INTERACT: MEDIA INFORMED ARCHITECTURE

Justin D. Shea

B.F.A in Architectural Design
Massachusetts College of Art: 2002

Submitted to the Department of Architecture in partial fulfillment of the requirements for the degree of Master of Architecture at the Massachusetts Institute of Technology

[June 2008]
February 2008

© 2008 Justin D. Shea. All rights reserved

The author hereby grants MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created.

Signature of Author

Certified by

Accepted by

Justin D. Shea
Department of Architecture
January 17, 2008

J. Meejin Yoon
Associate Professor of Architecture
Thesis Supervisor

Julian Beinart
Professor of Architecture
Chairman, Department Committee on Graduate Students
Thesis Committee

J. Meejin Yoon
Associate Professor of Architecture
Thesis Supervisor

Mark Jarzombek
Professor, History, Theory and Criticism
Associate Dean, School of Architecture and Planning
Thesis Reader

Axel Kilian
Design and Computation PhD
Department of Architecture
Thesis Reader

Lucia Allais
History, Theory and Criticism PhD Candidate
Department of Architecture
Thesis Reader
INTERACT: MEDIA INFORMED ARCHITECTURE

Justin D. Shea

Submitted to the Department of Architecture on January 17, 2008 in partial fulfillment of the requirements for the degree of Master of Architecture

Abstract

In today's society we are in a continuous state of distraction. Our cell phones and MP3 players provide us with a steady stream of information and imagery to deter our mind from the disruption of advertisements and solicitations surrounding us.

This thesis explores the relationship between media and architecture. Specifically, how the moving image and the experience of moving through built space can direct, distract and alter perception. Interaction between the public and the displayed media create an environment that is both social and engaging. This relationship is considered within a mobile media park sited inside the Los Angeles river channel in downtown LA.

Thesis Supervisor: J. Meejin Yoon
Title: Associate Professor of Architecture
Thank You

To my committee: Meejin, Mark, Axel + Lucia.

My family for their encouragement and support.

Team Shea: Carnaven, Nat, Dan, Carl, Stephanie, Garett, Katie, Kevin. I couldn’t have pulled everything together without your help.

+ all the great friends I’ve made at MIT
Table of Contents

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>07</td>
<td>Introduction</td>
</tr>
<tr>
<td>19</td>
<td>Site conditions</td>
</tr>
<tr>
<td>31</td>
<td>Final design</td>
</tr>
<tr>
<td>69</td>
<td>Design strategy</td>
</tr>
<tr>
<td>81</td>
<td>Process</td>
</tr>
<tr>
<td>101</td>
<td>Appendix A: precedent research</td>
</tr>
<tr>
<td>107</td>
<td>Appendix B: media research</td>
</tr>
<tr>
<td>119</td>
<td>Bibliography</td>
</tr>
</tbody>
</table>
In the first film theaters, known as "picture palaces", there would be a certain degree of interaction with the film. Each theater was UNIQUE and an organ often complimented silent films. In this regard, each visitor's perception and interpretation of the film would vary from theater to theater. It could be catered to the audience in real time. Much like a test screening but with live alterations of speed, volume and accentuation.
At one time, seeing a film was a SOCIAL EXPERIENCE. This has all changed due to the LIFELESS, ORDINARY, STERILE ENVIRONMENT created in today’s conventional theaters. In modern theaters we are cut off from our surroundings. We are forced to experience only the film, not the environment that we are inhabiting. The original picture palaces emphasized sensory overload. The cinematic thrill became less about the film and more about the overall experience.
WHY BE ARTIFICIAL

While the iphone and like devices may claim to connect you with the world they actually function to alienate you from your surrounding environment.

The Hollywood set is an artificial environment created to be in control of the surrounding conditions. Every aspect of the background is rehearsed and recorded.

Modern film theaters are homogeneous containers designed for a prescribed experience. This form of media delivery has evolved to be completely detached from the location and the viewers.
initial concept poster

UNPLUG
content delivery through the built environment
SURFACE

sound - light - air movement

1. **TRI-VISION BILLBOARD METHOD**: three different rotating materials used to control the reflectivity of the surface.

