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ABSTRACT

The dynamics of filaments and tapes moving at constant
velocity has been studied for two-dimensional and three-
dimensional boundary conditions., The equations of motion
solved are linear and include effects of tension, Coriolls'
acceleration, relative logitudinal air motion, centrifugal
acceleration, relative lateral air motion, and gravity. The
solutions to these equations have been experimentally
validated where necessary,

The additional effects of longitudinal accelerations
and dynamic buckling have been studied. The effect of =
surrounding matrix on these additional motions has also
heen studied., A set of twenty distinguishing parameters
is included which are helpful in catacorizing the above

motions,
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I. INTRODUCTION

This thesis is intended to be primarily a general
analytical approach and secondly an experimental aporoach,
to the phenomena of moving filaments and tapes. The experimental
aoproach is limited to-the verificatidn—of:only thb funddmental’
results of the analytical apvoroach. Extensive experimental
validification of detailed analytical results is not intended.

The word filament is intended to imply a yarn, string,
rope, wire, monofilament, etc.; a structure which is essentially
thin, flexible and continuous with small, but not necessarily
negligible, bending stiffness, Tapes are considered as
two-dimensional filaments with primerily the same description,
The phenomena of these moving filaments and tapes form a
small related field within the subject matter of applied
mechanics., Moving filaments and tapes can be characterized
as mechanical systems and described with the concepts of
mechanical engineering systems, The materisl in this thesis
is intended to apply within the context of Textile Mechanical
Processing.

If the path of a moving filament is separated into regions
between gulde polnts on a textille procéssing machine, these
points can be considered as the boundaries of the mechanical
system., Statements can be made concerning the conditions at
these boundaries and eaquations developed to predict filament
motion and tension within the boundaries. Examples of system

boundaries are seen in machinery involved with the spinning,



the drafting, the winding, the twisting, etc., of both staple
and continuous-filament yarn. In these cases the system
inciudes both the region and the filament within the region.
The spinning balloon, the overend gnwinding balloon and the
filament space curves associated with high frequency yarn
traversing mechanisms are well known examples of yarn systems
generated in the average textile mill,

The literature contains numerous reports related to the
sub ject of moving filaments. However, in general, each of
these revnorts has confined its attention to a specific
phenomenon of filament motion within a specific textile machine,
rather than to the overall vhenomena of moving filaments
within general system boundaries. The assumptions made in
these previously published reports and papers have been too
restrictive in the sense that the results cannot be applied
to situations which are not completely similar., It is
admitted, however, that there are published analyses which
move further into the detalled mathematics of a single moving
filament situation.

Hannah (11), Maék (Z3) and Crank (2l) have studied in
detail the nonlinear equations that apply to the cap and ring
spinning systems, commonly employed in textile yarn processing,
They have neglected filament stiffness.and tanéential air drag
and have c¢onsidered the surrounding air as stationary.. Their
numerical results have been obtained from the direct numerical
integration of their developed differential equations. Hannah
(11) has dealt only with cap spinning and by making simplifying

assumptions about air drag forces, she has expressed her
-2-



results as a function of a single cap spinning parameter.
Mack (23) has made a more exact formulation of air drag and
obtained results which apply to both cap spinning and ring
spinning., His results are expressible as functions of two
parameters, an air drag parameter and a tension parameter,
Crank (244) has also investigated the equations which apply to
cap and ring spinning systems. He has, however, included the
effect of longitudinal yarn velocity, commonly called the

" Coriolis Effect ". For zero longitudinal yarn velocity his
results are also expressible as functions of a tension parameter
and an air drag parameter, similar to those of Mack (23),
DeBarr (3) has summarized previous theoretical and analytical
findings for cotton ring spinning systems.

Padfield () has examined the specific equations of yarn
motidn for an overend unwinding yarn package. She has
numerically integrated her derived differential equations and
the results are presented as specific plots of yarn space
curves, Padfield (10)(12) has discussed the boundary conditions
at package surfaces, such as are used in this paper.
Brunnschweiler (20)(21) has also dealt with overend unwinding
yarn packages by measuring yarn tension and photographing yarn
space curves. This study is unfortunately only experimental
and does not try to validate a specific theory.

There are, of course, many linear solutions for oscillating
strings and beams, But of these only Sack (19) has included
longitudinal velocity in solving the differential equations of
filament motion. A general approach to these systems is considered

necessary.

-3-



A general analytical-approach should begin with a
general filament model. The equations which describe this
general model must be complete in order to predict the behavior
of an actual filament., Therefore, forces from fllament tension,.
filament shear, gravity and air drag are included. A point
on the filament is 1identified as an infinitesimal particle of
constant mass. The above forces are then summed and equated
to the rate of change of momentum of this Infinlitesimal mass,
This summation leads to the general vector differential equation
for a moving filament.,

This general vector differential equation can be written
in terms of a filament position vector,'ﬁ(s,t). The position
vector specifies the position in space of the filament particle,
with respect to a fixed inertial reference frame. The
cobrdinate, s, specifies the distance along the filament from
a point on the filament, the position of which is known at
some reference time., It is possible to choose a specific
position vector in order to describe any type of filament
motion desired. The position vector can contain a description
of the net, or average motion, of the filament plus a statement
of the perturbations or small deviations from this average
motion, This makes it possible to derive governing differential
equations for specific net motions and boundary conditions in
a way such that the initlal simplifications can be made from
physical judgements.,

The general vector differential equation has been examined

extensively for the case of linear filament motion. The term
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linear filament motion refers to filament motion which is
essentially straight line travel between two boundary points
with the addition of small perturbations in the two Lateral
directions, Linear filament motion 1s sufficient to describe
the practical textile processing situations described above.

The results of this examination of the differential
equations of linear filament motion are vpresented as simplified
equations, which can be used to pred;ct the paths through
space of actual filaments. These equations are formulated 1in
terms of dimensionless combinations of variables which refer
to the relative magnitudes of filament stiffness, air drag,
gravity, etc., These dimensionless parameters can also be used
to predict identifying quantities such as the number of
filament balloons (in an unwinding situation), the magnitude
of the filament rotation angle in a given balloon, the length
of the boundary "stiffness" region versus the flexible region
in a given filament, etc, They are also logical correlation
parameters for éxperimental or numerical data,

For moving filaments which have small, but not necessarily
negligible stiffness, a concept of a boundary stiffness region
is introduced., Fquations are developed which allow a prediction
of the length of this region. The equations describing the
linear motion of flexihle filaments are then modified using
this length.

The linear equations assume constant overall filament
velocity, v. There are practical situations, however, where

the displacements and strains of accelerating or decelerating

-5~



filaments become imvortant., These situations include the
transient behavior of filament systems during the start up

or shut down of processing equipment. They also include the
dynamic buckling which occurs when a filament, moving at high
speeds through a machine guide, is suddenly stopped at one
point along its path. Equations have been developed to
permit prediction of the time dependence and the mode shapes
of both the stable oscillations corresponding to accelerating
fllaments, and the unstable deformations of decelerating or
dynamically buckling filaments,

The eftect that a surrounding matrix of solid material
can have on the dynamics of filsment runture is also examined,
The equations develoved orovide, to a limlted extent, a
guantlitative picture of the internal dynamics of a breaking
yarn. " The internal dynamics of a breasking yarn 1s important
in determining yarn strength and strength has an important
effect on process efficiency.

It is felt that this thesis can be used as an aid to
textlle machinery designers, since it allows an accurate
predlction to be made as to the actual filament motions and
strains that take place as a result of machine-material
interactions.

At the present time when one designs a piece of machinery
through which a filament or a tape will pass, almost all of
the design effort 1is involved with factors affecting machine
life, cost, reliablility, etc., Little consideration 1s given

to the interaction hetween machine and filament., This can

lead to situations where a filsment is modified in some

-6 -



undesirable manner as a result of vpassing through a machine,
An example of this is the progressive drafting of cotton yarn
that takes place as the yarn is being wound on a drum winder.
It has been found that rewinding the same yarn package as few
as five times on certain drum winders causes a sufficient
amount of drafting that the yarn msy bresk in several places
(30). A second exemple is the package surface instability
(shelloff) that occurs when yarn is drawn overend from a
yarn cone at sufficient withdrawal speeds., Whole yarn loops
slide down the cone surface leaving the package at one time
and causing a disruption in smooth flow of yarn from the
package. When one tries to use such a cone for the filling
varn on a shuttless loom the sveed of the loom becomes limited
by the speed at which this instebility occurs (31).

It is sugqésted that the apvlication of the solutions of
this thesis toward svecific prohlems such as those ghove is &
logical initial step in the direction of reducing undesirable

effects of machine-filament interaction.



IT. GENERAL VECTOR DIFFERMNTIAL EQUATION

A, Introduction

The first portion of this thesis is devoted to the
examination of a general model of a moving filament, The
equations which describe this general model must be complete
in order to predict the behavior of an actual filament.
Therefore, forces from filament tension, filament shear,
gravity and air drag are included. A point on the filament
is identified as an infinitesimal particle of constant mass,
The gbove forces are then summed and equated to the rate of
change of momentum of this infinitesimal mass, This results
in an equation, called the general vector differential

equation for a moving filament.

B. Definitions

In order to present the derivation of the general vector
differential equation several definitions must first be
estaeblished.

Filament Particle The filament particle is defined as
the infinitesimal mass, ?;AAS, which exists at a point on

the filament defined by the coordinate, s,

Position Vector = R(s,t) The position vector specifies
the position 1n space, with respect to a fixed inertial
reference frame, of the fllament particle. The coordinate,
8, specifies the distance along the filament from a point on
the fllament, the position of which 1s known at some

reference time, The derivatives of this vector have the

-8-



following properties.
—

bt(s t) = Velocity of particle s at time, t.

1-
itzfs t) = Acceleration of particle s at time, t,
:R(s, ) =';Ys,t) = Unit Tangent Vector (in filament

direction) at s.

R R —_
r—b—s;(s,t) = n(s,t) = Unit Principal Normal Vector to
the filament, where r 1is the
instantaneous radius of curvature

of the filament at s at time, t.

Tension Vector = T(s,t) = T%fg(s,t) The tension in a

filament scts in the direction of the filsment axls and can

be represented as the product of a scalar magnitude, T, and

——
2 = _ aR
the unit vector, u = 35

Cogrdinate Svystem

Y (T)
-—y
o = 2K
b2 - ~ as
S\_ _—../
(s,£)
x (O)

) Q)
This right hand cartesian coordinate system will be uéed

throughout uniess noted. Gravity will be taken as acting in

the negative'jldirection.



C. TForces Adting on an Identified Filament Particle,

—
Fi1lament Tension, T

— ——
T +aT
@ ATI.‘\=—é—T-As =—A—-(T é—B)As
as as s
/ — :..A
—
T = (55 2T 3m)as
P N
= (§35'3'+ % n)as
—
Filament Shear Force Y»
Asj \\ V. + AV,
Vs —

- A V.
- (=5
Avs——(bs )AS
This force is left in general form and will be considered
in greater detail only in the specific cases where it is

significant.

—

Gravity Force, F%

AS

— -
AFq = = AA
-
Air Drag Force, D

As & filament moves through the air or any viscous
medium it feels a net drag force associated with the lack
of pressure recovery behind it., This type of drag force is
discussed for both continuous-filament yarns and staple

fiber yarns in Chapter 3 of Reference 3, This reference
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states that if the ratio of lateral yarn velocity to
longitudinal yarn velocity is large then continuous-fllament
yarns behave substantially as smooth cylinders with the salr
drag force acting‘in a direction normal to the filament axis,
However, for staple fiber yarns, the air drag is greater than
would be expected on this basis - the effective yarn diameter
beine approximately 50% greater than the actual yarn diameter.
This occurs bhecause poftions of fibers protrude from the yarn
surface into the air stream, spoiling the flow.

If the ratio ot lateral yarn velocity to longitudinal
yarn velocitybis not large then the air drag force has a
component along the filament axis., This component does not
influence lateral yarn motion directly, but affects tension -
which in turn influences 1atera1 motion,

The general filanent model of this theslis considers that
forces from alr drag act normal to the filasment axis and obey
the standard equation for smooth cylinders. The normal
component of»air velocity relative to the filament is given
the symbol, ﬁ;. The magnitude and direction of'ﬁ; is a function

-—N

of the filament particle velocity, and the unit vector in

bt’
the filament direction, u =-%?§. This can be shown as follows,

= e
(AR AR)AR
a8

= Unit Tangent Vector (in Filament

\ﬁ»
1
{

a2t as
Direction)
R

>t = Filament Particle Velocity

Vy = Component of Filament Velocity Normsl to Filament

Direction at s.

-1l-



— — 6.._L
- R
Since =22 <gt 23)(23) = v,
- ..; —\
=V = (ii‘ )( ) (II-1)

——
The absolute yalug of Vp 1s most easily found by noticing
AR AR SR

that (At AS’ <~ g and "Vn ar:the two sides of a right
triangle whose hypotenuse is %3%. Therefore:

_s. — -— ——g ——
3R SR _ Vo )e(Fy)+ (2R . AR SR (AR 3R AR
>t &t (' -'D ét EIEY as’as

— — —— -E
AR AR RN 2
=t° 3>t - +( 2>s)

t
| .
# vy =[] = (2. 3B).(3F . 3B

The drag force can now be given the magnitude,:
D = O—QQYQ;D As
R Y] (4

Cp is a function of Reynolds Number and is given in most
-stendard fluild mechanlcs texts, Specifically, it is given
in Reference 6, P« 1s the density of air and Do is the
filament diameter,
‘The direction of the drag force is the same as the
direction Qf'ﬁ;. Therefore, if the unit vector in this
Vb

direction is taken as?? Vo’ the drag force vector can be

expressed as:

—ny

S
AD = cb_?a_gb_n;bs 4 (II-2)

Since Cp 1s a function of'Reynolds Numbeb, Rey= zigi’
where ¥ is the kinematic viscosity of air, it can be seen

that for a given filament the magnitude of the drag force

10—~



is a function of Vy only. For low values of Vp the drag
force is'proportional to Vp, while for high values of Vp the
drag force is proportional to vé“. This velocity dependence
is shown in Figure 1 for a hypothetical 20 mil filament

moving through air at standard temperature and pressure.

100 3
-
r, x 102 5
g0y o
1
0 0.

-2 -1 0 1 2 3
- Log Vyp - (ft/sec)

Drag Coefficients vs. Filament Lateral Velocity
EIG, 1

Yo is defined as the drag force per unit length of filament

per unlt of normal relative air velocity and is expressed by

the equation,

-4AD 1
> as )
a——y, — .
~ AD = ryV.as {I1-3)

Figure 1 1illustrates that for a typical continuous-
filament yarn the drag force 1s'proportiona1 to VD(conséant
ry,) for values of V< 0.1 ft/sec. For values of V > 100 ft/sec
the drag force is proportional to V;'(constant CD). It 1s

-13-



unfortunate that the range of practical interest lies between
these two values of V5 and therefore, for most aituations

the drag force cannot be accurately modeled: by a constant

ry, or a constant Cpe. However, when considering air drag in
connection with the linear equations to be discussed later

in this thesis, the alr drag force willl be assumed proportional
to Vp. It is therefore, necessary to use an average value for
r,. The average value of rp should be chosen so that it

yields the actual energy loss per cycle., If the drag force

i1s actually proportional to Vg‘ the correct average value for

harmonic oscillation is:

r. = _gcMax D For Unit F Lengt
b Maximum Filament Normal Air Velocity

This value 1s calculated in Appendix 1.

D, General Vector Differential Equation

Since the filament particle has been defined to have a
sconstant mass, %AAS, then the resultant of all the forces
acting on it must be equal to the product of its mass and

acceleration.
5T AR . . &R . av - vE =R
s o - : _
35 55 ' Ths=t a5 - Predl * Ot Dad = QAR (TI-W)

.The terms in this equation refer to forces from variable
tension, filament curvature, bending stiffness, gravity, air
drag and rate of change of filament particle momentum (mass
times acceleration). If the tension is considered constant

and shear forces are negligible then the equation becomes:

-1l



S"_F; - Vb’- _L— A:_"R"'
T5a= - fe8hd 7 CpF55— Dpd = QuA33e (I1-5)
If forces from gravity and air drag are also negligible

the equation is further reduced to:

2R 1 ¥R a T
3 "o e ¢ TR (11-6)

where ¢ is the well known phase velocity, a most important
variable in any discussion of filament motion.

