```
            The Possible Consequences of Rapidly
                    Depressurizing a Fluid
                        by
                    Miral Eonhah Kim-E
B.S., California Institute of Technology
                    (1978)
SUBMITTED IN PARTIAL FULFILLMENT
        OF THE REQUIREMENTS FOR THE
                DEGREE OF
            MASTER OF SCIENCE IN
            CHEMICAL ENGINEERING
            at the
                MASSACHUSETTS INSTITUTE OF TECHNOLOGY
            January 1981
        C Miral Eonhah Kim-E
The author hereby grants to M.I.T. permission to reproduce and
to distribute copies of this thesis document in whole or in part.
Signature of Author_
                    Department of Chemical Engineering
                                    January 16, 1981
Certified by_
```

Robert C. Reid

- . Thesis Supervisor

Accepted by \qquad $:$

ARCHIVES

```
bas?
F6? 21981

\title{
The Possible Consequences of Rapidly \\ Depressurizing a Fluid
}
by

\section*{Miral Eonhah Kim-E}

\begin{abstract}
Submitted to the Department of Chemical Engineering on January 16, 1981 in partial fulfillment of the requirements for the Degree of Master of Science in Chemical Engineering
\end{abstract}

\begin{abstract}
The rapid depressurization of liquids, such as that which might occur in an LPG tank car accident, has been known to lead to violent explosions. An experiment was devised to test a possible mechanism for these depressurization explosions (also known as BLEVE's) which involves that fluid's limit of thermodynamic stability. A seven-liter, cylindrical container, containing liquid or supercritical carbon dioxide, was depressurized using a 1.5-inch burst disc system. Results were inconclusive due to rapid vapor formation and the inability to measure the temperatures of the fluid and the walls. However, a comparison of characteristic times for the processes that occur during depressurization indicate that the proposed mechanism is a plausible model for depressurization explosions.
\end{abstract}

Thesis Supervisor : Dr. Robert C. Reid

Title : Professor of Chemical Engineering
to my family:
Mulka

Grace
and

Rhoda

I am grateful to Mr . Donald Wetherilt and his associates at Westreco for supplying the liquid-holding container so vital to this study.

And to my friends in the LNG lab, thanks for good advice, endless encouragement, and many fun-filled hours whenever we were together. I wish you all success, happiness, and lasting friendship in the years to come. Finally, I only wish that \(I\) were eloquent enough to truly express how fortunate I feel to have had the opportunity to work with Bob Reid. Thanks, Bob, for teaching clearly, understanding often, and caring so much.
Introduction ..... 1
Superheated Liquids and Nucleation ..... 4
Thermodynamic Considerations ..... 7
Kinetic Considerations ..... 10
On the Possibility of Shock Formation
A. Brief Introduction to Shock Wave Theory ..... 14
B. Characteristic Times Involved in Depressurization Explosions ..... 17- Rising bubbles
- Heat transfer
- Depressurization
- Nucleation
- Bubble growth
Criteria for Shock ..... 27
Experimental Apparatus and Procedure ..... 29
Modelling of the Depressurization ..... 32
Experimental Results ..... 34
Conclusions ..... 39
Suggestions for Future Work ..... 41
References ..... 43
Figures and Tables ..... 45
Appendices
I. The Peng-Robinson Equation of State ..... 66
II. A computer program for calculating isentropic paths for a pure fluid ..... 68
III. Solution of the heat transfer problem with Duhamel's superposition method ..... 80
IV. Calculation of the volume fraction of liquid in the container ..... 82
V. The flow of an ideal gas through a sharp-edged orifice ..... 83
VI. Experimental data ..... 85
VII. Calculation of an overall heat transfer coefficient for Runs 5 and 8 ..... 87
VIII. A possible experimental set-up for studying depressurization explosions ..... 89

\section*{List of Figures}
\begin{tabular}{|c|c|c|}
\hline Figure & & Page \\
\hline 1 & P - T diagram for a pure fluid & 45 \\
\hline 2 & P - V diagram for a pure fluid & 45 \\
\hline 3 & Spinoidal and saturation curves for propane with lines of constant entropy & 46 \\
\hline 4 & Spinoidal and saturation curves for carbon dioxide with lines of constant entropy & 47 \\
\hline 5 & Distortion of a Compression wave & 48 \\
\hline 6 & Flow through a shock in a coordinate system moving with the shock & 48 \\
\hline 7 & Expected temperature profile during depressurization & 49 \\
\hline 8 & Simplified model of heat transfer & 49 \\
\hline 9 & Experimental apparatus & 50 \\
\hline 10 & Details of the liquid-holding container & 51 \\
\hline 11 & Expected pressure trace for a depressurization explosion & 52 \\
\hline 12 & Blow-down experiments with nitrogen gas & 53 \\
\hline 13 & Examples of pressure traces & 54 \\
\hline 14a & Comparisonof experiment and model predictions for initially saturated \(\mathrm{CO}_{2}\) with \(\mathrm{P}_{0}=45.8\) bar, liquid volume fraction \(=\) 97. 5\%. & 55 \\
\hline 14b & Comparison of experiment and model predictions for initially supercritical \(\mathrm{CO}_{2}\) with \(\mathrm{P}_{0}=90.7\) bar, \(\mathrm{V}_{0}=59.02 \mathrm{~cm} / \mathrm{mole}\). & 56 \\
\hline 15a & The effect of wall cooling on a saturated experiment: a comparison of Runs 1 and \(3 . P_{0}=63,1\) bar & 57 \\
\hline 15b & The effect of wall cooling on a saturated experiment: a comparison of Runs 5 and \(6 . \mathrm{P}_{0}=56.2\) bar & 58 \\
\hline 15c & The effect of wall cooling on a supercritical experiment: a comparison of Runs 12 and 13. & 59 \\
\hline 16a & The effect of liquid level on the depressurization of saturated \(\mathrm{CO}_{2}: \mathrm{P}_{0}=63.1\) bar & 60 \\
\hline 16 b & The effect of liquid level on the depressurization of saturated \(\mathrm{CO}_{2}: \mathrm{P}_{0}=56.2\) bar & 61 \\
\hline 16 c & The effect of liquid level on the depressurization of saturated \(\mathrm{CO}_{2}: \mathrm{P}_{0}=45.8\) bar & 62 \\
\hline 17 a & The effect of initial pressure on the depressurization of saturated \(\mathrm{CO}_{2}\) : large liquid volume fraction & 63 \\
\hline
\end{tabular}
Figure Page
17b The effect of initial pressure on the depressurization of saturated \(\mathrm{CO}_{2}\) : smaller liquid volume fraction ..... 64
VIII-1 A possible experimental set-up ..... 90

Evidence is rapidly accumulating which indicates that if a vessel, containing a fluid at high pressures and at temperatures near or exceeding its critical temperature, experiences an extremely rapid depressurization, a detonation may occur. LPG (liquefied petroleum gas) tank cars which have been subject to an external fire, have, on occasion, undergone rapid tank failure - with concomitant depressurization - and violently exploded. These blasts have become known as "Boiling Liquid Expanding Vapor Explosions", or BLEVE's, since such an explosion is probably linked to the fact that a large mass of liquid is expanding in a boiling process in a very short period of time. Since it is relatively common for engineers to be in situations that necessitate the containment of such fluids (e.g., storage tanks, reactors), this concept of a "depressurization explosion" phenomenon encourages further study.

Rapid depressurization of these vessels is usually the result of an accident that permits nearly instantaneous venting of the contents. Of course, most accidents occur quite unexpectedly, hence, very little is known about the sequence of events and the conditions of the fluid prior to the mishap. In order to gain and understanding of the mechanism of LPG tank car BLEVE's, the United States Department of Transportation performed a study (Anderson et al. 1974) in which a rail tank car, filled with LPG, was engulfed in a kerosene fire; the temperature and pressure of the car's contents were monitored throughout the experiment.

Due to the intense heat, a localized stress failure in the non-wetted wall is believed to have occurred. A subsequent explosion/shock wave fragmented the tank car. Just prior to the explosion the liquid temperature
was measured at \(342 \mathrm{~K}\left(0.93 \mathrm{~T}_{\mathrm{C}}\right.\) ) and the pressure, 22 bar.
With LPG (i.e., propane), one might expect that the explosion is due to a rapid combustion process of some sort, but the fact that similar explosions involving carbon dioxide (Leiber 1979, Copeland 1976) have been reported seems to rule out the possibility of chemical reactions being central to the cause of depressurization explosions. In addition, the phenomenon is not restricted to large scale accidents; fire extinguisher failures (Burghard and Wangler 1979), due to stress corrosion cracking of the wall, have been reported to result in considerable damage.

As yet, there is no definitive explanation for the creation of the shock wave that might accompany a depressurization accident. Ogiso et al. (1972) attributed such an explosion to rapid boiling of the superheated liquid that results from the sudden depressurization: the so-called "water hammer effect". Reid (1979) has taken this one step further by suggesting that the depressurization follows a thermodynamic path such that the liquid may reach its superheat-limit locus of states (also known as the "spinoidal curve") and that no true explosion will result unless this limit is reached. These mechanisms can be illustrated on a pressure-temperature diagram for a pure substance (Figure 1).

A pure fluid under high pressure in a closed vessel will exist in a saturated or supercritical state. If the depressurization is rapid, there may not be enough time for boiling to be initiated on the tank walls, so the thermodynamic path followed by the fluid will be isentropic and will enter into the superheated liquid regime (between the saturation and spinoidal curves). If the depressurization is slow, there will be time for boiling to occur, so the liquid will never become appreciably superheated.

So, for a slow depressurization, both models predict no explosion since a superheated liquid is never obtained. But for a very rapid
depressurization, Ogiso's model indicates that all paths that enter the superheated liquid region will result in explosion and Reid's model indicates that only those paths that can reach the spinoidal curve will produce explosions. For example, a fluid initially at state \(A\) or \(A_{s}\) will reach the spinoidal curve at state \(B\) upon rapid depressurization and the liquid will vapor explode. But if the fluid is initially at \(C\) or \(C_{s}\), a depressurization will lead to a superheated liquid at one bar (atmospheric pressure); rapid boiling will ensue, but no explosion. So the boundary between initial states that lead to depressurization explosions and those that do not is the locus of states that lie on the isentropic curve that passes through the liquid spinoidal curve at one bar.

The hypothesis that superheated liquids may play a role in regards to depressurization explosions is not a completely unfounded conjecture. Superheated liquids have been proved to cause vapor explosions in situations quite different than the one presently being addressed: hot liquid - cold liquid contact. Usually as the result of an accident, a very hot liquid comes into intimate contact with a cold liquid, e.g., molten aluminum spilled into water. If the hot liquid is sufficiently hot to superheat the cooler liquid to the spontaneous nucleation temperature, the superheated liquid will vapor explode.

The main thrust of this work has been to determine experimentally the role of superheated liquids in depressurization explosions. Of course, the ultimate goal in all studies of these types of phenomenon is to develop criteria by which an accurate assessment of the hazards involved can be made.

As mentioned previously, a superheated liquid lies in the region between the saturation and spinoidal curves. This is illustrated in Figure 2, which represents a typical pressure-volume diagram, with lines of constant temperature, for a pure fluid. At a given pressure, a superheated liquid exists at a temperature that is higher than one would expect based on the more common observance of saturated liquids, hence the term "superheated". These are thermodynamically metastable states, since small perturbations to such systems will drive them to more stable states. (There is an analogous situation on the other side of the \(P-V\) dome: subcooled vapors. Since subcooled vapors will tend to condense to form liquid phases, rather than expand, it is unlikely that these states could be involved in depressurization explosions.) The spinoidal curve represents the limit to the degree of superheat a liquid can obtain and is predictable from thermodynamic or kinetic considerations. Note that the critical point lies on both the saturation and spinoidal curves.

In order to understand why superheated liquids can exist, consider a small cluster of liquid molecules (on the order of ten molecules) in a moderately superheated liquid. If this cluster forms a vapor bubble without the benefit of the presence of other phases (solid, gaseous, or another immiscible liquid phase), then "homogeneous nucleation" is said to have occurred. The net result of bubble formation is to increase the availability of the composite system of liquid and the bubble, and the bubble will tend to collapse back into its original (and lower energy) liquid cluster configuration.

Due to curvature effects, the pressure inside the bubble is greater
than the pressure of the surrounding liquid. However, if we could continue to add molecules to such a bubble, the bubble's pressure would continually decrease as the bubble grows due to the decreasing importance of curvature. Eventually, the availability of the composite system will reach a maximum at some "critical" bubble volume. At this point, the chemical potential of the gas and liquid phases are equal, and any further increase in the bubble size will cause the availability of the system to decrease, since the bubble pressure will continue to fall. This, of course, will cause the bubble to grow spontaneously until all the liquid disappears or both phases reach corresponding saturated states.

The availability necessary to create a critical-sized bubble is an energy barrier to nucleation. In a moderately superheated liquid, statistical fluctuations in the liquid molecules' energy will permit some fraction of the liquid to pass over this barrier and form a vapor phase. If the degree of superheat increases, this fraction will increase, since the average energy of the molecules will also be increased.

However, the presence of a solid surface can change the mechanism of nucleation dramatically. Microscopic cavities on the surface, attributable to the solid's roughness, will sustain vapor bubbles smaller than the critical size. Any superheated liquid that contacts this surface will vaporize into these trapped bubbles until they are large enough to detach, which allows the site to start this "heterogeneous nucleation" process again. This mechanism severely limits the degree of superheat the liquid will achieve, since it offers the liquid an opportunity to be in a more thermodynamically stable configuration. Of course, this effect can be offset by making the solid surface very smooth, as in clean glass.

In the absence of heterogeneous nucleation sites, a liquid can theore-
tically be superheated to its maximum value. Upon reaching its spinoidal curve, the liquid will experience spontaneous homogeneous nucleation. This phenomenon is observed experimentally in bubble columns: small drops of the test liquid are injected into the bottom of the column which contains a denser fluid with an externally applied vertical temperature gradient. As the drop rises into the hotter fluid, it is eventually heated to its superheat limit temperature and a vapor bubble suddenly appears, accompanied by a sharp pop.

