplitude that decays as

1/ω. Figure S1 presents more detailed results on the variation of O as a function of

both a and ω, again obtained by numerical simulations.

Regime Gain g Cutoff Frequency ωc

hyperbolic SK1

E0(K1+E0)
ω2

ω2+ω1
(1− ω2

k2
)ω1 ω1 + ω2

signal-transducing (1− ω2

k2
)k1 ω2

threshold-hyperbolic E2K1

E0(K1+E0)
k2 ω1

ultrasensitive k1 2k1a
E0

S−E2(1+k2/k1)

Table 3.4: Expressions for gain and cutoff frequency for four regimes of the cycle (in
response to the input E1(t) = E0(1+a sin ωt). Here ω2 is the characteristic frequency
of the phosphatase, defined in Table 3.2; while ω1 = k1

E0

K1+E0
is the characteristic

frequency of the kinase.

An essential property of this signaling low-pass filter is that the cutoff frequency

ωc can be easily adjusted by varying enzymatic parameters and concentrations of the

kinase and the phosphatase. Although all four regimes act as low-pass filters, their

cut-off frequencies ωc and gains g depend differently on the cycle parameters (see

Table 3.4 and Fig. 3-6).

Importantly, for the two newly characterized regimes (the signal-transducing and

threshold-hyperbolic), the gain and the cutoff frequency can be adjusted indepen-

dently, thus allowing greater flexibility to the signaling requirements of individual

signaling pathways (Table 3.4 and Fig. 3-6).The gain and the cut-off frequency for

three of the regimes are independent of the input parameters a and ω; the excep-

tion is the cutoff frequency for the ultrasensitive regime, which depends on the input

amplitude.

73



It is easy to understand the origin of the low-pass filtering behavior. First con-

sider a cycle subjected to a slowly varying input (Fig.3-7): If the input changes so

slowly that the cycle has enough time to reach its steady-state level before the kinase

level changes by a significant amount, the cycle simply tracks the kinase level as a

function of time through its steady-state response curve, characteristic for its opera-

tional regime. Now consider a rapidly changing input. Since the kinase level changes

faster, the cycle has less time to adjust to its steady state corresponding to the new

value of the input before the kinase level changes again. Thus the output will not be

able to reach its full amplitude before the kinase levels change again in the opposite

direction, and the amplitude of the output is thus decreased (see Fig.3-7). As the

signal changes faster and faster, the amplitude of the output will decrease, until the

kinase levels vary so fast that the cycle simply does not respond.

The response of the cycle thus depends on the two time-scales: the duration of

the stimulus τ = 1/ω and the intrinsic switching time of the cycle τc = 1/ωc. If the

stimulation is longer than the switching time, τ � τc, then the cycle will adjust its

response by 2aE0g/ωc. On the other hand, a shorter, transient stimulus τ � τc is

not likely to activate the cascade.

Interestingly, ligands activate a kinase by binding to it. The results here imply

that weak ligands binding for a time interval shorter than τc are unlikely to produce

any down-stream activation of the pathway, while those that stay bound longer than

τc activate the pathway. Low-pass filtering can thus perhaps make a signaling cascade

more selective to higher-affinity ligands.

Response to a noisy signal

Importantly, low-frequency inputs are proxies for longer input activation, while high-

frequency inputs are proxies for short, transient activations of the cascade and for

high-frequency noise. Because of low-pass filtering, cycles respond to noise less than

to signals, and as the noise shifts to higher frequencies, the cycle responds to it less.

Figure 3-8 makes the point more precisely: it shows the response of the cycle to a

slowly varying signal buried in noise, and demonstrates that the noise is filtered out
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Figure 3-7: Dynamic response of the cycles to fast and slow inputs. The cycle
has a characteristic response time τc that is a function of its parameters (see Section
Dynamic Response), and which is different for all four regimes. This plot shows the
response of all four regimes to (i) a slow input that has a period equal to twice the
characteristic response time of the cycle followed by (ii) a fast input with a period
equal to one fifth of the cycle’s response time. For clarity, time was normalized by
dividing by the characteristic time of each cycle. The signal in red represents the
input kinase levels (for the threshold-hyperbolic switch the input used is actually
twice the red signal) while the blue traces in A, B, C and D show the response of
the hyperbolic, signal transducing, threshold-hyperbolic and ultrasensitive switches,
respectively, shown in Figure 3-2.

and the signal is revealed.

In summary, analysis of dynamic response demonstrates that (i) the cycle acts as a

low-pass filter in all four regimes; (ii) the cutoff frequency and the gain of signaling can

be adjusted by the cell to achieve better performance (independently of each other in

the case of the signal-transducing and the threshold-hyperbolic cycles); and (iii) low-

pass filtering makes signaling cascades insensitive to noise and transient activations.

Below we discuss some biological implications of these findings.
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Figure 3-8: Response of the four cycles to the input buried in noise. The
input is a sum of a slow signal (same as in Fig.3-7) and a Gaussian uncorrelated
noise. The resulting input signals are shown in red. The blue traces in A, B, C and
D show the response of the hyperbolic, signal transducing, threshold-hyperbolic and
ultrasensitive switches, respectively, as shown in Figure 3-2. The response shows that
the cycles respond to the signal only and ignore or filter out the noise in the input.
Time was normalized by the characteristic time of each cycle to facilitate comparison
amongst cycles.

3.3.5 Low-pass filtering

Figure 3-9 summarizes the low-pass filtering behavior for the four regimes. It shows

O (color coded) versus a and ω (i.e., a horizontal cut through this plot would simply

be an O versus ω curve such as those shown in Fig. 3-6). Some salient features are

evident in this figure. (i) All regimes act as low-pass filters. (ii) Although Equation

3.6 is obtained using a small signal approximation and is expected to hold for small

a, it provides a good guide for describing O for all values of a. Perhaps the biggest

discrepancy is the fact that O does not increase linearly with a but saturates (see Fig.

3-9A,C,D). The signal-transducing regime, however, does seem to have a response that

increases linearly with a so for a given frequency an input with twice the amplitude

of another will result in twice the output O. (iii) Finally, for all regimes except the

ultrasensitive regime (Fig. 3-9) the response starts decreasing at about the same

frequency, independent of a, where as for the ultrasensitive cycle smaller a results in
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Figure 3-9: Magnitude of the oscillations in the output as a response to
oscillations in the input about a background kinase level. Plots A, B, C and
D show the output oscillations O of the hyperbolic, signal transducing, threshold-
hyperbolic and ultrasensitive switches, respectively (normalized by the steady-state
saturation value of each cycle), shown in Figure 3-2, in response to an input of the
form E1 = E0(1 + a sin wt). The magnitude of O is color coded and shown as a
function of the input amplitude a and frequency ω. Output oscillations increase with
increasing a and decrease with increasing ω as expected. The four cycles, however,
respond very differently to their inputs. The parameters used for the cycles are the
same as those in Figure 3-2, and E2 = 50 nM except for the threshold-hyperbolic
switch, where E2 = 100 nM .

smaller cut-off frequency.

The ultrasensitive regime

The ultrasensitive cycle is the only cycle that oscillates between a level close to its

saturation value and zero for a wide range of inputs (red region of Fig. 3-9). The cutoff

frequency of this cycle is a function of both the total substrate protein of the cycle,

and of the input’s amplitude, a unique property of this cycle. For all other cycles,

the cutoff frequency is independent of total substrate and of the input parameters.
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The signal-transducing regime

The cutoff frequency depends only on the phosphatase level and phosphatase param-

eters, but the gain depends on both phosphatase and kinase parameters. Thus the

cutoff frequency can be tuned by changing phosphatase parameters or level, and the

gain can be independently adjusted by changing the catalytic rate of the kinase via

evolution.

The threshold hyperbolic regime

The cutoff frequency depends only on the average kinase level and kinase parameters.

Thus the cutoff frequency may be tuned by changing the kinase level and/or param-

eters, and the gain may be tuned independently by adjusting phosphatase levels or

parameters.

The hyperbolic regime

This cycle has a cutoff frequency that depends on both the kinase and the phos-

phatase. Increasing either one increases the cutoff frequency. The gain also depends

on both the kinase and the phosphatase, so adjusting their levels will modify both

the gain and the cutoff frequency of the switch.

3.3.6 Incorporating Stochastic Effects

The effects of low molecule numbers can be incorporated into a model of the signaling

cycle, resulting in the probabilistic description in (3.4), where αi (i ∈ {0, 1, . . . , T =

ΩA}) is the probability of having i active substrate molecules. This equation can

be solved at steady-state, as in (3.5 ), to yield the stationary distribution of active

substrate molecules. For the signal-transducing regime we can obtain an approximate

form of the distribution for the transient before steady state. The main result is that

when the initial distribution is Poisson, then as long as the support of the distribution

remains outside of the saturation region (i.e., as long as αSt = 0), the time-varying
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distribution is Poisson with a mean that satisfies the macroscopic equation. We briefly

outline the derivation of this result below.

For the signal transducing regime, fi = k1ΩE1 = f and bi =

=b︷ ︸︸ ︷
k2

E2

K2 + E2

=i︷︸︸︷
ΩA = bi.

We start by deriving the rate of change of the mean number of active total substrate

molecules µ(t). We multiply (3.4) by i and sum over all i ∈ {0, . . . , T} to get

d

dt
µ = f(1− αT )− bµ , (3.7)

which is almost like the macroscopic equation, except for the (1− αT ) term.

Now suppose that at all times, including the initial time, the distribution αi is

a truncated Poisson with mean µ(t), i.e., that αi(t) = µ(t)i

i!
c(t) for i ∈ {0, . . . , T}

and zero otherwise, where c(t) =
( ∑T

j=0
µ(t)j

j!

)−1
is a normalizing constant. The

time-derivative of c(t) is then

d

dt
c(t) = −c2(t)

( T∑
j=1

µ(t)j−1

(j − 1)!)

)
d

dt
µ(t). (3.8)

Taking the time-derivative of the previous definition of αi gives

d

dt
αi =

µ(t)i−1

(i− 1)!
c(t)

d

dt
µ(t) +

µ(t)i

i!

d

dt
c(t)

= fαi−1 − fαi + αi+1bi+1 − αibi + fαT (2αi − αiαT − αi−1). (3.9)

This equation equals (3.4) when αT = 0, which shows that the truncated Poission

distribution is a solution of (3.4) when the distribution at time t = 0 is a truncated

Poisson, and when the probability that all substrate molecules are active remains at

zero throughout the experiment. Equivalently, as the number of substrate molecules

T goes to infinity then c(t) becomes e−µ(t), and the distribution for αi becomes (an

un-truncated) Poisson with mean µ(t) that satisfies (3.7) with αT set to zero.
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3.4 Discussion

Significant effort has been put in the elucidation and characterization of signaling

cascades and pathways (see e.g., [140, 134, 124, 85] for reviews). When put together,

these pathways form an intricate network of cell signaling, where each node in the

network corresponds to a different chemical species. Because of the complexity of

the network, it is natural to split it into interconnected modules (sets of nodes whose

output depends only on its input and not on the network downstream of it) and

analyze possible behaviors arising from different interconnections of modules (see e.g.

[67, 72, 21]).

What constitutes a module in the network, however, is still hard to define, and

significant efforts are directed at tackling this problem (e.g. [75, 132, 133, 114, 104]).

What constitutes a good general representation for an arbitrary module in the network

is also an open question. Other efforts have been aimed at understanding properties

of the network as a whole, such as identifying the number of equilibrium states (e.g.

[4, 25]).

Using a deterministic model, we have attempted to provide a systems-level in-

put/output understanding of the signaling cycle, ubiquitous in signaling pathways.

After identifying four parameter regimes (two of them not reported before, to our

knowledge), their steady-state and dynamic behaviors were analyzed and numerically

verified. The results indicate that cycles act as low-pass filters, and that each regime

may be useful under different circumstances. Given the values for cycle parameters,

one can use our results to determine the regime in which the cycle operates. Un-

fortunately, the scarcity of parameter values makes it hard to assess which of these

regimes is more widely present in signaling pathways. The low-pass filtering behavior

of the cycle demonstrates that inputs of the same magnitude but changing at differ-

ent speeds may produce very different outputs, which argues in favor of studying the

dynamical properties of signaling pathways.

All physical systems stop responding to fast enough inputs, but what makes the

low-pass filtering behavior of the signaling cycle interesting is that it is first-order,
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with a single cutoff frequency, and that the cutoff frequency can be adjusted by

evolution (through changes in the enzymatic catalytic rates) and by the cell (through

changes in gene expression). As such, the signaling cycle is a versatile module with

simple dynamics that can be easily tuned for various noise filtering needs and used

to construct signaling networks with more complicated functions and dynamics.

Of the two newly identified regimes, the signal transducing one is of particular

interest because it appears ideal to transmit time-varying intracellular signals without

distortion, while filtering out high-frequency noise in the input. Furthermore, because

it is linear, it opens the possibility that at least parts of signaling pathways (those built

of signal-transducing signaling cycles, or other yet unidentified linear signaling motifs)

may be amenable to linear system analysis, a powerful set of tools to understand the

properties of arbitrary network structures and motifs (for example, elucidating the

roles of cascades, positive and negative feedbacks, etc.). If naturally occurring cycles

operate in the signal-transducing regime, then analyzing networks built of these cycles

becomes tractable as long as load effects can be neglected.

Can naturally occurring signaling cycles operate in this regime? While it was

demonstrated that certain kinases in S. cerevisiae and Xenopous operate in satura-

tion (with MM constant of ∼ 5nM and substrate concentrations of ∼ 30 − 100nM

for yeast; see [42, 8]), little is known about phosphatases. To explore the possibility

that known signaling pathways operate in the signal-transducing regime, we manually

collected values of MM constants from the biochemical literature. Then we used data

for intracellular protein concentrations measured using GFP-tagged proteins ([53]).

Phosphatases seem to have a broad specificity, with a relatively wide range of MM

constants (e.g., 5 to 90µM for the PP2C phosphatases), and appear to be present in

large concentrations (e.g., [Ptc1]≈ 1520 molecules per cell, so E2 ≈ 0.025µM, while

[Ptc2-3]≈ 15000, so E2 ≈ 0.25µM, assuming a yeast cell volume of 0.1pl [42]). Data

on singly-phosphorylated substrates is hard to find, but for a rough indication con-

sider the doubly phosphorylated protein Pbs2 of S. cerevisiae as an example. Pbs2

is measured to have about 2000 molecules per cell so that S ≈ 0.03µM= 30nM.

If singly phosphorylated proteins were characterized by similar numbers, then their
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phosphatases could potentially be unsaturated, since A < S � K2 +E2. In contrast,

kinases that act on Pbs2 are present at lower concentrations (e.g., [Ste11]= 736,

[Ssk2]= 217, and [Ssk22]= 57 molecules per cell, or E1 ≈ 1 − 3nM). Such con-

centrations are consistent with kinases operating in saturation, since E1 + K1 < S

(assuming K1 is in the same range as those measured for Ste7, K1 ∼ 5nM). Taken

together, these numbers suggest that the possibility of a signaling cycle operating in

the signal-transducing regime.

Different signaling cycles, however, may be operating in different regimes, raising

two questions: First, which regime has been chosen by evolution for a given signaling

application? Second, what are the advantages and disadvantages of each regime for

a cycle in a particular position for a particular signaling pathway? To answer the

first question, we need to know in vivo concentrations and MM constants of involved

enzymes. Unfortunately these data are either unavailable or scattered through publi-

cations in the biochemical literature. The applicability of MM constants measured in

vitro is also questionable. An alternative experimental approach would be to obtain

steady-state response curves for various cycles. The success of such measurements

depends on and hence is limited by the availability of in vivo single cell probes for

the phosphorylation state of a particular protein.

The second question, on advantages and disadvantages of each regime, can be

addressed by systematic analysis of cycle properties: steady-state and dynamic re-

sponse, robustness to fluctuations, etc. By matching these characteristics against the

requirements of a particular signaling system, one can suggest the optimal regime for

each signaling application. For example, one can think that signaling in retina cells

shall be fast and graded, depending on the intensity of adsorbed light. Similarly,

gradient sensing in motile cells has to provide graded responses on the time-scales

required to change direction of motion. On the other hand, signaling of cell fate

determining stimuli and signaling involved in various developmental processes may

require an ultrasensitive (“on/off”) response, while imposing much softer constraints

on the time it takes to switch the system from off to on state (hours instead of the

milliseconds needed in light-sensing). The performance of the signaling regimes in
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the context of cascades and feedbacks is also important for understanding the rules

that govern the choice of a regime for each cycle.

For cycles in signaling applications involving all-or-none decisions, such as differ-

entiation, apoptosis, or the cell cycle, it has been argued that ultrasensitive cycles

may be useful as they effectively generate a discrete output that is either high or low

([44]). When such a cycle is tuned appropriately (such that in the presence of the

background input it is close to its threshold; see [93]), it is the best cycle at recovering

time-dependent signals buried in noise, because its gain for low-frequency inputs is

the highest among the regimes. Therefore an ultrasensitive cycle is desirable when

the input signals are extremely noisy, and/or have to achieve binary level outputs.

A signal-transducing cycle, on the other hand, is the best choice to transmit time-

dependent signals without distortion because its output is approximately a scaled but

otherwise undistorted copy of low-frequency input signals, while noisy input compo-

nents are filtered out. It is the only cycle that does not distort the input. What

the other two regimes might be best at is not clear. The threshold-hyperbolic cycle,

however, may prove useful in situations when no activation is desirable below a given

input strength, and when a graded response is desired for inputs above this threshold.

We here considered the effect of temporal noise in kinase levels on the response of

the signaling cycle. A more detailed model should also take into account the intrinsic

noise coming from the cycle itself, since it consists of chemical reactions where the

number of molecules per species is small, and thus a deterministic model based on

mass action kinetics may be inadequate. For example, although the deterministic

cycle is known to have a single steady-state solution, Samoilov et al. (see [123])

found that treating the cycle stochastically can give rise to a bimodal distribution for

the phosphorylated protein. The “mass fluctuation kinetics” approach described in

[62] may be useful in this regard; see also [65, 48]. Other sources of noise that should

also be taken into account are fluctuations in molecule numbers from cell to cell, as

has been well documented for gene levels (see [139, 110, 35], for example). Lastly,

some of the species of the cycle may be found only in the cellular membrane rather

than in the cytoplasm, or may be localized within specific cellular compartments, or
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may move about the cell by diffusion or active transport in an activity-dependent

manner (e.g., the yeast protein HOG1 that dwells in the cytoplasm unless doubly

phosphorylated, when it translocates into the cell nucleus). The consequences of

these spatial effects need to be understood (see [85] for a recent review).

Achieving a systems level understanding of signaling pathways is an important

problem, and is highly limited by the lack of experimental data with enough temporal

resolution to guide modeling efforts. Perhaps identifying and analyzing the relevant

signaling modules as we have done here for a signaling cycle will shed some light

on their behavior. Similar explorations could be done on other commonly occurring

motifs in signaling pathways such as G-protein coupled receptors, or signaling cycles

that require multiple phosphorylation events to become active.

The SwissProt ([136]) reference numbers for the genes Ptc1, Ptc2, Ptc3, Pbs2,

Ste7, Ste11, Ssk2 and Ssk22, mentioned in this paper, are respectively P35182,

P39966, P34221, P08018, P06784, P23561, P53599, P25390.

3.5 Methods

All analytical expressions were obtained starting from Equation 3.3, the tQSSA ap-

proximation of the cycle, the derivation of which is discussed in Section 3.5.1. The

full mass action kinetics (MAK) description of the system (again, see Section 3.5.1)

was analyzed numerically to obtain the data used in all the plots. Therefore, although

the analytical expressions depend on the validity of the tQSSA, the general results

do not as they have been numerically verified on the full system.

To analyze the steady state behavior, the cycle equation (Equation 3.3) corre-

sponding to each regime was set to zero to obtain A at steady state. The quasi

steady state expression for the phosphatase-protein complex, obtained in the process

of deriving Equation 3.3 was then used to translate this into the steady state output

A (see Section 3.5.3 for details).

To obtain the dynamic response O Eq.3.3 was linearized about a chosen steady

state level, assuming that the deviations in the input from its steady state level are

84



small. The steady state level of the input for the four cycles was chosen such that the

steady state output was about half-way to saturation, to allow the cycles to respond

as much as possible. Choosing other steady state values where the slope of the steady

state response curve is small would lead to little response. Particular care has to be

placed in the ultrasensitive cycle, which has a very small range of inputs where its

slope is non-zero, implying that this cycle needs to be finely tuned for it to transmit

dynamic information.

All numerical analysis was done in Matlab, starting from the full MAK description

of the cycle. The data in Figure 3-2 was obtained by setting the derivatives to zero and

solving the resulting algebraic relations numerically. The data in Figures 3-7, 3-6, and

S1 was obtained by numerically integrating the MAK equations for the given inputs

using the ODE23s Matlab function. Finally, the data in Figure 3-8 was obtained by

integrating the MAK equations using the Runge-Kotta algorithm on inputs of the

form E0(1+a sin ωti + η(0, 1)) where ti is any time point in the numerical integration

and η(0, 1) is a normal random variable (with unit variance and zero mean).

3.5.1 Derivation of Equation 3.3

We start with the mass action kinetics description of the reactions specified by Equa-

tions 3.1 and 3.2. There are six chemical species and three conservation relations (the

kinase, phosphatase and substrate protein are conserved), yielding a total of three

variables. Letting C1 (C2) denote the concentration of the inactive (active) enzyme-

substrate complex IE1 (AE1), we write down the mass action kinetics equations for

the enzyme-substrate complexes and for the amount of active protein A yields

dA

dt
= k1C1 − k2C2 (3.10)

dC1

dt
= a1

[
(S − A− C1)(E1 − C1)−K1C1

]
= a1

[
C2

1 − (K1 + E1 + S − A)C1 + E1(S − A)
]

(3.11)

dC2

dt
= a2

[
(A− C2)(E2 − C2)−K2C2

]
= a2

[
C2

2 − (K2 + E2 + A)C2 + E2 A
]
, (3.12)
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where S denotes the total amount of substrate protein, a1 and a2 are the association

rate constants of the two enzymatic reactions and K1 and K2 the Michaelis Menten

constants.

To apply the tQSSA, we then hypothesize that the complexes have faster dynamics

than the active protein and that they are always at equilibrium with respect to the

active substrate protein. This allows us to substitute C1 and C2 in Equation 3.10

with the equilibrium values, which are in turn found by setting the left hand side of

Equations 3.11 and 3.12 to zero and solving for the complexes.

So doing yields

C1 =
K1 + E1 + S − A

2

(
1−
√

1− 4r1

)
and C2 =

K2 + E2 + A

2

(
1−
√

1− 4r2

)
where

r1 =
E1(S − A)(

K1 + E1 + S − A
)2 and r2 =

E2 A(
K2 + E2 + A

)2 .

To further simplify the equilibrium expressions for the complexes, we approximate to

first order in r1 and r2 (which is reasonable when r1 � 1 and r2 � 1), yielding the

following expressions for C1 and C2:

C1 =
E1(S − A)

K1 + E1 + S − A
and C2 =

E2 A

K2 + E2 + A
. (3.13)

These expressions are finally inserted into Equation 3.10 to yield the signaling cycle

equation (Equation 3.3).

In [142] Rami Tzafriri describes in full detail how to obtain the same result for a

single enzymatic reaction in a self-consistent manner. In particular, he finds condi-

tions under which the complexes indeed reach equilibrium with respect to the sub-

strate, and under which the first order approximation of the square root is valid. The

same argument carries through for each enzymatic reaction in the signaling cycle. In

particular, the tQSSA is expected to hold when

1. Either K1 + E1 � S or K1 + S − A� E1, and
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2. Either K2 + E2 � S or K2 + A� E2.

As these inequalities are better satisfied, the tQSSA describes the signaling cycle

better. Similarly, whereas a Michaelis Menten approximation would be valid only at

low enzyme concentrations, an inspection of the conditions above shows the tQSSA is

also valid when the enzyme concentrations are high. The conditions we use to define

the four signaling regimes of the cycle are consistent with the sufficient conditions for

the validity of the tQSSA.

3.5.2 Equations for the Four Cycle Regimes

Regime 1: both kinase and phosphatase are saturated : ultrasensitive

This regime was first identified in [61], where its steady state behavior was analyzed.

Equation 3.3 reduces to
dA

dt
= k1E1 − k2E2,

indicating that in this regime the signaling cycle effectively integrates the difference

of its (scaled) input and a reference level specified by the (scaled) phosphatase level.

When the difference maintains the same sign for long enough, it will become saturated

at a low or a high output level, for a negative and a positive difference, respectively.

This regime can be used in feedbacks requiring time integration (integral feedbacks),

such as the one proposed to operate in bacterial chemotaxis ([156]).

Regime 2: kinase saturated, phosphatase unsaturated : signal-transducing

Of the two new regimes that we characterize in this study, the one with a saturated

kinase and unsaturated phosphatase (Figure 3-2B) is of particular interest. We re-

fer to this regime as signal-transducing because, as discussed below, it is ideal for

transmitting noisy time-varying signals. Equation 3.3 for this regime becomes

dA

dt
= k1E1 − k2

E2

K2 + E2

A,
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which is linear in A. This has several interesting implications. In particular, it implies

that for slow inputs (relative to the cut-off frequency k2E2/(K2 + E2)) the output A

will simply be a scaled copy of the input. While the latter holds for slow inputs,

quickly varying inputs (noise) are filtered out making this regime ideal for the trans-

mission of signals. Furthermore, the fact that this cycle is a linear system implies

that pathways (or part of pathways) built of cycles in this regime become highly

tractable mathematically since all the well-developed signals and systems techniques

would apply to them. Available biochemical data and in vivo measurements argue in

favor of this regime to be present in cell signaling cascades (see Discussion).

Regime 3: kinase unsaturated, phosphatase saturated : threshold-hyperbolic

The second new regime has an unsaturated kinase and a saturated phosphatase, and

Equation 3.3 becomes
dA

dt
= k1

E1(S − A)

K1 + E1

− k2E2.

Its steady state output is zero for inputs below a threshold and then increases hyper-

bolically with increasing steady-state inputs.

Regime 4: both kinase and phosphatase unsaturated : hyperbolic

This regime was also first identified in [61] and exhibits a hyperbolic steady state

response. Equation 3.3 becomes

dA

dt
= k1

E1(S − A)

K1 + E1

− k2
E2 A

K2 + E2 + A

for this regime.

3.5.3 Steady State

The output of the cycle is the amount of free active protein and may be found from

the amount of active protein A and of active complex C2, since A = A−C2. Analytic

approximations to the steady state response of the signaling cycle may then be ob-
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tained by finding expressions for A and C2. The former can be found by setting the

left hand side of Equation 3.3 to zero and solving for A, while the latter is taken to

be E2 A
K2+E2+A

as discussed in the appendix above.

So doing for the four signaling regimes results in analytic expressions for their

steady state responses. The case of the ultrasensitive regime, however, involves a

slightly different method.

Regime 1: ultrasensitive

Setting Equation 3.3 to zero for this regime results in k1E1 = k2E2, and since for this

regime C2 ≈ E2 then this indicates that C2 ≈ k1

k2
E1. Numerical simulation indicates

that as long as k1

k2
E1 ≤ E2 the previous relation is accurate and furthermore that the

switch output is zero. As the input increases beyond this point, C2 quickly increases

to its maximal value E2 (i.e., the phosphatase becomes fully saturated, while the

level of free inactive protein decreases to zero and the inactive complex C1 ≈ E2
k2

k1
.

Together, these observations imply that for E1 ≤ k2

k1
E2 the output of the cycle is

zero and A ≈ C2 ≈ k1

k2
E1, and that for inputs above this level A quickly saturates at

S − k2

k1
E2, and the output level is given by A = S −

(
1 + k2

k1

)
E2. This implies that no

matter how high the input is, the output of the ultrasensitive cycle will never equal

the total amount of substrate protein unless there is no phosphatase.

Regime 2: signal-transducing

Setting Equation 3.3 to zero for this regime results in k1E1 − k2
E2

K2+E2
A = 0, so

A = k1

k2

K2+E2

E2
E1. At the same time C2 ≈ E2

K2+E2
A so that A = k1

k2

(
K2+E2

E2
− 1

)
E1.

This linear relationship between the output and the input can not hold for high

inputs because the output must be less than the total amount of substrate. We

therefore expect the output to saturate when there is not free inactive protein, i.e.,

when A + C1 ≈ S. Since C1 ≈ E1 in this regime, the previous expression implies

that the switch will saturate when E1 ≈ S

1+
k1
ω2

, where ω2 = k2E2

K2+E2
. Evaluating the

output at this input level yields the saturation value of the switch in this regime:
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A =
(
1− ω2

k2

)( k1
ω2

1+
k1
ω2

)
S.

