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Abstract

The basic element in the solution of pattern-recognition problems is the requirement
for the ability to recognize membership in classes. This report considers the automatic
establishment of decision criteria for measuring membership in classes that are known
only from a finite set of samples. Each sample is represented by a point in a suitably
chosen, finite-dimensional vector space in which a class corresponds to a domain that
contains its samples. Boundaries of the domain in the vector space can be expressed
analytically with the aid of transformations that cluster samples of a class and separate
classes from one another. From these geometrical notions a generalized discriminant
analysis is developed which, as the sample size goes to infinity, leads to decision-
making that is consistent with the results of statistical decision theory.

A number of special cases of varying complexity are worked out. These differ from
one another partly in the manner in which the operation of clustering samples of a class
and the separation of classes is formulated as a mathematical problem, and partly in the
complexity of transformations of the vector space which is permitted during the solution
of the problem. The assumptions and constraints of the theory are stated, practical
considerations and some thoughts on machine learning are discussed, and an illustrative
example is given for the automatically learned recognition of spoken words.
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I. INTRODUCTION

As the advances of modern science and technology furnish the solutions to problems

of increasing complexity, a feeling of confidence is created in the realizability of mathe-

matical models or machines that can perform any task for which a specified set of

instructions for performing the task can be given. There are, however, problems of

long-standing interest that have eluded solution, partly because the problems have not

been clearly defined, and partly because no specific instructions could be given on how

to reach a solution. Recognition of a spoken word independently of the speaker who utters

it, recognition of a speaker regardless of the spoken text, threat evaluation, the problem

of making a medical diagnosis, and that of recognizing a person from his handwriting are

only a few of the problems that have remained largely unsolved for the above-mentioned

reasons.

All of these problems in pattern recognition, however different they may seem, are

united by a common bond that permits their solution by identical methods. The common

bond is that the solution of these problems requires the ability to recognize membership

in classes, and, more important, it requires the automatic establishment of decision

criteria for measuring membership in each class.

The purpose of this report is to consider methods of automatically establishing deci-

sion criteria for classifying events as members of one or another of the classes when the

only knowledge about class membership is from a finite set of their labeled samples.

We shall consider the events represented by points or vectors in an N-dimensional

space. Each dimension expresses a property of the event, a type of statement that can

be made about it. The entire signal that represents all of the information available about

the event is a vector V = (v 1 , v 2 ... vn ... ,vN), the coordinates of which have numerical

values that correspond to the amount of each property present in the event. In this repre-

sentation, the sequence of events belonging to the same category corresponds to an

ensemble of points scattered within some region of the signal space.

The concept playing a central role in the theory that will be described is the notion

that the ensemble of points in signal space that represents a set of nonidentical events

belonging to a common category must be close to each other, as measured by some - as

yet - unknown method of measuring distance, since the points represent events that are

close to each other in the sense that they are members of the same category. Mathe-

matically speaking, the fundamental notion underlying the theory is that similarity

(closeness in the sense of belonging to the same class or category) is expressible by a

metric (a method of measuring distance) by which points representing examples of the

category we wish to recognize are found to lie close to each other.

To give credence to this idea, consider what we mean by the abstract concept of a

class. According to one of the possible definitions, a class is a collection of things that

have some common properties. By a modification of this thought, a class could be

characterized by the common properties of its members. A metric by which points
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Fig. 1. Clustering by transformation.

representing samples of a class are close to each other must therefore operate chiefly

on the common properties of the samples and must ignore, to a large extent, those prop-

erties not present in each sample. As a consequence of this argument, if a metric were

found that called samples of the class close, somehow it would have to exhibit their com-

mon properties.

In order to present this fundamental idea in a slightly different way, we can state that

a transformation on the signal space that is capable of clustering the points representing

the examples of the class must operate primarily on the common properties of the

examples. A simple illustration of this idea is shown in Fig. 1, where the ensemble of

points is spread out in signal space (only a two-dimensional space is shown for ease in

illustration) but a transformation T of the space is capable of clustering the points of the

ensemble. In the example above, neither the signal's property represented by coordi-

nate 1 nor that represented by coordinate 2 are sufficient to describe the class, for the

spread in each is large over the ensemble of points. Some function of the two coordi-

nates, on the other hand, would exhibit the common property that the ratio of the value

of coordinate 2 to that of coordinate 1 of each point in the ensemble is nearly one. In

this specific instance, of course, simple correlation between the two coordinates would

exhibit this property; but in more general situations simple correlation will not suffice.

If the signal space shown in Fig. 1 were flexible (like a rubber sheet), the trans-

formation T would express the manner in which various portions of the space must be

stretched or compressed in order to bring the points together most closely.

Although thinking of transformations of the space is not as general as thinking about

exotic ways of measuring "distance" in the original space, the former is a rigorously

correct and easily visualized analogy for many important classes of metrics.

Mathematical techniques will be developed to find automatically the "best" metric or

"best" transformation of given classes of metrics according to suitable criteria that

establish "best."

As in any mathematical theory, the theory that evolved from the preceding ideas is

based on certain assumptions. The first basic assumption is that the N-dimensional sig-

nal space representation of events exemplifying their respective classes is sufficiently

complete to contain information about the common properties that serve to characterize
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the classes. The significance of this assumption is appreciated if we consider, for

example, that the signal space contains all of the information that a black-and-white

television picture could present of the physical objects making up the sequence of events

which constitute the examples of a class. No matter how ingenious are the data-

processing schemes that we might evolve, objects belonging to the category "red things"

could not be identified because representation of the examples by black-and-white tele-

vision simply does not contain color information. For any practical situation one must

rely on engineering judgment and intuition to determine whether or not the model of the

real world (the signal space) is sufficiently complete. Fortunately, in most cases, this

determination can be made with considerable confidence.

A second assumption states the class of transformations or the class of metrics

within which we look for the "best." This assumption is equivalent to specifying the

allowable methods of stretching or compressing the signal space within which we look

for the best specific method of deforming the space. In effect, an assumption of this type

specifies the type of network (such as active linear networks) to which the solution is

restricted.

The third major assumption is hidden in the statement that we are able to recognize

a "best" solution when we have one. In practice, of course, we frequently can say what

is considered a good solution even if we do not know which is the "best." The criterion

by which the quality of a metric or transformation is judged good is thus one of the basic

assumptions.

Within the constraints of these assumptions, functions of the signal space and the

known, labeled sequence of events that permit the separation of events into their respec -

tive categories may be found.

Throughout this report essentially all of the mathematics is developed in simple

algebraic form, with only occasional use of matrix notation in places where its use

greatly simplifies the symbolism. Insistence on the algebraic form sometimes results

in the loss of elegance and simplicity of solutions. But it is felt that the ease of transi-

tion from algebra to a computer program is so significant that the loss in the aesthetic

appeal of this material to a mathematician must be risked. While the mathematics is

thus arithmetized and computer-oriented for practical reasons, we must not lose sight

of the broader implications suggested to those who are well versed in communication

theory. It is a valuable mental exercise to interpret what is presented here from the

point of view of communication theory. To help cross the bridge, at least partially, we

can say that passing from the discrete to the continuous, from sum to integral, from dot

product to correlation, and from transformation to passage through a linear network

(convolution) is valid in all cases in the material contained in this report. The sets of

vectors or events are sample functions of a random process, and the metrics obtained

are equivalent to different error criteria. The Euclidean metric, for instance, is the

mean-square error. The application of other metrics developed in most of this report

is equivalent to using the mean-square-error criterion after the signal's passage through

3
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a linear network. However, some other metrics developed are error criteria that cannot

be equated to a combination of filtering and mean-square-error measurement.

The material presented here is organized in essentially two parts. In Sections II and

III a special form of the theory is presented in some detail so that fundamental concepts

and the mechanical details of the mathematical developments could be introduced. The

highlights of these two sections are the development of the notions of similarity, feature

weighting, and the elementary ideas of machine learning. Toward the end of Section III,

some practical considerations are pursued, primarily to estimate the storage require-

ments of a machine that would implement the numerical calculations.

Discussion of the second part of the material opens in Section IV with the continued

application of the linear methods cited in earlier sections to the problem of clustering

events that belong to the same category while separating them from those that belong to

other categories. Several optimization criteria are considered, and the solutions are

derived. The methods of applying the nonlinear methods within the framework of the

ideas of this classificatory analysis are discussed in Section V, which also incorporates

miscellaneous ideas, some remarks about the limitations of the results, and the direc-

tion that might be taken by continuing research. The brief final discussion of some of

the important aspects of pattern recognition in Section VI places this work in its proper

perspective and relates it to other work in the field. Appendix A discusses a network

analog for solving eigenvalue problems rapidly - the most time-consuming mathematical

operation encountered in implementing the techniques described. In Appendix B the

relationship between decision theory and the theory developed here is explored. Appen-

dix C contains a discussion of the numerical application of the special form of the theory

to an example in the recognition of spoken words. Appendix D establishes a further con-

nection between the theory developed here and the classical problem of statistical hypoth-

esis testing.

4
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II. A SPECIAL THEORY OF SIMILARITY

2. 1 SIMILARITY

The central problem of pattern recognition is viewed in this work as theproblem of

developing a function of a point and a set of points in an N- dimensional space in order

to partition the space into a number of regions that correspond to the categories to

which the known set of points belongs. A convenient and special - but not essential -

way of thinking about this partitioning function is to consider it as being formed from a

set of functions, one for each category, where each function measures the "likelihood"

with which an arbitrary point of the space could best fit into the particular function's

own category. In a sense, each function measures the similarity of an arbitrary point

of the space to a category, and the partitioning function assigns the arbitrary point to

that category to which the point is most similar. (Although the term "likelihood" has

an already well-defined meaning in decision theory, it is used here in a qualitative way

x/ y

(a)

x y

(b)

Fig. 2. Likelihood of membership in two categories:
(a) Category 1; (b) Category 2.
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(a)
Fig. 3. Classification by maxi-

mum likelihood ratio.

(b)

to emphasize the similarity between fundamental ideas in decision theory and in the

theory that is described here. )

The foregoing concept of partitioning the signal space is illustrated in Fig. 2, where

the signal space has two dimensions and the space is to be partitioned into two cate-

gories. In Fig. 2a, the height of the surface above the x-y plane expresses the likeli-

hood that a point belongs to Category 1, while that of the surface in Fig. 2b expresses

the likelihood that the point belongs to Category 2. The intersection between the two

surfaces, shown in Figs. 3a and 3b, marks the boundary between Region 1, where

points are more likely to belong to Category 1 than to Category 2, and Region 2, where

the reverse is true.

For each category of interest a set of likelihood ratios can be computed that expresses

the relative likelihood that a point in question belongs to the category of interest rather

than to any of the others. From the maximum of all likelihood ratios that correspond

to a given point, we can infer the category to which the point most likely belongs.

The reader will recognize the idea of making decisions based on the maximum

6



likelihood ratio as one of the important concepts of decision theory. The objective of

the preceding discourse is, therefore, simply to make the statement that once afunction

measuring the likelihood that a point belongs to a given category is developed, there is

at least one well- established precedent for partitioning signal space into regions that

are associated with the different categories. The resulting regions are like a template

that serves to classify points on the basis of their being covered or not covered by the

template. Although in the rest of this section, partitioning the signal space is based on

a measure of similarity that resembles the likelihood ratio only in the manner in which

it is used, it is shown in Appendix B that, in certain cases, decisions based on the

measure of similarity are identical with those based on the maximum likelihood ratio.

In the first three sections of this report, a quantitative measure of similarity is

developed in a special theory in which similarity is considered as a property of only the

point to be compared and the set of points that belongs to the category to be learned. In

later sections we shall discuss methods for letting known nonmembers of the class

influence the development of measures of similarity.

In the special theory, similarity of an event P to a category is measured by the

closeness of P to every one of those events {Fm) known to be contained in the category.

Similarity S is regarded as the average "distance" between P and the class of events

represented by the set {Fm} of its examples. Two things should be noted about this

foregoing definition of similarity. One is that the method of measuring distance does

not influence the definition. Indeed, "distance" is not understood here in the ordinary

Euclidean sense; it may mean "closeness" in some arbitrary, abstract property of the

set {Fm} that has yet to be determined. The second thing to note is that the concept

of distance between points, or distance in general, is not fundamental to a concept of

similarity. The only aspect of similarity really considered essential is that it is a real

valued function of a point and a set that allows the ordering of points according to their

similarity to the set. The concept of distance is introduced as a mathematical con-

venience based on intuitive notions of similarity. It will be apparent later how this con-

cept forms part of the assumptions stated in Section I as underlying the theory to be

presented. Even with the introduction of the concept of distance there are other ways

of defining similarity. Nearness to the closest member of the set is one possibility.

This implies that an event is similar to a class of events if it is close in some sense to

any member of the class. We shall not philosophize on the relative merits of these differ-

ent ways of defining similarity. Their advantages and disadvantages will become

apparent as this theory is developed, and the reader will be able to judge for himself

which set of assumptions is most applicable under a given set of circumstances. The

essential role of the definition of similarity and the choice of the class of metrics within

which the optimum is sought is to define the decision rule with which membership in

classes will be determined. The decision rule, of course, is not an a priori fixed rule;

it contains an unknown function, the unspecified metric, which will be tailored to the

particular problem to be solved. For the time being, the decision rule will remaini an

7



ad hoc rule; it will be shown later that it is indeed a sound rule.

To summarize the foregoing remarks, for the purpose of the special theory, simi-

larity S(P, Fm}) of a point P and a set of points {Fm} exemplifying a class will be

defined as the mean- square distance between the point P and the M members of the

set {Fm}. This definition is expressed by Eq. 1, where the metric d( ) - the method

of measuring distance between two points - is left unspecified.

M
S(PJFm}) M d(PFm) (1)

To deserve the name metric, the function d( ) must satisfythe usual conditions stated

in Eqs. 2.

d(A,B) = d(B,A) (symmetric function) (2a)

d(A,C) - d(A,B) + d(B,C) (triangle inequality) (2b)

d(A,B) > 0 (non-negative) (2c)

d(A,B) = 0 if, and only if, A = B (2d)

2.2 OPTIMIZATION AND FEATURE WEIGHTING

In the definition of similarity of Section 2.1, the mean- square distance between a

point and a set of points served to measure similarity of a point to a set. The method

of measuring distance, however, was left unspecified and was understood to refer to

distance in perhaps some abstract property of the set. Let us now discuss the criteria

for finding the "best" choice of the metric, and then applythis optimizationto a specific

and simple class of metrics that has interesting and useful properties.

Useful notions of "best" in mathematics are often associated with finding the extrema

of the functional to be optimized. We may seek to minimize the average cost of our

decisions or we may maximize the probability of estimating correctly the value of a

random variable. In the problem above, a useful metric, optimal in one sense, is one

that minimizes the mean- square distance between members of the same set, subject to

certain suitable constraints devised to ensure a nontrivial solution. If the metric is

thought of as extracting that property of the set in which like events are clustered, the

mean- square distance between members of the set is a measure of the size of the cluster

so formed. Minimization of the mean- square distance is then a choice of a metric that

minimizes the size of the cluster and therefore extracts that property of the set in which

they are most alike. It is only proper that a distance measure shall minimize distances

between those events that are selected to exemplify things that are "close."

Although the preceding criterion for finding the best solution is a very reasonable

and meaningful assumption on which to base the special theory, it is by no means the

only possibility. Minimization of the maximum distance between members of a set is

just one of the possible alternatives that immediately suggests itself. It' should be

8



pointed out that ultimately the best solution is the one which results in the largest

number of correct classifications of events. Making the largest number of correct

decisions on the known events is thus to be maximized and is itself a suitable criterion

of optimization that will be dealt with elsewhere in this report. Since the primary

purpose of this section is to outline a point of view regarding pattern recognitionthrough

a special example, the choice of "best" previously described and stated in Eq. 3 will

be used, for it leads to very useful solutions with relative simplicity of the mathematics

involved. In Eq. 3, Fp and Fm are the pth and mth members of the set {Fm}

mi 2 p,m F 1 m
minLd (FPm) j mm ( Fm) over all choices of d( )

IV (M-l) = 1 =
(3)

Of the many different mathematical forms that a metric may take, in our special

theory only metrics of the form given by Eq. 4 will be considered. The intuitive notions

underlying the choice of the metric in this form are based on ideas of "feature weighting,"

which will be developed below.

d(A,B) = Ln W (an-bn) (4)

In the familiar Euclidean N-dimensional space the distance between the two points

A and B is defined by Eq. 5. If A and B are expressed in terms of an orthonormal

coordinate system {n}, then d(A,B) of Eq. 5 can be written as in Eq. 6, where a n and

bn, respectively, are the coordinates of A and B in the direction of n.

d(A,B) =I A-B 1 (5)

FN 1 1/2
d(A, B) = (an bn) (6)

We must realize, of course, that the features of the events represented bythe differ-

ent coordinate directions n are not all equally important in influencing the definition

of the category to which like events belong. Therefore it is reasonable that in comparing

two points feature by feature (as expressed in Eq. 6), features with decreasing signifi-

cance should be weighted with decreasing weights, Wn. The idea of feature weighting

is expressed by a metric somewhat more general than the conventional Euclidean metric.

The modification is given in Eq. 7, where Wn is the feature weighting coefficient.

d(A,B) = [Wn(an- bn) ] (7)
n=1W ,

It is readily verified that the above metric satisfies the conditions stated in Eq. 2 if none of

the Wn coefficients is zero; if any of the Wn coefficients is zero, Eq. 2d is not satisfied.

9
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It is important to note that the metric above gives a numerical measure of "close-

ness" between two points, A and B, that is strongly influenced by the particular set of

similar events {Fm}. This is a logical result, for a measure of similarity between A and

B should depend on how our notions of similarity were shaped by the set of events known

to be similar. When we deal with a different set of events that have different similar

features, our judgment of similarity between A and B will also be based on finding

agreement between them among a changed set of their features.