2. **FLUCTUATING SURFACE METHOD**: surface as equalizer or instrument; specific areas can be stretched and pulled to adjust the porosity and reflectivity of the surface.
Synesthesia (Greek, syn- together + aesthesis- sensation / perception) is a neurological condition of involuntary cross-modal association, where stimulation causes a perception in one or more different senses.

Film artists utilize visual and auditory stimulation in an attempt to manipulate the viewers perception. Architects can take advantage of this technique through the built space.
ARCHITECTURE + MEDIA

Various forms of media have significantly influenced the direction of architectural design. Artistic movements, advances in technology and communication have provoked radical new conceptualizations of space. While the significance of media within architecture may be obvious, it is important to recognize the impact of architecture on media. Typically, one must inform the other but this relationship may be most successful when the two are integrated.

Media has made buildings accessible to the eye through camera reproduction and digital environments. The building can be observed through photography, video, and computer generated models. Although the building may not be experienced in person, a certain degree of information can still be conveyed. Inversely, media can transform the built environment and perception of the media can vary drastically depending on the space it occupies.

Art galleries, cinemas, concert halls and theaters all function as specifically designed spaces for experiencing printed, performed and projected media. These buildings have evolved over time but the general principles have remained consistent. They primarily function as vehicles for the exhibited media. Dimensions, proportions and acoustical properties of the space were considered to complement the media. In addition to the interior exhibitions, the exterior was used to attract pedestrians with ornament and flashing lights.

The architectural space is capable of engaging the media through a number of ways. One way this can be accomplished through the materials. Materials can vary from smooth to rough, opaque to transparent, reflective to absorbent, solid to porous, and light to dark. Specific materials can be utilized to control the amount of light, sound and air infiltration within a space. Media is often integrated within the architectural material, transforming the color, shape and perception of the buildings interior and/or exterior.

Inhabitation also plays a crucial role in the perception of media. Walter Benjamin describes this role in relation to distraction. He writes: "The distracted mass absorbs the work of art. This is most obvious with regard to buildings. Architecture has always represented the prototype of a work of art the reception of which is consummated." Giuliana Bruno believes that film, like architecture, is a work of art that is achieved through reception. "It [film] makes a custom of constructing sites and building sets of dwelling and motion. It has a habit of consuming space--space that is both used and appropriated. Being at the same time a space of consumption and a consumption of space, it is a user's space."

This relationship can be considered with respect to two categories: static architecture and media, and architecture and media in motion. In each of the two categories the subject may be identical but the perception of the viewer changes dramatically. This is due to the degree in which transportation and media technologies have altered our perception of the built environment. Cars, trains, airplanes, elevators, escalators and people movers provide us with effortless locomotion. They can deliver various architectural views detached from voluntary movement. The viewpoint may range from an elevated expressway slicing through the city to a glass elevator rising through an interior space. A single view of an urban façade can be seen in motion from a passing vehicle, on foot, or captured through the lens. The façade is seen as a composition of surrounding elements even from the static position. When the viewer is in motion the composition becomes a series of images much like still shots on a film reel. The succession of images forms an entirely different interpretation than the single view and the building becomes what Fredric Jameson describes as “media within a media system.”

Our appreciation of architecture is directly related with how we see it and we have become accustomed to seeing architecture through abrupt shifts in viewpoint. Many times this condition results in forming unexpected compositions. The visual field becomes much broader but also less detailed. Much like the television screen, architecture when seen through the window of a moving vehicle becomes “graphic and pictorial.” The larger picture becomes dominate as opposed to the fine details. We are forced to see things out of context and separately from the original space of the object. Perception is then limited to the discontinuous sequence of imagery flashing by our window.

When moving through space without the assistance of mechanized transportation we can appreciate a different level of detail. Multiple senses have the opportunity of evaluating the surrounding environment. One again unexpected compositions are formed, but in this condition they are localized within the surrounding context. The experience is associated with the tactile sense as opposed to merely the optical sense and mobility is less restricted.

The organization of circulation routes is extremely important when experiencing architecture and media. The route controls many factors such as where to stop, where to move and how

to direct the body. Primarily, the body is directed through sensory stimulation of the eyes, ears, nose, hands and feet. Many times two or more of these senses can be triggered at the same time causing an effect similar to synaesthesia. The result can influence the individuals’ attention and speed of movement. Angles and adjacencies of light, sound, and air movement are also significant and can play a large role in how the environment is perceived. The context adjacent to the media can engage the viewer on a different level and encourage social interaction. Both media and context feed the viewer with anticipation, the anticipation of what will appear next on screen or move into view in the periphery.