Regime 3: threshold-hyperbolic

Setting Equation 3.3 to zero for this regime results in ω1(S − A) − k2E2 = 0, where

ω1 = k1
E1

K1+E1
. This implies that A ≈ S − k2

ω1
E2 and since C2 ≈ E2, that A ≈

S − (1 + k2

ω1
)E2. This approximation is not expected to hold at low inputs, where it

blows up. Instead, at low inputs the free active protein is expected to be zero and

A ≈ C2 ≈ ω1

k2
(S −A) from the first expression in this subsection. Solving for A gives

A ≈ ω1

k2+ω1
S ≈ A for low inputs. This expression is expected to break as the input

level reaches a level E1
∗

where the expression equals E2. Above that input the first

expression for A is expected to hold. Therefore, for inputs below E1
∗

the output is

approximately zero, and then increases hyperbolically as A ≈ S − (1 + k2

ω1
)E2.

Regime 4: hyperbolic

Setting Equation 3.3 to zero for this regime results in ω1(S − A) − ω2A = 0, where

ω1 and ω2 are as defined above. Therefore A ≈ ω1

ω1+ω2
S and since C2 ≈ ω2

k2
A then

A =
(
1− ω2

k2

)
ω1

ω1+ω2
S. The saturation level of this regime is obtained by evaluating the

previous expression in the limit as E1 becomes infinite.

3.5.4 Dynamics

To find approximate analytic expressions for the response of the system to inputs of

the form E1 = E0(1 + a sin ωt), we use small signal analysis. This method consists

of linearizing the system about its steady state level, and further assuming that the

input deviates from its steady state level by small amounts. Any results thus obtained

are expected to be valid for small E0a, although numerically we have observed that

the results so obtained describe the system better than they might have the right to

when E0a is not small. The method works as follows: First let the function f(A, E1)

(or just f for simplicity) denote the rate of change of A as described by Equation

3.3 (i.e., dA
dt

= f(A, E1)), and let Ass be the steady state level of A when the input
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is constant and equal to E0, so that f(Ass, E0) = 0. Then define the deviations from

steady state levels δA = A − Ass and δE1 = E1 − E0 = E0a sin ωt. Assuming the

deviations are always small and Taylor expanding f(A, E1) about the steady state

levels then yields
dδA

dt
= gδE1 − ωcδA, (3.14)

where g = ∂f

∂E1

∣∣
(Ass,E0)

is referred to as the gain and ωc = ∂f

∂A

∣∣
(Ass,E0)

as the cut-off

frequency. This equation is linear and may be solved for arbitrary inputs δE1 by

one of the many useful techniques to work with linear differential equation (i.e., by

Laplace transforms). In particular, when δE1 = aE0 sin ωt and the initial condition

is zero

δA = aE0
g√

ω2 + ω2
c

cos
(
ωt + tan−1(

−ωc

ω
)
)

+ aE0gωe−ωct,

where tan−1 denotes the inverse tangent. Here, we are only interested in twice the

amplitude of the steady state oscillations in A, from maximum to minima. These are

evidently given by Equation 3.6, such that for frequencies smaller than the cut-off ωc

the oscillations are proportional to g
ωc

and oscillations for frequencies larger than ωc

decay as 1/ω.

Because the output of the system is A = A − C2, we need to translate these

oscillations in A to oscillations in A. In the ultrasensitive and threshold-hyperbolic

regimes, C2 ≈ E2 so the oscillations in A equal those in A. In the hyperbolic and

signal-transducing regimes, C2 ≈ ω2

k2
A, so the amplitude of the oscillations in A is

that amplitude of the oscillations in A multiplied by a factor of 1− ω2

k2
.

Regime 1: ultrasensitive

For the ultrasensitive regime we do not need to use the method above. This regime

needs to be fine-tuned to transmit signals because, as evidenced by its steady state

response curve, is only responsive to changes in the input close to its inflection point,

at E1 = k2

k1
E2. Choosing E0 at this level results in the cycle equation becoming

dA
dt

= k1aE0 sin ωt, which is identical to Equation 3.14 with a gain of k1 and cut-off

frequency of zero. The previous equation does not hold for small enough frequencies;

91



instead at some effective cut-off frequency the oscillations will cover the full range of

values that the ultrasensitive cycle may take. That is, the effective cut-off frequency

satisfies 2E0a
k1

ωc
= S−

(
1+ k2

k1

)
E2, where the right hand side is the saturation level of

the cycle. Solving for ωc in this expression yields the cut-off frequency in Table 3.4.

The ultrasensitive regime is the only one that achieved oscillations that cover its full

steady state response range, and where the (effective) cut-off frequency depends on

the input amplitude a.

Regime 2: signal-transducing

Because Equation 3.3 for this regime is already linear in A and in E1, it already has

the same form as Equation 3.14 with g = k1 and ωc = ω2. Multiplying the gain by

1− ω2

k2
to translate to oscillations in A gives the result in Table 3.4.

Regime 3: threshold-hyperbolic

Applying the method described above results in the expressions in Table 3.4 (These

results are not expected to hold when the steady state input E0 is below the regime’s

threshold and the output is zero). For simplicity though, we let ω0 = ω1

∣∣
(E1=E0)

=

k1E0

K1+E0
, which turns out to be ωc for this regime.

Regime 4: hyperbolic

Applying the method described above results in the expressions in Table 3.4, where

the cut-off turns out to be ωc = ω0 + ω2.

3.5.5 Quantifying the Quality of the Four Regime Approxi-

mations

Taking extreme values of the kinase and phosphatase MM constants allows us to

obtain the four signaling regimes previously discussed. However, the results obtained

from these approximations apply reasonably well to a wide range of MM constants,
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and not only at the extreme. The quality of the approximation does increase, however,

as the MM constants become more extreme. To demonstrate this we numerically

solved for the steady-state characteristic of Equation 3.3 for a wide range of kinase

and phosphatase MM constants and compared them to the characteristics of each

of the four regimes. For each set of K1 and K2 values, we set the left hand side

of Equation 3.3 to zero and solve for A and then subtract E2 A
K2+E2+A

as discussed in

the section above to obtain A. We do so for a range of total kinase values Kt and

for each, we compute the difference from the steady-state of each of the four regime

steady states. We finally square these differences and compute their mean resulting in

the mean squared error for each regime. In Figure 3-3 we show what we refer to a the

relative error, the square root of the squared error normalized by the total substrate

St. This figure again shows that the regime approximations are each approximately

valid over a large part of a quadrant, covering almost the full K1 versus K2 space

when combined.
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Chapter 4

Systems of Chemical Reactions

and Stochastic Chemical Kinetics

4.1 Summary

Systems of chemical reactions, such as gene and metabolic networks, and signaling

pathways, are pervasive in biology, as well as in other fields of study. These systems

are typically described by a system of ordinary differential equations that track the

concentrations of each chemical species in the system as a function of time. Such a

description assumes that the system is well-mixed, so that there are no significant

spatial concentration gradients, and deterministic, typically because the number of

molecules, or system volume, is large. When either of these two assumptions fails, a

completely different model must be used. This chapter describes the most popular

framework, termed Stochastic Chemical Kinetics, used to model well-mixed systems

of chemical reactions where stochastic effects (e.g., due to low molecule numbers)

become relevant and need to be incorporated into the model.

4.2 Introduction

Two important dimensions determine the nature of the model appropriate to describe

a system of chemical reactions: the mixing rate and the system size (see Figure 4-1).
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The mixing rate refers to the speed with which the molecules in the system become

uniformly distributed in space. The mixing can be active, for example, by the use of

a stir-bar, or passive, by diffusion. The system size refers to the system volume, or

alternatively, to the number of molecules in the system (see Chapter 5).

When the system mixes very fast (e.g., faster than the time until the concentra-

tions change significantly because of reactions), spatial effects can be ignored and the

state of the system can be specified through the number of molecules, or concentra-

tion, of each chemical species in the whole system. If the system mixes more slowly,

then spatial concentration gradients arise and need to be incorporated into the model.

Similarly, when the system size is large, as in macroscopic systems like a test tube,

the system behavior is practically deterministic. For small systems, however, the

probabilistic nature of individual reactions dominates and a fully-probabilistic model

must be used.

When the system mixes quickly and has a large size, the simplest model frame-

work results. The system state is then specified by the concentrations of each of the

chemical species, and their time-evolution is governed by a set of ordinary differential

equations. This modeling framework, termed mass action kinetics, is often used in

biology not necessarily because it is the most appropriate, but because it is the sim-

plest one. When the system is large but mixing is slow, the appropriate framework

becomes reaction-diffusion kinetics, where the system is now described by (determin-

istic) partial differential equations that track the concentrations as a function of space

and time.

Systems with fast mixing but small system size require a fully probabilistic model.

The standard and perhaps most popular framework to model such systems, termed

stochastic chemical kinetics, tracks the time-evolution of the probabilities of all phys-

ically possible system states (i.e., all possible values for an array with the molecule

numbers for each chemical species). The resulting model, at first glance, seems noth-

ing like mass action kinetics (but see Chapter 5), and is significantly more complex.

This chapter describes the mass action kinetics, and the stochastic chemical kinetics

frameworks in some detail, and the next two chapters apply model reduction tools
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Figure 4-1: The nature of the model required to accurately describe a system of
chemical reactions depends on two system variables: the mixing rate and the system
size. The modeling framework the is often used in biology assumes, for simplicity, fast
mixing and large system size. The other frameworks become much more complex.
This chapter describes a standard modeling framework appropriate for systems with
fast mixing but small system size.

to stochastic chemical kinetics in order to reduce the model complexity. Specifically,

Chapter 5 obtains an approximate model for the evolution of the mean concentrations,

and their variances and covariances, that closely resembles and is not much more com-

plex than mass action kinetics. The hope is that this simpler although approximate

model may be almost as easy to work with as mass action kinetics. Chapter 6, on

the other hand, describes a separation of time scales method for stochastic chemical

kinetics analogous to the one often applied to mass action kinetics models, which

results in a model of reduced complexity, such as the Michaelis-Menten rate law.

When the system is small in size, and mixes slowly, the most complicated frame-

work must be used (lower-left corner of Figure 4-1). The corresponding model is

fully probabilistic, yet must account for spatial concentration gradients. Chapter

7 develops a simpler approximation for this modeling regime that tracks the mean

concentrations, and their variances and covariances, as a function of space and time.

I have loosely used the words small and large to describe system sizes, and slow
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and fast to describe system mixing rate, because it is not yet well known how large a

system needs to be, or how fast the mixing rate needs to be, for stochastic and spatial

effects, respectively, to be negligible. The hope is that the simplified approximations

developed in this thesis will be useful to study when such effects become negligible.

The four modeling frameworks mentioned above and shown in Figure 4-1 should

be compatible with one another, in the sense that the more complex ones should

converge to the simpler ones in the appropriate limit, as denoted by the arrows in

Figure 4-2. However, these convergences are not all well understood in a mathematical

sense. The green arrows correspond to convergences that are more-or-less understood

(for example, the green arrow on the right represents the limit as system volume goes

to infinity while concentrations are kept constant; see Chapter 5), while the orange

arrows correspond to less understood relationships. In Chapter 7, I propose a limit

relating spatial-stochastic chemical kinetics to reaction-diffusion kinetics.

Figure 4-2: The four modeling frameworks and the convergences between them. The
arrows denote the assumed convergences; green arrows correspond to limits that are
more-or-less understood, while the orange ones to those that remain somewhat elusive.
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4.3 Systems of Chemical Reactions

Systems of chemical reactions consist of n chemical species {X1, ..., Xn} interacting

in a volume v through L reactions labeled R1, ..., RL.

Reaction R` corresponds to

s`1X1 + ... + s`nXn
k`−→ s`1X1 + ... + s`nXn (4.1)

where s`i and s`i are the numbers of molecules of species Xi that are consumed and

produced, respectively, on every firing of the reaction. The consumed species are

referred to as reactants. The parameter k` in Equation 6.1 above is the rate constant

of the reaction, and does not depend on Ω; its precise role in models of chemical

reactions will be stated later.

Typically the system is assumed to be well-stirred, so that spatial concentration

gradients do not arise within the system volume. This may be the case, for example,

when diffusion is much faster than the chemical reactions. We make the well-stirred

assumption in this and the next few chapters. However, Chapter 7 focuses on sys-

tems where this assumption does not hold, and describes frameworks to model these

systems.

We let xi and yi be the number of molecules and the concentration, respectively,

of species Xi. Molecule numbers are normalized by the system size, given by Ω = Av

where A is Avogadro’s number, to yield concentrations in moles per unit volume,

so that yi = xi/Ω. Letting x be the column vector of molecule numbers (with i-th

component {x}i = xi), a firing of reaction R` changes x instantaneously to x + s`,

where {s`}i = s`i − s`i = s`i is the stoichiometric coefficient of species Xi in reaction

R`, and s` is referred to as the reaction’s stoichiometry vector. The stoichiometry

vectors are grouped into the n×L stoichiometry matrix S whose `-th column equals

s`.
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4.3.1 Deterministic Models: Mass Action Kinetics

Traditionally, models of systems of chemical reactions describe the evolution of the

concentrations of the different species through ordinary differential equations obtained

from the mass action kinetics (MAK) rate laws. Reaction R` has a macroscopic

reaction rate, denoted by r`, with Ar` being the average or expected number of times

per unit volume per unit time that the reaction fires. Accounting for stoichiometry

results in s`ir` being the expected rate of change in the concentration yi caused by

reaction R`. Letting µi = E[yi] be the expected concentration of Xi and adding up

the effects of all the reactions gives

dµi

dt
=

L∑
`=1

s`ir`, (4.2)

for each i, where we have omitted the time argument t from µi for notational sim-

plicity. This set of equations may be expressed in matrix form by letting r be the

macroscopic reaction rate (column) vector (with {r}` = r`), and similarly defining

the expected concentration vector µ, so that

dµ

dt
= Sr. (4.3)

The MAK rate laws are used to relate reaction rates to concentrations. Typi-

cally, as will be discussed in the next chapter, the respective macroscopic rates of

1) zero-order, 2) first-order, and 3) heterogeneous and 4) homogeneous second-order

reactions are taken to be 1) independent of the concentrations, proportional to 2) the

concentration of the reacting species, 3) the product of the concentrations of the two

reacting species, 4) the squared concentration of the reacting species. Thus the rate

r` of reaction R` can, under these assumptions, always be expressed as a quadratic

function of the concentration vector µ. The function is specified by the scalars k` and

b`, an n× 1 vector c`, and an n× n symmetric matrix D`, such that

r`(µ) = k`(b` + c`
′µ + µ′D`µ), (4.4)
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where we have made explicit the argument µ of r`, and where the superscript ′ denotes

the transpose of a vector (or matrix, later in the thesis). Collectively, b`, c` and D` are

referred to as the macroscopic rate parameters of reaction R`. They are independent

of the system size Ω and may be found by inspection from the specifications of the

reactions, as illustrated in the examples of Section 6.9. In what follows, we let c`i =

{c`}i and d`ij = {D`}ij denote the entries of c` and D`.

Substituting for the rate r` in Equation 6.37 using expressions of the form of Equa-

tion 4.4 results in the MAK equations, the conventional deterministic, macroscopic

description of the system.

4.4 Stochastic Chemical Kinetics

To capture the inherent stochasticity of a system of chemical reactions, one can aim

to track the evolution of the joint probability distribution (i.e., the joint probability

mass function) of the molecule numbers that constitute the entries of the state vec-

tor x. The standard probabilistic model is a continuous-time Markov process with

time-dependent state given by x; the time argument of x is omitted for notational

simplicity. Each reaction R` fires in a small interval of time of length dt with a proba-

bility equal to a`(x)dt, independently of the other time intervals and other reactions,

and given that the state of the system is x at the start of the interval.

The quantity a`(x) is referred to as the propensity of reaction R`; its precise

functional form, and all the assumptions in the preceding paragraph, can be derived

from basic statistical mechanics considerations (see [56]). Propensities turn out to be

proportional to the number of ways one can choose the reacting molecules.1 Therefore,

a reaction that has more than one molecule as reactant has a nonlinear propensity.

The previous modeling assumptions lead to the Chemical Master Equation, and serve

as the starting point for a family of algorithms to simulate system trajectories ([55,

1For example, if R` has one molecule of species Xi as its only reactant, then a`(x) is proportional
to xi. Similarly, if R` requires two molecules of species Xi as reactants, its propensity is then
proportional to xi(xi − 1)/2. Lastly, if R` requires one molecule of Xi and one molecule of Xj , its
propensity is then proportional to xixj .
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24, 60]), such as Gillespie’s widely used Stochastic Simulation Algorithm (SSA).

4.4.1 The Chemical Master Equation

Let P (x, t) be the probability distribution of the state x at time t, conditioned on

an initial state x(to) = xo, where we omit the conditioning on xo for notational

simplicity. Our goal here is to obtain an equation describing the evolution of this

probability distribution. Suppose that the state of the system at time t + dt is given

by x. If dt is small enough, then the probability that more than one reaction occurred

in the interval dt is negligible. The state at time t must then have been at most one

reaction away from x, and since there are only L reactions, the state at time t could

have only been one of L + 1 different states: x, if no reaction occurred in the small

time interval, or x− s` (with ` ∈ {1, . . . , L}) if reaction R` occurred.

This argument allows one to relate the probability of being in state x at time

t + dt to the the distribution of x at time t, resulting in

P (x, t + dt) = P (x, t)×
[
1−

L∑
`=1

a`(x)dt
]
+

L∑
`=1

P (x− s`, t)a`(x− s`)dt. (4.5)

The previous equation obtains P (x, t + dt) by conditioning on the possible states at

time t, and summing the product of the probability of each possible previous state

with the probability of transitioning to state x. The term between square brackets

in the equation above denotes the probability that no reaction occurred in the time

interval dt.

Subtracting P (x, t) on both sides of the previous equation, and then dividing by

dt and taking the limit dt → 0 results in the so-called Chemical Master Equation

(CME), namely

dP (x)

dt
=

L∑
`=1

P (x− s`)a`(x− s`)− P (x)a`(x). (4.6)

Here and from now on, I omit the argument t in P (x, t) for notational simplicity, so

that P (x) denotes the distribution of x at time t conditional on xo. The expectations
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E[ · ] that we take in this and related chapters, unless explicitly stated, are all with

respect to this distribution. The CME is actually the forward Kolmogorov equation

(e.g., see [49]) for a continuous-time discrete-state Markov process model of the system

of reactions. A careful derivation of the CME can be found in [56], for instance.

The CME is not a single equation, but rather a family of equations, one for

each possible value of the state x. Stacking the probabilities for all possible system

states in a (possibly infinite) vector would result in a linear differential equation for

P (x). Unfortunately, the CME is typically hard to work with directly, mostly because

the number of possible states is typically too prohibitive for all but the simplest of

systems. For example, suppose that the reactions in a system are such that the

number of molecules per species can never be more than M. Then the number of

possible states is Mn, which grows exponentially with the number of species.

The CME also serves as the basis for approaches that reduce the complexity of the

model (e.g., see [62, 57, 64, 97, 130, 103, 23]). For instance, Chapter 5 in this thesis

develops approximate deterministic evolution equations for the means, variances and

covariances of the species concentrations from the CME. In the process, it can be

shown that the evolution of the mean concentrations converges to the deterministic

MAK model as a limiting case when the effects of fluctuations on the means are

neglgible. Similarly, Chapter 6 develops a reduced CME obtained by separation of

time scales.

4.4.2 Stochastic Simulation

Traditionally, people have resorted to numerically simulating sample state trajectories

of x rather than attempting to solve the CME. The key goal of this approach is

to generate state trajectories stochastically, such that the probability of generating

any given trajectory is consistent with the model statistics. This goal is achieved

by exploiting a standard result for discrete-state continuous-time Markov processes

(e.g., see [49]), which gives the probability distribution for the time until the next

change in state and the actual next state, given the current state. Often many state

trajectories are so simulated. The ensamble of states at a specific time may be used to
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obtain an empirical probability distribution for the state at that time, and then used

to estimate the expected value of arbitrary state functions. The resulting estimates

will become more accurate as the number of trajectories is increased.

Between reactions, when the system state does not change, the model can simply

be thought of as a merger of L independent Poisson processes (e.g., see [49]), with

process number ` having a firing rate of a`(x). The standard results for these types

of processes may be invoked to obtain the main results in this chapter. For example,

the resulting combined process is also Poisson with rate 1/µτ =
∑L

`=1 a`(x), so the

time until the next reaction is exponentially distributed with mean µτ . Additionally,

the next reaction will be of type R` (i.e., will correspond to process number `) in-

dependently of the time until the next reaction and with probability a`/
∑L

j=1 a`(x).

After each reaction occurs, the state gets updated accordingly, and and a “new” pro-

cess with updated rates starts. We describe next how to obtain the previous results

without explicitly invoking Poisson processes, consistent with the literature in the

field.

Suppose that at some time t the system is in state x, and we want to generate a

sample trajectory according to the model statistics. Let τ and ` respectively denote

time until the next reaction, and the index of the next reaction, given the current state

x. If we knew the joint distribution P (τ, `|x, t) of τ and `, conditioned on the current

state, we could sample from it, update our state at time t+ τ to be x+s`, and iterate

this procedure until we have obtained a long-enough trajectory. This is exactly what

the so-called stochastic simulation algorithm (SSA), more commonly referred to as the

Gillespie algorithm, does (e.g., see [60]). All the numerical simulations of stochastic

chemical systems in this thesis are obtained from this algorithm. The key random

variables, τ and ` turn out to be independent, with τ exponentially distributed with

mean

µτ =
1∑L

`=1 a`(x)
,

and with reaction R` being the next reaction with a probability of a`(x)µτ . The

following argument, adapted from [60] where it is described in more detail, shows
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how to obtain the previous results.

The quantity P (τ, `|x, t)dt is the probability that the next reaction in the system

is R`, and will occur in the time interval [t + τ, t + τ + dt). This probability can be

expressed as the probability F (τ |x, t) that no reaction occurs between t and t + τ ,

times the probability that R` fires in [t + τ, t + τ + dt). The latter is simply a`(x)dt

by definition, so that

P (τ, `|x, t)dt = F (τ |x, t)a`(x)dt.

Now consider F (τ + dτ |x, t). This probability must equal the probability that no

reaction occurred between t ant t + τ , namely F (τ |x, t), times the probability that

no reaction occurs in [t + τ, t + τ + dt). This results in

F (τ + dτ |x, t) = F (τ |x, t)
[
1−

L∑
`=1

a`(x)dτ
]
, (4.7)

which after subtracting F (τ |x, t) on both sides, dividing by dτ, and taking the limit

dt→ 0 becomes the ordinary differential equation

dF (τ |x, t)

dτ
= − 1

µτ

F (τ |x, t). (4.8)

The initial condition of the previous equation is F (0|x, t) = 1, since no reaction

can occur when no time has elapsed, resulting in the solution F (τ |x, t) = e−
τ

µτ .

Substituting this result into our previous expression for P (τ, `|x, t) gives the desired

result:

P (τ, `|x, t) = a`(x)e−
τ

µτ = (a`µτ )(
1

µτ

e−
τ

µτ ). (4.9)

The last expression here shows that τ and ` are independent random variables, since

their joint distribution is simply the product of their respective marginals. Further-

more, τ is exponentially distributed with mean µτ and R` is the next reaction with

probability a`(x)µτ .

To obtain sample state trajectories starting at some time t with state x, one may

simply evaluate µτ , which is a function of x, and draw a sample from an exponential
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distribution with mean µτ to obtain τ. Another random number is then drawn from

the distribution for ` to choose the next reaction. Lastly, the state at time t + τ gets

updated to x+ s` before repeating the process. An alternate but equivalent approach

samples L independent exponential distributions labeled by an index j, where the

mean of distribution j is 1/aj(x), and lets τ be the minimum of these L numbers,

and ` the index j of the distribution that achieves this minimum.2

The previous algorithms generate sample paths that are statistically exactly con-

sistent with the underlying model. Unfortunately, however, these simulations are

often too computationally prohibitive, particularly when multiple trajectories are de-

sired, for example, to compute the evolution of the expected concentrations, and their

variances and covariances. Although certain improvements over the SSA can reduce

computation (e.g., the Gibson-Bruck algorithm in [54] that only generates one ran-

dom number per reaction by re-using previously obtained samples), exact algorithms

must still simulate trajectories one reaction at a time. This is precisely why they are

often too computationally costly: the expected time between reactions µτ decreases

rapidly as the number of molecules increases, since propensities increase with molecule

numbers (potentially faster than linearly), so simulating a trajectory of time-length

T will require more and more iterations of the algorithm as the number of molecules

increases.

Approximate Stochastic Simulation and Models

To circumvent the previous problem, some approximate approaches have been devel-

oped. Perhaps the best-known is the so-called tau leaping method (e.g., see [60]),

which updates the system state only every τ time-units, where τ is a pre-specified

deterministic quantity. The number of firings of the R` reaction during an interval of

duration τ is approximated by a Poisson random variable with mean a`(x)τ, where

x is the system state at the start of the interval. The number of firings of all reac-

tions are assumed mutually independent, resulting in an algorithm that draws from L

independent Poisson distributions at every iteration, updating the state accordingly

2It can be shown that τ and ` are still distributed according to Equation 4.9.
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at the end of each“leap”. The duration of the leap τ is chosen so that the expected

change of state in each leap is sufficiently small that the propensity values change

little, while having the expected number of reaction firing being much greater than

one. Not all systems have values of τ that satisfy these requirements, though those

with a large enough number of molecules tend to do so. Moreover, special care has to

be taken with this approach to prevent molecule numbers from becoming negative.

A further approximation can be used to obtain a stochastic differential equation

for that approximates the system state x, which is known as the chemical Langevin

equation. This description is obtained for systems where tau leaping is expected to

work, and where the expected number of firings of each of the L reactions is much

greater than one. The number of firings of reaction R` can then be approximated by a

normal distribution with mean and variance equal to a`(x)τ, resulting in a differential

equation driven by white noise called the Chemical Langevin Equation, after some

re-arrangement and taking an appropriate limit. This argument is described in detail

in [57].

The next chapter proposes a complement, and in some situations alternate ap-

proach to stochastic simulation. It derives a set of ordinary differential equations

that approximately track the time-evolution of the mean concentrations, and their

variances and covariances. The resulting equations, which are completely determin-

istic, can be numerically integrated to give the dynamics of the basic statistics of the

system. Additionally, Chapter 6 develops a method to simplify the CME description

for systems that have fast and slow reactions, a common situation.
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Chapter 5

Mass Fluctuation Kinetics:

Capturing Stochastic Effects in

Systems of Chemical Reactions

through Coupled Mean-Variance

Computations

Summary

The intrinsic stochastic effects in chemical reactions, and particularly in biochemi-

cal networks, may result in behaviors significantly different from those predicted by

deterministic mass action kinetics (MAK). Analyzing stochastic effects, however, is

often computationally taxing and complex. We describe here the derivation and ap-

plication of what we term the mass fluctuation kinetics (MFK), a set of deterministic

equations to track the means, variances and covariances of the concentrations of the

chemical species in the system. 1 These equations are obtained by approximating the

dynamics of the first and second moments of the Chemical Master Equation. Apart

from needing knowledge of the system volume, the MFK description requires only

1The material in this chapter has been published in [62].
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the same information used to specify the MAK model, and is not significantly harder

to write down or apply. When the effects of fluctuations are negligible, the MFK

description typically reduces to MAK. The MFK equations are capable of describing

the average behavior of the network substantially better than MAK, because they

incorporate the effects of fluctuations on the evolution of the means. They also ac-

count for the effects of the means on the evolution of the variances and covariances,

to produce quite accurate uncertainty bands around the average behavior. The MFK

computations, although approximate, are significantly faster than Monte Carlo meth-

ods for computing first and second moments in systems of chemical reactions. They

may therefore be used, perhaps along with a few Monte Carlo simulations of sample

state trajectories, to efficiently provide a detailed picture of the behavior of a chemical

system. In this chapter, we use the CME to obtain simple equations that describe

the evolution of the expected concentrations, analogously to the MAK equations, but

that also take into account the effects of stochastic fluctuations by tracking and using

the evolution of the variances and covariances of the concentrations.

5.1 Introduction

Deterministic models based on mass action kinetics (MAK) are widely used to analyze

and simulate systems of chemical reactions. However, at the volumes and concentra-

tions that are found in, for example, gene networks and cellular signaling pathways,

stochastic effects can dominate ([110, 112, 138, 30]). These effects originate in the

intrinsically probabilistic nature of chemical reactions, and can lead to fluctuations

about the deterministic behavior, to quantitative differences between the determinis-

tic predictions and the average behavior, and even to qualitatively different behaviors

(see Paulsson et al. [111] and Vilar et al. [146] for well-documented examples). Un-

fortunately, current methods for capturing the stochasticity of chemical reactions are

significantly more complex and computationally taxing than deterministic models,

despite recent advances ([24, 57, 103, 130, 64, 23]).