An alternative and instructive way of explaining the significance of the class of met-

rics given in Eq. 4 is to recall the analogy made in Section I regarding transformations

of the signal space. There, the problem of expressing what was similar among a set of

events of the same category was accomplished by finding the transformation of the signal

space (again, subject to suitable constraints) that will most cluster the transformed

events in the new space. If we restrict ourselves to those linear transformations of

the signal space that involve only scale factor changes of the coordinates and if we

measure distance in the new space by the Euclidean metric, thenthe Euclidean distance

between two points after their linear transformation is equivalent to the feature weighting

metric of Eq. 4. This equivalence is shown below, where A' and B' are vectors

obtained from A and B by a linear transformation. The most general linear transfor-

mation is expressed by Eq. 9, where a' is the nth coordinate of the transformed vectorn
A, and b' is that of the vector B.n

N N
A Z anon and B = bO (8a)

nn nn=1 n n1

[A'] = [A] [W] [B'] = [B] [W] (8b)

[A'-B'] = [A-B][W] (8c)

[(a'-b') (a'-b), (a' -b' )]1 1,2 2 .(a bN )]

= [(al-bl), (a 2 -b 2 ) .. , (aN-bN)]

W1 1 w1 2 ·.. WlN

w2 1 w2 2 . . w 2N

WN1 WN2 ' ' ' WNN

The Euclidean distance between A' and B', dE(A', B'), is given in Eq. 10.

dE(A',B') - (an bs } (10)

If the linear transformation involves only scale factor changes of the coordinates, only

the elements on the main diagonal of the W matrix are nonzero, and thus dE(A', B')

is reduced, in this special case, to the form given in Eq. 11.

10
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Special dE(A'. B') = w n(an n) (11)

The preceding class of metrics will be used in Eq. 3 to minimize the mean-square

distance between the set of points.

The mathematical formulation of the minimization is given in Eqs. lZa and 12b. The

significance of the constraint of Eq. 12b is, for the case considered, that every weight

wnn is a number between 0 and 1 (the wnn turn out to be positive) and that it can be

interpreted as the fractional value of the features On that they weight. The fractional

value that is assigned in the total measure of distance to the degree of agreement that

exists between the components of the compared vectors is denoted by wnn'

2 1 M M N 2 2
minimize D 1 pl 1 W(fmnmfpn) (12a)

M(M-1) = =1 n_

if

N

E wnn =1 (12b)
nn

Although the constraint of Eq. 12b is appealing from a feature-weighting point of

view, from a strictly mathematical standpoint it leaves much to be desired. It does

not guarantee, for instance, that a simple shrinkage in the size of the signal space is

disallowed. Such a shrinkage would not change the relative orientation of the points to

each other, the property really requiring alteration. The constraint given in Eq. 13,

on the other hand, states that the volume of the space is constant, as if the space were

filled with an incompressible fluid. Here one merely wishes to determine the kind of

rectangular box that could contain the space so as to minimize the mean- square distance

among a set of points imbedded in the space.

N
w nn=1 (13)

n=1

The minimization problem with both of these constraints will be worked out in the

following equations; the results are quite similar.

Interchanging the order of summations and expanding the squared expression in

Eq. 12a yield Eq. 14, where it is recognized that the factor multiplying wnn is the

variance of the coefficients of the n coordinate. Minimization of Eq. 14 under the

constraint of Eq. 12b yields Eq. 15, where p is an arbitrary constant. Imposing the

constraint of Eq. 12b again, we can solve for wnn, obtaining Eq. 16.

2 + M 
D = wnn I M f -2 m fPj f (14a)

(M-l)n 1 m n M= 1 pn 1 I

11
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2 2M w2 2M N 2 2
(M-1) n=l (M-1) n=1

L-wnn'rnP ]=o n = 1, 2, ... , N (15)

P 1

Wnn 2 N (16)
a- 2 1

n an Z 2
p=l

P

(Note that this result is identical with that obtained in determining the coefficients of

combination in multipath combining techniques encountered in long-distance communi-

cations systems.)

That the values of wnn so found are indeed those that minimize D2 of Eq. 12a

can be seen by noting that D2 is an elliptic paraboloid in an N-dimensional space and

the constraint of Eq. 12b is a plane of the same dimensions. For a three-dimensional

case, this is illustrated in Fig. 4. The intersection of the elliptic paraboloid with the

plane is a curve whose only point of zero derivative is a minimum.

D2

ANE

Fig. 4. Geometric interpretation
MINIMUM of minimization.

If the variance of a coordinate of the ensemble is large, the corresponding wnn is

small, which indicates that small weight is to be given in the over- all measure of distance

to a feature of large variation. But if the variance of the magnitude of a given coordi-

nate 0n is small, its value can be accurately anticipated. Therefore 0n should be

counted heavily in a measure of similarity. It is important to note that in the extreme

case, where the variance of the magnitude of a component of the set is zero, the corre-

sponding wnn in Eq. 16 is equal to one, with all other wnn equal to zero. In this case,

although Eq. 11 is not a legitimate metric, since it does not satisfy Eq. 2, it is still a

meaningful measure of similarity. If any coordinate occurs with identical magnitudes

in all members of the set, then it is an "all-important" feature of the set, and nothing

12
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else needs to be considered in judging the events similar. Judging membership in a

category by such an "all-important" feature may, of course, result in the incorrect

inclusion of nonmembers in the category. For instance "red, nearly circular figures"

have the color red as a common attribute. The transformation described thus far would

pick out "red" as an all-important feature and would judge membership in the category

of "red, nearly circular figures" only by the color of the compared object. A red

square, for instance, would thus be misclassifiedand judged tobe a "red, nearly circu-

lar figure." Given only examples of the category, such results would probably be

expected. In Section IV, however, wherelabeled examples of all categories of interest

are assumed given, only those attributes are emphasized in which members of a cate-

gory are alike and in which they differ from the attributes of other categories.

Note that the weighting coefficients do not necessarily decrease monotonically in the

feature weighting, which minimizes the mean- square distance among M given examples

of the class. Furthermore, the results of Eqs. 16 or 18 are independent of the particu-

lar orthonormal system of coordinates. Equations 16 and 18 simply state that the

weighting coefficient is inversely proportional to the variance or to the standard devi-

ation of the ensemble along the corresponding coordinate. The numerical values of the

variances, on the other hand, do depend on the coordinate system.

If we use the mathematically more appealing constraint of Eq. 13 in place of that in

Eq. 12b, we obtain Eq. 17.

N 2 2 N
min D = min 2 w 1 (17a)

n1 nn n nn

N 2 N
Zn dw nnn X - w =0 (1 7b)

n=1 w k~n

It is readily seen that by applying Eq. 17a, the expression of Eq. 17b is equivalent

to Eq. 18a, where the bracketed expression must be zero for all values of n. This

substitution leads to Eq. 18b, which may be reduced to Eq. 18c by applying Eq. 17a

once more.

N 1 2

n£ dwnn (nnca'n 0 = (1 8a)n=1 nn

xl/2
wnn = (18b)

n

wnn p=l1 n

Thus it is seen that the feature weighting coefficient w is proportional to the
th and thereby lends itself to thereciprocal standard deviation of the n coordinates, and thereby lends itself to the

same interpretation as before.

13
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2.3 DESCRIBING THE CATEGORY

The set of known members is the best description of the category. Following the

practice of probability theory, we can describe this set of similar events by its statistics;

the ensemble mean, variance and higher moments can be specified as its characteristic

properties. For our purpose a more suitable description of our idea of the category is

found in the specific form of the function S of Eq. 1 developedfrom the set of similar

events to measure membership in the category. A marked disadvantage of S is that

(in a machine that implements its application) the amount of storage capacity that must

be available is proportional to the number of events introduced and is thus a growing

quantity. Note that S(P,{Fm}) can be simplified and expressed in terms of certain

statistics of the events,which makes it possible to place an upper bound on the storage

requirements demanded of a machine.

Interchanging the order of summations and expanding the squares yield Eq. 19a,
2

which, through the addition and subtraction of fn , yields Eq. 19b.

S({} M N 2 f 2 N 2 2 (19a)
mS(P'(fFm) M -1 n Wn(Pn-fmn) = W n n - 2 p f (19a)m=1 n1 n m nLn2 Pnn j

N 2+ 22 N 2 
= X WnlP-f) + W(Pn-fn) (19b)

n1 1

We see that the category can be described by first- and second-order statistics of the

given samples. This fact also reveals the limitations of the particular class of metrics

considered above, for there are classes for which first- and second-order statistics

are not sufficient descriptors. It should be pointed out, however, that this is a limi-

tation of the particular, restricted class of metrics just considered, rather than a

limitation of the approach used.

By substituting Wn from Eq. 18 in the quadratic form of Eq. 19, we obtain

/N N N Pn-

S(P,{F ) = X n + ] 1(n j + N] (20)

Contours of constant S(P,{Fm}) are ellipses centered at f, where f is the sample mean,

and the diameters of the ellipse are the variances of the samples in the directions of the

coordinate axes.

The set of known members of the category appears as the constants fn and n- , which

may be computed once and for all. Since these constants can be updated readily without

recourse to the original sample points, the total number of quantities that must be stored

is fixed at 2N and is independent of the number of sample points.

14



2.4 CHOOSING THE OPTIMUM ORTHOGONAL COORDINATE SYSTEM

The labeled events that belong to one category have been assumed given as vectors

in an assumed coordinate system that expressed features of the events thought to be

relevant to the determination of the category. An optimum set of feature weighting

coefficients through which similar events could be judged most similar to one another

was then found. It would be purely coincidental, however, if the features represented

by the given coordinate system were optimal in expressing the similarities among

members of the set. In this section, therefore, we look for a new set of coordinates,

spanning the same space and expressing a different set of features that minimize the

mean-square distance between members of the set. The problem just stated can be

thought of as either enlarging the class of metrics considered thus far in the measure

of similarity defined earlier or as enlarging the class of transformations of the space

within which class we look for that particular transformation that minimizes the mean-

square distance between similar events.

It was proved earlier that the linear transformation that changes the scale of the n t h

dimension of the space by the factor wnn while keeping the volume of the space constant

and minimizing the mean- square distance between the transformed vectors is given by

Eq. 22.

0

w 2
F' = F[W] [W] = (22a)

WNN

and

N 1/N

W = 1 (22b)
p=l n

The mean- square distance under this transformation is a minimum for the given choice

of orthogonal coordinate system. It is given by

M M N2 1 2 2
D = 1 p n w nn(fmn- fpn) = minimum (23)

M(M-1) p=1 m1 n=1

It is possible, however, to rotate the coordinate system until one is found that minimizes

this minimum mean-square distance. While the first minimization took place with

respect to all choices of the wnn coefficients, we are now interested in further mini-

mizing D2 by first rotating the coordinate system so that the above optimum choice of

the wnn should result in the absolute minimum distance between vectors. The solution

of this search for the optimum transformation can be conveniently stated in the form of

the following theorem.
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THEOREM

The orthogonal transformation which, after transformation, minimizes the mean-

square distance between a set of vectors, subject to the constraint that the volume of the

space is invariant under transformation, is a rotation [C] followed by a diagonal trans-

formation [W]. The rows of the matrix [C] are eigenvectors of the covariance matrix

[U] of the set of vectors, and the elements of [W] are those given in Eq. 22b, where -

is the standard deviation of the coefficients of the set of vectors in the direction of the

pth eigenvector of [U].

PROOF

Expanding the square of Eq. 23 and substituting the values of wnn result in Eq. 24,

which is to be minimized over all choices of the coordinate system.

N M M 2 2
D = w nn X (f +f - 2f f2 n (24a)

M(M-1) =1 n n pmn mnpn

2M N 2 (2F 2) 2M N 2 2
wnnfn n- w a' (24b)

(M-1) (M-1) n nn n

2M N 22 M 2]/
-wnna-n ~ 2N a' (24c)

(M-l) -1 n(M-l) (24c)

Let the given coordinate system be transformed by the matrix [C]:

cll C1 2 ... C1N

c 2 1 c 2 2 ... C2N

CNi CN2 ... CNN

N 2
where Cpn =1 =l, 2,..., N (25)

n=l

Equation 24 is minimized if the bracketed expression in Eq. 24 c, which we shall name

p, is minimized.

N N M M 2
P PM m ( m ) -M fmp (26a)

pl P p1l m=l =1

where

N
fp= nX fmnc (26b)mp = 1 m pn

Substituting Eq. 26b into Eq. 26a, we obtain

N N N M N 2i= :1 1 _n f pn) 2 ]
fmnfmsCpn ps(p=l n=1 = =1 =1 n p
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in which the averaging is understood to be over the set of M vectors. The squared

expression may be written as a double sum and the entire equation simplified to

N
p= l

p=l

N N

n - ff c pncs
n= 1 n s ) pn ps

(28)

But (fnfs-fnfs) = uns = usn is an element of the covariance matrix [U]. Hence we have
ns n n 

N
P= TT

p=l

N N
Z 1 u cu c

n=1 s=1 ns pn ps
(29)

Using the method of Lagrange multipliers to minimize in Eq. 29, subject to the

constraint of Eq. 25, we obtain Eq. 30 as the total differential of . The differential

of the constraint, y, is given in Eq. 31.

dp(C1 1C 1 2 ... CNN)

N N a 

n-1 s=1 pn p ac a-1iqal

N

b UabC aCIb dc I q
b=l

N
dy = 2 c qdc q

q=l
1= 1,2,...,N

By way of an explanation of Eq. 30, note that when Eq. 29 is differentiated with respect

to c q , then all of the factors in the product in Eq. 29, where p * 1, are simply constants.

Carrying out the differentiation stated in Eq. 30, we obtain

N N
dp = 2 Z dc2 q

1=1 q=1

NN N

Lb uq p#I Ln 1

N]

s1 nsCpnCps=l

Now let

N N

p*s ' n=l

N

U C c AQs1 ns pn ps
(33)

and note that since p * , A is just a constant as regards optimization of any Clx.

In accordance with the method of Lagrange multipliers, each of the N constraints

of Eq. 31 is multiplied by a different arbitrary constant B and is added to d3 as shown

below.

N N
dp+ Z B d = 0 = 2 Z

1=1 1=1

N

Z dcjq
q=l

(34)b cq bUqb A +BQ cI qLif 
By letting - I = B1 /A i and by recognizing that dc lq is arbitrary, we get

17

N

1=1

N N

q=1 p+
(30)
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N

b=l C bUqb - Xq = 0b=l P 'P q
q=l, 2,..., N; 1=1, 2,..., N

Let the th row of the [C] matrix be the vector C. Then Eq. 35 can be written as the

eigenvalue problem of Eq. 36 by recalling that uqb = Ubq

C[U-XI] = (36)

Solutions of Eq. 36 exist only for N specific values of Xk. The vector C1 is an

eigenvector of the covariance matrix [U]. The eigenvalues AX are positive, and the

corresponding eigenvectors are orthogonal, since the matrix [U] is positive definite.

Since the transformation [C] is to be nonsingular, the different rows C1 must corre-

spond to different eigenvalues of [U] . It may be shown that the only extremum of is

a minimum, subject to the constraint of Eq. 25. Thus the optimum linear transformation

that minimizes the mean- square distance of a set of vectors while keeping the volume

of the space constant is given by Eq. 37, where rows of [C] are eigenvectors of the co-

variance matrix [U] .

alN

a 2N

a11 a12

a21a22

aN1 aN2 aNN

. . .N

. . .2N

c1 1 c12

c21c22

CNiCN2 CNN

T

lw22

WNNCN1

WNNCN2
WllCll2
Wllc2

WllClN w 2 2 c2N WNNCNN

WNN

(37)

The numerical value of the minimum mean- square distance may now be computed

as follows. The quantity D2 was given in Eq. 24c, which is reproduced here as Eq. 38:

D2
- M 2N

(M-l)

N 21/N
P

TT(r
- M 2N() 1/N

(M-l)

Substituting from Eq. 29, we obtain

2 M 2N
(M-l)

N

p=l

N N 1 //N

uns pn cPs
n=l s=l

But from Eq. 35 we see that min D2 may be written as
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min D 2
- M 2N N = M 2NT 1 (40)

(M-1) =1 nl (M-1) p=l

in which the constraint of Eq. 25 has been used.

It should be noted that the constraint of Eq. 25 is not, in general, a constantvolume

constraint. Instead, the constraint holds the product of the squared lengths of the sides

of all N-dimensional parallelepipeds a constant. If, as in the solution just obtained, the

transformation [C] is orthogonal, the volume is maintained

constant. A subset of the constant volume transformations,

Tv (Fig. 5), are the orthogonal transformations T of constant

volume of which the optimum was desired. The solution pre-

sented here found the optimum transformation among a set of

TL that contains orthogonal transformations of constant volume
har i nt u fc-.;::+rvra+r n rr,,rvl+m fr-r +1-,har h+ r- nr,-

Fig. 5. Sets of trans- orthogonal. The solution given here, therefore, is optimum
formations. among the constant volume transformations TnTL shown as

the shaded area in Fig. 5. This intersection is a larger set of

transformations than that for which the optimum was sought.

The methods of this section are optimal in measuring membership in categories of

certain types. Suppose, for instance, that categories are random processes that gener-

ate members with multivariate Gaussian probability distributions of unknown means and

variances. In Appendix B we show that the metric developed here measures contours

of equal a posteriori probabilities. Given the set of labeled events, the metric speci-

fies the locus of points that are members of the category in question with equal probability.

2.5 SUMMARY

Categorization, the basic problem of pattern recognition, is regarded as the process

of learning how to partition the signal space into regions where each contains points of

only one category. The notion of similarity between a point and a set of points of a

category plays a dominant role in the partitioning of signal space. Similarity of a point

to a set of points is regarded as the average "distance" between the point and the set.

The sense in which distance is understood is not specified, but the optimum sense is

thought to be that which (by the optimum method of measuring distance) clusters most

highly those points that belong to the same category. The mean- square distance between

points of a category is a measure of clustering. An equivalent alternate interpretation

of similarity (not as general as the interpretation above) is that the transformation that

optimally clusters like points, subject to suitable criteria to ensure the nontriviality of

the transformations, is instrumental in exhibiting the similarities between points of a

set. In particular, the optimum orthogonal transformation, and hence a non-Euclidean

method of measuring distance, is found that minimizes the mean-square distance

19



between a set of points, if the volume of the space is held constant to ensure nontrivi-

ality. The resulting measure of similarity between a point P and a set (Fm} is

S(P,{F ) = M1 E a ns(Ps ms ) (41)

where a is given in the theorem of section 2.4.ns

Classification of an arbitrary point P into one of two categories, F or G, is

accomplished by the decision rule given in Eq. 42, where the functions Sf and Sg are

obtained from samples of F and samples of G, respectively.

decide P E F if Sf(P,(Fm}) < Sg(P,{Gm})

decide P E G if Sf(P,(Fm ) > S g(P,{G )) (42)m g m
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III. CATEGORIZATION

3. 1 THE PROCESS OF CLASSIFICATION

Pattern recognition consists of the twofold task of "learning" what the category or

class is to which a set of events belongs and of deciding whether or not a new event

belongs to the category. In this section, details of the method of accomplishing these

two parts of the task are discussed, subject to the limitations on recognizable categories

imposed by the assumptions stated earlier. These details are limited to the application

of the special method of Section II.