The derivation of the spinoidal curve from thermodynamic considerations lies in the criterion, first developed by Gibbs in the late 1870 's, that an isolated system in a stable equilibrium state will seek to maximize its total entropy. Using Legendre transform theory (Beegle et al. 1974), this can be stated as:
\[
\begin{array}{ll}
y_{(n+1)(n+1)}^{(n)} & >0 \\
\text { for a stable system }  \tag{2}\\
y(n) & =0 \text { for the limit of stability }
\end{array}
\]
where
\[
\mathrm{n}=\text { number of components in the system }
\]
\[
\begin{aligned}
y^{(n)}= & n \text {-th Legendre transform of a base representation of the } \\
& \text { system's energy, } y
\end{aligned}
\]
\[
\begin{aligned}
y_{(n+1)(n+1)}^{(n)}= & \text { the second order partial derivative of } y^{(n)} \text { with respect } \\
& \text { to the } n+1 \text { variable }
\end{aligned}
\]

For a pure material, \(n=1\). If we take \(y^{(0)}\) as the internal energy, \(\underline{U}(\underline{S}, \underline{V}, N)\), then \(y^{(1)}\) is the Helmholtz energy, \(\underline{A}(T, \underline{V}, N)\). For this choice of basis function and variable order, (1) and (2) become:
\[
\begin{align*}
\mathrm{Y}_{22}^{(1)}=\left(\frac{\partial^{2} \mathrm{~A}}{\frac{\partial V^{2}}{2}}\right)_{\mathrm{T}, \mathrm{~N}}= & -\left(\frac{\partial \mathrm{P}}{\partial \underline{V}}\right)_{\mathrm{T}, \mathrm{~N}}  \tag{3}\\
& >0 \text { for a stable system }  \tag{4}\\
& \left(\frac{\partial \mathrm{P}}{\partial \mathrm{~V}}\right)_{\mathrm{T}, \mathrm{~N}} \quad
\end{aligned} \quad \begin{aligned}
& \text { stability }
\end{align*}
\]

The use of (4) requires an accurate equation of state. The PengRobinson equation of state (Peng and Robinson 1976) is appropriate for most
applications; it gives fairly accurate predictions of liquid, as well as vapor, volumes and has only two adjustable parameters. It is given by:
\[
P=\frac{R T}{V-b}-\frac{a(T)}{V(V+b)+b(V-b)}
\]

Details of the Peng-Robinson equation of state are given in Appendix 1 . The spinoidal curve for a pure fluid can be readily obtained using (4) and solving the resulting quartic equation for volume:
\[
\begin{equation*}
v^{4}+\left(4 b-\frac{2 a}{R T}\right) v^{3}+2 b\left(b+\frac{a}{R T}\right) v^{2}+2 b^{2}\left(\frac{a}{R T}-2 b\right) v+b^{4}-\frac{2 a b^{3}}{R T}=0 \tag{5}
\end{equation*}
\]

For a temperature below the critical, (5) will yield four real roots. One will be less than the saturated.. liquid volume and another will be greater than the saturated vapor volume; these are disregarded. The two remaining roots lie between the liquid and vapor saturation curves; the smallest root corresponds to the liquid spinoidal curve and the largest to the vapor spinoidal curve.

It is also convenient to use the Peng-Robinson equation of state to determine isentropic depressurization paths with departure functions (see Appendix I) and a computer program (Appendix II). Results for propane and carbon dioxide are given in Figures 3 and 4, respectively.

For multicomponent systems, (2) is still the criterion for finding the stability limit. However, in order to interpret this in terms of more readily obtainable functions, the second order partial derivative in (2) can be related to a determinant of second order partial derivatives (Beegle et al. 1974). For example, the stability limit for a binary mixture of fluids " \(A\) " and " \(B\) " for \(y^{(0)}=\underline{U}\left(\underline{S}, \underline{V}, N_{A}, N_{B}\right)\) is given by:
\[
\left|\begin{array}{ll}
A_{v V} & A_{V A} \\
A_{A V} & A_{A A}
\end{array}\right|=0
\]
where \(\begin{aligned} \quad A_{V V} & =\left(\frac{\partial^{2} \underline{A}}{\partial \underline{V}^{2}}\right)_{T, N_{A}, N_{B}}=-\left(\frac{\partial P}{\partial \underline{V}}\right)_{T, N_{A}, N_{B}} \\ A_{V A} & =A_{A V}=\frac{\partial^{2} \underline{A}}{\partial \underline{V} N_{A}}=-\left(\frac{\partial P}{\partial N_{A}}\right)_{T, \underline{V}, N_{B}} \\ A_{A A} & =\left(\frac{\partial^{2} \underline{A}}{\partial N_{A}^{2}}\right)_{T, \underline{V}, N_{B}}\end{aligned}\)

The Peng-Robinson equation of state, and its departure functions, can be used for the analysis of multicomponent systems, the only difference being the composition dependence of the parameters \(a(T)\) and \(b\). Details are also given in Appendix \(I\).

\section*{KINETIC CONSIDERATIONS}

To determine the spinoidal curve from kinetic considerations, one must estimate \(J\), the rate at which bubbles are produced in a given volume of liquid, in terms of physical and/or thermodynamic properties of the liquid. This kinetic theory of nucleation, attributed primarily to volmer and Doring in the late \(1930^{\prime} \mathrm{s}\), considers a steady state growth process, at constant temperature and external pressure, in which a bubble containing n molecules receives just one single molecule from the liquid phase to produce a bubble with \(n+1\) molecules, and vice versa for bubble collapse. When a bubble becomes macroscopic, it is removed from the system and replaced with the same number of liquid molecules. Quantitatively, it will be assumed that a bubble is macroscopic in nature when it contains \(n_{s}\) molecules, where \(n_{s} \gg 1\). So, we have a system in which there is a steady flow of one bubble through all sizes up to \(n_{s}\), which makes \(J\) independent of time and bubble size. This allows \(J\) to be expressed as (Moore 1959):
\[
J=Z(n) S(n) W_{L}(n) \cdots Z(n+1) S(n) W_{V}(n+1)
\]
where \(\begin{aligned} \mathrm{Z}(\mathrm{n}) \quad= & \text { the number of bubbles per unit volume of liquid } \\ & \text { that contain } n \text { molecules } \\ \mathrm{S}(\mathrm{n}) \quad= & \text { the surface area available for mass transfer in }\end{aligned}\) a bubble of \(n\) molecules
\[
\begin{aligned}
\mathrm{W}_{\mathrm{L}}(\mathrm{n}), \mathrm{W}_{\mathrm{V}}(\mathrm{n})= & \text { the probabilistic rate at which a single liquid/vapor } \\
& \text { molecule will vaporize/condense into a bubble of } \mathrm{n} \\
& \text { molecules per unit area per unit time }
\end{aligned}
\]

The solution to this difference equation is given by:
\[
J=z\left(n_{0}\right)\left[\sum_{n=n_{0}}^{n_{s}^{-1}} \frac{1}{w_{L}(n) s(n) \prod_{i=n_{0}+1}^{n} \frac{W_{L}(i-1)}{W_{V}(i)}}\right]^{-1}
\]
where \(n_{0}\) is the number of molecules in a reference bubble.
From classical statistical mechanics, the probability that a particle will leave the liquid (vapor) is inversely proportional to the liquid's (vapor's) partition function per particle, \(q_{\mathrm{L}}\left({\underset{\mathrm{V}}{ }}_{q_{\mathrm{v}}}\right.\) ). Therefore,
\[
\begin{equation*}
\frac{W_{L}(i-1)}{W_{V}(i)}=\frac{q_{V}(i)}{q_{L}} \tag{6}
\end{equation*}
\]

Note that \(q_{L}\) is not a function of bubble size since the liquid phase is assumed to be an infinite medium.

In addition, the \(q\) 's can be related to the chemical potential, \(H\), by (Davidson 1962) :
\[
\begin{equation*}
\mu=\left(\frac{\partial A}{\partial N}\right)_{T, V}=-k T \ln q \tag{7}
\end{equation*}
\]
where \(k\) is Boltzmann's constant, \(T\) is temperature. These results give:
\[
\sum_{i=n_{0}+1}^{n} \frac{w_{L}(i-1)}{W_{v}(i)}=\exp \sum_{i=n_{0}+1}^{n} \frac{\mu_{L}-\mu_{v}(i)}{k T}
\]

Takagi (1953) has shown that the above sum of chemical potentials is related to the Helmholtz energy required to form a bubble containing \(n\) molecules, \(' \Delta A_{n}\), by :
\[
\Delta A_{n_{0}}-\Delta A_{n}=\sum_{i=n_{0}+1}^{n}\left\{\mu_{L}-\mu_{V}(i)\right\}
\]

In effect, \(\Delta A_{n}\) is the minimum amount of work needed to create a bubble of n molecules since the model we are dealing with inherently assumes a thermal equilibrium between vapor and liquid phases.

If the reference bubble is chosen to be one containing just a single molecule \(\left(n_{0}=1\right)\), then the reference state is simply the liquid itself. This makes \(\Delta A_{n_{0}}\) vanish and \(Z_{n_{0}}\) is the molecular density of the liquid, \(\rho_{L}\); the expression for \(J\) then becomes:
\[
\begin{equation*}
J=\rho_{L}\left[\sum_{n=n_{0}}^{n_{S}^{-1}} \frac{\exp \left\{\Delta A_{n} / k T\right\}}{W_{L}(n) S(n)}\right]^{-1} \tag{8}
\end{equation*}
\]

The only important contributions to the sum in (8) come from the criticalsized bubble. As mentioned previously, \(\mu_{L}=\mu_{v}\) at this point, so (6) and (7) imply that \(W_{V}\left(n_{c}\right)=W_{L}\left(n_{c}\right)\). If we postulate that \(W_{v}\) is identically equal to the frequency with which a vapor molecule will collide with a unit area of bubble-liquid interface, the kinetic theory of gases gives:
\[
W_{v}=\frac{P_{v}}{Z(2 \pi m k T)^{1 / 2}}
\]
where \(\quad P_{v}=\) the pressure within the bubble
Z = the compressibility factor
\(\mathrm{m}=\) mass of a molecule
\(\Delta A_{n_{c}}\) is related to the radius of the spherical critical bubble, \(r_{c}\), and to surface tension, \(\sigma\), by:
\[
\Delta A_{n_{c}}=\frac{4}{3} \pi r_{c}^{2} \sigma
\]

And \(r_{c} c a n\), in turn, be related to pressures within, and external to, the bubble and to \(\sigma\) by (Modell and Reid 1974):
\[
r_{c}=\frac{2 \sigma}{\left(P_{v}-P_{L}\right)}
\]
where \(P_{L}\) is the pressure of the liquid phase. With these expressions, \(J\) can be expressed in terms of the fluid's physical properties (Blander and Katz 1975) :
\[
\begin{equation*}
J=3.73 \times 10^{35}\left[\frac{d^{2} \sigma}{M_{B}^{3}}\right]^{1 / 2} \exp \left[\frac{-1.182 \times 10^{5} \sigma^{3}}{T\left(P_{V}-P_{L}\right)^{2}}\right] \tag{9}
\end{equation*}
\]
where
\[
\begin{aligned}
& B=2 / 3, \text { except for cavitation }(B=1) \\
& d=\text { liquid density }, g \mathrm{~cm}^{-3} \\
& M=\text { molecular weight }, \quad g \mathrm{~mole}^{-1}
\end{aligned}
\]
and units for the other quantities are \(J\left(\mathrm{~cm}^{-3} \mathrm{~s}^{-1}\right), \sigma\left(\operatorname{erg} \mathrm{cm}^{-2}\right), T(\mathrm{~K})\), \(P_{L}(a t m)\), and \(P_{V}(a t m)\).

Because \(\sigma\) decreases and \(P_{v}\) increases with temperature, \(J\) is a very strong function of temperature; it can change many orders of magnitude per degree kelvin near the critical point of a fluid.

To locate the spinoidal curve, one must determine the value of \(J\) which characterizes spontaneous homogeneous nucleation. Evidently, this value is very dependent on the physical situation (i.e., the type of superheat experiment) one is dealing with. Presumably, this is due to the success with which one can minimize the degree of heterogeneous nucleation that occurs along with the homogeneous nucleation (Patrick-Yeboah 1979).

\title{
ON THE POSSIBILITY OF SHOCK FORMATION
}

\section*{A. Brief Introduction to Shock Wave Theory}

Consider a flat piston which moves into a gas with a constant velocity. If the resulting disturbance caused by the piston is weak, i.e., the peak pressure is not much greater than ambient, the compression wave will propagate into the gas unchanged with respect to its pressure, density, and velocity profiles. This is because the gasdynamic equations (the equations of continuity, motion, and energy) become essentially linear for weak disturbances. However, stronger disturbances make nonlinear effects important; the result being to make the peaks (maxima) of the waves travel faster than the valleys (minima), which leads to solutions for the velocity profiles that are not unique (Zeldovich and Raizer 1968) (Figure 5).

In order to remove this uniqueness problem, discontinuous solutions were used. In reality, very thin regions develop which contain very steep gradients, as opposed to discontinuities, in the fluid's properties, e.g., velocity, pressure, density, and temperature. These are known as shock. waves.

In order to approximate the thin shock layer by a discontinuity, one must neglect intermolecular interactions, such as heat transfer and momentum transfer from viscous effects, in addition to the molecules' physical dimensions. An order of magnitude analysis of the stresses in the shock layer indicates that its thickness will be the same magnitude as the molecular mean free path, which is much smaller than any flow dimension (Shapiro 1953). So, even though these assumptions restrict any attempts to gain detailed knowledge of the shock layer, they will not hinder the determination of the shock's effect on the gases whicn pass through it. By
defining variables before and after the shock in terms of a coordinate system that moves with the shock (Figure 6), the equations governing shocks are:

Continuity
Conservation of momentum
\[
\begin{align*}
\rho_{1} u_{1} & =\rho_{0} u_{0}  \tag{10a}\\
P_{1}+\rho_{1} u_{1}^{2} & =P_{0}+\rho_{0} u_{0}^{2} \tag{10b}
\end{align*}
\] energy
\[
\begin{equation*}
h_{1}+\frac{1}{2} u_{1}^{2}=h_{0}+\frac{1}{2} u_{0}^{2} \tag{10c}
\end{equation*}
\]
where
\[
\begin{aligned}
& \rho=\text { density } \\
& \mathrm{u}=\text { velocity relative to the moving shock } \\
& \mathrm{P}=\text { pressure } \\
& \mathrm{h}=\text { enthalpy }
\end{aligned}
\]

Assuming that \(h(\rho, P)\) is available from an equation of state, and that \(\rho_{0}\) and \(P_{0}\) are known, information regarding the strength of the shock wave ( \(P_{1}\) or \(u_{0}-u_{1}\) ) is needed to solve the conservation equations for the remaining variables. By eliminating \(u_{0}\) and \(u_{1}\) from the conservation equations, the Hugoniot relation can be obtained:
\[
\begin{equation*}
\left.h_{1}-h_{0}=\frac{1}{2}\left(P_{1}-P_{0}\right) \frac{(1}{\rho_{0}}+\frac{1}{\rho_{1}}\right) \tag{11}
\end{equation*}
\]

From (11), the Hugoniot curve (also known as the Rankine-Hugoniot curve) is obtained: \(P_{1}=H\left(P_{0}, \rho_{0}, \rho_{1}\right)\). For an ideal gas with constant heat capacities, \(C_{p}\) and \(C_{v}\), the Hugoniot curve is :
\[
\frac{P_{1}}{P_{0}}=\frac{\left(\frac{\gamma+1}{\gamma-1}\right) \frac{\rho_{1}}{\rho_{0}}-1}{\left(\frac{\gamma+1}{\gamma-1}\right)-\frac{\rho_{1}}{\rho_{0}}}
\]
where \(\gamma=C_{p} / C_{v}\). Note that as \(\rho_{1} / \rho_{0}\) approaches a finite limit, \((\gamma+1) /(\gamma-1)\),
\(P_{1} / P_{0}\) aproaches infinity. At high pressures and temperatures, \(\gamma\) is no longer constant, but the density ratio still remains finite being usually no larger than approximately 13 (Zeldovich and Raizer 1968).