Reactions involving more than one reactant molecule are assumed to occur only
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when the reacting molecules are found in physical contact with one another. As

these encounters are governed by chance, reactions involving more than two reac-

tant molecules are typically taken to be negligible ([60]). With this assumption, it

suffices to consider systems where
∑n

i=1 s`i ≤ 2 for every reaction R`. That is, we

typically consider four types of reactions, depending on the reactants: (1) zero-order

reactions that require no reactant, (2) first-order reactions that require a single re-

actant molecule, (3) heterogeneous second-order reactions that require two reactant

molecules from different chemical species, and (4) homogeneous second-order reac-

tions that require two reactant molecules from the same species.

We here show that the deterministic ordinary differential equations of MAK may

be simply modified to account for stochastic effects, by starting from the Chemical

Master Equation and using a moment-closure technique to approximate the evolu-

tion of the means, variances, and covariances of the concentrations of the chemical

species. We refer to the resulting representation as the mass fluctuation kinetics

(MFK) model. The model shows what the sources of noise are, and how they feed

into the system. The use of the MFK equations is illustrated on several examples

where MAK models fail in various ways, but where the MFK equations describe quite

accurately the means and variances obtained by more complex and computer-intensive

Monte Carlo simulations. The main results presented here have been published in

[62].

5.2 Results

To proceed towards the goal stated at the end of the previous paragraph, let σij =

E[(yi−µi)(yj−µj)] be the covariance (or fluctuation) between yi and yj, with σii = σ2
i

being the variance of yi. Let the matrix V with {V}ij = σij be the concentration

covariance matrix. Also, let the microscopic reaction rate ρ` be the propensity of the

reaction R`, normalized by Ω and expressed as a function of y instead of x :

ρ`(y) =
a`(x)

Ω

∣∣
x=yΩ

. (5.1)
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Its units are moles per unit volume per unit time, just as with the macroscopic

reaction rate. The microscopic rate ρ`(y) is also quadratic in y, with

ρ`(y) = k`(b` + c`
′y + y′D`y). (5.2)

Here k` is the rate constant introduced earlier, while the microscopic rate parameters

b`, c` and D` are identical to the corresponding parameters in the expression for the

macroscopic reaction rate in Equation 4.4, except in the case of homogeneous second-

order reactions, which contribute extra entries to ρ`(y) that vary inversely with Ω (see

Appendix 5.7). Thus, the microscopic and macroscopic reaction rates have the same

functional form, i.e., ρ`(y) = r`(y), for reactions other than homogeneous second-

order ones, while for the latter we have limΩ→∞ ρ`(y) = r`(y). Microscopic rate

parameters, like the macroscopic parameters, may be found by simple inspection

from the specifications of the reactions, as illustrated in the examples of Section 6.9.

5.2.1 The Mass Fluctuation Kinetics (MFK) Equations

Starting from the CME, the evolution of µ and V are shown below to be well approxi-

mated by a closed system of equations when third-order moments about the mean are

negligible. In these equations, each reaction R` has an associated effective reaction

rate r` that equals the sum of two distinct components: the average rate ρ`(µ), which

depends only on the expected concentrations, and a stochastic rate ξ`(V), which de-

pends only on the variances and covariances. The stochastic and effective rates of R`

are given by

ξ`(V) = k`

n∑
i,j=1

d`ijσij (5.3)

r` = ρ`(µ) + ξ`(V). (5.4)

The stochastic rate ξ` is actually obtained by summing the products of the second-

order partial derivatives of ρ` (evaluated at µ) and the corresponding fluctuations σij,

resulting in the expression in Equation 5.3 above.
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To state the MFK equations, define vectors ρ, ξ and r such that {ρ}` = ρ`(µ),

{ξ}` = ξ`(V) and {r}` = r`; these are the average, stochastic and effective rate vectors,

respectively (all with dimensions L × 1). Also define the L × L diagonal matrix Λ

by {Λ}`` = r`, with non-diagonal entries equal to zero. Lastly, let M denote the

fluctuation dynamics matrix to be defined shortly. Then, when third-order moments

about the mean are negligible, µ and V satisfy the coupled MFK equations

dµ

dt
= Sr = Sρ + Sξ (5.5)

dV

dt
= MV + VM′ +

1

Ω
SΛS′. (5.6)

The j-th column of M is S ∂
∂µj

ρ(µ), so that in terms of the reaction parameters

M = SC′ + 2
L∑

`=1

k`s`µ
′D`, (5.7)

where the L× n matrix C has `-th row equal to k`c`.

In the MFK equations the evolution of the mean concentration vector µ is driven

by the variances and covariances through the column vector Sξ, while the evolution

of the covariance matrix V depends on the means, both through M and through the

dissipation matrix 1
Ω
SΛS′ (borrowing from the fluctuation-dissipation terminology of

statistical thermodynamics [80]). The i-th diagonal entry in the dissipation matrix

effectively drives the variance of species Xi and has the form 1
Ω

∑L
`=1 s2

`ir`. The greater

this term is, the greater the fluctuations in the concentration of Xi, so that low

system size, high stoichiometric coefficients and high effective reaction rates produce

increased fluctuations.

The MFK equations, though deterministic, correct the MAK equations for stochas-

tic effects. While the MAK description consists of n ordinary differential equations,

one for each species, the MFK description consists of n(n+3)
2

equations (not count-

ing repeated equations, since V is symmetric by definition). This may seem like a

high price to pay for including stochastic effects, but it is much simpler and much

faster than obtaining means, variances and covariances by Monte Carlo methods, yet
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fares very well at describing the true mean and fluctuations in a variety of chemical

systems.

When ξ`(V) = 0 and ρ`(µ) = r`(µ) for all reactions R` in the system, the MFK

equation for µ, Equation 7.13, reduces to MAK. This happens, for example, when

there are no second-order reactions in the system.

Note from the MFK equations that when the mean concentrations reach steady-

state levels, the effective rate vector r lies in the right null space of the stoichiometry

matrix S. This is analogous to the MAK equations, where r is in the right null space

of S at steady state.

Table 5.1: Notation.

Symbol Variable
Xi species number i
R` reaction number `
s`i stoichiometric coefficient of Xi in R`

S stoichiometry matrix
v system volume
A Avogadro’s number
Ω system size (Av)
xi population of Xi

yi concentration of Xi (xi/Ω)
µi expected concentration of Xi (E[yi])
µ expected concentration vector
σij covariance of yi and yj

V covariance matrix
ηij noise-to-signal ratio of Xi and Xj (

σij

µiµj
)

Γ noise-to-signal matrix
r` macroscopic reaction rate of R`

r` effective reaction rate of R`

ρ`(µ) average rate of R`

ξ`(V) stochastic rate of R`

Table 5.1 summarizes for convenience the main notation introduced so far (as well

as some symbols that are introduced later).
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5.2.2 Outline of Derivation

Although a more detailed derivation of the MFK equations is presented in Appendix

5.7, it is useful here to briefly outline the key ideas.

To obtain the MFK equation for the mean, we first multiply the CME, Equation

4.6, by xi and sum over all possible values of x, and then normalize by Ω. The result,

after algebraic simplification, turns out to be

dµi

dt
=

L∑
`=1

s`iE[ρ`(y)] =
L∑

`=1

s`ir` (5.8)

as noted in Gillespie ([57]), for example; here r` = E[ρ`(y)] is by definition the effective

rate of reaction R`. This equation is similar to the MAK expression in Equation 6.37,

but with r` instead of r`.

If the expectation in Equation 5.8 is approximated by ρ`(E[y]) = ρ`(µ), one

arrives directly at the MAK description (provided there are no homogeneous second-

order reactions, or in the limit of Ω → ∞). Instead, for quadratic microscopic rate

functions, we can evaluate the expectation in Equation 5.8 exactly and explicitly,

obtaining

dµi

dt
=

L∑
`=1

s`i

(
ρ`(µ) + ξ`(V)

)
. (5.9)

The previous equation makes evident that r` is the sum of the average rate ρ`(µ)

and the stochastic rate ξ`(V), under the assumption of quadratic microscopic rate

functions. As already noted, ρ`(µ) = r`(µ), except in the case of homogeneous second-

order reactions. Even in this exceptional case we have equality in the limit Ω→∞ for

any fixed µ. The MFK reaction rate r` adds to ρ`(µ) the rate ξ`(V), which represents

a correction term due to stochastic effects.

The evolution equations for the covariances are found by first finding the evolution

equation for E[yiyj] by a method similar to that used to obtain Equation 5.8 above,
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and then using the fact that σij = E[yiyj]− µiµj. This yields the general equation

dσij

dt
=

L∑
`=1

(
1

Ω
s`is`jr` (5.10)

+s`i

{
E[ρ`(y)yj]− r`µj

}
+ s`j

{
E[ρ`(y)yi]− r`µi

})
,

where the terms in braces are the covariances of the microscopic reaction rates and

the concentrations. For quadratic microscopic rate functions, the equation simplifies

to

dσij

dt
=

L∑
`=1

(
1

Ω
s`is`j

(
ρ`(µ) + ξ`(V)

)
(5.11)

+s`ik`

[ n∑
p=1

c`pσpj + 2
n∑

p,q=1

d`pq(µpσqj +
γpqj

2
)
]

+s`jk`

[ n∑
p=1

c`pσpi + 2
n∑

p,q=1

d`pq(µpσqi +
γpqi

2
)
])

.

Here γpqj = E[(yp−µp)(yq−µq)(yj −µj)] is the third-order moment about the mean.

Unfortunately, although Equations 5.9 and 5.11 are exact consequences of the CME,

they do not constitute a closed system of ordinary differential equations because

Equation 5.11 depends on γpqj. Assuming that third-order moments about the mean

are zero (as would be the case for a multivariate normal distribution) or negligible,

i.e., setting γpqj = 0 for all p, q, j, produces the MFK equations, which may then be

put in the matrix form of Equations 7.13 and 7.14.

Equations similar to MFK may be obtained for systems where the number of

reactants per reaction is unrestricted, as well as for arbitrary propensity functions,

as summarized in Section 5.4. However, for the rest of this paper we focus on the

setting under which the MFK has been derived above.

The next section demonstrates the use of the MFK equations on four systems of

increasing complexity, and compares the MFK predictions to those from the deter-

ministic MAK solution, and to the behavior obtained from Monte Carlo simulations

based on the SSA. Three of the examples are drawn or adapted from Khammash and
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El Samad ([83]).

5.3 Examples

5.3.1 Complex Formation and Dissociation

Figure 5-1: (A) Complex formation as a function of time for Example A. The (thick)
blue and red solid lines are µ3 and µ3 ± σ3, respectively, obtained from numerical
integration of the MFK equations. The gray and red dotted lines respectively cor-
respond to the “true” µ3 and µ3 ± σ3, estimated from Monte Carlo simulation with
1000 runs, using the SSA. One such run is shown in the thin blue trace. The MAK
solution (shown in black) does not follow the true mean as well as the MFK equations.
(B) Histogram for the complex X3 at time 1.5 secs, obtained from the 1000 runs of
the simulation. The parameters used here are Ω = 1 (so that molecule numbers and
concentrations are the same), k1 = k2 = 1, initial conditions x(0) = [15 15 15]′, and
V(0) = 0 (so that µ3(0) = 15, σ2

3(0) = 0 and π1 = π2 = 30). In all the figures of this
paper, rate constants for zero-, first- and second-order reactions are in units of mole

sec
,

1
sec

and 1
mole sec

, respectively. The system size is in units of liters.

Consider a system comprising the following two reactions:

X1 + X2

k1−⇀↽−
k2

X3.

This represents the formation and dissociation of a complex (in this case X3), such as
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when a receptor and a ligand come together. The stoichiometry vectors for the two

reactions are given by

s1 =


−1

−1

1

 , s2 =


1

1

−1

 so S =


−1 1

−1 1

1 −1

 . (5.12)

For this example r1 = k1µ1µ2 and r2 = k2µ3. Thus b1 = b2 = 0, c1 = 0, c2 = [0 0 1]′,

D1 =


0 1

2
0

1
2

0 0

0 0 0

 , and D2 = 0,

where 0 indicates vectors or matrices of the appropriate dimensions with all their

entries equal to zero.

At this point, expressing the rates in the quadratic form of Equation 4.4 may seem

inefficient, as it appears that only one or two entries in the rate parameters will be

non-zero. However, this turns out not to be true when conservation relations are used

to reduce the number of state variables in the system, as will be discussed shortly for

this example, and also in Section 5.5.1.

We could now write down the full deterministic MAK description of the system

using Equation 6.37. The MAK equation for the concentration of the complex X3

suffices for our purposes, and is

dµ3

dt
= k1µ1µ2 − k2µ3. (5.13)

Setting the derivative to zero yields the well known (macroscopic) equilibrium expres-

sion

µ3 =
k1

k2

µ1µ2. (5.14)

To write down the MFK equations for this example, one may simply use Equations

7.13 and 7.14 directly. However, for our purposes here, it is helpful to first reduce
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the number of variables used to track the state of the system. This may be done by

noting that the network has two conservation relations: y1 +y3 = π1 and y2 +y3 = π2,

where π1 and π2 are constants determined by the initial conditions. Using these to

express y1 and y2 as functions of y3, we may then represent the state of the system by

tracking only species X3. For this new state representation, the stoichiometric vectors

and matrix simply reflect the changes in X3 for each of the two reactions, and are

respectively given by s1 = 1, s2 = −1 and S = [1− 1].

The microscopic rate function ρ` of zero-order, first-order, and heterogeneous

second-order reactions have the exact same functional form and parameters as the

macroscopic rate r`. It follows that in this example ρ1(µ) = k1µ1µ2 = k1(π1 −

µ3)(π2 − µ3) and ρ2(µ) = k2µ3, so that b1 = π1π2, c1 = −(π1 + π2), D1 = 1,

b2 = D2 = 0, and c2 = 1. Then C = [c1 c2], ξ1 = k1σ
2
3 and ξ2 = 0. Lastly,

M = c1− c2 +2k1µ3 = k1(2µ3−π1−π2)− k2. The MFK equations therefore become

dµ3

dt
= r1 − r2 = ρ1(µ) + ξ1 − (ρ2(µ) + ξ2)

= k1(π1 − µ3)(π2 − µ3)− k2µ3 + k1σ
2
3 (5.15)

dσ2
3

dt
=

1

Ω
(r1 + r2) + 2[k1(2µ3 − π1 − π2)− k2]σ

2
3 (5.16)

=
1

Ω
(ρ1 + ρ2) + 2[k1(

1

2Ω
+ 2µ3 − π1 − π2)− k2]σ

2
3.

Numerical integration of these equations reveals (see Fig.1) that the MFK equations

describe very well the mean and fluctuations of the system, as assessed by Monte Carlo

simulations using repeated runs of the SSA. Note also that the MFK computations,

complemented with just a single SSA run as in Fig.1, yield a much fuller picture of

system behavior than either MFK or a run of the SSA alone, and certainly a more

detailed picture than MAK provides.

For this simple network the effect of the fluctuations at equilibrium may be found

analytically. Noting that µ3 − π1 = µ1 and µ3 − π2 = µ2, and setting the derivative

in Equation 5.15 to zero, yields the stochastic equilibrium condition

µ3 =
k1

k2

(µ1µ2 + σ2
3). (5.17)
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Contrasting this expression with Equation 5.14 reveals that stochastic effects lead to

a higher steady-state value of X3 than predicted by MAK. This is consistent with the

simulation results (see Fig.1).

As Ω goes to∞ while keeping concentrations finite, the variance equation reduces

to
dσ2

3

dt
= 2[k1(2µ3 − π1 − π2)− k2]σ

2
3. (5.18)

With k2 > 0 and noting that µ3 can never be greater than π1 or π2 from the con-

servation relations, the previous equation describes a system that attains its unique

stable equilibrium at σ2
3 = 0 exponentially fast. The MFK equations for this example

thus effectively become the MAK equations in this limit.

A Word of Caution

The MFK equations are approximate, and as such, one needs to verify that their

behavior is indeed representative of the underlying system behavior. A good proxy

for this may a single stochastic realization of a state trajectory of the system (e.g.,

obtained via the Gillespie algorithm), or even the MFK equations. Even in this

simple example, some choices of initial conditions can result in unphysical predic-

tions, including unbounded dynamics. The following argument, modified from [155],

illustrates some such situations.

The MFK equation for the mean µ3 in (5.15) is exact, but the one for the variance

σ2
3 is not. In its exact form, Equation (5.16) has an extra term equal to +2k1γ

3
3 on

the right of the equal sign, where γ3
3 = E[(y3−µ3)

3]. Assuming this term is negligible,

as we do in the MFK equations (5.15) and (5.16), can actually give rise to unphysical

behavior for some physically-valid initial conditions.

To simplify things, suppose that π1 = π2 = π, and note that the complex concen-

tration should always be bounded as follows 0 ≤ µ3 ≤ π. The variance of the complex

concentration σ2
3 is bounded below by zero. Its upper bound, given a mean µ3, is

attained when the probability distribution for y3 is concentrated at 0 and at π, with

the probability that y3 = π being equal to µ3/π. This results in 0 ≤ σ2
3 ≤ µ3(π− µ3).
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The physically-valid region of values for µ3 and σ2
3 , represented on a two-dimensional

diagram with µ3 on its x-axis and σ2
3 on its y-axis, is then the area above σ2

3 = 0 and

below the parabola σ2
3 = µ3(π − µ3) that lies between µ3 = 0 and µ3 = π.

Ideally, for any initial condition within this region the solution of (5.15) and (5.16)

should remain in this region. In particular, the velocity field of these equations should

point into the physically-valid region along the limits of the region. It is easy to check

this is indeed the case at the lower boundary where σ2
3 = 0. To check whether this

is true at the upper limit, we first define the column vector N that is normal to the

parabola σ2
3 = µ3(π − µ3) and points into the physically-valid region. This vector is

simply given by N = [(π−2µ3) −1]′. To find out whether the velocity field of (5.15)

and (5.16) points into the physically-valid region, we can simply test whether the dot

product of N and [ d
dt

µ3
d
dt

σ2
3]
′ is positive for all physically-valid values of µ3.

The computation, after some algebra, results in

N′

 d
dt

µ3

d
dt

σ2
3

 = k1

[
a3 + 4µ3a

2 − µ2
3a−

1

Ω
a(a + µ3)

]
+k2

[
µ2

3 + µ3a−
1

Ω
µ3

]
, (5.19)

where a = π − µ3 ≥ 0. Unfortunately, as Ω becomes smaller the above number

becomes more negative, and for any choice of parameters and value of µ3 there is

always an Ω such that for any smaller values of Ω the product above will be negative,

and will thus point out of the physically-valid region.

John Wyatt suggests in [155] a way to modify the MFK equations in (5.15) and

(5.16), for the situation when k2 � k1, so that the solution of the approximate

equations will never leave the physically-valid region. Further work is required to

understand more precisely when such situations arise, and how to correct for them,

in general systems.
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5.3.2 When MAK Fails to Quantitatively Describe the Mean

Behavior: Stochastic Focusing

Figure 5-2: Product formation as a function of time for Example B. The blue and red
solid lines are respectively µ4 and µ4 ± σ4, obtained by numerical integration of the
MFK equations. The blue and red dotted lines respectively correspond to the “true”
µ4 and µ4 ± σ4, estimated from Monte Carlo simulation with 1000 runs. One such
run is shown in the thin blue line. The MAK solution (shown in black) significantly
underestimates the true mean, while the MFK equations adequately capture the mean
behavior and the uncertainty band. The parameters used are Ω = 1, k1 = 104, k2 =
9.9 × 103, k3 = 100, k4 = 1.98 × 105, k5 = 104, k6 = 1, k7 = 104, k8 = 103, with initial
conditions x(0) = [0 10 0 918]′ and V(0) = 0.

This example is based on one first described in Paulsson et al. [111], but modified

to involve only the types of reactions considered in this paper. The system comprises

the following 8 reactions:

∅ k1−→ X1, X1 + X2

k2−⇀↽−
k3

X3
k4−→ X2,

X1
k5−→ X4

k6−→ ∅ and ∅
k7−⇀↽−
k8

X2.

Here, X4 is considered the product of the system. Its precursor X1 binds to a signaling

molecule X2 to form the complex X3, which then gets degraded. Because stochastic

effects result in a higher concentration of X4 than MAK predicts, the behavior was
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termed stochastic focusing. (Observe a similar stochastic focusing effect in Equation

5.17 of the previous example.)

In the original example in [111], reactions 2, 3 and 4 are described by a single

reaction, with a propensity function that is a rational function of the state (which

may be obtained from a quasi-steady-state approximation). We here instead represent

that reaction as a series of first- and second-order reactions.

The stoichiometry matrix S for our system is easily obtained, and the non-zero

entries in the reaction parameters are b1 = 1, b7 = 1, {c3}3 = 1, {c4}3 = 1, {c5}1 = 1,

{c6}4 = 1, {c8}2 = 1, and {D2}12 = {D2}21 = 1
2
.

Figure 2 shows the mean and uncertainty bands (mean ± standard deviation) of

X4 obtained from the MFK and MAK equations, and from Monte Carlo simulation.

The MAK model (in black) significantly underestimates the Monte Carlo mean. The

MFK mean and uncertainty bands, on the other hand, fare much better at following

the Monte Carlo results, the differences between them likely stemming from the fact

that the MFK equations ignore third-moments about the mean. Although this system

has only a single bimolecular reaction, that is enough to render the MAK description

inadequate. Note again that the combination of the MFK results with a single run

of the SSA, as in Fig.2, provides a satisfying picture of the stochastic behavior of the

system.

5.3.3 When MAK Fails to Qualitatively Describe the Mean

Behavior: A Genetic Oscillator

A system of chemical reactions with 9 species and 16 reactions is described in Vilar et

al. ([146]) to model a genetic oscillator. In this network there are two DNA sequences

(X1 and X3) and their respective mRNAs (X5 and X6) and gene products (X7 and

X8). The sequence X1 encodes an activator protein X7 that increases transcription

after binding to either X1 or X3 and creating the DNA-activator complexes X2 and X4,

respectively. The sequence X3, on the other hand, encodes the repressor protein X8

that binds to activator proteins to produce the activator-repressor complex X9, which
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is degraded into a molecule of repressor, thereby reducing the number of activators.

The reactions comprising the system are

X1 + X7

k1−⇀↽−
k2

X2, X2
k3−→ X2 + X5, X1

k4−→ X1 + X5

X3 + X7

k5−⇀↽−
k6

X4, X4
k7−→ X4 + X6, X3

k8−→ X3 + X6

∅ k9←− X5
k10−−→ X5 + X7, ∅

k11←−− X6
k12−−→ X6 + X8,

X7 + X8
k13−−→ X9

k14−−→ X8, X7
k15=k14−−−−→ ∅, and X8

k16−−→ ∅.

The stoichiometry matrix S and the reaction parameters may be found by inspection

of the above reactions.

The MAK description of such a network produces sustained oscillations for some

combination of rate parameters. For another set of rate parameters, however, the

MAK description fails to oscillate, while stochastic simulations reveal that the system

does indeed oscillate ([146]), showing persistent bursts of activity with an irregular

period (Fig. 3A shows 5 different stochastic simulations for the network). Thus, in

this regime, MAK fails to even give a qualitatively accurate picture of the dynamic

behavior of the system. Figure 3B shows the result from the MFK equations which, in

contrast to the MAK solution, predict periodic oscillations. Monte Carlo simulation

(see Fig. 3C) shows that the average levels and standard deviations do oscillate, but

with an amplitude that decreases with time. As evident in Fig. 3A, the decrease in

amplitude is due to the fact that different realizations of the processes do not exhibit

synchronized bursts of activity, and that the level of de-synchronization increases

with time (see the detailed analysis of a chemical system with a similar behavior in

Gillespie and Mangel [58]). The differences between the MFK and Monte Carlo traces

are likely due to the ignored third-order moments. Nevertheless, the MFK equations

describe the behavior of the system much better than the MAK equations.
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5.3.4 When both MAK and MFK Fail to Describe the Qual-

itative Mean Behavior: Bistability

When two different concentration vectors satisfy the MAK steady-state condition

and are locally stable, the MAK equations describe a bistable system. In such a

system, if the initial conditions lie in the basin of attraction of the first (second)

steady state, the MAK equations settle to this steady state and remain there. When

the system is treated stochastically, however, the behavior is more complex: starting

from an arbitrary initial condition, either steady state may be reached in different

realizations. If the fluctuations are small compared to the basins of attraction of

the two steady states, then the system will fluctuate close to one of them. If the

fluctuations are large enough, they will eventually kick the system out of whatever

basin it is in and into the other one. This gives rise to a behavior typically referred

to as stochastic switching, illustrated by the following network:

2X1

k1−⇀↽−
k2

X2
k3−→ 3X1, X1 + X2

k4−⇀↽−
k5

X3
k7−→ ∅, X1

k6−⇀↽−
k8

∅.

Species X1 forms dimer X2 which may turn into 3 molecules of X1, or may bind

one more molecule of X1 to form the trimer X3. Both X1 and X3 are respectively

degraded through reactions 6 and 7, and X1 is produced at some basal rate through

reaction k8.

For some parameter values, this network is bistable. Figure 4 shows the behavior

of the network for one such set of parameters. The jagged blue curve shows a sample

realization of the system intermittently switching between a high and a low level. The

two black lines show the two equilibrium points obtained by numerical integration of

the MAK equations, starting from different initial conditions, while the blue and red

solid lines show the average concentration plus/minus a standard deviation obtained

from the MFK equations. The MFK equations settle to a unique equilibrium for

the two initial conditions that yielded different equilibria in the MAK description.

The MFK equilibrium is between the two equilibria of the MAK description. The

difference between the curves obtained from the MFK equations and the Monte Carlo
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simulations (dotted blue and red lines) is attributed to having ignored third-order

moments about the mean, which are significant, judging from the asymmetry of the

empirical distribution (see Fig.4B).

Although the MFK description of this example fails to capture the system behav-

ior, in that it does not indicate the two equilibria and the switching between them, the

large standard deviation (comparable to the mean, rather than to its square root as

in the other examples) is indicative of potential multi-stability and stochastic switch-

ing, suggesting the need for further exploration by stochastic simulation. For a more

complex but biologically relevant example of stochastic switching, see Hasty et al.

([70]), where such behavior is found in a network of the bacteriophage λ.

5.4 General Propensity Functions

It is sometimes useful to consider chemical reactions with propensity functions that

are not of the form in Equation 5.33. These result, for example, from a quasi-steady

state approximation in systems with widely varying time scales. For example, Cao

et al. ([22]) show that under appropriate conditions, the irreversible model of an

enzymatic reaction

X1 + X2 −⇀↽− X3 −→ X1 + X4,

may well approximated by a system with a single reaction, namely

X2 −→ X4.

Here, X1, X2, X3 and X4 respectively denote the enzyme, substrate, complex, and

product species. The propensity function of the resulting reaction, however, is not

quadratic in the molecule numbers but rather has a Michaelis-Menten form propor-

tional to x1tx2

K+x2
, where K is a constant that depends on the rate constants of the

original reactions, and x1t is the total (free plus bound-to-substrate) enzyme concen-

tration. Another situation where propensity functions are higher than quadratic in

the concentrations occurs when reactions with more than two reactant molecules are
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involved.

When propensities are smooth but otherwise arbitrary functions of the molecule

numbers, MFK equations may still be obtained for the approximate evolution of

the expected concentrations and their variances and covariances. The exact evolu-

tion equations for the expected concentrations and their variances and covariances,

Equations 5.8 and 5.10, remain unchanged. However, now E[ρ`(y)] in Equation 5.8

generally involves higher moments and may not be expressed exactly as a function

of µ and V as in Equation 5.4. A similar expression to Equation 5.4, though now

approximate, may still be obtained by Taylor-expansion of ρ`(y) about the average

concentrations µ, retaining only terms up to second order, and then taking the ex-

pectation. This results in

r` ≈ ρ`(µ) +
1

2

n∑
i,j=1

(
∂2ρ`(y)

∂yi∂yj

∣∣
y=µ

)
σij

= ρ`(µ) + ξ`(µ,V). (5.20)

The effective rate is thus still a sum of the average rate and the stochastic rate, but

now the stochastic rate ξ(µ,V) may be a function of the average concentrations as

well. When the microscopic rate ρ`(y) has the form in Equation 5.2, the previous ex-

pressions for the effective and stochastic rates simplify to the expressions in Equations

5.3 and 5.4.