In the following section two distinct modes of operation of the recognition system will

be distinguished. The first consists of the sequential introduction of a set of events, each

labeled according to the category to which it belongs. During this period, we want to

identify the common pattern of the inputs that allows their classification into their

respective categories. As part of the process of learning to categorize, the estimate

of what the category is must also be updated to include each new event as it is introduced.

The process of updating the estimate of the common pattern consists of recomputing the

new measures of similarity so that they will include the new, labeled event on which the

quantitative measures of similarity are based.

During the second mode of operation the event P, which is to be classified, is com-

pared to each of the sets of labeled events by the measure of similarity found best for

each set. The event is then classified as a member of that category to which it is most

similar.

It is not possible to state with certainty that the pattern has been successfully learned

or recognized from a set of its samples because information is not available on how

samples were selected to represent the class. Nevertheless, it is possible to obtain a

quantitative indication of our certainty of having obtained a correct method of deter-

mining membership in the category from the ensemble of similar events. As each new

event is introduced, its similarity to the members of the sets already presented is meas-

ured by the function S defined in Section II. The magnitude of the number S indicates

how close the new event is to those already introduced. As S is refined and, with each

new example, improves its ability to recognize the class, the numerical measure of

similarity between new examples and the class will tend to decrease, on the average.

Strictly speaking, of course, this last statement cannot be true, in general. It may be

true only if the categories to be distinguished are separable by functions S taken from

the class that we have considered; even under this condition the statement is true only

if certain assumptions are made regarding the statistical distribution of the samples on

which we learn. In cases in which no knowledge regarding the satisfaction of either of

these two requirements exists, the convergence of the similarity as the sample size is

It is true for Gaussian processes.
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Fig. 6. Elementary block diagram of the classification process.

increased is simply wishful thinking the heuristic justification of which is based on the

minimization problem solved in developing S.

Figure 6 illustrates the mechanization of the learning and recognition modes of the

special classificatory process discussed thus far. For the sake of clarity, the elemen-

tary block diagram of the process distinguishes only between two categories of events,

but it can be readily extended to distinguish between an arbitrary number of categories.

It should be noted that one of the categories may be the complement of all others. The

admission of such a category into the set is only one of the ways in which a machine that

is always forced to classify events into known categories may be made to decide that an

event does not belong to any of the desired ones; it belongs to the category of "every-

thing else." Samples of "everything else" must, of course, be given.

During the first mode of operation, the input to the machine is a set of labeled events.

Let us follow its behavior through an example. Suppose that a number of events, some

belonging to set A and some to set B, have already been introduced. According to the

method described in Section II, therefore, the optimum metrics (one for each class) that

minimize the mean-square distance between events of the same set have been found. As

a new labeled event is introduced (say that it belongs to set A), the switch at the input

is first turned to the recognition mode R so that the new event P can be compared to

set A as well as to set B through the functions SA(P ) = S(P, {Am}) and SB(P ), which were

computed before the introduction of P. The comparison of SA and S B with a threshold K

indicates whether the point P would be classified as belonging to A or to B from knowl-

edge available up to the present. Since the true membership of P is known (the event is

labeled), we can now determine whether P would be classified correctly or incorrectly.

The input switch is then turned to A so that P, which indeed belongs to A, can be included

in the computation of the best metric of set A.

When the next labeled event is introduced (let us say that it belongs to set B), the

input switch is again turned to R in order to test the ability of the machine to classify

the new event correctly. After the test, the switch is turned to B so that the event can

be included among examples of set B and the optimum function SB can be recomputed.

This procedure is repeated for each new event, and a record is kept of the rate at which

incorrect classifications would be made on the known events. When the training period
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is completed, presumably as a result of satisfactory performance on the selection of

known events (sufficiently low error rate), the input switch is left in the recognition

mode.

3. 2 LEARNING

"Supervised learning" takes place in the interval of time in which examples of the

categories generate ensembles of points from which the defining features of the classes

are obtained by methods previously discussed. "Supervision" is provided by an outside

source such as a human being who elects to teach the recognition of patterns by examples

and who selects the examples on which to learn.

"Unsupervised learning," by contrast, is a method of learning without the aid of such

an outside source. It is clear, at least intuitively, that the unsupervised learning of

membership in specific classes cannot succeed unless it is preceded by a period of super-

vision during which some concepts regarding the characteristics of classes are estab-

lished. A specified degree of certainty concerning the patterns has been achieved in the

form of a sufficiently low rate of misclassification during the supervised learning period.

The achievement of the low misclassification rate, in fact, can be used to signify the end

of the learning period, after which the system that performs the operations indicated in

Fig. 6 can be left to its own devices. It is only after this supervised interval of time

that the system can be usefully employed to recognize, without outside aid, events as

belonging to one or another of the categories.

Throughout the period of learning on examples, each example is included in its proper

set of similar events that influence the changes of the measures of similarity. After

supervised activity has ceased, events introduced for classification may belong to any

of the categories; and no outside source informs the machine of the correct category.

The machine itself, operating on each new event, however, can determine, with the

already qualitatively specified probability of error, to which class the event should

belong. If the new event is included in the set exemplifying this class, the function

measuring membership in the category has been altered. Unsupervised learning results

from the successive alterations of the metrics, brought about by the inclusion of events

into the sets of labeled events according to determinations of class membership rendered

by the machine itself. This learning process is instrumented by the dotted line in Fig. 6,

which, when the learning switch L is closed, allows the machine's decisions to control

routing of the input to the various sets.

To facilitate the illustration of some implications of the process described above,

consider the case in which recognition of membership in a single class is desired and

all labeled events are members of only that class. In this case, classification of events

as members or nonmembers of the category degenerates into the comparison of the

similarity S with a threshold T. If S is greater than T, the event is a nonmember;

if S is less than T, the event is said to be a member of the class. Since the machine

decides that all points of the signal space for which S is less than T are members of
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Fig. 7. Unsupervised learning.

the class, the class - as far as the machine is concerned - is the collection of points

that lie in a given region in the signal space. For the specific function S of Section II,

this region is an ellipsoid in the N-dimensional space.

Unsupervised learning is illustrated graphically in Fig. 7. The two-dimensional

ellipse drawn with a solid line signifies the domain D1 of the signal space in which any

point yields S < T. This domain was obtained during supervised activity. If a point P

is introduced after supervised learning, so that P 1 lies outside D 1, then P 1 is merely

rejected as a nonmember of the class. If point P 2 contained in D1 is introduced, how-

ever, it is judged a member of the class and is included in the set of examples used to

generate a new function S and a new domain D2 , designated by the dotted line in Fig. 7.

A third point P 3 ' which was a nonmember before the introduction of P2, becomes recog-

nized as a member of the class after the inclusion of P 2 in the set of similar events.

Although the tendency of this process of "learning" is to perpetuate the original

domain, it has interesting properties worth investigating. The investigation of unsuper-

vised learning would form the basis for a valuable continuation of the work presented

herein.

Before leaving the subject of unsupervised learning, we point out that as the new

domain D 2 is formed, points such as P 4 in Fig. 7 become excluded from the class. Such

an exclusion from the class is analogous to "forgetting" because of lack of repetition.

Forgetting is the characteristic of not recognizing P 4 as a member of the class, although

at one time it was recognized as belonging to it.

3. 3 THRESHOLD SETTING

In the classification of an event P, the mean-square distance between P and members

of each of the categories is computed. The distance between P and members of a cate-

gory C is what we called "similarity", Sc(P), in which the "sense" in which "distance"

is understood depends on the particular category in question. We then stated that, in a

manner analogous to decisions based on maximum likelihood ratios, the point P is clas-

sified as a member of the category to which it is most similar. Hence, P belongs to

category C if Sc(P) is less than Sx(P), where X is any of the other categories.

Since in this special theory the function SC(P), which measures membership in cate-

gory C, was developed by maximally clustering points of C without separating them from

points of other sets, there is no guarantee, in general, that a point of another set B may
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Fig. 8. Categorization.

not be closer to C than to B. This is guaranteed only if points of the sets occupy dis-

jointed regions. A graphical illustration that clarifies the comparison of similarities

of a point to the different categories is shown in Fig. 8. In this figure the elliptical con-

tours SA (P), SA (P), .... indicate the locus of points P in the signal space that is at
1 2

a mean-square distance of 1, 2, . , from members of category A. The loci of these

points are concentric ellipsoids in the N-dimensional signal space, shown here in only

two dimensions. Similarly, SB (P), SB (P), ... , and SC (P), SC (P) ... are the

loci of those points whose mean-square distance from categories B and C, respectively,

are 1, 2 .... Note carefully that the sense in which distance is measured at each of

the categories differs as is indicated by the different orientations and eccentricities of

the ellipses. The heavy line shows the locus of points that are at equal mean-square

distances from two or more sets according to the manner in which distance is measured

to each set. This line, therefore, defines the boundary of each of the categories.

At this point in the discussion it will be helpful to digress from the subject of thresh-

olds and dispel some misconceptions that Fig. 8 might create regarding the general

nature of the categories found by the method that we described. Recall that one of the

possible ways in which a point not belonging to either category could be so classified

was by establishing a separate category for "everything else" and assigning the point

to the category to which its mean-square distance is smallest. Another, perhaps more

practical, method is to call a point a member of neither category if its mean-square

distance to the set of points of any class exceeds some threshold value. If this threshold

value is set, for example, at a mean-square distance of 3 for all of the categories in

Fig. 8, then points belonging to A, B, and C will lie inside the three ellipses shown in

Fig. 9.
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It is readily seen, of course, that there

is no particular reason why one given mini-

mum mean-square distance should be

selected instead of another; or, for that
r- t -r 4h4- i1i- 4 A4 -_ - -h A
IlliLLtU , WILy Llllb /III.Ll±±ilUi 1 ULLidIllA;C 0IIUUlU

be the same for all categories. Many logi-

cal and useful criteria may be selected for

determining the optimum threshold setting.

Here, only one criterion will be singled out

as particularly useful. This criterion
..... . t-- -- A--'-----' . ..... . 1. .- _ _

requires mat me minimum nresnolas De

Fig. 9. Categorization with threshold. set so that most of the labeled points fall
into the correct category. This is a funda-

mental criterion, for it requires the system

to work best by making the largest number of correct decisions. In decision theory the

threshold value depends on the a priori probabilities of the categories and on the costs

of false alarm and false dismissal.

The criterion of selecting a threshold that will make the most correct classifications

can be applied to our earlier discussions in which the boundary between categories was

determined by equating the similarities of a point to two or more categories. In the par-

ticular example of Fig. 6, where a point could be a member of only one of two categories

A and B, the difference SA - SB = 0 formed the dividing line. There is nothing magical

about the threshold zero; we might require that the dividing line between the two cate-

gories be SA - SB = K, where K is a constant chosen from other considerations. A

similar problem in communication theory is the choice of a signal-to-noise ratio that

serves as the dividing line between calling the received waveform "signal" or calling it

"noise. " It is understood, of course, that signal-to-noise ratio is an appropriate crite-

rion on which to base decisions (at least in some cases), but the particular value of the

ratio to be used as a threshold level must be determined from additional requirements.

In communication theory these are usually requirements on the false-alarm or false-

dismissal rates. In the problem of choosing the constant K, we may require that it be

selected so that most of the labeled points lie in the correct category.

3.4 PRACTICAL CONSIDERATIONS

In considering the instrumentation of the process of categorization previously

described, two main objectives of the machine design must receive careful consideration.

The first is the practical requirement that all computations involved in either the learning

or the recognition mode of the machine's operation shall be performed as rapidly as

possible. It is especially desirable that the classification or recognition of a new event

be implemented in essentially real time. The importance of this requirement is readily

appreciated if the classificatory technique is considered in terms of an application such
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as the automatic recognition of speech events, an important part of voice-controlled

phonetic typewriters. The second major objective, not unrelated to the first, is that

the storage capacity required of the machine have an upper bound, thus assuring that

the machine is of finite and predetermined size. At first glance it seems that the instru-

mentation of the machine of Fig. 6 requires a storage capacity proportional to the number

of events encountered during the machine's experience. This seems so because the set

of labeled events on which the computations are carried out must be stored in the

machine. We shall now show, however, that all computations can be performed from

knowledge of only certain statistics of the set of labeled events, and that these statistics

can be recomputed to include a new event without knowledge of the original set. There-

fore, it is necessary to store only these statistics, the number of which is independent

of the number of points in the set.

It will be recalled that there are two instances when knowledge of the data matrix is

necessary. The data matrix [F], given in Eq. 43, is the M X N matrix of coefficients

that results when the M given examples of the same category are represented as

N-dimensional vectors.

[F] =

fl 1 fl2 flN

f21 f22 fZN

fMl fMZ . . . fMN

(43)

The first use of this matrix occurs in the computation of the optimum orthogonal

transformation or metric that minimizes the mean-square distance of the set of like

events. This transformation is stated in the theorem in Section 2. 4 and is given in Eq. 37

as the product of an orthonormal and a diagonal transformation. Rows of the orthonor-

mal transformation [C] are eigenvectors of the covariance matrix [U] computed from

the data matrix of Eq. 43, and elements of the diagonal matrix [W] are the reciprocal

standard deviations of the data matrix after it has been transformed by the orthonormal

transformation [C].

The second use of the matrix [F] occurs when an unclassified event P is compared

to the set by measuring the mean-square distance between P and points of the set after

both the point and the set have been transformed. This comparison is replaced by the

measurement of the distance between the transformed point P and the mean vector of

the set after transformation. The quantities of interest in this computation are the mean,

the mean-square, and the standard deviation of the elements in the columns of the data

matrix after the orthonormal transformation.

Reduction of the necessary storage facility of the machine can be accomplished if

only the covariance matrix, the means, the mean squares, and the standard deviations

of the transformed data matrix are used in the computations, and if these can be
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recomputed without reference to the original data matrix. The expression of the above

quantities when based on M + 1 events may be computed from the corresponding quantity

based on M events and a complete knowledge of the M + 1 St event itself. Let us look

at the method of computation.

(a) The covariance matrix of M + 1 events

The general coefficient of the covariance matrix [U] of the set of events given by the

data matrix [F] is given by

u u = = f f - f f (44)ns sn n s n s

Note, incidentally, that the matrix [U] may be written as in Eq. 45a, where the matrix [J]

has been introduced for convenience. As a check, let us compute the general element uns.

1 [F-J]T[F-J] (45a)
[U] [FJ [F-J] (45a)

in which

[J] =

fl f2

fl f2

fl f2 f
n

The nth column of the [F-J] matrix, which becomes the

given in Eq. 46, as well as the s t h column of [F-J].

matrix coefficient uns
ns

uns = fln-fn
[ = ; fln fn. f2n-f2,

M

Uns =M - (fmn-fn) (fms -fs)ns m=1 n n s 

fMn-fn4 K. . ]

(45b)

th
n row of its transposition is

The product is the covariance

f2s-fs

fMs fs

(46)

=f f -f fns ns (47)

Now to compute the covariance based on M + 1 events, u ns(M+l), it is convenient

to store the N means fn for all values of n. It is also convenient to store the N(N+1)/2n
independent values of f fs. Both of these quantities may be updated readily as a new

event is introduced. The mean fnM+ based on M + 1 events may be obtained fromn
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the mean based on only M events, fM, from Eq. 48a, and f f may be obtainedn ns
from Eq. 48b.

-M
-M+1 Mn + fM+1,n (48a)
n M+l 

M
f f + f f

f M+1 fnfs M+1, nfM+1, s
fns = (48b)n s M + 1

Here, the superscript of the ensemble average indicates the number of events partaking

in the averaging, and f is the n coefficient of the M + 1 event. We now haveb"'1 M+1, n
everything necessary for computing the new covariance coefficients. The storage facility

required thus far is N(N+3)/2 + 1. The +1 is used for storing the number M. If the

covariance matrix is also stored, the necessary number of storage locations is (N+1) Z

this makes use of the fact that both [U] and [FTF] are symmetric matrices.

From the matrix [U] the orthonormal transformation [C] may be found by solving

the eigenvalue problem [C][U-XI] = 0. The matrix [C] has to be stored, requiring an

additional N2 storage locations.

(b) Mean of the pth column of the [F][C] = [F'] matrix

As stated earlier, one of the quantities of interest is the mean of the elements in a

column of the data matrix after its orthonormal transformation with [C]. The general

element of the [F'] matrix is f' given in Eq. 26b and in Eq. 49a, and its mean is givenmp
in Eq. 49b.

N
f' = n f c (49a)

n=l mn pn

M N N
M f c = f c (49b)

P Mm=l n=l mn pn npn

No additional storage is required for computing f' because all of the factors of Eq. 49b
P

are already known. An additional N locations must be made available to store the

N means, however.

(c) Mean square of pth column of the [F'] matrix

The mean-square value of elements of the pth column of [F'] is given in Eqs. 50a

and 50b.

M 2 M N N
fZ f_2 E f cc (50a)

Mf' f

m=l mp M m=l n=l s=l mn ms pn ps

N N _
f2 = f f c c (50b)

P n=l s=l n s pn ps

No additional storage is necessary for this computation. An additional N locations, how-

ever, must be available to store f' 
P
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(d) Standard deviation of the pth column of the [F'] matrix

The only remaining quantity necessary in the instrumentation of the recognition sys-

tem is the reciprocal standard deviation of the pth column of [F'], as stated in the theo-

rem of Section II. The standard deviation and the elements of the diagonal matrix [W]

are given by Eq. 51, where all the quantities are already known. An additional N loca-

tions are needed to store their values, however.

O 1c (51)
PP ( -rP 2 1/2

V f, f -p P

The total number of storage locations is about 2NZ for each of the categories to which

events may belong. If the number of examples M of a category is less than the number

of dimensions N of the space in which they are represented, the required number of

storage locations is about 2M . In order to utilize this further reduction of storage and

computational time, however, the M events must be re-expressed in a new coordinate

system obtained through the Schmidt orthogonalization of the set of M vectors repre-

senting the examples of the set. In the beginning of the learning process, when the num-

ber of labeled events is very much smaller than the number of dimensions of the space,

the saving achieved by Schmidt orthogonalization is very significant.

A practical remark worthy of mention is that at the beginning of the learning process,

when M is less than N, the solution of the eigenvalue problem [U-XI] = 0 may be greatly

simplified by recognition of the fact that [U] is singular if M < N. The nonzero eigen-

values of [U] in Eq. 45a are identical with the eigenvalues of the matrix [F-J][F-J]T:

Nonzero eigenvalues of [F-J]T[F-J] = eigenvalues of [F-J][F-J]T (52)

The first of the matrices is an N X N, while the second is an M X M, matrix. There

are N-M zero eigenvalues of the first matrix; the computational advantage of working

with the second matrix for M < N is therefore significant.

