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Abstract

Several bioinformatic tools will be brought to bear in this thesis to identify specific
genomic loci that serve as regulatory gateways of gene expression in brain. These
"motifs" are short nucleotide patterns that occur in promoters and 5' or 3' untrans-
lated regions of genes. Occurrences of motifs that function in eukaryotic genomes as,
e.g., transcription factor binding sites or targets of RNA interference are assumed to
lie at the nexus of several trends. Instances that are indeed regulatory and not just
bits of random sequence should show evidence of actual binding of factors that have a
significant effect on expression levels. Such motif instances are also expected to be sig-
nificantly enriched (or de-enriched), compared to background, in the genes regulated
by their binding factors and in brain structures most closely associated with these
genes' functions. Finally, truly regulatory motif instances are likely to be highly con-
served in orthologous genes across multiple genomes; i.e., conservation can be taken as
a proxy for function. My research exploits these ideas by exploring genome-wide prop-
erties of motifs associated with the transcription factor family MEF2, some of whose
members are known to play a role in synapse development. Data from chromatin
immunoprecipitation and tiling-microarray (ChIP-on-chip) experiments [11 have iso-
lated peaks of specific binding by MEF2 in developing rat brains. Conservation and
enrichment of these sites are analyzed here for their association with functionality
and variability of motifs in genes that have been shown to fall under the control of
MEF2 in excitatory neurons. The relationships between regulatory motif content,
motif functionality, and expression of neuronal genes investigated in this work can
help elucidate how programs of gene expression are controlled---and hence how they
might go awry-- -in the brain.

Thesis Supervisor: Isaac S. Kohane, M.D., Ph.D.
Title: Lawrence J. Henderson Associate Professor of Pediatrics and Health Sciences
and Technology, HMS, CHMC
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Chapter 1

Introduction

Biomedical science in the genomic era, has the opportunity to exploit insights afforded

by genome-wide studies of how human cells attain and maintain their proper func-

tion in response to internal and external cues. Cells respond to their environment

via signaling networks whose components are ultimately encoded in an organism's

genetic instructions. The transcription of genes and the regulation of mechanisms

that differentially control gene transcription in different types of cells are therefore

critical to the specificity of cellular activity. Since most human genes are expressed

in the brain [2], neuroscience in particular stands to benefit from a genomic approach

to understanding the regulation of genes involved in the development, maturation,
anid function of neurons.

Bioinformatic tools can be brought to bear to identify specific genomic loci that

serve as either pre- or post-transcriptional regulatory gateways of gene expression in

the brain. These "motifs" are noncoding nucleotide consensus patterns of length 6 18

nucleotides (nt) that occur in noncoding regions closely associated with genes i.e.,
nearby promoter regions and 3' untranslated regions (3'UTRs) of genes, or mnore distal

enhancers. Note that vertebrate promoters are usually assumed to lie upstream of

(5' to) the transcription start site (TSS), though this has been called into question [3].

The sequences found in promoters function as bindting sites for transcription factors

(TFs), while those in 3'UTRs are potential targets of miRNAs for mnediating RNA

interference (RNAi). There may be many sites in the genomne that mnerely conform

to motif patterns but do not normally bind functioning factors. Identification of

instances in the genomne that are actual sites of factor binding and functional activity

will thus point to loci of key interactions in the regulation of gene transcription and

transcript processing.

The research presented in this thesis covers one of several projects that I have



worked- described below ---.on that investigate genome-wide properties of motif dis-
tributions and their role in gene regulation. some of this work employed a set of over
1500 previously discovered, conserved motifs [4]. These "Xie motifs" were discov-
ered in 4-kb--wide 5' promoter regions and in 3'UTRs of over 17,000 human genes.
They represent sites that are conserved across a 4-species genomic alignment (hu-
man, mouse, rat, dog) significantly more often than in nonregulatory regions. This
set of motifs provides a reliable catalog of sequence patterns that are distinguished
by their unusually high rate of conservation. However, even if sequence conservation
is taken as strong evidence of functionality, most occurrences of these motifs are in
fact not well conserved. There still remains the important challenge of ascertaining
with reasonable confidence those particular consensus sites that are truly functional
in neurons. Note that the issue here is not so much motif discovery (for which tools
such as MEME exist [5]) as consensus site validation.

Motifs having instances in the human genome that function as either TF binding
sites or targets of RNAi are assumed to exhibit several characteristics, which can be
assessed bioinformatically:

* Instances that are indeed regulatory and not just bits of random sequence should

show evidence of actual binding, e.g., by a TF as revealed through chromatin

immunoprecipitation and microarray (ChIP-on-chip) experiments, and signifi-

cantly high (or low) expression levels in particular brain regions compared to

background levels.

* Such motif instances are also expected to be significantly enriched, compared
to background, in the genes regulated by their binding factors and in brain

structures most closely associated with these genes' functions. (Alternatively,
motifs may be de-enriched in genes that should not be regulated by certain

binding factors.)

* Finally, truly regulatory motif instances are likely to be highly conserved in

orthologous genes across multiple genomes, implying that both these genes and

these regulatory sequence(s) are confer functionality that has been fixed by

evolution--- i.e., conservation is taken as a proxy for function.

My research has investigated and quantified how these features collectively contribute

to motif instance functionality. What follows is a brief description of three projects I

have worked on, the last of which, on the transcription factor family MEF2 (myocyte

enhancer factor 2), comprises the content of this thesis.



Deeper conservation of the Xie motifs and functional instances in human. This work
was done in collaboration with Dr. Jesse M. Gray of the Michael E. Greenberg lab

at Harvard Medical School and Children's Hospital Boston.1 We further analyzed

the Xie set of conserved motifs [4], which had been originally extracted from a 4-

way alignment of the genomes hg17-mm5-rn3-canFaml, with the aim of identifying

as many functional instances of these patterns as possible. This set covers most

genes of the human genome. We matched all motif occurrences in promoter windows

(TSS ± 4kb) and in UTRs for this set against a more extensive 17-way alignment of

the human genome to 16 other vertebrate genomes created by UCSC [6]. (A 28-way

alignment has become available more recently [7, 8], but we have not used it to re-

analyze the Xie motifs.) The use of more genomes (including chimp, cow, opossum,
chicken, ... ) (lispersed in evolutionary distance (... all the way down to frog, fugu,
and zebrafish) provided a, more reliable estimate of significant conservation for such

short (, 6 ut) nucleotide sequences [9]. The aim was to enhance the confidence with

which functional regulatory elements could be pinpointed by allowing useful estimates

and optimization of (low) false discovery rates.

Our analysis of the Xie motifs based on this deeper conservation resource has

produced lists of individual motif instances that are likely to be fmnctional with false

discovery rates (FDR) of less than 25% or better. At the top of our highest-confidence

list (FDR < 5%) for 3'UTR motif instances are the polyadenylation (polyA) signal

AATAAA and the motif TGTANATA for binding of pumilio homrnolog 2 (PUM2) a

gene which is in fact conserved all the way down to Drosophila [10]. The former may

be regarded as a positive control. But the ubiquity of well conserved PUM2 sites

may be a more substantial discovery, considering the role of PUM2 in translational

control; see, e.g., Ref. [11].

Correlation of Xie rmotif enrichment with gene expression and brain structure in
mouse. The expression levels for over 20,000 mouse genes, obtained from high-

resolution in situ hybridization data from each of 209 structures of the mouse brain,
were made available through a collaboration between Dr. Gray and myself with the

Allen Brain Institute [2]. Several hundred of the most highly expressing genes are

currently being analyzed for their degree of enrichment (or de-enrichment) of the

Xie set of highly conserved motifs in 17 major mouse brain regions. The ABA also

mnade available to us a set of high-resolution three-dimensional expression data on a

'In this thesis I will mention my collaborators explicitly where appropriate. I will distinguish limy
specific contributions to our work by using the pronoun "I" and reserve "we" for parts for which I
cannot take most of the credit. I will use the passive voice for work done by other groupIs.



67 x 41 x 58 grid (spacing 25 pm). (This data set was a more complete version of data

accessible online from the Allen Brain Atlas [12].) In order to organize and enable
us to visualize these data, I developed an algorithm for identifying regions of con-

tinuously correlated voxels. Without reference to mouse brain morphology as input,
this method was able to capture major brain structures having consistent expression

patterns. An outstanding project is to associate these spatial expression clusters with
patterns of motif enrichment.

For the whole gene set of hybridization data taken from coronal or sagittal sec-

tions, those motifs that most highly correlate (positively or negatively) with genes
expression patterns specific to each of the 209 structures will be identified via alterna-
tive machine-learning methods. I am planning to begin by applying Random Forests
to these data [13, 14]. In this technique, many regression trees are generated ran-

domly, where the branching in each tree is determined by how well the concentrations

of a handful of random motifs (features) distinguish sets of resampled expression lev-

els between structures (by entropy maximization) and where out-of-bag (nonsampled

genes) expression levels are used as test sets.

Use of conservation in tandem with ChIP-on-chip to probe gene regulation by MEF2

in the rat brain. This project focuses on the particular family of transcription factors

MEF2, which are highly expressed in brain and under the regulation of several calcium

signalling pathways [15]. MEF2A and MEF2D have been shown to play a significant

role in the regulation of synapse number in the developing central nervous system

(CNS) [16]. Data from ChIP-on-chip and tiling-mnicroarray experiments carried out

by members of the Greenberg lab have been used to identify peaks of specific binding

by the transcription factor MEF2D in developing rat brains [1].
I have analyzed conservation of these sites, their enrichment in the Mef2 binding

peaks, and their variability, along with alternatives to the usual Mef2 consensus motif,
for their influence on motif binding and functionality in genes whose expression is

sensitive to MEF2 levels in excitatory neurons. This work is the main subject of this

thesis, described in Chapters 2 and 3.



Chapter 2

Use of Conservation in Tandem with

ChIP-on-chip to Probe Gene Regulation

by MEF2 in the Rat Brain

This chapter is organized as follows. Chromatin imuninoprecipitation and microarray

experiments to assay MEF2 binding are described in Sec. 2.1. In Sec. 2.2 I survey

canonical and variant consensus sites of MEF2 binding for their enrichment compared

to randomn background levels. I analyze conservation properties of the Mef2 binding

peaks in Sec. 2.3 and focus on the MEF2 and control motif consensus sites and

appropriate ways to visualize their conservation in Sec. 2.4.

I present conclusions from this work in Chapter 3. Questions raised here that
merit further investigation, as well as possible extensions to the current work, are

collected in Chapter 4.



2.1 MEF2 Peaks from ChIP and Tiled-Array Data

The following chromatin immunoprecipitation ("ChIP") and microarray experiments

("chip") were performed by Steven Flavell and Dr. Tae-Kyung Kim in the laboratory
of M. E. Greenberg and are described in Ref. [1].

To develop mRNA profiles reflecting the effect of neuronal activity on the tar-
geting of genes by MEF2, ChIP was performed on rat hippocampal neurons that
had been harvested at E18, cultured 7-8 days in vitro, stinmlated by treatment with
KCl to induce membrane depolarization, and observed (1) before (i.e., at zero hours),
one hour after, and six hours after stimulation. The neurons were then exposed to

a Mef2D-specific antibody [16], which was cross-linked to DNA via paraformalde-
hyde treatment, nuclei were isolated, the DNA was sonicated to fragments of mean
length - 500 bp, crosslinking was reversed, and the surviving DNA fragments were
purified. These ChIP samples and appropriate negative controls were amplified by
PCR. and ligated to linkers in preparation for microarray hybridization. Antibody ef-

ficiency and primer sets used for amplification were validated using quantitative-PCR.

and Western-blot analyses. Though the antibodies used were specific to Mef2D (vs.
Mef2A), in the following we will refer to this transcription factor as simply MEF2.

Custom Nimblegen rat-genome tiling arrays were used with probes that covered
the 308 genes described above, plus 40kb of "padding" outside both 5' and 3' ends
of each gene. There was one 50-bp probe per 100--125 bp in these gene regions. In
order to identify genomic loci of true MEF2 binding to the DNA of these neurons, we

developed anr algorithm for filtering probe intensities that optimized the heuristic for
what would b)e considered a "Mef2 peak." To be conservative and maximize signal-to-
noise, we considered only a minimal number of consecutive probes (physically adjacent

in the rat genome) whose log2 intensity values exceeded a given percentage cutoff.
Optimal criteria were found to be at least four consecutive probes at a 99% cutoff level
(i.e., the 1% highest intensities). Three examples of identified Mef2 peaks are shown
in Fig. 2-1 as UCSC Genome Browser tracks [17] along with their conservation tracks
(described below in Sec. 2.3). A total of 241 Mef2 peaks were found in the tiled gene
regions. Note that my analysis here are based on the annotations provided with the
UCSC rn4 reference assembly [18] (based on RGSC v3.4). As a result, I will include
only 296 of the 308 tiled genes: 296 are found in rn4, while 12 that are annotated
instead in the Celera assembly are excluded as they have no matching annotation in
rn4.