For the variance dynamics in Equation 5.10, the covariances between the micro-

scopic rates and the concentrations (e.g., E[ρ`(y)yj] − r`µj) may similarly be ap-

proximated as a function of µ and V by first Taylor-expansion of terms of the form

ρ`(y)yj up to second order about µ, and then taking the expectation. Combining the

resulting expression with Equation 6.6 yields

E[ρ`(y)yj]− r`µj ≈
n∑

p=1

(
∂ρ`(y)

∂yp

∣∣
y=µ

)
σpj. (5.21)

Substituting Equations 6.6 and 5.21 into Equations 5.8 and 5.10 yields the MFK

equations for systems of chemical reactions with arbitrary propensity functions. These
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may be put in the same matrix form as Equations 7.13 and 7.14, except that now the

effective rate r` is as defined in Equation 6.6, and the fluctuation dynamics matrix

M is given by

M = S
∂ρ

∂µ
, (5.22)

rather than the expression in Equation 5.7. Here, ∂ρ
∂µ

is the Jacobian matrix of the

effective rate vector ρ, with { ∂ρ
∂µ
}`p = ∂ρ`(µ)

∂µp
. Therefore, in general M is now not a

linear function of µ, though it is still independent of V.

5.5 Additional Remarks

5.5.1 Conservation Relations

As the example in Section 5.3.1 illustrates, many networks have embedded conser-

vation relations that may be used to eliminate some of the state variables, though

this reduction comes at the expense of more non-zero rate parameters. In that ex-

ample, neither of the two reactions changes the sums x1 + x2 and x1 + x3, so there

are two conservation relations that express x1 and x2 as linear functions of x3: (1)

x1 = N1 − x3 and (2) x2 = N2 − x3, where N1 = π1Ω and N2 = π2Ω are determined

by the initial numbers of molecules in the system. This allows the dynamics of the

system to be described in terms of x3 (and the parameters N1 and N2).

More generally, let z(t) = [z1(t) · · · zM(t)]′ where zj(t) is the number of times

reaction Rj has fired from the start of the experiment at time to and up to time t.

Then the state of the system can be expressed as x(t) = x(to) + Sz(t). Therefore, in

order for the linear combination θ′x to be conserved, i.e., to have θ′x(t) = θ′x(to) for

arbitrary z(t), it is necessary and sufficient that θ′S = 0. It follows that the number of

conserved quantities equals the dimension ν of the left null space of S. The dynamics

of the system can thus be described in terms of just n− ν appropriately chosen state

variables from the original n variables. The remaining ν variables can be expressed

as linear combinations of the retained n− ν variables.

The MFK equations for the reduced set of n − ν variables have the same form
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as for the original variables, since the quadratic microscopic rate functions remain

quadratic in the retained variables. The stoichiometry matrix for the reduced de-

scription comprises just the appropriate n− ν rows of the original S.

5.5.2 Steady State and the Large System Size Limit

The possible steady states of the MFK equations are found by setting the derivatives

in Equations 7.13 and 7.14 to zero, resulting in the algebraic equations

0 = Sρ + Sξ (5.23)

0 = MV + VM′ +
1

Ω
SΛS′. (5.24)

These equations are still coupled, and are quadratic in the expected concentrations

but linear in the variances. We assume for the rest of this subsection that all conser-

vation relations have been taken into account as described in Section 5.5.1, so that S

has no left null space.

The steady-state equations above may in principle be solved (numerically, if not

analytically) to yield candidate steady-state solutions, µss and Vss. The only solutions

of interest have all entries of µss non-negative and have Vss being a positive semi-

definite matrix.

Whether a particular (and physically meaningful) steady-state solution is attain-

able, i.e., whether the MFK equations converge to that steady state for initial con-

ditions in the vicinity of the steady state, may generally be decided by studying the

linear, time-invariant system of differential equations obtained by linearizing Equa-

tions 7.13 and 7.14 for small perturbations around the steady state. We do not

pursue this here, but satisfy ourselves with some observations about the steady-state

solutions themselves.

Because ξ is linear in the variances and covariances, so is Λ. Therefore, given µss,

Equation 5.24 may be rearranged as a linear system of equations of the form

(
M+

1

Ω
D

)
vss =

1

Ω
p, (5.25)
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where vss is the covariance vector, a column vector created by stacking the columns

of the covariance matrix Vss, and the matrices M and D and the column vector p

do not involve the entries of vss. The matrixM can be explicitly written in terms of

M :

M =
(
M⊗ I

)
+

(
I⊗M

)
, (5.26)

where ⊗ denotes the Kronecker or tensor product, and I is the identity matrix. The

entries of D and p are straightforward to determine as well. Those of D depend only

on the stoichiometric coefficients, rate constants k`, and the rate parameter matrices

D`; also, D = 0 when there are no second-order reactions. Similarly, the entries of p

depend only on the stoichiometric coefficients and the microscopic reaction rates at

steady state, ρ`(µss).

Equation 5.25 implies that the vector of variances and covariances at steady state

is given by

v =
(
M+

1

Ω
D

)−1 1

Ω
p. (5.27)

The indicated inverse exists if, for example, M is invertible (except in the unlikely

circumstance that Ω is an eigenvalue of −M−1D). In view of Equation 5.26, the

invertibility ofM is equivalent to the condition that no two eigenvalues of M sum to

zero; this would be guaranteed if M is a Hurwitz matrix, i.e., if all its eigenvalues have

strictly negative real parts. The matrix M turns out to govern small perturbations of

µ away from µss if one ignores the contribution of ξ to the evolution of µ in Equation

7.13, so the Hurwitz condition on M may be expected to hold for many systems of

interest.

Assuming thatM is invertible and Ω is large enough for all eigenvalues of 1
Ω
M−1D

to have magnitudes smaller than one, the expression in Equation 5.27 can be expanded

in a convergent power series in 1
Ω
:

vss =

(
I− 1

Ω
M−1D + ...

)
1

Ω
M−1p. (5.28)

For large enough Ω, therefore, the vector vss is well approximated by just 1
Ω
M−1p.
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Equivalently, Vss is well approximated by the Lyapunov equation obtained by setting

ξ = 0 in the expression for Λ in Equation 5.24. Using this Lyapunov equation will

yield a non-zero Vss that causes ξ in Equation 5.23 to be non-zero, so in general

the solution µss will differ from the MAK solution. In the thermodynamic limit of

Ω→∞ with finite µss, we get Vss = 0, and the MFK description (at least at steady

state) becomes the MAK description.

Since the molecule number xi = Ωyi, it follows that the variance of xi is Ω2σ2
i .

Hence, if σ2
i falls as 1

Ω
when Ω → ∞, the variance of the molecule number xi will

actually grow as Ω, i.e., the standard deviation of xi will grow as
√

Ω. The mean of

xi, on the other hand, is Ωµi, and thus grows as Ω for fixed µi.

The preceding results on the limiting behavior of yi and xi are consistent with

those deduced in Gillespie ([60]) from the behavior of the Chemical Langevin Equation

(which is the limiting form of the CME for large Ω), namely that relative fluctuations

in concentration or molecule number scale as 1/
√

Ω for increasing Ω.

5.5.3 Noise-to-Signal Ratio

Each diagonal element of V is the variance of the corresponding concentration. While

its square root, the standard deviation, is a good indication of the magnitude of

fluctuations about the mean concentration, a more calibrated measure is the standard

deviation normalized by the mean, or alternatively, the variance normalized by the

squared mean (we assumer in this subsection that all µi are positive). The latter may

be termed the noise-to-signal ratio (NSR), though in the gene networks literature it

is simply referred to as the noise ([110, 112, 138, 30]). We also define the cross-NSR

for species Xi and Xj by

ηij =
σij

µiµj

, (5.29)

and let {Γ}ij = ηij be the NSR matrix. It then follows from the previous section that

for large Ω the NSR at steady state goes as 1
Ω
, just like the variances and covariances.

Among the reasons why the NSR is a useful statistic, particularly in biological

systems, is that concentrations can often be measured only indirectly, such as by
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fluorescence microscopy. The measurable quantities are linearly proportional to the

concentrations, but the proportionality constant is unknown. While the mean and

fluctuations of the measurable quantities will depend on this constant, the NSR is

independent of it. For this reason too, the NSR of yi equals the NSR of xi.

Letting Q be an n×n diagonal matrix with µi as its i-th diagonal entry, the NSR

matrix is related to the covariance matrix by Γ = Q−1VQ−1, and the rate of change

of Γ can thus be found from the MFK equations. The expression for the evolution of

Γ can be derived directly in matrix notation, or entry-by-entry; both derivations are

briefly described in Section 5.7. The expressions there make evident that the main

driving term in the equation for dηii

dt
is

1

Ω

∑L
`=1 s2

`ir`

µ2
i

. (5.30)

This implies that lower system size, lower average concentration of Xi, high sto-

ichiometric coefficients or high effective reaction rates all lead to higher NSR in Xi.

Although these NSR sources have been identified before, the NSR equation provides

a natural context that unifies them.

As an example, the NSR equation for the complex X3 in Example A of Section

IV is given by

dη2
3

dt
=

1

Ω

(
k1(

π1

µ3

− 1)(
π2

µ3

− 1) +
k2

µ3

)
−2η2

3k1

(
π1π2 − µ2

3

µ3

− 1

2Ω
+ η2

3µ3

)
,

which in the limit of infinite system size becomes

dη2
3

dt
= −2η2

3k1

(
π1π2 − µ2

3

µ3

+ η2
3µ3

)
.

This equation describes a system with a stable equilibrium at η2
3 = 0, analogous to the

corresponding equation for the variance, but interestingly differs from the variance

equation in that it depends only on k1 and is thus independent of the second reaction.
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5.6 Discussion

As noted earlier, the CME in Equation 4.6 is the forward Kolmogorov equation for

a continuous-time discrete-state Markov process model of the system of reactions

(e.g., see [49]). It constitutes a system of linear ordinary differential equations for the

probabilities of each of the possible states of the system as a function of time. Unfor-

tunately, for most systems of interest the state space of the system is combinatorially

large.

Previous approaches for working with the Markov process model or the CME for

general chemical systems (not restricting the number of reactant molecules in each

reaction to be two or fewer) include: (1) simulating state trajectories using the SSA

(or Gillespie algorithm) or some variant of it ([55, 24]), and this remains the most

popular, albeit computer-intensive approach; (2) truncating the state space of the

CME ([103]); (3) approximating the discrete-state Markov process by continuous-

state Langevin or Ito differential equations, or correspondingly approximating the

CME by a Fokker-Plank equation ([97, 57, 80, 36]), sometimes obtaining a fluctuation-

dissipation relation ([80, 27]); and (4) tracing the evolution of the first m moments

using various moment-closure techniques ([130, 129]). A survey of such approaches

and the relation to deterministic models may be found in Érdi and Tóth ([38]).

All the above approaches are valuable; however, directly tracking the means, vari-

ances and covariances in the system generally provides more immediate insight into

system behavior. Such an approach has been taken in Kaizer ([80]), Elf and Ehren-

berg, ([36]) and Khammash and El Samad ([83]), but in the first two references the

possibly significant effects of fluctuations on the means are ignored, while in the third

reference only systems with zero-order and first-order reactions are treated. Notably,

Goutsias also derived in [65] equations analogous to our MFK model described here,

independently yet concurrent to our work.

The MFK equations presented in this paper require the volume Ω and the in-

formation used in the MAK description, but nothing further. They are completely

specified by the same reaction diagrams and rate constants as MAK, which deter-
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mine the stoichiometry and rate functions. The implementation is very direct, and

amenable to numerical integration. The matrix formulation is particularly convenient

in helping to structure the modeling process and organize computations.

The examples presented here demonstrate that the MFK equations are almost as

simple to use as the MAK equations, while giving a much more accurate description

of the system by tracking and correcting for stochastic effects. Furthermore, as illus-

trated by our examples, an approximation of the mean and the standard deviation

bands via MFK, combined with a few simulations of sample state trajectories, often

provides a much better picture of system behavior than either MFK or simulation by

itself, and does this more efficiently than relying entirely on simulation.

The MFK equations may also be a useful tool when simulating chemical systems

with widely different time scales (stiff systems). Methods to separate these systems

into a slow and a fast process have been proposed recently ([64, 23]), where one

obtains a CME for the slow process as a function of the steady-state moments of

the fast process. Thus, an SSA study of the slow process requires estimation of the

steady-state moments of the fast process, often a major challenge ([22]). The steady-

state MFK equations (Equations 5.23 and 5.24) may then provide an efficient way to

estimate the first two moments of the fast process at each iteration of the slow-scale

SSA.

The form of the MFK equations resembles that of the fluctuation-dissipation re-

lation of non-equilibrium statistical thermodynamics ([80]), which connects fluctua-

tions to the dissipation of the system, for example associating higher reaction rates

with larger fluctuations. The MFK equations differ in that they are obtained from

the CME rather than from its Fokker-Plank approximation, and do not assume the

means equal the macroscopic MAK solution. MFK thereby accounts for the effects

of the fluctuations on the means.

Because the MFK equations are obtained by ignoring the contributions of third

moments about the mean to the evolution of the variances and covariances, they only

yield approximations to the first and second moments of the underlying distribution

when these third moments about the mean are non-zero. It is thus expected that
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the errors between the MFK results and the corresponding statistics of the true

underlying distribution will grow as the third moments about the mean grow (i.e.,

when the underlying distribution becomes significantly asymmetrical). Rather than

setting the third moments about the mean to zero, one could use other moment-

closure techniques to yield approximations for these third moments as functions of the

first and second moments. A particularly interesting approach may be to assume the

underlying distribution is multivariate lognormal, as suggested by the results of Singh

and Hespanha ([129, 130]). Other improvements may come from approximating the

evolution of higher moments in the same fashion as done for second moments in MFK.

As higher moments are taken into account, the error between the means, variances

and covariances of the underlying distribution and their approximations should be

reduced.

As the examples in Section 6.9 already demonstrate, the dynamic behavior of the

MFK equations can be qualitatively different from that of the MAK equations on the

one hand, and of the underlying Markov process model, on the other. A detailed study

of the origins and characteristics of these differences would seem to be worthwhile. It is

also of interest to better understand the dynamics of the MFK equations themselves,

for instance extending chemical reaction network theory ([40, 39, 41, 38]) to this

setting.

Extending the MFK equations to describe cell population behavior, where there

is an ensemble of systems with the same set of chemical reactions but with different

volumes and initial conditions, may also be worthwhile. Such explorations may help

understand the origins and effects of the cell-to-cell variability that has recently been

measured in gene networks ([110, 112, 138, 30]), and more generally, to determine

whether stochastic effects need to be taken into account when describing signaling

and metabolic pathways in cells. The same reasons make it worthwhile to study

models of chemical reactions to systems that are not well-stirred, either because of

compartmentalization (e.g., nucleus and cytoplasm) or diffusion. We start exploring

this regime in Chapter 7.
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5.7 Derivation of the MFK Equations

Because the CME in Equation 4.6 is formulated in terms of molecule numbers and

not concentrations, we first find the evolution equations in molecule numbers and

then normalize by Ω to obtain concentrations. For this purpose, let αi = E[xi] and

βij = E[(xi − αi)(xj − αj)] be the mean of xi and covariance between xi and xj,

respectively, and let α and β be the mean (column) vector and covariance matrix,

respectively, with {α}i = αi and {β}ij = βij. To obtain the evolution equation for αi,

we multiply the CME by xi and sum over all possible values of x. The result, after

algebraic simplification, turns out to be

dαi

dt
=

L∑
`=1

s`iE[a`]. (5.31)

The evolution equation of E[xixj] may be found similarly, and combined with the

fact that
dβij

dt
=

dE[xixj]

dt
− dαi

dt
αj − αi

dαj

dt

to obtain the evolution equation for the covariance:

dβij

dt
=

L∑
`=1

s`is`jE[a`] + s`i

[
E[a`xj]− E[a`]αj

]
+s`j

[
E[a`xi]− E[a`]αi

]
. (5.32)

The propensities a` for 1) zero-order, 2) first-order, 3) second-order heterogeneous

and 4) second-order homogeneous reactions R` (see Gillespie[56, 60]) are respectively

1) independent of x, proportional 2) to the number of molecules of its reactant species,

3) to the product of the molecule numbers of the two reactant species, 4) to the number

of molecules of its reactant species times the same number minus one (reflecting the

number of possible ways to choose any two reactant molecules from the reactant

species). Accounting for their dependence on system size, propensities can then be
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generally expressed as

a`(x) = k`

(
Ωb` + c`

′x + x′
D`

Ω
x
)
. (5.33)

where c` may have some terms that depend on 1
Ω

(if R` describes a homogeneous

second-order reaction). Using this expression, we expand the functions whose expec-

tations we need in a Taylor series about the mean α, and find that

E[a`] = a`(α) + ς`(β) and (5.34)

E[a`xj]− E[a`]αj = k`

( ∑
p

c`pβpj (5.35)

+2
∑
p,q

d`pq

Ω
(αpβpq +

1

2
ζpqj)

)
,

where c`p = {c`}p, d`pq = {D`}pq, and where

ς`(β) = k`

∑
p,q

d`pq

Ω
βpq and

ζpqj = E[(xp − αp)(xq − αq)(xj − αj)].

Substituting these expressions back into Equations 5.31 and 5.32 results in

dαi

dt
=

L∑
`=1

s`i

(
a`(α) + ς`(β)

)
(5.36)

dβij

dt
=

L∑
`=1

(
s`is`j

(
a`(α) + ς`(β)

)
(5.37)

+s`ik`

[∑
p

c`pβpj + 2
∑
p,q

d`pq

Ω
(αpβqj +

ζpqj

2
)
]

+s`jk`

[∑
p

c`pβpi + 2
∑
p,q

d`pq

Ω
(αpβqi +

ζpqi

2
)
])

.

All that remains is normalizing by Ω and noting that µi = αi

Ω
, σij =

βij

Ω2 , ρ`(µ) =

1
Ω
a`(α)|α=µΩ, ξij = 1

Ω2 ςij and γpqj =
ζpqj

Ω3 . Doing so results in Equations 5.9 and 5.11,

from which Equations 7.13 and 7.14 follow by setting γpqj = 0 for all p, q, j.
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The evolution of the NSR is related to that of the mean concentrations and their

variances and covariances by

dηij

dt
=

1

µiµj

dσij

dt
− ηij

( 1

µi

dµi

dt
+

1

µj

dµj

dt

)
.

Substituting Equations 5.36 and 5.37 into the previous expression and setting third-

moments to zero yields the evolution of the i, j-th entry of Γ:

dηij

dt
=

L∑
`=1

(
1

Ω

s`i

µi

s`j

µj

r` (5.38)

+s`ik`

[
− ηijb` +

∑
p

(ηpj − ηij)c`pµp +
∑
p,q

d`pqµpµq(2ηpj − ηij − ηijηpq)

]
+s`jk`

[
− ηijb` +

∑
p

(ηpi − ηij)c`pµp +
∑
p,q

d`pqµpµq(2ηpi − ηij − ηijηpq)

])
.

These may be arranged in a matrix form analogous to Equation 7.14. It is simpler,

however, to directly derive the matrix form from the MFK equations. Letting Q be

an n × n diagonal matrix with µi on its i-th diagonal, the NSR matrix is related to

the covariance matrix by Γ = Q−1VQ−1, so that the rate of change of Γ is given by

dΓ

dt
= Q−1dV

dt
Q−1 +

dQ−1

dt
VQ−1 + Q−1K

dQ−1

dt
. (5.39)

Substituting the rate of change of V from the MFK equation and using the relation

dQ−1

dt
= −Q−1 dQ

dt
Q−1 results in

dΓ

dt
= Q−1

(
MQ− dQ

dt

)
Γ + Γ

(
QM′ − dQ

dt

)
Q−1

+
1

Ω
Q−1SΛS′Q (5.40)

where 1
Ω
Q−1SΛS′Q is referred to as the noise-driving matrix. The term dQ

dt
follows

directly from the MFK equation for the evolution of the means, and is a function of

the means and covariances. Rewriting the covariances as σij = ηijµiµj, Equation 5.40

may be written in terms of µ and the NSR, leading to an alternate closed system of

138



ordinary differential equations that describe µ and Γ rather than µ and V.
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Figure 5-3: Repressor X8 levels as a function of time for Example C. (A) Repressor
levels for 5 different SSA simulations. All realizations show similarly persistent bursts
of activity. However, these do not occur at fixed time intervals in each realization: the
bursts across realizations are not synchronized, and the level of de-synchronization
increases with time. (B) The MAK solution (shown in black) fails to predict persis-
tent oscillations, instead settling to a fixed level after one activity burst. In contrast,
the MFK equations predict persistent and periodic oscillations: the blue and red solid
lines are respectively average repressor level µ8 and the uncertainty bands µ8 ± σ8

obtained from numerical integration of the MFK equations. (C) The blue and red
dotted lines respectively correspond to the “true” µ8 and µ8 ± σ8, estimated from
Monte Carlo simulation with 1000 runs. The average repressor level is found to oscil-
late with an amplitude that decreases with time, consistent with different realizations
having de-synchronized activity bursts. The same parameters and initial conditions
used for Fig. 5 in Vilar et al. [146] (although given there in the caption of Fig. 1)
were used here. For the MFK equations we take V(0) = 0.
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Figure 5-4: (A) Level of monomer X1 as a function of time for Example D. The
blue and red solid lines are respectively µ1 and µ1± σ1 obtained from integrating the
MFK equations. The blue and red dotted lines respectively correspond to the “true”
µ1 and µ1 ± σ1, estimated from a Monte Carlo simulation with 1000 runs, using the
SSA. (B) Histogram of X1 at the last time point obtained from the Monte Carlo
simulation. The parameters used are Ω = 1, k1 = 0.0275, k2 = 0.1, k3 = 15, k4 =
0.4, k5 = 0.1, k6 = 0.1, k7 = 0.145 and k8 = 0.1. The two initial conditions for both
the MAK and MFK equations are y(0) = [2 0 0]′ and y(0) = [5 0 0]′. The first initial
condition (along with V(0) = 0) was used both for the Monte Carlo simulation and
for the MFK curves shown here.
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Chapter 6

Separation of Time Scales in

Stochastic Chemical Kinetics

6.1 Summary

Systems of chemical reactions with widely different time scales are common. A classic

example is the irreversible enzymatic reaction, for which a deterministic separation

of time scales results in rate laws such as the Michaelis Menten. Recently, several

stochastic chemical kinetics methods for separation of time scales have been devel-

oped that provide a Chemical Master Equation for the slow variables in the system.

The first goal of this chapter is to present a revised method that extends the valid-

ity and improves the accuracy of existing methods by accounting for slow reactions

when equilibrating the fast system. 1This method is particularly powerful when ap-

plied to systems where the rates of the slow reactions are independent of the slow

variables. The improvement we obtain for the irreversible enzymatic reaction system

through our approach is analogous to the improvement in the deterministic case that

one obtains by using the total quasi-steady-state approximation (tQSSA). We make

a connection with the classical (deterministic) models of this system in this chap-

ter. We also draw an analogy of the different stochastic approaches for time scale

1The material in this chapter has been submitted for publication in the Journal of Chemical
Physics.
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separation to a standard result of singular perturbation theory, which is widely used

in deterministic models for separation of time scales. The reduced CMEs obtained

by time scale separation are often used for stochastic simulation. The second main

contribution of this chapter is to show how mass fluctuation kinetics (MFK) models,

which give approximate evolution equations for the means, variances and covariances

of the concentrations in a chemical system, can feed into time scale separation meth-

ods at a variety of stages. Particularly, we show how to obtain approximate evolution

equations for the first and second moments of the slow variables, obtained either from

the reduced CME or by time scale separation of the MFK model for the full system.

Lastly, we show an alternative way to obtain the MFK model for the slow variables

by first writing down the MFK model for the full system, followed by separation of

time scales using standard results from singular perturbation theory.

6.2 Introduction

Systems of chemical reactions are often described by deterministic models that consist

of ordinary differential equations that track the concentrations of the chemical species.

At the small volumes and concentrations of many biological systems, however, models

that capture the probabilistic nature of chemical reactions can be significantly more

adequate descriptions. These models tend to be much more elaborate than their

deterministic counterparts and can greatly benefit from model reduction.

In particular, systems of chemical reactions often comprise both fast and slow

reactions and many state variables, yet their apparent dynamics can be described by

a smaller number of slow state variables. Since experimental observations typically

occur over slow time scales, resolution of the fast dynamics poses a serious compu-

tational challenge, without clear benefits. This issue is by no means unique to the

stochastic limit and has received wide attention since the early days of chemical ki-

netics ([74, 102]). Yet while model reduction techniques through separation of time

scales have played a pivotal role in the deterministic models of chemical reactions, it is

only recently that such techniques have been developed for the stochastic formulation
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([47, 118, 68, 23, 64, 99, 113, 122]).

The most widely used model for chemical kinetics that incorporates stochastic

effects is the Chemical Master Equation (CME). Different authors ([118, 68, 23, 64])

have presented methods for obtaining reduced CMEs for the slow system variables

on the basis of time scale separation, sparked by the papers of Rao and Arkin ([118])

and of Haseltine and Rawlings ([68]). The approach in Rao and Arkin ([118]) is

based on assumptions that were subsequently justified in a more fundamental way in

Cao ([23]) and in Goutsias ([64]) by ignoring the effects of slow reactions on the fast

variables (defined as the complement of the slow variables). The resulting time scale

separation methods in Cao ([23]) and in Goutsias ([64]), however, end up somewhat

different from that of Rao and Arkin ([118]). Other authors have presented alternate

approaches for separation of time scales, combining a truncation of the state space

with time scale separation ([113]), obtaining the slow manifold for some CMEs ([122]),

or applying singular perturbation analysis to the CMEs of certain systems ([99]).

The first main contribution of this chapter is to show that, for many biological

systems of interest (those where the rates of the slow reactions are independent of

the slow variables), a different assumption again yields a reduced order CME for the

slow variables, but one that has a substantially greater range of validity than exist-

ing methods. Our reduced order CME is close to that of Rao and Arkin ([118]) but

more tightly justified and more fully exploited. We illustrate this for the irreversible

enzymatic reaction system. Drawing an analogy between the different stochastic ap-

proaches for time scale separation and singular perturbation theory clearly highlights

the main differences between the various stochastic approaches, and suggests why our

approach can be more accurate for a particular class of systems.

The reduced CMEs obtained by time scale separation are often used for stochastic

simulation. Typically, however, a great deal of information is carried by the time

evolution of just the means, variances and covariances of the state variables. Recent

studies ([62, 65, 129]) have shown how to obtain approximate evolution equations,

of complexity not much greater than that of mass action kinetics, for these first and

second moments; we refer to these as models for mass fluctuation kinetics (MFK).
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The second main contribution of this chapter is to show how the MFK approach can

feed into time scale separation methods at a variety of stages. Specifically, it can be

used to obtain:

1. the steady-state first and second moments of the fast variables needed for the

reduced CME of the slow variables;

2. approximate evolution equations for the first and second moments of the slow

variables, either from the reduced CME or by time scale separation of the MFK

model for the full system.

6.3 Background

Systems of chemical reactions consist of n chemical species {X1, ..., Xn} interacting

in a volume v through L reactions labeled R1, ..., RL. We let xi and yi be the number

of molecules and the concentration, respectively, of species Xi. Molecule numbers are

normalized by the system size, given by Ω = Av where A is Avogadro’s number, to

yield concentrations in moles per unit volume, so that yi = xi/Ω. Letting x be the

column vector of molecule numbers (with i-th component {x}i = xi), referred to as

the species vector, a firing of reaction R` changes x instantaneously to x + s`, where

{s`}i = s`i is the stoichiometric coefficient of species Xi in reaction R`, and s` is

referred to as the reaction’s stoichiometry vector.

Reaction R` may thus be specified by

s`1X1 + ... + s`nXn
k`−→ s`1X1 + ... + s`nXn, (6.1)

where s`i and s`i are the numbers of molecules of species Xi that are consumed and

produced, respectively, on every firing of the reaction, and where s`i − s`i = s`i. The

consumed species are referred to as reactants. The parameter k` in Equation 6.1

above is the rate constant of the reaction; its role is described later.