Let us look at the nature of the solution obtained with the two constraints of Eqs. 1 2b

and 13. It should be noted, first of all, that if the number of points in a set is equal to

or less than the number of dimensions in which they are expressed, then a hyperplane

of one less dimension can always be passed through the points. Along any direction

orthogonal to this hyperplane, the projections of points of the set F are equal. Along

such a direction, therefore, the variance of the given points is zero, leading to a zero

eigenvalue of the covariance matrix. This results in calling the corresponding eigen-

vector (the direction about which the variance is zero) an "all-important" feature. The

feature weighting coefficient Wn is thus unity or infinity, depending on which of the above

two constraints was applied. If the second, or constant volume, constraint were used,

each point of the set F used in learning would be correctly identified, and its distance

to the set F would be zero by the optimum metric. At the same time, the metric clas-

sifies each point of another category G as a nonmember of F. A new member of
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category F, on the other hand, would probably be misclassified, since it is unlikely

that the new member of F would have exactly the same projection along the eigenvector

as the other members had displayed. This misclassification would not occur if the num-

ber of examples of the category F exceeded the number of dimensions in which they were

expressed. There are several methods to prevent misclassification; for example, if

the first constraint were applied, misclassification of members of F would not occur.

Another fact of some importance that should be brought to the reader's attention is

the physical significance of the eigenvectors. The vector with the smallest eigenvalue

or largest feature weighting coefficient designates that feature of members of the set in

which the members are most similar. This is not equivalent to the feature that is most

similar to members of the set. The former is a solution of a problem in which we wish

to find a direction along which the projections of the set, on the average, are most nearly

the same. The second is a solution of a problem in which we wish to find the direction

along which the projections of the set are largest, on the average. The desired direc-

tion, in the first case, is the eigenvector of the covariance matrix with the smallest

eigenvalue; in the second case, it is the eigenvector of the correlation matrix [FTF]

with the largest eigenvalue. It can be shown that the latter problem is equivalent to

finding the set of orthonormal functions in which a process is to be expanded so that the

truncation error, which results when only a finite number of terms of the expansion are

retained, should be minimized, on the average. The set of functions having this property

are eigenfunctions of the correlation function of the process, and they are arranged in

the order of decreasing eigenvalues.

The important concepts of this section will now be summarized. Pattern recognition

consists of the twofold task of "learning" what the category is to which a set of events

belongs; and of deciding whether or not a new event belongs to the category. "Learning",

for the simple situation in which similarity to a class of things is determined solely

from examples of the class, may be instrumented in the form of the diagram of Fig. 6.

In this diagram, "learning" consists of the construction of metrics or the development

of linear transformations that maximize the clustering of points that represent similar

events. A distinction is made between "supervised learning" (learning on known examples

of the class) and "unsupervised learning" (learning through use of the machine's own

experience). The convergence of a learning process to correct category recognition,

in most cases, probably cannot be guaranteed. The problem of threshold setting for

partitioning the signal space is likened to the similar problem in the detection of noisy

signals, and may be solved as an extremum problem. Finally, some practical consider-

ations of importance in the mechanization of the decision process are discussed. It is

shown that only finite storage capacity is required of the machine that instruments the

techniques, and that the amount of storage has an upper bound that depends on the num-

ber of dimensions of the signal space.
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IV. CATEGORIZATION BY SEPARATION OF CLASSES

4. 1 OPTIMIZATION CRITERIA

The central concept of the special theory of similarity described in the preceding sec-

tions is that nonidentical events of a common category may be considered close by some

method of measuring distance. This measure of distance is placed in evidence by that

transformation of the signal space that brings together like events by clustering them

most. In this special theory no attempt was made to ensure that the transformations that

were developed should separate events of different categories.

T

./ ' 'I B

r,

Fig. 10. Separation of classes.

We shall now introduce criteria for developing optimum transformations that not only

cluster events of the same class but also separate those that belong to different classes.

Consider, for example, the transformation that maximizes the mean-square distance

between points that belong to different classes while it minimizes the mean-square dis-

tance between points of the same class. The effect of such a transformation is illustrated

in Fig. 10, where like events have been clustered through minimization of intraset dis-

tances, and clusters have been separated from each other through the maximization of

interset distances. The transformation that accomplishes the stated objectives can be

specified by the following problems.

Problem 1

Find the transformation T within a specified class of transformations that maximizes

the mean-square interset distance subject to the constraint that the sum of the mean-

square interset and intraset distances is held constant.

Note that for the sake of simplifying the mathematics, the minimization of intraset

distances was converted to a constraint on the maximization problem. Ifinterset dis-

tances are maximized, and the sum of interset and intraset distances is constant, then

it follows that intraset distances are minimized. We may impose the additional constraint

that the mean-square intraset distance of each class is equal, thereby avoiding the
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possible preferential treatment of one class over another. Without the latter constraint

the situation indicated with dotted lines in Fig. 10 may occur when minimization of the

sum of intraset distances may leave one set more clustered than the other.

This criterion of optimization is given as an illustrative example of how one may con-

vert the desirable objective of separation of classes to a mathematically expressible and

solvable problem. Several alternate ways of stating the desired objectives as well as of

choosing the constraints are possible. For example, the mean-square intraset distance

could be minimized while holding the interset distances constant. Another alternative is

to minimize intraset distances while holding the distances between the means a constant.

It can be shown that the solution of this minimization problem results in a transformation

which, together with the decision rule postulated to differentiate between members of the

different classes, is a sound result and has a counterpart in decision theory.

The optimization criterion just discussed suggests a different block diagram for the

process of categorization from that shown in Fig. 6. Here only a single transformation

is developed, which results in only a single metric with which to measure distance to all

of the classes. The classification of an event P is accomplished, as before, by noting

to which of the classes the event is most similar. The only difference is that now, simi-

larity to each class is measured in the same sense, in the sense exhibited by the trans-

formation that maximally separated events of different categories, on the average.

Problem 2

A second, even more interesting criterion for optimum categorization is the opti-

mization of the classificatory decision on the labeled events. Classificatory decisions

are ultimately based on comparing the similarity S (mean-square distance) of the event

P with the known events of each class. If P is chosen as any member of Class A, for

example, we would like to have SIP,{Am} I < S IP, Bm} on the average, where {Bm is

the set of known members of any other Class B. Similarly, if P is any member of B,

then S P,{Bm I < SIP,{Am}I. The two desirable requirements are conveniently com-

bined in the statement of the following problem.

Find the metric, or transformation, of a given class of transformations that maxi-

mizes S I P. Bm I - S I P, Am} , on the average, if P belongs to Category A, while

requiring that the average of S IP,Am I - S IP, {Bm} I for any P contained in Category B

be a positive constant. The constraint of this problem assures that not only points of

Category A but also those of B are classified correctly, on the average. The symmet-

rical situation where S P,{Am - S IP,{Bm} I for P E B is also maximized leads to the

same solution.

It is important to note that the above problem is not aimed at maximizing the number

of correct decisions. Instead it makes the correct decisions most unequivocal, on the

average. It is substantially more difficult to maximize the number of correct classifica-

tions. For that purpose a binary function would have to be defined which assumes the

more positive of its two values whenever a decision is correct and, conversely, assumes
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the lower value for incorrect classifications. The sum of this binary function evaluated

for each labeled point would have to be maximized. This problem does not lend itself to

ready analytical solution; it may be handled, however, by computer methods.

4.2 A SEPARATING TRANSFORMATION

The particular linear transformation that maximizes the mean-square intereSt dis-

tance while holding the sum of the mean-square interset and intraset distances constant

is developed below. Recall that the purpose of this transformation is to separate events

of dissimilar categories while clustering those that belong to the same class.

The mean-square distance between the M 1 members of the set {Fm} and the M 2 mem-

bers of the set {Gp}, after their linear transformation, is given in Eq. 53, where f and

gps are, respectively, the s components of the m and p members of the sets {Fm}
and {Gp}. For the sake of notational simplicity this mean-square interset distance is

denoted by S I{Fm},{Gp} I and is the quantity to be maximized by a suitable choice of the

linear transformation. The choice of the notation above is intended to signify that the

transformation to be found is a function of the two sets.

M1 M 2

S({Fm}, {Gp}) 1 Z
1 2 m=l p1=l

N

E Wns(fms -gps) ]
2

(53)

The constraint that the mean-square distance 0 between points, regardless of the

set to which they belong, is a constant, is expressed by Eq. 54, where y is the coefficient

of any point belonging to the union of the sets {F} and {G}, MT = (1 2 ), and

M = M1 + M 2 .

M

MT m=l

M N

p=l n=l :1 Wns(yms - ps)Ss t
Both of the above equations may be simplified

sums and interchanging the order of summations.

we obtain Eqs. 55 and 56.

N
S({Fm}, {Gp}) = E

p n= 1

where

1
xsr xrs MM

1 2 m=l

and

= constant K (54)

by expanding the squares as double

Carrying out the indicated operations,

N

:1 r1 nsnrXsr

M 2

p-(f ms ps)(f mr -gpr )
P=l

(55a)

(55b)

(56a)
N N N

0= > X wnr t = K
n=l s=l r=l nr sr
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where

M M

tsr =trs - Z (Y -ms-Y ps)(Y - ) (56b)
T m=1 p=lms psmr pr

The coefficient xsr is the general element of the matrix [X] that is of the form of a covar-

iance matrix and arises from considerations of cross-set distances. The matrix [T] with

general coefficient tsr, on the other hand, arises from considerations involving distances

between the total number of points of all sets.

We now maximize Eq. 55, subject to the constraint of Eq. 56a, by the method of

Lagrange multipliers. Since dwns is arbitrary in Eq. 57, Eq. 58 must be satisfied.

N N FN 

dS- XdO = 1 dwns Wnr(Xsr-Xtsr = 0 (57)n=l s=l i -1

N
Wnr(Xsr-t sr) = n= 1,2 ... , N; s=1,2, ... ,N (58)

r=l

Equation 58 can be written in matrix notation to exhibit the solution in an illuminating

way. If we let Wn be a vector with N components, wnl ... nN, then Eq. 58 may be

written as

W [X-XT] = 0

W [X-XT] = 0 (59a)

WN[X-XT] = O

By postmultiplying both sides of the equation by T , we obtain Eq. 59b, which is in the

form of an eigenvalue problem.

W [XT -1-I] = 0

Wz[XT -xI] = 0 (59b)
. . . . . . . . . .

WN[XT 1-xI] = O

Note, that T 1 always exists, since T is positive definite. Equations 59a and 59b can

be satisfied in either of two ways. Either Wn , the n th row of the linear transformation

described by the matrix [W], is identically zero, or it is an eigenvector of the matrix

[XT-1]. We must make a substitution in the mean-square interset distance given by

Eq. 55a in order to find the solution that maximizes S. To facilitate this substitution,

we recognize that through matrix notation, Eqs. 55a and 56a can be written as Eqs. 60

and 61.
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N T
S({Fm},{Gp}) = Wn[X] Wn (60)

N
= E WWn[T] WT= K (61)

n=l

But from Eq. 59a we see that W X may always be replaced by kW T. Carrying out this

substitution in Eq. 60, we obtain Eq. 62, where the constraint of Eq. 61 is also utilized.

N
S({Fm},{Gp}) = k Z W TW XK (62)

m pc nl- n. n

It is now apparent that the largest eigenvalue of [X-XT] = 0 yields the rows of the trans-

formation that maximizes the mean-square interset distance, subject to the constraint

that the mean-square value of all distances is a constant. The transformation is stated

by Eq. 63, where W1 = 1 1 , w1 2 , .. ., WiN = the eigenvector corresponding to Xmax'

[W]

W11 w 1 2 '.. WIN

W11 w 1 2 ... WIN

Wl1 w 1 2 .. WIN-- ~~~~i

(63)

The transformation of this equation is singular, which expresses the fact that the

projection of the points along the line of maximum mean-square interset distance and

minimum intraset distance is the only impor-

tant feature of events that determines their
t / To f A- 1, I _ I Tl I _ 

t1T) class membership. Ihis is illustrated in

S(P, {(B) Fig. 11, where line aa' is in the direction of

the first eigenvector of the matrix [XT-1].

A point of unknown classification is grouped

in Category B because the mean-square dif-
ference between its projection on line aa anda

- ference between its projection on line aa' and

I _____ P the projection of points belonging to set B,

S IP,{B} 1, is less than SIP,{A}I, the corre-

Fig. 11. A singular class-separating sponding difference with members of set A.
transformation.

Forcing the separating transformation to

be nonsingular is possible by the imposition

of a different constraint on the maximization. Unfortunately, the mathematical difficulty

of imposing nonsingularity directly is a formidable task. In general, it requires evalu-

ating a determinant, such as the Gramian, and assuring that it does not vanish. In the

following discussion, at first a seemingly meaningless constraint will be imposed on the

maximization of the mean-square interset distance. After the solution is obtained, it will
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be shown that the meaningless constraint can be converted to a constraint that holds the

mean-square of all distances constant - the same constraint that we used before.

The mean-square interset distance to be maximized is given by Eq. 55a, which is

reproduced here as Eq. 64.

N N N

S(F},G ) Z wnswnr xsr (64)
n=l sl r1 ns n s

The constraint that we shall impose is that the mean-square length of the projections of

all distances between any pair of points onto the directions Wn be fixed, but in general,

different constants. This constraint is expressed by Eq. 65, which differs from the pre-

viously used constraint of Eq. 56 only by fixing coordinate by coordinate the mean-square

value of all possible distances between points.

N N
wns w nrt = K n 1 2,. .. N (65)

s=l r ns nrsr n

Assigning an arbitrary constant kn to the differential of each of the above N constraints

and using the method of Lagrange multipliers in the maximization of S above, we obtain

Eq. 66.

N N N N
dS - 1 X n dKn = s 1 dw nsr (xsr= nsr 0 (66)

When we make use of the convenient matrix notation employed earlier, we obtain Eq. 67,

which differs significantly from Eq. 59a, despite the similar appearance of the two equa-

tions.

Wl[X-X 1T ] 0

Wz[X- 2 T] = (67)

WN[X-XNT] = 0

The solution of Eq. 67 states that each row of the linear transformation, Wn , is a differ-

ent eigenvector of the [XT- 1] matrix. The transformation [W] is therefore orthogonal.

Equation 68 is a further constraint that converts that of Eq. 67 to holding the mean-

square of all distances constant, and thus accomplishes our aim.

N

K= X Kn (68)
n= I

Note that before we knew that the rows of the transformation [W] would be orthogonal,

the condition expressed by Eq. 68 did not fix the total distances. The procedure above

resulted in finding the nonsingular orthogonal transformation that optimally separates

the classes and optimally clusters members of the same class.
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We shall now compute the mean-square interset distance S of Eq. 64. To facilitate

the computation, S will be written in matrix notation:

N
S({Fm},{Gp}) W XWT (69)n n

From Eq. 67 it is seen, however, that if S is maximum, W nX may be replaced with

X WnT to obtain Eq. 70 from Eq. 65 (in matrix notation)

N
S (F G }) xW TW (70)maxm' p n=1n n nn

T
where W TW = K . Equation 71 is thus obtained. It is now readily seen, withn n n
reference to Eq. 62, that the upper bound on the mean-square interset distance is

achieved by the singular transformation discussed earlier, and we pay for forcing

the transformation to be nonsingular by achieving only a reduced separability of

classes.

N

Sma({Fm},{Gp}) = XnK (71)n=l n n

Before leaving the discussion of class-separating transformations, a few important

facts must be pointed out. A simple formal replacement of the matrices X and T by

other suitably chosen matrices yields the solution of many interesting and useful prob-

lems. It is not the purpose of the following remarks to catalog the problems solved by

the formal solution previously obtained; yet some deserve mention because of their

importance. It may be readily verified, for instance, that replacing T by I is equiva-

lent to maximizing the between-set distances, subject to the condition that the volume of

the space is a constant. The transformation that accomplishes this is orthogonal with

rows equal to different eigenvectors of the matrix X. This is a physically obvious result,

of course, since the eigenvectors of X are the set of orthogonal directions along which

interset distances are maximized, on the average. A figure that would illustrate the

result is very similar to Fig. 1.

Another replacement that must be singled out is the substitution of the matrix L for

T, where L is the covariance matrix associated with all intraset distances (distances

among like events). Eigenvectors of [X-XL] form rows of the transformation that maxi-

mizes interset distances while holding intraset distances constant. This problem is

essentially the same as the maximization of interset distances while holding the sum of

interset and intraset distances constant, yet the relative separation of sets achieved by

the two transformations is different. The difference may be exhibited by computing the

ratio of the mean-square separation of sets to the mean clustering of elements within

the same set, as measured by the mean-square intraset distance. It can be concluded,

therefore, that the constraint employed in the maximization of interset distances does

have an influence on the degree of separation achieved between sets.
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Throughout this section the class-separating transformations were developed by ref-

erence to the existence of only two sets, Fm} and {Gp}. The results obtained by these

methods are more general, however, because they apply directly to the separation of an

arbitrary number of sets. For instance, in the maximization of the mean-square inter-

set distance, there is no reason why the matrix X should involve interset distances

between only two sets. An arbitrary number of sets may be involved, and the interset

distances are simply all those distances measured between two points not in the same

set. Similar arguments are valid for all the other matrices involved. The only precau-

tion that must be taken concerns the possible use of additional constraints specifying

preferential or nonpreferential treatment of classes. These additional constraints may

take the form of requiring, for instance, that the mean-square intraset distance of all

sets be equal or be related to each other by some constants. Aside from these minor

matters, the results apply to the separation of any number of classes.

4.3 MAXIMIZATION OF CORRECT CLASSIFICATIONS

The correct classification of points of the set F are made more unequivocal by the

linear transformation that makes any event F n of set F more similar to members of F,

on the average, than to those of another set G. One of the ways in which the average

unequivocalness of correct classificatory decisions may be stated mathematically is to

require that a numerical value associated with the quality of a decision be maximized,

on the average. Of the several quantitative measures of the quality of a decision that may

be defined, one that readily lends itself to mathematical treatment is given in Eq. 72.

The difference in the similarity between a point P and each of the two sets, F and G,

is a quantity Q, which increases as the decision regarding the classification of P becomes

more unequivocal.