The general vector differential equation has been
derived in terms of the general position vector, i?; It is
therefore possible to choose any specific position vector
in order to describe any type of fllament motion desired,

The position vector can contain a description of the net, or
average motion, of the filament nius o statement of the
perturbations or smell devistions from this average motion,
This makes it possible to derive governing differentisl
equations for specific net motions and boundary conditions

in a way such that the initial simplifications are made from
physical judgments.,. As an example, consider the perturbations
of an 1desalized horizontal lasso from an essentially circular

path., The position vector is given as:
otie ——
R(s,t) = {Wt+1)+X}ﬁJ}§k+1j

Where x, Y and [ eare "small" displacements in the tangential,
radial and vertical directions respectively; v 1s the net

. — — ——
filament veloclty and Ugs Uy and j are unit vectors in the

tangential, radial and vertical directions respectively.

-15~



If these small displacements are taken as zero the
overall stability condition for this filament configuration
can be found. Considering Equation II-6 to be applicable
for this simple example and substituting the above position
vector with the small displacements taken as zero, one finds
that v must equal ¢ for stability (T = Q,’Av"). This defines
the net or average motion of the filament and substitution of
the complete position vector ylelds three equations which
define the three "small" displacements from this stable
configuration.

This is a simple and well known example and illustrates
the use of the position vector, However, there are many
other stable configurations from which there can be small
perturbations worthy of investigation., The vosition vector
which défines an essentlially straight line motion 1s the one
of most practical interest in Industrial processing of
filaments, and 8o the rest of the thesis will be devoted to

its examination.
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III. GENERAL EQUATION REDUCTION FOR LINEAR MOTION

The practical aim of this thesis is to define
quantitatively, and to a large degree qualitatively, a
number of flowing yarn, wire, and tape situations. This
can be accomplished by examining the solution to the general
vector differential equation for a position vector where the
net or overall motion is essentially straight line motion.

This position vector can be defined as follows:
-— — — —
R(s,t) = (f (s,t) + F)L + #j + @k (III-1)

In this equation 7 and ¢ are the "small" displacements
in the y and z directions of a fillament particle moving in
the positive x direction with an overall motion defined by
f(s,t) and an additional "small" displacement defined by'ﬁ.
This case 1s considered as linear motion since the filament
deviates from an essentlally straight line path in the
?;direction. The ratio of dx to ds is therefore taken as 1,
The function 'f(s,t) will be given the value vt + s, in this
section,where v is constant, This further limits the motion
to gssentially constant éverage velocity in the'f:direction.

In order to understand fully the phenomena of moving
filaments, it has been found necessary to include the effects
that air drag, filament stiffness, filament momentum and
gravity have on the motions involved. Tension remains the
predominant filament control force for the cases considered
in this section, PBut situations, either caused by extreme

boundary conditions or by extreme material properties
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require the inclusion of stiffness, air drag and gravity to
explain deviations from the predicted results of the simpler
models. The winding of glass or metals or large polymer
monofilaments represent the case of extreme material
properties, while the unusual characteristics of filament
motion near guides at high speeds are examples of extreme
boundary conditions.

The general vector equation as defined in Section II 1is:

— — 2
AT AR , o &R, Vs _ Ve~ R
55 o5 T Ther T 3o BAl * GRPDd = A (TI-u)

—
Substitution for the 1 direction motlion yields a one
dimensional wave equation for the deflection,= , as measured

from the moving reference frame,

X 1 A" 2 A
_ABS,: = 23, e =Efp (I1TI-2)

This equation refers to the actual propagation along the
filament of the strain (32) or tension (EAYS). This
propacation takes place at the sonic velocity of the material,
gg. The ratio of ag to the transverse wave velocity, c, is:
-ac-f' "( 3& ) = (—-;)7'
Therefore, if the average filament strain, e, is small, the
propagation of tension waves can be neglected in solving for
the lateral displacements, 7’and¢€. Therefore Equation III-1
can be simplified to: |

Ris,t) = (vt+s)T +ar] + @k (ITI-3)
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The normal component of alr veloclty relative to the

filament can be expressed as follows:

The components Vbx, be, and \gs s, are found by referring to

Section IT, Equation II-1, where it was shown that:

< 2R >Ry, 2Ry >R
(‘}.t ).s)( )"'S"E (I1-1)

Substitution of the vposition vector, R(s,t), into this

equation yields (neglecting second order small terms):

—-h. ——
= (v3Z - 37 (3 - 300

The veloecity, v, in the above equation refers to the
velocity of the filament relative to the reference frame.
Ir the'air is at rest with respect to the reference frame,
then the above equation is correct. However, the movement of
the filament can develop a flow of air in the direction of
net or overall filament motion, which in this case 1s the
.;:direction. Therefore, using the average filament velocity,
v, In the above equation causes an error,

By introducing the term, vy, which is equal to the
actual net fililament velocity less the induced-;ldirection air
flow velocity, the above equation can be written more

correctly as:

v, (vq% - X’/)j +(vy, 5o i‘g —g)k (IIT-)

It is now necessary to express the air drag term in

Equation II-l4 in a linear form, This is done by using the
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linear air drag paresmeter rg, previously discussed. Referring

to Equationg II-2 and II-3:

—S

ADb C J%L_-D d =

Therefore, Equation II-lj can be rewritten as (noting that the

tension is considered constant):
-\ bv —~ X&. R
TSt S - 0843 + roVy = QiAS= (II1I-5)

The filament shear force, Vg, can be considered as the
variation in bending moment along s. Since the bending
moment is directly related to the local filament curvature it

i3 possible to say:

- —y
M =|2 p1|= pr|-EE
A M 5| 3R
R R v i e s
A
TE? ASZ'AS I

——
This holds true for all magnitudes of position vector, R, for

a linear elastic material., Now substituting the position

vector under consideration (Equation III-3):

AV W Nps
s —EI AS'J Y

For small curvatures superposition holds.

5v _ 517 dhp>
. 35f =BT 557 - 1;§%k (III-6)

Having simplified filament tension, filament air drag

force and filament shear force, it is now possible to

~20-



—
substitute for R (Equastion IIT-3) in Equation II%-5, separate
it into two equations and rewrite in simple form,

—
For the j-direction:

X7 X7 X777 27 2?7
ET Nz T35= +?{_A nex T f'n(ar. -3 s)+%A3 =0 (III-7)

——
For the k-~direction:

4 2 2

For the boundary conditions considered in the following
sections, the lateral veloclty of the filament varies
harmonically with time. Thus in order to linearize the
velocity dependence of air drag the constant value for rg
rmst be chosen as shown in Appendix I so that the energy loss
to the air for actual air drag is the same as in the model,.
This is‘not a good approximation, but it will do no real harm
to the solution since it 1s only an error in a second order
effect, The linearized equations are therefore:

—
For the j-direction

X7 | 27 X7 . 3 X7 = -
€5 " e T e P wligg t Wygite =0 (119

L e
For the k-direction:

o _ 2¥e [ F¢ d¢_ >
- + + - = -
< 2 84 ¢ > s> 2 = u"( 2t Ya 59) 0 (III-10)
where c_EL__F 1 exu R

oA ~ Filament Mass per Unit Length

(Note: The choice of e is to point out that this parameter

is considered small.,)
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c = I = Lateral Wave Velocity
¥ Qed

Xp= %‘PK = Linear Air Drag Parameter
‘3

The boundary conditions to be considered occur at points
which generally move with respect to the filament. If the
filament is considered to move toward positive x then points
of fixed x - where some boundsry conditions of forced
vibration may be taking'place - move toward negative s, This

is simply expressed as:
s =X - vt

Therefore, a wave solubtion for«7, for fixed x boundary
conditions would have the form:

i (wet + kx)
= e * y(x)
Tiwt + ks)

= 7@9 + n%¥S‘+ vt)

where W =W+ kv

(III-11)

Substitution of this wave solution into Equation III-9

yields two equations:

ekt + K (& v )*k(-2wwtlog(v-vy) )+ (~witixw) = 0 (ITI-12)

sz PN N
SN -(c"-v");% + o (v-vq )T;fa‘ +g=0 (III-13)

Equation ITI-13 is reduced to derivatives with respect to the
argument, s + vt = x, It is also possible to derive an
equation similar to Equation III-12 for-the displacement in

—
the k-direction,te. But this is not considered necessary
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since the equation would be identical to Equation III-12.
Equation III-12 can be further simplified by introducing

five dimensionless parameters. These parameters are:

_ € _ BT
b = TET=E T F- WAVE = (Stiffness Parameter)
= _ 2WVR . _ 2uwvVoeAl .
b, = - Spes = —%%7§i;; (Coriolis Parsameter)
b, = (v-va)Q _ re (v-va)d (Longitudinal Air Motion
3 c> —v* T qAv> Parameter)
= Wi - | _pAws™ (Centrifugal Force
b4 T er-v= T~ pAV> Parameter)
b = SoWe@™ _ rpwe Q™ (Lateral Air Drag
5 cr-v: o T- pAv* Parameter)

The physical meaning of these parameters is discussed
throughout the text and summarized in Section VIII. They
refer, in order, to the effect that filament stiffness,
Coriolis' acceleration, relative longitudinal air motion,
centrifugal acceleration and relative lasteral air motion

have relative to net filament tension, (T-%Avl), on the
motions oi the filament. The system Length, 2 , is introduced
as a convenient way to non-dimensionalize these parameters.

Equation III-12 becomes:
4 2 :
b, (k) +(k0) +(b, +iby) (k) +(hrib,) = 0 (ITI-1y)

A good physicael interpretation for kQ is that it is the
nurher of waves that exist within the system boundaries,
multinlied by the constant, 2w,

Eauation III-13 can be rewritten by introducing:

Q i}
b = ciiv* = T:%iiéi (Gravity Parameter)
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Equation ITI-13 becomes:
~ I -
7 % 4
s - = -
b, () () + o) +bg =0 (II1-15)
Where the Roman numerals refer to differentiation with
respect to the argument, % = (s+vt)/Q.
In the following two sections Equations III-1ly and III-15

are investigated for specific boundary conditions and for

varying magnitudes of the parameters, b,— bg.
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_ IV. SOLUTION FOR NON - OSCILLATORY BOUNDARY CONDITIONS

When a filament is moving horizontally at high speed
(hundreds of feet per second) between two guides it might at
first appear that the effect of gravity on the motion of the
filament in the region between the guides, would be considerably
reduced from that at lower speed, However, exactly the
opposite occurs,

Tt will be shown that the " effective tension " or the
value of tension which acts as a controlling and limiting
varishle with regard to filament motion can be expressed as
T- %sz. When this " effective tension " hecomes small,
bending stiffness and air drag forces become important in
controlling gravity deflections.* For relatively flexible
filaments (yarns, thin tapes) the control forces come
predominantly from surrounding air motion, while for relatively
rigid filements (monofilaménts, metal wires) the control
forces are caused by the bending stiffness of the filament
itself., But, in either case, some mechanism other than
tension must take over in controlling the motion between guides
and it 1s the alm of this section to find out what this
mechanism is,

Refer to Equation III-15:

o (B - (2 v, (%

: 3 (%) + by =0 (I11-15)

* These are, however, the predictions of a linear theory and

‘do not hold for appreciable displacements.
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7.
This is the governing equatlon for jf, for boundary conditions,
at fixed voints in space (3 = 0, X = 1), which do not vary
with time. The input force is, of course, gravity (b.). The

boundary conditions are stated simply as™:

2 = Zr :‘.? :’Zr 1) =0 IV-1
Q(O) rl (0) 2(1) n (1) ( )
Now assuming: =% _be X4 % (Iv-2)

it is possible to reduce Equation III-15 to:
7,
(5,D°- D + by )5 = 0 (1IV-3)

where the D refers to a dimenslonless operator. The equation
for D 1s ectually the reduced form of the general cubic

equation and D can therefore be stated as:

D, =A+8B

D?_=-§_Z§+A£B -3
where A= S-E%% + g;(bi' Z%B‘y%f%
and B = ('Eg}l'%%'(bﬁz _27}0' =)

For the case where b,b;') é%, one obtains one real and two
conjugate imaginary roots. For the case where b,b;' 4 579

one obtains three real, unequel roots,

Thus it is seen that superimposed on the linear term of

¥ The subscript g will not be carried further,
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Equatlion IV-2, - be X there is an additional displacement,

b, R°
77 . : 2
= The nature of % varies with the magnitude of b; by .

When b‘b;') é%, %? changes in nature from exponential to
harmonic., This corresponds to a physical situation where the
eftects of forces arising from stiffness and air drag exceed
those arising from effective tension.,

It is possible to go ahead and solve for the boundary
conditions as stated and then reduce the equation mathematically
to examine each effect, But this requires extensive algebra
and is impractical, The problem is more logically examined
from physical considerations.

By letting b, > 0, the fourth order dependence drops out
of Equation III-15, thus meking it simple to see what happens
at high speeds for flexible filaments under the influence of

gravity., The differential equation becomes:
e 1 =3 x
@ -5 -p =0 (IV-L)

: 2”7
where -
Q

_7 -
(o)—2(1) 0

This equation and these boundary conditions yileld:

(RaX)
'Z = - ._b& X . 8__—_1 V-5
2= gn - } (1V-5)
e -1
7 b
max _ _ be <) -1 ba
where - Do {1n( 5a )+ b33 1 }
e -1
For by << b : 7 - -/-7-;-“‘—‘ %(1- 3;-)} (IV-6)



. 47_”7"1«“}(
For ba ¥ b - (3) (IV-7)

Pwax - _ be — _
where ~fE—- E; = ;Z;%;:T

Equations IV-5, IV-6 and IV-7 are plotted in Figure 2.
The initial low velocity configuration is a parsbola, with
the point of maximum deflection occurring-ati%ﬁ=~. As the
velocity 1s increased, the point of maximum deflectlon moves
toward the downstream end, (%.= 1). When the filament
velocity, v, reaches the lateral wave velocity, ¢, the point
of maximum deflection has moved all the way to the downstream
end, 3 = 1.

