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ABSTRACT
The dynamics of filaments and tapes moving at constant

velocity has been studied for two-dimensional and three-
dimensional boundary conditions. The equations of motion
solved are linear and include effects of tension, Cariolis'
acceleration, relative logitudinal air motion, centrifugal
acceleration, relative lateral air motion, and gravity. The
solutions to these equations have been experimentally
validated where necessary.

The additional effects of longitudinal accelerations
and dynamic buckling have been studied. The effect of a
surrounding matrix on these additional motions has also
heen studied. A set of twenty distinguishing parameters
is included which are helpful in cata~orlzing the above
motions.

Thesis Supervisor: Stanley Backer
Professor of
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I. IN~RODUCTION

This thesis is intended to be primarily a general
analytical approach and secondly an experimental approach,
to the phenomena of moving filaments and tapes. The experimental
anproach is limited."tb' tlhe.veriffcat16n'1of-;only the-fundamental";.
results of the Analytical approach. Extensive experimental
validification of detailed analytical results is not intended.

The word filament is intended to imply a yarn, string,
rope, wire, monofilament, etc.; a structure which is essentially
thin, flexible and continuous with small, but not necessarily
negligible, bending stiffness. Tapes are considered as
two-dimensional filaments with prim8rily the same description.
The phenomena of these moving filaments and tapes form a
small related field within the sub ,jectmatter of applied
mechanics. Moving filaments and tapes can be characterized
as mechanical systems and described with the concepts of
mechanical engineering systems. The material in this thesis
is intended to apply within the context of Textile Mechanical
Processing.

If the path of a moving filament is separated into regions
between guide points on a textile processing machine, these
points can be considered as the boundaries of the mechanical
system. Statements can he made concerning the conditions at
these boundaries and equations developed to predict filament
motion and tension within the'boundaries. Examples of system
houndaries are seen in machinery involved with the spinning,
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the drafting, the winding, .the twisting, etc., of both staple
and continuous-filament yarn. In these cases the system
includes both the region and the filament within the region.
The spinning balloon, the overend ~nwinding balloon and the
filament space curves associated with high frequency yarn
traversing mechanisms are well known examples of yarn systems
generated in the average textile mill.

The literature contains numerous reports related to the
subject of moving filaments. However, in general, each.of
these renorts has confined its attention to a specific
phenomenon of filament motion within a specific textile machine,
rather than to the overall phenomena of moving filaments
within general system boundaries. The assumptions made in
these previously pUblished reports and papers have been too
restrictive in the sense that the results cannot be applied
to situations which are not completely similar. It is
admitted, however, that there are published analyses which
move further into the detailed mathematics 01' a single moving
filament situation.

Hannah (11), Mack (23) and Crank (24) have studied in
detail the nonlinear equations that apply to the cap and ring
spinning systems, commonly employed in textile yarn processing.
They have neglected filament stiffness~and tangential air drag'
and have considered the'surrounding air as stationary.~ Their;
numerical results have been obtained from the direct numerical
integration of their developed differential equations. Hannah
(11) has dealt only with cap spinning and by making simplifying
assumptions about air drag forces, she has expressed her
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results as a function of a single cap spinning parameter.
Mack (23) has made a more exact formulation of air drag and
obtained results which apply to both cap spinning and ring
spinning. His results are expressible as functions of two
parameters, an air drag parameter and a tension parameter.
Crank (24) has also investigated the equations which apply to
cap and ring spinning systems. He has, however, included the
effect of longitUdinal yarn velocity, commonly called the
If Coriolis Effect II. For zero longitudinal yarn velocity his
results are also expressible as functions of a tension parameter
and an air drag parameter, similar to those of Mack (23).
DeBarr (3) has summarized previous theoretical and analytical
findings for cotton ring spinning systems.

Padfield (4) has examined the specific equations of yarn
motion for an overend unwinding yarn package. She has
numerically integrated her derived differential equations and
the results are presented as specific plots of yarn space
curves. Padfield (10)(12) has discussed the boundary conditions
at package surfaces, such as are used in this paper.
Brunnschwei1er (20)(21) has also dealt with overend unwinding
yarn packages by measuring yarn tension and photographing yarn
space curves. This study is unfortunately only experimental
and does not try to validate a specific theory.

There are, of course, many linear solutions for oscillating
strings and beams. But of these only Sack (19) has included
longitudinal velocity in solving the differential equations of
filament motion. A general approach to these systems is considered
necessary. -3-



A. general analytical-approach should begin 'with a"
general filament model. The equations which describe this
general model must be complete in order to predict the behavior
of an actual filament. Therefore, forces from filament tensiOn;)
filament shear, gravity and air drag are included. A point
on the filament is identified as en infinitesimal particle of
constant mass. The above forces are then summed and equated
to the rate of change of momentum of this infinitesimal mass.
This summation leads to the ~eneral vector differential equation
for a moving filament.

This ~eneral vector differential equation can be written....in terms of a filament position vector, R(s,t). The position
vector specifies the position in space of the filament particle,
with respect to a fixed inertial reference frame. The
coordinate, s, specifies the distance along the filament from
a point on the filament, the position of which is knOl~ at
some reference time. It is possible to choose a specific
position vector in order to describe any type of filament
motion desired. The position vector can contain a description
of the net, or average motion, of the filament plUS a statement
of the perturbations or small deviations from this average
motion. This makes it possible to derive governing differential
equations for specific net motions and boundary conditions in
a way such that the initial simplificati.ons can be made from
physical judgements.

The general vector differential equation has been examined
extensively for the case of linear filament motion. The term
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linear filament motion refers to filament motion which is
essentially straight line travel between two boundary points
with the addition of small perturbations in the two lateral
directions. Linear filament motion is sufficient to describe
the practical textile processing situations described above.

The results of this examination or the differential
equations of linear filament motion are nresented as simplified
equations, which can be used to predict the paths through
snace of actual filaments. 'These equations are formulated in
terms of dimensionless combinations of variables which refer
to the relative magnitudes of filament stiffness, air drag,
gravity, etc. These dimensionless parameters can also be used
to predict identifying quantities such as the number of
filament balloons (in an unwinding situation), the magnitude
of'the filament rotation angle in a given balloon, the length
of the boundary "stiffnessil region versus the flexible region
in a given filament, etc. They are also logical correlation
parameters 'for ,experimental or numerical data.

For moving filaments which have small, but not necessarily
negligible stiffness, a concept of a boundary stiffness region
is introduced. Equations are developed which allow a prediction
of the length of this region. The equations describing the
linear motion of flexihle filaments are then modified using
this length.

The linear equations assume constant overall filament
velocity, v. There are practical situations, however, where
the displacements and strains of accelerating or decelerating
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filaments become imnortant. These situations include the
transient behavior of filament systems during the start up
or shut down of processing equipment. They also include the
dynamic buckling which occurs when a filament, moving at high
speeds through a machine guide, is sUddenly stopped at one
point along its path. Equations have been developed to
permit prediction of the time dependence' and the mode shapes
of both the stable oscillations corresponding to accelerating
filaments, and the unstable deformations of decelerating or
dynamically buckling filaments.

The effect that a surrounding matrix of solid material
can have on the dynamics of filament rupture is also examined.
The equations develoned nrovide, to a limited extent, a
quantitative picture of the internal dynamics of a breaking
yarn. The internal dynamics of a breaking yarn is important
in determining yarn strength and strength has an important
effect on process efficiency.

It is felt that this thesis can be used as an aid to
textile machinery designers, since it allows an accurate
prediction to be made as to the actual filament motions and
strains that take place as a result of machine-material
interactions.

At the present time when one designs a piece of machinery
through which a filament or a tape will pass, almost all of
the desi~n effort is involved with factors affecting machine
life, cost, reliability, etc. Little consideration is ~iven
to the interaction hetween machine and filament. This can
lead to situations where a filament is modified in some
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undesIrable manner as a result of nassing through a machine.
An example of this is the progressive drafting of cotton yarn
that takes place as the yarn is being wound on a drum winder.
It has been found that rewinding the same yarn package as few'
as five times on certain drum winders causes a sufficient
amount of drafting that the yarn may break in several places
(30). A second example is the package surface instability
(shellorf) that occurs vThen yarn is drawn overend from a
yarn cone at sufficient withdrawal speeds. Whole yarn loops
slide down the cone surface leaving the package at one time
and causing a disruption in smooth flow of yarn from the
package. ~fuen one tries to use such a cone for the filling
yarn on a shuttless loom the speed of the 100m becomes limited
by the speed at which this instability occurs (31).

It is suggested that the application of the solutions of
this thesis toward specific problems such as those ahove is a
logical i.nitial step in the direction of reducing undesirable
effects of machine-filament interaction.
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II. GENERAL VECTOR DIFFEH~NTIAL EQUATION

A. Introduction
The first portion of this thesis is devoted to the

examination of a general model of a moving filament. The
equations which describe this general model must be complete
in order to predict the behavior of an actual filament.
Therefore, forces from filament tension, filament shear,
gravity and air drag are included. A point on the filament
is identified as an infinitesimal particle of constant mass.
The above forces are then summed and equated to the rate of
change of momentum of this infinitesimal mass. This results
in an equation, called the general vector differential
equation for a moving filament.

B. Definitions
In order to present the derivation of the general vector

differential equation several definitions must first be
established.

Filgment Particle The filament particle is defined as
the infinitesimal mass, ~~AAS, which exists at a point on
the filament defined by the coordinate, s.

~Position Vector = R(s,t) The position vector specifies
the position in space, with respect to a fixed inertial
reference frame, of the filament particle. The coordinate,
s, specifies the distance along the filament from a point on
the filament, the position of which is known at some
reference time. The derivatives of this vector have the
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following properties.
~

~R. .~t(S,t) = Velocity of particle s at time, t.
~~"Z..Rht~(s,t) = Acceleration of particle s at time, t.

-a...

~:(B,t) =~(B,t) = Unit Tangent Vector (in filament
direction) at s.

~
>::.2.. R ~r ~s~(s,t) = n(s,t) = Unit Principal Normal Vector to

the filament, where r is the
instantaneous radius of curvature
of the filament at s at time, t.

-Jl.,

-a.( , ....~R()Tension Vector = Ts,t) = ~ s,t The tension in a
filament acts in the direction of the filament axis and can
be represented as the product of a scalar magnitude, T, and

~
~ ~Rthe unit vector, u = bS.

Coordinate System

--Y (J )

-1lK.)

This right hand cartesian coordinate system will be used
throughout unless noted. Gravity will be taken as acting in

.-....the negative j-~lrection.
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C. Forces Acting on an Identified Filament Particle.
~Filament Tension, T

~ -=:a..

= (6T ~ + T ~"J..R)Ao S b S ~ s2. S

~
Filament Shear Force, V~

This force is left in general form and will be considered
in greater detail only in the specific cases where it Is
significant.

--=--Gravity Force, F~

~Air Drag Force, D
As a filament moves through the air or any viscous

medium it feels a net drag force associated with the lack
of pressure recovery behind it. This type of drag force is
discussed for both continuous-filament yarns and staple
fiber yarns in Chapter 3 of Reference 3. This reference
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~direction of Vb is a function
~

~~' and the unit vector in
This can be shown as follows •

states that if the ratio of lateral yarn velocity to
longitudinal yarn velocity is large then continuous-filament
yarns behave substantially as smooth cylinders with the air
drag force acting in a direction normal to the filament axis.
However, for staple fiber yarns, the air drag is greater than
would be ex~ected on this basis - the effective yarn diameter
being approximately 50% greater than the actual yarn diameter.
This occurs because portions of fibers protrude from the yarn
surface into the air stream, spoiling the flow.

If the ratio of lateral yarn velocity to longitudinal
yarn velocity is not large then the air drag force has a
component along the"filament axis. This component does not
influence lateral yarn motion directly, but affect~ tension -
which in turn influences lateral motion.

The general filament model of this thesis considers that
forces from air drag act normal to the filament axis and obey
the standard equation for smooth c~linders. The normal
component of air velocity relative to the filament is given

~the symbol, V~. The magnitude and
of the filament particle velocity,

-3000

the filament direction, ~ = ~~.

...a..
~ bR~u= lrS = Unit Tangent Vector (in Filament

Direction)
Filament Particle Velocity

~
Vw = Component of Filament Velocity Normal to Filament

Direction at s.
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Since

(11-1)
~

The absolute value of V1> is most easily found by noticing~ ~-:....
~R ~R oR --'-that (0 t ..0 8) ~ s' and -VI)ar~the tHO sides of a right

triangle whose hypotenuse is ~~. Therefore:

:. V1)

~ -:so.. -::....:....
oR. oR = Va.+(~R. ~R)aot 0 t b cbt 68

-s.. ~ -'- ~
-.300", I ~R 0 R 6 R ~ R~} '/2-=\ VI) = f (b t •bt)-(b t •bSJ j

The drag force can now be given the magnitude,,'
V2.

AD = C ~9 D D AS
1) 2 f

CD is a function of Reynolds Number and.-1s given in most
.standard fluid mechanics ~exts. Specifically, it is given
in Reference 6. Yet is the density of air and D-f is the
filament diameter.

'The direction of the drag force is the same as the
-...direction of ""0. Therefore, if the unit vector in this

~
~ Vdirection is taken as d = V:' the drag force vector can be

expressed as:

S !lQr.inca C~ is a function of Reynolds Number, Rey= v '

where V is the ktnematic v1.scoslty of atr, it can be seen
that for a given filament the magnitude of the drag force
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is a function of VD only. For low values of Vo the drag
force is proportional to VOl while for high values of VD the
drag force is pro~ortional to V~. This velocity dependence
is shown in Figure 1 for a hypothetical 20 mil filament
moving through air at standard temperature and pressure.

3100

rl) ;t. 107
2

(lbt. see) Cnft ;z.

1

0 O.
':2 ",:,1 .0 .1 .2 3

Log Vt> '(rt/sec)
Drag Coefficients vs. Filament Lateral Velocity

~IG. 1

rD is defined as the drag force per unit length of filament
per unit of normal relative air velocity and is expressed by

the equa.tion,

~II-3)

Figure 1 illustrates that for a typical continuous-
filament yarn the drag force is proportional to VD(constant
rn) for values of Vb~ 0.1 ft/sec. For values of Vb> 100 ft/sec
the drag force is proportional to V~ (constant CD). It is
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unfortunate that the range of practical interest lies between
these two values of Vb and therefore, for most situations
the drag force cannot be accurately modeled by a constant
rD or a constant CD- However, when considering air drag in
connection with the linear equations to be discussed later
in this thesis, the air drag force will be assumed proportional
to Vne It is therefore, necessary to use an average value far
rD. The average value of ~ ,should be chosen so that it
yields the actual energy loss per cycle. If the drag force

2-is ~ctually proportional to VD the correct average value for
harmonic oscillation is:

r = .85Maximum Drag Force per Unit Filament Length
D Maximum Filament Normal Air Velocity

This value is calculated in AppendiX 1.

acceleration.

The terms in this equation refer to forces from variable
tension, filament curvature, bending stiffness, gravity, air
drag and rate of change of filament particle momentum (mass
times acceleration). If the tension is considered constant
and shear forces are negligible then the equation becomes:

-14-



(II-.5)

If forces from gravity and air drag are also negligible
the equation is fu~ther reduced to:

c'2. _ T
- ~f.A

(II-6)

where c is the well known phase velocity, a most important
variable in any discussion of filament motion.