Under appropriate conditions, a continuous-time discrete-state Markov process

([49]) of the time evolution of x provides a good stochastic description of a system of
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chemical reactions. Then the time evolution of P (x), the probability distribution of

the state x conditioned on an initial state x(to) = xo, satisfies the Chemical Master

Equation (see e.g., Chapter 4 or [56]), namely

dP (x)

dt
=

L∑
`=1

P (x− s`)a`(x− s`)− P (x)a`(x). (6.2)

The probability that reaction R` occurs in a small time interval with duration dt is

approximately equal to a`(x)dt; the quantity a`(x) is the propensity of reaction R`,

which is assumed proportional to the rate constant k`. Let the microscopic reaction

rate ρ`, with units of concentration per unit time, be the propensity of the reaction

R` normalized by Ω and expressed as a function of y instead of x :

ρ`(y) =
a`(x)

Ω

∣∣
x=yΩ

. (6.3)

The mass fluctuation kinetics equations, which are derived from the CME in

Equation 6.2, are an approximate model for the means, variances and covariances of

the concentrations of all species in the system ([62, 65, 129]). The exact evolution

of these moments is typically a function of higher-order moments; MFK models are

approximations because they eliminate this dependence through various approaches,

such as setting all higher-order central moments to zero ([62, 65]). In the latter

approach, described in detail in the previous thesis chapter, and denoting by µ and V

the mean (column) vector of species concentrations and the concentration covariance

matrix, respectively, the MFK equations are given by

dµ

dt
= Sr = Sρ + Sξ (6.4)

dV

dt
= MV + VM′ +

1

Ω
SΛS′. (6.5)

Here the symbol ′ denotes vector or matrix transpose and S is the stoichiometry

matrix; its `-th column is the stoichiometry vector s` of reaction R`.

The column vectors r, ρ, ξ denote the effective, average and stochastic reaction
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rates, respectively. The effective rate r` of reaction R` is just a second-order approx-

imation of the expected value of the reaction’s microscopic rate in Equation 6.3; it is

given by

r` ≈ ρ`(µ) +
1

2

n∑
i,j=1

(
∂2ρ`(y)

∂yi∂yj

∣∣
y=µ

)
σij

= ρ`(µ) + ξ(µ,V), (6.6)

where σij is the covariance of yi and yj, the entry in row i and column j of V. The effec-

tive rate is then equal to the microscopic rate evaluated at the mean concentrations—

the average rate ρj—, plus a second order correction— the stochastic rate ξj,— which

is a linear function of the concentration variances and covariances. Note, then, that

when variances and covariances are negligible the evolution of the mean converges

to mass action kinetics. Lastly, the j-th column of M is S ∂
∂µj

ρ(µ), and Λ is the

fluctuation-dissipation matrix, an L × L diagonal matrix with `-th diagonal entry

equal to the effective rate r` of reaction R`. See Chapter 5 or [62, 65] for more on the

derivation and application of the MFK equations.

6.3.1 Time Scales and Model Reduction

Reduced approximate models based on time-scale separation have been widely studied

for deterministic systems of ordinary differential equations, in the context of singular

perturbation theory (e.g., see [81]). Two key conditions enable the model reduction.

The first requires a separation of state variables, perhaps made apparent only after a

coordinate transformation, such that the initial rates of change of the variables in one

set (the slow variables) are much smaller in magnitude than those of the variables in

the other set (the fast variables). This condition results in a fast initial transient of

the fast variables. The second condition requires the fast subsystem to be sufficiently

exponentially stable throughout the experiment so that the fast transient settles to

the neighborhood of a quasi-static equilibrium, and subsequently remains there as

the slow system varies (over longer time scales).

148



The fast variables will thus quasi-equilibrate at the end of the initial transient,

after which their rates of change are small, driven only by the slow variables. This

allows one to construct a good reduced model on the time scale of the slow variables.

If the fast transient is of interest, it too can be determined from a reduced model

in which the slow variables are frozen at their initial values. (Section 6.9 briefly

elaborates on this description.)

In the (deterministic or) stochastic chemical kinetics context, having slow and fast

reactions (i.e., with small and large propensities, respectively) can similarly result in

slow and fast subsystems for which reduced models can be obtained; this is the focus

of the rest of the paper. The first step in such a process is to identify the slow and

fast variables in the system. We develop a method that serves this purpose in Section

6.4, and describe how to obtain reduced models for the slow and fast subsystems

in Section 6.5, finally illustrating the approach in detail in Section 6.6, on a widely

used and important example. Before developing our general results, we introduce an

example that shows the two time-scale behavior in its stochastic description.

Example: The Enzymatic Reaction System

Enzymatic reactions are pervasive in chemistry and biology. They are typically mod-

eled through the reactions

E + S
k1−⇀↽−
k2

C
k3−→ E + P, (6.7)

where E, S, C, and P respectively denote the enzyme, substrate, enzyme-substrate

complex, and product; the symbols ki denote the rate constants of the reactions. The

standard setup assumes an initial non-zero concentration of enzyme and substrate,

and zero concentrations for the complex and product.

The deterministic model of this system has been widely studied, where it has been

found that two dynamic variables suffice to describe the state of the system. These

variables are typically taken to be the complex C and the total susbtrate S + C, for

reasons explained in Section 6.6, where this system is discussed in detail. Typically,
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the complex has a fast transient that quickly reaches a quasi-steady-state after which

it becomes enslaved to the total substrate, which has slow dynamics.

Figure 6-1: Joint probability distribution for the complex (fast variable) and total
substrate (slow variable) at different time points, estimated from 20,000 samples
obtained by Monte Carlo using the Gillespie algorithm. The top plots show the fast
transient, where the distribution moves mostly in the dimension of the complex and
quickly reaches quasi-steady state. The bottom plots correspond to the slow transient
where the distribution exhibits only slow dynamics. The CME for the system is
specified in Section 6.6; the parameter values used are the same as in Figure 6-3.

An analogous situation arises in the stochastic setting, where the system is de-

scribed by the joint probability distribution of the complex and the total susbtrate.

Figure 6-1 shows the time-evolution of this distribution for a certain choice of param-

eters. During the first 0.8 seconds (top plots in Figure 6-1) the distribution exhibits

a fast transient where it moves mostly along the dimension of the fast variable (the

complex). After this transient settles, the dynamics of the distribution becomes sig-

nificantly slower (bottom plots of Figure 6-1). This separation of time scales can be
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exploited as described in the rest of this chapter to significantly reduce the model

complexity, and obtain approximate models for the distribution of the slow variable

only, and of the fast variable conditioned on the slow variable.

6.4 Identifying Slow and Fast Variables

Given a set of slow and fast reactions, stoichiometry considerations alone suffice for

the identification of slow and fast variables in a system of chemical reactions. The

method discussed next can thus be applied to identify slow and fast variables in

(deterministic) MAK models too, simply replacing the word propensity by reaction

rate.

6.4.1 A Prototypical Example

The example we examine in this subsection has three types of variables, according

to their dynamical time scales: conserved, slow, and fast. This example is discussed

in Liu and Vanden-Eijnden ([95]) and in Gillespie et al. ([59]), and comprises the

following reactions:

X1

k3−⇀↽−
k4

X2

k1−⇀↽−
k2

X3

k5−⇀↽−
k6

X4 . (6.8)

Let x = [x1 x2 x3 x4]
′ denote the column vector of the species molecule numbers

at some particular time to. Suppose we know that reactions R1 (producing X3 from

X2) and R2 (producing X2 from X3) have propensities that are much smaller in

magnitude than those of other reactions at time to, as assumed in Gillespie et al

([59]). Reactions R1 and R2 are accordingly termed slow, and the others fast. The

corresponding stoichiometry matrix is given by

S =


0 0 −1 1 0 0

−1 1 1 −1 0 0

1 −1 0 0 −1 1

0 0 0 0 1 −1

 =
[

Ss Sf

]
, (6.9)
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where the partitioning separates the columns Ss corresponding to slow reactions from

the columns Sf corresponding to fast reactions.

We might expect that this partitioning of reactions into slow and fast gives rise to

variables evolving at different time scales, depending on whether they get modified

only by slow reactions, or by both fast and slow reactions. For the example system

here, however, all species get modified by at least one fast reaction so they all have

fast components to their dynamics.

It turns out that there actually are slow variables in this system, but identifying

them requires considering linear transformations of the original coordinates. We

describe the process in some more detail next, both to illuminate the discussion of

this example in Liu and Vanden-Eijnden ([95]) and in Gillespie et al. ([59]), and

because it serves to illustrate our proposed approach to identifying slow and fast

variables in the general case.

Consider the variable z = αx, where α is a 4-component row vector. Every time

reaction R` occurs, z immediately changes by αs`. We now consider the stoichiometry

of z for different choices of α.

First consider z = z1 = x1 + x2 + x3 + x4, obtained when α = α1 = [1 1 1 1]. The

change of z1 is exactly zero for all reactions, because α1 lies in the left null space of

S (i.e., α1S = 0). The variable z1 is thus a conserved variable that does not change

throughout the experiment; the reason is that every reaction in this example involves

creating one molecule of some species while destroying one molecule of another. Since

the left null space of S has dimension equal to 1, there is no other vector α in this null

space that is linearly independent of α1, and hence no other independent conserved

variable.

Conserved variables have stoichiometry coefficients that are zero regardless of

what the propensities are, and can immediately be used to reduce the order of the

system model, as is well known. In our example, the conservation relation implies, for

instance, that x4 can be written in terms of x1, x2 and x3, so the latter three variables

suffice to describe the dynamic state of the system.

Going beyond conserved variables, we are now interested in finding (combinations
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of) variables with slow dynamics; these will correspond to quantities conserved on

the fast time scale. We therefore focus only on the fast reactions, shutting off slow

ones, which gives us

X1

k3−⇀↽−
k4

X2 X3

k5−⇀↽−
k6

X4 . (6.10)

Now define slow variables via the quantities conserved in these fast reactions, i.e.,

via linear combinations of x whose stiochiometry coefficients are zero for all fast

reactions. By inspection, it is evident that x1 + x2 and x3 + x4 are both conserved in

the fast reactions, so these would be candidate slow variables. However, we can only

select one of them for our transformed description, for example z2 = x1 +x2, because

the other would then be dependent on the selected one plus the previously obtained

conservation relation:

x3 + x4 = (x1 + x2 + x3 + x4)− (x1 + x2) = z1 − z2 . (6.11)

This shows that the system actually has exactly one slow variable.

There must now be exactly two fast variables to complete the system description.

These can be any two linear combinations of the xi’s that are independent of those

we have already picked, e.g., z3 = x2 and z4 = x3. The new system of coordinates

z = [z1 z2 z3 z4]
′ is then related to the old via z = Ax, where

A =


1 1 1 1

1 1 0 0

0 1 0 0

0 0 1 0

 , (6.12)

so the new stoichiometry matrix governing changes in z is

B = AS =


0 0 0 0 0 0

−1 1 0 0 0 0

−1 1 1 −1 0 0

1 −1 0 0 −1 1

 , (6.13)
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where the first two columns correspond to the slow reactions. This transformed

stoichiometry matrix B has a very particular structure. The row corresponding to

the conserved quantity has only zeros as its entries. The row of the slow variable has

only zeros in the columns corresponding to fast reactions, but is not all zero in the

remaining columns (else it would correspond to a conserved variable). Similarly, the

matrix block corresponding to the fast variables and the fast reactions has full row

rank (else there would be additional conserved or slow variables).

What we have now accomplished is an identification of slow and fast variables

based on the initial separation of reactions into slow and fast. For the approxima-

tions that will lead to our reduced-order models, we require the identity of the slow

and fast variables to remain fixed over the course of the experiment. What this trans-

lates to is checking that slow variables are always only modified by slow reactions, and

fast reactions are modified by at least one fast reaction throughout the experiment;

such checking can be done in parallel with the main computation. One way to guar-

antee that separation of (slow and fast) variables is maintained is by the assuming

the initial separation of reactions into slow and fast is maintained over the course

of the experiment. However, it is possible that the identification of slow and fast

variables can be maintained even with some switches (between slow and fast) in the

classification of individual reactions over the experiment. This is because the same

A matrix above could yield a B matrix with the same pattern and rank structure,

even with the different assignment of the columns of S into those of Sf and Ss that

occurs with the switched reaction(s).

It is precisely because this system has both slow and fast variables (although de-

fined through linear combinations of the original species) that a meaningful separation-

of-time-scales approximation, such as that in Gillespie et al. ([59]), can be developed.

However, the same system may lack an appropriate partitioning into slow and fast

variables if the slow and fast reactions are chosen differently. For example, consider

now the case where the slow reactions in this system are given instead by R1, R3 and

R5. We still have the same conservation relation as before; but focusing now on only
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fast reactions results in

X1
k4←− X2

k2←− X3
k6←− X4 , (6.14)

which gives no further conserved quantities. The original system therefore has no

slow variables, just one conserved quantity and three fast variables.

6.4.2 General Systems

The analysis of the preceding example can be generalized. In fact, Reinhart Heinrich

had developed a very similar process to identify slow and fast variables for mass action

models decades ago (e.g., see Chapter 4 in [73]). As in the example above, we assume

that at the start of the experiment at time to, a subset of the reactions, termed slow

reactions, have propensities that are much smaller in magnitude than those of the

remaining reactions, which are termed fast reactions. Label the slow reactions by

R1, ..., RLs , with Ls ≤ L; the remaining Lf = L− Ls reactions are the fast reactions.

Given a set of slow and fast reactions, obtained by looking at the relative magni-

tudes of the reaction propensities at the start of the experiment, one must typically

consider a linear change of coordinates to identify conserved, slow, and fast variables

in the system. The following method can always be used to find a (non-unique) choice

of coordinates that accomplishes this:

1. First identify a maximally independent set of linear combinations of the orig-

inal variables that are conserved, no matter which reactions are running. The

number nc of such conserved variables is given by the dimension of the left null

space of S.

2. Note that the preceding combinations will all be conserved even if only the fast

reactions are running. However, there may be additional linear combinations of

these original variables, independent of those found in Step 1, that are conserved

when only the fast reactions are running. Find a maximally independent set of

such additional combinations; these are the slow variables in the transformed

system. The number ns of such slow variables will be the difference between
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the dimensions of the left null space of Sf and the left null space of S, where

Sf denotes the columns of S corresponding to the fast reactions.

3. Finally, find an additional set of linear combinations of the original variables,

independent of those found in Steps 1 and 2, that — taken together with the

conserved variables and slow variables — provide an equivalent description to

the original set of variables. These additional linear combinations will be the

fast variables in the transformed description; more accurately, they are the

non-slow variables, because they have fast components (possibly along with

slow components). The number of such fast variables is given by n− nc − ns.

This identification of the conserved, slow, and fast variables is embodied in a

transformation of the form x̃ = Ax, with A non-singular and of dimensions n × n.

Although we omit the details here, the construction of this matrix A can be carried

out systematically with standard methods; see Appendix III. The original system

can now be described as a function of only the new variables, using the relation

x = A−1x̃ to express the old variables as functions of the new ones, and using the

matrix B = AS instead of the original stoichiometry matrix S. By construction, B

has the form shown in the following equation:

B = AS =


0 0

Bss 0

Bsf Bff

 . (6.15)

The matrices Bsf and Bff have nf rows, while Bss has ns rows. Importantly, our

construction ensures that Bss and Bff have full row rank, which guarantees no further

conserved or slow variables can be exposed by such linear transformation. This turns

out to be essential for the model reduction in Section 6.5 to be accurate. The pattern

of zeros in B makes evident that the state of the conserved variables is unmodified

by any reaction, while the state of the slow variables can only be modified by slow

reactions.

As already mentioned, the validity of our reduced-order models will require the
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identity of the slow and fast variables to remain fixed over the course of the experi-

ment, i.e., that the slow variables identified at the start of the experiment are always

only modified by slow reactions, and fast variables are modified by at least one fast

reaction, despite possible switches (between slow and fast) in the classification of indi-

vidual reactions over the experiment. What this requires is that the initial A matrix

continues to yield a B matrix with the same pattern and rank structure, even with

the different assignment of the columns of S into those of Sf and Ss that occurs with

the possible switched reaction(s).

Since the first nc entries of x̃ are constant at their initial values, it suffices to keep

the slow and fast variables as the dynamic state variables of the system. The system

state therefore comprises the last ns + nf components of x̃. To simplify the notation,

we refer to the state of the system simply as x in what follows, and accordingly denote

the slow and fast variables, which are typically linear combinations of the molecule

numbers of the original species, by xs and xf , respectively. Similarly, we denote

simply by S the stoichiometry matrix for the transformed slow and fast variables,

though the matrix actually comprises the last ns + nf (block-triangular) rows of B.

6.5 Obtaining Reduced Slow and Fast CME Mod-

els Through Time-Scale Separation

We assume as above that at the start of the experiment at time to, the first Ls ≤ L

reactions are slow (i.e., have small propensities), and the remaining Lf = L − Ls

reactions are the fast (i.e., have large propensities). Then the CME in (4.6) can be

written as

dP (x)

dt
=

Ls∑
`=1

P (x− s`)a`(x− s`)− P (x)a`(x) (6.16)

+
L∑

`=Ls+1

P (x− s`)a`(x− s`)− P (x)a`(x) ,
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where the first summation is over the slow reactions and the second over the fast

reactions.

Further assume that the analysis in the previous section has been performed,

resulting in a state vector with only slow and fast variables. To obtain the desired

approximate system descriptions, partition the state vector x and the stoichiometry

vector s` of every reaction R` in the system into their slow and fast components:

x =

 xs

xf

 , and s` =

 s`s

s`f

 . (6.17)

Here s`s and s`f are the changes in the slow and fast variables xs and xf , respectively,

with one occurrence of reaction R`. The goal of this section is to derive approximate

models for the time-evolution of P (xs) and P (xf |xs), which jointly specify the full

distribution P (x) via

P (x) = P (xs)P (xf |xs) . (6.18)

Note from (6.18) that

dP (x)

dt
=

dP (xs)

dt
P (xf |xs) + P (xs)

dP (xf |xs)

dt
, (6.19)

an equation that will be useful in developing the reduced CMEs.

6.5.1 The Slow CME

We start by substituting (6.17) into the CME in (4.6), and then summing both sides

of the equation over all possible values of the fast variables xf . The result, after some

algebra, is the exact expression

dP (xs)

dt
=

L∑
`=1

P (xs − s`s)a`(xs − s`s)− P (xs)a`(xs) . (6.20)

Equation (6.20) resembles the CME in (4.6) but with two important differences: it

describes the probability distribution of just the slow variables xs; and it requires the
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conditional propensity a` of R`, which is the average of a` over the distribution of the

fast variables xf at time t, conditioned on the slow variables at time t :

a`(xs) =
∑
xf

a`(xs,xf )P (xf |xs) . (6.21)

The summation in (6.20) is over all reactions, both slow and fast. However, note that

s`s = 0 for all fast reactions, since by definition (and construction, using our procedure

in Section 6.4) slow variables are not changed by fast reactions. The terms of the

summation in (6.20) corresponding to the fast reactions therefore drop out, resulting

in the following equation (that will become, after an additional approximation, the

slow CME ), which depends only on the slow reactions:

dP (xs)

dt
=

Ls∑
`=1

P (xs − s`s)a`(xs − s`s)− P (xs)a`(xs) . (6.22)

Since the right side of this equation only involves the small propensities corresponding

to the slow reactions, P (xs) indeed varies slowly on the time-scale of the transients

in the fast variables. Equations (6.21) and (6.22) were obtained by Frankovicz et

al. ([47]) for systems with two variables. Rao and Arkin ([118]) later obtained these

equations for general chemical systems as an approximate expression, though Goutsias

([64]) subsequently showed the identity is exact.

6.5.2 The Fast CME

We now develop a new reduced fast CME that approximately governs the conditional

density of the fast variables P (xf |xs). This CME is also needed to specify the slow

CME, since the conditional propensities are a function of P (xf |xs). As argued later,

the fast CME we obtain is expected to be more accurate than previously published

ones for systems where the slow propensities are independent of the slow variables.

Importantly, many biological systems of interest, such as the irreversible enzymatic

reaction discussed later, fall within this class. For other systems our approach is a

priori not any worse than others.
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As (6.22) shows, the distribution of the slow variables changes slowly within the

time scale of interest for the transients in the fast variables, so we can write

dP (xs)

dt
≈ 0 (6.23)

over the duration of the fast transient. Using (6.18), (6.19), and (6.23) in the full

CME in (4.6) then results in

P (xs)
dP (xf |xs)

dt
=

L∑
`=1

(
P (xs − s`s,xf − s`f )a`(xs − s`s,xf − s`f )

−P (xs)P (xf |xs)a`(xs,xf )

)
. (6.24)

In order to reduce (6.24) to a standard CME form (i.e., to the forward Kolmogorov

equation for a Markov model of xf , e.g., see [49]), we further assume that for every

reaction R`

P (xs − s`s,xf − s`f ) a`(xs − s`s,xf − s`f ) (6.25)

≈ P (xs,xf − s`f ) a`(xs,xf − s`f ) .

This expression approximates the probability ‘flow’ out of any given state by that out

of states one slow reaction away. For fast reactions (6.25) is exact, since s`s = 0 by

definition, so the assumption only pertains to slow reactions.

For typical systems most of the entries in s`s are zero except for one or two that

are small integers, so the approximation in (6.25) is equivalent to requiring that the

product P (xs, ·) a`(xs, ·) be relatively insensitive to small changes in the argument xs.

Furthermore, there is a large class of relevant systems (e.g., the irreversible enzymatic

reaction system discussed later in this paper) where the propensities of the slow

reactions are independent of the slow variables. For these systems the approximation
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in (6.25) simplifies to

P (xs − s`s,xf − s`f ) ≈ P (xs,xf − s`f ), (6.26)

which only requires the more generally satisfied assumption that the probability dis-

tribution of the full state varies slowly in the slow variables (specifically, that any

two states separated by a single slow reaction have similar probabilities). We assess

the validity of (6.25) in a specific example in Section 6.6, where numerical simulation

suggests that (6.25) is relatively valid when the support of the distribution covers

several values of the slow variables for each value of the fast variable.

Substituting the expression (6.26) into (6.24) and dividing by P (xs) results in the

fast CME, given by

dP (xf |xs)

dt
≈

L∑
`=1

(
P (xf − s`f |xs)a`(xs,xf − s`f )

−P (xf |xs)a`(xs,xf )

)
, (6.27)

where the summation is over all reactions, and not only over the fast ones as in Cao et

al. ([23]) and in Goutsias ([64]). Note that xs here is a parameter of the distribution

(i.e., a constant), and not a dynamic variable.

In Cao et al. ([23]), Goutsias ([64]), and in Haseltine and Rawlings ([69]), the

authors obtain an approximate fast CME similar to (6.27), but dropping the terms

corresponding to the slow reactions. We instead keep these terms, but have to assume

(6.25). Importantly, (6.25) does not imply that slow reactions are negligible in the

fast time scale. Thus, when assumption (6.25) holds our fast CME is more accurate.

As already noted, assumption (6.25) is particularly likely to hold for systems where

the slow reaction propensities are independent of the slow variables; for these systems

(6.25) reduces to (6.26), a more plausible assumption. (A similar improvement over

standard slow/fast reduction is obtained by our approach in an analogous class of

singularly perturbed, linear, time invariant systems. Section 6.9 briefly develops the

analogy, as it adds some insight and validation to our CME reduction approach.)
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We demonstrate in Section 6.6 on a specific example that the our fast CME in

(6.27) can indeed result, via its use in (6.21), in a much more accurate slow CME

than alternative versions that ignore slow reactions. Rao and Arkin ([118]) also use

(6.27) but assume it, rather than deriving it as we do here. Furthermore, they do

not take advantage of an MFK model to obtain the conditional propensities, as we

do in section 6.5.3 below, but instead obtain an assumed functional form for these

propensities by invoking approximations obtained in the deterministic context.

6.5.3 Obtaining the Conditional Propensities

We can now complete the specification of the slow CME in (6.22) by using the fast

CME to evaluate the conditional propensities in (6.21). The fast CME in (6.27) is

guaranteed by our selection of fast variables in Section 6.4 to be driven by fast (and

possibly slow) reaction propensities, so its dynamics are much faster than those of

the slow CME in (6.22). Assuming the distribution of the fast variables, conditioned

on the slow ones, essentially attains a stationary form on the fast time scale, and

maintains it during the subsequent slow behavior, we can set

d

dt
P (xf |xs) ≈ 0 (6.28)

in analyzing the slow CME.

The fast CME in (6.27) may accordingly be assumed at steady state, resulting in

the expression

L∑
`=1

(
P (xf − s`f |xs)a`(xs,xf − s`f )

−P (xf |xs)a`(xs,xf )

)
= 0. (6.29)

This expression can be used to find the conditional propensities, which will now be

functions of only the slow variables, not functions of time, because of the stationar-

ity assumption in (6.28). Equations (6.22), (6.21), and (6.29) together fully
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specify our approximate CME for the slow variables.

Using the MFK Model for the Fast CME

The MFK model for the fast CME in (6.27) can be used to obtain the conditional

propensities. This model is specified by equations analogous to Equations 7.13 and

7.14 for the conditional mean concentration and covariance matrix of the fast vari-

ables; the slow variables are simply a parameter. Letting yf = xf/Ω and ys = xs/Ω

denote the fast and slow concentrations, respecitvely, the resulting MFK equations

are

dµf

dt
= Sfr = Sfρ + Sfξ (6.30)

dVf

dt
= MfVf + VfM

′
f +

1

Ω
SfΛS′f , (6.31)

where µf = E[yf |ys] and Vf = E[(yf − µf )(yf − µf )
′|ys] are the conditional mean

and variance of the fast variables concentrations. The matrix Sf has L columns, one

for each reaction; its `-th column is s`f , the change in the fast variables from one

reaction R`. The average and stochastic rates, ρ and ξ, are defined as in Equation

6.6, but keeping in mind that the slow variables now have a fixed concentration. That

is, the average rate ρ` is now the microscopic rate function evaluated at (µf ,ys) and

ξ` =
1

2

nf∑
i,j=1

(
∂2ρ`

∂yf (i)∂yf (j)

∣∣
y=(µf ,ys)

)
Vf (i, j),

where yf (i) denotes the i-th fast variable concentration and Vf (i, j) the entry in row

i and column j of Vf . The effective rate r is again just the sum of the average and

stochastic rates. Similarly, Mf is just the Jacobian of Sfρ with respect to the fast

variables concentrations, evaluated at (µf ,ys). The diagonal matrix Λ is the defined

as before, with the effective rates as its diagonal entries.

The steady-state form of these MFK equations may be used to solve for the steady-

state µf and Vf , which can then be used to obtain the conditional propensities a`.

For propensities that are at most quadratic in the fast variables, as is typically the
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case, these steady-state statistics will fully specify the conditional propensities. In

fact, MFK models of the fast CME may also be used to approximate conditional

propensities that are non-linear non-quadratic twice-differentiable functions of the

fast variables. By Taylor expanding such propensities around the means, keeping up

to second-order terms and then taking expectations, the conditional propensities may

always be approximated as a function of the means, variances and covariances of the

fast variables.

The MFK Model For The Slow Variables

Approximate CMEs for the slow variables are typically used to obtain sample tra-

jectories for the slow variables as a function of time through Monte Carlo simulation

(e.g., via the Gillespie algorithm). Additionally, it is often desired to compute sim-

ple slow variable statistics, particularly the means, variances and covariances of the

slow variables. While these statistics may be obtained through Monte Carlo sim-

ulation, the computation cost may still be prohibitive even for the reduced model.

An alternate and often more efficient approach, when just the means, variances and

covariances of the slow variables suffice, is to work with an MFK model of the slow

variables.

Such a model may be obtained by two different approaches (see Figure 6-2). The

first one works out the MFK model corresponding to the fully-specified slow CME in

Equation 6.22 (see below). The second approach starts from the MFK model of the

full unreduced CME (i.e., Equation 6.2), and carries out the separation of time scales

in the full MFK model directly, for example, by using standard results of singular

perturbation theory. Both approaches result in an MFK model for the slow variables,

but while the former applies separation of time scales at the distribution level, and

then uses moment truncation, the latter first applies moment truncation and then

carries out the separation of time scales. The two stages involved in either approach,

namely separation of time scales and moment truncation, need not be commutative,

so the resulting MFK models obtained from the two approaches are slightly different.

We here state the result of the first approach; the second approach is developed in
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Figure 6-2: Diagram illustrating the process to obtain an MFK model for the slow
variables in a chemical system. There are two complexity reduction steps: separation
of time scales and moment truncation. Because these two steps are approximations
that do not commute, performing these steps in a different order results in slightly
different reduced models. This section describes the approach at the top of the
diagram, where separation of time scales precedes moment truncation; Section 6.7
develops the alternative approach shown below.

Appendix 6.7.