As seen in Figure 2, as the filament veiocityvapproaches
its maximum value the curvature of the filament at % =1,
becomes quite large and filament stiffness can no longer be
neglected., It also cannot be neglected when the value of b,
is high (metal wire, heavy monofilaments). It is thus

necessary to examine Equation III-15 when b, 0. The

differential equation becomes:

™ I
b, () - &) v, =0 (IV-8)
7 7 x
h 2 = - = - = - =
where Q(O) f (0) Q(l) 2 (1) 0
This equation and these boundary conditions yield:
Y7 be sinh% - % cosh% -1 %ésinh% -(cosh% +1) x> (17-9)
e 2 2 2 sinhd - 28(cosnd -1) ) -
8 ) ) '] )

UES
where &=1b, & = Boundary Region Length (to be discussed in
Section V-C)
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. Z - max (Lx(;_ X)) IV-10
For b, << 1 =2 {2(1 %) 3 | ( )
Yevax _  bs _ - P A Q
where 2 - "8 3155%5%527
. Z _ («maz X 2 X 2 ; _
For b, » 1t r {(i) (1 ﬂ) 16 (Iv-11)
3
where 7»\:\1 — b - = Q&A;{ﬂ

T & T 3Bub, " 3BLET

The filament is thus seen to move from a parabolic shape
at low velocity (b, << 1) into a complicated exponential and
parsbolic curve and then become the " second order parabola "
or regular beam shape at high velocity (b, >> 1). See
Figure 3 which plots Equations IV-10 and IV-1l,

The variable, 8§ , introduced above as the boundary region
length, is derived and fully discussed in Section V-C. It
is necessary, however, to explain here, that it refers to the
length of filament, modeled = as a massless beam, that extends
from the system boundary to a point where the remaining
filament can be considered as completely flexible, but of
correct mass per unit length. Thus, for § <<Q(b, << 1) the
filament behaves as a flexible string., However, for §>72
(b, >> 1) the filament behaves as a stiff beam,

Havine the deflection curves for stiffness with zero
air drag and for air drag with zero stiffness it is possible
to compare the two and determine for what size fllament the
two effects are the same., This has been done for reasonable
values of all parameters (See Appendix 2) and it was found
that for monofilaments of 10 mil diameter the two effects are

comparable, This diasmeter is considered typical.
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It is unfortunately not possible within the scope of
this thesis to investigate these solutions for values of
overall filament velocity, v, approaching the limiting values
of lateral wave velocity, c, since these limiting values can
be two or three thousand ft/sec. It is expected, however,
that textile processing machinery will begin to approach these
values at some future date,

The last comment made in connection with this section is

concerned with the notion of the overall filament velocity, v,

being greater than c. If the parameter, by %:" Equivalent
Mach Number " is introduced, this notion is expressed as the
Equivalent Mach Number being greater than one, Physically
this means that the tension is lower than the momentum flux
of the filament, Q‘Av‘, and therefore does not control
filament motion, Figure 4 is a photograph of a cotton yarn
forced to " flow " at approximately L50 ft/sec by a driven
set of gears. The yarn 1ls pushed out to the right awsy from
the gears. The photograph was taken iIn a semi-dark room with
the aid of one flash from a Strobotsc. The overall motion is
evidenced in the envelope of multiple yarn configurations,
while one specific configuration is in focus, The behavior
of the farn is similar to a fluid stream, as evidenced by the
deflection of the yarn at the plexiglass plate. Reference is
made to Filgure 29 of Section IX which contains other examples

of thls type of yarn motion,

Thus, filament speeds greater than ¢ are certainly

possible - but what happens is that downstream control is
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lost., If v 1s forced to be greater than c¢ it must occur by

some upstream mechanism - such as pushing the filament with

an air jet or high speed rollers as was done in the experimental
setup of Figure 4. Then the filament behaves as a fluid stream,
and 1f the stiffness is low (yarn) it will deflect from
boundaries and create stagnation pressures as is shown in

Figure Ij. This cannot occur if the yarn is " pulled downstream "

as in most practical situations of textile processing.
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V. SOLUTION FOR OSCILLATORY BOUNDARY CONDITIONS

A, . Two Dimensions

The lateral motions (F'and-ﬁ-directions) of moving
filaments are usually much more complex than the simple
gravity deflections just discussed, The additional complexity
is usually cauéed by periodic displacements or forces acting
on the filament at points along its path., In order to
examine these sdditional lateral motions the path of a moving
filament must be broken down into regions between any two
such points. These points can then be considered as system
boundaries and statements can be made concerning conditions
at these boundaries.

The boundary conditions for a situation of linear motion
usually include harmonic oscillation., And if the oscillation
is not harmonic, but periodic, the boundary conditions can
usually be represented as an infinite number of harmonic
oscillations summed in s Fourier Series, Examples of harmonic
motion would be the spinning balloon or the overend unwinding
balloon, while a typical periodic motion would be represented
by the filament path of the many traversing mechanisms that
exist in winding machinery. Another common periodic force is
that caused by friction chattering induced by stationary
guides,

In order to cover as many of these examples as possible,
the boundary conditions for this section have therefore been

chosen as genersl as possible,
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The boundary conditions for harmonic displacement are:

72—(0,%:) -%9- sin(w, t + #), ’%(1,1:) = %— sinw.b

(v-1)
% * oL b3
%;%(O,t) = @, coslw, t + #), 3?%(Q,t) = B,COSWt

The boundary conditions for the'E-direction will be given later
in this section, when three-dimensional motion is discussed,

We shall 1limit the discussion here to displacements in the
Eldirection because the equations of motion for the two lateral
directions (y and z) are uncoupled and can be solved
independently.

Two-dimensional considerations are enough to describe the
dynemics of moving tapes since tapes usually have stiffness
ratios, for the cross directions, of many tens of thousand,.
However, 1t must be mentioned that the " virtual mass per unit
length " of a tape is greater than its actual mass., This
effect is a consequence of the relatively large local mass of
air that moves with the;filament.

In order to investigate the latersal motions of flowing
fileaments forced by the'periodic boundary conditions of
Equations V-1 - 1t is necessary to solve the wave number
equation (Equation III-1ly) for the traveling wave discussed in
Section III, i.e.,

by (12)" +(k0) +(b, +1b,) (k) +(b, +ibg) = 0 (ITI-1u)
The general quartic equation, can be solved using Ferrari's
method. But this method involves finding the three roots of

a cubhic equation; then, with each of these roots, reducing the

quartic to a-quadratic; and solving the quadratic. Since the
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coefficients in the above formula are complex snd the method
itself is extremely lengthly (even for real coefficients), no
attempt was made to use it. Instead two approximate solutions
are: examined,.

The first approximate solution 1s for filaments which
have very little bending stiffness (b, is small). This
solution was not carried through to completion because of the
extreme amount of algebra involved and because, as willl be
shown later in this section, it is possible to use a " boundary
layer " or in this case boundary region concept for moving
filaments possessing small bending stiffness, This first
solution is outlined as follows:

Let kg be a root of the wave number eguation (Equation

III-1y) for zero fileament stiffness (b, = 0).

Therefore (k,2)" + (k,2)(b, + ib,) + (b, + ibg) =0  (V-2)

- _ batiby +(7 _ L(batibe)\:
k.2 5 (1 Z(1 %_b:'*_'ﬁ)j;) )
= ~batR cos 6y 4 3 ~batR sin 6«
2 2
(> = 2 e
where R = I((bJ -yb,-b>) +i(v, b -2b;) )*

" b -bs -libas

8, = %tan—' cbaby -Libg
Now let there be one solution of the form:
k2 = k(L + 8, )_i, where §, << 1
and one solution of the form:
_ 1
k2 = k.9 (—8—-), where § << 1
2
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Substitution into Equation III-1y yields:

. ) b, (ke2)* 3 -
kR = ko(1 (kQQ)‘+(b;_+1b3)("koQ/2)) (Vv-3)
kL = i'ibi—-‘a— =11 % (V-b)

These are the four required wave numbers for Equation III-1L
when filament stiffness can be considered small (small b, ).

| The first wave number, k;, is a correction of ke The
correction is obviously related to the magnitude of b, (filament
stiffness) and is zero when b, is zero. It can be considered

" system wave length " (or a " stiffening "

an increase in the
of the system) since, by definition, a decrease in wave
number represents an increase in wave length. This is a
minor correction, however, since k;is only slightly decreased
from kg,
The second wave number, k,, is more interesting since
it represents an additional exponential displacement of the
filament, with which it 1s possible to correct the kg solution
for boundary conditions of slope. The magnitude of k, is the
reciprocal of §, mentloned earlier as the boundary region
length. Thus the amplitude of the stiffness correction
varies directly with the size of the boundary region. As
mentioned, this concept 1s fully discussed in Section V-C,
'The kg solution will be carried through to completion,
however, because the model for this solution represents the
ma jority of moving flexible filament situations. The boundary

conditions for slove at x/2 = 0 and x/& = 1 are ignored,

8ince fllament stiffness is neglected, The procedure for
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this 1is as follows:

First, solve for the boundary conditions (Equations V-1)
with r°*= 0, An example of these boundary conditions would
be the yarn winding machinery depicted in Figure 5., Here
‘the yarn enters through a field guide at the left (x = 0),
then moves through a traversing mechanism at the right (x =%).
The displacements in this figure are exagerated to 1llustrate
typlcal deviations from straight line flow., The solution is
undertaken by separating the complex exponential representation
of 7'into two functions, one representing the usual spacial
mode (or a wave function traveling relative to the filament
at velocity, -v) and the other considered as a correction
function to make the product of the two a solution of the

differential equation.

ba X ba X
1 (wot- == =) -1 (wot= =2 =)
Let: %={c,e 2 e +c, e 2 Q% _—
(v-5)
(1Rcosén _ Rsin@yx -(1Bcos6, | RsinByx ba x
(o 2 2 n _ T2 2 2‘%{821%
This function fits the boundary condition at % = 0 (or s=-vt)
namelyiz(o,t) = 0, In order that it fit the boundary
condition at % =1 (or s= R~-vt) let:
Da. ba
1= -1
-Cal a
C. =.__2L e 2’ c, = 021 e 2
- b
where Ca =-I-’Efe 2 e,

Equation V-5 can now be more simply expressed:
| | ba(x 3
7 = {.r;o_ b (1- X )5 2% -
Z = glx) { Zesin(w,t-ba(1- 2 Lo (V-6)

(Note: The amplitude function, g(x), is found by taking the
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real part of the product of c, and the amplitude function of

Equation V-5,)

us X/R bs cosh hwe X/ co b
sin®b cosh®b,, + cos™b;g sinh*b,o

+ €08 bis X/8 cos b sinh bie x/8% _sinh b

sin®b,s cosh®b, + cos®b,g sinh™b,.

where g(x) =

_ pcost - p3ind .. =ba
b = REE= b =REES b, =32

For b, = by = 0 (zero air drag) the solution reduces to:
77 _ Py Sin bia X/2 s _ X - _wWe _
e~ ¢ sin {D,g sin(wet-br(l- 7)), by 1-v>/c* (v=7)

Bquation V-7 has been published previously by Sack (19).

It is easier to understand this solution by rewriting
b\; and b,q in terms of the natural frequency of the system, {L ,
This concept was discussed by Skutsch (28), however its
derivation is inciuded here for sake of completeness. It is
written as:

L )
0 =Tea- o), (v-8)

Physicelly, 1 can be interpreted as follows, Consider the
case of a flexible filament moving through two fixed guides
a distance L apart, If a positive lateral disturbance is
initiated midpoint between the guides it will propagate in
both directions., The disturbance will then be reflected at
the guides and return towards thé midpoint but with negative
sense, It will pass through the midpoint and be reflected
at the opposite guides and again return to the midpoint, but

this time with the initial positive sense, This is seen in
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the following figure where only the initially upstream wave

is considered,

Upstream «—— at o — Downstrean
Initial Wave t 1= Reflec;ted Wave
y-73 7\ : / . V74 ¢ >
77 ) o w
z = X =1 X =
3 =0 [ Q 1
Direction of Initial Displacement
From £ = £ — 0, at = M2
=3 cC~-V
2
From £ =0 - 1, Qt:m
From £ =1 — %, at = 22
2 c-v

v c-v ct+v c* =-y*

= Oof = 1 _we y*
Q= 2--f-—21‘rct1_ = n(l“ =)

The impoftant point to be noticed here is that the natural
frequency of the system decreases as v—> ¢, This is obviously
caused by the increase in the time required for disturbances
to be propsasgated upstream,

Introducing b,q = 2—‘”_‘-,_’ it is possible to simplify b, and

b, of Equations V-6 and V-7,

bn = % b'\blq’ bis— bn"é:
The equation for%’- can now be rewritten:
, ax
sin b =3
7 =re 2 W28 gin(w t=b4(1- X)) (V=9)
2 2 sin b3 2

The first term represents the amplitude or limiting

shane of the mode., The second term is the time wvariation
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containing a correction for the phase at different x. This
phase correction will be discussed when three-dimensional
shapes are considered because by is actually the angle in
the y-z plane through which the filament path rotates from
X =0 toZX =1, The time variation is such that at each %

2 Q
between £ = 0 and = = 1, the point through which the filament

R 2
passes, oscillates laterally at frequency,w, . For bgqequal
to odd integral values; the amplitude function is a minimum
and the shape becomes b quarter sine waves with an amplitude
of Ay This is shown in Figure 6, where h, is introduced as
the maximum amplitude of lateral displacement, which for this
case is hy =r,. |

If the value of b, is not an odd integer, the magnitude
of hy increases from its minimum value, r,. This is shown in
Ficgure 7, a typlcal resonance diagram, For zero air drag
(ba = bg = 0) the predicted amplitudes can become very large.
This is,however, a result of the assumption of linearity.
Figure 7 is more realistic when the energy loss caused by air
drag is considered (by # 0, b # 0). Under these conditions
the maximum amplitude of the system, h,, is considerably
reduced.

The final correction to the k, solution for b, = bg = 0,
relates to the exponential amplitude. Since positive values
of b, mean an air flow of positive velocity (toward increasing
%) this correction 1s seen to be a decrease in the amplitudé
of oscililation at each %. The magnitude of this correction
decreases for increasing %, until for % = 1}, there 1s no

correction.

~ly1-



ho
bo=1
0 5 X 7 19
_ho
/ bl9=3
/\ bg =5
7 ) | /
rre - —_—=_"—_"=-—=-—=-—=——= =
: |
4 } bg=®
]
L e e o e o e . e e = = — ——— =l
FIG. 6
AMPLITUDE FUNCTION vs X, b3 = b5=0
b3= b5 =0
3l
) by #0,by #0
[+
24
'.
1 .] 1 | 1 1 |
2 3 4 5 6 7
b'ng/.Q.
FIG. 7

AMPLITUDE FUNCTION vs b ., MAXIMUM VALUE

?
o 1O



For r *# 0, the boundary conditions include harmonic

osciliation at =

g = 0, of frequency, w,”, and phase angle, fg.

o'

. 3
S

+ g (1- %) {T sin(m:et+¢+b,.,*%) )} { e %

The solution for % now becomes:
- 2E
7 - (X Lo _ _X 2 .
il { g stnlvton(l "))3{6 # 5  (V-10)
R

)

A simple illustration of the above boundary conditions would
be a flexible filament which moves at velocity, v, between
two guides whichwmove harmonically and are in phase, This
represents the type of oscillatory input that a vibrating
machine gives to a flexible filament as the filament moves

through guides attached to the machine. To simplify the

(Y3

interpretation, Let by = bg = 0, r, = r.*= 1, and “’o'-:““::‘.

Equation V-10 becomes:

= — (V-11)
, sin bn-‘2-'

For # = 0, an oscillatory translation of the machine is

,,L' sin(wet-b,(1- ¥))sin b, 2X +sinw t+F+b,%)sin(bF(1- 3))
2

represented, while for ﬁ'= 180°, an oscillatory rotation of

the machine is represented. The two plots in Figure 8 show

the uvper half of the amplitude envelope of the space curves
(Equation V-11) for @ = 0 and ﬁ = 180°, and for three odd
integral values of b,. Again it 1s mentioned that odd integral
values of b, yield minimum filament amplitude, while for b,q
equal to even integers, maximum amplitude occurs, limited by

air drag (and energy loss in the fillament itself).
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. The linear solution of this thesis 1s for constant
filament tension, The tension is not constant, however,
but is a function of filament shape. The first order change
in tension can be found by considering the constant tension
solution as belng approximately correét and calculating the
variation in tension necessary to satisfy conservation of
momentum, This can be done as follows:

’ —
From conservation of momentum in the i-direction:

v T cos 8 =T,
e \J
= v
To - %
=0 =29
3=
if guide friction and ?A‘Atl are neglected,
By letting T, = To +4AT, then for small 6,
AT - sz:vu
el (V-12)

Since it is also true that for small 6 , 6 = A?7/ax, then it
is possibhle to differentiate the expression for*7(for zZero
alr drag) and solve for aT/T,. This yields:

x77 ) — Wels
A X =@
max o¢(1= ——)(sin b 3) max

Substituting this expression into Equation V-12 gives:

AT 1 = -
AT _ 4 JoTo (a)
Te {c(l~ Z=)(sin bep) b (V-13)
-13
aT _ 4 Holo y
i.e. L\ _'E?‘i ; »

(& —-)(sin L)

=15



Equation V-13a is of practical importance since it allows
the increase in tension to be predicted as a function of the
system design variables, It also serves to estimate how good
the constant tension assumption is., If the parameter h, ,1is
introduced into Equation V-13a, where b,,is defined as;

_ AT _ 1/reyv ba .
Pao= T, _y%(if) (2b7sin Qﬁg)

then it is possible to estimate the Llimit of the linear

solution, since for b,, <« 1, the solution is correct,
Considering again the wave number equation, Equation

III-1l, a second approximate solution can be obtained. This

solution refers to filaments with large bending stiffness,

but with small Coriolis' and longitudinal air velocity effects

(small b, and b,). This second solution is outlined as

follows,

Note: In fluid mechanics, pressure rises or pressure drops
are expressed as functions of the free stream stagnation

n a1t
pressure, p,~ 4§£ . An analogy can be made between this
concept and the parameters of Equation V-13b. In this
equation the filament stress, %? s 1s analogous to the
stagnation pressure p, ; the filament density is analogous
to the fluid density; and the corrected maximum lateral
velocity uurg/(l-'gg)(sin bwg) is analogous to the free

stream velocity, v%,. Analogies such as this are helpful in

appreciating the physical significance of filament parameters,
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Let k5 be a root of the wave number equation (Equation III-1y)
for b, = by = 0.
4 2.
Therefore: b, (ky2) +(ks2) +(b +ibg) = 0 (V-1y.)
1 'ﬁ.{ L \ 4
= + 4 L + ) =
k& =1I {210,% ¢ Z(1-1p, (b, +ibg)) ™ 12
Now let there be one solution of the form:
k2 = k,o(l+ §3), where §,«1