The point of the ChIP experiment is to isolate DNA fragments that are bound by
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Figure 2-1. Three typical genoinic sequences containing Mef2 peaks, delineated by consec-
utive microarray probes (red bars, heights proportional to normalizedl probe intensities);
arrows, canonical MEF2 binding sites. (a) 3.7 kb on rat chr5 with a 2481-bp peak about
400 kb upstream of Nr4a3, an orphan nuclear receptor involved in regulating transcription;
(b) 3.7 kb on rat chr9 with a 2470-bp peak within the last intron, 11 kb upstream of the
last exon, of Dscrlll, which binds to calcineurin and is involved with CNS development;
(c) 30 kb on rat chr16 with a 1478-bp peak 26 kb upstream of Klf2, a transcription factor
that regulates important aspects of vascular function. Conservation track values for peaks
also shown color coded (high/yellow to low/purple) as in Sec. 2.3; see Figs. 2-5--2-8.

MEF2 in activity-regulated hippocampal neurons. Hence the 241 Mef2 peaks that
were identified among the set of 296 rat genes can be expected with high probability
to include functional binding sites of MEF2. We further expect such functional loci
to be significantly conserved compared to the genome at large and even the tiled gene
regions. Association of the transcription factor MEF2 with these loci may, however, be
due to indirect binding of MEF2 to other components of a DNA-binding complex that
controls transcription of the target genes. In fact, only 151 instances of the canonical
MEF2 binding site are found in these peaks. It is therefore of interest to characterize
any associations of these de facto Mef2 peaks with predicted MEF2 binding consensus
sequences, possible variants of consensus sequences, and regions of high conservation.



2.2 Enrichment of MEF2 Consensus Sites and their Variants

One way to represent a consensus sequence is as a position-weight matrix, which
assigns a probability of observing each base (A or C or G or T) at each position in

the sequence. Here I will use the more compact standard notation, which represents

each position by a single letter indicating either 1 definite base ({ACGT}), unresolved
2-base ({SWRYMK}) or 3-base ambiguities ({BDHV}), or no specificity ({N}). One

can also represent per-position base frequencies visually as motif "logos" Ref. [19],
which nicely capture a pattern's information content. Although some information

about single nucleotide frequencies are lost, the notational convenience is preferable
here so for simplicity I will stick to the ambiguated-letters scheme for representing

motifs.

The canonical MEF2 consensus sequence has been inferred from SELEX-type ex-

periments [20, 21]. The consensus for MEF2 is YTAWWWWTAR, which I will refer

to as the motif Mef2. It is palindromic and AT-rich (W={AT}), with only the first

and last bases allowing C or G. Note for future reference that the CG content of the

rat genome as a whole is 0.418, for the tiled array genes it is 0.428, and in the Mef2

peaks in particular it is 0.489. (I obtained these values from a simple census of base

pairs in the relevant regions of the rn4 reference assembly.)
Thile Mef2 motif can be matched by 14 x 26 = 64 specific sequences of the 4 bases

{ACGT}. An infinite random sequence of bases with 50% CG content would therefore

be expected to have an occurrence of the motif with frequency 64/410 = 2- 14, or

at 1 in every 214 = 16,384 bases on the average. Note that if YTAWWWWTAR

were not palindromic, that this frequency would be approximately doubled (to 1

in 8,192) because each specific sequence could be found on either DNA strand. (See

Appendix A for details.) More importantly, deviations from 50% CG can significantly

alter the expected background rate of motif matches. For example, if the Mef2 motif

occurred randomly in the rat genome and if the genome had no structure, it would

be found once every 4,862 bases on average. The details of this kind of accounting

are spelled out in greater detail in Appendix A.2.

2.2.1 MEF2 Consensus Sites

The frequency with which 10-bp windows of the rat genome, or subsets of the rat

genome, actually match the Mef2 consensus can be inferred from a simple search of

the published reference genome. I downloaded the complete rn4 assembly of the rat

genome from the UCSC Web site [22]. This included over 258Mb of sequence on



20 autosomes and 1 sex chromosome. To mine this data, I wrote a set of Perl pro-

grams that comprise a pipeline for finding motif instances (loci and sequence) in both

genomic DNA and DNA subsequences, and for extracting sequence and conservation

data from given loci; see Appendix B for details. Note that some of the enrichment

and conservation characteristics described here were obtained by sampling only rat

chromosome 2 ("chr2"); checks on whether it is indeed representative of the whole

genome are mentioned where appropriate.

Based on the CG fraction of 0.418 for the rat genome as a whole, the expected

background rate of 1 instances of YTAWWWWTAR per 4,862 bases equals 53,109 ±

230, where the "error" here quotes 1 standard deviation assuming Poisson statistics

(see Appendix A.1 and A.2). But the number of Mef2 sites actually I found in the

whole genome equals 68,779, a 1. 3-fold enrichment. The collective region of all the

tiled genes comprises 31.3Mb of sequence - -about 12.1% of the rat genome --and is

only slightly less AT-rich. Here the random background rate for this motif is 1 in

5,585, implying 5,606 + 75 expected instances. The number of discovered Mef2

instances is 7,535, again about a 1.3-fold enrichment. So this motif crops up fairly

frequently in rat, but about as often within genes as without.

The situation in the Mef2 peaks identified by the ChIP-chip experiments is dra-

matically different. Totalling just under 200kb, this region is relatively CG-rich

(PCG = 0.489) and the random background rate of YTAWWWWTAR occurrences drop
to 1 in 13,766. The expected number of Mef2 instances in the peaks is then only

14 + 4, which seems low for sequences that were identified as bound by MEF2. In

fact, I found 151 instances of the canonical Mef2 motif in the Mef2 peaks' genomic

subsequences. This represents a 10.4-fold enrichment over background in the peaks,
or about 36 standard deviations above what random sequence would deliver. I'll

demonstrate in Sec. 2.4 another way in which this represents an unusually high level

of significance. The 151 Mef2 instances are located in 128 (53%) of the 241 Mef2

peaks. In total, 113 peaks had no consensus sites, while 110 had 1 sites, 14 had 2, 3

had 3, and 1 peak had 4 sites. The latter, shown in Fig. 2-1(a), lies just upstream of

the transcription factor Nr4a3 (nuclear receptor subfamily 4, group A, member 3).

There are two points of particular biological relevance here. The fact that barely

half of the Mef2 peaks contained canonical MEF2 binding sites is indication that an

appreciable amount of the interaction of MEF2 with chromatin takes place through

indirect binding, as noted above. That is, MEF2 may frequently interact with DNA

an as yet unspecified protein complex. In addition, it turns out that 64% of the

binding sites identified through the ChIP-chip experiments [1] were 2.5kb or farther



from any gene's transcription start sites. Combined with the fact that the non-control
probed genes were already known to be targets of MEF2 regulation, this suggests
that both proximal and distal binding of MEF2 are important for its regulation of its
target genes.

2.2.2 MEF2 Consensus Variants

Binding site motifs for transcription factors can also be inferred directly from genomic
sequence. The assumption is that any sequence that has already been associated
with a factor's binding, such as the Mef2 peaks here, should be enriched compared
to an 8th-order background of random sequence in whatever particular motifs serve
as the true binding site. A popular program for discovering short, enriched motifs
in DNA sequence is MEME [23, 5] (Multiple Expectation-Maximization for Motif
Elicitation). After supplying this tool with background information appropriate to
the peaks' base composition, we elicited 10bp or 11bp motifs according to a few
different criteria. In every case the Mef2 peak sequences were prefiltered to avoid
regions of especially low evolutionary conservation by considering only those bases
with phastCons scores > 0.05 (see the Sec. 2.3 on conservation scores). Further
distinctions were made based on the presence or absence of Mef2 sites within the
1%-cutoff Mef2 peaks, yielding these four MEF2 consensus variants (Mef2 itself is
"number 0." on this list):

1. First, MEME was given only Mef2 peaks that contained at least one occurrence

of the canonical binding site YTAWWWWTAR. The most significant motif re-

turned by MEME was HWAWAWWWAR, which I will refer to as Mef2-varl.

This pattern is relatively permissive, in the sense that it would be matched

by random sequence at 1 in 2,376 sites (vs. 1 in 13,766 expected for Mef2).

Strictly speaking, MEME didn't return the Mef2 motif per se. But noting that

H = {A, C, T} D Y, Mef2-varl is essentially just a more lenient version of Mef2.

2-3. Second, MEME was given only Mef2 peaks that did not contain any occur-
rences of the canonical binding site YTAWWWWTAR. For these sequences

MEME returned two motifs: KBYTDTTTWDD, called Mef2-var2 here, and

DRTWWTTWTAR, called Mef2-var3. These are, respectively, as permissive as
Mef2-varl (1 in 2,861 for Mef2-var2) and less so than Mef2 itself (1 in 18,221
for Mef2-var3).

4. Finally, MEME was given all Mef2 peaks, irrespective of whether any instances



Instances in rn4 Chromosome 2 (258,207,540 bp; PCG = 0.418)
Mef2-like Motifs Expected Instances Found Instances

Name Consensus 1 in (bp) # ±a # z x

Mef2 YTAWWWWTAR 4,861.8 53,109 230 67,878 64.1 1.3

Mef2-wvrl HWAWAWWWAR 799.9 322,800 568 479,635 276.0 1.5

MeI2-var2 KBYTDTTTWDD 1,365.7 189,066 435 376,746 431.6 2.0

Mef2-var3 DRTWWTTWTAR 6,146.4 42,010 205 62,466 99.8 1.5

Mef2-HiSco BTWTWTHWDDH 370.8 696,353 834 882,992 223.7 1.3

Mef2-Perm WYWAATRWTW 2,430.9 106,219 326 127,800 66.2 1.2

Mef2-Rdml AKCTWWAGMT 37,700.7 6,849 83 6,471 -4.6 0.9

CREB TGACGTMD 6,087.7 42,415 206 6,429 -174.7 0.2

Instances in Tiled-Array Genes (31,309,615 bp; PCG = 0.428)

Mef2-like Motifs Expected Instances Found Instances
Name Consensus 1 in (bp) # ±a # z x

Mef2 YTAWWWWTAR 5,584.9 5,606 75 7,443 24.5 1.3

Mef2-varl HWAWAWWWAR 925.0 33,848 184 55,545 117.9 1.6

Mef2-var2 KBYTDTTTWDD 1,507.3 20,772 144 47,171 183.2 2.3

Mef2-var3 DRTWWTTWTAR 7,105.4 4,406 66 6,903 37.6 1.6

Mef2-HiSco BTWTWTHWDDH 419.1 74,707 273 98,620 87.5 1.3

Mef2-Perm WYWAATRWTW 2,792.4 11,212 106 13,157 18.4 1.2

Mef2-Rdml AKCTWWAGMT 39,900.3 785 28 656 -4.6 0.8

CREB TGACGTMD 6,017.9 5,203 72 1,140 -56.3 0.2

Instances in MEF2 Peaks (199,498 bp; pCG= 0.489)

Mef2-like Motifs Expected Instances Found Instances
Name Consensus 1 in (bp) # ±r # z x

Mef2 YTAWWWWTAR 13,766.2 14 4 151 35.9 10.4

Mef2-varl HWAWAWWWAR 2,375.9 84 9 341 28.1 4.1

Mef2-var2 KBYTDTTTWDD 2,860.7 70 8 287 26.0 4.1

Mef2-var3 DRTWWTTWTAR 18,221.3 11 3 53 12.7 4.8

Mef2-HiSco BTWTWTHWDDH 926.3 215 15 549 22.7 2.5

Mef2-Permi WYWAATRWTW 6,883.1 29 5 51 4.1 1.8

Mef2-Rdml AKCTWWAGMT 60,130.8 3 2 5 0.9 - 1

CREB TGACGTMD 5,918.9 34 6 24 -1.7 0.7

Table 2.1. Expected and Found Instances of Mef2-like Motifs in 3 rat genomic regions (with
total length in bp and CG fraction PCG). Expected: 1 in (bp), inverse average frequency of
each motif for random sequence; # ± a, expected number ± 1 standard deviation. Found:
#, number of nonoverlapping instances in rn4 genome; z-score of found instances based on
expected numnber; x, fold enrichment over expected number.



of YTAWWWWTAR were present. The top returned motif, BTWTWTHWDDH,
was the most general sequence returned by MEME. It is particularly permissive,
occurring from 13 to 15 times more frequently than Mef2 itself. It's first 10 of
11 bases include most sequences matched by Mef2, plus many more (13 x 25 x
35 = 7,712 possible matches in total, as opposed to Mef2's 64). Its generality
is of course offset by its nonspecificity.

Results for expected and found instances of YTAWWWWTAR and the above vari-
ants are collected in Table 2.1 for the three genomic regions of interest: (1) genomine-
wide, with the entire rn4 chromosome 2 used as a sample; (2) the 296 genes tiled on
the array (including 10kb padding on both ends, see above); and (3) the Mef2 peaks.
The expected number of null-hypothesis instances are simply based on sampling ran-
dom sequences of the given total length with the indicated CG fraction. I obtained
the found instances by counting nonoverlapping matches to the motif patterns in the
relevant subsets of the rat reference genome. (Allowing matches to overlap approxi-
mately doubled the number of counted instances for the especially promiscuous motifs
Mef2-HiSco, Mef2-varl, and Mef2-var2, while the other motif counts rose by only a
few percent at most. These "redundant" occurrences reflected mostly AT-rich repe-
titions.) Poissonian standard deviations and z-scores follow the rationale explained
in Appendix A.2. (The perl scripts I wrote are described in Appendix B.)

