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Abstract

Lyapunov’s direct method, which is based on the existence of a scalar function of the
state that decreases monotonically along trajectories, still serves as the primary tool
for establishing stability of nonlinear systems. Since the main challenge in stability
analysis based on Lyapunov theory is always to find a suitable Lyapunov function,
weakening the requirements of the Lyapunov function is of great interest. In this
thesis, we relax the monotonicity requirement of Lyapunov’s theorem to enlarge the
class of functions that can provide certificates of stability. Both the discrete time case
and the continuous time case are covered. Throughout the thesis, special attention is
given to techniques from convex optimization that allow for computationally tractable
ways of searching for Lyapunov functions. Our theoretical contributions are therefore
amenable to convex programming formulations.

In the discrete time case, we propose two new sufficient conditions for global
asymptotic stability that allow the Lyapunov functions to increase locally, but guar-
antee an average decrease every few steps. Our first condition is nonconvex, but
allows an intuitive interpretation. The second condition, which includes the first one
as a special case, is convex and can be cast as a semidefinite program. We show
that when non-monotonic Lyapunov functions exist, one can construct a more com-
plicated function that decreases monotonically. We demonstrate the strength of our
methodology over standard Lyapunov theory through examples from three differ-
ent classes of dynamical systems. First, we consider polynomial dynamics where we
utilize techniques from sum-of-squares programming. Second, analysis of piecewise
affine systems is performed. Here, connections to the method of piecewise quadratic
Lyapunov functions are made. Finally, we examine systems with arbitrary switching
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between a finite set of matrices. It will be shown that tighter bounds on the joint
spectral radius can be obtained using our technique.

In continuous time, we present conditions invoking higher derivatives of Lyapunov
functions that allow the Lyapunov function to increase but bound the rate at which
the increase can happen. Here, we build on previous work by Butz that provides a
nonconvex sufficient condition for asymptotic stability using the first three derivatives
of Lyapunov functions. We give a convex condition for asymptotic stability that
includes the condition by Butz as a special case. Once again, we draw the connection
to standard Lyapunov functions. An example of a polynomial vector field is given
to show the potential advantages of using higher order derivatives over standard
Lyapunov theory. We also discuss a theorem by Yorke that imposes minor conditions
on the first and second derivatives to reject existence of periodic orbits, limit cycles, or
chaotic attractors. We give some simple convex conditions that imply the requirement
by Yorke and we compare them with those given in another earlier work.

Before presenting our main contributions, we review some aspects of convex pro-
gramming with more emphasis on semidefinite programming. We explain in detail
how the method of sum of squares decomposition can be used to efficiently search for
polynomial Lyapunov functions.

Thesis Supervisor: Pablo A. Parrilo
Title: Associate Professor
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Chapter 1

Introduction

1.1 Dynamical Systems and Stability

The world, as we know it, is comprised of entities in space that evolve through time.

The idea of modeling the motion of a physical system with mathematical equations

probably dates back to Sir Isaac Newton [1]. Today, mathematical analysis of dy-

namical systems places itself at the center of control theory and engineering, as well

as, many sciences such as physics, chemistry, ecology, and economics. In this thesis,

we study both discrete time dynamical systems

xk+1 = f(xk), (1.1)

and continuous time systems modeled as

ẋ(t) = f(x(t)). (1.2)

The vector x ∈ Rn, often referred to as the state, contains the information about

the underlying system that is important to us. For example, if we are modeling

an electrical circuit, components of x(t) can represent the currents and voltages at

different nodes in the circuit at a particular time instant t. On the other hand, if we

are analyzing a discrete model of the population dynamics of rabbits in a particular
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forest, we might want to include in our state xk information such as the number of

male rabbits, the number of female rabbits, the number of wolves, and the amount of

food available in the environment at day k. The mapping f : Rn → Rn expresses how

the states change in time and it can be in general nonlinear, non-smooth, or even

uncertain. In discrete time, f describes the evolution of the system by expressing

the current state as a function of the previous state, whereas in continuous time the

differential equation expresses the rate of change of the current state as a function of

the current state. In either situation, we will be interested in long-term behavior of the

states as time goes to infinity. Will the rabbits eventually go extinct? Will the voltages

and currents in the circuit settle to a particular value in steady state? Stability theory

deals with questions of this flavor. In order to make things more formal, we need

to introduce the concept of an equilibrium point and present a rigorous notion of

stability. We will do this for the continuous time case. The definitions are almost

identical in discrete time once t is replaced with k.

A point x = x∗ in the state space is called and equilibrium point of (1.2) if it is a

real root of the equation

f(x) = 0.

An equilibrium point has the property that if the state of the system starts at x∗, it

will remain there for all future time. Loosely speaking, an equilibrium point is stable

if nearby trajectories stay near it. Moreover, an equilibrium point is asymptotically

stable if it attracts nearby trajectories. Without loss of generality, we study stability

of the origin; i.e. we assume x∗ = 0. If the equilibrium point is at any other point,

one can simply shift the coordinates so that in the new coordinates the origin is the

equilibrium point. The formal definitions of stability that we are going to be using

are as follows.

Definition 1. ( [20]) The equilibrium point x = 0 of (1.2) is

• stable (or sometimes called stable in the sense of Lyapunov) if for each ε > 0,
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there exists δ = δ(ε) > 0 such that

||x(0)|| < δ ⇒ ||x(t)|| < ε, ∀t ≥ 0.

• unstable if not stable.

• asymptotically stable if it is stable and δ can be chosen such that

||x(0)|| < δ ⇒ lim
t→∞

x(t) = 0.

• globally asymptotically stable if stable and

∀x(0) ∈ Rn, lim
t→∞

x(t) = 0.1

Note that the question of global asymptotic stability only makes sense when the

system has only one equilibrium point in the state space. The first three items

in Definition 1 are local definitions; they describe the behavior of the system only

near the equilibrium point. Asymptotic stability of an equilibrium can sometimes be

determined by asymptotic stability of its linearization around the equilibrium. This

technique is known as Lyapunov’s indirect (or first) method. In this thesis, however,

we will mostly be concerned with global asymptotic stability (GAS). In general, the

question of determining whether the equilibrium of a nonlinear dynamics is GAS can

be extremely hard. Even for special classes of systems several undecidability and NP-

hardness results exist in the literature; see e.g. [9] and [6]. The main difficulty is that

more often that not it is impossible to explicitly write a solution to the differential

equation (1.2) or the difference equation (1.1). Nevertheless, in some cases, we are still

able to make conclusions about stability of nonlinear systems, thanks to a brilliant

idea by the famous Russian mathematician Aleksandr Mikhailovich Lyapunov. This

1Implicit in Definition 1 is the assumption that the differential equation (1.2) has well-defined
solutions for all t ≥ 0. Such global existence of solutions can be guranteed either by assuming that
f is globally Lipschitz, or by assuming that f is locally Lipschitz together with the requirements of
the Lyapunov theorem of Section 1.2 [20].
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method is known as Lyapunov’s direct (or second) method and was first published

in 1892. Over the course of the past century, this theorem has found many new

applications especially in control theory. Its many extensions and variants continue

to be an active area of research. We devote the next section to a discussion of this

theorem.

1.2 Lyapunov’s Stability Theorem

We state below a variant of Lyapunov’s direct method that establishes global asymp-

totic stability.

Theorem 1.2.1. 2( [20]) Consider the dynamical system (1.2) and let x = 0 be

its unique equilibrium point. If there exists a continuously differentiable function

V : Rn → R such that

V (0) = 0 (1.3)

V (x) > 0 ∀x 6= 0 (1.4)

||x|| → ∞ ⇒ V (x)→∞ (1.5)

V̇ (x) < 0 ∀x 6= 0, (1.6)

then x = 0 is globally asymptotically stable.

Condition (1.6) is what we refer to as the monotonicity requirement of Lyapunov’s

theorem. In that condition, V̇ (x) denotes the derivative of V (x) along the trajectories

of (1.2) and is given by

V̇ (x) = 〈∂V (x)

∂x
, f(x)〉,

where 〈., .〉 denotes the standard inner product in Rn and ∂V (x)
∂x
∈ Rn is the gradient

of V (x). As far as the first two conditions are concerned, it is only needed to assume

that V (x) is lower bounded and achieves its global minimum at x = 0. There is no

2The original theorem by Lyapunov was formulated to imply local stability. This variant of the
theorem is often known as the Barbashin-Krasovskii theorem [20].
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Figure 1-1: Geometric interpretation of Lyapunov’s theorem.

conservatism, however, in requiring (1.3) and (1.4). A function satisfying condition

(1.5) is called radially unbounded. We refer the reader to [20] for a formal proof of

this theorem and for an example that shows condition (1.5) cannot be removed. Here,

we give the geometric intuition of Lyapunov’s theorem, which essentially carries all

of the ideas behind the proof.

Figure 1-13 shows a hypothetical dynamical system in R2. The trajectory is moving

in the (x1, x2) plane but we have no knowledge of where the trajectory is as a function

of time. On the other hand, we have a scalar valued function V (x), plotted on the

z-axis, which has the guaranteed property that as the trajectory moves the value of

this function along the trajectories strictly decreases. Since V (x(t)) is lower bounded

by zero and is strictly decreasing, it must converge to a nonnegative limit as time

goes to infinity. It takes a relatively straightforward argument appealing to continuity

of V (x) and V̇ (x) to show that the limit of V (x(t)) cannot be strictly positive and

indeed conditions (1.3)-(1.6) imply

V (x(t))→ 0 as t→∞.

Since x = 0 is the only point in space where V (x) vanishes, we can conclude that x(t)

goes to the origin as time goes to infinity.

3Picture borrowed from [1].
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It is also insightful to think about the geometry in the (x1, x2) plane. The level

sets of V (x) are plotted in Figure 1-1 with dashed lines. Since V (x(t)) decreases

monotonically along trajectories, we can conclude that once a trajectory enters one

of the level sets, say given by V (x) = c, it can never leave the set Ωc := {x ∈

Rn | V (x) ≤ c}. This property is known as invariance of sub-level sets. It is exactly

a consequence of this invariance property that we can easily establish stability in the

sense of Lyapunov as defined in Definition 1.

Once again we emphasize that the significance of Lyapunov’s theorem is that it

allows stability of the system to be verified without explicitly solving the differential

equation. Lyapunov’s theorem, in effect, turns the question of determining stability

into a search for a so-called Lyapunov function, a positive definite function of the state

that decreases monotonically along trajectories. There are two natural questions that

immediately arise. First, do we even know that Lyapunov functions always exist?

Second, if they do in fact exist, how would one go about finding one? In many

situations, the answer to the first question is positive. The type of theorems that

prove existence of Lyapunov functions for every stable system are called converse

theorems. One of the well known converse theorems is a theorem due to Kurzweil

that states if f in (1.2) is continuous and the origin is globally asymptotically stable,

then there exists an infinitely differentiable Lyapunov function satisfying conditions

of Theorem 1.2.1. We refer the reader to [20] and [2] for more details on converse

theorems. Unfortunately, converse theorems are often proven by assuming knowledge

of the solutions of (1.2) and are therefore useless in practice. By this we mean that

they offer no systematic way of finding the Lyapunov function. Moreover, little is

known about the connection of the dynamics f to the Lyapunov function V . Among

the few results in this direction, the case of linear systems is well settled since a

stable linear system always admits a quadratic Lyapunov function. It is also known

that stable and smooth homogeneous4 systems always have a homogeneous Lyapunov

function [37].

As we are going to see in Chapter 2, recent advances in the area of convex opti-

4A homogeneous function f is a function that satisfies f(λx) = λdx for some constant d.
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mization have enabled us to efficiently search for Lyapunov functions using computer

software [43], [30], [26], and [32]. Since the main challenge in stability analysis of non-

linear dynamics is to find suitable Lyapunov functions, we are going to give a lot of

emphasis to computational search techniques in this thesis. Therefore, we will make

sure that our theoretical contributions to Lyapunov theory are amenable to convex

optimization.

We end this section by stating Lyapunov’s theorem in discrete time. The state-

ment will be almost exactly the same, except that instead of requiring V̇ (x) < 0 we

impose the condition that the value of the Lyapunov function should strictly decrease

after each iteration of the map f .

Theorem 1.2.2. Consider the dynamical system (1.1) and let x = 0 be its unique

equilibrium point. If there exists a continuously differentiable function V : Rn → R

such that

V (0) = 0 (1.7)

V (x) > 0 ∀x 6= 0 (1.8)

||x|| → ∞ ⇒ V (x)→∞ (1.9)

V (f(x)) < V (x) ∀x 6= 0, (1.10)

then x = 0 is globally asymptotically stable.

1.3 Outline and Contributions of the Thesis

Lyapunov’s direct method appears ubiquitously in control theory. Applications are

in no way limited to proving stability but also include synthesis via control Lyapunov

functions, robustness analysis and dealing with uncertain systems, estimating basin

of attraction of equilibrium points, proving instability or nonexistence of periodic

orbits, performance analysis (e.g. rate of convergence analysis), proving convergence

of combinatorial algorithms (e.g. consensus algorithms), finding bounds on joint

spectral radius of matrices, and many more. Therefore, contributions to the core
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theory of Lyapunov’s direct method are of great interest.