The MFK model of the slow CME in Equation 6.22, like the slow CME itself,

involves only the slow reactions and slow variables of the full system, with reaction

propensities given by a` rather a`. Letting µs and Vs respectively denote the mean

vector and covariance matrix, respectively, of the slow variables concentrations, the

MFK model for the slow variables is

dµs

dt
= Ssr = Ssρ + Ssξ (6.32)

dVs

dt
= MsVs + VsM

′
s +

1

Ω
SsΛS′s. (6.33)

Here the matrix Ss has dimensions ns×Ls; its `-th column equals s`s. The microscopic

rate function for reaction R` is just ρ`(ys) = a`(xs)
Ω

∣∣
xs=ysΩ

. The effective, average and

stochastic rate vectors, respectively denoted by r, ρ and ξ, now have Ls entries. The

`-th entry of the average rate vector is just ρ` = ρ`(µs), that of the stochastic rate
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vector is

ξ` =
1

2

ns∑
i,j=1

(
∂2ρ`

∂ys(i)∂ys(j)

∣∣
ys=µs

)
Vs(i, j),

where ys(i) denotes the i-th slow variables concentration and Vs(i, j) the entry in row

i and column j of Vs. The matrix Ms is simply Ss
∂

∂µs
ρ(µs), the Jacobian of Ssρ(µs)

with respect to the mean concentrations of the slow variables. Lastly, the Ls × Ls

diagonal matrix Λ has r in its diagonal.

These MFK equations can then be solved numerically to obtain approximations

for the time-evolution of the means, variances and covariances of the slow variables.

6.6 A Slow-Time-Scale Model For The Irreversible

Enzymatic Reaction

We now illustrate our proposed time-scale reduction approach on the irreversible

enzymatic reaction system, specified by the reactions in (6.7). Since the same system

was analyzed by Cao et al. ([22]), by Goutsias ([64]) and by Rao and Arkin ([118]),

this example allows us to explicitly compare the different methods. Our analysis

of this system is guided by concepts developed for its classical (or deterministic)

counterpart, in particular the total quasi-steady-state approximation (tQSSA, see

[142, 15]), which results in a rate law of wider validity than the Michaelis-Menten

rate law.

6.6.1 Slow and Fast Variables

Simple inspection reveals the following two conservation relations in the system:

xe + xc = xeo and xs + xc + xp = xso , (6.34)

where a subscript denotes the species (e.g., xc is the molecule number of species

C), except for xeo and xso , which are constants determined by the initial conditions,

namely the initial total number of enzyme molecules, and of substrate molecules, re-
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spectively. Further analysis of the stoichiometry matrix reveals that there are exactly

two independent conserved quantities, which we take to be the ones listed in (6.34).

This implies that only two dynamic variables are needed to describe the dynamics of

this four-species system.

Let xt = xs + xc be the total substrate. The propensity functions for the reactions

are then given by

a1(xt, xc) =
k1

Ω
(xt − xc)(xeo − xc) , (6.35)

a2(xt, xc) = k2xc ,

a3(xt, xc) = k3xc .

Now suppose that at the initial time a3 � max(a1, a2), which in terms of the initial

concentrations, denoted by y’s, is equivalent to

k3

k2

� max (1,
k1

k2

yc(
yt

yc

− 1)(
yeo

yc

− 1)), (6.36)

after some re-arrangement. Then R3 is a slow reaction and R1 or R2 (or both) are fast

reactions. To find the slow variables, we shut off the slow reactions (R3 and perhaps

R1 or R2) and note that the total substrate xs + xc = xt is the only additional

conserved quantity independent of the two in (6.34). The total substrate is then a

slow variable since it only gets modified by a slow reaction. (We could equivalently

choose the product xp = xso − xt as a slow variable, and we do so in our discussion

of the deterministic models, since this has often been the slow variable of choice in

the deterministic mass action kinetics (MAK) context. In the stochastic context,

however, we choose the total substrate xt instead, as has been done in the previous

literature on the total quasi-steady-state approximation.) The remaining variable,

which must be linearly independent of the total substrate and of the conservation

relations, is thus a fast variable. The number of enzyme-substrate complex molecules

xc satisfies the required independence condition, and is chosen as the fast variable. An

analogous argument, using concentrations instead of molecule numbers and reaction
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rates instead of propensities, results in the same identification of slow and fast system

variables in the deterministic MAK model of the system.

6.6.2 Deterministic Models

The MAK model of the system consists of the following two coupled nonlinear ordi-

nary differential equations for the mean concentrations of the fast and slow variables

respectively:

dµc

dt
= k1µeµs − k2µc − k3µc

dµp

dt
= k3µc , (6.37)

along with the conservation relations in (6.34), which can be written in terms of mean

concentrations simply by replacing all x’s in (6.34) by µ’s. The conservation relations

serve to determine µe and µs from the dynamic variables µc and µp in (6.37).

For a range of rate constants and initial conditions, the mean complex concen-

tration µc in typical reactions of this type has much faster dynamics than the mean

product concentration µp, resulting in an approximate description with the single

slow dynamic variable µp, obtained through separation of time scales. Setting the

rate of change of µc to zero (to capture the quasi-steady state of this fast variable

that follows its rapid initial transient; see [142]) results in the approximation in

dµp

dt
= k3µ

ss
c , (6.38)

where µss
c is the steady-state concentration of the complex, which satisfies the relation

µss
c =

(µt + µeo + Km)

2

(
1±
√

1− r

)
, (6.39)

where

r =
4µtµeo

(µt + µeo + Km)2
. (6.40)

Here µt is the concentration of the total substrate, defined as µt = µs +µc = µso −µp,
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and Km = (k2 + k3)/k1 is the Michaelis-Menten constant.

When r � 1, which is the case when either the enzyme is scarce (i.e., µt + Km �

µeo) or the substrate is scarce (i.e., µeo + Km � µt), the expressions above simplify

to
dµp

dt
= k3

µeoµt

µt + µeo + Km

= −dµt

dt
, (6.41)

which is known as the first-order total quasi-steady-state approximation (tQSSA).

The tQSSA has been quite successful at describing systems with enzymatic reactions,

since it is more accurate and more generally valid than the Michaelis-Menten ap-

proximation ([63, 29]). Under conditions of substrate excess, (6.41) reduces to the

Briggs-Haldane rate law ([20]), which is the Michaelis-Menten rate law when k3 � k2

([74, 102]).

We will show next that applying the reduced CMEs presented in Section 6.5 to the

stochastic model of the enzymatic reaction results in a more general approximation

analogous to (6.38)-(6.40), where other methods ([118, 22, 64]) result in expressions

related to the Briggs-Haldane or Michaelis-Menten rate laws.

6.6.3 The Stochastic Model and Slow Approximation

Assuming again that condition (6.36) holds, the total substrate is a slow variable

since it is unchanged by the fast reaction(s). Similarly, since R1, R2, or both are fast

reactions by assumption, the complex xc is a fast variable since it is modified by at

least one fast reaction.

Note that the condition in (6.36) is certainly true when k3 � k2, as has been often

assumed in previous works. But the condition is also true more generally, for example,

when µc(to) = 0, or when the initial concentrations of total enzyme and total substrate

are sufficiently different from one another (i.e., when either µeo � µt or µt � µeo

at t = to, which is the case if r � 1 initially), since the complex concentration can

never be more than min(µeo , µt). Both these situations are commonly of interest.

Additionally, the propensity of the slow reaction R3 that modifies the slow variable

is not a function of the slow variable itself, thereby falling within the class of systems
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where our approach is expected to be more accurate than previous ones.

The CME for the full system is given by

dP (xt, xc)

dt
= P (xt, xc − 1)a1(xt, xc − 1) + P (xt, xc + 1)a2(xt, xc + 1) (6.42)

+P (xt + 1, xc + 1)a3(xt + 1, xc + 1)

−P (xt, xc)

(
a1(xt, xc) + a2(xt, xc) + a3(xt, xc)

)
.

Similarly, the approximate CME for the fast variables, Equation 6.27, takes the form

d

dt
P (xc|xt) = P (xc − 1|xt)a1(xt, xc − 1)− P (xc|xt)a1(xt, xc) (6.43)

+P (xc + 1|xt)
(
a2(xt, xc + 1) + a3(xt, xc + 1)

)
− P (xc|xt)

(
a2(xt, xc) + a3(xt, xc)

)
.

Letting xs = xt and xf = xc denote the slow and fast variables of the system, (6.22)

gives the approximate slow CME for the total substrate:

dP (xt)

dt
= P (xt + 1)a3(xt + 1)− P (xt)a3(xt) . (6.44)

Equation (6.44) requires a single conditional propensity, namely a3, which is fully

specified by xc = E[xc|xt], the conditional mean of the complex, since by definition

a3(xt) = k3E[xc|xt] = k3xc . (6.45)

The MFK model corresponding to it results in the following evolution equations

for xc and σ2
xc

:

dxc

dt
=

k1

Ω

[
(xeo − xc)(xt − xc) + σ2

xc
− ΩKmxc

]
(6.46)

=
k1

Ω

[
xeoxt − (xt + xeo + ΩKm)xc + x2

c + σ2
xc

]
,

dσ2
xc

dt
=

k1

Ω

[
2(3xc +

1

2
− xt − xeo − ΩKm)σ2

xc

+xeoxt − (xt + xeo − ΩKm)xc + x2
c

]
. (6.47)
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These equations may then be solved (numerically) to obtain the steady-state values

of xc and σ2
xc

. Instead, we here pursue a simple approximation to draw a parallel to

the classical approximations.

At the quasi-steady state following the fast transient, (6.46) gives a quadratic

expression for the steady-state xss
c of xc, which can be solved to obtain

xss
c =

(xt + xeo + ΩKm)

2

(
1±
√

1− r

)
, (6.48)

where

r =
4(xtxeo + σ2

xc
)

(xt + xeo + ΩKm)2
, (6.49)

and σ2
xc

is the steady-state variance of the complex C. Note the similarity of these

expressions to (6.39) and (6.40), obtained for the deterministic case.

A sequence of further approximations helps connect the stochastic results pre-

sented here with the deterministic tQSSA results for the enzymatic system. As in

the deterministic model, suppose that r � 1, and further assume that σ2
xc
� xtxeo .

Equation (6.48) then becomes

xc =
xtxeo

xt + xeo + ΩKm

. (6.50)

Substituting this expression into (6.45) and using the resulting conditional propensity

in (6.44) fully specifies a first approximation for the CME of the total substrate xt.

Letting µt and σ2
µt

denote the mean and variance of the total substrate concentra-

tion, the MFK model for the reduced slow CME results in the evolution equations

dµt

dt
= − k3µeoµt

µt + µeo + Km

+ σ2
µt

k3
µeo(µeo + Km)

(µt + µeo + Km)3
, (6.51)

dσ2
µt

dt
=

1

Ω

k3µeoµt

µt + µeo + Km

(6.52)

−σ2
µt

k3
µeo(µeo + Km)

(µt + µeo + Km)3
[2(µt + µeo + Km) +

1

Ω
].

These equations are the stochastic generalization of the deterministic tQSSA. Note
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that in the absence of fluctuations (when σ2
µt
≈ 0), the equations above reduce to

the deterministic tQSSA in (6.41). The equations above may be used instead of

the deterministic rate law to describe enzymatic reactions in small volumes where

stochastic effects may be important.

The methods in Cao et al. ([22]), Goutsias ([64]) and Rao and Arkin ([118]) can all

result in CME expressions identical to (6.44) and (6.45) for the total substrate in the

system, but they all obtain different expressions for the complex xc. Cao et al. ([22])

and Goutsias ([64]) both ignore the catalytic reaction in the fast system. Cao et al.

end up with an expression for xc identical in form to (6.48), but with K instead of Km,

and with σ2
xc

assumed negligible. Goutsias also ignores the slow reaction in the fast

system, and after another assumption obtains the approximation xc ≈ min(xeo , xt);

this approximation is equivalent to assuming that the minority species is in saturation.

As further analysis reveals ([145]), this approximation is valid when |xt−xeo | � KmΩ.

Lastly, Rao and Arkin ([118]) do keep the slow reactions in the fast system, but instead

of working with the fast part of the stochastic system to obtain xc, they rely on the

macroscopic deterministic Michaelis-Menten approximation to set xc = xeoxt

xt+KmΩ
, which

has been shown to be valid ([128]) only when xt + KmΩ� xeo .

6.6.4 Comparison of the Different Approximations

Our reduced model in (6.44), (6.45) and (6.48) results in better accuracy than the

other models discussed above over a wider range of conditions. We demonstrate this

next with numerical simulations. In this subsection, both the exact and approximate

traces are obtained by Monte Carlo simulation using the Gillespie algorithm ([55]),

the exact from the full system and the approximate from the approximation under

evaluation. The quantities of interest (e.g., the average or standard deviation of the

total substrate) are obtained from evenly spaced samples taken from the start of the

experiment until the time when the average total substrate equals 1% of its initial

value.

For certain parameter ranges, the assumptions of all the different approximations

are satisfied: substrate excess, negligible catalytic reaction (k3 � k2), and saturation
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of the minority species. In these cases all the different approximations are reason-

ably accurate. Figure 6-1 and 6-3 show one such example, where we used the same

parameters as Figure 1(a) in Goutsias ([64]). Figure 6-1 shows the full distribution

at various time points, and the top plot in Figure 6-3 shows the average total sub-

strate as a function of time for the different approximations. Similarly, the lower

plot in Figure 6-3 shows the standard deviation of the total substrate as a function

of time for the various approximations. For this choice of parameters the different

approximations result in adequate approximations for the evolution of the average

and standard deviation of the total product.

Figure 6-3: Mean and standard deviation of the total substrate xt, obtained from
10, 000 evenly-sampled realizations for each of the stochastic descriptions considered.
We chose the same parameters as those for Figure 1(a) in Goutsias ([64]), namely
Ω = k1 = k2 = 1, k3 = 0.1, and initial enzyme and total substrate equal to 10 and
100 molecules, respectively. The realizations were all obtained from Monte Carlo
simulation using the Gillespie algorithm.

To quantitatively assess the accuracy of an approximation, we define the error

between an exact and an approximate time trace (of a mean or standard deviation),

denoted by f and f̂ respectively, by

error =

√√√√ 1

m

m∑
i=1

(fi − f̂i)2 , (6.53)
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Figure 6-4: Errors of the mean and standard deviation of the total substrate xt

versus k3 for the different approximations discussed here. Except for k3, taken in
the range shown in the plot, we used the same parameters as in Figure 6-3. We
used 2,000 Monte Carlo realizations for the smallest value of k3, and increased the
number of realizations linearly, working with 20,000 of them for the largest value of k3

shown. This was done in order to maximize accuracy, computing power and memory
permitting.

where fi and f̂i respectively denote the i-th sample of the exact and approximate

time trace, and m is the number of samples.

The errors for the mean total substrate in Figure 6-3, where initially there were

100 substrate molecules, can be shown to be less than 2 molecules for each of the

approximations. Similarly, the errors for the total substrate standard deviation are

less than 0.5 molecules. In Figure 6-4 we quantify the errors of the different approx-

imations as a function of k3 for the example of Figure 6-3. For each value of k3 we

first obtain time traces for the mean and standard deviation of the total substrate

by Monte Carlo simulation (up to the time when the mean equaled 1% of the initial

substrate), and then compute the error of the mean and of the standard deviation of

each approximation as in (6.53).

As expected, the errors of the approximations proposed by Goutsias ([64]) and

Cao et al. ([22]) grow quickly as k3 increases, because they ignore R3 in the fast

subsystem. The approximation proposed by Rao and Arkin ([118]), on the other
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Figure 6-5: Joint probability distribution for the complex (fast variable) and total
substrate (slow variable) at different time points, estimated from 60,000 samples
obtained by Monte Carlo using the Gillespie algorithm. The top plots show the fast
transient, where the distribution moves mostly in the dimension of the complex and
quickly reaches quasi-steady state. The bottom plots correspond to the slow transient
where the distribution exhibits only slow dynamics. The CME for the system is
specified in Section 6.6; the parameter values used are the same as in Figure 6-6.

hand, does better than the previous ones as k3 increases. This is again expected,

since they do not ignore slow reactions in the fast system, and also because for this

example the substrate is at excess, as they assume. However, for a wide range of k3

values, the most accurate approximation is clearly the one proposed in this paper.

Our approximation remains valid where others fail. In particular, Figures 6-5

and 6-6 illustrate this is the case, for example, when xt = xeo and k2 = k3. Figure

6-5 shows the joint distribution at various time points, while Figure 6-6 shows the

second order statistics of the total substrate for the exact model and the various

approximations. Furthermore, Figure 6-7 shows that, in contrast to Cao et al. ([22])

and Goutsias ([64]), our approximation remains valid when k3 significantly exceeds
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Figure 6-6: Mean and standard deviation of the total substrate xt, obtained from
10, 000 evenly-sampled realizations for each of the stochastic descriptions considered.
The system parameters are Ω = k1 = 1, k2 = k3 = 100, and initial enzyme and total
substrate both equal to 100. The realizations were all obtained from Monte Carlo
simulation using the Gillespie algorithm.

k2. Interestingly, the error of the Rao and Arkin ([118]) approximation decreases as

k3 increases, although it is never smaller than the error of our approximation. The

reason for this dependence is that their approximation assumes low enzyme numbers

in the form of xeo � xt +KmΩ. As k3 increases, so does Km, making their assumption

more reasonable and their approximation more accurate.

6.6.5 Evaluating the Validity of Equation (6.25)

The fast CME relies on the validity of the approximation of Equation (6.25) for

all (slow) reactions and possible states x. This section discusses the validity of this

approximation. We start by replacing the approximation in (6.25) by an exact identity

through the incorporation of the multiplicative error δ`(x), resulting in

P (xs − s`s,xf ) a`(xs − s`s,xf ) = P (xs,xf ) a`(xs,xf )
[
1 + δ`(xs,xf )

]
. (6.54)
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Figure 6-7: Errors of the mean and standard deviation of the total substrate xt

versus k3 for the different approximations discussed here. Except for k3, taken in
the range shown in the plot, we used the same parameters as in Figure 6-6. We
used 1,000 Monte Carlo realizations for the smallest value of k3, and increased the
number of realizations linearly, working with 10,000 of them for the largest value of k3

shown. This was done in order to maximize accuracy, computing power and memory
permitting.

For fast reactions, since s`s = 0, the error δ` is zero. For slow reactions, however,

the error is generally not zero. We develop next some results regarding the value and

computation of some simple statistics of the error δ`.

We think of P (xs − s`s,xf ) = p2(xs,xf ) and P (xs,xf ) = p1(xs,xf ) as two dif-

ferent distributions, where p2 is obtained simply by shifting the xs argument of the

distribution p1 by s`, and re-write (6.54) as

p2(xs,xf ) a`(xs − s`s,xf )− p1(xs,xf ) a`(xs,xf ) = p1(xs,xf ) a`(xs,xf )δ`(xs,xf ) .

(6.55)

Summing (6.55) over all values of x (recall that x = [x′s x′f ]
′) results after some

algebra in the perhaps surprising statement

E[a`(x)]− E[a`(x)] = 0 = E[a`(x)δ`(x)] , (6.56)
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so the error is uncorrelated with the propensity, regardless of the functional

form of the propensity.

We now show how to compute the mean, variance, and mean absolute value of

the error. Dividing both sides of (6.55) by a`(xs,xf ) gives

p1(xs,xf )δ`(xs,xf ) = p2(xs,xf )
a`(xs − s`s,xf )

a`(xs,xf )
− p1(xs,xf ) . (6.57)

Summing (6.58) over x results in the mean error E[δ`], i.e.,

E[δ`] =
∑
xs,xf

(
p2(xs,xf )

a`(xs − s`s,xf )

a`(xs,xf )
− p1(xs,xf )

)
. (6.58)

Note that for a reaction R` where a`(xs− s`s,xf ) = a`(xs,xf ) for all values of x (e.g.,

if the propensity is independent of the slow variables), the expected error E[δ`] is

zero.

Perhaps a more informative statistic is the mean absolute value of the error E[|δ`|].

Taking the absolute value of (6.58) and summing the result over x gives

E[|δ`|] =
∑
xs,xf

(∣∣p2(xs,xf )
a`(xs − s`s,xf )

a`(xs,xf )
− p1(xs,xf )

∣∣) . (6.59)

Note that for a reaction R` where a`(xs − s`s,xf ) = a`(xs,xf ) for all values of x,

E[|δ`|] is bounded above by 2, which occurs when the distributions p1 and p2 have a

non-overlapping support.

The last statistic we discuss is the second moment of the error. Dividing (6.58)

by p1, squaring the result, multiplying by p1 and summing over all x results in

E[δ2
` ] = E[|δ2

` |] =
∑
xs,xf

p1(xs,xf )δ
2
` (xs,xf ) (6.60)

=
∑
xs,xf

[
1

p1(xs,xf )

(
p2(xs,xf )

a`(xs − s`s,xf )

a`(xs,xf )
− p1(xs,xf )

)2]
.

Interestingly, for a reactions R` where a`(xs− s`s,xf ) = a`(xs,xf ) for all values of x,

and when p1 and p2 are close to one another, E[δ2
` ] is approximately equal to twice
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the Kullback-Leibler distance between p1 and p2.
2

Figure 6-8: Expected error (red), and expected absolute error (blue) +/- the standard
deviation (black) for the examples in Figures 6-1 (left plot) and 6-5 (right plot).
Note that the expected absolute error starts at its maximum value of 2 and quickly
decreases within the fast transient. Comparing these plots to Figures 6-1 and 6-5
shows that the expected absolute error is large when the support of the distribution
is small.

The equations above immediately allow us to compute the discussed statistics of

the error δ`, associated with reaction R`, as a function of time given the distribution

P (xs,xf ) = p1. For simple enough systems like the enzymatic system discussed in

detail in this chapter, we can estimate the distribution p1 as a function of time from

stochastic simulation, as shown in Figures 6-1 and 6-5, and use it to compute the

statistics of the error δ discussed above. We focus on the error of the third reaction,

which is assumed to be slow. Note that for this reaction a3(xs − s`s,xf ) = a3(xs,xf )

since the reaction is independent of the slow variable. To compute the associated

error statistics, we simply shift p1 by s` = 1 to create p2, and apply the formulas

above for E[δ], E[|δ|] and combine them with E[δ2] to obtain the standard deviation

of the error. The results are shown in Figure 6-8. As derived above, the expected

error is zero. Comparing the plots in Figure 6-8 to the distributions in Figures 6-1

and 6-5 shows that the expected absolute error E[|δ|] is maximum when the support

2The Kullback-Leibler distance between two distributions p1(x) and p2(x), given by D(p1||p2) =
−

∑
x p1(x)logp2(x)

p1(x) , provides a quantitative way to measure the distance between p1(x) and p2(x).
It is zero only when p1(x) and p2(x) are identical, and is positive otherwise (e.g., see [31]). Assuming
p2(x) is close to p1(x) and Taylor expanding the log in the expression for D(p1||p2) up to second
order, results after some algebra in D(p1||p2) ≈ 1

2

∑
x

1
p1(x) (p1(x)− p2(x))2.
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of the distribution is small, which in these examples happens when all the probability

is concentrated at a single value of x (at time zero since all realizations were given the

same initial condition, and at the end of the experiment when all substrate molecules

have been converted to product).

We leave to further work to better assess how δ, the error in (6.25), propagates

through our separation of time-scales approach and ultimately impacts the accuracy

of the resulting approximate slow and fast models.

6.7 The MFK Equations for the Slow Species

In this section we present an alternate approach to obtain an MFK model for the

means, variances and covariances of the slow variables; one that allows a direct appli-

cation of the standard singular perturbation theory results ([81]). We start from the

MFK model of the full system (i.e., corresponding to the unreduced CME in Equation

6.2), given by Equations 7.13 and 7.14. Now assume that all conservation relations

have been taken into account (i.e., so that in the resulting coordinates S has a left

null space of dimension zero). Further assume that the effective rate vector r at the

initial time t = to consists of slow rates of order ε � 1, those corresponding to the

slow reactions, and fast rates of order 1 corresponding to the fast reactions. Further

assume that the slow reactions only change the state of a subset of the variables, the

slow variables. These conditions lead to a partitioning of the state space into slow

and fast variables, so that

x =

 xs

xf

 , and r =

 εrs

rf

 =

 ε(ρs + ξs)

ρf + ξf

 ,

where r, ρ, ξ denote the effective, average and stochastic reaction rates of the MFK

equations of the full CME (Equation 6.2). The stoichiometry matrix may then be

similarly partitioned as

S =

 Ss Ssf

Sfs Sf

 ,
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where the i-th column of Ss (Ssf ) is the net change vector in the slow variables

caused by a single occurrance of the i-th slow (fast) reaction. Similarly Sf (Sfs)

contain the net changes of the fast variables when a fast (slow) reaction occurs. The

MFK equation for the average concentration vector, Equation 7.13, becomes

d

dt
µ =

d

dt

 µs

µf

 = Sr =

 Ss Ssf

Sfs Sf

 εrs

rf


=

 εSsrs + Ssfrf

εSfsrs + Sfrf

 . (6.61)

For the slow variables to have slow dynamics, their rate of change must be O(ε) which

will be the case only if Ssf = 0, i.e., if no fast reaction causes a net change in any of

the slow variables, as required by our definition of slow variables. However, note that

if the original variables do not satisfy this condition, there may still be a change of

variables that will. From now on, we then assume that

S =

 Ss 0

Sfs Sf

 .

We similarly partition the covariance matrix V as follows:

V =

 Vs Vsf

V′
sf Vf

 .

Here Vs and Vf are the covariance matrices of the fast and slow species, respecitvely,

and Vsf is the mixed covariance matrix, with each entry being the covariance between
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a slow and a fast species. The matrix M may be similarly partitioned as follows:

M = S
∂ρ

∂µ
= S

 ε ∂ρs

∂µs
ε ∂ρs

∂µf

∂ρf

∂µs

∂ρf

∂µf

 (6.62)

=

 εSs
∂ρs

∂µs
εSs

∂ρs

∂µf

εSfs
∂ρs

∂µs
+ Sf

∂ρf

∂µs
εSfs

∂ρs

∂µf
+ Sf

∂ρf

∂µf

 (6.63)

=

 εMs εMsf

εMfsss + Mffs εMfssf + Mf

 . (6.64)

The fluctuation-dissipation matrix can also be partitioned, as in

Λ =

 εΛs 0

0 Λf

 , resulting in (6.65)

1

Ω
SΛS′ =

1

Ω

 εSsΛsS
′
s εSsΛsS

′
fs

εSfsΛsS
′
s εSfsΛsS

′
fs + SfΛfS

′
f

 .

Combining all the previous expressions, the covariance MFK equation 7.14 the

following expression for dV
dt

:


ε
(
MsVs + VsM

′
s + MsfV

′
sf + VsfM

′
sf

)
ε
(
MsVsf + MsfVf + VsM

′
fsss + VsfMfssf

)
+VsM

′
ffs + VsfM

′
f

ε
(
V′

sfM
′
s + VfM

′
sf + MfsssVs + M′

fssfVsf

)
ε(MfsssVsf + V′

sfMfsss + MfssfVf + VfM
′
fssf )

+MffsVs + MfV
′
sf +MffsVsf + V′

sfM
′
ffs + MfVf + VfM

′
f


+

1

Ω

 εSsΛsS
′
s εSsΛsS

′
fs

εSfsΛsS
′
s εSfsΛsS

′
fs + SfΛfS

′
f

 . (6.66)

Equations 6.61 (with Ssf set to 0) and 6.66 are already in a form where the stan-

dard result of singular perturbation theory, Equation 6.88, which yields a first-order

approximation in ε, may be directly applied. Some analysis, described shortly, yields
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the reduced model for the slow variables given by

dµs

dt
= εSsrs (6.67)

dVs

dt
= ε

(
MsVs + VsM

′
s +

1

Ω
SsΛsS

′
s

)
, (6.68)

where

Ms = Ms−
(
Ss

∂ρs

∂µf

[
Sf

∂ρf

∂µf

]−1

Sf
∂ρf

∂µs

)
, (6.69)

assuming the inverse in the expression exists.

The previous equations have an MFK form but with two important differences.

First, the Ms matrix of the original system becomes the matrix Ms above. Second,

the slow rates rs and the matrix Ms in Equations 6.67 and 6.68 generally depend on

the concentrations, variances and covariances of both fast and slow species. The terms

in these equations that involve the fast species may be obtained from the algebraic

relations

0 = Sfrf , (6.70)

0 = VsM
′
ffs + VsfM

′
f , and (6.71)

0 = MffsVsf + V′
sfM

′
ffs + MfVf + VfM

′
f

+
1

Ω
SfΛfS

′
f . (6.72)

The previous equations are obtained from Equations 6.61 and 6.66 by setting the

rate of change of the fast variables of the system (i.e., µf ,Vf and Vsf ) to zero, while

setting ε to zero. Note that Equations 6.70, 6.71 and 6.72 are exactly analogous to

Equation 6.88. Perhaps a better approximation would not set ε to zero on the right

side of the evolution equations of the fast variables, resulting instead in expressions

analogous to Equation 6.90. Systems where the slow reactions are independent of

the slow species may particularly benefit from this approach. Simple inspection of

Equation 6.66, however, reveals that these expressions can be significantly more com-
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plicated than Equations 6.70, 6.71 and 6.72. The MFK method described here, which

uses Equations 6.70, 6.71 and 6.72, should then be equivalent in terms of accuracy to

the methods of Cao et al ([23]), Goutsias ([64]) and Rao and Arkin ([118]).