Statistics for 3 additional motifs employed as controls are shown in Table 2.1:

5. A single random permutation WYWAATRWTW of the cannonical Mef2 motif
YTAWWWWTAR, which I call Mef2-Perm, is included to query whether just the

particular bases and ambiguities of Mef2 (2 A's, 1 R, 2 T's, 4 W's, 1 Y), rather
than their particular order, accounts for the great enrichment of target sequences
of MEF2. The 1.3-fold enrichment of Mef2-Perm is seen to be comparable to

Mef2 genome-wide and among the tiled genes. In the peaks, however, though
the permuted motif is enhanced further to about 2x background, it is nowhere

near the - 10-fold enrichment of Mef2. Random permutations of the canonical
motif are analyzed further in Sec. 2.4.3.

6. Along the same lines, I created a "random" rnotif AKCTWWAGMT, called
Mef2-Rdml, with approximately the same AT content as YTAWWWWTAR as
well as the same information content in its 10-bp pattern ---i.e., 4 single-base
positions plus 6 double-base positions (4 -2 + 6 - 1 = 14 bits of information to
fully specify the pattern) -----but with the bases ambiguated in a scrambled order.



This should control for the Mef2 motif's affinity for randomly matching 64 out

of every 410 10-bp pattern with the same average AT content but without re-

gard to two-base ambiguities and their positions in the pattern. Mef2-Rdml is

in fact slighly de-enriched compared to the expected background but not much

different from the random rate.

7. The last motif, TGACGTMD, represents target sequences of the transcription

factor CREB, which is also regulated by neuronal activity and affects synapse

development and function but at later stages than MEF2. (I have modified the

canonical, palindromnic CREB pattern TGACGTCA in the last 2 b)ases to allow

slightly more permissive matching according to CREB target sequences quoted

in the TRANSFAC transcription-factor database [24].) Table 2.1 shows that

CREB is quite negatively enriched compared to Mef2, in particular among the

tiled genes (which were chosen as likely targets of MEF2), where MEF2 and

CREB would not be expected to function in tandem.

The simple fold enrichment scores in Table 2.1 are fairly reliable quantifications

of the motifs' abundance compared to background in the three regions. The Mef2

variants have high enrichment, especially in the peaks, since that's why MEME rated

them highly in the first place, while Mef2-Perm is mostly similar to the canonical

Mef2 and Mef2-Rdml is a basically "decommissioned" version of Mef2. In the peak

regions, YTAWWWWTAR still stands out as unusually enriched --- which of course

confirms that this is likely the single best target sequence for binding the MEF2

transcription factor.

The magnitudes of the z-scores should perhaps be taken with a grain of salt.

Though their trends accord with the fold enrichment values, the very high values in the

whole-chr2 and tiled-array gene regions may reflect an inadequacy of Poisson statistics

for providing a standard deviation expected from a random background. Or rather,
the assumption of randomness is not entirely appropriate to these genomic regions,
which after all have nonrandom, highly structured portions characterized by many

repeats (in the genome at large) and by promoters and coding regions near genes.

Moreover, the low counts of the control motifis in the Mef2 peaks simply indicates that

all motifs are not significantly enriched to the extent of the canonical Mef2 motif.

Of chief interest in the remainder of this analysis will be any association in the

Mef2 peaks between enrichment of MEME's Mef2-HiSco, which is a fortiori high, and

any elevation of its typical degree of conservation in this region compared to that of

canonical Mef2 sites (see Sec. 2.4.2).



2.3 Conservation Scores in MEF2 Peaks

Truly regulatory motif instances are likely to be highly conserved in orthologous

genes across multiple genomes, implying that both these genes and these regulatory

sequences confer functionality that has been fixed by evolution. Therefore, I assume

here once again that conservation can be taken as a proxy for function. In studying

the Xie motifs (see Chapter 1), I used counts of aligned genomes that displayed exact

conservation of motif instances at individual sites imatching the motif. Here I use

instead a single score, from publicly available data, that has been precalculated for

each base of the rat reference genome.

2.3.1 PhastCons Scores

Mef2 peaks and motifs are assessed here for their depth of conservation based on pub-

lished phastCons Scores (PHylogenetic Analysis with Space/Time models-derived

Conservation) [25]. Sets of phastCons scores for rn4 and other genomnes are created

specifically to be displayed as the "Conservation" tracks on the UCSC Web-based

Genome Browser [17].

For a genonme of interest, such as rn4 for rat, the downloadable phastCons scores

from Ref. [26] derive from a multiple alignment produced by the program MULTIZ [27].

The published 9-way alignment phastCons9way [26] includes rn4 (rat, Nov. 2004) plus

8 other vertebrate genomes: mm8 (mouse, Feb. 2006), hg18 (human, Mar. 2006),
canFam2 (dog, May 2005), bosTau2 (cow, Mar. 2005), monDom4 (opossum, Jan.

2006), galGal2 (chicken, Feb. 2004), xenTrol (frog, Oct. 2004), and danRer3 (ze-

brafish, May 2005). Generally, shorter sequences require greater phylogenetic depth

and/or more genornes to characterize their conservation [9, 28] accurately. The evo-

lutionary breadth of this set, from human to zebrafish, is comparable to the 17 verte-

brate genomes whose alignment was used in Ref. [26]. Thus, these phastCons scores

should be a viable guide to conservation of short motifs and hence to MEF2 target

functionality in rat.

Each aligned base of the reference genome is evaluated for conservation according
to its degree of alignment with the other genomes as calculated by MULTIZ using a
phylogenetic hidden Markov model [25]. The calculation models nucleotide substitu-
tions at each site and how these changes compare at neighboring sites according to
probabilistically assigned mixtures of states such as "conserved" vs. "nonconserved"
(i.e., purifying vs. neutral substitutions) and "coding" vs. "noncoding." Phylogenetic
distances between closely related genomes (e.g., rat and mouse) as opposed to evo-



lutionary well separated ones (e.g., rat and zebrafish) are automatically taken into

account. MULTIZ tries to align the reference genome with several others that may span a

wide evolutionary range. This is a difficult calculation, and not all portions of one genome

can be aligned with the others -in part owing to evolutionary divergence, naturally, but

also due to the complexity of multiple whole-genoine comparisons, incorrect assignments

of alignment gaps, false-positive alignments of subsequences, etc. Nevertheless, the phast-

Cons9way scores reported in Ref. [26] cover approximately two-thirds of the bases in the rat

genome. Although missing scores might indicate a failure of multiple alignment of orthologs

due to genetic novelty, the reasons for unscored genes will not be pursued here.

Bases that can be meaningfully evaluated finally receive scores s whose values lie in the

range s E [0, 1]. The distribution of scores across the rat genome is far from uniform or

unimiodal, however. Figure 2-2(a) shows the normalized distribution of phastCons over all

bases of rat chromosome 2 for which scores were given in Ref. [26] (168,459,582 out of a

total 258,207,540 bp of sequence). There is a marked tendency for scores to cluster at the

two extremes in a ratio of about 9:1. The genomic average on chr2 is Schr2 = 0.1025, close

to the 10% one would expect were there 9 bases with s = 0 for every 1 base with s = 1. This

behavior and magnitude is replicated on all other chromosomes. Over the whole rat genome

I found an average grat = 0.0997 ± 0.0082, ranging from a rninumum average 0. 0832 on

chrl2 to maxima 0. 1098 on chr3 and 0. 1264 on chrX (see Fig. 2-3).

Therefore, when a region has an average conservation score of 0.25, say, this can just

as well be interpreted as that region having a fraction 0. 25 of bases that are well conserved

and a fraction 0.75 of bases that are poorly conserved. The same observation holds for

conservation scores describing motif occurrences. If a motif such as Mef2 is represented

by the average of its 10 bases' individual phastCons scores, it turns out that each motif

instance is likely to comprise bases with scores either all s -+ 0 or s --+ 1. (Motif instances

with one or more unscored bases are ignored.) The average score over multiple motif

instances, then, can also be taken to represent the fraction of that motif's instances that

are conserved. In Fig. 2-2(b), the phastCons scores of all 10-bp windows in the Mef2 peaks

(covering 196,264 nt of 199,498 bp of total sequence) still occupy the extremes. In the

inset to (b), which has wider histogram bins, the distribution's shape is more clearly seen

to be vastly underpopulated in the central 80% basin compared to its edges. (Averages for

11-bp windows in each region are practically the same as for 10-bp windows.)

The only difference from the genome-wide trends is that average phastCons scores for all

10-bp windows in the Mef2 peaks is notably higher at Speaks = 0.2529. For comparison, in

the tiled-array gene regions (296 genes plus 10kb padding at both ends, 7,361,305 scored

bases out of total sequence 31,309,615 bp) the overall average equals 9genes = 0.1480. The

average values srat, Sgenes, and Speaks are summarized in Fig. 2-3.

Conservation is thus seen to be higher on the average near genes in the genoume
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Figure 2-2. Distribution of phastCons scores for (a) all of rat chromosome 2, distribution
normalized to unity, and (b) the Mef2 peaks, histograms with bin size As = 0.0001 and
(inset) As = 0.02.
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Figure 2-3. Background conservation levels (average phastCons scores): individual rat
chromosomes 1-20 and X (histogram width proportional to number of bases scored);

Srat = 0.0997 (gray), genolmic weighted average; 5 genes = 0.1480 (blue), in tiled array
genes, (including 10kb padding at 5' and 3' ends); and gpeaks = 0.2529 (red), in Mef2 peaks
(all 10-bp windows).

unsurprisingly -- but is specifically greater in the regions associated with MEF2 binding.

This general trend will be borne out even more acutely when considering conservation of

instances of Me62 and Mef2-variant motifs. These backgivund conservation levels will serve

as controls in their respective regions for studying motif conservation. I will continue to

employ chromosome 2 with 8chr2 0. 1025 (cyan histogram in Fig. 2-3) as a representative

background for some genome-wide comparisons.

2.3.2 Conservation Maps in MEF2 Peaks

The 241 Mef2 peaks identified by the ChIP-chip experiments range in length from 336 to

3341 bp. How are regions of higher conservation distributed within this special subset of

genomic sequences? Are the more highly conserved bases especially associated with Mef2

target sequences?

It will prove instructive to visualize the complete set of Mef2 peaks and their conserva-

tion properties as a whole. For reference, first consider the mean conservation score over the

set of all the tiled-array gene regions, Fig. 2-4(a), and over the set of peaks, Fig. 2-4(b).

Each set has been ordered by score, with histogram widths proportional to bases scored;

each rectangle's area thus captures the total number of well conserved bases in that gene

Speaks

Sgenes
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Figure 2-4. Average conservation score for (a) each tiled-array gene region with any re-
ported phastCons scores, and (b) each Mef2 peak. Histogram widths proportional to
bases scored in each gene region or peak. Background conservation levels as in Fig. 2-3.

region or Mef2 peak. Background levels are marked as in Fig. 2-3.

Note that a large fraction of the bases in the tiled-array gene regions- -23, 948,310 out

31,309,615 bp (76%)- have no published phastCons score in phastCons9way and so are not

included in this figure. In fact, 27 of the 296 tiled-array gene regions have no scored bases

at all. Compared to the 123 of the 296 (41.6%) tiled genes considered here that are controls,

13 out of these 27 (48.1%) scoreless genes were controls. As a random sample this has a

one-tailed p-value of 0. 298 (Fisher exact test; see Appendix A.1), so the distribution of

absent phastCons scores is probably not biased with respect to control vs. non-control genes.

The lower average =genes = 0.1480 over all scored bases in the tiled-array gene regions

(blue) compared to Speaks = 0.2529 for the peaks (red) could be accounted for at least in

part by regarding the 20 kb of "padding" that was scored in each gene region as typical

genomic DNA, with Srat = 0.0997 (gray). That amounts to 296 x 20 kb , 6 Mb out of the

31 MB of total sequence in the gene regions, or about 20%, which would imply that the
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Figure 2-5. Conservation map of phastCons scores for all 241 Mef2 peaks. Sequences are
lined up at their centers and ordered left-right from 5'-to-3' and top-to-bottom from highest
to lowest average score. Color key covers full range s E [0, 1] of possible values; black
indicates bases for which no score was available.

remaining 80% has Sgenes/proper " 0.16. This is not even as high as 9peaks, though, so I

conclude that the Mef2 peaks are significantly enriched in highly conserved bases, by at least

50%, over the genes that are themselves targets of MEF2.

Turning to conservation in the Mef2 peaks in greater detail, phastCons scores for all

199,498 bases of all 241 peaks can be depicted in one go. Such a conservation map is shown

in Fig. 2-5. Each horizontal strip represents the DNA sequence of one peak oriented 5'-to-3'

from left to right. Base-by-base scores s are keyed by color from high (s --* 1, yellow) to

low (s -- 0, purple), with unscored bases blacked out. I've centered the peaks left-right

and ordered them from top to bottom according to their average score with highest values

placed at top. This is reflected in the highly conserved, mostly yellow peaks in the upper

half of the plot and the less conserved, purple peaks in the lower half. (I created this plot

and the remaining plots in this Chapter, and performed the related analyses, using the

package R 2.4.1; see Appendix B.) What is immediately clear with regard to conservation

is the appearance in this map of uninterrupted segments that are almost entirely either

yellow or purple. These peak sequences are, for the most part, partitioned into exclusive
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Figure 2-6. Conservation map of phastCons scores for all 241 Mef2 peaks, which have been
stretched to cover the same length of 1000 (arbitrary units). Sequences ordered from
highest to lowest average score, with conservation color key as in Fig. 2-5.

islands of high and low conservation. Figure 2-5 provides graphical evidence for the mostly-

conserved-vs.-mostly-not interpretation of individual bases or motifs in the Mef peaks, and

lends support to the interpretation of conservation scores averaged over several motifs as

the fraction of motifs that are either well conserved or not.