In this thesis, we weaken the requirements of Lyapunov’s theorem by relaxing the

condition that the Lyapunov function has to monotonically decrease along trajec-

tories. This weaker condition allows for simpler functions to certify stability of the

underlying dynamical system. This in effect makes the search process easier and from

a computational point of view leads to saving decision variables. In order to relax

monotonicity, two questions need to be answered. (i) Are we able to replace V̇ < 0 in

continuous time and Vk+1 < Vk in discrete time with other conditions that allow Lya-

punov functions to increase locally but yet guarantee their convergence to zero in the

limit? (ii) Can the search for a Lyapunov function with the new conditions be cast as

a convex program, so that already available computational techniques can be readily

applied? The contribution of this thesis is to give an affirmative answer to both of

these questions. Our answer will also illuminate the connection of non-monotonic

Lyapunov functions to standard Lyapunov functions.

More specifically, the main contributions of this thesis are as follows:

• In discrete time (Chapter 4):

– We propose two new sufficient conditions for global asymptotic stability

that allow the Lyapunov functions to increase locally.

∗ The first condition (Section 4.2.1) is nonconvex but allows for a in-

tuitive interpretation. Instead of requiring the Lyapunov function to

decrease at every step, this condition requires the Lyapunov function

to decrease on average every m steps.

∗ The second condition (Section 4.2.2) is convex and includes the first

one as a special case. Here, we map the state space into multiple

Lyapunov functions instead of one. The improvement in different steps

is measured with different Lyapunov functions.
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– We show that every time a non-monotonic Lyapunov function exists, we

can construct a standard Lyapunov function from it. However, the stan-

dard Lyapunov function will have a more complicated structure.

– In Section 4.3, we show the advantages of our methodology over standard

Lyapunov theory with examples from three different classes of dynamical

systems.

∗ We consider polynomial systems. Here, we use techniques from sum-of-

squares programming, which is explained in detail in our introductory

chapters.

∗ We analyze piecewise affine systems. These are affine systems that

undergo switching based on the location of the state. We explain

the connection of quadratic non-monotonic Lyapunov functions to the

well-known technique of piecewise quadratic Lyapunov functions.

∗ We examine linear systems that undergo arbitrary switching. We ex-

plain how non-monotonic Lyapunov functions can be used to bound

the joint spectral radius of a finite set of matrices. The bounds will be

tighter than those obtained from standard Lyapunov theory.

• In continuous time (Chapter 5):

– We relax the condition V̇ < 0 by imposing conditions on higher order

derivatives of Lyapunov functions to bound the rate at which the Lya-

punov function can increase. Here, we build on previous work by Butz [12].

In Section 5.2, we review the results by Butz which assert that using only

V̇ and V̈ is vacuous, but it is possible to infer asymptotic stability by using

the first three derivatives. The formulation of the condition by Butz is not

convex.
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– We show in Section 5.3 that whenever the condition by Butz is satisfied,

one can construct a standard Lyapunov function from it. We present a con-

vex sufficient condition for global asymptotic stability using higher order

derivatives of Lyapunov functions. This condition contains the standard

Lyapunov’s theorem and Butz’s theorem as a special case.

– We show that unlike the result by Butz, the examination of only V̇ and

V̈ can be beneficial with the new convex condition. We give an example

of a polynomial vector field that has no quadratic Lyapunov function but

using our convex condition involving the higher derivatives, it suffices to

search over quadratic functions to prove global asymptotic stability.

– In section 5.4, we review a result by Yorke [44] that imposes minor con-

ditions on V̇ and V̈ to infer that trajectories must either go to infinity or

converge to the origin. This is particularly useful to reject existence of pe-

riodic orbits, limit cycles, or chaotic attractors. Once again, the conditions

by Yorke are not convex. We give simple convex conditions that imply the

condition by Yorke but can be more conservative in general. We compare

them with conditions given by Chow and Dunninger [13].

Before presenting our main contributions, we review some aspects of convex program-

ming and explain how it can be used to search for Lyapunov functions. This is done in

Chapter 2 where we introduce semidefinite programming, sum of squares (SOS) pro-

gramming, and the S-procedure. We also present the analysis of linear systems in this

chapter to give an example of how semidefinite programming can be used to search

for quadratic Lyapunov functions. Chapter 3 is devoted to polynomial dynamics and

polynomial Lyapunov functions. We explain how the method of sum of squares pro-

gramming can be used to efficiently search for polynomial Lyapunov functions. Both

the continuous time case and the discrete time case are covered. Our introductory

chapters include some minor contributions as well. In particular, in Section 2.2.2

we make some observations on quadratic Lyapunov functions for linear systems and
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in Section 3.2 we investigate if sum of squares programming can potentially be con-

servative for finding polynomial Lyapunov functions. We give an example of a two

dimensional stable vector field that admits a quadratic Lyapunov function, but the

gap between nonnegativity and sum of squares avoids the SOS program to detect it.

Finally, our conclusions and some future directions are presented in Chapter 6.

1.4 Mathematical Notation and Conventions

Our notation is mostly standard. We use superscripts V 1, V 2 to refer to different

functions. V̇ denotes the derivative of V with respect to time. Some of our Lyapunov

functions will decrease monotonically and some will not. Whenever confusion may

arise, we refer to a function satisfying Lyapunov’s original theorem as a standard

Lyapunov function. In discrete time, for simplicity, we denote V (xk) by Vk. Often,

we refer to Vk+i − Vk as the improvement in i steps, which can either be negative (a

decrease in V ) or positive (an increase in V ). By f i, we mean composition of f with

itself i times.

As we mentioned before, 〈., .〉 denotes the standard inner product in Rn. By

A � 0 (A � 0), we mean that the symmetric matrix A is positive definite (positive

semidefinite). A Hurwitz matrix is a matrix whose eigenvalues have strictly negative

real part. By a Schur stable matrix, we mean a matrix with eigenvalues strictly inside

the unit complex ball.
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Chapter 2

Convex Programming and the

Search for a Lyapunov Function

The goal of this chapter is to familiarize the reader with basics of some techniques

from convex programming, which will be used in future chapters to search for Lya-

punov functions. We start out by giving an overview of convex programming and then

focus our attention on semidefinite programming. Stability analysis of linear systems

using quadratic Lyapunov functions is done in this chapter since it fits well within the

semidefinite programming framework. We present some observations on Lyapunov

analysis of linear systems in Section 2.2.2. Finally, we build up the reader’s back-

ground on the S-procedure and sum of squares programming. Both of these concepts

will come into play repeatedly in future chapters.

2.1 Why Convex Programming?

As we discussed in the previous chapter, Lyapunov theorems prove stability of dynam-

ical systems if one succeeds in finding a Lyapunov function. In cases when one fails

to find such function, no conclusion can be drawn regarding stability of the system

since the theorems solely provide sufficient conditions. Although converse theorems

guarantee the existence of a Lyapunov function for any stable system, they offer no

information about how to construct one. When the underlying dynamics represents a
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physical system, it is natural to take the energy of the system as a candidate Lyapunov

function. If the system loses energy over time and energy is never restored, then the

states of the system must reach an equilibrium since the energy will eventually die

out. However, in many situations where the models are not overly simplified, it can

be difficult to write an expression for the energy of the system. More importantly,

applicability of Lyapunov theorems goes beyond systems for which the concept of

physical energy is available. In such cases, one would have to make an intelligent

guess of a Lyapunov function and check the conditions of the theorem or maybe take

a judicious trial-and-error approach.

In the past few decades, however, the story has changed. Recnet advances in

the theory of convex programming have rejuvenated Lyapunov theory by providing

systematic and efficient ways to search for Lyapunov functions. A convex program,

is an optimization problem of the type

min g(x)

subject to x ∈ X,
(2.1)

where g : Rn → R is a convex function, and the feasible set X ⊂ Rn is a convex set.

Surprisingly many problems in control engineering and operations research can be

cast as a convex problem. We refer the reader to [11] for a thorough treatment of the

theory and applications of convex programming. One of the simplest special cases of

a convex program is a linear program (LP), in which the objective function g is linear,

and the set X is defined by a set of linear equalities and inequalities and therefore

has a polytopic structure. In 1984, Narendra Karmarkar proposed an algorithm for

solving linear programs with a worst-case polynomial time guarantee [19]. The al-

gorithm also worked reasonably fast for practical problems. Karmarkar’s algorithm,

known as an interior point algorithm, along with its polynomial complexity attribute

was extended by Nesterov and Nemirovsky to a wide family of convex optimization

problems in the late 1980s [25]. This numerical tractability is one of the main moti-

vations for reformulating various problems as a convex program. Lyapunov theory is

no exception.
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The make this reformulation, one parameterizes a class of Lyapunov functions

with restricted complexity (e.g., quadratics or polynomials), imposes the constraints

of Lyapunov’s theorem on the parameters, and then poses the search as a convex fea-

sibility problem (i.e., a problem of the form (2.1) where there is no objective function

to be minimized). Many examples of this methodology are discussed in the current

and the next chapter to illustrate how this is exactly done. One valuable common fea-

ture among techniques based on convex programming is that if a Lyapunov function

of a certain class exists, it will be found. If the problem is infeasible, the variables

of the dual program1 provide a certificate of nonexistence of a Lyapunov function of

that class. We will make use of this fact several times in this thesis in situations

where we claim nonexistence of Lyapunov functions of a certain class.

2.2 Semidefinite Programming

In almost every example of this thesis a semidefinite program (SDP) will be solved to

find a Lyapunov function. Therefore, we devote this section to familiarize the reader

with the basics of SDPs.

A semidefinite program is a convex program of the form

minx cTx

subject to A0 +
∑m

i=1 xiAi � 0,
(2.2)

where x ∈ Rm is the decision variable, and c ∈ Rm and the m+1 symmetric n×n ma-

trices Ai are given data of the problem. The objective is to minimize a linear function

of x subject to matrix positive semidefiniteness constraints. The constraint in (2.2) is

called a Linear Matrix Inequality (LMI), and SDP problems are sometimes referred

to as LMI problems. The feasible set of an SDP, which is the intersection of the cone

of positive semidefinite matrices with an affine subspace, is a convex set. Notice that

1Every optimization problem comes with its dual, which is another optimization problem where
essentially the role of decision variables and constraints have been reversed. Feasible and optimal
solutions of each of the problems contain valuable information about the other. The reader is referred
to [3] for a comprehensive treatment of duality theory.
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linear programs can be interpreted as a special case of semidefinite programs where

the matrices Ai are diagonal. Not only SDPs can be solved more or less as efficiently

as LPs, but they also provide a much richer framework in terms of applications. A

wide range of problems in controls and optimization such as matrix norm inequal-

ities, Lyapunov inequalities, and quadratically constrained quadratic programs can

be written as LMIs. Applications are in no way limited to controls but come from

a variety of other fields including combinatorial optimization, relaxations of various

NP-hard problems, pattern seperation by ellipsoids in statistics, and many more.

A great introduction to the theory and applications of semidefinite programming is

given in [43].

Depending on the particular problem, the most natural formulation of a semidef-

inite program may not be in the standard form of (2.2). Many semidefinite program-

ming solvers such as SeDuMi [40], YALMIP [23], and SDPT3 [41] are capable of

automatically reformulating the constraints in the standard form. What is important

is that one should only write equality and matrix inequality constraints that appear

affinely in the decision variables. For a discussion on several tricks of converting

different SDPs to the standard form see again [43].

In the next subsection we explain how one can find a quadratic Lyapunov function

for a stable linear system using semidefinite programming.

2.2.1 Linear Systems and Quadratic Lyapunov Functions

Consider the continuous time (CT) and discrete time (DT) linear dynamical systems

ẋ(t) = Ax(t) (2.3)

xk+1 = Axk. (2.4)

It is well known that (2.3) is globally asymptotically stable if and only if the matrix A

is Hurwitz, and (2.4) is globally asymptotically stable if and only if A is Schur stable.

Here, our goal is to prove stability using Lyapunov theory. We choose a quadratic
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Lyapunov function candidate of the form

V (x) = xTPx. (2.5)

Notice that V (x) has no linear or constant terms. As we discussed in Chapter 1,

with no loss of generality we can take V (0) = 0, and therefore constant terms are not

required. The linear terms are excluded because V is differentiable and achieves its

minimum at x = 0. Therefore, the gradient of V should vanish at the origin, which

would not be the case if V had linear terms. For this quadratic candidate Lyapunov

function, after a little bit of algebra one can get

V̇ (x) = xT (ATP + PA)x (2.6)

Vk+1(x)− Vk(x) = xT (ATPA− P )x. (2.7)

The CT Lyapunov theorem of Chapter 1 (Theorem 1.2.1) suggests that the linear

system (2.3) is GAS if there exists a symmetric matrix P such that

P � 0

ATP + PA ≺ 0.
(2.8)

Similarly, Theorem 1.2.2 suggests that the DT linear system (2.4) is GAS if there

exists a symmetric matrix P such that

P � 0

ATPA− P ≺ 0.
(2.9)

Notice that both (2.8) and (2.9) are semidefinite programs. There is no objective

to be minimized (i.e., we have a feasibility problem), and the matrix inequalities are

linear in the unknown parameter P . It turns out that (2.8) is feasible if and only if

the matrix A is Hurwitz, and (2.9) is feasible if and only if A is Schur stable. In other

words, stable linear systems always admit a quadratic Lyapunov function. We omit

the proof of this classical result since it can be found in many textbooks; see e.g. [20].
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(a) typical trajectory (solid), level sets of the Lya-
punov function (dotted)

(b) value of the Lyapunov function on
a typical trajectory

(c) square of the Euclidian norm on a
typical trajectory

Figure 2-1: Quadratic Lyapunov function for the linear system of Example 2.2.1.

