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Abstract
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we have developed a general procedure for computing the intersection homology
groups of the quotient varieties. In particular, we obtained an explicit inductive
formula for the intersection Poincare polynomial of an arbitrary quotient. Also,
explicit results- were obtained in the case of the maximal torus actions on the flag
varieties G/ B.
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INTRODUCTION

0.1. The aim of this thesis is to study the geometry and the topology of the
quotient varieties of torus actions in algebraic geometry.

As a part of our program, we developed a general procedure for computing the
intersection homology groups of the quotient varieties. In particular, we obtained
an explicit inductive formula for the intersection Poincare polynomial of an arbi-
trary quotient, which involves only polynomials. (Kirwan ([KiD has a formula
for symplectic quotients which involves power series because of the use of equiv-
ariant cohomology. However, our formulas apply not only to symplectic quotients
but also to more general quotients in question and our main tool to this end is
the decomposition theorem of intersection homology of Beilinson, Bernstein and
Deligne [BBD]. See also [GoM3D.

Also, explicit results were obtained in the case of maximal torus actions on
homogeneous space G/ P, especially on the flag varieties G/ B. (Historically, we
first worked out the case of maximal torus actions on G/ B, and generalized the
results there to the general case later on.)

.
0.2. Let X be a projective algebraic variety with an effective action of an

algebraic torus H = (c*)n. Assume the torus action extends to a linear action
on the ambient projective space pN. Choose a Kahler metric on pN which is
invariant under the compact torus T = (Sl)n C (c*)n and let J.L : X -+ Rn be an
associated moment map, then it is known that J.L is T-equivariant and J.L(H . x) is
a convex polyhedron in Rn for any x EX. We therefore get a decomposition of
X into invaria.nt subspaces, X = Uce2 Xc, as follows: two points x, yare in the
same stratum if and only if J.L( H • x) = J.L( H . y). Note that :=: is a collection of
polyhedra in Rn

•

There is a natural decomposition of p(X) into a union of convex polyhedra in
Rn

J.L(X) = U F
FeT

where T is the index set consisting of the following specified polyhedra: every top
dimensional open polytope F in T is a connected component of the regular values
of the moment map p, and the other open polyhedra are just the faces of those
top dimensional polyhedra.

0.3. Symplectic Quotients. Since the ordinary topological quotient (or,
orbit space) of the action is non-Hausdorff, to define an appropriate "quotient"
variety in the category of algebraic geometry, some "bad" orbits have to be left
out. Unfortunately, there is no canonical way to do this. As a consequence, we



may have many quotient varieties associated to this action. One of the classes of
quotient varieties can be obtained in the following way: let p be a point in J.L(X),
the moment map image of X, define

then Up is a Zariski open subset of X and the categorical quotient Up/ / H in the
sense of Mumford's geometric invariant theory [MuF] exists. Furthermore, if p is
in the interior of Jl(X), then Up/ / H has the "correct" dimension, that is, it is of
dimension dim X - dim H. In this case, we call Up/ / H a non degenerate quotient.
Otherwise (Le, p is in the boundary of Jl(X)), then the dimension of Up/ / H is
strictly less than dim X - dim H. In this case, we call it a degenerate quotient.
An extreme example of degenerate quotients is the case when p is a vertex of
J.L(X), in this case, Up/ / H is a point variety.

Up/ / H is often called a symplectic quotient because Up/ / H can be naturally
identified with J.l-l(p)/T which is a reduced phase space [MaW] when p is a regular
value of J.l, where T = (51)n C (c*)n = H is the compact part of H.

Let P denote the set of symplectic quotients. Then there is a natural partial
order ~ on P. Actually, given F E l,p E F, then Up does not depend on p, i.e,
Up == Uq, if p, q E F. So we also write UF instead of Up sometimes. Then, the
partial order ~ in P can be characterized as follows: Ua / / H ~ UF / / H if and
only if G is a face of F.

Theorem (1.4, 1.5). (1). If Uq/ / H ~ Up/ / H, then there is a canonical
algebraic projective map f : Up/ / H ~ Uq/ / H which often corresponds to a
blowing up map (it may be a fibration, for example). (2). P together with the
canonical morphisms forms a nicely connected category, Le, any two objects in the
category can be connected by a fini te chain of some nice morphisms of the category.
(For the definition of the nice morphisms, see chapter 1.) (3) Consequently, any
two non-degenerate symplectic quotients are related by a sequence of canonical
blowing-ups and blowing-downs.

We point out that for a fixed moment map Jl (Le, an equivariant embedding of
X in some ambient projective space, or a metric for simplicity), Up/ / H (p E Jl(X))
do not give all symplectic quotients. So to get all of symplectic quotients, we have
to vary the metric on X and to consider Jl-l(p)/T for various corresponding
moment maps Jl.

0.4. Algebraic Quotients. There is another important and interesting class
of quotient varieties, "geometric" quotients and "semi-geometric" quotients, which
was first defined by A. Bialynicki-Birula and J. Sommese [B-BS2]. The definition
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of such a quotient is, like that of a symplectic quotient, also combinatorial and
depends only on the moment map. (We point out that the whole theory presented
here has a moment-map-free presentation, that is, we can work out the same
results without using moment maps. This indicates that many of our results
are also true with appropriate modifications in characteristic p > o. The trick
is th~t the fixed point set of the torus action can be used to play the role of
a moment map.) In fact, we can define the quotients in the sense of B-BS in
terms of the decompositions of Jl(X) into disjoint unions of moment map images
of torus orbits. Since the quotients in the sense of B-BS must be non-degenerate,
we give, in section 2.3, a slightly generalized version of their quotients so that
the generalized quotients can be degenerate. We shall call these (generalized)
quotients algebraic quotients.

Let p. denote the set of all algebraic quotients, then PCp.. One can
define the canonical algebraic maps among the quotients in p. and prove that p.
together with canonical morphisms forms a category. The following theorem is an
analogue of the above theorem for p., although its proof is combinatorially much
more complex than the previous one.

Theorem (2.4, 2.6). The theorem (1.4,1.5) is also true when replacing P by
p•. Moreover, (P,~) is a proper subposet of (p., ~.), in general.

As we shall see, the connectedness of P is almost obvious, but the connect-
edness of p. is far more vague. Also given an equivariant algebraic map from
one variety to another, one can "push-forward" and "pull-back" the quotients in
the category of p. via the equivariant morphism. But one can not "pull-back"
the quotients in the category of P, in general. In other words, the pull back of a
symplectic quotient may not be symplectic in general.

Theorem(3.1, 3.2). There is a canonical "biggest quotient variety" Q with
the following properties: (1). Q is a natural compactification of the space of the
closures of generic orbits. (2). For any algebraic quotient U/ / H, there is a natural
sujective algebraic map from Q to U/ / H.

To save space in this introduction, in the following, we shall mainly mention
the properties of quotients in P with the understanding that similar properties
also hold for quotients in p.. The reader should not think that it is easy to
generalize results from the category of P to p•. The only reason to restrict our
attention, in this introduction, to the category P is that the quotients in p. need
more terminologies and descriptions to deal with.
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0.5. Stratifying Canonical Maps.The main theme of this thesis is then to
investigate the algebraic maps defined in the theorems of 0.3 and 0.4 in an ex-
plicit way, and to apply the decomposition theorem ( in the theory of intersection
homology) to the above algebraic maps to connect intersection homologies. For
this purpose, we have

Let p E p(X) be a general point, q E p(X) be in the interior of a codim I wall
M. Assume also there are two G, F E T, G is a face of F such that p E F, q E G.
Now let HM = stabilizer of XM, HM = HI HM, then HM acts effectively on
XM. Let also Uq(M) = U{XD/ q E D eM}, and B = Uq(M)IHM, then
B = Uq n XM/ HM can be considered as a geometric quotient of XM with HM
action (Note that XM is nonsingular), and B C Uql IH.

Theorem (5.1.1, 2). (1) If M is a face of p(X) (Le, q is on the boundary of
Jl(X)), then B = Uql IH, and the natural projection 1r : Upl H ~ Uql IH is a fiber
bundle whose fiber is a weighted projective space.

(2) If p is an interior point, 1r : Upl H = X ~ Y = Uql IH is the natural
projection, and A = 1r-1(B), then 1rIA : A ~ B is a fiber bundle whose fiber is a
weighted projective space, and 1r is a isomorphism off B.

(3) The fiber of 1r in (1) and 1rIA in (2) are ordinary projective spaces if the
action is quasi-free, i.e, any finite isotropy group is trivial.

The fact that 1rIA : A ~ B is a weighted projective bundle over B can
be derived from the decomposition theorem of Bialynicki-Birula [B-B]. In fact,
dimHM = 1 since dimM = n - 1. Hence HM gives a (C*)-action on X. Let JlM
be its associated moment map, then PM is a non-degenerate Morse function [AI],
hence PM induces a Morse stratification X = Ua Sa and each Sa is a cell-bundle
over a certain connected component of the critical point set of PM (which is the
same as the fixed point set of HM). In [B-B], Bialynicki-Birula proved more, he
concluded that each cell-bundle above is actually a complex vector bundle, and
the induced (C*)-action on the fiber of the vector bundle is equivalent to a linear
action. The proof of (3) is immediate.

The theorem above takes the following version when p, q are arbitrary interior
points.

Theorem.(5.1.3,4). Let p, q be two interior points, and F, GET such that
G ~ F and p E F, q E G. Then there is a canonical stratification on Y = Uql IH =
UI3C13 such that the natural projection 1r : Upl IH ~ Uql IH becomes a stratified
map. More precisely, for each (3, 1r/1r-1(C,a) : 1r-1(C,a) ~ C,a is a fiberation tower
whose fibers are all weighted projective spaces.
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0.6. Small Resolutions. There are many small maps among the canonical
algebraic maps of the quotient varieties. In particular, we have

Theorem (5.3, 5.4). (1). If p is a general point, then Upl I H -. Uql I H is a
rational resolution of singularities (Le, a resolution up to finite quotient singular-
ities) of Uql IH. (In fact, a resolution if the action is quasi-free.)

(2) For any interior point r E fl(X) , there exists a general point P E p(X) such
that Upl H -. Uql I H is a small map. Consequently, H.(UpI H) = IH.(Uql I H).

The following is a consequence of the above and the decomposition theorem
of intersection homology theory.

Corollary. (5.6,5.7). Let the notations be as in theorem (5.1.3,4). Then for
any (3, and y E Cf3, the local intersection homology groups at yare determined
by the following equality:

for some m and di > 0, i= 1 ... m.

In virtue of theorem (5.3,5.4) above, to calculate the intersection homology
groups of quotient varieties, it is enough to focus on rationally nonsingular quo-
tients Upl H (where p are general points).

0.7. Homological Formula. Now we start to formulate our (intersection)
homology formula.

Let q be a general point in the interior of p(X) and p a point on the boundary
of p(X). Let also p;q be a piece-wise linear path from p to q such that it does not
meet any codim $ 2 wall. Suppose p;q meets exactly k codim 1 walls M1, ••• , Mk

in the points rl, ... , rk and we have

p -. f( MdMl -. •.. -. f( Mk )Mk -. q

where f(Mi) = :f:1 (depending only on the direction of M and Mi). We also make
the following convention:

Hj = HI(stabilizer of XMj in H),

Tj = T I(stabilizer of XMj in T),
-- Dand Urj(Mj) = Urj n XMj = U{X I rj E D C Mj}. (Note that Urj(Mj)1 Hj =

jl-l (rj) n XMj ITj is a symplectic quotient of Hj-action on XMJ, j = 1, ... , k).
Then we have
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Theorem.(5.7). (An inductive homological formula.)

or
Pt(p,-l(q)/T) = 'Ej=l, ...,k€(Mj)Qt(Mj)Pt(p,-l(rj) n XMj /Tj)

where Qt(Mj) = t2d,+2 + ... + t2ej, or 0, where dj ::; ej are two integers depending
only on Mj (They are the codimensions of certain subvarieties determined by
Mj• Also in other words, the pair (2dj, 2ej) is the signature at XMj of the Morse
function p,Mj •)

0.8. Vanishing Theorem and Cycle Maps. Let X be a compact com-
plex variety, Hi(X) be the ith integral homology group and Ak(X) be the group
generated by k-dimensional irreducible subvarieties modulo rational equivalence,
then there is a canonical homomorphism (cycle map, see [Fun:

A variety X is said to have property (IS) if
(a) Hi(X) = 0 for i odd, Hi(X) has no torsion for i even.
(b) C1x : Ai(X) ~ H2i(X) for all i.
A variety X is said to have property (RS) if
(a) Hi(X) ~ Q = 0 for i odd.
(b) C1x ~ Q ~ H2i(X) ~ Q for all i.

Theorem. (6.3.) Let U/ / H be an arbitrary algebraic quotient, then
(1) the rational intersection homology groups of U/ / H vanish in odd degree

and have no torsion in even degree if the fixed point set has the same property.
(2) the integral intersection homology groups of U/ / H vanish in odd degree

and have no torsion in even degree if the fixed point set has the same property
and the action is quasi-free.

Theorem. (6.4). Let U/ / H be an arbitrary algebraic quotient, then
(1) The rational cycle maps of U/ / H are isomorphisms if the rational cycle

maps of the fixed point set are isomorphisms.
(2) The cycle maps of U/ / H are isomorphisms if the cycle maps of the set of

the fixed points are isomorphisms and the action of the torus H is quasi-free.

As a consequence, one can see:
Let U / / H be an arbitrary nonsingular algebraic quotient, then (1)U / / H has

the property (RS) if the fixed point set has (RS). (2) U/ / H has property (IS) if
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the fixed point set has (IS) and the action of torus H is quasi-free.

0.9. Flag Manifolds. The case when X = G/ B is a flag variety and H is a
fixed maximal torus contained in B deserves detailed study in its own right.

In this particular case, we have: The closure of XM, where M is a wall of p(X),
can be naturally identified with P/ B, where P :J B is a parabolic subgroup.
Hence, all the fibrations in the theorems of 5.1 are trivial bundle because the
normal bundle of P/ B in G/ B is trivial,

We described, in the thesis, the moment map images in the case of G/ B in
terms of parabolic subgroups of the Weyl group W or coxeter complexes, together
we also described the torus strata closures for some interesting moment map im-
ages.

The case G = S L( n + 1, C) is particularly interesting.

Theorem. (7.2). One of the geometric quotient of maximal torus action on
the variety of full flags in Cn+t can be identified (not canonically) with the variety
of full flags in Cn

• As a consequence, any other geometric quotient can be derived
from this flag variety by a finite sequence of blow-ups and blow-downs.

As expected, one can describe, in the case when G = SL(n + 1, C), the mo-
ment map images and their strata closures in terms of both symmetry group and
Schubert conditions.

0.10. Homology of Complements of Subspaces. Naturally associated to
a torus action, one can study the following three kinds of spaces: 1. The quotient
varieties. 2. The torus strata. 3. The closures of torus orbits as toric varieties.

In this thesis, we mostly only study the quotient varieties. An attenlpt to
study torus strata has led us to consider arrangements

in Rn, where At,"', Am are closed subspaces of Rn satisfying the following 2
conditions: (a) each Ai is either homeomorphic to Euclidean space Rk of dimension
k or to the sphere Sk of dimension k, for some k < n. (b) each connected
component of an arbitrary non-empty intersection Ail n ... n Ai,. satisfies also
condition (a).

Associated to every arrangement A = {At, ... , Am}, there is a ranked poset
£(A) = (£,~, r) which can be constructed explicitly from the combinatorial
data of the intersections of A. Then the combinatorics of £(A) = £ determines
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completely the homology of the complement, M(A) = Rn
- U~lAi, of A.

Theorem. (A) (Homological formula for the complements of subspaces.)

Hi(Rn - U~l Ai; Z) = E9 Hn-r(tJ)-i-l (K(£>tJ), K(£(tJ,T)); Z)
tJe£

where T is the unique maximal element in £ representing Rn
, H-1(</J, </J) = Z as

a convention, and K(P) denotes the order complex of the poset P.

When each Ai in A is an affine linear subspace in Rn
, our formula coincides

with the one obtained by Goresky and MacPherson [GoM4]

ACKNOWLEDGMENTS. My first thought goes to my adviser, Professor
Robert MacPherson, without him this thesis would have been impossible. I am
very grateful to him for many detailed and stimulating discussions. In fact, many
ideas and results in this thesis belong to him. Thanks also go to Professor Daniel
Kan for his wonderful topology seminar which gave me a distinguished opportunity
to learn some classic papers on algebraic topology in a discipline manner. I would
like to thank Professor Steve Kleiman for informing me of the unpublished paper
[ES-B]. Thanks also go to Eugene Lerman and Reyer Sjamaar for being interested
in my work and for informing me of their works on singular reductions. I am
particularly grateful to Reyer Sjamaar for his many useful comments. I would like
to thank Professor David Vogan for always being helpful whenever a question was
asked. I would also like to thank Ian Grojnowski for smoothing the English of my
thesis summary (which is now a part of the introduction). Thanks go to Professor
Zhengfang Zhou and Peiru Wu for their kind help during our first few years in
Boston. My special thanks go to my wife Zhong Chen for her moral support
during my stay at MIT and her beautiful typing. Finally, thanks to everybody
with a smile on his face.

Vlll



Contents

1 Symplectic Quotients and Their Properties
1.1 Notation and Conventions .
1.2 The Torus Stratifications .
1.3 The Definition of Symplectic Quotients .
1.4 What Happens When Passing Through Singular Values
1.5 Symplectic Quotients with Algebraic Maps .

2 Algebraic Quotients and Their Properties
2.1 Admissible Polyhedral Decompositions of p(X)
2.2 Definition of Geometric Algebraic Quotients . .
2.3 Definition of Semi-Geometric Algebraic Quotients. .
2.4 Algebraic Maps among Algebraic Quotients . . . .
2.5 Propositions of Admissible Collections of Subpolytopes . .
2.6 Algebraic Quotients with Algebraic Maps
2.7 Counting Algebraic Quotients . . . . . . . . . . . . . . . .

3 The Space of the Closures of Generic Orbits
3.1 A Theorem of Bialynicki-Birula and Sommese .
3.2 The Space Q and Quotient Varieties . . . . . .
3.3 The Space Q and Chow Quotients. . . . . . . .
3.4 Special Admissible Decompositions and Some Conjectures

4 Equivariant Morphisms
4.1 Moment Cell Complexes .
4.2 Deformation of Admissible Decompositions
4.3 Pulling Back Quotients . .
4.4 Pushing Forward Quotients . . . . . . . . . .

5 The Topology of Symplectic Quotients
5.1 The Statements of Results .
5.2 The Proofs of Some Theorems in 5.1
5.3 Small Resolutions: the Simple Cases
5.4 Small Resolutions: the General Case

1
1
1
2
3
5

7
7
8
8
9

10
11
13

15
16
17
18
20
22
22
24
25
26

28
28
31
33
35



5.5 The Decomposition Theorem . . . . . . . . . . . . . . . . . . 39
5.6 The Formulas for Intersection Homology: the Simple Cases 40
5.7 The Formulae for Intersection Homology: the General Case 42
5.8 Comments on Kirwan's Formula . 44
5.9 Comments on Ordinary Homology . . . . . . . . . . . . . . . 45

6 The Topology of Algebraic Quotients
6.1 Statements of Results . . . . . . . . . . . . .
6.2 Small Resolutions .
6.3 The Vanishing of Homology in Odd Degrees
6.4 Cycle Maps . . . . . . . . . . . . . . . . . . .

48
48
50
50
52

7 The Case of Flag Varieties 54
7.1 Weighted Projective Spaces 54
7.2 Statements of Some Results. . 55
7.3 Moment Map Images of G/ B 58
7.4 Parabolic Subgroups of W . . . 59
7.5 Parallel Walls and Faces of p.( G/ B) 59
7.6 More Properties of Parallel Walls and Faces of p.(X) 61
7.7 Half Regions and Their Torus Strata . 62
7.8 Intersections of Half Regions 63
7.9 Regions Defined by Faces of p.(X) 65
7.10 The Star Constructions and Their Applications 66
7.11 A Direct Proof of Theorem 7.2.1 . . . . . 68
7.12 The Triviality of Some Canonical Bundles . . . 70
7.13 The First Proof of Theorem 7.2.2. 71
7.14 The Second Proof of Theorem 7.2.2 when G = SL(n + 1,C) . 72
7.15 The Singular Loci of Singular Quotients . . . . 73
7.16 Intersection Homology of Symplectic Quotients . . . . . . . . 74

8 Explicit Results for G/B, G = SL(n + 1,C) 76
8.1 Parallel Walls in Terms of Symmetry Groups ... . . . . 76
8.2 Schubert Conditions and Strata Indexed by Parallel Walls 79
8.3 Schubert Conditions and Strata Indexed by Half Regions. 80
8.4 On the Zariski Open Subsets U(l) and U(n) . . . . . . . . 82

9 Miscellaneous 85
9.1 On the Grassmannian G(k, Cn+1) • • • • • • • • • • 85
9.2 Homogeneous Spaces that Project to pn . . . . . . 86
9.3 Fibrations G/ PJ --t G/ PI and Weight Diagrams. 87
9.4 Some Examples on Torus Strata of G = SL(n + 1, C)/ B 88
9.5 Real Parts of Symplectic Quotients and Real Moment Maps 90

II



Appendix

A The Homology of the Complements of Subspaces

B Extention to General Group Actions

C Combinatorics of the Posets P and P*

111

92
92
93

94



Chapter 1

Symplectic Quotients and Their
Properties

The main object of this chapter is to collect a few well-known results. The fact that
the symplectic quotients together with the canonical morphisms form a category
is pointed out. Furthermore, we prove that this category is nicely connected, that
is, any two objects in the category can be connected by a finite chain of some
"nice" morphisms in the category.

1.1 Notation a nd Conventions

Let X be a complex projective variety with an action of an algebraic torus H =
(c*)n. We assume the torus action extends to a linear action on the ambient
projective space pN. Choose a Kaehler metric on pN which is invariant under
the com pact torus T = (81) n C (C*) n and let p : X --. Rn be the associated
moment map (Le, the restriction to X of the moment map associated to the
ambient projective space pN. So we can talk about moment maps for X even
if X is singular.) Then for any x in X, it is known that p(H . x) is a convex
polyhedron C in Rn, and H . x/T projects homeomorphically to the interior Co
of C under p. ([AI], [GuStI]).

Convention. Let::: denote the collection of p - images of torus orbit closures.
Then this is a collection of compact polyhedra in Rn

•

1.2 The Torus Stratifications

Definition. Let C be a p - image of a torus orbit closure. A point x E X is in
the torus stratum XC if p(H . x) = C, Le.

XC = {x E Xlp(H . x) = C.}

I



Then
x = u Xc,

CeE
which we shall call the torus stratification of X. We should warn the reader
that this is not a Whitney stratification but merely a decomposition of X into a
union of locally compact subspaces.

Let D, C E 3. If D is a face of C, then there is a unique algebraic map
PCD : ItJ = XC / H ~ RD = X D / H which can be characterized as follows:
suppose x E XC is a lift of x E XC / H and suppose y E XD is a lift of y E XD / H,
then PCD(X) = Y if and only if y E H . x (see [GoMI]).