The Mef2 peaks are expected to associate with loci for functional MEF2 binding, which

may in turn be expected to have the greatest frequency near the peak centers. A glance

at Fig. 2-5 suggest that this may be so, but islands of high conservation are seen to be

scattered away from the centers as well. To compare all the peaks with one another more

equitably, their lengths can be "stretched" (or shrunk) to a common, standard length. Such

a conservation map of stretched peaks is shown in Fig. 2-6. The scale used is in arbitary

units u over the domain u E [0, 1000]. It is evident that areas of highest conservation are

found near peak centers, though not exclusively. There is also no obvious preference for

conservation toward 5' or 3' ends. Conservation scores {s(u)} for a peak with N base pairs
can be symmetrized about its center via ssym(U) - [s(u) + s(N - u)] = sym(N - u).

Every stretched peak #n (n = 1,... , 241) can then be regarded as a continuous, symmetric

function st") (u) of scores over the same domain of u. To summarize the conservation
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Figure 2-7. Conservation score function s• ,(u) averaged over all 241 symmetrized peaks.

distribution for all peaks, one can simply take the average over all the functions sn 8 )(u) }
at each value of u:

241
saver) (U) 2

=  u(str) (U)
av 24 E 5 (u) (2.1)

n=1

Peaks are weighted equally in Eq. (2.1); they could instead be weighted, e.g., according

to their actual lengths in bp. Figure 2-7 shows a plot of sa(e)(u), the average stretched-

peak distribution of conservation scores. This "typical peak" displays a pronounced bump

in conservation within approximately the central 20% of its overall length, at a value of

save (u) 0 .35. This should be compared to the adjacent "plateaus" at Save (u) - 0.27

and the outermost 20% on each end with sa r (u) 0.23, together comparable to the

peaks' background level Speaks ý 0. 25. Thus, the peaks' central bump is roughly 30--50%

higher than the peaks' linmbs on average, suggesting that functional MEF2 binding is likely

concentrated near the center of the Mef2 peaks identified by the ChIP-chip experiments of

Ref. [1], as expected.

It is also instructive to compare the conservation map of Fig. 2-6 with an identical map

that additionally depicts specific loci of predicted MEF2 binding. Figure 2-8 displays such

a map, with all 151 sites of matches to the canonical Mef2 motif YTAWWWWTAR indicated

as red strips. (Each site is 10 bp wide but stretched by a different amount according to the

underlying peak's length.) Many of these predicted MEF2-binding loci lie within highly

conserved portions of the Mef2 peaks but a nonnegligible number do not. Conservation

properties of these and variant Mef2 consensus sites are analyzed in the next section.
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Figure 2-8. Conservation map of phastCons scores for all 241 Mef2 peaks, stretched as
in Fig. 2-6, but including loci that match the canonical Mef2 consensus binding motif
YTAWWWWTAR (red strips).

2.4 Conservation Scores near Consensus Sites

Baseline phastCons scores in rat (Fig. 2-3) were demonstrated in Sec. 2.3.1 to be ordered

hierarchically: Srat 9 8
chr2 < 9genes < 8

peaks. It is reasonable to expect that conservation

would typically be even greater at loci that match the Mef2 consensus motif or one of its

variants, as many of these sites may be specifically functional. This indeed turns out to

be the case. Surprisingly, conservation at these potential binding sites is further associated

with a higher average conservation rate in the neighborhood of these loci. In this section, I

examine conservation properties of the consensus sites themselves against the backgrounds

of the rat genome, the tiled-array gene regions, and the Mef2 peaks.

2.4.1 Conservation Distributions near Mef2 Motifs vs. Background

As discussed in Sec. 2.3.1, the individual bases of any one occurrence of a short motif such as

Mef2 are likely to have similar phastCons scores, whose average § is in turn more likely to lie

towards either extreme 9 0 or 9 ; 1. A motif's average conservation score in this regard is
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Figure 2-9. Average base-by-base phastCons score for all 151 instances of the canonical
Mef2 motif, and their neighboring sequence, in Mef2 peaks. Red lines mark 10-bp window
within which matching sites are lined up. Total 410 bp includes sites' neighboring 200 bp on
either side. Score at each base is average over all instances after left--right symmetrization.

reduced to a single number (per genomic region). For example, the 151 instances of Mef2 in

the Mef2 peaks have sMen = 0.617. This is an extraordinarily high average value, indicating

that well over 50% of these instances may be functional in the context of actual MEF2

binding. Though perhaps unsurprising, this procedure of reducing the motif to a point site

and averaging over many points obscures the fact that the motif operates in the context of

its surrounding sequence, probably involving its immediate neighborhood most strongly.

A straightforward way to characterize the motif-matching loci along with their genomic

environment is to use their centers as a common reference locus and conduct a base-by-base

average over all occurrences out to some suitable distance. That is, instead of focusing one's

view on indiscriminantly aligned sequences such as the Mef2 peaks in Figs. 2-5 through 2-8,

one should compare sequences of some size centered on the consensus sites ----all the red bits

in Fig. 2-8. I illustrate this in Fig. 2-9 for the canonical motif Mef2--it should be regarded

as a "better" version of Fig. 2-7. All 151 matches to YTAWWWWTAR in the Mef2 peaks

were registered to the 10-bp window delineated by the vertical red lines in the figure. On

either side of every consensus site, wings 200 bp wide were included to afford a reasonable

footprint into the surrounding sequence. (Storing the conservation scores for more than a

few hundred bases for every single motif match became impractical and unhelpful for the

huge numbers of matches found for the more permissive motives in the large tiled-array

gene regions and entire chromosomes.) Scores for each peak instance plus its neighborhood

comprise a 410-bp sequence, represented by a function peaks) (u) (i = 1,..., 151) over the

domain u E [-205, +205]. (Each DNA base occupies one unit of u on this scale; the Mef2
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sites occupy the span u E [-5, +5].) After each of these functions is left-right symmetrized

as before, s (pe ) (peaks) () + peaks)(U) eas) (-u), they are averaged over

all 151 instances at each fixed value of u [cf. Eq. (2.1)]:

151

8(peaks) (U ) =151 s (peaks) (u) (2.2)
i=1

As noted above, this average score over the consensus sites, u = [-5,+5], attains the value

sMef2 = 0. 617, which marks the prominent central "nose" in the center of Fig. 2-9. This
result elaborates on the noted prevalence for many of the red MeI2 segments in Fig. 2-8 to lie

within the highly conserved yellow branches of the Mef2 peaks. Remarkably, the maximum

score at the consensus is accompanied, on the average, by about 100 bp of sequence on

either side that rises up from the peak background level Speaks z 0.25. In other words,
in MEF2 binding peaks a rather high likelihood of conservation at Mef2 consensus sites is

associated, on average, with. a significant degree of conservation within at least 50 bp on

either side of these sites. The fact that conservation rates are elevated within a 100 --200-bp

neighborhood of sites that probably have some function related to MEF2 binding suggests

that other factors may play a role in the binding of MEF2, including the possible binding

of those factors near these loci.

To confirm the significance of conservation near Mef2 consensus sites in the Mef2 peaks,
the average phastCons scores I've calculated for Fig. 2-9 need to be compared to the various

controls introduced in Sec. 2.3.1. It is of particular interest to check whether Mef2 instances

are highly conserved in genes in general and in the rat genome at large -----i.e., in the tiled-

array gene regions pertinent to this study, and in representative genomic sequence not

specific to the ChIP-chip experiments, e.g., rat chromosome 2 or some random portion

thereof. To this end, I extracted all 7443 instances (Table 2.1) of the canonical MeI2 motif

plus their neighboring ±200 bp from the 31 Mb of sequence in the 296 tiled-array gene

regions, a search that extended up to 10 kb beyond both ends of these genes. (The perl and

R scripts I wrote are summarized in Appendix B.) The approximately 5800 instances that

remained after discarding instances that contained any unscored bases were symmetrized

and averaged, just as per the peaks' instances, to produce an instance-neighborhood average
scoring function s (es) (u) for the gene regions analogous to (p eaks) (u) for the peks.

For the genomic controls, the number of instances of Mef2 on chromosome 2 was larger

than in the gene regions by an order of magnitude, - 70,000 of them in - 260 MB; for the

more permissive variant motifs this number was yet another order larger (see Table 2.1).

Noting that storage of 410 individual phastCons scores for, e.g., the approximately 900,000

instances of Mef2-HiSco on chlr2 would nominally require over 1 GB of disk storage, I
decided that probing the whole chromosome would be overkill and that a subset of chr2

would suffice for purposes of sampling each motif. (Sampling average scores from different
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Figure 2-10. Average base-by-base phastCons scores for all instances of the canonical Mef2
motif YTAWWWWTAR, and their neighboring sequence, as in Fig. 2-9: over 10% of rat
chromosome 2, ~~h2)(u) (cyan curve); in tiled-array gene regions, s(gv'e•)(u) (blue curve);

in Mef2 peaks, saks) (u) (black curve). Average background scores, dashed horizontal
lines: Schr2 (gray); -4genes (puiple); qpeaks (red). Conservation function 8 ~vt)(• ) within
50 bp of all instances, mean ± 1 standard deviation (dotted gold curves) covering all
chromosomes.

genomic regions did not change any of the present results significantly.) Thus, 10% of

rat chr2 was found to have about 6800 instances of Mef2, of which about 4000 had no

unscored bases. I extracted scores for these plus their 400-bp neighborhoods, which were

then synunetrized and averaged to form the function sr2) (u) representing unspecific rat

genome conservation near Mef2 sites.
(peaks) (genes) (chr2) hown in

The average conservation functions sae (u), sne) (u), and ve (u) are shown in

Fig. 2-10 over their 410-bp domain of u, centered on the 10-bp consensus sites as in Fig. 2-9.

These curves can be interpreted as the fraction of matches to the canonical MEF2 consensus

YTAWWWWTAR that are well conserved in the Mef2 peaks, in the tiled-array gene regions,

and in the whole rat genome, respectively. The horizontal dashed lines mark the control

values for each region (Speaks, iSgenes, and Schr2) discussed in Sec. 2.3.1. The gold curves in

the central 100 bp show the mean and spread of genonmic conservation scores save (u) near

Mef2 sites over all rat chromosomes, indicating that the chr2 curve is typical of the rest of

the genome.

Mef2



Figure 2-10 encapsulates the central results of this study. All three conservation curves

rise above their respective random-background values--- -but by far the effect is widest and

highest in the Mef2 peaks (same curve, black, as in Fig. 2-9). The gene-region curve

(blue) is uniformly As - 0.03 higher in value than the one for chr2 (cyan), but they

seem otherwise equivalent. Conservation is, as one would expect, better when genes are

specifically included in the mix, though not mudc here because the gene regions consist

mostly of noncoding sequence bracketing the genes. The "conserved-by-association" effect

of the Mef2 consensus sites on their surrounding sequence is also not nearly as dramatic in

the gene regions and across chr2 as in the Mef2 peaks, but it is not gone entirely. At the sites

themselves (i.e., between the red lines), the average scores equal 0.255 and 0.228 in these

regions, respectively, vs. 0. 617 in the peaks. For chr2 this is about double the background

value Schr2 = 0. 100. Though confined to within only 10-20 bp of the sites, it is interesting

that conservation of Mef2 motifs stands out even in the genome at large. The large majority

of the many consensus binding sites for MEF2 presumably are not functional loci of MEF2-

controlled transcription, so it is not entirely clear why selective evolutionary pressure would

maintain these sequences. There is some experimental evidence that MEF2 does indeed

bind chromatin in the promoters of a large number of genes irrespective of whether neurons

are stimulated [1, 29], possibly playing a role in the recruitment of RNA polymnerase II;

the MEF2 remains in an inactive state until dephosphorylated in an activity-dependent

manner, which then leads to initiation of transcription. My observation of a small but

significant, nonrandom preference for the generic conservation of Mef2 motifs is consistent

with a biological interpretation that widespread MEF2 binding throughout the genome may

function in recruiting the transcriptional machinery to gene regions.

2.4.2 Alternative Motifs-Conservation near Mef2 Variants

The exceptional conservation rates found for the canonical Mef2 motif in the rat genome

raises the question of whether other highly enriched motifs might also have high phastCons

scores and, by implication, likely functionality in Mef2 peaks and in other genomic regions.

The most enriched motif predicted by MEME in the Mef2 peaks, Mef2-HiSco, is listed in

Table 2.1 as having about the same 1. 3-fold enrichnment as MeI2 in the tiled-array gene

regions and across chr2 and--.by construction--the highest fold-enrichment of any motif in

the peaks besides Mef2 itself. It is also by far the most permissive motif analyzed here,
found on average about every 1 in 300 bases on chr2. I calculated average phastCons scores

for Mef2-HiSco in the three regions of interest as described above for Mef2; the results,
analogous to Fig. 2-10, are displayed in Fig. 2-11.