The reduced evolution equations for the slow variables, Equations 6.67 and 6.68,

are obtained as well from the full MFK description in Equations 6.61 and 6.66, which

directly gives Equation 6.67 for the mean concentrations and

dVs

dt
= ε

(
MsVs + VsM

′
s + MsfV

′
sf + VsfM

′
sf

+
1

Ω
SsΛsS

′
s

)
, (6.73)

for its variances and covariances. We then note that Equation 6.71 implies that the

cross covariances between slow and fast species are given by

Vsf = −VsM
′
ffsM

′−1
f = −Vs

(
∂ρf

∂µs

)′

S′f

[(
∂ρf

∂µf

)′

S′f

]−1

,

assuming the inverse in the expression exists. This should often be the case since Mf

is the Jacobian of the fast system, which must be stable for the singular perturbation

result to hold, so Mf should be Hurwitz. The previous expression may then be

substituted into Equation 6.73 to obtain Equation 6.68.

Connection to Distribution Based Approach

Is the reduced description of the slow variables in Equations 6.67 and 6.68 compatible

with the MFK equations for the slow variables that one would obtain from the reduced

CME in Equation 6.22? The former computes the MFK equations for the full system,

and only then applies separation of time scales; the latter first applies separation of

time scales at the CME level, and then one may write down the MFK equations for the

reduced CME. Both approaches can then result in MFK-type of equations for the slow

species. Also, while our distribution approach is analogous to not setting ε to zero in

the evolution equations for the fast variables, the MFK-based approach described here

does set ε to zero in the analogous equations. Therefore, the distribution approach
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that keeps ε in the fast system should be expected to be more accurate. But are

these two methods otherwise compatible? It turns out that they are, but some brief

analysis is required to see their similarity.

The MFK equations obtained from the slow CME of Equation 6.22 result in an

evolution equation for Vs where the matrix multiplying Vs is given by Ss
dρs

dµs
, the

slow part of the stoichiometry matrix times the total derivative of the average rates

with respect to the slow variables. The average rate vector ρs is the same in both

approaches, namely the vector of slow reaction propensities evaluated at the mean

concentrations and normalized by the system size Ω. The previous matrix appears to

be different from Ms, the matrix playing the same role in the MFK-based approach.

However, it turns out that when one takes into account the constraints imposed by

Equation 6.70, the two matrices are equivalent. To make this relation explicit, we

start with the following expression for the total derivative of Ssρs with respect to µs:

dSsρs

dµs

=
∂Ssρs

∂µs

+
∂Ssρs

∂µf

dµf

dµs

= Ms + Ss
∂ρs

∂µf

dµf

dµs

. (6.74)

Here d and ∂ denote total and partial differentials, respectively. Now, from Equation

6.70 we have that

dSfρf

dµs

= Sf
∂ρf

∂µs

+ Sf
∂ρf

∂µf

dµf

dµs

= 0, (6.75)

so that
dµf

dµs

= −
(
Sf

∂ρf

∂µf

)−1

Sf
∂ρf

∂ρs

. (6.76)

Substituting the above expression into Equation 6.74 results in the expression for M

in Equation 6.69. This shows that M is just Ss
dρs

dµs
; both approaches (i.e., applying

the separation of time scales at the distribution level and then obtaining the MFK

equations, versus first obtaining the MFK equations and then applying the separations

of time scales) are in this sense equivalent. They both arrive at a similar expression

for the evolution of the covariance matrix of the slow species, even though in practice
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the approximations required to obtain analytical results in each of the two methods

may lead to actual different resulting expressions (as the next example illustrates).

6.7.1 Example: The Enzymatic Reaction

We demonstrate the MFK-based method in the irreversible enzymatic reaction dis-

cussed previously. Assume that the rate of the catalytic reaction is order ε, and

consider the same dynamic variables as above, namely the total substrate xt and the

complex xc. Then Ss = −1, Sf =
[

1 −1
]
, Ssf = [ 0 0 ] and Sfs = −1. Let ys

denote the concentration of xt, the slow species, and yf that of xc, the fast species.

We then have

ρf =

 k1(yeo − yf )(ys − yf )

k2yf

 , and ρs = k3yf ,

so that Ms = 0, and

Ms = −k3
yeo − µf

K + yeo + µs − 2µf

, where K =
k2

k1

.

The slow MFK equations, Equations 6.67 and 6.68, then simply become

dµs

dt
= −k3µf (6.77)

dσ2
s

dt
= −2k3

yeo − µf

K + yeo + µs − 2µf

σ2
s +

1

Ω
k3µf . (6.78)

These equations, however, are a function of the fast variable µf . The equilibrium

expressions of the fast system, Equations 6.70, 6.71 and 6.72 can now be used to

obtain an expression for µf as a function of the slow variables µs and σ2
s .

Equation 6.70 gives the following quadratic equation for µf after some re-arrangement:

0 = µ2
f − (yeo + µs + K)µf + µsyeo − σsf + σ2

f . (6.79)
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Equations 6.71 in turn gives

0 = k1(yeo − µf )σ
2
s + [k1(2µf − µs − yeo)− k2], so that

σsf =
yeo − µf

µs + yeo + K − 2µf

σ2
s . (6.80)

Similarly, Equation 6.72 becomes

0 = 2k1(yeo − µf )σsf + 2[k1(2µf − µs − yeo)− k2)σ
2
f

+
1

Ω

[
k1[(µs − µf )(yeo − µf )− σsf + σ2

f ] + k2µf

]
,

which may be re-arranged to

σ2
f =

[2(yeo − µf )− 1
Ω
]σsf + 1

Ω
[(µs − µf )(yeo − µf ) + Kµf ]

2(µs + yeo + K − 2µf − 1
2Ω

)
. (6.81)

Equations 6.80 and 6.81 can then be combined to find that

σ2
f − σsf = − (µs + K − µf )(yeo − µf )σ

2
s

(µs + yeo + K − µf )(µs + yeo + K − µf − 1
2Ω

)

+
1

2Ω

[
(µs − µf )(yeo − µf ) + Kµf

µs + yeo + K − 2µf − 1
2Ω

]
. (6.82)

The previous expression can already be substituted into Equation 6.79 to yield a

quartic equation of µf as a function of µs and σ2
s .

Instead of pursuing this approach, we instead make several approximations to

find µf to draw a parallel to the classical case, and to the result obtained via the

distribution approach. We start by pretending that σ2
f − σsf is not a function of µf

and solve for µf in Equation 6.79, resulting in

µf =
µs + yeo + K

2

[
1±

√
1− 4

µsyeo + σ2
f − σsf

(µs + yeo + K)2

]
. (6.83)
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We then let r = 4
µsyeo+σ2

f−σsf

(µs+yeo+K)2
, and assume r � 1, so that

µf ≈
µsyeo

µs + yeo + K
+

σ2
f − σsf

µs + yeo + K
. (6.84)

Note that the first term in the right side of the previous equation is identical to the

tQSSA approximation for the complex obtained in the classical case; we consider the

second term to be a stochastic correction and approximate it as small. We then want

to substitute Equation 6.82 into 6.84, but because Equation 6.84 is a function of

µf , we first evaluate µf in Equation 6.82 as the first term on the right of Equation

6.84 before actually making the substitution. That is, we use µf = µsyeo

µs+yeo+K
in the

expression for σ2
f−σsf before substituting it into Equation 6.84. Proceeding so results

in our final expression for µf , which, letting a = µsyeo

µs+yeo+K
for simplicity of notation,

becomes

µf ≈
µsyeo

µs + yeo + K
− (µs + K − a)(yeo − a)

(µs + yeo + K)(µs + yeo + K − 2a)(µs + yeo + K − 2a− 1
2Ω

)
σ2

s

+
1

2Ω

[
(µs − a)(yeo − a) + Ka

(µs + yeo + K)(µs + yeo + K − 2a− 1
2Ω

)

]
. (6.85)

Substituting this expression into Equations 6.77 and 6.78 finally gives the slow MFK

equations for the enzymatic reaction. The resulting equations are similar to the MFK

equations obtained previously (in Equation 6.52), although with K in place of Km

because the MFK-based approach ignores the slow reactions in the fast system. For

the same reason, the approximation of Equation 6.52 should be the more accurate.

6.8 Concluding Remarks

We have described here a systematic method to identify slow and fast variables in

a system of slow and fast chemical reactions, and have developed reduced CMEs for

these variables, starting from a CME for the full system. Our approach is distinct in

its retention of the effects of slow reactions on the fast subsystem. The resulting model

reduction method should be particularly useful in systems where the slow reactions
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are independent of the slow variables, as occurs in many systems of interest. We have

also highlighted the value of MFK models, with their tracking of means, variances

and covariances, as adjuncts to this model reduction process.

Numerical experiments with our reduced CME model for the slow variables in a

canonical example — the irreversible enzymatic reaction — have demonstrated con-

sistently and predictably better results than those obtained with other models from

the literature. Furthermore, our reduced MFK model for the slow system in this ex-

ample specializes in the large-volume (low-fluctuation) limit to familiar deterministic

total quasi-steady-state models that are more accurate and more broadly applicable

than traditional Michaelis-Menten models.

It is worth noting that Goutsias ([64]) and Haseltine and Rawlings([68, 69]) work

with a different coordinate system than that used here, specifying the state to be the

degree of advancement of the reactions (i.e., the number of reactions of each kind that

have occurred since the start of the experiment). This alternate state is particularly

useful when reactions are not instantaneous, but rather change the molecule numbers

in the system only after a specified amount of time since the beginning of the reaction

has passed; see Goutsias ([64]), for instance, for a detailed explanation. However, the

expressions here can be adapted quite straightforwardly for their model.

We end with the observation that considerable work remains to be done to bridge

the more informally justified time-scale reduction methods developed here and in

related literature, with more rigorous treatments such as those in Ball et al. ([6]), for

models of interest in stochastic chemical kinetics.

6.9 Connection of Slow and Fast CME Models to

Singular Perturbation Theory

Singular perturbation (SP) theory provides a very useful framework for separation

of time scales in systems of ordinary differential equations (ODEs). Previous studies

have successfully applied SP in the context of stochastic chemical kinetics ([113, 99]).
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Furthermore, the deterministic approximations for the irreversible enzymatic reaction

are understood to be first-order approximation obtained through SP analysis ([17,

71]). The standard SP model starts with the evolution equations of the fast and slow

variables of a system, respectively denoted by xf and xs; it is given by

d

dt
xs = εf(t,xs,xf , ε)

d

dt
xf = g(t,xs,xf , ε), (6.86)

where t denotes time, ε� 1 is a small parameter, and f(; ) and g(; ) are functions of

the indicated arguments, returning vectors of the appropriate dimensions.

The standard result is that, under appropriate conditions, it can be shown that

approximating the slow variables by

d

dt
xs = εf(t,xs, h(t,xs), ε), (6.87)

where h(t,xs) is a solution of

g(t,xs, h(t,xs), 0) = 0, (6.88)

results in an approximation with an error of order ε (see [81], for example). This

approximation, which we refer to as the first-order approximation, requires finding

the value of the fast variables as a function of the slow variables, h(t,xs). This is

achieved while assuming that the left side of their evolution equation is zero, which

is equivalent to their being at steady state, and importantly, by setting ε to zero on

the right side of the equation, resulting in the algebraic expression of Equation 6.88.

A simple re-scaling of time of Equations 6.22 and 6.27 shows high correspondence

with the standard singular perturbation result. It also serves to highlight the dif-

ference between our approach and the approaches proposed by Cao et al. ([23]),

Goutsias ([64]) and Haseltine and Rawlings ([68]). Suppose that τs and τf respec-

tively denote the characteristic time scales of the slow and fast CMEs in Equations

6.22 and 6.27. These time scales could be thought of, for example, as the time con-
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stant of the convergence of each CME to its respective stationary form (assuming

ergodicity). The ratio of the slow and fast time scales, which we here call ε = τf/τs,

is expected to be small. We now look at the equations in the fast time scale by

re-scaling time using τ = t/τs, the propensities of the slow reactions using a′` = a`τs,

and those of the fast reactions using a′` = a`τf ; τ and a′` denote the normalized time

and propensities. These re-scalings, when substituted into Equations 6.22 and 6.27,

result in the following CMEs:

dP (xs)

dτ
= ε

Ls∑
`=1

P (xs − s`s)a
′
`(xs − s`s)− P (xs)a

′
`(xs),

dP (xf |xs)

dτ
= ε

[ Ls∑
`=1

(
P (xf − s`f |xs)a

′
`(xs,xf − s`f )

−P (xf |xs)a
′
`(xs,xf )

)]
+

L∑
`=Ls+1

(
P (xf − s`f |xs)a

′
`(xs,xf − s`f )

−P (xf |xs)a
′
`(xs,xf )

)
. (6.89)

The normalized CMEs above are in the same form as the standard singular pertur-

bation model in Equation 6.86. Furthermore, the method we suggest here is exactly

the standard singular perturbation result cited above, except that we do not set ε to

zero in the right side of the evolution equation for the fast system. That is, we solve

g(t,xs, h(t,xs), ε) = 0 (6.90)

rather than Equation 6.88, to obtain the steady-state values of the fast variables as

a function of the slow ones.

As inspection of Equation 6.89 reveals, setting ε to zero in the equation for the fast

variables of our CMEs directly results in ignoring the slow reactions in the fast system,

this is exactly what Cao et al. ([23]), Goutsias ([64]) and Haseltine and Rawlings

([68]) do. Unfortunately, the methods of separation of time scales for stochastic

systems are not equivalent to the standard singular perturbation problem. The full
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description of the system is the original CME for all species, a system of equations

(one for each possible state) where both fast and slow variables potentially appear

in every equation. Putting it into the standard singular perturbation model already

requires the series of assumptions leading to Equation 6.27. That said, analyzing a

simple linear deterministic system using singular perturbation ideas does help clarify

why keeping slow reactions in the fast system improves upon previous approximation

schemes. This example is discussed next. Furthermore, a cleaner way to connect

separation of time scales to singular perturbation is achieved by working not with

the full CME, but with its moments, since each of these is already described by an

ODE. We describe such an approach in Appendix 6.7, where we derive the first-order

singular perturbation approximation to the means, variances and covariances of the

slow variables’ concentrations.

Example

We have shown that the method proposed here to obtain an approximate CME for

the slow variables can result in significantly more accurate approximations for some

systems. In fact, the example discussed next suggests our method is expected to do

better for systems where the propensities of the slow reactions that modify any slow

variables are independent of the slow variables themselves, while for other systems

all methods are a priori similarly accurate.

Consider a linear time-invariant system with dynamics described by d
dt
x = Ax,

where x the (column) state vector and A a matrix of appropriate dimensions, with

entries that are functions of a small parameter ε� 1. Further assume that A is such

that the first entries in x— the slow variables, denoted by xs — have rates of change

that are O(ε), while the rest of the state variables— the fast ones, denotes by xf —

all have rates of change that are O(1) in ε. More concretely, assume that

d

dt

 xs

xf

 =

 A1 A2

A3 A4

 xs

xf

 =

 A1xs + A2xf

A3xs + A4xf

 , (6.91)
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where the matrices above have appropriate dimensions and are given by

A1 = εA11, A2 = εA21,

A3 = A30 + εA31, and A4 = A40 + εA41. (6.92)

We would like to draw an analogy at this point to the stochastic chemical kinetics

systems discussed above. The time-derivative of xs is a sum of small terms, or reac-

tions, that are all slow because they are proportional to ε; while that of xf has terms

independent of ε, due to the fast reactions, but also others proportional to ε from

slow reactions.

Now suppose we wanted to obtain an approximate description of the slow variables

in this system. The analogy to what we propose above for stochastic systems is to

assume that the fast variables always equilibrate fast, so that d
dt
xs ≈ 0. This results

in

xf ≈ −A−1
4 A3xs, (6.93)

where we have assumed that A4 is invertible (and stable!). Substituting this ex-

pression into the rate equation for xs then results in our slow approximation of the

system, namely
d

dt
xs ≈

(
A1 −A2A

−1
4 A3

)
xs. (6.94)

A second possibility to obtain an approximation for the slow variables in the

system results from applying the standard theorems of singular perturbation theory

(cite Khalil). There, one Taylor-expands the exact solution for x as a function of

ε and can put together approximate solutions of different accuracies in ε. The first

approximation, known as the zero-order approximation, differs from the approach

above in that it sets ε to zero in the equation for the rate of change in the fast

variables. This results in

xf ≈ −A−1
40 A30xs (6.95)
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instead of Equation 6.93, and in

d

dt
xs ≈

(
A1 −A2A

−1
40 A30

)
xs (6.96)

in place of Equation 6.94. Note that this second approach is exactly analogous to

what Goutsias and Cao propose in the stochastic case, namely to set the rate of slow

reactions in the fast system to zero before equilibrating the fast system. But which

approach is more accurate?

Figure 6-9: Exact solution to Equation 6.91 (black line), along with the two approx-
imations (blue and red lines), for a11 = −1.9 and ε = .1. The initial condition was
taken to be x0 = [1 1]′.

It turns out, as demonstrated below first numerically and then analytically, that

it is not a priori obvious which approach will be a better approximation for general

systems of the form presented here. In fact, for very small ε both approximations do

quite well. But when ε is larger, our approach does turn out to be the more accurate

of the two for systems where the rate of change of the slow variables is independent

of the slow variables themselves (i.e., when A1 = 0). Such systems turn out to be

common in Biology (e.g., see the next example) and, in fact, the increase in accuracy

that our method provides can be quite significant for systems of this class.

To simplify the argument we focus on the two-variable case, so all the matrices

above, except for A itself, are now numbers and are denoted by a small a symbols
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Figure 6-10: Error of the two approximations for the system in Figure 6-9 as a
function of ε. We consider a range of values for ε, and for each we numerically obtain
evenly-spaced samples of the solutions to Equations 6.91, 6.94 and 6.96, corresponding
to a time-period equal to five times the slow time scale of the system. We then
compute the error of each approximation according to Equation 6.53. For small ε both
approximations have a small error, but as ε grows the error of both approximations
increases. The initial condition used for every value of ε was x0 = [1 1]′.

(e.g., A4 = A40 + εA41 is now a4 = a40 + εa41). Consider a system with A matrix

given by  εa11 −2ε

1 + 2ε −(1 + 10ε)

 . (6.97)

When a11 6= 0 either approximation can be better than the other one (depending on

the actual value of a11); keeping O(ε) terms in the equilibrium equation for the fast

variables need not result in a better approximation (Figure 6-9). Figure 6-10 shows

the error of both approximations for the example in Figure 6-9; it is small for small ε

but grows as ε becomes larger. The accuracy of both approximations in this example

(i.e., for the value of a11 chosen here) is comparable for a wide range of values of ε.

Other values of a11 can result in either of the two approximations being significantly

better than the other.

Now consider a system with the same parameter values above, but where a11 is

now set to zero. Our approximation, Equation 6.94, is now clearly the better one; see

Figure 6-11. Furthermore, the error of our approximation is now significantly smaller
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than that of the other approximation for a wide range of ε, as shown in Figure 6-12.

In fact, this figure shows that our approximation can remain a good approximation

even when ε is not small. These results, taken together, argue for the use of our

approximations when a11 = 0, which would correspond to slow reaction rates that

are independent of slow variables.

Figure 6-11: Exact solution to Equation 6.91 (black line), along with the two approx-
imations (blue and red lines), for a11 = 0 and ε = .1. The initial condition was taken
to be x0 = [1 1]′.

We now compare the two approximations analytically. For this purpose, suppose

that the goal of the approximation is to capture the time scale of the slow system

accurately. The time scales of a linear system are simply the inverse of its eigenvalues,

which may be found exactly for the two-variable case. They are given by

λ =

(
a1 + a4

2

)[
1±

√
1− 4

a1a4 − a2a3

(a1 + a4)2

]
≈

(
a1 + a4

2

)[
1±

(
1− 2

a1a4 − a2a3

(a1 + a4)2

)]
, (6.98)

where we use the fact that |a4| � |a1|, |a2| to obtain the second equation, which is

exact up to second order in ε. The eigenvalue corresponding to the slow time scale of
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Figure 6-12: Error of the two approximations for the system in Figure 6-11 as a
function of ε. For small ε both approximations have a small error, but as ε grows the
error of both approximations increases. The initial condition used for every value of
ε was x0 = [1 1]′.

the system is then

λs =
a1a4 − a2a3

a1 + a4

= ε

λ0︷ ︸︸ ︷[
a11a40 − a21a30

a40

]
+ε2

[(
a11a21a30

a2
40

+
a2

11

a40

)
︸ ︷︷ ︸

λ10

−a21a30

a40

(
a31

a30

− a41

a40

)
︸ ︷︷ ︸

λ11

]

= ελ0 + ε2(λ10 + λ11), (6.99)

where we have ignored O(ε3) terms.

The eigenvalue of the approximation resulting from our method may be read from

Equation 6.94 directly; it is given by

λ1 =
a1a4 − a2a3

a4

= ελ0 + ε2λ11 + O(ε3). (6.100)

Similarly, the eigenvalue of the second approximation is simply

λ2 =
a1a40 − a2a30

a40

= ελ0. (6.101)
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The above results show that, in general, the zero-order singular perturbation ap-

proximation only recovers the O(ε) term of the slow system’s eigenvalue. Our approx-

imation, on the other hand, recovers the O(ε) term and (only) part of the O(ε2) term.

So for general systems, it is not a priori obvious which of the two approximations is

better. It depends on the actual values of the system parameters whether Equation

6.100 is closer to Equation 6.99 than Equation 6.101.

However, our approximation does recover the full O(ε2) of the eigenvalue for sys-

tems where a11 is zero (i.e., systems where a1 is O(ε2)) since for these systems λ10 = 0.

Note that this condition would be analogous to having the rates of all slow reactions

be independent of the slow variables. For such systems, our approximation is always

the more accurate, and the difference in accuracies is expected to grow with ε. These

results are consistent with the numerical results described above.
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Chapter 7

The Spatial Mass Fluctuation

Kinetics Equations

7.1 Background

We consider systems of chemical reactions consisting of N chemical species {X1, ..., XN}

interacting in a volume V through L reactions labeled R1, ..., RL. The starting point

is the reaction-diffusion master equation (RDME) proposed, for example, in [88, 50,

105, 7] since the early 1970s. In this context, the space is divided into n subvolumes

of volume v, such that V = nv, and where the size v of each subvolume is carefully

chosen (e.g., see [87]). The RDME is the forward Kolmogorov equation of a discrete

state continuous time Markov chain model of the system, and describes the time evo-

lution of the joint probability distribution for the number of molecules of each species

within each subvolume (e.g., see [87] for a good introduction to the RDME).

We arbitrarily number the subvolumes and let xi(c) and yi(c) be the number of

molecules and the concentration, respectively, of species Xi in subvolume c. Molecule

numbers are normalized by Ω = Av, where A is Avogadro’s number, to yield concen-

trations in moles per unit volume so that yi = xi/Ω. We also let xc be the column

vector of molecule numbers in subvolume c (with i-th component {xc}i = xi(c)). We

further let x = [x′1 . . .x′n]′ be the state vector of the system and xi its i-th entry. Simi-

larly, let yc = xc/Ω be the vector of concentrations in subvolume c, and y = [y′1 . . .y′n]′
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be the vector of concentrations in the whole system, with mean µ = E[y] = [µ′1 . . . µ′n]′

and covariance matrix V = E[(y − µ)(y − µ)′]. A firing of reaction R` immediately

changes xi(c) to xi(c) + s`i(c), or in vector form, x changes to x + s`, where s` is the

stoichiometry vector of R` and s`i(c) the stoichiometry coefficient of xi(c) in R`.

The time evolution of P (x), the probability distribution of the state x conditioned

on an initial state x(to) = xo, satisfies the RDME, namely

dP (x)

dt
=

L∑
`=1

P (x− s`)a`(x− s`)− P (x)a`(x). (7.1)

The probability that reaction R` occurs in a small time interval with duration dt

is approximately equal to a`(x)dt; the quantity a`(x) is the propensity of reaction

R`. Note that this equation has the same form as the CME of stochastic chemical

kinetics, Equation (4.6). This is because we again have a discrete-state continuous-

time Markov chain model of the system, and because we defined the system state as

the single vector x.

Two kinds of reactions are considered: those that only change the state of one

subvolume (e.g., xc for subvolume c), which we refer to as local ; and those that

change the state of more than one subvolume, which we refer to as diffusive. The

propensities of local reactions are functions of the local state only (e.g., of xc for a

local reaction occurring in subvolume c). These propensities have the same functional

form as their analogues in stochastic chemical kinetics. For example, the propensity

of a local reaction that takes one molecule of Xi and one molecule of Xj in subvolume

c as reactants is given by kxi(c)xj(c), where k is the reaction rate constant. For

a diffusive reaction, on the other hand, each firing removes one molecule from one

subvolume and puts it in another subvolume. The propensity of a diffusive reaction

that results in one less molecule of Xi in subvolume c is assumed to be given by

dixi(c), where the rate constant di is a function of the diffusion constant Di of Xi to

be specified later.

Typically researchers resort to stochastic simulation as a means for getting to the

system dynamics. The simulation algorithms available are analogous to those of (spa-
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tially homogeneous) stochastic chemical kinetics. For example, a particularly efficient

algorithm, the next-subvolume method (e.g., see [37]), is analogous to that proposed

by Gibson and Bruck in [54] for stochastic chemical kinetics. However, as the number

of subvolumes and the number of molecules in each subvolume increase, stochastic

simulation quickly becomes computationally challenging. Additionally, the connec-

tion between the RDME and other modeling frameworks for systems of chemical

reactions is not that clear, as discussed in some detail in Section 7.2.1.

To help address both of these issues, our interest in this chapter is to develop

approximate equations for the (spatial) concentrations and their variances and co-

variances. The next two sections of this chapter can be read in any order. The next

sections develops results for a simple cylindrical system consisting of cubic subvol-

umes stacked next to one another, to build intuition. We use this setup to discuss the

convergence of this modeling framework to simpler ones in Section 7.2.1. We then

develop in Section 7.3 the general case where subvolumes are spatially connected to

one another in an arbitrary fashion.

7.2 Systems with one relevant spatial dimension

Consider a cylinder starting at position in space 0, square cross-sectional area l2

and divide it into Nv subvolumes of length l (and with volume v = l3). Number

the subvolumes from left to right, so that subvolume number c is connected to the

immediate neighboring subvolumes c − 1 and c + 1. Also let Ω = vA be the size of

each subvolume, yi(c) = xi(c)
Ω

the concentration of species Xi in subvolume c, µi(c) its

expected concentration, and σij(c1, c2) be the covariance between yi(c1) and yj(c2),

which potentially corresponds to species in different subvolumes (when c1 6= c2). All

expectations in this chapter are taken with respect to the distribution P (x).

Suppose we are interested in the time-evolution of the expected value E[f(x)] of a

smooth but possibly non-linear function of the state f(x). Multiplying (7.1) by f(x)
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and then summing over all values of x results, after some algebra, in

d

dt
E[f(x)] =

L∑
`=1

(
E[a`(x)f(x + s`)]− E[a`(x)f(x)]

)
. (7.2)

This equation, first derived in the context of the CME by Gillespie (cite 1981 paper),

can be used to find the rate of change of the mean concentrations, and their variances

and covariances.

We first let f(x) = xi(c)
Ω

, so that E[f(x)] = µi(c). Substituting this definition of

f(x) into (7.2) gives

dµi(c)

dt
=

L∑
`=1

(
E

[
a`(x)

xi(c) + s`i(c)

Ω

]
− E

[
a`(x)

xi(c)

Ω

])
(7.3)

=
L∑

`=1

s`i(c)E[
a`(x)

Ω
] =

L∑
`=1

s`i(c)E[r`(y)] ,

where

r`(y) =
a`(x)

Ω

∣∣
x=yΩ

(7.4)

is the rate of reaction R`, which has units of concentration per unit time. Note that

for local reactions r` is a function of only the local concentrations, and not of the full

concentration vector y.