In addition, there are many types of routes that are capable of controlling movement. There is the approach route, the route passing through and the route passing by. Each route offers an opportunity for interaction with the surrounding environment which can manipulate the perception of the media. This degree of interaction can influence the duration of time spent within a particular area thereby affecting movement.

Architectural form can influence the durational quality of each route by manipulating the surface. This can be understood through the speed of the surface, both the angle of the surface and the level of detail/ornament inherent within the surface. Just as a sloped ground plane can affect the speed of movement, a sloped wall plane can affect the duration of rest. Both situations correspond to the body angle of the viewer in motion or at rest. Other surface factors include the porosity, sight range and the proximity of surrounding walls. Visually distracting surfaces tend to attract and slow down the viewer while blank, monotonous surfaces have an adverse effect.

Motion causes distraction, whether observing a motion picture or a moving crowd the effect remains consistent. When the two occur simultaneously it becomes difficult to differentiate between which is live and which is recorded. Each form of motion manipulates the perception of the other by drawing the viewers’ attention. This condition can be incorporated in the design of the media exhibition. Some exhibits for example may benefit from interaction with the surrounding context while others may require undivided attention.

Architecture, like media, is part of a system of information. It can at once be an icon, a billboard, and a venue for media. The media can be embedded to reinforce circulation through signage and digital interfaces, yet it is also used to distract and draw attention to the building. Mitchell Schwarzer believes that “Today, for buildings or cityscapes to be noticed, they

5 “Synaesthesia [Greek, syn- together + aesthesis- sensation / perception] is a neurological condition of involuntary cross-modal association, where stimulation causes a perception in one or more different senses.” Oxford English Dictionary
must be viewed in states of mediated perception. Architecture must merge into the flow of information, into the spectacle of media."

The use of architecture within media is similar to that of media within architecture; each can be designed and positioned to take advantage of the context. Each can control and manipulate speed through surface. Both the moving image and the experience of moving through built space can direct, distract and alter perception. The integration of architecture and media enables us to simultaneously move physically through architectural space and visually through projected media. A relationship which significantly encourages interaction, physical awareness and provides the opportunity for emergent artistic expression.

SITE CONDITIONS
THE LOS ANGELES RIVER
Timeline

1848- California Gold Rush.
1854- Increasing population / lowering water table prompts city to appoint a water overseer to administer the distribution of irrigation and drinking water.
1890- Population of Los Angeles County reaches 101,000.
1904- Los Angeles City Water Company, announces that Los Angeles will need new water sources- the population has outgrown the Los Angeles River and local aquifers.
1913- The Owens Valley Aqueduct opens, bringing water to the city from the eastern Sierra Nevada.
1914- Flooding causes $470 million in damage. Discussion of channelizing the Los Angeles River begins.
1930's- Groundwater levels are dropping by 2 to 20 feet per year. The first spreading grounds are constructed.
*1931- First comprehensive Plan for Control and Conservation of Flood Water developed. Elements include debris basins, concrete and rock lined channels and other bank protection, storm drains to carry surface water to channels, spreading grounds to conserve flood waters, and soil erosion control measures.
1934,1938- Flooding causes $895 million in damages, 89 people die.
1939- 14 dams and numerous debris basins are completed in mountain canyons to control flooding and debris in downstream areas.
1941- Congress approves the Los Angeles County Drainage Area plan, that will include five major flood control basins, debris basins in 31 tributary canyons, construction of 93 miles of main channel and 147 miles of tributary channels.
1961- Los Angeles River channel takes 20 years to complete. The effort requires three-million barrels of concrete and 10,000 workers.
1990- The Mayor's Task Force proposes an interagency master plan be prepared for the entire river: recreation, environmental enhancement, aesthetic improvements, economic development, flood management and water conservation as part of the Master Plan development.
1996- City of Los Angeles begins construction of first phase of the Los Angeles River Bike Path.
2005- City of Los Angeles' Department of Public Works-Bureau of Engineering issued a Request for Proposals for the preparation of a Revitalization Master Plan to make the Los Angeles River a "front door" to the City, and support a multitude of civic activities.
EXISTING CONDITION