One notices a moderate enhancement of these instances, with an the average value

SMef2-HiSco = 0.428 in Mef2 peaks (black curve). This clearly lies significantly above the

background value Speaks = 0.2529, but is less acute and has less apparent influence on the
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Figure 2-11. Average base-by-base phastCons scores for all instances of the Mef2-HiSco
motif BTWTWTHWDDH. Curves and background levels colored the same as in Fig. 2-10
for chr2, tiled-array gene regions, and Mef2 peaks.

instances' surrounding neighborhood than Mef2. As for Mef2, there seems to be a mod-

erate conservation "shelf" in the region roughly 50-100 bp on either side of the consensus

sites, and only statistical variations from the background beyond that. But any "neigh-

borhood effect" is absent for the tiled-array genes and the genomic background (blue and

cyan curves) both are spot on their background values 8genes and chr2. It is likely that

the conservation bump for Mef2-HiSco in the Mef2 peaks stems from those matches to

BTWTWTHWDDH that are highly similar to YTAWWWWTAR (an analysis to test this was

not performed here, however). Thus, the role of transcriptional potentiation that might be

attributed to MEF2 binding of DNA does not not appear to be attributable to the variant

motif Mef2-HiSco, at least not outside the explicit binding regions of the Mef2 peaks.

I have likewise analyzed the phastCons scores in rat for all instances of the other Mef2-

variant motifs and controls listed in Table 2.1. Figure 2-12(a)-(f) shows these motifs'

average conservation scores across chromosome 2, in the tiled-array gene regions, and in

the Mef2 peaks as in the previous two figures. Recall that Mef2-varl was returned by

MEME given Mef2 peaks that already contained a match to the canonical Mef2 consensus,

while Mef2-var2 and Mef2-var3 was returned for peaks that had no match to Mef2, and

Mef2-HiSco was returned with all peaks as input. The curves in (a)-(b) appear to simply

recapitulate those for Mef2-HiSco (Fig. 2-11), whereas 2-12(c) is more suggestive of Mef2

itself (Fig. 2-10). The much more common motifs Mef2-varl and Mef2-var2 may simply

Mef2-HiSCO
I
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(a) Mef2-varl

Mef2-var2 (e) Mef2-Rdml

(c) Mef2-var3 (f) CREB

Figure 2-12. Average base-by-base phastCons scores for all instances of the variant and
control motifs: (a) Mef2-varl (HWAWAWWWAR), (b) Mef2-var2 (KBYTDTTTWDD),
(c) Mef2-var3 (DRTWWTTWTAR), (d) Mef2-Perm (WYWAATRWTW), (e) Mef2-Rdml
(AKCTWWAGMT), (f) CREB (TGACGTMD). Curves and background levels colored the
same as in Figs. 2-10 and 2-11.
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capture the widespread behavior of Mef2-HiSco, i.e., moderately elevated conservation in

all the Mef2 peak regions but nothing significant otherwise. Mef2-var3 is in fact the rarest

variant enshrined by MEME as "enriched" here, yet it most closely reflects the significant

enhancement of conservation near consensus sites seen for the canonical consensus Mef2.

It is tempting, though perhaps vague, to assign to Mef2-var3 whatever features and func-

tions of Mef2 are not accounted for by Mef2-varl and Mef2-var2. (But note that greater

fluctuations in the curve for Mef2 peaks is to be expected for Mef2-var3 near background

levels owing to the low number of Mef2-var3 counts.) It is not obvious how this might be

explained directly from the consensus patterns for these motifs, however.

The other three motifs present interesting differences. In 2-12(d), the Mef2-permuted

motif Mcf2-Pernm looks very nearly the same as Fig. 2-10 for conservation of Mef2 itself,
though fewer counts introduce greater variability, as for Mef2-var3. This suggests that

it may be the base composition of the canonical Mef2 consensus that lends MEF2 bind-

ing sites their specificity and not merely the order of the bases. There is some evidence

for this, which is explored thoroughly in the next section, though the particular pattern

YTAWWWWTAR will turn out to be the "best" in the context of the present data. In

2-12(e), the (quasi)random motif Mef2-Rdml basically reflects background levels. All its

jitter in Mef2 peaks falls within the noise expected for the mere 5 instances there (Ta-

ble 2.1). The depression of the scores in the tiled-array gene regions towards the level

of the whole-genome background is perhaps explained by the fact that this motif is nega-

tively enriched in the genome; its 30% CG content falls well below the background level of

PCG r 0.42.

Finally, the CREB conservation results in Fig. 2-12(f) are unusual. (Again note that

high variability of scores in the Mef2 peaks stems from low counts.) In Mef peaks its average

score is enhanced near its matching sites and, like the Mef2 motif, falls to background

levels outside about +50 bp. The (lip in conservation at genomic sites could be statistical

in nature; in any case the behavior of its average scores seem to be orthogonal to the

substantial de-enrichment of CREB consensus sites in the genes and in the whole genome

(Table 2.1). Nevertheless, both CREB instance enrichment and conservation are distinctly

higher in regions associated with MEF2 binding. As noted above, CREB and MEF2 both

influence synapses in an activity-dependent manner. Both factors are expressed in a wide

variety of cell types. Whether the association I've described arises from any direct or indirect

interaction between these factors remains to be studied.

The statistical significance of the high average conservation score for canonical Mef2

instances in the Mef2 peaks can be quantified if we once again assume that each instance is
either conserved (9 --+ 1) or not (A -- 0). Then the average gMef2 = 0.617 implies that, of the

151 occurrences of Mef2, a total of Neons = 0.617 x 151 = 93.2 are specifically conserved.

With a background conservation score p = Speaks = 0.253, however, out of a random sample



Score range: [0-0.023 (0.02-0.201 (0.20-0.80) [0.80-0.98) [0.98-11 TOTAL

Mef2 26 20 25 19 61 151
10-bp Bkgd. 112890 25581 18126 11779 27888 196264

Mef2-HiSco 189 107 83 57 148 584

11-bp Bkgd. 112307 25796 18463 11852 27597 196015

Table 2.2. Distributions of phastCons scores s for instances of Mef2 (YTAWWWWTAR) and
Mef2-HiSco (BTWTWTHWDDH) in Mef2 peaks, as well as for background distributions
from all 10-bp and 11-bp windows. See text for results of X2 test. [N.B. Some overlapping
instances are included for Mef2-HiSco, hence its total differs from Table 2.1.]

of N = 151 we would expect to find only Nexpect = pN = 0.253 x 151 = 38.2 of them

conserved. Since this is a binomial distribution (Appendix A.1), it is well approximated by a

gaussian with one standard deviation given by a = ýfp(l - p) N = /0.747 x 38.2 = 5.3.

The z-score (deviation from the expected mean in units of standard deviations) for Mef2

motifs in Mef peaks thus equals

NMons - Nexpect 93.2 - 38.2
zMe2 --- - = +10.3 (2.3)

aexpect 5.3

which implies a p-value = 3.5 x 10-25 ... which is plenty significant.

For comparison with the permissive Mef2-HiSco motif predicted by MEME, we can

similarly calculate a z-score for instances of Mef2-HiSco in Mef2 peaks. Here there are

N = 549 occurrences, an average score sMef2-HiSco = 0.428 for these instances, and the

same background p = §peaks. We find Neons = 0. 428 x 549 = 235.0, Nexpect = pN = 138.8,
a = 0.747 x 138.8 = 10.2, so

Neons - Nexpect 235.0 - 138.8
ZMef2..HiSco -- -_ +9.4 (2.4)

O'expect 10.2

and a p-value = 2.7 x 10-21, also highly statistically significant.

A more accurate assessment than a binomial conserved/NoTconserved statistic should

compare the actual distribution of phastCons scores for these Mef2 or Mef2-HiSco instances

in the peaks to that of the background [Fig. 2-2(b)]. I binned the scores into five ranges

chosen to capture extreme, not-as-extreme, and intermediate values, producing the counts

shown in Table 2.2. Using a X2 test (v = 4 degrees of freedom) yields p = 3.4 x 10- 28

(X2 = 135.0) for Mef2 and p = 1.9 x 10-32 (X2 = 154.8) for Mef2-HiSco. Occurrences

of these motifs in MEF2-binding peaks are therefore not only indisputably biased towards

high conservation, but they are moreover depopulated of low phastCons scores in favor of
intermediate scores.



2.4.3 Conservation and Enrichment of Motif Permutations

In Fig. 2-12(d) the single permutation WYWAATRWTW of the canonical MEF2 consensus

sequence YTAWWWWTAR was seen to echo the principal conservation features of the un-

permuted MIc2 instances plotted in Fig. 2-10. It is only enriched about 2-fold vs. 10-fold for

Mef2, but its 55 instances in Mef2 Peaks have an average phastCons score s -• 0.55 ---almost

as high as Mef2 = 0.62 itself. More strikingly, it also displays significant conservation rates

beyond background around its occurrences in gene regions and throughout the rat genome.

This permutation was selected randomly. Was this just a lucky pick, or does the partic-

ular set of Mef2 base possibilities { [A] 2, [A, G]1, [T]2, [A, T]4, [C, T] 1 } itself have an inherently

high level of conservation for some reason? Of course there is empirical evidence [20, 21]

pointing to the particular palindromic motif YTAWWWWTAR as a binding site for MEF2.

There is no obvious biological reason for a transcription factor to abandon sequence speci-

ficity in this way. But in light of this one case, it would be interesting to at least characterize

conservation of alternatives to the Mef2 motif that have the same base content in different

order. Along with conservation scores I will survey the enrichment of all permutations

of Mef2, keeping track of how changes in these quantities depend on sequence similarity

to the original consensus. For comparison, I will also survey conservation, enrichment,

and similarity among all permutations of the more permissive 11-bp Mef2-HiSco motif

BTWTWTHWDDH in the Mef2 peaks.

For the canonical Mef2 motif, the number of distinguishable permutations of the 10

symbols A A R I T T W W W W Y equals a multinomiial coefficient, 10 = 37,800.2!1!2!4!1! -

I generated a list of all 37,800 permutations, and automated the task of performing the

following steps for every permuted motif m:

0 calculate the expected number of occurrences of the motif in random sequence based

on the CG content in Mef2 peaks;

a" find all instances of the motif in the Mef2 peaks;

." calculate Zm, an enrichment z-score (Appendix A.1), from the expected and found

numbers of instances;

,? from the found instances' genomic loci, look up the phastCons scores for each in-

stance's 10 bases and calculate an average score s over all instances;

0* calculate a similarity score Am, discussed below, for the permuted motif sequence vs.

the unpermuted sequence YTAWWWWTAR.

The similarity score A (S 1 , S2) between two sequences S1 and S2 should be a measure

of how well their base patterns correlate with one another. The method I use here is based

on an algorithm outlined in the supplementary material of Ref. [4]; details are described



here in Appendix A.3. Scores lie in the interval A E [0, 1], with only an identical match

having A = 1 for maximum similarity. A flat background (PCG = ½) would have A = 0.

The background corresponding to the Mef2 peaks, with PCG = 0.489, has A = 0.0192 when

compared to the MeI2 motif (or to any of its permutations).

Figure 2-13(a) plots the results for each permutation as a point (sm, zm) with enrich-

ment z-score on the vertical axis and phastCons score s, averaged over all instances, on the

horizontal axis. The mean values of z and s over all 37,800 permuted motifs are shown as
dashed gold lines, with ±1 standard deviations shown as dotted gold lines. The background

conservation level for 10-bp windows, peaks = 0. 2529 is marked by a gray line. Similarity

scores for each permuted motif vs. the unpermuted YTAWWWWTAR is represented by the

color of the dot, out of a spectrum of colors from purple (A = 0) to red (A = 1).

It is immediately apparent from the figure that enrichment and conservation scores for

the bulk of the permuted motifs each fall within a quasi-normal distribution. Conservation-s

is clustered around §±oa, = 0.438±0.074, enrichment-z around 2±uaz = 4.05±3.30 (while

fold-enrichment per se averages 1.77 ± 0.63). The coefficient of determination for all points

{(sm, zm), m = 1,...,37,800} is r 2 = 0.0219 ± 0.0015 (squared Pearson-r correlation),

indicating that enrichment and conservation have a minor though statistically significant

dependence. The "cloud" of points above z = ý + 2az ; 11 does amount to about 5% of all

points, as it would for a normal distribution; it is not mirrored below 2 only because lower

negative z-scores are truncated by the absence of enrichment less than 0-fold.

On the other hand, it is notable that almost all permutations have conservation values

significantly above the background. Moreover, 62.8% of the permutations have greater than

1. 5-fold raw enrichment above background. So this whole set of pernmutated motifs seems to

capture base patterns that are both unusually prevalent and evolutionarily maintained, at

least in Mef2 peaks. The unpernmuted cananonical Mef2 motif itself (circled point) is among

the highest-conservation points. And YTAWWWW TAR is a true outlier on the enrichment

axis - by far the single most enriched motif of all the permuted motifs. In this regard,
the Mef2 motif sequence stands out as unique among all of its permutated sequences for

its highly significant enrichment and conservation. The vast majority of its permutations

would not be expected to function as transcription factor binding sites, however. Any other

biological role for this set of permuted motifs remains an open question.