Instead, we give an example to illustrate the geometry.

Example 2.2.1. Consider a continuous time linear system of the form (2.3) with

A =

−0.5 5

−1 −0.5

 .
The eigenvalues of A are −1

2
± j
√

5. Complex eigenvalues with negative real parts tell

us that the system exhibits oscillations and all the trajectories converge to the origin.

Indeed, the semidefinite program (2.8) can be solved to get a Lyapunov function2
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P =

1 0

0 5

 .
Of course, this is not the unique P satisfying (2.8) as we know Lyapunov functions

are not necessarily unique. Since xTPx is a nonnegative quadratic function, it has

ellipsoidal level curves. These level sets are plotted in Figure 2-1(a) along with a

trajectory of the system starting at x = (10, 10)T . The invariance property of sub-level

sets of Lyapunov functions can be seen in this picture. Once the trajectory enters a

level set, it never exits. Figure 2-1(b) shows the value of the Lyapunov function along

the same trajectory starting at x = (10, 10)T . Notice that the Lyapunov function is

decreasing monotonically as expected.

Figure 2-1(c) shows that V (x) = xT Ix is not a valid Lyapunov function as it does

not decrease monotonically along the trajectory. Not surprisingly, P = I does not

satisfy (2.8) because A + AT is not negative definite. The level sets of V (x) = xT Ix

are circles. Indeed, it is not true that once the trajectory enters a circle of a given

radius, it stays in it forever. As we know, linear transformations deform circles into

ellipsoids. One can think of Lyapunov theory for linear systems as searching for

a right linear coordinate transformation such that in the new coordinates the norm

decreases monotonically.

Figure 2-1 also gives us a glimpse of what is to come in the later chapters of

this thesis. Even though the square of the norm does not decrease monotonically

along trajectories, it still goes to zero in a non-monotonic fashion. In fact, we will

see in Chapter 5 that by changing the conditions of the original Lyapunov theorem

and using derivatives of higher order, we can prove stability from Figure 2-1(c) (a

non-monotonic Lyapunov function) instead of Figure 2-1(b) (a standard Lyapunov

function).

2We sometimes abuse notation and write P is a Lyapunov function. By that of course we mean
that the quadratic function xTPx is a Lyapunov function.
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2.2.2 Some Observations on Linear Systems and Quadratic

Lyapunov Functions

Much of what we discussed in the previous section may already be familiar to many

readers with basic linear systems theory background. In this section, however, we

list some of our observations on quadratic Lyapunov functions for linear systems that

are not commonly found in textbooks. Our hope is that the reader will find them

interesting.

Lemma 2.2.1. If A is symmetric and Hurwitz (Schur stable), then P = I satisfies

(2.8) ((2.9)). (i.e., the square of the Euclidean norm (and therefore the Euclidian

norm itself) is a Lyapunov function for the corresponding continuous time (discrete

time) linear system.)

Proof. • In CT: with P = I, the decrease condition of (2.8) reduces to A+AT ≺ 0.

since A is symmetric and Hurwitz, A+ AT = 2A is also Hurwitz and therefore

negative definite.

• In DT: with P = I and by symmetry of A, the decrease condition of (2.9)

reduces to A2 − I ≺ 0. Because A is Schur stable,

|λmax(A)| < 1,

which imples

|λmax(A2)| = |λ2
max(A)| < 1.

Therefore, A2 − I ≺ 0.

The lemma we just proved also makes intuitive sense. If A is symmetric, then

it has real eigenvalues and eigenvectors. The trajectory starting from any point on

the eigenvectors will stay on it and go directly towards the origin. At any other

point in the space, the trajectory is pulled towards the eigenvectors and moves with

an orientation towards origin. There are no oscillations to increase the norm at any
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point. The next lemma generalizes the same result to normal matrices, which do not

necessarily have real eigenvalues.

Lemma 2.2.2. If A is normal3, then P = I satisfies (2.8).

Proof. We need the following two facts before we start the proof:

• Fact 1. If A1 and A2 commute and are both Hurwitz, then there exists a

common quadratic Lyapunov function for both of them. This means that ∃P

such that

AT1 P + PA1 ≺ 0 (2.10)

AT2 P + PA2 ≺ 0 (2.11)

See [14] and references therein for a proof of this fact and other conditions for

existence of a common Lyapunov function.

• Fact 2. If P is a common Lyapunov function for general matrices A1 and A2

(which may not necessarily commute), then P is also a Lyapunov function for

any convex combination of A1 and A2. In other words, for any λ ∈ [0, 1]

(λAT1 + (1− λ)AT2 )P + P (λA1 + (1− λ)A2) ≺ 0. (2.12)

This follows by multiplying (2.10) by λ, (2.11) by (1−λ), and adding them up.

Now we can proceed with the proof of Lemma 2.2.2. We know AT has the same

eigenvalues as A. Therefore, AT is also Hurwitz. Since A and AT commute, Fact 1

implies that there exists a common Lyapunov function P . By Fact 2 with λ = 1
2
,

P is also a Lyapunov function for A + AT . Therefore A + AT must be a Hurwitz

matrix and hence negative definite. This implies that I is a Lyapunov function for

ẋ = Ax.

Lemma 2.2.3. If A is a Schur stable matrix, then there exists m such that I is a

Lyapunov function for the DT dynamical system xk+1 = Amxk

3A normal matrix is a matrix that satisfies ATA = AAT
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The point of this lemma is that even though I may not be a Lyapunov function

for xk+1 = Axk, for every stable DT linear system, there exists a fixed m such that if

you look at the trajectory every m iterations, the norm is monotonically decreasing.

Proof. (of Lemma 2.2.3) Recall the following characterization of the spectral radius

of the matrix A:

ρ(A) = lim
k→∞
||Ak||

1
k , (2.13)

where the value of ρ(A) is independent of the matrix norm used in (2.13). For this

proof, we take the matrix norm ||.|| to be the induced 2-norm. Since A is Schur stable,

we must have

ρ(A) < 1.

We claim that there exists m such that

||Am|| < 1.

Indeed, if this was not the case we would have ||Ak|| ≥ 1 ∀k, and hence ||Ak|| 1k ≥ 1

∀k. By definition (2.13), this would contradict ρ(A) < 1.

The fact that ||Am|| < 1 means that the largest singular value of Am is less than

unity, and therefore

Am
T

Am − I ≺ 0.

By (2.9), the last inequality implies that I is a Lyapunov function for the dynamics

xk+1 = Amxk.

Lemma 2.2.4. If A is Hurwitz, any P satisfying ATP + PA ≺ 0 will automatically

satisfy P � 0.

This lemma suggests that to find a Lyapunov function for a Hurwitz matrix,

it suffices to impose only the second inequality in (2.8), i.e. the first inequality is

redundant. It is possible to prove this lemma using only linear algebra. However, we

give a much simpler proof based on a dynamical systems intuition. This is one instance

where one notices the power of Lyapunov theory. In fact, one can reverse engineer
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Lyapunov’s theorem for linear systems to get many interesting theorems in linear

algebra. We will mention some more instances of this in future chapters.

Proof. (of Lemma 2.2.4) Suppose there exists a matrix P that satisfies

ATP + PA ≺ 0, (2.14)

but it is not positive definite. Therefore, there exists x̄ ∈ Rn, x̄ 6= 0, such that

x̄TPx̄ ≤ 0. We evaluate the Lyapunov function xTPx along the trajectories of the

system ẋ = Ax starting from the initial condition x̄. The value of the Lyapunov

function is nonpositive to begin with and will strictly decrease because of (2.14).

Therefore, the Lyapunov function can never be zero again, contradicting asymptotic

stability of the dynamics.

Lemma 2.2.5. If A is Schur stable, any P satisfying ATPA− P ≺ 0 will automati-

cally satisfy P � 0.

Proof. This lemma is the discrete time analog of Lemma 2.2.4. The proofs are iden-

tical.

2.3 S-procedure

In many circumstances, one would like to impose nonnegativity of a quadratic form

not on the whole space, but maybe only on specific regions of the space. A technique

known as the S-procedure enables us to do that. This technique will come in handy

in particular in Section 4.3.2 when we analyze stability of switched linear systems.

What the S-procedure allows us to do is to impose nonnegativity of a quadratic

function whenever some other quadratic functions are nonnegative. Given

σi(x) = xTQix+ Lix+ ci i = 0, . . . , k, (2.15)
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suppose we are interested in the following condition

σ0(x) ≥ 0 ∀x such that σi(x) ≥ 0 i = 1, . . . , k. (2.16)

If there exists nonnegative scalars τi, i = 1, . . . , k such that

σ0(x) ≥
k∑
i=1

τiσi(x) ∀x, (2.17)

then (2.16) holds. This implication is obvious. What is less trivial is that the converse

is also true when k = 1 provided there exists x̄ such that σ1(x̄) > 0. For a proof of

this fact and more details on S-procedure the reader is referred to [10].

If we are searching for a quadratic function σ0 that must be nonnegative on a

region R ⊂ Rn, we can try to describe R as the set where some other quadratic

functions σi are nonnegative and then imposes the constraint (2.17). Notice that once

the functions σi are fixed, the inequality in (2.17) is linear in the decision variables

σ0 and τi. Therefore we can perform the search via a semidefinite program after

converting (2.17) to an LMI.

2.4 Sum of Squares Programming

When the candidate Lyapunov function is polynomial or when the dynamical system

is described by polynomial equations, conditions of Lyapunov’s theorem reduce to

checking nonnegativity of certain polynomials on the whole space. This problem is

known to be NP-hard even for polynomials of degree 4 [28]. A tractable sufficient

condition for global nonnegativity of a polynomial function is the existence of a sum

of squares (SOS) decomposition. We postpone the stability analysis of polynomial

systems until the next chapter. In this section we review basics of sum of squares

programming, which was introduced in 2000 [27] and has found many applications

since.

A multivariate polynomial p(x1, ..., xn) := p(x) is a sum of squares, if there exist
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polynomials q1(x), ..., qm(x) such that

p(x) =
m∑
i=1

q2
i (x). (2.18)

It is clear that p(x) being SOS implies p(x) ≥ 0. In 1888, Hilbert proved that the

converse is true for a polynomial in n variables of degree 2d only in the following

cases:

• Univariate polynomials (n = 1)

• Quadratic polynomials (2d = 2)

• Bivariate quartics (n = 2, 2d = 4)

In all other cases there are counter examples of nonnegative polynomials that are

not sum of squares. Many such counter examples can be found in [35]. Unlike

nonnegativity however, it was shown in [27] that the search for an SOS decomposition

of a polynomial can be cast as an SDP, which we know how to solve efficiently in

polynomial time. The result is summarized in the following theorem.

Theorem 2.4.1. ( [27], [28]) A multivariate polynomial p(x) in n variables and of

degree 2d is a sum of squares if and only if there exists a positive semidefinite matrix

Q (often called the Gram matrix) such that

p(x) = zTQz, (2.19)

where z is the vector of monomials of degree up to d

z = [1, x1, x2, . . . , xn, x1x2, . . . , x
d
n]. (2.20)

Notice that given p(x), the search for the matrix Q is a semidefinite program.

By expanding the right hand side of (2.19) and matching coefficients of x, we get

linear constraints on the entries of Q. We also have the constraint that Q must be

positive semidefinite (PSD). Therefore, the feasible set is the intersection of an affine
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subspace with the cone of PSD matrices. As described in Section 2.2, this is exactly

the structure of the feasible set of an SDP.

The size of the matrix Q depends on the size of the vector of monomials. When

there is no sparsity to be exploited Q will be
(
n+d
d

)
×
(
n+d
d

)
. If the polynomial p(x) is

homogeneous of degree 2d (i.e., only has terms of degree exactly 2d), then it suffices

to consider in (2.19) a vector z of monomials of degree exactly d [28]. This will reduce

the size of Q to
(
n+d−1

d

)
×
(
n+d−1

d

)
.

The conversion step of going from an SOS decomposition problem to an SDP

problem is fully algorithmic and has been implemented in the SOSTOOLS [33] soft-

ware package. We can input a polynomial p(x) into SOSTOOLS and if the code is

feasible, a Cholesky factorization of Q will give us an explicit SOS decomposition of

p(x). If the code is infeasible, we have a certificate that p(x) is not a sum of squares

(thought it might still be nonnegative). Moreover, using the same methodology, we

can search for SOS polynomials or even optimize linear functionals over them.
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Chapter 3

Polynomial Systems and

Polynomial Lyapunov Functions

The evolution of many dynamical systems around us is most naturally modelled as

polynomials. Examples include variety of chemical reactions, predator-pray models,

and nonlinear electrical circuits. In contrary to linear systems, polynomial systems

can exhibit significantly more complicated dynamics. Even in one dimension and

with a polynomial of degree 2, it is possible to observe chaotic behavior; see e.g. the

logistic map in [1]. Not surprisingly, proving stability of polynomial systems is a

much more challenging task. In this chapter, we explain how the machinery of sum

of squares programming that we introduced in the previous chapter can be utilized

to efficiently search for polynomial Lyapunov functions for polynomial systems.