1.3 The Definition of Sym plectic Quotients

Definition. Let 0 = Jl(X), and p E 0, define

then Up is a zariski open subset of X, and the categorical quotient Up/ / H in the
sense of Mumford's geometric invariant theory exists. It is also very common to
denote Up by X;s in accordance with geometric invariant theory. (the subscripts
"ss" stand for semi-stable, hence X;s means the collection of "semi-stable" points
with respect to point p.) Moreover, if p is in the interior of Jl(X), then Up/ / H has
the "correct" dimension, that is, it is of dimension dim X - dim H. In this case,
we call Up/ / H a non degenerate quotient. Otherwise (Le, p is in the boundary of
Jl(X)), then the dimension of Up/ / H is strictly less than dim X - dim H. In
this case, we call it a degenerate quotient. An extreme example of degenerate
'quotients is the case when p is a vertex of Jl(X). In this case, Up/ / H is a point
variety.

we make a convention that the interior of a polyhedron is called an open
polyhedron. We shall often use DO to denote the interior of a polyhedron D. And
if D is a face of C, then we write D ~ C.

There is a natural decomposition of 0 = p(X) into a union of convex polyhedra

0= U F
FeT

where T is the index set, Such that every top dimensional open polyhedron F in
T is a connected component of the regular values of the moment map Jl, and the
other open polyhedra are just open faces of those of top dimension.
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Given a F E T, p E F,Up does not depend on p, i.e.

So sometimes we write UF instead of Up. When p is in a top dimensional F, i.e,
p is a regular value of p, Upl IH coincides with the ordinary orbit space Upl H.

It is known that UpllH can be identified with J.l-l(p)IT, T = (Sl)n C (C*)n.
If X is nonsingular, the torus action is quasi-free (Le., all the finite isotropy
subgroups are identity subgroup), and p is a regular value of p, then p-l (p)IT is
a nonsingular symplectic manifold, called a reduced phase space of the torus
action. If we do not assume that the action is quasi-free, then J.l-l(p) may have
finite quotient singularities. However, if p is not a regular value (Le, p is in the
p - image of a torus orbit of dimension less than n), J.l-1 (p) IT may have serious
singularities in general, it is a singular symplectic space. We shall call p-l (p) IT
or Upl IH a symplectic quotient.

Remark. The decomposition

0= U F
FEr

depends on the moment map (or the metric on X) very much . Hence for a fixed
moment map p (or a metric), p-l(p)IT (p E p(X)) do not give all symplectic
quotients. To get all of symplectic quotients, we have to vary the metric on X
and consider p-l(p)IT for various corresponding moment maps p. Note also, for
two different moment maps Pt and P2, some Up(p E Pt(X)) may be identical to
Uq (for some q E P2(X))!

1.4 What Happens When Passing Through Singular Values

Definition. A codim d J.l- image of a torus orbit closure,M, is called a codim d
wall if M is not contained in any other codim d J.l- image of a torus orbit closure.
A wall is called an interior wall if it is not a face of J.l(X).

Remark. If X is nonsingular and M is a wall, then X M is a nonsingular
subvariety of X with the action of HI HM where HM is the isotropy subgroup of
X M. This fact follows from two arguments as follows:

(1) The connected components of fixed point set of a torus action on a non-
singular variety are nonsingular.

(2) XM is a connected component of the fixed point set of the action of HM
on X.
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As pointed out in 1.3, when a point p varies within an "open" polytope of T,
then the homeomorphic type of J.L-1(p) IT does not change. This fact was first
observed by Duistermaat and Heckman for regular p, where they even showed
that the symplectic form on J.L-1(p)IT changes in a simple fashion if p moves in
a simple fashion. In [GuSt], it was proved that when p goes from one side of an
interior codim 1 wall to the other, then the diffeotype of J.L-1(p)/T changes by a
blowing down followed by a blowing up. These blowing up and downs are in fact
canonical. This was done explicitly in [GoM1]. One of the advantages of [GoM1]
is that it tells us not only what happens when passing through a codim 1 wall,
but also what happens when passing through higher codim walls.

Theorem. [GoM1, GuSt3]. Let FI, F2 E T, and F2 be an open face of F1,

then there is a unique map f from UF1 I I H to UF'2/ I H which corresponds to a
blowing up map if the both quotients are non-degenerate.

Given apE IntO. Let C E 3, and p E C. Define

Up(C)= U XD,
pEDcC

then we have
Up(C) c Up

1 1
Up(C)1 IH c Upl / H,

which is a commutative diagram. Up( C)I I H can be thought as a categorical
quotient of the variety Xc.

Convention. Two points a and b in J1.(X) are said to be "close enough" to
each other if there is an open polytope F in T whose closure contains both a and
band (at least) one of a and b is contained in F itself.

Let r be a (relatively) general point in a wall M, and p, q be two general points
on two different sides of M and close enough to r ( in the other words, there are
two top dimensional Fh F2 E T such that p E FI, q E F2, and r E F1 n F2 eM).
Suppose also there are two M+, M- in 2 with M as their common face such
that for any E E 2, if r E E, then exactly one of the following three is true:
1). E contains both of p and q; 2). E C M+; 3). E c M-. So without loss of
generality, we assume F1 C M+, F2 C M-. Then the following proposition follows
immediately from the definition.
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Proposition. The diagram

Up(M+)/ H ~ Ur(M)/ H +- Uq(M-)/ H

! ! !
Up/H ~Ur//H t-!-Uq/H

commutes, where the vertical maps are closed embeddings, and f is an isomorphism
off Up(M+)/ H, 9 is an isomorphism off Uq(M-)/ H. In fact, Up/ H -Up(M+)/ H =
Ur/ / H - Ur(M)/ H = Uq/ H - Uq(M-)/ H, so f and 9 are actually identities over
Up/ H - Up(M+)/ Hand Uq/ H - Uq(M-)/ H, respectively.

Remark. In the case of a homogeneous space G/ P with a maximal torus
action, the conditions preceding the proposition above are fulfilled automatically.
(see 7.7).

1.5 Symplectic Quotients with Algebraic Maps

Let P = P(X) denote the poset of all symplectic quotients (for various metrics
on X) ordered by projection characterized in the theorem of the previous section
(note also the remark before that theorem). clearly, P together with the canonical
algebraic maps forms a finite category. We shall still use P to denote this category.

Definition Let f : Up/ / H ~ Uq/ / H be a canonical morphism. f is called
nice if the dimension of the isotropy subgroup of H on Up is not great than the
dimension of the isotropy subgroup of H on Uq plus 1. For example a morphism
from a quotient variety to a point variety is, in general, not nice, for there is no
usuful information contained in this morphism. To see "how nice" a nice morphism
can be, see chapter 5.

Theorem. l' as a category is nicely connected. In other words, any two
symplectic quotients can be connected by a finite chain of some nice morphisms.

Proof. For a given metric, let J.l be a moment map determined by this metric
(note that any two moment maps under the same metric only differ by a constant
in Rn, so it is enough to consider only one fixed moment map for each metric),
and let

then, it is quite clear that PIJ gives a nicely connected category. Since
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and we have only finitely many different PIJ's, it suffices to show that P;1 np;2 =F 0.
where

P~1 = {Upl P E Int(pl(X))}

P~2 = {Uql q E Int(p2(X))}

We want to show this by induction on the dimension of X.
If dimX = 0, then the assertion is trivial. Now let dimX = N, and assume

that the assertion is true for varieties of dimension less than N. Take two codi-
mension 1 faces 0"1 and 0'2 of Pt (X) and P2(X) respectively so that X(J1 = X(J2,
I.e

then
dimX(J1 = dimX(J2 < dimX,

so by the induction hypothesis, there are two (relatively) general points qt and q2
in 0'1 and 0"2 respectively, such that

Now let PI and P2 be two general points in PI (X) and P2(X), close enough to ql
and q2 respectively, then

UP1 = {x E XI Hx J (=F)Hyfor some y E Uql (0'1)}

UP2 = {x E XI Hx J (=F)Hyfor some y E Uq2(0'2)}
Since

Uq1 (O't) = Uq2(0'2),

the above implies that UP1 = UP2, that is

P~1 nP~2 =F 0.

so

Corollary. Every two symplectic quotients are connected by a sequence of al-
gebraic maps characterized in theorem 1.4. In particular, any two non-degenerate
quotients are connected by a sequence of blowing-ups and blowing-downs charac-
terized in theorem 1.4.
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Chapter 2

Algebraic Quotients and Their
Properties

In this chapter, the algebraic quotients (both non-degenerate and degenerate)
are defined and the canonical morphisms among these algebraic quotients are
characterized. The algebraic quotients together with the canonical maps form
a finite category. Furthermore, we prove that this finite category is "nicely"
connected.

2.1 Admissible Polyhedral Decom positions of J-L(X)

Let us follow the notation in the previous chapter.

Definition. Let Int(O) be the interior of the convex polyhedron 0 = Jl(X).
A decomposition of Int(O) into a union of "open" subpolytopes is said to be
admissible if it is a disjoint union of Jl - images of some torus orbits.

There are various decompositions of Int(O) into disjoint union of 1'- images
of some torus orbits. The number of such decompositions is finite. Similarly,
we call a decomposition of Jl(X) into a union of disjoint 1'- images of torus or-
bits an admissible polyhedral decomposition of Jl(X), or simply admissible
decomposition of Jl(X). Actually, the two concepts determine each other in
a unique way, which we shall formulate in lemma 4.2. In their paper [B-B,S],
A. Bialynicki-Birula and J. Sommese constructed a class of Zariski open subsets
that have Hausdorff compact normal quotients. In their construction they used
the terminology of moment cell complex. In what follows, we shall interpret their
construction in terms of decompositions of Int{O) into disjoint union of Jl-image
of torus orbits, and generalize them to some Zariski open subsets whose Hausdorff
compact quotients may have ("incorrect") smaller dimensions.
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2.2 Definition of Geometric Algebraic Quotients

Definition-Proposition. (An interpretation of geometric quotients in the sense
of B-B,S). Let 31 be a collection of top dimensional polytopes in 3, and

such that the collection {DO ID E 31} meets each admissible decomposition of
Int(O) in exactly one J.l - image of torus orbit. Then U is Zariski open and the
orbit space U/ H is Hausdorff and compact. In the case that X is nonsingular,
U/ H has (possibly) only finite quotient singularities (caused by the finite isotropy
subgroups ).

We point out that such a quotient must be non-degenerate.

2.3 Definition of Semi-Geometric Algebraic Quotients

Definition-Proposition. (An interpretation of semi-geometric quotients in the
sense of B-B,S). Let 31 is a collection of polyhedra in 3 and

such that no polyhedron in 31 lies on the boundary of 0 and the collection
{DOID E 31} meets every admissible decomposition of Int(O) in exactly one
open polytope, then U has Hausdorff compact quotient U / H (which may have
serious singularities).

In general, U is not a open subset, to remedy this, we define il :J U as follows,
il = U{XC\C has a face in 31}, in other words, whenever XD C U, but D is not
top dimension, we add those strata XC where D is a face of C. Then it is a Zariski
open subset of X, and the categorical quotient it / /H in the sense of Mumford's
geometric invariant theory can be identified with U/ H. Actually, there is unique
map from il to il //H whose fiber at every point is a connected union of orbits
with only one closed orbit in the union. So if we write il as a union of torus strata

where 31 is a subcollection of 3, then we have:
(1). 31 meets every admissible decomposition of Int(J.l(X)).
(2). Suppose 31 meets an admissible decomposition in exactly r polytopes,

say, D1, ••• , Dr, then there is a unique minimal polytope among D1, ••• ,Dr under
the face relation.
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Again the quotients defined above must be non-degenerate. For degenerate
quotients, we have the following generalized version of 2.2 and 2.3:

Proposition. Let every assumption be as in definition-proposition 2.2 and
2.3 except that we replace the admissible decompositions of Int(Jl(X)) by the
admissible decompositions of Jl(X). Then the quotient U/ / H still exists (but
may be degenerate), where the open set U is defined in a similar way as before.

For convenience, we shall call the Zariski open subsets in section 2.2 and U
above algebraic open subsets, their corresponding quotients algebraic quo-
tients, and the polyhedral collections 31 C 3 defining them admissible poly-
hedral collections, or simply admissible collections. Clearly, any symplectic
quotient is an algebraic quotient.

Convention. We want make a useful convention here. In what follows, when
we sayan admissible collection of subpolyhedra we shall either mean 31 or 31, de-
pending whether we use "tilde" or not. However, when we say their corresponding
algebraic open subset, we shall only mean U.

2.4 Algebraic Maps among Algebraic Quotients

Definition. Let 31, 32 be two admissible collections of polytopes in 3. We say
32 ~ 31 if for any D E 32, there is C E 31 such that D is a face of C (they may
be equal). Note that the definition is equivalent to : for any C E 31, there is
D E 32 such that D ~ C (they may be equal).

An alternative definition is: let 31 and 32 be two admissible collections of
polyhedra in 3. We say that 32 ~ 31 if 31 c 32• (Do not confuse this definition
with the proposition in the next section. Consult with convention 2.3.)

Proposition. Let 31, 32 be two admissible collections of polytopes in 3, U1

and U2 be their corresponding open subsets. Then there is a unique a.lgebraic map
P=-t ,=-2 from U1 / H to U2/ H. P=-t ,=-2 often corresponds to blow up map.

Proof. P=-t,2.2 is induced from various algebraic map PCD. In fact, U1 is
included in U2, and the map P2.t,=-2 is just the induced map from that inclusion.

Definition Let f : U1 / / H ~ U2/ / H be a canonical morphism. f is called
nice if the dimension of the isotropy subgroup of H on U1 is not great than the
dimension of the isotropy subgroup of H on U2 plus 1. To see "how nice" a nice
morphism can be, see chapter 6.
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2.5 Propositions of Admissible Collections of Subpolytopes

Now We shall give a proposition of admissible collection: Let =1 be an admissible
collection and A E =1. If B E = and BO :::> A° then B E =1. The proof goes
as below: Assuming that B rt =1. Choosing an admissible decomposition 9
containing BO, since B rt =1, then there is C such that C E =1, CO n BO = 0,
CO E ~, Now replace BO in ~ by an admissible decomposition of BO (think of
XB as a variety) that contains AO, then we get an admissible decomposition ~ of
Jl(X) which contains both AO and Co. Clearly AO '# Co, contradiction, that is,
B E =1.

Proposition. For any two admissible collections of polyhedra in =, say =1
and =2, if =1 c =2, then =1 = =2.

Proof. Assuming there is a polytope C in =2 - =1, then there is a admissible
decomposition ~ of Int(O) containing C. Take the unique D in ~ that belongs
to =t, then we got two distinct polyhedra C and D in =2, contradiction.

Definition. We call an admissible collection =1 of polyhedra in = general if
it only consists of top dimensional subpolytopes.

Theorem. Let =1 be an admissible collection of polyhedra in =, then there
exists an admissible collection =2 of polyhedra in = such that =1 ~ =2, =2 is
general.

Proof. Pick up all the codim 1 walls containing some polyhedra in 31 of non
top dimension. Let M be such a codim 1 wall, then spancM divides Rn into two
half space Ht and Hit. Clearly, =1(M) = 31 n M is an admissible collection
for XM. Here we can apply induction to assume that there is an adimissible
collection 32( M) for X M consisting of polytopes of dimension n - 1, such that
=1(M) ~ 32(M). Now we define =2 to be the set of top dimensional D E 31 such
that for any above selected codim 1 wall M, we have either DnMo '# 0, or D is in
Ht and has a face in 32(M). It is obvious that 31 ~ 32• As we can check directly
32 must meet every admissible decomposition of Int(O). Now assuming there is
admissible decomposition ~ such that two elements D1, D2 in 32 are contained in
the union ~, then by the construction of 32, there must be Ct, C2 E 32(M) such
that C1 ~ Dt, C2 ~ D2• Then C1 must equal to C2 because Ct, C2 can be in one
admissible decomposition (see lemma 4.2 for an explict reason). So the fact that
D1 and D2 are both in Ht implies that they must intersect. This contradicts
with the definition of an adimissible decomposition of Jl(X).
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Remark. In the case that X is nonsigular, then the theorem tells us that

is a rational resolution (in fact, a resolution in the case the action is quasi-free).

2.6 Algebraic Quotients with Algebraic Maps

Lemma. Let (C*)k act algebraicly on a compact complex variety X, and J.l be
an associated moment map. Then the moment map image of any torus orbit is a
face of the moment map image of a top dimensional torus orbit. In other words,
for each point x EX, there is ayE such that (C*)k . y is of top dimension and
x E (C*)k . y.

Proof. Take z to be a generic point on X. From [B-BS2] (see also ~3.3), we
have the following diagram of morphisms

f!
Qz

where Zz and Qz are compact complex spaces, 4> is surjective, and the image under
4> of a fiber of f is a union of top dimensional orbit closures, therefore X is the
union of torus orbit closures of top dimension. The theorem hence follows because
4> is surjective.

Let P* = P*(X) be the set of all algebraic quotients (or the set all admissible
collections of polytopes in =, equivalently). Then P* together with the canonical
algebraic maps forms a finite category. We shall still use P* to denote this cat-
egory. Also by 2.4, the relation " ~" among the quotients gives P* a partially
ordered structure.

Theorem. P* as a category is nicely connected. As a consequence, any two
algebraic quotients are connected by a sequence of canonical nice algebraic maps
defined in 2.4.

Proof. By theorem 2.5, we need only to prove that two admissible collections
of top dimensional polyhedra in = can be connected by a successive chain of
admissible collections.
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So let 31 and 32 be any two admissible collections of top dimensional polyhedra
in 3. Assume we have

DE =2 - =1 n =2

Now given any admissible decomposition ~ of Int(O) = Int(Jl(X)) that contains
D, there should be C E 31, such that C is not equal to D and C (depends on ~)
is also in the decomposition ~. Now take two (very) general points p and q in C
nad D respectively, such that the segment p, q does not meet any codimension 2
polyhedra of 3. Then by the lemma, we have

where Ei, i = 1, ... , k are some polyhedra in ~ of dimension n -lor dimension n
such that every Ei meets p, q and Ei :/; Ej if i :/;j. Since the number of polytopes
in 3 is finite, the maximum of k's above is also a finite number, denote it by ko.
Now extend the chain above to a chain with ko + 2 polytopes,

where Ek+l = ... = Eko = C. Then we have

where 321 is an admissible collection of polyhedra in = obtained from 32 by
replacing only D by E1 's, 322 is an admissible collection of polyhedra in 3 obtained
from 321 by replacing E~s by £2'S, and so on. Now we have to show that =2i' i =
1, ... ,ko are really admissible collections of polyhedra. We start from 321•

Let ~ be an arbitrary admissible decomposition of I nt(O), if ~ does not contain
an element of 32 - 31 n32, then the unique polytope in ~ n 32 is also the unique
polyhedron in ~ n 321 by our construction of =21; If ~ contains an element D of
32 - 31 n 32 , then 321 must contain a E1 in ~ with £1 ~ D. This shows that
321 meets every admissible decomposition of Int(O). Now assuming 321 contains
two £1 and E~ in a single admissible decomposition~. Then ~ should contain an
element D of 32 - 31 n 32, from our construction of 321, £1 ~ D, E~ ~ D, this
implies E1 = E~. Similarly, we can show that E22 is also an admissible collection,
and so on.

Now we have

Now let 33 plays the role of 32, and do the same for =3 and 3}, as we did before
for 32 and 31• Since the number of subpolyhedra in = is finite, and
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we should finally end up with a chain

"th - - n- 0 th t. - - - . - - H - - bWI '::'m- '::'m '::'1= , a IS, =-m= '::'1 n=-m, l.e, '::'mC =-1. ence, =-m= =-1 Y
Proposition 2.5. So the theorem is proved, as desired.

Corollary. Let:=:1 be an admissible collection of top dimensional polyhedra in
:=:and U1 be its corresponding zariski open subset. Let :=:2be another admissible
collection of polyhedra in :=: and U2 be its corresponding zariski open subset.
Suppose that :=:1covers :=:2,that is, :=:2~ :=:1and there is no admissible collection
:=:'so that :=:2~ :=:'~ :=:1,then

(1) There is a codim 1 wall M so that the codim 1 polytopes in :=:2make of an
admissible collection :=:2(M) for X M.

(2) Let 3~ be the subpolytopes in 21 such that they have faces in 22(M).
Then :=:1- 3~ = :=:2- :=:2(M), and 3~ lies in one of half spaces divided by PM,
where PM be the hyperplane generated by M.

(3) We have a fiber square

A~UIIH

! !f
B ~U21/H

where B is defined to be (U{XD; D E 32(M)})/ H which is a geometric quotient
in XM, and A = /-1 (B). Moreover, UII I H - A is isomorphic to U21I H - B (they
are actually identical).

Proof. Let C be a codim 1 polyhedron in :=:2and M be a codim 1 wall
containing C, then the corollary follows from the proof of the theorem above and
the fact that =1 covers :=:2.

Remark. This corollary is the starting point of our statement that the alge-
braic quotients have all the properties that symplectic quotients have. We shall
make this explicit in the rest of the paper.

2.7 Counting Algebraic Quotients

In what follows, we give a method to count the number of non-degenerate elements
in P* if it is interesting at all.

The collection A of admissible decompositions of Int(JL(X» (resp, JL(X» has
a partial ordering by refinement.
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Lemma. Let 31 C 3 be an arbitrary admissible collection, ~ and SS be two
admissible decompositions of I ni(p(X)). If ~ -( SS, then 31 n SS is determined
uniquely by 31 n ~.

Proof. It suffices to note that if D E 31 n ~, then the unique polytope C in
~ containing D must belong to 31•

So if ~i ••• SSr denote the minimal elements in A and ISSil(l ~ i ~r) denotes
the number of (open) polyhedra in SSi which are not contained in the boundary
of p(X). Then by the lemma, we have

Proposition. The number of non-degenerate quotients is given by

Example. X = 8L(3, C)/B. In this case we have that the number of non-
degenerate elements in P* is 3 x 3 x 3 = 27.
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Chapter 3

The Space of the Closures of
Generic Orbits

The most part of this chapter is independent of the rest of the paper and has its
own interest.

From now on and henceforth, the generic points of X will always refer to
the points in the biggest stratum XJ.&(X) unless indicated otherwise. Accordingly,
the generic orbits shall be the orbits of the generic points above. Note that the
space of generic orbit closures equals to the space of generic orbits because both
of them are just XJ.&(X) / H by definition.

As we have known, there is no canonical compactification of the space of generic
orbits, which can also be regarded as an algebraic quotient variety. However, in
their papers [B-BS1,2], A.Bialynicki-Birula and J. Sommese used the work of
A.Fujiki and D. Lieberman on compactness of components of the Douady space
of Kahler manifolds and constructed a canonical compactification Q of the space
of generic orbit closures.

In this chapter, we shall show that Q can be regarded as a "biggest quotient
variety" in the sense that there is a surjective morphism from Q to any algebraic
quotient. Also we shall prove that the space Q is the Chow quotient (Almost at
the last moment when I prepared to submit this thesis to M.LT, I got a copy of
Kapranov's preprint [Ka]. Once I read the first few pages of his preprint, soon I
realized that the space Q that I studied in this thesis is the same as the Chow
quotient defined in his preprint.) The proof of this last statement leads to the
following two results: (1) An alternative construction of Bialynicki-Birula and
Sommese's theorem, which is much simpler and easier. (2) A generalization of B-
B,S's theorem to any reductive algebraic group action. The author believes that
this generalization should enable us to extend most results in [B-BS] to arbitrary
algebraic group actions. Consequently, we should be able to construct many more
categorical quotient varieties other than the quotients that can be identified with
symplectic reduced spaces in the sense of [MaW].
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3.1 A Theorem of Bialynicki-Birula and Sommese

Theorem. Let X and H be as above. There is for any x E X with dimH. x = n
a diagram

with the following properties
(a). Ix is a flat surjective morphism of connected compact complex spaces Zx

and Qx,
(b). the restriction of rPx to the fiber 1;1(q) of Ix at every point q in Q is an

embedding, and there is q in Q such that rPx(/;l (q)) = H . x,
(c) there is a natural action of H on Zx making Ix and C/>X equivariant with

respect to the trivial action of H on Qx and the given action of H on X,
(d). there is a dense Zariski open set Ox C Qx such that for each q E Ox,

1;1(q) is reduced and c/>x(/;l (q)) is the closure of a H orbit,
(e). the reduction of every fiber of Ix is pure K dimensional and for fibers

{/;l(q), 1;1(q')} that are reduced, rPx(/;l(q)) = c/>:r:(/;l(q')) only if q = q',
(f). given any diagram

Z'~X

I' !
Q'

that satisfies properties (a) through (e), there is a holomorphism map:

such that the diagram of (f) is the pullback of the diagram in the very beginning.