Do variations in enrichment and conservation depend on how similar the permuted

motifs are to the original sequence YTAWWWWTAR' ? A careful examination of Fig. 2-13(a)

reveals that the yellow-through-red points, with similarity scores approaching A --+ 1, appear

to be "dragged" to the right and up towards the reference point itself. Overall correlation

of similarity scores with conservation s-scores is r8 = 0.2287 ± 0.0050 (Pearson-r) for

thile whole set; correlation of similarity scores with enrichment z-scores is rz = 0.2116 ±
0.0050. Although both of these are still low (r2 - 0.05), they are significant and do hint at
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Figure 2-13. Enrichment vs. conservation in Mef2 peaks for (a) all 37,800 permutations of
the Mef2 motif YTAWWWWTAR and (b) all 277,200 permutations of the Met2-HiSco
motif BTWTWTHWDDH. One dot per permutation represents the z-score for enriclunent
over background and phastCons score averaged over all instances in Mef2 peaks; mean
scores over all permutations, ±1 SD, dashed gold lines. Background phastCons score,
grey line. Similarity to unpernmuted motif, score A (defined in text) rainbow-coded from
red for perfect similarity (A = 1) to pzuple for background value (A 0.02). Circled
point, unpermuted Mef2 or Mef2-HiSco motif.
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slightly higher conservation and enrichment the greater a motif's similarity to the canonical

YTAWWWWTAR. When I repeat these correlation calculations but limit the motifs to those

having the highest 10% of values for s or z, respectively, I find r8 = 0. 1010 ± 0.0162 and

rz = 0.2625±0.0162. Thus, the most enriched permutations in Mef2 peaks tend to be most

similar to the canonical consensus, while there is less correlation between high conservation

and canonical similarity. If anything, the particular order of the bases seems to be more

predictive of how often the permuted motif turns up in Mef2 peaks, while conservation of

their occurrences is less tied to base order than to base composition.

Turning to the Mef2-HiSco motif BTWTWTHWDDH identified by MEME as superbly

enriched in Mef2 peaks, we now have to contend with a much more permissive and eas-

ily scrambled 1 1-bp sequence. The set of bases B D D H H T T T W W W has
11!

12!2!3!3! = 277,200 different permutations. Note that calculation and storage of so many
instance files, while not onerous, might merit a more sophisticated design for another motif

with, say, millions of permutations and/or a larger genomic region containing many more

motif instances.

In Fig. 2-13(b) I again plot each permutation's conservation and enrichment scores

(sm, Zm) as a color-coded point to show the similiarity score A of permuted motif m vs.

BTWTWTHWDDH. (There is a high density of points in the center of the "ball"; layers of

low-similarity, purplc, blue, cyan, etc., points were plotted first and so are obscured by high-

similarity upper layers of green and yellow.) This two-variable distribution also appears to

be quasi-normal along both conservation and enrichment axes. The background conserva-

tion (gray line) for 11-bp is nearly equal to that in Fig. 2-13(a); note that the horizontal

scale of average phastCons scores is zoomed in by a factor of 2. Averaging conservation over

all permutations in this case yields 9 ± as = 0.398 ± 0.021 ni --more than 3 times narrTwer

than permutations of the Mef2 motif. Enrichment z-scores have 2 ± az = 16.11 ± 2.87

(with fold-enrichment averaging 2.11 ± 0.20) ----rather higher average enrichment than for

Mef2 permutations, but with less variability. Pearson correlation between all enrichment

scores and conservation scores for the whole set {(sm, zm), m = 1, . . . , 277, 200} yields

r2 = 0.0410 ± 0.0008, i.e., still small but significant. The tilt of the major axis of the cloud

just above the horizontal can be discerned in Fig. 2-13(b). The unpermuted reference motif

BTWTWTHWDDH (circled point) lies among the most highly enriched permutations, but

its instances do not have an especially high average phastCons score.

The similarity scores of all the permutations with BTWTWTHWDDH seem to be cen-

tered and concentrated fairly symmetrically, except for a slight skew towards the reference

permutation (circle). Overall correlation of similarity scores with conservation s-scores in

this case is r, = 0. 1717 -0.0019 (Pearson-r) for the whole set; correlation of similar-

ity scores with enrichment z-scores is rz = 0.2315 ± 0.0018. Correlation of similarity to

BTWTWTHWDDH with conservation is therefore less for the permutations of Mef2-HiSco



than it was among tihe permutations of YTAWWWWTAR. This is in line with the fact that

the Mef2-HiSco motif was nriot chosen by MEME based on conservation at all. It was chosen

for its enrichment, and indeed it has a superior enrichment z-score among the set of its

permutations, as illustrated by Fig. 2-13(b). The correlation of enrichment with degree

of similarity to BTWTWTHWDDH is just a little higher than for Mef2's permutations

probably because Mef2-HiSco was optimized by MEME in the first place from a set of

related sequences that are present in comparably high numbers in the Mef2 peaks.

Taken together, these results imply that such an in silico study of known motifs can

shed light on the degree to which they are likely to be functional or merely common. The

unusually high conservation rate of instances of the unpermuted Mef2 motif occurs in par-

allel with their extremal enrichment, confirming that the specificity of the YTAWWWWTAR

sequence plays a part in both its function and frequency. The Mef2-HiSco motif, on the

other hand, though also highly enriched (its raison d'8tre) may merely be common; its

permutations' conservation scores are enhanced above background, but it's not clear that

BTWTWTHWDDH in particular stands out as a special enriched and conserved member of

this set.

(N.B. that as a control I also looked at similarity scores mieasured against randomly cho-

sen permutations of YTAWWWWTAR and BTWTWTHWDDH, but these results are not

discussed here.)





Chapter 3

Conclusions

Development anid gene regulation in the brain is particularly complex, as most genes are

expressed there, the number of cell types is large, and the morphology is intricate. In

tackling the molecular and genetic basis of disorders of nervous system development and

function, a critical component in the reverse engineering of the mechanisms regulating gene

expression is the identification of the set of functional targets of regulatory factors. It is

essential to characterize the regulatory network as completely as possible, including the

frequency, location, and viability of transcription factor target sites in the genome. In

this thesis I have investigated the enrichment and functionality, via comparative genomics,
of potential and empirical binding sites of MEF2, a transcription factor known to play a

regulatory role in activity-dependent synapse modeling and neuronal function [15, 16].

In conjunction with recent experiments Ref. [1] assessing MEF2-regulated target genes

in stiimulated rat neurons, I have quantified the relative enrichment of MEF2 binding motifs

and their degree of conservation in three regions: the rat genome at large, candidate MEF2

target gene regions probed on a tiling inicroarray, and specific regions identified as peaks of

MEF2 binding. I found the canonical MEF2 binding consensus sequence YTAWWWWTAR

(Mef2) to be over 10-fold enriched in Mef2 binding peaks. Alternative motifs suggested by

MEME purely on account of their enrichment in the Mef2 peaks were about 4-fold enriched

in these regions, though only at a level comparable to or slighly higher than the level of

the canonical motif Mef2 (at - 1.3 x) in the gene regions and genome-wide. All these
motifs were present at significantly higher rates than. background in every region. The only

control motif not merely comparable to background was a random permutation of the Mef2

sequence.

Conservation of motif instances across the whole rat genonme, in the tiled-array gene
regions, anid in the Mef2 peaks was evaluated using phastCons scores s [26]. High-scoring

instances were assumed to have a high degree of functionality with respect to MEF2 binding

in rat. I found phastCons scores to be strongly bimodal towards s --+ 0 and s -- 1, in about



a 10:1 ratio in all rat chromosomes. Average background conservation was significanty

higher in Mef2 peaks with Speaks ; 0.25. Conservation in the Mef2 peaks themselves

was concentrated in islands of high and low conservation; consequently, individual motif

instances tended to have either high or low conservation. I confirmed that conservation on

average was enhanced near the center of Mef2 peaks. I illustrated these properties concisely

as color-coded conservation maps over the peak regions.

Individual instances of the canonical Mef2 motif were discovered to have an unusually

high average conservation score, sMe,2 a 0. 62, in the Mef2 peaks. I furthermore found

that conservation levels that were significantly high above background extended into the

neighboring sequence in both directions as far as 100 bp from the motif site-see Fig. 2-10.
Moreover, Mef2 instances stood out as significantly conserved above backgrounds rates

throughout the rat genome, at 9 ? 0.25 vs. Sgenes r 0.10-0.15 on average. The Mef2-

variant motifs' instances also showed some elevation of conservation at their loci and in

at least some of the surrounding sequence in Mef2 peaks; the variants Mef2-HiSco and

Mef2-var3 and the permlutation Mei2-Perm captured some of the canonical motif's "extra"

conservation outside the peak regions as well, but not nearly as much. A survey of all permu-

tations of Mef2 and Mef2-HiSco established that the particular sequence YTAWWWWTAR

was endowed with both unusually high frequency and conservation in Mef2 peaks, whereas

the MEME-identified BTWTWTHWDDH was confirmed as enriched but not remarkably

conserved. I additionally found a surprising enhancement of conservation near instances of

the motif TGACGTMD in the Mef2 peaks, suggesting that the transcription factor CREB

might interact with MEF2, either directly or indirectly, in the context of MEF2 binding.

The above characterizations of putative binding sites of Mef2 and related motifs demon-

strate that a straightforward accounting of the frequency and evolutionary persistence of a

transcription factor's target genes and target binding sites can guide the interpretation of

experimental binding data. High enrichment per se of consensus sites is not necessary for

a high likelihood of functional binding, but knowledge of enhancement over rates expected

from random background is a useful adjunct to DNA binding data and genomic sequence.

Although poorly conserved though functional consensus sites (which would be false negatives

here) might indicate recently acquired evolutionary function, cataloging highly conserved

occurrences as I've done in this work is efficient and can serve to pinpoint specific sites

of actual binding and function of important regulatory factors such as MEF2. Biomedical

applications of these informatics-based studies will depend on such detailed knowledge of

the underpinnings of MEF2 function and that of other regulatory pathways.



Chapter 4

Further Work

The work discussed here on binding motif properties in the rat genorne in relation to the

neuronal function of the transcription factor (TF) MEF2 can be elaborated and extended

in several ways. Here are sonme gaps and questions that remain to be addressed, and follow-

up questions that might be pursued as continuations of the current work, some with more

sophisticated methods:

* Sort out the degree of conservation in the control vs. nion-control genes on the tiled

Inicroarray.

* Are the MEF2-controlled genes that do contain Mef2 peaks, and the peaks that do

contain Mef2 consensus sites, specifically enriched for certain Gene Ontology cate-

gories pertinent to neurological development and flnction?

* Can the "neighborhood" effect of conservation near motif instances be modeled by

a range of segment lengths having high conservation (s = 1 vs. s = 0)? E.g., 10-bp

inotifs that fall randomly within many stretches of the same length would accumulate

an average conservation score having a purely triangular profile seen near the center

of Figs. 2-10 2-12, while a range of high-conservation island lengths could yield

even Inore pinched peaks. Can the distribution of these segments' lengths be used to

further characterize the expected affinity of factor binding?

* Investigate in greater detail the phastCons distribution over the Mef2 inotif's whole

set of instances rather than just the average of all the instances and their neighbor-

hoods.

* Employ a more sophisticated algorithim for identifying actual peaks of Mef2 binding.

An attractive candidate is the Joint Binding Deconvolution (JBD) algorithm devel-

oped at M.I.T. [30], which uses ChIP-chip or ChIP-seq data to infer binding factor

loci at high resolution.



* Analyze the the location and density of Mef2 (and other) motif instances with respect

to gene boundaries (putative promoter regions, enhancer regions, and 3'UTRs). Is

there an association with distances upstream and downstream of transcription start

sites (TSS)? With high vs. low conservation scores? Is there a higher correlation

between the presence of multiple binding sites in a gene in Mef2 binding peaks?

* Analyze the distribution of loci of Mef2 instances with low conservation score, in

Mef2 peaks and in genes, with an eye towards which of these may nevertheless be
functional (i.e., false negatives) due to very recent evolutionary divergence.

* Identify specifically highly conserved Mef2 sites in the genome at large, and their

proximity to transcription start sites -- distance upstream, presence in promototers,
in introns, etc. Are the instances far from TSSs actual sites of Mef2 binding, whether

or not MEF2 is activated? Are they highly conserved owing to other functions of

MEF2 in other cell types, e.g., muscle progenitor differentiation?

* Extend these analyses of enrichment and conservation to a wide set of candidate

motifs (e.g., the whole Xie set [4, 31]), particularly average base-by-base phastCons

scores for all instances of each motif as in Fig. 2-12.

* Analyze ChIP experiments similar to those described here arid in Ref. [1] using direct

sequencing of chromo-imnmunoprecipitated fragments (ChIP-seq), and tailor enrich-

ment and conservation analyses to the large amount of data from high-throughput

sequencing of ChIP samples.

Most ambitious would be an effort to combine mnotif-instance and -enrichment data with

both TF and TF-target expression data to infer explicit programs of gene expression reflect-

ing causal relations between TFs and their cis-acting effects on specific targets. One possible

model for this is the thermodynamic model of transcriptional control detailed in Ref. [32].

Another versatile approach has been developed in Ref. [28], which is based on a "phyloge-

netic framework" of closely-related species. However, the incorporation of both enrichment

and deep conservation into a motif analysis in a context of factor binding and target ex-

pression has yet to be fully realized.