Substitution into Equation III-1l yields:

= 1 (batiba ka2 -
kgl = I {1 ub, (ky2)* +2(k3;ﬂT\§ (V-15)

These four wave numbers are those required for Equation III-1y
for small b, and b,. They can be written in a more convenient

notation as:

k2 = fkgp, Ik

Where k. refers to Equation V-15, with k,R% chosen to have the
positive sign under the radical and where k., refers to
Equation V-15 with k,2 chosen to have the negative sign under
the radical,

Using these four wave numbers, iks and * es» 2 solution
can be found which satisfies the boundary conditions of

Equations V-1, These conditions (for r,*= e, *= 0) are:

. Yo 377 _
’%(l,t) =2 sin wt, S—;(Q,t) = §,coswt
7 = X7 -
Q(O,t) = st(o,t) =0

7~



The solution is:

{
7 = Zeo(Z)sin w pro, 705 cos wb (V-16)
. x
where (-k_sin k. +k sin k.2 )(sin kgﬂ% - %i;i}n keﬂz))
() = = O
. ) T X X
+(=-k.cos ket+k.cos kel )(cos k27 - cos k3) )
D
U L. (v=17)
(-cos k.2+ cos k.2)(sin k3 - £% sin k0%)
' De
(2(-) = -l Re
g 2 +(sin k.9~ 5 gin kL) (cos k> - cos kaZ)
S & 52 9 2
D€

: o s - y L ’ 3 x 2 s N 3 ” -
D, = -2k  + 2k (cos kglcos kL) +’55T!i,1ﬂ{—‘;—(«‘sin.f‘kgﬂ'sin k%)
©
X Y

The functions 4{(1) andd@(ﬂ) require excessive algebralc
manipulation to be written in any other form., However,
Equations V-16 and V-17 are a complete answer and can be
simplified for cases where some of the parameters are zero,

For example, let b, = b, = bg = 0 (i.e. negligible air drag

and Coriolis' acceleration), then Equation V-15 is reduced to:

K4 = k@ =% {—2-%—:%? {i'(l-ub, b, )?--1}*: (V-18)

For small b, @

L

6,8 = 2Hp )%, E1(p,)F

This solution is the same as the k,, solution for b, = b, =
by = 0 and will not be discussed further,

For large b, :

+i(Raya
l(bl)

b A
k,0 = "i’(-g.i)q ’

~1,8-



Therefore, k.o = (%f)i and k 2 = ik _f are the wave numbers to
be used in Equatidén V-17 td determine the amplitude of the
forced response predicted by Equation V-16., This forced
response of filaments of large bending stiffness (with respect
to beams) is a well known phenomenon and will not be treated
further,

This second approximate solution to Equation III-14 can
be used to obtain an equation to predict the natural frequency
of a moving filament,Jfl,. This is done as follows for
boundary conditions of zero slope and zero displacement at

the guides. These conditions are:

7 _ 7 -7 _
2(O,t) R(O’t) l(l’t) l(l’t)

The original form of'7'was chosen as:
7 E5 (wot+kx)
—_—= g
o
Equation V-15, with b, = by = bg = 0, is:
A e A
1qﬂ=i{§%%1{ﬂLﬂhhﬂL-lz'
» (=D C
k= tkl, Ik Q
Therefore ﬂ(can be expressed as:
:l = cos wy t {c‘sin k.x+c, cos kgx+c,sin k x+c_ cos k‘xz
©
To fit the above boundary conditions the following equation
must be satisfied.(or Dy = 0).

cos k fcosh k. 0¥+ %(%e -X)sin kgsinh k g¥=1 (V-19)
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1 =
= +
where X& { 1 BRI %
The roots of this eguation can be assigned the values:
k@) = ko®), 5 ko), 5 k0)yeae

Specific values of ksﬂ)n have not been calculated for this
example, although it is possible to define their range on the
basis of known solutions to Equation V-19. For example, for
a filament with zero Llongitudinal veiocity (v = 0) and under
zero tension (¢ = 0) the value of parameter b, becomes
infinite. Therefore,X , becomes equal to one and Equation

V-19 becomes:
cos k Q2 cosh kg = 1

The roots of this equation are well known and are given by

Lord Rayleigh (5). They are:

keg), = L.730
ke2), = 7.853
k.g), = 10.996
ko), = 14.137
ke2), = (BB2h)m

For a filament with zero hending stiffness the value of

parameter b, becomes zero, Therefore, ¥  becomes infinite and

Equation V-19 becomes:

sin k@ = 0, - k.2), =nmw

These roots illustrate the effect of filament stiffness

" _co-



on kQ, The etfect of filament motion on kf can be estimated
by referring back to the k, solution. These two effects,
filament stiffness and filament motlion can be combined in an

" equation which provides an estimation of the natural frequency
of a moving filament, neglecting air drag. This 1s done as
follows:

Equation III-1ll for zero air drag becomes:
by (k) + (120)"+ b, (k2) + by = 0 (V-20)

Rewrltten in terms of the natural fregquency,{l, this equation

is:
0 = kQ% {(l+b‘ (k) -b.’,' b, (kR) )Ji-b-,\; (v-21)

The natural frequency of the ko solution (for zero air drag),

), can now be equated with Equation V-21 with b, = 0.
n= l‘f-(l-b,’-) = kﬂ%(l-b-,)
This gives the initial valve of k& for the k., solution as:

k4) = w(1+b,)

k, sol,

Therefore, the correction to kf for filament velocity has the
form, 1+b,. This correction is now made to Equation V-21,

which becomes:
n= k8 %{1%1} { (1+b, (kg0)* (1+b, T (1-b ))Ji-b7§(V-22)

where the values of k. are calculated from Equation V-19,

Equation V-22 is, therefore, taken to be correct for
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values of b, and b which are-not necessarily small with
respect to one., In a later section, Section V-C, a boundary
region is discussed for moving filaments where b, is taken
to be small and a much simpler approach is used,

The equations developed thus far are for two-dimensions
only., It 1s possible, however, to use the principle of
superposition and develop three-dimensional equations. This

is done in the next part of this section.
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B. . Three Dimensions

The majority of moving filament situations involve
boundary conditions in three'dimensions. Examples are the
spinning balloon or the overend unwinding balloon which are
typical textile systems., Of these, the most common are
produced by boundary conditions of forced circular motion in
the y-z plane, An example would be the package of yarn shown
in FPigure 9, from which yarn is being withdrawn " overend ".
The boundary conditions for circular y-z motion are given

(rg*= 6,%= 0) as:
Z = X7 =€ ) = 2@ =

%(1,’0) = D2 gin w,t, 2Z(1,t) = 8 008 wa b (V-23)

’ PN
55(1,13) E’f- cos wet, -g%(l,t) =-8, sin w.t

where # and ¢are displacements in the 1 and Gidirections. As
seen in Figure 9 these conditions correspond to a circular
filament path at % = 1 (the withdrawal voint), of constant

radius, r,, and congtant inclination angle, 6 , revolving at

ancular frequency, wg.

As previously mentioned it is possiblé to use superposition
in order to solve for the equations of motion for filaments
sub jected to three-dimensional boundary conditions, This is
done eas follows, by first writing the boundary conditions for

-f in terms of the boundary conditions ror”Z,

%(l,t) = %f cos wat = %} sin(w,t+ w/2) =?§(l,t+ T/ 2w,)
(v-2l)
-2;—%(1,13) = -8, sinwt = 6 cos(w, t+ ®/2)= -zx:%(l,t + T/2w,)
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Therefore, -‘g(x,t) ’%(x,t-lr w/2w,)., This means that the
three-dimensional solutions can be written directly in terms
of the two-dimensional solutions, provided the time increment,
w/2w,, is properly considered. It must be pointed out that
this is not a right hand coordinate system, being chosen to
represent the more familiar counterclockwise rotation, at the
losgs of éonsistency.
The k, solution for three-dimensions becomes:

ba(x
%) %Ensin(u%tan(l- %))42 cos (w t=b(1- %))} {:éﬁ%fi-lg
The central bracketed term in the above expression is a vector

of unit length, at an angle, w.t-b,(1- %), referred to the

—e

z-axlis, % can therefore be more simply expressed as:
by (X
— (—' "'1)
$ - re xy (= R _X 2b, 2 _
-i —9:— g(i) %u,,_( wb b‘-,(l I) )E { e~ ; (V=25)

The magnitude of this vector equals the amplitude of the
sinusoidal time and space dependen¢e for thé two-dimensional
case formulated in Equation V-6, and plotted in Figures 6 and 7.
It is therefore not necessary to discuss this magnitude further,
The argument of the unit vector, however, shows clearly the

physics behind the phase angle, b Figure 10 1s a plot of

*
Equation V-QS, where the magnitude . of g(%) and the magnitude
of eib(%%ﬁ%v-l)) are equal to one. The shaded region
containing the filament " end view " projection is seen to
rotate at anguler velocity, w, . Within this shaded region
the filament projection rotates about the x-axls through the

angle, by. The projection is fixed relative to the shaded

region.



For by =b, =0 (the case for zero air drag) the solution
simplifies., In Figure 11 there are plotted two projections of
the filament for several odd integral values of bH(Relative
Frequency Parameter = 2%%); This has been done for two values
of b,("Mach Number")., The parameter b, is clearly seen to be
the amount of rotation about the x-axis of the filament at a
given instant of time, between x = 0 and x =2, The dotted
lines are the envelope of filament motion while the solid
lines represent an actual space curve. Since the envelope of
the end views are circles they are omitted for clarity. Also
the side views in the bottom plots of Figures 1lla and 1llb are
omitted since the end view.is intended as that for all the
curves given for b, greater than a minimum value,

The rotation angle, b;s has been measured by the suthor
from Figures 2-11 of Reference li. These figures represent
the results of numerical integrations by Padfield of the
non-linear differential equations of filament motion. Padfield'g
equations were not linearized as they have been in this thesis.
Padfield!'s experimental data and photographs val idify her
numerical integrations. This same rotation angle, byzs has
also been calculated, by the author, from the definition of

b,;» namely:

where b, and b ,are calculated from Padfield's original data.
Fieure 12 is a cross plot of by; measured from Padfield's

figures versus by as calculated by the above equation developed
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in this thesis, from Padfield's original data. The agreement
is very good up to the point where the nonlinear air drag
begins to cause a rotation of its own (b, > 200°), where it is
seen that the " measured " b, becomes much higher than the
value calculated by the above equstion., Thus the formulation
of the parameter, by, 1s seen to have considerable validity
over a wide range of practlcal situations.

For 2f # 0 the ko, solution becomes:

+ Da (X _
reo x — X 2b R
AL {“n(‘*%t'b”(l' ) l {e '
L D3 X
"-*;Eé’ pw‘( X) {—I?Q(uot.*l@*'bn%); { eab‘ 2%

Projections onto the x-y plane of the upper half of the

z (V=26)

amplitude envelope of this solution are the same as plotted
for two dimensions in Figure 8. These curves illustrate the
same ideas for three-dimensions as they did for two, namely
that the shape is most significantly dependent on bﬂ, the
ratio of input frequency to natural frequency. For further
discussion of the three-dimensional kg solution the reader is
referred to Section V-D,

The second approximation of the solution of the wave
numbher equation, Equation ITI-1lij, can also be extended to

three-dimensions since —(x t) 47(x t + W/2W,) as follows:

¥ _7 X . €z
LTt G ik
%(ﬁ £ 5 + TEs - /2wa) ke (v-27)
= %’L&/{(ﬁ)um(m £)+6 /7,_(X)u (Wot)

Where '7( =) and - E re given by Equation V-17.
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This solution corresponds to the physical case of very
stiff filaments, such as metal wire, metal cables, hose, metal
tubing, etc., moving at moderate speeds. This case is not
considered to be of interest within the context of textile
processing but 1t is presented here because it is an approximate
solution for three-dimensional filament motion which includes
all the effects considered in the general vector equation,
and because it fits the boundary conditions oi Figure 9.

These boundary conditions include the fact that the filament
withdrawal angle, ©, is not zero but has the specific value, &,
The solutlion is not‘dealt with further because, as stated above,
this thesgis is primarily concerned with the motions of filaments
that have only a small amount of bendine stiffness. This
concept can be investigated more easily by usinz the concept

of a bbundary region - to be discussed in the next section,

The sbove solution 1s applicable to an interesting

1t 1}

problem known as the garden hose problem which considers
the motion of a fluid moving with constant velocity through
a stiff hose, The momentum flux of the fluid is analogous
to the momentum flux of the filament; the stiffness of the
hose analogous to the filament stiffness; and the axial
stress caused by the fluid pressure and viscous drag, times
the annular area of the hose cross-section, analogous to the
filament tension. The results of this section can then be

avplied to this problem, once these analogies are made.
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Cs . Boundary Region

For filaments with low - but not negligible - stiffness
(small b, ) it is possible to use the concept of a " boundary
layer " or in this case, more specifically, a boundary region.
This boundary region is defined as that portion of a moving
filament near a system boundary for which the ratio of shear
force to inertia force'is large, ©Such a region exists because
for fixed lateral oscillation frequency,w, , the inertia force
near the boundary, which is proportional to the square of
lateral displacement, becomes negligible. However, the boundary
condition of fixed slope means a sudden increase In filament
bending moment near the boundary and therefore large shear
forces,

Thus the filament in Regibn I of Figure 13 behaves as a
cantilever beam and can be described by the usual beam equations.
Region II, on the other hand, is removed from the system
boundaries and therefore, has large lateral displacement‘and
inertial forces but small shear forces. It can be described
by the equations for a moving flexible filament.

The hypothesis is made here that regions of high shear
force within a moving flexible filament tend to exist near
the boundaries only,in order that the elastic energy of the
filament be a minimum., Therefore it is not considered possible
to have more thaé two boundary regions as described above,
each ad joining one of the two system boundaries.

These regions are shown in Figure 13 where § is defined
as the length of the boundary region and &, and ¥, refer

respectively to the slopes of the beam and of the moving
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flexible filament (or flowing string) at the edge of the
boundary region. It is now possible to calculate § from
simple beam theory by assuming that the effective net tension,
T- ?FAVZ', acts on the beam, and by matching beam displacement
and, to a lesser degree, slope to that of the flexible
filament, at the edge of the boundary region. This is done

as follows,

From elementary heam theory:

"PE"_8(T-geAvt)sind, g
2k1 T 2E1 !

Since for linear theory sin¥,~X, ,

§= (BAF (EL ¥ = (@uF( ¢F

g T-ghAvct %,

The boundary region length is now defined by the point where
X;is'equal to one half of ¥,

=

(v-28)

Therefore:

nlo

=bl

Referring to the beqinning of this section, the wave
-y Q.
number k&= Iib*= Ii § clearly implies a correction to the
ko, solution, near the boundaries, which varies exponentisally

with the number of the boundary region widths as:

+ X
ﬂl) -8
qQ’cor, ~ ©
For systems where %_13 small (small b‘) the suggestion

is made that the parameters which describe the system

(bgs biqs %f) can be modified, from those predicted by the kg
solution, by changing the system length, 2, to a modified
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system length, €., vhere:
A
. =R-28=Q(1-20,=)

An estimate can now be made as to the change in the system

natural frequency,{ , by substituting {. for 4.