It should be pointed out that any two points in a single torus stratum indexed
by a top dimensional subpolytope define the same diagram in the theorem. So
when x E X~(X), we will drop the subscripts of the diagram in the theorem and
therefore get the following diagram:

Z..!.....X

I!
Q

for generic points (or, for the stratum X~(X»).
Clearly Q contains 0 as a zariski open subset which can be identified with
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X~(X) / H by
o ~ 4>1-1(0) = H. X,O E 0,

where x is some point in X~(X).

3.2 The Space Q and Quotient Varieties

The following theorem says that Q can be regarded as the biggest "quotient"
variety of X in the sense that there is natural morphism from Q to any of the
algebraic quotients.

Theorem. Let U be an arbitrary algebraic open subset, then there is a natural
surjective morphism h from Q to U / / H. This can be illustrated by the following
"commutative" diagram:

Z~XJU

I! 1r!
Q~U//H

where 11' is the natural projection from U to U/ / H. In the case that U/ / H is not
degenerate, h is birational.

Proof. Given q E Q, then 4>(I-t (q)) is a union of torus orbits,

H . Xt U ... u H . Xm•

Using [B-B2], one can see that the moment map images of these orbits gives rise
to a disjoint union of Jl-images

Jl(X) = IIJl(H . Xi).
i

So by the definition of a algebraic quotient, we can define a map h by

where cPf-1(q) nU is a non-empty union of orbits with a unique closed orbit in
U and [<p /-1 (q) n U] denotes the induced point on U / / H. It is easy to check
that h is a well-defined morphism from Q to U / / H. To see the birationality and
surjectivity of h, it suffices to note that h sends a zariski open subset 0 of Q to
a zariski open subset XJJ(X) / H of U/ / H.

Remark. (1). In the case that h is projective, then h should correspond a
blow-up map from Q to U/ / H. (2). The map Z ~ Q gives rise to a family of
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algebraic variety parametrized by Q, whose generic fiber is a toric variety, H . x,
x E XJJ(X).

The space Q has a canonical stratification

where A is a finite index set, such that two points ql and q2 of Q are in one
stratum if and only if 1-1 (qd is isomorphic to 1-1 (q2) as varieties, this amounts
to requiring that p,(C/>(/-1(qd)) and p,(C/>(/-1(q2))) give the same decomposition of
p,(X) into disjoint union of p,-images of torus orbits.

Let U be an algebraic open subset of X defined by admissible collection 31 C 3,
and h be the morphism from Q to U / / H characterized in theorem 3.2. Then for
each stratum ra of Q, h(f a) should be of form XD / H, where D E 31• So

U//H = h(Q) = U h(fa)
aeA

gives a natural stratification of U/ / H, which can also be induced from the torus
stratification X = UDe=: XD•

Since the stratification UDe=: XD does not satisfy the axiom of the frontier
in general, neither does U / / H = UaeA h(f a) in general, this suggests that the
stratification

Q= U fa
aeA

do not satisfy the axiom of the frontier in general either.

3.3 The Space Q and Chow Quotients

We have two aims in this section: (1) To generalize B-B,S's theorem to any reduc-
tive algebraic group action. This generalization gives automatically an alternative
construction of B-B,S's theorem, which is much simpler and easier. (2) To prove
that the space Q is the Chow quotient.

Let G be an algebraic group acting on a projective variety X. There is an
invariant zariski open subset U C X of generic points such that for all points
x E U, the varieties G. x have the same dimension, say, r and represent the
same homology class 6 E H2r(X, Z). Let Cr(X,6) be the Chow variety of all r-
dimensional algebraic cycles in X which represent the homology class 6. The map
G . x ~ G. x defines an embedding of U /G to Cr(X,6) and the closure of the
image U/ G in Cr (X, 6) is the Chow quotient ([KaD. We use M to denote U/ G.
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Now we define

s = {(C,x) E Cr(X,h") x X I x E C. for some i,C = EmiC. E M}
i

where C.'s are irreducible subvarieties of dim r. Then we have a diagram

S~X

g!
M

where 9, t/J are the first and second projections respectively. It is straightforward
to check that we have the following generalization of B-B,S's theorem.

Theorem. For the diagram above, we have:
(a). 9 is a flat surjective morphism of connected compact varieties Sand M,
(b). the restriction of t/J to the fiber g-1 (m) of 9 at every point m in M is an

embedding, and there is m in M such that lj1(g-l(m)) = G . x for some x E U,
(c). there is a natural action of G on S making 9 and t/J equivariant with

respect to the trivial action of G on M and the given action of G on X,
(d). there is a dense Zariski open set 0 C M such that for each m EO,

g-l(m) is reduced and lj1(g-l(m)) is the closure of a G orbit,
(e). the reduction of every fiber of 9 is pure r dimensional and for fibers

{g-l(m),g-l(m')} that are reduced, lj1(g-l(m)) = lj1(g-l(m')) only if m = m',
(f). given any diagram

S'~X
g' !

M'
that satisfies properties (a) through (e), there is a holomorphism map:

c:M'~M

such that the map g' is the pullback of the map g.

Proposition. In fact, for any x E X such that G . x is of top dimension, we
have a diagram

Mx

such that the theorem holds for this diagram.
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The definition of Mr and Sr are similar to those of M and S. Let Ur be a
"sufficently large" invariant subset containing G. x such that for all y E Ur, G . y
lie in the same Chow variety Ch(X, r), then define Mr is the closure of Ur/G in
Ch(X, r). Sr can be defined similarly.

Corollary. Let G be a torus. Then the diagram in the theorem above coin-
cides with the diagram in 3.1. In particular, the space Q is the Chow quotient
M.

Proof. By the properties (f) in both theorems, we conclude that they must
coincide.

For the action of (c*)n-l on G(2, cn), we shall know in 9.1 that pn-3 is an
algebraic quotient of this action. Since for this action M is isomorphic to Mo,n
of the moduli space of n-pointed stable curves of genus 0 ([Ka]). So by theorem
3.2, Mo,n is a blow up of pn-3. (This blow up was described explicitly in [Ka].)

3.4 Special Admissible Decompositions and Some Conjectures

For any point p E Q, we shall call p(4)(f-l(q))) a special admissible decomposition
of fl(X).

Proposition. For any DE:=:, there is q E Q, such that DO is contained in
the decom posi tion

of fl(X) as an ,open polytope.

Proof. Choose an algebraic open subset U containing X D, then by theorem
1.3.2 and argument above, there is stratum r of Q so that

h(r) = XD/H,

take q E r, then the proposition follows easily.

Conjecture. A collection 21 of polytopes of 2 is admissible if and only if
{DOl D E 21} meets every admissible decomposition of the form

p(X) = p( 4>(f-1 (q))), q E Q

in exactly one open subpolyhedron. (If we do not want to consider degenerate
quotients, we can add the following extra condition: every polytope of 21 is not
contained in the boundary of p( X). )
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The "only if" part of the conjecture is trivial. The "if" part will be an imme-
diate consequence of the following conjecture:

Conjecture. For any decomposition 0 of Jl(X) into disjoint moment map
images of torus orbits , there is a point q E Q such that the decomposition
Jl(X) = Jl( 4>(/-1 (q))) subscribes the decomposition 0, that is, any open polytope
in the decomposition J.l(X) = Jl(c/>(f-l(q))) is contained in some open polytope of
0.
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Chapter 4

Equivariant Morphisms

Given an equivariant morphism between two compact algebraic varieties with
torus actions, one can push forward or pull back algebraic quotients. The point
is that we have a deformation retract from the moment map image upstair to
the moment map image downstair which "keeps the face relation and inclusion".
However, the pull back of a symplectic quotient may no longer be symplectic.

4.1 Moment Cell Complexes

Definition Let X be an arbitrary compact algebraic variety with a torus (c"')n =
H action. Let Jl be an associated moment map, 3 be the collection of all moment
map images of torus orbit closures. Then the collection

{Int(D)ID E 3}

is a collection of cells of various dimension, the moment map induces boundary
maps for these cells, hence makes a cell complex, which we denote it by C(X),
and call it moment cell complex. We make convention that DO = Int(D) and
the stratum indexed by D, XD = XDo. We advise the reader to refer [B-B52]
for another version of the definition of C(X). Note that for any D E C, x E XD,
H . x IT is homeomorphic to DO under Jl. With this identification, we got a map A
from X to C(X), which is usually discontinuous. Obviously, C(X) is a regular cell
complex, and there is a continuous surjective map m from C(X) to Jl(X) C Rn

induced by Jl such that the composition of A and m is Jl.

Remark. Contrary to the remark in 1.3, the moment cell complex associ-
ated to X does not depend upon the moment map (or the metric on X) up to
cell-preserving homeomorphism, actually the moment cell complex can be defined
without using the moment map (or the metric). Accordingly, the set of all ad-
missible decompositions of I nt(Jll (X)) can be identified with set of all admissible
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decompositions of Int(J.L2(X)) for our purpose (where J.LI and J.L2 are any two
moment maps associated to the torus action). So unlike the case of symplectic
quotients, we do not have to vary the metric in order to get all algebraic quo-
tients (although the set of symplectic quotients is a subset of the set of geometric
quotients), we only need to care for a fixed moment map.

Theorem. Let X, Y be compact algebraic varieties with actions of H = (C-)n.
Suppose f :X ~ Y is an equivariant morphism with respect to the actions of the
torus, then there is a cell-preserving surjective map <p from C(X) to C(Y) so that
the following diagram

X~Y

AX 1 1 Ay

C(X) ~ C(Y)

commutes.

Proof. Given a cell DO in C(X), let x E XD
O, then H . x/T is homeomorphic

to DO under the moment map, then we define <p on DO as follows

where EO = p.(H . f(x)) and J is induced from f. It is straightforward to check
that the diagram commutes.

Corollary. For any e' E C(Y),

f-I(ye') = U Xe•

~(e)=e'

Proof. For any x in f-I(ye'), that is, Af(x) E e', or A(H . f(x)) = e', let
e = A(H . x), then

<p(e) = <pA(H . x) = Af(H . x) = A(H . f(x)) = e'

hence f-I (ye') c U~(e)=e' xe.

On the other hand, Af(X') = <pA(X') = <p(e), so if <p(e) = e', then f(xe) E.
xe', hence

f-I(ye') = U Xe•

~(e)=e'
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Corollary. For any e' E C(Y), there is a unique distinguished cell e E C(Y)
such that

Proof. By the above corollary,

f-1(ye') = U Xel,

ep(el )=e'

among the cells el with cp( el) = e', there is biggest one e which can be character-
ized as follows: ,X( H . x) = e, if and only if

H . x n Fix(X, H) = f-l(yel) n Fix(X, H)

where Fix(X, H) is the H - fixed point set of X.

4.2 Deformation of Admissible Decompositions

Theorem. Let f, X, Y be as before. Let 0 be a decomposition of Jl(X) in to
a union od disjoint Jl-images of torus orbits, then there is a deformation from e
to a decomposition 0' of Jl(Y) into a union of disjoint Jl-images of orbits, which
sends finally a moment map image in 0 to a moment map image in 0'. Moreover,
the deformation keeps the face relation "~" and inclusion.

Proof. Let Fix(Y,H) = {b1, ... bm}, then

Fix(X, H) = Sl U ... U Sm

where Si = Fix(X, H) n f-1(bi), 1 :5 i :5 m.
Note that each Si spans a face (ji of Jl(X), so to get the deformation, we

simply shrink each (ji gradually to the point bi, and simultaneously, shrink each
(homeomorphic) cell Co in 0 gradually to a (homeomorphic) cell DO in a', where
DO is determined by Co in the following way: let x E Xc, if H . x intersects
precisely the sets Sil' ... Sih' then D is the convex hall of bil ... bih. Hence, we
obtain a deformation which keeps the face relation, as desired.

Remark. The theorem above also have a natural version for admissible de-
compositions of Int(Jl(X)) and Int(Jl(Y)) due to the following easy lemma. (The
interested reader can give that natural version very easily).

Lemma. Let e be a decomposition of Jl(X) into a union of Jl-images of torus
orbits, then if DO is in 0, every open face of DO is also in a.
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Sometimes we state the theorem above as follows:

Theorem' . We have
X~Y

AX ! !Ay

C(X) ~ C(Y)

mx! !my

JL(X) ~ JL(Y)

where the compositions of A and m give the moment maps, JL = m 0 A. That
is, given an admissible decomposition e of /l(X), then my 0 <p 0 mx1(e) gives an
admissible decomposition of JL(Y). (Note that m induces a homeomorphism from
m-1(0) to e.)

4.3 Pulling Back Quotients

Suppose compact algebraic varieties X and Y both have actions of a algebraic
torus H = (c*)n. Suppose also f :X ~ Y is an equivariant surjective morphism
with respect to actions of H. One may want to know if f induces morphisms on
quotients, furthermore if f induces fibrations if f is.

Proposition. Let V be an open subset of Y consisting of only torus orbits
of the top dimension. Then if V has a compact hausdorff quotient V / H, then so
does U = f-l(V). Moreover, f induces a morphism from U/ H to V / H.

Proof. Clearly f induces a map f from U / H to V/ H. Given a point y E Y, let
Hy be the stabilizer of H at y, then Hy acts on fiber 1-1 (y) since I is equivariant.
Now let y be a lift of a point y on V/ H, then Hy should be a finite subgroup of H,
it is straightforward to see the fiber of 1at y is just 1-1 (y)/ Hy, which is compact
hausdorff, hence U / H is hausdorff and compact.

Remark. Since the isotropy subgroups are not locally constant in general, we
can not hope that 1is a fibration even if I is.

Corollary. Let the notation be as in the proposition. Suppose I is an equiv-
ariant fibration with the typical fiber Z. Assume all the finite isotropy subgroups
at points on Yare identity, then U/ H ~ V/ H is also a fibration with fiber Z.
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Remark. The assumption in the corollary is satisfied for the maximal torus
action on G/ B when G is type of An.

In fact we have: Given any algebraic quotient V/ / H on Y, then U = 1-1(V)
is an algebraic open subset on X and I induces a map J :U / / H ~ V / / H. We
call U / / H is the full-back of V / / H by I. In particular, if V / / H is non degenerate,
then U / / H must also be nondegenerate. Otherwise is not true.

Theorem. Let X, Y, I be the same as in the very beginning of this section,
then if V is an algebraic open subset of Y, then U = 1-1 (V) is an algebraic open
subset of X.

Proof. Given an admissible decomposition 8 of Jl(X), let 8' be the admissible
decomposition of Jl(Y) deformed from 8. If U = 1-1(V) misses any polytope in
8, 8' will also miss any polytope in 8' by corollary 4.1. On the other hand, if U
meets polyhedra C1 ••• Cr in 8, and C1 ••• Cr have two minimums Ci and Cj under
the face relation" -<", 1 ~ i =I j ~r, then by theorem 4.2, the deformation images
of Ci and Cj will be two distinct minimums of deformation images of C1 ••• Cr.
This contradicts with the fact that V is algebraic. Hence the theorem follows.

Remark. In the next chapter, we shall give an example showing that theorem
1.5.8 is not true for symplectic quotients, that is, U / / H = 1-1 (V) / / H may not
be, in general, a symplectic quotient, even if V / / His.

4.4 Pushing Forward Quotients

Now given an algebraic open subset U on X, one may suspect that I(V)/ / H
exists. Indeed, this is true.

Theorem. Let U/ / H be an algebraic quotient of X, then f(V)/ / H is an
algebraic quotient of Y, and f induces an algebraic map L : U / / H -4 I(U) / / H.

Proof. Let 8' be any admissible decomposition of Il(Y). Let 8 be an admissi-
ble decomposition of Jl(X) which can be deformed to 8'. Suppose U meets a poly-
hedron C in 8, then I(U) meets my.cp.mi1( C) in 8'. Assume f(U) meets C~ ... C;
in 8' and Ci, Cj are two distinct minimums. Then U meets mx . cp-l . myl(Cn,
mx . cp-l •my 1(Cj). Since the deformation keeps the partial order of both "inclu-
sion" and "face relation", so a minimum in mx . cp-l . myl( Cn is uncomparable
with a minimum in mx . cp-l . my 1(Cj), hence, contradiction.
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We point out that f(U)/ / H may not be non degenerate even if U / / H is. This
is true because an interior point of J.L(X) can be deformed into a boundary point
of J.L(Y).

But contrary to the remark for pulling back quotients, we have: if U/ / H is
symplectic, thenf(U)/ / H must also be symplectic. In fact, if U = Up, P E J.L(X),
then f(Up) = U!(p), f(p) E Jl(Y). To see this is true, notice that

Up = {x E X I p E Jl(IrX)},

f(Up) = {f(x) I f(p) E Jl(H. j(x))},

and the fact that f is surjective.
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Chapter 5

The Topology of Symplectic
Quotients

Historically, after the discovery of the theorems in 7.2, Professor Robert MacPher-
son pointed out to me that using the idea behind Atiyah's Morse theoretic argu-
ments in [AI], we should be able to see that (suitable versions of) above-mentioned
theorems also hold for arbitrary nonsingular compact algebraic varieties (or Kahler
manifolds) with complex torus actions. Hence by employing the decomposition
theorem, we shall be able to give an inductive cohomological formula for an arbi-
trary symplectic quotient. This is exactly what we are going to do in this chapter.
In what follows we shall "rebuild" the theorems of 7.2 in a more general context.
But instead of employing Morse theory alone, we will also apply a decomposition
into subvarieties theorem of Bialynicki-Birula.

5.1 The Statements of Results

Now again like what we did in chapter 1, we assume that X is a nonsingular
compact algebraic projective variety with complex torus H = (c*)n action, and
H = A x T is a canonical decomposition with A = (R»n and T = (81)n.

We remark again that XM is nonsingular subvariety if M is a wall in Jl(X).

Convention. Let M be a wall and U be an algebraic open subset. Then
define

U(M) = {x E UIJl(H . x) c M}

Theorem 1. Let M be a codim 1 face of Jl(X), r be a (relatively) general
point on M, and p be a general point in Jl(X) and clos enough to r, then the
canonical projection

<p : Up/ H ~ Ur(M)/ H(= Ur/ / H)
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is a fibration whose typical fiber is a weighted projective space of dimension
codimcXM - 1.

Theorem 2. Let r be a (relatively) general point on an interior codim 1 wall
M and p be a general point close enough to r. Now let B = Ur(M)/ / Hand
A = /-1 (B) where / is the canonical projection from Up/ / H to Ur / / H. Then we
have the following diagram

A ~Up//H

! !
B ~Ur//H,

where the horizontal maps are inclusions. Moreover A ~ B is a fibration whose
fiber is a weighted projective space while / is an isomorphism off B.

Using the idea above repeatedly , we shall see that the theorem above takes
the following version when p, q are arbitrary interior points.

Let p, q be two interior points, and F, GET such that G ~ F and p E F, q E G.
Then there is a canonical stratification on Y = Uq / / H = UfJ C fJ such that the
natural projection 1r : Up/ / H ~ Uq/ / H becomes a stratified map. More precisely,
for each (3, 7r11r-t(CfJ) : 1r-t(cfJ) ~ CfJ is a fibration tower whose fibers are all
weight projective spaces.

In what follows, we shall construct each stratum CfJ explicitly as in the spirit
of the theorem above. And one can easily read off the fibers through our con-
struction.

Let N1, ••• ,N, be all the codim 1 walls containing the point q. Then any wall
containing q is of the form Nil n ... n Nih, 1 ~ h ~ 1. It should be point out that
an intersection Nil n ... n Nih may not be a "wall", that is, it may not be the
moment map image of a torus orbit closure. We introduce the notation N[iloo.ih) to
denote Nil n ... n Nih. In fact, if I = {it ... ih} C {I, ... , I}, we set N1 = N[i1.ooih).
As before we have q E NI and

In the case that N1 is not a "wall", we agree that Uq( NI) = 0. Therefore we have
the following subvarieties of Uq/ / H,

Uq(NI)/ / H, For any I C {I, ... ,I}.
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Clearly
{Si = Uq (Nd / / H, i = 1", . , I}

are I divisors of Uq / / H, and any Uq (NI )/ / H is of the form Sil n... nSi" = Sil...i",
where {il ••• ih} = I.

Now we can define the stratification as desired.
Define

C[I, ...,/] = S1 n ... n S,;

For 1 ~ i ~I, define

C[I ...;...ij = S1 n ... Si n ... n 5, - C[1,...,ij;

For 1 ~ i < j ~I, define

C[1...;...; .../] = 51 n ... Si ... Sj ... n 5, - the union of the previous strata;

For 1 ~ i ~I, define

C[i] = Si - the union of the previous strata;

And define

Then
Uq/ / H = C0 U IIl~il<,,,<ck9C[il' ..ikl'

And each C/ ( I C {I"", I} ) is clearly nonsingular. ( In fact this is a Whitney
stratification although this result is not necessary for us. To see that they satisfy
Whitney conditions, the interested reader can consult with [CuSj] although the
language used there appears very different from ours.)

The fact that the projection 1r : Up/ / H ~ Uq/ / H restricted to any C/ is a
fibration tower with weighted projective spaces as fibers follows directly from the
previous theorems.

Theorem 3. Let the notation be as above. Then there is a canonical strati-
fication Uq/ / H = U/C{I, ...,/} C/ such that the natural projection 1r : Up ~ Uq/ / H
becomes a "stratified" map. More precisely, for each subset I C {I, ... , I}, the
map 1r/1r-1(C/) : 1r-l(C1) ~ CI is a fibration tower whose fibers are all weighted
projective spaces.

The theorem above has the following interpretation.
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Theorem 3'. Let the notations be as above. Then

is the the same stratification as the one in the previous theorem, where Uq[M] is
defined as follows: x E Uq [M] if and only if x E Uq and there is C E M n =: such
that C ~ jj(H . x) and M is a minimal wall with this property. We should point
out that Uq[M] is often empty (unless M is an intersection of M1 ••• M, or jj(X)).

5.2 The Proofs of Some Theorems in 5.1

Our proof in this section is somehow different from the proofs in chapter 7 where
the proofs are clearly direct computations by using group structures. But in
this section, the proof is a combination of the idea behind Atiyah's Morse the-
oretic arguments [AI] and Bialynicki-Birula's "plus-decomposition" and "minus-
decomposition" theorems for C. (or Gm) actions. Of course, with this general
proof, we can not make our conclusions so explicit as what we will have in chap-
ter 7.

We first remark that there are " parallel wall phenomena" in jj(X) when
X = G/B (we shall describe this in chapter 7) which asserts that for each isotropy
group in H, we have a collection of walls of the same dimension, which are
parallel to each other and contain all of the vertices of J1.(X).