Appendix A

Mathematical Details

In this Appendix I collect miscellaneous matheimatical notes pertinent to different topics

discussed in the main text. The first section reviews some pertinent features of commnon

statistical distribution used elsewhere in this thesis. General statistical principles are dis-

cussed in Ref. [33]. The second section addresses some issues regarding motif frequency

counting.



A.1 Statistical Distributions

Most statistical distributions arise from counting -- randomly sampling events in some kind
of population and approximating formulas for these counts. This generally involves facto-
rials, n! = F(n + 1) for integral n > 0, whichl are well approximated by Stirling's formula,

n! = rne- nn {1 + --I- + O (n-2) } (A.1)

where the "order of" O-notation indicates the upper limit of all remainder terms. Without

the 1 correction Eq. (A.1) is accurate to about 2% for n > 4 and 4% for n > 8; with the
correction it is already accurate to 0.001 for n = 1. The following results will also require

this Taylor expansion of the natural logarithm function:

In(1 + 6) = 6 - 12 + (63) , 161 < 1 (A.2)

Binomial distributions describe random samples based on proportions with two cat-
egorical measurement outcomes of a variable x, one (e.g., Heads) with probability p and
the other (Tails) with probability (1 - p). For a sample of size N, the number of ways of

obtaining Heads H times out of N, and therefore Tails for the remaining T counts, equals
the binomial coefficient

(N N! x H+T=N (A.3)
H H! T! -27r HT/N HH TT NX 1+ ,

using Eq. (A.1) for the factorials. The probability of obtaining H Heads and T Tails equals

PN (p; H)= ( pH pT, H+T=N P (pH) = 1=l (A.4)
H=O

which, as indicated, is normalized over all possible outcomes for the variable of interest

(Heads here) for any p ( 0 < p < 1). The mean and variance of this distribution are

easily shown to equal p = (H) = pN and a2 = ((H - pN)2) = Np(1 - p), respectively,
where angular brackets indicate averages. The fact that the standard deviation scales with

VN < N establishes the localization or "central tendency" of this distribution, a critical
feature of many statistical distributions.

The use of Eqs. (A. 1) and (A.2) to approximate the binomial distribution is fundamental

to the reduction of all such distributions to essentially gaussian form and their interpretation

as normal distributions. It is straighforward to show that, for fixed N and p, Eq. (A.4)
is maximized when H equals its mean value pN. Hence, we shift H to a new variable A
that measure deviations from the mean (fronm A = 0) by writing H = pN + A and T =
(1 - p)N - A to maintain H + T = N. We note that N = eInN, lnpN = Inp + In N, etc.,



and assume that extra terms OC (A/N) are negligible compared to unity. Then combining

Eqs. (A.2)--(A.4) yields

P(p; H) = exp;- IN x 1 + O -[( (A.5)
P- 2x Np(1 - p) N

where

(...)=-NlIn N + (pN + A) In (pN + A) -l ip]

+ ([1 - p]N - A) [In ([1 - pN - A) - n[1 - p]

pN [1 - p] N=(pN+A)ln(l1+p)+ ([1-pN-A)ln(1 [1 -p]N)

1 A 1 A2  (A 3 \ 1 A 2  A ((A3)
2 pN 2 (1 - p)N + N2) 2 p(l - p)N N 2

Taken together Eqs. (A.5) and (A.6) produce a gaussian in the variable A = H - pN:

1 [(H - )2] { (-1\1 .p = pN
PN (p; H)•= 7 exp x 1 +7O (A.7)

22a2 I 2 = Np(1 - p)

Since this function is exponentially small unless A2 , O (N), the error in this expression

is shown as only , O (N 1/2/N) at most and is likely even smaller. Note that this ap-

proximation to the binomial distribution is still normalized and has unchanged variance

a0 2 oc N.

The shifted and rescaled variable (H - i)/a is often called 'z', which becomes the argu-

ment of a standard gaussian, (21r)-1/2e-z 2/2, with zero mean and unit standard deviation.

As usual, the one-tailed p-value for a given score z under this distribution is defined as the cu-

mulative probability of observing this or any more extreme score: p(z) = ~ ' dz e-z 2/2

A Poisson distribution is a special case of the binomial distribution for rare events

(p ; 0) that have miany opportunities to occur (N >> 1) in such a way that the average

number of random occurrences #p = pN > 0 is finite. Without reproducing the derivation

here, we note the simple result:

pn { = pN
P (A; n) = e-  n pN (A.8)

n! 02 = pN =u

where n = 0, 1, 2, ... is the number of events observed vs. the expected number ,i. The

mean of this distribution indeed equals (n) = p and its variances also equals a2 = ti. For

not-too-small g, the Poisson distribution is still well approximated by a gaussian; moreover,
fluctuations in observed values of n, of order a z /ii, decrease with respect to the mean

observed value as An/(n) -~ ao/ = 1/v/ji = 1/ v'(.



For binomial (and multinomial) distributions, it is assumed that the probability of each

kind of event is fixed. This is equivalent to assuming that there is an essentially infinite

pool of mixed outcomes, e.g., Heads and Tails events, present in the pool in the ratio

p/(l - p). It doesn't matter whether samples of size N are drawn with replacement or not
because the pool is so large: Heads will continue to come up with probability p. If, however,

the pool has a finite size Ntotal, it may be of interest to calculate the hypergeometric

distribution--the exact probability of finding a certain number of Heads in a sample of

size N drawn without replacement, given the specific numbers of Heads and Tails in the

whole pool. For example, continuing with Heads/Tails categories, suppose the pool contains

NHeads and NTails of these types of events, with total Ntotal = NHeads + NTails. This specifies

probabilities p = NHeads/Ntotal for randomly getting Heads once or 1 -p = NTails/Ntotal

for getting Tails once. In a random sample of size N, some number H out of N actually

turn up Heads--- which must come from the sub-pool of NHeads Heads. The remainder of the

sample, T = N - H out of N, must turn up Tails-- -and these must come from the remaining

sub-pool of NTails = Ntotal - NHeads Tails. Considering all the ways N could have been

selected from the entire pool of Ntotal, leaving N' = Ntotal - N unselected, the probability

of obtaining H Heads equals this ratio of binomial coefficients:

NHeads) X (NTails

P(Ntotal; NHeads, N; H) =

N (A.9)

NHeads! NTails! N! N'!
Ntotai! H! (NHeads - H)! T! (NTails -T)!

In a random sample of size N, it is easy to show that on average the fraction of the sample

that turns up Heads still equals p; i.e., the mean number of Heads equals A = (H) = pN =
NHeadsN/Ntotal. With a little more work, one can also show that the variance of H equals

2 NHeadsNTailsNN' NHeads N
N2tal(Ntotal - 1) " Ntotalp(1 - p)f - f), Ntotl f - Nto (A.10)tot Ntal Nota

which scales linearly with N as before.

In fact, the hypergeometric distribution, Eq. (A.9), can also be approximated by a gaus-

sian in the variable H as before, with precisely this mean and variance. To calculate an

exact p-value (not to be confused with the probability p here!) for drawing H Heads in a

sample of size N from a finite pool of Heads and Tails, one could just add up the hyperge-

ometric probabilities P(Ntotal; NHeads, N; H') for values H' = H through N (or NHeads, if

NHeads < N). This is called Fisher's exact test. The gaussian approximation to Eq. (A.9)

may also be employed, but then a Yates correction (H - p) --+ |H - ll - 1 is required for



small N for turning the sum into an integral. Generalizations from bivalent to multivalent

variables, and from binomial to multinoimial distributions, are straightforward; however,
more complicated versions of the hypergeonietric probabilities are best approximated as a

X2 test as follows.
The gaussian form of Eq. (A.9) stems from the behavior of the four H- and T-dependent

factorials, each of which itself has a characteristic gaussian dependence. Once again write

H = (H)+A in terms of a deviation A from the expected value (H) = pN = PfNtotal, where

f = N/Ntotat is the fraction of the total sampled. Similarly, the other factors are written as

shifts from their expected values: T = [1 - p]fNtotal - A, NHeads - H = p[1 - fINtotal - A,
NTails - T = [1 - p [1 - f]Ntotal + A, where each term ±A is required by the given subset

totals. Each of the four gaussians has an exponent of the form (H - (H) )2/2 (H), etc. Then

the product of four gaussians has four exponents that can be sunmmned together:

P(Ntotal; NHeads, N; H)

Sexp[ 1 (H - pfNtotal) 1 (T - [1 - p]fNtotal)

f2 f Ntotal 2 [1 - P]fNtotal

1 ([NHeads - H] - p[1 - fl]Ntotal) 1 ([NTails - T] - [1 - p][1 - flNtotal)
2 p[l - f]Ntotal 2 [1 - p - flNtotal

= xp , A = H - PfNtotal , 2 =Ntotal p[1 - p]f [1 - f] (A.11)

The point is that more complicated sampling patterns have the same structure. For

example, suppose a data set is partitioned into r > 2 sampling sets of size Ni that are

fractions fi/Ni/Ntotal of the whole set (i = 1, 2, ... , r), and if pj (j = 1, 2, ... , c) is the

probability of measuring category #J out of c > 2 possible values {yj}. The expected value

of seeing a member of subset #i with value #j is Eij = fiPjNtotal but in general any value

Oij might be observed. The analog of Eqs. (A.9) and (A.11) for the probability of seeing a

set of observations {Oij} is then a gaussian whose exponent is a sum of r x c terms of all

of the same form (O - E) 2/E:

XP({Oi} )= ex - X2  X2  E) 2  Eij = fiPjNtotal (A.12)
i=1 j= 1

This is of course the original of the chi-squared statistic (X2). Samples of independent,
identically and normally distributed random variables have a X2 distribution of sum-of-

squared-deviations. Other common statistical distributions based on samples of normal,
random variables are t-tests and the F-statistic used in analysis of variance (ANOVA).



A.2 Motif Frequencies

The enrichment of any set of sequences in any region of the genome has to measured
against some kind of background, or null hypothesis. Unless specified otherwise, I take the
background to be random occurrences of any and all members of the set.

The frequency of random occurrences of a DNA consensus sequence such as the Mef2

motif YTAWWWWTAR can be estimated if one assumes an infinitely long string of bases
{ACGT} distributed randomly with prescribed average probabilities {PA,Pc, PG ,PT}. For

given CG content p CG and PA +pc+PG +PT = 1, these proportions are fixed by Pc = PG = 1PcG

and PA = Pr = pAT 1 (1 - PCG). For 2-base positions, since S = {C, G} and W = {A, T}

we have Ps = PCG and pw = PAT = 1 - S but it always holds that pa = PAG = PA +PG = P and
S1likewise py = pcT = 2 and PM = PAc = and PK =PT P

Taking Mef2 under a uniform distrubution (PCG = ) as an example, the single bases A

and T each occur on each strand with probability ¼ while the 2-base positions Y, W, and R

each occur on each strand with probability ½. The whole motif therefore occurs on each
DNA strand with probability

pY . pr pa pw p w . pw . pr . pA pa = - - - - - = x (i ) = 14

i.e., at 1 in 214 = 16,384 base positions. Owing to the double ambiguities of Y = {C, T},
W = {A,T}, and R = {A, G}, there are 14 x 26 = 64 different realizations of this motif,
such as CTATATATAA and GTAAAAATAA-----all equally probable. Thus, another way of

obtaining the same frequency is to note that these 10-bp sequences arise randomly as a
fraction 4 = 4- 7 of all possible 10-bp sequences, the samne as above.

The Mef2 motif is palindromic --- it equals its own reverse complement - so every time

one of its realizations occurs on one DNA strand (POS, say) another one coincidentally

occurs on the complementary strand (NEG). There is no additional information obtained
from the second strand, no extra "search space" for counting motif instances. However,
a nonpalindromic motif might be independently searched on both DNA strands without

encountering this redundancy. As a simple illustration consider the palindromic toy motif

AWT: its 2 possible matches on the forward direction of either strand are AAT and ATT.

However, the reverse complement of this set is the same, so this motif is found at only 2 of
every 43 = 64 bases (if PCG = ). As a nonpalindromic example, the YWT has 4 possible

matches on the POS strand: CAT, CTT, TAT, TTT. These also occur on the forward direction
on the NEG strand, which would appear as their reverse complements on the POS strand:
ATG, AAG, ATA, AAA, respectively. Since these 8 sequences are all different, there are in
effect twice as many loci at which one would randomly find this motif on double-stranded
DNA as there would be on a single strand; its frequency equals - - 1 not = On
the other hand, the motif WWT has forward matches AAT, ATT, TAT, TTT, and reverse



complement matches ATT, AAT, ATA, AAA. This motif can have 6 different matches: its

frequency 6 is more than the 4 that would be found on one strand, less than the - that

would be found on both strands if there were no redundancy. The only way to precisely

calculate motif frequencies for random DNA, therefore, is to collect all the unique possible

matches of the motif and its reverse complement, calculate the probability of each match,

and add these up to obtain the motif's total probability. Only for a perfectly palindromlic

motif is the reverse-complement accounting unnecessary.