The general vector differential equation has been
~derived in terms of the general position vector, R. It is

therefore possible to choose any specific position vector
in order to describe any type of filament motion desired.
The position vector can contain a descrtption of the net, or
average motion, of the filament plus e statement of the
perturbations or small deviations from this average motion.
This makes it possible to derive governing differential
equations for specific net "motions and boundary conditions
in a way such that the initial simplifications are made from
physical jUdgments.. As an example, consider the perturbations
of an idealized horizontal lasso from an essentially circular
path. The position vector is given as:

Where "X, ~ and "(are II small" displacements in the tangential,
radial and vertical directions respectively; v is the net

~ ~ --3000.filament velocity and ue' u~ and j are unit vectors in the
tangential, radial and vertical directions respectively.
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If these small displacements are taken as zero the
overall stability condition for this filament configuration
can be found. Considering Equation 1I-6 to be applicable
for this simple example and substituting the above position
vector with the small displacements taken as zero, one finds
that v must equal c for stability (T = ~~AV4). This defines
the net or average motion of the filament and substitution of
the complete position vector yields three equations which
define the three nsmall" displacements from this stable
configuration.

This is a simple and well known example and illustrates
the use of the position vector. However, there are many
other stable configurations from which there can be small
perturbations worthy of investigation. The nosition vector
which defines an essentially straight line motion is the one
of most practical interest in industrial processing of
filaments, and so the rest of the thesis will be devoted to
its examination.
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III. GENERAL EQUATION REDUCTION FOR LINEAR MOTION

The practical aim of this thesis is to define
quantitatively, and to a large degree qualitatively, a
number of flowing yarn, wire, and tape situations. This
can be accomplished by examining the solution to the general
vector differential equation for a position vector where the
net or overall motion is essentially straight line motion.
This position vector can be defined as follows:

~ ~ --"'- ~
R(s,t) = (f (s,t) + ~)i + 4(j + eek (III-l)

In this equation '1( and 'f. are the It small II displacements
in the y and z directions of a filament particle moving in
the positive x direction with an overall motion defined by
f(s,t) and an additional "small" displacement defined by ~.
This case is considered as linear motion since the filament
deviates from an essentially straight line path in the

..a..i-direction. The ratio of dx to ds is therefore taken as 1.
The'function"'f(s.t) will be given the value vt + s, in this
section,where v is constant. This further limits the motion

~to essentially constant average velocity in the i-direction.
-

In order to understand fully the phenomena of moving
filaments, it has been found necessary to include the effects
that air drag, filament stiffness, filament momentum and
gravity have on the motions involved. Tension remains the
predominant filament control force for the cases considered
in this section. But situations, either caused by extreme
boundary conditions or by extreme material properties
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require the inclusion of stiffness, air drag and gravity to
explain deviations from the predicted results of the simpler
models. The winding of glass or metals or large polymer
monofilaments represent the case of extreme material
properties, while the unusual characteristics of filament
motion near guides at high speeds are examples of extreme
boundary conditions.

The general vector equation as defined in Section II is:

~Substitution for .the i direction motion yields a one
dimensional wave equation for the deflection,~, as measured
from the moving reference frame.

a'2. =
-5 (III-2)

This equation refers to the actual propagation along the
filament of the strain (~~) or tension (EA~~). This
propaaation takes place at the sonic velocity of the material,
as. The ratio of as to the transverse wave velocity, c, 1s:

h = (~)~ = (..l.)~
c ~ E.-F

Therefore, if the average filament strain, e~, is small, the
propagation of tension waves can be neglected in solving for
the lateral displacements, 1and~. Therefore Equation III-1
can be simplified to:

~
R(s,t) = --"'- ~ ~(vt+s)i +'1'3+ eek

-18-
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The normal component of air velocity relative to the
filament can be expressed as follows:

The components VDX' Vf>y' and V1)~' are found by referring to
Section II, Equation II-I, where it was shown that:

(II-I)
~

Substitution of the position vector, R(s,t), into this
equation yields (neglecting second order small terms):

The velocity, v, in the above equation refers to the
velocity of the filament relative to the reference frame.
If the air is at rest with respect to the reference frame,
then the above equation is correct. However, the movement of
the filament can develop a flow of air in the direction of
net or overall filament motion, which in this case is the

...boo.i-direction. Therefore, using the average filament velocity,
v, in the above equation causes an error.

By introducing the term, vq' which is equal to the
~actual net filament velocity less the induced i-direction air

flow velocity, the above equation can be written more
correctly as:

(III-4)

It is now necessary to express the air drag term in
Equation'II-4 in a linear form. This is done by using the
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linear air dra~ parameter rD, previously discussed. Referring
to Equations 11-2 and 11-3:

Therefore, Equation 11-4 can be rewritten as (noting that the
tension is considered constant):

~ -.30..

T ~"2.R + ~Vs _ Or_gA~j + rV =~s~ ~S.)T ~ b
(111-5)

The filament shear force, VS1 can be considered as the
variation in bending moment along s. Since the bending
moment is directly related to the local filament curvature it
is possible to say:

~
This holds true for all magnitudes of position vector, R, for
a linear elastic material. Now substituting the position
vector under consideration (Equation 111-3):

For small curvatures superposition holds.
~

.".).V. =-EI ~..q~r- EI ~k
bS ~ 81 b s<4 (111-6)

Having simplified filament tension, filament air drag
force and filament shear force, it is now possible to
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~
substitute for R (Equation !!1-3) in Equation III-5, .separate
it'into two equations and rewrite in simple form.

~For the j-direction:

~
For the k-direction:

(111-8)

Foi the boundary conditions considered in the following
sections, the lateral velocity of the filament varies
harmonically with time. Thus in order to linearize the
velocity dependence of air drag the constant value ror rp

must be chosen as shown in Appendix I so that the energy loss
to the air for actual air drag is the srome as in the model.
This is not a good approximation, but it will do no real harm
to the solution since it Is only an error in a second order
effect. The linearized equations are therefore:

~For the j-direction

(I1I-9)
~

For the k-direction:

(1II-:ltO)

where

(Note:

e = EI = Filament Flexural Riiidity
~A Filament Mass per Unit Length

The choice of E is to point out that this parameter
is considered small.)
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c = vi T: = Lateral Wave Velocity
~+

~D= ~ = Linear Air Drag Parameter

The boundary conditions to be considered occur at points
which gene~ally move \lIl1th respect to the filament. If the
filament is considered to move toward positive x then points
of fixed x - where some boundary conditions of forced
vibration may be taking place - move toward negative s. This
is simply expressed as:

s = x - vt

Therefore, a wave solution for 1, for fixed x boundary
conditions would have the form:

where

ti(wot + lex)
'1= ~e + ~(x)

:!:i (U.) t + ks)
= roe + ~(S' + vt)

w = OJo+ kv

(III-11)

Substitution of this wave solution into Equation 111-9

yields two equations:

4- "2.(:L '2.) ( 2.€. k + k c -v +k -2wov+iocD( v-v~ ))+ (-UJo+io<.1)~Q) =

E. ~ _(c'L_V"') t~ + ~.(v-v..)ti3 + g = 0

o (III-12)

(III-I)

Equation III-I) is reduced to derivatives with respect to the
ar~ument, s + vt = x. It is also possible to derive an
equation similar to Equation 11I-12 'for".thedisplacement in

.....:lo.-the k-direction, if. But this is not considered necessary
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since the equation 'Wouldbe identical to Equation 111-12.

Equation 111-12 can be further simplified by introducing
five dimensionless parameters. These parameters are:

(Stiffness Parameter)

(Coriolis Parameter)

(Longitudinal Air Motion
Parameter)

(Centrifugal Force
Parameter)

(Lateral Air Drag
Parameter)

_ 2 uJgVC?fAJl.
T- ~~Av'2.

= r)) (v-Vq Hl.
T..;. ~fAv:z..

b~ - -

ba. - -

The nhysical meaning of these parameters is discussed
throughout the text and summarized in Section VIII. They
refer, in order, to the effect that filament stiffness,
Coriolis' acceleration, relative longitudinal air motion,
centrifugal acceleration and relative Ie.teral air motion
have relative to net filament tension, (T- ~FAv~), on the
motions 01" the filament. The system length, .2, is introduced
as a convenient way to non-dimensionalize these parameters.

Equation 111-12 becomes:

(111-14)

A good physical interpretation for kQ is that it is the
numher of waves that exist within the system boundaries,
multinlied by the constant, 2rr.

Equation 111-13 can be rewritten by introducing:

b = gQ =
6 c1.-v" (Gravity Parameter)

-23-



Equation 111-13 becomes:
1Y

b (~)
I Q

(111-15)

Where the Roman numerals refer to differentiation with
respect to the argument, ~ = (s+vt)/~.

In the following two sections Equations 111-14 and III-1S
are investigated for specific boundary conditions and for
varying magnitudes of the parameters, b.~ b~.
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. IV. SOLUTION FOR NON _ OSCILLATORY BOUNDARY CONDITIONS

When a filament is moving horizontally at high speed
(hundreds of feet per second) between two guides it might at
first appear that the effect of gravity on the motion of the
filament in the region between the guides, would be considerably
reduced from that at lower speed. However, exactly the
opposite occurs.

It will be shown that the II effective tension II or the
value of tension which acts as a controlling and limiting
variable with regard to filament motion can be expressed as
T- y~Av2.. When this II effective tension II becomes small,
bending stiffness and air drag fo!'cesbecome important in
controlling gravity deflections.* For relatively flexible
filaments (yarns, thin tapes) the control forces come
predominantly from surrounding air motion, while for relatively
rigid filaments (monofilaments, metal wires) the control
forces are caused by the bending stiffness of the filament
itself. But, in either case, some mechanism other than
tension must take over in con~rolling the motion between guides
and it is the aim of this section to find out what this
mechanism is.

Refer to Equation III-IS:

(II1-15)

~~~ These are, however, the predictions of a linear theory and
Jdo not hold for appreciable displacements.
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"1f.This is the governing equation for~, for boundary conditions,
at fixed points in space (; = 0, ~ = ,1), which do not vary
with time. The input force is, of course, .gravity (b&). The

.)~boundary condttions are stated simply as":

Now a.ssuming:

r r
~ (0) = ?f (0) = "1(1) = '1{ (1) = 0
.Q. Jt .Q 1..

(IV-l)

(IV-2)

it is possible to reduce Equation 1II-15 to:

(
3 "11

b, D - D + b3)T = 0

where the D refers to a dimensionless operator.

(IV-3)

The equation
for D is actually the reduced form of the general cubic
equation and'D can therefore be stated as:

D, = A + B

D2. = A+B + A-B F-2 2

D'3 A+B A-B F- -- -22

where

and

A = {_ b3 + l{b.a2..
lb, bl 4

B = (-..h - -!.(bf
2.b1 b,

For the case where bl b'32..) ~, one obtains one real and two
conjugate imaginary roots. For the case where bIb; (~.
one obtains three real, unequal roots.

Thus it is seen that superimposed on the linear term of

~~The subscript g will not be carried further.
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Equation IV-2, - b~~, there is an additional displacement,
b3 Jl

~. The nature of ~ varies with the magnitude of bl b~ •
~ R

When bl b; ) ~. ~ changes in nature from exponential to

harmonic. This corresponds to a physical situation where the
ef1'ects of forces arising: from stiffness and air drag exceed
those arising from effective tension.

It is possible to go ahead and solve for the boundary
conditions as stated and then reduce the equation mathematically
to examine each effect. But this requires extensive algebra
and is impractical. The problem is more logically examined
from physical considerations.

By letting bl ~ 0, the fourth order dependence drops out
of Equation 111-15, thus making it simple to see what happens
at high speeds for flexible filaments under the influence of
gravity. The differential equation becomes:

where

~-:c
- b3 {-} - b = 0Jl. ()

~ ""-(a) = -(1) = 0
i .Q

{IV-4}

This equation and these boundary conditions yield:
(b"x)

"'=- b. P~_ e 11. -1 l (IV-S)
JJ. b3 ~ b3e -1

4{.,.QX
b3

-1 )vlhere = _ b. fln(6 -1)+ b.3
.D. b.3~ b3 b3e -1

(IV-6)

where "'1",_" = _ ~ = - S\AgJ1.
o 8 (T- ~~Ava..)
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For b~) b~: (IV-7)

where bE. =
- bs

Equations IV-5, IV-6 and IV-7 are plotted in Figure 2.
The initial low velocity configuration is a parabola, with

'xthe point of maximum deflection occurring at,R.-:= t. As the
velocity is increased, the ,point of maximum deflection moves
toward the downstream end, (~ = 1). When the filament
velocity, v, reaches the lateral wave velocity, c, the point
of maximum deflection has moved all the way to the downstream

xend, Jl = 1.
As seen in Figure 2, as the filament velocity approaches

its maximum value the curvature of the filament at ~ = 1,
beco~es quite large and filament stiffness can no longer be
neglected. It also cannot be neglected when the value of b,
is high (metal wire, heavy monofilaments). It is thus
necessary to examine Equation III-l.5 when b ~ -+ O. The
differential equation becomes:

where

(IV-B)

This equation end these boundary conditions yield:
. x x x 2& J2 ( 0 )~ bG {Slnh6 - S coshs -1 jfsinh6 - cosh, +1

J1. - - 2" i) + D R 2& ~
"6 "& sinh~ - -:r( cosh&, -1)

+(~)l (IV-9)

where 112-

~ =. bl J. = Boundary Region Length (to be discussed in
Section V-C)
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For b, « 1:

where

For b, » 1:

where

(IV-IO)

(IV-II)

The filament is thus seen to move from a parabolic shape
at low velocity (bl « 1) into a complicated exponential and
parabolic curve and then become the II second order parabola II

or regular beam shape at high velocity (b, '» 1). See
Figure 3 which plots Equations IV-IO and IV-ll.

The variable, S J introduced above as the boundary region
length, is derived and fully discussed in Section V-C. It
is necessary, however, to explain here, that it refers to the
length of filament, modeled' as a massless beam, that extends
from the system boundary to a point where the remaining
filament can be considered as completely flexible, but of
correct mass per un!t length. Thus, for b «.Jl (b, <.< 1) the
filament behaves as a flexible string. However, for ,"»).Q

(b, )> l) the filament behaves as a stiff beam.
Having the deflection curves for stiffness with zero

air dra~ and for air drag with zero stiffness it is possible
to compare the two and determine for what size filament the
two effects are the same. This has been done for reasonable
values of all parameters (See Appendix 2) and it was found
that for monofilaments of 10 mil diameter the two effects are
comparable. This diameter is considered typical.
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It is unfortunately not possible within the scope of
this thesis to investigate these solutions for values of
overall filament velocity, v, approaching the limiting values
of lateral wave velocity, c, since these limiting values can
be two or three thousand ft/sec. It is expected, however,
that textile processing machinery will begin to approach these
values at some future date.

The last comment made in connection with this section is
concerned with the notion of the overall filament velocity, v,
being greater than c. If the parameter, bl = ~=n Equivalent
Mach Number H is introduced, this notion is expressed as the
Equivalent Mach Number being greater than one. Physically
this means that the tension is lower than the momentum flux

2.,.of the filament, ~~Av I and therefore does not control
filament motion. Figure 4is a photograph of a cotton yarn
forced to " flow n at approximately 1.50 ft/sec by a driven
set of gears. The yarn is pushed out to the right away from
the gears. The photograph was taken in a semi-dark room with
the aid of one flash from a Strobotac. The overall motion is
evidenced in the envelope of multiple yarn configurations,
while one specific configuration is in focus. The behavior
of the yarn is similar to a fluid stream, as evidenced by the
deflection of the yarn at the plexiglass plate. Reference is
made to Figure 29 of Section IX which contains other examples
of this type of yarn motion.

Thus, filament speeds greater than c are certainly
possible - but what happens ~s that downstream control is

-31-



FIG. 4

FLUID STREAM BEHAVIOR OF HIGH SPEED YARN b7> I

y

1
v ---

(

TRAVERSING
MECHANISM

'=---" PACKAGE

FIG. 5
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lost. If v is forced to be greater than c it must occur by
some upstream mechanism - such as pushing the filament with
an air jet or high speed rollers as was done in the experimental
setup of Figure 4- Then the filament behaves as a fluid stream,
and if the stiffness is low (yarn) it will deflect from
boundaries and create stagnation pressures as is ShOl~ in
Figure 4. This cannot occur if the yarn is II pulled dOmlstream It

as in most practical situations of textile processing.
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V. SOLUTION FOR OSCILLATORY BOUNDARY CONDITIONS

A. ~ Two Dimensions
~ ~The lateral motions (j and k-directions) of moving

filaments are usually much more complex than the simple
gravity deflections just discussed. The additional complexity
is usually caused by periodic displacements or forces acting
on the filament at points along its path. In order to
examine these additional lateral motions the path of a moving
filament must be broken down into regions between any two
such points. These points can then be considered as system
boundaries and statements can be made concerning conditions
at these boundaries.

The boundary conditions for a situation of linear motion
usually include harmonic oscillatton. And if the oscillation
is not harmonic, but periodic, the boundary conditions can
usually be represented as an infinite number of harmonic
oscillations summed in a Fourier Series. Examples of harmonic
motion would be the spinning balloon or the overend unWinding
balloon, while a typical periodic motion would be represented
by the filament path of the many traversing mechanisms that
exist in winding machinery. Another common periodic force is
that caused by friction chattering induced by stationary
guides.

In order to cover as many of these examples as possible,
the boundary conditions for this section have therefore been
chosen as general as possible.
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The bounda~y conditions for harmonic displacement are:

~(O,t)
~~ .v.

?/ (l,t) = ~o= ro sin(w: t + ~), sin wot
Jl. Jl. Jl (V-1)

~""7 -'~ cos (\).)~. i5) , ~~ (~ t)AX(O,t) = en t + = eocoswot0 ~ x '
~

The boundary conditions for the k-direction will be given later
in this section, when three-dimensional motion is discussed.
We shall limit the discussion here to displacements in the-j-direction because the equations of motion for the two lateral
directions (y and z) are uncoupled and can be solved
independently.

Two-dimensional considerations are enough to describe the
dynamics of moving tapes since tapes usually have stiffness
ratios, for the cross directions, of many tens of thousand ••
However; it must be mentioned that the ft virtual mass pel:'unit
length" of a tape is greater than its actual mass. This
effect is a consequence of the relatively large local mass of
air that moves with the filament.

In ol:'del:'to investigate the lateral motions of flowing
filaments forced by the pel:'iodicboundary conditions of
Equations V-I - it is necessary to solve the wave number
equation (Equation III-14) for the traveling wave discussed in
Section III, i.e.,

4 :a.
b, (k..l) + (kl ) + (b:L+ib 3 ) (k 12) + (b4 +ib s) = 0

The general quartic equation, can be solved using Ferrari's
method. But this method involves finding the three roots of
a cuhic equation; then, with each of these roots, reducing the
quartic to a~quadratic; and solving the quadratic. Since the
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coefficients in the above formula are complex end the method
itself is extremely lengthly (even for real coefficients), no
attempt was made to use it. Instead two approximate solutions
ar~:r'examined. "

The first approximate solution is for filaments which
have very little bending stiffness (b, is small). This
solution was not carried through to completion because of the
extreme amount of algebra involved and because, as will be
shown later in this section, it is possible to use a 11 boundary
layer 11 or in thls case boundary region concept for moving
filaments possessing small bending stiffness. This first
solution is outlined as follows:

Let ko be a root of the wave number equation (Equation
I1I-14)' for zero filament stiffness (b, = 0).

(V-2)

where

= -b_+R cas 8...+ i -b~+R sin 9_
2 2

R = + ( (b '2. b '2- )2.. 4 ( )2.. )~
- -;a.. -4 4 -b3 + ' h,.b3-2bs

Now let there be one solution of the form:
,

k \ ~ = kC)Jl.(1 + 6. ) z. ,

and one solution of the form:

where f>, < < 1

where ~« 1
'1.
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Substitution into Equation III-14 yields:

( bl (ko.Q.)-4 )!
kill. = ka1l. 1 - (kat)2. + (b:z. +ib.3) l-koR/2)

kjLt = !ib.-~ = '!:i .R
6

(V-3)

(V-4)

These are the four required wave numbers for Equation II1-14
when filament stiffness can be considered small (small ~ ).

The first wave number, k., is a correction of ka. The
correction is obviously related to the magnitude of bl (filameht
stiffness) and is zero when b, 1s zero. It can be considered
an increase in the It system wave length tl (or a II stiffening II

of the system) since, by definition, a decrease in wave
number represents an increase in wave length. This is a

minor correction, however, since kais only slightly decreased
from ko•

The second wave number, k~, is more interesting since
it represents an additional exponential displacement of the
filament, with which it is possible to correct the ko solution
for boundary conditions of slope. The magnitude of k2-is the
reciprocal of 6, mentioned earlier as the boundary region
length. Thus the amplitude of the stiffness correction
varies directly with the size of the boundary region. As
mentioned, this concept is fully discussed in Section V-C.

The ko solution will be carried through to completion,
however, because the model for this solution represents the
majority of moving flexible filament situations. The boundary
conditions for slope at x/~ = 0 and x/~ = 1 are ignored,
since filament stiffness is neglected. The procedure for
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this is as follows:
First, solve for the boundary conditions (Equations V-I)

with tto-~t-= O. An example of these boundary conditions would
be the yarn winding machinery depicted in Figure 5. Here
'the yarn entetts through a field guide at the left (x = 0),
then moves thttough a traversing mechanism at the right (x = Jl ) •

The displacements in this figure are exagerated to illustrate
typical deviations from straight line flow. The solution is
undertaken by separating the complex exponential representation
of 7 into two functions, one representing the usual spacial
mode (or a wave function traveling" relative to the filament
at velocity, -v) and the other considered as a correction
function to make the product of the two a solution of the

_ib'2.

e 2c = c:ai
:L 2

_ b:s

c....= &e 2 c~ J2.' 4
where

This function fits the boundary condition at ~ = 0 (or s=-vt)
~namely ~(O,t) = O. In order that it fit the boundary

condition at~=l (or s=R-vt) let:
ib2.

- -c3i e 2,c. - -2-

(V-6)

Equation V-5 can now be more simply expressed:

f
. . b3(~ -1))

:! = g (x) 1:'0 sin (w t-b (1- ~)) 1 f e 2 ~
fl. . Jl 0" ~ S l

(Note: The amplitude function, g(x), is found by taking the
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real part of."the product of'c4 and the amplitude function of."
Equation V-5. )

where

+ cos blsx/Jl. cos bas sinh bu. X/l sinh bu.
sin~b'5 cosh:l.bue+ cos~b.~ sinh7-b,G.

b = RsineR
\to 2'

b = -b2.
rT 2'

For b~ = b~ = 0 (zero air drag) the solution ~educes to:

0/ = ~ sin b\1~xIR sin(w t-b (1-.!.))
.Q R sin b,s 0 I,. R.'

b = woo/c
'8 l-V7-/ c2. (V-7)

Equation V-7 has been published previously by Sack (19).
It is easier to understand this solution by rewriting

b" and bls in terms of."the natural f."requencyof the system, J'L •

This concept was discussed by Skutsch (28), however its
derivation is included here for sake of completeness. It is
written as:

Physically,JL can be interpreted as follows. Consider the
case of a flexible filament moving through two fixed guides
a. distance .Q. apart. If a posittve lateral disturbance is
initiated midpoint between the guides it will propagate in
both directions. The disturbance will then be reflected at
the'gUid'es and return'towards the midpoInt but. wi th negative
sense. It will pass through the midpoint and be reflected
at the opposite guides and again return to the midpoint, but
this time with the initial positive sense. This is seen in
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the following figure where only the initially upstream wave
is considered.

~=l
.R

Displacement
At = Il/2c-v

~ _ 1
~ - 2"

Direction of Initial
From ~ = .L ~ 0,Jl 2"

Upstream .-- - Downstream
Initial Wave 1at Reflected Wave

m. ~l.._---:::--~~---t~--------.v. _--------m~'>V
7il

i = 0

From ~ 0 1, at = Jl= -...
~ c+v

From ~ = 1 -'> 1 At = ~!2
"2' c-v

At = L + 2L =... ,- C~V c+v
22c

c~ _v'2.

SL = 2li'f = 2"_1_ = '!.£( 1- .Y:)
AtT A c'2.0

The important point to be noticed here is that the natural
frequency of the system decreases as v-+ c. This is obviously
caused by the increase in the time required for disturbances
to be propagated upstream.

Introducing b,C\= 2~o it is possible to simplify b" and
b,eof Equations V-6 and V-7.

"'b~, = 2 b, baq,

The equation for ~ can now be rewritten:
jl

(V-9)

The first term ~enresents the amplitude or limiting
shane of the mode. ~he second term is the time variation



containing a correction for the phase at different x. This
phase correction will be discussed when three-dimensional
shapes 81:'econsidered "because br7 is actually the angle in
the y-z plane th1:'oughwhich the filament path rotates from

The time va1:'iationis such that at each ~
point through which the filament

z = 0 to ~ = 1R ~.
between ~ = 0 and ~ = 1, the
passes, oscillates laterally at frequency, 'J.Jo • Por b'9 equal
to odd integral values, the amplitude function is a minimum
and the shape becomes b~ quarter sine waves with an amplitude
of no. This is shown in Figure 6, where ho is introduced as
the maximum amplitude of lateral displacement, which for this
case is ho = ro •

If the value of b~ is not an odd integer, the magnitude
of ho increases from its minimum value, roe This is shown in
Figure 7, a typical resonance diagram. For zero air drag
(b~ = bs = 0) the predicted amplitudes can become very large.
This is,however, a result of the assumption of linearity.
Figure 7 is more realistic when the energy loss caused by air
drag is considered (ba ~ 0, bs f 0). Under these conditions
the maximum amplitude of the system, ho, is considerably
reduced.

The final correction to the ko solution for b~ = bs = 0,
relates to the exponential amplitude. Since positive values
of b3 mean an air flow of positive velocity (toward increasing
~) this correction is seen to be a decrease in the amplitude
of oscillation at each ~. The ma~nitude of this correction
decreases for increasing ~, until for t = 1, there 1s no
correction.

-41-



y

h

o r--::;~~==~o lo= ----------------/,~ bl9 = I

-ho

~:__-----------~?-----~ bl9 =3

-----~----~-~-~-~~--~-~j
1t----------:-------------1I b19=OO

FIG. 6

AMPLITUDE FUNCTION vs X, b3 = b5 =0

o

FIG. 7

AMPLITUDE FUNCTION vs big J MAXIMUM VALUE
-42-



For ra~~40, the boundary conditions include harmonic
oscillation at ~ = 0, of frequency, bJo~~' and phase angle,.~~
The solution for ; now becomes:

" x (r x ) ( ~(~ -1))- = g(R') l A sin(wo t-b,,(l-i"» t e ,.S .
1.. b:s"" x (V -1 u )

+ g~'( 1- ~) ~~a " sin( w:'t+l6+b,"t.:~))3 la2
jl ~

A simnle illustration of the above boundary conditions would
be a flexible filament which moves at velocity, v, between
two guides which 'move harmonically and are in phase. This
represents the type of oscillatory input that a vibrating
machine gives to a flexible filament as the filament moves
through guides attached to the machine. To simplify the
interpretation, let b,3 = bs = 0, ro = ro{~= 1, and \JVo=\4)~~.

Equation V-IO becomes:
-'?l sin(t.lJot-b,..,(l-j) )sin bt1~ +sin(UJot+9f+bn1)sin(brCl~(1-i»
~ = - <V-ll)

sin b,'i~
For % = 0, an oscillatory translation of the machine is
represen~ed, while for p = 180°, an oscillatory rotation of
the machine is represented. The two plots in Figure 8 show
the unper half of the amplitude envelope of the space curves
(Equation V-Il) for ~ = 0 and ~ = 1800, and for three odd
integral values of b~. Again it is mentioned that odd integral
values of b\C\yield minimum filament amplitude, while for b,Gt
equal to even integers, maximum amplitude occurs, limited by

air drag (and energy loss in the filament itself).
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. The linear solution or this thesis is ror constant
filament tension. The tension is not constant, however,
but is a function of filament shape. The first order change
in tension can be found by considering the constant tension
solution as being approximately correct and calculating the
variation in tension necessary to satisfy conservation of
momentum. This can be done as follows:

~From conservation of momentum in the i-direction;

x= .Jl

~7.~if guide friction and ~A ~t~ are neglected.
By letting T mQ,r. = To + AT, then for small e,

AT e~,.T=-2-
a

(V-12)

Since it is also true that for small e , e =A~/AX, then it
is nossible to differentiate the expression for~(for zero
air drag) and solve for AT/Toe This yields:

SUbstituting this expression into Equation V-12 gives:

i.e.

AT
T()

oT
T

= t ( v1Wprg lr roo (a)
c(l- ca.)(sinbtq2)

= ty~ ~ . v"" blor? . 1Tr- (b)
(.1- c.) (sin b,q2)
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Equation V-13a is of practical importance since it allows
the increase in tension to be predicted as a function of the
system design variables. It also serves to estimate how good
the constant tension assumption is. If the parameter ~ois
introduced into Equation V-13a, where b~ois defined as;

2. ::z..
b - 6T _ l (~) ( b'2- )

:LO - T - '2" 2b sin h.-:!ro x 7 -~~

then it is possihle to estimate the limit of the linear
solution, since for b~o (~ I, the solution is correct.

Considering again the wave number equation, Equation
1I1-14, a second approximate solution can be obtained. This
solution refers to filaments with large bending stiffness,
but with small Coriolis' and longitudinal air velocity effects
(small b1 and b3). This second solution is outlined as
follows.

Note: In fluid mechanics, pressure rises or pressure drops
are expressed as functions of the free stream stagnation

_If V;IIpressure, Po- ~. An analogy can be made between this
concept and the parameters of Equation V-ljb. In this

ATequation the filament stress, 1l.' is analogous to the
sta~nation ~ressure p.; the filament density is analogous
to the fluid density; and the corrected maximum lateral
velocity w.ro/(l- ~:)(Sin bA~) is analogous to the free
stream velocity,~. Analogies such as this are helpful in
appreciating the physical significance of filament parameters.
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Let k~ be a root of the wave number equation (Equation 111-14)

for b-:L.= b3 = o.
4 2-Therefore: bl (k~R.)+ (k,3i) + (b4 +ib r;) = 0
I

k3.l! = :!: t 2~, 1z.. ( :!:(1-4b• (b.. +ibs» ~-1J ~
Now let there be one solution of the form:

(V-lq.)

where b «13

Substitution into Equation 111-14 yields:

(V-IS)

These four wave numbers are those required for Equation 111-14
for small b~ and b~. They can be wnitten in a more convenient