S(P,{Gm}) - S(P,{Fm}) = Q (72)

Since decisions in previous sections were based on the comparison of Q with a suitable

threshold value (such as zero), we now want to find that linear transformation that maxi-

mizes Q, on the average, whenever Q is to be positive. If P is a member of the set F,

then P is closer to F than to G, and thus Q is to be positive. The maximization of Q

for P E F results in maximizing the margin with which correct decisions are made, on

the average. The foregoing maximization is stated in Eq. 73, subject to the constraint

expressed by Eq. 74. The latter simply states that if P E G, the average decision is

still correct, as measured by the margin K.

n

S(F n,{ G p }) - S(F n ,{F m } ) = Q maximum (73)

subject to

n
S(G,{F}) - S(Gn,{Gp}) = K = constant > 0 (74)
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Maximization of Q + K has the same solution.

By utilizing previously obtained results, these equations are readily solved for the

optimum linear transformation. Rewriting the first term of Eq. 73, we note that it

expresses the mean-square interset distance between sets F and G and may be written

as in Eq. 75, where Eq. 53 and the simplifying notation of Eq. 55 are employed.

n M

S(F ,{Gp}) = S({Fn},{Gp}) = MIM22 m=l

n N
S(Fn,{Gp}) = 

n=l

M 2 N N 2

p 1 1w ns(fms -gps
p= n = 1

N N

Z w w nswnr x sr
s=l r=l

The second term of Eq. 73 is the mean-square intraset distance of

expressed as in Eq. 76. The argument of the covariance coefficient

it is a covariance of elements of the set F.

n M
S(F,{Fm}) = S({Fn},{Fm }) = -1 l

(M-1) M 1 p=l

M1

m=l

(75a)

(75b)

set F and can be

usr(F) signifies that

N N 2

n >3 Wns (fps fms )
n=:1 L=1 j

(76a)

n 2M 1 N

S(Fn{Fm}) M 1 - 1 
1 n= 1

N N

Xs~ r1 nswnr sr(F)s=1 r=l

Similarly, the first term of Eq. 74 is the mean-square interset distance, and the second

term is the intraset distance of set G. The maximization problem can thus be restated

by Eqs. 77a and 77b.

N
maximize Q = 

n= 

N N F 2M

s 1 r ns nr sr M Iusr()

subject to

N N N 2M 2 2 
K=>3 >3 >3 xw w (G

n=1 s1 r1 nsnr sr M 2 -1 Usr
nlslrl~~~~~~~~~~)

Following the methods used earlier, we can write the

inspection.

dQ - dK =
N N N 2M

dw ns w nr sr M 1- M1 Usr(F)
n= sl =1 

solution of this problem by

x sr M2- 1 usr(G)}]

(78)

From Eq. 78 it follows that Eq. 79a must hold, where asr and ,sr are given by Eqs. 79b

and 79c.
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N
E Wnr (asr-X sr)=O n=1, 2... N; s= 1,2,...,N (79a)

r=l

2M
a sr sr M Usr(F) (79b)

2M 2

2Psr s M -1 Usr(G) (79c)

By reference to earlier results, such as those expressed by Eq. 58, the transformation

whose coefficients wns satisfy an equation of the presiding form is the solution of the

eigenvalue problem of Eq. 80, where Wn is a row of the matrix expressing the linear

transformation.

W,[a-X3] 0

W2 [a-Xp] 0 (80)

WN[a-Xp] 0

Analogous to the arguments used in the previous section, the above solution yields a

singular transformation. Forcing the transformation to be nonsingular, in the manner

already outlined, results in the optimum transformation as an orthogonal transformation,

where each row of the matrix [W] is an eigenvector of [a-kp] = 0. Furthermore, it is

readily shown that the solution so obtained indeed maximizes Q.

It is interesting to note that the maximization of the average correct classifications

can be considered as the maximization of the difference between interset and intraset

distances. This alternate statement of the problem can be exhibited by the addition of

Eq. 77b to Eq. 77a.

N N N (2M 2M2 
+- K= s nw w wnrsr 1M- 1 Usr(F) + M2 sr(G) 9 (81)

But the expression within the braces is simply the covariance associated with allsr
intraset distances. Since K is a constant, the maximization of Eq. 81 is equivalent to

the maximization of Q.

In summing up the results of this section, we see that the problem of learning to

measure similarity to events of a common category, while profiting from knowledge of

nonmembers of the same category, can be treated as a maximization or minimization

problem. A metric, or a linear transformation, is found from a class of metrics, or

transformations, that solves mathematical problems that express the desire not only to

cluster events known to belong to the same category but also to separate those that belong

to different categories. Within the restricted class of metrics, or transformations,
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considered in this section, the solutions are in the form of eigenvalue problems which

emphasize features that examples of a category have in common, and which at the same

time differ from features of other categories.
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V. NONLINEAR METHODS IN CLASSIFICATORY ANALYSIS

A number of different ideas that deal with nonlinear methods in classificatory analy-

sis will now be discussed. First, we consider the enlargement of the class of transfor-

mations so that the distribution of similar events may be altered in a larger variety of

ways. Next, we present another geometric interpretation of classification that gives

rise to a slightly different decision rule from that used before. The relationship between

the two is explored. Finally, we present a set of miscellaneous unsolved problems and

thoughts that represent directions that may be taken by continuing research.

5. 1 ENLARGING THE CLASS OF TRANSFORMATIONS

The central concept motivating the development of this theory is that there is a

transformation that exhibits the category defining common attributes of members of a

set, and that this transformation can be found from the solution of a problem that opti-

mizes, with respect to the choice of a specific transformation, some property of a set

of known events. In previous sections, several different properties of the set of known

events were investigated in regard to their application as optimization criteria.

Clustering of points of the same set, maximal separation of events of different sets, and

maximization of the unequivocalness of a classificatory decision are only a few of the

criteria to note. The principal limitation of the results obtained from these considera-

tions stems not from the optimization criteria but from the limitation on the class of

transformations among which the optimum was sought.

Achieving success with the linear methods explored thus far requires that the dis-

tribution of like events be well fitted by an ellipsoidal boundary, or, at least, ellipsoidal

boundaries fitted to different categories should not intersect. The methods developed in

previous sections describe the linear transformation, or the error criterion with which

distance is measured, which maximizes the correlation between like events and mini-

mizes it between unlike ones. It is clear, however, that for many categories high

correlation may not exist between like events even after their linear transformation.

Successful classification even of categories of this type may be achieved, if the class

of transformations among which the optimum is sought is enlarged. We recall that the

class of metrics given in Eq. 82 could be viewed as the application of the mean-square

error criterion after a linear transformation of the events. With use of the notation

often employed in engineering, the metric of Eq. 82 can be written as in Eq. 83 and can

be instrumented by the system of Fig. 12.

N FN 12
d2 (a,b) = Wsns(a s-b (82)

n= l n s

In Eq. 83, W(t, T) is a linear function of two variables, and the methods previously

described simply find the best one that minimizes the output, on the average, or
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performs some similar but preselected desirable operation.

d2 (a, b) = f J W(t, T)[a(t)-b(t)] dtj dT (83)

There are many categories of inputs whose members cannot be made "close" by any

linear network. Suppose, for instance, that a and b belong to the category of wave-

forms that have 5 zero crossings. Since the member waveforms of this category are

close to each other in the sense of having the same number of zero crossings and since

counting zero crossings is not a linear operation, it is evident that the methods described

will fail to learn the correct recognition of membership in the category of interest. On

the other hand, it is quite possible to employ linear methods to solve the problem suc-

cessfully if inputs are represented differently; that is, if the model of the physical world

from which the waveforms were obtained is altered. In this example the waveform acts

as its own model. In an arithmetized form, on the other hand, the waveform can be

represented by the coefficients of its expansion in one of several suitable generalized

harmonic functions. It can also be represented by the results of certain tests that can

be performed on the waveform. Linear methods can be forced to solve problems of the

type described, if the selection of the model of the physical world includes tests on

which a linear function can be found which are such that, as measured by the linear

functional, tests on different members of a category have similar outcomes. An extreme

example of such a test is the examination of the waveform in order to establish the num-

ber of times its magnitude is less than E. In the example above, waveforms with 5 zero

crossings would yield very similar results when subjected to this test, and no linear

functional at all is necessary to exhibit this property. The choice of the model, the

nature of the harmonic expansion, or the nature of the tests is an ad hoc choice on the

part of the designer. In this sense, therefore, the designer determines the class of

basically nonlinear problems that can be solved with linear methods. In the word recog-

nition example of Appendix C, for instance, it was an ad hoc choice based on past

experience to represent speech by sonograph recordings. Many of the other possible

representations of speech, such as the successive samples of the microphone output

voltage, could have resulted in the failure of linear methods to learn the categories.

The degree of success achieved by linear methods depends on the choice of the model

and the nature of the sets to be categorized. This dependence may be eliminated by

o(T)

h lt

d2(,b)

Fig. 12. Instrumentation of a class of metrics.
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enlarging the class of transformations within which we search for the optimum one. In

the categorization of waveforms of 5 zero crossings, for instance, the correct category

definition may be obtained if we do not restrict the network of Fig. 12 to be a linear

network. If the network contains nonlinear elements, such as flip-flops, and the like,

it is at least plausible that "having equal numbers of zero crossings" is a category that

can be learned.

In the following we would like to consider a class of nonlinear transformations.

Whereas before we considered the class obtained by measuring the Euclidean distance

on a linear transformation of a set of points, we now consider Euclidean distance

measured on a continuous nonlinear transformation of the points. This type of trans-

formation describes the operation of stretching and compressing a rubber sheet in an

arbitrary manner to bring members of a set closest to each other.

All of the minimization problems of the preceding sections can be extended and

carried out for nonlinear transformations as well. In the following section only two

of these will be derived as illustrative examples. The first minimization problem is

an extension of the method of clustering members of a category after their nonlinear

transformation. The second problem is an extension of the method of clustering mem-

bers of sets while separating sets. This problem is solved - within the class of linear

transformations - in Section IV.

The class of continuous transformations is too general to yield a practical solution.

In the discussion that follows, therefore, the class of transformations within which a

solution is sought will be restricted to a certain polynomial transformation.

Problem 1. A Clustering Transformation

Let us assume that each coordinate of the N-dimensional space undergoes a con-

tinuous transformation given by the polynomial of Eq. 84, which maps the origin into

itself.

K
y= a xp (84)

p=l np n

This transformation is illustrated in Fig. 13, which shows that a set of equally spaced

grid lines under transformation can be spaced in an arbitrary manner along each coor-

dinate. In this way the N-dimensional space can be locally compressed or expanded.

The square of the Euclidean distance between two points F' and F' obtained from them s
transformation of F m and Fs, respectively, is expressed by Eq. 85.

N K 2
d2e(Fn F) n P an pmn sn f d2 (Fm, Fs) (85)e m n=1 L np mn sn) m s

It is readily proved that Eq. 85 is indeed a metric if the transformation expressed by

Eq. 84 is single-valued and one-to-one. If we allow the folding of the space by not
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____

Fig. 13. A nonlinear transformation.

restricting the coefficients of the polynomial, we have a multivalued transformation;

and we no longer have a metric because d(Fm, Fs) may be zero even in Fm Fs. The

Euclidean distance, of course, can be made smaller between two points without the

restriction, and therefore d (F' , F s ) is a useful measure of distance on the transformed

space.

The problem is to find the particular nonlinear transformation of the type discussed

above which minimizes the mean-square distance between a set of points of a given cate-

gory after their transformation. In order to obtain a unique solution, we impose the

quite arbitrary constraint that a specific point x = (xol' Xo2 .''''' Xon) should be mapped

into another specified point, yo = (Yo1' Yo2 .. Yon ) -

The mean-square distance after transformation is given by Eq. 86, where M is the

number of elements in the set.

2 sm N
de(F'· F-) n= 

(M-1) n=I
C anp anr fpfrfpfr

p l r=l np nr n n n n

The notation can be simplified by letting Eq. 87 express the simplifying substitution

that yields Eq. 88a. In matrix notation this can be expressed by Eq. 88b.

fpfr fpfr u = u (n)
nn n n pr rp

(87)

-2F FIs,m ZM N
d· (F' F) : S({F}, {F})) = _ 

n=l

K

p=l

K

r 1 np nr rpr=l

) = 2M an (88T
S({FmI{F)s M-I Z a[U(n) a (88b

n= J

The constraint that xo map into yo is expressed by Eq. 89, which contains N different

constraints, one for each component of the mapping.
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K
y = a xP

p=1 np on
n= 1,2,..., N (89)

By defining the vector zn in Eq. 90, the above constraint may be readily expressed in

vector notation.

Zn = Xon' Xon' ' on' Xon(

T
y = a Iz = a · zon n n n n n= 1,2,...,N (91)

By using the method of Lagrange multipliers, S can be minimized subject to the con-

straints of Eq. 91:

N
ds- kXndyon =0 (92)

n= n

In a manner similar to the methods employed earlier, the solution of the minimization

problem is expressed by Eq. 93, which can be solved for the vector a n .

an[U(n)] - Xnzn= 0

an n[ 

n= 1,2,...,N

n= 1,2,..., N

The constant of kn can be evaluated by substituting Eq. 93b into Eq. 91 and solving for kn .

= an z = X zn [U (n)] zT
n n (94a)

(94b)n

Substituting the value of n into Eq. 93b, we obtain the coefficients of the transformation.
n

an ([___ _n

The mean-square distance S can now be computed by substituting Eq. 95 in Eq. 88b:

N
2M Nmmin = M - n= 

2
Yn 

i;n[ll l Y, 

Zn[I] (Zn[U 1(n)])

which may be simplified as

2M
min - M - 1 

n= 

L(n
",JU n)] znf

(93a)

(93b)

(95)
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Note that [U-l(n)]T = [U-l(n)], since [U- (n)] is a symmetric matrix. This fact allows

further simplification of Smi n and it can be shown that the extremum thus found is indeed

a minimum.

2
N Yn

Z M N n (97)
min- M- 1 Zn=l (zn[U l(n)]zT)

This transformation may be used to further cluster a set of points that have been maxi-

mally clustered by linear transformations.

Problem 2. A Class-Separating Transformation

Let us assume that each coordinate of the N-dimensional space undergoes a

continuous transformation given by the polynomial of Eq. 84. The object of this prob-

lem is to find that particular nonlinear transformation that minimizes the mean-square

distance between points in the same set, while keeping the distance between the means

of the sets a constant. Let us assume here, as in Section IV, that there are only two

categories, F and G. We see from Eqs. 88a and 88b that the mean-square distance

between points in the same set is the quantity Q expressed in Eq. 98.

s, m s, m
Q = de(F F') + d (Gn, G)

2M 1 N T 2Mz N

M 1 an[UF(n)] a + M I an[UG(n)] a (98)
1 2 nl= 

where M 1 and M 2 are the number of given samples of F and G, respectively. The other

symbols have the same meanings as in the preceding problem. The simplification of
A

Eq. 98 results from the definition of the matrix U(n), given in Eq. 99b.

N A T
Q = an[U(n)] an (99a)

n=l

where

2M 2M
[U(n)] M l [UF(n)] + M 2 1 [UG(n)] (99b)

The distance between the means of the transformed sets of points is given in Eq. 100

and is denoted by the constant K.

N K 2
K= E L anp fn gn

n=l p-l1 np 

N K K N

z Z C a a ( fP- f ,g -Rq ): an[B(n)] a (100)
n=l p=l q-l np nq n n n n n=l
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where [B(n)] is a matrix that has a general element bpq given by

pq (qp n -g101)

The minimization of Q subject to the constraint K can be carried out by the method of

Lagrange multipliers, and results in the familiar solution given in Eq. 102.

A

min(Q-XK) - an[U(n)-XB(n)] = 0 (102)

The optimum nonlinear transformation that clusters members of the sets while it keeps

the sets separated is a polynomial transformation in which the polynomial coefficients

are components of the eigenvector corresponding to the smallest eigenvalue of Eq. 102.

5. 2 GEOMETRICAL INTERPRETATION OF CLASSIFICATION

The geometrical interpretation of making decisions of classification is that the vec-

tor space in which events are represented by points must be divided into nonintersecting

regions, one region corresponding to each of the categories. A decision of classifica-

tion consists of assigning to the event to be classified the name of the category associated

with the region in which the event is located.

The decision procedure of the preceding sections constructed the boundaries of these

regions and the notion of "inside" versus "outside". The optimum size, shape, and

location for the boundaries was derived within the possible shapes that the class of trans-

formations considered at the time was able to generate.

The objective of the following discussion is to present a different geometrical inter-

pretation of making classification decisions and to show the relationship between the two

interpretations.

In order to recognize membership of a vector in a class represented by a set of

sample vectors, we want to find some invariant property of the set of samples. Let

the invariant property be ul(v1 , v2 , ... , vN), some function of the vector v. Invariance

is understood to mean that the function u1 (v) will have substantially the same value, say

K1 , whenever v is a member of class F. Similarly, u2 (v) is another function of the

vector v which is such that whenever v is a member of another class, G, u2(v) will

have substantially the same value, say K2 , but K2 # K 1. Since, according to our original

assumptions, any arbitrary point v can be the member of only one class, we can assume

a function u(v) which is such that whenever v is contained in class F, u(v) K 1 and

whenever v is contained in class G, u(v) K2 . The function u(v) is a surface over the

multidimensional space, and it is so constructed that along the u axis known samples

of the different classes fall into disjointed, nonoverlapping intervals. Figure 14

illustrates this situation for a two-dimensional vector space, where u(v 1 , v 2 ) is a three-

dimensional surface. The heights of the surface over samples of class F are highly

clustered, and the classes along u(v 1 , v2 ) are separable. It is readily appreciated that

49

_ _�__�_



U (V,,v 2 )

V2

Fig. 14. Under transformation u(v l , v 2 ), F and G are separable.

regardless of the manner in which points of the sets F and G are distributed, a surface

can always be constructed that clusters members of F and members of G along the height

of the surface and keeps the two clusters apart. Furthermore, it does not matter that a

class has several disjointed subclasses, as shown in Fig. 14. In spoken word recognition,

for example, F1 may represent male utterances and F 2 may represent female utterances

of the same word; yet the function u(v) has the same value over both F 1 and F2 .

Now, we shall show that minimization of the mean-square distance between members

of the same class after a transformation of the vector space is equivalent to the process

of constructing a surface u(v) in such a way that it has a minimum variance about the

mean over members of the same class.

The mean-square distance after a transformation u(v) is given in Eq. 103a. Squaring

and averaging with respect to m and n yield Eq. 103b, where au2(F) stands for the

variance after transformation u(v) of the set of points contained in F.