3.1 Continuous Time Case

Consider the dynamical system

ẋ = f(x), (3.1)

where each of the elements of the vector valued mapping f : Rn → Rn is a multivari-

ate polynomial. We say that f has degree d when the highest degree appearing in

all of the n polynomials is d. For the polynomial dynamics in (3.1), it is natural to
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search for Lyapunov functions that are polynomial themselves, though it is not clear

that polynomial dynamics always admit a global polynomial Lyapunov function. It

is known, however, that exponentially stable nonlinear systems (not necessarily poly-

nomial) have a polynomial Lyapunov function on bounded regions [31]. This fact

is perhaps not surprising since we know any function can be approximated by poly-

nomials arbitrarily well on compact sets. A more practical difficulty that arises for

stability analysis of polynomial systems is that given the degree of the vector field

f , no upper bounds on the degree of the Lyapunov function are known in general.

There is yet a third obstacle, which we already touched on in Section 2.4. Namely,

the conditions of Lyapunov’s theorem (Theorem 1.2.1) for polynomial dynamics lead

to checking nonnegativity of polynomials on the whole space; a problem known to be

NP-hard. Recall from Chapter 1 that the Lyapunov function V must be continuous,

radially unbounded, and must satisfy

V > 0 ∀x 6= 0 (3.2)

〈∂V
∂x

, f〉 < 0 ∀x 6= 0. (3.3)

When V (x) is a polynomial, continuity is obviously satisfied. Moreover, we will

require the degree of V to be even, which is a sufficient condition for radially un-

boundedness and a necessary one for positivity. As we discussed in section 2.4, we

relax the positivity constraints to the more tractable condition

V SOS (3.4)

−〈∂V
∂x

, f〉 SOS. (3.5)

Note that the unknown polynomial V appears linearly in both (3.4) and (3.5). There-

fore, for a V of fixed degree, we can perform the search by solving an SOS program.

Usually, the approach is to start with a low degree candidate Lyapunov function, say

degree 2, and increase the degree to the next even power every time the search is

infeasible. For reasons that we discussed in previous chapters, we can always exclude
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constant and linear terms in the parametrization of V .

Another point that is worth mentioning is that SOS conditions of (3.4) and (3.5)

imply nonnegativity, whereas the conditions (3.2) and (3.3) require strict positivity.

For this reason, some authors [32] have proposed conditions of the type

V − ε
n∑
i=1

xqi SOS, (3.6)

and a similar expression for the derivative (3.5). Here, ε is a fixed small positive

number and q is degree of V . Conditions of this kind can often be conservative in

practice, and we claim that they are usually not needed. Sum of squares polynomials

that vanish at some points in space lie on the boundary of the cone of SOS polyno-

mials. When an interior point algorithm is used to solve a feasibility problem, it will

aim for the analytic center [25] of the feasible set, which is away from the bound-

ary. So, unless the original problem is only marginally feasible, conditions (3.4) and

(3.5) will automatically imply strict positivity. One can (and should) always do some

post-processing analysis and check that the polynomials obtained from SOSTOOLS

are positive definite. This can be done, for instance, by checking the eigenvalues of

the corresponding Grammian matrix as introduced in Section 2.4.

Sum of squares relaxation has shown to be a powerful technique for finding poly-

nomial Lyapunov functions over the past few years. Several examples can be found

in [30], [26], and [32]. Below, we give an example of our own to illustrate the procedure

more concretely and develop a geometric intuition.

Example 3.1.1. Consider the dynamical system

ẋ1 = −0.15x7
1 + 200x6

1x2 − 10.5x5
1x

2
2 − 807x4

1x
3
2 + 14x3

1x
4
2 + 600x2

1x
5
2 − 3.5x1x

6
2 + 9x7

2

ẋ2 = −9x7
1 − 3.5x6

1x2 − 600x5
1x

2
2 + 14x4

1x
3
2 + 807x3

1x
4
2 − 10.5x2

1x
5
2 − 200x1x

6
2 − 0.15x7

2

(3.7)

We would like to establish global asymptotic stability of the origin by searching for

a polynomial Lyapunov function V . Since the vector field is homogeneous, we can

restrict our search to homogeneous Lyapunov functions [37]. The corresponding SOS
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Figure 3-1: A typical trajectory of Example 3.1.1 (solid), level sets of a degree 8
Lyapunov function (dotted).

program is infeasible for a V of degree 2, 4, and 6. The infeasibility of the underlying

semidefinite program gives us a certificate that in fact no polynomial of degree less

than or equal to 6 satisfies (3.4) and (3.5). We finally increase the degree to 8 and

SOSTOOLS and SDP solver SeDuMi find the following Lyapunov function

V = 0.02x8
1 + 0.015x7

1x2 + 1.743x6
1x

2
2 − 0.106x5

1x
3
2 − 3.517x4

1x
4
2

+0.106x3
1x

5
2 + 1.743x2

1x
6
2 − 0.015x1x

7
2 + 0.02x8

2. (3.8)

Figure 3-1 shows a trajectory of (3.7) starting from the point (2, 2)T . Level sets of

the Lyapunov function (3.8) are also plotted with dotted lines. Note that the trajectory

stretches out in 8 different directions as it moves towards the origin. We know that

level sets of a Lyapunov function should have the property that once the trajectory

enters them, it never exits. For this reason, we expect the level sets to also have 8

preferred directions. At an intuitive level, this explains why we were unable to find

a Lyapunov function of lower degree. This suggests that for this particular example,
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we should not blame our failure of finding lower degree Lyapunov functions on the

conservatism of SOS relaxation (i.e. the gap between SOS and nonnegativity).

3.2 How Conservative is the SOS Relaxation for

Finding Lyapunov Functions?

An interesting and natural question in the study of polynomial Lyapunov functions is

to investigate how significant the gap between SOS and nonnegativity can be in terms

of existence of Lyapunov functions. Is it true that whenever a polynomial Lyapunov

function of a certain degree exists, one can always take it to be a sum of squares? Is

it true that when a positive polynomial is a valid Lyapunov function, there exists a

nearby SOS polynomial of maybe slightly higher degree that is also a valid Lyapunov

function? Or is it the case that some family of dynamical systems naturally admit

polynomial Lyapunov functions that are not SOS?

Because SOS relaxation is the main tool that we currently have for finding poly-

nomial Lyapunov functions, it is important to know the answer to these questions.

To the best knowledge of the author, no one has yet carefully investigated this topic.

In this section, we will make a small first step in this direction by giving an explicit

example where a valid polynomial Lyapunov function is not detected through SOS

programming.

Recall that every time we search for a Lyapunov function through the methodol-

ogy we described, we use the SOS relaxation twice. First for nonnegativity of V , and

second for nonpositivity of V̇ . Each of these relaxations may in general be conserva-

tive. Many of the well known counter examples of nonnegative functions that are not

SOS have local minimas [35]. On the other hand, we know that in continuous time,

Lyapunov functions cannot have local minimas. The reason is that if a trajectory

starts exactly at the local minima of V , irrespective of the direction in which f moves

the trajectory, the Lyapunov function will locally increase1. As a consequence, many

1In future chapters of this thesis, we will introduce non-monotonic Lyapunov functions. These
Lyapunov functions are allowed to increase locally and therefore can, in theory, have local minimas.
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of the well known nonnegative polynomials that are not SOS cannot be a Lyapunov

function. However, the following example shows that an SOS relaxation on V̇ can be

conservative.

Example 3.2.1. Consider the dynamical system

ẋ1 = −x3
1x

2
2 + 2x3

1x2 − x3
1 + 4x2

1x
2
2 − 8x2

1x2 + 4x2
1 − x1x

4
2 + 4x1x

3
2 − 4x1 + 10x2

2

ẋ2 = −9x2
1x2 + 10x2

1 + 2x1x
3
2 − 8x1x

2
2 − 4x1 − x3

2 + 4x2
2 − 4x2.

(3.9)

One can verify that the origin is the only equilibrium point for this system, and

therefore it makes sense to investigate global asymptotic stability. If we search for

a quadratic Lyapunov function for (3.9) using SOS programming, we will not find

one. Therefore, there exists no quadratic Lyapunov function whose decrease rate sat-

isfies (3.5). Nevertheless, we claim that

V =
1

2
x2

1 +
1

2
x2

2 (3.10)

is a valid Lyapunov function. Indeed, one can check that

V̇ = x1ẋ1 + x2ẋ2 = −M(x1 − 1, x2 − 1), (3.11)

where M(x1, x2) is the famous Motzkin polynomial

M(x1, x2) = x4
1x

2
2 + x2

1x
4
2 − 3x2

1x
2
2 + 1. (3.12)

This polynomial is known to be nonnegative but not SOS [35]. V̇ is strictly negative

everywhere in the space, except for the origin and three other points (0, 2)T , (2, 0)T ,

and (2, 2)T , where V̇ is zero. However, at each of these three points we have ẋ 6= 0.

Once the trajectory reaches any of these three points, it will be kicked out to a region

where V̇ is strictly negative. Therefore, by LaSalle’s invariance principle [20], the

quadratic Lyapunov function in (3.10) proves GAS of the origin of (3.9).

The fact that V̇ is zero at three points other than the origin is not the reason
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(a) Shifted Motzkin polynomial is nonnegative but
not SOS.

(b) Typical trajectories of (3.9) (solid),
level sets of V (dotted).

(c) Level sets of a quartic Lyapunov
function found through SOS program-
ming.

Figure 3-2: Example 3.2.1. The quadratic polynomial 1
2
x2

1 + 1
2
x2

2 is a Lyapunov
function but it is not detected through SOS programming.
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why SOS programming is failing. After all, when we impose the condition that −V̇

should be SOS, we allow for the possibility of a non-strict inequality. The reason why

our SOS program does not recognize (3.10) as a Lyapunov function is that the shifted

Motzkin polynomial in (3.11) is nonnegative but it is not a sum of squares. This

sextic polynomial is plotted in Figure 3-2(a). Trajectories of (3.9) starting at (2, 2)T

and (−2.5,−3)T along with level sets of V are shown in Figure 3-2(b).

If we increase the degree of the candidate Lyapunov function from 2 to 4, SOS-

TOOLS succeeds in finding a quartic Lyapunov function

W = 0.08x4
1 − 0.04x3

1 + 0.13x2
1x

2
2 + 0.03x2

1x2 + 0.13x2
1

+0.04x1x
2
2 − 0.15x1x2 + 0.07x4

2 − 0.01x3
2 + 0.12x2

2. (3.13)

The level sets of this function are close to circles and are plotted in Figure 3-2(c).

We should mention that the example we just described was contrived to make our

point. For many practical problems, SOS programming has provably shown to be a

powerful technique [30], [26], [32]. There are some recent results [5], however, that

show for a fixed degree, as the dimension goes up the gap between nonnegativity and

SOS broadens. The extent to which this can impact existence of Lyapunov functions

in higher dimensions is yet to be investigated.

3.3 Discrete Time Case

In this section we consider a dynamical system of the type

xk+1 = f(xk), (3.14)

where f is again a multivariate polynomial. All of the methodology developed in the

continuous time case carries over in a straightforward manner to the discrete time
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case. We will once again replace the conditions of Lyapunov’s theorem

V (x) > 0 ∀x 6= 0 (3.15)

V (f(x))− V (x) < 0 ∀x 6= 0. (3.16)

with the more tractable conditions

V SOS (3.17)

−(V (f(x))− V (x)) SOS. (3.18)

Since f is fixed, condition (3.18) is still linear in the coefficients of the decision variable

V . Therefore, once the degree of the candidate Lyapunov function is fixed, we can

search for a V that satisfies (3.17) and (3.18) via a sum of squares program.

Examples of discrete time polynomial systems that do not admit a quadratic

Lyapunov function but have a higher order Lyapunov function seem to be missing

from the literature. For completeness, we give one such example.

Example 3.3.1. Consider the dynamical system

xk+1 = f(xk),

with

f =

 1
2
x1 − x2

1 − x2

1
2
x2

1 + 1
2
x2 − (1

2
x1 − x2

1 − x2)2.

 (3.19)

No quadratic Lyapunov function is found using SOS relaxation. However, an SOS

quartic Lyapunov function exists:

V = 1.976x4
1 − 0.012x3

1x2 − 0.336x3
1 + 0.001x2

1x
2
2 + 4.011x2

1x2

+0.680x2
1 − 0.012x1x

2
2 − 0.360x1x2 + 0.0002x3

2 + 2.033x2
2. (3.20)

A level set of this Lyapunov function along with two trajectories is shown in Figure 3-

3.
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Figure 3-3: Trajectories of Example 3.3.1 and a level set of a quartic Lyapunov
function.
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Chapter 4

Non-Monotonic Lyapunov

Functions in Discrete Time

4.1 Motivation

Despite all the recent positive progress in Lyapunov theory due to availability of

techniques based on convex programming, it is not too difficult to find stable systems

where most of the techniques fail to find a Lyapunov function. Even if one is found,

in many situations, the structure of the Lyapunov function can be very complicated.

This setback encourages one to think whether the conditions of Lyapunov’s theorem

are overly conservative.

The rest of this thesis will address the following natural question: if it is enough

to show V → 0 as k → ∞, why should we require V to decrease monotonically? It

is perhaps not immediate to see whether relaxing monotonicity would help simplify

the structure of Lyapunov functions. Figure 4-1 explains why we would conceptually

expect this to happen. In the top part of the figure, a hypothetical trajectory is

plotted along with a level curve of a candidate Lyapunov function. The problem is

that a simple dynamics f (e.g., polynomial of low degree) can produce such trajectory.

