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Abstract

Quantum computers have been shown to efficiently solve a class of problems for which no efficient
solution is otherwise known. Physical systems can implement quantum computation, but devising
realistic schemes is an extremely challenging problem largely due to the effect of noise. A quantum
computer that is capable of correctly solving problems more rapidly than modern digital computers
requires some use of so-called fault-tolerant components. Code-based fault-tolerance using quantum
error-correcting codes is one of the most promising and versatile of the known routes for fault-
tolerant quantum computation. This dissertation presents three main, new results about code-based
fault-tolerant quantum computer architectures.

The first result is a large new family of quantum codes that go beyond stabilizer codes, the most
well-studied family of quantum codes. Our new family of codeword stabilized codes contains all
known codes with optimal parameters. Furthermore, we show how to systematically find, construct,
and understand such codes as a pair of codes: an additive quantum code and a classical (nonlinear)
code.

Second, we resolve an open question about universality of so-called transversal gates acting on
stabilizer codes. Such gates are universal for classical fault-tolerant computation, but they were
conjectured to be insufficient for universal fault-tolerant quantum computation. We show that
transversal gates have a restricted form and prove that some important families of them cannot
be quantum universal. This is strong evidence that so-called quantum software is necessary to
achieve universality, and, therefore, fault-tolerant quantum computer architecture is fundamentally
different from classical computer architecture.

Finally, we partition the fault-tolerant design problem into levels of a hierarchy of concatenated
codes and present methods, compatible with rigorous threshold theorems, for numerically evaluating
these codes. The methods are applied to measure inner error-correcting code performance, as a
first step toward elucidation of an effective fault-tolerant quantum computer architecture that uses
no more than a physical, inner, and outer level of coding. Of the inner codes, the Golay code gives
the highest pseudothreshold of 2 x 10- 3. A comparison of logical error rate and overhead shows
that the Bacon-Shor codes are competitive with Knill's C4/C 6 scheme at a base error rate of 10- 4.
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Chapter 1

Introduction

1.1 Prologue

Modern digital computers are realizations of mathematical objects called universal Turing machines,

originally defined in 1936 [Tur37]. Turing machines have a tape on which to read and write symbols.

A read-write head reads the current symbol from the tape and decides what to do next based on

a transition rule. Given the current symbol and internal state, the rule indicates what symbol to

write to the tape and whether or not to move the head left or right. A universal Turing machine

can simulate any other Turing machine when a description of that machine is initially written on

the tape.

Despite the fact that modern digital computers do not look much like the Turing machines that

inspired their creation, each can simulate the other efficiently. The broader idea that any physical

model of computation can be efficiently simulated on a (probabilistic) Turing machine is called the

Strong Church-Turing Thesis [BV93]. There is no way to prove this important thesis, since it is

difficult to apprehend what "physical" means in a mathematical sense, but we may agree that it is

either true or false. Significantly, our experiences suggest that this thesis is true.

Quantum Turing machines are mathematical models of computing machines that are in many

respects similar to (probabilistic) Turing machines [BV93, Yao93]. However, quantum Turing

machines may branch and run separate programs weighted by "probability amplitudes" that are

given by complex numbers rather than usual probabilities. The amplitudes are chosen in such a

way that the quantum Turing machine is time-reversible; information about its past computations

is never lost. A quantum computer is a realization of a quantum Turing machine.

Quantum computing is a challenge to the Strong Church-Turing Thesis because quantum com-



puters have been shown to efficiently solve a class of problems for which no efficient solution is

otherwise known. The class of problems contains factoring as a special case [Sho94], which quan-

tum computers can solve with complexity slightly better than O(n 3). In contrast, the best known

algorithm on a classical computer is called the number field sieve (NFS). The NFS has complexity

0 (exp [(log n) 1/3 (log log n)2/3]) [CP01], which is not a polynomial function of the number of digits

of input, and therefore not efficient.

One reason for current interest in realizing a quantum computer is that large quantum com-

puters break important parts of modern cryptography. The ability to solve problems called hidden

subgroup problems that contain factoring and the discrete logarithm as special cases allows us to

break elliptic-curve and RSA-public-key cryptosystems and solve other number theoretic problems

as well. For example, the classical complexity of encrypting a message using the RSA-public-key

cryptosystem is comparable to the quantum complexity of finding the key on a quantum computer,

so it appears likely that increasing the key size in this case is a rather weak defense against an

adversary with a quantum computer.

In addition to the spectacular successes with hidden subgroup problems, quantum computers

are also known to exhibit a number of polynomial speedups over probabilistic classical computers.

The most well-known algorithm is Grover's search algorithm, which gives a quadratic speedup for

searching an unstructured database [Gro96]. For a few more examples, a quadratic speedup of

classical simulated annealing is possible [SBBK08], as is a cubic speedup for the problem of solving

exponential congruences [vS08]. Quantum computers probably cannot solve general unstructured

search problems in polynomial time, however. This is the same as saying that quantum computers

cannot efficiently solve NP-complete problems, and there is evidence (but no proof) that this is

true [BBBV97].

Small quantum computers may also have advantages over modern digital computers. They may

be able to compute physical quantities that are beyond the reach of classical methods by simulating

dynamics of many-body quantum systems, for example [BDL07]. Small quantum computers may

also assist in already-practical quantum cryptographic protocols, serving as quantum repeaters,

or in other protocols that need small quantum memories or simple operations by the sender or

receiver.

Though the computational motivations for quantum computing are sufficient, it is important

to mention an exciting fundamental motivation. Some argue that if quantum computers cannot

be engineered for what turns out to be a fundamental reason, then the postulates of quantum



mechanics, the most thoroughly exercised modern physical theory, may need to be revised [Aar04].

On the other hand, if quantum computers can be built, quantum mechanics will be confirmed in

the strongest sense on macroscopic scales comparable with our otherwise classical world.

Physical systems can implement quantum computation, but devising realistic schemes for im-

plementing quantum computation is an extremely challenging problem. The principal challenge,

however, is not finding physical systems that have the right kind of state space, nor is it finding

a sequence of interactions to implement an adequate set of quantum logic gates. The principal

challenge is noise.

Noise in quantum mechanical systems has several basic forms, but arguably the most dam-

aging form of noise is caused by uncontrollable interactions between the quantum system and its

surrounding environment. This raises a dilemma. On the one hand, we would like to isolate the

quantum system completely so that it cannot interact with anything without our knowledge. On

the other, we want to reach in and absolutely control how the quantum system evolves and com-

putes, and, ultimately, couple the system to the environment to extract the final classical output

of the computer. What actually occurs in experiments appears to be somewhere in between these

extremes of perfect isolation and absolute control.

Optimistic estimates of noise strength, as measured by a quantity called the average or worst-

case gate infidelity, are presently no smaller than 10-6 for a sufficient set of gates to realize quantum

computation. The most difficult, but necessary, experimentally realized gates presently have infi-

delities closer to 10- 3 [BKRB08]. Therefore, optimistically, the output appears almost uniformly

random due to noise and other inaccuracy after no more than roughly one million of these gates.

Yet, the most spectacular applications require computations to run for one trillion or more basic

steps to solve problems presently out of reach of digital computers. This may seem like a big

number but modern digital computers can execute this many basic steps in about an hour (and we

know that servers can run for years without crashing).

Therefore, a quantum computer that is capable of correctly solving problems more rapidly than

modern digital computers requires some use of so-called fault-tolerant components. Fault-tolerant

components continue to compute the correct function despite weak noise within themselves. They

do so without an extravagant increase in circuit size or a severe decrease in computation speed.

In the early history of computing, the vacuum tube technology for building classical logic gates

was very unreliable, so John von Neumann, a father of modern computing, proposed the following

solution [vN56]. His idea was to encode the computer's state by copying it several times and to



never decode it (until the very end of the computation). Periodically, he would apply a voting

circuit that took the majority value of each bundle of wires and reset the bundle to that value.

This scheme was the first method for realizing fault-tolerant classical components.

Shorly afterwards, the transistor replaced the vacuum tube as a much more reliable technology.

In some sense, the transistor leads to reliable gates because the bit value is encoded into the state

of many electrons. The technology restores the bit value toward zero or one during each gate, so it

can be considered naturally fault-tolerant. Therefore, fault-tolerant techniques like von Neumann's

have only had limited use in modern computing (so far).

There are several visions for how to realize fault-tolerant quantum components (see [CFP02,

Kit03, Sho96]). It is not obvious a-priori that fault-tolerant quantum computation is actually

possible - it is thoroughly remarkable that quantum mechanics allows it. The proposed methods

can be hewn roughly along a line between those that provide physical fault-tolerance like the

transistor and those that provide code-based fault-tolerance like von Neumann's solution.

Unfortunately, the existing proposals for physical fault-tolerance are inadequately supported

by experiment, at present. For one interesting and beautiful example, Alexei Yu Kitaev has pro-

posed a brilliant scheme for physical fault-tolerance using exotic states of condensed matter systems

[Kit03]. This scheme encodes quantum information into highly non-local degrees of freedom that

cannot be damaged by local interactions but can nevertheless be transformed by braiding quasi-

particles. However, the necessary states of matter have not been conclusively observed, although

there continue to be promising developments [DHU+08].

On the other hand, von Neumann-like approaches using quantum error-correcting codes are one

of the most promising and versatile of the known routes for fault-tolerant quantum computation

[ABO99, AGPO6, AGP08, SDT07]. Indeed, the theory of quantum codes is rich [Got97, CRSS98,

CS96, AC08, KKKSO6, RHSS97], and small quantum codes have been experimentally shown to

correct errors [KLMN01]. Furthermore, remarkable theorems have been proven for a variety of

different types of noise showing that efficient fault-tolerant computation using codes is possible as

long as the noise strength is less than a constant that does not depend on the size of the computation

[TB05, AKPO6].

Several physical resources, whose specifics depend on quantum codes, are needed within a fault-

tolerant quantum computer. Massive parallelism is necessary to continually correct errors, and this

requires physical computational units that can act simultaneously. The number of units depends

on the particular choice of codes. Access to low noise states is also necessary, so these states



and the physical hardware that creates them must be made available relatively near their point

of use. The specific states and hardware also depend on the choice of codes. Finally, careful

layout of hardware elements is needed to avoid excessive faults from long range interactions. The

detail of this layout will depend on the code choice, and codes whose associated hardware can

be implemented with minimal data movement may be desirable. All of these physical resources

are necessary for successful fault-tolerant quantum computation using quantum codes [AB099].

Therefore, the structure of fault-tolerant components, and hence of the system microarchitecture

of a quantum computer, is strongly impacted by the choice of quantum error-correcting codes; see

Figure 1-1.

(EC)standard
10> ancilla

factory

Program +
"- Classical Data

Figure 1-1: This is a stored-program architecture for a fault-tolerant quantum computer. The
program is stored in a classical memory together with classical data. Quantum data is stored in a
quantum memory. The separation of memory and computation also allows use of efficient codes for
each purpose [TMC+06], although a code converter is then needed in the datapath. Although we
may imagine a sequential machine at the logical level, the microarchitecture is necessarily parallel;
perhaps single-instruction-multiple-data (SIMD) [MTC+05b, MTC+05a, COI+03]. The figure also
illustrates the necessary source of low noise ancilla states. These begin in some standard state 10)
and are encoded into many standard code-specific ancilla states by the standard ancilla factory. This
factory must be implemented in a careful way within each processing unit at the microarchitecture
level, to avoid excessive faults as the ancilla are communicated to their point of use.

Classical Control Unit

Mmory



1.2 Questions addressed by this dissertation

The new results in this dissertation address three questions spanning the domain of fault-tolerant

quantum computation. This section presents these three broad, motivating questions and discusses

the significance of each.

1.2.1 How do we systematically find new quantum codes?

Motivated by quantum fault-tolerance, and the overarching importance of quantum codes in fault-

tolerant quantum computer architecture, the first broad question this dissertation addresses is

simply: How do we systematically find new quantum codes?

The largest and most important family of quantum codes is the family of stabilizer codes.

These quantum codes are analogous in many ways to classical linear codes. The quantum circuits

for working with stabilizer codes can be efficiently constructed and have polynomial size. Efficient

decoders and error-correcting algorithms exist if the classical code underlying the stabilizer code

can be efficiently decoded. Stabilizer codes can be systematically found using techniques for finding

classical codes.

However, stabilizer codes do not always have optimal parameters, so it is natural to wonder how

to find, construct, and understand codes with optimal parameters. Furthermore, it is extremely

desirable to develop quantum coding theory along the lines of modern classical coding theory so

that insights from modern coding theory can be used to construct families of quantum codes. In

particular, a correspondence between classical nonlinear codes and quantum codes has been almost

entirely absent from quantum computing literature.

1.2.2 How does quantum code structure relate to fault-tolerant gate structure?

Fault-tolerant quantum components are designed to compute on information encoded in a quantum

code. Codes provide a shape and form that must be preserved by fault-tolerant components.

Therefore, the structure of a quantum code relates directly to the structure of a fault-tolerant gate

on that code.

What we call a standard approach to fault-tolerance (see Chapter 5) includes a well-known kind

of fault-tolerant component called a transversal gate. This kind of fault-tolerant gate is sufficient

for universal classical fault-tolerant computing, but the same statement does not appear to be true

for quantum fault-tolerance. Prior to our work, however, the structure of transversal gates on



quantum codes was not well understood, so the truth of this statement could not be resolved one

way or the other.

This uncertainty about the structure of such fundamental fault-tolerant components as transver-

sal gates motivates our next broad question: How does the structure of a quantum code relate to the

structure of a fault-tolerant set of gates for that code? This question may lead us to identify essen-

tial architectural components and may provide a clearer understanding of what kinds of gates can

easily be made fault-tolerant. Indeed, some of the more exotic transversal gates already find clever

application in universal gate set constructions, but only a few such code examples are well-known.

New codes we may unearth, with different exotic gates, might find application to fault-tolerance as

well.

1.2.3 How can codes in a fault-tolerant system be evaluated and compared?

Designing a code-based fault-tolerant quantum computer is a daunting task. Clearly the task must

be partitioned into managable pieces with established interfaces between them. Our view is that

concatenation, a method for combining codes, is an essential concept for quantum fault-tolerance

[For66]. We believe that an effective architecture will likely use multiple codes due to the high noise

rates observed in physical systems. This view makes the problem more complicated, but suggests

one way to partition it, motivating the question: How can we rigorously evaluate and fairly compare

code performance within a hierarchy of concatenated codes, without building and/or simulating the

entire system? What results can we expect from such an evaluation? These questions may lead us

to a clearer picture both of how to design such a complex system and what the design space "looks

like"; i.e., are there a great many codes that are good for this task, or is the palette limited?

1.3 Structure and organization of this dissertation

This dissertation is organized into three parts corresponding to what we might see panning across

a computer's architecture; see Figure 1-2 for a diagram of how the different chapters and sections

relate to one another. Part I gives models of devices, which are organized into components in Part

II. The components are then integrated into fault-tolerant systems in Part III.

Chapters 2 and 3 in Part I provide perspective and background so that Parts II and III can

be appreciated. The new results of this dissertation are contained in Parts II and III. Specifically,

Chapters 4 and 6 in Part II give new results concerning codes and fault-tolerant components.



Chapter 5 provides the necessary background to motivate our discussion of fault-tolerant gates in

Chapter 6. Finally, in Part III, Chapters 7 and 8 give new results about fault-tolerant systems.

The dissertation concludes with Chapter 9.

Chapter 4 introduces a new family of quantum codes, called codeword-stabilized (CWS) codes,

and a framework for systematically identifying and understanding these codes. The CWS codes

include another well-known, interesting, and important family of codes called stabilizer codes.

Furthermore, CWS codes include non-stabilizer codes that have very good and sometimes optimal

code parameters. The framework is general enough that special noise models may be considered.

Our hope is that CWS codes can be developed in future work along similar lines as stabilizer codes,

so that small CWS codes and the coincident framework find application in fault-tolerance and

defeating specific types of noise. This part of the dissertation is based on joint work with Isaac

Chuang, Graeme Smith, John Smolin, and Bei Zeng.

Chapter 6 presents new results about the structure of transversal gates on stabilizer codes. In

particular, we are able to build on previously known results about so-called linear stabilizer codes

to describe the form of elements of the full automorphism group of any stabilizer code. We are

also able to describe the form of transversal gates on stabilizer codes. This allows us to resolve a

long-standing conjecture about transversality and universality in the special case of some kinds of

transversal gates on stablilizer codes. This part of the dissertation is based on joint work with Bei

Zeng and Isaac Chuang.

Chapter 7 presents a view of the role of quantum codes in an effective fault-tolerant system

architecture. In particular, given the high noise rates in experimental systems, concatenation is

viewed as an essential concept (despite the fact that it is not strictly necessary). This leads to

the notion of a hierarchy of codes. Within this hierarchy, noise will likely be defeated by multiple

specialized codes that achieve high thresholds and desired logical error rates with a minimum of

overhead. The chapter then shows how to apply the Aliferis-Gottesman-Preskill (AGP) method to

numerically evaluate fault-tolerant components built from larger quantum codes than the original

method could evaluate. The main observations are that the AGP method can be applied in at least

two interesting Monte-Carlo settings and that errors from faults in preceeding parts of a circuit

can effectively be ignored for the three principal types of error-correcting circuits.

Chapter 8 presents constructions and results of a survey of inner codes for fault-tolerant quantum

computation. The survey uses the methods of Chapter 7 to evaluate systems and compare codes

fairly and rigorously, within the models we have assumed. These results show that the Bacon-



Shor codes and the Golay code have desirable thresholds and overheads that remain competitive

when compared to non-standard error-detection-based fault-tolerance schemes. Many other codes

are less favorable, however, suggesting that the palette of inner codes for fault-tolerant quantum

computing is limited. The chapter also includes a thorough review of fault-tolerant computation

on quantum polynomial codes. The review presents observations about these codes that do not

appear elsewhere in the literature. This part of the dissertation is based on joint work with David

DiVincenzo and Barbara Terhal.
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Part I

Models of Devices





Chapter 2

The circuit model of quantum

computation

2.1 Introduction

This chapter introduces the postulates of quantum mechanics and how these postulates define

elements of a circuit model for quantum computation in physical systems. The circuit model can

describe idealized quantum computation in some physical systems. It is an adequate abstract

foundation for later study of quantum computing components and systems beginning in Chapter 4.

In the second part of this chapter we review the stabilizer formalism. The stabilizer formalism

is a way to describe and manipulate an important class of highly entangled quantum states. Many

of the circuits that appear later in this dissertation transform stabilizer states to other stabilizer

states. Furthermore, new contributions of this dissertation explore limitations and extensions of

the stabilizer formalism. A crucial aspect of stabilizer circuits that we use in Chapters 7 and 8 is

that they can be efficiently simulated on a classical computer.

The final section of this chapter introduces models of noise and inaccuracy in quantum systems.

Noise is a significant phenomenon that acts to destroy quantum coherence in experimentally realized

systems.

2.2 The quantum circuit model

This section introduces a model of ideal quantum bits (qubits), gates, and measurements. These

elements are connected to form a quantum circuit that is in some ways analogous to a digital



circuit. Gates are generated by time evolution under a Hamiltonian that describes physics of a

system. The Hamiltonian and its parameters are selected and engineered to perform a number of

basic gates which are composed to build circuits.

The elements of the circuit model mirror the fundamental postulates of quantum mechanics.

These postulates describe the space of accessible states, how those states evolve in time, and how

measurements on those states are described. The postulates are simple and consistent with decades

of diverse experiments.

2.2.1 Qubits and states

A physical system represents a qubit if the system's state can be described as belonging to a

particular space, and if it can take any state in that space.

A qubit's state is a unit vector in a complex 2-dimensional Hilbert space Ri. When there are

a finite number of dimensions, being a Hilbert space simply means that an inner product (' 112)

is defined between any two vectors 141) and 102) of R. The set {10), I1)} is a fixed orthonormal

basis for N, meaning that (ili) = 1 and (iJj) = 0 if i f j, and is called the computational basis.

A state is written as I4) = a10) + b)ll over this basis. The complex numbers a and b are called

amplitudes, and, for states, they satisfy a normalization condition I1I11 := V/la 2 + |b2 = 1 since

states are unit vectors. The inner product between states I41) = al0) + b1l) and 1z2) = c0) + dll)

is (41142) = a*c + b*d, so I II := (o10).

The corresponding postulate of quantum mechanics is

Postulate 1 [NCOO]: Associated to any isolated physical system is a Hilbert space

known as the state space of the system. The system is completely described by its state

vector, which is a unit vector in the system's state space.

A qubit's space is a special case of this general postulate.

Classical bits have two distinct states labeled 0 and 1. Qubits can be in analogous states 10)

and 11) and also in more subtle superposition states such as 1±) := (10) I1))/vr2. Each complex

number a = a, + iac has two real components, so a state vector 1') has four real components.

Since the norm is constrained to be 1, three free real angles y, 0, and ¢ determine the state of a

single qubit 10) = eY (cos 9/210) + ei¢ sin /211)). The angle y is a global phase that cannot be

physically observed, as we will see in Section 2.2.3. Neglecting y, the angles 0 and 0 identify a

point on the surface of a sphere called the Bloch sphere. On the Bloch sphere, 10) is the North



pole, I1) is the South pole, and states (10) + ei 11))/vf lie on the equator; see Figure 2-1.

o +.

Y,
42i 0

Figure 2-1: Bloch sphere.

The state of several classical bits is given by a direct product of the state of each bit. The state

of n bits is written as a string b1b2 ... bn in the space of all n bit strings {0, 1}". There are 2n such

strings in the whole universe of classical states, but any particular state is described by n values.

The state of n qubits is more subtle because the state belongs to a tensor product space FRtn

that contains states that cannot be described by a list of amplitudes ai and bi for each of n isolated

qubits. The tensor product space is a 2n dimensional Hilbert space spanned by the orthonormal

basis { bib 2 ... bn)} labeled by n-bit strings. For example, the state (100) + j11))/V2 is a reasonable

2-qubit state, as is 10) 0 (10) ). There is no simple analog of the Bloch sphere for n qubits.

Quantum state vectors that can be written as a tensor product 0i I[bi) are said to be unentan-

gled. Unentangled states can be described by 2n amplitudes. A state that cannot be described this

way is entangled. For example, the state (100) + I11))/v/2 is an entangled state called a Bell pair

(or a two qubit cat state). Neither qubit of a Bell pair can be considered in isolation without

losing some information about its state.

2.2.2 Unitary gates

An ideal single qubit quantum gate is a 2 x 2 unitary matrix that acts by left multiplication on

states. Unitary matrices

a= - b*
U = (2.1)

(-b* a*



have complex matrix elements that satisfy UtU = I where Ut is the transpose conjugate

(UT)* a* -b (2.2)
b* a

of U and I is the identity matrix. These matrices form an abstract group U(2) under matrix

multiplication. A group is a set of elements together with a binary law of composition such that

(a) the set contains an identity element, (b) the law composition is associative, and (c) each element

of the set has an inverse in the set. The norm of states is preserved by unitary matrices. An ideal

gate on n qubits is a 2n x 2n unitary matrix in the group U(2n).

The corresponding postulate of quantum mechanics says precisely this:

Postulate 2 [NCOO]: The evolution of a closed quantum system is described by a

unitary transformation. That is, the state JO) of the system at time ti is related to the

state Ii') of the system at time t 2 by a unitary operator U that depends only on the

times tl and t 2 , where 10') = UV|).

A physical statement of this postulate associates the dynamics of a quantum system with an

operator that generates the time evolution. This operator, the Hamiltonian, describes the energy

of the system.

Postulate 2' [NCOO]: The time evolution of the state of a closed quantum system

is described by the Schrodinger equation, ih dd- = HIf). In this equation, h is

a physical constant known as Planck's constant whose value must be experimentally

determined. H is a fixed Hermitian operator known as the Hamiltonian of the closed

system.

A Hermitian operator H satisfies H = Ht, so its eigenvalues are real. The spectral decomposition

of the Hamiltonian H = ZE EIE)(OEI gives the eigenstates JIE) with energy eigenvalue E.

The matrix ICE)(OEJ is the outer product of the state vector JOE) with itself. The solution

to Schrodinger's equation is a unitary operator U(tl, t 2) : e - iH(t2
- t l)/h, making the connection

between the two statements of Postulate 2.

A set of gates G is exactly universal if the unitary groups U(2n ) can be generated by taking

products of gates in G and a global phase eie for all n > 1. If a gate g[ql,q2,... ,qm] E G is

defined on an ordered list of input qubits {qi, q2, ..- , qm}, we permit the gate to act on any subset



of the total set of n qubits, arranged in any order. The gate acts like the identity on qubits

outside that subset. Two-level unitary gates, which are gates that act non-trivially on less than

3 vector components, are exactly universal. The set of single qubit gates U(2) together with the

controlled-NOT (CNOT) gate

1000

0100
A(X) := (2.3)

0001

0010

= 100)(00 + 01) (011 + I11)(10 + 110) (11 (2.4)1 0 01= E =:I X =: A(X)[1, 2] (2.5)
0 1 1 0

is another exactly universal set. For example, the Toffoli gate A2(X), a classically universal

reversible gate that flips the third input if the first and second inputs are one [Tof80], can be

constructed over the basis {U(2), CNOT} as shown in Figure 2-2 [NCOO]. The proofs that these

sets are exactly universal are given in [NCOO, KSV02].

Figure 2-2: A Toffoli gate A2(X) can be constructed from CNOT and single qubit gates. The
CNOT is drawn as a "." connected to "E" by a wire. H, T, and K are single qubit gates.

One problem with exact universality is that there are some unitary gates in D dimensions that

cannot be decomposed into products of fewer than D - 1 two-level unitary gates. However, by

approximating the unitary gate, it is possible to efficiently decompose it as a product of gates from

a finite basis. We will review the basic definitions and one main result from [KSV02].

In a Hilbert space 7W, there is a norm II)III = (i ). The norm of an operator A in the

space of linear operators L(H) on H is

I AI4)t III AII :- SUpl¢)#0 I1¢11)11 "(2.6)



An operator U is said to approximate U with precision E if 1U - U11 5 E. An important fact is

that approximation errors accumulate linearly

m

IUmU~m-1 ... Ui - UmUm-1 ... UvII <_ci. (2.7)
i=1

The operator U on n qubits is approximated using ancillas by the operator U on N > n qubits

with precision E if, for any n-qubit state I$),

IIU(1) 0 0oN-n)) - Ue 4) 0 0IN - n)II < e6 11)1.I (2.8)

Theorem 1 (Efficient approximation over a standard finite basis[KSVO2]) Any unitary op-

erator U on a fixed number of qubits can be realized with precision E by a polylog(E- 1) size, polyloglog(- 1)

depth circuit over the basis

H := 1 -1 ,K:= diag(1, i),K-, A(X),A2(X) (2.9)

using ancillas. There is a polynomial algorithm that constructs this circuit on the description of U.

H is called the Hadamard gate and K is called the Phase gate. Theorem 1 essentially holds

for any basis A that is complete, and that result is known as the Solovay-Kitaev theorem (and

associated algorithm). A basis A is complete if it is closed under inversion and the application

of its elements generate a dense subgroup in the group of unitary gates on k > 2 qubits modulo a

global phase. The set

{H, K, A(X), T := diag(1, eir/4)} (2.10)

is also an important complete basis. T is called the ir/8-gate, since T = eir/8diag(e- i r/s, eir/s).

2.2.3 Quantum measurements

The measurement postulate is

Postulate 3 [NCOO]: Quantum measurements are described by a collection {Mm}

of measurement operators. These are operators acting on the state space of the system

being measured. The index m refers to the measurement outcomes that may occur in

the experiment. If that state of the quantum system is 140) immediately before the mea-



surement, then the probability that result m occurs is given by p(m) = (0,IMtmMm 14),
and the state of the system after measurement is Mml¢) The measurement operators

satisfy the completeness condition Em MAtMm = I.

The measurement postulate is perhaps a strange postulate - if the quantum system is enlarged

to include the measurement device, then why is the enlarged system not described by Posulate 2?

This question has bothered some people for a long time, but we pragmatically accept that Postulate

3 describes another kind of operation that can be applied in a quantum circuit.

The simplest ideal measurement to describe is a projective measurement in the basis {10), I1)}

on one qubit. This is a measurement described by {Mo = 10)(01, M1 = I1)(1 } with two possible

outcomes m E {0, 1}. If the state of a single qubit is a10) + b)ll, the probability of outcome m

is (mli). This is la12 for m = 0 and |b12 for m = 1. The post-measurement state is Im). The

probabilities for each outcome are not given by these simple expressions when the qubit is entangled

with another system, but are instead as given in Postulate 3. This particular measurement is called

a Z-basis measurement.

2.2.4 Quantum circuits

A quantum circuit is an acyclic directed graph with the following interpretation [Deu89, Yao93].

Vertices represent gates drawn from a complete basis and edges represent wires carrying qubits

from the output of one gate to the input of the next. Some vertices are marked as input vertices

and the input qubits are in some initial state 4I). Qubits may be measured in the computational

basis (i.e. Z-basis) and the measurement outcomes may be used to control whether or not a later

quantum gate is applied. Figure 2-3 shows how some gates are drawn in a quantum circuit. An

example quantum circuit with some generic gates is shown in Figure 2-4.

Figure 2-3: Each of the standard gates has a schematic representation as shown in this figure.



10)

Figure 2-4: An example of a quantum circuit. Our convention is that time flows from left to right
so the wires do not need to be labeled with arrows. U is a one qubit gate and V is a two qubit
gate. The box labeled Z is a Z-basis measurement.

In later chapters, we may relax this definition, for example, to allow other kinds of measure-

ments.

2.3 The stabilizer formalism

The stabilizer formalism was devised by Gottesman [Got97]. It provides a concise description for

a large class of highly entangled states and subspaces. The formalism also allows these states

to be easily transformed amongst themselves, and it provides insight into quantum teleportation

and other circuits constructed from gates and measurements in the formalism. It is an essential

framework for thinking about many areas of quantum information science. We use it frequently

through this dissertation.

2.3.1 Applied group theory

The Pauli group

The Pauli group 91 is the group generated by (a) operators X and Z that satisfy the commutation

relation ZX = -XZ and (b) the complex phase i,

g1 := (X, Z, ii) = {Il, +i} x {I, X, Y := ZX(iI)3 , Z}. (2.11)

If the group were only generated by X and Z it would be the quaternion group [Art91]. The Pauli

group has a 2-dimensional representation in terms of Pauli matrices where

01) ( o)
X = and Z = . (2.12)

1 0 0 -1



The computational basis states of a qubit are

1 0
|0) := and 11):= , (2.13)

0 1

so Z can be thought of as a "phase flip" and X a "bit flip".

There are several important properties of the group and its elements to keep in mind. The order

|GI| of the Pauli group is 16. The matrices and their products are unitary so they can be applied

as quantum gates. Those that have eigenvalues +1, such as +X, ±Y, and ±Z, are Hermitian, so

they are quantum mechanical observables. The non-identity elements are traceless. Furthermore,

the elements are orthogonal in the Hilbert-Schmidt inner product, meaning that Tr(PiPj) = ¾ij for

elements Pi and Pj, and the complex span of them equals the set of 2 x 2 complex matrices.

The n-qubit Pauli group Gn is the n-fold tensor product of G1,

Gn := ~n = {l, i}®{I, X, Y,Z}®...{I,X, Y, Z}. (2.14)

n times

For example, iZXZII is an element of G5 written in shorthand notation where two Pauli elements,

written side by side, mean P1P2 := P1 9 P2 = (P1 0 I)(I 0 P2) for P 1, P2 E G. The phase

is usually factored to the left of the product of Pauli matrices. The intended operation, group

multiplication or tensor product, is usually clear from context. The order of this group is 4 n+ l1

since each of the n terms in the tensor product can take 4 values and the complex phase can take

4 values. An element with ±1 phase is self-inverse (Hermitian and unitary). An element +iP

generates a subgroup {iP, -I, -iP, I} and is not a quantum mechanical observable. From the fact

Tr(P 0 Q) = Tr(P) Tr(Q), it follows that the n-qubit Pauli matrices modulo their phase are an

orthonormal basis for the 2n x 2n matrices over the complex field.

The n-qubit Pauli group is generated by 2n + 1 elements

n -= (il, X, X2, ... , Xn, Z, Z2, ... , Zn) (2.15)

that we will call the standard generating set of Gn. Here, Pi denotes the element with a Pauli

P at the ith term and identity elsewhere, e.g., Xi := XII... I. As a shorthand, let

[n] := {1,2,...,n} (2.16)



denote the positive integers up to and including n, since this set will appear in several places. Recall

that the commutator bracket of two elements is [Pa, Pb] := PaPb - PbPa and the anticommutator

bracket is {Pa, Pb} := PaPb + PbPa. Two elements commute if [Pa, Pb] = 0 and anticommute if

{Pa, Pb} = 0. The generators of gn satisfy [Xi, Xj] = 0 and [Zi, Zj] = 0 for all i,j E [n]. They also

satisfy [Zi, Xj] = 0 for all i $ j in [n] and {Zi, Xi} = 0 for all i E [n]. This makes clear that two

elements Pa, Pb E gn either commute or anticommute, since [AB, C] = 0 if [A, C] = [B, C] = 0 or

{A, C} = {B, C} = 0, and {AB, C} = 0 if [A, C] = {B, C} = 0 or {A, C} = [B, C] = 0.

The Pauli group elements can be expressed in a way that is amenable to binary matrix compu-

tations. There is a map binary(g) : Gn -+ {0, 1}2n given by binary(I) = [010], binary(X) = [110],

binary(Z) = [011], and binary(Y) = [111] and binary(P1 0 P2) = (binary(Pi), binary(P 2)). For ex-

ample binary(XZYI) = [101010110]. The map is a homomorphism, meaning that it preserves the

group operation binary(PiP 2) = binary(PI) + binary(P 2), i.e., matrix multiplication becomes ad-

dition modulo 2. The phases of Pauli elements are dropped, so we can write binary(XaZb) = [alb ]

where "I" just separates the two halves of the binary string. This map is called the homomor-

phism from a Pauli group to a binary vector space. cXaZb and dXa'Zb' commute iff

(alb) 0 (a'lb') := ab' - ba' = 0. This inner product is called the symplectic inner product.

The Clifford Group

The quantum gates in a group called the Clifford group are very important within the stabilizer

formalism. The Clifford groups are defined in the following way in quantum computing literature

[Got97, BRW61, Bol61]

) := {U e U(2n) I UgU E £n for all g E 0}. (2.17)

This is the normalizer subgroup of the Pauli group in the unitary matrices on n qubits, i.e., the

subgroup that maps a group into itself under conjugation UgUt. If U is in a Clifford group, then

so is eioU for all angles 0. If the superscript (n) is not present, the particular Clifford and Pauli

groups should be determined by context and "the Clifford group" or "the Pauli group" refer to the

appropriate group.

The action of a Clifford group element on the Pauli group is completely determined by its action

on the standard generators {Xi, Zi, i E [n]} of the Pauli group. Furthermore, an element of the

Clifford group modulo global phases C2/ {e i } is also completely determined by this action since the



n-qubit Paulis are an orthonormal basis for the 2n x 2n complex matrices. Therefore, it is enough

to specify UXiUt and UZiUt for i E [n] to specify a Clifford group element U up to a phase.

For example, the Hadamard gate H conjugates (X, Y, Z) to (Z, -Y, X), and the Phase gate K

conjugates (X, Y, Z) to (Y, -X, Z). CNOT conjugates IX to IX, XI to XX, IZ to ZZ, and ZI

to ZI.

By construction, the Pauli group is a normal subgroup of the Clifford group. When a Pauli P

acts on another Pauli Q by conjugation, the action is merely PQP = (-1)w(PQ)Q where

0 if[P,Q]=O
w(P,Q) = (2.18)

1 if {P,Q} =o0

The group C(n )/ { ei CG n } is the Clifford group, ignoring global phases and how the action of a group

element might change the sign of a Pauli element.

The Clifford group is generated by CNOT, H, and K. This can be proven directly by induction.

An alternate proof shows that Cfn)/{ei Gn} is isomorphic to the symplectic group Sp(2n, 2), and

that any element of the group can be reduced to the identity matrix by a sequence of operations

corresponding to CNOT, H, and K [Got07]. The symplectic group Sp(2n, 2) is the group of

2n x 2n binary matrices M satisfying MTFM = F where

=F 0 In , (2.19)

-In 0

where In is the n x n identity matrix. We do not present the proof here, but the idea is to first show

that Cn/{ei Gn} , Sp(2n, 2) since the symplectic group preserves the symplectic inner product.

CNOT, H, and K have representations as matrices in the symplectic group. We can use those to

AB 1 0
reduce M = Sp(2n, 2) to , showing that M is a product of these gates.

CD I0

The Clifford group is the largest finite subgroup of the unitary group, as is captured by the

following theorem

Theorem 2 ([NRS01]) Let n > 1 and let G be a finite group such that C n ) C G C U(2n). Then

there exists a root of unity ( such that G = (C~n) ).



2.3.2 Stabilizer states

In the stabilizer formalism, a stabilizer S is an abelian subgroup of Gn that does not contain -I.

The reason for excluding some subgroups will become clear in a moment. Gn is a finite group,

so S can be described concisely by a smallest generating set S = {gi E i [m]}. S is abelian, so

its generators gi must commute, and a general element of S can be written NHi[m] g where each

bit bi E {0, 1}, i E [m] indicates the presence or absence of the corresponding (order 2) generator.

Therefore, ISI = 2m . Since S is an abelian subgroup of n, S cannot be generated by more than n

elements upon consideration of the generating set for Gn.

Let N denote the n-qubit Hilbert space. Fix a stabilizer S and consider the subspace of all +1

eigenvectors of the first generator gi E S

{g1 := 1) E H I ) = |)}. (2.20)

g91 must be nonempty, otherwise gl must have a +i phase factor (so have no +1 eigenvectors) and

generates a subgroup containing -I. This is explicitly ruled out by the definition of S. Precisely

half of gl's eigenvectors have eigenvalue +1, so N91 is a 2n-l-dimensional subspace of R. This

bisection procedure can continue m - 1 more times, for each generator in S, until we obtain

C(S) := N917,g 2 ... 9m = {14) E N I gI) = I) Vg e S}. (2.21)

This 2n- m -dimensional subspace of N is the stabilizer subspace C(S) associated with S. A

generic 2n-m-dimensional subspace can be described by 2n-m basis vectors, but stabilizer subspaces

of the same dimension can be described economically by m < n elements of the n-qubit Pauli group.

It may help at this point to keep in mind a simple example. The state vector

|cat) := (00)+ 11)) (2.22)

is the famous "cat" state - the first qubit represents the internal state of the nucleus whose decay

triggers the cat's demise and the second qubit represents the cat's beingness. This state is a 1-

dimensional stabilizer subspace, also called a stabilizer state. Indeed, XX E G2 exchanges the first

and second term in the sum and ZZ acts trivially on both terms. This identifies two generators of

S so there are no more, and S = {XX, ZZ, -YY, II} stabilizes the cat state whose dimension is



20, i.e. C(S) = {Icat)}. Using the binary notation, the generating set can be written

1 100
S[ . (2.23)

For this simple example, the binary notation for the state is less concise than writing the state

directly. For larger number of qubits, however, the stabilizer notations are exponentially more

concise than the state vector notation.

2.3.3 Stabilizer circuits

There is a set of circuits, stabilizer circuits, that are easy to simulate and appear frequently in

the study of stabilizer states and subspaces. The gates in these circuits are intimately related

to the Pauli group. A stabilizer circuit is a quantum circuit consisting of gates in the Clifford

group, measurements of Pauli observables, and Clifford group gates that are conditioned on past

measurement outcomes. Clifford group elements map stabilizer generators to stabilizer generators

under conjugation, so gates in the Clifford group map between stabilizer subspaces. In fact, any

two stabilizer subspaces of the same dimension can be mapped to each other by Clifford group

gates.

The next theorem is very important, both as a statement of the fundamental limitations of

stabilizer circuits, and as a statement of hope for designing systems built from stabilizer circuits.

Theorem 3 (Gottesman-Knill [Got98a]) A stabilizer circuit whose input is a stabilizer state

can be eficiently and faithfully simulated using a classical probabilistic computer. A classical proba-

bilistic computer is a classical computer that also has the ability to generate uniformly random bits.

The simulation is faithful if it samples from the correct probability distribution over measurement

outcomes and produces the correct output stabilizer state.

Proof The Gottesman-Knill theorem is proven if we give one way this simulation can be imple-

mented. Consider a stabilizer circuit and let a stabilizer with 2n elements be associated with the

input state of the stabilizer circuit. The proof proceeds in two pieces. The first piece shows that

Clifford gates can be simulated, and the second shows that measurements can be simulated.

Section 2.3.1 reviewed that any gate in the Clifford group can be decomposed into a product

of O(n 2) CNOT, H, and K gates. Any one of CNOT, H, or K can be simulated by applying an

update rule to each of the n stabilizer generators. The update rules correspond to conjugation by



the Clifford. Each of the three possible update rules requires changing at most 2 single qubit Paulis

and the phase of each generator, so applying the update rules take constant time. Simulating the

original Clifford gate therefore takes O(n 2) time.

The measurement of an n-qubit Pauli operator M has elements Pk := P((-1)kM). The stabi-

lizer state IV) is stabilized by S = (g, g2,., g, ) so

n

P = |I)( (]| = P(gi). (2.24)
i=1

The probability of outcome k E {0, 1} is

Pk := Tr(Pkp) = +-1) Tr (M + Mg . (2.25)

The trace is zero if +M ý S and otherwise it is 2n( - 1) if (-1)eM E S so

{ if M~ S
2 = (2.26)

P = + (-l)k+ if (-1)eM E S.

±M 0 S iff M anticommutes with some element of S. The post-measurement state when outcome

k is obtained is (provided that Pk 5 0)

Pk := PkkPk = ; [E + (_1)k {M, j} + MEM] (2.27)

where E := -gesg. If (-1)kM E S for some k E {0, 1} then Pkp = p and Pk = 1, so Pk = P.

Otherwise, if +M V S then M anticommutes with some generators g,g2, ... , gj, 1 j n,

and Pk = - for k E {0, 1}. Let So denote the subgroup of S that commutes with M. We can

form new generators 9192,9193,... , gl9gj that commute with M so that So is generated by these

new generators together with gj+l, gj+2,... ,gn. Therefore, ISoI = IS1/2. The expression in square

brackets in (2.27) becomes

2(I + (--1)kM) g. (2.28)
geSo

Therefore, Pk is the pure state stabilized by S' := So U (-1)kMSo.

The measurement of any Pauli observable M can also be simulated efficiently. To simulate

the measurement of M, it suffices to either compute the measurement outcome or flip a fair coin,



depending on the stabilizer state. Which action to take can be determined in polynomial time by

checking whether or not M commutes with all the elements of S. When the outcome is prede-

termined, it can be computed by putting the stabilizer generators into a standard form through

Gauss-Jordan elimination and selecting those generators whose product is +M. This can be done

in polynomial time also. O

2.4 Open quantum systems

The quantum states and gates described in Section 2.2 have matrix elements that are assumed to

be chosen accurately and precisely. The reality, however, is that noise processes and systematic

flaws tend to damage fragile states and introduce uncertainty and inaccuracy in gates. A general

description of these processes can be obtained by considering an open quantum system. In an

open system, the system Hs is part of a larger Hilbert space -lSB = Hs 90 -B, where 7-B is a

bath Hilbert space. The system Hs can be observed and manipulated, but the bath is assumed

to contain a large number of degrees of freedom that are all inaccessible. Interactions between the

system and bath describe some types of noise. This section reviews the basic theory of such open

quantum systems.

2.4.1 Ensembles of quantum states

A probabilistic mixture of quantum states is described by an ensemble {pi E [0, 1], I|i) E H7-s},

where EiZPi = 1, and this ensemble is represented as a linear operator on 7-Hs called the density

matrix p := EiPiloi)(Oil E £(Hs). A density matrix with Tr(p2) = 1 is called a pure state

(the condition means it is rank one), whereas any other density matrix is called a mixed state.

A pure state [I) has a density matrix I|)(¢|. A unitary gate U on the system acts like UpUt.

A measurement on the system, described by {Mm}, obtains outcome m with probability p(m) =

Tr(MtMmp) and the post-measurement state is MmpMlm/p(m).