Other relationships that have been developed, but have limited use, are the Fanno line and the Rayleigh line. The Fanno line represents the locus of states after a shock that are associated with a particular state before the shock which are obtainable by solution of the continuity and energy equations, and with \(\mathrm{h}(\rho, \mathrm{P})\), but not the momentum equation. The Rayleigh line is identical to the Fanno line in concept, except the momentum equation is used and the energy equation is excluded. Of course, any real state must lie at the intersection of the Fanno and Rayleigh lines.

If the piston has a finite acceleration, rather than a constant velocity, compression waves of increasing strength will be created that propagate from the piston. Eventually all of these waves will combine to form one shock front that will eventually reach a maximum velocity.

Studies of shock formation are often performed in shock tubes (Rothkopf and Low 1976), which consist of high pressure and low pressure sections of straight tubing separated by a diaphragm. As the diaphragm is opened (or is allowed to disintegrate), the high pressure gas flows into the low pressure section with subsequent shock wave formation downstream from the diaphragm. It has been shown that the "shock formation distance", defined as the distance from the diaphragm at which the shock reaches its maximum velocity, is directly proportional to the maximum shock velocity (which is also a measure of the shock's strength) and to the diaphragm opening time. The diaphragm opening time is related to the acceleration of the high pressure gas "piston" that moves into the low pressure gas, i.e., the faster the diaphragm is opened, the greater the acceleration will be and
the closer to the "piston" the shock will be. The diaphragm opening time is usually on the order of 0.5 milliseconds.

\section*{B. Characteristic times involved in depressurization explosions}

For a depressurization explosion, there are three impulses that may lead to shock wave formation. The first is the pressure blow-down itself; the acceleration of the high pressure gas that exits the vessel may send out a shock wave whose strength will be directly proportional to the gauge pressure within the vessel prior to venting. The second is the impulse sent out if the liquid expands explosively due to rapid homogeneous nucleation. The third is the possibility that the rapid growth of any bubble in a superheated liquid is the expansion that leads to shock formation. It is possible that if two or more of the above processes create shocks, they could combine to form one stronger shock at a small distance from the ruptured vessel provided that the time lags between the separate shock creations are not too great.

Of course, the mode of depressurization will affect the liquid's thermodynamic path during depressurization which will affect the possibility of homogeneous nucleation. If the depressurization is slow, the depressurization itself will not create a shock wave; in addition, the liquid will expand slowly allowing time for heat to transfer from the surroundings to the fluid. Bubbles, created from boiling on the vessel walls, will disperse throughout the liquid. The bubbles then become heterogeneous nucleation sites in the bulk liquid, thereby decreasing the probability of obtaining the superheat necessary for explosion. For a fast depressurizationthe depressurization itself will cause a shock; also, the liquid will be allowed to superheat to a great extent due to the lack of time
for heat transfer to take place.
In order to assess the relative importance of these various phenomenon, a comparison of characteristic times for five processes will be beneficial: for depressurization, homogeneous nucleation, bubble growth, a bubble rising into the bulk superheated liquid, and heat transfer from the surroundings.

For those processes that may disturb the bulk liquid, the characteristic times should reflect the time it takes for such a process to significantly alter the bulk's conditions. And for those processes that may create shocks, the characteristic times should reflect the time that it takes the process to create an impulse that might drive an explosion.

\section*{Rising Bubbles}

If we assume that a depressurizing mass of liquid experiences disturbances at its boundaries (walls or free surfaces), then an undisturbed bulk will exist only near the middle of the liquid. So, bubbles will have completely disturbed the bulk liquid when they reach the middle of the liquid. If we take the depth of the liquid to be " \(h\) ", the characteristic time for bubbles to disturb the bulk, \(\tau_{B}\), can be defined as the time it takes a bubble to rise from the bottom \((z=0)\) to the middle \((z=h / 2)\). As a first approximation consider a small spherical bubble of constant radius, R, rising with velocity, \(v\), due to buoyancy forces alone in a liquid of constant temperature; furthermore, internal motion is ignored so that a force balance on the bubble is given by:
\[
\begin{equation*}
m_{B} v \frac{d v}{d z}=\frac{4}{3} \pi R^{3} \rho_{L} g-6 \pi \mu R v \tag{13}
\end{equation*}
\]
where \(m_{B}\) is the mass of the bubble \(\left(=4 \pi R^{3} \rho_{G} / 3\right), \rho_{G}\) and \(\rho_{L}\) are densities of vapor and liquid, and \(\mu\) is the viscosity of the liquid, \(g\) is the acceleration due to gravity. From these assumptions, (13) can be integrated directly to give:
\[
\begin{equation*}
\ln \left(1-\frac{B v)}{A}+\frac{B v}{A}=-\frac{B^{2} z}{A}\right. \tag{14}
\end{equation*}
\]
where \(A=\rho_{L} g / \rho_{G}\) and \(B=9 \mu / 2 R^{2} \rho_{G}\).
The velocity will approach a terminal velocity of \(A / B\), as expected.
And from the velocity profile, \(\tau_{B}\), can be calculated from:
\[
\begin{equation*}
\tau_{B}=\int_{0}^{h / 2} \frac{d z}{v(z)} \tag{15}
\end{equation*}
\]

Due to the implicit nature of the solution for \(v(z)\), this integral must be evaluated graphically or numerically; since the velocity will vary as \(z^{1 / 2}\) as \(z\) approaches zero, the integral in (15) is not singular.

Of course, this is a very naive approximation. Many of the assumptions are not valid for a bubble in a liquid that is superheating. The greatest discrepancy is the fact that the bubble will grow quite rapidly, as will be seen in the discussion of bubble growth. But as the bubble gets larger, its shape will deviate from spherical, accompanied by oscillations, which gives velocities much smaller than for a solid sphere model (Perry and Chilton 1973).

Some effects will serve to increase the bubble's velocity, e.g., the bubble will expand due to decreases in hydrostatic pressure as it rises. Others will serve to decrease bubble velocity, e.g., temperature decreases will decrease \(\rho_{L} / \rho_{G}\).

Due to the balancing of many forces on the bubble, the use of (15) from this simple model may be valid only for order of magnitude estimates.

\section*{Heat Transfer}

As depressurization occurs, the liquid's temperature profile will be influenced by three aspects of the heat transfer: (a) the bulk temperature will be decreasing as the liquid expands isentropically far from the vessel walls (this is evident from Figures 3 and 4), (b) the wall's high heat capacity will make the temperature constant at the wall, and (c) boiling at the wall will serve to increase temperature gradients in the wall's vicinity. From these conjectures, the expected temperature profile will be as in Figure 7. In reality, this is a penetration theory problem with a time-dependent boundary condition. To simplify the analysis, it will be assumedthat all of the heat transfer occurs within a fixed distance, \(L\), from the wall (Figure 8). Physically, \(x=L\) is the middle of the bulk liquid.

The mathematical statement of this simplified problem is given by:
\[
\begin{array}{ll}
\frac{\partial T}{\partial t}=\alpha \frac{\partial^{2} T}{\partial x^{2}} & t=0: T=T_{0} \\
x=0: T=T_{w a l l}=T_{0} \\
x=L: T=T_{b}(t), T_{b}(0)=T_{0}
\end{array}
\]
where \(T_{b}(t)\) is the bulk temperature, which can be related th the rate of depressurization by:
\[
\begin{equation*}
\left(\frac{d T_{b}}{d t}\right)_{s}=\left(\frac{d T_{b}}{d p}\right)_{s}\left(\frac{d p}{d t}\right)_{s}=-\beta \tag{16}
\end{equation*}
\]

From Figures 3 and 4, ( \(\mathrm{dP} / \mathrm{dT})_{\mathrm{s}}\) is approximately constant, so for a constant depressurization rate, \(\beta\) will be approximately constant. So, \(T_{b}=T_{0}-\beta t\).

Defining dimensionless temperature, time, and distance by \(\theta=\left(T-T_{0}\right) / T_{0}\), \(\xi=\alpha t / L^{2}\), and \(\eta=x / L\), respectively, the problem becomes :
\[
\begin{array}{ll}
\frac{\partial \theta}{\partial \xi}=\frac{\partial^{2} \theta}{\partial \eta^{2}} & \xi=0: \quad \theta=0 \\
& \eta=0: \quad \theta=0 \\
& \eta=1: \quad \theta=-B \xi
\end{array}
\]
where \(B=\beta L^{2} / \alpha T_{0}\).
Solution by Duhamel's superposition method (Arpaci 1966; Appendix III) gives:
\[
\begin{equation*}
\theta=-B\left[n \xi+2 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{(n \pi)^{3}} \sin n \pi n \quad\left(1-e^{-n^{2} \pi^{2} \xi}\right)\right] \tag{17}
\end{equation*}
\]

From this, the characteristic time for heat to disturb the bulk liquid, \({ }^{\tau}{ }_{H}\), can be defined as the time it takes for the rate of temperature change of the bulk liquid due to heat flux alone, denoted by \(d T_{H} / d t\), to be equal to some appreciable fraction, \(F\), of the rate of temperature change of the bulk liquid due to the isentropic expansion alone given by (16). Quantitatively, for a heat flux \(q\) :
\[
\frac{d T_{H}}{d t}=\left(\frac{q}{L \rho C_{p}}\right)_{x=L}=-\frac{\alpha T_{0}}{L^{2}}\left(\frac{\partial \theta}{\partial \eta}\right)_{n=1}
\]
and the criterion for \(\tau_{H}\) (or \(\xi_{H}=\alpha \tau_{H} / L^{2}\) ) is:
\[
\begin{equation*}
\left|\left(\frac{\partial \theta}{\partial \eta}\right)_{\substack{n=1 \\ \xi=\xi_{H}}}\right|=\mathrm{BF} \tag{18}
\end{equation*}
\]

Evaluating the derivative in (18) from (17) gives:
\[
\left|\xi_{H}+2 \sum_{n=1}^{\infty} \frac{\left(1-e^{-n^{2} \pi^{2} \xi_{H}}\right.}{n^{2} \pi^{2}}\right|=F
\]

The following table gives \(\xi_{\mathrm{H}}\) as a function of F .
\begin{tabular}{c|ccccccccccc}
\(F\) & 0.0 & 0.1 & 0.2 & 0.3 & 0.4 & 0.5 & 0.6 & 0.7 & 0.8 & 0.9 & 1.0 \\
\hline\(\xi_{\mathrm{H}}\) & 0.0 & .0081 & .032 & .071 & .13 & .20 & .28 & .37 & .47 & .57 & .67
\end{tabular}

Typical values for \(\mathrm{a}_{2}\) or propane tank car are \(\mathrm{L}=300 \mathrm{~cm}\) (10 ft), \(\alpha=10^{-4} \mathrm{~cm}^{2} \mathrm{~s}^{-1}\), so for the temperature change rate to be reduced by ten percent ( \(F=0.1\) ), it will take approximately \(7.3 \times 10^{6}\) seconds.

So, this model indicates that direct heat transfer disturbances will be negligible. However, if boiling is initiated on the walls early during the depressurization, then boiling will become more pronounced as time progresses, since the driving force for heat transfer from the wall to the liquid, \(T_{\text {wall }}-T_{b}(t)\), will increase. In essence, heat transfer from the liquid's surroundings to the liquid will not hinder attempts to superheat the liquid by rapid depressurization unless boiling occurs to create bubbles which will disrupt the bulk superheated liquid.

\section*{Depressurization}

The force that creates the shock-forming impulse in depressurization is the pressure, \(P\), so the characteristic time for this impulse can be defined by:
\[
\begin{equation*}
\tau_{D}=\left(\frac{1}{P} \frac{d P}{d t}\right)^{-1} \tag{19}
\end{equation*}
\]

\section*{Nucleation}

The impulse from nucleation is the expansion due to the sudden vaporization of the liquid. With a knowledge of \(J\), the nucleation rate, the characteristic time for nucleation can be obtained. Consider a critical bubble of volume \(4 \pi r_{c}^{3 / 3}\) filled with a vapor of density \(\rho_{G}\) that grew from a volume of liquid, \(\underline{V}_{L^{\prime}}\) of density \(\rho_{L}\) which contains the same number of molecules as in the bubble, i.e., \(\frac{4}{3} \pi r_{C}^{3} \rho_{G}=\underline{V}_{L} \rho_{L}\). The average time it takes for this process to occur is the characteristic time for nucleation, \(\tau_{N}\), which is given by:
\[
\begin{equation*}
\tau_{N}=\left(J \underline{V}_{L}\right)^{-1}=\frac{\rho_{I}}{\rho_{G}} \frac{1}{\frac{4 \pi r_{C}^{3}}{3}} \tag{20}
\end{equation*}
\]

Skripov (1974) gives a definition for \(\tau_{N}\) very similar to (20), but it is based on the total volume of superheated liquid available rather than the volume to create one bubble; the present analysis assumes that the whole mass of superheated liquid will nucleate at once, while Skripov's analysis inherently assumes that the nucleation occurs one bubble at a time.

To apply (20) to depressurization explosions, it must be assumed that the expression for \(J\) is still valid for physisal properties (e.g., \(P, T, \sigma\), etc.) that are varying with time, and that nucleation occurs only at a fixed point during the depressurization (e.g., on the spinoidal curve).

Strictly speaking, the derivation of \(J\) assumes that nucleation occurs anytime that a superheated liquid is formed. So, if nucleation is occuring throughout the depressurization, then it will not be \(J\) which creates the expansion impulse; the impulse will be created by increases in \(J, i . e .\), \(\mathrm{dJ} / \mathrm{dt}\). Taking this to be a "force" analogous to pressure in (19), a new
characteristic time, \(\tau^{*}{ }^{*}\), can be defined for this dynamic model:
\[
\begin{equation*}
\tau_{N}^{*}=\left[\frac{1}{(d J / d t)_{s}} \frac{d}{d t}\left(\frac{d J}{d t}\right)_{s}\right]^{-1} \tag{21}
\end{equation*}
\]
where the derivatives are evaluated on isentropic paths. \(\tau_{N}^{*}\) can be related to \(\tau_{D}\) by rewriting the time derivatives as:
\[
\frac{d x}{d t}=\frac{d x}{d P} \frac{d P}{d t}=-\frac{d x}{d P} \frac{P}{\tau_{D}}
\]

Here use of (19) has been used. Substitution of this into (21) gives:
\[
\begin{equation*}
\tau_{N}^{*}=-\tau_{D}\left(\frac{d J}{d P}\right)_{S}\left[\frac{d}{d P}\left(P \frac{d J}{d P}\right)_{S}\right]^{-1} \tag{22}
\end{equation*}
\]

To obtain numerical values for \(\tau_{N}^{*}\) and \(\tau_{N}\), the isentropic path for carbon dioxide that passes through the saturation curve at \(298.4 \mathrm{~K}, 64.8\) bar was considered (See table 1). The Peng-Robinson equation of state was used and it was assumed that the surface tension for a superheated liquid is the same as that for a saturated liquid at the same temperature. Grigull and Straub (1969) have reported surface tensions for saturated liquid \(\mathrm{CO}_{2}\) over a wide range of temperatures.