In a general case (even in the case of Grassmannian), the exactly same assertion
is no longer true, instead, we have

Obervation. Given a wall M, there is a collection of walls (of possibly various
dimensions) such that they are parallel to each other and contain all of the vertices
of jj(X).

Proof of the theorem 5.1.1. Let Mo = M be the wall in the theorem, let
also {3 be a point on Mo so that the line L{3 through the origin 0 and {3 in Rn

is perpendicular to Mo, (we can take the origin 0 to be the barycenter of jj(X)
without essential loss of generality, this amounts to requiring that the integral of
the moment map jj on X is zero). Then T{3 = {expt{31 t E R} C T is the isotropy
subgroup of XMo in T, and in the mean time, the complexification H{3 of T{3 is
the isotropy subgroup of XMo in H.

Let jj{3 = jj. (3, Le, for any x E X, jj{3(x) = jj(x). {3, then jj{3 is actually a
moment map associated to the action of H{3 (or T(3). This can be described by
the following picture
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J1./3 '\. !p

L/3 ~ R1,

where p is the natural projection from Rn to L/3.
The connected components of the fixed point set of H/3 are precisely the strata

closures, X Mo, X M1, ••• , X Mk, where {Mo, M1, 0 • 0 , Mk} are the parallel walls char-
acterized in the observation above.

As indicated by Atiyah [AI], J1./3 is a non-degenerate Morse function in the
sense of Bott with the critical manifolds XMo, ... ,XMk since the critical set ofo
J1./3 is precisely the fixed point set of H/3 [Ki]o

Without loss of generality, we assume the wall Mk is the other one (except for
Mo) which is a face of J1.(X), assume for simplicity that XMo is the source of the
action of H/3 and XMk is the sink of the action of H/3 ([B-B]). Then by Bialynicki-
Birala [B-B], we have two decompositions called (+) and (-) decompositions as
below:

x = xt U Xi U 0 0 0 U X: ,
X = Xo U Xl U . 0 • U X; ,

such that for each 0 ~ i ~k, there is (unique) fibration It :xt -+ XMi (resp.
li- : Xi- -+ XMi) whose fiber is isomorphic as a scheme to a vector space, the
action of H/3 preserve each fiber, and in fact the induced action of H/3 on any fiber
is equivalent to a linear action. Furthermore, xt and X: are two zariski open
subsets in X.

In the mean while, the non-degenerate Morse function J1./3 in the sense of Bott
gives a Morse stratification

X = So U SI U .0. U Sk

where each Si is the "unstable' manifold" of J1./3 at the critical manifold X Mi, that
is, if we let cPt denote the gradient flow J1./3, then we have

(1) For any x E M, the gradient flow 4>t(x) has a unique limit point 4>oo(x) in
the critical set of Jl/3 as t -+ 00.

(2) Si = {x E MI4>oo(x) E XMi}, 0 ~ i~k.
By the uniqueness of B-B's (+ )-decomposition theorem, we conclude that the

decomposition
X = So U SI U ... U Sk

coincides with the decomposition

X = xt U Xi U .. 0 U X:
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in an apparent way.
(We remark that the (- )-decomposition can be obtained from the (+)- decom-

position by considering the (C*) - action induced from the group isomorphism
,\ -+ ,\-1, ,\ E C*. So similarly, we have also a comparison between a Morse strat-
ification and the (- )-decomposition, but we do not need this for our purpose.)

Note that the gradient How rPt of Jlp commutes with the torus action, so each
Morse stratum Si (0 ~ i~k) is H- equivariant, hence so is each xt, (0 ~ i ~k).

Now as in the theorem, let r be a (relatively) general point on Mo, and p be a
general point close enough to r, then Up C Ur C Xj". In fact,

Up = Ur - Ur nX Mo

where X Mo can be regarded as the zero section of the vector bundle It. It is not
hard to see that

Ur ---+ Ur n XMo

is also a vector bundle. (The serious reader can refer to [BH]. [BH] contains a
proof for an arbitrary C*-stable subvariety, not only Ur). Now the fiber of

is just the fiber of the morphism It modulo the induced action of Hp, hence it
is a weighted projective space since the induced action is equivalent to a linear
action (on a vector space).

It is clear that the dimension of the fibers is codimCXM - 1.

Proof of theorem 5.1.2. The same argument as above except that we replace
the morphism It by It (or Ii) for some i.

Convention. Given any wall Mi as above, then Mi separates Jl(X) into two
regions. We denote the that meets Jl(xt) by Mt, and the other one by Mi-.

Sometimes, we also use Mi< and M( to denote these two regions.

5.3 Small Resolutions: the Sim pie Cases

Definition . A proper surjective algebraic map f : Y -+ Z between irreducible
complex n-dimensional algebraic varieties is small if Y is (rationally) nonsingular
and for all r > 0,

codimC{x E Zldimcf-1(x) ~ r} > 2r

A small resolution f : Y -+ Z is a resolution of singularities which is a small map.
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In the case that Y is rationally nonsingular, we shall say / is a rational resolution.

An alternative definition of a small map goes like this: An algebraic map
/ : Y -. Z is small if there exists a stratification of Z by locally, closed, smooth
subvarieties (Zi)l ~ i~m such that for any z E Zi, we have

dimf-l(z) < ~(dimZ - dimZ;).

Let M be a wall, rEM be a relatively general point, and p, q be two general
point close enough to r. Let / be the projection from Up/ / H to Ur / / H, and 9 be
the projection from Uq/ / H to Ur/ / H. Let also B = Ur(M)/ / H, A = /-1 (B), A' =
9-1(B). Then by the facts that we have got before, A -. B is a (rational) pd_
bundle,while A' ~ B is a (rational) pe_ bundle. We have the following fact
about small maps.

Proposition. Suppose d ~ e without the loss of the generality, then

is a (rationally) small resolution.

Proof. We follow the notations in the previous section. We assume our wall
M is the wall Mi there, Le, M = Mi

Let a be a point in XMi, then by theorem 4.1 [B-B], there are two subspaces
Ta(X)+ and Ta(X)- of the tangent space Ta(X) at a, such that

Ta(Xt) = Ta(XMi) ffi Ta(X)+,

Ta(Xi-) = Ta(XMi) ffi Ta(X)-,

and

Thus
dimXt + dimXj- = dimX + dimXMi.

So we have

(dimXt - dimXMi - 1) + (dimXi- - dimXMi - 1)

= dimX - dimXMi - 2.

From the previous section, we know that one of d and e is dim xt -dim XM-l
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and the other one is dim Xi- - dim XM - 1. So we have d + e = dim X -
dim XM - 2. Now Ur/ / H = B U (Ur/ / H - B) is a stratification by smooth
subvarieties. To check the smallness of j, we only need to focus on stratum B
since j is an isomorphism over Ur/ / H - B. Now suppose x E B, then

dim f-l{X) = dim pd = d ~ 1/2(d + e)

= 1/2(dim X - dim XM - 2)

< 1/2(dim X - dim XM - 1)

= 1/2(dim Ur/ / H - dim B).

So in an explicit way, we have
(1). If dim xt < dim Xi-, then Up/ H ~ Ur/ / H is a small (rational) resolu-

tion.
(2). If dim Xi- < dim xt, then Uq/ H ~ Ur/ / H is a small (rational) resolu-

tion.
(3). If dim xt = dim Xi-, then both Up/ H ~ Ur/ / Hand Uq/ H -+ Ur/ / H

are small (rational) resolutions.

As an immediate consequence we have:
I H.(Ur/ / H) is isomorphic to H.(Up/ H) if d ~ e (i.e, dim xt ~dim Xi-), or

isomorphic to H.(Uq/ H) if e ~ d (i.e, dim Xi- ~ dim xt).

5.4 Small Resolutions: the General Case

In general, we have,

Theorem. For every singular quotient Uq/ / H(q E Jl{X)), there exists a gen-
eral point p in Jl{X) such that p is close enough to q , and Up/ H ~ Uq/ / H is a
(rationally) small resolution.

Proof. We shall first present a detailed proof for v where v is general in a
codim 2 wall and then give a general proof without too much detail so that the
reader can grasp the point hiden behind the technique. As one may see already,
the proposition 5.3 is our very first step.

So let v E N = M1 n M2 where N is a codim 2 wall, M1, M2 are codim 1 walls.
Now for each Mi, one of X Mi< and X M? has a smaller dimension, denote it by

Ci, then
Take u to be a general point in C1 n C2, so that u is close enough to v. Let
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also PI E M1, 1>2 E M2 be two relatively general points in M1 n C2 and M2 n C1
respectively, and close enough to v, then we will show now that

is a small resolution.
The (serious) singular locus of X v is

and
E1 = Uv(M1)/ H n Uv(M2)/ H = Uv(MI n M2)/ H

Note that f is an isomorphism off E and 1-1(E).

So

{

dl
diml-1(x) = d2

d1 + d2

where di is the dimension of the fiber of

x E Uv(Mt)/ H - E1

X E Uv(M2)/ H - E1

X E E1

Now we have

= So U SI U S2 U S12

Now pick up Ul, U2 general in Mt, M2 resp. such that u, Ul, U2, v are all close
enough to each other. Then

is the composite

Uu/ / H A UU1 / / H !!.; Uv/ / H.

Similarly, it also the composite

It is fairly clear that It, 112, 12, 121 are small maps. We can regard Sl as a subva-
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riety of UUl (Md/ / H. So if y E 81,

dim 1-1(y) = dim 111(y) < 1/2(dimUu1//H - dimUu 1 (Md//H)
= 1/2( dim Uv/ / H - dim 8d.

Similarly, for y E 82, there exists Y2 E UU1(M2)/ / H,

dim 1-1 (y) = dim 12-1(Y2) < 1/2( dim Uv/ / H - dim 82).

If y E 812 = Lb let 9 be UUl (A1d/ / H -. Uv(Md/ / Hand Yl E UUl (Md/ / H,
then

dim I-t(y) = dim g-t(y) + dim 11t(yt}

< 1/2(dim Uv(Md/ / H - dim Uv(Ml n M2)/ / H)

+1/2(dim UUl / / H - dim UUl (Mt}/ / H)

= 1/2(dim UV1/ / H - dim 812).

Hence we conclude that I is small.

The proof of smallness in general.
We follow the notation as in 5.1. Let Nt, ... , N, be all the codim 1 walls

containing the point q. Then Nt, ... , N, divide J.l(X) into many connected com-
ponents. We pick up a connected component of J.l(X) - U~=1Ni such that it has
the following property: if u is a point in this component, v is a point in Ni (for
any i), and u, v are close enough to each other, then Uu/ / H ---+ Uv/ / H is a small
map. This can be done by using 5.3. We start with Nt, J.l(X) - N1 has two
components, one of them has the following property: if u is in this component,
v E Nt and u, v are close enough to each other, then Uu/ / H ---+ Uv/ / H is a
small map. Now fix this connected component of J.l(X) - Nt, then N2 divides
it into two components, we apply the above procedure again, and get a desired
region. Repeat this procedure, we finally end up with a connected component of
J.l(X) - UNi with the desired property.

Now we pick up a point p in the selected component of J.l(X) - UNisuch that
p and q are close enough to each other. vVe claim now that

is a small map.
To prove our assertion, we recall that there is a stratification U/C{t, ...,I} C1 of

Uq/ /H (see 5.1 for the definition of CI) such that I restricted to 1-1(Cl) is a
fibration tower over C1 whose fibers are rationally projective spaces.

In fact, if we pick up points r J E NJ, J C {1,.'. ,/}, (re = p, r{I, ...,I} = q) such
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that all rJ are close enough to each other, then the map

is the composite:

Up/ / H A Ur{itl/ / H ~ Ur{i
l
i2}/ / H --t ••• A Uq/ / H

where {it, ... , i,l is any permutation of {I, ... ,I}. Let I = {i1, ••• ik} C {I, ... ,I},
then 11/-1(CI) : 1-1(CI) --t CI is the composite:

fl1 ••• l;l(CI) A ... --t f;l(CI) ~ CI

where each fh is induced from fh(l ~ h ~ k) and each fh is a projective bundle.
We assume that the fiber of lh is of dimension dh. Then by the smallness of fh
(this is an implication of proposition 5.3), we have

dh < 1/2(dim Ur{. . } (N{l ... ih I})//H - dim Ur{. '} (N{il ... ih})//H),'I,'" "h-l ' , - 'I .... ,Ih ' ,

for 1 ~ h ~ k. Now for any point y E CI,

dim f-l(y) = d1 + ... + dk < 1/2(dim X - dim Cd

Remark. In fact we have proved that

dim f-l(y) ~ 1/2(dim X - dim CI) + k

or
codim CI ~ 2dim f-l(y) - 2k

which shows that 1 is "very" small.

Remark. As one can see from this section that there are many small maps
in the canonical maps among symplectic quotients which can be told explicitly in
practice. Proposition 5.3 is the key to tell small maps. The same comments are
also true for algebraic quotients.
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5.5 The Decomposition Theorem

In this section we recall the decomposition theorem of intersection homology the-
ory. This powerful theorem was conjectured by S.Gelfand and R. MacPherson, and
proved by Beilinson, Beinstein and Deligne. Thoroughout this thesis, we restrict
our attention to (co )homology over rational numbers unless indicated otherwise.

Theorem. (The decomposition theorem.)
Let f :X --+ Y be a projective algebraic map. Then there exists:
(1) A stratification Y = Uo Yo of Y,
(2) A list of enriched strata E{3 = (Y{3, L{3) where Y{3 is a stratum of Y and L{3

is a local system over Y{3, and
(3) For each enriched stratum E{3, a polynomial in t, q!3 = Li 01ti such that

for any open subset U c Y

I Hk(f-l(U)) = EB EB I Hi(U n Y{3; L{3) @ Q4>1-
{3 i+i=k

In particular,
I Hk(X) = EB EB I Hi(Y{3; L{3) @ Q4>1

{3 i+i=k

if we take U = Y.

We shall next present a popularized version of the decomposition theorem for
some special cases, which is useful for us in the latter calculation of the intersection
Poincare polynomials of quotients. This popularized version is taken from some
lectures given by R. MacPherson in the intersection homology seminar at MIT in
1989.

Theorem. (A special version of the decomposition theorem.)
Let f :X --+ Y be a projective algebraic map, and X is a nonsingular variety.

We follow the notation in the theorem above. Assume that every local system L{3
in the theorem above is trivial, then there exists a collection of polynomials 4>13
for all strata such that

P(X) = 2: I P(YI3) .4>13,
{3

and for each y E Y
I P f-l(y) = 2: I PY(Y{3). 4>13.

{3

Futhermore, 4>13shares the properties of I H(V) where V is a projective variety of
dimension dime X - dime Y{3 (e.g, Hard Lefschetz, Poincare duality).
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5.6 The Formulas for Intersection Homology: the Simple Cases

Let M be an interior codim 1 wall in Jl(X). Let rEM be (relatively) general,
p, q E jJ(X) be general in Jl(X) close enough to r, but in different sides of M, then
we have as before

A ---+ Xp

11! I !

where Xp = Up/ H, Xr = Ur/ / H, B = Ur(M)/ H, A = 1-1(B). It is known that

is a fibration whose fiber is a rationally homological projective space of dimension
d.

Let SI = B, So = Xr - B, then Xr = So U SI. Now we can apply the special
version of the decomposition theorem because any weighted projective bundle has
no monodromy over a field.

By decomposition theorem, there exist two polynomials CPSoand '1'51, such that

and

l.e,

Now we want to determine '1'50 and '1'51.

Take Yo E So, then 1-1 (Yo) is a single point, hence

1 = 'Pso • 1 + 'PSI. 0

because I Pw(So) = 1 (since Yo is a regular point in So = Xr, that is, So is regular)
and I PM»(So) = 0 (since Yo f/. St}. So '1'50 = 1.

Take Yl E St, then 1-1 (Yl) is a weighted projective space of dimension d, hence

2 2d --1+ t + ... + t = I PYI (So) + 'PSI • 1

that is
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Similarly, we have

gIll 9

B --+ Xr

where Xq = Uq/ H, A' = g-l(B), and

A'~B

is a fibration whose fiber is a rationally projective space of dimension e, then,
again by decomposition theorem, there are two polynomials 'P'so and 'PSt so that

and

<P~t = 1 + t2 + ... + ee - I PYt (Xr)

Thus subtract the two equations below

So repeat the calculation presented above with the same choice of Yo and Yb we
have 'P'so = 1, and

P(Xq) = I P(Xr) + <P~t I P(B)

P(Xp) = I P(Xr) + <PSl I P(B)

we have
P(Xq) - P(Xp) = (<P~l - <PSt)IP(B)

= €(M)Qt(M)P(B)

where Qt(M) and €(1\tf), as before, are defined by

{

t2(d+l) + + t2e if d < e
Qt(M) =0 t2(e+l) + + t2d if d > e

if d = e

f(M) = { ~1
if di < ei

if di > ei

if di = ei

We summerize above results as follows

Theorem. Let Y be any point in B. Then,
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(1) P(Xp) = IP(Xr) + (1 + t2 + + t2d - IPy1(Xr))P(B)
(2) P(Xp) = IP(Xr) + (1 + t2 + + t2e - 1PY1(Xr))P(B)
(3) P(Xq) = P(Xp) + i(M)Q(kf)P(B).

Corollary. Let the notations be as in the beginning. Let y be a point in
Ur(M)1 H, then

Now if M is a codim 1 face of J.l(X), () E M is a relatively general point in M,
and a is is a general point in Jl( X) and close enough to 0, then

Ual H ~ Us(M)1 H(= Usl IH)

is a fibration whose fiber is a rationally homological projective space of dimension
m = codimCXM - 1. So We know by the decomposition theorem:

Lemma. P(Ual H) = P(pm
) • P(Us(M)1 H).

Like before we define a polynomial Qt(M) for the face 1.1 by

and agree that i( M) = 1.

5.7 The Formulae for Intersection Homology: the General Case

So now let q E Int(p,(X)) be general, and let Mo ~ Jl(X) be a codim 1 face of
Jl(X). Take a point ro E M, such that ro is (relatively) general in Mo and the
vector ro, q from ro to q does not meet any codim ~ 2 wall (this assumption is
for technical reason, and is not necessary). Also we pick up a general point p in
Jl(X) so that p is close enough to roo Then as before, we assume that the change
from ro to q is described as follows

where Mt,"', Mk are exactly the walls that p, q meets. Then apply theorem 5.6.
(3), and lemma 5.6, we get
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Theorem. (An inductive homological formula)

or
P(p-l(q)/T) = 'Ej=O".kf(Mj)Q(Mj)P(p-l(rj) n XmJ /Tj)

where rj = p, q n Mj,

Hj = H/(stabilizer of XMj in H),

Tj = T/(stabilizer of XMj in T).

Remark. Note again that for any wall M, X M is a nonsingular compact
projective variety with the action of torus H/(stabilizer of XM). Hence induction
applies indeed.

Then we have the following three essential situations.

(1) p and q are general. Then

where Bj = UOJ (Mj)/ H; OJ = Mj np, q.
(2) p general, q is on a wall, then we take q' general so that p, q, q' are colinear

and we have the following situation,

then,

(3)p, q both on walls, then we take p', q' general so that p', p, q, q' are colinear
and we have the following situation,
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Then,

Proof. They are all simple applications of propositions in the beginning of
this section.

Remark. In (2) of the theorem, (a) if f(Mk) = 0, the two formulae in the
expression are the same.

(b) If q general, p is on a wall, just reverse the diagram

and apply the existing formula, we shall get a desired one.

We shall do some examples in chapter 7.

5.8 Comments on Kirwan's Formula

In her book [Ki], Kirwan was able to present a cohomological formula for p,-l(o)jT
(actually her formula applies for general compact reductive Lie group) by employ-
ing Morse theory. The basic idea is to view the norm square of the moment map,
11p,112

, as a Morse function in an appropriate sense, and therefore get a Morse
stratification (which is equivariantly perfect)

x = u S{3
{3eB

with index set B = set of connected components of critical subsets of 1Ip,11.
It is observed that, in the case of torus actions, her arguments only valids for
p,-l (p)/T, where p is the barycenter of p,(X) and is in general position.

So let 0 be the barycenter of p,(X) and be general. Then B is the set of the
barycenters of the various walls in p,(X) so that if {3 E B, then 0, (3 is perpendicular
to the wall that f3 belongs to. Then Kirwan's formula can be restated as follows

where d({3) is the codimension of the stratum S{3, M{3 is the wall that (3 belongs
to, and T{J = Tj(stabilizer of XMfJ in T).
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We point out that In Kirwan's formula, there involves equivariant Poincare
"polynomials" (that is, power serious). But, in our formula, there are only poly-
nomials. Also our formula applies for arbitrary algebraic quotients. Moreover, in
order to apply her formula to singular quotients, considerable efforts were made
by Kirwan on their desingularization. However, these efforts are not required in
order to apply our formula.

5.9 Comments on Ordinary Homology

In this section, our goal is to understand the ordinary homology groups of singular
quotients (so to this end, "small maps" do not give any help!). Our argument will
depend on the following observation: if p, q are two points in the interior of Jl(X),
p is general in a codim r - 1 wall N, and p, q are "close enough" to each other,
then we have the following commutative diagram:

1 1 I
B '-4 Uq/ /H

where B = Uq(N)/ H, A = 1-1 (B).

Lemma. Suppose we have a diagram of algebraic varieties

1 1 I
B'-4Y

such that A -+ B is rationally a projective bundle and I is an isomorphism off B.
Assuming B ,Y - B have vanishing homology in odd degrees, then

H.(X) EB H.(B) = H.(Y) EB H.(A).

In particular, P(X) + P(B) = P(Y) + P(A).

Proof. By [Fu] 19.1. (6), we have a long exact sequence

So by the vanishing assumptions, we have

H.(X) = H.(X - A) EB H.(A).
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Similarly,
H.(Y) = H.(Y - B) ED H.(B).

Hence,
H.(X) ED H.(B) = H.(Y) ED H.(A).

because X - A is isomorphic to Y - B.

From now on, we assume that the fixed point set of H has vanishing homology
in odd degrees. Now let q be an interior point in /l(X), and general in a codim r
wall N. We take a sequence of interior points qr-I,"', qt, qo in J.l(X), such that
qi is general in a codim i wall Ni (0 ~ i ~r - 1),

N c Nr-l C ... C Nl C No = Jl(X),

and qi, qj are close enough to each other for any 0 ~ i, j ~r, where we agree
N = Nr, q = qr. Hence for each 1 ~ i ~r, we have

Bi c........+ Xi

where Xi-l = Uq._1//H, Xi = Uq.//H, Bi = Uq.(Ni)/H - /l-l(qi) n XN./H,
Ai = fi-1(Bi) which is a fibration over Bi whose fiber is a weighted projective
space of dimension di• If we assume that all Xi - Bi has vanishing homology in
odd degrees, then by the lemma and induction on the walls of J.l(X), we have

Add these r equations together, we get

r

P(Xo) - P(Xr) = I:P(Bi)(t2 + ... + t2di
).

i=l

Hence, we have

Proposition. (An ordinary homological formula.) Let the assumptions be as
above. Then

r

P(Xr) = P(Xo) - I:P(Bi)(t2 + ... + t2di
)

i=l

Combine this proposition with theorem 5.7, we have
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Proposition. (An inductive ordinary homological formula for singular quo-
tients.) Let assumptions be as in above, and let

be a diagram for qo as defined in 5.7. Then

k r

P(Xr) ::: L f(Mj)Q(Mj)P(UrjIHj) - L:P(Bi)(t2 + ... + t2di
)

j=O ~1

or
k

P(p.-l(qr)IT) = Lf(Mj)Q(Mj)P(p.-l(rj) nXMj IT)
j=O

r

-L P(Jl-l(qd n XNi IT)(t2 + ... + t2di)
i=l

where unspecified notations are same as in theorem 5.7.
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Chapter 6

The Topology of Algebraic
Quotients

We reformulate the theorems of chapter 5 for algebraic quotients. We shall find
that all quotient varieties enjoy the property that their cycle maps are all isomor-
phisms.