Returning to the Mef2 imotif, the CG content in the rat genorne as a whole equals

pCG = 0.418 (relatively AT-rich) while in the Mef2 peaks discussed in Sec. 2.2 it equals

pCG = 0.489 (close to uniform). In the latter regions, Pw = 0.5110, PA = pT = 0.2555, and

py = PR = . Thus, the total probability for all 64 miatches to YTAWWWWTAR equals

PMef2 = (0.2555) . (0.5110)4 . (0.5000)2 = 7.264 x 10- 5  (Mef2 peaks)
13,766

which implies that this motif would occur slightly more often by chance than it would for

50% CG content. In the AT-richer whole rat genomle, on the other hand, with Pw = 0.582,

the probability of finding the canonical Mef2 motif goes up significantly:

PMef2 = (0.2910)4 (0.5820) 4 (0.5000) 2 = 2.057 x 10- 4  ý8 (rat genome)4,862 (rat enoe)

The occurrence of a match to the Mef2 motif is a rare, randomi event and is thus

amenable to Poisson statistics. If N base pairs are available, then the mean number of

matches one can expect to observe per base with probability p in a random sequence of

bases simply equals Nexpect = P x N. The variance equals the nlean in a Poisson process so

the expected numbers under the null hypothesis are given in Table 2.1 as pN ± p-N, i.e.,

as mnean expected value with an "error" of one standard deviation.

The Mef2-variant motifs found by MEME (Sec. 2.2) were nonpalindroimic. Their back-

ground frequency and expected number in each region of interest were calculated in the same

as way as described here and are also shown in Table 2.1. Enrichment scores shown depend

on the number Nfound of instances of each imotif found in each region. The enrichment

itself is simply the ratio Nfound/Nexpect. The enrichment z-score equals the difference of the

measured number of instances with respect to the expected number, in units of Poissonian

standard deviations: z = (Nfound - Nexpect) /VNexpect



A.3 Similarity Scores

In Sec. 2.4.3 permutations of the motifs Mef2 and Mef2-HiSco were eadl compared to
their unpermuted, "reference" sequences YTAWWWWTAR and BTWTWTHWDDH with
regard to their enrichment and conservation properties in Mef2 peaks. The question arose

of how these properties might vary from that of the reference motif when the permuted

sequence was more or less similar to the unpermuted sequence. The method I present here

for similarity score between motifs is adapted from an algorithm described in the online

Supplementary Information material (section on "Motif clustering") accompanying Ref. [4].

Two sequences of nucleotides S1 (length ni) and S2 (length n2) are to be compared for

similarity of their base content and for the alignment their sequence that optimizes that

comparison, given a background base content. The background 3 is simply determined by

its CG content; e.g., PCG = 0.4892 for the Mef peaks implies the ordered list of 4 probabilities

,3 = (PA,Pc,PG,PT) = (0.255, 0.245, 0.245, 0.255) (A.13)

A flat background has equally weighted bases:

1o = (0.25,0.25,0.25,0.25) (A.14)

Bases at individual positions are specified by the usual alphabet

A, C, G, T,

M= {A,C}, K= {G,T}, R= {A,G}, Y= {C,T), W= {A,T}, S= {C,G},
(A.15)

B= {C,G,T}, D= {A,G,T}, H= {A,C,T}, V= {A,C,G},

N = {A,C,G, T}

which allows for zero, double, triple, or complete ambiguity. Each motif base can also be

represented as a list of probabilities, e.g., (0,0,1,0) for 'G', (1,0, 1,0) for 'R', (1, 0, )
for 'H', and f0 = (1, ,~, ,) for 'N'. Each set is given equally weight probabilities in a motif
since I treated amnbiguated letters equally when searching for motif instances in genomic

sequence. An entire sequence S canl thus be represented as a position-weight matrix M.

If S needs to be extended at either end by nonspecific sequence, a string of background

N's should be used with weights 3, Eq. (A.13), appropriate to the region in which motif

instances are to be found. For example, the motifs Mef2 and Met2-HiSco embedded in

background sequence look like



MMer =

and

MMef2-HiSco =

p 1 T 0 1 AwwwwT 0.255 --

... 0.255 0 0 1 0 1 0.255

... 0.245 1 0 0 0 0 0 0 0 0 0 0.245 ...

... 0.245 0 0 0 0 0 0 0 0 0 0.245

. 0.255 1 0 1 0 0 0.255 ...

(A.16)

1 1 1 1 1 1 10.255 0 0 0 0 i I I 0.2551 31 0.

" 0.245 1 0 0 0 0 0 0 0 0 1 0.245

3 3

0.255 1 1 1 1 1- L 1 0.255 .

(A.17)

To score two sequences Si and S2 for similarity, they must be lined up and compared

base-for-base. If two bases have the same composition, e.g., both G's or both R's, then their

contribution to the score shou1l( be maximal; orthogonal choices such as G vs. W should

contribute zero. Considering all aligned pairs of bases, this implies that the correlation over

all elements of their weight matrices M 1 and M 2 is a suitable measure of similarity. The

similarity score A is defined as the value of r for the alignment shift a that maximizes the

Pearson cormlation r between M, and M 2 in a background 3:

CE
A (Si, S2; ; a) - arg max i b

a

Ml(i,b) M 2 (i - a,b) - 1 P2

(71 Cr2

where Pk is the average of all (non-background) elements of Mk and Uk their standard

deviation. Here Mk(b,i) denotes the weight of base b E {A,C,G,T} (i.e., row of Mk) at

position i (column) in sequence k = 1 or 2. The shift a is the number of bases that S2

is offset from alignment with S1 at their leftmost bases. The sum Ej extends over all

base positions of S1 and S2 whether they overlap with one another or with the flanking

background.

By way of example, Table A.1 shows the optinmized alignment and sinmilarity score A

(A.18)



(comparison to YTAWWWWTAR) for each of the Mef2-variant and control motifs discussed

in Chapter 2:

Mef2vs.... Shifta A ooooYTAWWWWTARoo

Mef2 0 1.000 ooooYTAWWWWTARoo

Mef2-varl 0 0.803 ooooHWAWAWWWARoo

Mef2-var2 -2 0.524 ooKBYTDTTTWDDooo

Mef2-var3 -1 0.732 oooDRTWWTTWTARoo

Mef2-HiSco 0 0.595 ooooBTWTWTHWDDHo
Mef2-Perm -1 0.668 oooWYWAATRWTWooo

Mef2-Rdiml 2 0.454 ooooooAKCTWWAGMT

CREB -4 0.183 TGACGTMDoooooooo

BACKGROUND - 0.019 oooooooooooooooo

Table A.1. Example similarity scores for the Mef2 motif vs. other motifs listed in Table 2.1.
Optimal shift a and resulting score A. Motifs shifted with respect to Mef2 for optimal score.
Here 'o' represents the backgromld weights /3 for Mef2 peaks.



Appendix B

Computer Codes

In this Appendix I summarize the major computational chores I tackled to carry out the

quantitative work described in Chapters 1 ---4. Scripts and their output are not included

here but I note their essential features. I wrote most of the computer code in either perl

v5.8.8 (mostly for sequence mining) or R v2.4. 1 (mostly for statistical analyses and imnage

production).

Most of the bioinformatic analyses that I performed for this thesis required as input

either the reference assemblies of entire genomes, alignments among several genomes, or

phastCons (conservation) scores based on an alignment. Genomic sequences included both

raw sequence from whole chromosome reference contigs as well as annotated genes and gene

features from gene reference sequences (RefSeqs). I did not perform any alignments (cf.

Ref. [6]) or phylogeny-based conservation analyses (cf. Ref. [25]) myself, but did directly

analyze genonmic DNA sequence.

The rat genonme used in Chapter 2 was rn4, the most recent assembly (Nov. 2004)

available from UCSC and NCBI. Genomic loci of annotated gene features whole genes,

reference mRNA transcripts, untranslated regions (UTRs), coding exons (CDSs), and pseu-

dogenes-- -were provided in a single compressed file, "seqgene.md. gz" (- 10 MB), down-

loadable from Ref. [18]. To process this file, I wrote a perl script, "GeneFeatures EXs+UTRs

from RefSeqs_2.pl", to organize its reference assembly entries hierarchically by gene,
RefSeq, and gene feature (5pUTR, 3pUTR, EXon, and INtron, principally). Output contained

annotations such as GeneIDs, RefSeq numbers, within-gene feature numbers (1st exon, 2 nd

exon, 5 th intron, ... ), start and stop loci, etc., for the whole genome. All gene loci for input

to subsequent analyses were drawn from this database. If necessary, any numnber of (Start,

Stop) ranges for multiple sets of genes, RefSeqs, and gene features could be combined with

arbitrary logical specifications (union, intersection, exclude, etc.) using another perl script,

"Ranges from Features_2.pl".

I downloaded the nucleotide sequence of the whole rate genomne from Ref. [22]. In order



to collect arbitrary DNA subsequences for tiled-array genes and Mef2 peaks (Sec. 2.1), I

wrote a perl script "GetGenomicSequences .pl" to retrieve the sequence for any number
of given (Start, Stop) loci pairs. An option to include an arbitrary number of "padding"

nucleotides on either end of each re(uested range was useful for extending the annotated loci

of genes used in the microarray experiments [1] by 10 kb as input to further bioinformatics.

These genonlic subregions could then be easily swept for, e.g., CG content.

Exhaustive lists of matches to individual short sequence patterns -- such as the Mef2 mo-

tif YTAWWWWTAR and other motifs -needed to be extracted both from genomic sequence

(rn4 chromosomes) and from within sequences delineated by arbitrary loci. The latter in-

cluded sets of (Start, Stop) ranges representing, alternatively, every tiled-array gene or

every Mef2 peak (Sec. 2.2). To find all genomic instances of single motifs on all or any sub-

set of rat chromosomes, I wrote a perl script "Find.GenomicMotifInstances. pl". E.g.,
for YTAWWWWTAR, blocks of genomic sequence of length 20,000 bp were searched via

the 10-bp pattern /[CT][T] [A][AT][AT] [AT] [AT] [T] [A] [AG]/. (A nonzero number of matches
to genomic bases marked 'N' was an option but generally disallowed by specifying zero.)

An option for outputting padding on either side with every 10-bp genomnic sequence match

could be used to characterize the sequence surrounding each "hit" if necessary. Another

perl script, "FindMotifs-inSequences. pl", found all instances of single motifs in the

set tiled-array gene sequences (including the extra +10 kb) and in the set of Mef2 peak

sequences. Both of these programs also reported the sequence of each matching instance,
from which more specific motif position-weight matrices and "logos" [19] could be derived
if desired.

For the conservation analyses of Secs. 2.3 and 2.4, I downloaded phastCons scores for

rn4, based on an alignment of 8 other vertebrate genoines to the rat genome, from Ref. [26].

These scores were needed for analyzing the conservation of motif instances over whole rat

chromosomes (or chromosomal segments), in the tiled-array gene regions, and in the Mef2

peaks, as well as for the average scores of bases in each region. I wrote a perl script

"PhastConsScores_forRanges_3 .pl" to extract scores covering lists of (Start, Stop)

loci of interest -- i.e., for all motif instances already identified in the genome using "Find_

Genomic-MotifInstances.pl" or for all instances in gene regions or in Mef2 peaks iden-

tified using "Find_MotifsinSequences .pl". Output included not only the conservation

scores but also the number of input sequence bases that actually had phastCons scores and

each range's mean score. Once again, a padding option allowed me to collect scores for

200-bp "neighborhood" sequences around each instance, averages of which are displayed in

Figs. 2-9 et seq.

Note that all of the genome-mining programs mentioned here are designed to work with

any downloaded genonme, not just rat. In addition, for work involving the genomic loci of

many different motifs, my colleague Dr. J.M. Gray and I have each written code to efficiently



produce this much larger data set all at once rather than one motif at a, time. This was

required for our studies of the whole Xie set of motifs [4] mentioned in Chapter 1.

All analyses of phastCons scores, including calculations of average scores in chromo-

somes, tiled-array gene regions, and Mef2 peaks, were performed using scripts I wrote in R.

All the images in Chapter 2, except Fig. 2-1, were also created using R. In particular, the

conservation maps of Sec. 2.3.2 involved assembling all conservation scores for all bases

in the Mef2 peaks, transforming them in various ways with respect to their sequences'

alignment (e.g., centered vs. stretched), and color-coding their values. I wrote R scripts

to collect and average scores over all motifs' instances and their 400-bp neighborhoods in

each type of region, and to produce the corresponding plots, in Secs. 2.4.1 and 2.4.2. The

many permuted motifs based on YTAWWWWTAR or BTWTWTHWDDH in Sec. 2.4.3 were

enumerated using R. I scored each permutation for similarity to Mef2 or Mef2-HiSco in R,

then scored each for enrichment and conservation in the Mef2 peaks by calling the above

mentioned perl scripts from R and assembling z, s, and A values into Fig. 2-13(a) (b)

in R. I also used R for the statistical analyses of Table 2.1, Sec. 2.4.2, and elsewhere.

I used Paint Shop Pro v7.04 to combine the UCSC Genome Browser track images with

separate Mef2 peak track images and the color-coded conservation bars in Fig. 2-1, as well

as to add labels to images used as subfigures.

The largest computing jobs (genomic motif searches, phastCons score collection) were

run on Harvard Medical School's orchestra cluster. Otherwise, all computations were per-

formed on either a Dell Dimension 9150 work station or a Toshiba Tecra M7 laptop; no job

took more than a few hours to run on 2 3-GHz Intel x86 dual-core processors.

This manuscript was typeset using TE(X and LAITEX based on the mitthesis. cls docu-

mnent class available online through the Institvte.
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