As Table 1 indicates, \(\tau_{N}\) is on the order of microseconds near the spinoidal curve even for the small superheat considered (< 10 K ). Because \(J\) is such a strong function of temperature, the evaluation of the derivatives in (22) are quite difficult; a three-point finite difference interpolation scheme (Abramowitz and Stegun 1974) was used, but note that this scheme gives the wrong sign at 292 K for \(\operatorname{dlog}_{10} J / \mathrm{dT}\). However, if we assume that the middle point at 294 K is valid for an order of magnitude estimate, then:
\[
\left(\frac{d J}{d P}\right)_{s} \sim\left(\frac{d J}{d T}\right)_{s}\left(\frac{d T}{d P}\right)_{s} \sim-0.193 \mathrm{~J}, \mathrm{~cm}^{-3} \mathrm{~s}^{-1} \mathrm{~atm}^{-1}
\]

Use of this in (22) gives:
\[
\tau_{N}^{*} \sim-\frac{\tau_{D}{ }^{J}}{\frac{d(P J)}{d P}} \sim \frac{\tau_{D}}{0.193 P-1}
\]

Since \(P \sim 50\) bar, then \(\tau_{N}^{*} \sim 0.1{ }^{\tau}{ }_{D}\).

\section*{Bubble Growth}

Using the accelerating piston analogy for shock formation, the impulse from bubble growth will be related to the speed at which the vapor pushes against the liquid, i.e., the velocity of the vapor-liquid interface, which is just \(d R / d t\) for a spherical bubble. Hence, the characteristic time for impulses due to bubble growth, \(\tau_{G}\), can be defined by:
\[
\begin{equation*}
\tau_{G}=\frac{d R}{d t}\left(\frac{d^{2} R}{d t^{2}}\right)^{-1} \tag{23}
\end{equation*}
\]

There are four stages in the growth of a bubble surrounded by superheated liquid: the initial, or latent, stage after the critical bubble has formed where surface tension is the main hindrance to growth, after which comes the inertial stage where the inertia of the liquid is the predominant limitation, followed by an intermediate stage where thermal effects (i.e., limitations due to finite heat transfer for vaporization of liquid) become comparable to inertial effects, and finally the asymptotic stage where thermal effects are predominant. In regards to shock formation, the strongest impulses sent out by a growing bubble will occur during stages
where inertial effects are important, namely the inertial and intermediate stages, because at these times the liquid is being rapidly compressed. Quantitatively, we would expect that these will be regions where the acceleration of the liquid-vapor interface, \(d^{2} R / d t^{2}\), is large.

By solving the Rayleigh and energy equations, Prosperetti and Plesset (1978) have obtained expressions for \(R(t)\) in superheated sodium during all but the latent stages. Their results indicate that \(d^{2} R / d t^{2}\) is largest during the inertial stage, and that \(d R / d t\) is greatest during the transition between the inertial and intermediate stages. But, their results also show that the inertial stage is reached only for large superheats ( \(\sim 100 \mathrm{~K}\) ). For small superheats ( \(\sim 1\) to 10 K ) the latent stage passes directly to the intermediate or asymptotic stage.

For a wide range of superheats, 4.66 to 340.1 K , and for low pressures, 0.5 to 6 atm, their calculations for bubble growth as a function of time indicate that:
\[
\begin{equation*}
\tau_{G}=c t_{I} \tag{24}
\end{equation*}
\]
where \(t_{I}\) is the time it takes to reach the inertial stage and \(c\) is a constant of order unity. For liquid sodium, \(\tau_{G}\) is on the order of one microsecond for small superheats and can be on the order of \(10^{-2}\) microseconds for large superheats.

For liquids other than sodium, Prosperetti and Plesset's analysis should be repeated for a confident estimate of \(\tau_{G}\). However, bubble growth rates during the inertial stages are dependent mainly on pressures and liquid densities, so liquids that experience similar densities and pressures upon superheating will have values of \(\tau_{G}\) that are of the same magnitude.

So, for the previous superheated \(\mathrm{CO}_{2}\) depressurization, it would be expected that \(\tau_{G}\) is of order \(1 \mu s\) at 294 K . This is comparable with \(\tau_{N}\).

\section*{CRITERIA FOR SHOCK}

When a flame-related explosion occurs, the mechanism usually involves the creation of atoms or free radicals that react to create even more active intermediates, causing the reaction rate to increase exponentially with time. The reaction times for these combustion processes vary from one second to less than one microsecond.

In a detonation, a reaction zone, which is a strong shock, passes through the explosive. To sustain the detonation, the reaction rate must be fast enough to complete the reaction within the reaction zone. For nitroglycerin, the reaction time is on the order of 0.1 microseconds or less (Tedder et al. 1975).

If it is assumed that the impulses due to depressurization, nucleation, and bubble growth are similar to explosions, it would be expected that \(\tau_{\mathrm{D}}\) 。 \({ }^{\tau} N\), \(\tau^{*} N\), and/or \(\tau_{G}\) are the same order of magnitude as the reaction times for chemical explosives.

From this criterion for explosion, all four processes mentioned can produce shocks. By analogy with shock tube experiments, if \(\tau_{D}\) is equal to the diaphragm opening time then shock will certainly occur from the blowdown itself; the diaphragm opening time is of order 1 ms , which is within the reaction time scales. As was shown earlier, \(\tau_{N}\) and \(\tau_{G}\) are of order \(1 \mu s\), so nucleation and bubble growth may both be mechanisms for detonations. Also, \(\tau_{N}^{*} \sim 0.1 \tau_{\mathrm{D}} \sim 0.1 \mathrm{~ms}\), so "dynamic nucleation" could cause shock.

In addition, it would be expected that the smaller the characteristic time, the stronger the shock will be, since the shorter time scales will generally correspond to greater accelerations. This criterion and information from Table 1 indicates that the greater the superheat the stronger the
shock, as might be anticipated.

Processes that will inhibit shock formation must have characteristic times that are much greater than the characteristic times for shock-creating processes if shock is to occur. So one more criterion for shock is \(\tau_{B}{ }^{\prime} \tau_{H} \gg \tau_{N}{ }^{\prime} \tau^{*}{ }^{*}\), or \(\tau_{G}{ }^{\circ}\)

In regards to injury to personnel and structures due to shock waves, it is not enough to just examine criterion for shock formation alone. Knowledge of shock propagation must also be included, since the peak pressure's duration as well as its magnitude is important in determining the hazard potential of depressurization explosions.

However, nucleation and bubble growth could produce strong shocks with long duration provided that there is sufficient superheat and liquid mass to sustain the detonation.

\section*{EXPERIMENTAL APPARATUS AND PROCEDURE}

Figure 9 presents a block diagram of the experimental apparatus and instrumentation used to study depressurization explosions. Figure 10 shows details of the liquid-holding container. Carbon dioxide was chosen as the test fluid for safety reasons.

Before the liquid \(\mathrm{CO}_{2}\) is introduced into the holding container, the container was flushed with \(\mathrm{CO}_{2}\) gas at a pressure of 120 psig by pressurizing then venting the container three times to remove air from the system. And to prevent flashing of the liquid to form dry ice that might clog the filling lines, the \(\mathrm{CO}_{2}\) gas was also used to initially pressurize the container to 120 psig, which is well above the triple point pressure of \(\mathrm{CO}_{2}\).

To hasten the filling process, the container was cooled by pumping cold antifreeze (60/40, by volume, ethylene glycol - water mixture) through the container's jacket. Chunks of dry ice were added directly into the tank to cool the antifreeze to approximately \(-10^{\circ} \mathrm{C}\). By placing the eductor-equipped \(\mathrm{CO}_{2}\) cylinder on a scale, the mass of liquid that entered the container could be measured directly. From this and measurement of pressure, the volume fraction of liquid in the container can be calculated (Appendix IV).

In order to heat the liquid to the desired saturated or supercritical state before depressurization, the container was heated by pumping warm antifreeze through the jacket or by using a heating tape. To heat the antifreeze from \(-10^{\circ} \mathrm{C}\), a large heating elementwas placed directly into the cold antifreeze. This heating process was very slow, so the use of a heating tape was preferable.

As the pressure within the container approached the desired value, the
heating tape (or pump) was turned off. On the slower warming trend, the solenoid valve was activated remotely when the desired pressure was finally reached. The solenoid valve allowed the 100 psig nitrogen gas to enter the pneumatic cylinder which drove the plunger into the burst disc, thus depressurizing the vessel.

The depressurization was monitored by two pressure transducers located on either side of the bust disc head on top of the container. The transducers translated the pressure-time trace into a DC voltage-time trace. As the container's pressure decreased/increased, a quartz crystal in the tip of the transducer expanded/compressed, which created a net depletion/accumulation of charge across a capacitor (also in the transducer). These charge variations were translated into \(D C\) voltage signals, which were linearly related to the pressure changes imposed on the crystal (i.e., the transducer). If the pressure were to be constant after a period of fluctuations, the crystal would no longer be generating charge fluctuations, so the capacitor would tend to discharge, leading to a decay of the transducer's output to zero voltage. So, the transducers used in this study cannot give absolute pressures; in fact, if the pressure is steady, or the pressure fluctuations occur on a time scale that is longer than the capacitor's discharge time scale (approximately one second), then the transducer will register zero voltage, i.e., no signal. The transducers' rise times are one microsecond, so very fast pressure changes, such as those anticipated in this study, could be monitored accurately.

Each voltage signal from the transducers is sent to an electronic signal recorder; the model used was a tape recorder with fast writing, high resolution capabilities. A twenty millisecond tape loop continually records and erases itself as it cycles in the "record" mode. When the signal that
the recorder receives from the transducer is of sufficient magnitude on a rising (or falling) slope, the recorder will trigger, capture the signal, then enter the "playback" mode. Both the magnitude and slope parameters are operator adjustable by the "level" dial and slope selection switch, respectively. In addition, there is a delay setting which allows the 20 ms time span of the captured signal to begin anywhere from 0 to 16 ms before triggering occurs. Theoretically, by using different delays on the two recorders, more than just 20 ms of the depressurization may be recorded. In reality, it was very difficult to accomplish this.

The electronic signal recorders were designed to be applied to circuit trouble-shooting: a continuous signal could be fed and, by adjusting the triggering level slowly, but randomly, the desired part of the voltage signal may be captured. For this reason, it was not possible to anticipate the correct trigger level for any given depressurization, simply because no real correspondence to the level setting and the triggering level existed. To ensure that the recorders did trigger, the level adjustment was varied until it triggered to "playback" from "record" without an input signal; at this point, intrinsic noise within the recorder is causing it to trigger. Then by changing the level adjustment just slightly counterclockwise from this point, it was assumed that triggering would occur such that the first 20 ms of the depressurization could be recorded. However, sometimes it worked, sometimes it failed.

Once a signal was captured, the recording could be viewed on an oscilloscope and a photograph taken with an oscilloscope camera.

For safety, the entire container was mounted on a steel frame and bolted to the wall and floor of a cell made of one-inch thick armor-plate steel. The cell was equipped with blast-resistant lights and a high capacity ventilation system.

In order to test the proposed mechanism for depressurization explosions, it will be assumed that:
(a) The fluid in the container expands isentropically.
(b) The pressure is uniform throughout the container.
(c) Flow through the burst disc is the same as flow through
a sharp-edged orifice.
(d) No nucleation occurs unless the spinoidal curve is reached.
(e) If the spinoidal curve is reached, homogeneous nucleation will occur in an explosive manner.

From these assumptions, and the anticipated time scales, the expected pressure trace will be as in Figure 11.

To check assumption (c), preliminary blow-down experiments were performed with nitrogen gas at room temperature. For an ideal gas with constant heat capacity, the depressurization will be given by (Appendix V):
\[
\begin{equation*}
\frac{P}{P_{0}}=\left[1-\frac{C A}{\underline{V}}\left(\frac{R_{G} T_{0} \gamma^{3}}{M}\right)^{1 / 2}\left(\frac{2}{\gamma+1}\right)^{\frac{(\gamma+1)}{2(\gamma-1)}}\left(\frac{1-\gamma}{2 \gamma}\right) t\right] \frac{2 \gamma}{1-\gamma} \tag{25}
\end{equation*}
\]
where \(P_{0}, T_{0}\) are the initial pressure and temperature, \(C\) is the discharge coefficient, A the vent cross-sectional area, \(\underline{V}\) the total volume of gas in the container, \(R_{G}\) the gas constant, \(M\) the molecular weight, and \(\gamma=C_{p} / C_{V}\) can be taken as 1.4 for nitrogen gas under the conditions of these experiments.

Figure 12 shows that agreement between data and (25) is good if appropriate values of \(C\) are chosen. Ideally, the discharge coefficient should be constant, independent of the initial pressure, but this does not seem to
be the case. Also, the values of \(C\) are smaller (by a factor of two or three) than one might anticipate by comparison with results for an orifice in a straight tube.

These discrepancies are probably due to the unusual geometry and obstructions present in the region immediately upstream of the orifice, i.e., the curved contraction leading into the short length of pipe that connects the container to the orifice (burst disc), and the presence of the plunger in the center of the flow. These disturbances to the flow would be expected to result in lower flow rates, hence smaller discharge coefficients, than expected from the simpler flow in a straight tube.

\section*{EXPERIMENTAL RESULTS}

Figure 13 shows examples of pressure traces from the pressure transducers as observed on an oscilloscope. The high frequency noise superimposed on the traces was always present to some extent and is probably due to shaking during the experiment and/or the transducers not being flush with the inside wall of the container. It was assumed that the actual pressure lies exactly in the mịddle of the fluctuations. Appendix VI contains data from several experiments in which the \(\mathrm{CO}_{2}\) was initially in a saturated or supercritical state,

In general, agreement between data and the proposed model (assuming an ideal gas with \(\gamma=1.29\) and \(C=0,3[\) was poor. Typical results for saturated experiments appear in Figure 14a; the depressurization rate was similar to the model for the first one or two milliseconds, but decayed rapidly after this period. In some cases, the pressure reached a constant (high) pressure or went through a minimum and experienced a short period of pressurization (Runs 5 and 8). This effect is due to a rapid generation of vapor which results from heterogeneous nucleation (i.e., boiling on the container's walls), homogeneous nucleation, or some combination of these. For supercritical fluids, Figure 14 b indicates that the assumption of an ideal gas is inadequate, as might be expected. However, the depressurization rate is quite similar to that for a saturated \(\mathrm{CO}_{2}\) experiment: it is fast in the early stages, but slows considerably in later stages. Since the \(\mathrm{CO}_{2}\) will become a liquid as it depressurizes from a supercritical state to the saturation and spinoidal curves, it appears that this vapor formation effect will be a hindrance in reaching the spinoidal curve in supercritical, as
well as saturated, experiments.