notation' as:'

~here ks refers to Equation V-IS, with k31 chosen to have the
positive sign under the radical and where kw refers to
Equation V-IS with k~R chosen to have the negative sign under
the radical.

Using these four wave numbers, ~ks and !k6J a solution
can be found which satisfies the boundary conditions of
Equations V-I. These conditions (for ro.~~=eo~i-= 0) are:

~-?7 ($l t) = eo c os wot~x '

i(o.t) = ~~(o.t) = 0
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The solution is:

(V-16)

where

DE x (V-I?)
( CDS k Jl + CDS ~Jl) (Si~" ksR ~ - ~ sin k"D x&) ~

= 1 He ( - 5

9. + ( sin ksn _ 1:: i 17" n ) ( k n x k n )~ ~ s n ~x cos ~g - cos ~$
DE.

The functions "(.(~)and 4(~(~) require excessive algebraic
manipula~ion to be written in any other form. However,
Equations V-lb and V-I? are a complete answer and can be
simplified for cases where some of the parameters are zero.
For example, let b~ = b3 = bs = 0 (l.e. negligible air drag
and Coriolis' acceleration), then Equation V-lS is reduced to:

(V-18)

For small b, :

This solution is the same as the. k.,2.. solution for b'2.= b3 =

bs = 0 and will not be discussed further.
For large bl :

I
+. (h)~-~ b

I
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I

Therefore. ~.(! = (~; )"'1- and k ...R. = ik,)! are the .lave numbers to

be used in Equation V-I? to determine the amplitude of the
forced response predicted by Equation V-16. This forced
response of filaments of large bending stiffness (with respect
to beams) is a well known phenomenon and will not be treated
further.

This second approximate solution to Equation II1-14 can
be used to obtain an equati.on to predict the natural frequency
of a moving filament,Jl~. This is done as follows for
boundary conditions of zero slope and zero displacement at
the guides. These conditions are:

~. '11 '1'{'o/(O,t) = -(O,t) = -(l,t) = -(l,t)R ~ ~ ~

The original form of 1was chosen as:

Equation V-lS, with b~ = b3 = bs = 0, is:

Therefore r.tcanbe expressed as:

To fit the above boundary conditions the following equation
must be satisfied. (or D6 = 0).

cos k ~)lcoshks{li~ ~(t -~ sin ksSlsinh ks.Q~~= 1 (V-19)
e.
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where

The roots of this equation can be assigned the values:

Specific values of kS~)n have not been calculated for this
example, although it is possible to define their range on the
basis of kno'Ttmsolutions to Equation V-19. For example, for
a filament with zero longitudinal velocity (v = 0) and under
zero tension (c = 0) the value of parameter bl becomes
infinite. Therefore'~e' becomes equal to one and Equation
V-19 becomes:

The roots of this equation are well known and are given by
Lord Rayleigh (5). They are:

ks.2 ). = 4.730
ksJl )2- = 7.853
~s.R )~ = 10.996

k5~L~ = 14.137
ks.Q ) t1 :: (~)11

2

For a filament with zero hending stiffness the value of
parameter bl becomes zero. Therefore, '~£ becomes infinite and
Equation V-19 becomes:

These roots illustrate the effect of filament stiffness
. !
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on k.Q. The e1"fect of filament motion on k.5l. can be estimated
by referring back to the ko solution. These two affects,
filament stiffness and filament motion can be combined in an
equation which provides an estimation of the natural frequency
of a moving filament, neglecting air drag. This is done as
follows:
Equation 111-14 for zero air drag becomes:

(V-20)

Rewritten in terms of the natural frequency,Jl~ this equation
is:

(V-2l)

The natural frequency of the ko solution (for zero air drag),
Jl, can now be equated with Equation V-2l with bl = o•

...0-= :!!.£(l-b 7-) = ki'£(l-b,)R."1 .2

This gives the initial value of k.Q for the ko solution as:

Therefore, the correction to k~ for filament velocity has the
form, l+bj_ This correction is now made to Equation V-2l,
which becomes:

..n...= ks.J! ~ ( 1+b, ~ { (1 +b. (ks.tl2. (1+b, t (l-b;- ))-t -b7 ~ (V-22 )

where the values of ks~ are calculated from Equation V-19.
Equation V-22 is, therefore, taken to be correct for
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values or b. and b, which are not necessarily small with
respect to one. In a later section, Section V-C, a boundary
region is discussed for moving filaments where b,. is taken
to be small and a much simpler approach is used.

The equations developed thus far are for two-dimensions
only. It is possible, however, to use the principle of
superposition and develop three-dimensional equations. This
is done in the next part or this section.
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B .., c> Three Dimensions
The majority of moving filament situations involve

boundary conditions in three dimensions. Examples are the
spinning balloon or the overend unwinding balloon which are
typical textile systems. Of these, the most common are
produced by boundary conditions of forced circular motion in
the y-z plane. An example would be the package of yarn shown
in Figure 9, from which yarn is being withdrawn 11 overend II.

The boundary conditions for circular y-z motion are given
(ro ~:-= ea~~= 0) as:

~(O,t) = ~(O,t) = ~(O,t) = ~~(O,t) = 0
J. ~x ~ ~x

~ (1,t) = !:2.. sin ~o t,
I.. A..

~'7 (1 t) = eo cos Wo t~x ' (V-23)

-300. ~where ~ and fare displacements in the i and j-directions. As
seen in ,Figure 9 these conditions correspond to a circular
filament path at ~ = 1 (the 'Hi. thdra't-lalpoint), of constant
radius, ro' and constant inclination angle, eo' revolving at
angular frequency, U-Ja•

As previously mentioned it is possible to use superposition
in order to solve for the equations of motion for filaments
subjected to three-dimensional boundary conditions. This is
done as follows, by first writing the boundary conditions for
ep in terms of the boundary' conditions for ~i ,.

tl (1,t) = & cos eu t = ro sin (Wo t+ 1r/2) = -?f ( 1,t + '1rj2 wa)
f Jl 0 12. I JJ..

(V-24)
~(l,t) = -6 sinwot = 6 cos(w t+ 1't/2}= 4~ (l,t + 1T/2UJo)~x 0 0 Q . bX
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(V-25)

Therefore, ~(x,t) =~(x,t+ '""/21>..1.,).This means that the

three-dimensional solutions can be written directly in terms
of the two-dimensional solutions, provided the time increment,
V/2~o' is properly considered. It must be pointed out that
this is not a right hand coordinate system, being chosen to
represent the more familiar counterclockwise rotation, at the
loss of consistency.

The ko solution for three-dimensions becomes:

The central bracketed term in the above expression is a vector
of unit length, at an angle, ~~t-b,~l- ~), referred' to the

~
z-axis. ican therefore,be more simply expressed as:

..:2a.(~ -l)J
,~ = ro g(~) {"1?tt.( CA) t-b,,(l- .2£») ( e2b, it
~ 1- Sl t Q jl) \

The magnitude of this vector equals the amplitude of the
sinusoidal time and space dependence for the two-dimensional
case formulated in Equation V-6, and plotted in Figures 6 and 7.
It is therefore not necessary to discuss this magnitude further.
The argument of the unit vector, however, shows clearly the
physics behind the phase angle, b.,. Figure 10 is a plot of
Equation V-25, where the magnitude. of g(~) and the magnitude
of eXP'(~I({' -1» are equal to one. The shaded region

containing the filament. n end view 11 projection is seen to
rotate at angUlar velocity,wo• Within this shaded region
the filament projection rotates about the x-axis through the
angle, bn• The projection is fixed relative to the shaded
region.

-55-



For b3 = bs = 0 (the case for zero air drag) the solution
simplifies. In Figure 11 there are plotted two projections of
the filament for s~veral odd integral values of b~(Relative

WO)Frequency Parameter = 2][. This has been done for two values
of b7 (iiMachNumber"). The parameter b'7 is clearly seen to be
the amount of rotation about the x-axis of the filament at a
given instant of time, between x = 0 and x = t. The dotted
lines are the envelope of filament motion while the solid
lines represent an actual space curve. Since the envelope of
the end views are circles they are omitted for clarity. Also
the side views in the bottom plots of Figures 11a and lIb are
omitted since the end view is intended as that for all the
curves given for bl" greater than a minimum value.

The, rotation angle, b17, has been measured by the author
from Figures 2-11 of' ,Reference 4. These figures represent
the results of numerical integrations by Padfield of the
non-linear differential equations of filament motion. Padfield's
equations were not linearized as they have been in this thesis.
Padfield:~s experimental data and photographs validify her
numerical integrations. This'same rotation angle, b'7J has
also been calculated, by the author, from the definition of
bill namely:

where b7 and b,Cf are calculated from Padfield" s original data.
Fi~ure 12 is a cross plot of b'7measured from Padfield's

figures versus b'7 as calculated by the above equation developed
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in this thesis, from Padfield's original data. The agreement
is very good up to the point where the nonlinear air drag
begins to cause a rotation of its own (bl1 > 2000), where it is
seen that the n measured II bl7 becomes much higher than the
value calculated by the above equation. Thus the formulation
of the parameter, bn, is seen to have considerable validity
over a wide range of practical situations.

(V-26)

Projections onto the x-y plane of the upper half of the
amplitude envelope of this solution are the same as plotted
for two' dimensions in Figure 8. These curves illustrate the
same ideas for three-dimensions as they did for two, namely
that the shape is most significantly dependent on b'1' the
ratio of input frequency to natural frequency. For further
discussion of the three-dimensional ko solution the reader is
referred to Section V-D.

The second approximation of the solution of the wave
number equation, Equation 1II-14, can also be extended to
three-dimensions since j(x, t) =i(x, t + w!2wo) as follo.Is:

~ -l-

~ = 4f(x t)~j + f(x t)k
.l ll. g,' R R.'

= l' (X, t fj + "'1 (~ t + W/2wo); (V-27)
.Jl It 5l R.'

~ . ~
= ~o 1,(~)ult.(~ot )+eo1~(~ )utt (wot)

1~here 1.(~) and1:{~) are given by Equation V-I?
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This solution corresponds to the physical case of very
stiff filaments, such as metal '\'I!ire,metal cables, hose, metal
tubing, etc., moving at moderate speeds. This case is not
considered to be of interest within the context of textile
processing but it is presented here because it is an approximate
solution for three-dimensional filament motion which includes
all the effects considered in the general vector equation,
and because it fits the boundary conditions of Figure 9.
These boundary conditions include the fact that the filament
withdrawal angle, e, is not zero but has the specific value, B.o
The solution is not dealt with further because, as stated above,
this thesis is primarily concerned with the motions of filaments
that have only a small amount of bending stiffness. This
concept can be investigated more easily by using the concept
of a boundary region - to be discussed in the next section.

The above solution is applicable to an interesting
problem lmown as the II garden hose problem It "Vrhichconsiders
the motion of a fluid moving with constant velocity through
a stiff hose. The momentum flux of the fluid is analogous
to the momentum flux of the filament; the stiffness of the
hose analogous to the filament stiffness; and the axial
stress caused by the fluid pressure and viscous dr2g, times
the annular area of the hose cross-section, analogous to the
filament tension. The results of this section can then be
applied to this problem, once these analogies are made.
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c~. ~ Boundary Region
For filaments with low - but not negligible - stiffness

(small b,) it is possible to use the concept of a 1f boundary
la.yer II or in this case, more specifically, a boundary region.
This boundary region is defined as that portion of a moving
filament near a system boundary for which the ratio of shear
force to inertia force is large. Such a region exists because
for fixed lateral oscillation frequency,wo' the inertia force
near the boundary, which is proportional to the square of
lateral displacement, becomes negligible. However, the boundary
condition of fixed slope means a sudden increase in filament
bending moment near the boundary and therefore large shear
forces.

Thus the filament in Region I of Pigure 13 behaves as a
cantilever beam and can be described by the usual beam equations.
Region II, on the other hand, is removed from the system
boundaries and therefore, has large lateral displacement and
inertial forces but small shear forces. It can be described
by the equations for a moving flexible filament.

The hypothesis is made here that regions of high shear
force within a moving flexible filament tend to exist near
the boundaries only,in order that the elastic energy of the
filament be a minimum. Therefore it is not considered possible

.,1'

to have more than two bounda.ry regions as described above,
each adjoining one:of the two'system'boundaries.

These regions are shown in Fi~ure 13 where b is defined
as the length of the boundary region and ~I and X2. refer
raspectively to the slopes of the beam and of the moving
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flexible filament (or flowing string) at the edge of the
boundary region. It is now possible to calculate ~ from
simple beam theory by assuming that the effective net tension,

a.-T- ~fAv , acts on the beam, and by matching beam displacement
and, to a lesser degree, slope to that of the flexible
filament, at the ed~e of the boundary region. This is done
as follows.
From elementary herem theory:

Since for linear theory sin ~2. ........~2. ,

The boundary region length is now defined by the point where
X, is equal to one half of ~~.

Therefore: i=b-E
JZ '

(v-28 )

Referring to the be~inning of this section, the wave
_!.. !l.number k::z..~= tib,z.. == Ii ~ clearly implies a correction to the

ko solution, near the boundar~es, which varies exponentially
with the numb~r of the boundary region widths as:,

+~"1 -s
Jl )C01:'. - e

For systems where ~ is small (small bl ) the suggestion
is made that the parameters Which describe the system
(bn, ~~, ~:) can be modified, from those predicted by the ko

solution, by chan~ing the system length,~, to a modified
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system length,QE;' v.rhere:

...L)llE = .Q -2 ~ = fl (1-2b, z-

An estimate can now be made as to the change in the system
natural frequency,ll., by substituting Jl E:. for Jl..

r'\1 _ wc ( V 2.)
~L. - - 1- -R'C, c:a..

=JL
1-2b.-t:

(V-29)

IWith this corrected system natural frequency,Jl, it is possible
to estimate corrected values of b" and b~. These corrected
values for bl, and b IC) can then be used in the equations which
describe filament motion. They are:

Therefore, the first order effect that stiffness has is to
decrease the filament rotation angle and also to decrease the
number of II balloons If.

The fundamental concept here is that the natural frequency
of the system increases with the boundary region length. This
is to -be expected. However, the form of this increase caused
by stiffness can be verified by comparin~ Equation V-29 with
the filament velocity, v, taken as zero, to the more commonly'
lmown equation for the natural frequency of n slightly stiff II

filaments, given by Lord Rayleigh (5) as:

(V-30)

This equation has been rewritten in the nomenclature of this
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thesis. ~ is introduced as filament frequency expressed in
cycles per unit time, rather than radians per unit time, as
has been done previously.

Equation V-29 is also rewritten in terms of frequency
expressed in cycles per unit time as:

(V-31)

Figure 14. is a. plot of f, and f, normalized with respect
to the ratio c/2R as functions of the boun~ary region length,

&, normalized wi th respect to the system length, Jl. The
~agreement of the two plotted equations is within 4% at ~ = 0.1,

which is considered adequate. Thus the physical conceptualization
of a boundary region has been verified for the case when
filament velocity is zero. It is also hypothesized as correct
for the case when filament velocity is not zero. The simplicity
of this concept and of its use is pointed out as its major
merit.

Equation V-30 has been satisfactorily verified experimentally
by Seebeck (5) for metal wires. For polymeric monofilaments,
specifically nylon, a series of tests were conducted using the
apparatus shown in Figure 15. This apparatus is discussed in
Section IX. The natural frequency of the nylon specimins was
measured as a function of b. and the experimental points are
plotted in Figure 14 along with the theoretical curves. A
single value for elastic modulus, E, was used in calculating
the values of b. used in the data plotting. The one value of
E was selected to give agreemBnt between experiment and theory
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at a single point. This indicates that despite the dependence
of modulus, E, on load (which varied by a factor of 6), it is
also possible to use a constant dynamic modulus in order to

II' ..

":'~"predict the frequency' of~a "'nylon'monofilament. The particular
.dynamic modulus used was ,-80% of the sonic modulus of the

nylon, measured on a Pulse Propagation Meter.
Thus the concept of a boundary region seems adequate,

not only as a qualitative concept, but also as a quantitative
.::,method (for small bl) to obtain the first order effect that

stiffness has on filament motion. Again the simplicity of
this concept is emphasized. The first order effect of filament
bending stiffness can be quickly estimated by calculating the

f' -L Iboundary region length, C) = b.2..Jl= (EI/T-~v"Z-P~::.The system
length, ~, is then reduced by two boundary region lengths to

•
~E = Jl -26 = ~ (1-2b,E). And this modified system length, .QE.,

1s used in estimating filament rotation, b~, and the number,
of .n balloons tf, b.v'2. These two parameters are then used in
Equation V-9 to estimate the lateral amplitude of the filament
space~'curve••
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D •• Practical Example of an Unwinding Cone
In order to develop more fully the results of the

preceding section, V:, we shall now examine the motion of
an unwinding cone of yarn. This motion has been investigated
experimentally on several prior occasiona ..(4;.: 7, IT, 17, 18; 21).

Since:~-,the1'-rotation-of,:yarn -about':'its axis-"Jha!:vbeen .well :'

documented:>(Figure~l2>..t.hoi~ will not be discussed.
Referrin~ to Figure l6a, we can express the eleven

variables for this system as a minimum of eight dimensionless
W groups; one dimensionless group expressed as a function of
the other seven.

These variables- are identified with the aid of Figure 16a.
The cone geometry variables include ro, the lesser cone radius;
~e' the cone length; K~, the wind angle of the yarn on the
cone; and fc.' the cone apex angle. The yarn variables include
~f-A, the yarn mass per unit ~ength; e'( I the yarn twist; and

~e' the coefficient of friction between the yarn and the cone
surface. The system variables also include T, the yarn
tension; v, the yarn withdrawal speed; R, the system length;
and 6c., the long:ttudinal posi tion on the cone 'surface of the
yarn take off point.

For a p;1ven yarn; 9.fA, 9, and/<c al:'econstant. Therefore:

(V-33)
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are constant. Therefore:

T / ~~ Av 2. = f (r 0 I~, ~c:. / J... )

.. It. is.un'fortunate',that the system hast e.leveo'variables';,
even though one omits: the effect of variable tension along
the yarn, of time derivatives, of yarn non-uniformity, of air
resistance, and of all package variables except those describing
the geometry. This is the primary reason why meaningful
experimental data is difficult to obtain. Unwinding tension
has, however, been measured as a function of velocity, guide
distance, and package radius for a given yarn wound on a
given package. The data are expressible in the form:

(V-35)

Although this data always contains oscillations about
some mean value which are caused by the &~/~ fluctuations,
the fluctuations are not significant in most cases. References
12, 16, 17~ and 21 report work that has been done to validate
Equation V-35. They conclude that the tension varies linearly
with yarn mass density, ~~A, and as the square of withdrawal
velocity, v; for a given ro/Sl..Equation V-35"can be'ra-written
as the definition of a tension parameter as follows:

T c':a.=-~ .....--~+Av:a.. - v~

With this parameter the definition of b~ can be rewritten
for an overend unwind lng cone since v = raUJo •

(V-36)
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If b7 is small (large baa)Equation V-36 can be approximated
as:

(V-37)

This expression means simply that the number of 11 half
balloons II, b,CI' increases with .Rjro and decreases with the
tension parameter, bl,. It must be pointed out again that ba•

is a function of ro Il.
If the distance from the front of a yarn cone is defined

(Figure 16a) as x and Equation V-37 is considered valid
between the successive nodes of a multiple balloon filament
space curve, then b'9can be written as a I( function of x ".

(V-38)

This means that the system boundaries are redefined within the
yarn space curve at the two nodal points of each balloon.

The form of Equation V-38 has been experimentally verified
by the author for two different cotton yarns (~~A = 200 and
330 denier). The experimental apparatus is described in
Section IX. Figure l6b is a plot of b.qversus x. If b..were
constant the data would plot on a straight line, b" being
equal to bll , which when measured from the plot turns out too

have the value 2.0. However, as ..1£.. increases, two curves forro