6.1 Statements of Results

Let M be codim 1 face of Il(X). Let 3(M) be an admissible collection of top
dimensional polyhedron in M, and U(M) = Uce?:(M) Xc, then U(M)I / H is a
(rationally) nonsingular quotient of X M. Define

31 = {C E 31 3D E 3(M) such that D -< C}

=2 = =1 - =( M)
then clearly we have =1 -< =2. Let U1, U2 be the corresponding algebraic open
subsets resp. Then it is not hard to see that U11/ H = U(M)I I H.

Theorem 1. The natural map

is a fibration whose typical fiber is a weighted projective space of dimension

Now we follow the notation in corollary 2.6. Suppose we have two admissible

48



collection of polyhedra in 3, say 3t and 32, and 32 covers 3t. We have also
(1) 32 consists of top dimensional polyhedra.
(2) The collection of codim 1 polyhedra in 3t forms an admissible collection

3t(M) for XM.
Let Ut,U2,Ut(M) be corresponding "open" subsets of 3t, 32 and 3t(M) resp.

We have

Theorem 2. Let B = Ut(M)IIH and A = f-t(B) where f is U211H ~
Uti I H. Then

A --+ U211H
! !

B-+UtIIH
is a fiber square where A ~ B is a fibration whose fiber is a weighted projective
space and f is an isomorphism off B.

For two arbitrary algebraic quotients, we have: let Ut, U2 be two arbitrary
algebraic open subsets such that there is a canonical nice map f from U21I H to
Uti I H. Then there is a canonical stratification Uti I H = Up Cp of Uti / H such
that over every Cp, f is a fibration tower whose fibers are all weighted projective
spaces.

It would be very tedious to give an explicit construction of strata C{3 as what
we did in 5.1. Nevertheless, in practice, given any quotient, we will be able to
obtain such construction using the same idea as we did before. Conceptually,
however, we still have

Theorem 3. Let the notations be as before. Then

Ut//H = U Ut[M]//H
Wall M

is a Whitney stratification such that over each stratum UdM]/ I H (if UdM] is
not empty), f is a fibration tower with weighted projective spaces as fibers, where
Ut [M] is defined as follows: a point x is in UdM] if and only if x E Ut and there
exists C c M n =: such that C ~ J1.(H . x) and M is a minimal wall with this
property.

All the proofs in this section are essentially the same as in chapter 5. It is
fairly straightforward to write down these proofs once one carefully reads section
2.6 and the proofs in chapter 5. So we omit this unnecessary duplicate to save
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time and space.

6.2 Small Resolutions

We continue to follow the notation in corollary 2.6 and the notations in the pre-
vious section. Suppose =:~ lies in M+. Then

Theorem 1. Suppose dim xt ~dim Xu, then

is a (rationally) small resolution.

Proof. same as that of proposi tion 5.3.

In general we have

Theorem 2. For every singular quotient Uti IH, there is a (rationally) non-
singular quotient U21 I H such that the canonical map U21 I H -+ Uti I H is a small
map.

Proof. The idea to find out U2 is essentially the same as in section 5.4. The
key is that: given a codim I wall N and a codim I - 1 wall M such that N eM,
then N divides M into two regions, and (at least) one of these two regions gives
a "small map". So let 3t be the admissible collection defining Ut. Let Nt ... N,
be all the codim 1 walls containing some polyhedra in 2t• Recall the construction
in the proof of theorem 2.5. The definition of =:2 there involves three kinds of
data: codim 1walls containing some polyhedra in 31, some admissible collections
of polyhedra on these walls (chosen by induction), and some selected half spaces
divided by these codim 1 walls. Now we construct our 32 here in the same way
as we did in 2.5 except that for any codim 1 wall above, we choose the half space
that gives small maps (see the theorem above) and when we use induction we put
an additional "smallness" hypothesis. Let U2 be the corresponding open subset
of 32• The proof of the fact that U21I H -+ Ut I I H is small should be completely
an analogy of the proof for symplectic quotients. It will be fairly apparent once
one grasps the idea behind the previous proof.

6.3 The Vanishing of Homology in Odd Degrees

Let X be an algebraic variety, we denote by Ak(X) the group generated by k-
dimensional irreducible subvarieties modulo rational equivalence (see [F],1.3.) Let
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Hi
BM (X) be the (Borel-Moore) integral homology of X; this is the singular ho-

mology of X if X is compact. There is a canonical homomorphism ("cycle map" ,
see [Fu], 19.1):

clx : Ai(X) --. Hi:M (X).

Definition. A variety X is said to have property (IS) if
(a) H?M(X) = 0 for i odd, Hi(X) has no torsion for i even,

01

(b) clx : Ai(X) --=-+ H2i(X) for all i.
A variety X is said to have property (RS) if
(a) H?M(X) ~ Q = 0 for i odd,
(b) clx ~ Q: Ai(X) ~ Q ~ H2i(X) ~ Q for all i.

Obviously, (IS) implies (RS) since (RS) is just a rational version of (IS).
We now formulate a known result (see [DeLP], for example).

Theorem. ([DeLP]). Let X be a smooth projective variety with an action
of a complex torus H. Then X has property (IS) (resp. (RS)) if XH has property
(IS) (resp. (RS)).

The proof is essentially based on B-B's decomposition theorem and the lemma
below.

Lemma. ([DeLP], 1.8). If X has a-partition into pieces which have property
(IS) (resp. (RS)), then X has property (IS) (resp. (RS)).

Recall that a finite partition of a variety X into subsets is said to be an a-
partition if the subsets in the partition can be indexed Xl ... Xm in such a way
that Xl U ... U Xi is closed in X for i = 1"", k.

Now the theorem follows easily since B-B's decomposition is an a-partition.

The question in which we are interested is whether a quotient variety has
property (IS) ( resp. (RS)) or not. To answer this question partially, we have

Proposition. (The vanishing of intersection homology in odd degrees). Let
X be a smooth algebraic projective variety with an action of a complex torus
H. Then the rational intersection homology groups of an arbitrary categorical
quotient vanish in odd degrees. Moreover, if the action of the torus is quasi-
free (Le, there are no non-trivial finite stabilizers), then, the integral intersection
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homology groups of an arbitrary categorical quotient vanish in odd degrees and
have no torsion in even degrees.

Proof. It follows straightforwardly from our inductive homological formula
before.

6.4 Cycle Maps

Lemma. Let Z C X be a closed embedding, and U be the complement of Z.
Suppose also that Z has property (IS) (resp. (RS)), then c1x (resp. clx ~ Q) is
isomorphism if and only if c1u (resp. clu ~ Q) is isomorphism.

Proof. Combine [Fu], 1.8 and 19.1(6), we have the following commutative
diagram,

AiZ(~Q) ~ AiX(~Q) ~ AiU(~Q) ~ 0

! ! ! !
~ H2iZ(~Q) ~ H2iX(~Q) ~ H2iU(~Q) ~ 0,

hence the lemma follows.
Now we can state our main theorem in this section.

Theorem. Let U/ / H be an arbitrary categorical quotient. Then,
(a) the rational cycle map of U/ / H is an isomorphism if the rational cycle

map of X H has the same property.
(b) the cycl~ map of U / / H is an isomorphism if the cycle map of X H has the

same property and the action is quasi-free.

Proof. We need to show that the cycle map

is isomorphism for all i, or

is isomorphism for all i if the action is quasi-free.
First all of , let U = Up where p is a general point close enough to a relatively

general point r in a codim 1 face M of Jl(X). Then we have that

is a weighted projective (resp. projective, if the action is quasi-free) bundle over
Ur(M)/ H. Using induction (the trivial case is XH), we can assume that Ur(M)/ H
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has the desired property. Hence Up/ H has also the desired property (see [Fu],
19.1).

Now let M be an interior wall, and r, p be as before, then we have a fiber
square

A~Up/H=X

! !
B =Ur(M)/H -+ Ur//H = Y

where A is a weighted projective (resp. projective, if the action is quasi- free)
bundle over B, and X - A is isomorphic to Y - B.

Hence by the lemma and induction, X has the desired property if and only
if Y has. Since any two quotient varieties are connected by a sequence of fiber
squares like above, so the theorem follows our assertion in the beginning.

As a corollary of proposition 6.3 and theorem 6.4

Corollary. Let U/ / H be an arbitrary nonsingular algebraic quotient. Then
U / / H has property (RS) if XH has (RS).
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Chapter 7

The Case of Flag Varieties

Historically, we first worked out the results in this chapter.

7.1 Weighted Projective Spaces

Definition. Let Q = {qo,' .. ,qd} be a finite collection of positive integers, S( Q)
the polynomial algebra k[To,' .. ,Td] over the complex number C, graded by the
condition

deg(Ti) = qi, i = 0, ... ,d,

then the space P(Q) = Proj(S(Q)) is called the weighted projective space
with weight Q = {qo,' .. ,qd} .

Alternatively, P( Q) can be defined in a geometric way. Let C. acts on Cd+1

by
t\ . (zo,"', Zd) = (t\qO Zo,"', t\q,. Zd),

then P( Q) is just the orbit space of Cd+1 - 0 under this C. action. Clearly for
any positive integer a,

P( aqo, ... ,aqd) ~ P( qo, ... ,qd)

and P(l,"" 1) is just the ordinary projective space pd.
We remark that a weighted projective space is a rational manifold with (pos-

sibly) only finite cyclic quotient singularities. It is also a compact toric variety
whose associated cone decomposition is combinatorially isomorphic to the cone
decomposition associated to the ordinary projective space of the same dimension,
in particular, the rational (co)homology groups of a weighted projective space of
dimension d are isomorphic to the (co )homology groups of pd
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7.2 Statements of Some Results

Let G be a reductive algebraic group over complex number, H a Cartan subgroup.
Let also ~ be a root system of G with respect to H, n = {at, ... ,an} a simple
root system, and CP+the set of positive roots. We use B to denote the Borel
subgroup containing H with respect to <1>+ • In this section we shall deal with the
left action of H on the flag manifold G/ B.

We will prove in a later section that every wall M (including face ) of J.L( X) is
determined by a unique standard parabolic subgroup WJ of the Weyl group W of
H, where J is a subset of {I, - - -, n}, and WJ is generated by simple reflections 8ai,

i E J. And the stratum closure XM is H-equivariantly isomorphic to PJ • [B] ~
PJ/ B, where PJ is the standard subgroup of G corresponding to WJ, [B] is the
base point of G/ B representing the B orbit through the identity element. In above
case, we shall call M a wall of type J.

We use <1>J to denote the roots in <I> which can be written as linear combinations
of simple roots ai, i E J.

Theorem 1. Let M be a codim I face of p.(G/ B) of type J. We set JC =
{I, ... , n} - J = r, and let (30, .. - ,(311 be all the positive roots whose ar coefficients
in their linear combinations of simple roots, npo,' .. ,npv , are nonzero. Let r be
a relatively general point on M, and p E J.L( G/ B) is general and close enough to
r, then we have (a)

is a fiber bundle whose fiber is the weighted projective space P( nfJo, . - • ,npJ,) of
dimention v, and v = dim X - dim XM - l.

(b). Let £w be the weight lattice of G, HJ be the hyperplane generated by
{aili E J}, then <p is an ordinary projective bundle if and only if the lattice
£w n HJ is generated by {adi E J}.

Remark. Moreover, we have the following precise results listed according to
the type of the group G (see the next page for the Dynkin diagrams).

An- cp is an ordinary projective plI-bundle for any codim I face of any type.
Bn• cp is an ordinary projective bundle if and only if the face M is of type J,

where JC = {I}.
en' cp is an ordinary projective bundle if and only if the face is of the type J,

where JC = {n}.
Dn• <p is an ordinary projective bundle if and only if the face is of the type J,

where JC = {I}, or {n - I}, or {n}.
E6• cp is an ordinary projective bundle if and only if the face M is of type J,

where JC = {I}, or {6}.
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E1• c.p is an ordinary projective bundle if and only if the face M is of type J,
where JC = {7}.

For Es, F4, and G2 , c.p is not an ordinary projective bundle for any codim 1
face.

1 2 n-l n
0 0 ----- 0 0
1 2 n-l n
0 0 0

"'>----- ;>0

1 2 n-1 n
0 0 - - - -- 0" 0"
1 2 n- 1

0 0 - - - --

4J
2 n

1 3 5 6
0 0 0 0

4J
2

1 3 5 6 7

0 0 0 0 0

Let M be an interior wall of Jl( G/ B), then we shall see later that M defines
two moment map images of torus orbit closures, say M> and M<, which satisfies
the conditions in proposition 1.4, that is, M> n M< = M, and if r is a relatively
general point on M, and p E M<, q E M> are two general points and close enough
to r, then any Jl - image of torus orbit closure with a face on M and containing
r is either contained in M< or in kf>, it all depends on if the Jl - image contains
p or q.

Theorem 2. We have the following commutative diagram

Up(M<)/ H A Uo(M)/ H l!. Uq(M»/ H

! ! !
Up/H -L.Uo//H ~Uq/H
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where fl and gl are restrictions of f and g, respectively. Moreover, fl is a fiber
bundle over Uo(M)/ H whose fiber is a weighted projective space of dimension d,
and gl is a fiber bunndle over Uo(M)/ H whose fiber is a weighted projective space
of dimension e, where d = dimXM< -dimXM -1, e = dimXM> -dimXM -1, and
d + e = dim X - dimXM - 2. Furthermore, the weights of the weighted projective
spaces above are induced from the coefficients in the linear combinations of simple
roots for positive roots. In particular, if the group G is of the type An' then all the
weighted projective spaces above coincide with some ordinary projective spaces.

Remark. We shall see that both X M< and X M> are "nice" Schubert varieties.

Let G be SL(n + 1, e), then the flag manifold G/ B can be identified with the
space of flags of vector subspaces,

VI C ... C Vn C en+1,

in Cn+1 or the space of flags of projective linear subspaces,

pO C pI C ... C pn-l C pn,

in pn. We will use the two interpretations of S L( n +1)/ B alternatively, whichever
is convenient. Chosen a coordinate system {el ... en+l} in en+1 (or in pn). We say
a subspace vn is in general position if Vn does not contain any ei (i = 1, ... ,n+ 1),
a subspace VI is general if VI is not contained in any n - dim coordinate subspace.
It is known that all the general n-dimensional (respectively, 1 - dimensional)
subspaces make of a single torus orbit.

Theorem 3. Let

U(l) = {flags in Cn+11 VI is general},

U( n) = {flags E en+1/ Vn is general},

then both U(l) and U(n) are geometric open subsets, and their quotient spaces
can be identified with the flag variety of flags in en, S L( n) / B.

Proof. The fact that U(l) and U(n) are geometric is an immediate conse-
quence of the theorem 4.3 by considering the following projections

G/B ~ pn = {VI C Cn+1}

and

57



However, we can also show directly that they are geometric quotients after we
describe the moment map imges of SL(n + 1, C)I B (see section 3.4). To prove
that U(n)1 H is isomorphic to SL(n, C)I B, we fix a general n-space l'c>n. Consider
the projection

SL(n+ 1)IB = {VI C ... C Vn C Cn+l}

f!
pn = {Vn C Cn+l}

then the following map defined for flags (VI C ... C vn C Cn+l) where vn are
general:

H. {VI C ... C vn C Cn+l}

!
H. {VI C ... C Vn C Cn+l} nf-l(~n)

identifies U(n)1 H with the space of complete flags in Von since H .(~n) = the set of
all general n-spaces and the finite isotropy subgroups of H are identity subgroup.
Similarly, U(l)1 H can be identified with the space of flags in Cn+l that their first
subspace are a fixed general I-space VOl, or the space of flags in Cn+l IVaI.

7.3 Moment Map Images of G/B

x = GIB thorough out this section till section 16 (although many results hold for
other homogeneous spaces GIP with appropriate modifications. We shall indicate
this whenever the situation applies).

Let N(H) be the normalizer of H in G, then W = N(H)I H is by definition
the Weyl group of G with respect to H. Let <P be the root system associated to
Hand 7r = {Ol ... On} be a fundamental system in <P (it amounts to choosing a
fundmental Weyl Chamber C+). Using the Killing form of Lie G , we identify Lie
H with its dual space (Lie H)*.

It is known that the fixed point set of H, XH can be identified with W. Suppose
K is the maximal compact subgroup of G, then we know that the K - invariant
Kahler metrics on GIB are in one-to-one correspondence with the elements in
interior of C+, Int( C+).

Proposition. Fix a point T E Int(C+), hence a Kahler metric on GI B,
let J.l be a moment map associated to H action under this metric, then after a
translation if necessary, Jl{X) = convex hall of {w . Tlw E W}.
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7.4 Parabolic Subgroups of W

Definition. Let J C {I ... n}, we shall call the subgroup of W, WJ, generated
by the fundamental reflections Sar with r E J, a standard parabolic subgroup
ofW.

The subgroups WJ and their conjugates in ~V are all called parabolic sub-
groups of W.

We shall quote the following propositions from [Carter], which are useful for
us later.

Proposition. Given J C {I ... n}. Let DJ be the set of elements w E W
such that w . Sar E <1>+ for all r E J, then

1) W = IIdEDJdWJ.
2) W = IIcED;1WJc.
3) d ( or c ) is the smallest element in dvVJ (or WJc) under the usual Bruhat

order on W.

The Weyl Chambers give rise to a rational cone decomposition of Rn
• Given

a subset J C {I ... n},

CJ = {v; (v, Q'r) = a for r E J; (v, Q'r) > a for r E {I ... n} - J = JC}

is a codim IJI face of the fundamental Weyl Chamber, and all the faces the
fundamental Weyl Chamber are of this form.

Proposition. The stabilizer of CJ in \tV is WJ.

7.5 Parallel Walls and Faces of p( G / B)

Given J C {I ... n}, there is (induced) Bruhat order on the cosets {dWJ IdE
DJ} (or {WJc IcE D;l}) where d1WJ ~ d2WJ (WJCl ~ WJC2) if and only if
d1 ~ d2 (Cl ~ C2)' And there are always a unique minimal element eWJ = WJ
(or, WJe = WJ) and a unique maximal element doWJ (or, WJCo).

Before we state our theorem we need a lemma which is an easy consequence
of [C].

Lemma. The Lie algebras of isotropy subgroups of H are precisely the sub-
spaces generated by the faces of Weyl Chambers.
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Theorem. Given J C {I ... n} and WJ a parabolic subgroup of W, then we
have

(1) For each c E D;I, the convex hall Mc of {w. c. Tlw E WJ} is the moment
map image of a torus orbit closure of dim IJI. And for any two C}, C2 E D;I, MCt

and MC2 are parallel. Moreover, such convex halls give rise to all walls.
(2) For each d E DJ, the convex hall Fd of {d. w. Tlw E WJ} is the moment

map image of a torus orbit closure of dim IJI, it is actually a face of J.l(X). Such
convex halls give rise to all faces of Jl(X).

Roughly, the theorem says that the right cosets of WJ give rise to parallel walls
of the same type, while the left cosets give rise to faces of the same type.

Proof (1) We denote GIB by X. Then the fixed points set of H,XH, is equal
to W. Let PJ be the parabolic subgroup of G associated to WJ, then for any
c E D;I,

(PJc. [BD n XH = ltVJc. [B]

where [B] is the base point of X = GI B, since PJ. [B] is a H - invariant closed
subvariety, and Jl(PJc, [BD = convex hall of WJc. T, hence Mc is the moment
map image of a torus orbit closure (in PJ . c[BD. We remark that PJ . c[B] is
actually XMc (which will be a consequence of some results later). To prove that
MCt and MC2 are parallel for any Cl, C2 E D;I, it suffices by the consideration of
dimensions to show that Mc (of dim IJI) is perpendicular to the face of a Weyl
Chamber, CJ (of codim IJI).

The linear subspace V parallel to Mc is given by

V = span { wc . T - C • T Iw E WJ},

but for any v E CJ, W E WJ,

(wc . T - C • T, v) = (wc . T, v) - (c . T, v) = (c. T, W -1 • v) - (c . T, v) = 0

Since WJ is the stabilizer of CJ. Hence we proved that Mc is perpendicular to CJ.
The last statement should be clear by the lemma above and a basic property

of moment map.
(2) Similarly, we notice that for any d E DJ,

(dPJ. [BD n XH = dWJ' [B]

hence, the convex hall of dWJ . T = J.l(dPJ . [BD is the moment map image of a
generic torus orbit closure in dPJ. [B]. To show that it is a face of Jl(X), it suffices
to consider the convex hall of WJ . T since for any w E W, the map a t-+ w . a,(
for any a E Lie H ),gives an isometry form Lie H to itself. Hence if the convex
hall of WJ. T ia a face of Jl(X), so is that of dWJ' T. It is also enough to consider
the cases of maximal parabolic subgroups because for any J, there are maximal
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J1 ••• Jr such that J = J1 n ... n Jr and

(dWJ1) n ... n (dWJ,.) = d(WJ1 n ... n WJ,.) = dWJ1n...nJ,. = dWJ,

and because an intersection of faces of a polytope is still a face. To complete the
proof we claim here that it will be an immediate consequence of the assertion
below.

Claim. Let Cl, C2, Ca E D;1 where J is a subset of {I ... n} with n-I elements.
If Cl -{ C2 -{ Ca under the Bruhat order, then the wall MC'Jis in between the wall
MCt and MC3•

There are many ways to prove this. One simple proof will appear in section
7.7.

I suspect the claim holds under a even weaker assumption on Cl, C2, Ca (but I
could not prove it), it is stated as follows.

Define the rank function r on ~V with the Bruhat partial order by setting
r(w) = l(w), the length of w, then r induces a rank function (also denoted by
r) on the cosets {WJclc E D;I} (or {dWJld E DJ}) with the property that
r(WJc) = r(c) (r(dWJ) = r(d)).

Conjecture. Let Ct, C2, Ca E D;I, where J is maximal, If r(cd < r(C2) <
r( ca), then the wall k/C2 is in between the wall Met and MC3•

7.6 More Properties of Parallel Walls and Faces of J.l(X)

We observe by theorem 7.5 that

Corollary.. Let J c {I ... n}, and f : G/ B ~ G/ PJ be the natural pro jec-
tion. Then for any fixed point d on G/PJ (d E DJ), f-l(d) = dPJ . [B] is the
stratum closure whose moment map image is the convex hall of dWJ . T. And all
faces of Jl( G/ B) can be described in this way.

Sometimes we will say that the convex hall of WJc . T, a wall of type J, and
the convex hall dWJ . T, a face of fl(X) of type J.

GivenJ C {I ... n}, let WJCo be the maximal element of {WJclc E D;I},
then WJ . Co is a face of Jl(X), hence there is 1< c {I ... n} with IKI = IJI and a
dE DK such that WJCo = dWK. Because both Co and d are the smallest element
in WJCo and dW K, respectively, hence d = Co by uniqueness. WK = cQl WJCo. On
the other hand, if c-1 WJc = WK, then WJc = CWK gives a face, hence c = Co.
This shows,
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Corollary. Among the conjugates of J.-VJ,only WJ and C01 WJCo are standard
parabolic subgroups.

Finally, we remark some intersection properties of walls to close this section.