In an attempt to minimize this effect, cold antifreeze \(\left(-10^{\circ} \mathrm{C}\right)\) was pumped through the jacket ( \(44 \mathrm{~cm}^{3} / \mathrm{s}\) ) prior to bursting the disc in some experiments; the pressure was allowed to rise about 10 to 20 psi above the desired pressure, then the antifreeze was pumped through the jacket, and the solenoid was activated when the desired pressure was reached on a cooling trend. Figure 15 shows results for this procedure, which did permit a greater rate of depressurization, but it was still not enough to reach the spinoidal curve.

It is not truly possible to determine trends from this data, since only pressure and the mass of \(\mathrm{CO}_{2}\) are known confidently. Since the container is opaque, it is not possible to detect foaming of the liquid, agitation of the liquid due to pressure pulses or rising bubbles, suspended solid particles that might have inadvertently fallen into the container, etc. In addition, the temperature of the container wall is undoubtedly different than the bulk liquid's temperature, and the magnitude of this temperature difference will be important in characterizing the initial conditions of the experiment, since the temperature difference will affect the degree of boiling on the wall. But accurate measurements of temperature were not possible with the present system; the cooling jacket surrounded the container, thus hindering the measurement of container wall temperatures directly and liquid temperature measurements would require the insertion of thermocouples, which would provide yet another series of nucleation sites.

If it is postulated that boiling on the walls is the only cause of the vapor formation, then saturated experiments with a low initial pressure and a large liquid volume fraction would be expected to give the fastest depressurization rates. A low initial pressure is required, since this
condition needs less heating time to achieve the desired pressure, hence the wall temperature is undoubtedly lower than for experiments carried out at higher initial pressures. And large liquid volume fractions give small vapor volume fractions, which will give rise to fast depressurization rates based on the analysis in Appendix \(V\). (This assumes that the exit of vapor permits the depressurization of the entire system and that the liquid's expansion is negligibly small.)

It is interesting that the experiment that satisfies both of these criteria, Run 7, does exhibit the fastest depressurization. To investigate these two factors, two series of experiments were performed. One series held liquid volume fractionconstant and variedthe initial pressure (which presumably varied the wall temperaturel, the other series held initial pressure constant and varied the liquid volume fraction. Results are given in Figures 16 and 17, respectively.

For constant initial pressures, larger liquid volume fractions did lead to faster depressurization rates, but only during the first few milliseconds of the depressurization, After this initial stage, the traces seem to be quite unpredictable. This indicates that those factors which will greatly influence the depressurization (e.g., boiling, foaming, etc.) do not appear immediately after depressurization begins.

For constant liquid volume fractions, the effect of varying initial pressure was just as expected with a large liquid volume fraction, so the conjecture that a high initial pressure gave a large wall temperature, which encouraged boiling, seems to be true. But at a smaller liquid volume fraction, there was no effect in the first 1.5 milliseconds of the depressurization and after this period the traces were not as expected. These results are not surprising, though. Boiling is not pronounced in the first one or
two milliseconds of the depressurization, but it will become more violent as time progresses. So, a depressurization involving a small vapor volume (i.e., a large liquid volume fraction) will be affected sooner than one involving a larger vapor volume, simply due to the relation between the boiling rate, the space available to contain the new vapor phase, and the pressurizing that results.

As a final check on this wall-boiling conjecture, a rough estimate of an overall heat transfer coefficient was calculated for Runs 5 and 8 (Appendix VII). The resulting coefficient was approximately \(10^{5} \mathrm{BTU} / \mathrm{hr} \mathrm{ft}^{2} \mathrm{~F}\), which is two orders of magnitude larger than typical heat transfer coefficients (Perry and Chilton, 1973). This indicates that wall boiling is probably not the sole cause of vapor formation.

For supercritical experiments, it was hoped that the spinoidal curve could be reached by using initial states near the critical point, The spinoidal curve was (theoretically) reached in Run 11, but no explosion was observed. Since superheated liquids in the vicinity of the critical point have small degrees of superheat, it is possible that spontaneous nucleation occurred, but in a very weak manner. It is also possible that by the time the system reached the spinoidal curve, the contents of the container were well agitated, so any nucleation that did occur may have taken place on a small scale and, hence, went unnoticed.

Regardless of the initial state, when the burst disc was ruptured, the venting produced a strong pressure wave (possibly a shock) in the cell, accompanied by a loud bang which sounded similar to a rifleshot.

Also, the venting filled the cell with a thick, white plume which lingered for many seconds after the experiment was over. This might indi-
cate that the flow through the burst disc may involve solid and/or liquid phases in addition to a gas phase. When the initial state is saturated, liquid \(\mathrm{CO}_{2}\) might become entrapped in the exit flow and flash to form dry ice mist upon exiting the container. When the initial state is supercritical, the fluid which exits the container will be supercritical or a liquid, both of which may flash to form a dry ice mist.

After experiments with saturated liquids at lower pressures ( \(\leq 650\) psig), placing one's hand over the burst disc head causes pressure to build up in the container; this did not occur when the initial conditions were at higher pressures or supercritical, This indicates that at the lower pressures, some dry ice is probably left in the container after the experiment has been completed. Of course, if dry ice forms in the container during the depressurization, this presents yet another obstacle to overcome, since the dry ice particles are excellent nucleation sites.

In all experiments, the burst disc opened completely, in fact, it usually disintegrated to leave a 1.5-inch hole.

\section*{CONCLUSIONS}

As yet, the full role of superheated liquids in depressurization explosions has not been determined. In particular, the influence of the spinoidal curve, via Reid's model, has not been determined. But, a comparison of estimates of the characteristic times for nucleation and chemical explosives seems to indicate that homogeneous nucleation can be an explosive process.

Obviously, it is not enough just to have a superheated liquid to get a depressurization explosion as the model of Ogiso et al. might suggest. This study did produce superheated liquids to some extent, as indicated by the rapid vapor formation that occurred,but no explosion was observed.

The "quality" of superheat must be important. If the liquid becomes fragmented into many subdivisions which nucleate at very different times, then the sum of their impulses will not likely be an explosion. In addition, the pressure will not necessarily be uniform throughout the vessel. A lowm pressure wave will propagate through the liquid after the burst disc is ruptured. This low-pressure wave may act much like a reaction shock zone in explosives; as the wave front passes through the liquid, the pressure drops rapidly in this thin region, creating a localized zone of superheated liquid. Nucleation will occur in this zone, since it occurs on a time scale much shorter than that associated with the wave passing through the liquid. The high pressure vapors that exit the zone might sustain a detonation.

It is possible that the rapid vapor formation resulted from bubbles that were created on solid surfaces, which subsequently detached, then grew rapidly as it rose through the superheated liquid. This process could cause rapid pressure increases in a closed vessel, but would not be expected to cause explosions since bubbles will tend to fragment the bulk liquid, Of course, this bubble growth mechanism will compete with the "reaction
zone" mechanism, which indicates that a minimum volume of liquid is necessary to insure that wall effects will not disturb the creation of a superheated liquid. The determination of this minimum volume will require the consideration of many processes, such as the influence of rising bubbles on the bulk liquid, heat transfer, etc.

Finally, the initial state of the fluid and the conditions of the venting must be such that a large degree of superheat is attainable in order to get a depressurization explosion. The venting must be rapid even during later stages when there is rapid vapor formation. And, to get large superheats under such venting conditions, the liquid must reach the spinoidal curve (or states near the spinoidal curve) at relatively low pressures. So, the locus of initial states that might lead to depressurization explosions could encompass a rather small region of states.

To successfully obtain a large degree of superheat by depressurizing a liquid, it is necessary to minimize the boiling that occurs on physical boundaries. This can be accomplished by the following:
(a) Use a container that minimizes the surface area-to-volume ratio; this implies the use of a spherical geometry.
(b) Avoid the presence of structures that penetrate into the liquid, e.g., the plunger in this study.
(c) Use the largest vent cross-sectional area possible to effect the fastest depressurization possible.
(d) Coat the inner wall of the container with Teflon, or some other smooth coating, that will serve to reduce roughness, hence, nucleation sites. This could serve a dual purpose in that the coating could also act as an insulating layer that hinders heat transfer from the wall to the liquid.

As mentioned previously, the volume of this apparatus will depend on the depressurization rate that can be achieved. One possible experimental set-up is outlined in Appendix VIII. The proposed set-up will be most manageable on a relatively small scale; if the top can be removed in less than one millisecond, then the scale of the experiment will probably be of no consequence.

Instrumentation should include pressure transducers that give absolute pressures. This will eliminate the need for a pressure gauge, which will allow the experimentalists to be removed from one less high-pressure line.

Wall temperatures should be monitored to get an estimate of the heat
transfer rates into, or out of, the liquid. It is possible to measure the liquid's temperature non-intrusively by using an infrared pyrometer, but this will require a transparent container. It may be difficult to construct a sufficiently strong spherical container using a transparent material such as Lexan or glass, but a window might be installed as an alternative to making the whole container transparent.

Finally, it would be very advantageous to be able to continually record the pressure transducers' signals with a high frequency tape recorder with a long tape,or an oscillograph. This suggestion is motivated by the difficulties experienced with the electronic signal recorders used in this study.

\section*{REFERENCES}
1. Abramowitz, M. and I.A. Stegun, "Handbook of Mathematical Functions", National Bureau of Standards, 1974
2. Anderson, C., W. Townsend, J. Zook, and G. Cowgill,"The Effects of a Fire Environment on a Rail Tank Car Filled with LPG", USDT, FRA-ORED 75-31, Sept. 1974
3. Angus, S., B. Armstrong, and K.M. deReuck, eds.,"International Thermodynamic Tables of the Fluid State: Carbon Dioxide", compiled for IUPAC, Pergammon Press: New York, 1973
4. Arpaci, V.S.,"Conduction Heat Transfer", Addison-Wesley:Menlo Park,1966
5. Beegle, B.L., M. Modell, and R.C. Reid, AIChEJ, 20, 1194 (1974)
6. Beegle, B.L., M. Modell, and R.C. Reid, AIChEJ, 20, 1200 (1974)
7. Blander, M. and J.L. Katz, AIChEJ, 21, 833 (1975)
8. Burghard, H. and R.B. Wangler,"Physical Failure of a \(\mathrm{CO}_{2}\) Cylinder", personal communication with R.C. Reid, 1979
9. Copeland, E.H., "Pressure Safety Aspects of Liquid \(\mathrm{CO}_{2}\) Storage - A Case History", Sandia Lab Report, SAND-77-0125, 1976
10. Davidson, N.,"Statistical Mechanics", McGraw Hill:New York, 1962
11. Grigull, U. and J. Straub, Progress in Heat and Mass Transfer, 2,151(1969)
12. Leiber, C.O., personal communication with R.C. Reid, 1979
13. Modell, M. and R.C. Reid,"Thermodynamics and Its Applications", Prentice-Hall,Inc.:New Jersey, 1974
14. Moore, G.R., AIChEJ, 5, 458 (1959)
15. Ogiso, C., N. Takagi, and T. Kitigawa,"On the Mechanism of Vapor Explosion", paper presented at PACHEC, Japan (1972)
16. Patrick-Yeboah, J.R., Sc.D. Thesis, Department of Chemical Engineering, Massachusetts Institute of Technology, 1979
17. Peng, D.Y. and D.B. Robinson, Ind.Eng.Chem.Fund., 15, 59 (1976)