Los Angeles River
concrete channel

SITE 1

SITE 2

SITE 3
Existing Scapes

Soundscape

<table>
<thead>
<tr>
<th>Source of sound</th>
<th>Decibels (dB)</th>
<th>Odor Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rifle being fired at 1 m</td>
<td>140 dB</td>
<td>0 - no odor</td>
</tr>
<tr>
<td>Threshold of pain</td>
<td>130 dB</td>
<td>1 - very weak (odor threshold)</td>
</tr>
<tr>
<td>Jack hammer at 1 m</td>
<td>100 dB</td>
<td>2 - weak</td>
</tr>
<tr>
<td>Major road at 10 m</td>
<td>80 - 90 dB</td>
<td>3 - obvious</td>
</tr>
<tr>
<td>Normal talking at 1 m</td>
<td>40 - 60 dB</td>
<td>4 - strong</td>
</tr>
<tr>
<td>Auditory threshold</td>
<td>0 dB</td>
<td>5 - very strong</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 - intolerable</td>
</tr>
</tbody>
</table>

Smellscape

<table>
<thead>
<tr>
<th>Odor Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - no odor</td>
</tr>
<tr>
<td>1 - very weak (odor threshold)</td>
</tr>
<tr>
<td>2 - weak</td>
</tr>
<tr>
<td>3 - obvious</td>
</tr>
<tr>
<td>4 - strong</td>
</tr>
<tr>
<td>5 - very strong</td>
</tr>
<tr>
<td>6 - intolerable</td>
</tr>
</tbody>
</table>

Tastescape

<table>
<thead>
<tr>
<th>Food + Beverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - no availability</td>
</tr>
<tr>
<td>1 - outside walking distance</td>
</tr>
<tr>
<td>2 - poor working hours (WH)</td>
</tr>
<tr>
<td>3 - within walking distance + good WH</td>
</tr>
<tr>
<td>4 - good variety</td>
</tr>
</tbody>
</table>

Tactilescape

<table>
<thead>
<tr>
<th>Temperature + Shelter</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - no shelter or shade</td>
</tr>
<tr>
<td>1 - some shelter</td>
</tr>
<tr>
<td>2 - good air quality</td>
</tr>
</tbody>
</table>

Visualscape

<table>
<thead>
<tr>
<th>Immediate Setting + Background</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - industrial wasteland</td>
</tr>
<tr>
<td>1 - view of skyline</td>
</tr>
<tr>
<td>2 - view of trees</td>
</tr>
<tr>
<td>3 - view of skyline + trees</td>
</tr>
</tbody>
</table>

Exscape

<table>
<thead>
<tr>
<th>Site 1:1</th>
<th>Site 1:2</th>
<th>Site 1:3</th>
<th>Site 2:1</th>
<th>Site 2:2</th>
<th>Site 2:3</th>
<th>Site 3:1</th>
<th>Site 3:2</th>
<th>Site 3:3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:30 dB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1:60 dB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1:45 dB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SITE 1: 30 dB
SITE 2: 60 dB
SITE 3: 45 dB
TRAFFIC
bicycle - foot

City Hall types predict that 5,000 daily bike commuters will use it, 1500 per day (redevelopment) thus removing an equal number of cars from the road.

WENDY THERILO, Los Angeles Times

PUBLIC USE
projected use at site 2

bicycle:
 commuting: 1500 per day
 recreational: 500 per day

foot:
 commuting: 100 per day
 recreational: 1000 per day
CONTEXT DISTRACTION

PEDESTRIANS

VEHICLES

ARCHITECTURE

VEGETATION
SITE CONDITIONS
ACOUSTICS

Distance

Low f
Mid f
High f

Discernment
horizontal: 15 degrees
vertical: 45 degrees
8 miles : BIKE 30 MINUTES : 16 mph : 23.4 ft/sec