Although the summation in (7.4) is over all reactions in the system, only those

with non-zero s`i(c) actually contribute to the evolution of µi(c). Such reactions are

either local reactions in subvolume c, with reaction indices denoted by `(c), or one of

the four diffusive reactions that modify xi(c) (diffusion of Xi to and from subvolumes

c − 1 and c + 1). The rate of a diffusive reaction involving species Xi originating

in subvolume c is diyi(c), where di is related to the diffusion constant of Xi through

(e.g., see [87])

di =
Di

l2
. (7.5)
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Then we can re-write (7.4) as

dµi(c)

dt
=

local reactions︷ ︸︸ ︷∑
`∈`(c)

(
s`i(c)E[r`(yc)]

)
+

diffusive reactions︷ ︸︸ ︷
di

[
(µi(c + 1)− µi(c))− (µi(c)− µi(c− 1))

]

=
∑

`∈`(c)

(
s`i(c)E[r`(yc)]

)
+

Di

l

[
µi(c + 1)− µi(c)

l
− µi(c)− µi(c− 1)

l

]
.(7.6)

The first part on the right of (7.6) depends only on local reactions of subvolume c,

which have rates that depend only on the local state y(c). Because these rates are

potentially non-linear functions of y(c) (7.6) generally depends on higher moments

(e.g., variances and covariances) of the local concentrations. The dynamics of µi(c)

is coupled to that of other subvolumes through the diffusive reactions on the right of

(7.6). The diffusive reactions in (7.6) are effectively computing the discrete version

of the second spatial derivative of yi(c). It is tempting to take the limit of l to zero at

this point to obtain the Laplacian operator from the diffusive reactions in (7.6). Un-

fortunately, it turns out such a limit results in exploding higher-moments. Alternate

strategies to avoid this problem are discussed in Section 7.2.1.

To obtain the rates of change of the variances and covariances σij(c1, c2), we now

set f(x) = (xi(c1)
Ω
−µi(c1))(

xj(c2)

Ω
−µj(c2)), so that E[f(x)] = σij(c1, c2). Substituting

this definition of f(x) into f(x) into (7.2), after some algebra, now results in

dσij(c1, c2)

dt
=

L∑
`=1

(
1

Ω
s`i(c1)s`j(c2)E[r`(y)] (7.7)

+s`i(c1)E[r`(y){yj(c2)− µj(c2)}] + s`j(c2)E[r`(y){yi(c1)− µi(c1)}]
)

.

Each reaction in the system can then contribute the three terms on the right of (7.8)

to the rate of change of σij(c1, c2). The first term will only be non-zero when both

s`i(c1) and s`j(c2) are non-zero, which for i 6= j will only be the case when c1 = c2

for some local reactions (and not for any diffusive reaction), and for i = j only for

some diffusive reactions if |c1 − c2| < 2. The second and third term on the right of

(7.8) will be non-zero for reactions that change xi(c1) and xj(c2), respectively. The
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expectations (between square brackets) in the second and third terms in (7.8) are

actually the covariances between the reaction rate r`(y) and the concentration of

Xj(c2) and Xi(c1), respectively.

For nonlinear rate functions r`(y) these covariances involve central moments of

P (x) greater than two. The same is true of the expected rates E[r`(y)] that appear

in (7.8) and in (7.6) when the rate functions are non-linear non-quadratic functions of

the concentrations. Thus, the rate of change of the means, variances and covariances

of the concentrations depends on higher-moments. However, in the spirit of the mass

fluctuation equations in Chapter 5 we obtain approximate the rate of change of these

statistics by Taylor-expansion of each of the functions whose expectations are needed

about the average concentrations µ, retaining only terms up to second order, and

then taking the expectation.

As shown in Chapter 5, the expected rate of a reactions is then

E[r`(y)] ≈ r`(µ) +
1

2

n∑
p,q=1

(
∂2r`(y)

∂yp∂yq

∣∣
y=µ

)
σpq (7.8)

= r`(µ) + ξ`(µ,V), (7.9)

where σpq corresponds to the entry in row p and column q of the covariance matrix

V. The stochastic rate ξ` is generally non-zero for reactions with non-linear rate

functions (e.g., bimolecular reactions). Note that for a local reaction in subvolume c,

the only non-zero terms in the summation in (7.9) will correspond to concentrations

in that same subvolume. Similarly, because diffusive reactions are assumed to have

rate functions that are linear in the concentrations, their stochastic rates are actually

zero.

The covariances between the reaction rates r`(y) and the concentrations (e.g.,

E[r`(y)(yj − µj)]) may similarly be approximated as a function of µ and V by first

Taylor-expansion of terms of the form r`(y)yj up to second order about µ, and then
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taking the expectation. Combining the resulting expression with (7.9) yields

E[r`(y)(yj − µj)] ≈
n∑

p=1

(
∂r`(y)

∂yp

∣∣
y=µ

)
σpj. (7.10)

Substituting (7.9) into (7.6) results in the MFK equation for the mean

dµi(c)

dt
=

∑
`∈`(c)

s`i(c)
(
r`(yc) + ξ`(yc,Vc)

)
(7.11)

+
Di

l

[
µi(c + 1)− µi(c)

l
− µi(c)− µi(c− 1)

l

]
,

where Vc is the N ×N covariance matrix of the concentrations in subvolume c. Note

that only local fluctuations feed into the evolution of the mean concentrations.

As was the case for the mean equation (7.4), although the summation on the right

of (7.8) is over all reactions, only a subset of the reactions actually have non-zero

contributions. Specifically, of all local reactions in the system only those in subvol-

ume c1 or c2 have non-zero s`i(c1) or s`j(c2) and contribute to (7.8). Similarly, only

diffusive reactions that add or remove molecules from subvolumes c1 and c2 actually

contribute to (7.8). This includes all diffusive reactions originating in subvolumes c1

and c2 but also those originating one subvolume away from c1 or c2. Because of the

spatial structure of our setup, which is simply a cylinder, at most 8 diffusive reactions

contribute to (7.8), with the actual number depending on whether |c1 − c2| is zero,

one, or greater than one.

Considering all reactions that contribute non-zero terms to (7.8), and using (7.9)

and (7.10) to approximate the necessary expectations results in the MFK equation

for the covariance σij(c1, c2). Letting δp,q be the Kronecker-delta function, equal to

one when p = q and to zero otherwise, this MFK equation becomes:

205



dσij(c1, c2)

dt
=

∑
`∈`(c1)

(
δc1,c2

1

Ω
s`i(c)s`j(c)(r` + ξ`) + s`i(c1)

[ N∑
k=1

∂

∂µk(c1)
r`(µc1)σkj(c1, c2)

])

+
∑

`∈`(c2)

(
s`j(c2)

[ N∑
k=1

∂

∂µk(c2)
r`(µc2)σik(c1, c2)

])

+
Di

l

[
σij(c1 + 1, c2)− σij(c1, c2)

l
− σij(c1, c2)− σij(c1 − 1, c2)

l

]
+

Dj

l

[
σij(c1, c2 + 1)− σij(c1, c2)

l
− σij(c1, c2)− σij(c1, c2 − 1)

l

]
+δi,j

Di

l2
1

Ω

[
δc1,c2

(
µi(c1 + 1) + 2µi(c1) + µi(c1 − 1)

)
−δc1+1,c2

(
µi(c1 + 1) + µi(c1)

)
− δc1−1,c2

(
µi(c1) + µi(c1 − 1)

)]
. (7.12)

The first two lines of this equation correspond to the contributions of local reac-

tions. The third (fourth) line resembles the discrete Laplacian with respect to the first

(second) spatial dimension c1 (c2), and the last two lines are dissipation terms arising

because of diffusive reactions when |c1− c2| < 2. Equations (7.11) and (7.12) are

the spatial MFK equations for this one spatial dimension system.

7.2.1 The Continuum Limit and Concluding Remarks

It has been argued that the RDME converges in the limit of fast diffusion (where

the non-zero entries in matrix K above become very large) to the Chemical Master

Equation of Chapter 4 (e.g., see [51, 88]). I has been also proposed in [5] that as the

number of reaction partners within the diffusion range of each molecule increases, the

mean concentrations converge to those of the standard reaction-diffusion equations

(a system of deterministic partial differential equations for the concentrations as a

function of space and time, e.g., see [87]). It would be of interest to see if the spatial

MFK equations above converge to the standard MFK equations in the former limit,

and to a partial differential equation model in the latter limit. Further work is needed

in this regard, but below we discuss some issues in obtaining the partial differential

equation model from the spatial MFK equations in the continuous space limit. For
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simplicity, we here discuss some of the issues that come up in the context of the one

dimensional system of Section 7.2, with spatial MFK equations (7.11) and (7.12).

Let a denote the spatial coordinate of the relevant spatial dimension of the cy-

clinder, so that subvolume c has location a = cl. Perhaps a first attempt at obtaining

a continuum approximation would take the limit of l going to zero, so that the vol-

ume of each subvolume goes to zero. So doing certainly turns the diffusive part of

the mean equation (7.11) into the second derivative of µi(a) with respect to a times

the diffusion constant. Unfortunately, (7.11) generally depends on the variances and

covariances, which have the rate of change in (7.12) that goes to infinity as l becomes

small (since Ω goes to zero in this limit).

7.3 The Spatial MFK Equations

We now consider systems where the subvolumes are connected in an arbitrary fashion

to one another, to allow, for example, geometries other than the cylinder considered in

the previous section, or compartmentalization. We start by arbitrarily enumerating

the n subvolumes in the system, and thinking of them as nodes of the larger network

(the whole system). To describe the spatial structure of the network, we draw an

edge between any pair of adjacent subvolumes. If subvolume c1 is adjacent to volume

c2, we then imagine a directional edge out of subvolume c1 and into subvolume c2.

The direction of the edge is arbitrary (we could have imagined the edge leaves from

c2 and leads onto c1) and has no bearing on the results we develop.

We represent this edge through an n × 1 column vector e = eout + ein, where

eout has a -1 in its c1-th entry and is zero elsewhere. Analogously, ein has a +1 in

its c2-th entry and is zero elsewhere. We number all the E edges in the network

(with ek denoting edge number k) and store them in the n × E node-edge incidence

matrix E, whose k-th column is ek. The node-edge incidence matrix summarizes the

spatial structure of the system (e.g., see [28]). We will also need two other related

matrices Eout and Ein whose k-th columns respectively equal eout
k and eout

k . Note that

E = Eout + Ein.
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Recall that yc is the vector of concentrations in subvolume c, and y = [y′1 . . .y′n]′ is

the vector of concentrations in the whole system, with mean µ = E[y] and covariance

matrix V = E[(y−µ)(y−µ)′]. Because the RDME has the same mathematical form

as the CME of Chapter 5, we can actually directly write down the MFK equations

for µ and V, namely

dµ

dt
= Sr(µ) + Sξ (7.13)

dV

dt
= MV + VM′ +

1

Ω
Sdiag

(
r(µ) + ξ

)
S′, (7.14)

where r is the vector with the rate functions of all (local and diffusive) reactions

in the system, M = Sdr(µ)
dµ

, and ξ the stochastic rate vector associated with r, and

diag
(
r(µ) + ξ

)
is a diagonal matrix with r(µ) + ξ in its diagonal.

It turns out that an appropriate ordering of the reactions in the system, combined

with the ordering we have chosen for the entries of y, result in a very pleasant structure

for the MFK equations above that is quite amenable for computations. For this

purpose suppose that reactions are numbered such that the first L`1 correspond to

the local reactions in subvolume 1, the next L`2 correspond to the local reactions of

subvolume 2, and so on, until all local reactions have been taken into account. The

remaining reactions are all the diffusive reactions in the system. The column vector

of rate functions is then

r(; ) =

 rlocal(; )

rdiff(; )

 =


r1(; )

...

rn(; )

rdiff(; )

 ,

where rc(; ) (for c ∈ {1, . . . , n}) denotes the rate vector of the local reactions in

subvolume c, which depend only on the local concentrations yc.

The Kronecker product will turn out to be quite useful for our purposes here. It

is denoted by A ⊗ B for p × q matrix A and m × n matrix B, and results in the
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pm× qn matrix

A⊗B =


a11B a12B . . . a1qB

a21B a22B . . . a2qB
...

...
. . .

...

ap1B ap2B . . . apqB

 .

See e.g., [19], for an introduction to the Kronecker product and a summary of the

main identities involving such products.

Letting IN denote the N × N identity matrix, the stoichiometry matrix S can

then actually be written as

S =
[

S` Sd

]
=


S1 0 0

0
. . . 0

[
E −E

]
⊗ IN

0 0 Sn

 , (7.15)

where the left part of the matrix is block diagonal and depends only on the local

stoichiometry matrices of individual subvolumes. In most cases (except for compart-

mentalization) the local stoichiometry blocks are the same (e.g., Sc1 = Sc2 = Slocal

for any c1 and c2), so then S` =
(
In ⊗ Slocal

)
.

The structure of Sd is most easily seen by first considering a situation with a

single species reacting and diffusing in the system. In such a scenario there are

twice as many diffusive reactions as there are edges in E, two for every edge (since

edges were arbitrarily assigned a direction) to account for both directions of the

diffusive process. The diffusive reaction removing one molecule from the subvolume

corresponding to the non-zero entry in eout
k and adding one molecule to the subvolume

corresponding to the non-zero entry in ein
k has a stoichiometry vector equal to ek,

while the same reaction in the opposite direction has stoichiometry vector −ek. For

this single species case, we can then order the diffusive reactions so that the first E

reactions correspond to those in the same directions as the edges in E, and the next

E reactions correspond to those in the opposite direction as the edges in E. Then

the stoichiometry of the diffusive reactions would then be [E − E]. The Kronecker
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product of the previous matrix with IN generalizes this structure to the situation with

multiple species, where the diffusive reactions have now been ordered so that the first

N correspond to diffusion along e1 for the N species in the system, the next N to

those along e2 and so on; once all edges in E have been so accounted for we start to

simularly account for the N reactions in the opposite direction of e1, e2, etc.

The average and stochastic rate vectors above are similarly given by

r(µ) =

 rlocal(µ)

rdiff(µ)

 =


r1(µ1)

...

rn(µn)

rdiff(µ)

 and ξ =

 ξlocal

0

 ,

where ξlocal = [ξ′1 . . . ξ′n]′ is the vector of local stochastic rates, with

{ξc}` =
1

2

N∑
k,l=1

∂2r`(c)

∂yk(c)∂yl(c)

∣∣∣∣
y(c)=µ(c)

.

Importantly, the rates of the diffusive reactions can be shown to be given by

rdiff =
( [
−Eout Ein

]′
⊗K

)
µ,

where K is an N ×N diagonal matrix with Di/l
2 in its i-th diagonal.

This results in the following MFK equation for the mean:

dµ

dt
= S`

(
rlocal + ξlocal

)
−

(
EE′ ⊗K

)
µ (7.16)

=
(
In ⊗ Slocal

)(
rlocal + ξlocal

)
−

(
EE′ ⊗K

)
µ .

Because S` is a block-diagonal matrix, the first of the two terms on the right, which

depends only on local reactions and local quantities, has no coupling between different

subvolumes. The second term on the right, however, incorporates the coupling across

subvolumes due to diffusion. Interestingly, −EE′ is the discrete-space Laplacian

operator (e.g., see [28]).
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Similarly, the MFK equation for the variance V in (7.14) can be expressed as a

sum of local decoupled effects, plus diffusion-based coupling of covariances in different

subvolumes. To see this, note that

M = S
d

dµ
r(µ) =

M`︷ ︸︸ ︷
S`

d

dµ
rlocal(µ) +

Md︷ ︸︸ ︷
Sd

d

dµ
rdiff(µ)

=


S1 0 0

0
. . . 0

0 0 Sn




d
dµ1

r1(µ1)

. . .

d
dµn

rn(µn)

 +

Sd︷ ︸︸ ︷( [
E −E

]
⊗ IN

)
d

dµ

rdiff(µ)︷ ︸︸ ︷( [
−Eout Ein

]′
⊗K

)
µ

=


S1

d
dµ1

r1(µ1) 0 0

0
. . . 0

0 0 Sn
d

dµn
rn(µn)

 +

( [
E −E

] [
−Eout Ein

]′
⊗ INK

)

=
(
In ⊗ Slocal

) d

dµ
rlocal(µ) +

[(
− EE′)⊗K

]
, (7.17)

where we used the identity (A1 ⊗A2)(A3 ⊗A4) = (A1A3)⊗ (A2A4) for Kronecker

products, which is valid as long the the dimensions of the matrices allow the indicated

products (e.g., see [19]), and assumed in the last line that Sc1 = Sc2 = Slocal. This

last assumption simplifies notation, but is by no means necessary. Note that M` is

block-diagonal, but Md, which is a function of the discrete Laplacian operator, is

generally not. Note also that Md =
[(
− EE′)⊗K

]
is symmetric, since EE′ and K

are symmetric and (A1⊗A2)
′ = (A′

1⊗A′
2) for any pair of matrices A1 and A2 (e.g.,

see [19]).

The MFK equation for the variance then becomes

d

dt
V =

local decoupled computation︷ ︸︸ ︷
M`V + VM′

` +
1

Ω
S`diag

(
rlocal(µ) + ξlocal

)
S′` (7.18)

+
[(
− EE′)⊗K

]
V + V

[(
− EE′)⊗K

]
+

1

Ω
Sddiag

(
rdiff(µ)

)
S′d︸ ︷︷ ︸

coupled (diffusive) computation

.

The spatial MFK equations above (7.16) and (7.18) are consistent with the corre-
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sponding equations, (7.11) and (7.12), for the 1-d case in the previous section. Note

again the appearance of −EE′, the discrete Laplacian operator, which seems to act

both column-wise and row-wise in V.

We leave to further work an exploration of the convergence, under appropriate

limits, of the more general spatial MFK equations, (7.16) and (7.18), to the continuous

space limit and to the reaction-diffusion equations. Presumably the discrete Laplacian

operators in (7.16) and (7.18) will converge to the standard Laplacian operator in

the appropriate limit. Additionally, the spatial MFK equations should be compared

against stochastic simulation of the RDME for specific examples.
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Chapter 8

Concluding Remarks and Future

Work

8.1 Concluding Remarks

The study of biology from a systems perspective is not new. However, the rate

at which experimental data on biological systems is being generated, for example,

through microarrays or DNA sequencing, is fairly recent. Decades of reductionistic

studies, combined with the more recent technological breakthroughs, have resulted

in a vast amount of detailed information, often at the molecular level, about many

biological systems. The complete DNA sequences for several organisms, including

humans, are now completely known.

Yet, it is still difficult to see how system function arises from this detailed (molec-

ular) picture, or to generate quantitative or even qualitative predictions about system

behavior under specific environmental conditions. It is even harder still to accurately

predict the collective system behavior (e.g., at the cell population, tissue, organ, or

organism level) from our detailed system knowledge. This situation has led to a

renewed interest in the quantitative study of biological systems, but now with an

integrative approach under the so-called field of systems biology.

The potential impact of achieving a quantitative systems understanding of biol-

ogy is tremendous. It can significantly enhance drug design, for example, by the
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use of accurate computational models for target identification, choice of mechanism

of action, and even the molecular design of the drug itself. Furthermore, a solid

systems-understanding of biology, combined with molecular biology, genetics and en-

gineering, will allow (and is starting already) the engineering of biological systems for

applications as varied as medical therapies, or the efficient production of biofuels.

Fortunately for us researchers, there is much work still to be done to realize the

promise of systems biology. Better and higher-throughput techniques that enable

dynamic measurements at the appropriate temporal resolution of biological systems

will undoubtedly play a key role in the success of systems biology. Such technologies

should allow, for example, the in-vivo measurement of biomolecule concentrations,

reaction rate constants, and protein chemical states (e.g., phosphorylation).

However, the promise of systems biology will be difficult to realize solely on the

availability of such measurement techniques. I believe that quantitative tools to

model biological systems and to interpret biological measurements (e.g., to infer dy-

namic phosphorylation states from fluorescence resonance energy transfer data) are

also necessary, and will play an increasingly more important role in systems biology,

particularly as the complexity of the systems of study increases. These quantitative

methods can become an integral part of the study of biological systems, for example,

through the generation of concrete quantitative hypothesis amenable for experimental

testing (as in Chapter 2), or through the interpretation of experimental data. Fur-

thermore, from a biological engineering perspective, they can quite naturally provide

an efficient framework to optimize the performance of a given biological system.

Some quantitative tools and results from engineering systems theory, or more gen-

erally, from the mathematical theory of dynamical systems, can be directly applied

to the study of biological systems, as exemplified in Chapter 2. However, new quan-

titative tools specifically suited for biological systems will have to be developed. In

particular, a systematic framework to model biological systems should be at the core

of the quantitative tools in systems biology. At the cellular level, a good starting point

could be a framework that yields minimal, accurate, and accessible models of systems

of chemical reactions when provided with the structure (e.g., stoichiometry) of a bio-
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chemical network and the relative magnitudes of its parameters (e.g., rate constants).

The tools and frameworks developed could prove useful not only to biology, but also

to other fields that deal with chemical reactions in small volumes (e.g., microreactors).

Furthermore, these tools and frameworks, and the knowledge resulting from the study

of biological systems, can also inspire the engineering of non-biological systems. For

example, cells seem to robustly transmit information from their environment despite

the fact that their communication network (e.g., signaling pathways) is built on in-

herently noisy components (e.g., diffusing proteins). The mechanisms by which this

is achieved could perhaps be applied to engineered communication networks.

In this thesis we have tried to contribute to the larger effort of the systems biology

community in two main ways. First, in Chapter 2 we have demonstrated how system

engineering techniques and results can yield significant insight, and be an integral

part of experimental studies of biological systems. Key to this approach is ability

to measure system dynamics in response to carefully chosen time-dependent inputs.

Second, in the remaining chapters we have applied model reduction techniques to

characterize the system behavior of a motif that is pervasive in signaling pathways

(Chapter 3), and to simplify the models for spatially-homogeneous (Chapters 5 and

6) and spatially-inhomogeneous (Chapter 7) stochastic systems of chemical reactions.

Chapter 3 applies separation of time scales to the MAK model of the signaling

cycle, a network motif pervasive in signaling pathways, and allows the characterization

of its steady-state and dynamic behavior. We show that this motif can be in one

of four total regimes, each with their particular behavior characteristics, and two

of which had not been identified before. One of the newly-identified regimes, the

signal-transducing regime, seems particularly well suited for the robust transmission

of information in the presence of noise. Remarkably, the system response in this

regime is largely independent of protein concentrations (it depends only on protein

chemical states instead), suggesting the transmission of information in different cells

can be largely identical despite significant fluctuations in molecule numbers. Another

regime, the ultrasensitive one, is mathematically an integrator (until saturation is

reached). When embedded in negative feedback loops, ultrasensitive cycles would
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provide integral feedback and result in the perfect adaptation of system behavior (see

also Chapter 2).

Chapter 5 develops the mass fluctuation kinetics (MFK) equations, an approx-

imate model for the means, variances and covariances for the concentrations of a

spatially-homogeneous chemical system. The MFK model is not much more com-

plex than the deterministic mass action kinetic (MAK) models that many researchers

use because of their simplicity, and allows for a more direct comparison of system

dynamics in the presence and absence of noise. In this context, the MFK model

provides a clear way to see how system size directly affects the impact stochasticity

has on system behavior. For example, it is easy to show in the MFK model that, as

the system volume goes to infinity while keeping all concentrations constant (which

is equivalent to letting molecule numbers go to infinity), the MFK equations often

converge to MAK.

Even MAK models can be quite complex and generate a rich set of system be-

haviors, particularly because of their potential nonlinearities. A very useful tool that

reduces the complexity of MAK models has been time-scale separation, where one

aims to obtain a system description for a subset of the system variables, the slow

variables. In Chapter 6 we present a method to systematically identify the slow and

fast variables in spatially-homogeneous chemical systems, deterministic or stochastic,

given a classification of reactions into slow and fast. This identification of slow and

fast system variables turns out to depend only on stoichiometric considerations. In

this chapter, we then develop separation of time-scale methods for stochastic chemical

kinetics that are often more accurate and generally valid than previously proposed

methods.

Chapter 7 is analogous to Chapter 5, but obtains an approximate model for the

means, variances and covariances for the concentrations of a spatially-inhomogeneous

chemical system. The resulting approximation, the spatial MFK equations, are much

simpler to work with than the fully stochastic model. Together with the MFK equa-

tions, they open up a variety of possibilities for further work.
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8.2 Further Work

The work described in this thesis suggests several directions of future work.

The Osmo-regulation Network of S. cerevisiae

Chapter 2 shows that the osmo-regulation network of S. cerevisiae perfectly adapts

to steps of extracellular osmolarity, and that this adaptation depends on the kinase

activity of protein Hog1. Further research related to this system could be:

• Studying the relationship between signaling and gene expression. Hog1 is known

to mediate a wide gene expression response. Using the setup we developed to

measure Hog1 signaling in single cells, and tracking gene expression in response

to this signaling (e.g., by fluorescently tagging appropriate gene(s)) could enable

the characterization of the cell-signaling-to-gene-expression system. A simple

pole-zero model of the process could be used as a starting point. It will also

be of interest if, as it seems will be the case, the cell-to-cell variability in gene

expression levels will be much greater than the cell-to-cell variability in the cell

signaling.

• Studying signaling in more detail and at a higher temporal resolution. The

MAPK cascade reaches peak nuclear enrichment within minutes; this activation

period reflects the dynamics of the signaling pathway and nuclear transport of

Hog1 as cleanly as possible. It would be interesting to explore these initial dy-

namics in more detail to study MAPK signaling at the single cell level. Several

experiments that would be of interest include tuning up and down the levels of

each of the gene levels of the proteins in the signaling pathway, understanding

the differences in signaling between the Sln1, Sho1, and combined branches of

the signaling pathways. These experiments can be performed with a signifi-

cantly higher sampling frequency, and on a newer microscope than the one we

used; one with laser-autofocus to minimize the noise introduced by the experi-

mental setup. It will be very interesting to see whether the observed behavior
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can be understood in the context of what would be standard models of the

chemical reactions involved in the signaling pathway.

• Determining the number of integrators in the feedback loop. If other inputs

can be generated, such as ramps, the number of integrators in the feedback

loop of the network can be determined through the application of the internal

model principle of control theory. Our measurements of the amplitude of the

response to sinusoidal inputs suggest that the system transfer function has a

single zero at frequency zero, and thus a single integrator in the feedback loop.

This suggests, for example, that the network will not adapt perfectly to ramp

inputs.

• Identifying the biomolecules performing the integration. As mentioned in the

discussion of Chapter 2, proteins involved in the breakdown of glucose into glyc-

erol that are activated and deactivated by saturated reactions, such as PFK2,

are good candidates. Inserting a genetic construct to externally manipulate

PFK2 concentration could suffice to move the reactions away from saturation

and, if indeed PFK2 is the integrator in the network, result in the loss of inte-

gration and of perfect adaptation.

More generally, biology is rife with systems involved in homeostasis, where a

biophysical quantity is finely regulated to lie within a small range of values. Integral

feedback may be the common mechanism to achieve such behavior, and it would be

of interest to understand the different mechanisms employed by biology to implement

integral feedback through the study of other homeostatic systems.

Quantitative Tools and Frameworks to Model Biology

The list of possible research projects is fairly large but the following can be mentioned

here:

• Study the precise relationships between the four modeling regimes (as a function

of system size and mixing rate) for systems of chemical reactions. In particular,
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articulate the appropriate mathematical limits that connect the more detailed

to the less detailed regimes. The spatial MFK equations of Chapter 7 provide

a natural context for this endeavor.

• Develop a systematic procedure to determine which modeling regime is the most

appropriate for a given system. Such a procedure could result from a better

understanding of the error between the (spatial and standard) MFK equations

and their (large system) deterministic counterparts, as a function of both mixing

rate (e.g., diffusion constants) and system size.

• Study the general consequences of stochasticity and spatial effects on system

behavior. For example, how far from one another are the steady-states corre-

sponding to stochastic and non-stochastic models (e.g., as a function of system

size)? How does stochasticity impact the stability of a steady-state? Presum-

ably stochasticity is often destabilizing, but by how much? Another idea is to

explore how (Turing) pattern formation conditions change in the presence of

stochasticity.

• Generalizing results applicable to MAK models to other modeling regimes.

There are various theories providing very general results for a large class of

problems in the context of MAK. For example, Metabolic Control Analysis

(MCA) describes how steady-state rates and concentrations depend on system

parameters; Chemical Reaction Theory (CRT) yields the number and stability

of steady-states for the MAK models of a large class of systems. It would be

of interest to see whether these results apply to, or can be generalized, for the

other modeling regimes. Here again the MFK models are natural frameworks

to explore this.

• Develop model reduction tools for spatial MFK (e.g., separation of time-scales).

• Use techniques developed to study the system behavior of typical network motifs

(e.g., the signaling cycle of Chapter 3 in the presence of spatial and stochastic

effects).
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