Probabilistic mixtures arise naturally when the system is entangled with the bath, and the bath

is "averaged out", "lost", or "measured and forgotten". Suppose the joint state of the system and

bath is PSB. The system's state can be described by a reduced density matrix

Ps := TrB(PSB) (2.29)



where TrB is known as the partial trace over B. The partial trace is defined by

TrB(ISl)(S2 1 0 Ibi)(b 21) := I1)(s 2 Tr(Ibl)(b 21) (2.30)

where Is1), Is2) E Hs, Ibi), Ib2) E HB, and the trace on the right hand side is the usual trace

operation Tr(Ibl)(b 2 ) = (b2 1bi).

The partial trace is actually the unique operation that gives rise to consistent values of observ-

ables on subsystems [NCOO]. An observable Ms on the system is necessarily equal to Ms 0 IB on

7-tSB. The expected value of M must be the same whether we observe the system or the system-

bath, so Tr(Msps) = Tr((Ms 0 IB)PSB). This is certainly true if Ps is taken to be the reduced

density matrix. Suppose that f(PSB) is another matrix operator describing the reduced state on

H-ts. Expanding this function in an orthonormal basis of operators {Bi} C L(-s),

f(PSB) = Bi Tr(Bif(PssB)) = Bi Tr((Bi 0 IB)PSB). (2.31)
i i

Therefore, there is only one matrix operator f(PsB) if the expected value of each Bi given Ps

must be consistent with Tr((Bi 0 IB)PSB). The partial trace is the unique operation that correctly

describes observables for subsystems of a composite system.

2.4.2 Phenomenology of single qubit noise

Interaction with an environment can lead to relaxation and dephasing. We review the concepts of

relaxation, dephasing, and how they are phenomenologically modeled by so-called T1 and T2 times.

Relaxation is a damping process that occurs when excited states, say I1), transition to other

available modes, such as vibrations of surrounding atoms or emissions of photons. The excited

state to transitions to a lower energy state, say from 11) to 10), for example. The energy difference

is transferred to different quantum systems that are considered part of the environment and may

not be experimentally accessible.

Dephasing destroys coherence of quantum information stored in local degrees of freedom.

Dephasing processes can transform superpositions into probabilistic mixtures of orthogonal states.

These mixtures may no longer exhibit important quantum behavior such as interference and instead

can behave like classical biased coins when they are measured. Dephasing usually happens more

quickly than relaxation since it can be caused by elastic collisions that do not add or remove energy.



Relaxation and dephasing can be roughly characterized by rates T1 and T2 , respectively. For a

single qubit, the noise process acts on a mixed state as

a b (a - ao)e-t/T1 + ao be-t/(2T2)

P b* 1 - a b*e - t/(2T2) (ao - a)e - t/T1 + 1 - ao

As t -* oc, the system relaxes to a thermal mixture diag(ao, 1 - ao).

The thermal equilibrium state for a system whose dynamics are described by a Hamiltonian H

is

p = e- P(T)H/Z (2.32)

where P(T) = (kBT) - 1, T is the temperature, kB is Boltzmann's constant, and Z = Tr e- P(T)H

These processes are often called decoherence and are attributed in some models to interactions

between system and environment. The nature of the coupling, as described by a Hamiltonian HSB

on the system and bath, can be used to derive properties of the decoherence process [Zur81, Zur82].

One way to measure the quality of a quantum gate is the average or worst-case fidelity, over all in-

puts, between ideal and actual outputs. The fidelity of states p and a is F(p, a) := Tr V/pl/ 2apl/2.

Fidelity is not a metric in the mathematical sense but the angle A(p, a) := cos-1 F(p, a) between

two states is. The fidelity between pure and mixed states is F(I1|), p) = V/(,Lp'l), i.e., the square

root of the overlap between p and IV). It is possible to show that F(p, a) = min{Em} Em Pm, qm

where {Em} is a set of operators Em = M tmMm defined in terms of measurement operators Mm,

Pm := Tr(pEm), and qm := Tr(aEm) [NCOO]. The fidelity is, in this sense, the largest possible

distance between the probability distributions over measurement outcomes for p and a.

2.4.3 Quantum operations

One advantage of the density matrix formalism is that dynamics in 7ls can be described without

describing dynamics in -iSB. Let p be a density matrix on 'Hs. A quantum operation is a map

8(p) that satisfies (i) S(p) is a density matrix, (ii) E(Ei PiPi) = ji pig(pi) for probabilities Pi that

sum to one, and (iii) (IR ® 9)(A) is positive semidefinite for any positive semidefinite A on the

composite system JHR 9 -Hts.

Theorem 4 (Kraus representation) [NCOO] Let {Ek} be a set of operators Ek E L(t-s) such



that Ek EkEk = I. Then

EF: p E pEt (2.33)
k

defines a quantum operation. Furthermore, if S is a quantum opration then there exists a set of

operators {Ek} such that S can be written in the form of equation 2.33. The operators {Ek} are

known as Kraus operators.

2.4.4 Models of noise processes

Suppose that a system in the state p interacts with a bath in state IO)B by way of a unitary gate

U on the composite system. Let { i)B} be an orthonormal basis for NB, then

TrB [U(p® 0 )(Os)Ut] = TrB(EipEt 0 i)(j B)= EipEt, (2.34)
i,j i

and Ei = B(j U 0)B. The resulting quantum operation can be interpreted as a process where

the system interacts with the bath, the bath is measured in the basis { i)B}, and the outcome is

unknown. The resulting state is a weighted average over the possible states EipE</p(i) associated

with outcome i and weighted by their respective probabilities p(i).

Quantum operations that have a Kraus operator Eo = v/ - pI p E [0, 1], may be interpreted

as stochastic noise processes by which an error of some kind occurs with probability p. Such

an operation can be written

S(p) = (1 - p)p + p' (p) (2.35)

since the non-identity Kraus operators satisfy Ek,k40 EkEk = pI. The models used in Chapter 8

are stochastic.

The depolarizing noise model on n qubits is defined by

(p)= (1 - p)p + p2n/ 2 = (1 -p)p + p EpEt. (2.36)
EEG,\{I}

The n-qubit system is replaced by the completely mixed state I2n /2 with probability p. This means

that the qubits have become maximally entangled with the environment and a uniform mixture

over all possible pure states. Depolarization is, in this sense, a rather catastrophic error.

Typically, T2 << T1 so it is physically realistic to have a model where phase errors occur with

greater likelihood than amplitude errors. A biased stochastic noise model on one qubit is



defined by

E(p) = (1 - Px - Pz - PxPz)P + pxXpX + pzZpZ + PxPzYpY, (2.37)

where Px < Pz. When Px = 0, the model is a dephasing noise model. Of course, the probability

of each Pauli operator can be different,

Sp(p) = (1 - p)p + p p(E)EpEt, (2.38)
EEGn\{I}

where p: Gn -- [0, 1] assigns a probability to each element of Gn such that E•p(g) = 1.

One kind of relaxation, spontaneous emission, can sometimes be described as single qubit

amplitude damping noise. Amplitude damping is not a stochastic noise process since no linear

combination of its Kraus operators is proportional to the identity. Amplitude damping has Kraus

operators Eo = 10) (01+ l |---ll1) (ll and El = v/-10) (l. The operator E1 corresponds to relaxation

from I1) to 10) with strength y, and E t E o = I- EE1 is chosen so that the operators are complete.

Timing inaccuracies in gates can lead to another noise process that is not stochastic. If the

inaccuracy is slowly varying compared to the computation's duration, then a constant angle 6 may

be added to each single qubit rotation. This is an example of a coherent systematic error. For

example, a single qubit X rotation by angle 0 may actually be implemented by U = e- i(±+6)X/2

2.5 Conclusion

This chapter has introduced the quantum circuit model as a foundation for the rest of the dis-

sertation. As a special case of the quantum circuit model, a stabilizer circuit model has also be

reviewed. The stabilizer formalism is an essential formalism for quantum information and com-

putation, and we make constant use of it throughout the dissertation. Finally, we reviewed the

essential elements of the theory of open quantum systems, so that the concept of decoherence and

the need for techniques to combat decoherence is properly motivated.





Chapter 3

Models of physical systems

3.1 Introduction

This chapter reviews, at a high level, a model of qubits, gates, and measurements in one physical

system, and how these may be combined to model larger quantum circuits in that physical system.

The discussion is not meant to introduce the physics of this system in great depth, nor is it meant

to discuss how to realize quantum computing devices. The chapter is meant to provide perspective

on physical systems from the standpoint of system architecture, so that Chapters 7 and 8 may be

read with a high level understanding of architectural constraints of model systems.

The DiVincenzo criteria [DiV00] for a circuit model quantum computer are criteria that a

quantum system satisfies to be considered a circuit model quantum computer. They provide a

frame for our review of circuit model elements implemented by a physical system. The DiVincenzo

criteria are

1. The physical system must be physically scalable to an arbitrary number of well-defined qubits.

2. Qubits must be initializable to a well-defined starting state.

3. Qubits must have long coherence times relative to gate times, and it must be possible to

implement a universal set of gates.

4. The system must permit high quantum efficiency measurements on arbitrary single qubits.

In this chapter, we review a model for a physical system where the criteria are all met in

principle. This model is an example of a device model above and with which components, in

Chapters 4, 5, and 6, and systems, in Chapters 7 and 8, can be studied. We introduce this



model to provide a concrete example that supports a vision: the problem of studying a large

system architecture can be partitioned into managable strata with well-defined interfaces between

layers. We make implicit use of this model architecture throughout the dissertation, whenever the

concepts of locality, noise, and systematic inaccuracy are discussed. Together with the quantum

circuit model and stabilizer formalism reviewed in Chapter 2, this is our example of an abstract

device-level model.

3.2 Atomic ions in radio-frequency traps

Trapped atomic ions behave like elementary quantum systems that are well isolated from their

environment, yet they can be precisely controlled. Controlled state transitions in trapped ions

have been used in precision timekeeping applications for decades. Laser cooling techniques can

bring trapped atoms nearly to rest, creating some of the coldest known matter. More recently,

experiments have demonstrated fundamental quantum logic gates and some elements necessary to

scale experiments to larger numbers of qubits.

3.2.1 Ion-qubits and radio-frequency traps

Trapped-ion quantum computation, as initially proposed by Cirac and Zoller [CZ95], uses a number

of atomic ions trapped in a linear radio-frequency (RF) trap that can interact with laser fields to

quantum compute. Each qubit is identified with two internal electronic or nuclear states of an ion.

For example, the 40Ca+ ions used in experiments at Innsbruck identify 10) with the 42S1/2 ground

state Ig) and I1) with the 32D5/2 metastable excited state le); see Figure 3-1 [Mon08]. Two or more

ions can be contained in a single trap, where they couple to each other through Coulomb repulsion,

forming a linear chain of ions called a Coulomb crystal. The vibrational modes of this chain provide

a qubit-qubit interaction. Single qubit rotations and the qubit-qubit interaction yield a universal

set of quantum gates for quantum computation.

The Cirac-Zoller proposal does not scale to large numbers of qubits. As the length of the ion

chain increases, the vibrational modes become progressively harder to identify, decreasing gate

fidelities. These modes also couple more strongly to ambient fields, increasing the heating rate and,

hence, the dephasing rate.

Kielpinski, Wineland, and Monroe propose using a network of interconnected ion traps. Multiple

traps allow for smaller linear ion chains, and thus greater control over logic operations. Furthermore,
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Figure 3-1: Energy levels of the 40Ca+ system.

modulated electrode voltages move ions between traps within the network, potentially allowing

coherent manipulation of a large number of ions. This kind of trap network is called a quantum

charge-coupled device (QCCD).

Figure 3-2: Schematic of the ion trap used in ion shuttling experiments at NIST Boulder, courtesy
of David Wineland. Individual ions are trapped near electrodes 2 and 4. Ions can be moved by
adjusting the static potentials on electrodes 1, 3, and 5.

Figure 3-2 is a schematic of a dual trap constructed at NIST Boulder. Individual ions are

trapped in regions near electrodes 2 and 4. Slowly varying potentials on the other electrodes move

ions between the two trapping regions.

There are ion-traps that constructed using semiconductor materials [SHO+06] and traps that

are planar [SCR+06]. Quantum information processing with semiconductor traps may be more

experimentally challenging but has the benefit of combining the scalability of semiconductor fab-

rication processes with the quantum control techniques of atomic physics. There are proposals

D "tU . -r



for three-layer T-junctions to allow trapped ions to move throughout a large network of traps

[HOS+06].

3.2.2 Gates and Measurement

Our discussion in this section is based on [Jam98]. The trapping electrodes establish a potential

that confines the ions. The trap potential is typically tight in the radial direction, so N ions are

trapped in a linear configuration, and can be indexed from left to right by integers. Since the

ions are cold, the amplitude of each ion's motion is sufficiently small that the trapping potential is

approximately harmonic. The quantized vibrational motion of the ions in the trap is modeled by

3N uncoupled harmonic oscillators, one for each Cartesian direction of each ion,

3N

Hbus = h a, ,a + , (3.1)

where h is Planck's constant, V• is the normal frequency of the mode labeled a, and e~, &e are

the annihilation and creation operators, respectively. The {In) , In + 1) } manifold of one of the

low-order modes is selected as a "bus" qubit to mediate interactions between ions, where n = 0 in

the Cirac-Zoller scheme.

Each ion's internal qubit {le), 1g)} is modeled by the Hamiltonian

hwo Ee + EgHint = Z + I, (3.2)
2 2

where Z is the Pauli Z-operator, I is the identity operator, and wo = E is the angular frequency

of the qubit transition, given by the difference in energy between the ground and excited state.

Shifting the energy origin, the total Hamiltonian for an ion qubit (indexed by integer j) and a

single motional "bus" mode with frequency v is

hwoHo = 2o Zj + hv& a. (3.3)

Laser fields of specific duration, power, and phase are single qubit quantum gates when applied

on resonance to a particular ion. In some experiments, beams can be steered to individually address

ions at any location in the trap. The laser's electric field is modeled as a plane wave,

E(t, q) = EoE cos(wLt - r -q + 0), (3.4)



that interacts with the ion through dipolar coupling, in the simplest case. In this expression, Eo0 is

the amplitude of wave, c is the polarization vector of the electric field, WL is the angular frequency of

wave, t is time, K is the wave vector which has magnitude iKj = , XL is the free-space wavelength,

q is the position vector, and < is a phase shift. The interaction Hamiltonian for dipolar coupling is

V = -qerj. E(t, qj) (3.5)

where qe is the magnitude of an elementary charge, rj is the (internal) position operator of the

valence electron of the jth ion, and qj is the (external) position operator of the jth ion.

The ion vibrational motion is typically cooled to the Lamb-Dicke regime as a prerequisite for

applying quantum gates. The Lamb-Dicke regime corresponds to the physical situation where the

spatial extent of the ion motion is much smaller than the laser wavelength. The ion spontaneously

emits mostly on the carrier frequency because the recoil energy is much smaller than the energy of

a vibrational quanta. Sideband cooling techniques applied in the Lamb-Dicke regime can cool the

ion motion to the ground state. The formal conditions, collectively called the Lamb-Dicke limit,

are

Tj((n) + 1)1/2 < 1, (3.6)

rI2/2 < 1, (3.7)

where r = Kkzo is the Lamb-Dicke parameter, (n) is the average number of phonons in the selected

bus mode, , is a parameter that depends the selected bus mode, and k is the magnitude of the laser

wave vector. The distance z0 = _ I is the extent of the ion's ground state wave function

found from the expectation of the position operator, where m is the ion mass and wz is the trap

frequency (which corresponds to v in equation 3.3). One calculation for 40Ca+ ions gives 77 0.06,

for which the Lamb-Dicke limit implies that (n) < 200. For (n) > 200, the ion is too warm for

quantum computation.

The ion-laser interaction Hamiltonian V is not obviously useful for implementing quantum

gates until it is written in a different form. This formal manipulation involves a sequence of

approximations such as the rotating wave approximation, the weak-coupling approximation, and

application of the Lamb-Dicke limit. When the laser is on-resonance, i.e., WL = wo, the final



interaction Hamiltonian is

A = cos( At)(Ie) (el 0 In) (nj + g) (g 0 n) (nl) (3.8)
n=O

- i sin( At)(Ie) (g In) (nj e- i + g) (e 0 In) (n ei). (3.9)
n=o

The laser intensity and dipole matrix elements in equation 3.5 determine the Rabi frequencies An,

and 0 is the phase of the laser. The effect of carrier excitation on the level populations is illustrated

in Figure 3-3.
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Figure 3-3: Energy levels of the atom-oscillator system together with carrier-driven transitions
(wL = wO). Carrier-driven transitions rotate the qubit to desired superposition states.

Similarly, when the laser is tuned to wL = 0 - v, the interaction Hamiltonian becomes

B = os( )(Ie) (el 0 In) (nI + Ig) (g 0 n + 1 (+ 1 11) (3.10)
n=O

- i 1 sin( B )(e) (gI In) (n + 11 e- ' + Ig) (el 0 In + 1) (nI ei ). (3.11)
n=O

This causes transitions on the first red sideband, as illustrated in Figure 3-4. Finally, tuning to

wL = + V causes transitions on the first blue sideband, shown in Figure 3-5. Again, Bn is

determined by laser intensity, the dipole matrix elements, and the Lamb-Dicke parameter.

le)ln+l)
le)ln-1) 1e)n))

Ig)n-1)g)n)
Figure 3-4: Energy levels of the atom-oscillator system together with red-driven transitions. Red-
driven transitions change the populations of the qubit energy levels and the oscillator energy levels
simultaneously. The oscillator loses one quanta of vibrational energy in a transition on the red
sideband.

Single qubit rotations of the ion's internal state in the {Ig), le)} basis are represented by oper-
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Figure 3-5: Energy levels of the atom-oscillator system together with blue-driven transitions. Blue-
driven transitions change the populations of the qubit energy levels and the oscillator energy levels
simultaneously. The oscillator gains one quanta of vibrational energy in a transition on the blue
sideband.

ators
cos(2) eiO sin(2)( )= ec ()), (3.12)-e-iO sin(') cos( )

where 0 is the angle of rotation and 4 is the relative phase shift of the ground and excited states.

Equation 3.8 directly implements a single qubit rotation. Laser intensity, phase, and duration

determine the angles 0 and 0.

Universal quantum computation requires a gate such as the controlled-NOT (CNOT). There

are several ways to perform CNOT gates with trapped-ions, and they can be implemented using

fields tuned to the carrier, red, and blue sideband with varying intensity, duration, and relative

phase [CZ95, SM99, LDM+03]. An important engineering challenge appears to be how to integrate

lasers into a system, and alternative proposals attempt to address this issue [LKOWO7]. Gates

have been implemented with 0(1 - 10- 3 ) fidelity [BKRBO8].

The electron shelving method accomplishes reliable single qubit projective measurement in the

computational basis {1g), Je)}. An intense laser field excites a transition that transfers population

between Ig) and a fast-decaying auxiliary level laux). If the qubit collapses to the ground state,

that population is transferred to the laux) level. The auxiliary level spontaneously emits a photon,

decaying back to Ig). As long as the cycling transition is driven, the presence or absence of fluo-

rescence at we = (Eaux - Eg)/h determines if the post-measurement state is Ig) or le), respectively.

However, if the qubit collapses to le), the qubit remains in that state during the readout process

and no photons are emitted.

3.2.3 Moving Ions between Traps

Quantum computation may interact and entangle a majority of the qubits in the system. Ion-trap

quantum computing differs from other physical systems because qubit swapping can be implemented

using ballistic transport [RBKD+02, RLB+07], in which ions are electromagnetically pushed from



trap to trap. This method is a critical feature of the QCCD proposal [KMW02] because ions no

longer have to be in the same trap for the duration of the computation.

Ballistic transport is not only advantageous for scaling, but also for reducing noise. Ballistic

transport may be more reliable than swap gates. Ions can be separated from one another during

measurement to reduce scattering errors induced by fluorescing ions. Twice the number of qubits

may be necessary in some architectures [GotOO] than are necessary here.

Ballistic ion transport experiments at NIST Boulder have used the trap illustrated in Figure 3-2

[RBKD+02]. Modulated static voltages on trapping electrodes 1, 3, and 5 shuttled a single 9Be+

ion between traps 2 and 4. The data corresponds to 106 transfers over the 1.2mm distance. The

transfer duration was 50ps and, in one particular experiment, occurred between each pulse of a

spin-echo experiment. The resulting interference fringe contrast for two transfers, 96.8 ± 0.5%, was

due to imperfections in state preparation, detection, and the spin-echo pulses, rather than from

environmental influences. No ion loss was ever observed as a result of the transfer.

Ions shuttled by ballistic transport in the NIST experiment with average velocity 0.024mm/ps

heated at a rate of about 8 x 10- 6quanta/pm. This heating presents a challenge because qubit-

qubit gates such as the controlled-NOT degrade when acting on hot ions. Hence, ions must be

recooled periodically by laser fields applied on the blue sideband transitions. Moving to cryogenic

traps reduces ion heating rates by several orders of magnitude [LGA+08].

The cooling laser can change the state of the qubit, but ions can be sympathetically cooled

[KKM+00, BDS+03]. Sympathetic cooling couples an ion of a different species to the target ion.

Fields applied to the sympathetic cooling ion do not strongly interact with the target ion because

the optical transitions are at different frequencies.

The NIST experiment also studied separating and joining linear chains of ions between two

traps, A and B, 1.2mm apart. Two ions confined in trap A were separated into traps A and B,

then brought back together into trap A. This required several steps: laser cooling in trap A, trap

parameter adjustment, and changing electrode DC voltages. The entire process required 10ms.

Discrete voltage steps during the ramping process, as well as other imprecisions in control, caused

motional mode heating. The splitting process left an ion in each trap 95% of the time, and a mean

on-axis motional mode population of 140 ± 70 quanta assuming a thermal distribution. More recent

experiments have a success rate greater than 99% and heating of about 1 quanta in the center of

mass mode and 0 in the next higher mode. The separation time is also reduced to around Ims.



3.3 Conclusion

We have reviewed a model for a trapped-ion quantum charge-coupled-device architecture. This

model is an example of a basic device level model that adds notions of geometry and specific noise

parameters to the abstract circuit model reviewed in Chapter 2. Such a model can be constructed

for any candidate physical system, and thorough models make strong connections with the physical

theory of the corresponding system. We do not make explicit use of such a model in the remainder

of the dissertation, given the variety of models that can be created and the knowledge and data

required to build a model that accurately matches current experimental observations. However, the

concept of a device-level model is important to recall whenever locality and noise are mentioned at

the component-level, in Chapters 4, 5, and 6, and the system-level, in Chapters 7 and 8.
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Chapter 4

Quantum codes in the stabilizer and

codeword stabilized frameworks

4.1 Introduction

Quantum codes are powerful tools against noise and inaccuracy. Codes can be designed to correct

specific noise operators arising in an experiment. They can also be selected to correct arbitrary

errors on a small number of qubits. Their efficiency and error correcting power can be tuned based

on the application.

Quantum codes can be viewed as components of a quantum computer in the following sense.

If a particular quantum code is chosen, for whatever reason, as a means to combat noise, the

structure of that code is instantiated as a collection of circuits and algorithms that may operate

continuously to locate and purge errors from the system. By some estimates, the vast majority of

energy that a quantum computer consumes will be spent on this process alone. Choosing a "good"

set of codes is crucial, where goodness will be measured in several different ways throughout this

dissertation. Goodness can mean that a code encodes the largest amount of information for a given

error correction capability. It can also mean that the circuitry implementing the error correction

procedure is small and efficient. Goodness may mean that the code belongs to a family where the

error correction capability "keeps up" as the size of the code grows.

The first section, Section 4.2, reviews classical codes and gives an example of one of the first

quantum error-correcting codes to be discovered. The example illustrates the main ideas of quantum

error-correction. Next, the general theory of quantum codes is quickly reviewed, culminating in a



statement of the error-correction conditions.

Section 4.3 reviews stabilizer codes. These codes are important for much of the dissertation, so

in addition to reviewing the theory, we record several important stabilizer code examples. These

examples make their debut here and return again in Chapter 8, where they are used for fault-

tolerant computing.

Finally, in Section 4.4, we present the first new result of this dissertation - a framework for

quantum codes that are analogous to classical nonlinear codes. The framework includes all of

the stabilizer codes but goes beyond them to include all known nonstabilizer quantum codes with

optimal parameters. The framework restates the quantum error-correcting conditions as conditions

for a classical code to detect an error model induced by a graph, creating a simple way to understand

many previously opaque quantum codes with good parameters. Searching for optimal codes in this

framework is equated to an iteration over inequivalent graphs on a fixed number of vertices, where

the NP-hard problem of finding maximum cliques on an induced graph is solved on each iteration.

Such a search can be carried out for small codes, offering new examples of quantum codes.

The chapter ends in Section 4.5 with several open questions that are revisited and refined in

later chapters.

4.2 Quantum codes and error-correcting conditions

This section begins by quickly reviewing classical binary codes then presenting an example of a

quantum code. Next, definitions for general quantum codes and necessary and sufficient conditions

for a quantum code to correct a set of errors are given [BDSW96, KLOO, NCOO, KSV02].

4.2.1 Classical binary codes

An (n, K, d)2 binary code C on n-bits is a set of K distinct vectors in {0, 1}n such that the

minimum distance of C is d. C encodes K symbols into n bits. The minimum distance of C

is minc,C'Ecwt (c + c'), where wt c is the Hamming weight, or weight, of a binary vector c and

equals the number of nonzero coordinates. C can detect errors of weight less than d and correct

errors of weight no more than t := [(d - 1)/2].

The dual code of C, denoted C 1 , is the code

C-L = {x E {0, 1}n I x c = 0 Vc C} (4.1)



where x - c is the usual dot product and the operations are modulo 2. C' is a linear code.

An [n, k, d]2 binary linear code C on n-bits is a k-dimensional subspace of {0, 1}" with

minimum distance d. For a linear code, the minimum distance equals mincec,c owt(c). If C is

linear then (C')' = C. A linear code is self-orthogonal if C c C' and self-dual if C' = C.

A linear code is defined by a k x n generator matrix G whose rows are a basis of C. The

codewords of C are xG where x is a k-bit row vector representing the message to be encoded. A

vector x is in C' iff xG = 0. Therefore, C' consists of the vectors in the null space of G and has

dimension n - k. The generator matrix can be brought into standard or systematic form

G = ( kxk Akx(n-k) )(4.2)
by Gauss-Jordan elimination, since it has rank k.

The check matrix of C is an (n - k) x n matrix H that is the generator matrix for C'. If the

generator matrix G of C is in standard form, then a check matrix for C is given by

H =( -A n-k)xk (n-k)x(n-k) . (4.3)

The rows of H are parity checks for C since HcT = 0 for all c E C. For e E {0, 1}n, the vector

HeT is called the syndrome of e.

For example, consider the repetition code C = {000, 111}. The parameters are [3, 1, 3]. The

generator matrix is (111) and the check matrix is . The bit value 0 is encoded as 000,

and a single error gives one of 100, 010, or 001. The corresponding syndromes are 10, 11, and 01,

respectively, and each locates an error. The decoding algorithm that maps each syndrome to an

error pattern is called syndrome decoding.

4.2.2 Shor's 9 qubit quantum code

The classical repetition code encodes a single bit into a trio of bits with the same value, 0 H 000 and

1 H 111. Shor constructed the first error-correcting quantum code using two classical repetition

codes [Sho95]. A brilliant insight is that, to correct an arbitrary error on a single qubit, it is

sufficient to correct bit-flips or phase-flips on single qubits, as we will see. This can be done using

one repetition code to correct bit-flip errors and another repetition code to correct phase flip errors.

For the moment, consider a quantum code to be a procedure describing how to encode infor-
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Figure 4-1: This quantum circuit couples a 3-qubit quantum codeword to two ancillary qubits.
Upon measurement, these ancilla reveal the parity of adjacent bits and simultaneously project the
quantum codeword onto a state with that parity. The measurement results locate bit-flip errors
which can then be corrected by classically controlled correction operations. For example, the 3-
qubit input state 1J) = Vi(aI010) + b1101)) + 1v- E(aJ000) + b111)) leads to parity measurement
11 with probability E and parity measurement 00 with probability 1 - c. These measurements
indicate no error with probability 1 - E and a bit-flip on the second qubit with probability E.

mation and correct errors. We will review Shor's code by giving this procedure and demonstrating

that single errors can be corrected. If the encoder for a classical repetition code is reversibly applied

to a basis state Ib) and two ancillary qubits 100), the basis state is mapped to Ibbb). A single qubit

aJO) + bJl) is mapped to aJ000) + bJ111). Let us call this code Cx. The encoder is a simple circuit

using two CNOT gates. This code corrects a single X error on any qubit. Indeed, the circuit shown

in Figure 4-1 measures the parity of pairs of adjacent bits and uses the outcomes, which indicate

the location of any single bit-flip error, to correct the error. The parity measurements correspond

to measuring the two-qubit operators Z 1Z 2 and Z2 Z3 .

However, a phase-flip error Zi will invert the phase between 1000) and 1111). If we apply a

Hadamard gate to each qubit, the code, call it Cz, is now a repetition code in the conjugate basis,

taking aI+) + bI-) to aj+) +)I+) + bI-)I-)I-). The conjugate code can correct a single phase-flip

error now, but it cannot correct a bit-flip error.

Shor's solution is to compose Cx and Cz by encoding into Cz then encoding each bit into Cx.

This procedure encodes a qubit as

al+) + bi-) z a J+) I+) J+) + b I-) I-) 1-) (4.4)

oc a(10) + 11))® 3 + b(10) - 11))® 3  (4.5)

Cx a(1000) + 1111))® 3 + b(J000) - 1111))® 3  (4.6)

Figure 4-2 shows the circuit that carries out this encoding. Qubits 1- 3, 4-6, and 7-9 are encoded

into Cx, so the outcomes of measuring ZiZi+l for i = 1, 2, 4, 5, 7, 8 indicate the location of any



(Y>

It>

It)

Figure 4-2: Encoding circuit for Shor's 9 qubit code.

single bit-flip error. A single phase-flip error flips the relative phase of 1000) and I111) in the trio of

qubits where the error occurs. The trio can be located by measuring X1 ,2,..., 6 and X4,5,...,9. One way

to derive these measurements is to observe that the conjugate measurements to ZiZi+I are XiXi+l,

and that X - XXX by the encoding circuit for Cx, since it is a stabilizer circuit. Importantly,

the measurement operators act trivially on an undamaged encoded state, so measuring them does

not damage the relative phase between an encoded 10) and an encoded I1).

Suppose that the first qubit suffers a continuous rotation by the angle 0 along some axis ii

on the Bloch sphere. Such a rotation can be written as a superposition of identity I, bit-flips

X, phase-flips Z, and a bit-phase-flip Y, since we know the Paulis are an orthonormal basis for

the 2 x 2 matrices. In this case, the measurement procedure for locating errors has four possible

outcomes: either all of the outcomes are +1, only X 1,2,...,6 is -1, only ZIZ 2 is -1, or only XI,2,...,6

and Z1Z2 are -1. The post-measurement state must be an eigenstate of the measured operators,

so the measurement actually collapses the continuous rotation error onto "no error" or one of the

Pauli errors X 1, Z1, or Y1. In this sense, linear combinations of single qubit Pauli errors can be

corrected because the correction procedure "digitizes" errors [NCOO].

4.2.3 Error-correction conditions

A quantum code is a subspace C of a Hilbert space H. C detects an error E E L(R-t) if there

exists some c = c(E) E C such that

VI0i), 102) E C, (421E|11) = c(E)(021'i). (4.7)

Any state in C is called a codeword. This error-detecting condition is a precise statement of the

fact that a detectable error does not deform the code. If an error rescales non-orthogonal codewords,



it should do so in a way that depends only on the error operator. So, a detectable error cannot

scale the codespace in a nonuniform way.

The minimum distance of C is the smallest number d = d(C) for which the code does not

detect errors from the space 9(n, d). The error operators £(n, m) are defined as follows. For each

subset of qubits A C [n], let S[A] be the set of linear operators that only act on qubits in A. Let

E(n, m) = EA:IAl<m [A] denote the set of all linear operators that are sums of linear operators

acting on m qubits or less. This set of error operators is analogous to the set of all classical errors

of weight less than m.

Suppose that the Hilbert space N is a 2n-dimensional space. A quantum code C C N is

parameterized by the block size n, the dimension k = dim C, and the minimum distance d. These

data are usually written ((n, K, d))2 . The subscript indicates that the distance and block size are

defined with respect to qubits. Since this is the only case we consider in this dissertation, with

little exception, we usually drop the subscript and write ((n, K, d)).

The error-correction theorem can be stated succinctly in terms of error detection:

Theorem 5 (Error-correction conditions) A quantum code C C NH corrects errors from 8 C

L(N7, ') iff it detects errors from the space StE = {EpAtBp I Ap, Bp E 8}. A code corrects t

errors iff d(C) > 2t. Usually, t is defined to be [(d - 1)/2J.

Proof See one of [KSV02, NCOO]. O

4.3 Stabilizer codes

Chapter 2 introduced the stabilizer formalism. The stabilizer formalism is a way to describe sub-

spaces of states that are somehow easier to manipulate and comprehend than general states. These

subspaces often make excellent quantum error-correcting codes. In fact, Shor's code is a stabilizer

code.

4.3.1 Construction and properties

The stabilizer formalism for quantum error-correcting codes was invented by Gottesman [Got97]

and, simultaneously, a formalism in which stabilizers are replaced by classical additive codes was

invented by Calderbank, Rains, Shor, and Sloane [CRSS98].



Recall from Chapter 2 that a stabilizer subspace is specified by an abelian subgroup S of the

n-qubit Pauli group. S has a minimal set of independent generators 11 such that 1 < ISI < n. A

quantum code is a subspace of a Hilbert space, so we now refer to C(S), the joint +1 eigenspace

of the Pauli operators in S, as a stabilizer code. The dimension of C(S) is 2n- iS, so the code

encodes k := n - |SI qubits. A stabilizer code encoding zero qubits is just a stabilizer state.

For example, Shor's code is stabilized by a stabilizer S generated by

S:= X 1,2,..., 6 , X 4 ,5,...,9, ZiZi+I, i = 1, 2, 4, 5, 7, 8}, (4.8)

which can be verified directly by applying these operators to the encoded qubit. Since IS = 8, the

code encodes a single qubit.

The projector onto a stabilizer code C(S) has an expression in terms of the stabilizer

and/or its generators. The projector onto C(S) is

Pc(s) = Eg, (4.9)
gES

when S is generated by m elements. First, we can confirm that the rank of Pc(s) is 2 n-m by

observing that every element of S is traceless except the identity element which has trace 2n , so

Tr Pc(s) = 2n-m = 2k. Consider the projector Pg = 1(I + g) associated with an observable g E n.

It is easy to check that P 2 = Pg and that gPg = Pg, so Pg projects onto the +1 eigenspace of g.

Therefore,

PC(S)= 1 (I + h). (4.10)
hES

Suppose we have a state in C(S). If we measure a generating set of the stabilizer, each outcome

will be zero, and the state will be unchanged. However, any Pauli error E that does not commute

with the stabilizer can be detected by this set of measurements. Since there is a g E S such

that EgEt = -g, one or more of the outcomes will be nonzero. If it is possible to infer E from

the measurement outcomes, then E can be corrected. This motivates the consideration of the

normalizer in the Pauli group of a stabilizer,

N(S) := {g E Gn I gsgt E S}. (4.11)



For the Pauli group, the normalizer coincides with the centralizer

Z(S) := {g E Gn [g, s] = 0 for all s E S} (4.12)

since elements of the Pauli group either commute or anticommute.

Theorem 6 (Error-correction conditions for stabilizer codes) Let S be the stabilizer for a

stabilizer code C(S). Suppose {Ej } is a set of operators in Gn such that EjEk V N(S) - S for all j

and k. Then {Ej } is a correctable set of errors for the code C(S). The minimum distance of C(S)

is the minimum weight of an element of N(S) - S.

Proof See [NCOO]. O

The usual notation for stabilizer quantum code parameters is different than general quantum

codes. The parameters of stabilizer codes are the block size n, the number of encoded qubits k,

and the minimum distance d. They are usually grouped using double square brackets [[n, k, d]] 2.

As before, the subscript is dropped if the dimension of each subsystem is already understood.

A stabilizer code is said to be degenerate if the minimum weight non-identity element of S

has weight less than d. This means that some low weight errors act trivially on the code space

and need not be corrected actively. Shor's code is degenerate, for example, since Z 1Z2 is in the

stabilizer and the code has distance 3.

The group Z(S)/S is isomorphic to the k-qubit Pauli group Gk, meaning that cosets and

group elements are in 1 - 1 correspondence and have the same multiplication table. By a counting

argument, there can only be 2k additional independent Pauli elements that commute with S.

These elements can be chosen in pairs of logical Pauli operators {Xi, Zi} for i E [k] such that

{Xi, Zi } = 0 and all others commute. The logical Pauli operators act on the k encoded qubits in

the same way that Gk acts on k-qubits. The isomorphism is explicitly given by an encoding circuit

for the code; see Section 4.3.2. Each logical Pauli is derived by conjugating the single qubit Pauli

Xi or Zi by the encoding circuit. The choice is not unique of course - it amounts to a choice of

basis for the code space since { Dl2...d k) := ( 1-j=l 0)}} spans the code space, where 10) is

stabilized by S and each of the Zi.

Stabilizer codes are analogs of classical linear codes - there is a sense in which the stabilizer

is exactly a classical code [CRSS98]. A finite field is a set of elements together with an identity

element, inverse elements, and addition and multiplication operations that satisfy commutativity,



associativity, distributivity. GF(4) is a finite field with elements {0, 1, w, } that satisfy c :- 2 =

1 + w and w3 = 1. The field elements correspond to binary vectors by writing them over the basis

{1,w}, so 0 = [010], 1 = [01i], w = [110], and w2 = 1 + w = [111]. Field elements can be written

multiplicatively as a power of w or additively as vectors with basis {1, w} over the binary numbers.

The trace map Tr : GF(4) -- {0, 1} takes x to x + t.

A stabilizer S can be mapped, by the homomorphism binary(g) given in Chapter 2, to an

additive subgroup binary(S) of GF(4)n , where each binary tuple is [xly] = x + yw E GF(4). Multi-

plication in S becomes addition in binary(S). The fact that S is abelian becomes the condition that

the trace inner product Tr(vw) vanishes for all v, w E binary(S). This condition is equivalent to

the symplectic inner product vanishing. So, a 2k-dimensional stabilizer code is naturally associated

to a trace self-orthogonal additive code of dimension n - k over GF(4). This additive code is

spanned by the rows of an (n - k) x 2n check matrix

binary(gl)

Hs ... (4.13)
binary(gn-k)

where S = (gl,..., gn-k). Furthermore, if binary(S) is a vector space, closed under multiplication

by scalars in GF(4), then it is called a GF(4) linear code.

The theory of stabilizer codes includes the concept of a subsystem code that we now re-

view to prepare for Chapters 6 and 8. Some subsystem codes have compact circuitry for error-

correction [AC07] which motivates their study. In the usual subspace codes we have discussed,

k = log dim C(S). A subsystem code defines a partition of C(S) into a logical subsystem HL

where information is encoded and a gauge subsystem NG that can be "ignored". The partition

is such that C(S) = H'L 0 liG and two states PL 0 PG and PL 0 pG in C(S) are equated with one

another even though PG $ pG [Pou05].

Identify a subgroup G of Z(S) called the gauge group that defines an equivalence relation

p - p' p - 3g E G p = gp'gt . The remaining elements £ = Z(S)/G are the logical Pauli

operators on the logical subsystem, and we must have [L, G] = 0. Therefore, the k encoded qubits

of the original subspace code C(S) have been partitioned into k' logical qubits on -L and r gauge

qubits on l-G such that k = k' + r. It can be seen that abelian gauge groups produce subspace

codes and non-abelian gauge groups produce subsystem codes.



Calderbank-Shor-Steane (CSS) codes

The Calderbank-Shor-Steane (CSS) codes are stabilizer codes constructed from a pair of classical

linear codes [CS96, Ste96]. They are a very important class of codes since they can be constructed

from known classical codes and they have other properties we will see in Chapter 5. Many of the

codes studied in Chapter 8 are CSS codes.

Suppose Ci and C21 are classical linear codes with parameters [n, kl, dl] and [n, k2, d2] such

that C2 C C1 and d = min{wt x I x E (Ci- C) U (C2 2 Ch)} 2 min(d1 ,d 2). The CSS code

CSS(C1, C2) is the [[n, k = kl - k2, d]] quantum code spanned by

JR) := IX + C2) = x + +c) (4.14)
V iC21 cEC+

for all x E C1/C-. The number of cosets of C21 in C1 is IC1 l/IC = 2 kl/ 2 k2 = 2 ki-k 2 . Each row r

of the parity check matrix of C2 gives an X-type stabilizer generator X(r), and each row s of the

parity check matrix of Ci gives a Z-type stabilizer generator Z(s), where U(r) = UP1 0 ... Unn .

Therefore, The (n - k) x 2n check matrix of a CSS code as an additive quantum code is

Hs = H C
2 0 , (4.15)

and the generators can be seen to separate into X-type generators Hc2 and Z-type generators Hc,.

Indeed, la) is a simultaneous eigenstate of these stabilizer generators: a row r of the parity

check matrix of C2 must be an element of C2- , so adding it to each codeword in the superposition

Ii) leaves the state unchanged, and every codeword in the superposition Ja) is an element of Ci, so

it must pass the parity checks of C1.

A collection of representatives of the 2 k different cosets of C20 in C1 corresponds to logical

X operations X(a), a E Ci, because X(a) 10) = Ia). Similarly, a collection of representatives

of the 2 k different cosets of CO- in C2 corresponds to logical Z operations Z(b), b E C2, since

Z(b) Ia) = (-1)b'a a). We can choose these representatives such that the logical operators obey

the commutation relations of the k-qubit Pauli group.

A special case of the CSS construction occurs when Ci = C2 is dual-containing. The X and Z

stabilizer generators have identical supports. If in addition the weight of each stabilizer generator

is a multiple of 4, C1
- is called doubly-even.



4.3.2 Encoding circuits

Gottesman has given an algorithm for encoding any stabilizer code given its stabilizer S [Got97].

We do not review this algorithm here because the encoding circuits described in Section 4.4.2 apply

to stabilizer codes as well and produce circuits of the same size.

4.3.3 Examples of important stabilizer codes

The [[5, 1, 3]] code

The [[5, 1, 3]] code is the smallest quantum code encoding one qubit and correcting a general single

qubit error [LMPZ96, BDSW96]. This can be seen from the quantum Singleton bound, [[n, k, d <

n-k + 1]] [KLOO, Rai99a]. The stabilizer is generated by XZZXI and its cyclic shifts. Only four

of the shifts are independent of each other. The centralizer is generated by eio, S, XXXXX, and

ZZZZZ. The code is a stabilizer code, but is not CSS, and it is a perfect quantum code, meaning

that the number of syndrome vectors corresponds to the number of distinct correctable errors.

The [[7, 1, 3]] Steane code

The [[7, 1, 3]] code is the smallest CSS code correcting a general single qubit error [Ste96]. It is

constructed from the Hamming code and is generated by

0001111
GC2= 011001 1 (4.16)

1010101

and C1 = C2. The normalizer is generated by S, eio , the string of all X's, and the string of all Z's.

This Hamming code is a perfect classical code and it is also doubly-even. C1 is dual-containing.

The surface codes

Surface codes are CSS codes that can be defined for many different kinds of surfaces and grids

[BK98, FM01]. One family of surface codes, the [[ 2 + ( - 1)2, 1, j]] surface codes, are defined

on the £ x i grid shown in Figure 4-3. Surface codes have a stabilizer generated by As and Bp

for all sites s and plaquettes p on the grid. There are £(f - 1) site operators As = ®jEN(s) Xj

consisting of X's on the edges connecting to the site. Similarly, there are f(f- 1) plaquette operators

Bp = (jea(p) Zj consisting of Z's on the edges on the boundary o(p) of the plaquette.
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Figure 4-3: Grid for defining the surface code.

Any connected chain of X operators extending between the west and east boundaries of the

grid commutes with the plaquette operators but is not a product of them. Such a chain represents

X. Similarly, any chain of Z errors extending between the north and south boundaries represents

Z. Since each of the stabilizer generators has constant weight four, if £ > 4 then the surface code

is highly degenerate.

One reason that the surface codes are interesting is that they have constant weight local check

operators. Each generator of the stabilizer only involves qubits adjacent to a site or plaquette. This

property allows measuring the generators using only a constant number of local interactions.