the two different yarns are seen to deviate from the It constant
b" solution ". This deviation can be explained in terms of an

,increasing b,,(x). Thus the form of Equation V-38 is seen to
be consistent with experimental observations. It should be
mentioned that values of x/ro of such large magnitude are not
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at all practical because the tension constant (and therefore
also the tension) becomes too large. Thus Equation Y-38 can
be used with b..taken as constant for most situations.

Data given by Padfield (4) also support the prediction
of b,~ of this thesis.

'06

0A

4

Predicted

O'l'---_~---_---_r_---...._---_---
o

'0

b

b
FIG. 16c

Comparison of Relative Frequency Parameter
Figure 16c is a cross plot of b,~measured from the figures of
Reference 4, versus b,~ as calculated from Equation V-37 using
Padfield's original data. The method of measurement is
explained in Section IX. The agreement between calculated
and measured ba"l is good except for the points A and B of
Figure 16c. These two points are for systems with low filament
tension where it is not possible to neglect air drag. The
effect of air drag is seen to increase b., for a given bu which,
of course, means an increase in the number of system balloons.

In this chapter the general vector differential equation
has been examined extensively 'for the case 'of'linear filament
motion betHeen tl10houndaries. The boundary conditions have
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been taken as harmonic lateral oscillation at x = 0 and at
~ ~x = R for hoth the j-direction and the k-direction. The

solutions of these equations are applicable to many practical
problems of monofilament, multifilament and staple yarn
processing situations such as the spinning balloon, the overend
unwinding b"alloon and the yarn space curves near the traversing
mechanisms of winding machinery. They can also be used to
predict the space paths of thin tapes, where air drag becomes
important, and heavy metal cable, where stiffness becomes
important.

The concept of a stiffness boundary region was developed,
which can be utilized to predict easily the extent that
filament motion will be a function of stiffness. The parameters
of the equations which describe filament motion for zero
stif1~ess have been modified to include the length of this
boundary region.

Finally, the case of an overend unwinding yarn cone was
briefly discussed, as an example, in terms of the variables
involved and the validity of the prediction of the number of
balloons, b'1/2, within the yarn space curve. The verification
oft' the rotation angle of the filament, bl"l'was previously
included in Section V-B.

The assumption of constant longitudinal filament velocity
is not always valid as has been assumed thus far. The next
section examines the initial effects of longitudinal acceleration
and deceleration and the dynamic buckling that may take place.
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VI. ACCELERATION EFFECTS,

A. Introduction
The previous two sections dealt with steady state

situations where filament accelerations in the x-direction
were negligible and the tension was taken as constant. The
pur~ose of this section is to examine this assumption by
first reviewing the relatively straight forward phenomena
of accelerating filaments and then by examining the equations
of motion for decelerating filaments - and the dynamic
buckling that invariably takes place.

B. Accelerating Filaments
vfuen a straight filament at rest or at constant velocity

is subjected to a sudden increase in velocity along its axis,
of magnitude, 4V, at one end, a corresponding increase in
filament strain, AE:-F= AV/8:s (where as = sonic velocity of
material) will propagate down the filament from the point of
impact. This is of course a well know situation of one-
dimensional strain wave propagation. If at an arbitrary
distance,.R., from the point 01' impact, a partial restriction
(such as a " frictioned II guide) to filament motion is
present, then the wave will be reflected. It will return
toward the point of impact, where it will again be reflected.
This repeated reflection continues, with each reflection
increasing the strain level an.amount Ae~ until the total
filament strain or tension is sufricient to overcome the
partial restriction at~. Then relative motion between the
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filament and the rruidewill take place. This assumes that
the level of'strain at the moment when relative motion takes
nlace is below the rupture strain.

The time increment between initial imnact and relative
motion at the nartial restriction can be expressed as a function
of the final strain, E.f' the sudden increase in vel.ocity,AV,

and the distance, Jl... This time increment is found by equating
the final filament strain, E~, to the ratio of filament
extension to filament length •

.. t =~ AV

This time increment is short for practical textile situations.
For an example let the impact velocity beAv = 50 ft/sec; the
length be R = 2 ft.; and the final strain level be €f-= .01.
These values yield a time increment of t = 0.4 milisec.

If the filament is not initially aligned with the direction
of the sudden increase in velocity, then lateral deformation
will also take place. However, lateral deformation proceeds at
a much slower rate and tension fluctuations can be neglected
when considerin~ lateral deformation. An example 01'this is
the intermittent withdrawal of yarn from a yarn cone, such as
is used in the external filling sup"':Jly01" the Draper Shuttleless
Loom. High speed motion pictures of the yarn as it leaves
the cone surface show that steady state as would be described
by the equations of Section V, is established in one or two
revolutions. This seems amazing since the yarn revolves at
~1700 RPM, however, during these first two revolutions there
are -140 complete longitudinal strain wave cycles Which
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allow an equilibrium tension to be reached. Thus the
~~3assumption of negligible longitudinal accelerations: bt~'

of Section V seems very reasonable.
1fuen the ftlament axis is not initially aligned' in"the

direction of acceleration, lateral as well as longitudinal
displacement will take place. It is informative in the
context of this section to look at these lateral deformations
for 'a flexible filament (b, = 0) of finite length. The
propagation of the strain (or tension) distribution will be
taken as occurring at infinite velocity in light of the
previous discussion.

--The position vector, R', is defined in Section III as:
-=-- ~ -- ~R(s,t) = (f(s,t) +,)i +"(j + «'k

The displacement function is chosen as f(s,t) = s + ~ at~
which describes a filament essentially aligned in the
....i-direction, Bnd subjected to a constant acceleration of...magnitude, a, and direction, i. Neglecting the effects of
air drag, gravity and filament stiffness, Equation 11-4

reduces to:

(VI-I)
~Substitution of the position vector, R, yields three

equations:
-...For the i-direction:

b T A~ + T ~~ - () A ~'3.3 + ( As _ ~ T)
~ s h s ~ s:L - 110 ht~ f\- ~ s
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~For the j-direction:

(VI-3)
~For the k-direction:

(VI-4)

As previously stated the varia.tions in ~ can be considered
small compared with the tension variation for time large
com.paredwith lias_ Therefore Equation VI-2 reduces to:

AT
~ s = ~~Aa,

This value for tension can be substituted into Equations VI-3
and VI-4 which then bepome:

~ 'A?f ~'7 1 'g-4fFor the j-direction: ~ s + S ~ s1. = a TIi.

~ ~c.f k _1 ~~~For the k-direction: ~ s + s ~s~ - a ~t~

(VI-5)

(VI-b)

,where s:: s + T/~f-Aa.

These differential equations are identical to the
differential equations which describe the well known motion
.of a'lf hang ing chain II. 'Bo'WIllan (8) includes their solution

--.which is summarized below for the reader, for the j-direction
only. The sOlution is:

where the spacial ~odes,~~, are Bessel Functions:

.I~ (s) = A J (2 V s w'-:- ) + B Y (2 J s w~"2.. )T., t1 0 a h 0 a
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The magnitudes of An and Bn are determined for the initial
conditions, .f(w) and g(w). f(w) is the initial condition for
lateral displacement for the non-dimensional coordinate,
w = (:)~. g(w) is the initial condition for velocity for the
same coordinate. The Bessel function argument coefficient,~~

ft 'Z. ..l-is also non-dimensional and of magnitude 2(~)~.a

B =n

For a straight flexible filament (bl = 0) of length?R,
-, hoinitially at rest and allgned at a small angle, tan y,

....
(See Figure 17~ with the direction of acceleration, (i-direction)
f(w) and g(w) become:

g(w) = 0

The solution for ~ is therefore:

(VI-7)

~here'

The solution can now be written in simpler form as:

:0(:,t) = 1.108 Jo(2.405w) cos 2.40;;~t
- .140 Jo (5 .520w) cos 5.520~t (VI-8)
+ .045 Jo (8.654w) cos 8.6S4,t ;- ...

This solution is plotted in Figure 17'a for various values of ~t
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increasing from zero. It must be remembered that the origin
-'-of the plot (s = 0) accelerates in the i-direction with

reference to the stationary coordinate system, with acceleration,
a. It is helpful in picturing this to make the following
observation.

The frequency of the first term in the above series
expression for :!L is':ho

where g = 32.2 ft/sec~ and R is given in feet. Therefore,
the origin moves a d. istance, x, in the time, t = -1- (the

L/.f.

time required for the main portion of the filament to cross
the x-axis) of:

x = ~at~ = .851 Jl.

This is a useful parameter of the system since for any
acceleration this value remains constant. Filmment rigidity
also has very little effect, since for a completely rigid
filament, the value of x only changes -3%, to x = .8322.

C. Decelerating Filaments
The discussion thus far has been for positive acceleration.

If negative acceleration is considered, it is not possible to
use Fourier or Bessel Series to model the initial conditions
since f0r time, t, greater than zero the series do not converge.
This is sho't\TTIas follows by letting a = -a. Equation VI-5
then hecomes:

1 A~- a At1-' where s
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The solution to this equation is iden~ical to the previous
solution,for the spacial mOdeS'~n.And for time, t = 0, the
initial conditions glve identIcal values for the constants,
An and Bn• However, the tlme variation is now in terms of
hyperbol5.c cosines instead of cosines. Referring to the
series e~pression for ~, the ratio of the n + 1 term to the
n te~ becomes, in the limit, for t positive:

1T~t= e

This value is certainly greater than 1 and the series is
therefore not convergent. What is possible, however, is to
look at the first few terms of the series which means that
the only error involved is that the initial condition becomes
slightly different than the actual one chosen. There is
nothing else mathematically wrong however, since the boundary
conditions at i = 0 and.'f= 1 are still satisfied. See
Figure'l7b.

For the purpose of numerical calculation the series
expression can be divided by a number which approaches the
large amplitude that the series yields for finite n. Denoting
this number as M;

where~

~ (s,t) = ~ 1im !:
&.~ N~.o 1

(VI-IO)

Figurel7b is a plot of Equation VI-IO for increasing values
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of ~t. The value of such a plot 1s that one can predict the
extent of lateral deformation as a function of the increment
of time under which. the filament is sUbjected to a deceleration.
For example, if the limit of maximum lateral displacement is
set at approximately fifteen units of initial lateral
displacement, ho' then from Figure 17b ~t is seen to be
apprOXimately ~t = 0.5. Therefore a limit of the If time
under deceleration ii would be, t = 0.51\3 = ({l/af. For
example a one foot filament can be subjected to a one g
acceleration for only a little less than .2 seconds before
the magnitude ratio becomes fifteen. This solution has been
verified in the laroratory in a qualitative way only.by
watching pieces of string fall from an initially vertical
configuration. The observed shape is that of Figure17b and
the time increments have the correct order of magnitude. The
most fascinating observation made during these experiments is
that the top point of the piece of string falls vertically, as
in Figure l7b. The suggestion is made to the reader to try
this himself, since it is so easy and so interesting.

This solution considers time large compared with R!es'
and therefore deformation takes place at an observable rate
(the falling strin~ just discussed). This is not true for
filaments under high:deceleration, because the dynromic
buckling that takes place becomes localized when the
decelerating force approaches the same order of'magnitude
as the filament Euler buckling force, and when the deformation
takes place in time~ with orders of magnitude of ~/as' or less.
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If the Euler buckling force is expressed as P = Ci)2. EI,
and the time for deformation as (tla)~, the parameters be' and
bq can be introduced as:

Equation VI-IU can be considered valid when ba and bq are
much greater than one.

When ba and b~ are small, the dynamic buckling becomes
totally dependent on stiffness and the entire nature of the
model must change. Figure 18 shows an 8.5 mil nylon
monofilament, initially under tension. The filament is
attached at one end to'a clamp shown on the right 'side of
the photographs of Figure 18. The other end is suddenly cut
and a strain release wave propagates from the cut end to the
clamped end, at velocity, as. See F'igure 20. Par an elastic
filament, the strain is completely released - the strain
energy becoming the kinetic energy of the portion of filament
behind the strain wave. Therefore, when the strain wave
reaches the right hand clamp, the entire filament is moving
with velocity, v = ~a~ The situation is completely analogous
to the uDstream side of a moving filament which is suddenly
stonoed at one point. The reader is referred to Section IX
where a complete description of the apparatus, loaned to the
author by Professor Eggerton, of M. I. T., is presented. The
one important point to be made concerning these photographs
is that they are not successive photographs or the same
filament, but photogranhs of identical filaments under
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identical test conditions, taken at successively longer time
intervals from the moment of filament rupture. This points
out the uniqueness of the phenomenon. The following treatment
attempts to analytically describe this second type of dynamic
buckling by examining the mathematics of a second model.

The second model will consider the filament impact force
to be constant for initlal deformation. T~is assumption 1s
certainly verified by Figure 18, since the time between the
first two figures 1s only ~50 microseconds, while the time
for one complete strain wave cycle is ~450 microseconds.
Therefore the initial deformation is caused by constant
impact force and becomes large before the strain wave can
return to-the deforming region. This constant force model
will first be examined for negligible filament stiffness with
a non-zero initial displacement configuration" and then will
include filament stiffness and consider a zero initial

.....displacement configuration. Only the j-direction equation
~will he considered since the k-equation is the same and the

two are uncoupled.
Equation VI-) for negligible filament stiffness and

constant impact force, P = -T, reduces to:

(VI-II)

The impact'force, P, can be expressed "in terms of the sudden
velocity change, v, as P
rewritten as:

= vEAa;-. Therefore, PA can be
~fo

p =
9iA

(Note:
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Equation VI-Il can be rewritten as:

The gener~lsolution of Equation VI-II is:

The boundary conditions will be taken as:

The initial conditions will be taken as:

~'1f (s ) = a1;t .i,a

The actual initial conditions to this problem are ~= ~~/~t = 0,

but the mathematics demands initial conditions for a non-
trivial solution. What usually occurs to an initially
straight filament moving with velocity, v, when it is suddenly
stopped at some point, is that it buckles with a predictable
wave length as will be discussed later in this section.
However, for flexible filaments with extremely small stiffness
these waves can be smaller than the normal perturbations
occurring from high speed motion through a piece of moving
machinery. The above initial condition (See Figure 19) is
chosen to represent such a perturbation. This initial
condition will not be used for stiff filaments under similar
impact.

The solution becomes:

where \)?:- = v( v:! )~
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where:

As in the previous solution for buckling flexible
filaments the series will not converge. Therefore only a

finite number of series terms can be used. Again it is
stated that this only means that the initial condition is
slightly altered. If b (where i = b is the position of
maximum deflection) is chosen as O~l the second term in the
expression for an is negligible for n <100. Therefore, an
can he written as:

_ (2ntre)(10-:-"?- )an - (('IIn/lOy•• +1 )i" n < 100

This solution is plotted in Figure 19 as ~o versus i for
increasing values of ~~t. Itrshould be uointed out that for
this solution the initial deflection at i = 1 is not zero

~ 10but h; = e~/. This is considered small enough.
In this figure, as was done before with Figure 17b, it is

'7maxpossible to estimate the magnitude of the ratio, he' as a
function of time (~~t). For example, for a one inch portion
of filament (j= ~), moving at 100 ft/sec (v = 100), with a
strain wave velocity of 6500 ft/sec (as = 6500)~ it takes
approximately 35 mIcroseconds for the initial perturbation to
increase by a factor of four. These numbers correspond very
roughly to the situation shown °in Figure 18. However, the
initial confi~uration of this figure is not a random machine
perturbation, but a unique and predictable phenomenon as will
now be shown.

When filament stiffness is of a magnitude such that the
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buckling wave length is larger than normal machine excited
perturbations it is possible to pick initial conditions which
are unique. The work reported in Reference 2 was concerned
with the dynamic motions and buckling which take place when
the strain in a filament is suddenly released. The work was
done as a Masters Degree Thesis by the author. The equations
developed are reviewed and elaborated on here because, as is
shown as follows, the buckling that takes place is completely
analogous to the buckling that takes place when amoving
filament is suddenly decelerated.

This analo?y is clearly seen from the well known solution
to Equation 111-2:

where~ ).~(o t) = 0,
.6X '

a..a. =s

The solution is expressed in terms of strain and velocity as:

(VI-l2)

where' u(s-a t)=Os

Referri~g to Figure 20 (illustrating the situation dealt
with in Reference 2), as the strain release wave proceeds
from the suddenly free end (s = 0) the region behind the wave
has zero strain but positive velocity, E~as. This means that
when the strain wave reaches s =~, the entire filament has

-89-



s =0

ZERO STRAIN STRAIN = Ef

ZERO VELOCITY

s=i

FIG. 20

STRAIN WAVE PROPAGATION

o

o 0 = 6,0 MIL

X 0 = 8.,5 MIL

G 0 = 12.0 MIL

100 200 300

v. ft
Impact, sec

400 500 600

FIG. 21

WAVELENGTH RATIO vs IMPACT VELOCITY FOR NYLON MONOFILAMENT

-90-



zero strain and positive velocity, £fas• Thus the filament
is completely analogous to the upstream portion of a moving
filament (of velocity, v = €~es) which is suddenly stopped at
one noint.

The results of the Masters Thesis are reviewed as
follows, beginning with the linear position vector:

For negligible air drag and gravity effects Equation II-4.... ....
reduces, after substitution of H, (for the j-direction only)
to:

The houndary conditions are:

(VI-l)

( ~~. ( ~",~ o,t) ~~~(O,t) =~ ast,t) =os(ast,t) = 0

~ (0, t) :: ~~ (00, t) = 0
I ~ S

The actual inlti8.1 conditions .are:

:A.~~(s,O) = ~ t(s,O) =.0

~(s,O) = 0,

(VI-14)

(VI-1S)

(It must be pointed out that the coordinate system has been
chan~ed here for consistency of presentation. Positive s is
now taken as beginning at the right hand clamp of Figure 18
and increasln~ towards the left,-while time is referenced to
the moment of impact.)
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The unfortunate fact is that the answer to this problem
is ~(s,t) = O. However, what really happens is that after
the strain wave has passed a certain distance, the filaments
lowest energy configuration suddenly changes from pure axial
compression to lateral deformation. It then buckles and it
is at this point that the above prohlem formulation becomes
valid, with initial conditions given by this initial mode.
The initial mode can be found by assuming that at some time,
to(and corresponding distance to the strain wave front,
sa = asto) there will be a configuration which satisfies the
above differential equation and boundary conditions. For a
wave solution this initial strain wave front distance is found
to be a mUltiple of II EUler ~laveLengths II (namely 5) where:

f3(S.O) ="1o(Sin~ 2~s,_,~ Sin~2~s). o <s<5Ao(VI-16)

waere: AQ= 211' J¥ = "EUler Wave Length"

Thus when the strain wave has moved a distance of sa = 5 Ao the
filament has a deformation mode of lower energy than pure
axial compression. This mode then becomes the initial
condition for the above nroblem. Therefore the boundary
conditi.ons are:

~~ ~"1
~(O,t) =~s(O,t) ='1'(oo,t) =~5(~,t) = 0

~(o,t) = ~ (co,t) = 0« AS
And the simulated init:t.alconditions are:

'1( s. 0) = "to (s in ~ ~: - ~ s in ~ ~). 0 <. S ,( 5 Ao
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f(s,o) = 0, 5 ~<. s <.l