However, a Lyapunov function V with such level curve must be very complicated (e.g.,

polynomial of high degree). On the other hand, much simpler functions (maybe even

a quadratic) can decrease in a non-monotonic fashion as plotted in the bottom right.

49



Figure 4-1: Motivation for relaxing monotonicity. Level curves of a standard Lya-
punov function can be complicated. Simpler functions can decrease on average every
few steps.

Later in the chapter, we will verify this intuition with specific examples.

Throughout this chapter, we will be concerned with a discrete time dynamical

system

xk+1 = f(xk). (4.1)

It is assumed that the origin is the unique equilibrium point of (4.1) and our goal

is to prove global asymptotic stability (GAS). We will relax Lyapunov’s requirement

Vk+1 < Vk by presenting new conditions that allow Lyapunov functions to increase

locally but yet guarantee that in the limit they converges to zero. We will pay special

attention to writing conditions that can be checked by a convex program.

The organization of this chapter is as follows. In Section 4.2 we present our

theorems and give some interpretations. In Section 4.3.1, we apply our results to

polynomial systems by using SOS programming. Section 4.3.2 analyzes stability of

piecewise affine systems. In Section 4.3.3, we use non-monotonic Lyapunov functions

to find upper bounds on the joint spectral radius of a finite set of matrices. Through-

out Section 4.3, we draw comparisons with techniques based on standard Lyapunov

theory.

50



4.2 Non-monotonic Lyapunov Functions

In this section we state our main results which are comprised of two sufficient con-

ditions for global asymptotic stability. Both theorems impose conditions on higher

order differences of Lyapunov functions. For clarity, we state our theorems with for-

mulations that only use up to a two-step difference. The generalized versions are

presented as corollaries.

4.2.1 The Non-Convex Formulation

Our first theorem has a non-convex formulation and it will turn out to be a special

case of our second theorem. On the other hand, it allows for an intuitive interpretation

of relaxing the monotonicity requirement Vk+1 < Vk. For this reason, we present it as

a motivation.

Theorem 4.2.1. Consider the dynamical system (4.1). If there exists a scalar τ ≥ 0,

and a continuous radially unbounded function V : Rn → R, such that

V (x) > 0 ∀x 6= 0

V (0) = 0

τ(Vk+2 − Vk) + (Vk+1 − Vk) < 0 (4.2)

then the origin is a GAS equilibrium of (4.1).

Note that we have a product of decision variables V and τ in (4.2). Therefore,

this condition cannot be checked via an SDP. We shall overcome this problem in the

next subsection. But for now, our approach will be to fix τ through a binary search,

and then search for V .

Before we provide a proof of the theorem, we shall give an interpretation of con-

dition (4.2). When τ = 0, we recover Lyapunov’s theorem. For τ > 0, condition (4.2)

requires a weighted average of the improvement in one step and the improvement in
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two steps to be negative. Meaning that V has to decrease on average every two steps.

This allows the Lyapunov function to increase in one step (i.e. Vk+1 > Vk), as long as

the improvement in two steps is negative enough. Similarly, at some other points in

space, we may have Vk+2 > Vk when there is enough decrease in the first step. The

special case of τ = 1 has a nice interpretation. In this case (4.2) reduces to

Vk >
1

2
(Vk+1 + Vk+2),

i.e., at every point in time, the value of the Lyapunov function should be more than

the average of the value at the next two future steps. It should intuitively be clear

that condition (4.2) should imply Vk → 0 as k →∞. The formal proof is as follows.

Proof. (of Theorem 4.2.1) Consider the sequence {Vk}. For any given Vk, (4.2) and

the fact that τ ≥ 0 imply that either Vk+1 or Vk+2 should be strictly less than Vk.

Therefore, there exists a subsequence of {Vk} that is monotonically decreasing. Since

the subsequence is lower bounded by zero, it must converge to some c ≥ 0. It can

be shown (for e.g. by contradiction) that because of continuity of V (x), c must be

zero. This part of the proof is similar to the proof of standard Lyapunov theory (see

e.g. [20]). Now that we have established a converging subsequence, for any ε > 0, we

can find k̄ such that Vk̄ < min{ ε
1+τ

, τε
1+τ
}. Because of positivity of V and condition

(4.2), we have Vk < ε ∀k > k̄. Therefore, Vk → 0, which implies x→ 0.

We shall provide an alternative proof in Section 4.2.2 for the more general theorem.

Note that by construction, Theorem 4.2.1 should work better than requiring Vk+1 <

Vk (τ = 0) and Vk+2 < Vk (τ large). The following example illustrates that the

improvement can be significant.

Example 4.2.1. (piecewise linear system in one dimension) Consider the piecewise

linear dynamical system:

xk+1 = f(xk)
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with

f =



A1x |x| ∈ R1 = [9,∞)

A2x |x| ∈ R2 = [7, 9)

A3x |x| ∈ R3 = [6, 7)

A4x |x| ∈ R4 = [0, 6)

where A1 = 2
5
, A2 = 3

4
, A3 = 3

2
, and A4 = 1

2
.

We would like to establish global asymptotic stability using Lyapunov theory. Since

f is odd, it suffices to find a Lyapunov function for half of the space (e.g., x ≥

0) and use its mirror image on the other half space. Figure 4-2(a) illustrates the

possible switchings among the four regions. Note that A3 > 1 and A3A2 > 1. We

claim that no quadratic Lyapunov function exists. Moreover, no quadratic function

can satisfy Vk+2 < Vk. These facts can easily be seen by noting that any positive

definite quadratic function will increase if the trajectory moves away from the origin.

Therefore, transitions A3 and A3A2 respectively reject the existence of a quadratic

Lyapunov function that would decrease monotonically in one or two steps.

In order to satisfy the monotonic decrease of Lyapunov’s theorem, we should search

for functions that are more complicated than quadratics. Figure 4-2(b) and 4-2(d)

illustrate two such functions. The first function, U , is a polynomial of degree 4 (on

the nonnegative half-space) found through SOS programming. The second function,

W , is a piecewise quadratic with four pieces that is obtained by solving an SDP.

Figure 4-2(f) shows the value of W on a trajectory that starts in R1, visits R2, R3,

R1, R4, and stays in R4 before it converges to the origin. The corresponding plot for

U is omitted to save space.

Next, we apply Theorem 4.2.1 to prove stability. As shown in Figure 4-2(c), we

can simply take V to be a linear function with slope of 1 on the positive half-space.

This V along with any τ ∈ (1.25, 2) satisfies (4.2). Figure 4-2(e) shows the value of

V on the same trajectory described before. Even though from k = 2 to k = 4 V is

increasing, at any point in time condition (4.2) is satisfied.

This example clearly demonstrates that relaxing monotonicity can simplify the

structure of Lyapunov functions. From a computational point of view, the search
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(a) transition graph (b) standard Lyapunov function

(c) non-monotonic Lyapunov function (d) standard Lyapunov function

(e) τ(Vk+2 − Vk) + (Vk+1 − Vk) < 0 (f) Wk+1 < Wk

Figure 4-2: Comparison between non-monotonic and standard Lyapunov functions
for Example 4.2.1. The non-monotonic Lyapunov function has a simpler structure
and therefore fewer decision variables.
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for the non-monotonic Lyapunov function only had 2 decision variables: the slope

of the line in V and the value of τ . On the other hand, each of the four quadratic

pieces of W have three free parameters. If we take advantage of the fact that the

piece containing the origin should have no constant or linear terms, we end up with

a total of 10 decision variables. As we shall see in Section 4.3.2, both methods will

have the same number of constraints. The quartic polynomial U has no constant or

linear terms and therefore has 3 decision parameters. However, as the dimension of

the space goes up, the difference between the number of free parameters of a quadratic

and a quartic grows quadratically in the dimension. We will make many more similar

comparisons in Section 4.3 for different types of dynamical systems.

We end this section by stating the general version of Theorem 4.2.1, which requires

the Lyapunov function to decrease on average every m steps.

Corollary 4.2.1. Consider the dynamical system (4.1). If there exists m − 1 non-

negative scalars τi, and a continuous radially unbounded function V : Rn → R, such

that

V (x) > 0 ∀x 6= 0

V (0) = 0

τm−1(Vk+m − Vk) + · · ·+ (Vk+1 − Vk) < 0

(4.3)

then the origin is a GAS equilibrium of (4.1).

Proof. The proof is a straightforward generalization of the proof of Theorem 4.2.1.

4.2.2 The Convex Formulation

In this section we present our main theorem, which will be used throughout Sec-

tion 4.3.

Theorem 4.2.2. Consider the dynamical system (4.1). If there exists two continuous
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functions V 1, V 2 : Rn → R such that

V 2 and V 1 + V 2 are radially unbounded

V 2(x) > 0 ∀x 6= 0

V 1(x) + V 2(x) > 0 ∀x 6= 0

V 1(0) + 2V 2(0) = 0

(V 2
k+2 − V 2

k ) + (V 1
k+1 − V 1

k ) < 0 (4.4)

then the origin is a GAS equilibrium of (4.1).

The inequality (4.4) is linear in the decision variables V 1 and V 2. This will allow

us to check condition (4.4) via a semidefinite program. Note that Theorem 4.2.1 is a

special case of Theorem 4.2.2, when V 1 = V and V 2 = τV . Unlike Theorem 4.2.1,

Theorem 4.2.2 maps the state into two Lyapunov functions instead of one. In this

fashion, the improvement in one and two steps are measured using two different

metrics. The theorem states that as long as the sum of the two improvements is

negative at any point in time, stability is guaranteed and both V 1 and V 2 will converge

to zero. Figure 4-3 illustrates the trajectory of a hypothetical dynamical system at

three consecutive instances of time. Here, V 1 and V 2 ar taken to be quadratics and

therefore have ellipsoidal level sets. Since the decrease in the horizontal ellipsoid in

two steps is larger than the increase of the vertical ellipsoid in the first step, inequality

(4.4) is satisfied.

The following proof will use the conditions of Theorem 4.2.2 to explicitly construct

a standard Lyapunov function.

Proof. (of Theorem 4.2.2) We start by rewriting (4.4) in the form

V 2
k+2 + V 1

k+1 < V 2
k + V 1

k .

Adding V 2
k+1 to both sides and rearranging terms we get

V 1
k+1 + V 2

k+1 + V 2
k+2 < V 1

k + V 2
k + V 2

k+1.
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Figure 4-3: Interpretation of Theorem 4.2.2. On the left, three consecutive instances
of the trajectory are plotted along with level sets of V 1 and V 2. V 1 measures the
improvement in one step, and V 2 measures the improvement in two steps. The plot
on the right shows that inequality (4.4) is satisfied.

If we define W (x) = V 1(x) + V 2(x) + V 2(f(x)), the last inequality implies that

Wk+1 < Wk. It is easy to check from the assumptions of the theorem that W will be

continuous, radially unbounded, and will satisfy W (x) > 0 ∀x 6= 0, and W (0) = 0.

Therefore, W is a standard Lyapunov function for (4.1).

The explicit construction of a standard Lyapunov function in this proof suggests

that non-monotonic Lyapunov functions are equivalent to standard Lyapunov func-

tions of a very specific structure. The function W (x) is parameterized not only with

the value of the current state x, but also with the future value of the state f(x). We

will demonstrate in Section 4.3 that parameterizing W in this fashion and searching

for V 1 and V 2 can often be advantageous over a direct search for a standard Lya-

punov function of similar complexity. The reason is that depending on f itself, W (x)

will have a more complicated structure than V 1(x) and V 2(x). For example, if f is a

polynomial of degree d and V 1 and V 2 are polynomials of degree q, then W will be of

higher degree dq. As a second example, suppose f is piecewise linear with R pieces.

If two smooth quadratic functions V 1 and V 2 satisfy the conditions of Theorem 4.2.2,

then there will be a standard Lyapunov function W which is piecewise quadratic with

R pieces. From a computational point of view, this additional complexity directly

translates into more decision variables. These facts will become more clear in Sec-

tion 4.3, where we compare standard Lyapunov techniques to our methodology for

specific examples.
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Next, we generalize Theorem 4.2.2 to m-step differences.

Corollary 4.2.2. Consider the dynamical system (4.1). If there exist continuous

functions V 1, . . . , V m : Rn → R such that

m∑
i=j

V i radially unbounded for j = 1, · · · ,m

m∑
i=j

V i(x) > 0 ∀ x 6= 0 for j = 1, · · · ,m

m∑
i=1

iV i(0) = 0

(V m
k+m − V m

k ) + · · ·+ (V 1
k+1 − V 1

k ) < 0 (4.5)

then the origin is a GAS equilibrium of (4.1).

Proof. Similar to the proof of Theorem 4.2.2, it can be shown that
∑m

j=1

∑m
i=j V

i(f j−1)

is a standard Lyapunov function.

4.3 Applications and Examples

In this section, we apply our results to polynomial systems, piecewise affine systems,

and linear systems with arbitrary switching. In all of the examples, our approach will

be as follows. We fix a certain class of Lyapunov functions (e.g., quadratics) and we

show that no function within that class satisfies Vk+1 < Vk or Vk+2 < Vk. Then, we find

functions V 1 and V 2 of the same class that prove stability based on Theorem 4.2.2. In

most cases, we will write out the LMIs explicitly to provide guidelines for the users.