The Bacon-Shor codes

The Bacon-Shor codes are subsystem CSS codes due to Bacon [BacO6] that are closely related to

Shor's code. There is a Bacon-Shor code for every integer i > 2 encoding one qubit into £2 qubits

with distance £. Imagine placing £2 qubits on the vertices of an £ x f square grid. The Bacon-Shor

code stabilizer is generated by

(Xj,,Xj+I,, Z,,jZ,,j+1,j E [n- 1]), (4.17)

where Pj,, and P,,j denotes the Pauli P acting on all of the qubits in the jth row or column of the

grid, respectively. The gauge group is

G = (Xj,iXj+l,i, Zi,jZi,j+i I i E [n],j E [n - 1]), (4.18)



and Z(S)/1 = (Zi,,,X,,1).

One reason the Bacon-Shor codes are interesting is that the stabilizer generators can be written

as products of gauge group generators

Xj,,Xj+,*, = n=1l(Xj,kXj+l,k) (4.19)

Z,,jZ,,j+l = ®(g= (Zk,jZk,j+l). (4.20)

The gauge group generators act on pairs of adjacent qubits in the grid, so they can be measured

by local operators to determine the syndrome [AC07].

Bacon-Shor codes can be obtained from surface codes by measuring all horizontal edges of

the grid in the computational basis. This removes the horizontal edges and leaves an [[n 2 1, n]]

Bacon-Shor code whose gauge qubits are initialized in an encoded computational basis state chosen

uniformly at random.

The [[23, 1, 7]] Golay code

The Golay code can be constructed from a dual-containing [23, 12, 7] cyclic binary linear code with

generator polynomial g(x) = x 1" + x9 + x 7 + x 6 + x5 + x + 1. The generators are derived from the

11 classical codewords obtained from right cyclic shifts of 10100100111110000000000 by replacing

1 by X or Z and 0 by I. The normalizer is generated by the string of all X's and the string of all

Z's. The Golay code is a perfect classical code and its group of symmetries is a famous example of

a so-called sporadic simple group. The code is also doubly-even.

A [[47, 1, 11]] quadratic residue code

This code is the next largest CSS code constructed from a dual-containing cyclic classical code that

encodes one qubit with large minimum distance. It is constructed from a dual-containing [47, 24, 11]

with generator polynomial g(x) = x 23 +x 19 +x 18 +x 14 -x13 + 12x1 x9 + +x6x5 +3 +x+.

The generators are derived from the 23 classical codewords obtained from right cyclic shifts of

10001100110110010010100110000000000000000000000 by replacing 1 with X or Z and 0 with I.

The normalizer is generated by the string of all X's and the string of all Z's. This code is the

smallest known CSS code encoding one qubit and constructed from a BCH code such that the

minimum distance is larger than the Golay code.



The [[15, 1, 3]] even-subcode Reed-Muller code

This code is a CSS(C1, C2) code constructed from a classical first order punctured Reed-Muller

code C1 = RM*(1, 4) and its even subcode C21 = even(RM*(1, 4)) g C1 [KLZ96]. The dual code

of both C2-L and C1 is a classical second order Reed-Muller code RM*(2, 4). The generator matrix

for C2_ is

000000

000111

011001

101010

11111

00001

00110

01010

and C1 is generated by the same 4 vectors as C02 as well as the all ones vector. The dual code

C2 = C0 1 is generated by

Gc2 =

0 0

0 0

0 1

1 0

0 0

0 0

0 0

0 0

0 0

0 0

000

111

001

010

000

000

000

001

010

000

1 1

00

00

0 1

00

00

0 1

00

00

00

(4.22)

The stabilizer has Z-type operators derived from C0 and X-type operators derived from C21- .

Every generator has even weight. Therefore we can choose X = X®1 5 and Z = Z ®15 as

generators of N(S)/{e i S}. These operators anticommute as expected, and since there are 14

generators, we have a complete set of generators of the normalizer. The product of Z, I®7Z®8,

I®3 z®41®4 Z®4, and I®11Z®4 is in N(S) - S, has weight 3, and there is no operator in N(S) - S

of lower weight. Therefore, this code is a [[15, 1, 3]] code. The code is interesting for reasons we

return to in Chapter 6.

Gc2 =
2I (4.21)



A [[21,3,5]] concatenated polynomial code

The construction of this code will be given in Chapter 8.

of C2# and C#i as follows

100000000101011011001

010000000001110110011

001000000110100100111

000100000110001111100

000010000111011100010

000001000010111101001

000000100101101010110

000000010001001101111

000000001110110011010

, Gc-

It is a CSS code with generator matrices

100000000101011011001

010000000001110110011

001000000110100100111

000100000110001111100

000010000111011100010

000001000010111101001

000000100101101010110

000000010001001101111

000000001110110011010

A generating set of Z(S)/S is X 1 := X10 X15 X 16 X1 9X 20 , X 2 := X 11 X14 X1 5X1 7X1 9X 20 X 2 1 , X3

X 12X 13X 14X 15 X18X20, 21 := Z10Z12Z13Z14Z16Z18 Z19, Z2 := Z12Z13Z14Z 15ZisZ20, and 23

ZoZ1 11Z14Z16Z17Z21-
One reason concatenated polynomial codes are interesting examples is that they can be decoded

as codes on qudits, i.e. d-dimensional quantum systems, allowing high weight adjacent errors to

be corrected. This code can be decoded as a 7 qudit code on 8-dimensional systems, so some weight

3 errors can be corrected. The code also give us an example of a code encoding multiple logical

qubits.

4.4 Beyond the stabilizer formalism

The GF(4) framework [CRSS98] provides a natural mapping between stabilizer codes and classical

linear (and additive) codes, but a complete, simple, and systematic understanding of quantum

codes analogous to nonadditive classical codes has not yet been obtained. Any quantum code that

is not a stabilizer code is referred to as a non-additive quantum code.

The first nonadditive quantum code was found in [RHSS97], and encodes a six-dimensional

space into five qubits with a minimum distance of two. This outperforms the best additive five

qubit distance two code, which can have an encoded dimension of at most four. The code was

originally found as follows: It was known that the linear programming upper bound was exactly

Gc# = (4.23)



6 for a blocklength 5 distance 2 code, and in fact it was possible to completely determine what

the weight enumerator [Rai99c] of a code meeting this bound must be. The authors of [RHSS97]

then performed a numerical search for such a code, and managed to find one. The structure of the

resulting code was understood, but generating larger codes in a similar fashion seemed intractable

(though [Rai99b] showed how to construct a ((5 + 21, 221+13, 2)) code from this code).

The code is defined by a projection matrix

P = [311111 + IZYYZc + IXZZX, - IYXXYc + 2ZXYYX, - 2ZZZZZ] (4.24)

where Ac is the sum of A and all of its cyclic shifts. The error-correction conditions can be verified

numerically but are difficult to verify analytically, despite the cyclic symmetry of the projector.

Once the projector was obtained, the authors of [RHSS97] observed that the ((5, 6, 2)) is spanned

by stabilizer states. Furthermore, they appreciated that other codes could be constructed in like

manner:

In principal one can construct other codes in a similar manner, e.g. as the spans of

translates of self-dual stabilizer codes. Let Co be a self-dual additive code of length n

with associated stabilizer quantum code Qo and let C be the union of K cosets of Co.

If C has minimum distance d, then there exists an ((n, K, d)) quantum code.

However, an important challenge is to phrase the error-correction conditions so that codes of this

form can be systematically found and understood. Some further steps in this direction were taken

[RV99, GB97, AKP04], but none provide a simple way to understand the error-correction conditions

or a systematic procedure for obtaining new codes. In particular, it is desirable that such codes can

be constructed from well-known classical nonlinear codes. In 2006, Aggarwal and Calderbank pro-

posed constructing non-additive codes from Boolean functions and projection matrices [AC08], but

it seemed intractable to systematically apply their techniques to obtain new codes or transparently

describe known nonadditive codes.

In 2007, Sixia Yu and coauthors [YCLOO7] presented an example of a nonadditive code con-

structed from a graph. Graeme Smith, Bei Zeng, John Smolin, and I interpreted certain sign

changes of this construction as classical code words, leading to the formulation of the codeword

stabilized codes (CWS) framework for understanding and constructing nonadditive quantum

codes from stabilizer states and classical codes [CSSZO8].

The innovation of the CWS framework is that all known nonadditive quantum codes with good



parameters can be described as a pair of objects: a stabilizer state (i.e. a GF(4)-additive classical

code) and a (nonlinear) classical code. Furthermore, the error-correction conditions for CWS codes

can be stated in a classical language, in terms of a classical code detecting errors induced by a

GF(4)-additive code. Given these conditions, the process of finding good nonadditive quantum

codes can be achieved systematically.

4.4.1 Construction and properties

We begin by reviewing graph states, then proceed to the main theorems of the CWS construction.

We conclude the section with examples of CWS codes and an algorithm for systematically obtaining

new CWS codes.

Graph states

The ((5, 6, 2)) is spanned by stabilizer states (which can each be viewed as a classical additive code),

and there is a beautiful graphical way to study and think about these states. Any stabilizer state

can be represented as a simple graph [Sch02, GKR02, dNDD04]. A simple graph is an undirected,

unweighted graph that has no loops and at most one edge between a pair of vertices. The edges in

this graph represent entanglement between qubits in a way that can be made precise.

The graph state associated with the simple graph G = (V, E) is the state stabilized by

(X, (9o & Z,, , vE V) (4.25)

where N(v) is the set of neighboring vertices of v. This means that the ith row Ai of the adjacency

matrix A becomes a stabilizer generator with an X on the ith qubit and a Z on every qubit where

Aij = 1. The graph is undirected so the generators pairwise commute, since if i is connected to j

then j is connected to i. A graph state can be prepared simply by preparing each of the n qubits

in the I+) state and applying a controlled-Z gate between the qubits at the end-points of each edge

in the graph. These facts are illustrated by example in Figure 4-4.

A stabilizer state can be mapped to a graph state by a unitary gate of the form U := U1 0

U2 0 ... Un such that each Ui is in the single qubit Clifford group [Sch02, GKR02, dNDDO4].

Such a gate is called a local Clifford gate. A gate of this form and a graph state can be derived

mechanically from the starting stabilizer state. The algorithm to obtain the local gate and graph

state from an input stabilizer state can proceed in two steps. First, a Pauli operator is chosen
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Figure 4-4: Example of a graph state, its stabilizer, and a circuit to prepare the state.

to adjust the signs of each stabilizer generator to be +1, then, second, the process of applying a

sequence of local Clifford gates is reduced to that of applying operations to a binary matrix. The

product of the Pauli operator and the sequence of operations on the binary matrix corresponds to

the desired local Clifford gate. The final binary matrix contains the adjacency matrix of the graph.

The first step of the algorithm is as follows. Any stabilizer state can be mapped by a Pauli

operator to a new stabilizer state whose phases are all +1. Let S = (gi) stabilize a state IS). There

is a unitary U that maps the state 100... 0) to IS). Since these states are both binary stabilizer

states, U may be chosen to be in the Clifford group. Therefore, gi := UXiUt is a Pauli operator

that anticommutes with gi and commutes with gj for all j Z i. Hence, we may apply some product

P of the gi to IS) so that the resulting state PIS) is stabilized by S' := (g() where g• = ±gi and all

g• have +1 phase.

The second and final step is now described. Apply the homomorphism binary(g) discussed in

Chapter 2 to each generator of S to obtain a binary matrix M representing S. The single qubit

Clifford gates are generated by H and K. H, acting on coordinate i E [n] of a row vector [alb] of

M, swaps ai and bi. Likewise, K maps bi to ai + bi. Any n x 2n matrix M = [AIB] whose rows

pairwise satisfy (alb) D (a'lb') = 0 can be mapped to M' = [IIA], where A is an adjacency matrix,

by the following operations. Multiplying generators in S replaces row j by the sum of row j and

another row j' in M. Applying H[i] swaps column i and column i + n in M. Finally, applying S[i]

adds column i to column i + n in M. Gauss-Jordan elimination puts M into the form

I A' B' 0

0 All B" I

H gates swap the right blocks of M to get

( I B' ) (4.27)

0 I B" A"I



and, finally, K gates clear the diagonal of B' and A". The final form of the right hand block is an

adjacency matrix because the rows of [AIB ] originally pairwise satisfied (alb) G (a'Ib') = 0.

The representation of a stabilizer state as a graph is not unique - many graphs can correspond

to a stabilizer state. Ideally this ambiguity, whose origin is a local Clifford freedom, would be

completely resolved. Unfortunately, it must be resolved by a painstaking process of classifying

inequivalent graph states at present. This has been accomplished for graphs of up to 13 vertices

[DanO5].

CWS construction

An ((n, K)) code will be described by two objects-S, a 2n element abelian subgroup of the Pauli

group not containing minus the identity, which we call the word stabilizer, together with a family

of K n-qubit Pauli elements, W = {w }[ 1 l, which we call the word operators. There is a unique

state IS) stabilized by S, i.e. IS) satisfies s IS) = IS) for all s E S. Our code will be spanned by

basis vectors of the form

IwO) W IS). (4.28)

Since the code vectors should all be different, at most one wl can be in S. Typically we will choose

wl = I and later we will prove this can be done without loss of generality. Note that Iwl) is an

eigenvector of all s E S with eigenvalue As = ±1, but Iwi) is not stabilized by S unless wl E S.

Each IwI) is stabilized by a different stabilizer wlSwf.

We would now like to understand the error correction capabilities of such a codeword stabi-

lized (CWS) code. An ((n, K, d)) code is an ((n, K)) code capable of detecting Pauli errors of

weight up to d - 1, but not d, and is said to have minimum distance d. From Section 4.2, we know

that the error correction conditions for a general code with basis vectors Iwl) are that, in order to

detect errors from a set 9, it is necessary and sufficient to have

(ci E Icj) = cE3 ij (4.29)

for all E E E. For a code of the form described above, this becomes

(SI wEwj IS) = cE6 ij. (4.30)

To correct errors on a fixed number of qubits, it is sufficient to study errors of the form ZVXU



with bounded weight since these form a basis [BDSW96]. This leads to the necessary and sufficient

conditions for detecting errors in £ that for all E E E

Vi 4 j wTEwj V ±S (4.31)

and

Vi w!Ewi V ±S or (4.32)
Vi wEwi ES) or (4.33)

(Vi wEwi E -S (4.34)

Eq. (4.31) is the condition that two codewords should not be confused after an error, while the

final three conditions express that each error must either be detected (Eq. (4.32)), or the code

must be "immune" to it-i.e. the code is degenerate.

Theorem 7 An ((n, K)) codeword stabilized code with word operators W = {wi}gl and codeword

stabilizer S is locally Clifford-equivalent to a codeword stabilized code with word operators w' = Zc z

and codeword stabilizer S' generated by

S' = X Zr. (4.35)

In other words, any CWS code is locally equivalent to a CWS code with a graph-state stabilizer

and word operators consisting only of Zs. The set of r1s form the adjacency matrix of the graph.

Moreover, the word operators can always be chosen to include the identity. We call this standard

form for a CWS code.

Proof First note that S is local-Clifford equivalent to a graph state due to [Sch02, GKR02,

dNDD04] so there is some local-Clifford unitary C = 0~ 1 C1 that maps S to S' of the form (4.35).

In the new basis the word operators are CwlCt = +ZalXbl , and we have

Cw1Ct j (S')(bl)i = ±Zc,,  (4.36)
i



Figure 4-5: Example of the induced error on a graph state: The state has stabilizer generators
XZIIIZZ, ZXZIIII, IZXZIIZ, IIZXZII, IIZZXZZ, ZIIIZXI, and ZIZIZIX. An X
error applied to node 5 in the lower-left is translated by multiplying with the stabilizer element
IIZZXZZ and turns into Z errors on the nodes indicated.

so that, letting w' = Z"C , we have

ZC S') = ±Cw iCts' I') = ±Cwit IS') = ±Cwi IS).

Since C consists of local Clifford elements, we see that the CWS code defined by S' and w' is locally

Clifford equivalent to the original code.

Finally, to ensure the codeword operators include the identity we can choose W• = {iT=w'w'}

which always has wl = Identity. This can be seen by commuting the w' through the E in the error-

correction conditions which can at worst pick up a sign depending only on E. The two conditions

with ±S on the right are insensitive to this and the other two conditions at most change places. O1

This structure theorem gives rise to the following lemma, which is at the heart of our construc-

tion:

Lemma 8 A single qubit Pauli error Z, X or Y = ZX acting on a codeword w IS) of a CWS code

in standard form is equivalent up to a sign to another (possibly multi-qubit) error consisting only

of Zs.

Proof Let the error Ei act only on the ith qubit. If it is a Z error the result is immediate.

Otherwise use the fact that Eiw IS) = +EiSiw IS), and take Si to be the generator having X on

bit i. Then since Ei = Zo'1}Xi the X in Ei cancels with the X from Si and we are left with the



Zs from Si as well as a Zi if Ei was ZiXi.

Lemma 8 allows us to construct CWS codes with a satisfying interpretation: X errors on

any qubit are "pushed" outwards along the edges of the graph and transformed into Zs. This is

illustrated in Figure 4-5. Similarly Y errors are pushed along the edges, but also leave a Z behind

at their original locations. Since all errors become Zs, we can think of the error model as classical,

albeit consisting of strange multi-bit errors. We define this translation to classical errors by the

function classicals(E e 8) -• {0, 1}n:

n

classicals(E = ±ZVXu) = v @ ((u)ir, (4.37)
1=1

where rl is the lth row of the stabilizer's adjacency matrix (recall from Eq. (4.35) S1 = X1Zrz

defines rl). The codeword operators wl = Zc" will be chosen to so that the cls are a classical code

for this error model.

Theorem 9 A CWS code in standard form with stabilizer S and codeword operators {ZC}cEc

detects errors from 8 if and only if C detects errors from classicals(E) and in addition we have for

each E,

classicals(E) / 0 (4.38)

or Vi ZCE = EZCi . (4.39)

The condition Vi, ZCIE = EZCI can be written as Vi, ci -u = 0. Thus, any CWS code is completely

specified by a graph state stabilizer S and a classical code C.

Proof When i = j, wfEwj ý ±S is satisfied exactly when ZCtEZC3 ý ±S, which is in turn

equivalent to ZciZclassicals(E)Zcji ±S. In standard form, the only element of S without any X

is the identity, so that this is satisfied exactly when ci E classicals(E) 0 cj. This is explicitly the

classical error-detection condition.

Similarly, when i = j, we must satisfy Eqs. (4.32), (4.33) and (4.34), whose three possibilities



translate directly to

Vc ZCEZc ý ±S (4.40)

or Vc ZCEZc E S (4.41)

or Vc ZCEZc E -S. (4.42)

Since Zc = I for the c = 0 codeword, Eq. (4.40) is equivalent to E g :+S and therefore to (4.38).

If (4.38) (and therefore (4.40)) is not satisfied, E E ±S. If any Z c anticommutes with E we have

also E E TS. Since no s E S is also in -S this readily implies the equivalence of (4.39) to (4.41)

and (4.42). O

Remark A classical code expressed in quantum terms would traditionally comprise computational

basis vectors that are eigenstates of Z, and therefore the operators mapping one codeword to another

would be of the form X c as these are the only errors that have any effect. It then might seem odd

that standard form for CWS codes, the intuition of which is to make everything classical, would

employ word operators and effective errors consisting only of Zs. This choice is arbitrary (one could

exchange Z and X and nothing in the formalism would be affected) and is made since the usual

form of a graph state stabilizer is to have one X and some number of Zs rather than the reverse.

We hope this historical accident does not cause too much confusion going forward. O

Relation to Stabilizer codes

The CWS framework includes stabilizer codes, and allows them to be understood in a new way.

We now show that any stabilizer code is a CWS code, and give a method for determining if a CWS

code is also a stabilizer code.

Theorem 10 An [n, k] stabilizer code with stabilizer generators S1,... , Sn-k and logical operations

X,1... Xk and Z 1 ... Zk, is equivalent to the CWS code defined by

S= (S1 ... Sn-k, 21 ... Zk) (4.43)

and word operators

Wv = XZ0' ~ ... X)k (4.44)

where v is a k-bit string.



Proof To see that this CWS code describes the original code, note that the stabilizer state

associated with S is 10...0), while the codeword generated by Wv acting on 10 ... 0) is I( )1... (V)k).

Theorem 11 If the word operators of an ((n, K)) CWS code are an abelian group W (not con-

taining -I), then the code is an [n, k = log 2 K] stabilizer code.

Proof The stabilizer S of the CWS code is a maximal abelian subgroup of the Paulis (not

containing -I) therefore it is isomorphic to the group S' = (X 1 ... Xn) and the mapping from S to

S' is a Clifford operation C (not necessarily local). This follows from the definition of the Clifford

group as the automorphisms of the Pauli group. Because this automorphism group allows one to

achieve any bijective mapping that preserves commutation relations (see Chapter 4 of [Got97]), the

map can further be chosen to map W to W' = (Z 1 ... Zk). Here we have made use of the facts

that all w E W anticommute with at least one s E S (which implies Sn W = {I}) and that S' is

maximal, which allows us to choose for W' any order K group made only of Zs we like (since all

products of X's are in S'). Note this nonlocal Clifford mapping is not the same as the conversion

to Zs used in Theorem 7.

We can now choose T', X' and Z' as follows:

' = ' = (Zl... Zk) (4.45)

Z' = (X ... Xk) (4.46)

T' = (Xk+ ... Xn) (4.47)

The inverse Clifford operation C0 maps these to our stabilizer code with stabilizer T, and logical

operations X = W and Z.

It remains to show this is the same as the CWS code we started with. T is by construction a

subgroup of S (T' is explicitly generated by a subset of the generators of S') and therefore stabilizes

IS). T also stabilizes all t IS), t E X, since T and X commute. Using X = W we see these states

are exactly the basis states of the CWS code. O

4.4.2 Encoding circuits

Thus far, we have focused on the existence and structure of CWS codes. We now address a question

of fundamental importance: What is the complexity of encoding a CWS code? The answer we find



is perhaps the strongest one could hope for: a CWS code will have an efficient encoding circuit as

long as there is an efficient encoding circuit for the classical code C.

We will use the fact [RBBO3] that a graph state IS) whose graph has edges E is equal to

H(j,k)EE P(j,k)H®n 0)®n , where P(j,k) is the two qubit controlled phase gate, acting on qubits j

and k: P |x) y) = (-1)xy Ix) y).

Theorem 12 Let S and C define CWS code Q, C be a unitary encoding circuit for the classical

code C, and Q be the unitary mapping I0)On to IS). Then,

U(Q,c) = QC (4.48)

is an encoder for Q. See Figure 4-6. In particular, since Q has complexity no more than n 2, if C

has complexity f(n), the complexity of our encoder is max(n 2, f(n)).

Proof The ith quantum codeword Ici) is given by C Ii) where ci is the ith codeword of C. So,

QC Ji) = J P(j,k)HnXc I0)•n (4.49)
(j,k)CE

= ZC P(j,k)H®" 0)®n (4.50)
(j,k)EE

= Z IS) (4.51)

The standard encoding circuit for a CWS code is shown in Figure 4-6. The circuit C is a

classical reversible circuit that can be constructed from X, A(X), and/or A2(X). G is a circuit

corresponding to the graph state and can be constructed with controlled-Z gates.

I1)

9.0

I.) C 34

I,' ljý

Figure 4-6: Standard encoding circuit for a CWS code.



4.4.3 Examples of important codeword stabilized codes

We now give some examples of our construction and include all known nonadditive codes with good

parameters.

The [[5, 1, 3]] code

The celebrated [[5,1,3]] quantum code [BDSW96, KLOO] can be written as a CWS code using

Eqs. (4.43) and (4.44) but another way of writing it demonstrates the power of the CWS framework.

Take generators corresponding to a ring graph (see Figure 4-4):

Si = ZXZII and cyclic shifts. (4.52)

This induces effective errors as follows. Letting IR5) be the graph state corresponding to the unique

simultaneous +1 eigenvector of these generators, we have

Zi IR5) = Zi IR5)

Xi lR5) = Z-Zi+lZ JR5)

Yi IR5) = ZilZiZi+1 |R5), (4.53)

where all additions and subtractions are taken modulo 5. The corresponding 15 classical errors are:

Z: 10000 01000 00100 00010 00001

X: 01001 10100 01010 00101 10010
(4.54)

Y: 11001 11100 01110 00111 10011

We then must choose wl = ZC' where the cls form a classical code capable of detecting pairs of

these errors. Since no pair of these errors produces 11111 the codewords co = 00000 and cl = 11111

will serve, and together with the stabilizer (4.52) completely define the code. Since the ((5,2, 3))

code is known to be unique we need not otherwise check that our construction is equivalent to

the traditional presentation of this code. We note also that for n > 7 a ring code with codeword

operators I and 0n,1ZI gives a ((n, 2,3)) code.



The ((5,6,2)) code

As a CWS code the ((5,6,2)) code of [RHSS97] becomes simple. We again use the ring stabilizer

(4.52) and will have to detect the induced errors (4.54), but since we are seeking a distance-2 code

we need only consider single errors rather than pairs. The classical codewords c1 , 1 = 0... 5, are

00000 11010 01101 10110 01011 10101 (4.55)

and the code generated by IcR5 ) and W1 = ZcI is locally Clifford equivalent to the ((5, 6,2)) code.

The ((5 + 21,221+13,2)) codes of [Rai99b] are also CWS codes whose graph state is the union of the

ring graph and 1 Bell pair graphs, and whose classical codewords can be derived straightforwardly

from the ((5, 6,2)) classical codewords.

The SSW codes

A family of distance two codes was found in [SSW07, FX08], which outperforms the family of

[Rai99b] for odd blocklengths of eleven or larger. The codes were originally described in terms of

their codewords as follows. If n = 1 mod 4, a basis of our code consists of vectors of the form

Ix) + IX•), (4.56)

where x ranges over all n-bit vectors of odd weight less than (n - 1)/2 and R is the complement

of x, while if n = 3 mod 4, we let x range over even weight vectors of weight less than (n - 1)/2,

leading to an encoded dimension of 2n - 2 (1 2_2))

We now show that these are actually CWS codes. Indeed, the codeword stabilizer of this code

will be generated by

(XiZ2 ... Zn, Z1X2, ZX3, . .. , ZXn) ,  (4.57)

with the corresponding stabilizer state being equivalent to a GHZ state, (10) I+)®n-1+J1) I-)®n-1)/Vf.
The codeword operators are simply Wx = X(x h) Z((x)2,.'' ,(X)n) for each allowed x, which can imme-

diately be seen to generate, up to local unitaries, the same codewords as Eq. (4.56). Putting the

stabilizer into standard form, we find that the graph state it describes corresponds to a star graph.



A ((9,12,3)) code

Like the ((5, 6, 2)) code, the codeword stabilizer is of the form

Si = ZXZIIIIII and cyclic shifts.

The associated classical code correcting the induced errors is:

000000000

000110001

001010011

100100100

100010101

101110111

010001100

011001010

011111111

110101000

111101110

111011011

This code was found by Yu [YCLOO07] and motivated our work.

A ((10,24,3)) code

Yu et al found an optimal 10 qubit code [YCOO07] after we presented the CWS formalism. The

codeword stabilizer is given by the graph in Figure 4-7. The associated classical code correcting

the induced errors, with bits numbered from left to right, is:

0000000000

1010100100

1011010000

1110010100

1001110100

1100111100

0010100010

0100001010

0011011010

0111001110

0101111010

1101101110

4.4.4 Search algorithm for codeword stabilized codes

One approach to finding new CWS codes might be to use existing classical codes directly. However,

that approach gives sub-optimal code parameters, due to the fact that C must detect errors of the

highest weight in the induced error patterns classicals(E). So, the classical code C must have dis-

tance significantly greater than that of the corresponding quantum code, as shown in the following

example:

Example Let g be an n qubit ring graph. If E is the set of single qubit Pauli X, Y, and

(4.58)

(4.59)

0100000101

1010000001

0001001001

0101010001

1101111001

1101001101

0110100111

0010001011

1010110011

0011110111

1001111111

1110111111

(4.60)
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Figure 4-7: Graph state for deriving a ((10, 24,3)).

Z errors, then the induced classical errors classicalg(8) are single, triple, and double bit flips

respectively. Choosing the classical code C to be a binary ((n, K, 7)) code results in a CWS code

with parameters ((n, K, 3)). However, C also detects many additional errors which are unnecessary

for this construction, such as all the one to six bit flip errors; classical (E) only includes a subset

of those errors. O

This example motivates a search for specific classical codes which correct just the relevent er-

rors for the CWS construction. However, classical coding theory provides no efficient, systematic

constructions for codes that correct the potentially exotic error patterns involved in the CWS con-

struction. On the other hand, finding a code with the best K for given graph and minimum distance

is a problem which can be naturally encoded into an NP-complete problem such as MAXCLIQUE.

This classic approach has been employed, for example, to show that the (10, K, 3) classical code

with K = 72 has optimal parameters [OBK99].

Algorithm

There are two sets of classical bitstrings that are important for describing the search algorithm.

The first set, classicals(6), was described earlier in this section. The second set derives from

Equations 4.38 and 4.39, which are needed when the code is degenerate. For degenerate CWS

codes, it will be useful to introduce the set of classical bitstrings

degenerates(9) = {c E {0, 1}n I classicalg(E) = 0 and (4.61)

c -u 5 0 for some E = ±+ZXu E }6. (4.62)

These bitstrings indicate codewords which are inadmissible, because they violate the condition

given by equations (4.38) and (4.39) of Theorem 9. Specifically, fix a codeword c, then for all



E E S we must have ZCE = EZc if classicals(E) = 0. Writing E = +ZVX u , c is not an admissible

codeword if classicals(E) = 0 and c - u 0 0. In other words, if a CWS code is degenerate, some

low weight errors act trivially on the code space (i.e. classicals(E) = 0), and these errors must

act trivially on each basis state generated from the graph state (i.e. [ZC, E] = 0). degenerates(S )

describes basis states for which this is not the case.

CWS-MAXCLIQUE is a mapping onto MAXCLIQUE, of the problem of finding the CWS code

with the largest possible dimension K, for a given minimum distance d and graph g. The Cws-

MAXCLIQUE algorithm gives steps to solve this problem, and is given in detail in the Algorithm 3

box. It proceeds in several simple steps. The first step, Setup(s, A) (Algorithm 1), finds the

elements of classicalg(g) and degenerateg(S). The second step, MakeCWSCliqueGraph(CL, D)

(Algorithm 2), constructs a graph, denoted as the CWS "clique graph," whose vertices are classical

codewords and whose edges indicate codewords that can be in the same classical code together.

When searching for ordinary classical codes using an analogous procedure, the usual condition for

joining two vertices by an edge is that the vertices are Hamming distance d apart. In our situation,

vertices are joined by an edge if there is no error induced by the graph state that maps one codeword

to the other. Finally, an external subroutine findMaxClique(V, E) is called; this routine is to

employ known techniques to find the maximum clique in the CWS clique graph. The clique-finding

subroutine is not specified here because there are many exact and heuristic techniques known in the

community, for solving this classic NP-complete problem. Note that in the detailed description of

the algorithms, two functions are used: String(i) : integer i -- binary string of i with length n, and

its inverse, Integer(i) : binary string with length n i -- integer of i. Also, an error configuration

is a list of ordered pairs (LOC, TYPE) where LOC is the coordinate of the affected qubit and

TYPE is one of X, Y, or Z.

Bounds on code parameters

Linear programming upper bounds and known lower bounds are collected in Table 4-8. We hope

this table will motivate further search for CWS codes with optimal parameters.

4.5 Conclusion

We have reviewed the stabilizer formalism and given examples of important stabilizer codes that

also appear in Chapters 6 and 8. We have also introduced a new family of quantum codes called



Algorithm 1 Setup(8, A): Compute classicalg(E) and degenerateg(E), where 8 is a set of Pauli
errors and A is the adjacency matrix associated with graph G.

Require: AT = A, Aij = {0, 1} and Aii = 0
Ensure: CL[i] = 6(String(i) e classicalg(E)) and D[i] = 6(String(i) E degenerateg(E))

1: for i E {0, 1}n do
2: CL[Integer(i)] -- 0
3: D[Integer(i)] +- 0
4: end for
5: for error configuration E E 8 do
6: ERR+- String(0)
7: ERRX+- String(0)

8: for (LOC, TYPE) in E do
9: if TYPE is X or Y then

10: ERR -- ERR @ (row LOC of A)
11: ERRX +- ERR E String(2LOC)
12: end if
13: if TYPE is Z or Y then

14: ERR +- ERR ( String(2LOC)
15: end if
16: end for

17: CL[Integer(ERR)] +- 1
18: if Integer(ERR) is 0 then
19: for is {0, 1}n do
20: if ERRX - i 5 0 then
21: D[i] +- 1
22: end if
23: end for
24: end if
25: end for
26: return (CL, D)



Algorithm 2 MakeCWSCliqueGraph(CL, D): Construct a graph whose vertices V are classical
codewords and whose edges E connect codewords that can belong to the same classical code,
according to the error model indicated by classicalg(8) and degenerateg(8).

Require: CL and D are binary arrays of length 2n

Ensure: On E V, On  ve v E V D[v] = 0 and CL[v] = 0, (v, w) E E CL[v ( w] = 0
1: V +- {On }
2: E +- 0
3: for s E {0, 1}n do
4: if D[s] = 0 and CL[s] = 0 then
5: V VU {s}
6: for v E V \ {s} do
7: if CL[v E s] = 0 then
8: E- EU (v, s)
9: end if

10: end for
11: end if
12: end for
13: return (V, E)

Algorithm 3 CWS-MAXCLIQUE(E, A): Find a quantum code Q detecting errors in E, and
providing the largest possible dimension K for the given input. The input A specifies the adjacency
matrix of the graph G. The output C is a classical code such that Q = (9, C) is a CWS code
detecting errors in 9.

Require: AT = A, Aij = {0, 1} and Aii = 0 Vi
Ensure: K = ICJ is as large as possible for the given input, 0n E C, and C satisfies the conditions

of Theorem 9
1: (CL, D) + Setup(S, A)
2: (V, E) +- MakeCWSCliqueGraph(CL, D)
3: C +- findMaxClique(V, E)
4: return C



n\d 2 3 4 5
4 4 - --
5 6 2 --
6 16 2 1 -
7 24-26 2-3 0-1 -
8 32 8-9 1 -
9 96-112 12-13 1 -
10 256 24 4-5 1
11 386-460 32-53 4-7 2
12 21 64-89 16-20 2

Figure 4-8: Upper and lower bounds on the optimal K for a nonadditive ((n, K, d)) code. The
lower bounds are drawn from [CRSS98, RHSS97, SSW07, YCLOO07, YCOO07, Rai99b]. The upper
bounds are obtained from the linear program of [Rai99c], and for distance 2 its improvement in
[Rai99b].

CWS codes that contains all of the stabilizer codes and presented methods for systematically

understanding, constructing, and finding these codes.

In work going beyond the results presented in this chapter, CWS code structure has been further

investigated and connections with the framework of Aggarwal and Calderbank have been clarified

[CCS+08].
The current work on CWS codes has only discussed codes correcting general low weight errors.

It is very interesting to consider codes that correct for specific types of error. Biased noise can be

treated using asymmetric CSS codes, for example, and amplitude dampling has been treated with

stabilizer codes [LNCY97]. Nonadditive codes with better parameters can be constructed for these

models [LS07]; so how can the systematic CWS framework can be suitably expanded to include

codes for different noise models?

It is also natural to wonder if there are nonadditive CWS code families with high degrees of

symmetry that can be easily encoded, decoded, and error-corrected, and the relationship of these

circuits to corresponding circuits for stabilizer codes. Indeed, one family of nonadditive CWS

codes has been discovered, Goethals-Preparata CWS codes, using an idea of codespace stabilization

[GR08]. It is also interesting to see if the usual methods of obtaining new codes from existing codes,

such as lengthening, shortening, puncturing, and concatenating, lend themselves to a graphical

interpretation in the CWS framework.





Chapter 5

Introduction to fault-tolerant

computing

5.1 Introduction

Von Neumann introduced the concept of fault-tolerance in a paper published in 1956 [vN56]. His

paper discusses a theory for how organisms such as humans maintain proper brain function despite

unreliable individual neurons. The concepts he introduced were thought to be necessary for elec-

tronic computing systems, whose vacuum tubes frequenty failed and had to be replaced. The main

result of his theory is that arbitrarily reliable classical computation is possible if the error rate is

below a constant threshold, and the overhead involved in making the computation reliable scales

efficiently with the desired final error rate.

Forty years later, Shor showed that fault-tolerant quantum error-correction circuits and gates

can be constructed [Sho96]. The result quickly grew into a rich theory of fault-tolerance for quan-

tum computation, and the seminal proofs of a constant accuracy threshold appeared in [ABO97,

AB099, Pre98, KLZ98, Got98b]. It is amazing that Von Neumann's ideas can be applied in a

quantum setting with a small number of essential differences, although the analysis is generally

more complicated, and it is challenging to prove results for strong noise models.

This chapter gives a conceptual introduction to fault-tolerant computing and highlights the

differences between classical and quantum fault-tolerance, without getting involved in many of the

technical details. The classical concepts that are introduced in Section 5.2 define what we refer to

as the standard approach to fault-tolerant computing. This approach is a set of concepts that



is sufficient for classical fault-tolerant computing. In Section 5.3, we see that a major difference in

quantum fault-tolerance is that the standard approach is augmented by "quantum software" meth-

ods to obtain universal gates. Deviations from and developments beyond the standard approach in

both the classical and quantum setting are discussed in Section 5.4.

The reason to linger on the idea of a standard approach is that Chapter 6 explores a limitation

of the standard approach in the setting of quantum fault-tolerance, indicating that the standard

approach, although sufficient for classical fault-tolerance, is insufficient for quantum fault-tolerance.

Therefore, it turns out, it is likely that "quantum software" is necessary to achieve universality.

Furthermore, Chapters 7 and 8 apply the ideas in this chapter to study accuracy thresholds for

quantum fault-tolerance based on a hierarchy of codes.

5.2 Concepts of the standard approach to fault-tolerance

The two-input, one-output NAND gate, NAND(a, b) = a A b, is a universal gate for classical com-

putation [MK97]. If our goal is to compute any binary function from n bits to m bits, we can do so

with a classical circuit made out of wires, fanout gates that copy the value of a wire, and NAND

gates. Suppose however that each NAND gate in our circuit fails, independent of the others, with

probability p, and, when it fails, the output of the NAND gate is inverted. Such a failure is called

a fault and it introduces an error. This model of noise is a stochastic bit-flip noise model. It is

clear that we can expect to be able to compute the output of a circuit that contains about T = p-1

NAND gates, since, to first order, this is when the probability of failure approaches unity. If we

attempt many more than T gates, it is very likely that the circuit computes the incorrect function.

Amazingly, the original circuit can be modified slightly, introducing a reasonable amount of

overhead, so that the effects of noise can be largely obviated. The following is a version of the

classical threshold theorem [Imp04, TIC+05]:

Theorem 13 A classical circuit computing a function f : {0, 1}n -- 0 {O, 1}m subject to a stochastic

bit-flip noise model with probability p can be simulated by another circuit that computes f with

arbitrarily small failure probability 6 > 0 using at most a polylog(6- 1) increase in circuit size and

depth provided p < Pth where Pth is a constant failure probability that does not depend on the original

circuit size.

This is an amazing theorem - suppose someone needs to know the value of a complicated but



important function, but the function will take decades or centuries to compute using the best

known techniques. If the noise strength in the system is less than some constant, which, as we will

see, is classically quite large, an overhead roughly like the logarithm of the duration is adequate to

ensure that the computation completes and obtains the correct answer with high probability. Even

if the error rate is only slightly below threshold, we can apply the threshold theorem to realize a

useful circuit whose mean time to failure is very large.

A key point is that the noise is not too correlated, although some correlation can be tolerated

- for example, exponentially decaying correlations are bounded by the envelope for independent

stochastic errors. Rare but highly correlated errors are almost impossible to correct depending on

their strength, and cannot possibly be covered in full generality by a threshold theorem.

The ability to construct a fault-tolerant simulating circuit used in the threshold theorem relies

on several crucial concepts. First, important information about the system's state should be stored

in such a way that individual failures can be corrected. State information should never be stored in a

single exposed bit at any time. Second, components acting on the information must be constructed

so that the information is preserved even if a small number of devices within the component fail.

This means that components are constructed to limit both the initial damage due to device failures

and the subsequent damage caused as the initial errors propagate through the component. Third,

the codes storing important state information can be concatenated and the components can be

recursively simulated. Finally, these techniques lead to exponential reduction in error rates for at

most polynomial increases in circuit size and depth, provided the error rate is below a fixed constant

that does not depend on the size of the computation. Error rates per bit must remain constant as

the simulation procedure increases the size of the circuit.

This section introduces each of these concepts by way of a running example. The example is

called triple modular redundancy (TMR), and it is closely related to von Neumann's original ideas.

5.2.1 Information is encoded and never decoded

The first important concept is that information is encoded into an error-correcting code and is

never decoded. A codeword can be restored if it is subject to a small number of errors. However,

if the code is ever decoded down to a single bit, and an error occurs on that bit, the state is lost.

Chapter 4 introduced the classical [n, 1, n] repetition code. Encoding into this code, a bundle of

n wires carries the value of a single bit as the majority value over all n wires. To be concrete, let us

take n = 3. The wires carry 000 if the encoded state is 0 and 111 if the encoded state is 1. There
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Figure 5-1: An error-correction component for classical information encoded into the 3-bit repetition
code. Fan-outs are denoted by filled circles, and wire crossings are denoted by U-shaped bends in
wires.

is an error-correction (EC) component to reset all of the bits in the bundle to the majority

value of all the bits. The EC component can be constructed from three MAJ(a, b, c) = ab + bc + ca

gates, each one taking the same set of inputs, copied using fan-out. This EC component is shown

in Figure 5-1. For simplicity, we take the MAJ gate as part of our finite basis of gates for this

example, and we allow any majority gate to fail with probability p.

The EC component may be used to restore the state at any time during the computation. It

is clear that a bundle of wires that carries a single error is restored by the EC. Furthermore, if

one of the MAJ gates fails, the output bundle could be restored in principle by an ideal EC, so

the information is not yet lost. In practice, it is likely that a subsequent EC will restore the state.

Since the EC must suffer two faults to produce the incorrect output, failure becomes a second-

order event occuring with probability O(p 2). If the information is decoded at any point during the

computation, it is carried on a single wire for some period of time, and it can be flipped by a failure

with probability O(p), so this should be avoided.

5.2.2 Components control the introduction and spread of errors

The EC component introduced in Section 5.2.1 restores the state if there are no faults and introduces

errors with probability p on single wires of the bundle when there are single faults. These properties

can be considered general design rules or required conditions for fault-tolerant components. In

addition, it is important to ensure that gates, such as the classical CNOT(a, b) = (a, a 0 b) that

can spread errors on their inputs to both outputs, are carefully incorporated into components to

control the spread of errors. Such gates do not appear in the TMR example but are important to

mention.

A component that acts on encoded inputs and has encoded outputs is called an encoded logic

gate or a logical gate, to distinguish it from a physical gate acting on bare wires. Logical gates



Figure 5-2: A logical NAND gate constructed from three physical NAND gates.

Figure 5-3: A NAND rectangle is constructed from a logical NAND gate followed by an error-
correction component.

are written with bars over their labels, which should not be confused with negation in Boolean

logic. We may casually drop the overbars at times and refer to NAND as a logical NAND, for

example. When it is clear, the encoded logic gate will just be called a logic gate.

A NAND gate component performs a NAND gate on two encoded inputs and produces an

encoded output. Figure 5-2 shows how a logical NAND gate can be constructed from three physical

NAND gates. A logic gate is said to be transversal if it is implemented by physical gates on each

bit independently. The NAND gate construction is tranversal. In this case, if a single NAND gate

fails, only a single wire in the output bundle is corrupted.

The logical NAND gate becomes fault-tolerant when it is composed in series with an EC com-

ponent. Any single fault in the circuit cannot produce more than one error in the output bundle,

and one error in the input bundle is corrected if there are no faults in the circuit. This template of

a logic gate followed by an error-correction is called a rectangle. Rectangles are a standard way

to construct fault-tolerant logic gates. Figure 5-3 shows the NAND rectangle. Since the NAND is

universal, we know how to construct a fault-tolerant version of a circuit: express it as NAND gates

then replace each wire by a triple of wires and each NAND gate by a NAND rectangle.

r
I



Figure 5-4: The recursive simulation procedure consists of two steps. The first step replaces
each gate by a rectangle that is preceeded by encoders and followed by decoders. In this figure,
the encoders and decoders are represented by triangles. Bundles of wires are drawn with thick
lines. The second step replaces each decoder/encoder pair by a bundle of wires, since an ideal
decoder/encoder pair acts like an identity gate.