'_ we vy - L _
Q= -E;(l- =) = T-oF (V-29)

~ !
With this corrected system natural frequency,fl, it is possible
to estimate corrected values of b5 and bq. These corrected
values for by; and b,qcan then be used in the equations which

describe filament motion. They are:

bl"l

]

4.
b (1-25)

[}
bq

]

.
bo(1-2b,%)

Therefore, the first order effect that stiffness has is to
decrease the filament rotation angle and also to decrease the
number of " balloons ",

The fundamental concept here is that the natural frequency
of the system increases with the boundary region length, This
is to be expected. However, the form of this increase caused
by stiffness can be verified by comparing Equation V-29 with
the filament veloclty, v, taken as zero, to the more cormonly

lnown equation for the natural frequency of " slightly stiff "

filaments, given by Lord Rayleigh (5) as:

£, = %(1+2b%) (V-30)

This equatlion has been rewritten in the nomenclature of this

-
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thesis, f; is introduced as filament frequency expressed in
cycles per unit time, rather than redians per unit time, as
has been done previously.

Equation V-29 is also rewritten in terms of frequency

expressed in cycles per unit time as:

Figure 1li is a plot of f, and f, normalized with respect

to the ratio ¢/22 as functions of the boundary region length,

§ , normalized with respect to the system length, 2. The

agreement of the two plotted equations is within 4% at.§:= 0.1,
which is considered adequate, Thus the physical conceptualization
of a boundary region has been verified for the case when

filament velocity is zero., It is also hypothesized as correct

for the case when filament velocity 1s not zero, The simplicity
of this concept and of its use is pointed out as its major

merit,

Equation V-30 has been satisfactorily verified experimentally
by Seebeck (5) for metal wires. For polymeric monofilaments,
specifically nylon, a series of tests were conducted using the
apparatus shown in Figure 15. This apparatus is discussed in
Section IX. The natural frequency of the nylon specimins was
measured as a function of b, and the experimental points are
plotted in Figure 1y along with the theoretical curves. A
single value for elastic modulus, E, was used in calculating
the values of b, used in the data plotting. The one value of

E was selected to give agreement between experiment and theory

-65-



- S

‘ |
0 ‘ 0.1 ' 0.2

)
7z

FIG. 14
COMPARISON OF BOUNDARY LAYER SOLUTION
WITH CALCULATED AND WITH EXPERIMENTAL

FIG. I5
FREQUENCY MEASUREMENT APPARATUS



"~ at a single point., This indicates that despite the dependence
of modulus, E, on load (which varied by a factor of 6), it is
also possible to use a constant dynamic modulus in order to
né'predict theffrquendy“ofhaﬂnylon‘monofilament; The particular
_dynamic modulus used was ~80% of the sonic modulus of the
nylon, measured on a Pulse Propagation Meter.‘
Thus the concept of a boundary region seems adequate,

not only as a quelitative concept, but also as a quantitative
 method (for small bl)‘to obtain the first order effect that
| stiffness has on filament motion, Again the simplicity of
this concept is emphasized., The first order effect of filament
bending stiffness can be quickly estimated by calculating the
boundary region length, § = bﬁ?ﬂ = (EI/T-%Avaéi The system
length, 8, is then reduced by two boundary region lengths to
) 9 =9-26 = 2(1-2=). And this modified system length, e,
is used in estimating filament rotation, b;, and the number
of " balloons ", b;/2. These two parameters are then used in
Equation V-9 to estimate the lateral amplitude of the filament

space-curve,,
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D. . Practical Example of an Unwinding Cone

In order to develop more fully the results of the
preceding section, V:, we shall now examine the motion of
an unwinding cone of yarn. This motion has been investigated
experimentally on several prior occasions.(L,:7, 11; 17, 18, 21).
Sincertherrotation of .yarn about: its axis-has-been well
documented: (Figure'12)-thig will not be discussed.

Referring to Figure 1l6a, we can express the eleven
variables for this system as a minimum of eight dimensionless
W grouvs; one dimensionless group expreséed as a function of

the other seven,

T/\)g.AVa = flre/Ry 8./ Q/R» ‘l’cs/b(c_: 9,‘,, Ke) (V=32)

These variables are identified with the aid of Figure lba,
The cone geometry variables include r,, the lesser cone radiué;
L.s the cone length; X., the wind angle of the yarn on the

cone; and the cone apex angle. The yarn variables include

e’
?fA, the yarn mass per unit length; 6,, the yarn twist; and
_M.s the coefticient of friction between the yarn and the cone
surface., The system variables also include T, the yarn
tension; v, the yarn withdrawal speed; , the system length;
and 8 , the longitudinal position on the cone surface of the
yarn take off point,

For a given yarn; 9£A, 8, and k. are constant, Therefore:

¥
T/QAv. = £(re/Q, 8/ /L, Yo o) (V-33)

For a given yarn and a given cone: r,, f., Y., Q;A’ eT,MT,an%/;«
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are constant, Therefore:
T/QAv® = flr, /2, §./2) (V-34)

"It 1is unfortunate that the:system has: eleven variables,,
even though one omits: the effect of variable tension along
the yarn, of time derivatives, of yarn non-uniformity, of air
resistance, and of all package variables except those describing
the geometry. This is the primary reason why meaningful
experimental data is difficult to obtain. Unwinding tension
has, however, been measured as a function of velocity, guide
distance, and package radius for a given yarn wouhd on a

given package. The data are expressible in the form:

T/ Qefv™ = £(rs/2) (V-35)

Although this data always contains oscillations about
some mean vaiue which are caused by the §./Q fluctuations,
the fluctuations are not significant in most cases. References
12, 16, 17, and 21 report work that has been done to validate
Equation V-35, They conclude that the tension varies linearly
with yarn mass density, Q+A, and as the square of withdrawal
velocity, v; for a given r,/f. Equation V35 can be rewritten

as the definition of a tension parameter as follows:

With this parameter the definition of bq can be rewritten

for an overend unwinding cone since v = rw ,

Q (-]

9 - o Tro 4. 1 ', (V-36)



If b7 is small (large b“) Equation V-36 can be approximated
as:

__24
bq = oo, (V-37)

This expression means simply that the number of " half
balloons ", bg, increases with 2/ry and decreases with the
tension parameter, by,. It must be pointed out again that b,
is a function of r./R.

If the distance from the front of a yarn cone 1is defined
(Figure 1lba) as x and Equation V-37 is considered valid
between the successive nodes of a multiple balloon filament

space curve, then b4 can be written as a " function of x ",

= 2X
P9 = w5 (7-39)

This means that the system boundaries are redefined within the
varn space curve at the two nodal points of each balloon,

The form of Equation V-38 has been experimentally verified
by the author for two diff'erent cotton yarns (?%A = 200 and
330 denier). The experimental apparatus is described in
Section IX. Figure 16b is a plot of b, versus x. If b, were
constant the data would plot on a straight line, b, being
equal to buo, which when measured from the plot turns out to

have the value 2,0. However, as iﬁ-increases, two curves for

o

the two different yarns are seen to deviate from the " constant

b, solution "

. This deviation can be explained in terms of an
.increasing b, (x)., Thus the form ot Equation V-38 1s seen to
be consistent with experimental observations. It should be

mentioned that values of x/ro of such large magnitude are not
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at all practical because the tension constant (and therefore
also the tension) becomes too large., Thus Equation V-38 can
be used with b,, taken as constant for most situations.

Data given by Padfield (L) also support the prediction
of b4 of this thesis.

10

Predicted

FIG. l6c
Comparison of Relativé Frequendy Parameter

Figure 1l6c is a cross plot of bg measured from the figures of
Reference |}, versus biq 28 calculated from Equation V-37 using
Padfield's original data. The method of measurement is
explained in Section IX, The agreement between calculated
and measured byq is good except for the points A and B of
Figure 1l6c, These two points are for systems with low filament
tension where it 1s not possible to neglect air drasg. The
effect of air drag is seen to increase bﬁifor a given b which,
of course, means an increase in the number of system balloons,

In this chapter the general vector differential equation
has heen examined extensivély for the case of linear filament

motion between two boundaries. The boundary conditions have
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been taken as harmonic lateral oscillation at x = 0 and at

x = £ for “oth tbe'ﬁzdirection and the-ildirection. The
solutions of these eguations are applicable to many practical
problems of monofilament, multifilament and staple yarn
processing situations such as the spinning balloon, the overend
unwinding balloon and the yarn space curves near the traversing
mechanisms of winding machinery. They can also be used to
predict the space pathé of thin tapes, where air drag becomes
Important, and heavy metal cable, where stiffness becomes
important.

The concept of a stiffness boundary region was developed,
which can be utilized to predict easily the extent that
filament motion wlll be a function of stiffness. The parameters
of the equations which describe filament motion for zero
stiffness have been modified to include the length of this
boundary region,

Finally, the case of an overend unwinding yarn cone was
briefly discussed, as an example, in terms of the variables
involved and the validity of the prediction of the number of
balloons, bn/z, within the yarn space curve. The verification
of " the rotation angle of the filament, b,, was previously
included in Section V-B,

The assumption of constant longitudinal filament velocity
is not always valid as has been assumed thus far. The next
section examines the initial effects of longitudinal acceleration

and deceleration and the dynamic buckling that may take place,



VI. ACCELERATION EFFECTS

A, Introduction

The previous two sections dealt with steady state
situations where filament accelerations in the x-direction
were negligible and the tension was taken as constant, The
purpose of this section is to exemine this assumption by
first reviewing the relatively straight forward phenomena
of accelerating filaments and then by examihing the equations
of motion for decelerating filaments - and the dynamic

buckling that invariably takes place.

B. Accelerating Filaments

When a straight filament at rest or at constant velocity
is subjected to a sudden increase in velocity along its axis,
of magnitude, av, at one end, a corresponding increase iIn
filament strain, A€.= av/ag (where a, = sonic velocity of
material) will propagate down the filament from the point of
impact, This is of course a well know situation of one-
dimensional strain wave propagation, If at an arbitrary
distance, £ , from the point of impact, a partial restriction
(such as a " frictioned " guide) to filament motion is
present, then the wave will be refiected. It will return
toward the point of impact, where it will again be reflected.
This repeated reflection continues, with each reflection
increasing the strain level an amount A€ until the total
filament strain or tension is sufticient to overcome the

partial restriction at R, Then relative motion between the
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filament and the guide will take place. This assumes that
the level of strain at the moment when relative motion takes
nlace is below the rupture strain.

The time increment between initial imvact and relative
motion at the vartial restriction can be expressed as a function
of the final strain, &, the sudden increase in veloclty, Av,
and the distance, £. This time increment is found by equating
the final filament stréin,e%, to the ratio of filameng

extension to filament length.

avt _ g = &R
—-Efét--e{ t_%

This time increment 1s short for practical textile situatlons,
For‘an example let the impact velocity beav = 50 ft/sec; the
length be R = 2 ft,; and the final strain Level be € = .01,
These values yield a time increment of t = 0.h milisec.

If the filament is not initially aligned with the direction
of the suvdden increase in velocity, then lateral deformation
will also take place. However, lateral deformation proceeds at
a much slowsr rate and tension fluctuations can be neglected
when considéring lateral deformation., An example of this is
the intermittent withdrawal of yarn from a yarn cone, such as
is used in the external filling sup»ly or the Draper Shuttleless
Loom., High speed motion pictures of the yarn as it leaves
the cone.surface show that steady state as would be described
by the equations of Section V, is established in one or two
revolutions. This seems amazing since the yarn revolves at
~ 1700 RPM, however, during these first two revolutions there

are -~ 10 complete longitudinal strain wave cycles which
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allow an eaguilibrium tension to be reached., Thus the
D,

assumption of negligible longitudinal accelerations, z;;,

of Section V seems very reasonable,

'When the filament axis is not initially aligned in the.
direction of acceleration, lateral as well as longitudinal
displacement will take place. It is informative in the
context of this section to look at these lateral deformations
for ‘a flexible filament (b, = 0) of finite length. The
propagation of the strain (or tension) distribution will be
taken as occurring at infinite velocity in light of the
previous discussion.

The position vector,'ﬁg is defined in Section III as:

R(s,t) = (£(s,t) +F)L +%3 + @k

The displacement function is chosen as f(s,t) = s + & at’

which describes a filament essentially aligned in the
E;direction, and subjected to a constant acceleration of
magnitude, a, and direction,’f, Neglecting the effects of
air drag, gravity and filament stiffness, Equation II-l4

reduces to:

a— ——— -
AT ¥R R _ X
TEYRERETY L S (VI-1)
N .

Substitution of the position vector, R, yields three

equations:

For the-;—direction:

___T_é1+ .gi_.:: _B-{- __9_2 -
A8 &8 T A 8> ?&A at* (&Aa z.s) (VI-2)



—
For the j-direction:

A ST I iR (vI-3)
For the-zldirection:
ﬂﬂ+T3ﬁg= A.g.i (VI-y)
s ] >8* ?F >t*

As previously stated the varistions 51135 can be considered
small compared with the tension variation for time large

compared with f/ay., Therefore Equation VI-2 reduces to:

2T _ -
—S—g —?‘_Aa, T = T° +Q;Aas

=3

This value for tension can be substituted into Equations VI-3
and VI-L which then begome:

- .. . X7 S77 1 S
For the j-direction: N + SYTs - & 3Et (VI-5)
the T 2@, Se 1 ae _
For the k-direction: 54 + sy = £ 3t4= (VI-6)

.Where s = s + T/¢ Aa .

These differential equations are identical to the
differential equations which describe the well known motion
of a" hanging chain ", ‘Bowman (8) includes their solution

which is summarized below for the reader, for the Sldirection

only. The solution is:
".E(s,t) = Re {Z‘P“(s) eiw"ti
[}

where the spacisl modes, {, , are Bessel Functions:

. (s) = 4,7, (2 \}i‘i’i ) + B Y (2 \faud )
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The magnitudes of A, and B, are determined for the initisal
conditions, f(w) and g(w). f(w) is the initial condition for
lateral displacement for the non-dimensional coordinate,

w = (‘S,{)_k. g(w) is the initial condition for velocity for the
same coordinate, The Bessel function argument coefficient, oty

z A
is also non-dimensional and of magnitude 2(Awny=,

-}

2
B, = =
n -wnJ‘ (ocn)

_ Qooi
%n =2 \/"'a_'

J:wg;(w)JQ (woy )dw, w = (%)Ji

For a straight flexible filament (b, = 0) of length, R,
initially at rest and aligned at a small angle, tan ™" %‘-’-,
(See Figure 17¢) with the direction of acceleration, (i-direction)

f(w) and g(w) become:

fw) = hj'{’-(l--vw*"), glw) =0

The solution for’z— is therefore:

he
.E/:(s,t) =8 Z—%:.—é—;ﬁz%}y cos &, Bt (VI-7)
Wwhere" ¢ = (ﬁ)-":, Jo (%y) = 0

The solution can now be written in simpler form as:

Z;(%,t) = 1.108 J,(2.405w) cos 2.4058t
- ,140 Jo (5.520w) cos 5.5208t (vI-8)
+ ,045 Jo(8,654w) cos B8,6548t + -

This solution is plotted in Figurel7a for various values of $t

-78-



INITIAL CONFIGURATION

Bt
INCREA
INCREASING ACCELERATION

-
o

s
j,

‘a. ~
ACCELERATING FLEXIBLE ' FILAMENT

To N=9
! Bt=.4
10 +-
5-».
| _Bg;z_, \ - DECELERATION
=0
0 .. INITIAL CONFIGURATION
b.
FIG. 17

DECELERATING FLEXIBLE FILAMENT

-79-



increasing from zero, It must be remembered that the origin
of the plot (s = 0) accelerates in the i-direction with
reference to the stationary coordinate system, with acceleration,
a, It is helpful in picturing this to make the following
obéervation.

The frequency of the first term in the above series

expression for gﬁ isg:
. o

2.0 _ a/g v
-gﬁi$t = 1.087(—65)‘

where g = 32,2 ft/sec” and Q is given in feet. Therefore,

=L
L.f,

time required for the main portion of the fillament to cross

the origin moves a distance, X, in the time, t (the
the x-axis) of:
x = 2at” = .8518
This is a useful parameter of the system since for any
acceleration this value remains constant., Filament rigidity
also has very little effect, gsince for a completely rigid

filament, the value of x only changes ~ 3%, to x = .,832%,

C. Decelerating Filaments

The discussion thus far has been for positive acceleration,
If negative acceleration is considered, it is not possible to
use Fourler or Begsel Series to model the initial conditions
since for time, t, greater than zero the series do not converge.,
This is shown as follows by letting a = -a, Equation VI-G

then bhecomes:

N7 By 1 X7 _
s + SxoiT T 5 XE where s = g - To/?QAa (VI-9)
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The solution to this equation is identical to the previous
~solution, for the spacial modes,tbn. ‘And for time, t = 0, the
kinitial conditions give identical values for the constants,
An and Bn' However, the time variation is now in terms of

hyperbolic cosines instead of cosines. Referring to the

series expression for the ratio of the n + 1 term to the

he’
n term becomes, in the 1limit, for t positive:

‘7h+l _  wet
L

This value 1s certalnly greater than 1 and the series is
therefore not convergent, What is possible, however, is to
look at the first few terms of the series which means that
the only error involved is that the initial condition becomes
8lightly different than the actual one chosen, There is
hothing else mathematically wrong however, since the boundary
conditions at ﬁ 0 and % = 1 are still satisfied. See
Figure 17b.