4 miles : RUN 30 MINUTES : 8 mph : 11.73 ft/sec

1.5 miles : WALK 30 MINUTES : 3 mph : 4.4 ft/sec
Access

to [land through] site

8 miles north: BIKE 30 MINUTES :: Direct access East
WEST: Hollywood hills: park / residential
EAST: Glendale: residential
Griffith Observatory / Griffith Park, Mount Hollywood, Los Angeles Zoo

4 miles north: RUN 30 MINUTES :: Direct access West
WEST: Downtown LA (East Hollywood) park / residential
EAST: residential

1.5 miles north: WALK 30 MINUTES :: Cesar Chavez Ave.
WEST: Downtown LA (Chinatown): industrial / commercial
EAST: East LA industrial / commercial → residential
"The Brewery" artist housing

Site :: North E.6th St. :: South E.7th St.

WEST: Downtown LA: fashion/artist district, little Tokyo
EAST: East LA industrial / commercial → residential
good food, shopping, access to downtown, galleries

1.5 miles south: WALK 30 MINUTES :: East 26th Street
WEST: Vernon: industrial / commercial → residential
EAST: industrial / commercial → residential

4 miles south: RUN 30 MINUTES :: South Atlantic Blvd.
WEST: Maywood: residential
EAST: Commerce: industrial (along river)

8 miles south: BIKE 30 MINUTES :: Direct access East + West
WEST: South Gate: residential
EAST: Downey: residential
(industrial /commercial bordering the river)
Design concept: media informed architecture. Speed / duration of media experience determined by the built form.
SECTION 1-18

Section geometry determined by view, surrounding context and inhabitable media space.
STACKED SECTIONS
1-18

Sections stacked to show relationship of multiple surfaces.
MOBILE MEDIA

WALK : RUN : BIKE

MOBILE MEDIA is a term I use to describe the relationship between the motion picture and the body in motion. Specifically, how the moving image and the experience of moving through built space can direct, distract and alter perception. Interaction between the public and the displayed media create an environment that is both social and engaging.

Mobile media expands the concept of the unique media experience. Pedestrians move through the space at various speeds by walking, running or cycling. The speed of view is proportional to the speed of movement which is determined by the 'speed of surface.'

An individual may be seated watching a film and have the opportunity to catch a glimpse of the skyline, a passing cyclist, and moving freight train, all within their field of vision. In addition to their visual field, it is also possible for the individual to appreciate a range of sensory information within the surrounding context. The context becomes part of the media which is delivered through the architecture.
View from E. 7th Street bridge looking northwest
Path intersection: facing north
Open space at water level: facing north
SITE PLAN
WEST: Downtown LA: fashion / artist district
EAST: East LA: commercial – residential
CIRCULATION
PLAN / ELEVATION DIAGRAM

SLOW

MEDIUM

FAST
Site model showing individual sections with circulation paths running through
Parameters

Human Factors

<table>
<thead>
<tr>
<th>Use</th>
<th>Surface Quantity</th>
<th>Proximity + Vertical Sight Range</th>
<th>Surface / Body Angle</th>
<th>Surface Porosity</th>
<th>Horizontal Sight Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 mph</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 mph</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 mph</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 mph</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-3 mph</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rule set for developing section geometry based on various activities that may occur on the site.
- **Walking**: 3-5 mph
- **Running**: 5-15 mph
- **Riding**: 10-15 mph
- **Cycling**: 15-20 mph
- **Racing**: 20-40 mph
As scale increases, speed increases.
As porosity increases, speed decreases.
As the ramp height increases, the speed decreases.

Speed of observation is controlled by the slope of the ramp. As the ramp height increases, the speed decreases.
As the distance from viewer to surface increases, the optimum surface angle becomes vertical.
SURFACE