~~~(s,o) =
Q S'

..:L (0 < S <. S 1\0) ,as
The differential equation is no longer uncoupled and becomes:

(VI-17)

where u(s-ast) is as nreviously formulated.
This prohlem as formulated ahove was not solved previously

and will not be solved here becausebf: itsinhe'rent complexity.
~lso';':the"buckling that: takes'Jpltice!-deci?eases'long.ftild1nnili

eompre:3s:i;v'~.?strain end therefore the coefficient vas. The
problem can have a ponlinear formulation, which is discussed
in Reference 2, but the equations are too complicated for this
context.

It is possible to measure the deformations of filament
samples which have been buckled in this manner. For copper
wire (3.S~mildiameter) which yields at low strain - before
the nonlinear deformation can take place - the wave lengths
agree very well with those predicted by the initial condition
function, ~(s,o). Figure 22 is a plot of the average measured
wave len~th of a deformed sample as a function of the
caleulated impact velocity, V, 'where: v = E~as. The vA-Iue
of as was calculated from the average material properties. ~~
is calculated from the measured load of a sampl~ at rest
just prior to being cut and allo'f.redto buckle dynamically.
This is a nice controlled variable experiment and as
previously discussed it is analogous to a sudden velocity
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decrease (of magnitude v) for a moving filament. The measured
values are only slightly higher than those predirited.

For materials with higher yield strains (polymers such
as nylon, dacron and saran) the wave' lengths ~.'ofthe.deformed
samples are always several times higher than predicted by
linear theory, a 'Point substantiated by the nonlinear
formulation of Reference 2. In Figure 21 the results of a
series of tests of nylon monofilruments of varying diameter
are plotted as A~,the average measured wave~length of deforme4
sample~ divided by ,}\~,versus calculated impact velocity, v,
where again, v = £~as. The values of as were measured on a
Pulse Propagation Meter for the samples in question. 6+18
again calculated from the measured load of a sample at rest
just nrior to being cut and allowed to buckle dynamically.

It is shown in Reference 2 that th'evalue of the wave
length ratio should be independent of load for a given sample,
if the load is of sufficient magnitude. This is supported by
Fipure 21, the value of the ratio approaching 4. It is also
seen from Figure 18 that, this is'the correct order of
magni tude increase in the final wave l'ength'from.;..the .initiel
wave length.

The buckling described thus far has been considered only
two-dimensional. Referring to Figure 23, a 10 mil nylon
monofilament, of two inch initial length, is shown as it
buckles statically into the third dimension. This occurs, as
is predicted by the solution of the equations for the model
of Kererence 2, when the maximum tangent angle reaches 900•
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This occurs when the jaw spacing is one half the initial
filament length. This limit of two-dimensional stability is
suggested for dynamic buckling also~ and is partially born
out by Figure 18 where the right hand wave is seen to become
three-dimensional, and coil up, at about the same time that
the maximum tan~ents become vertical.

The effects of acceleration on filament motion have thus
been analyzed analytically and verified experimentally to a
certain degree. It was not possible during the course of this
study, to obtain the number of'monofilronents of different
materials that would be considered satisfactory from an
experimental point of view. It is suggested that future
experimental verification should be carried out - once these
different material monofilaments become available.

An example of the application of this material on the
dynamic buckling of filaments concerns the external filling
supply ai'the Draper Shuttleless Loom. This consists primarily
of a yarn cone from which approximately 7 ft. of yarn is
intermtttently withdrawn at a frequency of -4 cps. The
establishment and collapse of the yarn balloon wes described
in the early part of this section. The remaining portion of
the filling sunply is the mechanism which accomnlishes the
intermittent withdrawal. Included in this mechanism is a
II yarn hrake 1T t-Jhichstons the flow of yarn from the package
to the loom at one point aiong the filament path.

The suddenly stopped yarn buckles dynamically in the
region immediately upstream of' the brake and lateral deformation



proceeds at a certain rate. If the duration of brake application
is beyond a certain minimum, the lateral deformation is so
extensive that yarn self entanglement may take place. However,
yarn deformation can be kept below this level by limitting the
braking time to this minimum value. Thus it is seen that
knowledge of the phenomenon allows a prediction of' this
minimum time duration to be made, thus allowing the loom
desi~ner to nroperly desi~n the brake.



VII. EFFECT OF SURROUNDING MATRIx

A. Introduction
This thesis has thus far only dealt with the dynamic

motions of filaments in a low resistance medium, namely air.
It is now necessary to examine the principle effects that a
solid medium has on filament motion. An example of this is
the. single filament in an assemblage of filaments which
suddenly breaks .as the entire assemblage is pulled to rupture.
The assemblage strength is obviously dependent on the local
mechanism o.fload transfer of the individual filaments. A
specific example would be the fibers in a twisted yarn. This
is a problem of practical interest and the one mainly dealt
with in this section.

Therefore, consider a hypothetical filament embedded in
a matrix (the matrix being the other filaments of the
assemblage) where the interaction between the filament and
the matrix is model~d~ as, (1) a constant shear stress
resistance along the filament length corresponding to a
frictional interaction between filaments, and, (2) a linear
force variation in the matrix with lateral deformation of
the filament.

The filament is initially at rest. The entire matrix
including the filament is then given an increasing tensile
strain until the filament breaks. Considering only one half
of the broken filament, a strain release wave is seen to
propagate from the break along the fiber, thus into the matrix.
The energy released is modeled as being absorbed through two
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mechanisms. The first is an increase in the kinetic energy
of the filament itself and the second is a dissipation of
thermal shear energy at the interface of the filament and
the matrix.

The strain discontinuity (or the strain release wave)
propagates along the filament until a point is reached where
the accumulated effect of matrix filament shear has decreased
the strain discontinuity to zero or in"other words until the
strain behind the discontinuity equals the original strain,~~,
at which the filament broke in one spot. The position of the
break is taken as x = O. The strain wave propagates in the
positive x direction. At x = Xo the strain discontinuity
goes to zero as indicated above.

At points beyond x = Xo the strain discontinuity is
zero; there is no longer any relative motion between filament
and matrix. The resistive shear force suddenly increases at
x ~ Xo since the static coefficient of friction is operative
beyond this point rather than the lesser kinetic coefficient
of friction. Thus the remaining filament and matrix act as
a " reflection wall II for any remaining filament kinetic
energy. The presence of a reflecting wall may cause the
filament to buckle laterally.