5.2.3 Recursive circuit simulation can suppress logical fault rates

If each gate in a classical circuit is replaced by a rectangle, the resulting circuit is called a level-1

simulation of the original circuit. The original classical circuit can also be considered to simulate

itself - this is a level-0 simulation. The following procedure can be used to make the replacement

procedure more precise. First, take the associated rectangle and place encoders at each input and

decoders at each output. Now the rectangle's inputs and outputs correspond directly to those of

the gate. The level-1 simulation is obtained by replacing each gate with this circuit, then making

a pass over the entire circuit, replacing decoder/encoder pairs by identity. This is illustrated in

Figure 5-4. In our example, any classical circuit can be expressed as a circuit containing only

NAND gates, and each NAND gate is replaced by the rectangle in Figure 5-2 to obtain a level-1

simulation of that circuit.

In our example, the level-1 simulation computes the incorrect function with probability O(p2)

rather than O(p). The simulation can continue recursively. A level-2 simulation is obtained from a

level-1 simulation by applying the replacement procedure again. In general, a level-u simulation

is obtained from a level-v simulation, v < u, by applying the simulation procedure u - v times.

Each time, the probability p that each gate fails is mapped to the O(p2) failure probability of the

rectangle, so the probability that the level-e simulation is incorrect is O(p2%). If the coefficients

involved are not too large, the failure probability decreases very quickly at sufficiently high levels

of recursive simulation.



5.2.4 A constant threshold failure probability exists

Consider the rectangle in Figure 5-3. The rectangle is designed so that a) if the input has no errors

then a single fault causes the output to have no more than one error and b) if the input has one

error and there are no faults then the output has no errors. The rectangle is considered incorrect

if the output of the rectangle decodes (by an ideal device) to a different value than what we would

get if we first decoded (by an ideal device) the inputs and fed them into an ideal NAND gate. In

this case, the rectangle is incorrect if the output has two or more errors.

We would like to derive an upper bound on the probability that the rectangle in Figure 5-3 is

incorrect. There are six gates in the rectangle that can fail with probability p. Some errors may

originate in the logical NAND gate preceeding the rectangle, or earlier, so we allow single faults to

occur on each input with probability p. This captures the chance that the majority voters of the

preceeding NANDs fail. Failures at earlier points in the simulated circuit are considered corrected

by the majority voters, so only the voters need to be considered. If we assume pessimistically that

w < wo faults lead to a correct rectangle and w > wo faults lead to an incorrect rectangle, the

failure probability is

C

P(incorrect) = (Cpw(1-p)Cw < wopWO, (5.1)
WWO( -) C-w

where C is the number of possible fault locations in the rectangle plus the number of fault locations

in a subcircuit of the preceeding rectangle. Generally, it suffices to take an EC as that subcircuit,

as we do in this example. In this case C = 12, since there are 6 gates and 6 input wires, and wo = 2

since there are pairs of errors we cannot correct.

The bound in equation 5.1 is proven by

r'0 C
(wo o wo - wo

c

C C (1 -- W. (5.4)W- C )p( W0 p) (5.3)

The accuracy threshold for stochastic noise is the critical probability below which any

arbitrarily small logical failure probability can be achieved. Level-1 simulation certainly reduces
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Figure 5-5: Rough schematic illustrating the concept of the accuracy threshold for stochastic noise.
The figure is not strictly correct, but nevertheless presents a meaningful intuition - see [SCCAO6].

P(incorrect) if (C)pWo < p, and this is true if p < (C)-1/(wo-1). Let us define a lower bound on

the threshold

Pth :=- (5.5)
w0

If p < Pth, recursive simulation continues to reduce the probability that the gate is incorrect; see

Figure 5-5. At level-f, we have

P(incorrect at level-e) < Pth p(~) (5.6)
(PthI)

so the probability that a rectangle is incorrect is bounded above by a quantity that decreases like

a double exponential in the level of the recursive simulation. If there are T NAND gates in the

circuit we plan to simulate, the final probability that the circuit computes the incorrect function is

bounded above by TP(incorrect at level-f£).

If we want P(incorrect) _ e, then Equation 5.6 implies

n( <, ) (5.7)- ln(Pth/P)

Suppose no more than N = a gates are needed for a level-f? simulation of a NAND gate, for some

a > 1. Then
N ( lIn(wo) In( - 1) (5.8)

- In(a) ln(Pth/P)

so N = O(log(-1)).

The threshold lower bound depends on a quantity C related to the size of the rectangle and



also on the fact that the repetition code can correct some number of errors t = wo - 1. The lower

bound does not depend on the number of gates in the circuit we are simulating. We can think of

a particular threshold bound applying to a particular error-correcting code, since the number of

locations C is a function of the parameters of the code.

However, the accuracy threshold for a particular model of computation is a more general concept

that does not depend on a particular code - it is the highest possible accuracy threshold over all ways

we can devise to perform fault-tolerant computation in that model. It is, in this sense, analogous

to the concept of channel capacity in information theory [Sha48]. Provided that the threshold

exists, the accuracy threshold for a particular model of computation depends on the noise model,

the structure of space and time in the model, and how space and time may be used in the form of

locality and parallelism.

We can consider specific points in this "space" where we fix, say, the noise model, the layout

of qubits in space, aspects of the fault-tolerant circuit, and overhead constraints, but vary over,

say, a subset of all error-correcting codes. For each choice of parameters, we obtain an accuracy

threshold. Classically, varying over the code may not make sense, since the repetition code is

excellent at correcting errors, so we may choose instead to vary the noise model or geometry or

something else.

5.3 Concepts specific to quantum fault-tolerance

The TMR example introduced the essential concepts of fault-tolerance. All of these concepts carry

over to the quantum domain. Classical circuits are replaced by quantum circuits. NAND gates

are replaced by a universal set of quantum gates. The repetition code is replaced by a suitable

quantum code, possibly from the pallette of codes introduced in Chapter 4. Even the concept of a

rectangle constructed from a logic gate circuit followed by an error-correction circuit carries over.

Most importantly, an accuracy threshold exists for fault-tolerant quantum computation and it has

the same qualitative properties as the classical accuracy threshold - it is a constant and below

threshold, accurate simulation incurs only a polylogarithmic overhead.

This section reviews some important differences between classical and quantum fault-tolerance.

Some of the differences, summarized here, will be discussed in more detail in this section and in

later chapters:

1. Noise models for quantum gates can be significantly more complicated as suggested in Chap-



ter 2. Stochastic gate faults may introduce an arbitrary quantum operation 9(p) on the

outputs of all failed gates and inputs of all failed measurements. This model is called ad-

versarial stochastic noise. A slightly relaxed version of this model, depolarizing noise, is

what is used in Chapter 8. Even more generally, the fault may couple the qubits to a shared

environment that persists for durations of the computation. Such environments can create

correlated coherent errors between fault locations. Amazingly, a threshold exists even under

such adverse conditions [TB05, AGPO6].

2. Unitary gates are reversible, so gates on multiple qubits, such as the CNOT, have multiple

outputs and can spread errors more aggressively than the TMR example.

3. Classically, a NAND gate is universal, and we saw that a logical NAND gate has a transversal

implementation on bits encoded in the repetition code. In the quantum setting, no universal

set of transversal gates has been found for any quantum code, so other methods are needed

to achieve universality. This issue of transversality in quantum fault-tolerance is considered

in great detail in Chapter 6.

4. Quantum error-correction circuits may have quantum and classical subcircuits. The quantum

subcircuits are responsible, at least, for gathering the error syndromes of the error-correcting

code. The error syndromes can be measured immediately and the outcomes processed by

reliable classical subcircuits. These classical subcircuits then control the recovery operation.

An example is given in 5.3.1. Circuits for quantum error-correction are reviewed in Chapter 7

and many explicit constructions are given in Chapter 8.

5. Quantum states can be prepared, tested for accuracy, and stored for later use. They can

be used in error-correction circuits and as "quantum software" resources for universality

constructions [Pre99]. This is reviewed in 5.3.1 and Chapter 7.

6. Quantum storage is not considered reliable and faults can occur to qubits that do not par-

ticipate in gates. Therefore, massive parallelization of the control hardware is necessary

[AB097].

7. "Cold", i.e., high fidelity, reference quantum states are necessary in the error-correction cir-

cuits; otherwise entropy cannot be removed from the system [AB097].

For these reasons and others, lower bounds on the threshold tend to be smaller in the quantum

setting than the classical setting.
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5.3.1 Use of ancilla states in quantum components

This brief section reviews ways that quantum software is used in quantum fault-tolerant circuits.

Standard ancilla states are used in error correction circuits. Gate-specific logical ancilla states are

used in some logical quantum gates.

Use in error-correction

Steane observed that the process of quantum error-correction for CSS codes can be reduced to that

of synthesizing certain encoded quantum states [Ste97]. We call this type of error-correction circuit

Steane-EC.

Recall that CSS codes are generated by a set of X-type generators and a set of Z-type generators.

Furthermore, the generators (Zi, Xi, i E [k]) of the centralizer Z(S)/S can be written so that each

Zi is Z-type and Xi is X-type. Therefore, the logical CNOT gate, CNOT, between two blocks of

n encoded qubits is implemented transversally by n physical CNOT gates on corresponding qubits

of each block; see Figure 5-6. This is because CNOT propagates X from control to target and Z

from target to control, so for CSS codes CNOT®n(S 0 S)CNOT®n = S 0 S.

Figure 5-6: Transversal CNOT gate acting on two code blocks with n = 3 qubits each.

Figure 5-7 shows Steane-EC for an encoded qubit. The circuit uses ancilla prepared in the

encoded quantum states I-) and 10) to measure the Z-type and X-type stabilizer generators,

respectively. If the encoding circuits are not fault-tolerant, then the ancilla can be tested by

a sequence of fault-tolerant measurements [Ste02]; see Chapter 8 for examples. The syndrome

measurement outcomes are stored and processed by a separate classical circuit.

As we have seen, Steane's [[7, 1, 3]] code is a CSS code whose stabilizer has X-type and Z-type

generators with the same supports. Therefore, ft is transversal and is implemented by H®7 . This

is a direct consequence of C1 = C02 in the CSS construction being dual-containing. Furthermore, K

is transversal and is implemented by (Kt)®7 since (-i) 7 = i whereas the weight of every codeword

in C2 is divisible by 4 (i.e. C2 is doubly even).
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R-)
10)

Figure 5-7: The Steane-EC circuit measures the stabilizer generators using only two transversal
interactions with the encoded qubit. For an [[n, 1, d]] code, each interaction uses an ancilla qubit
prepared in either +-) or 10). The interaction with If) measures the Z-type stabilizer generators
by taking parities of the appropriate Z-basis measurement outcomes. Similarly, the interaction
with 10) measures the X-type generators by taking parities of X-basis measurement outcomes.
This circuit is correct because the generators are in the stabilizer of the ancilla and the circuit is
logically an identity gate when there are no faults.

Use in universality constructions

The Steane code has transversal CNOT, H, and K gates, but this is not a universal set by the

Gottesman-Knill theorem. Quantum software methods can be used to implement a logical T gate

for this code [Pre98]. Broadly speaking, quantum software methods create an encoded ancilla state

through online preparation and verification, interact this ancilla with codeblock(s), and measure

some of the codeblocks. The methods have been generalized using quantum teleportation techniques

to enable universal sets of gates to be constructed for any stabilizer code [Got98b, GC99].

We follow [AGPO6] to construct the gate T for the [[7,1, 3]] code. Consider the circuit in

Figure 5-8 for implementing a diagonal gate diag(1, eio) up to an irrelevant global phase. When

0 = 7r/4, the gate Uz (0) = T, so we would like to implement this circuit on qubits encoded in the

[[7, 1, 3]] code. Uz(20) is K, which is transversal for the 7 qubit code. The Z-basis measurement

can be implemented transversally and fault-tolerantly as well. The parity of the outcomes is the

eigenvalue of Z, and the outcomes can be corrected classically before the eigenvalue is computed,

because they are encoded in C1. Finally, we have already seen that CNOT is transversal. Therefore,

the only part of this circuit that may not be fault-tolerant is the circuit that prepares IA,/4)

Z (1o) + ei/41 Z

I ) I U(20) Uz(0)

Figure 5-8: This circuit implements the gate Uz () = exp(-iOZ/2) using an ancilla prepared in
the state IAe) = Uz(0)1+). The gate Uz(20) is conditionally applied if the outcome of the Z-basis
measurement is -1.

The state |IA/ 4) is an eigenstate of TXTt = KX. Since this operator is transversal for the
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[[7, 1, 3]], it can be measured fault-tolerantly using Shor's cat state method [Sho96]. Shor's cat state

method is a quantum software method, which can also be used for error-correction (Shor-EC),

that allows a transversal operator M to be measured fault-tolerantly. An ancilla is prepared in the

cat state J+) and encoded in the repetition code

I-)rep := I00... 0)+1 11... 1). (5.9)

The encoding circuit for the repetition code is not fault-tolerant, so the state must be verified by

parity measurements so that any single fault producing a high weight error is detected, like with

the Steane-EC ancilla states. The verified ancilla is then coupled via a transversal controlled-M

to the encoded qubit being measured. Finally, the ancilla is measured and the eigenvalue of M

is given by the parity of the outcomes. Faults can produce an incorrect outcome, so the process

generally must be repeated.

The full circuit for preparing IA•/ 4 ) is shown in Figure 5-9. The IA,/ 4) state is accepted if both

TXTt measurements agree and both syndrome measurements have trivial syndrome outcomes,

otherwise it is rejected and the process restarted. The syndrome measurements ensure that single

faults cannot propagate errors between the measurement subcircuits, causing them to agree without

us knowing. The input 10) state is prepared and verified in the same way it is prepared for Steane-

EC.

Figure 5-9: This circuit prepares IA,/ 4) fault-tolerantly using Shor's cat state method. The boxes
marked EC perform a syndrome measurement like Figure 5-7 but do not correct the identified
errors. The ancilla is accepted if both TXTt measurements agree and both EC measure a trivial
error syndrome. The order of T and Tt are the reverse of what is expected because K = (Kt)® 7.

5.3.2 Quantum accuracy threshold

As in the classical case, a rigorous proof of the threshold theorem for quantum computation makes

use of the concept of a rectangle consisting of a logical gate and error-correction; see Figure 5-10.

For codes of distance less than 5, the concept of an extended rectangle, or ex-Rec, provides a

clean way to account for failures caused by pairs of faults in adjacent rectangles [AGPO6]. An ex-

Rec consists of a rectangled along with its preceeding 1-EC(s) on the input code block(s). We made
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use of a conceptually similar idea when we counted faults in the majority voting gates preceeding

the classical NAND rectangle. We discuss this concept in more detail in Chapter 7.

Locations in a quantum circuit are defined to be gates, single-qubit state preparations, mea-

surement steps, or memory locations where a qubit is not involved in any gate. After one level of

recursive simulation, every location (denoted as 0-Ga) is mapped onto a rectangle or 1-rectangle

(1-Rec), a space-time region in the simulated circuit, which consists of the encoded gate (1-Ga) fol-

lowed by error correction (1-EC), as shown in Figure 5-10. For transversal gates, the 1-Ga consists

of performing the 0-Ga's on each qubit in the block(s).

L---------------1 - Ga 1 - EC

Figure 5-10: A 1-rectangle (1-Rec), indicated by a dashed box, which replaces a single-qubit 0-
Ga location. The 1-Rec consists of the encoded fault-tolerant implementation of the 0-Ga (1-Ga)
followed by an error correction procedure (1-EC).

The quantum threshold theorem can be proven in a beautiful non-inductive, syntactic way

[Ali07]. The excellent references [AGPO6, Ali07, AGP08] describe this proof technique and its

implications for several noise models, and we do not review the proof here. An element that we use

directly in Chapter 8 is the concept of correctness defined in Figure 5-11. An extended rectangle

is said to be correct if an ideal decoder can be "pushed back through the rectangle" to give an

ideal quantum gate. A level-1 exRec, or 1-exRec, is bad if it contains more than t faults and if it

is not bad it is good. A 1-exRec satisfies the exRec-Cor property if the 1-Rec contained in a

good 1-exRec is correct. For a more refined count, a set of locations in a 1-exRec is benign if the

1-Rec contained in the 1-exRec is correct when faults are placed at locations in the set. If a set of

locations is not benign then it is malignant.

Theorem 14 (Quantum accuracy threshold for independent stochastic noise [AGPO6])

Suppose that fault-tolerant components can be constructed such that all 1-exRecs obey the exRec-Cor

property, and such that e is the maximal number of locations in a 1-Rec, d is the maximal depth of a

1-Rec, and eo1 is the maximal number of pairs of locations in a 1-exRec. Suppose that independent
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-- - - - - - - - - --

ideal ideal ideal
1-EC I-Ga I EC - - I-EC 1-Dc 0

--- -  ------
1-Rec

Figure 5-11: Syntactic definition of correctness for an extended rectangle [AGPO6].

stochastic faults occur with probability E < co at each location in a noisy quantum circuit. Then for

any fixed 6, any ideal circuit with L locations and depth D can be simulated with error 6 or better

by a noisy circuit with L* locations and depth D*, where

L* = O(L(log L)lOg2 ), D* = O(D(log L)Og2 d).

For the standard approach, using a concatenated quantum error-correcting code, and for adver-

sarial stochastic noise, there are several lower bounds we can quote. A bound for the well-known

[[7, 1, 3]] code is 2.7 x 10- 5 [AGPO6]. When constrained to a two-dimensional lattice, and using

some flow map techniques [SCCAO6], a lower bound for the [[7, 1, 3]] is 3.6 x 10- 5 compared to

1.8 x 10- 5 for the same circuits unconstrained [SDT07]. The bound for the non-local setting was

significantly improved to 1.9 x 10- 4 in [AC07] using the [[9, 1, 3]] Bacon-Shor subsystem code. See

Chapters 8 and 9 for more thorough summaries of threshold values.

The threshold theorem is a very strong theorem that can be stated and proven for noise models

that are even more challenging than adversarial stochastic noise. It has been proven for correlated

models [AKPO6] and non-Markovian models [TB05]. There is reason to believe that the thresholds

for these models is much better than the lower bound that can be proven, and it is an open problem

to prove a rigorous statement to this effect [AGPO6].

5.4 Important developments beyond the standard approach

What we have called the standard approach is merely one approach to fault-tolerant computation.

Some important alternative approaches exist and other developments have occurred beyond the

introduction given in this chapter. This section briefly surveys some of these alternatives without

going into much detail.

Information theoretic techniques have been used in classical settings to obtain several new results

for classical fault-tolerant computation [Eva94]. The techniques bound the fraction of information
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that can cross a noisy channel and so relate fault-tolerant computation to the idea of a capacity

for noisy computation [Eli58]. The main results, which have built on the work of many authors

since von Neumann [WC63, D077, GG94, Fed89, RS89, RS91, HW91, Pip85, Pip89, PST91], are

as follows. For binary symmetric channels with probability E = (1 - r7)/2 and a basis consisting

of gates with k inputs, a lower bound on the depth of a reliable circuit is logkl(kr~2). The size

of a reliable circuit is O(clog c) where c is the size of the noiseless circuit. The sensitivity of a

function is the maximum over all inputs of the number of bits that change the function value when

flipped individually. Functions with sensitivity s require reliable circuits of size (s log s). Reliable

computation is impossible for E > 1/2 - 1/2v/, giving an upper bound on the threshold. For k

odd, the threshold is given by
1 2 k - 2

k 2 k-1 (5.10)
k (k-1

2

which is tight; for large k, /k a 1/2- /-r/2Vk [ES03]. For example, for 3-input gates the threshold

is 1/6 ; 0.166 [HW91], and for noisy 2-input NAND gates the threshold is (3 - V/)/4 r 0.088

[EP98]. In both cases, reliable computation at higher error is impossible. Some thresholds for

reversible circuits in one and two dimensions are given in [BR05].

These results are obtained for a different circuit construction than we have considered in the

standard approach. Concatenation is not necessary if we can find a code family with good distance

that allows simple-enough error-correction rectangles. The repetition code has the largest possible

distance. Furthermore, it has constant depth error-correction circuits that can be constructed

explicitly using expander graphs [Pip85].

What are the corresponding results for quantum circuits? The picture is less complete. The

tightest upper bound on the quantum accuracy threshold is Pth _ 1 - O(1/v'k) for depolarized k-

qubit unitary gates and noiseless single qubit gates [KRUdW08]. This matches the scaling behavior

of the classical bound. For k = 2 and CNOT gates, Pth < 0.293. Additional upper bounds

have been given in [Raz04, BCL+06]. The best known lower bound, in constrast, is 1.04 x 10- 3

[AGPO8]. Therefore, the separation between upper and lower bounds is presently about two orders

of magnitude.

In the classical setting, the best thresholds are achieved by using a family of codes whose

minimum distance scales linearly with the block size and is as large as possible. The quantum

Singleton (or MDS) bound for an [[n, k]] binary quantum code is d < (n - k + 2)/2 [Rai99a].

Therefore, the best quantum codes encoding one qubit have distance (n - 1)/2 as opposed to
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the classical case where the distance can be as much as n. Most families of codes that have been

explicitly constructed have a distance that does not even scale linearly with the block size, although

there are some [ATL01]. The surface codes are an example of a family of [[n, 1, O(V~i)]] codes that,

despite their distance, correct many high weight errors. This is one of the only families of codes with

an effectively good distance that scales linearly with the block size. Since there are also very simple,

local error-correction circuits for this code, a threshold exists without concatenation [DKLP02].

Local error-correction circuitry is highly desirable for implementing fault-tolerant circuits that

are layed-out in one or two spatial dimensions. Surface codes have simple local error-correction

circuits. The Bacon-Shor codes can also be used in a mode where error-correction is entirely local.

Furthermore, and somewhat amazingly, it is possible to perform a universal set of gates using only

local operations in two dimensions on surface codes [RHG07, BMD07, FSG08]. The threshold for

these schemes is roughly 6 x 10- 3 with a large classical memory. An improvement in the logical

error rate over the physical error rate does not occur until the surface is greater than roughly 7 x 7

qubits. The effects of a limited classical memory and a practical syndrome decoding time may also

affect the threshold of this scheme, but it remains a very promising scheme.

There are several methods for constructing error-correcting circuits for stabilizer codes and

for preparing quantum states used in error-correction [Sho96, Ste97, Kni05b]. The complexity of

error-correction is important in determining the accuracy threshold for a code or family of codes.

There is no example of an error-correction circuit with constant depth when that circuit includes

the classical syndrome decoder as a reversible quantum circuit; however, the syndrome extraction

alone can be done in constant depth [AhnO4].

Fault-tolerant quantum computation need not use error-correcting codes. Concatenated error-

detecting codes also lead to a provable threshold [AGP08, Rei06a]. The idea was first given by E.

Knill in a series of papers [Kni05a, Kni05b, Kni04a, Kni04b]. This scheme leads to thresholds on

the order of 1% but at a significant (constant) cost in overhead. In Chapter 8, we show Knill's

simulation results for this scheme together with our results for error-correcting codes to compare

the relative overhead.

Finally, schemes for physically motivated noise models have been successful. A scheme by

Aliferis and Preskill has given a factor of 5 improvement in the accuracy threshold for biased noise

[AP07].

107



5.5 Conclusion

This introduction to fault-tolerance prepares us for what lies ahead in the later parts of this dis-

sertation. The remarkable result that quantum fault-tolerant computation is possible provides the

main reason for continued hope that large scale quantum computation will one day be achieved.

The chapter has defined and introduced central concepts of a standard approach to classical and

quantum fault-tolerant computing so that we may explore that approach in more detail in later

chapters. Finally, the review in Section 5.4 reminds us that there are other approaches to fault-

tolerant computing and that there are significant questions still unanswered in the quantum setting.
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Chapter 6

Limits to a standard approach to

fault-tolerant logic gate construction

6.1 Introduction

Transversal gates are an important class of fault-tolerant gates introduced in Chapter 5, where we

reviewed that fault-tolerant components limit the introduction and spread of error within them-

selves. Transversal gates act bitwise between corresponding qubits in each code block, limiting

error-propagation to a small number of interacting qubits. Classically we know that NAND is itself

both universal and transversal on the repetition code, so the classical problem can be solved by

considering this gate alone.

A long-standing open problem in fault-tolerant quantum computation has been to find a quan-

tum code that admits a universal set of transversal gates. If such a code also admitted a fault-

tolerant error-correction procedure, then the structure of fault-tolerant logic gates would be uni-

form, as in the classical setting, potentially simplifying the code architecture discussed in Chapter 7.

Furthermore, it might be possible to give an exceedingly simple lower bound on the accuracy thresh-

old in realistic geometrically local settings, since quantum software approaches could be avoided

in universal gate set construction (though simple quantum software is still likely needed in error-

correction).

Unfortunately, there are no known examples of a quantum code with a universal set of transver-

sal gates. The most tractable examples of logic gates have been for stabilizer codes, and obtaining

non-stabilizer codes systematically has been difficult until the new result discussed in Chapter 4,
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so little work has appeared about computation on non-stabilizer codes. Given the experience with

stabilizer codes, it is generally believed that a quantum code with a universal set of transversal

gates does not exist. Analyzing transversal gates for general quantum codes is very difficult, and

the question is unresolved even for stabilizer codes (prior to our work), so we restrict the discussion

to binary stabilizer codes in this chapter.

A main result of this chapter is that a universal set of transversal gates does not exist for

even one of the qubits encoded into a binary stabilizer code. Since binary stabilizer codes are

the mainstay of fault-tolerant quantum computation, this strongly supports the idea that other

primitives, such as quantum teleportation [GC99], injection by teleportation [Kni05a], or state

distillation [BK05], are in fact necessary for universal fault-tolerant quantum computation. In the

concluding section, we discuss the assumptions we have made and how they might be lifted in the

search for elusive codes with interesting transversal gates.

Throughout the chapter we consider an [[n, k, d]]2 stabilizer code C(S) with stabilizer S and

projector Pc(s). A block is a set of n qubits encoding k qubits into C(S). Suppose throughout

that there are r > 1 blocks. If C(S) happens to be a subsystem code, it can be viewed as a

subspace code by taking the union of the logical Hilbert space and the subsystem Hilbert space.

The subsystem code [[n, k, 1, d]] becomes a subspace code with the same stabilizer S and new

parameters [[n, k + 1, d' < d]]. Regardless of how the subsystem code is viewed, the observations

in this section apply equally well to subsystem codes because they only rely on the stabilizer and

not on a basis for the codespace. In Section 6.3.3, it is important to distinguish subsystem from

subspace codes because we choose a basis for the codespace. At that point, we argue that the

results hold for subsystem codes as well as subspace codes.

Section 6.2 discusses what it means to compute on information encoded into a stabilizer code

and reviews the important definitions needed to proceed through the chapter. Section 6.3 delves

into a so-called subcode method for proving structure theorems about local gates on stabilizer codes.

In this section, we prove the first new results of the chapter, which extend the subcode method

to the full automorphism group and the group of transversal gates. The section concludes with

a proof that transversal gates are not a universal set and full automorphisms are not a universal

set. Finally, Section 6.4 applies the structure theorems to explore non-Clifford transversal gates for

CSS codes, giving new examples and an interesting conjecture. Section 6.5 concludes with open

problems.
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6.2 Structure of computation on stabilizer codes

This section discusses in detail what it means to compute on information encoded in a stabilizer

code. It begins in 6.2.1 by defining concepts related to transversality and giving examples of types

of fault-tolerant gates on stabilizer codes. Next, encoded universality (6.2.2) and the consequences

of non-Clifford gates are discussed (6.2.3). Finally, concepts of a subcode approach for grasping

the structure of local gates on stabilizer codes are presented in 6.2.4 and 6.2.5.

6.2.1 Transversal logic gates on stabilizer codes

Definition of transversality

A gate U E U(2nr ) is an r-block logical gate on C(S) if [Ps) U] = 0. The condition says that

the code space is invariant under U,

UP (s) - Pr U <- UPrs Ut = Po" (6.1)
C(S) - C(S) C(S) C(S)'

so codewords are mapped to codewords in each block by U. Let Es be an isometry that encodes k

bare qubits into C(S). An r-block logical gate U implements V on the code if V = E UEC(S)

where Ec(s) is any encoder into C(S). We may also relax and say that V is a logical gate.

A transversal gate acting on r blocks is an nr qubit unitary U that (a) factors into

U1 0 U2 0 ... U, where each Ui is an r qubit unitary that acts on the ith qubit of each block and

(b) U is an r-block logical gate on C(S). See Figure 6-1 for an illustration of a transversal gate

applied to r encoded blocks of n qubits each.

Conditions (a) and (b) are not enough to guarantee that U acts nontrivially on C(S); any

element of S meets both conditions but an element of S acts like logical identity I on the code

space. However, we include these trivial gates in the set of transversal gates. Denote the set of

transversal gates on r blocks of C(S) by Transr(S) and note that this is a group.

The definition of transversality includes a large class of gates, but it can still be more general.

Let us consider how conditions (a) and (b) can each be generalized.

For example, condition (a) can be expanded to include the case where a transversal gate is

sandwiched between permutations of the qubit coordinates. The permutations should not exchange

qubits between blocks, since this can spread errors, but it is permissible to permute qubits within

each block. Such a permutation transversal gate has the form 7-F (@n> Ui) i where the
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n qubits

Uj

Figure 6-1: Illustration of a transversal gate on r blocks of n qubits each. The blocks are represented
by a collection of circles (qubits), grouped into boxes of n. The r blocks undergo a transversal gate
whose unitaries Uj act on qubits in the [blue] boxes with rounded edges.

permutations satisfy 7rFlrI = -l irj and irj acts only on the jth block. Unfortunately, these gates

are difficult to work with since the permutations act along the rows of Figure 6-1 while the gates

act on the columns, and each 7rj may be different.

An example of a code with a permutation transversal gate is the [[4, 2, 2]] code. In this code, the

gate A(X)[1, 2] is achieved by 7r(2,4), where the coordinate permutation is given in cycle notation.

Another example is the [[5, 1, 3]] code. The [[5, 1, 3]] has no transversal Hadamard gate. However,

it has a permutation transversal Hadamard gate achieved by H®5 followed by 7r( 12)(34).

Condition (b) requires the gate to map inputs from C(S) to outputs in C(S). However, a logic

gate could map inputs encoded in one input code to outputs encoded in a different target code.

Transforming the code may not be a problem if the dimension of the code space does not change

and the distance of the target code is not greatly reduced. One way of defining such a code-

transforming transversal gate U is by the property U (0®= Pc(s)) = ((;=1 Pc(si) U.

The polynomial codes are important examples of codes with code-transforming transversal Tof-

foli gates, but they are defined on higher dimensional quantum systems, not qubits. The polynomial

codes are discussed in more detail in Chapter 8.

Finally, it is important to mention that measurement has been purposely excluded from these

definitions. Including transversal measurement in the definition certainly makes the scheme uni-

versal since we can use quantum software methods. The quantum software methods do require

ancilla states, but most state preparations, including initial states, appear to unavoidably require

non-fault-tolerant circuits and verification testing as reviewed in Chapter 7. A notable exception is

the [[9, 1, 3]] Bacon-Shor code whose 10) and I--) states can be prepared without verification testing.
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CODE TRANSVERSAL TRANSV. WITH NOT

PERMUTATION TRANSVERSAL

[[4, 2, 2]] CNOT,H1 H2 -SWAP[1, 2] CNOT[1, 2] Non-Clif.
[[5, 1, 3]] KH, M3  H, K CNOT, Non-Clif.
[[7, 1, 3]] CNOT, H, K - Non-Clif.

[[n, 1, vn-]] CNOT H Non-Clif.
[[15, 1,3]] T, K, CNOT - H

[[2m - 1, 1,3]] {Tj,j E [m]}, CNOT - H

Table 6.1: The table lists stabilizer codes introduced in Chapter 4 and their transversal encoded
logic gates. The first column gives the code parameters. The [[7,1,3]] is Steane's code. The

[[n, 1, v•1]] family refers to the Bacon-Shor codes. The [[2m - 1, 1, 3]] family are constructed from
Reed-Muller codes. The second column lists gates that are known to be transversal for that code.
The third column lists gates that are permutation transversal. The final column lists gates for
which either a) no transversal construction is known or b) the gate is impossible to do transversally
by prior known results [Rai99b]. M3 is a three-qubit Clifford operation [Got97, Got98b] and

Tj := diag(1, ei,/2j-2), which includes I, Z, K, T, and so on.

Examples of transversal gates

It is well known how to find transversal gates whose terms Ui are in the Clifford group. Property

(b) becomes UgUt E SOr for all g E S®r, so it becomes enough to look for gates that preserve

the stabilizer under conjugation. For single qubit transversal gates, this is exactly the problem of

computing a subgroup of the automorphism group of the classical additive code associated with

S, a procedure that has been automated in computer algebra packages such as GAP [GAP07] and

MAGMA [WCP97]. Finding transversal gates whose Ui are non-Clifford is more difficult. There

does not appear to be a known systematic approach, but some gates can be found. Table 6.1

summarizes examples of transversal gates for the stabilizer codes introduced in Chapter 4.

There is a hierarchy of gates that appears in the study of quantum teleportation called the Ck

hierarchy [GC99]. The set Cin) is the n-qubit Pauli group Gn. The remaining sets are defined

recursively by

Cn) : U E U(2n) IUvUvt' eCn, Vv E C n)} (6.2)

C(n) is the Clifford group, but Ck(n) is not a group for k > 3. It is clear that C(n) C (n) Both T

and Toffoli conjugate Paulis to Cliffords, so they are in C3. The structure of Ck is well understood

only for a small number of qubits [ZCC07]. The main reason for mentioning this hierarchy is to

observe that Tj E Cj-1 for j > 1, which is proven in [ZCC07]. None of the examples in Table 6.1

seem to have transversal gates outside of the Ck hierarchy and the same is true for all examples
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known to me.

6.2.2 Encoded universality

Transversal gates with Ui E C2 are easy to study, as we have already said, since there is a poly(n)

algorithm for testing whether or not such a gate is a logic gate and finding what action it has on

the qubits encoded in the code. However, transversal gates implemented by Cliffords can only give

logical gates that act like elements of the Clifford group, since the encoded qubits are described by

Z(S), and Z(S) is mapped to itself by such a gate. Therefore, by the Gottesman-Knill theorem,

such gates are not a universal finite basis on the qubits encoded into C(S), and it is necessary to

add some other gate to such a set.

A set A of r-block logical gates is computationally universal on C(S) if given any r-block

logical gate U,

VE > 0, V l,..., V() E A, s.t. UP(s) - Vi pT S) < e. (6.3)

We do not worry about the approximation efficiency, since our results in this chapter show that

particular choices of A are not computationally universal on C(S).

6.2.3 Generalized stabilizers and the LU-LC conjecture

Non-Clifford gates can be transversal yet not take the stabilizer to itself, but to a subgroup of the

generalized stabilizer. The generalized stabilizer Z(S) of C(S) is the group of all unitary gates

that fix the code space,

Z(S) := {U E U(2n ) I UIO) = |I ), V/ E C(S)}. (6.4)

The transversal T gate on the [[15, 1, 3]] is an example of a gate that does not map Paulis to

Paulis. It maps X = X®15 to ((X - y))®15. This is a representative of (X - Y) but has

many more terms. These terms are contributions from another element in Z(S). The [[9, 1, 3]] is

another example. The gate eiOZ1 e-i Z2 E I(S) \ S is transversal and acts like the logical identity.

However, it does not map X = X®9 back to the Pauli group.

It is perhaps not too surprising that stabilizer codes have freedom to be rotated back into

themselves by non-Clifford transversal gates, since they are subspaces that encode k qubits. We
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expect to be able to rotate the encoded qubits, though it is perhaps surprising that some of those

rotations can be done with local operations. As we have already seen in Chapter 4, a local unitary

(LU) gate on n qubits is simply an element of U(2)®n and a local Clifford (LC) gate is an

element of (C1))®n A local equivalence of stabilizer codes C(Si) and C(S2) is a local unitary

U such that U10 1) E C(S2) for all 11) E C(Si).

One might expect that local unitary equivalences of stabilizer states must be local Clifford gates.

This expectation is formally known as the LU-LC conjecture.

Conjecture 15 (LU-LC [dNDM05]) If two stabilizer states are locally equivalent, then they are

locally Clifford equivalent.

Shockingly, this conjecture turns out to be false - after our work was completed, and after our own

attempts to prove the conjecture [ZCCCO7], it was shown that there are stabilizer states that can

be transformed into one another by local unitary gates but not by local Clifford gates [JCWY07].

These counterexamples show that there are shocking subtleties about the stabilizer formalism, and

there is still much to do to understand these subtleties fully.

6.2.4 Automorphisms and semi-Cliffords

The transversal gates on one block are exactly the set of all local unitary equivalences from C(S)

to itself. Likewise, the set of all single block permutation transversal gates is exactly the full

automorphism group of a stabilizer code. The full automorphism group Aut(S) of a stabilizer

code C(S) is the collection of all encoded logic gates acting on C(S) that have the form P,U

where P, enacts a coordinate permutation 7r and U = Ui 0 ... Un is a local unitary. P, acts

on computational basis states like Plblb2 ... bn) = Ib,(1)br(2) ... br(n)). This group is formally a

semidirect product group [AscOO] defined in the following way, as introduced by Rains [Rai99b].

It is the subgroup of logical operations contained in a group (Sn, U(2)®n, v) where v : Sn --

Aut(U(2)®n ) is

v(Tr)(U0 ( '--9 9 Un) := U,( 1) ... 0 Ur(n) (6.5)

and Sn is the symmetric group on n items, i.e., all permutations of n items. The triple

(Sn, U(2)0n, v) is denoted Sn < U(2)®n when v is implied. An element of Sn t< U(2)On acts on

both the qubit coordinates and the codewords in Hilbert space, but it maps the action on the

coordinates into an action on the local unitary operator in U(2) @n. The definition of the product
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of two elements in a semidirect product group S, , U(2)®n is

(7i1 , U) (72, V) := (717 2, (Ug1 2(V1)V) "0 & 0 (U&W2 (n)Vn)). (6.6)

The single block transversal gates are the subgroup Transl(S) = {(7r, U) E Aut(S) I x = ()} without

permutation. The single block gates accomplished by permuting the qubits are the subgroup

PAut(S) := {(, U) E Aut(S) U = I}. Generally there are elements of Aut(S) outside of

PAut(S) x Transi(S). Consider the [[5,1,3]], where H®5 followed by (12)(34) ý PAutS[[5,1, 3]] is an

automorphism, i.e., the permutation transversal logical Hadamard gate. The two groups can also

be equal, as happens with the [[4,2,2]] - PAut(S[[4,2,2]]) = S4 and the group S4 x Transl(S[[4,2,2]])

corresponds to the entire group of logical Clifford gates on the [[4, 2, 2]], which is all of Aut(S) (see

Table 6.1).

There is a classification of gates that will be useful in Section 6.3 when discussing limitations

on the form of transversal gates. A unitary gate is Clifford if it is in C~"). A unitary gate is

semi-Clifford if it sends at least one maximal abelian subgroup of Gn to another maximal abelian

subgroup of Gn. A unitary gate is generalized semi-Clifford if it sends the span of the elements

in at least one maximal abelian subgroup of Gn to the span of elements in another maximal abelian

subgroup of Gn.

A semi-Clifford gate U can be expressed as U = LDR where L, R E CCn) and D is diagonal

[ZCC07]. Indeed, A:= (Zi, i = 1 ,..n) is a maximal abelian subgroup of Gn, and we know that

there exist R t , L E C*) such that RMAR is mapped to LALt by U. Therefore,

URtARUt = LALt - (LtURt)A(LiURt) = A (6.7)

> LtURt = D diagonal - U = LDR. (6.8)

Similarly, a generalized semi-Clifford gate can be written as LPDR where P is a permutation

matrix, L, R E C n), and D is diagonal. Let A := (Zi, i = 1, ... , n) as before and let C[A] denote

the vector space spanned by elements of A over the complex field. By definition, UC[A1]Ut = C[A2]
for some maximal abelian subgroups A1, A 2. We know that there exist Rt, L E C n) such that

URtC[A]RUt = LC[A]L t . Therefore, (L t UR t )C[A](L t UR t )t = C[A] which implies that LtUR t is

a monomial matrix PV where P is a permutation matrix and V is diagonal.
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6.2.5 Minimal supports, elements, and subcodes

A support is a subset of the set of coordinates [n]. The support of a local unitary gate P E U(2)0n ,

denoted supp P, is the set of all i E [n] such that Pi differs from the identity. The weight of P is the

size of the support wt P = Isupp PI. An element R is said to have full support if supp(R) = [n].

For example, the element XZZXI has support {1, 2,3,4} and weight 4. It does not have full

support.

A minimal support of S is a nonempty set w C [n] such that there exists an element of S

with support w, but no elements exist with support strictly contained in w, excluding the identity

element. Let m(S) C [n] be the union of the minimal supports of S. An element in S with a

minimal support is called a minimal element. Let M(S) denote the subgroup generated by all of

the minimal elements of S. Suppose at least one element in S has support w, then the subcode of

S associated with w is p, 21- Tr Pc(s) where := [n] \w and S := {g E S I supp(g) C w}

is a subgroup of S.

The subcode is generated by the elements of S with support contained in w, where for each

element the coordinates outside w are removed. Indeed,

21wl-k 21wl
Pw = Tro Pc(s) = 2n S, Tr& g. (6.9)

gES

The partial trace of a Pauli element over a set of coordinates is zero unless all of the coordinates are

the identity, in which case Tri g = 20g, where g, is obtained from g by tracing out the coordinates

in C. Therefore

P l = gW. (6.10)
gESw

If there are no elements in S with support w then p, is a trivial stabilizer code projecting onto the

whole space.

For example, {1, 2, 3, 4} is a minimal support of the [[5, 1, 3]] and XZZXI is a minimal element

with that support. S{ 1,2,3 ,4} = {IIIII, XZZXI, YXXYI, ZYYZI}. The subcode has projector

1
P{1,2,3,4} = 1(1111 + XZZX + YXXY + ZYYZ), (6.11)

so it corresponds to a [[4, 2, 2]] stabilizer code. The minimal supports are every set of 4 contiguous

coordinates {1,2,3,4}, {2,3,4,5}, {3,4,5, 1}, etc, so m(S) = [5]. Since S = (S,, w minimal) =
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M(S), the [[5, 1, 3]] is the subspace that is the intersection of the codes C(S,). The code C(S,)

differs from the minimal code p, by the tensor product with some unencoded qubits, i.e. in this

example, p, is a [[4, 2, 2]] and C(S,) is a [[4, 2, 2]] 0 [[1, 1, 1]].

The term subcode is chosen because, if the identity coordinates are not removed, the classical

code associated with the stabilizer of the new code is a subcode of the classical code associated

with the original stabilizer.

6.3 Limitations on transversal gates for stabilizer codes

In this section, we extend Rains' approach to obtain several new results. The first result is a

general form of a stabilizer code automorphism. This result has been independently discovered by

David Gross and Martin Van den Nest [GdN08]. The second is a generalization of the approach to

transversal gates acting on more than one block, leading to a general form for transversal gates on

stabilizer codes.

6.3.1 Gates on a single encoded block

The main result of this section extends earlier work to show that U E Aut S if and only if

U = PeL) diag(1, eio) L2  (6.12)

and U is a logic gate on S. Here, L 1 and L2 are local Clifford gates, P, is a product of swap gates

enacting permutation i on the qubit coordinates, and {O1,..., On} are angles. Loosely speaking,

automorphisms of stabilizer codes are essentially diagonal up to local Clifford gates. For the result

to be true, the stabilizer S must satisfy some additional, simple conditions to rule out trivial cases.

In particular, C(S) must not have an unencoded qubit or a Bell pair "tacked on". The goal of this

section is to show why this is true and explain the new result.

We begin by reviewing a lemma originally proven by Rains. The lemma shows that transversal

logical gates preserves stabilizer subcodes. The result will be meaningful because we can use its

contrapositive - if a gate does not preserve subcodes, then it cannot be a transversal logical gate.

Lemma 16 (Subcode lemma [Rai99b]) Let w C [n] be a nonempty set of coordinates. Given
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a transversal gate U = n1 I Ui, let U, := &ic, Ui. Then

UpU1 = pW. (6.13)

Proof The transversal gate is an encoded logical gate, so UPc(s)Ut = Pc(s) by definition. Taking

the trace of both sides,

Tr [UPc(s) U] =TrC Pc(s) 4-4 (6.14)

U, [Tr Pc(s)] UZ = TrC Pc(s). (6.15)

The following lemma of Van den Nest, leads to a classification of minimal subcodes of stabilizer

codes.