Throughout, the reader should keep in mind that Corollary 4.2.2 with m > 2 can

lead to better results than Theorem 4.2.2 at the expense of computing higher order

differences.
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4.3.1 Polynomial Systems

In Section 2.4, we introduced sum of squares (SOS) programming and in Chapter 3

we explained how it can be used to efficiently search for polynomial Lyapunov func-

tions. Luckily, we can readily apply the same methodology to find non-monotonic

polynomial Lyapunov functions. More specifically, we will search for V 1 and V 2 that

satisfy

V 2(x) SOS

V 1(x) + V 2(x) SOS

−{V 2(f(f(x)))− V 2(x) + V 1(f(x))− V 1(x)} SOS.

(4.6)

Example 4.3.1. Consider the discrete time polynomial dynamics in dimension two:

f =

 3
10
x1

−x1 + 1
2
x2 + 7

18
x2

1

 .

One can check that no quadratic SOS function V can satisfy

−{V (f(x))− V (x)} SOS.

As we mentioned in Chapter 2, there is no gap between SOS and nonnegativity in

dimension two and degree up to four. Therefore, we can be certain that in fact

no quadratic Lyapunov function exists for this system. We can also check that no

quadratic SOS function will satisfy

−{V (f(f(x)))− V (x)} SOS.

On the other hand, from SOSTOOLS and the SDP solver SeDuMi [40] we get that

condition (4.6) is satisfied with

V 1 = 0.063x2
1 − 0.123x1x2 − 1.027x2

2

V 2 = 0.731x2
1 + 0.095x1x2 + 1.756x2

2.
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Stability follows from Theorem 4.2.2. It is easy to check that W (x) = V 1(x)+V 2(x)+

V 2(f(x)) will be a standard Lyapunov function of degree four. Alternatively, we could

have directly searched for a standard Lyapunov function of degree four. However,

a polynomial of degree d in n variables has
(
n+d
d

)
coefficients. Therefore, as the

dimension goes up, one quartic will have significantly more decision parameters than

two quadratics.

4.3.2 Piecewise Affine Systems

Piecewise affine (PWA) systems are systems of the form

xk+1 = Aixk + ai, for xk ∈ Ri (4.7)

where Ri’s are polyhedral partitions of the state space. There has been much recent

interest in systems of this type because, among other reasons, they provide a practical

framework for modeling and approximation of hybrid and nonlinear systems. Check-

ing stability of PWA systems is in general undecidable [6]. It is well-known that

Schur stability of the Ai’s is not necessary, nor is it sufficient, for the overall system

(4.7) to be stable [14]. In [34], the method of piecewise quadratic (PWQ) Lyapunov

functions was introduced to analyze stability of continuous time PWA systems. Dis-

crete time analogs of this technique have also been studied (see e.g. [15], [36]). A

detailed comparison of different stability techniques for discrete time PWA systems is

presented in [4]. In this section, we compare the strength of non-monotonic Lyapunov

functions to some of the other techniques through an example. It will be shown that,

in some cases, instead of a standard piecewise quadratic Lyapunov function, smooth

non-monotonic Lyapunov functions can prove stability.

Example 4.3.2. (Discretized flower dynamics) Consider the the following PWA sys-

tem
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xk+1 =

 A1xk, xTkHxk > 0

A2xk, xTkHxk ≤ 0

where A1 = λe2ACT
1 , and A2 = 1

λ
e2ACT

2 .

The matrices ACT1 , ACT2 , and H are as in [34] (with a minor correction)

ACT1 =

−0.1 5

−1 −0.1

 , ACT2 =

−0.1 1

−5 −0.1

 ,

H =

1 0

0 −1

 ,
and λ ≥ 1 will be a scaling parameter in this problem. We will compare different

techniques based on the range of λ for which they can prove stability.

If we search for a smooth1 quadratic Lyapunov function satisfying Vk+1 < Vk, the

problem will be infeasible even for λ = 1. As a second attempt, we search for a smooth

quadratic function that satisfies Vk+2 < Vk. Stability is proven for λ ∈ [1, 1.114].

Our next purpose is to show that by combining the improvement in one step and the

improvement in two steps using quadratic non-monotonic Lyapunov functions, better

results will be obtained. By taking V i to be xTPix, the conditions of Theorem 4.2.2

reduce to the following set of LMIs

P2 � 0

P1 + P2 � 0

(ATi A
T
j P2AjAi − P2) + (ATi P1Ai − P1) ≺ 0

when x ∈ Ri and Aix ∈ Rj, ∀i, j ∈ {1, 2}.

(4.8)

In order to impose the last inequality in (4.8) only on regions of space where AjAi

is a possible future transition, we use the S-procedure technique [10]. The LMIs in

(4.8) will prove stability for λ ∈ [1, 1.221), which is a strictly larger range than what

1Reference [4] refers to this as a common quadratic Lyapunov function. This is not to be confused
with common quadratic in the context of arbitrary switching. We avoid using this terminology to
emphasize that the S-procedure relaxation is used on the regions.
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was obtained before.

Next, we shall comment on the connection of this approach to piecewise quadratic

Lyapunov functions, which we denote by xTQix.

A search for a PWQ Lyapunov function can be posed by the following set of LMIs

[4]

Q1 � 0

Q2 � 0

(ATi QjAi −Qi) ≺ 0

when x ∈ Ri and Aix ∈ Rj, ∀i, j ∈ {1, 2}.

(4.9)

If we ignore the positivity conditions, (4.8) and (4.9) show that the two methods have

the same number of constraints. It is relatively straightforward to check that whenever

P1 and P2 satisfy (4.8),

Qi = P1 + P2 + ATi P2Ai i = 1, 2 (4.10)

will satisfy the LMIs in (4.9). This is in agreement with the standard Lyapunov

function that we constructed in the proof of Theorem 4.2.2. On the other hand,

existence of PWQ Lyapunov functions does not in general imply feasibility of the LMIs

in (4.8). However, for the example discussed above, piecewise quadratic Lyapunov

functions also prove stability for λ ∈ [1, 1.221).

We should point out that the method of smooth non-monotonic Lyapunov func-

tions is searching only for two functions P1 and P2 independent of the number of re-

gions. On the other hand, PWQ Lyapunov functions have to find as many quadratic

functions as the number of regions. This in turn results in more decision variables

and more positivity constraints.

To obtain a method that works at least as well as (and most likely strictly better

than) standard PWQ Lyapunov functions, one can take V 1, V 2, or both in Theo-

rem 4.2.2 to be piecewise quadratic.
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4.3.3 Approximation of the Joint Spectral Radius

In this section, we consider a dynamical system of the type

xk+1 = Aσ(k)xk (4.11)

where σ is a mapping from the integers to a finite set of indices {1, ...,m}. The

question of interest is to determine whether the discrete inclusion (4.11) is absolutely

asymptotically stable (AAS), i.e., asymptotically stable for all switching sequences.

It turns out [39] that (4.11) is AAS if and only if the joint spectral radius (JSR) of

the matrices A1, ..., Am is strictly less than one. The joint spectral radius represents

the maximum growth rate obtained by taking arbitrary products of the matrices Ai.

It is formally defined as [38]:

ρ(A1, · · · , Am) := lim
k→∞

max
σ∈{1,··· ,m}k

‖Aσk
· · ·Aσ2Aσ1‖

1
k (4.12)

where the value of ρ is independent of the norm used in (4.12). For a given set of

matrices, testing whether ρ ≤ 1 is undecidable [8]. Moreover, computation and even

approximation of the JSR is difficult [42]. Here, we will be interested in providing

bounds on the JSR. Clearly, the spectral radius of any finite product of matrices gives

a lower bound on ρ. Computing upper bounds is a much more challenging task. We

explain our technique for a pair of matrices A1, A2. The generalization to a finite set

of matrices is straightforward.

Because of the scaling property of the JSR, for any λ ∈ (0,∞), if we can prove

AAS of (4.11) for the scaled pair of matrices λA1 and λA2, then 1
λ

is an upper bound

on ρ(A1, A2). References [7] and [29] have respectively used common quadratic and

common SOS polynomial Lyapunov functions to prove upper bounds on ρ. Here, we

will use common non-monotonic Lyapunov functions for this purpose. For the special

case where V 1 and V 2 are quadratics (i.e. V i = xTPix), Theorem 4.2.2 suggests that
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the following LMIs have to be satisfied to get an upper bound of 1
λ

on ρ(A1, A2).

P2 � 0

P1 + P2 � 0

(λ4ATi A
T
j P2AjAi − P2) + (λ2ATi P1Ai − P1) ≺ 0

∀i, j ∈ {1, 2}.

(4.13)

When P2 is set to zero, the method of common quadratics is recovered. Similarly,

when P1 is set to zero, the LMIs will find a common quadratic that satisfies Vk+2 < Vk.

It is easy to see that the existence of a common quadratic in one step implies the

existence of a common quadratic in two steps, but the converse is not true. Therefore,

setting P1 = 0 will produce upper bounds that are at least as tight as those obtained

from setting P2 = 0. Below, we show with two examples that when we use both P1

and P2 in (4.13) to combine the improvement in one and two steps, we can provide

strictly tighter bounds on the JSR.

Example 4.3.3. ( [29], Example 2) We consider the problem of finding an upper

bound for the JSR of the following pair of matrices:

A1 =

1 0

1 0

 , A2 =

0 1

0 −1


It is not difficult to show that ρ(A1, A2) = 1. Using common quadratic standard

Lyapunov functions, one would obtain an upper bound of
√

2 ≈ 1.41. A common

quadratic standard Lyapunov function for A1A1, A2A1, A1A2, and A2A2 would produce

an upper bound of 4
√

2 ≈ 1.19. On the other hand, common quadratic non-monotonic

Lyapunov functions can achieve an upper bound of 1 + ε for any ε > 0. Given ε, the

LMIs (4.13) will be feasible with

P1 =

−α 0

0 −α

 , P2 =

β 0

0 β


with any β > 0, 1− 4ε

1+ε
< α

β
< 1.
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We should mention that in [29], it is shown that a common SOS quartic Lyapunov

function also achieves an upper bound of 1 + ε, ∀ε > 0.

Example 4.3.4. ( [29], Example 4) We consider the following three randomly gen-

erated 4× 4 matrices:

A1 =


0 1 7 4

1 6 −2 −3

−1 −1 −2 −6

3 0 9 1

 , A2 =


−3 3 0 −2

−2 1 4 9

4 −3 1 1

1 −5 −1 −2



A3 =


1 4 5 10

0 5 1 −4

0 −1 4 6

−1 5 0 1


A lower bound on the JSR is ρ(A1A3)

1
2 ≈ 8.91 [29]. Method of common quadratic

satisfying Vk+1 < Vk, common quadratic satisfying Vk+2 < Vk, and common non-

monotonic quadratic satisfying Theorem 4.2.2 respectively produce upper bounds equal

to 9.77, 9.19, and 8.98. A common SOS quartic satisfying Vk+1 < Vk produces an upper

bound of 8.92 [29]. This bound is tighter than what we obtained from quadratic non-

monotonic functions. However, the latter technique will have 20 decision parameters

for this example in contrast with 35 needed to find a homogeneous quartic function.

Even though, throughout Section 4.3 we have used quadratic non-monotonic Lya-

punov functions, the reader should keep in mind that better results can be obtained

by taking V 1 and V 2 of Theorem 4.2.2 to be SOS polynomials.
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Chapter 5

Non-monotonic Lyapunov

Functions in Continuous Time

Our motivation for relaxing monotonicity of Lyapunov functions is the same in con-

tinuous time. Replacing the strict decreasing condition on V with less restrictive

conditions that still imply convergence of V to zero in the limit enlarges the class

of functions that can prove stability. By doing so, simpler functions may satisfy the

new condition and this in turn may make the search process easier and cut down

on the number of decision variables. Once again, our focus will be on coming up

with conditions that can be checked by a convex program. This will enable us to

utilize the techniques form semidefinite and sum of squares programming to search

for Lyapunov functions in an efficient and computationally tractable manner.

5.1 Literature Review

In order to allow V̇ to be occasionally positive, we will impose conditions on the

higher derivatives of V to bound the rate at which V can increase. Although not

with the motivation of relaxing monotonicity, there has been earlier work invoking

conditions on higher order derivatives of Lyapunov functions. In [12], Butz gives a

sufficient condition for global asymptotic stability (GAS) using the first three deriva-

tives. However, the formulation of his condition is nonconvex. Heinen and Vidyasagar
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show in [17] that Butz’s condition, when imposed only on complements of compact

sets implies boundedness of the trajectories. Gunderson proves a comparison lemma

for higher order derivatives in [16], which can be used to generalize the results by

Butz to even higher order derivatives. More recently, Jiang shows that GAS is still

achieved if V̇ < 0 is weakened to V̇ ≤ 0, but some additional conditions on higher

order derivatives are satisfied [18]. Another set of papers study conditions on only

the first and second derivative of Lyapunov functions [44], [13], and [21]. Yorke shows

in [44] that with very minor assumptions on V̇ and V̈ , it can be concluded that the

trajectories either go to the origin or to infinity. Kudaev has some independent similar

results, but his conditions seem to be harder to satisfy [21], [44].