2 m,n 1 M M
d (F, F) 2 _ [u(F )-u(F (103a)m n M2 m=1 n=1

n2 Z [u2(FF) mu(Fn)+u (Fn) =2u (F)2u(F)= 2 U(F)

(103b)
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The class of functions u within which the minimization is carried out again limits the

nature of the distributions of F and G samples that can be successfully classified. In

particular, if the function u(v) is of the form given in Eq. 104, then, by suitable choice

of the degree K, a completely general nonlinear function can be arbitrarily closely

approximated in a finite region of the vector space.

K K K n
u(vlIv ... v a.. v (104)

n=0 j=0 i=0

The decision rule of the previous sections can now be given another simple geometri-

cal interpretation. A decision consists of evaluating the height of the surface over the

vector to be classified, u(v), and comparing this height with the average heights over

the two sets of given samples. The decision is that v is a member of that class to which

it is closer, on the average, after transformation u.

It is shown in Appendix B that the decision rule of the preceding sections is equivalent

to Bayes' rule, if the transformation is linear and the probability densities of the sets

of N-dimensional vectors are Gaussian. It has been shown by my colleague R. Hines,

that if the transformation is allowed to be completely arbitrary (but piecewise continu-

ous) then this decision rule is equivalent to Bayes' rule even for arbitrary probability

densities of the classes F and G. The proof was based on certain arguments of mathe-

matical logic. A shorter proof employing calculus of variations is given in Appendix D.

5. 3 SOME UNSOLVED PROBLEMS

The preceding mathematical developments were based on the assumption that sets of

noise-free examples of the categories are given and that membership determining func-

tionals must be developed from these examples. There are many practical instances,

however, when noise-free samples of the category are not available. In these instances

the observed differences between samples are not solely caused by genuine, permissible

variants of the class, but are affected by the corrupting influence of noise. In the classi-

fication of waveforms of 5 zero crossings, for example, the presence of noise may cause

a change in the number of zeros, a fact that has serious consequences in learning the

correct category definition. In another example of practical interest, this effect is even

more pronounced. Consider the automatic recognition of the acoustic signals caused by

a given type of motor vehicle and its differentiation from those of other types. The

situation may arise in which the vehicle types of interest may be observed only in a

noisy environment in which many types of systematic and random noises corrupt the

desired signals. These noises affect the decision regions determined by the learning

process and thus result in an incorrect definition of the category.

Quite a different situation exists if learning is done on uncorrupted samples of the

category, but events to be classified exist in a noisy environment. In this case the prob-

lem becomes that of detecting a class of signals in noise. Neither the problem of learning

on noisy examples nor that of recognizing in the presence of noise has been solved,
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although the latter is expected to have a fairly straightforward solution.

Another unsolved problem not yet sufficiently investigated concerns the convergence

of the "learning" process to the identification of the correct category. It must be

realized, of course, that no statement can be made about convergence to the correct

category unless something can be said about how examples on which we learn are chosen

from the set of all possible members of the various categories. The question then

remains of whether it is possible to specify the method of selection of examples suffi-

ciently to prove convergence and yet insufficiently enough to leave the category undeter-

mined. It is doubtful that this is possible. Consider the following hypothetical example

as motivation of this doubt. Suppose that it can be shown that convergence to the correct

category necessitates that the examples be uniformly distributed over the region of sig-

nal space occupied by all members of the category. It then seems that the examples,

together with the knowledge of their distribution over the set of all members of the

category, serve as a definition of the category, and make it unnecessary to try to "learn"

it. Although of doubtful value, convergence must be studied, for the reward is great if

a solution is reached. In most practical instances in which pattern recognition is

employed there is no way of assuring adherence to the method of selecting examples,

even if they could statistically or otherwise be specified. Convergence, therefore, should

be studied perhaps only empirically and be considered primarily in the comparison of

categorization schemes.

The methods of categorization described in the preceding sections are deter-

ministic. Given a set of examples of a category, the machine's performance

can be determined exactly. In the remaining portion of this section the utilization

of already learned concepts or categories in a more efficient classification of

new events will be described. This application results in machine performance

on a set of inputs that is not predictable solely from knowledge of the machine's

circuit diagram and examples of the category in question. As a result of exposure

to a set of examples, the machine forms a concept of the category through

the construction of the optimum metric that measures membership in the cate-

gory. This metric expresses, and is capable of measuring, similarity to an

already learned category. Suppose, for example, that the category "square" has

been learned by the presentation of a set of examples of squares; and, as a

result, similarity to a square, or squareness, can be expressed quantitatively.

One can now consider the introduction of the metric measuring squareness as

a new dimension of the signal space. Squareness is a new measurable property

of the environment; it is a test that has a quantitative outcome of the same

general type as the tests on the environment that are performed by the original

N dimensions of the signal space. The interesting consequence of introducing

an already learned concept (squareness) as a new dimension of the signal space

is that the vocabulary of the machine is thereby enlarged. The machine is able

to describe its environment in a language that depends on the machine's previous
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experience. Presented with the same set of examples on which to learn a given

category, two identical machines with different prior experiences will react in

different ways. In some respects this is a phenomenon not unlike that which

we observe in human behavior.
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VI. GENERAL REMARKS ON PATTERN RECOGNITION

We would now like to present some philosophical ideas about the nature of pattern

recognition and to draw some conclusions regarding the relationship between pattern

recognition as a whole and this work in particular. No attempt will be made to describe

or even to comment briefly on individual works. Such an attempt is not within the scope

of this report. Guide lines for future work in pattern recognition and objectives to be

achieved, however, are discussed, since these seem to follow from the methods devel-

oped earlier in our report.

One of the chief difficulties confronting the reader of literature in pattern recogni-

tion and in artificial intelligence is the absence of a common terminology. This situa-

tion is quite understandable if we consider the wide range of problems tackled by

researchers of varied backgrounds. Engineers, mathematicians, psychologists, and

neurophysiologists work on problems dealing with character recognition, speech or

speech sound identification, automatic chess programming, mathematical theorem

proving, and machine translation of languages, to mention only a few of the research

areas.

Although the subject of this report is classification decisions in pattern recognition,

the word "pattern" has not been defined. No definition was given, partly because none

was needed and partly because a better understanding of the term may be gained now,

after the subject has been developed. A pattern can be defined as the set of invariants

of a class of signals. The invariants are those common features of the samples of the

class which have substantially the same numerical values regardless which sample is

singled out for examination. Thus we can define a pattern as those features of a set of

things in which members of the set are close.

There are two types of problems to be distinguished in pattern recognition. One is

the detection and extraction of the common pattern of a set of things through a process

of learning; the other is the recognition of the presence of an already learned pattern

in the set of things to be classified. Most of the special devices built to recognize dif-

ferent printed or handwritten characters, speech sounds, or things belonging to other

categories accomplish the task by recognizing the presence or absence of an already

known set of parameters in the input. In this sense these special devices operate in a

manner not unlike a switching circuit that makes decisions based completely on a "truth

table" built in by design. Learning in these devices is accomplished by the designer and

not by the machine; in fact, the machine's every operation in recognizing membership

in a category is spelled out in advance. It is for this reason that, no matter how ingen-

ious these machines may be, their design and development should not be confused with

fundamental research in pattern recognition, which should concern itself with machine

learning methods for automatically detecting the pattern. For a long time to come,

machines that recognize patterns learned and defined by human beings will demonstrate

superior performance over those that use machine learning to establish a definition of
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membership in a category, since intelligent human beings learn better than the best of the

machines of the near future. It is equally true that those methods of recognition that use

patterns fixed by design cannot solve general problems but only those for which the fixed

pattern expresses correctly the invariants of the class of similar signals. Machines

that learn are at least potentially capable of handling problems of far greater variety.

It is apparent, upon inspecting the fundamental differences between methods that rec-

ognize a known pattern and those that first learn it, that in the former the error criterion

with which similarity is judged is fixed by design, but in the latter only the rules for

arriving at an error criterion are determined. Although the second kind of machine may

very well be deterministic inasmuch as the output may be specified if the input is known,

this fact does not preclude its possessing a certain capability for learning. In the method

of categorization discussed in the preceding sections, prior to giving the set of inputs, we

do not specify what constitutes membership in a category or how to measure membership

in it. The method does specify, however, how to obtain the metric from the input with

which membership in the category is measured. This method of operation is quite differ-

ent from correlation, for example, where it is determined that similarity is always meas-

ured by closeness in the mean-square sense. The inflexibility of fixing the error criterion

in this way is reasonable only if there are other grounds on which a human may base such

a decision. Learning, however, in that case, is done by the human and not by the machine.

It is important that the error criterion be determined by the set of labeled examples

of the categories that are to be learned. If this were not done, the error criterion would

have to be built in by design and permanently fixed. This would lead to the unsatisfactory

situation of fixing the "sense" in which the things in a set are similar without first

inspecting them.

On the basis of the foregoing discussion, it is suggested that a meaningful way of

subdividing the field of pattern recognition should be based on whether the system under

consideration has a built-in error criterion for measuring similarity or whether such

a measure is developed through a built-in rule by the input itself. The systems that

develop error criteria can, in some respect, be considered a self-organizing or self-

adapting systems.

Besides the error criterion with which similarity is judged, the parallel or the

sequential processing of input information often receives a great deal of attention. There

are valid arguments in favor of both. The compromise between the speed of operation

and the system's complexity is encountered, as usual, whenever parallel or sequential

machine operation is considered. The sequential methods (decision trees and "reward

and punishment" methods fall in this category) are often relatively slow in learning,

*The Perceptron is an example of a "reward and punishment" method in which a
human observer rewards the machine by increasing the influence of those of the
machine's parts that partake in a correct decision (as judged by the observer) and in
which the machine is punished by reducing the influence of parts that contribute to incor-
rect decisions.

55

_ _____



but they usually require less equipment than methods of classification that use parallel

data-processing schemes. Although of a less fundamental nature than the matter of

fixed or undetermined error criterion, the method of processing input information is

of practical interest. It is probably not possible to decide categorically, once and for

all, which of the two is better; they need to be judged and compared only if the common

grounds for comparison are established. Such common grounds would be provided by

evaluating the performance of two machines (one sequential and one parallel) that use

the same error criterion and that try to solve the same problem. Only under such con-

ditions does it seem reasonable to pass judgment on the merits of one method or another.

Most of the methods of pattern recognition require a certain amount of preprocessing

before the application of the main technique. Figures are centered, rotated, normalized

in size, lines are thinned out, gaps are closed, and so on. These operations are per-

formed with the tacit assumption that category membership is unaffected by them. In

general, this is a dangerous assumption to make; it is equivalent to making a partial

statement of what constitutes similarity - a partial statement of the error criterion with

which members of a category are judged to be close. It is readily appreciated that from

a strictly operational point of view it is sometimes necessary to introduce some pre-

liminary operations such as those mentioned above. In this case, however, the effect

of the preliminary operations should be included in some other way to assure that the

transformation from the stimulus (the figure, word, or other thing) to its representa-

tion is a one-to-one transformation. If this is not assured and, for example, figures

are centered before the application of a technique, the possibility that the category defi-

nition should contain information about the position of the figure in the visual field is

excluded. The coordinate shifts necessary to center the figure can be introduced as

additional dimensions in the vector representation of a figure. If position in the visual

field is indeed unimportant in deciding membership in a category, examples of the cate-

gory will have a large variance in their position coordinates. This fact will be exhibited

by the techniques outlined in this report, for the optimum transformation will de-

emphasize the position-indicating dimensions of the signal space. But if position in the

visual field is of importance, the stimuli will be clustered along their position coordi-

nates, a fact that the optimum transformation will certainly exhibit.

It is important to realize that special-purpose devices, in which the designer decides

that certain properties of the input are not relevant to category membership, can be

constructed, and substantial savings in instrumentation may be realized. A general

theory and a general learning machine, on the other hand, should not allow represen-

tations of the input that destroy the one-to-one nature of the representation.

Recognition of membership in a category learned from a set of its known examples

has many practical applications. Some of these will now be described without attempting

to catalog them exhaustively.

In one set of applications, recognition of membership in a category is the desired

end result. Recognition of a specific spoken word or speech sound independently of the
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talker who utters it is an application that belongs to this set. Samples of the word spo-

ken by different talkers form the set of known examples of the category, and the meaning

of the spoken word is the name of the category. Recognition of a speaker and his sepa-

ration from other speakers independently of the words that are spoken is another prac-

tical application of the above type. The examples from which speaker recognition is

learned are segments of speech by the desired speaker in which each segment is repre-

sented by a single vector. Recognition of a foreign accent and recognition of a foreign

language are also problems of this type.

Recognition of a disease from all the symptoms of the patient is a further applica-

tion of the above type. In this problem where the techniques described in this report

are applied as automatic diagnostic aids, the patient's state, as measured by his symp-

toms, is represented as a vector in a multidimensional space. As stated earlier, the

dimensions of the space are quantitative tests that can be performed on the patient. The

patient's temperature, white blood cell count, sugar content as measured by urinanaly-

sis, and the results of other laboratory chemical or bacteriological tests illustrate some

of the dimensions of the space in which the patient, from a medical point of view, can be

characterized by a vector. In these dimensions the coordinate values are analog quan-

tities. In some of the other dimensions that represent questions which a patient may

be asked and which may be answered with "yes" or "no", the coordinate value is a

binary variable. Does it hurt when the abdomen is pressed? Yes or no. Is the patient's

throat red? Labeled examples from which recognition of a disease and its differentia-

tion from other diseases may be learned are patients with known diseases. In addition

to its use as a diagnostic aid, the technique described may serve as a research tool to

shed light on the nature of a disease and point out the most significant symptoms (the

eigenvectors) whose cause must be investigated.

In a second set of applications of the techniques described in this report the recogni-

tion of membership in a category is only an intermediate result. Speech compression

is an example. Consider the example in which the verbatim transmission of the text

of a spoken message is desired. Assume for the purpose of this example that the speech

bandwidth is 4 kc, that the speaker talks at the rate of 120 words per minute, and that

there are 6 letters in a word, on the average (including the space after each word). The

message rate of 12 letters per second in the teletype code of 5 bits per letter could be

transmitted at the same rate that the speaker is talking if 60 bits per second were sent.

The usual 30-cps bandwidth that is assumed to be sufficient to achieve this rate results

in the bandwidth compression of the original speech by a factor of 133. Using a phonetic

alphabet would result in a further increase of this factor. Pattern recognition is used

here to recognize the spoken words, phonemes, or other building blocks of speech, and

translate them into a correctly spelled text. It is by no means easy to accomplish this

task in practice; some fundamental problems, such as the segmentation of speech into

words, must be solved first. Similar problems arise in the transmission and storage

of pictorial information.
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While reading this report many questions have probably occurred to the reader and

many have remained unanswered. The field of pattern recognition is new and invites

questions - some touching on highly controversial issues. Through continuing work and

better understanding of the problems, it is hoped that the number of unanswered questions

will be reduced - to be replaced by new ones. Basic questions such as "Why use a geo-

metrical approach supported by decision theory?" may be raised. Other valid approaches

have been suggested, and several are under investigation by other researchers. These

have not been discussed in this report. Even within the geometrical approach a large

body of work remains to be done - work that this author intends to pursue.
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APPENDIX A

The Solution of Eigenvalue Problems

The frequency with which eigenvalue problems occur in classificatory analysis and

the difficulty with which they are solved warrants the careful examination of the available

methods of solution. The slowest link in the computations involved in the process of

forming category membership measuring functions is the solution of eigenvalue prob-

lems. It takes a considerable length of time for even a fast computer to solve for the

eigenvalues and vectors of a large matrix. This limits the speed with which the influ-

ence of a new event is felt on the recognition process. In order that machine learning

be carried out in essentially "real time," it is necessary to search for a physical phe-

nomenon or a natural process that is the solution of an eigenvalue problem. The natural

phenomenon must have enough controllable parameters to allow the setting up of an arbi-

trary positive definite symmetric matrix. The objective of this appendix is to focus

attention on the importance of finding such a natural phenomenon and to give an example

that - although not completely general, as we shall see, nor as practical as some would

like - does demonstrate the feasibility of solving eigenvalue problems very rapidly.

-% 1Z

Fig. 15. Two-loop lossless network.

Consider the 2-loop lossless network of Fig. 15 that is excited with a voltage

source, e, at its input. Letting the complex frequency be X and the reciprocal capaci-

tance (susceptance) values be S, we can write the loop equations of the network as

e1= (Ll+Llz) + k i - + 12 i

(105)

0=- [L 1 + ~ i + X(L2 2 +L 12 ) + z+S i
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Multiplying both sides of the equation by and writing it in matrix notation, we obtain

Eq. 106, where e and i are, respectively, vectors of the voltage excitations in the loops

and loop currents.

ke = i(X [L]+[S]) (106)

The matrices [L] and [S] are

-Llz L22 + L 1 S1 2 S22 + S1 2

If the input is short-circuited and the vector e is zero, any nonzero current that flows

in the network must flow at frequencies that satisfy Eq. 108, where use is made of the

knowledge that a lossless network must oscillate at pure imaginary frequencies X = jw.

The resulting equation is an eigenvalue problem of the same type encountered throughout

this report.

[X2 L+C] = 0 = [C-w 2 L] (108)

The matrix [L] is a completely arbitrary, symmetric, positive definite matrix in which

the coefficients are each controlled by (at most) 2 circuit elements. The matrix [C] is

also symmetric and positive definite, but its elements which are off the principal diago-

nal must be negative or zero. This does not have to be the case in the [L] matrix, for

a negative mutual inductance is quite realizable. Note, however, that if the mutual

capacitance is short-circuited, and the other capacitors are made equal (say, equal to

one), then the natural frequencies of oscillation of the short-circuited network satisfy

the eigenvalue problem of Eq. 109.

O= L- 1 I (109)

The most general 2-loop network represented by this equation is shown in Fig. 16, where

a transformer replaces the mutual inductances.
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The eigenvalues are the squares of the reciprocal natural frequencies of oscillation.

Components of the eigenvector corresponding to a given eigenvalue are the magnitudes

of the loop currents at the corresponding frequency.

Since lossless networks cannot be built, let us investigate the effect of losses in the

network of Fig. 15. If a small resistance is connected in series with every inductance

such that the frequency of oscillation is wd = (o-aZ) , where a is the real part of the

coordinates of the poles of the network, the error in using the damped natural fre-

quencies wd in place of the undamped frequencies may be calculated. The percentage

of error in determining the eigenvalues is given in Eq. 110, expressed in terms of the

Q of the resonant circuits.

100Percentage of error in eigenvalues = 100 (110)
(ZQ) - 1

Even for a lossy network with a Q of 10, the error is only 0. 25 per cent. We may thus

draw the conclusion that network losses do not seriously affect the accuracy of the eigen-

values.