~ For the purpose of numerical calculation the series
expression can be divided by a number which approaches the

larce amplitude that the series ylelds for finite n., Denoting

this number as M;

N
where: M= ‘(e'rr)ne»t
n=1
77 8 N Je(o‘nw
B—;(s,t) = MlimZW—Lycoshu Rt (VI-10)
atE ]

Figure 17b is a plot of Equsation VI-10 for increasing values
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of gt. The value of such a plot is that one can predict the
extent of lateral deformation as a function of the increment
of time under which the fiiament is subjected to a deceleration,
For example, 1f the 1limit of maximum lateral displacement is
set at approximately fifteen units of 1nitial lateral
displacement, h,, then from Figure 17b §t is seen to be
approximately @t = 0.5. Therefore a limit of the " time

under deceleration * wouid be, t = 0.543 = (Q/aﬁ:. For
example a one foot filament can be subjected to a one g
acceleration for only a little less than .2 seconds before

the magnitude ratio becomes fifteen, This solution has been
verified in the lahtoratory in a quealitative way only,by
watching pleces of string fall from an initially vertical
configuration, The observed shape 1s that of Figure 1l7b and
the time increments have the correct order of magnitude, The
most fascinating observation made during these experiments is
that the top point of the plece of string falls vertically, as
in Figure 17b, The suggestion is made to the reader to try
this himself, since it 1s so easy and so interesting.,

This solution considers time large compered with &/ag,
and therefore deformation tekes place at an observable rate
(the falling string just discussed). This is not true for
filaments under high?decelerétion, because the dynamic
buckling that takes place becomes localized when the
decelerating force approaches the same order of magnitude
as the filament Euler buckling force, and when the deformation

takes place in times with orders of magnitude of.ﬂ/as, or less.
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If the Euler buckling force is expressed as P = C%) EI,
and the time for deformastion as (l/aft, the parameters bg and

bq can be introduced as:

3
- _s:Afa _ (asv - (_E_yE
Pg = SRT Pa (az ) ( hﬁl)

Equetion VI-10 cen be considered valid when bg and by are
much greater than one,

When by and bg afe small, the dynamic buckling becones
totally dependent on stiffness and the entire nature of the
model must change. TFigure 18 shows an 8.5 mil nylon
monofilament, initlally under tension., The filament is
attached at one end to-a clamp shown on the right side of
the photographs of Figure 18. The other end is suddenly cut
and a strein release wave propagates from the cut end to the
clamped end, at velocity, ag. See Figure 20. For an elastic
filament, the strain 1s completely released - the strain
energy becoming the kinetic energy of the portion of filament
behind the strain wave, Therefore, when the strain wave
reaches the right hand ¢lamp, the entire fiiament is moving
with velocity, v = eaq, The situation is completely analogous
to the unstream side of a moving filament which is suddenly
stopped at one point., The reader is referred to Section IX
where a complete description of the apparatus, loaned to the
author by Professor Eggerton, of M, I, T., is presented. The
one important point to be made concerning these photographs
is that they are not successive photogravhs of the same

filament, but photogranhs of identical filaments under
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identical test conditions, taken at successively longer time
intervals from the moment of filament rupture. This points
out the unliqueness of the phenomenon., The following treatment
attemnts to analyticalliy describe this second type of dynamilc
buckling by examining the mathematics of a second model,

The second model wilil consider the filament impact force
to be constant for 1nitial deformation, Tnis assumption is
certainly verified by Fipure 18, since the time between the
first two filgures is’only ~50 microseconds, while the time
for one complete strain wave cycle is ~450 microseconds.
Therefore the initial deformation is caused by constant
impact force and becomes large before the strain wave can
return to the deforming region. This constant force model
will first be examined for negligible filamenﬁ stiffness with
a non-zero initial displacement configurstion snd then will
include filament stiffness and consider a zero initisl
displacement configuration. Only the ﬁldirection equation
will be considered since the-iLequation is the same and the
two are uncoupled,

Equation VI-3 for negligible filament stiffness and
constant impact force, P = -T, reduces to:

P Xp | X7 _
A as* at*

0 - (VI-11)

The impact force, P, can be expressed in terms of the sudden

velocity change, v, as P = %FA. Therefore, 751 can be
s 3

rewritten as:

P _ vEA .

3.
= —] 2
el agp. A

(Note: a. = (l';;.) )

va

S s
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Eguation VI-1l can be rewritten as:

va gﬁ? =0

s As"' b‘b"

The general solution of Equstion V1-11 is:
r ) va
1(2,8) = £, )*t+ )t (1(—1)"1;- 2)
The boundary conditions will be taken as:
Zio,t) = ”7(1 t) = 0

The initial conditions will be taken as:

s
4 1- Y3 2?7 ;s _
-—4 0) = b& ’ =% 3,0) =0

The actual initisl conditions to this problem ere 727 = 27/t = 0,
but the mathemstics demands initial conditions for a non-
trivial solution, What usually occurs to an initlally
straight filament moving with velocity, v, when it is suddenly
stopped at some point, is that it buckles with a predictable
wave length as will be discussed later in this section.
However, for flexible filaments with extremely small stiffness
these waves can be smaller than the normal perturbations
occurring from high speed motion through a piece of moving
machinery, The shove initial condition (See Figure 19) is
chosen to represent such a perturbation, This initial
condition will not bhe used for stiff filaments under similar
impact,

The solution becomes:

<y e ng't nws # vas %
no(gat) = > ape sin ==, where &" =w(=—2)Z
o U
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2nreb™ {1_ (-12n§1+gb+§nnbf'2}

where: an = ((nﬂ'b )a.+l)=. be‘/b

As in the previous solution for buckling flexible
filaments the series will not converge. Therefore only a
finite number of series terms can be used. Agein it is
stated that this only means that the initial condition is
slightly altered. If b (where % = b is the position of
maximum deflection) is chosen as 0.1 the second term in the
expression for a, is’negligible for n <100. Therefore, aj,

can he written as:

_ (2nwe) (1077)

This solution is plotted in Figure 19 as %f versus % for
-]

increasing values of @‘. It.should be pointed out that for

this solution the initial deflection at-%==].is not zero

but‘%L = %%. This i1s conslidered small enough,
o

In this figure, as was done before with Figurel7b, it is
possible to estimate the magnitude of the ratio,qq%%g, as a
function of time (Q?t). For example, for a one inch portion
of filament (&= %), moving at 100 ft/sec (v = 100), with a
strain wave veloclty of 6500 ft/sec (ag = 6500), it takes
approximately 35 microseconds for the initial perturbation to
increase by a factor of four., These numbers correspond very
roughly to the situation shown in Figure 18. However, the
Initial conflguration of this figure is not a random machine
vperturbation, but a unique and predictable phenomenon as will

now be shown.

When filament stiffness 1s of a magnitude such that the
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buckling wave length is larger than normal machine excited
perturbations it 1is possible to pick initial conditions which
are unique, The work reported in Reference 2 was concerned
with the dynamié motions and buckling which take place when
the strain in a filament 1is suddenly released. The work was
done as a Masters Degree Thesis by the author. The equations
developed are reviewed and elaborated on here because, as 1is
shown as follows, thé huckling that tekes place 1s completely
analocous to the buckling that takes place when a moving
filament is suddenly decelerated,

This analogy 1s clearly seen from the well known solution

to Equation IIT-2:

¥z _ 1 A% o _
where * (0,8) =0,  F(8,t) =R
>
%(s,0) = e85,  5t(s,0) =0

The solution 1s expressed in terms of strain and velocity as:

a
T = Sl-uls-agt)), $F = eaguls-ags)  (VI-12)

where'  u(s-agt)=l (s <agt), ul(s-a t)=0 (s=»agt)

Referring to Figure 20 (illustrating the situation dealt
with in Reference 2), as the strain release wave proceeds
from the suddenly free end (s = 0) the region behind the wave
has zero strain but positive velocity, €250 This means that

when the strain wave reaches s =X, the entlre filament has
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zero strain snd positive velocity, € Thus the filament

§09°
is completely énalogous to the upstream portion of a moving
filament (of velocity, v = €gag) which is suddenly stopped at
one noint,

The results of the Masteré Thesis are reviewed as

follows, beginning with the linear position vector:
—— -ty P Ny ot
R(s,t) = (s + vt +J{)N1 +4(j +@k

For negligible alr drag and gravity effects Equation II-L

reduces, after substitution of R, (for the j-direction only)

to:
xﬁz Oz 87 EI
Crysst Vs IE t 3R =0 €= 9% (VI-13)

The boundary conditions are:

2(0,t) =22(0,t) =(a_t,t) =2L(a_t,t) = 0
23 1 s 23 s

(VI-1y)
5(0,8) = 3R6oyt) = 0
The actual 1Initisl conditions are:
(s,0) = $%(s,0) =0
(VI-15)

=% (s,0) = 0, %(s,o) = -ghfg = -V

(It must be pointed out that the coordinate system has been
changed here for consistency of presentation, Positive s 1is
now taken as beginning at the right hand clamp of Figure 18

and increasing towards the left,.while time is referenced to

the moment of impact.)
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The unfortunate fact 1s that the answer to this probiem
is‘y(s,t) = 0, However, what really happens is that after
the strain wave has passed a certain distance, the filaments
lowest energy‘configuration suddenly chenges from pure axiel
compression to lateral deformation. It then buckles and it
is at thils point that the above problem formulation becomes
valid, with initial conditions given by this initial mode.
The initial mode can be found by assuming that at some time,
to(and corresponding distance to the strain wave front,

Sy = asto) there will be a configuration which satisfies the
above differential equatioﬁ and boundary conditions, For a
wave solution this initial strain wave front distance is found

to be a multiple of " Euler Wave Lensths " (namely 5) where:

%(s,0) =4{°(sin%—)\~°s?-i% sin % %{{s), 0 <8< 5A, (VI-16)

where: ,K°= 2T g% = "Euler Wave Length"

Thus when the strain wave has moved a distance of sy = 5 A, the
filament has a deformation mode of lower energy than pure
axial compression., This mode then becomes the initisl
condition for the ahove problem, Therefore the boundary

conditions are:
X7, x7
277(0,t) =S§(0,t) =77 (s0,t) =3st) =0
Z(0,8) = 3} (e0,8) = 0
And the simulated initial conditions are:

”’](3,0) =, (sin % 3-;\"-3- - % sin g. aﬁ-—f—), 0 <8<5 A,
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'7(8,()) = 0, 5 Aag<S<

32 (5,0) = =L (0<8<5M), =0 (5r< 8<oo)
A8 ag

The differential equation is no longer uncoupled and becomes:

N N A <A
€ N + u(ss-zaxst)vas S5 e 0 (VI-17)

where u(s-agt) is as previously formulated.

This problem as formulated ghove was not solved previously
and will not be solved here because of its inherent complexity,
Also’the buckling that takesiplace~décreases longitudinal
¢ompressive- strein end therefore the coefficient vag. The
problem can have a nonlinear formulation, which is discussed
in Reference 2, but the equatlions are too complicated for this
context,

It is possible to measure the deformations of filament
samples which have been buckled in this manner., For copper
wire (3.5,mil diemeter) which yields at low strain - before
the nonlinear deformation can take place - the wave lengths
agree very well with those predicted by the initial condition
function,-@}s,o). Figure 22 is a plot of the average measured
wave lencth of a deformed sample as a function of the
caleulated impact velocity, Vv, where: v = €c8g. The value

of a, was calculated from the average material properties. e

s
is calculated from the measured load of a sample at rest
just prior to btelng cut and allowed to buckle dynamically.
This is a nice controlled variable experiment and as

previously discussed it is analogous to a sudden velocity
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decrease (of megnitude v) for a moving filament., The measured
values are only slightly higher than those predicted.

For materials with higher yield strains (polymers such
as nylon, dacron and saran) the wave lengths-of the deformed
samples are always several times higher then predicted by
linear theory, a voint substantiasted by the nonlinear
formulation of Reference 2. In Figure 21 the results of a
series of tests of nylon monofilaments of verying diameter
are plotted as A, the average measured wave' length of deformed
sample; divided by ‘A,, versus calculated impact velocity, v,
where again, v = €385 The values of ag were measured on a
Pulse Propagation Meter for the samples in question. e;is
again calculated from the measured load of a sample at rest
just prior to being cut and allowed to buckle dynamically.

It is shown in Reference 2 that the value of the wave
length ratio should be independent of load for a given sample,
if the load is of sufficient magnitude, This is supported by
Fisure 21, the value of the ratio approaching L. It is also
seen from Fipure 18 that, this 1s the correct order of
magnitude increase in the final wave length from“the initial
wave length,

The buckling described thus far has been considered only
two-dimensional, Referring to_Figure 23, a 10 mil nylon
monofilament, of two inch initial length, is shown as it
buckles statically into the third dimension. This occurs, as
is predicted by the solution of the equations for the model

of reference 2, when the maximum tangent angle reaches 90°,
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This occurs when the jaw spacing is one half the initial
filament length, This limit of two-dimensional stability is
suggested for dynamic buckling also, and 1s partially born
out by Figure 18 where the right hand wave is seen to become
three-dimensional, and coil up, at about the same time that
the maximum tangents become vertical,

The eftects of acceleration on filement motion have thus
beeh analyzed analytically and verified experimentally to a
certain degree, It was not possible during the course of this
study, to obtain the number of monofilaments of different
materials that would be considered satisfactory from an
experimental point of view. It 1s supgested that future
experimental verification should be carried out - once these
different materisl monofilsments become available,

An example of the avpplication of this material on the
dynsmic buckling of filaments concerns the external filling
supply of the Draper Shuttleless Loom. This consists primarily
of a yarn cone from which approximately 7 ft. of yarn 1is
intermittently withdrawn at s frequency of ~ U4 cps. The
establishment and collapse of the yarn balloon was described
in the early pert of this section. The remainine portion of
the filling sunply is the mechanism which accomnlishes the

intermittent withdrawgl, Included in this mechanism is a

1 1

yvarn hrake which stovs the flow of yarn from the packsge
to the loom at one point aiong the filement path,
The suddenly stopped yarn buckles dynamically in the

recion immediately upstream of the brake and lateral deformation
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proceeds at a certain rate, If the duration of brake application
is beyond a certain minimum, the lateral deformation 1s so
extensive that yarn self entanglement may teke place. However,
yarn deformation can be kept below this level by limitting the
braking time to this minimum value. Thus it is seen that
knowledge of the phenomenon allows a prediction of\this

minimum time duration to be made, thus allowing the loom

designer to properly design the brake,
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VII. EFFECT OF SURROUNDING MATRIX

A, Introduction

This thesis has thus far only dealt with the dynamic
motions of filaments in a low resistance medium, namely air.
It is now necessary to examine the principle effects that a
solid medium has on filament motion. An example of this is
the single filament in an assemblage of filaments which
suddenly breaks as the entire assemblage 1s pulled to rupture,
The assemblage strength is obviously dependent on the local
mechanism of load transfer of the individual filaments. A
specific example would be the fibers in a twisted yarn., This
is a problem of practical interest and the one mainly dealt
with in this section,

Therefore, consider a hypothetical filament embedded in
a matrix (the matrix being the other filaments of the
assemblage) where the interaction between the filament and
the matrix is modeled. as, (1) a constant shear stress
resistance along the filament length'oorreSponding to a
frictional interaction.between filaments, and, (2) a linear
force variation in the matrix with lateral deformation of
the filament,

The filament is initially at rest. The entire matrix
including the filament is then given an increasing tensile
strain until the filament breaks. Considering only one half
of the broken filament, a strain release wave 1s seen to
propagate from the break along the fiber, thus into the matrix,

The energy released is modeled as being absorbed through two
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mechanisms, The first is an increase In the kinetic energy
of the filament itself and the second is a dissipation of
thermal shear energy at the interface of the filament and
the matrix,

The strain discontinuity (or the strain release wave)
propagates along the filament until a point 1is reached where
the accumulated effect of matrix filament shear has decreased
the strain discontinuity to zero or in other words until the
strain behind the discontinuity equals the original strain,e,,
at which the filament broke in one spot. The position of the
break is taken as x = 0, The strain wave propagates in the
positive x direction., At x = x, the strain discontinuity
goes to zero as indicated sbove.