We devote the main part of this chapter to build on the result by Butz. This is

done in Sections 5.2 and 5.3. Our approach will be similar in spirit to the methodology

of the previous chapter for the discrete time case. We will illustrate the connection of

a non-monotonic Lyapunov function satisfying some differential inclusion with higher

order derivatives, to a standard Lyapunov function satisfying V̇ < 0. This obser-

vation will enable us to change Butz’s condition to a convex condition that is even

stronger. In fact, the condition by Butz will only be a special case of our convex con-

dition. We give some examples to show the potential advantages of this methodology

over standard Lyapunov theory and we make some conjectures. In Section 5.4, we

state the results of Yorke that are particularly useful to reject existence of periodic

orbits or limit cycles. We give simple convex conditions that would imply the re-

quired conditions of Yorke. However, these convex conditions may in general be more

conservative. We compare them with conditions given by Chow and Dunninger [13]

in some examples.

Throughout this chapter, we will be concerned with the dynamical system

ẋ = f(x), (5.1)

where f : Rn → Rn is continuously differentiable and has a unique equilibrium at the
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origin. By the first three derivatives of the Lyapunov function V : Rn → R, we mean

V̇ (x) = 〈∂V (x)

∂x
, f(x)〉 (5.2)

V̈ (x) = 〈∂V̇ (x)

∂x
, f(x)〉 (5.3)

...
V (x) = 〈∂V̈ (x)

∂x
, f(x)〉. (5.4)

We will make some remarks about the special case where f is linear (ẋ = Ax) and V

is quadratic (V (x) = xTPx). In this case the first three derivatives will become

V̇ (x) = xT (PA+ ATP )x (5.5)

V̈ (x) = xT (PA2 + 2ATPA+ AT
2
P )x (5.6)

...
V (x) = xT (PA3 + 3ATPA2 + 3AT

2
PA+ AT

3
P )x. (5.7)

5.2 A Discussion on the Results by Butz

In [12], Butz investigated the use of higher order derivatives of Lyapunov functions

for proving global asymptotic stability. We begin by reviewing his contributions

that are comprised of two theorems (Theorems 5.2.1 and 5.2.2) and one example

(Example 5.2.2 below).

One would naturally start with conditions using only the first and second deriva-

tives. The following theorem shows that a large class of conditions using V̇ and V̈

alone, which seem to imply stability, are vacuous in the sense that no dynamical

system will satisfy them, unless it already satisfies V̇ < 0.

Theorem 5.2.1. (Butz, [12]) Consider the dynamical system (5.1) and a twice differ-

entiable Lyapunov function V , with its first two derivatives given in (5.2) and (5.3).

If it were true that

min[V̇ (x), τ V̈ (x)] < 0 (5.8)

for all x 6= 0 with some τ ≥ 0, then a proof of global asymptotic stability would be

routine. However, it is not possible that (5.8) holds unless V̇ (x) < 0 for all x 6= 0. In
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particular, a condition of the type

τ V̈ (x) + V̇ (x) < 0 for all x 6= 0, with some τ ≥ 0 (5.9)

is vacuous.

Butz does not specify what he exactly means by V being a Lyapunov function.

We show by a simple example that he must have had in mind that V is lower bounded

or else Theorem 5.2.1 is not true.

Example 5.2.1. Consider the dynamical system

ẋ1 = x2

ẋ2 = −x2 − x2
1.

(5.10)

Letting V (x) = x1, we will have V̇ (x) = x2, which is not negative definite. However,

taking τ = 1 in (5.9) we get

V̇ + V̈ = −x2
1,

which is negative definite.

In [12], Butz gives a simple geometric proof of Theorem 5.2.1. Here, we give an

alternative argument, which at an intuitive level shows why conditions of the type

(5.8) or (5.9) are not helpful. Note that both of these conditions do not allow for

V̇ and V̈ to be simultaneously positive. We claim that if V (x(t)) is decreasing at

some point as a function of time, it can never start to increase unless both V̇ (x(t))

and V̈ (x(t)) are positive for a period of time. The reason is that when V starts to

increase, we will obviously have V̇ > 0. Moreover, since V was decreasing before and

it is now increasing, V̇ must have changed sign from negative to positive. This implies

that V̈ must be positive when the transition occurs (and at least for a short while

after the transition by continuity). Therefore, conditions (5.8) or (5.9) do not allow

for a non-monotonic behavior of V (x(t)) as a function of time.

Next, we state the main result of [12], which shows that using the first three deriva-

tives of Lyapunov functions we can get a non-vacuous sufficient condition for global
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asymptotic stability, which contains the standard Lyapunov theorem (Theorem 1.2.1

of Chapter 1) as a special case.

Theorem 5.2.2. (Butz, [12]) Consider the continuous time dynamical system (5.1).

If there exists scalars τ1 ≥ 0 and τ2 ≥ 0, and a three times differentiable Lyapunov

function V with its first three derivatives given as in (5.2)-(5.4), such that

τ2

...
V (x) + τ1V̈ (x) + V̇ (x) < 0 (5.11)

for all x 6= 0, then for any x(0), V (x(t)) → 0 as t → ∞, and the origin of (5.1) is

globally asymptotically stable.

Note than when τ1 = τ2 = 0, we recover the original Lyapunov’s theorem. Once

again, for Theorem 5.2.2 to be correct even for the special case where τ1 = τ2 = 0,

we need the Lyapunov function V to be lower bounded. Without loss of generality,

we assume that V (0) = 0 and V (x) > 0 for all x 6= 0.

Butz proves this theorem in [12] by comparison lemma [20] type arguments after

appealing to some results from ordinary differential equations. Below, we give a proof

for the special case of linear systems and quadratic Lyapunov functions using only

basic linear algebra.

Corollary 5.2.1. Consider the linear dynamical system ẋ = Ax. If there exist scalars

τ1 ≥ 0 and τ2 ≥ 0, and a quadratic function V (x) = xTPx with P � 0, such that

τ2

...
V (x) + τ1V̈ (x) + V̇ (x) < 0,

then A is Hurwitz.

Proof. We begin by replacing (5.5)-(5.7) in (5.11)

τ2(PA3+3ATPA2+3AT
2
PA+AT

3
P )+τ1(PA2+2ATPA+AT

2
P )+(PA+ATP ) ≺ 0.

(5.12)
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Let λ be an eigenvalue of A with eigenvector v. So, we have

Av = λv.

If we multiply (5.12) by v from the right hand side and by v∗1 from the left, after

factoring and regrouping some terms we get

(λ3 + 3λ∗λ2 + 3λ∗2λ+ λ∗3)(τ2v
∗Pv) + (λ2 + 2λ∗λ+ λ∗2)(τ1v

∗Pv) + (λ+ λ∗)(v∗Pv) < 0

⇒ [τ2(λ+ λ∗)3 + τ1(λ+ λ∗)2 + (λ+ λ∗)](v∗Pv) < 0.

(5.13)

Since P � 0, we must have

τ2(λ+ λ∗)3 + τ1(λ+ λ∗)2 + (λ+ λ∗) < 0.

By nonnegativity of τ1 and τ2, we get

λ+ λ∗ = 2<(λ) < 0,

and therefore A is Hurwitz.

Example 5.2.2. (Butz, [12]) Consider the linear system ẋ = Ax with

A =

−4 −5

1 0

 .
The eigenvalues of A are −2± j. We know from our discussion in Section 2.2.1 that

there exists a positive definite quadratic function that decreases monotonically along

trajectories of this linear system. However, instead of searching for that quadratic

1Recall that ∗ denotes the conjugate transpose.
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Figure 5-1: V (x) = 1
2
xTPx does not decrease monotonically along a trajectory of

the linear system in Example 5.2.2. However, stability can still be proven by Theo-
rem 5.2.2.

function, let us pick

V (x) =
1

2
xTPx, with P =

1 1
2

1
2

1

 .
Figure 5-1 shows the value of this positive definite Lyapunov function along a typical

trajectory of the given linear system. Notice that the Lyapunov function increases

over a period of time and then decreases again. Indeed, we can calculate the first

derivative

V̇ (x) =
1

2
xTQx, with Q =

−7 −6

−6 −5

 ,
and observe that the matrix Q is not negative definite. This explains why in Figure 5-

1 the Lyapunov function can occasionally increase. The second and third derivatives
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of V are given by

V̈ (x) =
1

2
xTRx, R = QA+ ATQ

...
V (x) =

1

2
xTSx, S = RA+ ATR.

(5.14)

Some calculation gives

R =

44 54

54 60

 and S =

−244 −376

−376 −540

 .
For this particular example we can set τ1 = 0 and not use the second derivative.

Condition (5.11) then reduces to

τ2S +Q ≺ 0. (5.15)

Since this is an LMI in one variable τ2, by solving a generalized eigenvalue prob-

lem [10] and computing eig(Q,−S), we can conclude that (5.15) is feasible for

0.0021 < τ2 < 0.0486. (5.16)

Global asymptotic stability follows from Theorem 5.2.2.

This example demonstrated that even though our quadratic Lyapunov function

did not satisfy V̇ (x) < 0, we were able to find τ1 and τ2 that satisfied condition (5.11).

We will next conjecture that this fact was not special to this particular example. In

other words, for an asymptotically stable second order linear system, one can choose

any positive definite quadratic function V (x), and there will always exist nonnegative

scalars τ1 and τ2 satisfying condition (5.11). For simplicity, we take V (x) = xTx (i.e.

P = I). If the conjecture is true with this Lyapunov function candidate, by changing

coordinates it must be true for any positive definite quadratic function. The exact

statement of the conjecture written in an LMI form is as follows.
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Conjecture 5.2.1. Suppose A is a 2 × 2 Hurwitz matrix. Then there always exist

scalars τ1 ≥ 0 and τ2 ≥ 0 such that

τ2(A3 + 3ATA2 + 3AT
2
A+ AT

3
) + τ1(A2 + 2ATA+ AT

2
) + (A+ AT ) ≺ 0.

We have evidence to believe that this conjecture is true. If we succeed in proving

this conjecture it would imply that instead of searching for the three free parameters

of a 2 × 2 positive definite symmetric matrix P such that V (x) = xTPx decreases

monotonically along trajectories, one can always fix P = I and search for the two

unknowns τ1 and τ2 in (5.11). The natural extension of this conjecture would be that

when x ∈ Rn, instead of searching for 1
2
n(n+1) entries of P as in standard Lyapunov

theory, it is enough to fix P = I and search for n unknown coefficients multiplying

derivatives of order up to n + 1. Although from a practical point of view this is not

so significant2, the result is of theoretical interest. We know that the stability of

a continuous time linear system is completely determined by the real part of its n

eigenvalues. In that sense, it makes intuitive sense that one should be able to reduce

the free parameters of a quadratic Lyapunov function to n numbers.

5.3 A Convex Sufficient Condition for Stability Us-

ing Higher Order Derivatives of Lyapunov Func-

tions

The main difficulty in the practical application of Theorem 5.2.2 of Butz is that there

is a product of decision variables τi and V in condition (5.11), which makes the feasible

set nonconvex. Therefore, we cannot search for τi and V simultaneously through a

convex program. So far, our approach has been to either fix τ1 and τ2 through an a

2In practice, there is no advantage in finding a Lyapunov function for a linear system over solving
for the eigenvalues of A directly. When a Lyapunov equation is solved, A is often transformed
into its real Schur form, which already gives the eigenvalues. However, when the purpose is not
solely to test stability but for instance robustness to perturbation, Lyapunov theory can be quite
advantageous [20].

75



priori nested binary search and then only search for V , or fix V and search for τ1 and

τ2 (as was the case, for example, in Conjecture 5.2.1). In this section, we are going

to overcome this problem by changing condition (5.11) to a convex condition that

still implies global asymptotic stability and is even stronger than condition (5.11).

The key point that will enable us to do this is a simple observation that makes

a connection between a non-monotonic Lyapunov function satisfying (5.11) and a

standard Lyapunov function. We state this observation in the following theorem.

Theorem 5.3.1. Consider the continuous time dynamical system (5.1). If there

exists τ1, τ2, and V (x) satisfying conditions of Theorem 5.2.2, then

W (x) = τ2V̈ (x) + τ1V̇ (x) + V (x) (5.17)

is a standard Lyapunov function for (5.1).

Proof. We need to show that W (x) > 0 for all x 6= 0, W (0) = 0, and Ẇ (x) < 0 for

all x 6= 0. Since f(0) = 0, it follows from (5.2) and (5.3) that V̈ (0) = 0 and V̇ (0) = 0.

This together with the assumption that V (0) = 0 implies that W (0) = 0. Negative

definiteness of Ẇ (x) follows from condition (5.11). It remains to show that W (x) > 0

for all x 6= 0. Assume by contradiction that there exists a point x̄ ∈ Rn such that

W (x̄) ≤ 0. We evaluate the Lyapunov function W (x) along the trajectories of system

(5.1) starting from the initial condition x̄. The value of the Lyapunov function is

nonpositive to begin with and will strictly decrease because Ẇ (x) < 0. Therefore,

the value of the Lyapunov function can never become zero. On the other hand, since

conditions of Theorem 5.2.2 are satisfied, trajectories of (5.1) must all go to the origin,

where we have W (0) = 0. This gives us a contradiction.

Example 5.3.1. We verify Theorem 5.3.1 by revisiting Example 5.2.2. Recall from

(5.16) that for τ2 ∈ [0.0021, 0.0486] we had

τ2S +Q ≺ 0. (5.18)
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Theorem 5.3.1 implies that for any τ2 in that range, we must have

τ2R + P � 0. (5.19)

Indeed, by solving the generalized eigenvalue problem eig(−P,R) we see that (5.19)

holds for

−0.0139 < τ2 < 0.1951,

a range that strictly contains [0.0021, 0.0486]. In fact, for any τ2 ∈ [0.0021, 0.0486],

W (x) = xT (τ2R + P ) x is a standard Lyapunov function for the linear system of

Example 5.2.2.