The problem is divided into two parts. The first being
to determine to what distance the strain release wave
propagates along the filament before the accumulated effect
of lon~itudinal shear force reduces the strain discontinuity
to zero. And, the second being to look at the equations

-100-



governing the dynamic buckling that can take place.

B. Propagation of the Strain Release Wave
The nosition vector ~or zero initial ~ilament velocity

is given as:

.....The longitudinal or i-direction shear is:

~VS) - -v LlpD-e i~s x ~ /~ T

tIhere/'C is the coe~ficient of friction between the filament
and the matrix; p is the radial interface pressure; and Df is

-..:ilooo ~filament diameter. The equations of motion for the j and k
directions will not be considered for time, t ~ xo/asl where
time is measured from the instant of filament rupture.-Substitution of R into Equation II-4, ~or negligible-gravity and air drag ef1'ects, yields for the i-direction
(s = x since the filament is initially at rest):

(VII-I)

where ~ is the displacement of a given point at x relative to
that same point on the unstrained filament. The boundary
conditions are:

~~ (0 t) = 0~x' I

The initial conditions are:

A~
~t(x,O) = a
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which is to say that in the equilibrium state (t < 0 ) the
filament has constant strain hence displacement varies
linearly with x as shown in the dotted line fo Figure 24a.

The solution to this problem for 0 < t < xo/as is
given as follows:

where

Th t. f di 1 t t t. t Xo •. e solu lon or sp acemen versus x a lme, 0 = --, 1Sas
nlotted in Figure 24a. The problem is more clearly understood,
however, by considering filament strain and velocity as a
function of time.

Figure 24b is a plot of filament strain, ~~, versus x,
for 0 <t<. xo/as' given by Equation VII-3 as:

The particUlar time was taken to be t = 0.4 to.. Thus the
strain does not decrease stepwise to zero behind the strain
release wave as occurs in the If without matrix II dynamic
buckling previously discussed in Section VI. Instead it
decreases linearly with x behind the release wave at any
given time. When x = Xo the strain behind the wave front is
equal to the original strain and the discontinuity disappears
as shown in the dotted line for t = to in Figure 24b.

Figure 24c gives a plot of filament velocity versus x
for 0 < t <.. xol as for an arbitrarily selected point, x = 0 .4..xo•
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(VII-4)

This indicates that the velocity, or kinetic energy, decreases
at all x < ast, for increasing t, and that for t = to = xo/ as'
filament velocity is zero throushout.

It is worth pointing out that the influence of friction
does not change the strain wave velocity, as_ This can be
seen in Figure 24b by noticing that for x = ast (across the
strain discontinuity) there exists a finite change in strain
(therefore lnfinite ~'a.~) .and'in Figure 24c a finite veloc ity~x~ .-

b'2.change (therefore infinite ~)_ Thus the term in Equation
VII-l, e:~b,o' is negligible when considering the discontinuity
and therefore its velocity, as' remains constant.

The distance of strain wave penetration along the filament,
xo, is found to be:

0 •• b,o = 2

Therefore, the dynamic strain wave penetration is exactly
twice the penetration distance required for static equilibrium

Natrix 10

>

~fEA ol(

>

Filament /,<p 1TD,Jl
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the "staticn release penetration distance, .20, is easily found
by equating the filament tension, T = E.~EA with the total shear
force, /-tP11'D~.lo'and solving for RC). This yields

1\ = 1:.( ¥Pi ) = h~o 2 2~p 2 0

This means that for time, t, slightly less than to' the
total shear force exerted by the fiber on the matrix is twice
the original load that the filament carried, or twice the
load that the rest of the assemblage would have to hear, again,
if the break took place II SlOl-llyII. This factor of tV-TOis,
of course, a common factor for impact loading.

The separation distance that occurs at the break is also
an important (and easily measurable) parameter defined as:

~=~(ot) =~=bx0e.uF '""l , 0 2 104 r- :.b = l:LL...'0 X E-o 'f

This dynamic deflection at x = 0 as shown in Figure 24a is
predicted as twice the static or 11 slowly released reflection H

that would occur if the break took place n slowly I', as just
described. This value of static deflection can be found
easily by directly integrating Equation VII-l for ~£~= o.

In order to verify this solution and to validify the
factor of two by which the displacement is multiplied in the
dynamic case, we have conducted a set of simple tests. The
variable measured is 6~, or the displacement at x = o.
Figure 25 is a crossplot of this displacement for the static
and for the dynamic release situation in the apparatus shown
in Figure 26. In these tests a strip of rubber shown is
given an initial strain. Two smooth plexiglass plates are

-105-



6050
I J I

10 20 30 40
8 DYNAMIC,mm

FIG. 25

8 STATIC vs 8 DYNAMIC FILAMENT MOTION WITHIN MATRIX

o

30

E
E 20
u
....
~....
(f)

eo 10

FIG. 26

EXPERIMENTAL APPARATUS FOR FILAMENT MOTION



then used to form a sandwich containing the strip. The
strip is then released statically or n slowly H and then
dynamically or 11 quickly H. The deflection at the end of
the strip is measured for each type of release, at increasing
values of initial strain. Figure 25 illustrates the consistency
of the multiple of two that is predicted by the theory.

C. Dynamic Buckling Within the Matrix
"Jhen a filament breaks as described above, one of the

two parts may have a length less than xo. If this is true
then this part will contain kinetic energy when the strain
wave reaches the end of that filament segment. This piece
of filament will then travel through the matrix until this
energy is dissipated or until it collides with something. If
the latter is true the impact force felt during collision may
be high enough to buckle the filament laterally into the
matrix.

If the filament length is sufficient but the matrix is
not continuous as modeled:~ and holds the filament tightly at
some point, x <. xC), then impact and ensuing buckling also may
occur. If it does and if the matrix is of finite height (or
radius) the filament may actually penetrate to the surface of
the matrix. This is a common occurrence while~apiece .of yann
is breaking. Fibers vThichhave hroken inside the yarn are
actually seen to " pop n through the surface. Also during
the drafting of fiber webs, although breakage is not
necessarily occur~ing,this same sudden migration takes place
upon sudden release of tension as fibers slip by one another.
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The three photographs of Figure 27 are examples of the
il pop-out 11 phenomena. The top photograph shows a piece of
cotton roving that has been pUlled apart - or drafted. Fibers
near the surface are seen to pop through the surface while
the roving is being pulled apart. They pop out very quickly,
with considerable velocity and it seems reasonable that the
energy must have been suddenly-released tensile strain energy.

The middle photograph was taken of a test strand comprised
of dacron monofilaments twisted together on a special apparatus
(29). Several individual monofilaments in the central region
of the strand were broken, while the fiber assemblage was
under moderate strain. The ruptured filaments are seen to
have buckled laterally and popped through the surface. In
the bottom photograph, the buckled monofilament was at the
exact center of the strand - being identified by its color -
and was the only monofilament broken. The yarn was clamped at
the extreme right of the picture where the-broken filament
buckled configuration is slightly evident as -two loops protruding
through the surface. To the left of these loops the tangled
configuration indicates the mode of strain energy disipation.

In order to better understand this type of filament
motion, a very pl:'elim1.narylook at the basic equations
involved yields a parameter with which it should be possible
to categorize different assemblages with respect to the
extent of this efi'ect. This parameter could be helpful in
any experimental work contemplated.

The basic governing equation for this type of buckling
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is Equation VI-I]. However, it is necessary to add a term
for the resisting force of the foundation, where the force
is considered to vary directly with the filament's lateral
displacement into the matrix. The boundary conditions do not

..a..change. Therefore, for the j-direction only:

= 0 (VII-S)

Where: K = Matrix Stiffness
v = Filament Impact Velocity

The boundary conditions are:

(Note: The x coordinate is now measured from the point of
impact; ..time from the moment of impact.)

As explained in Section VI, there are no initial
conditions to the problem. Also, it is necessary to include
the propagat:lon of the strain wave along the filament. This
will not he done here, since as explained in Section VI, the
model 1s not valid for large time because of the buckling
deformation affecting the equations themselves. It is
possible, though, to find an initial deformation mode with
lower potential energy than pure axial compression. This
mode occurs after the reflected strain wave has traveled a

i~ ....certain distance, Xo = asto• The first such mode to appear
is described by Equation VI-lb. The time dependence of
amplitude associated with this mode is given by this equation
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as:
b,1.(l-b,: rk t/t:-

e (VII-6)

where:

P = Impact Gorirpressive"Force

This ex~ression makes it very clear that if b'3 is greater
than one, the time dependence is oscillatory with small
deflection, while if b'1 is less than one, then the time
dependence becomes exponential and deflections large.
Therefore, for filament assemblages it is important that:

(VII-7)

In this expression P is the filament impact force and
is, of course, a function of the kinetic energy remaining in
the filament at the moment of impact. The criteria chosen
to relate these two, is that the velocity of impact is taken
as that required of a solid rod in order that the rod have
the same kinetic energy as the filament, at im~act. This
gives a relation between strain, £~, and l!xo of:

b = 25
,.q 12

KI > (1- L-t (1- .L + (.!L.)3. )
~3-EAa. Xo Xo x 0

F
(VII-B)

This expression is interpreted as follows. If a filament is
held at a point, x = i , which is less than Xo (xo = E .€fDF )~JCp ,

then impact will take place, followed by buckling. If
Equation VII-8 is valid, the lateral deformation will be
small - if not, then it will be largeo

The above ex~ressions have been developed in order to
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obtain a general idea of the effect that a surrounding matrix
has on the filament motions discussed previously. However,
this subject warrants further, more specific investigation
because of the many practical situations that can be represented
by this kind of model. These include fiber motion during
yarn breakage, fiber motion during drafting and carding,
filament motion during cable breakage, etc.

Dynamic snap back such as has been described in this
section, is an imnortant mechanism which accounts for load
transfer on a local level, within an assemblage of fibrous
elements. It is a significant part of the rupture phenomenon
in heterogeneous structures such as those encountered in
textile products, and in many composite materials.
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VIII. DISTINGUISHING PARAMETERS

Certain dimensionless comhinations of variables have
been found which are helpful in catagorizing the motions of
moving filaments and tapes. They are listed here and discussed
briefly as an aid in understanding the material of this thesis.

Stiffness Parameter

b - -_~_---• - ( ca. -va. )J2..2..

The stiffness pa~ameter refers to the relative importance of
filament stiffness, EI, to n net filament tension Ii I T_~~va..,
and is normalized with respect to the system length, oR. It
is most easily understood as the square of the ratio of
boundary length, ~ , to system length, Jt. 6 refers to the
length of filament adjacent to a boundary which can be
considered as a static /I beam It - while considering the
remaining filament as a vibrating" string tI. The effect is
considered negligible for b,« 1.

Corio11s Parameter

= -2~ovR = -2wov~Ail
c'2.-v'" 1'_ ~~Av2-

The Coriolis parameter refers to the ratio of the H Coriolls
force it, 2 wov,?.,AJl., to the net filament tension, T...yfo Av2.... It is
twice the angle of rotation of a filament about its axis,
measured within the system boundaries at a fixed instant of
time. The effect is considered ne~ligible when b2-« 1.
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Lon~itudinal Air Motion Parameter

The magnitude of b3 refers to the relative importance of the
force from longitudinal air motion, rOAvQt, to the net control
tension, T- ~Av~. rD is the linear air drag parameter. AVq

~is the velocity of the induced i-direction air motion. The
effect is considered negligible when ba <0( 1.

Centrifu~al Force Parameter

This parameter indicates the magnitude of the centrifugal
force, ~~Aw~~~, compared again with the net control tension,
T-~~v~. This is the most significant parameter in determining
the dynamic aspects of filament motion, since if b4 « 1
then all filament particles can be considered to follow the
same path through the system.

Lateral Air Drag Parameter

The ma~nitude of this parameter indicates the relative
imnortance of air dra~ in determining filament oscillation
amplitude. It is specifically the ratio of lateral resistance
force, r~wo~~, to filament net control tension, T-'fv~. If
bs « 1 then the system amplitudes, at resonance, can be
large.
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Gravity Parameter

This parameter refers to the relative magnitude of gravity
force, ~+Ag~, or filament weight, to the net effective tension,
T_~Av2.. If the weirrht of the filament is small compared to
the net tension, then ~ravity can be ignored.

iiMachNumber"

b, = ~ = v "",/ 1

This ratio of filament velocity, v, to lateral wave phase
velocity, c, 1s the most important measure of the effect that
n through-put velocity II, v, has in determining the dynamic
oscillations of filaments and tapes. For situations where
v ({ C (b7 « 1) filament longitudinal motion can be neglected
and the filament modeled' as fixed or attached to the system
boundaries.

Dynamic Buckling Transition Parameters

b - ( E )~
C1 - . \+a.o.

When a filament is subjected to a longitudinal deceleration,
ai' of suff1c~entmagnit1J.de, the filament will buckle laterally.
The parameters, bB and bq, can be used to predict the buckling
mode. If they are both small compared to one,the huckling
mode is dependent on filament stiffness and buckling waves of
nredictable length ~ccpr. If they are both ~arge the buckling
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becomes highly dependent on the initial shape of the filrument.

Matrix Strain Parameter

b = '1r6pDt Xo
lO EAe~

This parameter refers to the ratio of total dynamic shear
force exerted by a matrix on a. filament I 1r.fCpD+xo' to
filament tension, EAE~. If a strained filament is sUddenly
let free at one end and the filament is of sufficient length,
then blo = 2.

Tension Pa!'ameter

b" =v ~)V2.
The tension parameter, baa' is the square root of the ratio of
filament tension, T, to filament momentum flUX, ~~Av~. If b ..
is large compared to one, then filament motion is primarily
controlled by fiiament tension. If baa is small compared to
one then filament stiffness or air drag act to control filament
motion. For constant tension, bu- becomes equal to the
reciprocal of b7, the Equivalent Mach Number.

Dynamic Bucklin~ Amplitude Parameter

This ratl0 of filament impact force, P, to the quantity,
FT~~A, refers to the rate at which the amplitude of dynamic
hucklinrr increases. For biz..increasing from zero, the
deformation will proceed at progressively higher rates.
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Assemblage Parameter

b - Q (KEl)~
'2.. - 12 pz..

This parameter describes the relative effect of matrix or'
as~emblage stiffness, K, and filament stiffness, El, to
filament impact force, P. If bl~ is greater then one then
the dynamic buckling of a filament within a matrix or'
assemblage will have small oscillatory amplitude. However,
if bl~ is less than one then the amplitude will be exponential,
and large.

Assemble~e Parameter' for Strain

b
l4

= .?2
1
2
2

_K~I~
€:l..EA.l..

f.

This narameter' is similar to narameter, b\3. However', the
arbitrary value of imnact force, P', has been estimated as a
function of the initi~l filmment strain and the r'atio of
filament length, i, to strain wave penetration len~th, x~.

If

then the lateral deformation of a single filament after
breaking within a matrix of similar filaments will be small
and oscillatory. If the statement is not true the later'al
deformation will be large.

kg Solution Parameters
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These two na~amete~s a~e functions of pa~amete~s b, through bs•
They are used to consolidate the presentation of the ko

solution. If air drag is negligible the angle e~becomes equal
to zero and the ko sOlution is considerably simplified since

Filament Rotation Parameter

This param.ete~ refers to the rotation of a moving filament
about the x-axis, relative to a plane rotating with the
filament at angula~ velocity, ~o. It is a direct function
of parameter b~ as shown.