The eigenvalues may be obtained by spectrum analysis of any of the loop currents.

This is readily accomplished by feeding the voltage across any of the series resistances

into a tunable narrow-band filter whose tuning frequencies at peak outputs yield the

eigenvalues. The corresponding eigenvector can be obtained by sampling the output

amplitudes of synchronously tuned narrow filters connected to measure each loop cur-

rent. The samples are taken when local peak outputs as a function of tuning are observed.

L33 S33

L22

S22

Fig. 17. Generalization of eigenvalue problem.

The size of the matrix solved by the preceding methods may be made arbitrarily
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large. The reader can readily verify that if the matrix whose eigenvalues and vec-

tors we wish to compute is N X N, then the network topology has to consist of

N nodes that are connected to each other and to ground by series LC networks as

illustrated by Fig. 17 for N = 3.
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APPENDIX B

Relationship Between the Measure of Similarity and the Likelihood Ratio

In this appendix the relationship between decisions based on a likelihood ratio and

those made by the elementary version of the theory developed in Sections II and III will

be discussed. We shall show that if the categories are statistically independent Gaussian

processes with unknown but, in general, different means and variances, then the meas-

ure S of Section II measures contours of equal a posteriori probability. That is, the

measure S(x, {Fm}), which measures the mean-square distance by a non-Euclidean met-

ric between a point (vector) x and M members of an ensemble of points {Fm}, is a

measure of the probability that x belongs to category F, given the observation x. Fixed

values of S correspond to contours of equal a posteriori probability. The ratio of

a posteriori probabilities is proportional to the likelihood ratio, the logarithm of which

will be shown equal to the numerical output of the block diagram illustrated in Fig. 6.

Consider the situation in which an arbitrary event x may be a member of only one of

two categories, F or G. The likelihood ratio that x belongs to F rather than to G is

expressed by the ratio of a posteriori probabilities in Eq. 111. This equation may be

simplified by Bayes' rule.

p(F/x) p(x/F) p(F)/p(x) pF(x)
-- = oc =(x) (111)

p(G/x) p(x/G) p(G)/p(x) PG(x)

The likelihood ratio is thus proportional to the ratio of the two joint probability densities

of the two Gaussian processes. If membership in either of the two categories is equally

likely, the proportionality becomes an equality.

Now let us examine the joint probability density PF(x), a factor of the likelihood

ratio (x). For the multivariate Gaussian process the joint probability density is given

by Eq. 112, where [U] is the covariance matrix of F and IUrsl is the cofactor of the

element with like subscripts in the covariance matrix. It should be noted that U rs1 / U

is an element of U1.

1 xexp r (x - x -m (l Za)
PF(XlX .... XN) ()N/2 lul1/Z r=1 s=l I r 5

lu1 s l r

= 1 exp N N.
PIT) NZ I 'i1/2 r=l s=l(2 )N/2 1 1/2 [urs] xr)rxsmsj (112b)

Contours of constant joint probability density occur for those values of x for which the

argument of the exponential is constant. The exponent expressed in matrix notation is

exponent = constant = - (x-mx)U' (x-mx) (113)
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We recall from the theorem of Section II that one of the operations on the set of

points {Fm} which the optimum metric performed was a rotation expressible by an

orthogonal matrix [C]. This is a pure rotation (an orthonormal transformation), where

columns of [C] are unit eigenvectors of the covariance matrix U.

Let y be a new variable obtained from x by Eq. 114. Substituting Eq. 114b in

Eq. 113, we obtain Eq. 115.

y = xC (114a)

x = yC 1 (1 14b)

exponent = - (y-my)C U-1[C1]T(ymy)T] (115)

Since C is orthogonal, the special property of orthogonal matrices that C- 1 = CT can

be used to simplify Eq. 115. This yields

exponent = - (ym)C T U C(ymy)T] (116)
I 1 (y-my)C y

Furthermore, since columns of C are eigenvectors of the covariance matrix U, the

matrix C must satisfy Eq. 117a, where A is the diagonal matrix of eigenvalues of

[U-XnI] = 0.

CT[U-A] C= 0; CTUC= C T AC = A (117a)

0

1A = 2 (117b)

°N

By taking the inverse of both sides of Eq. 117a and again employing the special property

of orthogonal matrices, Eq. 118 may be obtained. This expression, when substituted

in Eq. 116, produces the result stated in Eq. 119.

CTu-1c= A- 1 (118)

exponent = constant = (y-m )A- (y-my)T (119)

The quadratic form of Eq. 119 expresses the fact that contours of constant probability

density are ellipsoids with centers at my, the direction of the principal axes is along

eigenvectors of the covariance matrix, and the diameters are equal to the corresponding

eigenvalues. Converting the quadratic form of Eq. 119 to a sum in Eq. 120 exhibits this

result in a more familiar form, where Yn is the coordinate of y in the direction of the

nth eigenvector and mn is the mean of the ensemble in the same direction.
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1 N (yn-m)] (120)
exponent = Ln- n (1)

An expression of identical appearance can be derived from the exponent of the joint

probability density of category G. The differences between the two exponents are in the

directions of their eigenvectors and the numerical magnitudes of their eigenvalues and

ensemble means. Denoting the exponents in the two probability densities by f(x) and g(x),

we can write the logarithm of the likelihood ratio as in Eq. 121, where K is a constant

that involves the ratio of a priori probabilities and the ratio of determinants of the two

covariance matrices.

log (x) = K + f(x) - g(x) (121)

Now we shall show that S(x, {Fm}) = constant also satisfies Eq. 119, and that the

decision, comparison of Eq. 122 with a constant, is identical with basing decisions on

the likelihood ratio by means of Eq. 121. It will be recalled that S is the mean-square

Euclidean distance between x and members of {Fm} after both are transformed by a

linear transformation that consists of a rotation [C] and a diagonal transformation [W].

The rotation [C] is identical with that defined earlier in this appendix, and the elements

of the diagonal transformation are the reciprocal standard deviations of {Fm} in the

direction of the eigenvectors. The mean-square distance S may be expressed by

Eq. 122. With the use of Eq. 114b this can be simplified to Eq. 123, where Ym is the

transformation of F m

m

S(x, {Fm}) = (x-F ) CWIW C (x-Fm) =constant (122)

m
= (y-Y ) WIWT(y-Y )T (123)

But WIWT is a diagonal matrix with elements equal to the reciprocal variances of {Fm}.

From a comparison of Eqs. 24c and 40 we see that the variances are equal to the eigen-

values; and we obtain Eq. 124. Substituting this in Eq. 123 yields Eq. 125.

WIWT A- 1 (124)

m
constant = (-Y) A -l(y-Ym ) T (125)

Equation 125 can be brought into the form of the exponent of the joint probability density,

Eq. 120. Writing Eq. 125 as a sum and bringing averaging under the summation sign

yield
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m
N (yn-Y ) 

constant = n mn
n= n

(126)
N (Yn-Ymn)

= n-X

2
Expanding the square and adding and subtracting Yn from each term of the numerator
result in Eq. 127.

N 2 - 2

z- n- n
n= n

N 2 2
=N n - 2YnYn + Yn + n n

n=1 n

-- 22 2Since Y = mn, and Yn - Y = = Xn , this equation can be written in the simplifiedn n n n n n
form of Eq. 128, which is recognized as containing the exponent f(x) of the joint proba-
bility density.

N (y-mn)Z + n N (y -m )
constant =n N+ n = N + f(x) (128)

n=l n n= n

The difference of the two measures - the mean-square distance of x to category F minus
its mean-square distance to category G - is given in Eq. 129 and is seen to be a measure
of the logarithm of the likelihood ratio expressed in Eq. 121.

threshold T SF(x, {Fm}) - SG(x, {Gm})

T f(x) - g(x)

(1 29a)

(1 29b)
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APPENDIX C

Automatic Recognition of Spoken Words

In this appendix we would like to illustrate the application of the theory to a practical

problem in which membership in categories must be recognized by an automatic machine.

The method discussed in Section II will be employed in the automatically "learned" rec-

ognition of speech events. These events will belong to one of ten different categories:

the spoken words "zero", "one", "two", ... "nine". Each of these categories is repre-

sented by a number of utterances of the spoken digits made by a selection of male

speakers. Four hundred different utterances by 10 male speakers with regional accents

drawn from the northeast corner of the United States were used in this experiment. No

other attempt was made to control the selection of speakers or their rate of speech. The

choice of categories, indeed, even the selection of speech rather than of other types of

events, was dictated in part by the availability of an automatic machine to convert speech

to a set of vectors and in part by the desire to solve a practical problem.

Vector Representation of Spoken Words

The model of the physical world considered as adequate for representing the speech

events was obtained through use of an 18-channel Vocoder.* The Vocoder consists of a

set of 18 stagger-tuned bandpass filters and envelope detectors that produce, at the

envelope detector outputs, the "instantaneous" frequency spectrum of the speech event

as a function of time. A representative printout is shown in Fig. 18, where frequency

is plotted vertically, time is plotted horizontally, and the intensity of the spectrum at

a given frequency and time is proportional to the grey level of the sonograph recording

at the corresponding time-frequency point. The numerical printout of Fig. 18 is obtained

by digitizing the sonograph records into 18 frequency channels, each sampled at the rate

of 20 msec/sample. Note that the samples are orthogonal by construction because they

represent waveforms that are disjointed either in frequency or time. The resulting cell

structure in the time-frequency plane represents a 1-sec duration speech event as a

vector in a 900-dimensional space. Each dimension corresponds to a possible cell loca-

tion, and the coordinate value of a dimension equals the intensity of the corresponding

cell. In Fig. 18, a 3-digit binary number (8 levels) represents the sonograph intensity,

after the instantaneous total speech intensity has been normalized by the action of a fast

AGC. To increase the resemblance of the printout in the lower portion of Fig. 18 to the

sonograph of the upper portion, the grey level 1 was suppressed.

This model of the physical world is known to be more than adequate in containing

category defining information; good quality intelligible speech can be synthesized from

*The Vocoder used was the property of the Air Force Cambridge Research Center
and was made available through the courtesy of C. P. Smith.
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Fig. 18. Sonograph representation of the spoken word "three."

the previously described characterization of speech.

It should be noted that many alternative representations of speech events are possible.

Direct samples of bandlimited speech waveforms sampled at the Nyquist rate, or Fourier

series expansion coefficients would allow the representation of a speech event as a vec-

tor in a high-dimensional space. The number of necessary dimensions would be some-

what higher than 900, however. An additional advantage of the quantized sonograph

representation of speech events is that in the signal space constructed from it, like

events would exhibit a fair degree of clustering, a fact that facilitates the demonstration

of the special linear theory of Section II.

The spoken digits are presented in a sentence, where parts of other words bracket

the digit of interest to us. In this particular example the beginning and end of a word

are readily identified, however, by the short silent intervals at either extreme. It is

assumed in the following discussion that the beginning and end of a word have been found

either by some auxiliary method or because words are spoken in isolation; and the

recording tape speed, or sampling rate, has been adjusted so that an equal number of

samples of each word is taken. Although instrumented with comparative ease, it is not
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at all necessary to assume such a simple normalization of speech events. Perhaps more

realistic and more practical normalizations could be formulated to account for the

varying word lengths that result from the differences in the number of syllables of words

and the differences in the speaker speed. Since the purpose of this experiment was not

to solve a particular problem in speech recognition butto illustrate the analysis tech-

nique developed, the simple normalization is assumed.

Each spoken digit is represented by a 361-dimensional vector in a vector space of

361 dimensions. This vector space is constructed by taking 20 equally spaced samples

per word of each of the 18 Vocoder channel outputs. The resulting 360 dimensions are

augmented by the word length considered as an additional dimension. By retaining word-

length information, the one-to-one mapping of spoken words into a fixed number of

dimensional vectors is achieved. The change of sample spacing between real time words

and those in normalized time made it necessary to interpolate between the heights of

adjacent samples in the same Vocoder channel in order to obtain the sample heights that

would correspond to the new sample spacing. Linear interpolation was employed.

Computation of Optimum Transformations

First, M samples of each of the 10 categories were selected as the labeled samples

from which numeral recognition is learned. At first M was chosen as 3; later the com-

putations were repeated with M gradually increasing to 10.

The first step in the process of finding the orthogonal transformations that minimize

the mean-square distances between points of each of the categories is to find the ortho-

normal transformations that rotate the given coordinate system into the optimum ones.

Because this would involve solving for the eigenvalues and vectors of 361 X 361 matrices,

a time-consuming process, we utilize the knowledge that the eigenvectors of each solu-

tion will be contained in the M-dimensional linear manifold of the space spanned by the

vectors of each set. The M vectors of each set were therefore orthogonalized to obtain

10 M-dimensional coordinate systems in which the sample vectors of each set could be

expressed in no more than M-dimensions.

The covariance matrices of each set of vectors were constructed, and the eigenvalues

and eigenvectors of these matrices were obtained. All of these computations were per-

formed on a (RECOMP II) general-purpose digital computer. The eigenvectors of a

covariance matrix form the columns of the rotation transformation C of Section II. The

reciprocals of the corresponding eigenvalues are the elements of the diagonal matrix W,

which expresses the weighting associated with each new eigenvector. The eigenvectors

were then expressed in the original 361-dimensional coordinate system, and the com-

putation of the quadratic forms according to Eq. 128 was programmed on the computer.

The decision regarding membership of an unknown speech event was determined by the

decision rule of Eq. 129 by choosing the category corresponding to the quadratic form

of smallest value.

Typical results which demonstrate improvement in the machine's performance as the
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Fig. 19. Confusion matrices illustrating the process of learning
numeral recognition.

number of known, labeled examples of spoken digits is increased, are illustrated in

Fig. 19. This figure contains 4 confusion matrices constructed for the cases in which

numeral recognition was learned from 3, 4, 7, and 9 examples of each of the 10 cate-

gories of digits. The ordinate of a cell in the matrix signifies the digit that is spoken,

the abscissa denotes the decision of the machine, and the number in the cell states the

number of instances in which the stated decision was made. The number 1 in row 6

and column 8, for example, denotes the fact that in one instance a spoken digit 6

was recognized as an 8. Note that the error rate decreases as the number of known

examples of categories is increased. For 9 examples per category no errors were

made. This result is particularly interesting in view of the fact that many of the

spoken digits that were tested were spoken by persons not included among those whose
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words were used as examples.

Using the same techniques, but enlarging the number of dimensions of the space in

which spoken digits are represented, we may obtain improved results. The addition of

parameters - considered useful from the standpoint of linguistics - as new dimensions

would increase the clusterability of words of the same category. An example of such a

parameter is "the number of intervals of time into which a word may be divided so that

an interval is defined in a special way." The interval is a segment of time during which

the mean-square difference of successive "instantaneous" spectra is less than a suitably

chosen threshold value. The number of intervals defined in this manner is probably

indicative of the number of different sounds that exist in a spoken digit. The number of

different sounds per digit is expected to be substantially the same for a given digit

regardless of who speaks it, but this number may differ for another spoken digit.
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APPENDIX D

General Equivalence of the Likelihood Ratio and the Geometrical Decision Rule

It will be shown in this appendix that the decision rule derived from geometrical con-

siderations in which members of sets are clustered while sets are kept apart is equi-

valent to a Bayes' rule under very general assumptions regarding the probability

densities associated with the distribution of members of sets.

The decision rule stated in Section V is to:

decide v E F if lu(v)-uF(v) < Iu(v)-uG(v)I
(130)

decide v E G if Iu(v)-uF(v) j> u(v)-uG(v)

This decision rule compares the value of the surface over the point to be classified,

u(v), with the average values of the surface over the two sets of given samples, uF(v)

and uG(v). The decision is made that v is a member of the set, F or G, to which it is

closer.

If PF(V) and PG(V) are the probability densities of v under the assumptions that v is
a member of class F or G, then by Bayes' rule we have

decide v E F if PF(V) > PG(V)
(131)

decide v E G if PF(v) < PG(V)

This decision rule, if the a priori probabilities of F and G are equal, calls for

deciding that v is a member of F if, under the assumption that F occurred, v is a more

likely observation than under the assumption that G occurred.

It will be shown in this appendix that if the function u(v) involved in Eq. 130 is

obtained as a solution of the minimization problem stated in Section V and given below

in Eqs. 132 and 133, then the two decision rules, Eqs. 130 and 131, are equivalent. The

equivalence is true, of course, only as the sample size approaches infinity.

minimize [F(U)+-G(u) = Q (132)

if

uF- G = K > 0 (133)

The significance of this minimization problem is that it obtains the function u

required in Eq. 130 by operating on a set of samples. The solution of the problem under

the assumption of a certain class of polynomial transformations was given in Section V.

Here we shall show that the solution equates the decision rules of Eqs. 130 and 131 under

the assumption of quite arbitrary classes of transformations.

First, the rule of Eq. 130 will be reduced to an equivalent but simpler form. Note
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that if the inequalities of Eq. 130 hold, so do those of Eq. 134.

decide v E F if [ u(v)-uF]] < [u(v)-uG ] 2

(134)

decide v E G if [u(v)-uF]2 >[u(v)-uG]

Squaring both sides of the inequalities, cancelling like terms, and rearranging the

inequality yield Eq. 135.

2 - -2 2-
u (v)- 2uu F + u F < u (v) - ZuG + uG (135a)

_2 -2
UF - UG < u(uF-UG) (135b)

uF + uG
F G< u(v) (135c)

Now we solve the minimization problem of Eq. 132, subject to the constraint stated

in Eq. 133. To facilitate the solution, we minimize Eq. 136a subject to Eq. 136b instead,

and show later that the two problems have identical solutions.

minimize Q' = u + u (136a)

K = uF - G > 0 (136b)

Using the method of Lagrange multipliers and writing out the expression in integral

form, we obtain Eq. 137.

Q' + XK = (f (v)[pF(v)+pG(v)]+ku(v)[pF(v)-PG(v)} dv (137)

Setting the variation of Eq. 137 equal to zero, Eq. 138 is obtained.

6(Q'+XK) = 0 f {u(v)[pF(v)+G(v)]+[PF(v)-PG(v)]} 6u dv (138)

Since u is arbitrary, however, the expression { } must be identically zero for all

6u. Solving for u(v), we obtain Eq. 139.

X PF(v) - PG(V)
u(v) = - (139)

PF(V) + PG(V)

The Lagrange multiplier may now be evaluated by substituting Eq. 139 in the con-

straint of Eq. 136b.