At points beyond x = x, the strain discontinuity is
zero; there 1s no longer any relative motion betwéen filament
and matrix, The resistive shear force suddenly incresses at
X 2 X, since the statlc coefticient of friction is overative
beyond this point rather than the lesser kinetic coéfficient
of friction., Thus the remaining filament and matrix act as
a " reflection wall " for any remaining filament kinetic
energy. The presence of a reflecting wall may cause the
filament to buckle laterally.

The problem is divided into two parts. The first being
to determine to what distance the strain release wave
propagates along the filament before the accumulated effect
of lonesitudinal shear force reduces the strain discontinuity

to zero. And, the second being to look at the equations
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governing the dynamic buckling that can take place.

B. Propagation of the Strain Release Wave
The vnosition vector for zero initial filament velocity

is given as:
— — — -
R=(s +3)1 +o7] + ¢k
The longitudinal or 1T-direction shear is:

AVé)

a8 'x © -TupDp 1

Where « is the coefficient of frictlon between the filament
and the matrix; p is the radial interface pressure; and D¢ is
filament diameter. The equations of motion for the E-and'iz
directions will not be considered for time, t & x,/ag, where
time is measured from the instant of filament rupture,
Substitution of R into Equation II-l, for negligible
gravity and air drag effects, yields for the-ildirection

(s = x since the filament is initislly at rest):

= _ X, X'E _ wapDe X
Tl T S Pe T E X 3 b= Mg (VI

where & 1is thekdisplacement of a given point at x relative to
that same point on the unstrained filament. The boundary

conditions are:

The initial conditions are:

5 (x,0) = ¢ x,



which is to say that in the equilibrium state (t< 0) the

filament has constant strain hence displacement varies

linearly with x as shown in the dotted line fo Figure 2la.
The solution to this problem for 0 < t < X,/ag 1is

given as follows:

3 (x,8) = gx + g ((E) 2 - -a;:f')-(gff')a)u(x-ast) (VII-2)

where u(x-agt) = 0, abt<x<xy; =1, 0<x<agt

The solution for displacemént versus x at time, t, = §2, is
8
plotted in Fiecure 2lja. The prohlem is more clearly understood,
however, by considering filament strain and velocity as a
function of time,
.- A%
Figure 2i4b 1s a plot of filament strain, % x? versus X,

for 0 <t< Xo/ay, given by Equation VII-3 as:

T = egll-ulx-agh) )+ S5 u(x-agt) - (VII-3)

The particular time was taken to be t = 0.4 t,. Thus the
strain does not decrease stepwise to zero behind the strain

"

release wave as occurs in the without matrix " dynamic
buckliing previously discussed in Section VI.' Instead it
decreases linearly with x behind the release wave at any
given time., When x = X, the strain behind the wave frout is
equal to the original strain and the discontinuity disappears
as shown in the dotted 1line for t = t, in Figure 2ib.

Figure 2lic gives a plot of filament velocity versus x

for O~<t-<x.°/aS for an arbitrarily selected point, x = 0.4X,.
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3R = qag(1- 2)(1- Hlulx-agt) (VII-L)

This indicates that the velocity, or kinetic energy, decreases
at all x <agt, for increasing t, and that for t = tq = Xo/8g5
filament veloclty 1s zero throuchout.

It is worth pointing out that the influence of friction
does not change the strain wave velocity, ag. This can be
seen in Figure 24b by noticing thet for x = agt (across the
strain discontinuity) there exists a finite change in strain

(therefore infinite %E%)-and'in Figure 2lc a finite velocity
s,
ztl e
is negligible when considering the discontinuity

chanege (therefore infinite Thus the term in Equation

VII"'l, Egb‘o,
and therefore its velocity, ag, remainsg constant.
The distance of strain wave penetration glong the filament,

Xos 1s found to be:

E eD
X° = _-éj'f—)i-’ EA b\o

Therefore, the dynamic strain wave penetration is exsctly
twice the penetration distance required for static equilibrium
between accumulated shear force and original tensile strain,

or in other words - twice as far as if the break took place

" slowly ". Referring to the following figure,
Matr%: ' :
| — 2/
¢ EA ~— | P ] .
, / —_— ’//
Filament mpwDR
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the "static" release penetration distance, 2,, is easily found
by equating the filament tension, T = €;EA with the total shear
force, up wD,4, and solving for 4,. This yields
, f= 35228 = 3x,
HP

This means that for time, t, slightly less than t,, the
total shear force exerted by the fiber on the matrix is twice
the original load that the filament carried, or twice the
load that the rest of the assemblage would have to bear, again,
if the break took place " slowly ". This factor of two is,
~of course, a common factor for impact loading,

The separation distance that occurs at the break is slso
an important (and easily measurable) parameter defined as:

§=5(0,8,) = Sfa = pRee, b = %fé;

This dynamic deflection at x = 0 as shown in Figure 2ha 1is

1}

predicted as twice the static or slowly released reflection "

that would occur if the break took place " slowly ", as just

described. This value of static deflection can be found
g _
at*

In order to verify this solution and to validify the

easily by directly integrating Equation VII-1 for o.
factor of two by which the displacement is multiplied in the
dynamic case, ﬁe have conducted a set of simple tests, The
variable measured is § , or the displacement at x = 0,
Figure 25 is a crossplot of this displacement for the static
and for the dynamic release situation in the apparstus shown
in Figure 26. 1In these tests a strip of rubber shown is

given an initial strain, Two smooth plexiglass plates are
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then used to form a sandwich containing the strip. The

1

strip is then released statically or slowly " and then

1|

dynamically or " quickly ". The deflection at the end of
the strip is measured for each type of release, at increasing
values of initial strain, Figure 25 illustrates the consistency

of the multiple of two that is predicted by the theory.

C. Dynamic Puckling Within the Matfix

¥hen a fllament breaks as described above, one of the
two parts may have a length less than xX,. If this is true
then this part will contain kinetic energy when the strain
wave reaches the end of that filament segment. This piece
of filament will then travel through the matrlix until this
energy 1s dissipated or until it collides with something. If
the latter is true the impact force felt during collision may
be high enough to buckle the filament laterally into the
matrix,

If the filament length is sufficient but the matrix is
not continuous as modeled: and holds the filament tightly st
some point, X <X_, then impact and ensuing buckling also may
occur, If it does and if the matrix is of finite height (or
radius) the filament may actually penetrate to the surface of
the matrix. This is a common occurrence while-a piece .0f yarn
is breakine., Fibers which have broken inside the yarn are

n

actually seen to " pop " through the surface. Also during
the drafting of fiber webs, although hreskage 1is not
necessarily occurring,this same sudden migration takes place

upon sudden release of tension as fibers slip by one another,
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The three photographs of Figure 27 are examples of the
“ pop=-out " phenomena., The top photograph shows a piece of
cotton roving that has been pulled apart - or drafted, Fibers
near the surface are seen to pop through the surface while
the roving is being pulled apart., They pop out very quickly,
wilth considerable velocity and it seems reasonable that the
energy must have been suddenly-released tensile strain energy.
The middle photograph was taken of a test strand comprised
of dacron monofilaments twisted together on a special apparatus
(29), Several individual monofilsments in the central region
of the strand were broken, while the fiber assemblage was
under moderate strain. The ruptured filaments are seen to
have buckled laterally and popped through the surface, In’
the bottom photograph, the buckled monofilament was at the
exact center of the strand - being identified by its color -
and was the only monofilament broken., The yarn was clamped at
the extreme right of the pilcture where the broken filament
buckled configuration is slightly evident as two loops protruding
through the surface, To the left of these loops the tangled
configuration indicates the mode of strain énergy disipation.
In order to better understand this type of filament
motion, a very preliminary look at the basic equations
involved yields a parameter with which it should be possible
to categorize different assemblages with respect to the
extent of this eftect, This parameter could be helpful in
any experimental work contemplated.

The basic governing equation for this type of buckling
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is Equation VI-13, However, it is necessary to add a term
for the resisting force of the foundation, where the force
is considered to vary directly with the filement's lateral
displacement into the matrix. The boundary conditions do not

chenge, Therefore, for the 3ldirection only:

Sz Sy Bk _
axd - Vs et et g T O (VII-5)
Where: K = Matrix Stiffness

v = Filament Impact Velocity
The boundary conditions are:
A7
7(0,8) = 3Z(0,t) =7(agt,t) = S5(agt,t) = 0

(Note: The x coordinate is now meessured from the point of
impact; - time from the moment of impact.)

As explsined in Section VI, there are no initiasl
conditions to the problem, Also, it is necessary to include
the propagation of the strain weve slong the filement. This
will not be done here, since as explained in Section VI, the
model is not valid for large time because of the buckling
deformation affecting the equations themselves. It is
possible, though, to find an initial deformation mode with
lower potential energy than pure axial compression, This
- mode occurs after the reflected strain wave has traveled =
certain distance, x°*= asﬁr. The first such mode to appear
is described by Equation VI-16., The time dependence of

amplitude associated with this mode 1s given by this equation
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ass
b (1-b,> Ft /e

#7(t) ~ e (VII-6)
12 Pt 25 (KETy 3
L. . - ° - =z
where: bl?. = '2?' o P“A A b‘3 = 12(?) 2

P = Impact Compressive ‘Force

This expression makes it very clear that if b,; is greater
than one, the time dependence is oscillatory with small
deflection, while if b, is less than one, then the time
dependence becomes exponential and deflections large.

Therefore, for filament assemblages it is important that:

In this expression P is the filament impact force and
is, of course, a function of the kinetic energy remaining in
the filament at the moment of impact. The crlteria chosen
to relate these two, is that the velocity of impact is taken
as that required of a solid rod in order that the rod have
the same kinetic energy as the filament, at impact. This

gives a relation between strain, € and R2/x4 of:

= 2 KI 2 -2 - -
e = 2 —a> (1- £ (- &+ &) (VII-8)

This expression is interpreted as follows, If a filament 1is
held at a point, x = , which 1s less than x.(x, = —éﬁ%ﬁ),
then impact will take pLace, followed by buckiing. If
Eouation VII-8 is valid, the lateral deformation will be
small - if not, then it will be large,

The above exptressions have been developed in order to
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obtain a general idea of the eftect that a surrounding matrix
has on the filament motions discussed previously. However,

this subject warrants further, more specific investigation
because of the many practical situations that can be represented
by this kind of model. These include fiber motion during

yarn breakage, fiber motion during drafting and carding,
filsment motion during cablé breakage, etc,

Dynamic snap back such as has been described in this
section, is an imvortant mechanism which accounts for load
transfer on a local level, within an assemblage of fibrous
elements, It 1s a significant part of the rupture phenomenon
in heterogeneous structures such as those encountered in

textile products, and in many composite materisls,

-112~



VIII, DISTINGUISHING PARAMETERS

Certain dimensionless combinations of variasbles have
been found which are helpful in catagorizing the motions of
moving filaments and tapes. They are listed here and discussed

briefly as an aid in understanding the material of this thesis.,

Stiffness Parameter

The stiffness parameter refers to the relative importance of
filament stiffness, EI, to " net filament tension ", T-‘@vg,
and is normalized with respect to the system length, £, It
is most easily understonod as the square of the ratio of
boundary length,® , to system Llength, &. § refers to the
length of filament ad jacent to a boundary which can be
considered as a static " beam " - while considering the
remaining filament as a vibreting " string ". The effect is

considered negligible for b,<< 1.

Co s P

~2WeVR _ =2wev AL
c*-v> T-Q;Hvz

b, =

The Corioiis parameter refers to the ratio of the " Coriolis
force ", 2wypAR, to the net filsment tension, Tf?FAVL;Z It is
twice the angle of rotation of a filament sbout its axis,
measured within the system boundaries at a fixed instant of

time. The effect is considered negligible when b,<< 1,
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Longitudinal Ajr Motion Parameter

The magnitude of b, refers to the relative importance of the
force from longitudinal air motion, ryav,2, to the net control
tension, T- gAv?. r, is the linear alr drag parameter., avq

i1s the wvelocity of the induced J-direction air motion, The

effect 1s considered negligible when b,y << 1.

Centrifueal Force Parsmeter

b, = —Wa > _ -QAwee®
4 Ctov™ Tw %_AV"

This parameter indicates the magnitude of the centrifugal
force, QFAw?ﬁ?, compared again with the net control tension,
T-Q+Af‘. This is the most significant parameter in determining
the dynamic aspects of filament motion, since if b, << 1

then all filament particles can be considered to follow the

same path through the system.

Lat A Drasg P er

b - uw,l"= YoWwWe ﬂ."
s c*-v: T-&sz

The macnitude of this parameter indicates the relative
importance of air drag in determining filament oscillation
amplitude. It 1is specifically the ratio of lateral resistance
force, ryw,2*, to filament net control tension, T-gAv*, If
bg << 1 then the system amplitudes, at resonance, can be

large.
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G ty Paramete

p = £L_ - Al
e c*-v> T-gAv™

This parameter refers to the relative magnitude of gravity
force, R Agl, or filament weight, to the net effective tension,

T-%sz. If the weicht of the filament is small compared to

the net tension, then gravity can be ignored,

“Mach Number"

b, = % = v \lg%é

This ratio of filament velocity, v, to lateral wave phase
velocity, ¢, 1s the most important measure of the effect that
" through-put velocity ", v, has in determining the dynamic
osciliations of filaments and tapes. For situations where

v ¢¢ ¢ (by ¢« 1) filament longitudinal motion can be neglected
and the filament modeled’ as fixed or attached to the system

boundaries,

Dynamic Buckl Transition Parsmeters

o= QAL - (_E =
b = gy Pa = et

When a filament 1s subjected to a longitudinal deceleration,

a, of sufficient magnitude, the filament will buckle laterally.
The parameters, by and bq, can be used to predict the buckling
mode, If they are both small compared to one,the buckling
mode 1s dependent on filament stiffness and buckling waves of

predictable length occur., If they are both large the buckling
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becomes highly dependent on the initial shape of the filament.

Matrix Strain Parsmeter

_ Xo
be TupDe Xo

- EA&_F

This parameter refers to the ratio of total dynamic shear
force exerted by a matrix oh a filament, wupDeXe, to

filament tension, EAe,, If a strained filament is suddenly
let free at one end and the filament is of sufficient length,
then b, = 2.

Tension Parameter

[T
bll = ?{_AV:-

The tension parameter, b, , is the squsre root of the ratio of

1}
filament tension, T, to filament momentum flux, ?;Av‘. If by,
is large compared to one, then filament motion is primarily
controlled by filament tension., If b, is small compared to

one then filament stiffness or air drag act to control filament
motion. For constant tension, b, . becomes equal to the

~reciprocal of b the Equivalent Mach Number,

79

Dynamic Buckling Amplitude Parameter
b =12 Pty
- 25 (EI?,Ai"t
This ratio of filament impact force, P, to the quantity,
EI?§A, refers to the rate at which the amplitude of dynamic
buckline increases. For b, increasing from zero, the

deformation will proceed at progressively higher rates.
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Assemblage Parsmeter

HH

KEIy=

L

o
n
IR

(KE
2 P
This parameter describes the relative effect of matrix or
asgsemblage stiffness, K, and filament stiffness, EI, to
filament impact force, P, If b, is greater then one then
the dynamic buckling of a fllament within a matrix or
assemblage will have small oscillatory amplitude. However,

if b, 1s less than one then the amplitude will be exponential,

and large.

Agsemblece Parameter for Strain

=25 _KI
14~ 12 TeER

b
Thisbnarameter 1s similar to vparameter, b,;. However, the
arbitrary value of impact force, P, has been estimated as a

function of the initiesl filement strain and the ratio of

filament length, 4, to strain wave penetration length, x,.