Theorem 5.3.1 suggests that non-monotonic Lyapunov functions satisfying (5.11)

can be interpreted as standard Lyapunov functions of a specific structure given in

(5.17). Therefore, we can convexify this parametrization by looking for a Lyapunov

function of the form

W (x) = V̈ 3(x) + V̇ 2(x) + V 1(x). (5.20)

In other words, we will search for functions V 1, V 2, and V 3, but with no sign condi-

tions on them individually. Instead, just like standard Lyapunov theory, we require

W (0) = 0 (5.21)

W (x) = V̈ 3(x) + V̇ 2(x) + V 1(x) > 0 for all x 6= 0 (5.22)

Ẇ (x) =
...
V

3(x) + V̈ 2(x) + V̇ 1(x) < 0 for all x 6= 0. (5.23)

Note now that the inequalities are linear in the unknowns V 1, V 2, and V 3. Therefore,

we can perform the search by a convex program using the methodologies of Chap-

ter 2. Furthermore, Butz’s condition is only a special case of this parametrization.

Theorem 5.3.1 shows that whenever conditions of Theorem 5.2.2 of Butz are satis-

fied, a standard Lyapunov function W (x) of the form (5.20) will exist. This specific

parametrization enters the dynamics f multiplied by derivatives of functions V i into

the structure of the standard Lyapunov function W . Parameterizing W in this fash-
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ion and searching for V is can be advantageous over a direct search for a W of similar

complexity. The reason is that depending on f itself, W (x) will have a more compli-

cated structure than V i(x). For example when f is a polynomial system, the degree

of W (x) will be higher than the degree of each of the V is. From a computational

point of view, this would lead to saving decision variables.

We will show next that when one uses different functions V 1 and V 2, examination

of the first and second derivatives alone is not vacuous. By this we mean that it is

possible to have V̈ 2 + V̇ 1 < 0 without V̇ 1 being negative definite. This is in contrast

to Theorem 5.2.1 by Butz.

Example 5.3.2. Consider a continuous time linear system ẋ = Ax with

A =

−0.5 5

−1 −0.5

 .
We have already analyzed this system in Chapter 2. Here, we let

V 1(x) = xTP1x, with P1 =

1 0

0 1

 ,
and

V 2(x) = xTP2x, with P2 =

−1.74 0.11

0.11 −9.35

 .
With some calculation we get

V̇ 1(x) = xTQ1x, with Q =

−1 4

4 −1

 ,
which is not negative definite. On the other hand, one can check that

V̇ 2(x) + V 1(x) = xTMx, with M =

2.52 0.53

0.53 10.46


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is positive definite, and its derivative

V̈ 2(x) + V̇ 1(x) = xTZx, with Z =

−3.58 0.61

0.61 −6.17


is negative definite.

So far, our examples have dealt with linear systems, which is not an interesting

case from a practical point of view. After all, we know linear systems always admit

a standard quadratic Lyapunov function. We now give an example of a polynomial

system with no quadratic Lyapunov function, and we show that the parametrization

in (5.21) can be beneficial.

Example 5.3.3. Consider the following polynomial dynamics

ẋ1 = −0.8x3
1 − 1.5x1x

2
2 − 0.4x1x2 − 0.4x1x

2
3 − 1.1x1

ẋ2 = x4
1 + x6

3 + x2
1x

4
3

ẋ3 = −0.2x2
1x3 − 0.7x2

2x3 − 0.3x2x3 − 0.5x3
3 − 0.5x3.

(5.24)

If we look for a standard quadratic Lyapunov function using SOSTOOLS, the search

will be infeasible. Instead, we search for V 1 and V 2 that satisfy V̇ 2 + V 1 > 0 and

V̈ 2 + V̇ 1 < 0. In principle, we can start with a linear parametrization for V 1 and V 2

since there is no positivity constraint on V 1 or V 2 directly. For this example, a linear

parametrization will be infeasible. However, if we search for a linear function V 2 and

a quadratic function V 1, SOSTOOLS and the SDP solver SeDuMi will find

V 1(x) = 0.47x2
1 + 0.89x2

2 + 0.91x2
3

V 2(x) = 0.36x2.

Therefore, the origin of (5.24) is globally asymptotically stable. We can in fact con-

struct a sextic standard Lyapunov function from V 1 and V 2 given by

W (x) = V̇ 2(x) + V 1(x) = 0.36x4
1 + 0.36x2

1x
4
3 + 0.47x2

1 + 0.89x2
2 + 0.36x6

3 + 0.91x2
3.
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Computing higher order derivatives of Lyapunov functions in continuous time is

not as expensive as computing higher order compositions of the vector field in discrete

time. If the vector field f is a polynomial of degree d, the degree of the (m + 1)th

derivative of V is in general d − 1 higher than the degree of the mth derivative. So,

as higher order derivatives are computed, the degree goes up linearly. This is in

contrast to the exponential growth in the degree of V composed with higher order

compositions of f as we saw in the previous chapter. We remind the reader that [16]

derives a generalized comparison lemma for higher order derivatives, which can be

used to investigate conditions on derivatives of degree higher than three.

Finally, as we mentioned before, Heinen and Vidyasagar showed in [17] that con-

dition (5.11) when imposed only on complements of bounded sets can imply Lagrange

stability (boundedness of trajectories). It is possible to generalize and convexify their

result in a similar fashion to what was done in this section.

5.4 Lyapunov Functions Using V̈

In this section we discuss an interesting theorem by Yorke [44] that imposes conditions

on V̇ and V̈ . The implication of the main theorem is not global asymptotic stability

but rather the conclusion that the trajectories either converge to the origin or go

to infinity. This result can be particularly useful to show nonexistence of periodic

orbits, limit cycles, or chaotic attractors. The main theorem in [44] is slightly more

general than what we state below. However, this special case is more relevant for our

purposes.

Theorem 5.4.1. (Yorke, [44]) Consider the dynamical system (5.1) in dimension

n 6= 2 and a twice differentiable Lyapunov function V with its first two derivatives

given as in (5.2) and (5.3). If

either V̇ (x) 6= 0 or V̈ (x) 6= 0 ∀x 6= 0, (5.25)

then starting from any initial condition x(0) ∈ Rn, either x(t)→ 0 or |x(t)| → ∞ as
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t→∞.

We refer the reader to [44] for a proof of this theorem, which involves algebraic

topology and manifold theory. In his proof, Yorke requires Rn − {0} to be simply

connected, which is not the case for n = 2. In fact, [44] gives a simple counterexample

of a second order linear system with periodic solutions that satisfies (5.25). Notice

that the theorem imposes no sign conditions on either V , V̇ , or V̈ . As the paper [44]

reads: “it is rather surprising that such results are true because it seems at first that

almost nothing is assumed”.

Condition (5.25) is equivalent to requiring

V̇ (x)2 + V̈ (x)2 > 0 ∀x 6= 0. (5.26)

Unfortunately, neither condition (5.25) nor condition (5.26) are convex. We can

replace these conditions, however, by more restrictive conditions that imply (5.25)

and are convex. For example, any of the following three conditions imply (5.25).

V̇ (x) < 0 ∀x 6= 0 (5.27)

V̈ (x) < 0 ∀x 6= 0 (5.28)

V̇ (x) + V̈ (x) < 0 ∀x 6= 0. (5.29)

Of course, the same implication holds if the sign of the inequality is reversed in any

of the conditions (5.27)-(5.29). Note that all of these conditions are linear in the

decision variable V .

Example 5.4.1. Consider the dynamical system

ẋ1 = x2

ẋ2 = x3

ẋ3 = −x2
1 − x2

2 − x3.

(5.30)

We choose to search for a V that satisfies condition (5.29). We can do this using

SOSTOOLS, but in this case it is easy enough to see that V (x) = x2 satisfies (5.29).
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Indeed, we have

V̇ (x) + V̈ (x) = x3 − x2
1 − x2

2 − x3 = −x2
1 − x2

2,

which is negative definite. This implies that the condition of Theorem 5.4.1 is satisfied

and therefore trajectories of (5.30) either go to zero or to infinity. In particular,

solutions of (5.30) can never go on periodic orbits.

Chow and Dunninger argue in [13] for the use of condition (5.28) as a relaxation

for Yorke’s condition. They show that with this stronger assumption, the implication

holds for n = 2 as well. They also claim that condition (5.28) is only slightly stronger

than (5.25) and it is met in most applications. The author does not necessarily

agree with this claim. We will illustrate the connection between the three conditions

(5.27)-(5.29), and then compare them with an example.

First of all, note that the condition V̇ < 0, in any dimension, implies nonexistence

of periodic orbits. This is easy to see by contradiction. If there were a periodic orbit,

we could start from any point x̄ on it and evaluate the value of the Lyapunov function

V . When the trajectory returns to the starting point x̄, the value V (x̄) should be

revisited. This is in contradiction to the fact that V (x(t)) is strictly decreasing as a

function of time.

We claim that whenever conditions (5.28) and (5.29) are satisfied, condition (5.27)

will also be satisfied with a possibly more complicated function. The converse is not

necessarily true. Suppose there exists a V that satisfies V̈ < 0. Then, W = V̇ will

satisfy Ẇ < 0. Similarly, if there exists a V that satisfies V̇ + V̈ < 0, then W = V + V̇

will satisfy Ẇ < 0. However, working with conditions (5.28) and (5.29) can still be

beneficial from a computational point of view since W will have higher degree than

V .

The next example is borrowed from [20]. We show that we are able to demonstrate

nonexistence of periodic orbits with condition (5.27), but not with conditions (5.28)

or (5.29). This is in contrary to the claim made in [13].
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Example 5.4.2. Consider the polynomial dynamical system

ẋ1 = x2

ẋ2 = x1 + bx2 − x2
1x2 − x3

1.
(5.31)

It is shown in [20] by an application of the Bendixson Criterion that for any b < 0,

(5.31) has no periodic orbits. Indeed for any b < 0, SOSTOOLS finds a quartic

polynomial V that satisfies V̇ < 0. On the other hand, no polynomial V of degree

even up to seven is found to satisfy either V̈ < 0 or V̇ + V̈ < 0.
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Chapter 6

Conclusions and Future Work

In this thesis we addressed the following natural question: why should we require a

Lyapunov function to decrease monotonically along trajectories of a dynamical system

if we only need to guarantee that it converges to zero in the limit? We relaxed this

monotonicity assumption both in discrete time and continuous time by writing new

conditions that are amenable to convex programming formulations.

In discrete time, we gave a sufficient condition for global asymptotic stability

that allows the Lyapunov functions to increase locally while guaranteeing their con-

vergence to zero in the limit. The conditions of our main theorem were convex.

Therefore, all the techniques developed for finding Lyapunov functions based on con-

vex programming can readily be applied to our new formulation. We showed that

whenever a non-monotonic Lyapunov function is found, one can construct a stan-

dard Lyapunov function from it. However, the standard Lyapunov function will have

a more complicated structure. The nature of this additional complexity depends

on the dynamics itself. We demonstrated the advantages of our methodology over

standard Lyapunov theory through examples from polynomial systems, and linear

systems with constrained and arbitrary switching. As an application, we discussed

how non-monotonic Lyapunov functions can be used to give upper bounds on the

joint spectral radius of a finite set of matrices.

In continuous time, we presented conditions invoking higher derivatives of Lya-

punov functions that allow the Lyapunov function to increase but bound the rate at
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which the increase can happen. Here, we built on previous work in [12] that provides

a nonconvex sufficient condition for asymptotic stability using the first three deriva-

tives of Lyapunov functions. We gave a convex condition for asymptotic stability

that includes the condition in [12] as a special case. Once again, we demonstrated

the connection to standard Lyapunov functions. An example of a polynomial vector

field was given to show the potential advantages of using higher order derivatives over

standard Lyapunov theory. We also discussed a theorem in [44] that imposes minor

conditions on the first and second derivatives to reject existence of periodic orbits,

limit cycles, or chaotic attractors. We gave some simple convex conditions that imply

the requirement in [44] and we compared them with those given in [13].

Our work leaves three future directions to be explored. First, it would be interest-

ing to classify when searching for non-monotonic Lyapunov functions is guaranteed

to be advantageous. As we discussed in this thesis, our non-monotonic Lyapunov

functions can be interpreted as standard Lyapunov functions of a specific structure.

Since our formulations include Lypunov’s theorem as a special case, they will always

perform at least as good as standard Lyapunov theory. The interesting question is

for what type of dynamical systems are they guaranteed to do strictly better? In

this thesis, we gave many examples that showed one can get strict improvement us-

ing our methodology, but we have not specified the exact situations when this must

happen. Is it the case, for instance, that for a particular type of dynamical system

the existence of a non-monotonic quadratic Lyapunov function, which has the first

three derivatives in its structure necessary? Second, the connection of our method-

ology to vector Lyapunov functions (e.g. [22], [24]) needs to be clarified. Since our

convex theorems map the state space into multiple Lyapunov functions instead of

one, we suspect that our non-monotonic functions may be related to the concept of

vector Lyapunov functions. Finally, other control applications such as synthesis, or

robustness and performance analysis can be explored using non-monotonic Lyapunov

functions.
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