Lemma 17 (Number of elements stabilizing minimal subcodes [dNDM05]) Let w be a min-

imal support of S and let A, denote the number of nonidentity elements in S,. Then A, E {1, 3}.

Proof By definition, there must be some element of S with support w, so if there are no more,

then A, = 1. If there are two elements M, N with support w, then their product MN must have

support w, otherwise w is not minimal. So A, cannot be 2, but it can be 3. Suppose there is a

fourth element M' with support w. There are only three nonidentity Pauli operators, so one of

them must appear twice at some coordinate in w. By then we can form another product whose

support is strictly contained in w, so w is not minimal. Therefore, A, cannot be greater than 3. Ol

Notice that when A, = 3, |wI must be even, otherwise the operators in S, do not commute.

This result allows one to characterize the minimal subcodes.

Corollary 18 (Characterization of minimal subcodes [dNDM05]) Let w be a minimal sup-

port of S and let Il = I 0 ... I. Then the minimal subcode of S associated with w is either

jw| times

Pw = (IIwl + g,) (6.16)2

or

Pw = (I! + g, + h, + (gh),), (6.17)4
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where g, and h, are commuting Pauli operators in S, restricted to w, whose product also has

support on w. In the first case, p, projects onto a [[Iwl, JIw - 1,1]] code, and, in the second case, p,
projects onto a [[ wl, |WI - 2, 2]] code.

There is a local Clifford gate that maps the first code into a code stabilized by (ZlWI). This

code is a classical code with one parity check. Similarly, the second code maps into (ZIWI, XIWI),

which is a quantum code detecting one error and saturating the quantum Singleton bound.

The extent to which a stabilizer code can be described by its minimal subcodes depends on the

particular stabilizer code. For example, the GF(4)-linear codes are one family of stabilizer codes

that can be described completely by their minimal subcodes [Rai99b, dNDM05], i.e. M(S) = S and

m(S) = [n]. A GF(4)-linear code is a code whose stabilizer group is preserved by the transversal

gates C, : X H Z H Y - X and C,2 : X ý Y ý Z i X. The reason for the terminology

"GF(4)-linear" is that these transversal gates correspond to multiplying by field elements w and

w2, so that the stabilizer group corresponds to a linear code over the alphabet GF(4). A linear

code is generated by its minimal elements. Indeed, if a vector v in a linear code is not minimal,

then we can find another vector w whose support is contained in the support of v. There is some

constant c such that v - cw has lower weight and is contained in the code. It is clear that we can

continue this process until we arrive at a minimal vector. The process gives us v expressed as a

linear combination of minimal vectors.

The doubly even dual-containing CSS codes, such as the [[7, 1, 3]] Steane code [Ste96] and the

[[23, 1, 7]] Golay code [Rei06a], are familiar examples of GF(4)-linear codes. Codes such as these

have transversal Phase K and Hadamard H gates implemented bitwise (i.e., by applying the gate

or its conjugate to each bit of the code). Therefore, all of their minimal subcodes have A, = 3, and

all of their transversal gates are Clifford. The codes are designed this way - they have transversal

CNOT, H, and K, so any logical Clifford is transversal.

Now we will focus on error detecting codes with parameters [[Jwl, WI - 2, 2]].

The case Iwl = 2 is special. A [[2,0,2]] is a Bell pair (100) + I11))/v'2. The gate V 0 V* maps

a Bell pair to itself for any V E U(2). Indeed, by direct matrix multiplication, one can verify that

U 0 IlBell) = I 0 U TBell), so (UT) - 1 = U* proves the fact.

Lemma 19 (Clifford-only lemma [Rai99b]) Fix 2m := Iw| > 4 and let C(S), and C(S') be

[[Iwl, I|w - 2, 2]] stabilizer codes. If U is a local equivalence from C(S) to C(S'), then U is a local

Clifford gate.
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Proof We must show that every U E U(2)®2m satisfying UP[[2m,2m-2,2]]Ut = P[[2m,2m-2,2]] is a

local Clifford operator. We use the notation a, := X, ay := Y, and az := Z. Recall that any

V E U(2) acts on the Pauli matrices as

aa H VaaVt = OxaUx + Oyaay + 0 zauz,

for each a E {x, y, z} and where each coefficient 0 ab is real. V can therefore be associated with a

matrix

oxx oxy ozz

My= oyX Oy Oyz  (6.18)

Ozx Ozy Ozz J
with pairwise orthogonal columns and unit determinant; i.e., My is in the special orthogonal

group SO(3). In the standard basis {10), 11), 12)} of R3, the matrix

0a2m + (-1) 2m 2 m (6.19)

is associated to the vector

v := 100...0)+ (-1)mll1... 1)+ 22...2) E (R3)(2m  (6.20)

acted on by SO(3)®2m. We must show that if 0 = 01".. " 02m E SO(3)02m satisfies Ov = v, then

each Oi is a monomial matrix (see [HP03]; a monomial matrix is the product of a permutation

matrix and a diagonal matrix). Mapping O back to a unitary gate will show that Oi ý Ui E C2.

Consider the operator

(01 Tr{3,4 ,..., 2m}(VVT)I0)1, (6.21)

acting on the second copy of R 3. The matrix vvT has 9 nonzero elements, and the partial trace

over the last 2m - 2 copies of R3 gives

Tr{3,4,...,2m} (VVT) = I00)(001 + 111)(111 + 122)(221. (6.22)

Hence the matrix in Eq. 6.21 equals the rank one projector 10)(01. Therefore, if Ov = v then the

operator

(011 Tr{3,4,...,2m} (OVVTOT)IO)I (6.23)
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equals 0) (01 as well. The operator is given by the matrix

02(011(01 0 I) Tr{3,4,...,2m}(vvT)(OT 0 I) 0)102 (6.24)

(01)20 0 0
= 02 0 (01)g1  0 o2T. (6.25)

0 0 (01)02

where we have factored 02 to the outside. The matrix within Eq. 6.25 equals the rank one projector

oT 0) (0102 if and only if exactly one of the elements (O1)oo, (OI)oi, or (01)02 is nonzero. Repeating

the argument for every row of 01 by considering the operators (iji Tr{3,4,...,2m}(Ovv TOT)i)1, i E

{0, 1, 2}, shows that every row of 01 has exactly one nonzero entry. 01 is nonsingular therefore 01

is a monomial matrix. The vector v is symmetric so repeating the analogous argument for each

operator Oi, i E [2m], completes the proof. O

A stabilizer code is free of Bell pairs if it cannot be written as a tensor product of a stabilizer

code and a Bell pair. A stabilizer code is free of trivial qubits if for each j E [n], there is an

element s E S such that sj = I.

Theorem 20 (Local equivalences are semi-Clifford on coordinates in m(S) [dNDM05])

Let C(S) and C(S') be stabilizer codes that are free of Bell pairs and trivial qubits, and let j E m(S).

If U is a local equivalence from C(S) to C(S') then Uj is semi-Clifford.

Proof Consider C(S). There is a least one element M E M(S) with j E w := supp(M). Either

A, = 1 or A, = 3 by Lemma 17.

If A, = 3, then p, is LC equivalent to P[[IwI,Iwj-2,2]]. Moreover, as C(S) is locally equivalent to

C(S'), w is also a minimal support of S' with A,(S') = 3. Therefore, p,(S') is LC equivalent to

P[[Iwl,IwI-2,2]]. By Lemma 16, U, maps p,(S) to pw(S') under conjugation. We must have wlI > 2;

otherwise C(S) is not free of Bell pairs. Since Jw| is even, Iwl > 4, and by Lemma 19, Uj E C2.

If A, = 1 and there are elements R 1, R 2, R 3 E M(S) such that (R1 )j = X, (R 2)j = Y, and

(R 3)j = Z, then there exists another minimal element N E M(S) such that j E P := supp(N)

and Mj3 Nj. If A, = 3 then we can apply the previous argument to conclude that Uj E C2.
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Otherwise, Al = 1 and

Pw = 1(I®
lw l + M) (6.26)

piz = 1 (I®10 + N/I). (6.27)
2

Since w and p are also minimal supports of S' with A,(S') = 1 and A,(S') = 1, there exist unique

M', N' E S' such that

p,(S') = 1(I®Il + M',) (6.28)
2

p1(S') = (I lOI + NL). (6.29)
2

Applying Lemma 16 to U/ and U,, we have

Uj Mj U = -M) (6.30)

UjNJUV = ±N' (6.31)

from Eqs. 6.26-6.29. These identities show that Uj E C2.

Finally, if A, = 1 and R = (R1 )j = (R 2 )j for any R 1,R 2 E M(S), then any minimal support p

such that j E p satisfies A/I(Q) = 1. Applying Lemma 16 to U., we have

UjRU = ±R' (6.32)

for some R' E {X, Y, Z}. Therefore, Uj is semi-Clifford. O

Theorem 20 allows to characterize gates on qubits in m(S). However, there are codes for which

m(S) 5 [n], so the theorem does not hold for all of the qubits. Indeed, consider a [[6,2,2]] with

stabilizer generators XXXXII, ZZIIZZ, IIIIXX, and IIXXZZ1 . For j = 3,4 there is no

minimal support containing j.

This restriction on Theorem 20 limits its application to codes whose coordinates are fully covered

by minimal supports. Therefore, the theorem is not a complete statement regarding the structure

of single qubit transversal logic gates on stabilizer codes. However, the example suggests a new

way to extend the theorem to all of the coordinates.

By introducing a new collection of minimal elements, it will be possible to extend Theorem 20

1I am indebted to Sergey Bravyi for this counterexample.
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to all of the coordinates, proving a new result. Let Sj := {g E S I J e supp(g)} and define a new

collection of minimal elements,

M(Sj) := {g E Sj I ýg' E Sj s.t. supp(g') C supp(g)}. (6.33)

These sets do not define codes because they need not be groups.

Lemma 21 (In M(Sj) with equal supports = same Pauli at coordinate j) Suppose j rm(S)

and take g, g' E M(Sj). If supp(g) = supp(g') then gj = g9.

Proof If there exist R, R' E M(Sj) such that Rjj $ R'Ij and supp(R) = supp(R') = w, then

up to a local Clifford operation, we have R = X®IWI and R' = Z®1"I. Without loss of generality,

take j = 1. Since w is minimal in Sj but not minimal in S, there exists an element F in S \ Sj

whose support supp(F) = w' is strictly contained in w; i.e., w' ' w. Since F is not in Sj, RF,

R'F, R'RF E M(Sj). However, one of RF, R'F, R'RF E M(Sj) will have support that is strictly

contained in w, contradicting the fact that w is a minimal support of Sj. O

Theorem 22 (Local equivalences are semi-Clifford) Let C(S) and C(S') be stabilizer codes

that are free of Bell pairs and trivial qubits. If U is a local equivalence from C(S) to C(S'), then

Uj is semi-Clifford for all j E [n].

Proof If j E m(S), we are done; so suppose j V m(S). For any element R E M(Sj) with a fixed

support w, we have RIj = Z up to local Clifford operations by Lemma 21. Tracing over qubits in

CO, we get
1

Pw = 2w(l (I 3j RI + Zj 0 Rz), (6.34)

where R 1 and Rz are linear operators acting on the other w \ {j} qubits. Since UpUW = pw, we

have UjZjUt = ±Zj, so Uj is semi-Clifford. EO

The following corollary about the elements of the automorphism group of a stabilizer code

is immediate from Theorem 22. This corollary means that single block (r = 1) permutation

transversal gates are essentially diagonal up to local Clifford gates.

Corollary 23 (Stabilizer code automorphisms are semi-Clifford) Let C(S) be a stabilizer

124



code that is free of Bell pairs and trivial qubits. U E Aut S if and only if

U = PL ( diag(l, ei0) L2  (6.35)

and U is a logic gate on S. Here, L 1 and L 2 are local Clifford gates, P, is a product of swap gates

enacting permutation 7r on the qubit coordinates, and {01,..., 0n} are angles.

After this work was completed, we learned that the statement was independently obtained

by D. Gross and M. Van den Nest [GdN08] and that the theorem was first proved by different

methods in the diploma thesis of D. Gross [Gro05]. Our result has an advantage that it follows

from previously known results [dNDM05] by the application of a simple lemma, Lemma 21.

6.3.2 Gates between multiple encoded blocks

The results proven in the last section for a single block (r = 1) can be generalized to an arbitrary

number of blocks. Since the generalization is relatively straightforward, the proof is sketched in

this section in an even more informal way that the previous section. The new result is stated after

the proof, at the end of the section.

The proof begins by noting that the subcode Lemma 16 carries over directly,

STrI [UPrU] U r, [Pr] UI I UpWTU

where U, = gi,, Ui is the restriction of U to w, and p, is defined as before.

As we have seen in Section 6.3, the challenging behavior to characterize comes from non-Clifford

gates. Therefore, we will find it convenient to more or less ignore Clifford gates in what follows;

we move to locally Clifford equivalent stabilizer codes freely when studying particular minimal

subcodes. Keeping this in mind, we can write the r block projectors when A, = 1 and A, = 3. If

A, = 1,

p!r (IW + ZW )..r = S (ZW)il0 . ® (ZW)ir=
ie{O,1}r iC{O,1}r

where ij denotes the jth bit of i in the second expression, and Z(i) = ®r=1ZZi in the third

expression. It may be helpful to consult Figure 6-2 for an illustration of one of the summands as it

would look overlayed on Figure 6-1. In the right-most expression, the tensor product "|lwl" is over

the columns of Figure 6-2, because the transversal gate factors into a tensor product over columns.
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Similarly, if A, = 3, then

pOr oC (IW + Xw + Z" + (_1)IwI/ 2yw)0r

E [(-1)1wI/ 2 ]wt(a-b) RW(al, bi) "

(alb)E{0,1} 2r

E [(-1)1wI1/ 2]wt(a-b) R(a, b)®lwl
(alb)e{0,1} 2r

" O RW(ar, br)

where R(O,0) = I, R(0, 1) = Z,

and also R(a, b) = ®0=lR(aj, bj).

columns rather than rows.

R(1, 0) = X, and R(1,1) = Y,

Again, the tensor product in the

(i.e., R(aj, bj) = i a *'bjXajZbj)

bottom-most expression is over

1 1

0 2

Z Z Z

I I I

S r Z Z Z

1 2 3

Z

joj

Figure 6-2: Illustration of a single term in the expansion of p!r for the case A, = 1. Each box is
associated to a qubit, and the value of the bit to the left of each row determines whether that row
is ZIWI or I1W. Therefore, the Pauli Z operator along each column is the same, and it is determined
by the bit string. A factor Uj of a transversal gate acts on a column (the [blue] box with rounded
edges, for example).

One or both of the projectors are left unchanged by transversal gates when the gates are

restricted to a minimal support w. Since UIUj. = I, we can subtract the identity from each

projector. Like before, the projectors can be viewed as vectors in Euclidean space acted on by

rotations; see Lemma 19. This association again shows that rotations fixing these vectors have a

special form. The r qubit gate Uj acts by conjugation on a nonidentity r qubit Pauli matrix Rs (s

indexes the 4r - 1 nonidentity Paulis) as

UjRsUj = atsRt.
RtEGr-{I}

Here Gr denotes the r qubit Pauli group. The identity matrix does not appear on the right hand

side because Uj is unitary and Rs is traceless, so the image must be traceless. The coefficients

ats must be real because Rs is Hermitian. Furthermore, ERtEGr-{I} Otsl, ts 2 = 68182 because Rs
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is unitary. So, we can represent Uj by a matrix Oj in SO(4r - 1) whose real entries are ats,

s,t t [4r - 1], and whose columns are orthonormal. The inverse unitary Uj is represented by the

transpose OT and its columns are orthonormal, so both the rows and columns are orthonormal.

We can represent the nonidentity r qubit Pauli matrices can be represented by the canonical

basis vectors {I1), 12),..., 4r - 1)} of R4r - 1. For concreteness, we can associate Ii) to the binary

representation of its label (aib) E {0, 1}2r and to its representation as a Pauli iwt(a'b)X(a)Z(b).

Continuing, we write the subcode projectors as vectors in (R4r-1)| l wl , using "-" to denote this

mapping. For A, = 1,
2r-1

P.r - I ii.., i) =: w

IwI times

and for A, = 3,
4r-1

|wI times

where aj E {+1}. We can compute

2r-1 4r-1

ww = Z ii...i)(jj...j, vvT= aiajlii...i)(jj ... jI.
i,j=1 i,j=1

Consider the following operators when Iw1 > 3,

(lII Tr{3 ,...,j} wwT1) = 1)(112, {3 ,..., } vvTI1)1 oC I1)(112,

The transversal gate, represented by a rotation O, fixes v or w or both (Ov = v or Ow = w), so

I1)(112 = (I Tr{3,...,Iwl} OwwTOTI1)I
2r-1

= 02(111 (O1 ® I)ii)(ii(OT 0 I) 1)io2 T

i=1

= 2r --1]
= 02 (O1)1, ii)(l2J 2

i---1
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11)(112 1c (111Tr{ 3,...,|w|} OvvTOTI1)1
4r-1

= 02(111 i 2( 01 I)lii)(iil(OT 0 I)|11)1oT
i=1

4T -1

= 02 • ()2,i 2 02T

In the case where O acts on v, "case v", we can conclude that the entire first row of 01 has one

nonzero entry, and the square of this real entry must be 1. Considering analogous operators, and

understanding that Oj is nonsingular, we conclude that Oj is a monomial matrix for "case v", so

the corresponding unitary must normalize the Pauli group; i.e., it must be Clifford.

In the case where O acts on w, "case w", the operator only has rank 1 if one of (O1)1,i is

nonzero and the rest are zero for i E [2r - 1]. However, the equation is only satisfied if the nonzero

entry is ±1 since 02 is an orthogonal matrix. Therefore, considering analogous operators, Oj has a

monomial subblock M for "case w", where j E w and w is a minimal support, and the off diagonal

subblocks are zero, i.e., M 0
O1 -= , (6.36)

0 M)

where M is a monomial matrix whose nonzero entries are +1 and M' is in SO(4T - 2r). There-

fore, the corresponding unitary matrix must normalize the Z-type Pauli operators, i.e., the group

{±R(O, b)} where b runs over r-bit strings.

To summarize, if w is a minimal support, IwI _ 4, and A, = 3, then Uj is an r qubit Clifford

gate for j E w. If A, = 1, and JIwJ 3, on the other hand, then up to local Clifford gates Uj is an

r qubit unitary that normalizes Pauli Z operators but acts arbitrarily on Pauli X operators.

The case A, = 3 and Iwl = 2 is a special case. In this case, the minimal subcode is a [[2, 0, 2]],

which we know to be a Bell pair preserved by a continuum of local rotations U 0 U*, so it is an

edge case that we must again discard.

The case A, = 1 and Iwi = 1 or IwJ = 2 are special cases as well. In the first case, the qubit at

the coordinate j E w is in a product state with the rest of the code. We can discard this case by

insisting that Q Q' 0 [[1, 1, 1]] is free of trivial qubits. The second case provides new behavior

for r > 1 since we do not have enough qubits to "lock" the state to the diagonal by projecting onto

the first qubit. Instead, Uj maps linear combinations of Pauli Z operators to linear combinations of
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Pauli Z operators, 01 [ i)(il OT 01 [r 2 (I 0 02)wwT(I® = Tr2 Ow = Tr 2  =

I=1 li) (il. We denote the space of linear combinations of Pauli Z operators by span {IR(O, b)}.

Let U be a transversal r block gate and let M(S) be the subgroup of S generated by minimal

elements. Let m(S) be the union of minimal supports. Fix a coordinate j E m(S) C [n] and choose

a minimal support w containing j. If A, = 3, then Uj E C~r). If AW = 1 then there is one element

N with support w and there are three possibilities:

(i) 3 minimal support w' containing j with A,, = 3, in which case Uj E C2r)

(ii) [wI > 3 and 3N' E S with minimal support p containing j, JIA > 3, with A4 = 1 and Nj 0 NI.

In this case, Uj normalizes the Pauli X operators and the Pauli Z operators, so Uj E C(r)

(iii) There are no further minimal supports containing coordinate j or other minimal supports

containing coordinate j have the same Pauli at that coordinate.

Case (iii) is the only case in which Uj might not be a Clifford gate. In this final case, Uj is L1VL 2

where L 1, L 2 are local Clifford gates (which we may have applied to put our minimal code into a

standard form) and V is a gate that either:

(a) normalizes {iR(O, b)}

(b) keeps span {iR(O, b)} invariant.

Case (a) occurs if there is a minimal support whose size is greater than 2; otherwise, case (b)

occurs. Finally, appealing to Lemma 21, if j ý m(S) then case (iii,b) occurs. Case (a) shows that

Uj is semi-Clifford and case (b) shows that Uj is generalized semi-Clifford.

The main result of this section that has now been proven is:

Theorem 24 (r-block transversal gates are generalized semiClifford) If U is a transver-

sal gate on a stabilizer code C(S) that is free of Bell pairs and trivial qubits, then Uj is an r-qubit

generalized semi-Clifford gate for all j E [n]. In addition, if S = M(S), then Uj is an r-qubit

Clifford gate for all j E [n].

The details of the proof give us even more information about each Uj, allowing us to determine,

for a given stabilizer code, whether Uj must be Clifford, semi-Clifford, or generalized semi-Clifford.

Since the determination is based entirely on the minimal supports and their associated values of

A,, there is an obvious way to implement an algorithm to make this determination.
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6.3.3 Transversal gates are not a universal set for any encoded qubit

We would like to know if a stabilizer code exists that has transversal gates that are computationally

universal on at least one of the encoded qubits. If so, then this means that it is possible to

approximate any single qubit logical gate on one of the k encoded qubits (we don't care which one) to

any accuracy using only transversal gates. Since Transr (S) is a group, Transr (S) is computationally

universal on C(S) if given any r-block logical gate U, Vc > 0, 3V E Transr(S) such that IIUPJ s)

VEP(S) < c. We will assume this statement is true only for single qubit logical gates on a particular

encoded qubit and derive a contradiction, which will imply that Transr(S) is not computationally

universal on C(S).

Transversal gates may not conjugate Paulis to Paulis, perhaps even if the transversal gate ap-

proximates a logical Clifford gate. Such gates have the potential to take us beyond the stabilizer

formalism, forcing us to deal with foreign objects such as the subgroup of local gates in the gener-

alized stabilizer. This subgroup is difficult to grasp, and its members are an underlying reason why

the LU-LC conjecture is false. Fortunately, it is possible to remain within the powerful, familiar

stabilizer formalism, as we now see.

No basis has been introduced for C(S) yet, so the discussion to this point applies to both

subsystem and subspace codes. However, as we proceed, we should take care so that our arguments

continue to hold for subsystem codes. The Hilbert space of n qubits partitions under a subsystem

code as R7 = ®s-L 0 7-G, where the direct sum is over error syndromes, HL is the protected space,

and 7-G is the gauge space. Partition the logical Pauli operations that generate Z(S)/S into two

sets, the set of operations on qubits encoded in the protected space and the set of operations on

qubits encoded into the gauge space. Let a be a minimum weight element of the union of cosets

X•p1)S U p)S U YpS, where p is a protected logical qubit and "(1)" denotes the first block. Let

w := supp(a). Without loss of generality, we can suppose a p The notation )S means the

set of representatives of (1) in the Pauli group. Any operator on the gauge qubits in the first block

can be applied when choosing a representation a, but in doing so, it is not possible to construct

a logical operator on a protected qubit that has weight less than d. Likewise, how we represent

identity on blocks other than the first does not matter, since we must transform all representations

correctly. We choose to represent it by tensor products of identity operators.

Assume that (1) is approximated arbirarily well by elements of Transr(S). Hf(1) applies a

logical identity gate on the protected logical qubits of blocks other than the first, but again any
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logical operation can be applied to the gauge qubits in those blocks. Applying H'1) E Transr(S) to

a0l, we get /3" := Ip(a® I)Ftp The operator /" must be arbitrarily close to Z(1) up to elements

of the transversal identity and gauge operators. Expand 3" in the basis of Pauli operators,

/i= I aRR= > R aRR.
REGnr REZ(S)®r REGr _Z(S)®r

The operators not in Z(S)®r map the code space to an orthogonal subspace, so there must be

terms in the expansion that are in Z(S)®r. Let 3' := Pc(s)/3"Pc(s). Terms in S®r can be neglected

because they act trivially. Therefore, there must be an element of Z(S)®r that represents Z (') and

does an arbitrary logical Pauli operation to the gauge qubits. The transversal gate cannot cause /"

to have support on the first block that strictly contains w, nor can it have support strictly contained

in w, since Iw! is minimal. Furthermore, I E Z(S) so we can ignore blocks other than the first and

find an operator / E Z(S) \ S that represents Zp1) and does an arbitrary logical Pauli operation to

the gauge qubits in the first block; see Figure 6-3. We also have w = supp(a) = supp(/3), Iw- = d.

Repeating the argument for k(1), we obtain an operator -y with support w that represents Yp(1) up

to logical Paulis on the gauge qubits.

0(3 XP I4W

Sz s)/s

Figure 6-3: This figure illustrates the intuition for finding logical Pauli operators on the protected
qubit. The main idea is that P" must have a component along a representative of (1) in the
centralizer; otherwise flH) does not have the correct action on the code space.

Now we can derive the contradiction. Since we have assumed that the transversal gates are

a universal set for some protected qubit p, there must be some coordinate j E w such that Uj
is not Clifford. Otherwise, we could not apply any non-Clifford logical gates to encoded qubit p

by Theorem 24. The essence of the contradiction is this: the non-Clifford Uj in, say, the tensor

product decomposition of f'1), must fix one of the Pauli operators at coordinate j in the first
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block, say UjZ1iU = =Z1 i(or UjZiUj = Ii could happen too, if Uj is non-Clifford, but this is leads

to the same contradiction). Therefore, a product of one of the images of a, 3, or -y under •(1)

and another logical Pauli operator a, 3, or y will have support strictly contained in w, but will

represent a logical Pauli on the protected qubit as well. This is impossible because a, 3, and -

already have minimum weight! The only assumption we have made is that the set of transversal

gates is universal for the arbitrarily chosen protected qubit p, so this must not be true, and we

obtain:

Theorem 25 (Transversal gates are not computationally universal) The group of transver-

sal gates Transr(S) is not computationally universal on r copies of a stabilizer code C(S)®r for any

r>1.

6.3.4 Full automorphisms are not a universal set for any encoded qubit

The group of gates Aut(S'r) is also not computationally universal for any encoded qubit. This

automorphism group does not include gates that interact qubits in different blocks, but it does

allow permutations of qubits between blocks. Since we can regard C(S)®r as "just another code"

with stabilizer S' := S®r, it is enough to demonstrate the result for a single block encoded into the

code C(S'). An element of this group is illustrated for r = 1 in Figure 6-4.

n qubits

Uj

Figure 6-4: Illustration of a code automorphism on 1 block of n qubits. The block is represented by
a collection of circles (qubits), grouped into a box. The block undergoes a coordinate permutation
ir followed by a local unitary gate U whose unitaries Uj act on qubits in the [blue] boxes with
rounded edges. U can also be conjugated by P, to view the automorphism as PU' where U' is
another local unitary gate.

As before, and with the same caveats for subsystem codes, let a be a minimum weight element

of -'(1)S' U Y(1)S' U Z 1) S '. Let a represent Xp without loss of generality and let w := supp(a).
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Consider the single qubit gate A defined by

1X (X + Y + Z),

where {AXAt, AZAt } = 0.

As before, assume that Ap is implemented approximately, to accuracy e, by some gate UP, E

Aut(S'). Then 7 := ApaA t is an element of 1(X+Y+ Z)I, where I is in the generalized stabilizer.

Expanding Pc(s,)rqPc(s,) in the Pauli basis, we again see that there must be representatives a', i',
and y' of Xp, Zp, and Yp in the centralizer that all have support w', Iw'j = Iw. The important fact

is that they must have the same support, despite the permutation we applied!

U must be a local equivalence between C(S") and C(S'), where S" = PSPt, so each Uj is

either a single qubit Clifford gate or semi-Clifford gate. If all Uj are Clifford, then we are done.

Otherwise, one or more gates are semi-Clifford. We can assume that j is in w" := Pw' (otherwise

Ap is Clifford, which is not true). Let 6' be another name for the Pauli operator in {a', f', '}

whose jth coordinate does not change when we apply Ap. So q' := Apfft' yields three new Pauli

operators with support w", but at least two must have the same Pauli at coordinate j, so their

product's support is strictly contained in w", a contradiction. Therefore the gate Ap cannot be

implemented with arbitrary accuracy by a product of gates in Aut(S'). We have proven:

Theorem 26 (Quantum code automorphisms are not computationally universal) The group

of gates Aut(S®r) is not computationally universal on r copies of a stabilizer code C(S) for any

r>1.

6.4 Non-Clifford single qubit transversal gates for CSS codes

6.4.1 Transversality conditions for diagonal gates

Up to local Clifford equivalence, Corollary 23 says that the unitary part of a code automorphism is

a diagonal gate. Therefore, without much loss of generality, we may restrict our discussion of the

non-Clifford elements of Aut(S) to diagonal gates. We could consider the diagonal automorphisms

for all locally Clifford equivalent codes, and their permutation equivalent codes, to find all of the

non-Clifford automorphisms. For simplicity, and because this case has the greatest known utility
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for fault-tolerance, we further restrict to the case where the code is CSS.

Lemma 27 Let C(S) be a CSS code CSS(C1, C2) constructed from classical binary codes C21 < C1.

Then
n

V = 9 diag(1, eiOe) E Aut(S) (6.37)
t=1

if
Va E C /C#2, Vc, c' E C, C = 3 9 mod 27r. (6.38)

fEsupp(a+c) eEsupp(a+c ' )

Proof The states

I&) Oc Z a + c), a Ci/C2, (6.39)
cGC 1
cEC2-

are a basis for C(S). V is diagonal, so VIc) = v(c)lc) for c E C1. The factor v(c) E C is ei jEsupp(c) 0j

V implements a logical gate so Via) E C(S) for all a E CIC21, which is possible for a diagonal

gate iff v(a + c) = v(a + c') for all a E C1/C21 and all c, c' E C21. O

Rather than solve the system of equations implied by the lemma, we now restrict to angles

0j = 0 are all equal.

Corollary 28 Let C(S) be a CSS code constructed from classical binary codes C21 < C1. A gate

V E Aut(S) is a tensor product of n diagonal unitaries VO = diag(1, eio) iff

Va E Ci/Ck2, Vc,c' E C2~ , O(wt (a + c) - wt (a + c')) E Z, (6.40)

where wt (c) denotes the Hamming weight of a classical binary codeword and := mod [0, 1).

If each coset CI/Cf has constant weight, then the condition of the corollary is true for any ¢.

If not, then the condition can only be satisfied for rational angles k E [0, 1) n Q. Suppose P = - in

lowest terms. The condition becomes

Va E C/C, Vc,c' E C ,wt (a + c) mod q = wt (a + c') mod q. (6.41)

In words, the cosets a + C# of C# in C1 must be constant weight w(a) modulo q.

Since C1 and C#2 are linear codes, both contain the all-zeros codeword, so the coset 0 + CO

must have weight 0 modulo q. Therefore, the condition is satisfied only if the codewords of C21 are

divisible by a common divisor q. A classical linear code is said to be divisible by A if A divides
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the weight of each codeword. A classical linear code is divisible if it has a divisor larger than 1. An

[n, k] classical code can be viewed as a pair (V, A) where V is a k-dimensional binary vector space

and A = {A1,..., An} is a multiset of n members of the dual space V* that serve to encode v E V

as c = (Ai(v),... ,An(v)) and the image of V in {0, 1}n is k-dimensional. The b-fold replication

of C is (V, rA) where rA is the multiset in which each member of A appears r times.

The following theorem, a special case of [War99], suggests that implementation angles producing

nontrivial logical gates may only be 0 = . The resulting local unitary must implement a logic

gate that rotates 1i) by ei Ya where ya = (ei)f (a), where f(a) is an integer that may depend on a.

This suggests that the logic gate is in Ck for some k.

Theorem 29 ([War99]) Let C be an [n, k] classical binary code that is divisible by A, and let

b = A/gcd(A, 2 k-1). Then C is equivalent to a b-fold replicated code, possibly with some added

O-coordinates.

These observations suggest the following conjecture:

Conjecture 30 (Transversality conjecture) For any [[n, k, d]] stabilizer code S, each U E Transl (S)

implements a logical gate V E C(m) for some m > 1.

6.4.2 A family of CSS codes with non-Clifford transversal gates

The Reed-Muller codes are well-known examples of divisible codes. Furthermore, they are nested

and their dual codes are also Reed-Muller codes, which makes them amenable to the CSS construc-

tion. In particular,

Theorem 31 (1.10.1, [HP03]) Let RM(r, m) be the rth order Reed-Muller code with block size

n = 2m and O < r < m. Then

(i) RM(i, m) _ RM(j, m), 0 < i < j < m

(ii) dim RM(r, m) = E'• o ()

(iii) d = 2m-r

(iv) RM(m, m) ± = {0} and if 0 < r < m then RM(r, m)- = RM(m - r - 1, m).

(v) RM(r, m) is divisible by A = 2L[m/r - 1
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Corollary 32 Let even(RM*(r, m)) = C21 < C1 = RM*(r, m) where 0 < r < [m/2]. Then

CSS(Ci, C2) is an [[n = 2m - 1, 1, d = min(2m -r - 1, 2r + 1 - 1)]] code with a transversal gate

G = ®~=l diag(1 ei2 //A) enacting G = diag(1, e- i2 /A) E where A = 2Lm/rJ-1.

For instance, the [[2m - 1, 1, 3]] CSS codes constructed from R*(1, m) and its even subcode have

the transversal logic gate exp(-i r Z) [ZCCC07, SI05]. The smallest of these has been applied in

magic state distillation schemes [BK05] and measurement-based fault-tolerance schemes [RHG07].

The parameters m = 8 and r = 2 give a [[255, 1, 7]] code with transversal T, but this is not as good

as the concatenated [[15, 1, 3]] code. There is a possibility that other families of classical divisible

codes may give better CSS codes with d > 3 or, particularly, k > 1 and transversal non-Clifford

gates.

6.5 Conclusion

We have studied what it means to compute on information encoded into a stabilizer code and

proven several results about transversal gates. Our technique is based on a subcode method for

stabilizer codes that was developed by Rains. We have successfully applied the subcode method

to obtain results about the structure of the full automorphism group and the group of transversal

gates. Using these results, we have further proven that transversal gates are not a universal set

and full automorphisms are not a universal set. Finally, we have explored non-Clifford transversal

gates for CSS codes, presenting new examples and proposing an interesting conjecture for future

work.

The main open question is how much "transversality" can be strengthened before it becomes

universal. In further work beyond the work in this dissertation, we have shown that transversal

gates are not universal for codes on higher dimensional systems as well [CCC+08]. However, the

case of permutation transversal gates is still open. It would be very interesting if those gates

were universal since the architecture of a fault-tolerant quantum computer could become simpler.

Allowing input and output to be in different codes certainly gives universality (see Chapter 8), but

we have the added need to transform between input and output codes.

We have examples of transversal logical gates in Ck for all k, and these codes can be constructed

for any distance d using concantenation. Is there a code with a logical gate that is not in Ck? Are

there quantum codes that encode k > 1 qubit and have transversal non-Clifford gates? Perhaps

codes with k > 1 could be chosen based on the frequency of non-Clifford gates in subroutines of a
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quantum algorithm. For example, we could endeavor to find a code that makes the most commonly

occuring gates in an algorithm transversal and implement the rare gates using quantum software

methods.

Finally, we wonder how well these techniques apply to nonadditive codes such as CWS codes.

Perhaps there is a counterexample for nonadditive codes - such an example would be very interesting

(and strange).
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Systems
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Chapter 7

Fault-tolerant code architectures

7.1 Introduction

Properties of quantum error-correcting codes are crucial for fault-tolerant quantum computation as

has been demonstrated by Chapters 5 and 6. The code parameters have a direct role in determining

the accuracy threshold. The type of code together with its parameters roughly indicate the size of

the error-correction circuit. Finally, the automorphism group and transversal gate set determine

what gates are "easy" to implement fault-tolerantly.

In this chapter, fault-tolerant systems are built using several quantum codes. The codes are

combined by concatenation and recursive simulation. They are specialized depending on how

"close" they are to the device level. Our point of view differs from other code architecture work

in that we view concatenation as an essential concept in our vision of an effective architecture.

This view is motivated by the idea that maximizing the threshold appears to be of the highest

importance, since physical error rates are expected to be relatively high.

Therefore, an important question we address in this chapter is how to evaluate those codes rig-

orously and compare them fairly without having to build and/or simulate the entire complex system

at once. The evaluation method is rooted in a rigorous theory and produces numerical Monte-Carlo

estimates of thresholds and pseudothresholds that are closely related to rigorous bounds.

The chapter is organized as follows. Section 7.2 defines an effective code architecture and

discusses how codes determine parameters of this architecture. Section 7.3 reviews rectangle design

properties, error-correction circuits, and a technique for constructing universal gate sets for any

CSS code. Finally, Section 7.4 introduces two Monte-Carlo adaptations of what we call the AGP

method [AGPO6] for evaluating codes and code architectures. Section 7.5 concludes.
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7.2 Code architectures using hierarchies of specialized codes

This section introduces a definition of an effective code architecture and explains how the quantities

in this definition are influenced by various code parameters.

7.2.1 Effective code architectures

There are essentially two known approaches to fault-tolerant quantum computation using quantum

codes in the circuit model. The first approach uses concatenated codes and was introduced in Chap-

ter 5. The standard approach is of this kind. The other approach is a non-standard approach that

uses surfaces codes, which are analogous to classical repetition codes, and for which concatenation

is not necessary for a threshold to exist.

The practical goal of both approaches is the same - to obtain an effective code architecture for

large scale quantum computation. By effective code architecture, we mean a code or hierarchy

of codes such that (a) the logical error rates of the fault-tolerant system are comparable to modern

digital computers, (b) the noise threshold (or pseudothreshold [SCCAO6]) is acceptably high, and

(c) the first two goals are achieved with a minimum of overhead as measured by the size and depth

blow up of the fault-tolerant circuit relative to the original circuit. There is a tradeoff one can

expect between overhead and the logical error rate that mimics the trade-off between distance and

rate of quantum codes.

An effective code architecture is very likely to use a concatenated hierarchy of specialized codes,

since error levels of physical implementations are expected to be high, optimistically in the range

from 0(10-2) to 0(10-6). Therefore, it is clear that optimizing the threshold has priority over

optimizing overhead. Specific knowledge of the noise process affecting devices may be used to select

bottom level, physical, inner codes. Indeed, this can boost the threshold above other thresholds for

inner codes designed for general noise [AP07]. After one level of coding, the noise model is expected

to be like depolarizing noise, and another high threshold inner code can be used to further reduce

the logical error rate. Once the noise has been significantly reduced by one (or at most two) high

threshold inner codes, a more efficient outer code can achieve the final logical error rate while

limiting further increase in overhead [Ste03]. Furthermore, the outer code may be chosen so that

its fault-tolerant gate set is tailored to the specifics of the quantum algorithm; i.e., perhaps having

a non-Clifford transversal gate would be beneficial during some parts of the computation.

The envisioned hierarchy of concatenated codes is illustrated in Figure 7-1. One level above
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the physical level and its code, we use an inner code Cinner that is chosen to have a high noise

threshold and a reasonable overhead. We will pick some illustrative numbers to argue how one can

envision completing the code architecture. We will see in Chapter 8 that one can find an inner code

that maps a base error rate of Po = 0(10- 4) onto a logical error rate of pl = O(10-'). To run a

reasonable-sized factoring algorithm one may need an logical error rate of, say, 0(10-15) 1. Thus

one needs an outer code Couter that brings the error rate from O(10-7) to 0(10-15). The desirable

features of the outer code are roughly as follows. The top code is a block code [[n, k, d]] with good

rate k/n in order to minimize the overhead. The improvement in error rate for a code which can

correct t errors is roughly

Pl Pth PO (7.1)
PPth )

where P0o is the unencoded error rate and Pth is the threshold error rate. Thus in order to get

from P0o = 0(10-') to pl = 0(10-15) we could use a code which can correct 5 errors and has

a threshold of 0(10-5). In [Ste99a] Steane studied several block-codes which may meet these

demands. Polynomial codes would be an interesting family to study in this respect. Low rate

polynomial codes are discussed in Chapter 8.

7.2.2 Approximate threshold scaling with code parameters

We now discuss the global behavior of the noise threshold as a function of block size n, distance,

and other code properties. To first approximation the threshold is determined by the equation

Pth = Np t+ Pth = N-1/t, (7.2)

where t is the number of errors that the code can correct and N is the combinatorial factor counting

the sets of t + 1 locations in an encoded gate that lead to the encoded gate failing. Let us consider

Eq. (7.2) and see how we can get the best possible threshold. An upper-bound on N is (tA1) where

A is the total number of locations in the encoded gate (rectangle). Ideally, a code or code family

has a distance that is linear in n; i.e., t is linear in n. Let us assume for simplicity that only some

fraction of all locations appears in the malignant fault sets of size t + 1; i.e., we model N t+ )
where Amai < A. The locations in Amal are in some sense the weak spots in the circuits; overall

failure is most sensitive to failure at these locations. Amai may be either linear or super-linear in

1An n-bit number can be factored using a circuit with space-time complexity of no more than roughly 360n 4

[BCDP96], so RSA-1024 could be broken using a circuit with O(1015) potential fault locations. Using different
architectures, it may be possible to reduce this to 0(1011) or less; see for example [Met06].
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Figure 7-1: A schematic of a concatenated hierarchy of specialized codes. Although this figure
shows many levels of coding, we have argued that a few levels of coding are sufficient to solve
problems beyond the capabilities of classical computers.

the block size n. In case Amal scales linearly in n, and t = 6n for some 6 < 1/4, the threshold in

Eq. (7.2) increases as a function of n and asymptotes in the limit of large n to a finite value. For

Amal = an and 6 < a (which is typically the case since t < n/4 by the Singleton bound) we get,

using Sterling's approximation,

Pth( °an ) - 1/ ( 6n ) > 62

Pth= lim + (7.3)
n--oc (6n+1 ea a2

It is also clear that when t is constant, for any polynomial Amal = poly(n), the threshold Pth

in Eq. (7.2) decreases as a function of n. When Amal scales super-linearly with n and t is linear

in n we get the following behavior. First, the threshold increases with n (the effect of larger t),

then the threshold declines since the effect of a super-linear Amal starts to dominate. For codes

and EC circuits with this behavior, it is thus of interest to determine where this peak threshold

performance occurs. Figure 7-2 is an illustration of this behavior. We will see this peak for a large

set of codes in Figure 8-18 of Chapter 8.

Now let us consider the scaling of A (and Ama,,) in case we use Steane-EC. In Section 7.3.2 we

review how we can bound A for a CSS code with Steane error correction, but a rough estimate is
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threshold

_ _ _ n

Figure 7-2: Schematic of the behavior of the threshold with parameters of a quantum code. The
threshold is plotted on the vertical axis and the block size of the code is plotted on the horizontal
axis. The top curve [red] is for a code with distance that scales linearly with block size. The bottom
curve [blue] is for a code whose distance scales sublinearly with block size.

that

A = clAenc + c2Aver + c3n. (7.4)

Here Aenc is the number of locations in the encoding of the ancillas for error correction, and Aver is

the number of locations in the verification of the ancillas for error correction. The additional term

linear in n comes from the transversal encoded gates and the transversal syndrome extractions.

For a CSS code and the standard encoding construction (see Section 7.3.2), Aenc typically scales as

O(wn) where w is the maximum Hamming weight of the rows of the generator matrix of either Ci

or C0 in standard form. However this standard construction may be sub-optimal, since by bringing

the generator matrix in standard form one can increase the maximum weight of its rows.

For Steane-EC the full verification of the ancilla block requires other ancilla blocks; a fully

fault-tolerant verification would give a pessimistic scaling of Aver = O(wnt). However it is not

necessarily desirable to have strict fault-tolerance as long as the total probability of low-weight

faults that produce errors with weight t + 1 or more is low, see the discussion in Section 7.4.1. On

the other hand for increasing n the number of verification rounds should at least be increasing with

n, perhaps O(logn) would be sufficient. If we assume that Amal scales similarly as A, it follows

that if we look for linear-scaling Amal we need to look at code families which have simple encoders,

scaling linearly in n. This seems only possible for stabilizer codes with constant weight stabilizers,

such as quantum LDPC codes [MMM04] and surface codes or for the Bacon-Shor codes (which
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have encoders that use O(n) 2-qubit gates).