18. Perry, R.H. and C.H. Chilton,"Chemical Engineer's Handbook, Fifth Edition", McGraw-Hill:New York, 1973
19. Prosperetti, A. and M.S. Plesset, JFM, 85, 349 (1978)
20. Reid, R.C., Science, 203, 1263 (1979)
21. Reid, R.C., J.M. Prausnitz, and T.K.Sherwood,"The Properties of Gases and Liquids", McGraw-Hill:New York, 1977
22. Rothkopf, E.M. and W. Low, Phys. Fluids, 19, 1885 (1976)
23. Shapiro, A.H.,"The Dynamics and Thermodynamics of Compressible Fluid Flow", Ronald Press: New York, 1954
24. Skripov, V.P.,"Metastable Liquids", Wiley:New York, 1974
25. Takagi, S., J.Appl.Phys., 24, 1453 (1953)
26. Tedder, J.M., A. Nechvatal, and A.H. Jubb,"Basic Organic Chemistry. Part 5: Industrial Products", Wiley:New York, 1975
27. Zeldovich, Y.B. and Y.P. Raizer,"Elements of Gasdynamics and the Classical Theory of Shock Naves", Academic Press:New York, 1968


Figure 1


Figure 2
P-V Diagram for a Pure Fluid




Figure 5
Distortion of a Compression Wave
shock (stationary)


Figure 6
Flow Through a Shock in a Coordinate
System Moving with the Shock


Figure 7

Expected Temperature Profile
During Depressurization


Figure 8

Simplified Model of Heat Transfer


Experimental Apparatus
Pressure transducers-
PCB Piezotronics
models 102All and 102A04(kits)


Figure 10
Details of the
Liquid-Holding Container


Figure 11

Expected Pressure Trace for a Depressurization Explosion


Figure 12

Blow-down Experiments with \(\mathrm{N}_{2}\) Gas


Figure 13


Figure 14a
Comparison of experiment and model predictions for initially saturated \(\mathrm{CO}_{2}\) with \(\mathrm{P}_{\mathrm{O}}=45.8\) bar, liquid volume fraction \(=97.5 \%\). The spinoidal curve for this experiment lies at \(P / P_{0}=0.442\)


Figure 14b
Comparison of experiment and model predictions for initially supercritical \(\mathrm{CO}_{2}\) with \(\mathrm{P}_{0}=90.7\) bar, \(\mathrm{V}_{0}=59.02 \mathrm{~cm} / \mathrm{mole}\). The spinoidal curve for this experiment lies at \(P / P_{0}=0.135\)


Figure 15a

> The effect of wall cooling on a
> saturated experiment
> Spinoidal \(\mathrm{P} / \mathrm{P}_{0}=0.627\)


Figure 15b

The effect of wall cooling on a saturated experiment
Spinoidal \(\mathrm{P} / \mathrm{P}_{0}=0.248\)


Figure 15c

The effect of wall cooling on a supercritical experiment


Figure 16a

The effect of liquid level on the depressurization of saturated \(\mathrm{CO}_{2}\)
\(P_{0}=63.1\) bar
Spinoidal \(\mathrm{P} / \mathrm{P}_{0}=0.627\)


Figure \(16 b\)

The effect of liquid level on the depressurization of saturated \(\mathrm{CO}_{2}\) \(\mathrm{P}_{\mathrm{Q}}=56.2\) bar
Spinoidal \(\mathrm{P} / \mathrm{P}_{\mathrm{O}}=0.248\)


Figure 16 c
The effect of liquid level on the depressurization of saturated \(\mathrm{CO}_{2}\)
\(P=45.8\) bar
\(\begin{aligned} & \mathrm{P}_{\mathrm{O}}=45.8 \text { bar } \\ & \text { Spinoidal } \mathrm{P} / \mathrm{P}_{0}<0.0\end{aligned}\)


Figure 17a
The effect of initial pressure on the depressurization of saturated \(\mathrm{CO}_{2}\)


Figure 17b

The effect of initial pressure on the depressurization of saturated \(\mathrm{CO}_{2}\)

Table 1
Analysis of a Sample Depressurization (Initially Saturated \(\mathrm{CO}_{2}\) at 298.4 K )
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { (satn.) } \\
298.4
\end{gathered}
\]} & \multirow[b]{2}{*}{298} & \multicolumn{2}{|l|}{T, Kelvin} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { (spin.) } \\
292
\end{gathered}
\]} \\
\hline & & & 296 & 294 & \\
\hline \(\mathrm{P}_{\mathrm{L}}, \mathrm{atm}\) & 64.0 & 62.6 & 56.3 & 50.1 & 44.2 \\
\hline \(\mathrm{p}^{\text {sat }}\), atm (*) & 64.0 & 63.2 & 60.4 & 57.7 & 55.0 \\
\hline \(\mathrm{V}_{\mathrm{L}^{\prime}} \mathrm{cm}^{3} / \mathrm{mole}(* *)\) & & 70.8 & 71.6 & 72.0 & 74.2 \\
\hline \(\mathrm{V}_{\mathrm{v}}^{\text {sat }}, \mathrm{cm}^{3} / \mathrm{mole}\) & & 182.9 & 201.1 & 219.1 & 237.5 \\
\hline \(\mathrm{P}_{\mathrm{v}}, \operatorname{atm}(t)\) & 64.0 & 63.0 & 59.0 & 55.3 & 51.7 \\
\hline \(\sigma\), dyne/cm & & 0.576 & 0.824 & 1.09 & 1.37 \\
\hline \(\log _{10} \mathrm{~J}\) & \(-\infty\) & -173 & 19.6 & 24.6 & 25.0 \\
\hline J & 0 & 0 & \(4.3 \times 10^{19}\) & \(4.3 \times 10^{24}\) & \(1.0 \times 10^{25}\) \\
\hline \(\mathrm{dP} / \mathrm{dT}, \mathrm{atm} / \mathrm{K}\) & & & 3.17 & 3.03 & 2.88 \\
\hline \(\underline{\mathrm{d} \log _{10} \mathrm{~J}}=\underline{2.303} \mathrm{dJ}, \mathrm{K}^{-1}\) & & & \(-3.65\) & -1.35 & 0.95 \\
\hline \(\overline{d T} \frac{J}{d T}\) & & & & & \\
\hline
\end{tabular}
\(r_{c}, \mathrm{~cm}\)
\(2.8 \times 10^{-6} 6.0 \times 10^{-7} 4.1 \times 10^{-7} 3.6 \times 10^{-7}\)
\(\mathrm{v}_{\mathrm{v}}, \mathrm{cm}^{3} /\) mole
\(193.3 \quad 216.4 \quad 235.8 \quad 303.2\)
\({ }^{\tau} \mathrm{N}^{\prime} \sec\)
\(\infty \quad \infty\)
\(7.9 \times 10^{-2} 2.6 \times 10^{-6} 2.1 \times 10^{-6}\)
(*) superscript "sat" refers to saturation values
(**) V is specific volume
( \(\dagger\) ) from Blander and Katz, \(V_{L}\left(P_{L}-P^{s a t}\right) \simeq P_{V} V_{V} \ln \left(P_{V} / P^{s a t}\right)\)

Appendix I
The Peng-Robinson Equation of State

The Peng-Robinson equation of state is:
\[
P=\frac{R T}{V-b}-\frac{a(T)}{V(V+b)+b(V-b)}
\]
(I-I)
where \(P\) is pressure, \(R\) the gas constant, \(T\) temperature, \(V\) specific volume, and the parameters \(a\) and \(b\) are given by:
\[
\begin{aligned}
\mathrm{a}(\mathrm{~T}) & =0.45724 \frac{\mathrm{R}^{2} \mathrm{~T}_{\mathrm{C}}^{2}}{\mathrm{P}_{\mathrm{C}}} \alpha\left(\mathrm{~T}_{r}, \omega\right) \\
\mathrm{b} & =0.07780 \frac{\mathrm{RT}_{\mathrm{C}}}{\mathrm{P}_{\mathrm{C}}}
\end{aligned}
\]
where the subscript " \(c\) " denotes its critical value, and the dimensionless function of reduced temperature and acentric factor, \(\alpha\left(T_{r}, \omega\right)\), is defined by:
\[
\begin{aligned}
\alpha^{1 / 2} & =1+\kappa\left(1-T_{r}^{1 / 2}\right) \\
\kappa & =0.37464+1.54226 \omega-0.26992 \omega^{2}
\end{aligned}
\]

Given \(T\) and \(P, V\) can be calculated by rewriting (I-I) as:
\[
\begin{equation*}
z^{3}-(1-B) z^{2}+\left(A-3 B^{2}-2 B\right) z-\left(A B-B^{2}-B^{3}\right)=0 \tag{I-2}
\end{equation*}
\]
where \(Z=P V / R T, A=a P / R^{2} T^{2}\), and \(B=b P / R T\).
Physically meaningful roots for (I-2) occur when \(Z>B\). In the two-phase region, the largest root is the vapor volume, the smallest positive root is the liquid volume.

The saturation curve can be obtained by equating liquid and vapor fugacities, which can be obtained from:
\[
\ln \mathrm{f} / \mathrm{P}=\int_{0}^{\mathrm{P}}\left(\frac{\mathrm{~V}}{R T}-\frac{1}{\mathrm{P}}\right) \mathrm{dP}
\]
which gives:
\[
\begin{equation*}
\ln f / P=z-1-\ln (z-B)-\frac{A}{2.828 B} \ln \left(\frac{Z+2.414 B}{Z-0.414 B}\right) \tag{I-3}
\end{equation*}
\]

To obtain isentropic paths, the departure function for entropy must be utilized:
\[
S\left(V_{2}, T\right)-S\left(V_{1}, T\right)=\int_{V_{1}}^{V_{2}}\left(\frac{\partial S}{\partial V}\right)_{T} d V=\int_{V_{1}}^{V_{2}}\left(\frac{\partial P}{\partial T}\right)_{V} d V
\]

Evaluation of the derivative and integral give:
\[
\begin{aligned}
& S\left(V_{2}, T\right)-S\left(V_{1}, T\right)=R \ln \left[\frac{V_{2}-b}{V_{1}-b}\right]+ \\
& \frac{0.161659 R_{C}^{2} T_{c}^{3 / 2} \kappa\left[1+\kappa\left(1 \cdots T_{r}^{1 / 2}\right)\right]}{P_{c} b T^{1 / 2}} \ln \left[\frac{\left(V_{2}-0.4142 b\right)\left(V_{1}+2.414 b\right)}{\left(V_{2}+2.414 \mathrm{~b}\right)\left(V_{1}-0.4142 \mathrm{~b}\right)}\right]
\end{aligned}
\]

For mixtures, the parameters \(a\) and \(b\) are functions of the mole fractions, \(x_{i}\), in the mixture:
\[
\begin{aligned}
& a=\sum_{i} \sum x_{i} x_{j} a_{i j} \\
& b= \\
& \sum \sum_{i} \quad x_{i} b_{i}
\end{aligned}
\]
where \(a_{i j}=\left(1-\delta_{i j}\right) a_{i}^{l / 2} a_{j}^{l / 2}\) and \(\delta_{i j}\) is an empirically determined binary interaction parameter, which can be obtained from data for a binary mixture of components " \(i\) " and "j".

The program presented here, named "PIZZA", calculates the isentropic path for a pure fluid from its initial state (pressure, Pl, temperature, \(T 1\) ) to the spinoidal curve using the Peng-Robinson equation of state. The calculation scheme is illustrated in the following flow chart.


The functions and subroutines used are:


When applicable, the Peng-Robinson equation was used. The function DELTAS is used to generate the isentropic path by guessing \(T 2\) (given V2,Tl, and V1), and improving this guess until DELTAS becomes less than some acceptable value. Since the departure functions developed in Appendix I involve isotherms, the temperature change must be incorporated in some way. For a pure fluid, the most straightforward manner is to rewrite the entropy difference as:
\[
\begin{align*}
S(T 2, V 2)-S(T 1, V 1)= & {\left[S(T 2, V 2)-S\left(T 2, V_{L}^{s a t}\right)\right]^{*}+\left[S\left(T 2, V_{L}^{s a t}\right)-S\left(T 2, V_{V}^{s a t}\right)\right]^{\dagger}+} \\
& {\left[S\left(T 2, V_{V}^{s a t}\right)-S\left(T 2, V_{\infty}\right)\right]^{*}+\left[S\left(T 2, V_{\infty}\right)-S\left(T 1, V_{\infty}\right)\right]+} \\
& {\left[S\left(T 1, V_{\infty}\right)-S\left(T 1, V_{V}^{s a t}\right)\right]^{*}+\left[S\left(T 1, V_{V}^{s a t}\right)-S\left(T 1, V_{L}^{s a t}\right)\right]^{\dagger}+} \\
& {\left[S\left(T 1, V_{L}^{s a t}\right)-S(T 1, V 1)\right]^{*} }
\end{align*}
\]
where the subscripts "L" and "V" refer to the liquid and vapor phases, respectively, and "sat" refers to the saturation curve.

The differences marked by an asterisk can be evaluated using the departure function for entropy. The differences marked by a cross are equal to entropies of vaporization; these can be evaluated by using the ClausiusClapeyron equation:
\[
\begin{equation*}
\Delta S^{\text {vap }}=\frac{\Delta H^{\text {vap }}}{T}=\frac{-R \Delta Z^{\text {vap }}}{T} \frac{d \ln p^{\text {sat }}}{d(1 / T)} \tag{II-2}
\end{equation*}
\]

The difference at \(V_{\infty}\) can be evaluated using the ideal gas heat capacities provided that \(\mathrm{V}_{\infty}\) is chosen such that the fluid is truly an ideal gas in that temperature range. The ideal gas heat capacity can be expressed as:
\[
\begin{equation*}
C_{v}^{*}=a+b T+c T^{2}+d T^{3}-R \tag{II-3}
\end{equation*}
\]

Values for the coefficients for a wide variety of compounds are given in Reid, Prausnitz, and Sherwood (1977).

The derivative in the Clausius-Clapeyron equation was evaluated by using finite differences; saturation properties were calculated at temperature \(T\) and \(T+\Delta T\). For \(\Delta T=1 \mathrm{~K}\), values for the entropy of vaporization obtained in this manner were always within \(5 \%\) of values reported by IUPAC (Angus et al. 1973).

Since PIZZA always calculates entropy differences between a guessed
state and the initial state, the last three terms in (II-I) that just involve \(T l\) need only be calculated the first time DELTAS is used. So, DELTAS will calculate all of the terms in (II-l) if the parameter ISKIP \(=0\). If ISKIP \(\neq 0\), the calculations involving \(T l\) will not be repeated.

In order to find temperatures on the isentrope, an initial guess is made and improvements to this guess are made by an Euler-like method:
\[
\begin{equation*}
T^{(k)}=T^{(k-1)}-\varepsilon\left[S\left(T^{(k-1)}, V\right)-S(T l, V 1)\right] \tag{II-4}
\end{equation*}
\]
where \(\varepsilon\) is a positive constant.
At present, the program is too time-consuming due to its generality. For each temperature guess, SATN will be run to get saturation properties. Since SATN also uses an iterative procedure, a large number of calculations result to find just one point on the isentrope. Modifications can be made to improve convergence, the most helpful ones being:
(a) Before running PIZZA, run SATN for a wide range of temperatures, then empirically determine \(P^{\text {sat }}(T), V_{L}^{s a t}(T)\) and \(V_{V}^{s a t}(T)\) as functions that are polynomials in \(T\) using a normal regression analysis. This will eliminate the need for SATN when running PIZZA. Also, \(P^{\text {sat }}\) can then be differentiated and plugged into (II-2) to give an analytic expression for \(\Delta S^{v a p}\).
(b) Use a better method for finding the temperatures on an isentrope. With (II-4), it is possible for the search to oscillate about, without converging to, the correct \(T\). However, if \(\varepsilon\) is initially large, then gradually reduced as the correct \(T\) is approached, then this instability can be eliminated and convergence will be fairly rapid. A Newton-Raphson method would converge faster:
\[
T^{(k)}=T^{(k-1)}-\frac{\left[S\left(T^{(k-1)}, V\right)-S(T 1, V 1)\right]}{\left[\frac{\partial S(T, V)}{\partial T}\right]_{T=T}(k-1)}
\]

However, convergence of the Newton-Raphson method is very sensitive to the initial guess. This may make the Euler-like method better suited for use in PIZZA.

The following are key terms in PIZZA and its subroutines.
```

A,B,Al,CAP - parameters of the Peng-Robinson equation of state
ALIMIT - if |DELTAS| < ALIMIT, convergence is obtained
CPA,CPB,CPC,CPD - coefficients in (II-3)
DT - \DeltaT for evaluating (II-2) by finite differences
EPS - \& in (II-4)
FUGL,FUGV - expressions for the fugacity of liquid and vapor phases from
(I-3)
IDELT,IPIZZ,ISATN - debugging aids; if non-zero, these will print values
for variables in various parts of the program. If
equal to zero, this printing is suppressed.