If by (1= )7 (1= 25+

trhen the lateral deformation of a single filament after
breaking within a matrix of similar filaments will be small
and oscillatory., If the statement is not true the lateral

deformation will be large.

ko Solution Parameters
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These two narameters are functions of parameters b, through b..
They are used to consolidate ﬁhe presentation of the k,
solution, If air drag is negligible the angle 6 becomes equal
to zero and the k, soiution is considerably simplified since

bIS = R and biB = 0.

Filament Rotation Parameter
-b T, W ¢ W0 AR
= —tn = e = = £
bl-r 2 zb"b"‘ c*-v> T- ‘(cAv’-

This parameter refers to the rotation of a moving filament
about the x-sxis, relative to a plane rotating with the
filament at angular velocity, w,. It 1s a direct function

of parameter b, as shown.,

Wave Number Parameter

b —— mog/c —-— Wog/c

187 layx/c>  1-b,>

This parameter is a measure of the product of corrected wave
we/c

number, Tova/o=?

and system Length, R .

Relative Frequency Parameter

B = 2% = mroeesy = 5o

This parameter is equal to twice the ratio of the forced
input frequency, w,, to the natural frequeﬁéy of the ko
solution for zero air drag,L. For bK‘equal to odd integers
the system amplitudes are a minimum, For b,q equal to even
integers, or forced input frequency equal to system natural

frequency, resonance occurs and filament amplitudes become
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large, This parameter is also a measure of the number of

half "balloons" that the filament path contains,

Solution Limit Parameter

2
bao= B = B(E)T (—Da—)*

2b,sin b,q-T-zr
This final parameter is stated as a means to predict the

Wl

limit of validity of the basic linear equations of moving
filaments. b,, must be small compesred to one for the equations
to hold, since the assumption of constant tension is no Longer

valid if b,, is comparable to one,
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IX. EXPERIMENTATION

This final section contains a description of the
experimental apparatus that was used in obtaining the data
and some ol the photographs presented in this thesis, Also
included here are explanations of the method used to compare
the results of the numerical integration of the non-linear
equations of f1lament motion reported by Padfield (L), with

the equations of this thesis.,

A, Filament Rotation Angle Measurements

The values of filament rotation angle, bﬁ, plotted in
Figure 12 were obtained in two ways., First by calculating by,
from numerical data given by Padfield (4) and secondly by
directly measuring Padfield's gspace curves, A typlcal set of
these filament space curﬁes is reproduced in Figure 28a. The
nomenclature identifying these curves has been changed to that
of this thesis,

Points A and B of Figure 28a were chosen as the system
boundaries. The value of by _  was found by measuring the
amount of filament rotation about the x-axis between points
A and B,

The values of calculated filament angle, hlg;were
obtained from:Padfleld's original data using the definition
of b4 of this thesis:

where b, 1s the ratio of filament velocity, v, to lateral
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wave velocity, ¢, and where bq1is directly measured from the
figures as shown since it represents the number of half
balloons,

Referring to Figure 28a, a sample calculation is given

as follows:

[ = 150° (From Figure 28a)
meas
b = ,342 (Given in Ref. I)
bq =5 (From Figure 28a)
ey = (909)(.342)(5) = 154°

The agreement between the two values of b, 1s seen to be very

good for this case,

B. Boundary Region Frequency Measurements

The frequency measurement apparatus shown in Figure 15
was used to measure the natural frequency of 27 mil nylon
monofilaments, of lengths varying from 1.5 inches to 18 inches,
The range of tension varied from 200 grams to 1200 grams,
The apparatus functions as follows, A filament is positioned
between a high intensity d.c. light source and a photovoltaic
cell. The cell is behind a metal sheet with a quarter inch
by ten mil slit. As the filament vibrates laterally at
its natural frequency,_gxcited by the random room vibration,
it creates an a.c. voltage in the cell by blocking out
light, This voltage is fed through a differentiating circuit
and into an oscilloscope., The signal is too small to be
read directly, but by adding a voltage of known frequency,

from an audio oscillator, the oscillator signal can be tuned
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to the filament frequency by watching the oscilloscops. The

value of frequency is then read from the oscilistor., (Figure 28a)

C. Balloon Lengﬁh Measurements

The values of b plotted in Figure l6c, were also obtained
from the numerical data of Reference l, discussed sbove. b,q
is measured as shown in Figure 28 and then calculated from

Equation V-36,

_ 29 1 1 .
bH = ~ (1 _]-_—) -6';' (V-36)
- o=

1]
For an overend unwinding cone, as in this case, b, is
equal to the recivorocal of by;. Therefore, Equation V-36

becdmes;

- 281
b = (l-b-,"" /b7

The values of b“'calculated from this equation with the data
accompanying each figure of Reference I are those used in the
cross plot of Figure 1lbc.

The balloon measurements plotted in Figure 16b were made
using the yarn ejector shown in Figure 29a., This ejector
consists of an air turbine which drives a set of gears, with
which yarn in turn can be driven at speeds up to 300 ft/sec,
These gears were used to withdraw yarn overend from a yarn
cone, The distances from the yarn:takeioff'pbiﬁt to the yarn
nodes, or points of minimum lateral displacement, were
measured, The yarn path between two such nodes is called one

balloon., Each additional halloon is equivalent to an increase
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of two in the magnitude of b,. Figure 16b is a plot of the
number of half-balloons, b,, as a function of x,

This yarn ejector was also used to obtain the photographs
of Figures L and 29b, ¢, 4, e, f, Cotton yarn was forced to
“flow" (from left to right in the figures) by this apparatus,
These figures are interesting because they depict yarn flow
which is being governed by yarn momentum réther than yarn
tension, as 1s usually the case, The analogies drawn between
this type of filament motion and the flow of fluids, in the
captions of these figures, are only to draw attention to this
similarity. The photographs were taken in a semi-dark room
with the aid of one flash from a Strobotac Unit. The overall
motion 1s evidenced In the envelope of the yarn configurations,

while one specific configuration is in focus,

D. Dynamic Buckling Photographs

The photographs of Figure 18 were taken with the aid
of Professor Eggerton of the Electrical Engineering Department
of M,I.T., and the equipment of his laboratory. The following
procedure was used, An 8.5 mil nylon monofilament, 18 inches
long, was stretched between two supports under strain, The
monofilament was then broken at one end with a rifle bullet,
Almost simultaneously a single light flash from a flash unit,
trigpgered by the shock wave of the exploding rifle, exposed
the negative in a camera focused on the other end of the
filament., The laboratory lights were kept low during the
experiment in order not to over-expose the negative. The six

photographs of Figure 18 -were obtained by progressively
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increasing the time increment between the rifle explosion and
the light flash, with an electronic delay. Thus the six
rhotographs do not show the continuous buckiing of the same
monofilament but rather progressively later stages in the

buckling of gix identical monofilaments.,

E, Dynamic Buckling Wave Length Measurements

The deformation‘wave lengths reported in Figures 21 and
22 were measured from dynamically buckled samples of copper
wire and nylon monofilament. The samples were dynamically
buckled while held by the jaws of an Instron Testing Machine,
by cutting one end of the sasmple. The average wave length of
the deformation at the other end of the sample was measured,
as a functlon of the initlal tension level in the sample prior
to cutting. The abscissa of these two figures, v, (Estimated
Impact Velocity) was then calculated from this initial tension
level and from the estimated dvnamic modulus of the material,
as explained on Pages 93 and 9L~ where~tké figures aré-discudsed
in detail. These wave lengths were difficult to measure
because it was hard to define exactly what a complete wave
was., However, reproducible data was obtained for the copper
wire by measuring only the length of the wave immediately
badjoining the Jaw., While consistent data was obtained for
the nylon monofilament by averaging the measured wave lengths

of the entire deformed sample.

F. Experimental Apparatus for Filament Motion

The apparatus shown in Figure 26 consists of a sandwich
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formed from two % inch by 1% inch plexiglass plates and a
% inch by i% inch rubber strip. The elastic bands surrounding
the sandwich force the plexiglass plates to exert a pressure
on the rubber strip. The data of Figure 25, were obtained by
repeating the following procedure, The top plexiglass is
raised out of contact with the rubber strip and the strip is
then given an initial strain. The top plate 1s released and
the sandwich is formed. The strip is then released staticelly
or "slowly" and then dynamically or "quickly". The deflection
at the end of the'strip is measured for each type of release,
at increasing values of initial strain., Figure 25 illustrates

the consistency of the multiple of two that is predicted by

the theory,
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X. SUMMARY AND CONCLUSIONS

The material of this thesis is the result of an attempt
to formulate a general analytical approach to the phenomena
of moving filaments and tapes., This material has been presented
as equations, which can be used to predict the paths through
space of actual filaments and tapes that are subjected to
forced displacement oécillations. In order that the predictions
of these equations be accurate, the effect of filament bending
stiffness, filament tension, gravity and air drag were Iincluded
in the analysis,

The concept of a filament position vector, R, was used
to 1dentify in a eceneral manner the position or path of the
fllament as a function of time and the spacial coordinates,

A general vector differential equation was then derived in
terms of this position vector.,

This general vector differential equation has been examined
extensively for the case of linear filament motion., The term
linear filament motion refers to filament motion which is
essentially straight line travel between two points with the
addition of small perturbations in the two lateral directions.
The solutions of these equations are applicable to many practical
problems of monofilament, multifilament and steple yarn processing
gituations such as the spinning balloon, the overend unwinding
balloon and the yarn space curves near the traversing mechanisms
of winding machinery. They can also be used to predict the
svace paths of thin tapes, where air dragz becomes ilmportant,

and heevy metal cable, whePe stiffness becomes important.
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The concept of a stiffness boundary region was developed,
which can be utitized to predict easily the extent that
filament motion will be a function of stiffness. The parameters
of the equations which describe filament motion for zero
stiftness have been modified to include the length of this
boundary region.,

The effect of acceleration and deceleration in the
direction ot filament overall travel has also been examined,
Bquations are given which can be used to predict the time
dependence and mode shapes of both the stable oscillations
ot an accelerating finite length filament and the unstasable
deformations of a decelerating or dynamically buckling
infinitely long filament. It is possible to use these
equations to predict the extent of the lateral detformation
that ocecurs when a moving filament is suddenly stopped at
one point elones its path, This prediction includes both the
mode of deformation and the rate of deformation.

The effect thaet a surrounding matrix of solid material
can have on the dynamics of filament rupture has also been
examined, Equations of motion for this phenomenon allow a
prediction to be made as to the minimum fiber rupture length
that is observed in a yarn that has been strained to its
breaking point. They also provide, to a limited extent, a
quantitative picture of the internal dynamics of a breasking
yarn. The internal dynamics of a breaking yarn is important
in determining yarn strength efficiency.

The equations of this thesis which predict filament
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paths and strain distributions have been experimentslly
justified to the point where they can be considered at least
qualitatively correct. This includes comparison with
previously published experimental and numerical data,
comparison with actual experimentation undertaken expressly
for this thesis, and the use of photographs, including high
speed photographs.

A set of twenty non-dimensional distinguishing parameters
have been developed which help to catagorize the many
variables which govern filament motion, These parameters
allow predictions to be made as to the relative magnitudes of
filament stiffness, air drag, gravity, etc. They can also be
used to predict identifying quantities such as the number of
filament balloons, the magnitude of the filament rotation
angle, the length of the boundary region, etc., They are
also considered to be logical correlation parameters for
experimental or numerical data.

In conclusion, this thesis is considered to have adequately
covered the range of possible linear solutions to the
differential equations developed and to:haveé«qualitatively
verified these solutions, The most important continuation of
this work would be a comprehensive experimental Investigation
of several situations, typical of actual textile processing
machinery, using the perameters and equetions of this thesis
as guideposts. This material would then be of utmost value
in the design stage of any machinery which handles high speed

moving filaments, because it would allow the designer to
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predict the filament strain, tension, and amplitude caused by
machine-material interaction,

Examples of specific areas of applicability include the
early stages of polymer monofilament or glass monofilament
production. The effect of variable tension or strain caused
by fprced filament oscillation as a result of a machine-material
interaction, will increase output varisbility if the material
is sufficiently weak or soft. Another example concerns the
‘space limitations for filament processing machinery., Space
limitations can become critical and the filament processing
machinery designer must be ahle to design for minimum filament
oscillation amplitudes. He must also be aware of the varistions

in filament behavior as oproduction speeds approach certain

limiting values such as occurs when the effective tension ',
T- QAvV", becomes small,

The designer of mechanisms that interlace, or intertwine
thread or yarn should be eable to predict the perturbations
from a straight line path that a filament will have as a
result of dynamic effects. The sewing machine rotary stitching
mechanism is an example of a mechanically optimized mechanism
which has become speed-limited by the material that passes
through it as a result of machine-material interactions. By
altering the mechanism thread guide path to include the effects
of thread inertia, it should be possible to reduce thread
osclllation and strain and tension levels and thus increase
machine speed.

An example of undesirable interaction between 2d jacent

yarns occurs during " beaming " or the operation of loom beam
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preparation. Actual entanglement may take place if yarn
lateral oscillation is sufficient to allow contact of two or
more adjacent yarns,

During the process of stretch-breaking of polymeric
monofilaments the snapback and dynemic buckling that takes
place is an important production variable. This is also true
in the carding and drafting of staple fiber, The snapback
and dynamic buckling that occurs as one fiber bresgks in an
assemblage of fibers (yarn) is another example of a dynamic
effect that can be understood and included in a design
procedure.- in this case the design of a yarn, The permanent
deformation that occurs to some tyves of recording tape in
the immediate region of a break, can cause a permanent loss
of the information stored in that region.

These examples illustrate the areas of applicability of
this thesis. The conclusion is made that there exists within
the context of textile mechanical processing alone, a
multitude of problems requiring an understanding of the
phenomena of moving filaments, It is felt that this thesis
constitutes a general approach to these problems and that the
simplified equations that have been developed are directly

apolicable to these problems,
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XI. APPENDICES

A, Appendix 1.

If a filament oscillates laterally with frequency, us,,
then the value of the linear drag coefficient, r,» can be
approximated for the case where the nonlinear drags coefficient,

Gb, is constant, by equating energy loss as follows:
Let: o((s t) ..4( )sinw,t

The energy loss per cycle per unit filament length, for

constant r_ is:

D
w/2w, ‘\1"/2(..\°

erb(—i-:%)zdt = 2‘( rp (7(s)wocos wot ) dt =Try 421(5)00
-'“7/2‘-90

—Tl'/2 W,

The energy loss per cycle per unit filament length, for

constant € is:
™ 2W° T‘/Zmb be 3 2.
( %D{_( dt = f %D (7(s)u.> coswt%dt %&GﬁD‘:”((S)wo
—W/ZNO =T/ 2w,

Equating these two values of energy loss and solving for ry

yvields:

r

b = OB wa(s)
By noticing that the maximum lsteral drag force per unit
filament length is;

AD
—amas- = Gy sfwe(s)) Dg

the equation for ry, can he simplified to:

8 ADv g 1

™ T 37 Tas @77 (8)

-133-



This can be expressed as:

- 85Maximgm Drag Force per Unit Filament Length
* Maximum Filament Normal Air Velocity

>
The above equation 1s included in the discussion of air drag

forces in Section II-C,

B. Appendix 2

By equating the maximum amplitudes of Equations IV-7 and
IV-11 and solving for the filament cross-sectional area moment
of inertia diameter, I, it 1is possible to calculate both a
typical monofilsment diameter and a typical multifilament
diameter. These diameters represent filaments for which the
effects of bending stiffness and longitudinal air motion have

the same order of magnitude., This i1s done as follows,

. —_— ~b — — -b [
Let: max ~  Dbg "”7%ax - 38Ly,
V-7 N—iy

_ EI - ba _ __ry(v-va)l
TT- g Av= )L™ 384 3BL(T-qAv™)

|

therefore b,
Solving for I yields:
I = r (V"’Vq)l.s
REET)

Substituting the following typical values,

r. = 200 1b, sec/ft

D
v-v, = 50 ft/sec
Q =11t
[
E = 10 p.s.i.

yields a value for monofilament diameter of::
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and a value for multifilament yarn diameter of:

D= 100 mil

where the multifilament yarn is considered composed of 100
monofilaments and where frictional interaction between

monofilaments is neglected,
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