For the Bacon-Shor and surface codes the distance t does not scale linearly with n but as V/-.

Nonetheless, the work in [DKLP02] shows that the effective distance for the surface codes does

scale linearly in the block size, since there are very few uncorrectable errors of weight O(t). For

the Bacon-Shor code family, where one has less syndrome information, this behavior has not been

observed; see [AC07] and Chapter 8.

For code families with constant-weight stabilizers an interesting alternative to Steane-EC [Ste97]

is the use of Shor-EC [Sho96] where the syndrome corresponding to each stabilizer is extracted

using a cat state or simple unencoded qubit ancillas. As for ancilla verification in Steane-EC, the

syndrome extraction needs to be repeated to make the circuits more fault-tolerant. It is striking

that the surface codes with Shor-EC are the only known examples of a code family with a finite

n -- oo threshold. This is despite the O(nvv) scaling of the total number of locations A of the

Shor error correction circuit, although the syndrome extraction circuit itself has constant depth

and O(n) locations.

7.3 Rectangle constructions

This section reviews rectangle design properties in 7.3.1 and analyzes Steane-EC to support the

scaling arguments of Section 7.2.2. We mainly consider CSS codes but we do not assume that

the codes are dual containing or doubly even. In 7.3.3, we review how universal gates can be

constructed for any CSS code, showing why it is adequate to compute error rates and thresholds

for a CNOT rectangle.

7.3.1 Design rules for fault-tolerant rectangles using error-correcting codes

There are some syntactic properties of gates and error-correction circuits that are used in beautiful

proofs of the threshold theorem. These properties can be taken as general design rules for fault-

tolerant rectangles [AGPO6].

An s-filter is a orthogonal projection on to the space spanned by all states that can be obtained

by acting on a codeword with a Pauli operator of weight no larger than s. A circuit is r-good if it

contains no more than r faults. The properties are as follows.

Property 0 (r < t):

r-good r-good te
1-EC 1-• C
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Property 1 (r + s < t):

r-good ideal -filter ideal
1-EC 1-decoder 1-decoder

Property 2 (s = r + Ei si < t):

-{si}-filters r-good = si}-filter r-good s-filter
1-Ga 1-Ga

Property 3 (r +E i si < t):

{si}-filters- r-good ideal - {si}filters ideal ideal
1-Ga i-decoder 1-decoder 0-Ga

In properties 2 and 3, the si-filter is applied to the ith input block of the 1-Ga. The s-filter on

the output is applied to each output block. The properties have obvious analogs for measurement

and preparation circuits. Level-1 circuits that satisfy properties 0- 3 obey the exRec-Cor property

defined in Chapter 5.

7.3.2 Steane error-correction in detail

15)

Figure 7-3: Steane's error correction method for CSS codes involves coupling two encoded and
verified ancilla's to a block of data qubits. The ancilla qubits are then measured in the logical
Z-basis or X-basis and the syndrome s is determined.

The Steane error correction circuit for CSS codes (Steane-EC) is shown in Figure 7-3. The 10)

and IT) ancilla blocks in Fig. 7-3 can be prepared in the following way. First n qubits are encoded

using circuits derived from the generator matrix of a classical coset code of C#. The memory

locations in the encoder are determined using Steane's Latin rectangle method explained below

[Ste02]. Then the ancillas pass through a verification circuit. This error detection circuit measures

the X and Z stabilizer generators of the encoded state some number R times. For a 10) ancilla each

round is given by the circuit in Figure 7-4. The Hadamard-conjugate of the circuit is used for a IT)

ancilla. If we detect any errors in any of the R rounds, the encoded state is rejected. Otherwise,

the state is accepted and used for syndrome extraction. The number of attempted preparations L

contributes to the overhead.
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U)

Figure 7-4: The ancilla verification circuit for one round of error detection.

Steane's Latin rectangle method for optimizing encoding circuits

There is a simple method for minimizing the number of memory locations in an ancilla encoding

circuit. The generator matrix G of a linear binary code is put into standard form (I|A) using

Gaussian elimination. An encoding circuit for the logical zero state can be constructing by looking

at the A matrix for the code C . Every 1 in the A matrix gives a CNOT gate in the encoder. The

control qubits are the is in the I part of G and the target qubits are the is in the A part of G.

For example, we have G = (1010101,0110011,0001111) for the [7,3,4] code, which is the

C2L for Steane's [[7,1,3]] code. Transposing columns 3 and 4 gives the standard form and A =

(1101, 1011, 0111). This means there are 9 CNOT gates in the logical zero encoder. We can assign

each CNOT a time-step so that no qubit is involved in two gates at once. That constraint makes a

time-step assignment the same as finding a partial Latin rectangle. The Latin rectangle to complete

is

? ? ? (7.5)

and one possible completion is

1 2 3

2 3 1 . (7.6)
312

The circuit corresponding to this Latin rectangle applies 3 CNOT gates per timestep for 3 timesteps,

denoted (timestep, control, target): (1,1,4), (1,2,7), (1,3,6), (2,1,5), (2,2,4), (2,3,7), (3,1,7),

(3, 2, 6), (3, 3, 5). We have to undo the qubit permutation that occurred in the transformation to

standard form, so at the end we should switch back qubits 3 and 4. This is the smallest depth (3)

that a circuit for A can have; the maximum row or column sum w of A.

The problem of completing the Latin rectangle and therefore of computing the optimal time-

step assignment for a matrix A is equivalent to edge coloring a bipartite graph with the minimum
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number of colors. We construct the graph in the following way. The left set of vertices corresponds

to the control qubits. The right set of vertices corresponds to the target qubits. A control and

target vertex are connected by an edge if there is a CNOT between those two qubits. Assign a color

to an edge to indicate the time-step of the CNOT gate. Since we cannot have two CNOT gates

occur at the same time using the same qubit, all of the edges incident to a given vertex must have

different colors. This means that a valid schedule corresponds to an edge coloring of this bipartite

graph. The graph is bipartite since there is a set of control vertices that are only connected to

target vertices and a set of target vertices that are only connected to control vertices. By Hall's

theorem [Ste02], there is a coloring using w colors, and w colors is the minimum possible number of

colors. Here (w + 1) is maximum weight of the rows of A. An algorithm that finds an edge coloring

with w colors in time O(nNCNOT) is given in [KROO]. Here n is the number of qubits that are to

be encoded (i.e. number of vertices) and NCNOT is the number of CNOT gates in the encoder (i.e.

number of edges).

Locations in Steane error-correction

Steane error correction for a CSS code CSS(C1, C2), C2- _ C1 uses IT) and 16) ancilla states. These

states can be encoded directly from the generator matrices of C1 and C#, respectively, according

to a well-known procedure. The generator matrix G has n columns and (n - k)/2 rows for C2- or

(n + k)/2 rows for C1. Using Gaussian elimination it is put into standard form G = (IIA) where

I is an identity matrix and A is a binary matrix. The ith row of the generator matrix specifies

the controls and targets of wi CNOT gates, where wi is the weight of the row minus one. The

depth of the resulting CNOT circuit is w = max{wi}, assuming equal cost for any pair of qubits

to communicate. This assumption is generally not true for device models such as that discussed in

Chapter 3, but we try to keep the analysis simple by assuming it, with the understanding that a

layout could be included in the model. The number of fault locations in an encoder is summarized

by the following expressions:

Aenc(n, k, w) < n + w(n + k)/2, no memory noise

Aenc(nf, k, w) < n + wn, memory noise.

For particular states, different scaling is possible. For example, for the Bacon-Shor codes one can

make the encoded ancillas using O(n) 2-qubit gates.
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One method of verifying the encoded ancilla against low-weight correlated errors is to use

transversal gates to perform error detection. A general error detection method consumes three ad-

ditional ancilla and uses 3 transversal CNOT gates and 3 transversal measurements; see Figure 7-4.

If the encoder is considered a black box and the error detection method is fixed, then t rounds of

error detection are necessary and sufficient to ensure that the logical error rate scales like O(pt+l).

If we desire error rate scaling like O(poR+1), R < t, then we use R rounds. The cost of verifying is:

Aver(n, k, w, R) < R(3Aenc (n, k, w) + 6n), no memory noise

Aver(n, k, w, R) _ R( 3Aenc(n, k, w) + 6n) + n, memory noise.

Again, these expressions assume equal cost for any pair of qubits to communicate.

Finally, we can write expressions for the total number of fault locations in a CNOT extended

rectangle using Steane error correction:

A(n, k, w, R) < 8Aenc(n, k, w) + 8Aver(n, k, w, R) + 17n.

If we set R = t, then the total number of fault locations is A(n, k, w, R) = O(wnt) using this

method of error correction and assuming equal communication costs between qubits. In the worst

case this can be O(n 3).

7.3.3 Universal fault-tolerant gate constructions

If one is able to perform any Clifford group gate transversally, including H and K, we reviewed how

to obtain a universal set of gates in Chapter 5. Universality for general CSS codes can in principle

be obtained using the technique of injection-and-distillation [Kni05a, BK05, Rei06b]. Indeed, magic

state distillation gives a constructive proof that C2 together with any unitary gate outside of C2 is

computationally universal. Let us briefly review how one may perform fault-tolerant computation

for CSS codes for which, of the Clifford group gates, only the CNOT and Pauli operations are

transversal. Note that a CSS code with only its transversal CNOT gives us the ability to fault-

tolerantly prepare the states {IT), 10)} and perform transversal X and Z measurements. However

we do not necessarily have a fault-tolerant realization of the Hadamard gate H.

In this case the problem of constructing fault-tolerant single qubit Clifford gates can be reduced

to the problem of preparing the encoded I+i) oc 1) + ilT) ancilla, see [AP07]. In particular, the
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gates K oc exp(-i7rZ/4) and Q oc exp(+iirX/4) generate the single-qubit Clifford group and can

be implemented given a |+i) ancilla, see Figure 7-5 and Figure 7-6.

j+i) Y

Figure 7-5: The K gate using a I+i) ancilla.

H-i) Y

Figure 7-6: The Q gate using a I-i) ancilla.

An encoded I+i) ancilla can be produced using the method of injection-and-distillation. The

specific procedure in this case is shown in Figure 7-7: (a) inject each of seven copies of the state I-i)
into the [[7,1,3]] Steane code by teleportation, (b) extract the X and Z syndromes of the Steane

code and correct the errors, but correct X errors using Y operators, (c) decode the Steane code to

yield a single I+i) ancilla.

7.4 Evaluating codes for quantum fault-tolerance

This section discusses what we call the AGP method for evaluating fault-tolerant gates. This

method is based on evaluating the correctness of an extended rectangle. We extend this method

in Sections 7.4.1 and 7.4.2 to allow us to apply it to relatively large stabilizer codes. Furthermore,

the same methods are applicable for evaluating codes with k > 1, which is essentially equivalent to

evaluating a collection of CNOT extended rectangles [SI05].

A simplifying assumption we make is that the inner codes, one level above the physical level, can

be evaluated reasonably with a depolarizing noise model. This is perhaps a reasonable assumption

after a biased noise code, for example. However, outermost codes are best evaluated with an

adversarial noise model due to correlations that are possibly introduced by concatenation. If the

distance of the outer codes is relatively small, then this is not a problem for the method.

IJ1)
I)3)'

Figure 7-7: A circuit for I+i) ancilla distillation.
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7.4.1 The Aliferis-Gottesman-Preskill (AGP) method

Recall that a rectangle is correct if the rectangle followed by an ideal decoder is equivalent to the

ideal decoder followed by the ideal gate (0-Ga) that the rectangle simulates:

correct ideal _ ideal ideal
1-Rec 1-decoder 1-decoder 0-Ga

As said before, an extended rectangle (ex-Rec) consists of a 1-Ga along with its leading and

trailing error corrections. The extended rectangles make an overlapping covering of the circuit.

A set of locations inside an ex-Rec is called benign if the 1-Rec is correct for any set of faults

occurring on these locations. If a set of locations is not benign, it is malignant. The design

principles of strict fault-tolerance are described in Section 7.3.1. If these properties hold for the

1-Ga and 1-EC, these gadgets for a [[n, 1, d]] code with t = [(d - 1)/2J are called t-strictly fault-

tolerant. The important consequence of these conditions is that for a [[n, k, d]] code with t-strictly

fault-tolerant constructions one can show that any set of t or fewer locations in the ex-Rec is benign.

A construction is called weakly fault-tolerant when, for a code that can correct t errors, sets of

s < t locations can be malignant. Weak fault-tolerance is a useful concept in optimizing thresholds

since weakly fault-tolerant circuits can be more compact than strictly fault-tolerant circuits, hence

allowing for fewer fault locations. At the same time, weak fault-tolerance allows some low-weight

faults to be malignant but if the number of such faults is small then the threshold is not much

affected.

The fault-tolerant schemes described in Chapter 8 are 1-strictly fault-tolerant implying that

single faults can never be malignant. More precisely, any single fault in a 1-EC or a 1-Ga never

propagates to become a weight-2 error in a block. In Steane-EC, when we prepare ancillas with at

least two attempts (L > 2) and one error detection stage (R = 1), we eliminate malignant faults

of weight 1. For R = 1 the EC is not 2-strictly fault-tolerant since there is a pair of faults, one in

each of the first two encoders, generating a high weight (possibly higher than t) error that passes

the error detection circuit undetected. Since the number of these events is quite rare, they will

not contribute much to the failure probability. It is possible to show that R = t and L = t + 1 is

sufficient for t-strict fault-tolerance for a code that can correct t errors.

Let us review why the extended rectangle is the central object in a fault-tolerance analysis.

An encoded circuit where the physical gates (0-Ga) have been replaced by rectangles can also be

viewed as an encoded circuit with 0-Ga's with a different error model. This can be achieved simply
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by inserting perfect decoder-encoder pairs between the rectangles, see [AGPO6]. In an ex-Rec with

malignant faults, the rectangle will correspond to a faulty 0-Ga, whereas for benign faults the

rectangle will correspond to a perfect 0-Ga.

The reason that one has to take into account an ex-Rec and not merely a Rec is that faults in

the leading 1-EC can combine with faults in the 1-Rec to produce malignant faults. Those faults do

not make the gate before the leading 1-EC fail, but they make the gate encoded in the Rec fail. In

principle one may think that such arguments would also apply to the input of the ex-Rec, namely

an incoming error could combine with a seemingly benign fault in the ex-Rec and give rise to an

incorrect rectangle. Thus in principle one has to consider the malignancy of sets of faults given a

possible worst case input to the extended rectangle.

However one can argue quite generally for stabilizer codes and their error correction that ma-

lignancy does not depend on incoming errors to the ex-Rec. Recall that any element of Z(S)/S

is a logical operator mapping codewords onto each other. All other Pauli operators P ý Z(S)

anti-commute with at least one element in S and map a code word outside the code space indicated

by a non-zero syndrome. Thus the Pauli group Gn can be partitioned into cosets of Z(S) and

each of these cosets is labeled by a different syndrome. The lowest-weight member of each coset is

called the coset leader. Standard syndrome decoding finds, for each given syndrome, a coset leader

with lowest weight and chooses this as the error correction. Thus the low-weight (non-degenerate)

correctable errors correspond to distinct syndromes whose coset leader corrects the error. For

high-weight errors Ei all we can say is that EiEcorrect E Z(S) since Ei and Ecorrect have the same

syndrome.

Now let us consider the issue of incoming errors to an ex-Rec and assume the following standard

properties of stabilizer error correction. First, we assume that the part of the 1-EC circuit that

couples any ancillas to the incoming data is deterministic (the choice of which ancillas to couple

may depend on some error detection or ancilla verification, but this is independent of incoming

errors on the data). This property holds for all known error correction circuits. Furthermore,

given a stabilizer S and the incoming error Ein on an encoded state, let the 1-EC be such that

the syndrome of the 1-EC uniquely determines in which coset of Z(S) in the Pauli group the error

Ein lies. In this sense the 1-EC must be complete error correction for the code that is used. For

example, if for a CSS code the 1-EC only does Z error correction whereas X errors can map the

state outside the code space, the syndrome information effectively partitions the Pauli group into

cosets of Z(Sx)Pn(X). Here Pn(X) is the subgroup of Pauli operators that only contain X and I
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and Z(Sx) is the normalizer of the stabilizer subgroup Sx with only X and I Pauli operators. In

this case the syndrome does not uniquely assign the incoming error to a coset of Z(S). Thirdly,

upon any incoming error Ein a perfect 1-EC determines a syndrome that corrects Ein modulo a

logical error (given by an element in Z(S)). This is a basic property of stabilizer error correction

as described above.

Let then the incoming state to an ex-Rec be a state in the code-space of the stabilizer with an

additional error Ein. We want to show that the state that comes out of the leading 1-EC is again

some state in the code space with an additional error Eout that only depends on the errors inside

the 1-EC, Eec; i.e., Eout = f(Ee) where f is independent of Ein. Any error correction 1-EC for

stabilizer codes can be implemented with Clifford gates. Given an incoming error Ein and error

inside the 1-EC Eec, it follows (because a 1-EC for any stabilizer code can be implemented with

Clifford gates) that the 1-EC has syndrome s(Einhl(Ee)) where hi is a function independent of

Ein. Based on the syndrome the correction step will be some Ecorrect = Einhi(Ee) mod Z(S).

Before error correction the data has error h2(Eec)Ein where h2 (Ee) is the part of Ee that has

propagated to the data. After error correction the data thus has error h2 (Eec)hi(Eec) mod Z(S).

We strip off the logical error in Z(S) and identify Eout = h2 (Ee)hl(Ee).

7.4.2 Monte-Carlo implementation of method

Statistical bound calculations and pseudothreshold estimation

Here we consider details of the mathematical calculation of the the failure probability of an exRec,

i.e., the probability that it is "not correct". We can separate out the contributions to failures due

to fault patterns of different weights by writing

A

P(incorrect) = •P(incorrect I weight j fault pattern)IP(weight j fault pattern) (7.7)
j=1

Here there are A locations in the exRec. So long as the failure probability of any location has

probability x, then

P(weight j fault pattern) = (A) xJz(1 - x)A - j  (7.8)(A
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In AGP, the failure expression is grouped in this way:

A

P(incorrect) = a cj (1 - x) A - j ,

j = IP(incorrect I weight j fault pattern) (A) (7.9)

For adversarial noise aj is an integer, since each fault pattern either definitely fails or definitely

doesn't; for depolarizing noise aj is an integer divided by 33.

AGP gets a simplified upper bound on this expression using two facts:

x2(1-x) A - 2 <
A3 pP xj(1 - x)A-j

j=3
<• A) , pj < () (7.10)

This last statement, and its generalization, being proved thus:

A

j=k

A(A-k) j-k(1-x)A-J =

j=k
i(A)xj(lX)A-j

(7.11)

So, in AGP the failure probability is bounded as

P(incorrect) < a2x2 + (A) 3

33 (7.12)

and an upper bound on the noise threshold is given by setting the two sides of this expression equal

and setting the probabilities p and x equal; that is, the lower bound p* is

p* = a2 s () (p*) 3. (7.13)

The integer a 2 is obtained exactly by examining every weight-2 fault pattern and counting the

number for which the exRec fails, and A is the number of locations in the exRec.

Of course, a much tighter lower-bound equation for p* can be written down using Eqs. (7.10)

differently:

*a= j(*)(1 - p*)A-j + 1 )w+
j=2

(7.14)

The problem is that the computation of aj becomes expensive very quickly as j increases, going like
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3j (A) (the 3J comes from running through all Pauli errors consistent with a given fault pattern).

We have a problem, therefore, using exactly the AGP approach, particularly because we will

be interested in examining codes with large distance d for which j in Eq. (7.14) must be taken to

large values (at least [(d + 1)/2]) to give useful answers.

Our solution to this problem is to compute an accurate statistical estimate of the lower bound.

To estimate the integer aj, or the proportion of failures pj, we draw uniformly and at random

from all patterns of j faults, and compute the probability of failure over this sample. This gives an

unbiassed estimate f7j of pj. From elementary statistical considerations, the error bar associated

with this estimate is ,a(- where N is the number of samples. So, to get an error bar of, say,

1% of the mean, then the number of samples should be N = 104i . For small pj (a common

case), this just says that to get 1% accuracy, sampling should be done until about 10,000 failures

have been seen. For adversarial noise the running time goes like 3iN (the 33 coming from the need

to run through the Pauli-operator identity of each fault), which is still expensive for large j; but

for depolarizing noise, for which the samples can be specific Pauli-operator strings, the running

time is O(N), having therefore no direct dependence on j (there is an indirect dependence through

the j dependence of pj). So, with this sampling approach, many more threshold estimates become

feasible than with the original AGP approach. Indeed, even for adversarial noise, the sampling

method is feasible for the Golay code.

While some of our calculations have been done with exactly the sampling estimate of aj just

described, in fact an even easier sampling approach can be reliably adopted for depolarizing noise, in

which we sample over the whole distribution of possible fault patterns at the same time, rather than

individually over subdistributions with particular weights. For this, we write a different conditional

expression for the total failure probability, more fine-grained than Eq. (7.7):

P(incorrect) = P(incorrect Ifault pattern)P(fault pattern) (7.15)
fault

patterns

The probability of any particular fault pattern is ,x (1 - )A- j , and the conditional probabilities

in this expression are simply zero or one: a fault pattern either fails or it doesn't. A fair sample

of the fault patterns can be generated by randomly assigning faults, with probability x, to every

location in the exRec. The failure probability is estimated by the percentage of failures produced

by these samples. As a check, we have seen that estimated failure probabilities obtained in this
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way agree very closely with that obtained by estimating the individual aj coefficients.

This estimate, in the end, has a close resemblance to the Monte Carlo calculations that have been

used by various authors to estimate the noise threshold for fault tolerance. The difference is that

we use a much more rigorous definition of failure, as established by AGP. This involves including

faults throughout the exRec, and exploiting the fact that, for the error correction techniques we

use, the nature of the errors entering the extended rectangle do not matter for the analysis. This

elevates the Monte Carlo approach from a heuristic one to an essentially rigorous one; our approach

has no systematic errors, only simple statistical errors.

Specifics of the pseudothreshold calculations

Given the AGP method the numerical problem to be solved is whether a Rec is correct given a set

of faults in the ex-Rec containing it. This set of faults is generated using depolarizing noise with

error probability Po for each location in the circuit. We calculate the failure rate of the ex-Rec,

i.e. the probability that the Rec is not correct, for a fixed R and L. This implies that sometimes

there are no verified ancillas available for a 1-EC. If this happens for any of the 1-ECs inside the

extended rectangle, we call this a failure of the extended rectangle.

We will estimate the failure rate of a CNOT ex-Rec, since this is by far the biggest circuit among

the Clifford ex-Recs. As we argued in Section 7.3.3, the non-Clifford (and possibly other Clifford)

gates will be implemented via injection-and-distillation and they will not affect the threshold. Pauli

gates are not applied within a Clifford ex-Rec because they can be stored in classical memory as

the Pauli frame and applied only prior to the execution of non-Clifford gates.

Given a fixed R and L, we will estimate the failure rate pl(Po) = _ where Nfail is the number

of Monte-Carlo samples that fail (i.e. the number of times we simulate the extended rectangle with

randomly generated faults and observe that the rectangle is incorrect) and N is the total number

of runs. With high probability this estimated pl lies within one standard deviation of the real pl.

In this way we collect data points pl(Po) for different values of Po. We then take these points as the

mean of a normal distribution for each Po. We sample from these normal distributions and for each

set of samples we determine a small degree polynomial pl(Po) fitting the samples. The equation

Pi(Po) = Po gives us a sample of the threshold and we put an error bar on this result by calculating

the standard deviation of the obtained threshold samples.

The way we test for correctness of a rectangle for a given pattern of faults in the ex-Rec is

as follows: Let Eout be the outgoing error of the leading 1-EC. We use syndrome decoding to
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determine the coset leader Elead corresponding to the coset of Z(S) in the Pauli group of this Eout.

We propagate this Elead through the rectangle, let f(Elejd) be the outgoing error on the data. We

follow the rectangle by an ideal decoder and let Ecorrect be the correction suggested by the ideal

decoder. Then we test whether Ecorrectf(Elead) commutes with both X and Z. If it does, we infer

that no logical faults occurred, hence the rectangle was correct. Otherwise we call failure.

In Chapter 8, we use the Monte-Carlo simulation to estimate pl, but the number of samples

required becomes quite large if one wants to estimate pl with good relative error for small p1. In

such cases we extrapolate the values for pl obtained from larger values of P0o, see Section 8.5.2.

7.4.3 Software and computer use

We have developed software tools implementing the methods in this chapter. The quantum circuits

for the CNOT ex-Recs based on CSS codes are highly structured and can be mechanically assembled

in O(n3 ) time for block-size n given the classical codes C1 and C2. We have used MAGMA

[WCP97] and/or GAP [GAP07] (using the GUAVA package [CRB+]) to construct quantum codes

and compute their parameters. The code stabilizers are copied from the computer algebra programs

into our circuit synthesis and simulation programs, where they are again verified to have the required

commutation relations.

The simulation and circuit synthesis programs are implemented in C++ and use MPI for com-

munication during embarrassingly parallel tasks. The project is entirely open source and makes use

of preexisting open source libraries such as a Galois field implementation and a weighted matching

algorithm [Gab74]. Importantly, the same functions and procedures are used in the exact counting

simulation and the Monte-Carlo simulation. This gives us increased confidence in the simulation

output.

For example, the symmetries of the pair count matrix for some distance-3 code circuits and

the lack of single-location malignancies in all circuits strongly suggests that our automated circuit

constructions are indeed fault-tolerant. Furthermore, we strictly check all input and intermediate

results for consistency at runtime. The programs can be optimized and further improved, but we

leave this to future work and encourage development by making the code publicly available.
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7.5 Conclusion

This chapter has defined what we mean by an effective code architecture and shown how to evaluate

the architecture one layer at a time. We have argued that such an architecture likely consists of

multiple specialized codes. In particular, the rough estimates in this chapter suggest that a three

level code architecture, consisting of a physical, inner and outer code, will be effective for appli-

cations beyond the reach of modern digital computers. We have explained how code parameters

determine the quantitative properties of a code architecture; i.e., the threshold scaling with block

size and minimum distance, scaling of overhead with rectangle parameters, and expected logical

error rates at each level of coding. Furthermore, the chapter reviewed general design rules for

error-correcting code rectangles and explained why, for CSS codes, it is adequate to study CNOT

rectangles. Finally, we gave two new Monte-Carlo adaptations of the methods of Aliferis, Gottes-

man, and Preskill that allow us to evaluate larger codes and rectangles than the original method

permitted. The results we obtain from applying this method are closely related to rigorous bounds

[AGPO6].
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Chapter 8

Comparative study of inner codes

8.1 Introduction

Chapter 7 argued the importance of evaluating a code architecture one level at a time, so that

the whole architecture need not be simulated at once. The chapter also introduced a Monte-Carlo

method for numerically estimating thresholds that is tied to rigorous theory. In this chapter, we

apply those methods and ideas to complete a comparative study of inner codes in a concatenated

code hierarchy [CDT07].

Figure 8-1 reminds us of the purpose of inner codes in the proposed hierarchy. They are used

after and above physical codes to suppress logical error rates below 10-6 while maintaining a high

threshold. Below error rates of 10-6, more efficient error-correcting codes can be used to reach

error rates demanded by applications. Our goal is to identify inner codes with high thresholds and

low overheads that can attain logical CNOT error rates of around 10- 7 from base error rates of

10- 4.

This chapter is organized as follows. Section 8.2 presents the codes we have chosen as inner

codes, why they were selected, and roughly how their gate and error-correction circuitry is imple-

mented. Section 8.3 describes constructions for low rate polynomial codes and explains how to map

circuits on high-dimensional subsystems down to gates on qubits. Section 8.4 gives many circuit

construction details for the inner codes. Finally, Section 8.5 discusses the results of the comparative

inner code survey and Section 8.6 concludes.
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Figure 8-1: A schematic of a concatenated hierarchy of specialized codes. The inner codes that are
the subject of this chapter are highlighted [in red online].

8.2 Selection of inner codes

For our study it is necessary to select a subset of quantum codes. We focus on codes that are likely

to have a good threshold, possibly at the cost of a sizeable but not gigantic overhead. Recalling

Eq. (7.2), it is clearly desirable to minimize the number of locations N and maximize t. This

consideration has led us to primarily consider Calderbank-Shor-Steane (CSS) codes. The advantage

of a transversal CNOT is that it minimizes the size of the encoded CNOT; the bulk of the CNOT

rectangle will be taken up by error correction (EC). This is favorable for the noise threshold of

Cinner. Secondly, minimizing the error rate of the encoded gate Cinner(CNOT) will be useful at the

next level of encoding, because CNOTs occur frequently in EC and their error rates play a large role

in determining whether error rates are below the threshold (of Couter). However, to demonstrate

that this restriction to CSS codes is warranted we also consider the non-CSS 5-qubit code [[5, 1, 3]]

which is the smallest code that can correct a single error. We indeed find that this code performs

worse than Steane's 7-qubit code [[7, 1, 3]]; see Section 8.5 and the Data Tables in Appendix B.

Section 8.2.1 discusses our specific code selections and Section 8.2.2 is an overview of the most

important or previously unpublished construction details.

8.2.1 Choice of codes

The codes that we have studied are listed in Table 8.1. All codes in this table are CSS codes with

the exception of the [[5,1,3]] code. Some of these codes have been previously analyzed by Steane

in Ref. [Ste03]. There exist various families of binary CSS quantum codes; the families are the
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quantum Reed-Muller codes, the quantum Hamming codes, the quantum BCH codes, the surface

codes and the sub-system Bacon-Shor codes. In our study we consider only a single member of

the quantum Reed-Muller family, a [[15,1,3]] code, since these codes typically don't have very

good distance versus block-size [Ste99b]. The [[15, 1,3]] was first constructed in [KLZ96] from a

punctured Reed-Muller code RM(1, 4) and its even sub-code. It is the smallest known distance-3

code with a transversal T gate.

We study various quantum Hamming and quantum BCH codes (see a complete list of quantum

BCH codes of small block-size in [GB99]) which are constructed from self-orthogonal classical

Hamming and BCH codes respectively. We have chosen those codes that encode a single qubit and

have maximum distance for a given block size. We have included the previously studied Bacon-Shor

codes and the surface codes in our study. We have also included the concatenated 7-qubit code

[[49, 1, 9]] which we use in the way that was proposed by Reichardt in [Rei04], see the details in

Section 8.2.2.

Another family of codes that has been proposed for fault-tolerance [AB097, AB099] are the

quantum Reed-Solomon codes or polynomial codes. These are codes that are naturally defined on

qudits. In this study we consider them as candidates for inner codes. An alternative use is to

consider them as outer codes, perhaps with high rate (not discussed in this dissertation), where

one uses a good inner code to map the qubits onto qudits. In our study we assume that quantum

information is presented in the form of qubits and hence we will consider these codes as binary

stabilizer codes. We specifically chose to include the [[21,3, 5]] (a [[7,1, 4]18) and [[60,4, 10]] (a

[[15, 1, 8]]16) from the family of dual-containing polynomial codes over GF(2m ), because they are

the smallest error-correcting polynomial codes in this family.

We find it impractical to simulate the encoded CNOT gate for BCH codes in this table which

have block-size larger than [[47, 1, 11]]. The threshold for these bigger codes will benefit considerably

from the fact that t/n is quite high. Some semi-analytical values for the thresholds of these codes

have been given in [Ste03]. Even with good thresholds, these bigger BCH codes have limited

applicability due to their large overhead. The inner code should be picked to obtain a logical error

rate that is well below the threshold of some good block code but only at the price of a moderate

overhead.
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PARAMETERS NOTES
[[5,1,3]]
[[7,1,3]]
[[9, 1, 3]], [[25, 1, 5]],
[[49, 1, 7]], [[81, 1, 9]]
[[15, 1, 3]]
[[13, 1, 3]], [[41, 1, 5]],
[[85, 1, 7]]
[[21,3, 5]]
[[23, 1,7]]
[[47,1,11]]
[[49, 1, 9]]
[[60, 4, 10]]
[[79, 1, 15]], [[89, 1, 17]],
[[103, 1, 19]], [[127, 1, 19]]

non-CSS five qubit code [LMPZ96]
Steane's 7-qubit code [Ste96]
Bacon-Shor codes [AC07]

Quantum Reed-Muller code [SI05, KLZ96]
Surface codes [BK98, FM01]

Dual-containing polynomial code on GF(23 ) [GGB99]
Golay code (cyclic) [Rei06a]
Doub.-even dual-cont. quadratic-residue code [GB99]
Concatenated [[7, 1, 3]] Hamming code [Rei04]
Dual-containing polynomial code on GF(24 ) [GGB99]
BCH codes, not analyzed [GB99]

Table 8.1: A list of the codes included in our study.

8.2.2 Specific code considerations

Specific properties of a quantum code can often be used to simplify the error-correcting circuits.

This section discusses each family of codes and the optimizations that have and have not been

implemented, or the code properties that have been used to modify the EC and 1-Ga circuits.

In general, we have opted to focus on the error-correcting properties of the codes rather than

the possible simplifications to the Steane-EC network. One of the reasons for this approach is that

it is not clear whether verification circuits that perform the minimal number of checks are superior

to verification circuits that perform many thorough tests. Furthermore, changes to the network are

difficult to parameterize and systematically study because there are many possible choices and few

are clearly the best.

Reichardt has suggested a generic optimization that uses different encoders for each logical

ancilla in the verification circuit [Rei04]. This optimization can reduce the number of necessary

rounds of verification and possibly decrease the probability of correlated errors at the output of

the verification circuit, conditioned on acceptance. We do not use this optimization for any of the

codes in this study.

The Steane and Golay codes are constructed from perfect classical codes. Perfect codes have

the property that every syndrome locates a unique error of weight w < t. As Ref. [AGPO6]

observed, some parts of the error detection circuit can be removed for a CSS code constructed from

perfect classical codes and the construction remains strictly fault-tolerant. Again we do not use
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this optimization.

For the Bacon-Shor codes we don't use Steane's Latin rectangle encoding method, but rather

the simpler method described in [AC07]. We do use the standard verification method for the

bigger Bacon-Shor codes and not the simpler verification method in [AC07]; nevertheless the simple

verification networks have been computed and are described in Section 8.4.4.

For the surface codes we consider both Steane-EC and Shor-EC to understand their effects on

the threshold. We use Shor-EC using bare ancillas as in [DKLP02]. This is fault-tolerant for surface

codes on a 5 x 5 lattice or larger as long as the syndrome measurements are repeated enough times.

The number of repeated measurements could in principle be varied, but we choose to repeat the

measurements £ times for a £ x £ surface code, following [DKLP02].

The [[49, 1, 9]] concatenated Steane code is one of the CSS codes in our study whose network

deviates from the construction described in the previous section. The preparations of 10) and IT)

do not include a verification circuit. Instead each 7-qubit block has an error detection after each

[[7,1,3]]-encoded logical gate [Rei04]. A 49-qubit ancilla is rejected if any of these error-detections

detects an error. This implies that any single fault will be detected, so the circuit is fault-tolerant.

In fact, any pair of faults is also detected, so that a third order event is necessary to defeat the

error-detections. The method of using [[49, 1, 9]] is the one which Reichardt proposed. Unlike in

his simulations we restrict ourselves to a finite number of ancilla preparation attempts L, since we

care about the total overhead.

The polynomial codes we consider are non-binary codes over 2m-dimensional qudits. We can

choose the parameters of these codes so that when we consider each qudit as a block of m qubits, the

Fourier transform and controlled-SUM gates are implemented by bitwise application of Hadamard

and CNOT, respectively. In this setting, the code is simply a binary CSS code encoding m qubits

that is constructed from a non-binary dual-containing classical code by concatenation with a self-

dual basis of GF(2m ). The self-dual basis can be interpreted as concatenation with an [[m, m, 1]]

code. The advantage of such a construction is that we can decode the syndromes as if they were

vectors over GF(2m), allowing us to correct more higher-order errors than we could otherwise

correct as a binary code. To use this advantage, we do not need to change the way we construct

the rectangles at all, only the way we interpret the classical measurement outcomes. Section 8.3

reviews and clarifies constructions for these codes.

The [[5, 1, 3]] code does not have a transversal two-qubit gate, but it does have a 3-qubit gate
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Iq2) Y Cyct Kt K Cyct  Kt  I1)
1q3) /7 q2)

Figure 8-2: The encoded implementation of M3 (with an additional permutation of the blocks
qi, q2, q3) using the gates CNOT, K, Cyc and Y (and inverses). Each gate in the circuit is applied
transversally. The circuit is only a logical operation after completing all of the gates, i.e. CNOT
and K are not valid transversal gates for [[5, 1, 3]].

M3 1. The M3 gate is a Clifford gate that can be combined with stabilizer-state preparations

and transversal Pauli measurements to yield any gate in the Clifford group [Got97]. Specifically,

CNOT, K, and Cyc gates (and their inverses) can be constructed from the M3 gate in this way.

Here Cyc = KHKH acts as X -- Y -* Z -, X. The fault-tolerant implementation of M 3 is shown

in Figure 8-2. In our study we analyze the M3 extended rectangle.

The [[5, 1, 3]] construction also differs from other CSS constructions because we use Knill (or

teleported) error correction (Knill-EC) [Kni05a]. [[5, 1, 3]] is the smallest distance-3 quantum error-

correcting code and it is a perfect quantum code. Gottesman has shown how to compute fault-

tolerantly with this code [Got97], and there have been some numerical studies of logical error rates

using Shor-EC [Fow05], but to our knowledge the threshold for this code has never been published.

We also simulate the extended M3-rectangle assuming that the logical Bell pairs of Knill-EC are

perfect, in order to show that even in that case the threshold is not very good, see Section 8.5.

For [[5,1,3]] the R and L parameters are replaced by NC and NB, denoting the number of cat

state preparation attempts per Pauli measurement and the number of logical Bell state preparation

attempts per error correction, respectively. A circuit to prepare and verify encoded Bell pairs for

Knill error correction for [[5,1,3]] is shown in Figure 8-7.

The construction for the [[15, 1, 3]] Reed-Muller code is entirely standard. Since this code is not

constructed from a dual-containing classical code, the 10) and IT) encoders are not simply related

by a transversal Hadamard gate. For the same reason, the code can correct more X errors than Z

errors.

1M3 is defined by the following action on Pauli operators: XII -- XYZ, IXI -+ YXZ, IIX -- XXX, ZII
ZXY, IZI - XZY, IIZ - ZZZ.
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8.3 Constructions for polynomial codes

The quantum polynomial codes are an interesting family of quantum codes derived from classical

Reed-Solomon codes. Polynomial codes were used in the first proofs of the threshold theorem and

have several interesting properties [AB099, AG03]. We review them carefully here and introduce

some new material about mapping fault-tolerant gates on qudit codes down to gates on qubits. The

polynomial codes constructed here have low rate, but we hope that the discussion may be useful

for future work in which polynomial codes may be considered for other levels of a code hierarchy.

8.3.1 Generalized Reed-Solomon codes

This section reviews the definition of generalized Reed-Solomon codes [HP03]. Let q be the size of

an alphabet Fq that is a finite field with q = p m for some prime p and non-negative integer m. Let

n be any integer block size with 1 < n < q. Choose an n-tuple y := (yo, y7, ... , -7n-1) of distinct

elements of Fq and an n-tuple v = (vo, v,... , vn-1) of nonzero elements of Fq. Let k be an integer

with 1 < k < n, and Pk denote the set of polynomials of degree less than k in Fq[x] including the

zero polynomial. The generalized Reed-Solomon codes are

GRSk(-, V) := (vof(o70), v1f(71), ... , n-f(n- 1)) f E Pk}. (8.1)

Choosing the standard basis {1, x, x2 ,..., x k - l} for Pk, the polynomial f(x) = ~ok- fix i E Pk

is evaluated at a set of distinct points {0yo, 1,... , Y-1}. The evaluation map ev : Pk -Fn

for a set of evaluation points {yi} maps a polynomial f to (f(0yo), ... , f(yn-1)). It is clear that

ev(f + g) = ev(f) + ev(g) so it is a linear map. Furthermore, ev(fg) = ev(f) . ev(g). The evaluation

map has a matrix representation

1 70 _Y2 k- 1

1 Yi 1 1

2 k-1
7n-1 7n-1 "" n-1l

f (8.2)

called a Vandermonde matrix V. Acting from the left with V on a column vector f of polynomial

coefficients (fo, fi, ... , fk-1) gives the evaluation of that polynomial on the evaluation points. One
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important property of the Vandermonde matrix follows from its determinant [Gar04]

det A oc H (Yi - Yj). (8.3)
i>j

In particular, V is nonsingular iff the /i are distinct.

From the preceeding discussion, it is clear that a generator matrix for GRSk (y, v) is given by

VO V1 ... Vn-1

V070 V171 • ... Vn-17n-1

k-1 k-1 k-1VO-YO V' ... Vn-ln-i

(8.4)

The interpolation problem is to determine f from the vector of samples Vf [HJ85]. The prob-

lem arises in decoding Reed-Solomon codes and in fault-tolerant operations on these codes. The

Lagrange's solution to the problem inverts V to find polynomials Li(x) such that

f(x) = f (-o)Lo(x) + f (y1i)L(x) + - + f (-n-1)Ln,-1(). (8.5)

It can be shown that
In-1

Li(x)= 0, 1,...,n- 1 (8.6)

is the solution.

Recall that the Reed-Solomon codes have parameters [n, k, n - k + 1]q. Indeed, Pk is k-

dimensional, so dim GRSk( 7, v) < k. Suppose there exists u, w E Pk, u - w, such that ev(u) =

ev(w). Then v.ev(u) = v.ev(w) E GRSk(y, v) and v.ev(u-w) E GRSk(y, v) is the zero codeword.

But u - w E Pk so it has degree less than k. This contradicts the fact that ev(u - w) = 0, i.e.

that u - w has n > k roots. Therefore, distinct u, w E Pk map to distinct codewords under the

evaluation map and dim GRSk(7, v) = k. The minimum distance of a linear code C satisfies d =

mincec,c#owt(c). A nonzero f E Pk has at most k- 1 roots so wt(v.ev(f)) nu- (k- 1) = n-k+1.

Therefore d > n - k + 1. By the Singleton bound, d = n - k + 1.

The dual codes of GRS codes are also GRS codes. Since the dual of an MDS code is also MDS,
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GRSh-1(y, v)) must be an [n, 1, n] code, so its basis vector w has wt(w) = n. Since

GRSl(y, w) = {(wof(yo),..., wn- 1 f(7n-1)) IfE Pi}

= {fow I fo Fq}

we have GRSn-1(7, v)± = GRSl(Q, w). If h E Pn-1 then v.ev(h) E GRSn-1 (7, v) = GRSi(7, w)'.

Therefore w -v -ev(h) = n- 1 wivih(i) = 0. Let 0 < k < n - 1. If f E 'k and g E Pn-k then h =

fg E Pn-1 and w -v -ev(fg) = w -ev(g) v ev(f) = 0 which implies GRSk(7, v) C_ GRSn-k(y, w).

Since dim GRSk (7, v) = n - k, GRSk(7, v)' = GRSn-k(7, w).

8.3.2 Quantum Reed-Solomon codes (aka polynomial codes)

The CSS construction applies to codes over larger alphabets as well as to binary codes [KKKSO6].

Let Ci and C2 denote two classical linear codes with parameters [n, kl, dl]q and [n, k2 , d2]q such

that C21 C1. Then there exists an [[n, ki + k2 - n, d]]q stabilizer code with minimum distance

d = min {wt(c) I c e (Ci - 2) U (C2 - C11)}. In the more familiar stabilizer language, CI cor-

responds to the X-like generators of the stabilizer and C21 corresponds to the Z-like generators.

Elements of C1 and C2 that are not in the dual codes corresponding to the logical Z and X

operators, possibly multiplied by elements of the stabilizer or by each other.

Aharonov and Ben-Or originally defined quantum polynomial codes [AB099]. We define the

same codes using language from coding theory to clarify the relationship between these codes and

the GRS codes. First, choose a GRS code C1 = GRSk(7, 1) with parameters [n, k, n - k + 1] such

that -y has no zero components. Choosing 7 in this way will guarantee that C21 is also MDS. All

the elements of -y must be distinct elements of Fq, so n < q - 1 since |7y = n. Define the code

C• c C1 as

C2 := (f(0), ... , f(n-1)) I f E P•, f(0) = 0} (8.7)

where k > 1. The parameters of C21 are [n, k - 1, n - k + 2] so C2 has parameters [n, n - k + 1, k].