Proposition. Given J,!( C {I ... n}, and di E DJ,d' E DK, C E D;t,
dE Di/, then

(1) dWJ n d'WK # 0 if and only if d = d' E DJ n DK. In this case

dWJ n d'WK = d(WJ n WK) = dWJnK.

(2) WJc n WKc' # 0 if and only if c = c' E D;l n D1/. In this case

WJc n WKC' = (WJ n WK)C = ~VJnKC.

(3) dWJ n WKc # 0 if and only if d = c E DJ n D1/. In this case

d~VJ n ~VKC = (cWJc-1 n W K )c.

Proof. By the uniqueness of the smallest element in each coset.

7.7 Half Regions and Their Torus Strata

Let WJ,j C {I ... n}, be a parabolic subgroup of W. The induced Bruhat order
on the posets {WJclc E D;l} is actually the same as the Bruhat order on the
Schubert varieties of G/ PJ.

For any Cl, C2 E D;I, we will say that the wall Mc! defined by WJCl is less
than the wall MC2 defined by WJC2 if Ct < C2. Clearly, there is no element in
WJCl is "greater" than some element in WJC2 and the maximal element of WJC2
is "greater" than any element in WJCt if MCJ < MC2•

Definition. A wall M defines two regions M> and M< in Rn as follows,

M> = Convex hall of {wall M' I M' ~ M}

= Convex hall of vertices of walls M' with M' ~ M,

M< = Convex hall of {wall M' I M' ~ M}

= Convex hall of vertices of walls M' with M' ~ M.

62



We shall call them the half regions defined by M.

Proposition. M< and M> are the moment map images of some torus orbit
closures. Furthermore, if M = convex hall of WJc, let u, v be the maximal
element and the smallest element in WJc, respectively, then

X,.,f< = Su = BuB/ B,

XM> = S; = B*vB/B,

where B* is the oposite Borel subgroup of B.

Proof. Since Su n XH = {w E Wlw ~ u}, hence p,(Su) C M<. On the other
hand, if x E XM<, but x is not in Su, then there exist w E W with w is not
less than u such that x E Sw, a direct computation shows that w E H . x, this is
impossible since H . x C XM<. Therefore XM< C Suo Hence, Su = XM<.

Similarly, X M> = S;.

We remark, as a consequence of the proof above, we have

Corollary. Every Schubert variety is a union of torus strata.

7.8 Intersections of Half Regions

Let M, N be two parallel walls with N < M, define

C'j = convex hall of walls Q with N ~ Q ~ M.

Then clearly, Ct! = M< n N> .
As a consequence of the proof proposition 7.7, we have

Corollary. Ct! is the moment map image of a torus orbit closure. And if
M = WJct, N = WJC2, and u is the largest element of WJct, v is the smallest
element of WJC2, then

XM>nN< = Su n S; = XM< n XN>.

Remark. In the case of G = SL(n + 1, C), we shall describe M<, M>, Ct! in
terms of Schubert conditions on flags.
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Proof of the claim in 7.5. Let Cl -< C2 -< C3 be as in theorem 5.2, by
corollary 3, Mc'J C M;; n M~, this shows that Mc'J must be in between Mc! and
MC3 since M< n M> = M for any wall M.

Lemma. The moment map image of any orbit closure is contained in a wall
of the same dimension.

Proof. This is a consequence of the classification of the isotropy subgroups of
H (lemma 5.1) and a basic fact of a moment map.

Proposition. The moment map image of every orbit closure is an intersection
of half regions.

Proof. Let C be the moment map image of a torus orbit closure. Without
loss of generalities, we assume that C is of top dim. Let 0"1 ••• 0"1 be the exactly
the codim 1 faces of C that are not on original faces of Jl(X), this is, they are
contained in interior walls NIt, ... , M1, respectively. Now each Mi defines two half
regions, and by their properties, exactly one of them contains C, say Ei, then it
is an easy fact of polytopes that

C = n. Ei.=1" ..,1

Remark. Follow the notation above, it is clear

xc c ni=I, ...,IXE;

We have known that for every half region, its stratum closure is union of strata,
hence an intersection of strata closure defined by half regions is also a union of
some strata. But it is possible that Xc is not a union of strata, so Xc could
be a proper subset of ni=I,...,IXEi. If this happens, ni=I, ...,IXEi should not be
irreducible since both Xc and ni=I, ...,IXE, contain an open subset Xc.

Definition. A Schubert variety is call of first class if its moment map image
is a half region defined before.

As a consequence of the corollary 7.7 and the proposition above, we have

Corollary. Every Schubert variety is an intersection of some Schubert vari-
eties of first class.
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7.9 Regions Defined by Faces of J-l(X)

Let WJ (J c {I, ... , n}) be a parabolic subgroup of W. Then the convex hall
of dWJ (d E DJ) gives a face of p.(X) of type J. Then the Bruhat order on
{dWJld E WJ} induces a poset structure on the faces of p.(X) of type J.

As in section 6, we define two regions associated to a face F of type J.

Definition. Let F be a face of p.(X) of type J, we define

F- = convex hall of faces F' of type J with F' ~ F

F+ = convex hall of faces F' of type J with F' ~ F

Clearly, F- n F+ = F by the definition.

Proposition. Suppose F is the convex hall of dWJ(d E DJ). Let f : G/ B -+

G/ PJ be the natural projection. f maps dWJ(d E DJ) to a fixed point d of H on
G/ PJ• Let u, v be the largest and smallest element of dWJ, respectively, (in fact
v = d), then we have

(1) F- and F+ are the moment map images of some torus orbit closures,
respecti vely.

(2)
XF- = f-1(BdPJ/PJ) = BuB/B

where BdPJ / PJ is a Schubert cell on G/ PJ indexed by d( = f( dWJ)). and

XF+ = f-l(B*dPJ/ PJ) = B*vB/ B

where B* is the opposite Borel subgroup of B.

Proof. The proposition follows immediately by the proof in 7.7 if

f-l(BdPJ/PJ) = BuB/B and

f-l(B*dPJ/PJ) = B*vB/B

are proved. But it is straightforward to check that

and
f-l(B*dPJ/PJ)nXH = B*vB/BnXH•

Since they are all Schubert varieties on G/ B, so the two equalities hold.
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Let d E DJ, d be the corresponding image of f on G/ B, we use Sa to denote
the Schubert cell BJPJ / PJ, and Sj to denote the Schubert cell B*JPJ / PJ. Now
as a consequence of the above, we have

Corollary. Let db d2 E DJ, and d1 < d2, let F1(F2) be the convex hall of
d1 WJ . x( d2 WJ . x), then the convex hall of faces F' with F1 ~ F' ~ F2, say C, is
the moment map image of some torus orbit closure. In fact,

C=FtnF2-

Xc = /-1 (Sjl n8/2).

Remark. Although the use of regions defined by faces in this section is not so
clear as the regions defined by parallel walls, I suspect the two are equally useful,
in other words, we may substitute the half regions of 7.7 by the regions defined
in this section so that the result in section 7.8 still hold.

7.10 The Star Constructions and Their Applications

Let M be an interior wall of codim 1, r be a relatively general point on M. Let
also p be a general point in M<, and q be a general point in M>, then theorem
7.2.2 states that the following diagram

U(Al<)/ H A Uo(M)/ H ~ Uq(M»/ H

! ! !
Up/H ~Uo//H ~Uq/H

commutes, where the vertical maps are closed embeddings, and 11 is a fiber bundle
whose fiber is a weighted projective space of dim d. 91 is a fiber bundle whose
fiber is a weighted projective space of dim e. d + e does not depend on parallel
walls. Moreover (and clearly), I is identity off Up(M<)/ Hand 9 is identity off
Uq(M»/H.

Now we shall develop some notations and observe some fact in order to prove
the theorem.

Definition. Let a be a vertex of J.L(X), define

star(a) = U{XCla E C}.
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Lemma. (1) Star(a) is a biggest Schubert cell for any a.
(2) If a E C, the moment map image of torus orbit closure, then star( a) nXc

is contractible.
(3) Let Sw be a Schubert variety, C = p.( Sw), and a = p.( w). then

star(a) n Xc = star(a) n Sw = Sw.

Proof. (1) Let a = p.(w), w E W. Choose Borel subgroup B' containing H
such that B'wBIB = GIB. Denote B'wBIB = S~, then we have to show that
star( a) = S~.

Now for any x E S~, since w is the only fixed point of the torus action in
S~, an easy argument of Morse theory or a simple direct calculation shows that
H . x 3 w, hence a E p.(H . x), that is, x E star(a), we got S~ C star(a).

Now if y E star(a), that is a E p.(Hy) or w E Hy. Assume that y f/. S~, then
3u E W, u <' w, and y E S~ = B'uBIB, so HynW c s~nw = {v $.' ulv E W},
which contradicts with that w E Hy.

(2) This is a consequence of [B-B] or a simple application of Morse theory.
(3) The same argument as in (1) shows that

Sw C star(a) n SW.

For the other direction of inclusion, if x E star( a) nSw , then w E H . x, assuming
x f/. Sw, since x E Sw, then as in (1), we have H . x C Su, for some u < w,
contradiction.

Remark. The lemma above holds for every homogeneous space GIP without
any modification.

Lemma. Let C be a half region defined by a wall M, and M1 C C is a wall
which is parallel and closest to M. Then we have

(1) Let p E C and is in between M1 and M, that is, p E M[ n M< if M1 < M,
or p E M> n Mf if M < M1, then Up( C) IH is a rationally nonsingular compact
variety with only finite quotient singularities. Particularly, it is nonsingular in the
case that G is of type An.

(2) Let r be a relatively general point on M1, P is a general point in C which
is in between M1 and M and close enough to r, then the algebraic map

described before is an isomorphism
(3) Let q be general point close enough to r as pictured above, then Uq( C)I H
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is also rationally nonsingular or nonsingular in the case that the torus action is
quasi-free.

Proof. (1) By lemma 1, for each vertex a of C, star{a)nXC is a Schubert cell
with respect to a suitable Borel subgroup containing H, whose closure is just Xc.
In other words, star( a) n Xc is a smooth open cell of Xc. Now by the position
of p, it is clear that

Up(C) C U{star(a) n XCla E vertex set of C},

th right side is a smooth open subset of Xc since it is a
union of smooth open subsets, now Up( C) is an open subset of the right side,

hence is also smooth, therefore we conclude that Up(C)j H is nonsingular.
(2) This is because for each moment image D between M1 and M, the algebraic

map
PD,DnM: XDjH ~ XDnMjH

has to be isomorphism since it is birational and finite.
(3) The assertion is justified if we notice that Uq( C)j H is the blow up of the

nonsingular variety Ur( C)j j H along the nonsingular variety Ur(M)j H.

7.11 A Direct Proof of Theorem 7.2.1

We follow the notation in sections 7.3,4,and 5. We can assume that the face M is
the convex hall of WJ . T without the loss of the generality, whereJ C {1, ... n},
and IJI = n - 1. As we have known

XM = PJ. [B]

Now let rEM be a relatively general point, and p E Il(X) be a general point
close enough to r. Then we have clearly that

Up C U{star(a)la E vertex set of M}

Ur(M) C U{star(a) n XMla E vertex set of M}(= XM).

Now we will work on open sunsets star(a) n Up of Up and Ur(M) n star(a) of
Ur{M) for each vertex a individually. We shall consider the restriction,<pa, of the
projection

<P : Upj H ~ Ur(M)j H

to the open subset star( a) nUpj H of Upj H , and prove that

CPa : (star(a) n Up)j H --. (star(a) n Ur(M))j H
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is a weighted projective bundle of a fixed type for every vertex a of M. If this is
proved, so is the first part of the theorem.

Now each Schubert cell star( a) is a top Schubert cell with respect to some
suitable Borel subgroup. For simplicity, we can assume that star( a) is the top
Schubert cell with respect to the action of the Borel subgroup B (that is, we take
a = x). Then star( a) is equivariantIy isomorphic to the unipotent radical U of B
equivariantly with respect to the action of Maximal torus.

Let Lie G = Lie H + L:aE~ ga where ga are eigenspaces.
Now

U ~ Lie U ~ IIaE~+ga = IIaE~+n~Jga x II'oE~+_~Jga

where ~J is the set of roots that can be written as linear combinations of 0i, i E J.
Let HJ be the subgroup of H whose Lie algebra is generated by 0i, i E J. Let

Ht be the subgroup of H whose Lie algebra is niEJ ot, then Ht is the stabilizer
of XM = PJ • [B] and

Lie H = Lie HJ EB Lie HI

H = HJ X HI

Now for any element h of H, h can be written as

h = expO. expA = exp(O + A)

where 0 E Lie HJ, A E Lie Ht•
Let

u = IIaE~+n~J9a x II'oE~+-~J9,o

be an element in U, where 9a E ga, 9,0 E g,o, then h . u

= IIaE~+n~ J e(O+A,a) 9a x II,oE~+_~ J e(O+A,,O)9,0

= IIaE~+n~ Je(O,a) 9a x II,oE~+_~ Je(O,,o)e(A,ar)n~ 9,0

where n,O is the coefficients of Or, r E JC, in the expression of 9,0'
Under the equivariant isomorphism from star(a) to U, the projection CPa from

star(a) n Up/ H to star(a) n Ur(M)/ H is equivalent to the projection given by

!
I1aE~+n~ J9a

So given a H(or HJ) orbit in Ur(M) n star(a),
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The fiber of the projection 'Pa is the orbit space of IIt3E~+_~Jgt3 by the torus Ht
with the action given by

expA . IIt3E~+_~Jgt3

= IIt3e(,\,ar)np gt3, for any A E LieHt.

So the fiber of 'Pa is the weighted projective space P(nPo' 0 0 • ,nt3.J. By the defini-
tion of (nPo,'" ,nt3,,), it is easy to see that the sequence of the integers does not
depends on the choice of each vertex on M, it depends only on the type of the wallo
Hence ,we proved that 'P is a fiber bundle with the typical fiber P( nl3o,' .. ,nt3,,).

To see the rest of the theorem is true, it suffices to look at the coefficients of
the maximal long root for G of every type. The maximal long roots for all types
of group G are listed below.

An.ot + ... + On

Bn.ot + 202 + ... + 20n
Cn.20t + ... + 20n-1 + On

Dno01 + 202 + + 20n_2 + On-l + On

E6.ot + 202 + + 203 + 304 + 205 + 06

E7.20t + 202 + 303 + 404 + 305 + 206 + 07

Ea.20t + 302 + 403 + 604 + 505 + 4a6 + 307 + 20a
F4020t+ 302 + 403 + 204

G2.30t + 202

7.12 The Triviality of Some Canonical Bundles

As one can see from the proof in the previous section, we have:
(1) 'Pa : Up n star(a)/ H -+ Ur(M) n star(a)/ H is a trivial bundle.
(2) In particular, if both rand p are close enough to a vertex of M then

'P : Up/ H -+ Ur / H is a trivial bundle.

(1) is clear from the proof above. (2) is because if p and r are close enough to
a vertex a of M, then Up C star(a), Ur(M) C star(a), so 'P = 'Pa.

In fact, this triviality is not coincident: the reason is:

Proposition. The normal bundle of P/ B in G/ B is trivial where B is a Borel
subgroup of a reductive group G and P is a parabolic subgroup of G containing
B.

Proof. The normal bundle of P/ B in G/ B is
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where g and p are the Lie algebras of G and P respectively. Note that P acts on
g/p. Now take a basis of g/p, then this basis generates, by applying the action
of P, a group of global sections which will trivialize the normal bundle.

The same statement is false for the tangent bundle. The tangent bundle of
PIB in GIB is

P XB p/b

where p and b are the Lie algebras of P and B respectively. But P does not act
on p/b.

Consequently, we have

Corollary. All the fibrations characterized in 7.2 are trivial.

Remark. It seems for me that the corollary is true for any smooth variety
with the torus action. But I have no proof.

Now we are ready to prove the theorem 7.2.2. We would like to present two
very different proofs. The first proof is totally analogous to the proof of the
theorem 7.2.1, although it needs a little more effort. This proof is valid for G of
every type. However, we shall also provide an alternative proof for the case that
G = SL(n + 1, C) without using the group structure of G, and therefore it may
fit some general context (if there is a similar situation there).

7.13 The First Proof of Theorem 7.2.2.

As assumed rEM, p E M<, we only prove the statement concerning p because
the other half is totally analogous, and the fact that d + e = constant is just a
simple calculation of dimensions of some Schubert varieties. In fact

d = dimX,..f< - dimH - (dimXM - (dimH - 1))

e = dimXM> - dimH - (dimXM - (dimH - 1))

so,
d + e = dimXM< + dimXM> - 2dimXM - 2

= dimGIB - dimXM - 2

sInce
dimG I B = dimXM< + dimXM> - dimXM

by the results in ~6.
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So, to prove the theorem, it suffices to show the following claim:

is a fiber bundle whose fiber is a weighted projective space.

We remark that Up(M<)/ H is a quotient on XM< where XM< is a "nice"
Schubert variety whose moment map image is just M<, a half region.

As before
Up C {star(a) n XM<la E vertex set of M}

Ur(M) C {star(a) n XMla E vertex set of M}

since no vertex of M is more special than the other vertices of M, it is sufficient
to show that

is a weighted projective space-bundle. But star(a) n XM< is a Schubert cell S'J
for some yEW, and it is well-known that Sy is H -quivariantly isomorphic to
un yU*y-l where U,U* denote the unipotent radical of Band B* (see [KLD.

Let
<J!y = {, E <J!+ I y., E <J!-},

then U n yU*y-t is H -equivariantly isomorphic to

In what follow~, we just need to translate the corresponding part of the proof of
theorem 7.2.1 word for word. So we omit them.

7.14 The Second Proof of Theorem 7.2.2 when G = SL(n + 1, c)

Let the notations be as before. Now let M < M1 < ... < Mk be a maximal chain
of parallel walls, that is, Mk is a face of Jl(X), and r(Mi+d = r(Mi) - 1, i =
0, ... , k - 1. We agree that Mo = kf.

Let
Ai =Up(Mi<)/H,i = O, ,k

Bi = Ur(Mi<)/ / H, i = 0, , k.

Then we have the following diagram of varieties
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! !! !
Ur(M)1 H = Bo ~ B1 ••• ~ BIc = Upl H,

which commutes. Furthermore, each square

! !
Bi ~ Bi+1

is the diagram of a blow up in the sense that Bi is the center of the blow up and
Ai is the exceptional divisor. Now we only need the first square for our purpose.

By lemma 2, we conclude
Ao~ At

! !
Bo~Bl

is a blow-up diagram of non-singular varieties. Now because Bo C--.+ B1 is a regular
embedding, by a fact of algebraic geometry, Ao ~ Bo has to be a projective
pd _ bundle. (see [ES-B].)

Remark. In the case that G is not of type An, the varieties in the last
diagram may not be nonsingular varieties due to the existence of the nontrivial
finite isotropy subgroups. What we can say is that the varieties have only finite
quotient singularities. In this case (with possibly a non-quasi-free torus action), I
do not know if we can deduce from algebraic geometric arguments that Ao ~ Bo
is fiber bundle whose fiber is a weighted projective space.

7.15 The Singular Loci of Singular Quotients

Corollary. Let M be an interior wall, and r be a point in the interior M. Then
(1) if M is next to the boundary of p(X), and r is relatively general on M,

then Url IH is rationally nonsingular or nonsingular when G = SL(n + 1, C).
(2) Otherwise, Url IH is seriously singular. In fact, the singular locus of Url IH

is just Ur(M)1 H if r is a relatively general point on M.

From the proof in this chapter, we can see easily that most results in this chap-
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ter hold for any Schubert variety of first class (see section 7.8 for the definition).

7.16 Intersection Horn ology of Sym plectic Quotients

Example 1. X = Sp(C4
)/ B.

P(Up/ H) = (1 + t2 + t4) + (t2) + (t2) + (t2) = 1+ 4t2 + t4•

Similarly,
I P(Ur1/ H) = P(Ur1/ H) = 1 + 3t2 + t4,

I P(Ur2/ H) = P(Ur2/ H) = 1+ 2t2 + t4•

Figure 7.1: The moment map image of Sp(C4
)/ B.

P(Up/H) = (1 + t2 + t4 + t6 + tS) + (t2 + t4 + t6) + (t4)

+(t2 + t4 + t6) + (t2 + t4 + t6) + (t4) + (t4) + (t4) + (t4)

= 1+ 4t2 + 9t4 + 4t6 + tS

Similarly,
I P(Ur1/ H) = 1 + 4t2 + 8t4 + 4t6 + tS,

I P(Ur2/ H) = 1 + 4t2 + 7t4 + 4t6 + tS•
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Figure 7.2: The moment map image of G2/ B.
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Chapter 8

Explicit Results for G/ B,
G == SL(n + 1,c)

The Schubert-like conditions are frequently used in this chapter.

8.1 Parallel Walls in Terms of Symmetry Groups

We use two interpretations of the flag manifold SL(n + 1,C)/ B as follows.
(1) The space of all flags in Cn+1

o C VI C V2 C ... C Vn C Vn+1

where Vi is a dimension i linear subspace of Cn+l.

(2) The space of all flags in pn

pO C pI C ... C pn-I C pn

where pi is a dimension i linear projective subspace of pn.
Choose a basis {el, ... , en+l} in Cn+l, then a coordinate flag is a flag where

each subspace is spanned by some of basis vectors. When working in the projective
space pn, a basis amounts to choosing n + 1 points {al, ... , an+l} that span pn,
and a coordinate flag in pn is a flag when each subspace is spanned by some of
base points. We shall work on Cn+1 or pn, alternatively, it depends on whichever
is convenient for us.

The H - fixed points can now be identified with the coordinate flags, which,
in turn, is identified with elements of symmetry group Sn+1 (Weyl group). The
identification is indicated as follows.

C . {e. } C C . {e. e'} C ... C C . {e: ... e' }11 11' 12 .1' 'In+l

1
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(it, ... ,in+l) E Sn+l

where 1 $ ik $ n + 1, and C{x, y, z, ... } denote the subspace spanned by
x,Y,Z,'. '.

We still need more conventions.

Definition. Let S, T c {1, 2, ... ,n}, with ISI = ITI, define Mf. = set of per-
mutations (hI' .. hn+l) in Sn+l such that elements of S only occur in the positions
indexed by elements in T.

That is, if S = {it, ... ,ik}, T = {jt, ... ,jk}, then Mf. consists of those per-
mutations (hI'" hn+d where it, ... , ik occur only in the jtth,'" ,jkth positions.

Now we can interpret our results in chapter 7.

Theorem. Mf. (precisely, the moment map images of the corresponding flags)
is the vertex set of a wall in J.l( G/ B). To abuse the notations, we use Mf. to denote
the wall also. Then for any S, T, T' C {I, ... , n + I} with ISI = ITI = IT'I, Mf.
and Mf., are parallel. Moreover, every wall is of this form.

We shall call Mf. a wall of type S. Note by our convention, Mf. = Mf.~.

Example. G/ B = SL(4, C)/ B. Then the boundary of the moment map
images of G/ B consists of 6 square faces and 8 hexagonal faces. Hence every
the codim I wall is either square or hexagonal polytope. The following gives all
hexagonal walls: I ~ a ~ 4,

Mf;? = {(a * * *)}

Mf;? = {(* a * *)}

Mf;? = {(* * a *)}

Mf:? = {(* * * a)}
The induced Bruhat diagram on the walls is

M{a} M{a} M{a} M{a}
{I} -4 {2} -4 {3} -4 {4}

And all square faces are given by

Mf;;? = {(a b * *), (b a * *)}

Mf;;? = {(a * b *), (b * a *)}
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Mf::? = {(a * * b), (b * * a)}

Mf;;? = {(* a b *), (* b a *)}

Mf;:? = {(* a * b),(* b * a)}

Mf; :? = {(* * a b), (* * b a) }

1 $ a =1= b $ 4, and the Bruhat diagram on the walls is

Mlab}
lab} lab}< 23}" I b} I b}

M 12} - M 13} lab} / M ~4}- M ~4}
M{14}

We remark that

Corollary. Mf is a face of J.L(X) if and only if T = {1, 2" .. ,k} or T =
{1, 2, ... , k} C = {k + 1, ... , n + I}.