IMAX - maximum number of iterations permitted
ISKIP - a parameter in DELTAS, which was explained in the discussion of DELTAS
ITER,JIT - iteration number
NN - number of intervals in volume desired between the initial and spinoidal states
PENG(J),SAT(J) - coefficients from (I-2) for use in ZPOLR
PC,TC,VC - critical pressure, temperature, and volume

```

```

Pl,Vl,Tl - initial pressure, volume, temperature
R,RJPG - gas constant with units bar $-\mathrm{cm}^{3} / \mathrm{mol}-\mathrm{K}$ and joule/mol-K
SPIN(J) - coefficients from (5) for use in ZPOLR

```

SWITCH - if the liquid spinoidal will be reached, SWITCH \(=1\) if the vapor spinoidal will be reached, \(\operatorname{SWITCH}=-1\)

TSPD, VSPD - spinoidal temperature and volume
VINF - \(\mathrm{V}_{\infty}\) in (II-1)
W - acentric factor

\begin{tabular}{|c|c|c|}
\hline & \(\operatorname{SPIN}(2)=4 \cdot * B-2 \cdot * \operatorname{CON}\) & PIZ00560 \\
\hline & \(\operatorname{SPIN}(3)=2 \cdot * B *(B+C O N)\) & PIZ00570 \\
\hline & \(\operatorname{SPIN}(4)=2 . * B * B *(C O N-2 . * B)\) & PIZ00580 \\
\hline & \(\operatorname{SPIN}(5)=(B-2 . * C O N) * B * B * B\) & PIZ00590 \\
\hline & CALL \(Z\) POLR(SPIN, 4, \(\mathrm{Z}, \mathrm{IER}\) ) & PIZ00600 \\
\hline & IF(SWITCH.EQ.-1) GO TO 40 & PIZ00610 \\
\hline & DO \(35 \mathrm{~J}=1.4\) & PIZ00620 \\
\hline & \(\operatorname{VR}(\mathrm{U})=\operatorname{REAL}(\mathrm{Z}(\mathrm{J})\) ) & PIZ00630 \\
\hline & \(\operatorname{VI}(\mathrm{U})=\operatorname{AIMAG}(\mathrm{Z}(\mathrm{U})\) ) & PIZ00640 \\
\hline & \(\operatorname{IF}(\mathrm{VI}(\mathrm{J}) \cdot \mathrm{NE} .0 .0) \quad \mathrm{VR}(\mathrm{J})=1 . \mathrm{D} 20\) & PIZ00650 \\
\hline & IF(VR(J).LE.VL2) VR(U)=1.D25 & PIZ00660 \\
\hline & IF(IPIZZ.EQ.0) GO TO 15 & PIZ00670 \\
\hline & WRITE (6,3)SWITCH, VR(J),TSPD & PIZ00680 \\
\hline 3 & FORMAT ('SWITCH \(=\) ', 12,5X, D15.5,5X,F10.5) & PIZ00690 \\
\hline 15 & CONTINUE & PIZ00700 \\
\hline 35 & CONTINUE & PIZ00710 \\
\hline & \(V S P D=D M I N 1(V R(1), V R(2), V R(3), V R(4))\) & PIZ00720 \\
\hline & GO TO 55 & PI 200730 \\
\hline 40 & DO \(45 \mathrm{~J}=1,4\) & PIZ00740 \\
\hline & \(\operatorname{VR}(\mathrm{U})=\operatorname{REAL}(Z(\mathrm{~J})\) ) & PIZ00750 \\
\hline & \(\operatorname{VI}(\mathrm{J})=\operatorname{AIMAG}(\mathrm{Z}(\mathrm{J})\) ) & PIZ00760 \\
\hline & IF (VI(J).NE.0.0) VR(J) \(=-1.020\) & PIZ00770 \\
\hline & IF (VR(J).GE.VV2) VR(J) \(=-1.025\) & PI 200780 \\
\hline & IF(IPIZZ.EQ.0) GO TO 45 & PIZ00790 \\
\hline & WRITE ( 6,3 SWITCH, VR(U), TSPD & PIZ00800 \\
\hline 45 & CONTINUE & PIZ00810 \\
\hline & VSPD \(=\) DMAX1(VR(1), VR(2), VR(3), VR(4)) & PIZ00820 \\
\hline 55 & DSPDS \(=\) DELTAS (TSPD, VSPD, T1, V1,1) & PIZ00830 \\
\hline & IF(DABS (DSPDS). LE.ALIMIT) GO TO 100 & PIZ00840 \\
\hline & IF(DSPDS.LT.0.0) GO TO 60 & PIZ00850 \\
\hline & TSPD=TSPD-EPS*SWITCH*DABS (DSPDS) & PIZ00860 \\
\hline & IF(IPIZZ.EQ.0) GO TO 16 & PIZ00370 \\
\hline & WRITE (6,89) ITER, SWITCH, TSPD & PIZ00880 \\
\hline 89 & FORMAT ('ITER \(=\) ', I4, 5X,'SNITCH \(=\) ',13, 5X,F10.5) & PIZ00890 \\
\hline 16 & CONTINUE & PIZ00900 \\
\hline & \(I T E R=I T E R+1\) & PIZ00910 \\
\hline & GO TO 50 & PIZ00920 \\
\hline 60 & & PIZOOS30 \\
\hline & \[
\text { IF (IPIZZ.EQ.0) GO TO } 17
\] & PIZ00940 \\
\hline & WRITE (6,89) ITER, SWITCH, TSPD & PIZ00950 \\
\hline 17 & CONTINUE & PI 200960 \\
\hline & \[
\text { ITER }=I T E R+1
\] & PIZ00970 \\
\hline & GO TO 50 & PI Z00980 \\
\hline C** & W generate the trajectory & PIZ00990 \\
\hline C & & PIZ01000 \\
\hline 100 & CONTINUE & PIZ01010 \\
\hline & IF (SWITCH.EQ.1)WRITE (6,1030) & PIZO1020 \\
\hline & IF(SWITCH.EQ.-1) WRITE (6,1040) & PIZ01030 \\
\hline & WRITE (6,1060) & PIZ01040 \\
\hline & DO \(200 \quad J=1, N N\) & PIZ01050 \\
\hline & UIT \(=0\) & PIZ01060 \\
\hline & \(\operatorname{VRAY}(\mathrm{J})=\mathrm{V} 1+(V S P D-V 1) * J / N N\) & PIZ01070 \\
\hline & IF(J.EQ.1) TRAY(J)=T1 & PIZ01080 \\
\hline & IF(U.EQ.1) GO TO 110 & PIZ01090 \\
\hline & \(\operatorname{TRAY}(J)=\operatorname{TRAY}(J-1)\) & PIZ01100 \\
\hline
\end{tabular}

091001 Na
OS1001N3 0bl001N3 OEl001N3 OZ1001Nヨ OLIOOLN 001001N3 060001 NJ 080001 N3 OLOOOINB 090001N3 090001N3 000001 Na 0ع0001N3 020001N3 010001N3

\author{
CNE \\ Nyกㅋㅋㅂ \\  \\ （（日＊カにてかけ・－1へ）／（8＊ \\ 
 \\  \\ \(((\varepsilon-1 \Lambda) /(\varepsilon-Z \Lambda)) 0070=\) เ४४dS \\  \\ （Z－ロ‘H－V）8＊า코 1 I JI7dWI \\  \\  \\ （เへ‘Zヘ＇」）เOA1NG NOIIONก」
}

 0020073 06100730 08100730 02100730 \(091007 \exists 0\) OS100730 06100730 0ع1007ヨ0 021007ヨ0 01100730 CO100730 06000730 08000130 0L000730 （ 1 OZ OL C9
 \(1 d \forall \wedge S O=9 \perp \forall \forall d\)


 \(O \perp=1 X \exists N \perp(0 \perp \cdot 10 \cdot 1 X \exists N \perp) \pm I\) \(10+11=1 \times 3 \mathrm{~N} 1\)



O1 01 09（01•30．11）」I

 09000730 0ヵ000730 08000730 02000730 01000730

FILE: SATN FORTRAN A
```

 SUBROUTINE SATN(T,VLSAT, VVSAT,P)
 SAT00010
SUBROUTINE SATN(T,VLSAT, VVSAT, P)
SAT00020
C GIVEN A T (KELVIN), SATN GIVES SATURATION LIQUID
SAT00030
C AND VAPOR VOLUMES (CC/MOL) AND THE SATURATION PRESSURE (BARS)
SAT00040

```

C BY EQUATING FUGACITIES CALCULATED WITH THE PENG-ROBINSON EQ. OF STATESATOOOSO
C
IMPLICIT REAL * \(8(A-H, O-Z)\)
COMPLEX*16 Z(3)
INTEGER ISATN
DIAENSION SAT (4),VR(3),VL(3),VV(3)
SAT00060
SAT00070
SAT00C80
SAT00090
COMMON/ONE/R,RJPG,A1,B,CAP,TC, PC W
COMIVION/FOR/IDELT, IPIZZ, ISATN
SAT00110
DATA ERROR/1.D-6/ EPS/10./.NIT/3000/
\(P=P C\)
SATOO130
SATOO140
\(A=A 1 *(1 .+C A P *(1 .-\operatorname{DSQRT}(T / T C))) * * 2\)
\(A A=A * P /(R * T) * * 2\)
\(B B=B * P / R / T\)
\(\operatorname{SAT}(1)=1\).
\(\operatorname{SAT}(2)=B B-1\).
SAT (3) \(=A A-3 . * B 5 * B B-2 . * B S\)
\(S A T(4)=B B * * 3+B B * B S-A A * B B\)
SAT00150
SAT00160
SAT00170
SATOO180
SAT00190
SAT00200
CALL ZPOLR(SAT, 3, Z,IER)
DO \(20 J=1,3\)
\(\operatorname{VR}(J)=\operatorname{REAL}(Z(U))\)
\(V L(J)=V \bar{R}(J)\)
\(V V(U)=V R(J)\)
\(I F(V R(J) . L E \cdot B B) \quad V L(U)=1 . D 20\)
SAT00210
SATOO220
SAT00230
SAT00240
SAT00250
SAT00260
IF (VR (J).LE.B3)VV \((J)=-1 \cdot 020\)
CONTINUE
IF (T.EQ.TC) GO TO 35
\(Z L=D M I N 1(V L(1), V L(2), V L(3))\) SATOO310
\(Z V=\operatorname{DMAXI}(V V(1), V V(2), V V(3)) \quad\) SATOO320
IF (T.EQ.TC) \(\quad Z L=Z V\)
SATOO320
SATOO330
IF(ISATN.EQ.O) GO TO 9
SAT00340
WRITE \((6,2) Z L, Z V, P,(V R(U), J=1,3)\) SATOO350
FORMAT (2D15.5,4F10.5)
CONTINUE
SAT00360
CONL \(=(A A / 2.828 / B B) * D \operatorname{LOG}((Z L+2.414 * B B) /(Z L-0.414 * B B))\)
\(\operatorname{CONV}=(A A / 2.828 / B B) * \operatorname{LOG}((Z V+2.4 i 4 * B S) /(Z V-0.414 * B B))\)
FUGL = DEXP \((Z L-1 .-D L O G(Z L-B 3)-C O N L)\)
SAT00370
SAT00380
SAT00390
SAT00400
FUGV = DEXP \((Z V-1 .-D L O G(Z V-E B)-C O N V)\)
SAT00410
IF (DABS ((FUGL-FUGV)/FUGL). LE.ERROR) GO TO 40
SAT00420
\(\begin{array}{ll}\text { IF ((FUGV-FUGL).LT.O.DO) GO TO } 30 & \text { SAT00430 }\end{array}\)
\(P=P-E P S * P * D A B S\) (FUGV-FUGL)
\(I=I+1\)
GO TO 10
SAT00440
SAT00450
\(P=P+E P S * P * D A B S(F U G L-F U G V)\) SATO0460
\(I=I+1\)
SAT00470
GO TO 10
SAT00480
\(I F(V R(1) . E Q . V R(2)) \quad Z L=V R(1)\) SATOO500
\(I F(V R(1) \cdot E Q \cdot V R(3)) \quad Z L=V R(1)\) SAT00510
\(I F(V R(2) \cdot E Q . V R(3)) \quad Z L=V R(2) \quad\) SATOO520
\(Z V=Z L\)
CONTINUE
\(V L S A T=R * T * Z L / P\)
SAT00530
SAT00540
SAT00550
\(\begin{array}{ll}V V S A T & =R * T * Z V / P \\ \text { SAT00560 }\end{array}\)
GO TO 100 SATOO570
80 WRITE 6,1020 ) NIT,T
1020 FORMAT (I10,' ITERATIONS EXCEEDED IN SATN AT TEMP: ',F10.5)
SAT00580

100 CONTINUE
SAT00590
RETURN
SAT00600
SAT00610
SAT00620

FILE: ROOT 1 FORTRAN A CONVERSATIONAL MONITOR SYSTEM



\section*{Appendix III}

Solution of the Heat Transfer Problem with Duhamel's Superposition Method

The problem statement is:
\[
\begin{array}{ll}
\frac{\partial \theta}{\partial \xi}=\frac{\partial^{2} \theta}{\partial \eta^{2}} & \xi=0: \quad \theta=0 \\
& \eta=0: \quad \theta=0 \\
& \eta=1: \quad \theta=-B \xi
\end{array}
\]

Let \(\Psi(\xi, \eta)\) be the solution for a unit disturbance:
\[
\begin{array}{ll}
\frac{\partial \Psi}{\partial \xi}=\frac{\partial^{2} \Psi}{\partial \eta^{2}} & \xi=0: \Psi=0 \\
& \eta=0: \Psi=0 \\
& \eta=1: \Psi=1
\end{array}
\]

Try a solution of the form \(\Psi(\xi, \eta)=F(\eta)+X(\xi) Y(\eta)\).
The solution to the resulting eigenvalue problem gives:
\[
\Psi(\xi, n)=n+2 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n \pi} \sin n \pi n e^{-n^{2} \pi^{2} \xi}
\]

The disturbance at the boundary is \(D(\xi)=-B \xi\). Solution by Duhamel's superposition method gives:
\[
\theta(\xi, \eta)=D(0) \Psi(\xi, \eta)+\int_{0}^{\xi} \Psi(s, n) \frac{d D(s)}{d s} d s
\]

Plugging into this expression:
\[
\theta(\xi, n)=-B\left[n \xi+2 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{(n \pi)^{3}} \sin n \pi n\left(1-e^{-n^{2} \pi^{2} \xi}\right)\right]
\]

Upon differentiation, this yields:
- 81 -
\[
\frac{\partial \theta}{\partial \eta}=-B\left[\xi+2 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{(n \pi)^{2}} \cos n \pi n\left(1-e^{-n^{2} \pi^{2} \xi}\right)\right]
\]

The volume of liquid in the filling lines is less than \(1 \%\) of the container volume, so this will be neglected. It will be assumed that vapor-liquid equilibrium exists.