Quantum polynomial codes are the CSS codes constructed from these C1 and C2. The

codes are spanned by

l)k q If(70) ... f( n-1)) (8.8)
fEPk,f(O)=a

where a E C1/C21 Fq and the subscript k denotes that the code uses polynomials of degree less

than k. These are [[n, 1, d]]q quantum codes with d = min{k, n - k + 1}. The polynomial codes
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will saturate the quantum Singleton bound if C1 has k = (n + 1)/2. Let Ck Denote a quantum

polynomial code that uses polynomials of degree less than k.

The dual codes are defined by a choice of interpolation coefficients. Suppose interpolation

coefficients a = (ao,... ,an-1) are chosen such that E-•0 ai f (i) = f(O) for all f E Pn, so ai =

Li(O) for each i. C2 is a GRS code with parameters [n, n - k + 1, k]q and if f E Pk with f(0) = 0

then '=o aif(-yi)g(yi) = (fg)(0) = f(0)g(0) = 0 for all g such that deg(fg) < n. Therefore,

C2 {(aog('o),...,an-ig(n-)) I g E Pn-k+l}. Similarly, C'i = GRSk(•, 1)1 = GRSn-k(y,w)

where w satisfies wij = 6j,n-1. The interpolation coefficients satisfy -=O ar = 6j,o,

therefore we can choose wi = aiji since 7in = 1.

8.3.3 Transversal gates

The polynomial codes admit several transversal gates that we now review [AB099].

The generalized Pauli group (Xc, Zd, c, d E Fq=pm) has elements that satisfy the commu-

tation relation ZdXc = wncdXcZd, where w is a primitive pth root of unity. The generators are

defined by Xcla) = a + c) and ZlIa) = WTrac la). The trace function is defined by

m-1

Tr a = Trm(a) = E ap' (8.9)
i=O

for all a E Fq = Fpm. If a field Fq has characteristic p, then (a + P)P = aP + OP by binomial

expansion. This fact can be used to show that Trma E Fp and also the additional properties that

(i) it is not identically zero, (ii) Tr a + / = Tr a + Tr ) for all a, 3 E Fpm, and (iii) Tr aa = a Tr a

for all a E Fpm and a E Fp.

The logical X, defined by Ia) ) la + c) for c E Fq is transversal,

1a E Xcn If(Y°)''" f(m--1))

qk fEPk,f(O)=a

1
E If(70o) + c, ..., f (-1) + c)

fEPk,f(O)=a

1 E- g(Yo),. .. ,g(n-1l))

gEiPk ,g(O)=a+c

= ja + c) .

The logical Zc defined by I|) H wr ac I ) for c E Fq is also transversal but it is implemented
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by @iDo0 Zc where the ci = cai E Fq are interpolation coefficients chosen as before such thati--1

cf(O) = c E•• aif(-(i) for all f E Pn. Indeed,

n-1 n-1

(0 Zc) a) = (0 Zc) If(Yo),..,f('n-1))
i=0 f Pk,f(O)=a i=O

1 n-1
qk_ 1 Z (II Wrf(-Y)c) If('o)..., f(7n-l)),

fE Pk,f(O)=a i=O

Tr1 En ýTOr C~in I f(Yo), ... (/n 1 ,

/ fEPk,f(O0)=a

1
E k• wncf(o) f(GYo), .. , f(7n-1))

fEPk,f(O)=a

= Trac ) .

Since the quantum polynomial codes are CSS, the SUM gate la, b) H la, a + b) is transversal

as well. The multiplication gate S. defined by a) |-* ca) is also transversal, as can be shown by

direct calculations similar to the Xc calculation.

(a) (b) (c)

Figure 8-3: Fault-tolerant generalized Pauli and Hadamard gates: (a) Xc is transversal, imple-
mented by applying Xc to each qudit (b) Zc is transversal, implemented by applying Zcai to the
ith qudit (c) Fc is code-transforming transversal, implemented by Fca, on the ith qudit. The {ai}
are suitably chosen interpolation coefficients.

8.3.4 Code-transforming transversal gates

Code-transforming transversal gates can be applied transversally to a quantum polynomial code

C k but produce output encoded in a different polynomial code Ck' [AB099]. The Hadamard and

Toffoli gates are two such gates.

The generalized Hadamard gates Fc are discrete Fourier transforms defined by a)> H

1 C6EIbF WTrabc b). Since ScXaS = Xac and FIXaFt = Za, FIXacFt = FIScXaStFt = FcXaFt

Zac so Fe = FiSc. Consider F1 and fix interpolation coefficients {ai} such that f (0) = E 0-1 aif(yi)VV131ICI1~ C7llI lh IIrCIVI~~VII LVIIII~I C3 ~~Z 3Ulllilit1 \V -I i=O
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as before. The code-transforming transversal implementation shown in Figure 8-3 is 1 = •=•-o Faj,

n-1 n-1

( Fai) " - (0 g )Fa)lfo) ... f(yf(n-1)
i=0 fEPk,f(O)=a i=0

n-1
1 1

=fkl - E ( fTraif (yi)bi) Ibob I ... bn-_1)

/ qk bo,bl,...,bn-1EFq f EPk,f(0)=a i=0

|1) is the superposition of those Ibo... bn 1) with deg b(x) 5 n - k, i.e. b(x) E Pn-k+l , and I31)

is the superposition of those b(x) E Pn - Pn-k+l. If b(x) E Pn-k+l then h(x) := f(x)b(x) E Pn so

n-1 a()b(-) = E on- aih(Ti) = h(O) = f (0)b(O). This gives

1 F

=/qnk- b(x)EP,-k+1

1 Trabn- k
VQ bEFq b(x)

_1 _ EWTr ab n-k+i '
beFq

q2(k-1)wTrab(O) Ib(yo) ... b(yn-1))

: b(o) •... b()n-1))

EPn-k+l ,b(O)=b

so 1p) is encoded in a code using polynomials of degree less than n - k + 1, i.e. in the code spanned

by C2. Because (P1/3) = 1 (since it is the Fourier transform of a unit vector), I•3) = 0 and

Fl la)k = bFq -ab I)n-k1. Therefore FP is a code-transforming transversal gate that takes

inputs in C k and produces outputs in C n -k+ l . The distance of the output code is equal to the

distance of the input code, and the codes are. actually the same if k = n - k + 1, i.e. if C1 = C2

and the CSS code is dual-containing. The F• gate can be implemented as i=o Fcai, which is a

transversal multiplication operator Sc followed by F1.

The generalized Toffoli TOFla) b) c) = ]a)lb) ab + c) is also code-transforming transversal.

By direct calculation,

TOF o I)k ) )k k I h'(o) ... h' n-))
la--_ h'1eP2(k_-1)+1,h'(O)=ab+c

= la)k b)k b + )2k-1

Therefore, TOF is implemented by applying TOF to corresponding qudits of three blocks. The

input and output codes of the first two blocks correspond but the third block takes inputs in C k
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to outputs in C2k-1. The distance of the third output code block increases, stays the same, or

decreases if k < -+2, k = n+2, or n2 < k < n - k + 1, respectively. Therefore, it is not possible for

quantum polynomial codes to have transversal Hadamard gates and simultaneously have a code-

transforming Toffoli gate whose third input and output blocks are encoded in codes with the same

minimum distance.

8.3.5 Fault-tolerant degree reduction

In the setting of quantum polynomial codes, degree reduction refers to the process of mapping

a codeword of Ck' to the corresponding codeword of Ck where k' > k. Aharonov and Ben-Or

gave fault-tolerant degree reduction methods in their original work [AB099]. Teleportation is

an important primitive in fault-tolerant quantum computing that allows for converting between

quantum codes [GC99]. This gives a direct means of implementing fault-tolerant degree reduction.

The circuit is shown in Figure 8-4 [CGS02]. Following the state through the circuit,

, F1 16)k =
1

a, bEb)Fq
bEFq

1 Fq
= F

1
V k'-

Iev(g))
fEPk, ,f(0)=a gE~k,g(O)=b

1 1

k Pi._1a(O)=bqv oEPz~i .(O')=b

1

SgEPk-l,g(O)=(a+b)-b=a

I: lev(f
f EPk, f (0O)=a,gEPk,g(O)=b

o ... dn-1) g9(O) .. .. g('n-1))

+ g)) I ev(g))

Ig(Yo) ... g(-Yn-1)) =a)k

The controlled-SUM gate is a logical gate because Pk C Pk'. Therefore the resulting codeword

in the first register is a codeword of Ck' . Measuring the first register in the computational basis

fixes the set of outcomes {di}, di = f(7y) + g(-yi). Taking the Euclidean inner product with the

interpolation coefficients for Pk' and {1i} gives d = •-•1o aidi = f(0) + g(O) = a + b, indicating the

appropriate correction operation.
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1
4 ZbeFq

Figure 8-4: Fault-tolerant degree reduction through quantum teleportation. The input state is a
codeword encoded using a polynomial code based on polynomials in Pk, (shown here as a basis
state Ia)k'). The ancilla state is encoded in a polynomial code based on polynomials in Pk where
k < k'. The controlled-SUM gate is a valid gate when the target has degree greater than or equal
to the control degree. The computational basis measurement outcomes can be used to infer the
value of d in the generalized correction operator.

8.3.6 Fault-tolerant error-correction

The polynomial codes are CSS codes, so Steane's error-correction method applies as shown in

Figure 8-5. The logical states used are encoded by a standard network [GRBO3].

I"') I"')

(a) (b)

Figure 8-5: Steane syndrome extraction networks for CSS qudit codes: (a) bit-shift syndrome
extraction network (b) phase-shift syndrome extraction network derived by conjugating the input
of the bit-shift network by F1 . We can infer the locations and types of errors from the measurement
outcomes rx E C1 and rz E C2 by decoding the outcomes as the appropriate classical Reed-Solomon
codes.

8.3.7 Qudits as products of systems

It may be desirable to decompose each qudit into a product of subsystems. The Hilbert space 'q

of a q-qudit is a q-dimensional space spanned by basis vectors that we label by elements of a finite

field, i.e. qa = spanxeFq Ix) and q = pm for some m. We would like to decompose 'Hq into a tensor

product of Hilbert spaces lHr. Let r = pý be the size of a subfield of Fq, where t£m, so that there

is a natural Pauli group on each Hr.

In this case, each gate on the original qudits must be decomposed into gates on the new subsys-

tems. Choosing a basis of Fq over IFr defines a (vector space) isomorphism B from Fq to Fm/£ that

relabels the standard basis of -q like Ix) H IB(x)) E 7-r(m /e). Let P(c) denote Pc1 9 . 0® PC/e

for c E Fm /e. B also induces a relabeling of the generalized Pauli group by Xc '-* X(B(C)) and
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Zc H Z(yc) where yc E Fm /e satisfies

Trq(cx) = Trr c(yc)i(B(x))i =Trr(yc -B(x)), (8.10)

for all x E Fq so that the mapping is a group isomorphism.

When constructing fault-tolerant gates, a basis that gives a simple representation is desirable.

One particularly simple representation is where the Fourier transform F1,(q) on a q-qudit decomposes

into m/C Fourier transform gates Fl,(,) on the r-qudits. Since F1XcFt = Zc, the condition F1,(q)

F1(m) is equivalent to ye = B(c). Therefore, B should satisfy

Trq(xy) = Trr(B(x) -B(y)), Vx, y E Fq. (8.11)

If gates are ultimately implemented on qubits, consider an example where q = 2m so that Fq

has a basis over F2. Taking the canonical basis {1,w,... ,w n-l}, the associated B : F2ma - F

takes field elements to their vector representation over F2. We are free to choose to represent Xc

as X(B(c)) for each c EFq. There is an operator Z(yc) that has the same action as Zc for each

c E Fq; the vector Yc E F1" must be such that Zc ix) = Z(yc) IB(x)). This is true if y, -B(x) = Tr cx

for all x EF 2m, where the multiplication on the left hand side is a dot product of binary vectors,

and the multiplication on the right hand side is multiplication in F 2m . The vector Yc exists for each

c E F2m by dimensionality.

Table 8.2 gives examples of this decomposition for Pauli operators over small fields of size 2m for

m = 2, 3, 4. The table gives the generators of the Pauli group that satisfy the correct commutation

relations. For example, in F4, XIZ1 = (eir/2 )Tr 1Z 1X 1 = (eir/2)0 ZIX1 in F4, and this is observed

in the Table since [XI, IZ] = 0.

The SUM gate corresponds to a transversal CNOT because the field has characteristic 2. How-

ever, the Hadamard gates are not necessarily transversal. We know that FcXaFec = Zca, so the

decomposition of Hadamards into gates on qubits must be a Clifford circuit. This Clifford circuit

must exchange X(B(a)) and Z(yca), so we can proceed in two stages. In the first stage, we apply a

circuit Pc consisting of CNOT gates and Pauli X's such that PcX(B(a))Pct = X(yca). The second

stage is a transversal Hadamard gate on the block of m qubits. Examples of some decompositions

are shown in Figure 8-6.

There is no basis for which all of the Hadamards Fc are simply qubit relabelings followed by
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Field Element c
F4 1

F8

IF16

X(B(c))
XI
IX

XII
LXI
'IX
XIII
'XII
"XI
IIIX

Z(yC)
Iz
zz

IZI'liz
IZI

1Hz
liz'
IZI'
ZIIZ

Table 8.2: Some decompositions of Pauli operators corresponding to the field F2m generated by
wm + w + 1 = 0. The canonical basis {1, w,..., wrm-1} is used to represent each field element, and
this basis determines the relationship between the field elements and their X representations. The
Z representations are derived based on the relationship ye - B(x) = Tr cx Vx E Fq.

L H

(a)

LH

R---
(b) (c)

Figure 8-6: Fourier transform gates F 1 implemented on 2m level systems that have been decomposed
into qubits in the canonical basis for m = 2, 3, 4, respectively. The qubits are ordered from top to
bottom in the circuits as they occur in Table 8.2 from left to right. The thicker lines in (c) indicate
that the qubits must wait during the controlled-NOT gate.
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transversal Hadamard gates. To see this, choose an arbitrary B such that F1 is transversal up to

relabeling. The set of Hadamards is FiSc where Sc is the constant multiplication gate. There is

a Hadamard taking Xi to Zj for each nonzero i and j. Therefore, at least one such Hadamard

must change the weight of an operator, i.e. 3F, such that for some field element a we have

wt X(B(a)) = wt Z(yma).

However, it is possible to choose the GRS codes such that the logical Fourier transform F 1,

used in error-correction, decomposes into nm transversal Hadamards. F1 is implemented by Fai for

each of the interpolation coefficients {ai}. First, we would like to implement F 1 as n transversal

F1 gates. Recall that the interpolation coefficients are chosen such that Ei=O aGif (-i) = f(O) for

all f E P•. Expanding f(x), this condition becomes

n-1

Z air = 6jo (8.12)
i=O

where 6jo equals one if j = 0 and zero otherwise. Equation 8.12 is satisfied iff yi = wi for a primitive

element w, since n -- 1 mod 2 when j = 0 and the field has characteristic two. If we choose ji = wi

n-1W-i = 0 iand En-1Wji = 0. Codes withfor a primitive element w and take n = 2m - 1 then E 0i w = 0 and O§ woi = 0. Codes withi=O

these properties are the narrow-sense Reed-Solomon codes, which happen to be self-orthogonal

BCH codes.

Next, we would like to find a basis of F2m such that F1 can be implemented by m transversal

Hadamards. Therefore, the basis should satisfy B(x) - B(y) = Tr xy for all x and y in the field.

This is a bilinear equation so we need only satisfy the condition for an orthogonal basis. For such

a basis, B(x) -B(y) = 3xy, so choose elements such that Tr xy = 6xy. The basis elements are such

that Tr x 2 = 0 and Tr xy = 1. This is what is known as a self-dual basis [JMV90, GGB99]. For

example, {w, w2} where w2 + w + 1 = 0 is a self-dual basis of F4, {w3, w6, w5 } where w3 + w + 1 = 0

is a self-dual basis of F8 , {w 3, w7, w13 , w12} where w4 + w + 1 = 0 is a self-dual basis of F 16 , and

{w 3, w20, w13, 12, w26} where w5 + w2 + 1 = 0 is a self-dual basis of F32.

Therefore, we have understood that the quantum codes constructed from narrow-sense primitive

non-binary BCH codes are contained in the family of polynomial codes. They are MDS codes like

the other polynomial codes and they are self-orthogonal so the Fourier transform is transversal. By

choosing a self-dual basis of the field F2m , each Fourier transform as a tensor product of Hadamards.

Concatenated quantum Reed-Solomon codes have been constructed in the literature [GGB99].

If a basis for the field F2m is chosen such that two codewords b, c E F'm orthogonal in the Euclidean
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inner product, ~n-1 bici = 0, remain orthogonal over Fmn ,  n-1 B(b)iB(c)i = 0, then this

corresponds to choosing a self-dual basis of the field. This choice of basis corresponds to an F2-linear

mapping from F2m into the [m, m, 1]2 code {0, 1 }m [HP03]. It allows to construct [[mn, mk, d' > d]]2

quantum codes from [n, k, d]2- self-orthogonal classical codes. Therefore, the arguments of the

previous section led to a concatenated code construction with a simple (poor) inner code. It is

quite possible that different choices of bases and/or inner codes produce better quantum codes, or

even that subfield constructions based on Reed-Solomon codes produce binary quantum codes with

desired parameters [BE97].

To summarize, we have understood that the quantum codes constructed from narrow-sense

primitive non-binary BCH codes are contained in the family of polynomial codes. They are MDS

codes like the other polynomial codes, and they are self-orthogonal so the Fourier transform is

transversal. By choosing a self-dual basis of the field F2m, the Fourier transform is a tensor product

of Hadamards and the code is a concatenated code with an [[m, m, 1]] inner code.

8.4 Detailed constructions and circuits

This section provides many details about the fault-tolerant circuit constructions for the codes in

Table 8.1. Specifically, the section explains how to construct the syndrome decoders, [[5,1,3]]

encoder, polynomial code circuits, and Bacon-Shor verifiers.

8.4.1 Syndrome decoding procedures

Best known general algorithms for constructing the classical circuits to decode measurement out-

comes obtained in Steane error correction require exponential time and/or space. Therefore, we

consider each code's syndrome decoder separately, essentially finding a special-purpose algorithm

for each to make the decoding feasible.

Table 8.3 lists all of the codes we consider in this study and their syndrome decoders. There are

six distinct decoding algorithms that we use to compute the error locations and type of error from

the syndrome measurements: a generic table lookup algorithm, a table lookup algorithm for cyclic

codes over arbitrary fields, a majority voting algorithm for Bacon-Shor codes, a minimum weight

matching algorithm for surface codes, a simple message passing algorithm for the concatenated

Hamming code, and an algebraic decoder for the [[47, 1, 11]] quadratic residue code.

Rather than use a general table-lookup algorithm, we use a so-called Meggitt decoder which
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[[5,1,3]]
[[7,1,3]]
[[9, 1, 3]], [[25, 1, 5]], [[49, 1, 7]], [[81, 1, 9]]
[[15,1, 3]]
[[13, 1, 3]], [[41, 1, 5]], [[85, 1,7]]
[[21, 3,5]]
[[23,1, 7]]
[[47, 1, 11]]
[[49,1, 9]]
[[60,4,10]]

Table Lookup
Table Lookup (cyclic)
Majority
Table Lookup
Min. Wt. Matching
Table Lookup (cyclic)
Table Lookup (cyclic)
Algebraic [CTC+07]
Table Lookup with Message Passing
Table Lookup (cyclic)

Table 8.3: The decoders that we use for the codes in our study.

uses the fact that the polynomial codes and the Hamming, Golay, and quadratic residue (QR)

codes are constructed from cyclic classical codes. Cyclic codes have a compact description in terms

of a generating polynomial whose coefficients give one of the code words and whose cyclic shifts

generate a basis for the code. The Meggitt decoding algorithm stores a table of syndromes and

their associated error corrections [HP03]. For non-binary codes such as the polynomial codes, the

table stores both error locations and error-type (the so-called amplitude). Only (n1) syndromes

need to be stored for a weight w error, since one of the coordinates can be fixed by the cyclic

symmetry. Finding the appropriate recovery requires at most n table lookups. If we fail to find a

recovery in the table, a subroutine is triggered that applies some syndrome-dependent correction

mapping the state back into the code space.

For cyclic codes with larger distance where table lookup is impractical, for example [[47, 1, 11]],

algebraic decoding techniques can be used. The generator polynomial's roots are used to compute

a sequence of syndromes from the received vector from which we can locate errors. BCH codes

are easy to decode because their generator polynomials have a contiguous sequence of roots so

the Berlekamp-Massey algorithm can find the error-locator polynomial whose roots give the error

locations. Sometimes decoding up to the full minimum distance of the code is challenging because

the generator polynomial may not have a long sequence of roots, so some syndromes are missing

and the Berlekamp-Massey algorithm cannot be directly applied. In this case, unknown syndromes

can sometimes be computed from algebraic equations involving the known syndromes. Algebraic

decoding of the [[47, 1, 11]] proceeds this way. For each error weight from zero to t, we compute any

missing syndromes, construct a polynomial whose roots are the error locations, and find the roots

of the polynomial. If the polynomial has enough roots, we correct those errors and stop. If we do
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not find enough roots for each of the locators, we return a "failed" result, triggering a subroutine

that applies some syndrome-dependent correction that maps the state to some (possibly logically

incorrect) state in the code space. The implementation details can be found in [CTC+07].

The Bacon-Shor codes are essentially concatenated quantum repetition codes. Since the code

stabilizer is preserved by bitwise Hadamard composed with a 90 degree rotation of the square

lattice, one syndrome decoder is sufficient for both X and Z error correction. Imagine a vector

of n 2 syndrome bits placed on an n by n square lattice. Let sx be the syndrome vector for X

errors and sz be the syndrome vector for Z errors. Let R be the map on vectors of length n2 that

rotates them by 90 degrees on the square lattice. The same syndrome decoder is applied to s. and

Rsz. The syndrome decoder decodes a variation on the classical repetition code on n bits. First,

the decoder computes the parity of each column of the lattice and stores each column parity as

an element of a vector p. Next, the decoder computes the repetition code parity check h = Hp.

This parity check H is expressed in standard form [In-1 1] where 1 is the all ones column vector.

Finally, the decoder infers the error locations from the parity check. If the weight of the parity

check is greater than t, we must assume that the rightmost bit of p was incorrect so that h ( 1

gives the error locations on the first n - 1 bits of p. Otherwise, we infer that the rightmost bit of

p was correct so that h gives the error locations on the first n - 1 bits of p.

The surface code is decoded using Edmond's minimum-weight matching algorithm. The ap-

proach differs slightly depending on whether Steane-EC or Shor-EC is used but is essentially the

same as [DKLP02]. Steane-EC gives a 2D matching problem whereas Shor-EC gives a 3D matching

problem. The mapping from syndrome information to a matching problem is as follows.

Nonzero syndrome bits are called defects and are located somewhere in the £ x e plane. We

construct a complete weighted graph whose vertices represent defects and whose edge weights

indicate the distance between defects. The surface code's syndrome may be such that there are

lone defects which are not caused by error patterns connecting two defects, but by an error pattern

connecting an edge-defect on the boundary to an inner defect. X and Z errors constitute separate

matching problems and X-defects can be matched with, say, the horizontal boundaries and Z-

defects with the vertical boundaries.

We can design an algorithm for decoding the surface code for, say, Z errors, as follows:

* Imagine cutting the lattice vertically in two halves, left (L) and right (R). Let NL/R(i) be the

number of defects in row i of the left/right part of the lattice. For each row of the lattice,

add a NL/R(i) edge defects on the ith row on the left (right) boundary.
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* Assign weight of the edges between any edge defects as zero and assign the distance as the

weight between edge defects and inner defects.

* Compute the minimum-weight perfect matching of the graph of defects.

* The recovery operation consists of applying phase flips on the qubits that are along the edges

of each pair of matched vertices in the graph.

Note that the algorithm enforces the property that the graph has an even number of vertices,

so that every vertex can be matched.

I+)

0)

10)

+)
10)
I+)

10)

10)

i+)
10)

Figure 8-7: A fault-tolerant circuit for preparing logical Bell pairs for Knill er-
ror correction of [[5,1,3]]. The sub-circuit EDz measures the stabilizer of 10),
(XZZXI, IXZZX, XIXZZ, ZXIXZ, ZZZZZ), using 4 and 5 qubit cat states, and the sub-
circuit ED makes the same measurement without measuring Z = ZZZZZ. If any measurement
outcome is nonzero, the Bell state is rejected. The sub-circuit M-ny measures XX = X®10 using
a 10 qubit cat state. The Bell state is rejected if the XX measurements disagree, but if they are
both 1 then Z 1 is applied to the output Bell pair. The cat states are verified so that if a cat state
is accepted then a single fault in its preparation cannot produce a correlated error.

The concatenated [[7,1,3]] code, that is, the [[49,1,9]] code, can be decoded to distance 7 if

we treat it as a concatenated code. However, decoding the code to distance 9 requires a slight

modification of the algorithm so that a simple message is passed from level-i to level-2.

Suppose the 49 transversal measurement outcomes are organized into 7 registers of 7 bits each.

We use these registers as temporary storage to compute the appropriate correction. First, we

compute the level-i syndromes for each register as we would normally do. These syndromes indicate
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errors ei in the ith level-1 register. We correct each level-1 register according to the eis and "flag"

those registers for which ei 0 0. Next, we compute the level-2 (logical) syndrome of the resulting

49 bit register, which now has trivial level-i syndrome in each 7 bit register. This level-2 syndrome

indicates a logical correction e that is constant on each level-1 register (but two level-i registers can

take different values). The correction cl := (Di el) E E corrects all errors of weight 4 or less, except

for one problem case. This case occurs when a pair of errors occurs in one level-i register and

another pair of errors occurs in a different level-1 register. The problem is overcome by comparing

the register positions where E is 1 with the positions of the flags whenever two flags are raised. If

they disagree, apply the correction c2 := ((i ei) e f where I is a logical correction on the flagged

registers. Otherwise, apply the original correction cl. This procedure corrects all errors of weight

4 or less and returns the input to the codespace in all cases.

All decoding algorithms have been tested exhaustively for the codes in this chapter and are

found to correct all errors of weight t or less.

8.4.2 The [[5, 1, 3]] code

We want to find an encoding circuit for 10) for the [[5, 1, 3]] with the minimum number of 2-qubit

gates. The first step is to row reduce the stabilizer

10010

01001
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01010

00000

01100

00110

00011

10001

111111 1 1 1 1 -

+

+

+

10001

01001

00101

00011

00000

00100

00110

11000

01000
11111 0 0 0

Applying H5 brings all X's along the diagonal, and ZIZ 4 clear the negative signs. The stabilizer

SzlZ4H5 Io) now corresponds to a graph state shown in Figure 8-8.

Local complementation of vertices 1 and 4 reduces the edge count by 2, leaving a ring graph.

Local complementation of a vertex v applies the Clifford Qv, 0 v',N(v) (ZvKv,) where Q :

(X, Y, Z) - (X, Z, -Y). Therefore, the result of applying the local unitary

U := (Q1Zi)(Z 2K2)(Z3 K3 )(Q4 Z4)(Z5 K5 Z5 K5 H5 ) (8.14)

to 10) is the state described by the ring graph on vertices ordered 1, 3, 2, 4, 5. Exhaustive search
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Figure 8-8: Graph for 10) of 5 qubit code.

over local complementations shows that this is the minimum number of edges (5).

We write the local unitary in terms of a fault-tolerant set of gates Q, CYC for the [[5, 1, 3]] using

the identities Q1Z1 = -YIQ1, Z5K 5 Z5K5 H5 = Z5 H5 , ZK = Kt, ZH = K-CYCt, H = K t . CYCt

and Q = Kt -CYC where CYC : X -+ Y -- Z -- X. The fault-tolerant set Q and CYC are written

Q = HKH and CYC = KHKH = KQ terms of standard Clifford group generators. Figure 8-7

is an example of one possible circuit with 4 CNOT gates per 10).

8.4.3 Polynomial codes

Polynomial codes constructed from codes C1 that are narrow-sense Reed-Solomon codes, i.e. over

Fq with q = n + 1, whose block size is n = 2m - 1 and whose designed distance is 6 = (n + 1)/2

will have transversal syndrome extraction circuits on qubits (except for the ancilla encoders). The

codes are self-orthogonal and cyclic with some generator polynomial.

Rather than view these codes as cyclic codes, there is a simple way to view polynomial codes so

as to construct encoders for them. The matrix for the evaluation map on Pk is a generator matrix

for C1

1 1 ... 1

k-1 k-1 k-1

The first k - 1 rows of these generator matrices generate C2- and the last row of these generator
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matrices is a coset representative in C1/IC2, so the matrices are already in a standard form to

construct encoders for the quantum code [GRB03]. The generator for C21 is obtained by deleting

the all-ones row. For the narrow-sense RS family, Ci = C2, so we do not need additional generator

matrices and yji = ai for some primitive element a

Example [[7,1, 4]]8 or [[21, 3, 5]]2

This code is the first in this family that can correct one error. It is a [7, 4, 418 code with (n, 6, q) =

(7, 4, 8) generated by x3 +0 6X2 +• 0•6 where P3 +03+1 = 0, P E F8. This code yields a [[7, 1, 4]18

polynomial code or a [[21, 3, > 4]]12 binary concatenated code.

The [[7, 1, 4]]8 code has generator matrix

1 0 0 p6 p5 p5 p2

0 1 0 p p2 p4  1
G[[7,1,418 (8.16)

0 0 1 p6 p6 p3  p
0 0 0 1 p2  1 p

where P3 + p+ 1 = 0. The qudit order is not changed when moving from the generator polynomial

to this generator matrix representation of the code. Using the self-dual basis B = 1{3, 16, P5}, in

which B(P) = 011 for example, we can construct the following matrix representation of F8s:

i 1 1 1 '32 0 1 1

0 1 0 1 1 1

0 1 0 1 1 11

3 (1 0 1 P4_ 1 0 0
0 1 1 10 1

0 1 1 1 0 1

5-- 110 P6 001 4
1 0 0 1 1 0

Using this representation, we can decompose the qudit gates in the encoder shown in Figure 8-9

into products of qubit gates by finding a circuit for a generator and simplifying the powers of this

generator. Figure 8-10 shows the complete set of rules for transforming CNOT circuits that we
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would use to simplify the powers of the generator [IY03]. Let the first bit be the coefficient of 33,

the second be the coefficient of 36, and the third be the coefficient of /5. The multiplication gates

are given by

S3 = SWP[2, 3]CNOT[1, 3]CNOT[2, 1]

SP3 = SWP[1, 2]CNOT[2, 3]CNOT[3, 1]

SO5 = SWP[1, 3]CNOT[1, 2]CNOT[2, 3]

SpO2= SWP[1, 3]CNOT[2, 1]CNOT[3, 2]

SP4 = SWP[1, 2]CNOT[3, 2]CNOT[1, 3]

SP6 = SWP[2, 3]CNOT[3, 1]CNOT[1, 2]

where the gates are applied from right to left as they appear in these expressions and CNOT[c, t]

means that c is the control bit and t is the target bit. Notice that 34, 15,1 6 are the Hadamard

conjugates of 33, P2,3 . This discussion implies that the SUM gates in the decoder decompose into

a total of 45 CNOT gates (3 CNOT gates each), and the multiplications gates decompose into 32

CNOT gates (2 CNOTs and a SWAP each).

10)

10)

o0)

10)
10)
lo>

Figure 8-9: Encoder for the [[7, 1, 4]]8 code expressed using gates over eight level systems. This
encoder is found directly from the generator matrix of C1 using known methods. The encoder
in this figure has been simplified by combining multiplication gates. The SUM gates decompose
into 45 CNOT gates and the multiplication gates decompose into 32 CNOT gates for a total of 77
CNOT gates. Each Fourier transform decomposes into 3 Hadamard gates. Therefore, there are
a total number of 104 binary gates in this circuit excluding SWAP gates and including the state
preparations. To prepare the 10) state, we do not need the first 3 SUM gates (9 CNOT gates)
nor the first 4 multiplication gates (8 CNOT gates) so there are 87 binary locations in this circuit.
Finally, if we consider the Fourier transform gates to be part of state preparation, there are 78
binary locations. This does not include waiting locations.

We can also express this code as a binary stabilizer code. The generator matrix of this code is
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(i)(i) (ii

10)

(iv)

10o)

(vii)

(v) (vi)

(viii)

Figure 8-10: Complete transformation rules for CNOT circuits. Rule (i) is a cancellation rule
because CNOT is self-inverse. Rules (ii) and (iii) express the fact that CNOT gates commute if a
control and target do not touch the same bit. Rules (iv) and (v) give the commutators of CNOT
gates when a control and target touch the same bit. Rules (vi) and (vii) give equivalences when an
input is known to be zero. Finally, rule (viii) expresses the fact that the SWAP gate is a sequence of
three CNOT gates. This last rule is included because SWAP gates can be ignored in some models
of fault-tolerant computation. Rules (i), (vii), and (viii) reduce the number of gates in a CNOT
circuit, while the other rules may produce circuits to which rules (i), (vii), and (viii) can be applied.
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G[[21,3,24]] - 1 A 2 1  where
0 B21
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1 0 1
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B21= 0 1 0 0 1 1 0 1 0 1 1 1

001110100101

The encoder can again be found by standard methods and is shown in Figure 8-11.

Example [[15, 1, 8]]16 or [[60,4, 10]]2

This code is derived from a [[15,8,8]]16 BCH code (GAP command BCHCode(15,8,GF(16))) with

generator polynomial g(x) = x7 + z6 X6 + Z13X5 + Z12X4 + ZX3  Z5X 2 + 11 + Z13 . The Conway

polynomial for GF(16) is x4 + x + 1 and {z 3 , z7, z13 , z12} is a self-dual basis of the field.
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Figure 8-11: Encoder for the [[7, 1, 4]]8 code expressed using qubit gates. This encoder is found
directly from the binary generator matrix of C1. It has 78 CNOT gates, 9 Hadamard gates, and
18 preparations for a total of 105 binary locations. The first 15 CNOT gates are not necessary to
prepare 10) ancilla states, so this operation has 90 binary locations. If we consider the Hadamard
gates to be part of the state preparation, then there are 81 binary locations. This does not include
waiting locations. Here F = H.
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The following is matrix representation of the field over the self-dual basis:

1 100 0 1 1 0 1 1 0 1 0 1 00

1 0 1 0 2 1 011 3 1 0 0 1 4 1 110

0 1 1 1 1111 0 0 1 1 01 01

0010 0111 1111 0011
1010 1011 1001 0 1110

1 0 0 1 0 1 0 0 1 0 1 1 1 1 0

z5 0 0 0 1 6 0 0 1 0 1 1 1 1 1 1

1 0 0 0 1 1 00 0 110 1 1 0 1

0101 1000/ 1100 0110/

0 0 0 1 0 0010 10 1 11 1111

0 0 11 0 1 0 1 1 000 0 1 1 0 09 = 11 12

0 1 0 0 1 0 01 0 10 1 1 1 0 0 1

1 1 0 1/ \0 1 0 0/ 1 0 1 0 1 0 1 1
110 1 0100 11010 1011

0 1 1 0 1 1 0 11 3  1 4

1 1 10 000 1

1001/ 1 1 10

The representation can be used to construct the binary encoder, or the binary encoder can be

constructed using Steane's methods after concatenation.

8.4.4 Bacon-Shor codes

Compact ancilla verification circuits

The Bacon-Shor ancilla states for error-correction can be simplified to products of cat states or

their conjugates [AC07]. Specifically, an n qubit cat state is the state |cat) oc 00... 0)+ 111 ... 1).
n n

The encoded computational basis states are 0) c On columns Hn Icat) and i) oc On rows cat)

where H is the Hadamard gate.

When verifying cat) states, it is sufficient for fault-tolerance to ensure that w < t = [(n - 1)/2J

faults do not produce an error at the output of the state preparation with weight greater than w.

Because Bacon-Shor codes are CSS, X and Z errors may be considered separately. For cat states,
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all Z errors are equivalent to a single Z error modulo the cat state stabilizer, so Z errors satisfy the

condition. Further, any error of weight t + 1 or greater is equivalent to an error of weight t or less

modulo the stabilizer. For codes with odd n, any error of weight t or greater is equivalent to an

error of weight t or less modulo the stabilizer.

A standard way of verifying ancilla states for CSS codes was given in Chapter 7. This "full"

verification method uses X or Z syndrome extraction. Full verification uses many more gates than

necessary for small block sizes but may create ancilla with favorable statistical properties. The

ancilla states for Bacon-Shor codes only require verification against one type of error, X errors for

the J+) state and Z errors for the 10) state, because Z errors (X errors) of any weight reduce to

weight 1 errors modulo the cat (conjugate cat) stabilizer.

Iq1)

1q2)

Iq3)

Iq2)

1q3)
Iq4)

Ivi)

Figure 8-12: Networks to verify 3 qubit (6 locations) and 4 qubit cat states (17 locations)

On the other hand, it is possible to verify cat states using a minimal number of parity checks

involving pairs of qubits. At least t - 1 parity checks are necessary to verify a cat state. A single

fault in the preparation network can create a weight t error prior to verification. With the remaining

t - 1 faults, up to t - 1 additional parity checks can be fooled. If there are fewer than t - 1 parity

checks, then a weight t error can pass verification when there are fewer than t faults. Therefore, at

least t - 1 parity checks are necessary.

Iq1)

Iq2>
Jq3)

Jq4)

1q5)

Ivi>

lq1)
J12)

1q3)
lq4)

jq5)
Jq6)

IV2)

Figure 8-13: Networks to verify 5 qubit (19 locations) and 6 qubit cat states (29 locations)
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Minimal verification networks exist that meet or nearly meet this lower bound for small n.

Networks for the first few values of n are given in Figures 8-12, 8-13, 8-14 and 8-15. The number

of fault locations in these networks are 5 to 10 times smaller than full verification. The networks

are not unique and were found by exhaustive computer search. A few complications are worth

mentioning. First, it is not surprising that t - 1 parity checks are not always sufficient. In cases

where t - 1 parity checks were not sufficient, successively larger numbers of parity checks were

searched until a sufficient set of checks was found. Second, when an error pattern of weight w' > w

occurs for a weight w error, w' - w parity checks must cover that error pattern. Otherwise fewer

than w' faults could produce this error pattern. This additional constraint modestly complicates

the search. Third, there are many sets of 4 parity checks that cover all of the error patterns for

n = 8 and n = 9. However, there are no disjoint sets of four parity checks, i.e. at least one pair of

parity checks involves a common qubit. This creates a situation where faults within the verification

circuit can cause a single high weight error pattern to pass verification and at least one additional

parity check is required.

I, -
qi11

Iq2)

Iq3)

1q4)

Iq5)

Iq6)

Iq7)

Iv1/

Iv2)
I'll\

w w

w w

w w

r• w

Figure 8-14: Networks to verify 7 qubit (33 locations) and 8 qubit cat states (47 locations)

Observation about large block size behavior

It is natural to ask if the asymptotic threshold is nonzero for the Bacon-Shor codes. If t + 1 bitflip

errors occur, they produce a weight t + 1 error pattern that the code can correct unless each fault

is in a different column of the lattice. We can create an uncorrectable pattern by choosing t + 1

of n columns in which to place the fault, and we can do this in n ways for each of the t + 1
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Figure 8-15: Prepare a 9 qubit cat state (58 locations)

n
2

faults. Therefore, there are u (n ,) ways to choose an uncorrectable configuration of t + 1 faults.The total number of patterns produced by t + 1 faults is (t+l), so we can see that the fraction of

uncorrectable patterns drops off exceedingly fast.

Now we will try to estimate the asymptotic value of the bit-flip fixed point. An approximation

to the threshold is given by

{(2t + 1)t+1 2t + 1) -l/t (8.20)

This approximation neglects terms of order t + 2 and higher, so it is not a bound of any sort. From

[Wor94] equation 2.10,

(2t + 1)-l/t 1 2 1
lim 1 lim Q(2, t)-1/t lim - (8.21)
t-oo \ t + 1 t-oo 4 t-oo 4

where
Q(a, n) = 1 1 aa a /a( a (a- )/a n  (8.22)

It follows that

lim (2t + 1)t + l 2t + 1 /t lim (2t + 1 ) - (t+l)/t = 0. (8.23)t 0Io t + 1 4 t--oo

This suggests, though it is not a proof, that the number of uncorrectable errors grows too quickly

by a factor of n for the limiting value to be nonzero.
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8.5 Results

This section presents the results of the inner code study using the methods from Chapter 7. Ta-

bles B.1, B.2, B.3, B.4, and B.5 in the Appendix list the complete set of results of our studies. Our

results are obtained assuming that all locations including memory locations suffer from noise at

the same noise rate, unless specified otherwise.

8.5.1 Perfect Ancillas

0.01

0.001

10 20 30 40 50 60
block size n

70 80 90 100

Figure 8-16: Level-1 depolarizing pseudo-threshold for three families of codes with perfect ancillas
for Steane-EC: surface codes, dual-containing codes, and Bacon-Shor codes. This plot indicates
that under no circumstances can thresholds reach 1% for the codes in our study. The data points
are connected by lines merely as a guide to the eye.

In our first study, and only in this section, we assume that ancillas for Steane error correction

can be prepared flawlessly, see Figure 8-16. In such a scenario, the threshold is largely determined

by the error correction properties of the code (see also the analysis in [Eas07]), in particular its

(effective) distance. For families of quantum error-correcting codes in which the effective distance

is linear in the block-size, we expect the threshold to be monotonically increasing as a function

of n, see Section 7.2.2. In Figure 8-16 and Figure 8-17 we have plotted the pseudo-thresholds for

three families of codes: surface codes, some dual-containing codes, and Bacon-Shor codes. The
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surface codes and Bacon-Shor codes apparently have fairly good distance properties, even though

there is some decline in the Bacon-Shor code family for large n. Figure 8-16 shows we cannot

expect a threshold over 1% for the codes we have studied using Steane-EC - introducing noise

realistically into the ancilla preparation circuits cannot increase the pseudo-threshold. Note that

if we do Shor-EC on the surface codes we cannot expect thresholds exceeding about 3%, see the

arguments in [DKLP02].

When we assume that the logical Bell pairs of Knill's circuit can be prepared flawlessly, the

level-1 pseudo-threshold 2. of the [[5, 1, 3]]'s M3 gate is (2.0 + 0.1) x 10- 4 . This is roughly an order

of magnitude below the Steane code with perfect ancillas.

0.01

0.001

100 200 300 400 500 600

block size n

Figure 8-17: Level-i depolarizing pseudo-threshold for surface codes and Bacon-Shor codes using
perfect ancillas for Steane-EC.

8.5.2 Pseudo-Thresholds

In Figure 8-18 we tabulate for each code the maximum pseudo-threshold over the various choices

of R and L. The maximum overall pseudo-threshold (2.25 ± 0.03) x 10- 3 is attained by the Golay

code with L = 30 and R = 1.The two code families, Bacon-Shor and surface, both attain a peak

2The pseudo-threshold in this case is the point at which the failure rate pl of a M 3 ex-Rec is the same as the base
error rate po of all elementary gates in the ex-Rec.
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threshold and then decline when we use Steane-EC. The peak Bacon-Shor code is the [[49, 1, 7]] at

(1.224 0.005) x 10- 3 with L = 9 and R = 1. The peak surface code (using Steane error correction)

is [[41,1, 5]] at (1.008 ± 0.008) x 10- 3 at L = 30 and R = 1. Interestingly when we use Shor-EC for

the surface codes the performance is quite different. Shor-EC does not do as well as Steane-EC for

small block sizes, but for larger block size Shor-EC gives a threshold that asymptotes to a finite

value in the limit of large n, see Figure 8-19. For small block size the thresholds of the surface

codes are not as good as of some other codes such as the Golay code and the Bacon-Shor codes.

0.001

• 0.0001

l

•9~ n

10 20 30 40 50 60 70 80 90 100

block size n

Figure 8-18: Level-1 depolarizing pseudo-threshold versus block size. The other codes are the
[[5, 1, 3]] non-CSS code, the [[15, 1, 3]] Reed-Muller code, the [[49, 1, 9]] (dual-containing) concate-
nated Steane code using L = 15 attempts to prepare using error detection at level-1, and the
[[60, 4, 10]] (dual-containing) concatenated polynomial code using L = 20 attempts to prepare an-
cillas.