Therefore, the following is a face-diagram

M{12} _ M{13}<
{I2} {12}

reverse this diagram we get

M{23}
{12}" {24}

/"M _
{14}~ {I2}

M{l2}

M{34}
{I2}
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Use the Canonical projection from GL(4, C)/ B to G2(C4), we can see that the
above two diagrams descend to

{23}

{I2}-- (13~ > {24) {34}
. "'" {14}

which is exactly the Bruhat diagram of Schubert varieties on G2(C4).

8.2 Schubert Conditions and Strata Indexed by Parallel Walls

Now we want to construct XMf. in terms of flags in pn.
Given a wall of type S, with ISI = k. Then S determines a coordinate linear

subspace CS spanned by {eili E S} and a coordinate subspace Cse spanned by
{aj!i ~ S} with CS n Cse = o. Then our following arguments will show that any
flags in a given stratum closure XMf. (S fixed) can be constructed from two flags
in CS and Cse by a specific method determined by T.

Now given arbitrary two flags in CS and Cse, respectively,
(1) e1 C, ... ,C ek-1 C ek = CS

(2) TJ1 C" .. , C TJn
-
k C TJ"-k+1 = Cse

To construct a new flag

from flag (1) and flag (2), we have the following choices:
(1 = et, or TJt,
(2 = e2, or span of eland TJt, or T]2,
(3 = e3, or span of e2and TJ1, or span of eland TJ2, or TJ3,

Theorem. Suppose now T = {jt, ... ,jk} C {l, ... ,n + I}, then any flag in
XMs

T,

(1 C, ... , C (n C Cn+1,

can be constructed from a flag in CS,

and a flag in Cse,
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as follows:
(1 = '7\ ... ,(i1-1 = '7i1-1

(i1 = span of eland T}i1-1,'" ,(h-l = span of eland T}h-2

(h = span of e2and '7h-2, ••• , (i3-1 = span of e2and 7]i3-3

(ilc-1 = span of ek-land 7]ilc-1-k+l, ... , (ilc-l = span of ek-land 7]i,,-1
(ilc = span of ekand 7]i"-k, ... ,(n = span of ekand 7]n-k

Obviously by our construction,the spaces of Hags constructed in this way for
various T all have the same isotropy subgroup (depending only on 8). Hence by a
basic property of moment map, their moment map images are parallel, therefore
they exhaust all strata closures indexed by parallel walls of type S according to
section 7.5.

In fact , the above method of constructing new flags are the only method that
can make (1, (2, ... ,(n flags.

Let CS be the coordinate subspace spanned by {eili E 8}. Then in terms of
Schubert conditions, XMf. is described as follows

Theorem. X Mf. = all flags VI C, ... ,C vn C Cn+l satisfying the following
conditions;

(1) dimVI1 n CS = 0, 1 ~ J.l ~ it, dim ViI n CS = 1
dim VI1 n CS = 1,it ~ J.l ~ i2, dim Vi2 n CS = 2

dimVI1 n CS = k - 1,ik-l ~ J.l ~ ik' dimVi" n CS = k
(2) dim VI1nOS +dim VI1nC.s:c = J.l, 1 ~ J.l ~ n + 1. (#- VI1 = VI1nCS EB VI1n

Csc)

As a corollary of our construction, we observe that X Mf. is equivariantly iso-
morphic to the product of the space of flags in Ck and the space of flags in Cn-k+1

with respect the obvious actions of the torus H.

8.3 Schubert Conditions and Strata Indexed by Half Regions

As before, let 8 C {I, .. , n + I} with \81 = k.
It can be shown by (for example) checking their vertex sets that we have the

following:
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then Xc consists of flags

VI C ... C Vn C Cn+1

satisfying the following conditions

dim Vii n CS ~ 1

dimVik n CS ~ k

(b). Let D = (Mtlt ...,ik}» be bounded by Mtlt ...,ik} and M(n+2-k ...n+I}' then
by M~ = M~~, we have X D consists of flags

VI C ... C Vn C Cn+l

satisfying the following Schubert conditions

dimVh1 n Csc ~ 1

dimVhn+1-k n Csc > n + 1- k

where {hI ... hn+I-k} = {it ... ik}c.
(c). Now if (it, ... ,ik) ~ (jt, ... ,jk) under the Bruhat order on Sn+l (this

means it ~ jt, ... ,ik ~ jk), then enD is the region bounded by Mtlt ...,ik} and
MD1, ...,ik} , and xcnD consists of flags

VI C ... C Vn C Cn+t

satisfying

dimVik n CS > k.- , dim Vhn+1-k n CSc
~ n + 1 - k.

We have shown that the moment map image B of a orbit closure is an inter-
section of half regions, so X B is contained in an intersection of strata closures
indexed by half regions, however it is very difficult to characterize when a set of
Schubert-like conditions gives nonempty set of flags satisfying those Schubert-like
conditions.

A simple case (corresponding to intersection of two half regions) presented
below seems already requiring a lot of effect to solve it, that is,
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Is there any Hag satisfying

dim Vii n eS > 1.- ,

dimVik n eS ~ k; dimV.m n eT ~ m

where S, T C {I, ... , n + I} with ISI = k,ITI = m. Of course, when k + m =
n + 1, T = SC and (it, ... ,im)c ~ (iI, ... ,jk), this is just case (c) in the theorem
4.3.1.

8.4 On the Zariski Open Subsets U(l) and U(n)

Recall that

U(I) = {flags in en+1lthe first subspace VI' is general}

U( n) = {flags in Cn+1lthe last subspace Vn is general}

In this section we shall prove U(l) and U(n) are geometric open subsets, explore
some other quotients on G/ B and give some relations among these quotients,
especially in the case when G = SL( 4, e).

Let fk be the projection form G/ B to G(k, en+l) defined as follows
fk : VI C ... C vk C ... C vn C cn+l ~ Vk•

We have known that all the codim 1 faces of J.l(G/ B) are given by the mo-
ment map images of f;l (a coordinate k - space), 1 :5 k $ n. We shall call
J.l(f;l (a coordinate k - space)) a face of type k.

Theorem. Under the convention above.

U(I) = U{XDID meets every codim 1 face of type I}

U(n) = U{XDID meets every codim 1 face of type n}

Clearly, U(I) and U(n) consist only of strata indexed by top dimensional poly-
topes.

Proof. We only prove the statement for U(l). For any x E U(l), let D =
J.l(H . x). The moment map image of pn = {VI C en} can be thought as obtained
from J.l(G / B) by collapsing each type 1 face to a vertex. Consequently, if D misses
a type 1 face of J.l(G/ B), then J.l(H . fl(x)) will miss a vertex of J.l(pn), but fl(x)
is general. So J.l(H .fl(x)) = J.l(pn). Hence D meets every type 1 face of J.l(X).
On the other hand, if D meets every type 1 face, and x E X D, the same argument
shows J.l{H . fl{x)) = J.l(pn), hence fl{x) is general. This completes the proof.
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A direct proof of the first part of theorem 7.2.3 First of all, by the
consideration of parallel walls, it is impossible that an admissible decomposition
of p,( G / B) contains two open polytopes which meet every codim 1 face of type 1
(resp. n). On the other hand, given any admissible decomposition ~ of p,(G/ B),
since there is only one top dimensional polytope Ll in any admissible decomposi-
tion of the moment map image of pn+l, there should be (at least) one polytope
in ~ which can be collapsed to Ll, so this polytope must meet every codim 1 face
of type 1 (resp. n).

Remark. In fact, the proof can be made more explicit in terms of symmetry
group Sn+l. That is , if DE:=: contains vertices

A = {some(it, .. ', in+l)}

(where we identify each element of Sn+l with a vertex of p,( G / B)), then the iI's
that appear in A should range all over from 1 to n + 1 if D meets every face of
type 1.

It is quite obvious that the Weyl group W sends a face to a face of the same
type, henceU(I) and U(n) are both W -invariant since w.XD = xwoD for each
w E W, and therefore W acts on U(l)/ Hand U(n)/ H.

Now let us assume a general metric on G/ B is taken so that the barycenter
o of p,( G / B) is a general point in p,( G / B), then Uo is W - invariant since W .
o = 0, hence W acts on Uo/ H also. I don't know if Uo,U(I),U(n) are all the
W - invariant geometric open subsets.

Proposition. Let G = S L( 4, C).
(1) Up/ H is isomorphic to pI x p2 if p is general and close enough to a hexagonal

face.
(2) Up/His isomorphic to p3 if p is general and close enough to a square face.
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Chapter 9

Miscellaneous

We have a little discussion on torus strata in 9.4.

9.1 On the Grassmannian G(k,cn+1)

By [G-G-MacP-S], under a specific moment map J-l, the image of G(k, Cn+1) is a
hypersimplex defined below:

~n+l,k = {(Xl, ••• , Xn+l) E Rn+1
1 LXi = k}-

There are various descriptions of faces of ~n+l,k. (in terms matroids, for example).
Below we will give descriptions for their strata closures in terms of subspaces and
show that they are all Grassmannians, as expected. We observe

Proposition. Suppose a coordinate system on Cn+1 is chosen, and v~C vj
are two coordinate subspaces with i :5 k :5 j. Let

Then the moment map image of r is a face of ~n+l,k, which is isomorphic to
~j-i,k-i. In fact, r is the closure of the stratum indexed by that face. Clearly r
can be identified with

Moreover, every face of Gk(Cn+1
) comes from this way.

Now we want to say something about the quotients on Grassmannians.

Conjecture. There is zariski open subset U on Gk(Cn+1) such that U has a
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hl idorff quotient UI H which can be identified with Gk_1(Cn
-
1).

This conjecture is trivial for G2(C4
) since every quotient in this space has to

be pl. In fact, the conjecture is true for any G(2, Cn+1). This can be seen from
theorem 5.1.1 and the proposition above. Indeed, we can actually construct such
quotients.

Proposition. Define a Zariski open subset U C G(l, pn) = G(2, Cn+1) as
follows: Pick up a coordinate system in pn (Le, n +1linearly independent points,
called vertices). Choose two coordinate hyperplanes PI, P2 of pn. Let Pf denote
the generic part of Pl. Define

U = {span of p and q Ip E P~, q E P2 - PI n P2 - coordinate verteces}

Then the ordinary orbit space Uj(c*)n of U is isomorphic to pn-2.

Proof. Pick up a generic hyperplane in P2' It can be checked that UI(c*)n
can be identified with this hyperplane.

9.2 Homogeneous Spaces that Project to pn

In this section, we consider the space of partial flags {Vi! C ... C Vik C Cn+1}

such that either il = 1 or ik = n ..
Just as what we did for the space of complete flags {VI C ... C vn C Cn+1},

we have
(1) Let

GjP = {Vi! c ... C Vik C Vn C Cn+l}

U = {Vi! C ... C Vik C vnlvnis general}

then

(2) Let
GIP = {VI C Vi! C ... C Vik C Cn+l}

U = {VI C Vi! C ... C Vik/Vlis general}

'0
{~l eVil c C vik C cn+ll~lis fixed}

rv {ViI IVaI C C Vik IVaI C Cn+I IVaI}.
hese homogeneous spaces share many results with the complete flag manifold,
as parallel wall phenomena and hence a belowing up and belowing down

ures when crossing a wall, etc. Since there is no need to develop new tools to
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prove those results, we will not list them explicitly here.

9.3 Fibrations G/PJ -+ G/Pj and Weight Diagrams.

Let P = PJ C G be a standard parabolic subgroup. Consider a finite-dimensional
irreducible representation p of G on a vector space V with highest weight

A = L ni Ai, ni > O.
if/.J

where AI, ... ,An are fundamental weights.
Then the homogeneous space GI P = Y can be identified with the orbit of a

principal vector v,\ (in V,\) in the projectivization P(v) of V. Sometimes, we call
JC = {I, ... , n} - J the support of A.

Choose an 1< - invariant (recall 1< is a maximal compact subgroup of G)
Hermitian metric on V. It induces a Kahler metric on P(V), hence on G . v,\ ~

GIP. It can be proved that under this metric the moment map image JI. = Jl.J of
GIP is the convex hall of W . A in TJ* ~ Rn

•

Now let 7r(A)be the set of weights of the representation p of G. Let P' = PI be
a parabolic subgroup of G containing P, that is, J C I. We are trying to compare
the moment map image of GIP and th~ moment map image of GIP'. Then we
have the following observations.

Choose A = LieJC njAi general enough (i.e, with large enough coefficients) so
that there is a positive weight v E ii(A) such that v = LjeIC mjAj with mj > 0,
then

(1) Convex hall W . v is the moment map image of GI PI with respect to the
chosen metric on V, which is contained in the moment map image of GI PJ as an
interior subpolytope.

(2) The closure of a connected component, (hence its faces), of regular values
of JI. is spanned by some weights in 7r(A).

In fact let GI PI -. GI P2 -. ••• -. GI Pk be a sequence of fibration, Le,
PI C P2 C ... C Pk are all standard parabolic subgroup, then we can make a
similar statement as the one above, that is, for some choice of A, and with respect
to the chosen metric on V, we have the moment map image of GIPi contains the
moment map image of GIPi+l (1 ~ i~k - 1). To do so, we have to make A to be
more general.
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9.4 Some Examples on Torus Strata of G = SL(n + 1, C)j B

A. In [G-G-MacP-S], an example is given to demonstrate that the closure of a
torus stratum on G6(C9

) is not a union of torus strata. Use this example, the
natural fibration 8L(9, C)j B to G6(C9

), and corollary 13.5, it is straightforward
to pull back the counterexample on G6{C9

) to 8L{9, C)j B.

B. Let f : X = 8L{nt, C)j B ~ pn = Y be the natural projection. Given a
stratum r on X, clearly f(r) is a torus stratum on pn. Since every stratum on
pn is a single torus orbit, the restriction of f on r, r ~ f(r), is a fibration. It
is wished that a torus action can be introduced on the fiber Z of f according to
the coordinate system on Cn+I so that the fiber of r --.f{r) is dense open in a
torus stratum of Z. If this could be done, by the induction on the dimension of
Gj B, we would be able to show that every stratum on Gj B were nonsingular.
However, the following example shows that we can not do that (see the next page
for a picture).

This is a picture for a flag pO C pI C p2 C p3 in p4 visualized in this way:
the big tetrahedron stands for a general p3 in p", the four triangle face of the big
tetrahedron and the smaller horizontal triangle are the intersections of p3 with
the five coordinate 3 - space in p4, the slopy triangle is p2, the long line is pI,
and the blank dot is PO. .

c. Let X = the space of partial flags p2 C p3 in p6 and f : X ~ G2{p6) be
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the natural projection. The following example shows that the restriction of f to
a torus stratum on X may not be a fibration over a stratum on G2{p6).

Definition ([HM]) YI = {configurations of p + q + 1 points in pP-l.}
Now let

be a stratum in G2(p6), where p5 is a fixed coordinate 5 - space in p6. Then

Let

l(f) = {p2 C p3 C p61p2 C p5, avoids 2 faces of p5, p3 avoids 2 faces of p6}

~ {p3 C p61p3 avoids 2 faces of p6}

Then,

So l(f) -. f is not a fibration because 1";3 -. Y;3 is known not a fibration as
demonstrated below ([HM])
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D. Sometimes, a torus stratum can be embedded into some CN as the comple-
ment of some hypersurfaces. In many case, these hypersurfaces are homeomorphic
to some flat hyperplanes, especially, when the space under the consideration has
small dimension, for instance, 8L(3, C)/ B. In a separate paper, we will give a
homological formula for the complement of such an arrangement in Rn in terms
of the combinatorial data of the arrangement in [Hul. (see also appendix A.)

9.5 Real Parts of Sym plectic Quotients and Real Moment Maps

Let X be a complex algebraic variety. The real part XR of X, if it ever exists, is
a real algebraic variety, such that

X = XR x .9pec(R)8pec(C)

Now a complex torus H = (c*)n can be decomposed into the product of A = (R»n
and compact part T = (81 ):'1:

Note that the real part of (c*)n is not merely (R»n, but

(R»n x ({+l}, {_l})n

= (R> x ({+l},{-l}»n

== (R*)n

~ (R»n x (Z2)n

==Axr

where {+l}, {-I} are the only two real points of S1, and r = (Z2)n C (S1)n.
We say a H-action on X is compactible with the real structure of X if the real

part A x r of H preserves the real part XR of X. Now suppose X is endowed
with such an action of H, then we have an induced (R*)n = A x r action on XR'
Let J.L be an associated moment map of H,

Definition. The real moment map}lR

of (R*)n action on XR is the restriction of }l to XR'
Since r = (Z2)n = (R*)n n (81)n, we have
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Proposition.
(1) JlR is r equivariant.
(2) JlR((R*)n · x) is a convex polyhedron in Rn whose vertices are the images

of (R*)n-fixed points in (R*)n . x, for any x E XR. In particular, JlR(XR) = Jl(X)
is a convex polyhedron in Rn.

(3) Jl-I(p) has a real part Jl-I(p) n XR = Jlrl(p) for any p ERn.
(4) The symplectic quotient Jl-I(p)/T has a real part Jlrl(p)/r for any p ERn.

Still as in section 1.1, we have

JlR(XR) = Jl(X) = U F
FeT

Theorem. Let FI, F2 be two polyhedra in T, and F2 be an open face of
Fl. Let p E FI, r E F2, then the unique algebraic map f from Jl-I(p)/T to
Jl-I(r)/T restricts to a real algebraic map fR from Jlri(p)/r to Jlri(r)/r such
that fR corresponds to a real blowing up map. The statement can be illustrated
as follows:

Jlri(p)/T ---+ Jl-I(p)/T

fR! f!
Jl"RI(r)/r ---+ Jl-I(r)/r

where the vertical maps are natural projections.

In the case that X = G/ B with the action of a maximal torus H. The above
theorem applies since the action is compactible with the real structure of G/ B. In
fact, almost all theorems in chapter 5 and 6 concerning symplectic quotients have
word-for-word translations for their real parts - the real "symplectic" quotients.
Of course, it is harder to study the topology of real quotients since there are few
theorems for real algebraic varieties.
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Appendix A

The Homology of the
Complements of Subspaces

Spaces Associated to Torus Actions. Naturally associated to a torus action, one
can study the following three kinds of spaces: 1. The quotient varieties. 2. The
torus strata. 3. The closures of torus orbits as toric varieties.

Complements of Subspaces. In this thesis, we mostly only study the quotient
varieties. An attempt to study torus strata has led us to consider arrangements:
A = {At, ... , Am} in Rn, where At,' .. ,Am are closed subspaces of Rn satisfying
the following 2 conditions: (a) each Ai is either homeomorphic to Euclidean
space Rk of dimension k or homeomorphic to the sphere Sk of dimension k, for
some k < n. (b) each connected component of an arbitrary non-empty intersection
Ail n ... n Air also satisfies condi tion (a).

Associated to every arrangement A = {At,"" Am}, there is a ranked poset
£(A) = (£,~, r) which can be constructed explicitly from the combinatorial
data of the intersections of A. Then the combinatorics of £(A) = £ determines
completely the homology of the complement, M(A) = Rn - U~lAi, of A. We
have the following homological formula for the complements of subspaces:

Hi(Rn
- U~l Ai; Z) = ED Hn-r(v)-i-l (!«£>v), K(£(v,v»); Z)

vEC

where V is the unique maximal element in £ representing Rn, H-1 (0,0) = Z as a
convention, and K(J) denotes the order complex of a poset :7.

When each Ai in A is an affine linear subspace in Rn
, our formula coincides

with the one obtained by Goresky and MacPherson [GM4]. In fact, in this par-
ticular case, we have proved that the formula still holds even if we consider the
arrangements of the acyclic subspaces in an ambient acyclic space provided that
every space in consideration satisfied Lefschetz duality with compact support. We
shall not give proofs in this thesis. The proof will appear elsewhere.
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Appendix B

Extention to General Group
Actions

Symplectic Category. Since my work is restricted in the category of algebraic
geometry, one may ask whether it works in the symplectic category. There will
be no essential difficulty when a symplectic manifold carries a Kahler structure,
because in this case a compact Lie group action can always be extended to a
complex Lie group action [GuSt2]. Now, what can we say if we do not know
whether X carries a Kahler form or not.

General Group Actions. Geometric invariant theory assigns projective "quo-
tient" varieties to any linear action of a complex reductive algebraic group G on a
projective variety X. In my thesis, we restricted to the case when G is a complex
torus (c*)n and studied the geometry and the topology of quotient varieties of
this (c*)n action. It is now very natural to ask: To what extend does the method
we developed in the case G = (c*)n apply to the case of a general linear algebraic
group action and what can we say beyond?

It is observed that in some nice cases, the 1<( a compact Lie group) reductions
can be reduced to T ( a maximal compact torus of K) reductions. The condition is
that the moment map image p( X) does not touch the walls of the Weyl chambers.
In this case there is a decomposition of X in the level of symplectic category:
X = I<XTP-l(D), where D = p(X)n(a fixed Weyl chamber). The 1<reductions
on X can be reduced to T reductions on p-l(D). In the case X has a Kahler
structure, p-l(D) has also a Kahler structure (very hopefully), therefore Taction
on p-l(D) can be extended to (c*)n action on p-l(D), hence by my thesis, the
question for these particular actions can be solved completely. So the real question
is now: what can we do when p(X) touches the walls of Weyl chambers?

My speculation is that in this case, the 1<reductions on X should be reduced to
T reductions on a singular space (p-l(D)), while the singularities of this singular
space do not provide serious trouble when considering quotients. Nevertheless,
much more efforts must be made when studying general group actions.
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Appendix C

Combinatorics of the Posets P
and p*

In this section we shall give more combinatorial properties of P and P* defined
in the previous two sections.

For any partially ordered set £', we may consider its order complex K(£')
whose vertices are the elements of £', whose simplexes are the linearly ordered
subsets of £', Vo < ... < Vq• We have known that K{P) and K{P*) are connected
simplicial complexes. It would be interesting to know more topologies about
K(P) and J«P*). In the case that X = 8£(3, C)j B with the action of a maximal
complex torus in 8£(3, C), we have P = P*, and K(P) = K(P*) is homeomorphic
to a closed solid 3-ball.

We say a finite poset £, satisfies the Jordan-Dedekind chain condition if all
maximal chains between elements a and b have the same length, for all pair of
elements a and b. An absolutely maximal chain is a chain which is not expendable.
one may expect that P and P* satisfy the J-D condition. In fact, this is not true.
Take X = 8£(4, C)/ B, H = a maximal complex torus, then one can check that
the (absolutely) maximal chains of P (or P*) do not have the same length.

Definition. A pseudo-lattice is a poset £, such that for any two elements
u,v of £':

(a) the subset {w : w ~ u, w ~ v} is either empty or has a unique minimal
element, denoted by u V v and called join of u and v.

(b) the subset {w : w ~ u, w ~ v} is either empty or has a .unique maximal
element, denoted by u 1\ v and called meet of u and v.

If we further require that {w : w ~ u, w > v} and {w : w ~ u, w ~ v} are
non-empty, then £, will be called a lattice.