K / [pF(v)-pG(v)] 2

K = - [PF( dv > 0 (140)F G[PF(V)+PG(v)]

73

_�



We have to note only that the integral is a positive quantity, establishing the fact that

the constant X is negative. This fact permits us to rewrite Eq. 139 as

uv (PF(v) - (v)
G(v) (141)

\PF(V) + PG(V)

Substitution in the simplified decision rule, Eq. 135c, yields the further simplified rule

of Eq. 142.

u(v) > F G - [pF(v)-pG(v)] dv = 0 (142a)

decide v E F if u(v) > 0 (142b)

decide v E G if u(v) < 0 (142c)

When Eq. 141 is substituted in the decision rule of Eq. 142, we obtain Eq. 143, which

is satisfied only if PF(V) > PG(v) the criterion required by Bayes' rule.

decide v E F if u(v) = F) G(v) > 0 (143)
P F(V) + PG(v)

Thus the two rules are proved to be equivalent if u(v) is a solution of the minimi-

zation problem stated in Eqs. 136a and 136b. It now remains to show only that the prob-

lem stated in Eqs. 134 and 133 is equivalent to that stated in Eqs. 136a and 136b.

It is seen from Eqs. 142a and 133 that uF(v) = -uG(v) = K/2. Substituting this value

in Eq. 132, we obtain Eq. 144.

2 -- 2
2 2 2 2 - -2 2 2 K

Q = F( ) + G ( u ) = F + G - F - uG = UF + UG - (144)

Since K2 /2 is a constant, the minimization of Q leads to the same solution as the mini-

mization of Q'.

74

� _�



Bibliography

1. Ashby, W. Ross. Design for a Brain (John Wiley and Sons, Inc., New York and
Chapman and Hall, Ltd., London, 1952).

2. Bar-Hillel, Y. Can translation be mechanized? Am. Scientist 42, 248-260
(April 1954).

3. Bar-Hillel, Y. Linguistic problems connected with machine translation, Brit. J.
Philos. Sci. 20, No. 3, 217-225 (July 1953).

4. Bar-Hillel, Y. The present state of research on mechanical translation, Am.
Document. 2, 229-237 (1952).

5. Bernstein, A., et al. A chess playing program for the IBM 704, Proc. Western
Joint Computer Conference, May 6-8, 1958 (AIEE, New York), pp. 157-159.

6. Bomba, J. S. Alpha-numeric character recognition using local operations, Proc.
Eastern Joint Computer Conference, December 3, 1959 (IRE, New York),
pp. 218-224.

7. Bremer, R. W. A checklist of intelligence for programming systems, Communs.
Assoc. Computing Machinery 2, 8-13 (March 1959).

8. Carr, J. W. Recursive subscripting compilers and list-type memories, Communs.
Assoc. Computing Machinery 2, 4-6 (February 1959).

9. Chow, C. K. An optimum character recognition system using decision functions,
Trans. IRE, EC-6, No. 4, 247-254 (December 1957).

10. Clark, W. A., and Farley, B. G. Generalization of pattern recognition in a self-
organizing system, Proc. Western Joint Computer Conference, March 1, 1955
(IRE, New York), pp. 86-91.

11. David, E. E., Jr. Artificial auditory recognition in telephony, IBM J. Res.
Develop. 2, No. 4, 294-301 (1958).

12. David, E. E., Jr., and McDonald, H. S. A bit-squeezing technique applied to
speech signals, IRE Convention Record, Part 4, 1956, pp. 148-152.

13. Denes, P. The design and operation of the mechanical speech recognizer, J. Brit.
I. R. E. 19, 219-229; Discussion, 230-234 (April 1959).

14. Dimond, T. L. Devices for reading handwritten characters, Proc. Eastern
Joint Computer Conference, 1957, pp. 232-237.

15. Dinneen, G. P. Programming pattern recognition, Proc. Western Joint Computer
Conference, March 1955.

16. Dunker, K. On Problem Solving, Psychol. Monogr., Vol. 58, No. 270 (1945).

17. Evey, R. J. Use of a computer to design character recognition logic, Proc. Eastern
Joint Computer Conference, December 3, 1959, pp. 205-211.

18. Feldman, J. A theory of binary choice behavior, CIP Working Paper No. 12,
Carnegie Institute of Technology, Pittsburgh, May 1958.

19. Flores, I. An optimum character recognition system using decision functions,
Trans. IRE, EC-7, 180 (June 1958).

20. Friedberg, R. M. A learning machine, Part I, IBM J. Res. Develop. 2, 2-13
(January 1958).

21. Fucks, W. On mathematical analysis of style, Biometrika 39, 122 (1952).

22. Galanter, Eugene H. The behavior of thought, Paper presented at the American
Psychological Association Meeting, Chicago, 1956.

23. Gardner, M. Logic Machines and Diagrams (McGraw-Hill Book Company, Inc.,
New York, 1958).

24. Gelernter, H. L., and Rochester, N. Intelligent behavior in problem-solving
machines, IBM J. Res. Develop. 2, 336-345 (October 1958).

75



25. Gentzen, Gerhard. Untersuchungen uiber das logische Schliessen, Math. Z. 39,
176-210; 405-431 (1934).

26. Glantz, H. T. On the recognition of information with a digital computer, J. Assoc.
Computing Machinery (April 1957).

27. Gold, B. Machine recognition of hand-sent Morse code, Trans. IRE, IT-5, 17-24
(March 1950).

28. Greanias, E. C., et al. Design of logics for recognition of printed characters by
simulation, IBM J. Res. Develop. 1, 8-18, January 1957.

29. Grimsdale, R. L., et al. A system for the automatic recognition of patterns, J.
Inst. Elec. Engrs. (London) 106, Part B, 210-221 (March 1959).

30. Harris, Robert T., and Jarrett, J. L. Language and Informal Logic (Longmans
Green and Co., Inc., New York, 1956).

31. Hebb, D. O. The Organization of Behavior (John Wiley and Sons, Inc., New York,
and Chapman and Hall, Ltd., London, 1949).

32. Hilgard, E. Theories of Learning, Second Ed. (Appleton-Century-Crofts, Inc.,
New York, 1956).

33. Hovland, C. I. A "communication analysis" of concept learning, Psychol. Rev. 59,
461 -472 (1952).

34. Humphrey, G. Thinking (John Wiley and Sons, Inc., New York, 1951).

35. Ianov, Yu. I. On equivalency and transformations of program schemes, Doklady
Akad. Nauk S. S. S. R. 113, No. 1, 39-42 (1957).

36. Ianov, Yu. I. On matrix program schemes, Doklady Akad. Nauk S. S. S. R. 113,
No. 2, 283-286 (1957); also published in Communs. Assoc. Computing
Machinery 1, No. 12 (December 1958).

37. Kirsch, R. A., and others. Experiments in processing pictorial information with
a digital computer, Proc. Eastern Joint Computer Conference, December 3,
1957, pp. 221-230.

38. Kister, J., and others. Experiments in chess, J. Assoc. Computing Machinery 4,
2 (April 1957).

39. Kramer, H. P., and Mathews, M. V. A linear coding for transmitting a set of
correlated signals, Trans. IRE, IT-2 (September 1956). (Paper presented
at Symposium on Information Theory held at Massachusetts Institute of
Technology, Cambridge, Mass., September 10-12, 1956.)

40. Kretzmer, E. R. Reduced alphabet representation of television signals, IRE Con-
vention Record, Part 4, 1956, p. 40.

41. Lambek, J. The mathematics of sentence structure, Amer. Math. Monthly 65,
154-170 (1958).

42. Lashley, K. S. Cerebral Mechanism in Behavior (John Wiley and Sons, Inc.,
New York, 1951).

43. Latil, P. de. Thinking by Machine (Houghton-Mifflin Co., Boston, 1956).

44. Levin, K. Principles of Topological Psychology (McGraw-Hill Book Company,
Inc., New York, 1936).

45. Locke, W. N., and Booth, A. D. Machine Translation of Languages (John Wiley
and Sons, Inc., New York, 1955).

46. Luchins, A. S. Mechanization in problem solving, Psychol. Monogr. 54, No. 6
(1942).

47. Luhn, H. P. The automatic creation of literature abstracts, IBM J. Res. Develop. 2,
159-165 (April 1958).

48. Mattson, R. L. A self organizing logical system, paper presented at the Eastern
Joint Computer Conference, December 3, 1959.

76

�



49. McCarthy, J. The inversion of functions defined by Turing machines, Automata
Studies, edited by C. E. Shannon and J. McCarthy (Princeton University
Press, Princeton, N.J., 1956), pp. 177-181.

50. McCulloch, W. S., and Pitts, W. H. A logical calculus of the ideas imminent in
nervous activity, Bull. Math. Biophys. 9, 127 (1947).

51. McCulloch, W. S., and others. Symposium on the design of machines to simulate
the behavior of the human brain, Trans. IRE, EC-5, No. 4 (December 1956).

52. The Mechanization of Thought Processes, Computer Bulletin 2, 92-93 (April-May
1959).

53. Miller, G. A. Language and Communication (McGraw-Hill Book Company, Inc.,
New York, 1951).

54. Miller, G. A. The magical number seven, plus or minus two: some limits on our
capacity for processing information, Psychol. Rev. 63, 81-97 (1956).

55. Miller, G. A., and Selfridge, J. A. Verbal context and the recall of meaningful
material, Am. J. Psychol. 63, 176-185 (1956).

56. Minsky, M. L. Exploration systems and syntactic processes, Summer Research
Project on Artificial Intelligence, Dartmouth College, New Hamshire, 1956.
(Unpublished report.)

57. Minsky, M. L. Heuristic aspects of the artificial intelligence problem, Group
Report 34-35, Lincoln Laboratory, M. I. T., 17 December 1956, p. I-1-1-24.

58. Moore, O. K., and Anderson, S. B. Modern logic and tasks for experiments on
problem solving behavior, J. Psychol. 38, 151-160 (1954).

59. More, T., Jr. Deductive Logic for Automata, S. M. Thesis, Department of Elec-
trical Engineering, M. I. T. , 1957.

60. Morris, C. Signs, Language and Behavior (Prentice-Hall, Inc., New York, 1946).

61. Neumann, J. von. The general and logical theory of automata, Cerebral Mechanism
in Behavior, edited by W. Jeffress (John Wiley and Sons, Inc., New York,
1951).

62. Neumann, J. von. Theory of Games and Economic Behavior (Princeton University
Press, Princeton, N. J., 1947).

63. Newell, A. The Chess Machine, Proc. Western Joint Computer Conference,
March 1955.

64. Newell, A., Shaw, J. C., and Simon, H. A. Chess-playing programs and the
problem of complexity, IBM J. Res. Develop. 2, No. 4, 320-335 (October
1958).

65. Newell, A., Shaw, J. C., and Simon, H. A. Elements of a Theory of Human
Problem Solving, Report No. P-971, The Rand Corporation, Santa Monica,
Calif., 4 March 1957.

66. Newell, A., Shaw, J. C., and Simon, H. A. The elements of a theory of human
problem solving, Psychol. Rev., Vol. 65 (March 1958).

67. Newell, A., Shaw, J. C., and Simon, H. A. Empirical exploration of the logic
theory machine, Proc. Western Joint Computer Conference, February 1957.

68. Newell, A., Shaw, J. C., and Simon, H. A. Empirical Exploration of the Logic
Theory Machine (revised), Report No. P-951, The Rand Corporation,
Santa Monica, Calif., March 14, 1957.

69. Newell, A., Shaw, J. C., and Simon, H. A. General Problem Solving Program,
CIP Working Paper No. 7, Carnegie Institute of Technology, Pittsburgh,
December 1957.

70. Newell, A., Shaw, J. C., and Simon, H. A. The Processes of Creative Thinking,
Report No. P-1 320, The Rand Corporation, Santa Monica, Calif., August
1958.

77

__ _. __�



71. Newell, A., Shaw, J. C., and Simon, H. A. Report on a General Problem Solving
Program, Report No. P-1584, The Rand Corporation, Santa Monica, Calif.,
January 1959.

72. Newell, A., and Shaw, J. C. Programming the logic theory machine, Proc. Western
Joint Computer Conference, February 1957.

73. Newell, A., and Shaw, J. C. Programming the Logic Theory Machine (revised),
Report No. P-954, The Rand Corporation, Santa Monica, Calif., 28 February
1957.

74. Newell, A., and Simon, H. A. Current Developments in Complex Information Proc-
essing, Report No. P-850, The Rand Corporation, Santa Monica, Calif.,
May 1, 1956.

75. Newell, A., and Simon, H. A. The logic theory machine, Trans. IRE, IT-2, No. 2,
61-79 (September 1956).

76. Newell, A., and Simon, H. A. The Logic Theory Machine. A Complex Information
Processing System (revised), Report No. P-868, The Rand Corporation,
Santa Monica, Calif., 12 July 1956.

77. Oettinger, A. G. Simple Learning by a Digital Computer, Proc. Assoc. Computing
Machinery, September 1952.

78. Perry, J. W., Kent, A., and Berry, N. M. Machine Literature Searching (Inter-
science Publishers, Inc., New York, 1956).

79. Pitts, W. H., and McCulloch, W. S. How we know universals, the perception of
auditory and visual form, Bull. Math. Biophys. 9, 1048 (1947).

80. Polya, G. How to Solve It (Princeton University Press, Princeton, N. J., 1945).

81. Polya, G. Mathematics and Plausible Reasoning, Vols. I and II (Princeton University
Press, Princeton, N. J., 1954).

82. Rapaport, D. The Organization and Pathology of Thought (Columbia University
Press, New York, 1951).

83. Rochester, N., and others. Tests on a Cell Assembly Theory of the Action of the
Brain Using a Large Digital Computer, Trans. IRE, IT-2, No. 3, September
1956.

84. Rosenblatt, F. The perceptron: a probabilistic model for information storage and
organization in the brain, Psychol. Rev. 65, 6 (1958).

85. Rosenblatt, F. The Perceptron, A Theory of Statistical Separability in Cognitive
Systems, Cornell Aeronautical Laboratory, Project PARA, Report No. VG-
1196-G-1 (January 1958).

86. Selfridge, O. G. Pandemonium: a paradigm for learning, Proceedings of the Sym-
posium on Mechanization of Thought Processes, National Physical Labora-
tory, Teddington, Middlesex, England, November 24-27, 1958.

87. Selfridge, O. G. Pattern recognition and learning, Symposium on Information
Theory, London, England (1955). Preprinted Group Report 34-43, Lincoln
Laboratory of Massachusetts Institute of Technology, July 20, 1955.

88. Selfridge, O. G. Pattern recognition and modern computers, Proc. Western Joint
Computer Conference, pp. 91-93 (March 1955).

89. Selfridge, . G., et al. Pattern recognition and reading by machine, Proc. Eastern
Joint Computer Conference, December 3, 1959.

90. Shannon, C. E. Communication theory of secrecy systems, Bell System Tech.
J. 28, 656-715 (1949).

91. Shannon, C. E. Computers and automata, Proc. IRE 41, 1235-1241 (1953).

92. Shannon, C. E. A mathematical theory of communication, Bell System Tech. J. 27,
379-423 (1948).

78

_I _ _I_ I � _ _ �_



93. Shannon, C. E. Prediction and entropy of printed English, Bell System Tech. J. 30,
50-64 (1951).

94. Shannon, C. E. Programming a computer for playing chess, Phil. Mag. 41, 256-
275 (1950).

95. Shannon, C. E. The rate of approach to ideal coding, IRE National Convention
Record, Part 4, 1955 (Abstract pages only).

96. Shannon, C. E. A universal Turing machine with two internal states, Automata
Studies, edited by C. E. Shannon and J. McCarthy, Annals of Mathematics
Studies No. 34 (Princeton University Press, Princeton, N. J., 1956), pp. 157-
165.

97. Shaw, J. C., and others. A command structure for complex information proc-
essing, Proc. Western Joint Computer Conference, May 1958.

98. Simon, H. A. A behavioral model of rational choice, Quart. J. Econ. 69, 99-
118 (1955).

99. Simon, H. A. Rational choice and the structure of the environment, Psychol.
Rev. 63, 129-138 (1956).

100. Simon, H. A., and Newell, A. Models: their uses and limitations, The State
of Social Sciences, N. White (ed.) (University of Chicago Press, Chicago,
Ill., 1956).

101. Simons, Leo. New axiomatizations of S3 and S4, J. Symbolic Logic 18, 309-316
(1953).

102. Solomonoff, R. J. An inductive inference machine (privately circulated report)
(August 14, 1956); IRE National Convention Record, Vol. 5, Part 2, 1957,
pp. 56-62, Annals of Mathematical Studies No. 34 (Princeton University
Press, Princeton, N.J., 1956).

103. Solomonoff, R. J. A New Method for Discovering the Grammars of Phase Struc-
ture Languages, AFOSR TN-59-110, under Contract No. AF49(638)-376,
April 1959 (ASTIA AD No. 210 390).

104. Solomonoff, R. J. The Mechanization of Linguistic Learning, AFOSR-TN-246
under Contract No. AF49(638)-376, April 1959 (ASTIA AD No. 212226).

105. Steinbuch, K. Automatic speech recognition, NTZ 11, 446-454 (1958).

106. Strachey, C. S. Logical or non-mathematical programs, Proc. Assoc. Com-
puting Machinery (September 1952).

107. Taylor, W. K. Pattern recognition by means of automatic analogue apparatus,
Proc. Brit. I. R. E. 106, Part B, pp. 198-209 (March 1959).

108. Tersoff, A. I. Electronic reader sorts mail, Electronic Industries, pp. 56-60
(July 1958).

109. Turing, A. M. Can a machine think? in J. R. Newman, The World of Mathe-
matics, Vol. 4 (Simon and Shuster, Inc., New York, 1956).

110. Turing, A. M. On computable numbers, Proc. London Math. Soc., Series 2, 42,
230-265 (1936-37). See also a correction, Ibid, 43, 544-546 (1937).

111. Unger, S. H. A computer oriented toward spatial problems, Proc. IRE 46, 1744-
1750 (October 1958).

112. Unger, S. H. Pattern detection and recognition, Proc. IRE 47, No. 10, p. 1737
(October 1959).

113. Uttley, A. M. The classification of signals in the nervous system, Memorandum
1047, Radar Research Establishment, Great Malvern, England, 1954. Also
published in the EEG Clin. Neurophysiol. 6, 479 (1954).

114. Uttley, A. M. The probability of neural connections, Memorandum 1048, Radar
Research Establishment, Great Malvern, England, 1954.

115. Yngve, V. H. Programming language for mechanical translation, Mechanical
Translation, Vol. 5, No. 1 (July 1958).

79



a

" r