Define \(\quad \underline{V}_{-\mathrm{G}, \mathrm{L}}=\) volume of gas,liquid in the container
\(m_{g, L}=\) mass of gas,liquid in the container
\(m_{T}=\) total mass in the container
\(V_{\mathrm{T}}=\) total volume of the container, which is 7.00 liters or \(0.247 \mathrm{ft}^{3}\)

So, \(\quad \underline{V}_{\mathrm{g}}+\underline{V}_{\mathrm{L}}=\underline{V}_{\mathrm{T}}\) and \(\quad \mathrm{m}_{\mathrm{g}}+\mathrm{m}_{\mathrm{L}}=\mathrm{m}_{\mathrm{T}}\) For a given pressure, tables of data will give the densities of gas and liquid phases on the saturation curve, \(\rho_{g}\) and \(\rho_{L}\). These give:
\[
\rho_{\mathrm{g}} \underline{\mathrm{~V}}_{\mathrm{g}}+\rho_{\mathrm{L}} \underline{\mathrm{~V}}_{\mathrm{L}}=\mathrm{m}_{\mathrm{T}}
\]

Algebra gives:
\[
\frac{\underline{V}_{\mathrm{L}}}{\underline{V}_{\mathrm{T}}}=\frac{\left(\mathrm{m}_{\mathrm{T}} / \underline{V}_{\mathrm{T}}\right)-\rho_{\mathrm{g}}}{\rho_{\mathrm{L}}-\rho_{g}}=\text { liquid volume fraction }
\]

Since \(m_{T}\) is measured, \(V_{I} / V_{T}\) can be determined.

\section*{Appendix V \\ The flow of an Ideal Gas Through a Sharp-Edged Orifice}

From the dimensions of the orifice (burst disc) used in this study, the flow will be critical unless the pressure falls below two bars. So for critical flow through a sharp-edged orifice (Perry and Chilton 1973):
\[
\begin{equation*}
W_{\max }=-\frac{d N}{d t}=\frac{C A P}{M}\left[\frac{\gamma M K}{\mathrm{RT}}\right]^{1 / 2} \tag{V-l}
\end{equation*}
\]
```

where $W_{\text {max }}=$ the maximum : flow rate
$\mathrm{N}=$ moles of gas in the container
$t=$ time
C = discharge coefficient
A = orifice's cross-sectional area
$P=$ pressure in the container
M = molecular weight of the gas
$\gamma=C_{p} / C_{v}$, assumed constant
$R=$ gas constant
$K=\left(\frac{2}{\gamma+1}\right)^{\frac{\gamma+1}{\gamma-1}}$

```

It is assumed that the gas occupies a fixed volume, \(V\), in the container and that it expands adiabatically (i.e., isentropically). For the adiabatic expansion of an ideal gas:
\[
\begin{equation*}
T=T_{0}\left(P / P_{0}\right)^{1-1 / \gamma} \tag{V-2}
\end{equation*}
\]
where the subscript " 0 " indicates initial values. Plugging this into the ideal gas equation of state gives:
\[
N=\frac{P V}{R T}=\frac{P_{0} V}{R T_{0}}\left(\frac{P}{P_{0}}\right)^{l / \gamma}
\]

Differentiate this with respect to time and use (V-l):
\[
-\frac{d N}{d t}=-\frac{V}{R_{0} \gamma}\left(\frac{P}{P_{0}}\right)^{\frac{1}{\gamma}-1} \frac{d P}{d t}=\frac{C A P}{M}\left[\frac{\gamma M K}{R T}\right]^{1 / 2}
\]

Use (V-2) and let \(X=P / P_{0}\) to get:
\[
-\frac{d x}{d t}=\frac{C A}{V}\left(\frac{R T_{0} \gamma^{3} K}{M}\right)^{1 / 2} x^{\frac{3}{2}-\frac{1}{2 \gamma}}
\]

The solution to this is:
\[
\left(\frac{P}{P_{0}}\right)^{\frac{1-\gamma}{2 \gamma}}=1-\frac{C A}{V}\left(\frac{\mathrm{RT}_{0} \gamma^{3} K}{M}\right)^{1 / 2}\left(\frac{1-\gamma}{2 \gamma}\right) t
\]

\section*{Appendix VI}

Experimențal Data

Data for the following saturated experiments are presented.
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Expt \\
Number
\end{tabular} &  & Liquid Volume Fraction \\
\hline 1 & 900 (63.1) & 0.988 \\
\hline 2 & " " & 0.753 \\
\hline \[
3-W C^{*}
\] & " & 0.902 \\
\hline 4 & 800 (56.2) & 0.998 \\
\hline 5 & " & 0.730 \\
\hline 6-WC & " & 0.690 \\
\hline 7 & 650 (45.8) & 0.975 \\
\hline 8 & " " & 0.840 \\
\hline 9 & " " & 0.724 \\
\hline
\end{tabular}

Data for the following supercritical experiments are presented.
\begin{tabular}{lccc}
\begin{tabular}{c} 
Expt \\
Number
\end{tabular} & \begin{tabular}{c} 
Po \\
10
\end{tabular} & \begin{tabular}{c} 
Initial Pressure,psig(bar)
\end{tabular} & \begin{tabular}{c} 
Specific Volume \\
\(\mathrm{cm}^{3} / \mathrm{mole}\)
\end{tabular} \\
\(11300(90.7)\) & & 59.02 \\
12 & \(1075(75.2)\) & 133.36 \\
\(13-W C\) & \(1100(76.9)\) & 98.58 \\
10 & & 81.93
\end{tabular}
* with wall cooling
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{13}{|c|}{Experiment Number} \\
\hline time, ms & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\
\hline 0 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\
\hline 1 & 0.923 & 0.934 & 0.934 & 0.902 & 0.951 & 0.939 & 0.759 & 0.901 & 0.940 & 0,947 & 0.972 & 0.972 & 0.946 \\
\hline 2 & 0.913 & 0.902 & 0.902 & 0.877 & 0.926 & 0.877 & 0.699 & 0,842 & 0.880 & 0.878 & 0.945 & 0.945 & 0.928 \\
\hline 3 & 0.902 & 0.891 & 0.869 & 0.865 & 0.902 & 0.853 & 0.639 & 0.809 & 0.850 & 0.848 & 0.926 & 0.936 & 0.901 \\
\hline 4 & 0.902 & 0.869 & 0.858 & 0.853 & 0,892 & 0.828 & 0,594 & 0.809 & 0.789 & 0.802 & 0.917 & 0.926 & 0.883 \\
\hline 5 & 0.891 & 0.858 & 0.847 & 0.840 & 0.912 & 0.816 & 0.579 & 0.851 & 0.759 & 0,779 & 0.908 & 0.917 & 0,865 \\
\hline 6 & 0.880 & - & 0.825 & 0.828 & 0.951 & 0.804 & 0.549 & 0.892 & 0.729 & 0.757 & 0.890 & 0.908 & 0.856 \\
\hline 7 & 0.878 & 0.847 & 0.814 & 0.823 & 0.975 & 0.791 & 0.534 & 0.922 & 0.699 & 0.749 & 0.871 & 0.899 & 0.847 \\
\hline 8 & 0.876 & 0.841 & 0.803 & 0.818 & 0.968 & 0.779 & 0.519 & 0.962 & 0.669 & 0.744 & 0.862 & 0.890 & 0.839 \\
\hline 9 & 0.875 & 0.834 & 0.792 & 0.812 & 0.966 & 0.767 & 0.504 & 0.989 & 0.639 & 0.739 & 0.853 & 0.871 & 0.830 \\
\hline 10 & 0.873 & 0.828 & 0.781 & 0.807 & 0.961 & 0.755 & 0.498 & 0.997 & 0.609 & 0.733 & 0.835 & 0.862 & 0.824 \\
\hline 11 & 0.871 & 0.822 & 0.770 & 0.802 & 0.958 & 0.742 & 0.493 & 0.962 & 0.579 & 0.728 & 0.825 & 0.853 & 0.818 \\
\hline 12 & 0.869 & 0.816 & 0.759 & 0.797 & 0.956 & 0.742 & 0.487 & 0.944 & 0.564 & 0.723 & 0.816 & 0.844 & 0.812 \\
\hline 13 & 0.867 & 0.809 & 0.750 & 0.792 & 0.951 & 0.730 & 0.481 & 0.922 & 0.549 & 0.718 & 0.808 & - & 0.806 \\
\hline 14 & 0.865 & 0.803 & 0.742 & 0.786 & 0.946 & 0.718 & 0.476 & 0.907 & 0.549 & 0.712 & 0.801 & - & 0.800 \\
\hline 15 & 0.864 & - & 0.733 & 0.781 & 0.946 & 0.705 & 0.470 & 0.895 & 0,549 & 0.707 & 0.793 & - & 0.794 \\
\hline 16 & 0.862 & & 0.724 & 0.776 & - & 0.698 & 0.465 & 0.884 & 0.549 & 0.702 & 0.785 & - & - \\
\hline 17 & 0.860 & - & 0.715 & 0.771 & - & 0.693 & 0.459 & 0.878 & - & 0.697 & 0.778 & - & - \\
\hline 18 & 0.858 & - & 0.707 & 0.765 & - & 0.693 & 0.453 & 0.877 & - & 0.691 & 0.770 & - & - \\
\hline 19 & 0.856 & - & 0.698 & 0.760 & - & 0.693 & 0.448 & 0, 874 & - & 0.686 & 0.762 & - & - \\
\hline 20 & 0.854 & - & 0.689 & 0.755 & - & 0.693 & 0.442 & - & - & 0.681 & 0.754 & - & - \\
\hline spinoidal curve & 0.627 & 0.627 & 0.627 & 0.248 & 0.248 & 0.248 & \(<0\) & \(<0\) & \(<0\) & 0.135 & 0.952 & 0.822 & 0.598 \\
\hline
\end{tabular}

\section*{Appendix VII \\ Calculation of an Overall Heat Transfer \\ Coefficient for Runs 5 and 8}

For each run, assume:
(1) The liquid expands isentropically until a minimum in the pressure trace is achieved, Boiling starts at this point.
(2) The pressure increases are due to boiling on the vessel's walls.
(3) The vapor volume in the vessel is constant.
(4) Neglect the venting of the vapor during the pressure-increase stage.
(5) \(\mathrm{CO}_{2}\) vapor is an ideal gas.
(6). Temperature does not change appreciably as boiling occurs.

These assumptions will lead to the smallest estimate for the heat transfer coefficient.

For Run 5: The pressure starts at \(P_{0}=56.2 \mathrm{bar}\), reaches a minimum at \(0.89 P_{0}\) after 4 ms , and reaches a maximum at \(0.975 \mathrm{p}_{0}\) in 3 ms after the minimum. The temperature driving force, \(\Delta T\), is obtained from Figure 4.
\[
\Delta T \approx 292-291=1 \mathrm{~K}
\]

The pressure increase rate, \(\Delta \mathrm{P} / \Delta \mathrm{t}=1.59 \mathrm{bar} / \mathrm{ms}\).
The volume of the vapor phase, \(V=(1-0.73)(7\) lit) \(=1.89\) lit.
The number of moles of \(\mathrm{CO}_{2}\) one must add to this volume to get the observed pressure increase is:
\[
\Delta \mathrm{n}=\frac{\mathrm{V} \Delta \mathrm{P}}{\mathrm{R} \mathrm{~T}_{\text {average }}}=0.38 \text { mole }
\]

From which is obtained \(: \Delta n / \Delta t=0.13 \mathrm{~mole} / \mathrm{ms}\).
The total heat addition rate, \(Q\), needed to get this boiling rate is:
\[
Q=\frac{\Delta n}{\Delta t} \Delta^{V}=U A \Delta T
\]
where \(\Delta H^{V}=\) heat of vaporization. Assume that the value at saturation is a good approximation
\(=7190 \mathrm{~J} / \mathrm{mol}\) at 291 K , from IUPAC (Angus et al., 1973)
\(\mathrm{U}=\) overall heat transfer coefficient
\(A=\) the heat transfer area
\(=2 \pi\left(6^{\prime \prime}\right)\left(19^{\prime \prime}\right)=716 \mathrm{in}^{2}=0.462 \mathrm{~m}^{2}\)

Solving for \(U\) gives a value of \(2 \times 10^{2} \mathrm{~J} / \mathrm{sm}^{2} \mathrm{~K}\left(3.5 \times 10^{5} \mathrm{BTU} / \mathrm{hr} \mathrm{ft}^{2} \mathrm{~F}\right)\).

Similarly for Run 8: The pressure starts at \(P_{0}=45.8\) bar, reaches a minimum at \(0.80 \mathrm{P}_{\mathrm{o}}\) after 3.5 ms , and reaches a maximum at \(\mathrm{P}_{\mathrm{o}}\) in 6.5 ms after the minimum, The pressurization is linear between the minimum and \(P=0.99 \mathrm{P}_{\mathrm{o}}\), so this region will be considered.
\[
\begin{aligned}
\Delta \mathrm{T} & \approx 283.5-282.5=1 \mathrm{~K} \\
\mathrm{~V} & =(1-0.84) 7=1.12 \mathrm{lit} \\
\Delta \mathrm{n} & =\frac{(1.12 \mathrm{lit})(8.7 \mathrm{~b})}{(0.08314)(283 \mathrm{~K})}=0.41 \mathrm{~mole} \\
\frac{\Delta \mathrm{n}}{\Delta \mathrm{t}} & =0.41 / 5.5=0.075 \mathrm{~mol} / \mathrm{ms} \\
\Delta \mathrm{H}^{\mathrm{V}} & =8700 \mathrm{~J} / \mathrm{mol} \mathrm{~K} \text { at } 283 \mathrm{~K}(\text { IUPAC })
\end{aligned}
\]

These give \(U=1.4 \times 10^{2} \mathrm{~J} / \mathrm{sm}^{2} \mathrm{~K}=2.5 \times 10^{5} \mathrm{BTU} / \mathrm{hr} \mathrm{ft}^{2} \mathrm{~F}\).

From Perry and Chilton (1973), typical values for heat exchangers are \(\mathrm{U}=10\) to \(10^{3} \mathrm{BTU} / \mathrm{hr} \mathrm{ft}{ }^{2} \mathrm{~F}\).

Figure VIII-l shows a hemispherical container with a cooling jacket and top-closing mechanisms. It is instrumented with pressure transducers and thermocouples. During filling and other preparatory procedures, the flat top is held down by hydraulic piston \(B\), which is mounted on a support that is held in place by hydraulic piston \(A\). While piston \(B\) pushes down, springs are attached to the top and stretched so that they pull up on the top.

To depressurize the system, pistons \(A\) and \(B\) are activated simultaneously: while piston \(B\) releases pressure on the top, pistonA pulls piston B out of the top's way. The springs and the internal pressure of the container will blow off the top.

Of course, it will be necessary to have three or more of these springpiston assemblies on the container at regular intervals to ensure that the top will be secure under the high pressures within the container. To maintain an airtight seal, some sort of O-ring or gasket is needed between the top and the container. The springs may he unnecessary if the top can be fabricated with lightweight materials, so that the internal pressure is \(\therefore\) sufficient to remove the top. However, the top must be kept from falling back to re-cover the container, so some mechanism (e.g., strong pistons) is needed to prevent this.

As an added precaution, it may be desired to coat the inner surface of the container with Teflon, and to use the wall-cooling procedure. But, if the proposed spring-piston apparatus succeeds in obtaining extremely rapid depressurizations, then these additional concerns may not be of great significance.


A Possible Experimental Set-Up```