Clearly, a lattice has a unique minimal element 0 and a unique maximal ele-
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ment O. Moreover, if a poset £, has a unique minimal element 0, then the height
h( v) of an element v E £, is defined to be the least upper bound of lengths of
chains 0 = Vo < VI < ... < Vk = v between 0 and v.

Theorem. P and P* are pseudo-lattices.

Proof. We first prove our statement for P. Clearly, we do not have to consider
two comparable elements.

So let u, v be two incomparable elements of P, if

s = {w : u $ w, v $ w} f= 0

then there should be a metric on X and hence a moment map Jl such that u, v
correspond to polytopes F1 and F2 of collection T (where Jl(X) = UFeY F defined
in 1.1) and there is (at least) a polytope of 1having FI and F2 as its faces. It
is an easy fact from polyhedron theory that among the polytopes of T having F1

and F2 as their faces, there is a unique minimal one under the order" -<" (i.e,
D -< C if and only if D is a face of C). In other words, S has a unique minimal
element under the order induced from P.

Now we consider
T = {w : u 2:: w, v ~ w}

if T =/:. 0, then there should be a moment map Jl such that u, v correspond to
polytopes F1 and F2 of T associated to Jl and F1, F2 have a common face. Clearly,
F1 n F2 is the unique maximal one among their common faces, that is, T has a
unique maximal element.

It will be a little harder to show the statement for P*.
Take any two incomparable elements u, v of P* abd assume that they corre-

spond to admissible collection 31 and 32• Now if S = {w : w ~ u, w ~ v} =/:. 0,
then there will be an admissible collection 3' such that

- -, - -,
'::'1 -< .::. ,'::'2 -< .::. .

Therefore for any admissible decomposition ~ of Int(O), there should be C E 3',
D1 E 3t, and D2 E 32, such that C, D1 and D2 are all in~. By the properties
that 31 -< 3',32 -< 3' and the admissibilities of 31 and 32, we have

In other words, elements of 31 and 32 can be paired, (Db D2) E 31 x 32, by
the property that D1, D2 are faces of exactly one polytope C in an admissible
decomposition for such ~, we select E to be the unique smallest polytope in ~
that has D1 and D2 as their faces, then clearly, th collection 312 of such E's is
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admissible, and corresponds to the unique minimal element of S.
Now assume that

T = {w : w ~ u, w < v} =F 0,
then there should be an admissible collection :=:* such that

So for any admissible decomposition ~, there should be B E 3* ,D1 E 3t, D2 E 32
such that B, D1, D2 are all in ~. Then as before , we have

Now take F to be the unique largest polytope in ~ which is a common face of D1

and D2, then clearly, the collection Si2 of such F's is admissible, and corresponds
to the unique maximal element of T. Hence the theorem is proved, as desired.

From 3.2, we know that the space Q of generic closed orbits and their limits
projects to any geometric quotient variety, therefore we define

p _ { P U{Q}, if P has a unique minimal element
- PU{Q} U{o}, if P does not have a unique minimal element.

where 0 is spec(C) as a scheme. Then P is a poset ordered by "projection" and
contains P as poset.

Similarly, we define

15* {p* U{Q},
- P* U{Q} U{o},

if P* has a unique minimal element
if P* does not have a unique minimal element.

By the theorem in this section, we have,

Corollary. P and 15* are lattices.

Let £, be a poset with a unique minimal element 0, then an atom is an element
which covers 0 ( we say u covers v is u > v, and if u ~ w ~ v, then either u = w,
orw=v).

Convention. Suppose £ is a poset, let £-1 denote the poset obtained from
£ by reversing the order.
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Proposition. Every element of (PU {Q} )-1or (p.U {Q} )-1 is a join of atoms
That is, every element of p-1 or (p*)-1 is a join of minimal elements.

Proof. For (P U {Q} )-t, let u E P-l. Then there is a Inetric on X, and
hence a moment map J.l, such that there is a polytope F in the T associated to J.l
(where J.l(X) = UFET F) so that F corresponds to u. Now UFET F is an n-circuit
of polytopes, and it is easy fact of the theory of n-circuit of polytopes that F is
the intersection of some n-polytopes in T and F is the unique common face of
these n-polytopes. In other words, this implies that u is the join of some atoms
because n-polytopes of T correspond to atoms of (P U {Q} )-1.

For (p* U {Q} )-t, let w E (p*)-I. We fixed a moment map p. Then for each
admissible decomposition ~ of Int(J.l(X)), there should be exactly one polytope
D in ~ belonging to the admissible collection 31 of polytopes that corresponds
to w E (p*)-I. Similar to the argument as before, we conclude that D is an
intersection of n-polytopes in ~ because ~ can also be regarded as an n-circuit
of polytopes. It is fairly clear that from this we can deduce that w is a join
of atoms since admissible collections of n-polytopes of 3 correspond to atoms of
(p* U {Q} )-1.
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1
I
1
1
1
1
1
1
1
1

,\,- - - - - --(
I
I---'"\
\

\.-----------

... '

1
1
1

1 1
1 ~r' ,, ,, )-----, ,, ,

~, \, .,
... ' /< ,, ,

"\

Figure C.2: The moment map image of Sp(C6
)/ B

97



Bibliography

[A] M.F.Atiyah, [l}. Convexity and commuting Hamiltonians, Bull. London
Math. Soc.,14(1982), 1-15. [2]. Angular momentum, convex polyhedra, and
algebraic geometry, Proc. Edinburgh Math. Soc., 26(1983), 121-138.

[BH] H. Bass, W. Haboush, Linearizing certain reductive group actions, Trans.
Amer. MAth. Soc. 292 (1985), 463-482.

[BBD] A. Beilinson, J. Bernstein, P. Deligne, Faisceaux pervers, Asterisque 100
(1983.

[B-B] A. Bialynicki-Birula, Some theorems on actions of algebraic groups, Ann.
of Math. (2) 98 (1973), 480-497

[B-BS] A.Bialynicki-Birula, A.J.Sommese, [1]. Quotients by C* x C* actions,
Trans. Amer. Math. Soc., 289(1985), 519-543. [2]. A conjecture about com-
pact quotients by tori, Advanced Studies in pure mathematics 8, 1986, Com-
plex analytic singularities, 59-68.

[C] R.W.Carter, Simple groups of Lie type, John Wiley & Sons, London. New
York. Sydney. Toronto, 1972.

[CuSj] R. Cushman, R. Sjamaar, On singular reduction of Hamiltonian spaces, to
appear.

[D] V.I.Danilov, The geometry of toric varieties, Uspekhi Mat. Nank. 33(1978),
85-134, Translated in Russian Math Surveys.

[DeLP] C. De Concini, G. Lusztig, C. Procesi, Homology of the zero-set of a
nilpotent vector field on a flag manifold, J. Amer. Math. Soc., V.1, no.l,
1988.

[ES-B] Lawrence Ein, Nicholas, Shepherd-Barron, Some special cremona trans-
formations, to appear.

[Fu] W. Fulton, Intersection Theory, Springer-Verlag, Berlin and New York,
1984.

98



[GS] I.M.Gelfand, V.V. Serganova, Combinatorial geometries and torus strata on
homogeneous compact manifolds, Uspekhi Mat. Nank 42:2(1987), 107-134,
Translated in Russian Math Surveys 42:2(1987), 133-168.

[GGoMS] I.Gelfand, R.Goresky, R.MacPherson, V.Serganova, Combinatorial ge-
ometries , convex polyhedra, and Schubert cells, Advan. in Math. 63(1987),
301-316.

[GoM] R.M.Goresky, R.D.MacPherson, [1]. On the topology of algebraic torus ac-
tions, Lecture Notes in Math. 1271, 73-90, Springer-Verlag 1986. [2]. Inter-
section Homology II, Invent. Math. 71, 77 -129, Springer- Ver lag, 1983. [3J.
On the topology of algebraic maps, Lecture Notes in Math. Vol. 961, 119-129,
Springer- Verlag, 1983. [4J. Stratified Morse Theory, Springer-Verlag, 1989.

[GuSt] V.GuilIemin, S.Sternberg, 200z[1]. Convexity properties of the moment
map, Invent. Math. 67{1982}, 491-513. [2J Multiplicities and geometric
quantization, Invent.Math. 67 (1982), 514-. [3J Birational equivalence in sym-
plectic category, Invent. Math. 97 (1989), 485-522.

[HM] R.Hain, R. MacPherson, Higher logarithms, to appear.

[Hu] Y.Hu, Homology of complements of subspaces, to appear.

[Ka] M.M. Kapranov, Chow quotients of Grassma,,!-nians I. Veronese curves and
I(nudsen's moduli space Mo,n' Preprint, April, 1991.

[KL] D.Kazhdan, G.Lusztig, Schubert varieties and Poincare duality, Proc. of
Symposia in Pure Math. vol. 36, 1980, 185-203.

[Ki] F.e.Kirwan, Cohomology of quotients in symplectic and algebraic geome-
try, Mathematical Notes No. 31, Princeton University Press, Princeton N.J.
(1984).

[MaW] J .Marsden, A.Weinstein, Reduction of symplectic manifolds with symme-
try, Reports on Math. Physics 5 (1974), 121-130.

[MuF] D. Mumford, J. Fogarty, Geometric Invariant Theory, {second edition},
Springer- Verlag, New York (1982).

[0] T. Oda, Convex Bodies and Algebraic Geometry, {An introduction to the the-
ory of toric varieties}, Berlin Heildenberg New York:Springer- Verlag, 1988.

99


	page1
	titles
	The Geometry and Topology of Quotient Varieties 

	images
	image1


	page2
	titles
	The Geometry and Topology of Quotient Varieties 


	page3
	titles
	. 


	page4
	images
	image1


	page5
	page6
	page7
	titles
	p -. f( MdMl -. •.. -. f( Mk )Mk -. q 
	and Urj(Mj) = Urj n XMj = U{X I rj E D C Mj}. (Note that Urj(Mj)1 Hj = 

	images
	image1


	page8
	titles
	(b) C1x : Ai(X) ~ H2i(X) for all i. 
	(b) C1x ~ Q ~ H2i(X) ~ Q for all i. 

	images
	image1
	image2


	page9
	images
	image1


	page10
	page11
	titles
	Contents 


	page12
	page13
	page14
	titles
	Chapter 1 
	Symplectic Quotients and Their 
	1.1 Notation a nd Conventions 
	1.2 The Torus Stratifications 


	page15
	titles
	x = u Xc, 
	1.3 The Definition of Sym plectic Quotients 
	2 

	images
	image1


	page16
	titles
	1.4 What Happens When Passing Through Singular Values 

	images
	image1


	page17
	titles
	Up(C)= U XD, 
	Up(C) c Up 
	1 1 
	Up(C)1 I H c Upl / H, 


	page18
	titles
	1.5 Symplectic Quotients with Algebraic Maps 

	images
	image1
	image2


	page19
	titles
	dimX(J1 = dimX(J2 < dimX, 

	images
	image1
	image2
	image3


	page20
	titles
	Chapter 2 
	Algebraic Quotients and Their 
	2.1 Admissible Polyhedral Decom positions of J-L(X) 


	page21
	titles
	2.2 Definition of Geometric Algebraic Quotients 
	2.3 Definition of Semi-Geometric Algebraic Quotients 

	images
	image1
	image2
	image3


	page22
	titles
	2.4 Algebraic Maps among Algebraic Quotients 


	page23
	titles
	2.5 Propositions of Admissible Collections of Subpolytopes 
	B E =1. 


	page24
	titles
	2.6 Algebraic Quotients with Algebraic Maps 
	f! 

	images
	image1
	image2


	page25
	images
	image1
	image2
	image3
	image4
	image5


	page26
	titles
	A~UIIH 
	! ! f 
	2.7 Counting Algebraic Quotients 

	images
	image1


	page27
	images
	image1


	page28
	titles
	Chapter 3 
	The Space of the Closures of 


	page29
	titles
	3.1 A Theorem of Bialynicki-Birula and Sommese 
	Z'~X 
	I' ! 
	Q' 
	Z..!.....X 
	I! 

	images
	image1
	image2


	page30
	titles
	Jl(X) = II Jl(H . Xi). 

	images
	image1


	page31
	titles
	U//H = h(Q) = U h(fa) 
	3.3 The Space Q and Chow Quotients 

	images
	image1


	page32
	titles
	s = {(C,x) E Cr(X,h") x X I x E C. for some i,C = EmiC. E M} 
	S~X 
	g! 
	S'~X 
	M' 
	c:M'~M 
	Mx 

	images
	image1


	page33
	titles
	3.4 Special Admissible Decompositions and Some Conjectures 
	h(r) = XD/H, 
	p(X) = p( 4>(f-1 (q))), q E Q 

	images
	image1


	page34
	page35
	titles
	Chapter 4 
	Equivariant Morphisms 
	4.1 Moment Cell Complexes 


	page36
	titles
	AX 1 1 Ay 

	images
	image1


	page37
	titles
	4.2 Deformation of Admissible Decompositions 

	images
	image1


	page38
	titles
	4.3 Pulling Back Quotients 


	page39
	titles
	4.4 Pushing Forward Quotients 


	page40
	titles
	Up = {x E X I p E Jl(IrX)}, 


	page41
	titles
	Chapter 5 
	The Topology of Symplectic 
	5.1 The Statements of Results 
	U(M) = {x E UIJl(H . x) c M} 
	<p : Up/ H ~ Ur(M)/ H(= Ur/ / H) 
	28 


	page42
	titles
	29 

	images
	image1


	page43
	images
	image1


	page44
	titles
	5.2 The Proofs of Some Theorems in 5.1 

	images
	image1


	page45
	titles
	X = So U SI U .0. U Sk 
	(2) Si = {x E MI4>oo(x) E XMi}, 0 ~ i ~ k. 
	X = xt U Xi U .. 0 U X: 

	images
	image1


	page46
	titles
	Up = Ur - Ur n X Mo 
	5.3 Small Resolutions: the Sim pie Cases 

	images
	image1


	page47
	images
	image1
	image2


	page48
	titles
	5.4 Small Resolutions: the General Case 


	page49
	titles
	d1 + d2 

	images
	image1
	image2
	image3
	image4
	image5
	image6
	image7


	page50
	titles
	dim 1-1(y) = dim 111(y) < 1/2(dimUu1//H - di mUu 1 (Md//H) 
	dim 1-1 (y) = dim 12-1(Y2) < 1/2( dim Uv/ / H - dim 82). 
	If y E 812 = Lb let 9 be UUl (A1d/ / H -. Uv(Md/ / Hand Yl E UUl (Md/ / H, 
	dim I-t(y) = dim g-t(y) + dim 11t(yt} 
	< 1/2(dim Uv(Md/ / H - dim Uv(Ml n M2)/ / H) 
	= 1/2(dim UV1/ / H - dim 812). 
	37 

	images
	image1


	page51
	titles
	fl1 ••• l;l(CI) A ... --t f;l(CI) ~ CI 

	images
	image1
	image2


	page52
	page53
	titles
	5.6 The Formulas for Intersection Homology: the Simple Cases 
	A ---+ Xp 
	1 + t + ... + t = I PYI (So) + 'PSI • 1 

	images
	image1
	image2
	image3
	image4
	image5
	image6


	page54
	titles
	A'~B 
	P(Xq) = I P(Xr) + <P~t I P(B) 
	P(Xq) - P(Xp) = (<P~l - <PSt)IP(B) 

	images
	image1
	image2
	image3


	page55
	titles
	5.7 The Formulae for Intersection Homology: the General Case 

	images
	image1
	image2
	image3


	page56
	images
	image1
	image2
	image3
	image4
	image5


	page57
	titles
	5.8 Comments on Kirwan's Formula 

	images
	image1
	image2
	image3


	page58
	titles
	5.9 Comments on Ordinary Homology 
	1 1 I 
	1 1 I 
	H.(X) EB H.(B) = H.(Y) EB H.(A). 
	In particular, P(X) + P(B) = P(Y) + P(A). 
	H.(X) = H.(X - A) EB H.(A). 

	images
	image1
	image2
	image3


	page59
	titles
	H.(Y) = H.(Y - B) ED H.(B). 
	H.(X) ED H.(B) = H.(Y) ED H.(A). 
	N c Nr-l C ... C Nl C No = Jl(X), 
	Bi c........+ Xi 
	P(Xo) - P(Xr) = I: P(Bi)(t2 + ... + t2di). 
	P(Xr) = P(Xo) - I: P(Bi)(t2 + ... + t2di) 

	images
	image1
	image2
	image3


	page60
	titles
	P(Xr) ::: L f(Mj)Q(Mj)P(UrjIHj) - L: P(Bi)(t2 + ... + t2di) 
	P(p.-l(qr)IT) = L f(Mj)Q(Mj)P(p.-l(rj) n XMj IT) 
	- L P(Jl-l(qd n XNi IT)(t2 + ... + t2di) 
	47 

	images
	image1


	page61
	titles
	Chapter 6 
	The Topology of Algebraic 
	6.1 Statements of Results 

	images
	image1
	image2


	page62
	titles
	A --+ U211H 


	page63
	titles
	6.2 Small Resolutions 
	6.3 The Vanishing of Homology in Odd Degrees 

	images
	image1


	page64
	titles
	clx : Ai(X) --. Hi:M (X). 
	(b) clx : Ai(X) --=-+ H2i(X) for all i. 
	(b) clx ~ Q: Ai(X) ~ Q ~ H2i(X) ~ Q for all i. 


	page65
	titles
	6.4 Cycle Maps 
	AiZ(~Q) ~ AiX(~Q) ~ AiU(~Q) ~ 0 
	~ H2iZ(~Q) ~ H2iX(~Q) ~ H2iU(~Q) ~ 0, 

	images
	image1
	image2
	image3


	page66
	page67
	titles
	Chapter 7 
	The Case of Flag Varieties 
	7.1 Weighted Projective Spaces 


	page68
	images
	image1


	page69
	titles
	! ! ! 

	images
	image1

	tables
	table1


	page70
	images
	image1


	page71
	titles
	pn = {Vn C Cn+l} 
	7.3 Moment Map Images of G/B 
	58 


	page72
	page73
	titles
	(PJc. [BD n XH = ltVJc. [B] 
	V = span { wc . T - C • T I w E WJ}, 
	( wc . T - C • T, v) = (wc . T, v) - (c . T, v) = (c. T, W -1 • v) - (c . T, v) = 0 
	(dPJ. [BD n XH = dWJ' [B] 


	page74
	titles
	(dWJ1) n ... n (dWJ,.) = d(WJ1 n ... n WJ,.) = dWJ1n ... nJ,. = dWJ, 
	7.6 More Properties of Parallel Walls and Faces of J.l(X) 


	page75
	titles
	Proposition. Given J,!( C {I ... n}, and di E DJ,d' E DK, C E D;t, 
	dWJ n d'WK = d(WJ n WK) = dWJnK. 
	(2) WJc n WKc' # 0 if and only if c = c' E D;l n D1/. In this case 
	(3) dWJ n WKc # 0 if and only if d = c E DJ n D1/. In this case 
	7.7 Half Regions and Their Torus Strata 


	page76
	titles
	7.8 Intersections of Half Regions 


	page77
	page78
	titles
	7.9 Regions Defined by Faces of J-l(X) 
	XF- = f-1(BdPJ/PJ) = BuB/B 
	XF+ = f-l(B*dPJ/ PJ) = B*vB/ B 
	f-l(B*dPJ/PJ)nXH = B*vB/BnXH• 

	images
	image1


	page79
	titles
	C=FtnF2- 
	Xc = /-1 (Sjl n 8/2). 
	7.10 The Star Constructions and Their Applications 


	page80
	images
	image1


	page81
	titles
	7.11 A Direct Proof of Theorem 7.2.1 
	XM = PJ. [B] 


	page82
	titles
	! 

	images
	image1
	image2


	page83
	titles
	An.ot + ... + On 
	Bn.ot + 202 + ... + 20n 
	7.12 The Triviality of Some Canonical Bundles 

	images
	image1


	page84
	titles
	P XB p/b 
	7.13 The First Proof of Theorem 7.2.2. 
	d = dimX,..f< - dimH - (dimXM - (dimH - 1)) 
	d + e = dimXM< + dimXM> - 2dimXM - 2 
	dimG I B = dimXM< + dimXM> - dimXM 


	page85
	titles
	7.14 The Second Proof of Theorem 7.2.2 when G = SL(n + 1, c) 

	images
	image1
	image2
	image3


	page86
	titles
	! !! ! 
	! ! 
	! ! 
	7.15 The Singular Loci of Singular Quotients 

	images
	image1
	image2


	page87
	titles
	7.16 I ntersection Horn ology of Sym plectic Quotients 

	images
	image1
	image2


	page88
	images
	image1


	page89
	titles
	Chapter 8 
	Explicit Results for G / B, 
	8.1 Parallel Walls in Terms of Symmetry Groups 
	1 


	page90
	titles
	Mf;;? = {(a b * *), (b a * *)} 


	page91
	titles
	Mlab} 
	lab} lab}< 23}" I b} I b} 
	78 

	images
	image1


	page92
	titles
	8.2 Schubert Conditions and Strata Indexed by Parallel Walls 

	images
	image1
	image2
	image3
	image4


	page93
	titles
	(1) dimVI1 n CS = 0, 1 ~ J.l ~ it, dim ViI n CS = 1 
	dimVI1 n CS = k - 1,ik-l ~ J.l ~ ik' dimVi" n CS = k 
	(2) dim VI1 n OS + dim VI1 n C.s:c = J.l, 1 ~ J.l ~ n + 1. (#- VI1 = VI1 n CS EB VI1 n 
	8.3 Schubert Conditions and Strata Indexed by Half Regions 
	80 

	images
	image1


	page94
	titles
	- , 

	images
	image1
	image2


	page95
	titles
	- , 
	8.4 On the Zariski Open Subsets U(l) and U(n) 
	82 

	images
	image1


	page96
	page97
	titles
	Chapter 9 
	Miscellaneous 
	9.1 On the Grassmannian G(k,cn+1) 
	84 

	images
	image1
	image2


	page98
	titles
	9.2 Homogeneous Spaces that Project to pn 
	rv {ViI IVaI C C Vik IVaI C Cn+I IVaI}. 

	images
	image1


	page99
	titles
	9.3 Fibrations G/PJ -+ G/Pj and Weight Diagrams. 


	page100
	titles
	9.4 Some Examples on Torus Strata of G = SL(n + 1, C)j B 
	87 

	images
	image1


	page101
	images
	image1
	image2
	image3
	image4
	image5
	image6
	image7


	page102
	titles
	==Axr 

	images
	image1
	image2


	page103
	titles
	(3) Jl-I(p) has a real part Jl-I(p) n XR = Jlrl(p) for any p ERn. 
	JlR(XR) = Jl(X) = U F 
	Jlri(p)/T ---+ Jl-I(p)/T 
	fR! f! 
	Jl"RI(r)/r ---+ Jl-I(r)/r 


	page104
	titles
	Appendix A 
	The Homology of the 


	page105
	titles
	Appendix B 
	Extention to General Group 


	page106
	titles
	Appendix C 
	Combinatorics of the Posets P 


	page107
	titles
	s = {w : u $ w, v $ w} f= 0 
	T = {w : u 2:: w, v ~ w} 
	- -, - -, 

	images
	image1


	page108
	titles
	15* {p* U{Q}, 

	images
	image1
	image2


	page109
	titles
	(p* U {Q} )-1. 


	page110
	titles
	---'"\ 
	.----------- 
	r' , 
	, , 
	, , 
	, , 
	" 

	images
	image1
	image2
	image3
	image4


	page111
	titles
	Bibliography 


	page112