It is clear from the data that the pseudo-threshold increases with increasing L. Our main

interest in this study is in circuits with small overhead and hence with a relatively small number

of preparation attempts L. In various cases the thresholds stated for finite L will be thus be lower

than the one in the L -- oc limit. Notably, this occurs for the [[49, 1, 9]] code, where we expect

thresholds approaching 1 x 10-2 with many more ancilla preparation attempts [Rei04]. In other

cases one can take the perfect ancilla results in Figure 8-16 and the Tables as upper bounds on the

L - oo pseudo-threshold.
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I I I I I

4 8 10 12 14
£ of £ x £ surface

Figure 8-19: Surface code level-i depolarizing pseudo-threshold versus £ for £ x £ surface code (the
block-size n = £2 + (f - 1)2). The ex-Rec is a transversal CNOT gate with £ sequential Shor-EC
steps per EC. The pseudo-threshold increases with £ and is expected to approach a constant value
in the limit of large £, unlike the other codes in this study.

8.5.3 Influence of Storage Errors

In Figure 8-20 we replot the pseudo-threshold versus block-size when storage error rates (on memory

locations) are zero. The peak pseudo-threshold increases to (3.33 ± 0.02) x 10- 3 . The Figure shows

that storage errors do not influence the pseudo-threshold appreciably. The Bacon-Shor codes are

least affected by storage errors because the encoding circuits are extremely simple. The non-CSS

[[5, 1, 3]] code is most greatly affected because storage errors can enter into the M3 gate sub-circuit,

the 10) encoders, and the cat-state encoders at many locations.

8.5.4 Logical Error Rate versus Overhead

The threshold is an extremely important figure of merit for fault-tolerant circuit constructions. But

practically speaking, we are also interested in how quickly the error rate decreases if the initial error

rates are low enough for a given overhead. Figures 8-21, 8-22, and 8-23 plot the probability of failure

of a CNOT ex-Rec (defined in Section 7.4.2) versus the number of physical CNOTs in a rectangle

at po = 10- 4 . The Golay code achieves the lowest logical error rate for codes with fewer than

O(104) CNOT gates per rectangle, and that rate can be further reduced by increasing the number

of verification rounds to R = 2. There is a clear tradeoff between the number of physical CNOTs
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Figure 8-20: Pseudo-thresholds versus block size for Steane-EC and Knill-EC circuits, comparing
the case where the memory failure rate equals the gate failure rate with the case where the memory
failure rate is zero. Naturally the difference is smallest where we have taken advantage of simple
encoders as those for the Bacon-Shor codes.

per rectangle and the logical error rate. We note that given the lack of code specific optimizations,

the achievable overheads for various codes may be less than what is estimated here. For the Golay

code and the Bacon-Shor codes for example, the overhead may come down by at least a factor of 2

by using simplified verification circuits. We also see in Figure 8-22 that the approximate expression

for the failure rate, Eq. (7.1), gives a pretty good estimate of the actual failure rate.

Some of the error rates plotted in Figure 8-21 were extrapolated from error rates at higher values

of Po. For small values of P0o the logarithm of the error rate p (po) is expected to be approximately

linear in Po. We extrapolate from a least-squares fit to this line. Tables B.1, B.2, and B.3 indicate

these extrapolated rates by enclosing them in square brackets. The extrapolations are plotted for

the 5 x 5 surface code and the 9 x 9 Bacon-Shor code.

For the Golay code we have looked at the behavior of the threshold for R = 1, 2, 3. One

important empirical observation is the following. The pseudo-threshold can increase slightly while

the logical error rate for Po = 10- 4 remains the same. This happens for the Golay code when R = 1

and L is increased from 10 to 20. Furthermore, the pseudo-threshold can decrease while the logical

error rate decreases too. This also happens for the Golay code when L = 10 and R is increased
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Figure 8-21: Level-i logical error rate (probability of failure of a CNOT ex-Rec) versus the number
of CNOTs per rectangle. The line connects the points of the best performing codes. Points with
the same shape (color online) belong to the same code but have different circuit parameters. The
error rates are evaluated at a fixed P0o = 10- 4.

from 1 to 2. This suggests that the pseudo-threshold value is sensitive to higher order effects that

quickly become negligible at lower error rates. Thus a desired logical error rate may be achievable

with significantly fewer ancilla resources L than are necessary to maximize the pseudo-threshold,

provided the initial error rate Po is not too close to the pseudo-threshold.

In Figure 8-22 we have also added Knill's C4/C6 Fibonacci scheme [Kni05a] at 2 and 3 levels of

encoding. These data points are derived from his paper 3. At level 2 the detected error rate of the

logical CNOT is (1.06 + 0.01) x 10- 5 and at level 3 the detected error rate is (2.18 + 0.02) x 10- .

The plot shows that [[9,1,3]] is still better than the C4/C6 scheme in terms of overhead, but

the C4/C6 Fibonacci scheme definitely beats [[7,1,3]]. The next two Bacon-Shor codes fill a void

between C4/C6 level 2 and C4/C6 level 3.

For the surface codes (see Fig. 8-23) we note that the error rates are relatively high compared

to other error-correcting codes with comparable numbers of CNOTs per rectangle. However one

should remember that the circuits for the surface codes are already spatially local in two dimensions

whereas the circuits for any of the other codes, for example, the Golay code, are not.

3Note that his error model is slightly different from ours but we take the dominating physical CNOT error rate
to be the same.
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Figure 8-22: Level-i logical error rate (probability of failure of CNOT ex-Rec) versus the number
of CNOTs per rectangle for the best performing codes. The subset of data plotted here was chosen
so that the error rate decreases monotonically with the rectangle size and there is no code with
lower error rate at a given rectangle size. The error rates are evaluated at a fixed P0o = 10- 4 . The
results for the C4/C6 scheme of [Kni05a] are shown for comparison.

8.5.5 Computer use

The simulations were carried out on a relatively small allocation of Blue Gene L at the IBM T. J.

Watson Research Center. Typically we used between 64 and 256 PowerPC 440 700 MHz CPUs.

Each pair of CPUs had access to 512 Mb of local memory. Using 256 CPUs gave us roughly a factor

of 50 speed-up over a typical single-processor desktop machine. The entire process of development

and debugging took many months, but we estimate that all of the data could be retaken in several

weeks with these computing resources.

8.6 Conclusion

In our study we have considered inner codes and their performance in a physical-inner-outer code

architecture. Our best threshold around 2 x 10- 3 is seen for the Golay code, and many other codes

both larger and smaller were studied and found to have much worse thresholds. An important

figure of merit is the logical error rate versus overhead curve which shows that the Bacon-Shor

codes are competitive with Knill's C4/C6 scheme at base error rate 10- 4.

In this landscape of codes and their performances, one of the missing players is the surface
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Figure 8-23: Level-1 logical error rate versus the number of CNOTs per rectangle for the £ x e
surface codes, t = 5, 7, 9. It is expected that the error rate decreases exponentially as e increases
for fixed P0o = 10- 4 .

code scheme of [RHG07] in which many qubits are encoded in one surface code and the CNOT

gate is done in a topological manner. In principle, the possible advantage of this scheme is that if

one uses enough space (meaning block size) one would reach the asymptotic threshold of a simple

EC rectangle (no 1-Ga). We have in fact analyzed an ex-Rec where the Rec is only Shor-EC on a

e x e surface and we find that this asymptotic memory threshold for £ -+ 00 is about 3.5 x 10- 3.

This is a factor of two lower than the number stated in [RHG07]. For finite block size one could

analyze a CNOT ex-Rec for this topological scheme just as for the other codes. Like all the other

codes, the topological scheme will have a trade-off between overhead and logical error rate. It will

be interesting to see whether topology and block coding provide an efficient way of using resources

and how it compares to a local version of a physical-inner-outer architecture.

For a physical-inner-outer architecture it will be important to study the performance of outer

codes in order to understand at what error rate one should switch from inner to outer code and

what total overhead one can expect. Concerning a choice of outer code we expect the following.

First of all, given the constructions of [SI05], one can expect that a [[n, k, dl] block code has a

threshold comparable to a [[n, 1, d]] code. Secondly, the networks in [SI05] show how to do logical

gates on qubits inside the block codes using essentially gate-teleportation and Knill-EC. One issue

of concern for block codes is the complexity of the encoding circuit as a function of block size. It
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would be highly desirable to consider block codes with EC circuits that are linear in n; otherwise,

one would expect the threshold to decline as a function of n.

There is another desirable property of outer codes which relates to the transversality of gates.

In order to minimize overhead, it is desirable that the T gate is transversal for the outer code. The

reason is as follows. In order to have maximal freedom in picking a inner code we will only require

that it is has a transversal CNOT. Thus all other gates, in particular T = eizz/s and the phase gate

K need to be performed by alternative means, namely the injection-and-distillation scheme. The

obtained error rates of the encoded and distilled ancillas will be limited by the noise rates on the

Clifford gates which distill the ancillas, since the Clifford distillation circuit is not fault-tolerant.

Assume we teleport the ancillas into Couter O Cinner and get Clifford gates with 0(10-15) error rate.

Since a circuit such as Bravyi-Kitaev distillation uses O(103) gates, the error rates of the distilled

ancillas can be as high as 0(10-11). Thus by these schemes the T error rate is always trailing the

transversal gate error rates. But assume that the T gate is transversal for the outer code and thus

we only inject the T ancillas into Cinner. Then even though the once encoded gate Cinner(T) has

an error rate of, say, 0(10-4), the twice-encoded gate Couter o Cinner(T) will mostly likely have an

error rate similar to other Clifford gates since there are very few Cinner(T) in the twice-encoded

gate compared to the EC parts.
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Chapter 9

Conclusion

This dissertation has revealed limitations of standard approaches to fault-tolerant quantum com-

puting, proposed methods to evaluate quantum computer architectures built using concatenated

hierarchies of error-correcting codes, and discovered additional structure of quantum codes. First,

it is clear from Chapter 6 that quantum computer architectures are fundamentally different from

classical computer architectures due to limitations on fault-tolerant gates. In particular, the need

for mechanisms to create and distribute quantum software appears to be unavoidable, since we

cannot hope to use only transversal gates; see Figure 9-1. Second, the results of the inner code

survey in Chapter 8 strongly suggest that the universe of effective inner codes is limited. Of all the

codes we surveyed, only the Bacon-Shor codes, surfaces codes, and Golay code stand out as possible

inner code candidates in a three level physical-inner-outer hierarchy. Furthermore, only the Bacon-

Shor and surface codes appear to be competitive with non-standard fault-tolerance methods using

concatenated error-detecting codes and message passing. However, more positively, a three level

architecture appears to be effective; i.e, with only three levels of coding, it is possible to suppress

very high error rates down to 0(10-15) and solve otherwise intractable problems. Furthermore, we

now have much more knowledge about the universe of available quantum codes, having discovered

a large new family of codes in Chapter 4, and having proven new results about the symmetries of

stabilizer codes in Chapter 6.

Let us revisit what has been accomplished in each chapter of this dissertation, beginning with

Chapter 2. Chapter 2 reviewed the quantum circuit model, stabilizer circuit model, and the essential

elements of the theory of open quantum systems, so that the concept of decoherence and the need

for techniques to combat decoherence could be appreciated. Chapter 3 reviewed a model for a
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Figure 9-1: The stored-program architecture introduced in Chapter 1 is inadequate for fault-tolerant
quantum computation in light of the no-go theorems presented in Chapter 6. These no-go theorems
strongly suggest that specialized "quantum software" states are necessary to implement a universal
set of gates. These states differ from ancilla used in error-correction, are somewhat more difficult
to construct, and are used in a different way. Therefore, an additional unit, the quantum software
factory, is an essential part of this vision of a fault-tolerant quantum computer architecture.

trapped-ion quantum charge-coupled-device architecture. This model is a basic device level model

together with notions of geometry and specific noise parameters. Such a model can be constructed

for any candidate physical system and incorporated into the circuit constructions of Chapter 8, for

example. We did not use such a model in our evaluation because good models require expertise in

the physics of a particular system and access to experimental data about noise and systematics.

However, the concept was important for us to emphasize since incorporating such a model is crucial

for realistic application of the ideas in this dissertation.

Chapter 4 reviewed the stabilizer formalism and gave examples of important stabilizer codes

that were used in Chapters 6 and 8. Our first new result was described in this chapter - a new family

of quantum codes called codeword stabilized codes that contains all of the stabilizer codes as well as

many new codes. All known codes with good parameters are codeword stabilized codes, and several

optimal codes are as well. Furthermore, we presented methods for systematically understanding

and constructing these codes from GF(4)-additive codes and (nonlinear) classical codes. We gave
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an algorithm for finding all CWS codes with small block sizes. In further work, beyond the results

presented in this dissertation, we have investigated the structure of CWS codes and connected these

codes to the framework of Aggarwal and Calderbank [CCS+08].

A promising question for future research is the following: How can the systematic codeword

stabilized framework can be suitably expanded and/or relaxed to include codes that correct different

physically motivated noise models? The work in this dissertation only concerns codes that correct

arbitrary low weight errors. However, codes that correct specific physically motivated noise models

are very interesting because they may be used as physical level codes in a hierarchy of codes.

For example, biased noise can be treated using asymmetric CSS codes, for example. Amplitude

dampling noise has been treated with stabilizer codes as well [LNCY97, Fle07]. Interestingly,

nonadditive codes with better parameters can be constructed for these models [LS07].

There is another promising question related to CWS codes: Does there exist a family of non-

additive codeword stabilized codes with a high degree of symmetry, so that members of the family

can be efficiently encoded and error-corrected? In general it seems that the error-correction circuits

for these codes will have exponential size. However, there are probably specific constructions that

have simple circuits that relate in an elegant way to error-correction circuits for stabilizer codes.

For example, one family of interesting nonadditive codeword stabilized codes has already been dis-

covered. The quantum Goethals-Preparata CWS codes were found by Grassl and Roetteler using

an idea of codespace stabilization [GR08]. One reason these codes are interesting is that they have

a large subgroup contained in the set of word operators. Perhaps this near-additivity will yield

simple circuits. Finally, one may wonder if the usual methods of obtaining new codes from existing

codes, such as lengthening, shortening, puncturing, and concatenating, lend themselves to a simple,

useful graphical interpretation in the CWS framework.

Next, Chapter 5 provided a pedagogical introduction to code-based fault-tolerance in prepara-

tion for later chapters. Fault-tolerant quantum computation and the threshold theorem provide the

main reason for our continued hope that large scale quantum computation will one day be achieved.

The chapter defined and introduced a standard approach to classical and quantum fault-tolerant

computing, while reminding us that there are other (non-standard) approaches and significant open

questions in quantum fault-tolerance.

In Chapter 6, we studied computation on stabilizer codes and proved several new results about

the form and limitations of transversal gates. Our mathematical techniques were based on a subcode

method originally introduced by Eric Rains. We successfully applied the subcode method to find the
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generic structure of elements of the full automorphism group and the group of (basic) transversal

gates. Using these results, we proved that (basic) transversal gates and full automorphisms are

not a universal sets. Finally, we showed that CSS codes with non-Clifford transversal gates are

built from classical divisible codes. This allowed us to construct new examples and propose the

interesting conjecture that all non-Clifford transversal logic gates are so-called Ck gates - exactly

the gates that appear in the study of quantum teleportation! Will this conjecture be proven or

refuted? Is there a stabilizer code with a transversal gate not in Ck, such as a transveral rx/3-gate?

An open question beyond the work in Chapter 6 is: How much can the notion of "transversality"

be strengthened before universal quantum computation is possible with such gates? In particular,

we know that if transversal measurements are allowed, universal gates can be constructed using

quantum software methods. Furthermore, allowing the gate input and output to be encoded in

different codes certainly gives universality, as we have seen in Chapter 8. However, in this case, we

have the added need to transform the output code back into the input code space at some point,

which again uses quantum software methods. In further work, we have shown that transversal

gates are not universal for codes on higher dimensional systems as well as on qubits [CCC+08].

However, we still do not know if more complicated permutation transversal gates can be universal.

The main obstacle to proof using subcode methods is that this set of gates is not a group.

Another open question related to transversality is: does there exist a stabilizer code encoding

multiple qubits where a non-Clifford gate can be performed transversally on some of the logical

qubits? We have examples of transversal logical gates in Ck for all k, and these codes can be

constructed for any distance d using concantenation. However, we have no examples encoding

more than one qubit! CSS codes with encoding multiple qubits, with transversal (or even almost-

transversal) non-Clifford gates, could be chosen based on the frequency of non-Clifford gates in

subroutines of a quantum algorithm. For example, we could endeavor to find a code that makes

the most commonly occuring gates in an algorithm transversal and implement the rare gates using

quantum software methods.

A final, broad open question on this topic: what is the mathematical form of full automor-

phisms for nonadditive codes such as the codeword stabilized codes? This area is almost entirely

unexplored. For CWS codes, we easily know that the logical Pauli X gates are transversal by

definition. Other gates are more difficult to apprehend. Although it does not seem likely to us,

perhaps there is a strange counterexample lurking among nonadditive codes that has a universal

set of transversal gates.
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Chapter 7 defined what we mean by an effective code architecture and showed how to evaluate

the architecture one layer at a time. Such an architecture, we argued, consists of multiple specialized

codes. Rough estimates suggest that a three level code architecture, consisting of a physical, inner

and outer code, will be effective for cryptographic applications. We have explained how code

parameters determine the quantitative properties of a code architecture; i.e., the threshold scaling

with block size and minimum distance, scaling of overhead with rectangle parameters, and expected

logical error rates at each level of coding. We reviewed general design rules for error-correcting code

rectangles and explained why, for CSS codes, it is adequate to study CNOT rectangles. Finally,

our new result in this chapter was two new Monte-Carlo adaptations of the methods of Aliferis,

Gottesman, and Preskill that allow us to evaluate larger codes and rectangles than the original

method permitted. The results we obtain from applying this method are closely related to rigorous

bounds [AGPO6].

There are many open engineering, computer systems, and computer architecture problems in

the area of quantum computer architecture design and evaluation. If history is any indication, the

task of designing a quantum computer can be greatly accelerated by computer-aided design tools

and compilers. In other work, we have proposed a software architecture for quantum computing

design tools [SCA+06]. Some elements of this tool chain have been implemented, such as the

evaluation tools discussed in Chapter 7, simulators, quantum circuit compilers, layout tools, and

physical operation schedulers [MTC+06]. Further work is needed to develop this open source tool

chain. Additionally, the evaluation methods we use can be further extended to codes that encode

multiple qubits, although there may be some minor technical details to overcome.

Our study in Chapter 8 considered inner codes and their performance in a physical-inner-outer

code architecture. The best threshold of all inner codes surveyed was 2 x 10- 3, seen for the Golay

code. Unfortunately, many other codes both larger and smaller were studied and found to have

much worse thresholds. This negative result is important, however, since we can focus on those

codes and techniques that are most likely to contribute to an effective architecture. The logical

error rate versus overhead curve is perhaps the most practical figure of merit, and this figure shows

that the Bacon-Shor codes (using standard methods) are competitive with Knill's C4/C6 scheme

(using non-standard methods) at base error rate 10- 4
.

In this landscape of inner codes, one of the missing players is the surface code scheme of

[RHG07] in which many qubits are encoded in one surface code and the CNOT gate is done in a

topological manner. In principle, the possible advantage of this scheme is that if one uses enough
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space (meaning block size) one would reach the asymptotic threshold of a simple EC rectangle (no

1-Ga). We have in fact analyzed an ex-Rec where the Rec is only Shor-EC on a t x t surface and

we find that this asymptotic memory threshold for £ - c00 is about 3.5 x 10- 3 . This is a factor

of two lower than the number stated in [RHG07], probably because we limit the syndrome history

of our decoder to order £ parallel syndrome extractions. For finite block size one could analyze

a CNOT ex-Rec for this topological scheme just as for the other codes. Like all the other codes,

the topological scheme will have a trade-off between overhead and logical error rate. It will be

interesting to see whether topology and block coding, together with inner physical coding, provide

an efficient way of using resources and how it compares to a local version of a physical-inner-outer

architecture proposed in this dissertation.

For some additional perspective on the results of the inner code survey, consider the history of

threshold calculations from the discovery of fault-tolerant quantum circuits in 1996 to the present

(2008), shown in Figure 9-2. The figure includes three kinds of threshold results: analytical es-

timates of the threshold based on rough counting of fault paths, numerical estimates based on

Monte-Carlo estimates or computer-aided counts, and rigorous upper and lower bounds. First, the

figure reveals a progression in the community from early estimates, to more optimistic numerical

estimates, and finally to a rigorous understanding of the accuracy threshold value (although there

are still two orders of magnitude between upper and lower bounds). Second, we see a trend toward

higher threshold values over the last four years. The results in this dissertation are responsible for

several numerical points and one rigorous bound in this figure.

For a physical-inner-outer architecture, an important problem is to study the performance of

outer codes using methods like those in Chapter 7. Concerning a choice of outer code we expect

the following. First of all, given the constructions of [SI05], one can expect that a [[n, k, d]] block

code has a threshold comparable to a [[n, 1, d]] code. Secondly, the networks in [SI05] show how to

do logical gates on qubits inside the block codes using essentially gate-teleportation and Knill-EC.

One issue of concern for block codes is the complexity of the encoding circuit as a function of block

size. It would be highly desirable to consider block codes with EC circuits that are linear in n;

otherwise, one would expect the threshold to decline as a function of n. However, as our calculation

have suggested, a threshold of 10- 5 or perhaps even 10-6 would be acceptable for an outer block

code.

The choice of outer codes also relates to one of the open problems about transversality and

gives us more reason to look for new, interesting outer codes. In order to minimize overhead, it
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Figure 9-2: A summary of several quantum accuracy threshold estimates, numerics, and rigorous
bounds appearing in the literature [CDT07, ABO097, ABO099, SDT07, AC07, AGP08, AGPO6, AP07,
DKLP02, Got97, KLZ96, Kni05a, Kni04b, Rei04, RHG07, Ste03, KLZ98, Pre98, SCCAO6, Ali08].
Furthermore, we show upper bounds and the year those bounds were discovered [Raz04, BCL+06,
KRUdW08].

is desirable that the T gate is transversal for the outer code. The reason is as follows. In order

to have maximal freedom in picking a inner code we will only require that it is has a transversal

CNOT. Thus all other gates, in particular T = eirZ/s and the phase gate K need to be performed

by alternative means, namely the injection-and-distillation scheme. The obtained error rates of

the encoded and distilled ancillas will be limited by the noise rates on the Clifford gates which

distill the ancillas, since the Clifford distillation circuit is not fault-tolerant. Assume we teleport

the ancillas into Couter o Cinner and get Clifford gates with 0(10-15) error rate. Since a circuit such

as Bravyi-Kitaev distillation uses O(10 3 ) gates, the error rates of the distilled ancillas can be as

high as O(10-11). Thus by these schemes the T error rate is always trailing the transversal gate

error rates. Assume that the T gate is transversal for the outer code and thus we only inject the T

ancillas into Cinner. Then, even though the once encoded gate Cinner(T) has an error rate of, say,

O(10-4), the twice-encoded gate Couter o Cinner(T) will mostly likely have an error rate similar to

other Clifford gates since there are very few Cinner(T) in the twice-encoded gate compared to the

EC parts.
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In addition to overcoming lagging non-Clifford gate error rates, new outer codes with interesting

transversal gates could be adapted to the quantum algorithm, as can, perhaps, the error-correction

circuits. Roughly speaking, it may be desirable to use a code with transversal Toffoli during, say,

modular exponentiation. However, during a quantum Fourier transform, one may want a code

with higher order transversal ir/2m-gates. Furthermore, it may happen that one type of error is

suppressed within a largely "classical" circuit like modular exponentiation, or, more generally, that

one type of error commutes with the action of the circuit, as in some quantum simulations.

Our hope is that this dissertation encourages continued work on fault-tolerant quantum com-

puter architectures. Noise-adapted physical codes, together with composite pulses and decoherence

free subspaces, may transform the noise model so that it is amenable to inner coding using Bacon-

Shor codes, surface codes, or error-detection based fault-tolerance. Incorporating notions of layout

will further indicate the most promising codes. Work on outer levels of the code hierarchy will give

a more complete picture of the requirements to solve challenging problems that are well beyond

what modern digital computers can solve. Greater understanding of fault-tolerant gate techniques,

perhaps using topological methods, may give us ways to reduce overhead and adapt outer codes

to algorithms. Finally, developments in software tools and simulation methods may allow us ulti-

mately to evaluate such a fault-tolerant architecture from end-to-end, so that we can move closer

to realizing a large-scale quantum computer.
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Appendix A

Notation

a E A a is contained in the set A

3 exists

V for all

C4/C6 Knill's error-detection based fault-tolerance scheme using [[4,2, 2]] and [[6, 2, 2]] codes

O(g(x)) f(x) is O(g(x)) if 3xo, 3M > 0 s.t. If(x)l < Mlg(x)J for x > xo

0(10 - n ) shorthand for quantity roughly between 10- n and 9 x 10- n

-H Hilbert space

l0 vector in a Hilbert space

10), 1) computational basis states for a qubit

(~1142) inner product

11| 11l norm of I1)

I±) states (10) ± 1))/v/2

{0, 1}1 set of n-bit strings

0 tensor product

A( n  tensor product of A with itself n times

I identity matrix

U unitary matrix

UT matrix transpose of U

U* complex conjugate of U

Ut transpose conjugate

H Hamiltonian H = Ht or Hadamard gate - , or check matrix
1 -1
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U(2n)

g[ql,.-,qm]

(D

A(X) or A(X) [1, 2]

A(Z)

A2(X)
diag(a, b,..., z)

K

T

L(H)

IIAll
X, Y, Z
(A1, A 2, ... , Am)

gn
Tr A

iZXZII

[n]
[A, B]
{A, B}

f : A --+ B
[AIB]

a

0

C~
n)

GI/G2

Sp(2n, 2)

S

Is'
C(S)

unitary group of 2n x 2n unitary matrices

outer product

quantum gate g acting on an ordered list of qubits

exclusive OR (XOR) or direct sum

controlled-NOT gate A(X)iab) = Ia(a ® b))

controlled-Z gate A(Z)Iab) = (- 1)abab)

Toffoli gate A2 (X)jabc) = jab(ab D c))

diagonal matrix with the given diagonal

Phase gate diag(1, i)

7r/8 gate diag(1, ei' /4)

linear operators on H7-

norm of an operator

Pauli matrices

group generated by Ai

Pauli group on n qubits

trace of a matrix or trace map on a field

shorthand for tensor product of Pauli matrices with phase

shorthand for the set of integers {1, 2,... , n}

commutator of A and B, AB - BA; can be defined on sets

anticommutator of A and B, AB + BA

a map f from A to B

a block matrix or vector with an explicit separator

binary vector

dot product

symplectic inner product

n-qubit Clifford group

factor group Gi modulo G2

symplectic group

stabilizer group

generating set of S

order of S

stabilizer subspace associated with S
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U,n

p

TrA(PAB)

C

F(p, oa)

S(p)

(n, K, d)

[n, k, d]
C

C'

t

C

((0, K, d))

[[n, k, d]]

[[n, k, 1, d]]

Pc(s)

Z(S)

Xi, Zi
GF(q), Fq

:=-

RM(r, m)

RM*(r, m)

Is>)
AC or A(c)

A, V

U

IP(event)

P (event Icondition)

Trans, (S)

union, intersection

density matrix

partial trace over subsystem A

subset with possible equality

fidelity

quantum operation

binary classical code encoding K symbols into n bits with distance d

binary classical linear code encoding k bits into n bits with distance d

classical code

dual code to C

number of correctable errors

quantum code

binary quantum code encoding K levels into n qubits with distance d

binary additive quantum code encoding k qubits into n qubits with distance d

binary subsystem code with 1 gauge qubits

projector onto stabilizer code C(S)

centralizer of S in the Pauli group

logical Pauli operators on a code

finite field with q = pm elements, p prime

definition

equivalent

logical basis state a

Reed-Muller code of order r and length 2m

punctured Reed-Muller code

state stabilized by S

tensor product of A wherever ci = 1 and I wherever ci 0

Boolean AND, OR

gate acting logically like U on a code space

probability of an event

conditional probability of an event

binomial coefficient C choose m

transversal gates on r blocks of C(S)
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r1p
kn)

Z(S)

Aut(S)

Sn

PAut(S)

F[A]

wt R

supp(R)

m(S)
M(S)

Pw

SW

[[nl, k1,di]] ® [[n2,2, k2, d2]]

A,
SO(n)

C

S \ S

Z,Q

C2 < C1

gcd(a, b)

Pk

det A

GRSk(Y, v)

ev(f)

Couter o Cinner

Q(g(x))

permutation where p is written using cycle notation

n qubit Ck hierarchy of quantum teleportation

generalized stabilizer of C(S)

full automorphism group of stabilizer code C(S)

semidirect product of groups

symmetric group on n items

permutation automorphisms of S

vector space spanned by elements of A over field F

weight of a local operator R

support of a local operator R

union of minimal supports of S

subgroup generated by all minimal elements of S

complement of w in [n]

partial trace of p over all coordinates in CD

elements of S with support strictly contained in w

shorthand for tensor product of two quantum codes

number of nonidentity elements in S,

special orthogonal group of n x n matrices

contained in but not equal to

set difference, all elements in S not in Sj

integers, rationals

C2- is a subspace of C1

greatest common divisor of a and b

much less than

(10) ± ill))/v'

proportional to

polynomials of degree less than k in Fq[x]

determinant of A

generalized Reed-Solomon code using Pk and evalua

evaluation of f at a set of points -y

recursive simulation of Cinner followed by Couter

f(x) is Q(g(x)) if 3xo, 3M > 0 s.t. If(x)JI > Mig(x)J

tion points -y

for x > x0
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Data Tables
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[[n, k, d]]
[[5, 1, 3]]
[[5, 1, 3]]
[[5, 1,3]]
[[5, 1, 3]]
[[5, 1, 3]]
[[7,1, 3]]
[[7,1, 3]]
[[7,1, 3]]
[[7, 1, 3]]
[[9, 1,3]]
[[13,1, 3]]
[[13,1, 3]]
[[13,1, 3]]
[[13,1, 3]]
[[13,1, 3]]
[[15,1, 3]]
[[15,1, 3]]
[[15,1, 3]]

L[23,
[[23,
[[23,
[[23,
[[23,
[[23,
[[23,
[[23,

1, (JJ
1, 7]]
1, 7]]
1, 7]]
1, 7]]
1, 7]]
1, 7]]
1, 7]]

2
3
5
10
10
2
3
4
5
1
3
4
5
10
15
3
4
5

2
3
5
3
10
1
1
1
1
1
1
1
1
1
1
1
1
1

'

16,U25

32,023
48,023
64,023
28,023
56,023
84,023
112,023

SLa

(1.1 ± 0-.3) x 10-
(1.2 ± 0.4) x 10- 7

(4 1)
(5 1)

x 10- 8
x 10- 8

I R b CX/REcc

2,160
5,117
14,775
18,536
60,760
519
775
1,031
1,287
69
1,501
1,997
2,493
4,973
7,453
2,127
2,831
3,535

Pth(P3mem - 0)Pl (Pmem = 0,Po = 10- 4 )

- 4

(5.34 ± 0.07) x 10- 4

(2.3 ± 0.2) x 10- 5

(1.9 ± 0.1) x 10- 5

(1.8 ±0.1) x 10- 5

(1.8 ± 0.1) x 10-"
(1.9 ± 0.1) x 10- 5

(1.3 ± 0.2) x 10- 4

(4.9 ± 0.7) x 10- 5

(5.8 ± 0.8) x 10- 5

(1.14 ±
(2.33 +
(2.98 ±
(3.33 ±
(5.76 1

0.05)
0.02)
0.04)
0.02)
0.09)

i0-110-3

10-3
10-3
10-4

(1.23 ± 0.01) x 10
(1.628 A 0.006)
(1.95 ± 0.01) x

x 10 - 3

10-3

pI (pmem = P0 = 10- 4 )

- 4

(7.05 ± 0.08) x 10- 4

(4.5 ± 0.2) x 10- 5

(3.7 ± 0.2) x 10- 5

(4.1 ± 0.2) x 10- 5

(4.90 ± 0.09) x 10-

(4.3 ± 0.2) x 10- 5

(3.9 ± 0.2) x 10- 5

(3.9 ± 0.2) x 10- 5

(4.5 ± 0.2) x 10- 4

(1.0 - 0.1) x 10- 4

(1.0 ± 0.1) x 10- 4

(1.09 ± 0.01) x
(1.97 ± 0.02) x
(2.25 ± 0.03) x
(2.19 A 0.04) x
(5.48 ± 0.09) x
(1.15 ± 0.01) x
(1.487 ± 0.003)
(1.77 ± 0.02) x

10-3
10-3

10-3
10-3
10-4
10-3
x 10-

10-3

Table B.1: Complete tabulation of code survey data, part 1

"for [[5, 1, 3]] this parameter is NB.
bfor [[5, 1, 3]] this parameter is NC.
'for [[5, 1, 3]] this parameter is the number of CNOT gates in a T3 rectangle
done failure in 5 x 107 samples

(3.9 ± 0.7) x 10-"
(9.2 ± 0.5) x 10- 5

(9.2 ± 0.5) x 10- 5

(8.8 ± 0.5) x 10- 5

(8 ± 3) x 10- 5

(1.85 ± 0.05) x 10- 5

(3.11 ± 0.02) x 10- 4

(4.97 ± 0.07) x 10- 4

(5.3 ± 0.1) x 10- 4

(2.6 ± 0.1) x 10- 4

(1.59 ± 0.04) x 10- 4

(3.81 ± 0.07) x 10- 4

(4.9 ± 0.2) x 10- 4

(5.1 ± 0.2) x 10- 4

(4.9 ± 0.1) x 10- 4

(0.86 ± 0.03) x 10- 4

(1.5 ± 0.6) x 10- 4

(1.8 ± 0.2) x 10- 4

(1.2 1 0.6) x 10-
(9 ± 4) x 10-8

(3 ± 2) x 10-8
r< 4 x 10- 8 d

(2.5 + 0.4) x 10- 5

(3.7 + 0.3) x 10- 5

(3.3 ± 0.6) x 10- 5

(4.3 ± 0.3) x 10- 5

(3.0 ± 0.6) x 10- 5

(1.46 ± 0.05) x 10- 5

(1.98 ± 0.01) x 10- 4

(2.56 ± 0.06) x 10- 4

(2.58 ± 0.06) x 10- 4

(2.06 ± 0.02) x 10- 4

(0.69 ± 0.03) x 10- 4

(1.95 - 0.04) x 10- 4

(2.30 ± 0.08) x 10- 4

(2.54 ± 0.07) x 10- 4

(2.63 ± 0.07) x 10- 4

(0.33 ± 0.05) x 10- 4

(1.0 ± 0.2) x 10- 4

(1.0 - 0.2) x 10 - 4

h tP Pmem 
90)



[[n, k, d]]
[[23, 1, 7]]
[[23, 1, 7]]
[[23,1, 7]]
[[23,1, 7]]
[[25, 1, 5]]
[[25,1, 5]]
[[25, 1, 5]]
[[25, 1, 5]]
[[41, 1, 5]]
[[41,1, 5]]
[[41,1, 5]]
[[41,1, 5]]

[[41,1, 5]]
[[47, 1, 11]]
[[47,1, 11]]
[[47, 1, 11]]
[[49, 1, 9]]
[[49,1, 9]]
[[49,1,9]]
[[49, 1, 9]]
[[49, 1, 7]]
[[49, 1, 7]]
[[49, 1, 7]]
[[49, 1, 7]]
[[49, 1, 7]]
[[49, 1, 7]]
[[49, 1, 7]]
[[60, 4, 10]]
[[60, 4, 10]]

Pth(Pmem = 0)
10
20
30
40
4
5
6
7
5
10
15
20
30
10
20
30
5
10
15
20
4
6
8
9
10
11
12

(1.129 ± 0.004)
(3.91 ± 0.02) x

x 10
10-4

Pth(P3mem P0)

3
3
3
3
1
1
1
1
1
1
1
1
1
1
1
1

2
2
2
2

1
1
1
1
1
1
1

Table B.2: Complete tabulation of code survey data, part 2

afor [[49, 1, 9]] this parameter is the number of preparation attempts for a 7-qubit encoded ancilla used in error detection
bThe values in square brackets are extrapolated from a linear least-squares fit to the logarithm of pl (po)

CX/REC

40,023
80,023
120,023
160,023
1,465
1,825
2,185
2,545
11,321
22,601
33,881
45,161
67,721
52,527
105,007
157,487
61,549
123,049
184,549
246,049
2,961
4,417
5,873
6,601
7,329
8,057
8,785

Pl (Pmem = O,Po = 10- 4)

(4 ± 2) x 10-8

- 6

(7.3 ± 0.8) x 10-6
[3 x 1 0-7]b

(1.6 ± 0.9) x 10- 7

(4 ± 1) x 10 - 6

- I

pI (pmem = PO = 10 - 4 )

(3 ± 1) x 10-8

(1.2 - 0.7) x 10- 6

(1.0 ± 0.1) x 10- 6

(1.08 ± 0.08) x 10- 6

(1.1 ± 0.2) x 10- 6

(2.39 ± 0.05) x 10- 4

[7 x 10- 7]

(3.4 ± 0.2) x 10-6

(2.8 ± 0.2) x 10- 7

(3.3 ± 0.6) x 10- 7

(2.2 ± 0.7) x 10- 7

(4.0 + 0.9) x 10- 7

(2.5 ± 0.2) x 10- 7

(3 ± 2) x 10- 7

(3.72 ± 0.05) x 10- 4

(8.03 ± 0.05) x 10- 4

(1.095 ± 0.003) x 10- 3

(1.366 ± 0.007) x 10- 3

(8.6 ± 0.2) x 10- 4

(1.13 ± 0.02) x 10- 3

(1.16 ± 0.02) x 10- 3

(1.17 ± 0.04) x 10- 3

(1.86 ± 0.02) x 10- 4

(7.44 ± 0.03) x 10- 4

(1.224 ± 0.003) x 10- 3

(1.577 ± 0.004) x 10- 3

(2.06 ± 0.01) x 10- 3

(3.25 ± 0.04) x 10- 4

(6.89 ± 0.05) x 10-4
(9.51 ± 0.04) x 10- 4

(1.02 ± 0.02) x 10- 4

(3.63 ± 0.08) x 10- 4

(4.0 ± 0.02) x 10- 4

(4.2 ± 0.3) x 10- 4

(4.73 ± 0.09) x 10- 4

(1.18 ± 0.01) x 10- 3

(1.41 ± 0.02) x 10- 3

(1.48 ± 0.02) x 10- 3

(1.42 ± 0.03) x 10- 3

(1.46 ± 0.03) x 10- 3

(1.46 ± 0.02) x 10- 3

- .-

(3.45 ± 0.05) x 10- 7
(7.67 ± 0.05) x 10- 4

(1.036 ± 0.008) x 10- 3

(1.280 ± 0.009) x 10- 3

(7.44 ± 0.05) x 10-

(9.74 ± 0.07) x 10- 4

(1.034 ± 0.008) x 10- 3

(1.01 ± 0.04) x 10- 3

(7.9 ± 0.1) x 10- 5

(3.44 ± 0.01) x 10- 4

(5.55 ± 0.02) x 10- 4

(7.61 ± 0.02) x 10- 4

(1.008 ± 0.008) x 10- 3

(2.15 ± 0.04) x 10- 4

(4.79 ± 0.03) x 10- 4

(6.45 ± 0.03) x 10- 4

(5.4 ± 0.1) x 10-

(2.23 ± 0.04) x 10- 4

(3.20 ± 0.08) x 10- 4

(3.20 ± 0.02) x 10- 4

(8.7 ± 0.2) x 10- 4

(1.169 ± 0.005) x 10- 3

(1.224 ± 0.005) x 10- 3

(1.235 ± 0.005) x 10- 3

(1.241 ± 0.006) x 10- 3

(1.242 ± 0.006) x 10- 3

(2.20 ± 0.04) x 10- 4
86,460
172,860



pi(Pmem = 0,Po = 10-4)

-

-

-

-

-

-

-

-

pi Pmem = P0 = 10 - 4 )

(4.4 ± 0.7) x 10-"

[1 x 10-6]a
[7 x 10- 7]

[2 x 10- 7]

Spth(Pmem = 0)

(2.1 ± 0.2) x 10- 4

(7.1 ± 0.1) x 10- 4

(1.25 ± 0.02) x 10- 3

(1.32 ± 0.02) x 10- 3

(1.29 ± 0.03) x 10- 3

(1.30 ± 0.03) x 10- 3

(1.34 ± 0.03) x 10- 3

(1.34 ± 0.02) x 10- 3

(5.7 ± 0.1) x
(2.48 ± 0.01)
(4.18 ± 0.05)
(5.59 ± 0.04)

10-5
x 10- 4

x 10- 4

x 10- 4

(1.407 + 0.005) x 10-

(4.47 ± 0.03) x 10- 4

(9.57 ± 0.03) x 10 - 4

(1.029 ± 0.004) x 10- 3

(1.069 ± 0.006) x 10- 3

(1.113 ± 0.006) x 10- 3

(1.098 ± 0.006) x 10- 3

(1.112 ± 0.006) x 10- 3

(2.03
(1.03
(1.76
(2.32

± 0.07)
± 0.04)
± 0.02)
± 0.02)

10-5
10-4

10-4

10-4

Table B.3: Complete tabulation of code survey data, part 3

"The values in square brackets are extrapolated from a linear least-squares fit to the logarithm of pl (po)

R

1
1
1
1
1
1
1
1

4
6
10
11
12
18
19
20

[[n, k, d]]
[[81,1,9]]
[[81,1, 9]]
[[81,1, 9]]
[[81,1, 9]]
[[81, 1, 9]]
[[81,1, 9]]
[[81,1, 9]]

[[81, 1,9]]
[[85,
[[85,
[[85,
[[85,

CX/REC

4,977
7,425
12,321
13,545
14,769
22,113
23,337
24,561
30,405
60,725
91,045
121,365

Oth(pm~m = pn)



[[n, k, d = ]] CX/REC Pl(Pmem = P = 10- 4 ) 1 Pth(Pmem P0)
[[41, 1, 5] 1,481 (1.7 ± 0.1) x 10- 4  (6.8 ± 0.6) x 10-

[[85, 1, 7]] 4,453 (5 ± 2) x 10-" (2.3 + 0.2) x 10- 4

[[145, 1, 9]] 9,937 (2 ± 1) x 10- 5  (4.5 ± 0.2) x 10- 4

[[221, 1, 11]] 18,701 [8 x 10-6]a (6.6 ± 0.2) x 10- 4

[[313, 1, 13]] 31,513 [8 x 10- 6 ] (9.0 ± 0.4) x 10- 4

Table B.4: Surface code data using Shor-EC and a transversal CNOT as in [DKLP02], taking f syndromes for an f x f code EC.

"The values in square brackets are extrapolated from a linear least-squares fit to the logarithm of pl(po)



Pth (perfect ancilla)

doubly-even dual-containing
Bacon-Shor
surface
polynomial
dual-containing
Bacon-Shor
surface
doubly-even dual-containing
Bacon-Shor
doubly-even dual-containing
polynomial
Bacon-Shor
surface
Bacon-Shor
surface
Bacon-Shor

(2.0 - 0.1) x
(9.1 ± 0.2) x
(6.0 + 0.9) x
(8.8 + 0.1) x
< 10-5
(5.34 ± 0.04)
(1.88 ± 0.04)
(3.8 ± 0.3) x
(7.67 ± 0.03)
(2.56 + 0.05)
(4.8 + 0.2) x
(1.88 ± 0.04)
(2.88 ± 0.04)
(7.5 + 0.3) x
(2.83 ± 0.07)
(1.01 ± 0.02)
(2.97 ± 0.09)

Table B.5: Level-i pseudo-thresholds for rectangles using Steane-EC with perfect (noiseless) ancilla, n < 200.

[[5, 1,3]]
[[7,1,3]]
[[9,1,3]]
[[13,1,3]]
[[21,3,5]]
[[23, 1, 7]]
[[25, 1, 5]]
[[41,1,5]]
[[47,1,11]
[[49, 1, 7]]
[[49, 1, 9]]
[[60, 4, 10]]
[[81,1,9]]
[[85, 1, 7]]
[[121,1,11]]
[[145, 1, 9]]
[[169,1,13]]

io-T10
10-4
10-4
10-4

x 10- 3

x 10- 3

10-3

x 10- 3

x 10- 3

10-3
x 10- 3

x 10-3
10-3

x 10- 3

x 10- 2

x 10-3

[[n, k, d]] family
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