Wave -Number Parameter

= woNc
l-b"1~

This parameter is a measure of the product of corrected wave
b ~o/c d t th nnum er, 1 I~' an sys em leng , ~ •-v~ c

Relative Frequency Parameter

This parameter is equal to twice the ratio of the forced
input frequency, wo, to the natural frequency of the k 0

solution fo~ zero air drag,ll.. For b,'9 equal to odd intege~s
the system amplitudes are a minimum. For b.q equal to even
integers, o~ forced input frequency equal to system natu~al
frequency, ~esonance occurs and filament amplitudes become
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large. This parameter is also a measure of the number of
half "balloonsll that the filament path contains.

Solution Limit Parameter

b2.0 = AT = !(~t ..( ba. )2-
To .9.. 2b i b '(t,s n ,Q2

This final parameter is stated as a means to predict the
limit of validity of the basic linear equations of moving
filaments. b~omust be small compared to one for the equations
to hold, since the assumption of constant tension is no longer
valid if b2,O is comparable to one.
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IX. EXPERIMENTATION

This final section contains a description of the
experimental apparatus that was used in obtaining the data
and some 01' the photographs presented in this thesis. Also
included here are explanations 01' the method used to compare
the results of the numerical integration of'the non-linear
equations of filament motion reported by Padfield (4), with
the equations of this thesis •

.A. Filament Rotation Angle Measurements
The values of filament rotation angle, b'i' plotted in

Fi~ure 12 were obtained in two ways. First by calculating b'7
from numerical data given by Padfield (4) and secondly by

directly measuring Padfield)~ space curves. A typical set of
these filament space curves is reproduced in Figure 28a. The
nomenclature identifying these curves has been changed to that
of this thesis.

Points A and B of Figure 28a were chosen as the system
boundaries. The value of bl..., was found by measuring the

h1C4S

amount of filament rotation about the x-axis between points
A and B.

The values of calculated filament angle, bnl were
CQ,c:.

obtained.from"Padfield' s original data using the definition
of brt of this thesis:

~
bl1 = "2 b..,b."

"'Thereh, is the ratio 01' filament velocity, v, to lateral
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wave velocity, c, and where b1qis directly measured from the
figures as shown since it represents the number of half
balloons.

Referrin~ to Figure 28a, a sample calculation is given
as follows:

b = 1500 (From Figure 28a)
l'7 tl'\eQS

b, = .342 (Given in Ref. 4)

b'9 = 5 (From Figure 28a)
b = (900) ( .342) (5) = 1540

\'c:.q\c.

The agreement between the two values of b'7 is seen to be very
good for this case.

B. Boundary Region Frequency Measurements
The frequency measurement apparatus shown in Figure 15

was used to measure the natural frequency of 27 mil nylon
monofilaments, of lengths varying from 1.5 inches to 18 inches.
The range of' tension varied from 200 grams to 1200 grams.
The apparatus functions as follOWS. A filament is positioned
between a high intensity d.c. light source and a photovoltaic
cell. The cell is behind a metal sheet with a quarter inch
by ten mil slit. As the filament vibrates laterally at
its natural frequency , _.excitedby the random room vibration,
it creates an a.c. voltage in the cell by blocking out
light. This voltage is fed through a differentiating circuit
and into an oscilloscope. The signal is too small to be
read directly, but by adding a voltage of known frequency,
from an audio oscillator, the oscillator signal can be tuned
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to the filament frequency by watching the oscilloscope. The
value of frequency 1s then read from the oscillator. (Figure 28a)

c. Balloon Len~th Measurements
The values of b~ plo~ted in Figure 16c, were also obtained

from the numerical data of Reference 4, discussed above. b,q
is measured as shown in Figure 28 and then calculated from
Equation V-3o,

(V-36 )

For an overend unwinding cone, as in this case, b" is
equal to the recinrocal of b7• Therefore, Equation V-3D

becomes:

The values of blCf calculated from this equation with the data
accompanying each figure of Reference 4 are those used in the
cross plot of Figure 160.

The balloon measurements plotted in Figure lbb were made
using the yarn ejector shol~ in Figure 29a. This ejector
consists of an air turbine which drives a set of gears, with
which yarn in turn can be driven at speeds up to 300 ft/sec.
These gears were used to withdraw yarn overend from a yarn
cone. The distances from the y~~h~take off"pbibt tb the'yarn
nodes, or points of minimum lateral displacement, were
measured. The yarn path hetween two such nodes is ~alled one
balloon. Each additional halloon is equivalent to an increase
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of two in the magnitude of b1q• Figure l6b is a plot of the
number of half-balloons, b.q, as a function of x.

This yarn ejector was also used to obtain the photographs
of Figures 4 and 29b, c, d, e, f. Cotton yarn was forced to
i1flowll(from left to right in the figures) by this apparatus.
These figures are interesting because they depict yarn flow
which is being governed by yarn momentum rather than yarn
tension, as is usually the case. The analogies drawn between
this type of filament motion and the flow of fluids, in the
captions of these figures, are only to draw attention to this
similarity. The photographs were taken in a semi-dark room
with the aid of one flash from a Strobotac Unit. The overall
motion 1s evidenced in the -envelope of the yarn configurations,
while one specific configuration is in focus.

D. Dynamic Buckling Photographs
The photographs of Figure 18 were taken with the aid

of Professor Eggerton of the Electrical Engineering Department
of M.r.T., and the equipment of his laboratory. The following
procedure was used. An 8.5 mil nylon monofilament, 18 inches
long, was stretched between two supports under strain. The
monofilament was then broken at one end with a rifle bullet.
Almost simultaneously a single light flash from a flash unit,
triggered by the shock wave of the exploding rifle, exposed
the negative in a camera focused on the other end of the
filament. The laboratory lights were kept low during the
experiment in order not to over-expose the negative. The six
photographs of Figure 18 '~ere obtained by progressively
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increasing the time increment between the rifle explosion and
the light flash, with an electronic delay. Thus the six
photographs do not show the continuous buckling of the same
monofilament but rather progressively later stages in the
buckling of six identical monofilaments.

E. Dynamic Buckling Wave Length Measurements
The deformation wave lengths reported in Figures 21 and

22 were measured from dynamically buckled samples of copper
wire and nylon monofilament. The samples were dynamically
buckled while held by the jaws of an Instron Testing Machine,
by cutting one end of the sample. The average wave length of
the deformation at the other end of the sample was measured,
as a function of'the initial tension level in the sample prior
to cutting. The abscissa of these two figures, v, (Estimated
Impact Velocity) was then calculated from this initial tension
level and from the estimated dvnamic modulus of the material,
as explained on Pages 93 and 94"where'"tlfie'figuresl are~:.discu(ssed
in detail. These wave lengths were difficult to measure
because it was hard to define exactly what a complete wave
was. However, reproducible data was obtained for the copper
wire by measuring only the length of the wave immediately
adjoining the jaw. While consistent data was obtained for
the nylon monofilament by averaging the measured wave lengths
of the entire deformed sample.

F. Experimental Apparatus for Filament Motion
The apparatus shown in Figure 26 consists of a sandwich
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formed from two fi inch by l~ inch plexiglass plates and a
~ inch by 1t inch rubber strip. The elastic bands surrounding
the sandwich force the plexiglass plates to exert a pressure
on the rubber strip. The data of Figure 25, were obtained by
repeating the following procedure. The top plexiglass is
raised out of contact with the rubber strip and the strip is
then given an initial strain. The top plate is released and
the sandwich is formed. The strip is then released statically
or "slowlyJland then dynamically or "quicklylJ. The deflection
at the end of the strip is measured for each type of release,
at increasing values of initial strain. Figure 2$ illustrates
the consistency of the multiple of two that is predicted by
the theory.
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x. SUMMARY AND CONCLUSIONS

The material of this thesis is the result of'an attempt
to formulate a general analytical approach to the phenomena
of moving filaments and tapes. This material has been presented
as equations, which can be used to predict the paths through
space of actual filaments and tapes that are subjected to
forced displacement oscillations. In order that the predictions
of these equations be accurate, the effect of filament bending
stiffness, filament tension, gravity and air drag were included
in the analysis.

The concept of a filament position vector, H, was used
to identify in a general manner the position or path of the
filament as a function of time and the spacial coordinates.
A general vector differential equation was then derived in
terms of this position vector.

This general vector differential equation has been examined
extensively for the case of linea~ filament motion. The term
linear filament motion refers to filament motion which is
essentially straight line travel between two points with the
addition of small perturbations in the two lateral directions.
The solutions 01' these equations are applicable to many practical
problems of monofilament, multifilament and staple yarn processing
situations such as the spinning balloon, the overend unwinding
balloon and the yarn space curves near the traversing mechanisms
of winding machinery. They can also he used to predict the
snace paths of thin tapes, where air drag becomes important,
and hee.vymetal cable, wh~~e stiffness becomes important.
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The concept of a stiffness boundary region was developed,
which can be utilized to predict easily the extent that
filament motion will be a function of stiffness. The parameters
of the equations which describe filament motion for zero
stiffness have been modified to include the length of this
boundary region.

The effect of acceleration and deceleration in the
direction of filament overall travel has also been examined.
Equations are given which can be used to predict the time
dependence and mode shapes of both the stable oscillations
of an accelerating finite length filament and the unstable
deformations of a decelerating or dynamically buckling
infinitely long filament. It is possible to use these
equations to predict the extent of the lateral deformation
that occurs when a moving filament is suddenly stop~ed at
one point alonq its path. This prediction includes both the
mode of deformation and the rate of deformation.

The effect that a surrounding matrix of solid material
can have on the dynamics of filament rupture has also been
examined. Equations of motion for this phenomenon allow a
prediction to be made as to the minimum fiber rupture length
that is observed in a yarn that has been strained to its
breaking point. They also provide, to a limited extent, a
quantitative picture of the internal dynamics of a breaking
yarn. The internal dynamics of a breaking yarn is important
in determining yarn strength efficiency.

The equations of this thesis which predict filament
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paths and strain distributions have been experimentally
justified to the point where they can be considered at least
qualitatively correct. This includes comparison with
previously puhlished experimental and numerical data,
comparison with actual experimentation undertaken expressly
for this thesis, and the use of photographs, including high
speed photographs.

A set of twenty non-dimensional distinguishing parameters
have been developed which help to catagorize the many
variables which govern filament motion. These parameters
allow predictions to be made as to the relative magnitudes of
filament stiffness, air drag, gravity, etc. They can also be
used to predict identifying quantities such as the number of
filament balloons, the magnitude of the filament rotation
angle, the length of the boundary region, etc. They are
also considered to be logical correlation parameters for
experimental or numerical data.

In conclusion, this thesis is considered to have adequately
covered the range of possible linear solutions to the
differential equations developed"and',tb,~,have'~,qualitative ly
verified these solutions. The most important continuation of
this work would be a comprehensive experimental investigation
of several situations, typical of actual textile processing
machinery, using the parameters and equations of this thesis
as guideposts. This material would then be of utmost value
1n the design stage of any machinery which handles high speed
moving filaments, because it would allow the designer to
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predict the filament strain, tension, and amplitude caused by
machine-material interaction.

Examples of specific areas of applicability include the
early stages of polymer monofil~ent or glass monofilament
production. The effect of variable tension or strain caused
by forced filament oscillation as a result of a machine-material
interaction, will increase output variability if the material
is sufficiently weak or soft. Another example concerns the
space limitations for filament processing machinery. Space
limitations can become critical and the filament processing
machinery designer must be able to design for minimum filament
oscillation amplitudes. -He must also be aware of the variations
in filament behavior as production speeds approach certain
limiting values such-as occurs when the" effective tension ",
T- 9~AV~, becomes small.

The designer of mechanisms that interlace, or intertwine
thread or yarn should be able to predict the perturbations
from a straight line path that a filament will have as a
result of dynamic effects. The sewing machine rotary stitching
mechan~sm is an example of a mechanically optimized mechanism
which.has become speed-limited by the material that passes
throu~h it as a result of machine-material interactions. By
altering the mechanism threa~ guide path to include the effects
of thread inertia, it should be possible to reduce thread
oscillation and strain and tension levels and thus increase
machine speed.

An example of undesirable interaction between adjacent
yarns occurs during II beaming II or the operation of 100m beam
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~reparation. Actual entanglement may take place if yarn
lateral oscillation is sufficient to allow contact of two or
more adjacent yarns.

During the process of stretch-breaking of polymeric
monofilaments the snapback and dynamic buckling that takes
place is an important production variable. This is also true
in the carding and drafting of staple fiber. The snapback
and dynamic buckling that occurs as one fiber breaks in an
assemblage of fibers (yarn) is another example of a dynamic
effect that can be understood and included in a design
procedure.- in this case the design of a yarn. The permanent
deformation that occurs to some types of recording tape in
the immediate region of a break, can cause a permanent loss
of the information stored in that region.

These examples illustrate the areas of applicability of
this thesis. The conclusion is made that there exists within
the context of textile mechanical processing alone, a
multitude of problems requiring an understanding of the
phenomena of moving filaments. It is felt that this thesis
constitutes a general approach to these problems and that the
simplified equations that have been developed are directly
applicable to these problems.
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XI. APPENDICES

A. Appendix 1.
If a filament oscillates laterally with frequency,uu.,

then the value of the linear drag coef'ficient, rl)'can be
approximated for the case where the nonlinear dra~ coef1"icient,
0b' is constant, by equating energy 10S3 as follows:

Let:

The energy loss per cycle per unit filament length, for
constant rD is:

lr/2 UJo

2J l'1>( ~1tdt =
-ar!2UJ6

The energy loss per cycle per unit filament length, for
constant Ol,) is:

r 1f!2wo ')( "!2w6 3 2.-

2 (1)~Df-(~~f'dt = J ~~D~ ("!(s)waCOSwatf"dt = }~lbDf1(s)W.

-1r/2\).)o -lr!2wo

Equating these two values of energy loss and solving for rD
yields:

By noticing that the maximum lateral dra~ force per unit
filament length is;

the equation for rD can he simplified to:

1
~o~( s)
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This can be expressed as:

r = 8SMaximum Drag Force per Unit Filament Length
D. Maximum Filament Normal Air Velocity

The above equation is included in the discussion of air drag
forces in Section II-C.

B. Apnendix 2
By equatin~ the maximum amplitudes of Equations IV-7 and

IV-ll and solving for the filament cross-sectional Brea moment
of inertia diameter, I, it is possible to calculate both a

typical monofilament diameter and a typical multifilament
diameter. These diameters represent filaments for which the
effects of bending stiffness and longitudinal air motion have
the same order of magnitude. This is done as follows.

Let: _ -bi
/J1 max - b3
( ''1-7

therefore b - E I _ b:3
, - (T- ~fAv"Z. )jl"L - 384

Solving for I yields:

Suhstitutin~ the follovlingtypical values,
r1)= 200 lb. sec/ft

v-vq = 50 tt/sec
Q = 1ft

E = lO6p•s.i.

yields a value for monofilament'diameter of~<
D'f. = 10 mil
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and a value for multifilament yarn diameter of:

D.f.= 100 mil

where the multifilament yarn is considered composed or 100
monofilaments and where frictional interaction between
monofilaments is neglected.
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