Speed decreases as additional surface angles are introduced. Increased eye movement slows the viewer.
IMAGE SEQUENCING
SPEED = FRAMES PER SECOND
Image sequencing can be controlled by the speed in which the viewer is traveling. Motion can be created at each speed of travel (walking, running or biking).
Sketches diagramming overlapping program + use.
Initial concept sketch showing the relationship of both static / dynamic activities occurring within the same surface.
Stacked sections showing the scale of the individual path to the scale of the gathering spaces.
Cycle speed controlled by path slope + scale
Collage illustrating the surface edge as the boundary between programmatic elements.
Static / dynamic environment: passing cyclists parked to watch
Sketch model 1: continuous screen surface utilized for both pedestrian + media movement.
Sketch model 2: multiple paths / programs intersecting at different angles, moving pedestrians at different speeds and forming merged spaces
Site diagrammed through different material properties to control the sound/light reflectivity within separate programmatic areas.
Diagram showing possibility of artist / fashion district expansion into the river.
Diagram showing interaction between the two sides of the river.
50 sections: study continued beyond E.7th and E.6th street to explore relationship to context and pedestrian circulation
In addition to organized media shows, pedestrians can rent their own equipment and reserve areas within the site. Rental stations are located on each end of the site.
Live Modern, Enjoy a Modern Movie!

GUERRILLA DRIVE-IN
VICTORIA

Live Modern, Enjoy a Modern Movie!

SOUTHERN MAINE
GUERRILLA DRIVE-IN

Live Modern, Enjoy a Modern Movie!

SANTA CRUZ
GUERRILLA DRIVE-IN

Gorilla Drive-In: example of self-organized, spontaneous mobile media
SITE/PROJECT INFORMATION

Location: Yokohama, Japan
Size: 1,500' X 750' = 2.3 acres
Architect: Foreign Office Architects

Design Initiatives:
1. Seamlessly connect park to terminal.
2. Create different paths to experience the site in a different way upon each visit. (2)
3. Use the "typical urban" space of the roof surface.

Location: Paris, France
Size: 62 acres
Architect: Office for Metropolitan Architecture

Design Initiatives: program expanding the dense forest across the site.
1. Provisions (design systems):
2. Points, grids, or cells;
3. Access and circulation;
4. Composition of major elements.

Location: New York City, NY
Size: 30-80 width, 1.4 miles, 6.1 acres
Architect: Diller Scofidio + Renfro

Design Initiatives:
1. Keep it simple, wild, quite, slow.
2. Linear system of pathways and plantings.
3. Modular system of context-respective landscape environments.
4. Access points as durational experiences.
Location: Toronto, Canada
Size: 600 acres
Architect: Office for Metropolitan Architecture
with Bruce Mau

Design Initiatives:
- Tree city
- minimalist, three staged proposal
- Site and soil preparation
- Pathway construction
- Cluster landscaping
- Clustering vegetation without a program to create program-less density that would offset the un-programmed open spaces

Location: Manhattan, NYC, New York
Size: 84 acres, 192' x 262'
Architect: Frederick Law Olmsted

Design Initiatives:
- Separate circulations systems for pedestrians, horseback riders and pleasure vehicles
- Cross-fews commercial traffic concealed in avenues
- Roadway screens with densely planted shrubs to not disturb the rustic scene
- Assortment of bridges

Location: Staten Island, NYC, New York
Size: 220 acres
Architect: Field Operations

Design Initiatives:
- Landscape-oriented by three systems
- Program
 - activities, structures
 - habitat
 - landscape, animals
- Circulation
 - vehicular, parking, non-vehicular
PRECEDENT

SYN CHRON
Carsten Nicolai, Fin Geipel
Bern Biennial 2005

SLEEPWALKERS
Doug Aitken
MoMA 2007

USE

Controlled distraction with use of technology

Distraction based on temporality
PUBLIC / PRIVATE

DILLER + SCOFIDIO WITH PAUL LEWIS

JUMP CUTS
United Artists Cineplex Theater, San Jose, California, 1995
"Big Stakes" 1922

accompanied by
Devil Music Ensemble

Union Square, Somerville, MA
Devil Music Ensemble
Union Square, Somerville, MA
“Willy Wonka and the Chocolate Factory”
1971
accompanied by Somerville Arts Council
Union Square, Somerville, MA
smell-o-vision

Somerville Arts Council

Union Square,
Somerville, MA
"Morelia Shorts"
2006
sponsored by
Rooftop Films
El Museo Del Barrio
East Harlem,
New York, NY
Rooftop Films
New York, NY
FFM films 2007

presented by World Film Festival

Musée d'art contemporain Ste-Catherine West, Montreal, Canada
"Minority Report"
2002

sponsored by
City of Toronto

Yonge-Dundas Square,
Toronto, Canada
It may be possible for media informed architecture to have an identity within a regional context.

